
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

The role of a modular multi-microcomputer controller in position controlThe role of a modular multi-microcomputer controller in position control
systemssystems

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© Luiz Eduardo Lopes

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Lopes, Luiz E.. 2019. “The Role of a Modular Multi-microcomputer Controller in Position Control Systems”.
figshare. https://hdl.handle.net/2134/13769.

https://lboro.figshare.com/


 
 
 

This item was submitted to Loughborough University as a PhD thesis by the 
author and is made available in the Institutional Repository 

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence 
conditions. 

 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



" .... '"'f.' " ...... ~ .. 

LOUGHBOROUGH 
UNIVERSITY OF TECHNOLOGY . I 

LlBRAR)' 

AUTHOR/FILING TITLE '] 
LoP€S L ~ __ - - - _____ ---- - ---- ,1----- --- ----- - - - --- -- --- --

--- - - - ----- ----------------- -- -- --- ---- - - - -_._-- - ..... -

, ACCESSION/COPY NO. 

/ 
3 0411N 1989 

./ 

3~ 

- 2 OEe 1998 

o 



3 

.. ' . 

LOUGHBOROUGH 
UNIVERSITY OF TECHNOLOGY 

LIBRARY 

AUTHOR/FILING TITLE .'] 
LoP€S. L ~ .. 

__ - - - _____ ---- - ---- ,1-------- ------ - - --- ----- --

-- --- - ----- ----------------- ---- --- - --- - - --_._-- - .... -
ACCESSION/COPY NO . 

... -~VOl~NO~------- ~~~i~~IR~~-----------------

~----------~,,~.--~-.-.. ---,~-.~-. -.------~-
17. Fly 1/ . 

- !, ,.~ .". 

... ti . i" :qP.d 

~ . 

. ::{'.:) -~'i!L0><
~ -e i '" 2.<\ I.\S 0 i 
~,-"",O. 

-3 .. 11 t-ritfi 
(' 

1 JUL_ 

000 ·'4968 ·02 : : 

, 11111111111111111111111111111111111111111111111111111 

• 



• 



THE ROLE OF A MODULAR 

MULTI-MICROCOMPUTER CONTROLLER 

IN POSITION CONTROL SYSTEMS 

by 

LUIZ EDUARDO LOPES 

A Docto.ral Thesis 
submitted in partial fulfilment of the 

requirements -"for the' award of' 
."9 ;. 

Doctor of Philosophy 

of the Loughborough University of Technology 

Loughborough University 
Departme"nt of Engineering Production 

August. 1982 

CE) by Luiz Eduardo Lopes 



a.:..ughbOrough Unl .... oI'¥ 
.f hd,"alatv 111",o"y ... (J~ %"'!... 

Claa , 
Ace. ~ ~O) 6 f/o 1.-~: •. 

--, 



To my wife DIVA and my daughter RAQUEL 
for their love and understanding 

;; 

'~.:. 



DECLARATION 

No part of the work described in this Thesis has been submitted in 

support of an application for any other degree or qualification of 

this or any other University or other Institution of learning. 

i 



.' 

ACKNOWLEDGMENTS 

The author wishes to thank 

Professor R. Bell, for his kind supervision and support. 

Mr G.P. Charles, Mr N.D. Carpenter and Mr D. WaIters, for 

helping with the use of the laboratory facilities. 

Mr P .G. Leaney, for making available the hydraulic rig and 

for interesting discussions about hydraulic systems. 

Moog and Sperry-Vickers, for donating part of the equipment 

for the hydraulic rig. 

Mr J. Manning, for repairing the slideway-table when it was 

necessary. 

Mr A.A. de Queiroz, Mr S.C. Silva and Mr N. Bilalis, my 

friends, for sharing the problems of a research work. 

Mrs S. Johnson, for carefully typing this work. 

~ ~ 

The INSTITUTO DE PESQUISAS TECNOLOGICAS DO ESTADO DE SAO 

PAULO S.A. (Brasil), through its Divisao de Engenharia 

Mecanica, for providing financial support. 

ii 



iii 

SUMMARY 

The work reported in this thesis is concerned with the application 

of digital control techniques to position control. The major 

emphasis is devoted to the use of modular multi-microcomputers as 

real-time controllers. Minicomputers and microcomputers do not 

always meet the technical requirements of modern system design; 

the modular multi-microcomputer controller is the most appropriate 

choice in many high performance systems. 

The specification, design and construction of a modular multi-

microcomputer controller is described. The controller has been 

applied to an electro-hydraulic cylinder position control system, 

where emphasis has been given to the control of load damping. The 

control system design is based on the use of state-space methods. 

Optimal control and observers are used. 

Experimental tests are reported for open and closed loop. The 

open-loop results show the particular characteristics of an 

asymmetric cylinder drive. The closed-loop results show the 

behaviour of the drive under a simple digital proportional controller 

and a state-variable controller. variables such as position, 

velocity, cylinder pressures and piston thrust are displayed for 

several test conditions. 

-



CONTENTS 

DECLARATION 

ACKNOWLEDGMENTS c-
SUMMARY 

~ONTENTS 
~ 

ABBREVIATIONS 
/-

3. 
..-/' 

INTRODUCTION 

LITERATURE SURVEY 

2.1 

2.2 

2.3 

Introduction 

Digital Control 

2.2.1 
2.2.2 
2.2.3 

General Aspects 
Process Digital Control 
Servo Digital Control 

Multiprocessor Systems in Control Applications 

ASPECTS OF STATE-VARIABLE DIGITAL CONTROL 

3.1 Introduction 

3.2 

3.3 

3.4 

3.5 

Continuous and Discrete State Equations 

3.2.1 
3.2.2 

Continuous State Equations 
Discrete State Equations 

Controller Design Sequence 

Design of the Control Law 

3.4.1 
3.4.2 

Pole-Placement Design Method 
Optimal Control Design Method 

Design of the Observer 

3.5.1 
3.5.2 

Full-Qrder Observer 
Reduced-Order Observer 

DIGITAL CONTROLLER COMPUTER AIDED DESIGN 
AND CLOSED LOOP SIMULATION 

4.1 Introduction 

4.2 Continuous to Discrete State Equations -
STATE Program 

4.3 Feedback Gains by Pole-Placement Design -
ACKER Program 

4.4 Feedback Gains by Optimal Control Design -
SWEEP Program 

4.5 Closed-Loop Simulation - TIME LOCUS Program 

iv 

page 

i 

ii 

iii 

iv 

x 

3 

3 

3 

3 
4 
5 

9 

12 

12 

12 

12 
14 

17 

18 

19 
21 

22 

23 
25 

28 

28 

28 

32 

34 

37 



5./~ 
/ 5.1 

5.2 

5.3 

5.4 

MODULAR MULTI-MICROCOMPUTER ANALYSIS 

Introduction 

Multi-Microcomputer Systems 

Multi-Microcomputer Structures 

5.3.1 
5.3.2 

General Structures 
Modularity 

Multi-Microcomputer Structure Selection 

5.4.1 
5.4.2 
5.4.3 
5.4.4 
5.4.5 
5.4.6 

Structures for Real-Time Control 
Central Memory Structure 
Global (Common) Bus Structure 
Modified Common Bus Structure 
Common-Bus Arbitration 
Common-Bus Selection 

G. DESIGN OF A MODULAR MULTI-MICROCOMPUTER 

6.1 

6.2 

6.3 

6.4 

6.5 

6.6 

6.7 

Introduction 

The Microcomputer 

6.2.1 
6.2.2 
6.2.3 
6.2.3.1 
6.2.3.2 
6.2.3.3 
6.2.4 

The Microprocessor 
Microcomputer Selection 
The Texas TM990/100M-l Microcomputer 
The Microcomputer Board 
TIBUG Software Interface 
The Texas TMS9901 Programmable Interface 
Memory Expansion - Necessity 

The General Mapped Communication Structure 

6.3.1 

6.3.2 
6.3.3 
6.3.4 

The Microcomputer's Communications 
Global Memory Area 
Externally Referenced Communication Areas 
The Number of Supported Modules 
The Role of the System Controller 

General Logical Design 

6.4.1 
6.4.2 
6.4.3 
6.4.4 
6.4.5 

The Interrupt Controlled Arbitration Link 
Slave Definition Phase 
Slave Acceptance Phase 
Communication Phase 
End of Communication Phase 

The Design of a Modular System 

6.5.1 
6.5.2 
6.5.3 
6.5.4 

Integrated Circuits 
Dynamic Memory Restriction 
Buffering Signals on the System Bus 
Logic Diagrams 

Functional Discussion of the Designed Logic 

6.6.1 

6.6.2 
6.6.3 
6.6.4 

The Master-Slave Identification 
Address Decoder 
The Slave-Identification Address Decoder 
Slave Definition Handshake 
Master-Slave Communication 

The Timing Relationship Diagrams 

v 

44 

44 

44 

48 

48 
50 

51 

51 
51 
52 
54 

@ 
60 

60 

60 

60 
61 
63 
63 
67 
69 
73 

75 

75 
79 
83 
86 

87 

88 
93 
95 
98 

101 

102 

102 
102 
103 
105 

105 

105 
110 
111 
114 

118 



7. 

8. 

THE MULTI-MICROCOMPUTER'S HARDWARE IMPLEMENTATION 
AND SOFTWARE COMMUNICATION DESIGN 

7.1 

7.2 

7.3 

7.4 

7.5 

7.6 

7.7 

Introduction 

The Hardware 'Design Implementation 

7.2.1 
7.2.2 
7.2.3 
7.2.4 
7.2.5 
7.2.6 

Board Manufacturing Process 
Card Size and Edge Connectors 
The Functional Distribution 
The Lay-out Design and the Final Boards 
Line Termination for the System Bus 
The Racking System and Board Arrangement 

Memory Expansion Board - General Test 

The System Bus and Microcomputer 

7.4.1 

7.4.2 

7.4.3 
7.4.4 
7.4.5 
7.4.6 
7.4.7 

Interrupt Controlled Arbitration Link 
and Microcomputer Connections 
Slave Definition Process and the 
Microcomputer 
The Handshake Connections 
CRU and Interrupt Lines - Final Definition 
Reset Action through the System Bus 
The Internal Bus Separation 
Final Interconnections and the System Bus 

Power Supply 

System Bus Testing - Partial Communication Software 

The General Communication Software 

7.7.1 
7.7.2 

7.7.3 
7.7.4 
7.7.5 
7.7.6 
7.7.7 

The Controlled Process and Message Exchange 
Message Identification - The Transfer ' 
Vector 
Message Transfer Modes - Transparency 
Single and Global Message Definition 
Word and Block Transfer Routines 
Complementary Routines 
Considerations 

THE CONTROLLER TO ELECTROHYDRAULIC DRIVE INTERFACE 

8.1 

8.2 

8.3 

8.4 

Introduction 

The Hydraulic Rig 

8.2.1 
8.2.2 
8.2.3 
8.2.4 

Load Tables 
Hydraulic Cylinder 
The Servovalve 
Power Supply 

The Servo Amplifier 

Analog Input/Output Board 

8.4.1 
8.4.2 
8.4.3 
8.4.4 
8.4.5 

The Analog I/O Necessity 
The Board's Choice 
System Configuration 
Analog Output 
Analog Inputs 

vi 

126 

126 

126 

126 
128 
129 
129 
136 
136 

137 

143 

143 

144 
144 
145 
145 
146 
147 

151 

151 

155 

155 

157 
158 
159 
162 
163 
167 

169 

169 

169 

169 
173 
173 
175 

176 

178 

178 
179 
183 
185 
186 



9. 

10. 

8.5 

THE 
ITS 

9.1 

9.2 

9.3 

9.4 

9.5 

9.6 

9.7 

Position Transducer 

8.5.1 

8.5.2 
8.5.3 
8.5.4 
8.5.5 

STRUCTURE 

The Optical Linear Incremental 
Position Transducer 
Controller to Position Transducer Interface 
Detailed Interface Design 
Timing Diagrams and Interface Discussion 
Final Interface Board and Interconnections 

OF THE CONTROLLER SOFTWARE AND 
IMPLEMENTATION 

Introduction 

The General Software Structure 

Loop Closing Functions 

Loop Closing Routine 

9.4.1 
9.4.2 
9.4.3 
9.4.3.1 
9.4.3.2 
9.4.3.3 
9.4.3.4 
9.4.3.5 
9.4.4 

Sampling Frequency Control 
Data Acquisition 
Position Control 
Feedback Counter 
Actual Position 
Position Following Error 
Feedback Increment 
Observer and Control Function 
Emergency Action 

Position Reference Generation 

9.5.1 
9.5.2 

General Considerations 
Ramp Generation Routine 

Data Acquisition and Operator's Communication 

9.6.1 
9.6.2 
9.6.3 
9.6.4 
9.6.5 
9.6.6 

Operator's Options 
Sampling Period 
Ramp Input Options 
Storing Variables 
Displaying Stored Values 
Restarting the System 

Task Division Between Modules 

9.7.1 
9.7.2 
9.7.3 
9.7.4 
9.7.5 

General Division 
Master-Slave Communication 
Auxiliary Functions 
Initialisation Routines 
Linking Structure 

STATE-VARIABLE DIGITAL CONTROL OF THE ELECTROHYDRAULIC 
CYLINDER DRIVE 

10.1 Introduction 

10.2 Model Identification 

10.2.1 
10.2.2 
10.2.3 
10.2.4 
10.2.5 
10.2.6 

Load Natural Frequency 
Steady-State Characteristics 
Analytical Model 
Open-Loop Dynamic Test Results 
Open-Loop Steady-State Test Results 
The Identified Model 

vii 

187 

187 
189 
190 
192 
197 

204 

204 

204 

205 

205 

205 
209 
209 
209 
210 
210 
211 
213 
214 

216 

216 
217 

220 

220 
223 
224 
226 
228 
228 

229 

229 
229 
233 
236 
236 

240 

240 

240 

241 
244 
248 
249 
254 
259 



11. 

12. 

10.3 Controller Design 

10.3.1 Model Equations in State-Space 
Representation 
Sampling Period and Delay 
Discrete State-Equations 
Control Law Definition 
Optimal Controller 
Velocity Estimation 
Reduced-Order Observer Design 

10.3.2 
10.3.3 
10.3.4 
10.3.5 
10.3.6 
10.3.7 
10.3.7.1 
10.3.7.2 
10.3.8 
10.3.9 

Matrix Partition and Observability 
Observer Design by Pole-Placement Method 
Combined Control Law and Observer 
Closed Loop Simulation 

10.4 Controller Equations - Software Implementation 

EXPERIMENTAL TESTS AND RESULTS 

11.1 Introduction 

11.2 Open Loop Gain 

11.2.1 
11.2.2 

DAC and Servo Amplifier Combined Gain 
Servovalve and Hydraulic Cylinder 
Combined Gain 

11.2.3 
11. 2.4 

Gain Correction by Software 
Total Open Loop Gain 

lL.3 Coefficients for the Controller Equations 

11.4 Experimental Tests and Results 

11.4.1 
11.4.2 
11.4.2.1 
11.4.2.2 
11.4.2.3 
11.4.3 

Experimental Tests 
Position Ramp Input 
Digital Proportional Controller 
State-Variable Controller eSV) 
Position Response 
Position Step Input 

11.5 Discussions 

CONCLUSIONS AND RECOMMENDATIONS 

ep) 

REFERENCES 

APPENDICES 

4.1 
4.2 
4.3 
4.4 
4.5 
4.6 
4.7 
6.1 
6.2.1 
6.2.2 
6.2.3 
6.2.4 

PSIMAl Program 
STATE Program 
ACKER Program 
SWEEP Program 
Matrices Arithmetic 
OBSEQU Program 
TlMELOCUS Program 
The 990/100M-l Logic Diagrams and Pin Assignment 
TMS 9900 Memory Bus Timing 
TMS 9900 HOLD Timing 
Memory Expansion 
List and Description of Components for 
Memory Expansion Board 

viii 

265 

265 
268 
270 
274 
275 
280 
286 
286 
288 
291 
294 

297 

299 

299 

299 

299 

300 
304 
304 

306 

306 

306 
306 
310 
310 
323 
323 

331 

336 

339 

347 
350 
353 
356 
358 
362 
364 
370 
378 
379 
380 

383 



6.5.1 

6.5.2 

7.2 
7.3 
7.5 
7.6.1 
7.6.2 
7.7.1 
7.7.3 
7.7.4 
7.7.5 
8.2.1 
8.4.1 
8.4.2 
8.4.3 
8.5.1 
8.5.2 
8.5.3 
8.5.4 

8.5.5 
9.1 
9.2 
9.3 
9.4 
9.5 
9.6 
9.7 
9.8 
9.9 
9.10 
9.11 
9.12 
9.13 
9.14 
10.1 

10.2 
10.3 
10.4 
10.5 
10.6 
10.7 
10.8 
10.9 

List and Description of Components for Address 
Bus Board 
List and Description of Components for 
Data Bus Board 
Open Collector Bus Drivers and Line Termination 
Memory Test Program 
Power Supply Specification 
System Bus First Test Program 
System Bus Second Test Program 
Word and Block Transfer Routines 
Acknowledge Master Routine 
Interrupt Slave Routine 
Interrupt Controller Routine 
Series 76 (E076-l02) Moog Servovalve 
Specifications for I/O Analog Board 
Analog I/O Board and Microcomputer Interconnections 
Analog I/O Board and Ribbon Cable Interconnections 
Linear Transducer Signal Diagram 
Digitizer Feedback Board Components List 
Digitizer Feedback Board Pin-Function Assignment 
Digitizer Feedback Board and Microcomputer 
Interconnections 
EXE Unit and Digitizer Feedback Board Interconnections 
Loop Closing Routine 
Emergency Deceleration Routine 
Ramp Generation Routine 
Sampling Frequency 
Displaying Values Routine 
Module 2 Communication Software 
Module 1 Communication Software 
Arithmetic Routines 
Auxiliary Routines 
Module 1 Initialisation Routine 
Module 2 Initialisation Routine 
Process Software 
Module 1 Object Code Program 
Module 2 Object Code Program 
Control Function to Velocity Transfer 
Function Analysis 
Discrete State Equations for Extending Direction 
Discrete State Equations for Retracting Direction 
Sample of the SWEEP Program 
Observer Pole-Placement Design 
Matrix Coefficients for Observer Equations 
Estimated variables 
Control Equation 
Observer Equations 

ix 

384 

385 
386 
388 
390 
391 
393 
395 
401 
404 
406 
407 
410 
411 
412 
413 
414 
415 

417 
418 
418 
425 
426 
434 
436 
438 
441 
443 
453 
456 
460 
466 
467 
469 

471 
480 
481 
482 
483 
484 
485 
487 
491 



AC 

A/D 

Amp 

ASCII 

CPU 

CRU 

DAC (D/A) 

DC 

DMA 

EPROM 

GM 

IC 

ID 

I/O 

HP 

LSI 

MCGMA 

MOS 

OA 

P 

PC 

PI 

PID 

RAM 

ROM 

SM 

ST 

SV 

TTL 

VDU 

WP 

XOP 

lK 

N. B. : 

ABBREVIATIONS 

Alternating Current 

Analogue to Digital Converter 

Amplifier 

American Standard Code for Information Interchange 

Central Processing Units 

Communication Register Unit 

Digital to Analog Converter 

Direct Current 

Direct Memory Access 

Erasable Programmable Read-Only Memory 

Global Message 

Integrated Circuit 

Identification 

Input-{)utput 

Hewlett Packard 

Large Scale Integration 

Module's Communication Global Memory Area 

Metal Oxide Semiconductor 

Operational Amplifier 

Proportional 

Program Counter 

Proportional and Integral 

Proportional, Integral and Differential 

Random Access Memory 

Read Only Memory 

Single Message 

Status 

State Variable 

Transistor-Transistor Logic 

Video Display Unit 

Workspace Pointer 

Extended Operation 

One Thousand 

Transpose of Matrix A 

x 



1 

/-CHAPTER 1 

INTRODUCTION 

The work related in this thesis started as part of a· new major approach 

to servo-control design. A group with particular interest in s~o-

drives started working, in this Department, in the spring of 1980, to

wards computer aided design for D.C. and electro-hydraulic servo-drives. 

The use of microprocessors and digital control techniques was a major 

emphasis in the work. 

The use of more complex methods of digital control, such as state

variable and adaptive control, imposed too much pressure on the 

capability of a single microcomputer. The use of modular multi-

microcomputers was thought to be a reasonably inexpensive approach to 

control flexibility and computing power and, actually, a necessary 

control tool. 

This research was to have been the first phase of a more comprehensive 

programme of work but the necessary SERC funds were not made available. 

The experimental work was aided by the help of manufacturers such as 

MOOe and VICKERS who donated equipment. One minor drawback in the 

work is that the output of the power supply, available in the laboratory, 

did not match the requirements of the experimental drive. 

There was a choice between the use of a four-way electra-hydraulic 

servovalve controling either a symmetric or an asymmetric cylinder. 

The asymmetric cylinder was chosen as it raised the wider range of 

control problems. 

Complete priority was given to the use of a position transducer as the 

only source of information available to the controller. All the non

available state-variables would have to be estimated using only 

position as the system output. 

The thesis starts with a literature survey of works on the two main 

related subjects: digital control and multi-processors. On the 

digital control side, works of basic value were sought and emphasis 

was given to servo-digital control. In the area of multi-processors, 

the search looked for industrial applications with particular interest 

in servo-control. 



The basic aspects of state-variable digital control techniques are 

treated in Chapter 3. There, two methods for controller design 

2 

are presented and reduced-order observers are introduced as estimators 

for the non-available state-variables. Chapter 4 presents a set of 

programs, written in FORTRAN, which implement the design methods 

described in Chapter 3. With provision for closed-loop simulation, 

both controller and observer designs can be verified. 

Multi-processors are discussed in Chapter 5 and a particular multi

microcomputer structure is chosen to be implemented. The design of 

a modular multi-microcomputer, based on the chosen structure, is 

presented in Chapter 6. The design includes many aspects, from the 

choice of a particular microcomputer board to the final modular multi

microcomputer hardware configuration. The hardware design implemen-

tat ion is discussed in Chapter 7. 

is developed. 

The general software communication 

The interface of the modular multi -microcomputer controller to the 

electro-hydraulic cylinder drive is described in Chapter 8. The 

design for the position transducer interface is given. 

The general closed-loop position control software is developed in 

Chapter 9, where a modular approach is taken, and a task division is 

made for the multi-microcomputer implementation. All software was 

written in assembly-level language. 

The state-variable digital control of the electro-hydraulic cylinder 

drive is discussed in Chapter 10. A model is identified and an 

optimal controller with reduced-order observer is designed. The 

controller and observer equations are implemented. 

Comparison has been made between the behaviour of the electro

hydraulic cylinder drive under a simple digital proportional 

controller and the state-variable controller. The" experimental 

results, and discussions, are presented in Chapter 11. 

Conclusions and recommendations for future works are given in 

Chapter 12. 



3 

CHAPTER 2 

LITERATURE SURVEY 

2.1 INTRODUCTION 

There are two basic subjects related to this work: digital control 

and multiprocessors. 

With the advent of the microprocessor, digital control has expanded 

to areas which were just unthinkable before. This expansion made 

the number of published works increase tenfold. There is not any 

technical periodical nowadays which does not display at least one 

article about microprocessor application. When someone talks about 

microprocessor application he is often talking about digital control 

and sometimes about serve control. With this in mind we decided to 

include in this survey, publications related to process control and 

serve control. Process control is included to show that this area 

has been the test bed for many new control applications which are 

then extended to other areas. 

Section 2.2.1 includes basic references about sampled data control and 

digital control. In section 2.2.2 some representative works about 

process digital control are presented. 

In Section 2.2.3, details are giv~"ii""'about recent and new developments 

in the servo control area. 

The use of multiprocessors has become quite normal""in control applica

tions, especially in machine tools. Section 2.3 looks for such 

applications as they are the ones which give emphasis to servo control. 

2.2 DIGITAL "CONTROL 

2.2.1 "General "Aspects 

The sampling action associated to any kind of digital control 

makes the study of sampled data control systems at least 

desirable. A complete set of references in this area is 

given by Lopes (1). 

About digital control there are three recently published books 

which give, under certain restrictions, a reasonable source of 

recent papers published in this area. The first book to be 



4 

mentioned is the one by Franklin and Powell (2), first published 

in 1980. This is a concise book with emphasis on state-space 

methods which gives a good insight into many aspects of digital 

control. By the way, Franklin was the co-author, with 

Ragazzini, of the well known book: "Sampled Data Control 

Systems". The second book, by Katz (3), follows the same lines 

as the first with emphasis on microprocessor implementation. 

The third book to be mentioned is by Isermann (4) and was first 

published, in English, in 1981. This book is more comprehensive 

than the two mentioned before with great emphasis on industrial 

process control. It covers practically all aspects of digital 

control but it is difficult to read at times. 

2.2.2 Process Digital·Control 

The use of digital control for industrial processes 1S well 

established and it is there that new developments in control 

theory or just application of already available theoretical 

results, are first tried. Fisher and Seborg (5) have compiled 

a number of papers where they show many aspects in the modelling, 

simulation and control design used in the chemical industrYG 

Takahashi et al (6, 7, 8) present interesting algorithms to be 

used in process control by implementation in stand-alone 

microprocessor based controllers. 

Dahlin (9) presented a method for designing digital controllers, 

in single and cascade loop applications, based on the selection 

of a single tuning parameter which defined closed loop response 

and disturbance suppression. In (10), Dahlin et al extended 

the ideas developed in (9) to a multivariable control. Lopez 

et al (11) showed how to tune proportional digital controllers 

using error criteria. 

Floersch (12) designed a digital control for temperature during 

plastic parts 

heating fluid 

fabrication. The extreme non linearity of the 

dynamics and the integrating amp lifier is 

minimised by leaving the fluid loop under analog PI control. 

The use of self-tuning is shown by McGreavy and Awda (13) for a 

heat exchanger using the extended Kalman filter for parameter 

updating; The delay in the control action 1S expressed in the 

form of a Pade approximation which was used by Smith (14) in his 

pioneer work in controlling processes with dead-time. 



Using state-space methods in process industries can be made 

difficult by the traditional industry's approach to control 

system design. Borer (15) proposes a way out of this 

situation by introducing a control strategy with a master

controller microprocessor structure. 

5 

An interesting feasibility study of the application of micro

processors to self-tuning controllers was made by Clarke et al 

(16) • 

2.2.3 ServoDigital Control 

The use of digital filters for servo compensation has been 

analysed by Stevenson (17) using frequency techniques. 

McDonnel (18) showed how to implement difference equations 

in microcomputers for servo compensation, before the very 

large scale integration stage was reached in the electronic 

industry. 

A microprocessor speed control was developed by Lin (19) to 

control the speed of a chopper-fed DC motor. In this work an 

Intel 8080 microcomputer is used and digital measurement of 

speed is achieved through a digitizer. The pulses are counted 

one by one by the software routine and the microcomputer intro

duces only proportional compensation in the loop. Ring (20) 

used proportional plus integral (PI) control to stabilise the 

current loop and proportional plus integral plus derivative 

(PID) in the velocity loop of a DC thyristor driven motor. 

It is found that the direct control of speed is better than the 

cascaded due to limit cycles (non linearities). 

An interesting closed loop digital controller is shown by 

Doherty et al (21). It uses an Intel 8080 microprocessor as 

the central processor and is intended to be applicable to a 

broad spectrum of power drives. In order to avoid position 

orders from the master computer at an excessively high rate, 

the number of samples per second is reduced to 20. The large

signal and linear control modes are features of this controller 

which,· with its feed forward compensation, indicates the way 

to flexible closed loop control. 

A digital method for DC motor speed control is given by Maloney 

and Alvarado (22). Using a digital tachometer the actual 



6 

speed is measured and then compared with a pre-set value. 

The achieved resolution is not good and the inclusion of a 

microprocessor in the process is necessary. Burger and 

.Ronchinsky (23) introduce a microprocessor in a well established 

closed loop design. The microprocessor generates a pulse train 

to the digital servo and the limitations are quite apparent. 

The prediction of increased take over of loop control functions 

by the microprocessor came true. 

Matsumoto (24) closes the position and velocity loops using a 

microcomputer and introduces prediction filters to compensate 

for the delays introduced by computation and sampling operations. 

Two different sampling periods are used for the position and 

velocity loops. Using the integral of squared errors he tries to 

show the effect of filter constants but does not show great im-

provement. 

poor. 

The state-space method is used but notation is very 

The use of a microcomputer for closing the position loop around 

a thyristor controlled DC drive is described by Ernsberger (25). 

The interesting point about it is the possibility to work in a 

multi-computer environment by the use of serial links. 

An illustration of a successful application of microprocessors 

to servo drives 1S given in reference 26. The microprocessor 

controlled AC motor feed drive is intended to be used In a multi

drive arrangement and therefore the necessary communication link 

is provided. The EPROM memory chip contains all the necessary 

functions and gives good flexibility in any updating. The 

functions normally implemented are closed-loop control, torque 

monitoring,communication with the system management, faults 

reporting and diagnosis of problems. 

The general position servo control through software. is discussed 

by Smith (27). Oriented towards machine tool application, he 

discusses the following error calculation and the introduction of 

gain break points by software. 

Plant et al (28) introduce a microprocessor control of position 

or speed of SCR DC motor drive which uses a half-wave single 

phase supply. The firing angle is used as the control function. 

The state-space analysis and optimum controller design using a 

look-up table for implementation, show the use. of digital control 

and microprocessor at their best. 



7 

The use of sliding mode control in a multiple-element mechanical 

linkage is reported by Klein and Maney(29). The microprocessor 

causes the system to move or slide along a predetermined line 

,in phase-space. The control can cope with non linearities but 

the effects of chatter must be evaluated as lags in the control 

path are sometimes inevitable. 

The use of an on-off controller for position control is presented 

by Hartman et al (30). The system is made adaptive by a learning 

process for the switching action related to position. 

The design and application of a PID predictor controller using 

a microprocessor is given by Aylor et at (31). The controller 

is applied to a manipulator. For reasons of computer throughput 

the control function is not calculated at each sampling interval, 

but predicted by a simple linear extrapolation 'before each 

sampling instant. The integration effect provided by the 

actuator allows the removal of the integral from the controller 

action and stability curves are provided to find the gains for 

the controller. 

Schnieder (32) uses a microprocessor for direct control of 

thyristors on a DC drive. The firing control algorithm is applied 

to a three phase thyristor ACIDC converter. Speed and current 

loops are closed by the microprocessor and PI control action with 

output limiting is used in both loops. Current signal is obtained 

by AID conversion but speed measurement is performed by digital 

techniques. Oumanar et al (33) show the design of an optimal 

adaptive current loop for a DC motor supplied by a dual converter 

(two thyristor bridges in antiparallel). The adaptation is 

achieved by having a varying gain which is defined at each opera

ting point for continuous and discontinuous mode of operation. 

The speed control of' an induction motor using a microprocessor 

and optimal control design method is discussed by Tsuchiya (34). 

Constraints such as input dead-time and limitation of input and 

state variable values are imposed on the design. In order to 

simplify the, general optimal regulator, problem, several perfor-

mance indices are introduced. According to the imposed constraints 

the microprocessor chooses the required path to follow and achieve 

a sub-optimal control. 



8 

The most recent developments in the area of digital control 

applied to servo drives and new developments on the drives 

themselves are pictured by Bollinger et al (35). It is 

,emphasized the increasing role the microprocessor must have in 

this area and the flexibility required by the new control 

systems to cope with ever increasing demand. The digital 

control of the velocity loop is indicated as a new development 

together with the direct digital control of the power amplifier. 

The use of state-variable control is advocated and optimisation 

of design by simulation is indicated as a required tool. 

Identification by a model-fitting using a recursive least

square algorithm is shown as the first step to adaptive control. 

The use of microprocessor controlled servos in hierarchical 

control systems is described by Brussel et al (36). The 

concept of hierarchical control systems applied to manufacturing 

processes is discussed o Two level interpolation is described 

and a microcomputer controlled feed drive, in which the thyristor 

is directly triggered by the controller, has its implementation 

given in some detail. 

reference 35. 

Brussel is one of the co-authors of 

Brussel and Vastmans (37) raise the point that the general trend 

of decentralising the control function makes direct digital 

control of feed drives interesting. Some identification schemes 

to be implemented in microprocessors are discussed and simple 

adaptive algorithms based upon real-time identification are 

described. 

Duffie and Bollinger (38) describe a technique for directly 

controlling SCRfs for the closed-loop position and velocity control 

of OC drives. For moderate performance it is possible to control 

both velocity and position loops using a simple encoder. 

Position and velocity resolution is discussed and the limitations 

on the digital measurement of velocity are raised. . The position 

loop is just proportional and the velocity loop has got a PlO 

controller which has its gains optimised by minimising a summation 

of absolute velocity errors. 

The change from the traditional PlO controller to a state-variable 

parameter optimised one is well represented by Stute and Hesselbach 

(39) • They call it a more efficient feedback control strategy. 

J 



9 

The position loop of a CNC machine is closed through a state

variable feedback controller which minimises a quadratic 

performance index in position and control function. As only 

-position and velocity are available by direct measurement, an 

observer is used to estimate acceleration. It is good to 

mention that an analog velocity loop is maintained around the 

driveo The control strategy is developed for applications 

where a high dynamic of the position control loop is required 

or the control of a robot. In high speed machining, dynamic 

errors cannot be neglected. If for reasons of design the 

mechanical structure cannot be rigid enough, the situation gets 

worse. Stute et al (40) describe a control method by means of 

which positioning can be improved in these cases, The method 

is based on the same lines followed in reference 39 and a second 

order observer is used. The results, which are presented, show 

a real improvement in positioning performance for the optimum 

state-variable controller over the simple proportional controller. 

The restriction of following errors less than 0.1 mm and veloci

ties around corners of not less than 1 m/min is achieved by the 

optimum controller. 

In the area of low powered servos Rao (41) gives a good descrip

tion of the electronics design and signal, processing involved 

in each loop for the three interdependent servos in a quadruplex 

colour video-tape recorder. His measure and optimise technique 

is in line with state-space methods. 

2.3 MULTIPROCESSOR'SYSTEMS-IN'CONTROL'APPLICATIONS 

The use of multi computer numerical control systems is well established 

and has its origins with the advent of the microprocessor. One of 

the first commercial controllers with this characteristic is described 

by Schmitt and Chang (42). The system uses a common memory block 

and machine tool control tasks are distributed between microcomputers. 

Popa (43) and Prasad (44) developed a multicomputer,numerical control 

system based on the Motorola 6800 microprocessor. It used a DMA 

bus structure and could cope with synchronous and asynchronous opera

tion. 

A totally modular multiprocessor control system is described by 

Stute et al (45, 46). The MPST system has a parallel bus which 



10 

couples all used modules. The hardware and software interfaces are 

standardised and communication through the bus is transparent to the 

user. The application of the MPST system to control some types of 

machine tool is described by Stute and Klemm (47). The splitting of 

the overall NC function is done into five independent function blocks. 

Each function block performs a separate, self-contained task of the 

system. This minimises the data transfer between function blocks. 

Each function block is then associated to one microcomputer, or more 

if needed, and the complete system is defined by the particular 

application. _. Examples of application to a lathe, gear hobbing machine, 

gear shaping machine and a measuring machine are given. 

Ilic et al (48) analyse'd different architectures of multiprocessor 

systems for application. to control systems of machine tools and robots. 

Consideration was given to the interprocessor cmmnimication regarding 

flexibility, modularity, . self-testing capability and price. The 

final decision is to use a common memory block accessible by a common 

bus and dedicated interrupt lines for synchronisation between processors. 

Dalzell et al (49) have designed a microprocessor hierarchical control 

system for machine tools based on the Motorola 6800 microprocessor. 

The system consists of a delegator computer connected by an IEEE-488 

bus to a number of slave computers which control or monitor system 

variables. The system was applied to a lathe, moved by stepper motors, 

where no feedback is used. 

Luh and Lin (50) describe the use of multiprocessor controllers for 

mechanical manipulators. The complex equations and the imposed 

minimum sampling frequency (bandwidth) are conflicting. Solution 

is found by the use of a multiprocessor. An algorithm is presented 

which arranges the schedule of computation of a task and distributes 

the computational load efficiently among the processors so that the 

total computing time is minimum. 

The control of special purpose machine tools by multi-microprocessor 

is described by Kuisma et al (51). A hierarchical control system is 

used for low level position and speed control and high level work 

cycle control. Hierarchical computer structure for quality control 

is discussed by Rembold (52). A multi-bus system is proposed in 

order to cope with increasing distances between data acquisition 

equipment and central computer. 



11 

The structure of a microprocessor based distributed system for the 

control of generating plant is discussed by Maples and Jervis (53). 

Jervis (54) discusses general characteristics of the communication 

system and control nodes that are required to control a generating 

plant. Each computer is at the node of the communications network. 



12 

3.1 INTRODUCTION 

This chapter is concerned with some aspects of state-variable digital 

control which are relevant to this work. 

and time-invariant systems. 

It deals only with linear 

The state-variable approach requires the continuous system equations 

to be represented in the standard form x,= Ax. + Bu. For a linear 

·and time-invariant system, defined by a set of linear differential 

equations, it is always possible to find its representation in standard 

form. The choice of appropriate state-variables is not treated in 

this work but physical variables are highly recommended. This aspect 

of representation is treated in Section 3.2.1 with mention of linear 

transformations and canonical forms. 

The digital controller sees the continuous system through the sampling 

operation and, therefore, a discrete system representation is necessary. 

Section 3.2.2 deals with this aspect of representation. 

Section 3.3 describes the design sequence adopted in this work and 

assumes the existence of a system model, from where the discrete state

equations can be obtained. 

With the assumption that all.the state-variables are available, two 

methods for the control law design are discussed. The first, given 

in Section 3.4.1,is based on pole-placement design and the second, 

given in Section 3.4.2, is based on optimal control. 

The non-available state-variables must be estimated before the control 

law can be implemented. In this work, estimation is achieved by 

using observers and Section 3.5 deals with their design. 

is given to the reduced-order observers. 

3.2 CONTINUOUS AND DISCRETE·STATE EQUATIONS 

3.2.1 Continuous·State Equations 

Emphasis 

For a system defined by a set of continuous, linear and 

constant coefficient differential equations, it is always 

possible to find a correspondent set of first order matrix 

differential equations as 



13 

x(t) = Ax(t) + B)l(t) 3.1 

where .x(nxl) is the state vector and 11 (Ix1) is the control 

"function. Matrices A and B have dimensions (nxn),(nx1) 

respectively and are independent of time,t. The output can 

normally be represented as a linear combination of the state,:lC, 

as 

yet) = C:x(t) 3.2 

where matrix C is time-invariant and has dimensions (lxn).lh~ 

System has single input and output. 

The representations given by 3.1 and 3.2 are not unique of 

course as any non-singular linear transformation TI allows an 

alternative representation of the same system. 

defining "a new alternative state as 

0(t) = Tlx(t) 

For instance, 

3.3 

where TI is non-singular, the alternative system equations are 

given by 

. 
0(t) E0(t) + F\l(t) 3.4 

yet) = Dx(t) 3.5 

where 

and 

The use of linear transformation makes some design procedures 

easier as it allows the representation of the system equations 

in specially structured forms called canonical forms (4, 62). 



14 

3.2.2 "Discrete "State "Equations 

The way a digital controller sees a continuous system, represen

ted by 3.1 and 3.2, can be represented as in Figure 3.2.1. 

IJ(k)! -1 HOLD 
I 

"u (t) 1 x.= Ax.+BIl I x( t) '\ C I 
y(t)/ 

T T 

T - Sampling Period 

Figure 3.2.1 Continuous System and "Sampling "Operation 

Basically, the digital controller samples the output y(t), 

operates on the sequence y(k), by a set of difference equations 

and sends out a sequence of numbers u(k) as inputs to the con-

tinuous system. In order to relate the samples of the output 

y(k) to the samples of the control input u(k), we must solve 

equation 3.1. 

Before we solve equation 3.1, a generalisation 1S necessary. 

This concerns the delay in the control action. The digital 

controller will almost certainly introduce a computation delay 

which by itself or added to delay in the controlled system must 

be accounted for in the controller design. Introducing a 

delay in the control action/representation 3.1 gives 

.x(t) = Ax(t) + Bu(t-T
D

) 

" where TD is the delay. 

Solving 3.6, we have (55) 

We wish this solution over one sampling period) to obtain a 

difference equation, therefore we make 

t = kT + T 

and to kT 

3.6 

3.7 

y(k) 



where k is an integer and T is the sampling period. 

3.8 in 3.7 gives 

kT+T 

%(kT + T) = eATx(kT) +j( eA(kT+T-~)B~(~_TD)d~ 
kT 

IS 

Using 

3.9 

If we substitute n = kT + T - ~ for ~ in the integral (2) we 

find 

x(kT + T) eATx(kT) +~TeAn~(kT+T-TD-n)dn 
o 

3.10 

The delay, TD, can now be separated into an integral number of 

sampling periods plus a fraction by defining 

TD = aT - m 3.11 

where a 3- 0 

o ~ ID < T 

With this substitution 3.10 gives 

x(kT + T) = eATx(kT) +j[TeAnBU(kT+T-aT+m-n)dn 

o 

3.12 

Assuming a zero-order hold, as indicated in Figure 3.2.1, the 

integral in 3.12 can be broken into two parts as follows: 

AT lm A x(kT + T) = e x(kT) + e nBdn u(kT-aT+T) + 

+ iT eAnBdn 

0 

U (kT-aT) 

m 

3.13 

Simplifying the representation we write 

• X. (kT + T) = <!>x(kT) + LJ \J (kT-aT) + Lzu (kT-aT+T) 3.14 

where 

iTA Ll = e nBdn 

m 

l
mA 

Lz = e llBdll 3.15 

0 



16 

In order to represent 3.14 in standard state-space form, it is 

necessary to consider the cases for a = 0, a = 1 and a > 1. 

For a = 0 and m " 0 we have Tj) = -.n, according to 3.11, which 

implies no delay but prediction. This is equivalent to the 

modified z-transform as described by Tou (56) and is not dis

cussed in this work. 

For a = 1 equation 3.14, with the sampling period left aside for 

easier representation, gives: 

x(k+l) 3.16 

The standard state-space representation requires the elimination 

of ~(k-l) from the right hand side which is done by defining a 

new state as 

xn+l(k). = u(k-l) 

With increased dimension the state-equations are 

and 

x(k+l) 

x l(k+l) 
fJ+ 

= 

o 

y(k) = 

For a > 1 the equations are 

• 

Ll r x(k) 

o llCfJ + 1 (k) 

X(k+l) = <I> X(k) + Ll u(k-a) + L2 jl(k-a+l) 

and we must now eliminate the past controls up to ~(k). 

Introducing new state-variables as 

3.17 



x l(k) 
fJ+ 

x 11+2 (k) 

X
fJ
+a- 1 (k) 

~ n+a (k) 

= u(k-a) 

= \1(k-a+1) 

= \1 (k-2) 

= u(k-1) 

the state-equations are transformed to 

x:(k+1) <pc Lt L2 0 

X 1(k+1) n+ 0 0 1 0 

X 2(k+1) n+ 0 0 0 1 
= 

• 
xn+a-l (k+1 0 0 0 0 

X (k+l) 
n+a 0 0 0 0 

and 

y(k) = [c oJ X(k) 

~+l (k) 

"i,+2 (k) 

Xn+a .. l (k) 

Xo+a (k) 

0 

0 

0 

1 

0 

X(k) 0 

x
ll

+ 1 (k) 0 

"'n+2(k) 
+ 

0 

x n+a- 1 (k) 

Xn+a(k) 1 

The implementation of matrices <p~ Lt and L2, as defined by 

equations 3.15, is discussed in Chapter 4. 

3.3 CONTROLLER'DESIGN'SEQUENCE 

17 

u(k) 

3.18 

The design of digital controllers generally follows the sequence (4) 

given in Figure 3.3.1. 



18 

I System 
\ 

to be 
\ controlled} 

l 
Model 

~ 
Design Method 

t 
Control Algorithm 

Figure 3.3.1 Design·of·Control ·Algorithm 

Depending on the design method and the application, exact or approximate ---- -- "---... ~------- ...... -.. ~ .... ~-- - ~.-.-.-- ..... -.-- .. -.----
mathematical models are used as the basis for design. -----. __ ... _--._----------- - At this moment, 

it is assumed that a model of the system to be controlled is available 

and that it is· represented in the state-space standard form as given 

by equations 3.17 and 3.18. 

The use of state-space methods for controller design is attractive for 

the design is done in two independent steps. In the first step it is 

assumed that all the state-variables are available and a control law 

(controller) can be found. Normally we do not have all the state-

variables available for several reasons like difficult measurement or 

inaccessibility and the cost of measurement instruments for all variables. 

Therefore, the second step is the design of an observer which will 

estimate all variables or just the ones that are not available. First 

we will discuss the design of the control law. and after the design of 

the observer. 

3.4 DESIGN·OF THE·CONTROL·LAW 

In this work we discuss two design methods for the state-variable 

controller. The first one is based on pole-placement and the second 

is based on optimal control. For the pole-placement method a certain 

characteristic equation for the controlled system is prescribed. On 

the optimal control method a'quadratic performance index, based on the 



19 

state-variables and control function} is minimised. 

The control law for stace-variable control is the feedback of a linear 

combination of all the states, that is 

!' (k) = -Kx{k) 3.19 

where K is the feedback gain matrix of dimension (lxn) , as 3.20, which 

must be found by the design method. 

KZ 3.20 

It is assumed, in this work, that the system is controllable (57). 

Using Figure 3.2.1, the control law can be represented as in Figure 3.4.1 

• 
X= AJI;.+ Bu 

.:x:( t) yet) - and C 
u(k) 

T Hold 

K 
:r.(k ) .:x:.(t) 

T 

Figure 3.4.1 State~Variable'Feedback 

3.4.1 Pole Placement Design Method 

A general form for the extended state-equations 3.17 and 3,18 can 

be written as 

x.(k+l) = <l>x(k) + L!'(k) 3,21 

Substituting equation 3,19 on 3.21 we have 

x(k + 1) = <l>x(k) - LKx(k) 3.22 

The z-transform of 3.22 is 

(zI - <I> + LK)x(z) ° 3.23 



with 

20 

Thus the characteristic equation of the controlled system, in 

closed loop, is 

3.24 

The pole-placement design consists of finding the elements of K 

so that the roots of 3.24 are in specified locations. 

desired characteristic equation is given by 

a (z) = (z - Sl)(Z - S2) (z - S3) ••• = 0 
c 

If the 

3.25 

then the required elements of K are found by matching coefficients 

in 3.24 and 3.25 or 

a (z) c det[ZI - ~ + LK ] 3.26 

a (z) z~ - ~-l 
3.27 = alz - a 

c ~ 

An interesting formula which has been derived by Ackermann (58) 

and the proof repeated by Franklin (2), is used in this work to 

. find the elements of K. It is based on the transformation of 

the system equations to a canonical form and the use of the 

Cayley-Hamilton theorem. The relation is 

K=[O H' 0 ~L 3.28 

where C 
o ~L •• ~J is called the controllability matrix, 

Tl is the order of the system and we change ~ for .z on 3.27 to have 

-a I 
Tl 

3.29 

where the a.'s are the coefficients of the desired characteristic 
1 

equation as given by 3.27. 

Equation 3.28, or Ackermann's .formula, is implemented in Chapter 4 

as an interactive program which calculates the elements of K 

for a characteristic equation specified by the user. 



21 

3.4.2 

The optimal control design method has an advantage over the 

pole-placement design method because it can handle mUlti-input 

systems with no difficulty. This work is concerned with 

single-output systems but further work probably will require 

handling of multi input/output systems and this method is 

recommended. 

The important feature of optimal control is the establishment 

of an analytic index of performance for the system and design 

of the controller so as to optimise the index selected (60). 

The choice of the performance index is made by the designer and 

in this work, as we are dealing with linear systems, a quadratic 

performance index (59) is used. 

With the discrete system equations defined by 

~k+l) = ~x(k) + Lu(k) 3.30 

~(k) is found by minimising the performance index 

3.31 

Ql and Q2 are symmetric weighting matrices to be selected· by the 

designer based on his choice of the relative importance of the 

various states and controls. Ql is positive semi-definite and 

Q2 is positive definite. 

In our case, for a single-input system, Q2 is a scalar and 

different from zero, as some weight is almost always given to the 

control, to avoid large c~mponents in the control gain and 

possibly actuator saturation. 

The problem of minimi2.ing 3.31 subject to the constraints imposed 

by the system equations 3.30, can be solved using the method of 

Lagrange multipliers. 

For convenience (59) the augmented performance index.is written 

+ >.T(k+l{-X(k+l) + ~X(k) + L~(k~} 
3.32 

---d 



and 

22 

The minimisation process gives 

HP 
U
T(k)Q2 + AT(k+l)L 0 

ol'(k) 
= 3.33 

HP 
-~k+l) + ~x(k) + Lu(k) 0 oA(k+l) = = 3.34 

HP ~T(k)Ql - AT(k) + AT(k+l)~ 0 
ox(k) = = 3.35 

Combining 3.33, 3.34 and 3.35, we have a set of coupled difference 

equations defining the optimal solution of x(k) , A(k) and l'(k) 

provided the initial or final conditions are known. Initial 

conditions on x(k) must be given but usually A(O) would not be 

known and the end point (k=N) is used to establish a final 

condition. From equations 3.30 and 3.31 it is clear that l'(N) 

will be zero for the minimum IP because u(N) has no effect on 

A(N). So equation 3.33 indicates that A(N+l) = 0 and equation 

3.35 gives a suitable condition 

3.36 

With initial and final conditions defined, the solution to the 

optimal control problem is completely specified. This is a 

two-point boundary-value problem and one method to solve it is 

called sweep method by Bryson and Ho (59) and is used in this 

work. Its implementation is given in Chapter 4 as an inter-

active program which calculates the elements of K for the optimal 

solution based on the user's choice of weighting matrices Ql and Q2. 

The assumption made, when designing the control law, that all the state-

variables were available is not always true. For reasons already 

mentioned, some or even all the state-variables are not available or one 

just does not want to use them because the measured signals are too 

noisy. In our case, for example, we decided to use only the position 
~------- ------ - ---

_ transducer for feedback purposes. 
... -- --,--- --.. - The cost of transducers, in general, 

is high and if good results can be achieved just with a position trans

ducer the total cost of the controller will be much lower. 



23 

In order to be able to implement the control law, the non-available 

state-variables have to be estimated and there are two basic state 

estimation techniques: the Kalman filter and the Luenberger observer 

(5). The Kalman filter gives an estimate of the state which is a 

solution to an optimal estimation problem and will not be discussed in 

more detail in this work. The Luenberger observer is the estimation 

technique used in this work and we will discuss it in some detail. 

Luenberger (61) was the pioneer of this estimation technique which has 

got his name. Further developments are given by Luenberger (62,63) 

and Gopinath (64). 

3.5.1 Full~Order·Observer 

The basic idea behind the observer technique is the design of a 

linear system (S2) which is constructed in such a way that its 

state ~ can easily be observed and such that the state of S2 

tends to the state of the real controlled system (SI). System 

S2 will consist of a model of SI driven by a, -fu."'c,+,on which is 

equal to the sum of the input to a weighted error term which is 

the difference between the state of SI and that of S2)as shown 

in Figure 3.S.l('~). 

Si 
System 

u(k) :x: (k) y(k) 
~k+l)=~~k)+Lu(k) c 

-t 

-
S2 

Model 
+ 

uo(k) :X:(k) ~(k) ~(k + l)=~~(k) +Luo(k) C 
+ 

lO' o~~e. •• ~. teed.hQ.c.1< ~~ 
",a..+rix . 

10 

Figure 3.5.1 



24 

It is clear from Figure 3.5.1 that we have an estimation, ~, for 

all the state-variables, X. In most cases some of the state-

variables are available by direct measurement so that they do 

not need to be estimated and a reduced order observer can be 

used (64). Before we discuss the reduced order observer, the 

observer design according to Figure 3.5.1 is presented. 

According to Figure 3.5.1 the observer system (S2) is defined by 

~(k+ 1) = 4>9.(k) + LOC !;.c.(k) - x.(k)] + Lu (k) 3.37 

If the state error is defined as 

'X.{k) = x(k) - x(k) 3.38 

equations 3.21 and 3.37 give 

X(k+l) 3.39 

We want se. to decrease to zero according to some dynamics, that is, 

the characteristic equation of 3.39, or 

det [4> - LOCJ = 0 3.40 

J 

should be some prescribed polynomial. This is the same problem as 

imposed on the pole-placement design method to find K, but now we 

are looking for LO such that 3.40 is a prescribed polynomial. 

If the controlled system, of order ~, given by 

x(k+l) = 4>~k) + L~(k) 

y(k) = C:r.(k) 3.41 

is completely observable (57), that is 

rank [cT ... 3.42 

then it is possible to find LO to match 3.40 to any prescribed 

polynomial. 



and 

25 

3.5.2 'Reduced~Order'Observer 

When some of the state-variables are available, a reduced order 

observer can be designed (64). 

Calling x. the available state-variables and x-b the variables to . a 
be estimated, equations 3.41 can be written as 

:::H ::::] t] ,(k) 

Then 

Since >c does not give any information 
a 

available is given by equation 3.44. 

other forms, we have 

x. (k+l) - <I> x. (k) - L u(k) = <I> bXb(k) 
a aa a a' a 

about xb the 

Wri ting 3.45 

3.43 

3.44 

only information 

and 3.44 in 

3.46 

3.47 

Equations 3.46 and 3.47 have the same configuration of equations 

3.41 I for the states "h. The left hand side of 3.47 is available 

by measurement and the right hand side of 3.46 contains an expanded 

and known input term, or 

y* = :c. (k+l) - <I> x (k) - L u(k) known output 
a aa a a' 

By similarity, we can apply the observer equations, 3,37, and find 

an observer for the system defined by equations 3.46 and 3.47. 

The observed xb value, 9;" is given by 



26 

~(k+l) 

3.48 

Then ib(k) = Xb(k) - ib(k) implies 

Xb (k+ 1) = Xb (k+ 1) - Xb (k+ 1) = [$bb - LO$ ab] Xb (k) 3.49 

Gopinath (64) proved that if the system given by equation 3.41_

is completely observable then the system given by 3.46 and 3.47 

is completely observable. Therefore we can choose LO in 3.49 

to match any characteristic equation and make the state error 

Xb---+O as fast as we want. 

The characteristic equation of 3.49 can be written as 

det [ zI $bb + LO $ ab ] = 0 3.50 

Comparing 3.50 to 3.24 we see that the feedback gains LO and K 

are in different positions in relation to the output matrices 

$ ab and L. As the characteristic equation is not changed by 

transposition we can write 3.50 as 

3.51 

and now 3.24 and 3.51 have the same configuration. This modifi

cation/and the fact that we assume a single output system, allow 

us to use the program developed for pole-placement design of the 

control law to design the observer. 

can be seen in Appendix 10.5. 

A sample of this procedure 

After the observer feedback gain , LO, has been found the observer 

equations can be arranged in a convenient way to be solved by the 

controller. 

U~ing equation 3.44, equation 3.48 gives 

~(k+l) $ b] ~- (k) + [$ -LO $ J.:x: (k) a IJ ba aa a 

3.52 



27 

Introducing the idea developed by Gopinath (64), .we define a 

variable w such as 

" w(k+l) = ~(k+l) - LO xa(k+l) 

which, for initial conditions set to zero, gives 

~(k) = w(k) + LO ::.:. (k) 
. a 

3.53 

3.54 

Using equations 3.53 and 3.54,in equation 3.52,the observer 

equation can be written as 

w(k+l) =[~bb - LO $ab] w(k) + 

with 

+ [ [~ba - LO° ~aa] +[~bb - LO $ab] LOJ Xa(k) + 

+ [ ~ - LO La] !'(k) 

" w(k) = Xb (k) LO X (k) a 

3.55 

3.56 

It is clear from equations 3.55 and 3.54 that the observer equations 

are solved in two stages. At each sampling interval the estimated 

variables are obtained from equation 3.54 and variable w is updated 

for the next sampling period according to 3.55. The use of these 

equations can be seen in Chapter 10. The coefficient matrices 

in equation 3.55 are calculated by a program called OBSEQU which 

FORTRAN listing is given in Appendix 4.6 and sample run given in 

Appendix 10.6. 

The controller obtained by combining the control law with the 

observers)as designed in this chapter>is basically a regulator. 

The design reduces the impact of disturbances upon the output. 

The incorporation of reference input tracking (2, 4, 65) is not 

discussed in this work. 



~~R4 

DIGITAL CONTROLLER COMPU~R AIDED 
DESIGN·AND·CLOSED~LOOP·SIMULATION 

4.1 INTRODUCTION 

28 

This chapter is concerned with the implementation of a computer aid 

for the design methods developed in Chapter 3. 

The use of state-space methods, in digital control, requires the 

representation of the system state-equations in discrete form. 

This is basically achieved by using the exponential of a matrix, 
AT e , and Section 4.2 describes the computer program developed to 

this end. It accepts the continuous state-equations, sampling 

period and delay, and gives the matrices for the discrete state

equations. 

The pole-placement design method is implemented by the ACKER 

program, which is developed in Section 4.3. This program accepts 

the discrete-state equations and the desired pole-locations, on 

the s-plane for easier reference. and gives the feedback gain 

matrix as the output. 

The optimal-control design method is implemented in Section 4.4 

by the SWEEP program. This program solves the two-point boundary 

value problem, discussed in Chapter 3, by the sweep method and 

its output is the time varying feedback gain matrix. 

The closed-loop simulation, for the final system, can be done by 

using the TIME LOCUS program • It is developed in Section 4.5, 

. and offers the possibility of displaying time-response, with step 

or ramp input, for any system variable and the root locus for the 

closed-loop system. 

4.2 ·CONTINUOUS·TO·DISCRE~·STA~~EQUATIONS~·STA~·PROGRAM 

The use of the design techniques described in Chapter 3)requires the 

representation of the system continuous state-space equations in 

discrete form)as represented by equations 3.17 and 3.18. 

Repeating here equation 3.17, for reference, we have 



29 

x(k) 

+ L12] u(k) 4.1 
x(k+l) ] 

~+l(k+l) = X'l+l (k) o 

where 

• AT <I> = e 4.2 

4.3 

4.4 

.. 
Therefore, matrices <1>, Ll and L2 must be found by solving equations 

4.2, 4.3 and 4.4. As we assume a time-invariant system matrix B 

can be taken out of the integrals. 

Making a = n - m we can convert Ll to a form similar to the integral 

L2 as 

4.5 

From equation 3.11 we have the delay 

Tn = aT - m 4.6 

where T: sampling period 

a: integer ~o 

o ~ m < T 

With m as a constant we can write equation 4.5 as 

4.7 

For easier representation we define 

It Ab 
<I>(b) = e 4.8 



30 

and 

4.9 

.. 
Using equations 4.8 and 4.9, ~, Ll and L2 are given by 

.. .. 
~ = ~(T) 4.10 

4.11 

L2 'I'(m)mB 4.12 

.. 
Now, in order to find ~, Ll and L2 we must solve equations 4.8 and 

4.9. 

Equation 4.8 is a basic matrix exponential which series expansion is 

defined as 

Writing equation 4.13, in closed form we have 

.. 
~(b) 

Ab 
e = 

Using equation 4.14, equation 4.9 can be found as 

4.13 

4.14 

4.15 

Changing the order for summation and integral, the integral can be found 

and 

'I'(b) 4.16 

With the constant moved to the right side of the summation, equation 

4.16 gives 

'I'(b) = 
., A~k 

l: (k+l) : 
k=o 

4.17 



31 

Equation 4.17 is important,for if we change the lower end of the 

summation/in equation 4.14,we get 

m A~k .. 
<I>(b) I + E """"it! 

k~l 
4.1B 

where, if we let k ~ J + 1 

m Ajb j 
* <I>(b) ~ I + E (j+l) :bA 

j~o 
4.19 

Using equation 4.17 in equation 4.19 

• <I> (b) ~ I +'I'(b)bA 4.20 

which indicates that only 'I' will have to be found to solve equations 

4.10, 4.11 and 4.12. 

Moler and Loan (66) discuss several methods to find the exponential of 

a matrix and the method used here/to solve equation 4.l7}is based on a 

scaling and squaring technique (6B). This technique is based on the 

simple fact that 

AT 
e 4.21 

If T is too large we can compute the series for T/2k, which 1S not too 

large, and square the result k times. 

The value of k can be selected (2) such that 

2k is less than 1. In this case the series 

rule 1S to select k such that 

T) 

max E 
ji~l 

Taking the log of both sides 

the size of AT divided by 
k AT/2 converges. The 



32 

from which we select, for 

logzll AT I! < 0 ---•• k=o 

-_I k = 10gZll AT 11 4.22 

To square the result k times we use the general formula 

'l'(b) 'l'(b) = 'l'(2b) = [I + ~A 'l'(b)] 'l'(b) 4.23 

The truncation of the series given by equation 4.17 is done at k = 30 

and the block diagram to solve it is given in Figure 4.2.1. The 

program was written in FORTRAN and can be used in stand-alone mode 

or as a subroutine. It is called PSIMAl and its 'listing is given 

10 Appendix 4.1 

With the use of PSIMAl, equations 4.10, 4.11 and 4.12 can be solved 

by using equation 4.20. This program was checked against the test 

matrices given by Ward (67) and the results were good. 

h f ·" l' f T e program to 1nd $, Ll and Lz,and assemb e them 1n one 0 the 

forms given by equations 3.17 and 3.18, according to the delay, is 

called STATE. It accepts matrices A & B, the sampling period ,. 
and the delay, as inputs, and. gives $, Ll, LZ and the extended forms, 

when delay is present. The FORTRAN listing for this program is given 

in.Appendix 4.2 and a sample of its use can be seen in Appendix 10.2. 

4.3 FEEDBACK GAINS BY POLE~PLACEMENT'DESIGN'~'ACKER'PROGRAM 

The pole-placement design method, as described in Chapter 3, gives the 

feedback gains for a specified characteristic equation. 

The gains are obtained by solving equation 3.28 which is repeated here. 

K = [0 . . . o 
Z 1)-1 ,_1 

$ L .••• $ ~.a ($) 
c 

4.24 

[ z n-l ] Matrix Co = L $L $ L • • • $' L is the controllability matrix. 

As it is easier to solve a specific set of equations than to find the 

inverse, we define a vector de. so that 



33 

-( START ) 
1 

/ Enter 
A and b / 

Find k 
(Eq.4.22) 

• 
bl 

b =-
Zk 

• 
'I' = I 

• 
J = n 

t 

I , 
j = 1 ? 

no 

\ J 

yes 'I' = I + Ab1 -,- 'I' 
J 

j = j-l 

I 

I \ 
k '" 0 ? no 

\ J 

yes 'I' = (I + 2~~1'1')'I' 

k = k-l 

I 
( STOP ) 

Figure 4.2.1 Program to find 'I'(b) 



Solving 

we can then find K by solving 

T K = d a (01)) 
c 

4.25 

4.26 

The block diagram for the solution of equation 4.26 is given in 

Figure 4.3.1. Equation 4.25 is solved by using the NAG routines 

FOl BTF and F04.AYF. These routines solve a set of real linear 

equations with multiple right hand sides by Gaussian elimination. 

34 

The FORTRAN listing for this program, which is called ACKER, is. given 

in Appendix 4.3. A sample of its use can be seen in Appendix 10.5. 

4.4 FEEDBACK GAINS BY OPTIMAL CONTROL DESIGN -·SWEEP PROGRAM 

The solution to the two-point boundary value problem/discussed in 

Chapter 3,i8 found by using the sweep method by Bryson and Ho (59). 

The equations to be solved to find a minimum solution are repeated 

here for ea81er reference. They are 

~k+l) - oI>x(k) + Lu(k) o 4,28 

and 

4.29 

The initial conditions on x.(k) are. given and the final condition is 

specified by 

A (N) = Qlx(N) 4.30 

The sweep method assumes 

A (k) = S (k).x(k) 4.31 



Figure 4.301 

convert poles 
to z-plane 

Form 

Cl (<I» 
c 

Form 
controllability 

Matrix (Co) 

Solve System 
of Equations 

Display 
Results 

STOP 

s - plane 

NAG 

Feedback Gains by ACKER Program 

35 

[

F01BTF ] 
F04AYF 



36 

which transforms equation 4.27 to 

or 

Solving for u(k) we have 

4.32 

where for shorter representation we call 

Using equation 4.31 we can eliminate A from equation 4.29 to get 

S(k).x:(k) = <l>TS(k+l)x(k+l) + Qjx(k) 

where using the system equations we have 

4.33 

Subs tituting equation 4,32 into equation, 4.33 and collecting all terms 

on one side 

Equation 4.34 must hold for all values of~(k) therefore it follows 

a backward equation in S(k). 

4.35 

which is normally_ rewritten as 

4.36 



where 

M(k+l) = S(k+l)-S(k+l)LR-1LTS(k+l) 4.37 

Equation 4.36 must be solved backwards with the initial condition 

given by equations 4.30 and 4.31, as 

S(N) = Ql 4.38 

To solve for u(k), we use 4.32 to obtain 

u(k) =-K(k)x(k) 4.39 

where the optimal feedback gains are given by 

4.40 

37 

Equation 4.40 is time varying but we will be using only the steady

state solution. 

The implementation of the solution requires only matrices manipulation 

and is given in the block diagram of Figure 404.1, which FORTRAN 

solution is shown in Appendix 4.4. The subroutines for matrices 

manipulation are given in Appendix 4.5. 

run is shown in Appendix 10.4. 

A sample of a SWEEP program 

4.5 CLOSE~LOOP SIMULATION·~·TlMELOCUS PROGRAM 

The closed-loop state equations must be found before any simulation 

program is written. 

The open-loop state equations for system and observer, as described 

in Chapter 3, can be written from equations 3.43 and 3.55 as 

:c (k+ 1) 
a 

:x:(k+ 1)= ~ (k+ 1) 

w(k+ 1) 

~aa ~ab 

~ba ~bb 

o 

o ~(k) 

o + 

~ w(k) 

L a 

M 

u(k) 4.41 



38 

( START , 
f '", .. / ~, LQZQI, 

, !: Enter / number of 
steps (N) , 
S(N) = QI 
K(N) = 0 

l 
k=N 

l 
I 

M:(k) = S(k) - S(k)Ifh + LTS(k)!J -lLTS(k) 

, 
K(k-1) = [Q2 + LTS(k)I] -lL TS(k) ~ 

, 
/ Oi.,'" / K(k-1) 

, 
S(k-1) = ~TM(k)~ + ~ 

I 
k = k-1 , 

I \ no 
k = 0 ? 

\ / , 
( STOP ) 

Figure 4.4.1 Feedback Gains by SWEEP Program 



39 

where 

G = <l>bb - LO<I>ab 

and 4.42 

According to this expanded state/the observer estimated state-variables 

equation,given by equation 3.56,is written as 

~(k) = [LO o I] :x:.a (k) 

:x:. (k) 
b 

w(k) 

where we define matrix LOBLW as 

LOBLW = [LO o I] 

4.43 

4.44 

The control law, as given by equation 3.19, cannot be written, directly, 

as a function of the state vector,~, given by equation 4.41. It is 

a function of estimated~b' which is not part of that state-vector. 

Introducing a reference input on the control law it is written, in terms 

of available and estimated variables, as 

4.45 

where Ka and Kb come from the original control law 

u (k) =-K x. (k) 
o 0 

'with 

4.46 



in order to make the software representation easier we decided to 

use the complete state-vector ~ instead of just xa ' in equation 

4.45. The result is 

where 

o oJ :c (k) 
a 

x (k) 
b 

w(k) 

Using equations 4.43 and 4.44 in equation 4.47 we find 

Equation 4.49 is the final form for the control function with 

reference input. 

Writing equations 4.41 in the general form 

~k+l) = ~~(k) + Lu(k) 

4.48 

4.49 

4.50 

the state-equations for the closed-loop system are found, by using 

4.49, as 

4.51 

The time-response/for the closed-loop system,is found by solving 

equation 4,Sl,which is a simple recurrence formula. Initial con

ditions can be introduced but our simulation program assumes all 

initial conditions to be zero. 

Taking the z-transform of 4.51 we have 

LK r(z) 
r 

4.52 

40 



41 

Therefore, the closed-loop characteristic equation is given by 

det [zI - <l>E ] = 0 4.53 

where 

4.54 

Equation 4.53 indicates the characteristic polynomial of $E and the 

roots of this polynomial are the eigenvalues of <l>E" 

The root-locus for the closed-loop system is implemented by finding 

the eigen values of matrix <l>E through a suitable algorithm. In this 

work we use the NAG routine F02BCF which calculates selected eigen

values of a real unsymmetric matrix by reduction to Hessenberg form, 

the QR algorithm and inverse iteration. 

The simulation program includes the time-response and root-locus 

techniques and is based on the general diagram shown in Figure 4.5.1. 

The FORTRAN implementation is given in Appendix 4.7. 



Locus 

Enter 

<I> and L 

Enter 

Enter 
Matrix 
LOBLW 

Form Matrix 

Time 
or 

Locus 

yes 

Time 

Figure 4.5.1 Simulation byTlMELOCUS Program 

Enter 
Matrix 

K 

42 



Enter 
Step 
Height 

Step 

Solve 
Closed-Loop 
Equations 

Solve 
for 

eigenvalues 

Display 
Results 

Figure 4.5.1 (continued) 

43 

Ramp 



44 

CHAPTER 5 

THE MODULAR MULTI~MICROCOMPUTER ANALYSIS 

5.1 -INTRODUCTION 

The use of advanced modes of control imposes severe restrictions on 

the utilisation of a single microcomputer. Multi-microcomputers 

offer a relatively inexpensive and very flexible way to implement 

such control modes (91, 92). 

This chapter is concerned with the analysis and choice of a multi

microcomputer structure to be implemented in this work. 

The definition of multi-microcomputer systems with its advantages 

and disadvantages is discussed in Section 5.2. General structures 

for multi-microcomputer implementation, with particular emphasis 

on real-time control applications, are discussed in Section 5.3. 

Modularity, as a maj or characteri·stic of multi -microcomputer struc

tures, has been analysed in this section. 

The selection of a multi-microcomputer structure, to be implemented 

in this work, is described in Section 5.4. Industrial experience 

shows that some structures are more favourable for real-time control 

than others. The central memory and global bus structure are 

suitable for such applications and a mixture of both offers greater 

flexibility (5.4.4). The use of a common bus causes contention and 

arbitration is necessary (5.4.5). Selection of a common bus, to 

be implemented in this work,. is. explained at the end of Section 5.4. 

5.2 MULTI-MICROCOMPUTER SYSTEMS 

A multi-micro is a system of two or more microcomputers connected 

either through shared memory or via high or low speed data links. 

The shared memory may be a multi-ported main memory, cache memory or 

a multi-ported disc. 

The data path may be either a bit-serial or parallel bus connecting 

I/O ports of two microcomputers or a shared bus to which two or more 

computers are interconnected in various ways. Data may be broad-

casted onto the bus and intercepted by the receiving microcomputer 

or, where the communication link is a daisy chain, each connecting 

microcomputer takes the message off the link. The advantages of 



45 

each of these interconnect schemes depend on the application. 

Multi-microcomputersy~ems that employ the shared-memory interconnect 

approach have been named "tightly coupled". It means that all the 

processors· in the system can reach all the memories and execute code 

out of them (69); I/O and other system resources are shared by 

the processors and the interprocessor latency is low due to the 

access time being limited only by the actual memory access time. 

"Tightly coupled" and "loosely·· coupled" systems differ in that a 

loosely coupled system has separate primary or main memory address 

space. This means that, at the hardware level, there has to be an 

explicit communications interface between the microcomputers. This 

communications interface implies that there is a higher latency of 

communications between processors than would be if they shared primary 

memory. 

Relating to timing, tightly coupled systems generally require synchro

nization between processes while ·in loosely coupled systems concurrent 

processes may be performed asynchronously. 

Changes in architecture are usually not easily achieved in tightly 

coupled systems. Figure 5.2.1 shows the structure for both tightly 

and loosely coupled systems. In the latter· the microcomputer stands 

by itself with its own main memory. Variations on the structures 

shown in Figure 5.2.1 are common and some.of them will be discussed later 

on. 

The use of multi-microcomputer systems is adequate for many applications 

for several reasons. They usually. make it easier for the user to 

access the system, provide increased performance through resource 

sharing and often increase the availability of a system. A network 

of microcomputers can quite often duplicate the capability of one large 

expensive system at lower total cost. Multi-microcomputer systems can 

provide adaptability and rapid re configuration with the system working 

at different times as a very large and complex problem solver or as a 

network of smaller machines, each dedicated to a unique task, or as 

something in between. They can usually provide increased reliability 

since the total system can continue to operate despite individual 

microcomputer failure, with limited .capability; if some of the communi-

cation links remain·intact. Redundancy can be achieved at lower cost 

for each micrcomputer can be replaced by others in a homogeneous system. 



46 

MEMORY 

Processor Processor Processor 

1 2 3 

Tightly Coupled System 

Memory Memory Memory 

Processor Processor Processor 

1 2 3 

I/O Interface 

Loosely Coupled System 

Figure 5.2.1 Loosely and Tightly Coupled Systems 



47 

Distributed multi-microcomputer systems can provide increased distri

buted processing power and responsiveness because it can be closely 

tailored to the application. A properly designed distributed micro-

computer system threatened by overload can be expanded by simply 

adding more microcomputers. 

The disadvantages and advantages of using multi-microcomputers can 

only be assessed according to the application. On the disadvantage 

side the designer may be faced with increased software complexity, 

and the software for distributed systems may be more costly to 

develop than for centralised systems. In contrast to a single 

central processor based system with only one executive, a distributed 

system normally requires each microcomputer to contain its own 

individual executive that must be capable of communicating with all 

the other executives in the total system. This will also require 

that each individual executive provides a task handling capability 

where tasks resident in various processors can communicate with each 

other and, in case of local software errors, diagnostic capability 

exists to find the cause. 

Finally, the design and development of a multi-microcomputer system 

may require unique expertise both in hardware and software areas. 

The advantages and disadvantages of multi-microcomputer systems are 

summarised in Table 5.1 (70). 

MULTI-MICROCOMPUTER SYSTEMS 

Advantages Disadvantages 

Increased: Increased software com-

Reliability lexity 

Processing Power "Increased difficulty for 
system test and diagnosis 

Responsiveness 

Modularity More dependence on connnu 
nications technology 

Expandability in Unique expertise needed 
smaller increments during d"esign and 

development phase 

Table 5.1 



48 

5.3 MULTI-MICROCOMPUTER: STRUCTURES 

5.3.1 General Structures 

Any multi-microcomputer structure is the resu.1t of a series of 

decisions and the decision space can be considered to be a tree, 

as proposed by Anderson and Jensen (71). The decision tree 

is shown in Figure 5.3.1 and in its identification there are 

three major hardware elements involving the transfer of 

information. They are the microcomputer itself, the path and 

the switching element. A path is the medium. by which· a message 

1S transferred· between the other system elements. Some examples 

of paths are wires or buses, radio links and memories. The 

transmission of a message over a path results in no alteration 

of the message. The switching element is an entity which 

affects the destination of a message. This can be done by 

changing the destination address, by routing the message to one 

of a number of alternative paths or by both actions. 

The decision tree has got four levels and alternative system 

architectures represented as leaves. The root of the tree 1S 

the decision to interconnec"t a number of microcomputers for 

complete intercommunication. Below this are decision levels 

representing choice of message transfer strategy,· the method of 

controlling transfers and choice of the type of path over which 

transfer is to be made. The first two levels ar~.concerned with 

policy and the third and fourth with· implementation. 

The first choice is between direct transmission of messages from 

source to destination and indirect transmission in which an 

intervening operation is required. Intervening repeater or 

storage elements are simply instances of. paths and do not affect 

the directness of the communication; an intervenor that alters 

the message, by any means mentioned before, is effecting an 

indirect communication. Another way to make this distinction 

is to .determine whether control information is contained or 

sent to the intervenor" 

When indirect communication is chosen a further decision 

concerning the switching method must be made. The alternatives 

are centralisation. and decentralisation in which a single or a 

number of intervenors are used to switch the messages. 



Transfer 

Strategy 

Transfer 

" .-< Control ., 
> ., 

Method ...:I 

0: 
0 ..... 
" ..... 
u ., 

Transfer 
"" Path 

Structure 

. 

System 

Archi-

tectyre 

Interconnection for 
Communication 

Direct Indirect 

Centralised Decentralised 
(none) 

Routing Routing 

Dedicated Shared Dedicated Shared Dedicated Shared 

Path Path Path Path Path Path 

Com- Loop Bus 

plete Central Global with with Regular Irregu- Bus 
Loop inter- bus Star central central net- lar 

rwindow memory 
connec- switch switch work network 

tion 

Figure 5.3.1 Multi-Microcomputer Structures 

.,. 
'" 



50 

The third level, in the decision process, involves the choice 

of dedicated or shared transfer paths. The shared path is 

defined as one which is accessible from more than two points. 

Contention does not occur in unidirectional dedicated paths 

but can happen in bidirectional dedicated paths and is a major 

consideration in bidirectional shared paths. Redundant paths, 

for fault tolerance or bandwidth reasons, are considered 

logically singular. 

The final level of decision 1S concerned with specific system 

designs and before any choice can be taken the different charac

teristics must be evaluated. As emphasized by Anderson and 

Jensen, quantitative characteristics of systems, such as band

widths and throughputs, are only representative of rapidly 

changing technology (1) and must be evaluated for each particular 

application. 

5.3.2 Modularity 

Modularity, the ability to make incremental changes in system 

capability, is a major characteristic and the only one to be 

discussed in this work. In instances where a specific design is 

to be configured for a variety of applications, it is often 

desirable to vary the number of processors according to the 

computational requirements of the particular problem. One 

measure of system modularity is the incremental cost of adding 

an element, such as a processor. If this cost is simply that 

of the element then the system is indeed modular; but if the 

addition of the nth processor requires the addition of n-l 

interconnection paths, then the system is not so modular. At 

the third level of the tree, some decisions involving this 

cost modularity measure have already been made.. For instance, 

selection between direct and indirect paths involves trade offs 

between the poorer cost modularity of dedicated paths and the 

vulnerability of shared paths to bottlenecking. 

Another measure of modularity is the degree to which the location 

and function of the incremental element is' restricted. For 

instance, in a given design there may be particular places where 

a resource (microcomputer, switch or path) could be easily added 



51 

. to produce a specific performance increase, and other types of 

performance increase which are difficult or impossible to ob-

tain in a modular fashion. This place modularity characteristic 

of indirect centralised systems is poor with respect to the cen

tral switch. Replication of the central switch to achieve an 

increase in throughput changes the basic architecture to indirect 

decentralised. A place restriction can also occur in any 

nonhomogeneous indirect architecture, since a special purpo_se 

processor which must be added to the system usually cannot 

occupy a place that must perform a switching function. 

5.4 MULTI-MICROCOMPUTER STRUCTURE SELECTION 

5.4.1 Structures for Real-Time Control 

The industrial experience, as shown by some of the references 

in Chapter 2, indicates that require~ents imposed by the real

time control of processes, restrict the decision in the choice of 

a multi-microcomputer structure to just one level on the tree 

structure. The transfers need not be indirect, which eliminates 

the necessary transfer control, and dedicated paths are difficult 

to justify economically, 

With these assumptions we are left, according to Figure 5.3.1, 

with just two system structures. They are the global bus and 

the central memory·types. 

5.4.2 Central Memory Structure 

The central memory structure, shown in Figure 5.4.1, is the most 

common way to interconnect computer systems. In this structure 

two or more processors communicate by leaving messages for one 

another in a commonly accessible memory. The key characteristic 

to this structure is that the memory is, or can be, used as a 

path rather than only as storage. 

The place modularity of ·the central memory structure is very good 

as it is possible to add processors arbitrarily, since they are 

not distinguished by the structure. It is also possible to 

increase capacity. for message storage by simply increasing the 

size of the memory. 



52 

The cost modularity of central memory systems depends almost 

exclusively on the path structure by which the processors access 

the memory. If each processor is provided with a direct path, 

then cost modularity can be poor since an incremental processor 

can possibly bring the total number to be bigger than the number 

of available memory ports. If the memory is accessed by a 

single bus with a suitable allocation mechanism, cost modularity 

can be very good. The common memory systems are quite vulnerable 

to a bottleneck in whichthe-memory's bandwidth becomes a restric-

tion on communication rates. Cost modularity in this case is 

poorer as it is expensive to increase bandwidth of the memory or 

the access path. 

Logical complexity in common memory systems is low and the 

failure reconfiguration characteristic is good in case of 

processor failure but poor in case of failure of the central 

memory unit. 

5.4.3 Global (Common) Bus Structure 

The global bus structure, shown in Figure 5.4.2, is formed by a 

number of processing elements interconnected by a common, or 

global bus. Access to this bus is shared among the processors 

by some allocation scheme, and messages are sent directly from 

the source, through the bus, to be recognised and accepted by 

the proper destination or destinations. 

Both the cost and the place modularity of global bus structures 

are good with respect to the processing elements. Depending on 

the choice of bus allocation scheme it is possible to add a 

processor to the system in any position with little or no effect 

on the other processing elements. The cost and place modularity 

of the communications path are poor as it is not possible to 

increase the bandwidth easily and performance cannot be improved 

only when needed. To increase performance it is necessary to 

change the implementation of the entire bus or to replicate it, 

alternatives which have a great impact on the bus interfaces of 

all the processing elements. The failure-reconfiguration 

characteristics for global bus systems are very good with 

respect to the bus. Failures of the bus are catastrophic and 



Computer 
1 

Figure 5.4.1 

Computer 
1 

Figure 5.4.2 

Computer 
2 

Memory 

Central Memory Structure 

Computer 
2 

Computer 
4 

Global Bus Structure 

Computer 
n 

53 

Computer 
n 

Computer 
3 



54 

replication is required if the structure is to be maintained. 

The global bus is of course a potential bandwidth bottleneck. 

5.4.4 Modified Common Bus Structure 

For real-time control applications it is not necessary for the 

processors, in a multiprocessor structure, to share a central 

and unique memory. The possibility to describe the system 

in separate tasks which communicate not very frequently and 

only transfer data between them, allows a mixture of both 

structures described before. This mixture has got the 

advantages of both structures and avoids the bottleneck 

imposed by a central and unique memory on real-time control 

systems. 

The use of asynchronous input/output global bus, as discussed 

by Popa(43), has proved to be too low, to preserve the expan-

dability, for requiring real-time control. The use of higher 

speed bus structures is necessary and the global bus and 

connnon memory structure, shown in Figure 5.4.3, is normally 

used. This structure has not been successful for systems with 

more than 4 computers, as suggested by Popa, and its modularity 

lS poor compared with that of a global bus structure as shown 

in Figure 5.4.2. Now, there is a new module in the system 

which is different from the computer modules: the memory module. 

The interfaces to the bus are different for the computer and 

memory modules. 

A simple modification in the structure, shown in Figure 5.4.4, 

allows an almost return to the original global bus structure 

in terms of modules hardware but maintaining the connnonmemory 

facility. The idea is to split the common memory block) shown 

in Figure 5.4.3
J
into small blocks which are now mapped on the 

address space of each computer (microcomputer). This structure 

is shown in Figure 5.4.4. Connnunications, according to this 

modified structure, can now take place by direct memory access 

and profit from it. 

The structure shown in Figure 5.4.4 is the one used in this 

work for the multi-microcomputer. It is slightly modified, 



Computer Computer 
1 2 

Common 
Memory 

Computer Computer 
3 4 

Figure 5.4.3 Global Bus and Common Memory Structure 

r 

I 
L -

Computer 1 Computer 2 
--, r-

Processor I I Processor 
1 ~ I I 

.-- 2 

I I 
I I 

Common I I Common 
Memory I-- ~ Memory 

I I 

-, 
I 

- - - - -- .J L ,...- - - ----

I 

I 
.J 

GLO BAL BUS 

r - - - -- - - ..., 
I Common I 
I Memory I 
I I 
I I 

I Processor I 

I 3 I 
L ________ .J 

Computer 3 

/ 
Figure 5.4.4 Global Bus and Distributed Common Memory 

55 



56 

as discussed and shown in Chapter 6, as the common memory 

block, in each microcomputer, is just a fraction of its address 

space size. 

5.4.5 Common-Bus Arbitration 

The use of a global bus,from now on called common bus, to inter

connect several microcomputers, generates contention and some 

sort of arbitration must exist. 

The bus arbitration is the way by which a particular micro

computer can request and obtain control of the bus and then 

transmit data over it. In the arbitration process a bus 

request is generated by the microcomputer which wants to use 

the bus and it is received by the bus arbitrator. If conditions 

allow,the bus is granted to the microcomputer and,when communica

tion over the bus has finished, the arbitrator takes over the bus 

~gain. 

The bus arbitrator must resolve the conflict between pending 

requests in order to allow just one microcomputer to use the bus 

at a given time. Papa (43) discussed arbitration schemes in 

detail and here for design purposes we only mention the salient 

aspects of centralised arbitration. 

Centralised arbitration is usually associated to a processor which 

plays a central role 1n the system. It can be implemented with 

inexpensive hardware and have high speed but its position-modularity 

is poor and some implementations require a considerable number of 

lines. 

For real-time control applications, the multi-microcomputer will 

be tailored.to the control task and a priority of bus usage quite 

certainly is known at the design stage. This allows us to ex-

clude from this discussion such centralised schemes as polling and 

static arbitration, as discussed by Popa. 

The independent requests arbitration scheme as shown in Figure 5.4.6 

is quite attractive and was seriously considered to be implemented 

in this work. Its main advantage of course is the flexibility it 

gives to have. priorities modified while the system is running. 

The only disadvantage, we see in this implementation, is the number 



57 

BUS REQUEST 

/ Bus Computer Computer 
Arbitrator 1 2 

\ - - - - - -- - - - - --
/ 

BUS BUSY 

Figure 5.4.5 Centralised Daisy Chain Arbitration 

Computer Computer Computer 

1 2 n 
. . . 

Request 1 

Grant 1 

Request 2 

Bus Grant 2 

Arbitrator 

Request n 

Grant n 

Bus Busy 

Figure 5.4.6 Independent Requests Arbitration 



58 

of necessary lines. The arbitration is not a problem as it 

can easily be solved by prioritized interrupts. 

At the end, we decided to implement the simpler solution given 

by a centralised daisy chain arbitration, as in Figure 5.4.5 

for we only have two microcomputers in our actual system and, 

with this number of microcomputers, either of the schemes have 

basically the same configuration. The advantages of a daisy 

chain link are first, the simplicity of implementation and 

second, the possibility to have several daisy chains, each with 

its own assigned priority. The main disadvantage is that the 

priorities are rigidly fixed to the position of a microcomputer 

on the chain. Highest priority is associated to the micro-

computer nearest to the arbitrator. Implementation of such 

arbitration scheme can be seen in Chapter 6,where it 1S called 

interrupt controlled arbitration link. 

5.4.6 Common-Bus Selection 

The multi-microcomputer structure chosen to be implemented in 

this work, as shown inFigure 5.4.4, has a common bus (global bus) 

which interconnects all the microcomputers in the system. The 

structure assumes that transfer of data is achieved by direct 

memory access. Therefore, the bus must contain data, address 

and control lines (parallel bus), even if multiplexed (72). 

The implementation of this parallel bus was based on simplicity 

of interconnection of any microcomputer to the bus. At this 

point the design had to move to a device dependent direction. 

The only microprocessor supported by the facilities available 1S 

the Texas TMS 9900, which is a 16-bit microprocessor. For 

direct memory access we must therefore have 16 data lines or a 

multiplexed data bus. Any multiplexing requires extra hardware, 

for the TMS 9900 has not any multiplexing facility. This extra 

hardware would add to the hardware necessary to interface each 

microcomputer to the common bus and we decided that multiplexing 

was out of the question. This eliminated from considerations 

the standard IEEE-488 bus (73, 77). 

The buses available commercially, when this work started, were 

supplied by other makers of microprocessors and, even if we 



could afford to buy any of them the interface to the Texas 

TMS 9900 microprocessor would still be necessary. 

The only alternative left to be considered was a proposed 

IEEE standard which could cope with l6-bit microcomputers. 

This proposed standard specifies the S-lOO bus (75). This 

is a parallel bus with 100 lines to be implemented in a back

plane. Among these lines provision is made for 16 data lines 

and 16 or 24 address lines. The communication between 

microcomputers takes place on a master-slave configuration and 

there is a permanent master of the bus. The permanent master 

transfers control of the bus to any microcomputer wishing to 

use it, and this microcomputer is then the temporary master. 

The bus is completely specified including the interconnection 

board mechanical parameters. The argument to go for a standard 

bus implementation was strong but we did not need such a complex 

bus as the S-lOO and the argument against it, in our case, is 

the same raised when we discarded the commercially available 

buses: the interfaces for the TMS 9900 would still be 

necessary because they were not available when this work started 

and they were still not available when we finished. 

The common bus implemented in this work is based on the Texas 

TMS 9900 microprocessor data, address and control signal lines 

and its complete implementation is given in Chapters 6 and 7. 

At the end of this work, Texas made available the E-Bus (90)} 

which is a multiplexed bus. It was basically designed to be 

used by 8-bit microprocessors and allows the use of the new 

generation of l6-bit multiplexed devices. Even at the real end 

of this work, no interfaces were provided by the manufacturer 

unless for the 8-bit devices. 



60 

CHAPTER 6 

DESIGN OF A MODULAR HULTI-MICROCOMPUTER 

6.1 INTRODUCTION 

The design of a modular multi-microcomputer, based on the considerations 

made in previous chapters, is described. The basic element in the 

multi-microcomputer structure is the microcomputer itself. The choice 

of such element is discussed in Section 6.2. There we can see the 

microprocessor's dictating rules and the limitations sometimes imposed 

by non-technical factors. 

A general mapped communication structure, used in this work, is discussed 

in Section 6.3. The necessary amount of communication area 1S discussed 

and the number of supported modules is chosen. The use of a common 

communication bus is bound to have contentious problems so a controller 

module is used. 

All the logic involved in the communication process is discussed in 

Section 6.4. A priority link between microcomputers is used and the 

master-slave communication approach is divided in various phases. 

In a modular design, flexibility must be first. Section 6.5 shows how 

this was achieved and the resulting logic diagrams. 

The logic design at integrated circuit level is not easily understood, so 

Section 6.6 discusses the functions of the designed logic. 

To complete the design, Section 6.7 shows the various timing relationship 

diagrams within the system. 

6.2 THE MICROCOMPUTER 

6.2.1 The Microprocessor 

The choice of a microprocessor for a specific application is not 

always a matter of technical specifications. At the time this 

work started, the Texas 9900 Microprocessor was not in the top of 

the l6-bit microprocessor specifications, but its availability, its 

support family chips, its technical back up, and its powerful set 

of instructions made it a reasonable choice. The availability 1n 

the Department of a Texas Full Development System (1) and the 

experience acquired in using the Texas TMS 9900 Microprocessor, 

within the Control Laboratory since 1978, made its choice not only 



61 

reasonable, but the only one possible. 

The TMS 9900 Microprocessor is a single chip l6-bit CPU produced 

using N-channel silicon gate NOS technology. It has a lS-bit 

wide address bus which of course can access directly 32268 words 

(16 bits) of memory. The data bus is l6-bits wide and the instruc

tion set enables both word and byte (8 bits) operands. 

The instruction set for the H!S 9900 is compatihle with the full 

minicomputer Texas TM 990 family, including mUltip'ly and divide 

(unsigned). The microprocessor's normal working frequency is 

3 MIIz which gives, a clock cycle of about 0.33 IlS and an average 

instruction execution time of S IlS (76). 

6.2.2 Microcomputer Selection 

The basic element in a multi-microcomputer system is clearly the 

microcomputer itself. By microcomputer it is meant a small 

computer system where the CPU is a microprocessor. 

The availability from Texas Instruments of well tested and 

reasonably priced single board microcomputers made us decide to 

go for the off-the-shelf option. A very strong point favouring 

this decision was that, based on some other developments in the 

Department, it would take at least six months to develop a micro

computer from scratch and the final product would still have to 

prove itself in terms of reliability, so we decided to buy off

the-shelf microcomputer boards. 

There were two 16-bit single board microcomputers offered by 

Texas at the time this work started. They were the TM 990/100M 

and TM 990/l01M single board microcomputers. The specifications 

for each one are given in Table 6.2.1. It is seen there that the 

basic differences are: memory available on board, number of I/O 

interface chips (I/O ports) and the possibility of direct memory 

access to the memory on the board on the TM 990/l01M microcomputer. 

For the multi-microcomputer structure desired, any of the boards 

would give the minimum required characteristics and, of course, 

more facilities available, mOre flexibility. It is good to 

remember that these boards are stand alone microcomputers and can 

be used elsewhere when not used on the multi-microcomputer structure. 

So, the best choice seemed to be the TM 990/l01M at this stage. 

The next stage was to compare prices. The TM 990/l01M was £617.00 



~ 

<Il 
><'-' p,; .... 
~.o 

~::s 
~ 

-- Eo< Eo<::> 
::>0.. 
0.. Eo< 
z::> 
HO 

en 
t3 ...: 
~ 
~ 
z 
H 

62 

and the TM 990/100M £443.00 excluding VAT. The minimum 

configuration for the multi-microcomputer would require 2 micro-

computer boards plus power supply and racking system. The amount 

of money allocated to this project was £1200.00 in total, so that 

the TM 990/l01M microcomputer could not be chosen anyway. 

It is worth mentioning here that, sometimes, what are considered to 

be minor things can cost a lot when on limited budget. For 

instance, 3% of the total budget was spent on 5 edge connectors. 

The power supply and racking system cost another 14%. 

MICROCOMPUTER 

TM990/100M TM990/101M 

CPU TMS990 Microprocessor TMS990 Microprocessor 

Interrupts 16 levels - 15 external 16 levels - 15 exte mal 

Interval Timers two three 

EPROM (board) up to 4K up to 4K 

RAM (board) up to 1/2K up to 2K 

off board up to 32K up to 32K 

Parallel 16 bits - up to 4K 16 bits - up to 4K 

Serial 
TMS9902-Asynchronous TMS9902-Asynchronous 

TMS9903-Synchronous TMS9903-Synchronous 

Bus TTL compatible TTL compatible 

Parallel TTL compatible TTL compatible 

RS232C or 20 mA Port A - RS232C or 20 mA 
Serial current loop current loop 

Port B - RS232C mode m 

Software Tibug Monitor in EPROM Tibug Monitor in EPROM 

Power 5V - 1.3A 5V - l.6A 

Requirements 12V - 0.2A 12V - 0.2A 

± 3% -12V - O.lA -l2V - 0.2A 

Table 6.2.1 



63 

6.2.3 The Texas TM 990/l00M-l Microcomputer 

6.2.3.1 The Microcomputer Board 

The Texas TM 990/l00M-l is a microcomputer module, assembled in a 

single printed circuit board, which CPU is the Texas TMS-9900 

microprocessor. The basic hardware configuration of the TM 990/ 

lOOM microcomputer family, to which the TM 990/l00M-l belongs, is 

1 TMS 9900 Microprocessor 

1 Clock TIM 9904 

256 words of 16 bits of RAM memory expandable on board to 512 words 

lK words of 16 bits of EPROM expandable on board to 2K words 

normally and to 4K words using the jumper-selectable TMS 2716 

1 TMS 9901 Programmable Systems Interface 

1 TMS 9902 Asynchronous Communications Controller 

These elements and their relationship can be seen 1n Figure 6.2.1 

where PI, P2, P3 and P4 are connectors accessible on the board. 

The TM 990/l00M-l microcomputer comes with its EPROM memories 

already expanded to 2K words where it is pre-programmed the TrBue 

monitor software, which will have its features commented on later. 

The TMS 9900 microprocessor, which pin assignment is given in 

Appendix 6.1, has a memory word 16 bits long and the instruction set 

allows both word and byte (8 bits) operands. Thus, all memory 

locations are on even address boundaries and byte instructions can 

address either the even or odd byte. The memory space is 65536 

bytes or 32768 words. The basic configuration for the TM 990/l00M-l 

has the memory address map shown in Figure 6.2.2. 

The communications register unit (CRU) is the normal input/output 

data interface for the TM 990/100-1 microcomputer. When CRU 

instructions are executed data is written or read through the 

CRUOUT or CRUIN pins of the TMS 9900 microprocessor. The devices 

from which data is read or written to are addressed via the address 

bus of the microprocessor. The CRU address is maintained in 

register 12 of the work space register area. Only bits 3 through 

14 of register 12 are interpreted by the CPU for the desired CRU 

address and this 12 bit value is called the CRU base address. 

This value multiplied by 2 is called the base address and it is 

the value normally loaded in register 12 to generate the CRU base 

address desired. 



64 

IIoICIJrIItOIlt IIIOM nUCT 

I 
(.''''''510", 1It0t0t nUCT 1 I 

.~ 
"'MOIIIT 110 1 IUleT 11 ........ "' .... ., 11000II 10""",1' 

COH'''Ot..\,.IR IUleT Ill. "lln : .... 11 IITI 

U n I I :~EC' rr 1 n ~- mrr 
Run/lOA,!) <CAD AOOIII£$$ ..us 

" 
..... LOGIC 

"0 I J I 
" I I " CUriT""'L 

Jj'IOCISSOlt oo"lfl'lOI. IUS 
.. nu. .. f I 

~" I TI 
I I " I I I =r ., DATA IIJ5 

" 
I 

" l 
ITn[1II CIIIUCONTIIOL !IUS CItU,,,,_ cllluour. C"uelll 

" r ClCX" -.m 
F= .. r-- -

L. _~HOoI '--- 4- - "1 • 1CG-ICl .,.-..... A ...... 

" 
" 

I iNTilEci" I To ..... ,.f ~ .~"""D 'n,,, "0 I IIVHU\S '0111 
INTtAIIIU"'1 r l ' .... IotOl Of' 10",,.0 
'''181101 1.''''-'''5'001 

'IIIInltAUn ~ r--ll--, COD. r--- - -, . ~ , 
""U.·toA..., I . • '--, ~ " UIUAt..I!O , 

ARIA , f , IlrHIR'''Cl I , , , 

--~-~Q-~~ 
. L __ __ 1 

S 
- -'- _ LL -- ___ I-'-!>... _ .... - -" " .. 

Figure 6.2.1 TM 990/100M Microcomputer Block Diagram 

0000 

] TIBUG 1K x 16 

> 0800 EPROM 

1K x 16 

1000 

2K x 16 

Expansion Memory 

2000 

• ~ Off-Board 
? 

Expansion Memory 

FCOO 256 x 16 ]':i. FFOO 256 x 16 use r area) 

Figure 6.2.2 TM 990/100M-l Memory Address Map 



65 

The devices accessed by the microprocessor CRU lines in the 

microcomputer module board are the TMS 9901 parallel interface 

and the TMS 9902 serial interface which have the base and CRU 

base addresses as given in Table 6.2.2 in hexadecimal represen

tation. 

BASE ADDRESS CRU BASE ADDRESS 
R12(0-15) R12(3-l4) 

TMS 9902 0080 0040 

TMS 9901 0100 0080 

Table 6.2.2 

The TMS 9902 acts as the controller for the asynchronous serial 

interface. The character length can be 5 to 8 bits and the 

Baud rate 75 to 38400 bits per second. Through this chip, two 

interfaces are supported: EIA and 20 mA neutral current loop 

TTY. The microcomputer board is delivered with a 25 pin RS 232 

type female connector and is jumper selectable to support EIA or 

TTY operat ion. 

The TMS 9901 handles the parallel I/O operation including all 15 

external interrupts. It provides 22 lines which can be programmed 

as input/output or interrupt lines. A complete description of 

TMS 9901 is given later on in this chapter. 

From Figure 6.2.2 it is seen that the memory area where the 

interrupt context switch vectors are stored is an EPROM area. This 

disables one to change the contents of these vectors through soft

ware which would give more flexibility when using this module as a 

prototype. In order to overcome this difficulty, Texas delivers 

the microcomputer with some values already written in the EPROM 

interrupt vector locations. The vectors for interrupt 0 are used 

as the reset function which places the microcomputer under the TIBUG 

monitor control. The vectors for interrupt 3 and 4 are given in 

Table 6.2.3, which shows that the memory contents indicate addresses 

in the RAM area of memory. 



66 

MEMORY ADDRESS MEMORY CONTENTS 

INTERRUPT OOOC FF68 

3 OOOE FF88 

INTERRUPT 0010 FF86 

4 0012 FFAC 

Table 6.2.3 

So, as the microcomputer is delivered, only interrupts 3 and 4 can 

be used. In order to achieve that, the user normally will have 

to use a general branch instruction written in the location indica-

ted by the program counter of the desired interrupt. This branch 

instruction (or jump) will transfer the execution to the desired 

area of memory where the user program is written. 

If more than two interrupts are necessary the user must be able, 

through a programmer module, to write (EPROM - writing operation) 

values in the interrupt vector locations of other interrupts and 

then use the same indirect jump procedure as described above or a 

direct jump to the interrupt routine. This is achieved by writing 

the address of the routine in the program counter vector of the 

interrupt. 

Both TMS 9901 and TMS 9902 provide interval timers. The time 

resolution for TMS 9901 is 21.3 ~s with a maximum interval of 

349 ms and the interval end generates interrupt 3. For the 

TMS 9902 the resolution is 64 ~s with maximum interval of 16.4 ms 

and generation of interrupt 4 through the TMS 9901. 

TMS 9901 time interval is shown later on. 

The use of 

There are five signal lines on the Texas TM 990/100M microcomputer 

which control the exchange of data between the CPU and any external 

hardware in direct memory access mode. We are not concerned here 

with detection of illegal operation codes. 

The first set of lines set the direction of data exchange. DBIN 

(data bus IN) when active (HIGH) indicates that the TMS 9900 micro

processor has disabled its output buffers to allow memory to place 

memory read data on the data bus during MEMEN. DBIN remains LOW 

in all other cases except when HOLDA 1S active. MEMEN (memory 

enable) when active (LOW), indicates that the address bus contains 

memory address. WE (write enable) when active (LOW) indicates that 



67 

memory write data is available from the HIS 9900. 

The second set of lines cater for delayed communications. READY 

when active (HIGH) indicates that memory will be ready to read or 

write during the next clock cycle. When not ready is indicated 

during a memory operation the TMS 9900 microprocessor enters a 

wait state and suspends internal operation until the memory indi

cates that it is ready. WAIT when active (HIGH) indicates that 

the microprocessor has entered a wait state because of a not ready 

condition from memory. The timing relationship between these 

lines is shown in Appendix 6.2.1. 

For direct memory access ln block and cycle stealing modes the 

hold state is normally used. Associated with it are 2 lines. 

HOLD when active (LOW) indicates to the processor that an external 

controller wishes to utilise the address and data but to transfer 

data to or from memory. The microprocessor enters the hold state 

following a hold signal when it has completed its present memory 

cycle. The processor then places the address and data bus in the 

high impedance state (along with \olE, MEMEN and DB IN) and sets the 

HOLDA signal to acknowledge the hold state. When HOLD is removed 

the processor returns to normal operation. HOLDA (hold acknowledge) 

when active (HIGH) indicates that the processor is in the hold state. 

Timing for these lines is shown in Appendix 6.2.2. 

Looking back to Appendix 6.1 we can see that, as soon as the hold 

state is acknowledged by the microprocessor, that is HOLDA is set 

HIGH, two things happen: the control lines are disabled, going to 

a state dependable on the output connections to the open collector 

gates, and the address and data lines are disabled going to a high 

impedance state (three-state output of le 74LS 243N). From this 

observation it is obvious that no direct memory access is possible 

to memory inside the TM 990/l00M microcomputer board. 

6.2.3.2 TIBUG Software Interface 

The TIBUG is a debug monitor which provides an interactive interface 

between the user and the microcomputer. It comes on two 2708 

EPROMs and occupies memory space from memory address 0080. The 

software utilises four workspaces in 40 words of RAM memory where 

also are the restart vectors which initialise the monitor following 

single step execution of instructions. All communication with 



68 

TIBUG is through a 20 mA current loop or RS 232 device. When the 

reset push button is pressed the TIBUG monitor is initialised 

through interrupt O. In order to set the Baud rate for the 

terminal device used, the character "A" must be entered after the 

reset. TIBUG uses this input to measure the width of the start 

bit and set the TMS 9902 to the correct 8aud rate. 

Baud rates are: 110, 300, 1200 and 2400 Baud. 

The acceptable 

The TIBUG monitor commands are given in Table 6.2.4 and their 

descriptions can be seen in Reference 77. 

COMMAND RESULT 

B Execute under Breakpoint 

C CRU Inspect/Change 

D Dump Memory to Cassette/Paper Tape 

E Execute 

F Find Word/Byte in Memory 

H Hex Arithmetic 

L Load Memory from Cassette/Paper Tape 

M Memory Inspect/Change 

R Inspect/Change User WP, PC and ST 
'. 

S Execute in Step Mode 

T 1200 Baud Terminal 

W Inspect/Change current User Workspace 

Table 6.2.4 

Together with the interactive commands TIBUG provides seven software 

routines, as user accessible utilities, that accomplish special 

tasks. These routines are called in user programs as extended 

operations (XOPs) and their numbers and functions are shown in 

Table 6.2.5. A character is represented in ASCII code. 

XOP RESULT 

8 Write 1 hexadecimal character to terminal 

9 Read hexadecimal word from terminal 

10 Write 4 hexadecimal characters to terminal 

11 Read and write 1 character 

12 Write 1 character to terminal 

13 Read 1 character from terminal 

14 Write message to terminal 

Table 6.2.5 



69 

6.2.3.3 The Texas T~ffi 9901 Programmable Interface 

The T~ 9901 programmable systems interface is a multifunctional 

component designed to provide interrupts, input/output ports and 
i 

real time clock in a Texas T~ 9900 microprocessor system as seen 

in Figure 6.2.3. 

r;;-;;-
I • • PAlCAmZER I • G A 

AND · , 
A ENCODER I • I'r t IS to 4) : , 

• f--, • 
"7' ~ 

f--
INTERVAL 

TIMER 

rv-

V'-
~ 

CO" 
' .. HR .... Ct 

~ CRU , LOGIC 

A 

, 

GROUP 
1 

BUFFERS 

GROUP , 
BUFFEAS 

,.-v 

GROUP 
J 

..J\ BUFFERS 

-V 

, 
, ." , 
, ... 
, 
, ." 

, 
, 
f;'i1,~,!o 

-;;n:,. ,. 
-;;;-t .... U , 
-;;;T!r;\IP11 , 
;;T'iiIPlI , 
tJOTTl'.'O 
-;;J"'\Jf1"'t , 
-;;r;-., ... , 
-;;om"1 , 

.. 
" 
" 
~ 

Figure 6.2.3 The TMS 9901 Programmable Interface 

OIO,ellrlO 
1/01'01115 

PIlOGII .......... ~! 

~'".(SUIlOOIl 

,HUIIIIU"'lS 

• DIDICATED 
IIH(IIIIIUn 

LINES 

A 

<. .OO~IS uS .00 _ "1~ , 

~ '0-" ,,'0 _ ... ,. 

.( 
f~S nOG 

coo 

<=::J a ---l U~~T I 5YSf(JoI, 

... ( ... o~, 

'IoIS99Q1 A ~ 

.J',. '" CO" , 
"V 

A 
JiiWi 

A 

,>oH'UIV'" .,..UI""C( 0 .. '''' BuS 00 _::11\ 
'Co - ICl 

Figure 6.2.4 The T~ 9901 in a TMS 9900 System 

) 

) 



70 

The TMS 9901 interfaces to the CPU through the cOImIlunications 

register unit (CRU) and the interrupt control lines as can be 

seen in Figure 6.2.4. 

The possible interface to the TMS 9901 consists of 22 pins that 

can be divided functionally in three groups as indicated in 

Figure 6.2.3. The 6 pins in Group 1 (INTl - INT6) are normally 

dedicated to interrupt inputs (active low) but may also be used 

as input ports (true data in). Group 2 of pins (INT7/Pls -

INTls/P7) consists of 9 pins which can be individually programmed 

as interrupt inputs (active low), input 

output ports (true data out). Group 3 

ports (true data in) or 

of pins (PO - P6) can be 

used either as input or output ports. 

The first stage in programming the TMS 9901 arlses from the 

possibility of masking (disable), through its masking register, all 

the input lines that we want to use as true data in and not as 

interrupts. As we can see from Figure 6.2.3 there are 15 lines 

1n this condition. This means that if we disable (mask) interrupt 

1, in the mask register of TMS 9901, and the INTl line becomes low, 

the microprocessor interfaced to the TMS 9901 will not receive an 

interrupt. If it is necessary, the CRU line associated with INTl 

can be read into the microprocessor. If one masks (disable) all 

the interrupts in the mask register, he will be able to use all 

22 pins as input lines. It is stressed here that Group 1 of pins 

cannot be used as output ports, as shown in Figure 6.2.3, which 

enables a maximum of 16 output lines. 

The TMS 9901 interfaces to the CPU through the CRU and being so, 

when the microprocessor system is designed, a base address is 

assigned to the 9901 chip. This base address is the address of 

the first bit that can be reached in the TMS 9901. In order to 

reach other bits we must add to this base address, the address the 

bit has inside the TMS 9901. The CRU bit assignments inside the 

programmable interface are given in Figure 6.2.5. 

The first bit that can be reached in the TMS 9901, shown in Figure 

6.2.5, is bit 0; its address is given by the base address. This 

bit is called the control bit and it gives the possibility to work 

in interrupt mode (a) or clock mode (b). 



SELECT BIT 

0 

1 

2 

3 

• 
• • 
1 

• 
• 

10 

11 

12 

13 

" 
15 I. 
11 I. 
" 
20 

21 

22 

23 

2. 

2. 

2. 

21 

2. 

2. 

30 

31 

S, S, S, s,s. eAU R .... d o,~ .. 

0 0 0 0 

0 0 0 0 

0 0 0 1 

0 0 0 1 

0 0 1 0 

0 0 1 0 

0 0 1 1 

0 0 1 1 

0 1 0 0 

0 1 0 0 

0 1 0 1 

0 1 0 1 

0 1 1 0 

0 1 1 0 

0 1 1 1 

0 1 1 1 

1 0 0 0 

1 0 0 0 

1 0 0 1 

1 0 0 1 

1 0 1 0 

1 0 1 0 

1 0 1 1 

1 0 1 1 

1 1 0 0 

1 1 0 0 

1 1 0 1 

1 1 0 1 

1 1 1 0 

1 1 1 0 

1 1 1 1 

1 1 1 1 

Figure 6.2.5 

,---v 

-
CRU 

LOGIC lA 
rv-

'---

Figure 6.2.6 

0 CONTROL BITI1J 

1 INTI/elK ,121 

0 INT2JCLK2 

1 iNfJ/CLI(J 

0 lNT4/CLJ(4 

1 INT5fCLKS 

0 INT6iCLK6 

1 INT1ICLI( 7 

0 iNfBlCLKS 

1 INT91CLK9 

0 mrlO/CLK 10 

1 INTl1fCLK 11 

0 INT121CLK12 

1 INTl3fCLKIJ 

0 iNT14/CLK 14 

1 1Nl 1511N TREO t 11 

0 PO InpulIS) 

1 PI Inpul 

0 P21npul 

1 P31npUI 

0 P4 Inpul 

1 PS InOul 

0 PSI"pul 

1 1>11nPUI 

0 P81npuI 

1 P9lnpul 

0 Pl0'npul 

1 Pl11npul 

0 P121npul 

1 PI] Inpul 

0 Pl41npUI 

1 PIS I"Put 

TMS 9901 CRU bit assignments 

CLOCK REGISTER 

DEC-a 

r 
CLK 

CLOCK DECREMENTEA 

ClK 

READ REGISTER 

CLOCK MODE -
f{"ii 1 
l>l" 

1 

CLOCK 
INTERRUPT 

TMS 9901 real-time clock 

71 

eRU Wrot_ D,u 

CONTROL BITIH 

Monk lJClK ,DI 

Monk 2/CLI(1 

M.nk l/eU<3 

Mask 4/CLK4 

"",nk S/CLK5 

Mail< 6/elKS 

Mask 71CLK 1 

Md!!" 81CLI<8 

M.uk 91CLK9 

M,nk ID/CLl( 10 

M']sk Il/eLK 11 

,\1.1$10: 12/ClK 12 

Mask 131CLK 13 

M.nk 14/CU< 14 

M,uk ISfAST2('U 

PO OUIPu,161 

PI Output 

P2 QUlpUl 

P30uIPuI 

P4 DUlpur 

PS OUlptJl 

P6 Qulpu! 

P10ulpUI 

P8 Oulpul 

P9 CUlour 

PlO OU1PUI 

P11 Output 

P12 QUIPUI 

PI] OulpUl 

P140utPuI 

PIS OUIPUI 



72 

a) The Interrupt Mode 

When bit 0 (control bit) 1S set to zero value the TMS 9901 will 

give the user two possibilities: 1. (Reading) The user can read 

CRU bits 1 to 15 into the microprocessor regardless of the mask 

register value on TMS 9901. It is remembered that, if the inter-

rupt line is not disabled in the mask register, care must be 

taken because, if the line goes low, one interrupt will be 

requested to the microprocessor and, depending on the interrupt 

mask value on the microprocessor itself, this interrupt will be 

accepted or not. This first possibility enables the use of all 

22 pins as true data input lines. 2. (Writing) The user can 

enable or disable interrupt lines writing ones or zeros to the 

CRU bits 1 to 15. The written data will go to the TMS 9901 

mask register as can be seen in Figure 6.2.3. This mask value 

will remain the same unless it is changed by another writing 

instruction. 

b) The Clock Mode 

The TMS 9901 has an internal real-time clock that can be used as 

an interval or event timer. The configuration of this real-time 

clock can be seen in Figure 6.2.6. When bit 0 (control bit) 

is set to value one we will have two possibilities: 1. (Writing) 

When the user writes data to CRU bits 1 to 14 this data will go to 

the clock register and simultaneously to the clock decrementer. 

As soon as the last bit is transferred the clock decrementer starts 

to decrement. When it reaches zero the clock generates an 

interrupt (INT3) which can be used as an interval timer. The 

frequency that decrements the clock decrementer is the input 

frequency divided by 64. If the input frequency is 3 MHz (main 

frequency) a maximum interval of 349 ms with a resolution (14 bits) 

of 21.3 ~s can be used. 

When the clock interrupt is active the clock mask (mask bit 3) must 

be written into, with either one or zero, to clear the interrupt. 

If a timer value other than that initially programmed is required 

a new 14 bit clock start value is loaded into the clock, executing 

a CRU write operation. Normally the clock is disabled by "power-

up clear" or by writing a zero value into the clock register. 

Enabling the clock programs the third priority interrupt (INT3) as 

the clock interrupt and disables generation of interrupts from the 

INT3 input pin. It is important to note that, for maintaining 



73 

the system integrity all interrupts should be disabled when 

accessing the clock. 2. (Reading) The current value of the 

clock decrementer can be transferred to the read register 

whenever the control bit 1S switched to the clock mode. Reading 

the value, in this register (reading in the clock mode) which is 

proportional to the elapsed time between the clock enabling and 

readi.ng, means using the clock as an event timer. A software 

reset can be performed by writing one to the control but followed 

by writing a one to bit 15, which forces all I/O ports to the 

input mode. The status of the TMS 

control bit (bit 0) and reading bit 

9901 can be known reading the 

15 (INTREQ) shows if the TMS 

9901 has sent an interrupt request to the microprocessor. We 

stress here that, if the interrupt is enabled in the mask register 

and the corresponding interrupt line goes low, the interrupt will 

reach the microprocessor regardless of the value in the control bit. 

The TMS 9901 real-time clock is very convenient to implement 

sampling operations without extra hardware as we will see later on. 

6.2.4 Memory Expansion - Necessity 

As was mentioned before and can be seen in Appendix 6.1, the 

TM 990/100M-l microcomputer board does not allow DMA to the memory 

board. Basically, the control lines come out of the board through 

unidirectional buffers. So, any attempt to use this board in a 

DMA configuration will rB:juire first a memory expansion accessible 

to DMA. A general configuration for such expansion is given in 

Figure 6.2.7. 

Microcomputer 
TM 990/100M-l 

r ------
" <l Control 

~mory 1;;;7 
~xpan-

<J Data 
"7 sion <I Address 

* 
* accessible to DMA 

-f? 

D 

1/ 

I> 

I ~, <: 
I l{ t l' ( 

(/-.1' 1-

~uffers 

External 
signal 

<[=r:> , '1 n "j{ 

5uS 
<C:J> 
<[:=J> 

Direct memory 
access control 

Figure 6.2.7 General Direct Memory Access Configuration 



74 

This memory expansion board is intended for data communication 

between microcomputers so the best possible choice of memory 

type, for this application, is RAM (read and write possible). 

The design for this memory expansion board was based on a general 

application idea that would have to be simple and cheap. The 

first necessary decision to be taken was about the size of memory 

block this board will contain. The first point to consider was 

the maximum physical size the printed circuit board could have. 

This was limited firstly by the etching facilities available ~n 

the Department and secondly by the available edge connectors and 

space inside the racking system. At the end, the space inside 

the racking system and the standard edge connector available 

restricted the area of the printed circuit board to 200 x 114 mm 

and the number of connection pins to 86 in a double sided card 

with 254 mm between pins on the 114 mm side. 

A general sketch of the board, with the necessary decoder and buffer 

logic, showed that limiting the spacing between chips to a minimum, 

up to 16 memory chips could be accommodated on the board. The 

minimum spacing would mean of course thin connection lines and the 

possibility of problems when etching the boards. This risk was 

thought to be acceptable and it was decided to design the board for 

16 memory chips. 

The readily available memory chips of the MOS static RAM type at 

the time the board was designed were the ones given in Table 6.2.2. 

Type (TMS) Number of Bits Organisation 

4033 1024 1024 x 1 

4034 1024 1024 x 1 

4035 1024 1024 x 1 

4036 512 64 x 8 

4039 1024 256 x 4 

2111/4042 1024 256 x 4 

4043 1024 256 x 4 

2114 4096 1024 x 4 

Table 6.2.2 



75 

To have a reasonable amount of memory to work with the TMS 4039, 

2111, 4043 and 2114 were the only ones to.be considered. The 

Microcomputer board already used the 2111 type on its RAM area 

and so the choice was made between the 2111 (TMS 4042) and 2114. 

Using the TMS 4042 the board would have (16 chips) a capacity of 

lK words with a minimum of 256 words (4 chips). Now, using the 

TMS 2114, the capacity would be 4K words (16 chips) with a minimum 

of lK words (4 chips). 

The final decision, on our tight budget, was taken based on a 

minimum price for a workable expansiona The minimum requirement 

for a workable expansion was 4 chips in each case. As the price 

of the TMS 2111 was half of the TMS 2114, the first was chosen for 

the memory expansion design. Details of the memory expansion 

board design are given in Appendix 6.2.3 and the finished board 

is shown in Figure 6.2.8. The list and description of components 

for the board is given in Appendix 6.2.4. 

6.3 THE GENERAL MAPPED COMMUNICATION STRUCTURE 

6.3.1 The Microcomputer's Communications Global Memory Area 

Tightly coupled multi-microcomputers with uniform access, by all 

processing elements, to all main memory, have a switching structure 

whose cost grows as the product of the number of processors and the 

number of memory units. Thus, the processor/memory interconnect 

becomes prohibitively expensive as the number of processing elements 

and memory modules grows over certain limit (69). 

A requirement set on the Cm* computer system was that each processor 

is able to address directly all main memory, rather than require a 

message transmission for access to remote units as in a network. 

Uniformly fast access to all of memory by each processor was not, 

however, considered necessary either for system performance or for 

generality of experimentation. Based on the success of cache 

memories it was verified that a processor's memory references tend 

to cluster in a small portion of its address space. 

Results presented by Fuller et al (69) indicated that for the 

processors used in Cm*, instructions and temporary data usually 

account for between 90 and 99 per cent of the memory references. 

When a task is subdivided so that several processors may perform 

different parts of it in parallel, the shared global data accessed 



~-
• 

" 

" u 
(; 

, 

.. 
~-

76 

Cl 
et::: 
<{ 
o 
ID 

Z 
o 
H 
(f) 
Z 
<{ 
.Il
X 
W' 

r 
et::: 
o 
:L 
W' 
:L 

(Xl 

N 

(0 

W 
et::: 
::::> 
l!) 
H 
LL 



77 

by many or all of the processors often accounts for most of the 

total main memory required by the task. However, the results 

indicate that these global locations are accessed so infrequently. 

that it makes little difference if their access times are substan

tially longer than those for instruction and temporary data. 

In a multi-microcomputer structure for real-time control, it is 

not reasonable to assume that a microcomputer will execute 

instruction codes not stored in its local memory. If the same 

instructions are needed by two or more microcomputers, it is 

assumed that local memory will be available to duplicate the 

instructions. Even if for some special reason the memory 

available is not sufficient, it is always possible, with a fast 

communication link, to send a complete set of program instructions 

to a certain microcomputer in order to have it executed in local 

memory. 

This is one of the key points in this design. The communication 

process is used basically to transfer DATA (Global) between 

microcomputers. We used the term basically because at a certain 

stage it will probably be necessary to transfer a complete program, 

although this will be done so infrequently that it will not affect 

the system's throughput. 

In our design, in order to keep the hardware reasonably simple and 

cheap, it was decided that each microcomputer should be able to 

address directly only its own address space of 32K words (16 bits). 

If the microcomputer is able to access only its own address space, 

and microcomputers do not share all the same address space, in 

order to communicate with others, part of this address space must 

be dedicated to communications. Accepting the results mentioned 

before, it is assumed that up to 5 per cent of the address space 

can be used for inter-microcomputer communications. In our case 

it was decided to have 2K words dedicated to inter-microcomputer 

communications, which accounts for approximately 6 per cent of the 

available address space of 32K. This 2K words block also will 

help, later on, to achieve a reasonably organised communication 

software. 

So, 2K words of a microcomputer's address space will be made 

accessible to all other microcomputers as can be seen in Figure 

6.3.1. Microcomputer module or just MODULE is used from now on 



78 

in this work to define a microcomputer board, as the Texas 

TM 990/100M-I, and its associated expansions and interfaces, 

linked by the microcomputer's internal bus, which allow it to 

operate in a stand alone mode or as a module in the multi

microcomputer structure. 

It is quite clear that, if a microcomputer access is a certain 

amount of memory located in other microcomputers address space 

using its own addressing capability, this memory is really almost 

a virtual memory and a switching scheme will be necessary. 

scheme will switch the virtual address to the real physical 

location or, better, switch from local to external memory. 

This 

Local memory is the name used from now on to designate the memory 

accessed by the microcomputer without the use of the common bus. 

If memory is accessed using the common bus it is called external 

memory. 

The 'access time of a microcomputer to the connnunication cmm:non 

memory locations (external memory) does not need to be the same 

as if it were local memory. Having this in mind and keeping 

the simplicity of the design, it was decided to use the micro

computer's facility to be held inoperative (HOLD state) while 

communication takes place in its address space commanded by another 

microcomputer. This of course means that any communication 

process takes really the time of two microcomputers to complete. 

The time of the microcomputer that controls the communication 

process is from now on called the MASTER and the time of the 

microcomputer that is held inoperative, is called from now on 

SLAVE • If communication takes place only when the slave agrees, 

this doubled time can be thought of to be the same as it would be 

having the external memory with a longer access time than local 

memory. 

In order to make clearer the distinction between buses, we shall 

call the multi-roicrocomputer's common bus the SYSTEM BUS and the 

module's internal bus the INTERNAL BUS. 

At the outset of this work it was decided that only elements 

capable of commanding the transfer of information would be 

connected to the system bus. Elements not capable of doing so, 

such as extra memory banks and terminals, would not be connected 



79 

to the system bus directly. There was no reason to believe that 

such elements should be accessible to all modules on the system 

and not just one. So, any of these elements, when necessary, 

would be connected to the system bus via a microcomputer. As 

we shall see later on, the hardware designed is very simple and 

this restriction can be relaxed enabling the connection of passive 

elements to the system bus in a straightforward way. 

Also, it was decided that the design should make possible that 

every module connected to the system bus should be able to behave 

as master or slave. This implies that the interface hardware 

and software should cater for it, as we will see later on. 

The exact location of the communications global memory area on 

the address space of each module is decided later on in this 

chapter. 

6.3.2 Externally Referenced Communication Areas 

The microcomputer's communications global memory area, as seen 1n 

Figure 6.3.l,is accessible by all the modules sharing the system 

bus. As modules can act as masters and slaves, every module 

will have in its memory space a block reserved to this end. 

Trying to make it clearer, Figure 6.3.2 shows a configuration 

with only three modules and the accessibility to the module's 

own communications global memory areas (MCGMA). 

From the considerations already made, it is quite clear that there 

are as many MCGMA as there are modules in. the system and that for 

a module to gain access to an MCGMA that lies in another module, 

the first must be a master. So, a master has the possibility to 

access externally as many MCGMA as the number of modules connected 

to the system bus, minus one. The master's own. MCGMA is a local 

memory of course. 

Each MCGMA externally referenced by the master must be uniquely 

identified for a reliable communication process. As each master 

has got access only to the microcomputer's own address space, the 

only possibility for unique identification is that each externally 

referenced MCGMA must be mapped in different locations on the 

address space. This requires a mapping of 2K word blocks for 

each externally referenced MCGMA. When the master refers to one 



module e 
module n 

Address space module m 

0000 

Ifodule's 

module p 
:ommunication : 2K 
;lobal MeJIDry--l----l-·.words 
~rea 

FFFE'--__ --' 

Figure 6.3.1 Microcomputer's Global Communication Area 

module 2 

JIDdule 1 

Address space 

~ - .", 

MCG¥.A : ;" , 
,',: " 

communication 
access 

module 3 

Addrs:-=....il.loI.'/ace 

Figure 6.3.2 Accessibility to Module's 
Global Memory Areas 

80 



of these blocks there is a unique association to a certain 

module's communication global memory area. 

81 

Figure 6.3.3 shows this general mapping of communication areas. 

There, it is shown very clearly how the external MCGMA are 

accessed by module 2. For example, when module 2 refers to 

block 1 on its own address space, it is really accessing the 

communication global memory area of module 1. The MCGMA of 

module 2 is accessed by the other modules using the same mapping 

structure. 

The approach discussed above solves the unique identification 

problem but does not cope with software organisation problems. 

The position of each block of 2K words externally referenced 

changes from module to module and any software program must track 

in each module to where a certain 2K block is referring. 

A simple solution to this problem is achieved by identifying each 

module 1n the system with a determined number. This is done 

simply by numbering the modules starting from 1. Then we have 

modules: module 1, module 2 •.••• , module n. 

At this moment the other reason for the choice of a 2K word block 

for global communication purposes will become clearer. Dividing 

the microcomputer's address space in blocks of 2K words gives 

exactly 16 blocks (32K total). Starting from address and going 

upwards, 16 blocks of 2K words start when the most significant 

digit in the hexadecimal address is incremented by one. This 

indicates a simple way to identify the blocks using the most 

significant digit in the hexadecimal address, as shown in Table 

6.3.1 

Memory Locations (Hex) Block (2K words) 

0000 to OFFE Block cA 

1000 to IFFE Block 1 

2000 to 2FFE Block 2 

3000 to 3FFE Block 3 

4000 to 4FFE Block 4 
, , 
, , 
, , 

Table 6.3.1 



module 1 

Address space 

IIDdu1e 2 

Address space 

lK H', " MCGMA !block (1) .,,'1 •• r' I"~; 
'H" • ~, ~,'. "';"' 

2K 1-
~lock (2) 

2K 

~'ocl< (3)~ IIDdu1e 3 .'. ~-. " 
I ~j{((b 11,{k: 1 MCGMA 
'!~'" • .• ':. " 

~ , ', .. 
/" . . . MCGMA : , ;, ~ '.;:'" d I .~ 

Figure 6.3.3. General Mapping of Communication Areas 

module 4 

Address space 

\ ". - 'I 
I1 \\-, 

I 

MCGMA 

ex> 
N 



83 

lock 0 on the RM 990/l00M-l microcomputer address space can be 

considered a special one for the dedicated application of 

certain memory locations inside this block. Memories 0000 to 

00 7E are dedicated to interrupt and extended operations vectors 

(77). In the author's view, this area must not be made 

accessible to other modules (made an MCGMA) in order to maintain 

the module integrity in case of failure in the communication 

process. 

If we associate the block number to the module number starting 

from 1, we have an easy way to know which module external 

reference is being made to. For instance, if a master module 2 

wants to access the communication area on slave module 5, the 

master has only to refer to the block of memory from address 

500016 to 5FFE16; slave module 1 requires reference to addresses 

100016 to IFFE; It is clear that if master module 2 refers to 

addresses 200016 to 2FFE, it is trying to communicate with itself 

and, if the memory addressed physically exists,it will be a local 

reference. Figure 6.3.4 shows the mapping of communication areas 

on the address space of a typical module. 

6.3.3 The Number of Supported Modules 

From Figure 6.3.7 it is quite clear that, as the number of modules 

with which a typical module can communicate increases, the 

available space for local memory decreases on the address space. 

It is pointed out here, and also shown in Figure 6.3.4, that the 

communications global memory area must be mapped as local memory 

on the module's available address space. 

At this point the question of how many modules the designed system 

will support· arises. In the multi-microprocessor structures 

already mentioned applied to real-time control, the maximum number 

of processors sharing a parallel common bus is found to be around 

eight. In our particular case, at the moment, we have only 

2 microcomputers and are looking for advanced control modes of 

positioning systems. Assuming that only three axes of movement 

will require advanced control in a general positioning system, a 

minimum of four modules should be supported by the design. As 

we will see later on, to this minimum number, one module is added 

to care for the system bus management. So if the system is 



000016 

OFFE 

1000 

lFFE 

ZOOO 

ZFFE 

3000 

3FFE 

4000 

4FFE 

l- f' 

FrJrJrJ 

FFFE 

Figure 6.3.4 

Address space 

IZK words block 

Reserved Local Memory 

IZK words block 

Communications with module 1 

IZK words block 

Communications with module Z 

IZK words block 

Communications with module 3 

IZK words block 

Communications with module 4 

IZK words 

Communications Global Meoory Area 
(Local Memory) 

Mapping of Communication Areas for 
a Typical Module 

t 

block 

84 

~ 



designed to support ten modules it will cope with a general 

position control system. 

The system bus is made of course of real transmission signal 

85 

lines. The total transmission path length between connected 

modules must be made electrically short in order to make the 

transmission line propagation delay not important. If a 

transmission line delay is to be maintained less than 2.0 nsec 

the system bus must have a maximum length of less than 600 mm. 

Each module must have mechanical access to the system bus so 

dividing the maximum bus length by the number of modules gives 

the distance between each connection to the bus. I,f each 

module was made of just one board we could go to the mechani

cally workable standard of I in (25.4 mm) and have up to 24 

modules connected to the maximum bus length in an equally spaced 

manner. In our case, of course, this is not possiple. Our 

modules are made of many different boards and, in order to keep 

a short distance between the module and the system bus, the 

spacing between connections must be increased. Increasing the 

spacing means of course a decrease in the possible number of 

modules. For a ten module system the space between equally 

spaced connections is almost 60 mm and modules formed by two 

boards can be placed very close to the system bus. As we will 

show later on, this configuration could not be achieved due to 

a restriction on the size of boards possible to be manufactured. 

Even so, we kept the idea of supporting ten modules . 

. Having fixed the number of modules, we can now decide the 

position. of the communications global memory area in the address 

space. There are four points which lead to the final decision. 

The first point is that, for a better organisation of software 

programs, the area should be in the same address space location 

for every module. The second point is that, supporting ten 

modules and not using for communication purposes-the area from 

addresses 0000 to OF FE (Interrupt and XOP Vectors), the communi

cations area must lie between addresses BODO to FFFE. The 

third point is that, being a 2K word block, the communication global 

memory area is easily identified if it lies starting on. addresses 

BODO, COOO, DODO or FOOD. The fourth point is that, to avoid 

any awkward partition in the memory space in case less than ten 



86 

modules exist in the system and the local memory needs to be 

expanded over the non used externally referenced areas, the 

communications global memory area is best placed starting at 

address FOOD. This is the chosen position for the communications 

global memory area in every module's address space and it is 

indicated in Figure 6.3.4. 

6.3.4 The Role of the System Controller 

The use of a common system bus, as the means of communication 

between modules, makes it a possible source of contention problems. 

Being a communication link there should be only two modules connec

ted to it at the same time: one that is sending information and 

one that is receiving (master-slave). If two modules want to use 

the bus to send information, there should be an organised way to 

provide them with access without any interference. 

The simplest way to organise access to the system bus is to have 

a system controller. This system controller has, or could have, 

many functions associated to it: 

1. Arbitration - solves the contention problem arising when 

two modules want to use the bus at the same time. 

2. Bus Granting - bus mus t be allocated to only one module 

at a time. 

3. Bus Sensing - senses when the system bus 1S being used or 

not. 

4. Detecting failures on the bus and associated circuitry. 

5. System Initialisation 

6. Bus Management 

7.. Diagnostic Functions 

It is clear that the first three functions mentioned above could be 

executed by a piece of specialised hardware. The other functions 

point towards the flexibility of a software controlled hardware or 

a microcomputer. 

In order to have. this flexibility-and to maintain the modularity 

concept, it was decided to use one of the modules in the system as 

the system controller. So, the modularity concept requires that 



any module in the system must be able to act as the system 

controller and the design must provide for that. 

87 

When only two modules are connected to the system bus, as in our 

system, one of the modules is the system controller but there is 

really no necessity for it. In this case there is no contention 

problem for the system controller to solve, but all the other 

functions can be implemented. 

The system controller defined here, in relation to the contention 

problem, can be compared to the permanent master defined by the 

S-lOO bus interface standard. All the other modules in the 

system ( temporary masters) must request the system controller 

(permanent master) to use the system bus. 

From now on, to simplify our writing, the system controller will be 

called just controller. 

6.4 General Logical Design 

The design approach to the multi-microcomputer system hardware will be 

based on the communication sequence. 

When a module wants to change information with another one using the 

system bus there are well defined phases on the communication sequence 

through which it must go. They are: 

1. Bus Grant Phase 

First thing before a module can use the bus is to ask permission 

from the controller. When this permission is granted, the 

module can proceed with the communication. This phase could be 

considered as a master. definition phase. 

2. Slave Definition Phase 

In this phase, the module which has command of the bus,in this 

work called the MASTER, must define to which microcomputer (SLAVE) 

it wants to communicate. 

3. Slave Acceptance Phase 

When the slave accepts the definition it signals back to the 

master indicating that communication can take place. 

4. Communication Phase 

In this phase, data is transferred between MASTER and SLAVE 

commanded of course by the MASTER. 



88 

5. End of Communication Phase 

After communication has finished, the MASTER must signal back 

to the slave and the controller to inform it. 

The hardware design will try to follow the communication phases as often 

as possible. 

6.4.1 The Interrupt Controlled Arbitration Link 

The bus grant phase was implemented by using an interrupt con-

trolled chain link. The link will set a priority level to each 

microcomputer. This priority level will dictate which micro-

computer will use the bus in case of contention. The phys ical 

location of each microcomputer on the chain, in relation to the 

controller, is associated with the priority level. 

priority will be nearest the controller. 

Highest 

The general configuration of such a link can be seen in 

Figure 6.4.1. Its simplicity is the great advantage, for it 

has only three lines which we will call INTCTL (interrupt controller) 

RACKO (received acknowledge) and BUSBUSY (bus busy). 

microcomputer microcomputer microcomputer microcomputer 
1 } n 

'8 '""'" "0 0 
• • • 

~ u u 

llus BUSY 
...: ...: 

/' ~ "'-"" t! ~ "'V i"-- - ""--J "., ... - --
RACKO 

./" .V ~ ../" ...... .... -
INTCTL 

Lower Priority ... 

Figure 6.4.1 Interrupt Controlled Arbitration Link 



\ 
-} 

-[ 
" v 

~ -' 
I- -' u l-

~ I- u :z I-
cc in 

~ 

7C .. 
~ 

_Sf 

cl 
0 

" 0 ~ 

" 

~ }. 0 
~ ,. 

M 

-: 

~ -' ..... 0 
I...J "" I- I...J 
:z: -< .'I!! I-

-J 

.c-
S 

Figure 6.4.2 

0 

I~ I~ 
>-I- "" VI 

V) U :::J 
:>: « <Il 
l- t>: U I- VI 
:z I- u.J u.J :::J 

u.J cc V) <Il 
V) Cl: 

• 
8C 

~ ,. 
8C 

• 

• 

... 
... ~ .., 

> ,,' 
" " 

p Gl 

8C 
+$' 

~ ... • • • 
• • T q 

• ~ 
r 

>-
0 -= V) 

>< 

I~ 
;:::J 

I...J en « V) 

0:: ;:::J 
1Il 

Interrupt Controlled Arbitration 
Link Design 

89 

>-
V) 
;:::J 
en 
V) 
;:::J 
en 
V) 

BC 
• 



SITCTL ill 0) 

SITCTL 

A (

I __ '2): I __ -___ . ___ .=~~~~. --. -. -- -~---i: I ,-._ .... - - ?'-~ ====-~-__ ... ~ __ ---=rr-------.-===t:=== 
---.I-- i ,<I 

B 

RAC KO 

C 

D 

INTMST 

TACKO 

BUSBUSY 
(software 
controlled) 

, 

------

. 1.-
Figure 6.4.3 Timing Diagram for Arbitration Link "" o 



91 

The INTCTL line is set by any microcomputer as soon as it wants 

to use the system bus. As Figure 6.4.1 shows, there must be the 

possibility of all the microcomputers setting this line at the 

same time. As soon as INTCTL is set, the controller will be 

interrupted, depending on the acceptance of the interrupt and, 

if the system bus 1S free, it will set the RACKO line. This 

line carries back to the microcomputers, the grant to use the 

system bus. 

If a microcomputer has asked permission to use the system bus, 

the switch shown on Figure 6.4.1 must be open. This will 

guarantee that the first time the RACKO line is sensed set 

by the microcomputer it will take over control of the system bus. 

The priority associated with the physical location on the link is 

clearly understood by now. 

As soon as a microcomputer finishes using the system bus, the 

switch associated with it will be closed again allowing the RACKO 

line to serve the microcomputers down the link. 

A point must be raised at this stage in relation to the modularity 

concept raised before. It is seen in Figure 6.4.1 that the 

link lines have different interpretations for a normal microcom-

puter and a controller microcomputer. So, in order to assure 

modularity, a simple switching structure must be provided for 

on the interface design. 

The final configuration for the link design. is given 1n Figure 

6.4.2 and a timing diagram in Figure 6.4.3. 

There are some implicit aspects of the design which require 

further consideration. 

All the necessary lines for the link will be operated through 

the TMS 9901 interface already described. . When the microcomputer 

is reset all the output lines from the TMS 9901 go to a high level. 

So, this condition is assumed to be the non-operational condition. 

That is why an inverter is used for the SICTL (set interrupt 

control) line. 

An interrupt line on the TMS 9901 interface is active when it goes 

low, so the INTMST (interrupt master) line is properly buffered. 



92 

The switches shown on Figure 6.4.2 are related to the controller 

function. They will have to be set properly to define if a 

microcomputer is a controller or not. It is good to remembe r 

that there should be only one controller for the system bus. 

Even so, the setting is very simple and straightforward. 

Table 6.4.1 gives the necessary connections to be made in order 

to have proper operation. 

MICROCOMPUTERS 

Controller Others 

Connect Disconnect Connect Disconnect 

g - h w - y w - y g - h 

X - v \I - v u - v X - v 

Xl - \11 vI - III vI - \11 Xl - \11 

a - b i - m i - m a - b 

Tab le 6.4.1 

The gates driving the INCTL and the BUS BUSY lines are open 

collector types and the pull up resistors are implemented on the 

controller side by the pair of resistors which will act also as 

line terminators. 

The switch w - y is only implemented to show the possibility 

of having the correspondent line free for any other use, having 

in mind that the TMS 9901 has a limited number of interrupt lines 

available and that some I/O and interrupt lines are mutually 

exclusive. This could be implemented of course in all other dual 

function lines, but to avoid misuse of the system bus each line must 

have only one possible function assigned to it. 

The BUSBUSY is basically a line to indicate that the systems bus is 

being used. This line should be set by the microcomputer control-

ling the system bus when it takes over and reset as soon as it 

finishes using the bus. There are two main functions associated 

with this line. The first one is to indicate that the system is 

being used so that the controller can reset the RACKO line and 

the second and mos t important one is to indicate to the controller 

that the master has not been able to take over the system bus for 



93 

any reason. If, after the bus is granted by the controller, the 

bus busy line is not set there will be problems on the 

interrupt link or on the microcomputer which required the use of 

the bus. Software design must take account of this problem. 

The TACKO (transmitted acknowledge) line shown in Figure 6.4.2 

is the continuation of the RACKO line after the switch shown on 

Figure 6.4.1. As soon as the TACKO line leaves the microcomputer 

where it originates, it becomes the RACKO line for the next module 

on the chain. 

The use of certain types of gates will become clearer when the 

total hardware design is finished. Basically we tried to utilise 

a minimum number of integrated circuits on the overall design. 

The timing diagram of Figure 6.4.3 shows the two possible sequences 

on the interrupt link. On the first portion of the diagram, the 

microcomputer has set the SITCTL line (low) asking permission to 

use the system bus. As soon as the bus is granted (RACKO-Iow) 

the microcomputer takes over. It is noted that the TACKO line, 

that is, the transmitted RACKO line, remains inoperative (high) 

and the grant is accepted only by the microcomputer with the 

highest priority on the link. 

The second portion of the timing diagram shows the sequence of 

events when the microcomputer has not asked permission to use the 

bus (SITCTL-high). When the bus is granted (RACKO-low) the 

grant message is just passed over, through the TACKO line, to the 

next microcomputer on the link. 

6.4.2 Slave Definition Phase 

After the system bus has been granted to a certain microcomputer, 

the next phase on the communication process is the definition to 

where the microcomputer wishes to communicate. 

As was mentioned before, the communication is always on a master

slave structure and the master is always in command of the bus 

during the exchange of information. 

The first question that arises is to how many slaves a microcomputer 

can communicate. This question has been answered before, when we 

decided to have 2K words allocated to each microcomputer on the 



94 

memory map. So, the number of slaves is expected to be up to 

ten. 

There are many ways by which a master could indicate to a certain 

slave its desire to communicate. The only restriction is that 

the indication must be precise and clear to avoid any problems. 

The design solution is to use a memory mapped procedure to achieve 

a fast and clear slave definition. The master will have mapped 

on its memory different addresses for each possible slave and 

when these addresses are accessed the correspondent slaves receive 

an indication that communication with them is required. The 

advantage of this procedure is that no extra lines are required 

between the microcomputers, for the system address bus will be used 

to carry the information. The main disadvantage is the overhead 

in software that will be necessary for the purposes of master 

identification. This overhead, estimated here to be of one extra 

word to be transmitted, is so small in execution time, when using 

DMA, that it is thought to be of negligible consequence to the 

final design. 

With the.possibility of ten slaves at least four lines on the 

address bus must be used for coding the identification. According 

to the memory map already described, it is possible to have the 

most significant four lines on the system address bus to convey the 

slave identification code. 

Each module will have associated to it a switch determined address. 

When a certain microcomputer must be defined as slave, its corres-

pondent address must be referred to. The addresses chosen to 

identify the possible ten microcomputers are given in Table 6.4.2. 

If is better to have them sequentially arranged for easy reference 

when software writing. 

MODULE ADDRESS 
(HEX) 

1 lFFE 

2 2FFE 

3 3FFE 
Table 6.4.2 

4 4FFE 

5 SFFE 

6 6FFE 

7 7FFE 

8 8FFE 

9 9FFE 
10 AFFE 



95 

The addresses given on Table 6.4.2 must be decoded to indicate 

which slave is being defined. The safest way to achieve it is 

to decode the main part of it on the master module and only the 

remaining four most significant address lines on the slave module. 

This will avoid the use of all system address lines. 

When decoding, it was decided that only when writing to the 

addresses should the decoder be activated. This would help 

decrease the risk of undesirable decoding. The decoder main 

configuration and working principle is shown in Figure 6.4.4. 

After the main part of the slave address has been decoded, the 

remaining part is decoded by all decoders receiving information 

from the lines AO-A3 on the system bus. The general configura

tion is shown on the right side of Figure 6.4.4. 

The final design will be shown later on, after we have discussed 

the slave acceptance phase for there are details that interlock 

both phases. 

6.4.3 Slave Acceptance Phase 

After the master has indicated to a particular slave its wish to 

communicate, the slave must signal back to ensure a complete hand

shake. When the master receives back the acceptance signal, it 

will hold the slave and process communication. It is at this 

point that the design uses the facility of the hold state provided 

by the TMS 9900 microprocessor. 

As soon as the microprocessor is in the hold state it signals with 

a HOLDA (hold acknowledge) line. Having in mind design simplicity 

we are going to use the HOLDA line for two purposes. The first to 

signal the master and second that the addressed slave is already in the 

necessary state for direct memory access. In order to be able to 

achieve this double sided objective, the master must set the HOLD 

line as soon as it defines the slave - see last section. 

So, this phase will require two more lines on the system bus. 

They are, the HOLD.B and HOLDA.B lines. Figure 6.4.5 shows these 

lines on the system bus and the necessary inputs and outputs to 

the microcomputers. It is clear that because any. microcomputer can 

act as master or slave, depending on the circumstances, it is 

necessary to have four I/O lines to which the HOLD.B and HOLDA.B 



4 
AO-A3 Vi-. 

f--

V 
Buffer 

AO-A3 -W 
] 

lines 

Microcomputer Internal 
Address lines 
~ 

15 lines 

. V 
... 

............ / 

Decoder 

ENABLE 

System Bus 

Disable 
Buffer 

I Address \ no 
lFFF 

\ 
AFFF? 

yes 

I write \ 
no 

cycle? 
or 

\ . WE low? ) 
~yes 

Enable 
Buffer 

96 

WE 

slave identifi 

Decoder 

r 

Buffer 

AO-A3 ft 
I 

I Address, 
1 no 
2 ••• 

\ A? 

es 

Indicate to 
micro-
computer 

Figure 6.4.4 Slave Address Decoding 

cation 



System 
Bus 

H 
, 

'" '" 
I~ 6 
:I! 

microcomputer 1 microcomputer 2 microcomputer 3 

Z§ 

I~ 
H r It Z§ I~ w 

Hr Z§ 
~ I~ , ...:l '" 

, ...:l 6 '" 6 ' 0 '" 0 '" 

I~ 
Z§ :I! 

I~ 
Z§ :I! :I! 

I~ 
~ :I! 

I~ I~ 6 u < 6 6 u < 6 ...:l U < 
~ ~ iil 15 0 gj ffi :I! :I: :I! :I: :I: 

Buffer Buffer Buffer 

HOLD B 

HOLDA B 

-

Figure 6.4.5 The Master-Slave Hold-Acknowledge Bus 

f;! 
'" 

I~ 

microcomputer n 

· ~l 1~1 ell 

I~ 
~ :I! 

...:l U < 
0 ~ Z 
:I: '" 

Buffer 

'" .... 



98 

system bus lines will be decoded. A master will use the HOLDSET 

and RECHOLDA lines to set and receive the HOLD.B and HOLDA.B 

lines respectively. A slave will receive the HOLD.B line through 

HOLD and will acknowledge through the HOLDA line. 

The ENAHOLD line shown in Figure 6.4.5 is a necessary one to avoid 

any problems due to the hold state. As was mentioned before, the 

microcomputer's hold state is only tied to the execution of a 

memory cycle. As soon as the actual memory cycle is finished, 

the microcomputer will enter a hold state, when the HOLD line is 

held down. This means that any important process requiring at ten-

tion at that time will suffer from discontinuity if nothing is done 

to avoid it. The ENAHOLD line solves this problem. The HOLD.B 

line from the system bus will only be connected to the HOLD line 

on the internal bus when the ENAHOLD line allows it 

6.4.4 Communication Phase 

After a master has received the information that the addressed 

slave is in the hold state, the transfer of information can take 

place. 

This will be achieved by the master taking control of the system 

bus data and address lines. It is clear, as was mentioned before, 

that the communication is only on a one to One basis: one master, 

one slave. 

Figure 6.4.6 shows the general configuration for the logic control 

on the communication phase. The duality of functions is there 

of course as each microcomputer can act as master or slave. 

It is clearly seen in Figure 6.4.6 that the access to the system 

bus is controlled by the three buffers on the address, data and 

control lines. Due to the bidirectional use of the system bus, 

the buffers will be controlled by two lines. One line sets the 

direction of flow through the buffers and the other enables or 

disables them, that is, closing or opening the communication between 

the microcomputer's internal bus and the system bus. 

For the sake of better understanding, we will start discussing the 

slave side of the design. 

The slave will have its communication memory accessed by the master 

and being so, the slave's buffers on the address and control lines 



MODULE 

Internal Bus 

<I Address 

'" 
Memory <I Data Micro-
Expan- '" computer 
sion <I Control Board 

r--'" 
DBIN 

Logic HOLDA r---
r-

i I 

ommunication I 
Address Area <J I:> Decoder 

Generator I V t-- h 

. . L 
v V 

~ Buffer Buffer ~ ~ Buffer 
D1rect10n Enable rect1 n Enable 

~ 6 {::> 

System Bus 'v 

Address 

I 
"'7 

~ Data 

-<J Control v [>:g 
Figure 6.4.6 The General Bus Control Logic on Communications 



100 

will have a definite direction set on them: from system bus to 

the internal bus. 

On the data side tbe direction on the buffer will be determined 

by the master's intention to read or write from communication 

memory. If the master wants to read, then the direction of 

data flow will be from internal bus to system bus and vice-versa 

if it wants to write. The control of direction on the address 

and control lines buffers will be done using the HOLDA line. 

When high it indicates that the microcomputer is in the hold state 

and therefore is a slave. The control of direction on the 

data lines will be done using two lines: the HOLDA line and the 

DBIN line. We will explain this point and the enabling of the 

buffers later on when we talk about the master side of design. 

The address lines received by the slave must be decoded of course. 

As the area of memory (2K words) dedicated to communication is 

fixed on the memory map there is no reason to input all the 

address lines on the slave module. The most significant four 

lines of the address bus (AO - A3) on the slave internal bus will 

be generated by the communication address area generator shown in 

Figure 6.4.6. The HOLDA line will enable or disable the communi

cation address block depending on the module being a slave or not. 

The master side on the design is a little more involved. When 

the master addresses a specific address that lies on the slave 

module, the decode shown on Figure 6.4.6 will recognise the address 

as being an external one and will enable the address and data 

buffers. The HOLDA line comes to the decoder to cater for the 

slave behaviour. As soon as the slave is in the hold state 

(HOLDA - high) the buffers will be enabled. The direction on 

the address bus buffer will be from the internal to the system bus. 

On the data bus buffer the direction will be dealt with using the 

HOLDA and the DBIN lines as on the slave side. If the module is 

a master, reading data will mean from system to internal bus and 

writing data will mean from internal to system bus. In the slave, 

data being read will mean from internal to system bus and writing 

will mean from system to internal. Table 6.4.3 shows the direction 

on the buffers for different situations. 



101 

Direction* 

Buffers Master Slave 

Control out in 

Address out 10 

Data write out in 

read 1n out 

* (in) Sys tem Bus I> Internal Bus 

(out): Internal Bus ---1:> System Bus 

Table 6.4.3 

6.4.5 End of Communication Phase 

There are two aspects concerning the end of communication phase. 

One is related to the slave and the other to the controller. 

The master-slave end of communication is a necessary measure. 

Using the hold state to achieve the transfer mades the recognition 

by the slave of the end of transmission not easy if time is not 

to be lost. In order to maintain the number of lines in the 

system bus to a minimum and exploring the flexibility given by the 

already defined interfaces, the master - slave end of connnunication 

will be achieved using a software flag. 

The master-controller end of connnunication is necessary to indicate 

to the controller that the system bus is free again and can be 

allocated to other users. There are two ways to achieve this in 

the already defined interfaces. The first, and obvious, is using 

the BUS BUSY line of the arbitration link shown in Figure 6.4.1. 

The master would reset this line at the end of transmission and the 

controller would recognise it. The second is using the slave 

definition process to signal the controller in the same way the 

master deals with the slave, as mentioned before. Depending on 

which input lines we use, both options are equivalent and this 

decision will be taken later on. 

After the general logical design has been gone through, we are now 

ab le to proceed to the hardware design for the sys tern bus interface. 



102 

6.5 THE DESIGN OF A MODULAR SYSTEM 

6.5.1 Integrated Circuits 

The use of any TTL integrated circuit at the moment calls for a 

low-power Schottky series device. It has a combined low propo-

gat ion delay and power dissipation with a maximum working 

frequency well above the microcomputer's clock frequency. The 

range of functions available is quite wide although sometimes 

devices from other TTL series have to be used. 

In our case, there was another restriction when trying to achieve 

a certain logical function. As was mentioned before there was 

no money left after the microcomputers and power supply were 

bought, so any necessary IC had to come from the available stock 

maintained at the Control Laboratory. This stock was not 

supposed to be a designer's one but a simple maintenance facility 

for some of the existing equipment. 

The use of the mentioned stock did not restrict the design as much 

as one would expect on the logical side but on the number of 

ICs available. For the system minimum configuration, all the 

hardware interfaces must be executed twice: one for each micro-

computer. Sometimes there was available a specific IC but not 

in the necessary quantity. The design went around using other 

ICs doing the same job in a more complicated and inefficient way 

sometimes, but with the same functional result. 

As will be seen later on, the design came to be very simple and 

substitution of any IC could be done very easily, on paper at least. 

Another point to mention is that we did not think that the used ICs 

were so important at the end if .they worked properly. It is quite 

clear that with the· fast advances in microelectronics, any detail 

in IC logical function today can be obsolete tomorrow. 

We tried to prove that the. general concept for the system communica

tion works. If in a shorttime just one le will do the same job 

as the several ones we used, it will be wonderful. 

just wait for it, nothing will be done, so lets work. 

6.5.2 Dynamic Memory Restriction 

But if we 

Memory applications requireing large bit storage can use dynamic 

RAMs for low cost, low power consumption and high density. The 



103 

drawback of such memories is that they must be refreshed periodi

cally to avoid the loss of stored data. 

There are several dynamic memory refresh techniques which can be 

used with the Texas TMS 9900 microprocessor if at least one cell 

of each row in the RAM matrix is not accessed every 2 milliseconds. 

If this happened, refresh would not be ncessary. The three most 

used techniques are the block, cycle stealing and transparent mode. 

All of them require special hardware control logic. If direct 

memory access is attempted to this type of memory, the hardware 

control logic will have to be even more special to ensure that 

refreshing is properly achieved. 

Trying to design a system as simple as possible, it was decided 

that the communications global memory areas should be made using 

only STATIC RAMs. If for other parts of the memory dynamic RAM 

is necessary, proper buffering should be provided on the module's 

internal bus in order to have continuous refreshing to this area 

of memory even when the module goes to a hold state (slave). 

This can be achieved using the HOLDA line to control the buffers 

to the dynamic RAM area. A small step in this direction has 

been taken already in our design.when we look to the design of 

the memory expansion board. There, the control lines on the 

internal bus are buffered through a TN 74LS241 device controlled by 

the HOLDA line. This buffer really separates the .internal control 

bus into two: the part that serves the communications global 

memory area and the part that serves the other elements in the 

module. This separation helps the buffering for dynamic RAM areas 

of memory but we will not take it further away in this work. 

6.5.3 Buffering Signals on. the System Bus 

As was seen on the general logical design section, the transfer of 

information between the microcomputer's internal' bus and the system 

bus is done through elements which we call buffers. 

The buffers have two main functions. The first is to isolate the 

internal bus from the system bus and vice-versa when transfer is 

not necessary. The second is to provide routing for the informa

tion transfer. 

If we exclude the arbitration link already designed, it is quite 

clear that all the system bus lines are bi-directional. This 



104 

means of course that information can travel on the lines in both 

directions, so a line reaching a buffer from the system bus could 

carry information from and to the buffer. 

The isolation between buses can be achieved 1n two ways using the 

logic available. The first one is using buffers with three

state outputs. When disabled the buffers will set the output 

lines to a high impedance state and basically the state on the 

lines 1S defined by other devices connected to them. The second 

way to isolate buses is by using open-collector gates. These 

gates are not disabled like a three-state device but their outputs 

can be driven by an input line to a high state which is a pseudo 

diabled state. If other gates connected to the same line are 

diabled the state on the line is dictated by the enabled gate. 

When lines on the system bus require a well defined state, all 

the time, even when not driven by any buffer, the open-collector 

gates offer the possibility directly. The pull-up resistor 

necessary for the gate proper operation will try to define a high 

state at the output all the time. Indirectly, the three-state 

buffer can provide such possibility. Using a pair of resistors 

between the line and the power rails, like in a termination scheme, it 

is possible to match the output voltage of a three-state device 

and maintain the line in a defined state (high). 

The availability in the Control Laboratory of Texas SN 74L5245 

octal bus transceivers made them the first choice for the buffers. 

They are bi-directional transceivers with three-state outputs and 

hysteresis at inputs. The control is done through two pins: 

the enable (G) pin and the direction (DIR) pin. Table 6.5.1 

is the function table for the device. 

ENABLE (G) 
DIRECTION OPERATION (DIR) 

L L B. to A. 
1 1 

L H A. to B. 
1 1 

H X Isolation 

Table 6.5.1 

H - High level 

L - Low level 

X Irrelevant 

A., B., - input pins 
1 1 

i = 1 - 8 



105 

These devices match very closely the logical requirements already 

mentioned. The general internal configuration for just one line 

is shown in Figure 6.5.1. 

Enable 
B. 

L 
(C) 

J 
r-

y ,\/ 
A I /~\ 

't 

DIR A. 
(Di rection) 

L 

Figure 6.5.1 Texas 5N 74L5245 Transceiver General 
Configuration 

6.5.4 Logic Diagrams 

The final hardware design LS given Ln Figures 6.5.2 and 6.5.3. All 

the lines associated with the system bus are identified by the same 

names used on the microcomputer's internal bus but a suffix .B LS 

added (.B = system bus). The list and description of components 

for each board is given in Appendices 6.5.1 and 6.5.2. 

6.6 FUNCTIONAL DISCUSSION OF THE .DESIGNED LOGIC 

6.6.1 The Master-Slave Identification Address ·Decoder 

As was mentioned before, the slaves are identified by addresses 

lFFE, 2FFE, •••. , AFFE. If a master wants to identify a slave, 

having control of the system bus, it will have to write to the 

correspondent slave's address. As soon as the master writes to 

the identification address, the address pattern appears on the 

internal bus address lines AO to A14. At the same time, the WE 

line is set accordingly by the microcomputer indicating a write 

cycle. 



er 

0:: 
....J 
U 
a.. -....J 
Ll.. 

'5 

~ 
....J 
VI 
I
z: --

" "13A • *' ,. 
" 

;!: "I -, 
-+- ~~ ~,(z.zk) 

T = 
!!! 

~ .. ( .... ) ~ '+ s~ 
1: .. !! 

;;; ~ • A o • 0 re ~ 

2A 

15A 

O~~~~'!!: 
DI.UJUll.ddl~ tl '" 10 ~ 

Vet ~l! ~ !!: !! rj = !! !; '!' 

-

!? ~ .. .. 
I ! 

12 A 
In ., :: !!! 

0 ...... ", m 
,..-__________ <{ ... <{ <I: <{ 

., .. or ~~ ,.F -G ~r .. .. .,.... .,.... T' .. .. .. 
SA 7A BA .. .. c c: c III 

" .. .. .. .. ... .., = !! ~ = '!I ENAAD 
"1" .. 

r---------r-------~r_--~--_i--------~=I~I~ ~ ~ ~ ~I~I~ or 

P"dI<:A~:i~~: 
lj 

-

ill. 

1A 
_tJonr ... ' ..... r! 
....... &It. Will."''' 

-

15A 
"I 

~~ '..r; -G !?r:: 

9A 

= .. .. "J 

.c.~It"' •• s 

6A 

- .... .. .. .. .. r .. .. ... .. -
Cl .. Cl 

_~tf'I:rV'l.", ..... o---------

VJr; -r:; !?[: ~~ 
~C)CG~CID'" "''1-- "'Tr 

1 0 A 
~ 

~ .. .. ... 

HOLD 

HOLDA 

... ... .. ... .. = 

...... 

.. Cl ., 
'" '" '" H 
-0 
." 
..: 

. 
'" 

106 



q 
o 
o .., 

...J 
I
U 
I
Z 
0: 

-

:: 

...J 
I
U 
l
V) 

...J 
I-

~ 
Z 

i 

oX. 

"-' 

o 
::..: 
u 
« 
Cl:: 

l
V) 

::!: 
I
Z 

o 
::..: 
u « 
Cl:: 
I
W 
V) 

:r 

V') 
w 
Cl:: 
Q... 

• 

~ I~ 
U I
UJ w 
0: V') 

.L 

p 

.. 

~ 
o 
o ., 

>
V) 
:::> 
CO 
V) 
:::> 
CO 
V) 

B( 

B( 

+S~ 

Cl. b 

>
V) 
:::> 
CO 
V) 
:::> 
CO 

( 

Cl 
I-

co« 
OZ w 

- N 

• 
'" 2( 

~.--f~1-+1~~+-~--~ 

CD 
lJ"I ...... 
o 

40 

CD 
co 
o 

CD 
t
o 

. .. .- ., 
" '" 

50 

CD 
C> 
o 

... 
'" 

CD 
Z 
II) 
o 

60 

GO 

..., 
to 

« 
Cl 
...J 
o 
:J: 

of 6( 

6( 

o er 

., ..: .., ., 

8 
I
W 
V') 

I~ 

.. ... 
70 

GO 

+~ 
cl 
o 
o ., 

co 
« 
o 
...J 
o 
:c 

~ [=J 8 
« 
ClOO 
...J ...J ...J 
000 
:J::J::C 
LJ 
W 
0: 

« 
Z 
w 

N 

107 

5( 

! 6( 

... 

CD 

I~ 

e 
'" " 0() 

'" .... 
Cl 

u .... 
0() 
o 

,.J 

"0 

" '" o 
PO 

'" :l 
PO 

'" w 

'" Cl 



108 

The decoder recognises the correct address and being a write cycle 

enables the buffers on the AO - A3 lines. The lines AO.B to A3.B 

on the system bus are set to the required pattern and this 

information is transmitted to all possible slaves including the 

master itself. 

As can be seen on Figure 6.5.2, the main decoder function is 

executed by IC's lA and 6A. Devices 7A, 8A and 9A are just 

buffering the address lines. It is quite clear here that the 

decoder is not working in the way first mentioned. In order to 

simplify the design, and due to the non-availability of required 

IC's, only address lines AO to All are decoded. This means that 

slaves will be identified by addresses lFFO to lFFE, 2FFO to 2FFE, 

•••.•• , AFFO to AFFE. The consequence of this is that there will 

be a loss of 15 words on the 2K words available for communication 

purposes in each microcomputer. This loss is thought to be not 

critical in such a development stage. 

The use of HOLDA and HOLD lines on the decoder area will be 

explained later on as they are related to the communication phase. 

Device lA is a Texas SN 74150 data selection/multiplexer. It 

selects one of sixteen data sources and its functions table is 

given in Talile 6.6.1. 

The choice of which codes are to be allowed through is made by the 

levels connected to data inputs EO to EIS. If the data input is 

set to HIGH level, the code will go through, enabling, if other 

conditions are satisfied, the buffers on lines AO to A3, and vice

versa. In the way the design is connected, codes 0001 (1) to 

1010 (A) on lines AO - A3 will go through. 

The timing diagram for the master-slave identification scheme is 

shown in Figure 6.6.1 



MEMEN. BF \ I I 
Internal Bus AO-A14 ________________ --Jjx( Valid Address ~~ ________________________ __ 

WE.BF 
-- ------.- \ / 

HOLDA 

-.-. - - ---
W y~--===== 

. . ~ =-=-=-=--=-=----
y -y,..---~-----.- - - . '<- ---
x 

ENAID /----\1-______________________________ __ 
System Bus AO.B-A3.B Valid Slave Address 

(inveRted) 

Figure 6.6.1. The Master-Slave Identification Timing Diagram 

.... 
o 
'" 



6.6.2 

INPUTS 

Select 
DATA 

D C 

ANY X X 

EO L L 

El L L 

E2 L L 

E3 L L 

E4 L H 

ES L H 

E6 L H 

E7 L H 

E8 H L 

E9 H L 

E10 H L 

Ell H L 

E12 H H 

E13 H H 

E14 H H 

E1S H H 

x - Irrelevant 

L - Low Level 

H - High Level 

B 

X 

L 

L 

H 

H 

L 

L 

H 

H 

L 

L 

H 

H 

L 

L 

H 

H 

A 

X 

L 

H 

L 

H 

L 

H 

L 

H 

L 

H 

L 

H 

L 

H 

L 

H 

E.- Complement of Input 
~ 

Table 6.6.1 

OUTPUT 

STROBE 
W 

S 

H H 
-L EO 

L El 

L E2 

L E3 

L E4 

L ES 

L E6 

L E7 

L E8 

L E9 

L E10 

L Ell 

L E12 

L El3 

L E14 

L E1S 

The Slave Identification Address Decoder 

110 

The master identifies the slave through system bus lines AO.B to 

A3.B, so each slave must have a decoder connected to these lines 

which will enable a determined address associated to it to be 

recognised. 

The decoding is done again using the SN 741S0 device which was 

already discussed. It is device 2A on Figure 6.S.2. The 

choice of the slave's address is made through connections to the 

data inputs El to E10. If a certain data input is set HIGH the 



III 

slave will be recognised by the address associated to the data 

input. 

As can be seen in Figure 6.6.1, the slave address is valid only 

for a short period (~ 300 ns), so some device with memory facility 

must be used between the decoder and slave microcomputer. This 

device will store the master definition information until the 

slave accepts the definition. After the slave has accepted the 

definition, it clears the information on the device's memory 

enabling new definitions to be received. 

The memory facility in this case is provided by a SN 7473 dual 

J-K flip flop with clear. 

The timing diagram for the slave identification design is given 

in Figure 6.6.2. The slave's action, clearing the flip flop 

after the definition has been accepted, is indicated by the 

FLIPCLR line (clear flip-flop). The use of Schmitt trigger 

inverters was thought to be helpful in such a possible noisy 

environment. 

6.6.3 Slave Definition Handshake 

As mentioned before, the master sets the HOLD line as soon as it 

defines the slave. The acceptance of the definition by the 

slave is indicated by the HOLDA (hold acknowledge) line. 

The handshake procedure is accomplished through device 7D shown 

in Figure 6.5.3. A more detailed view is shown in Figure 6.6.3. 

Looking from the master's side, it is seen that the HOLDSET line 

is self enabling. As soon as it is set low by the master, it 

will go through gate 4 on device 7D and will set the HOLD.B line, 

LOW, on the system bus. 

The HOLD.B line, after inversion, is received by gate 1 on the 

same device. This gate is controlled by the slave's ENAHOLD 

line. It is quite clear that the HOLD is set LOW by the HOLD.B 

line only when enabled by a low level on ENAHOLD line. 

After the HOLD line. goes LOW and a maximum of 3 consecutive memory 

cycles have been executed, the slave goes into the hold state and 

the HOLDA line is set to HIGH. This line is self enabling on 

device 7D and, as soon as it is set to high, it makes the HOLDA.B 



System Bus 

AO. B-A3 • B 

AOS1-A
3
Sl 

Valid Slave Address 
(inverted) 

______________________ ~;: Valid Slave Address -J\~ ______________________________________ ___ 
W.Sl I .. --~-- --\~_---,--_ 

CK.Sl n----7_ _ \~ __ _ 
FLIP .CLR \ I 

INTSLAV \ I 

Figure 6.6.2. The Slave Identification Timing Diagram 

.... .... 
N 



Devi 
SN 7 

ENA HOLD 
HOLD 
(SLAVE) HOLDA 

(SLAVE) 
5V 

~ 
-,...:. 

'<"" 

2.2K 

1 
13 12 111 10 9 8 

ce 7D "\ 1 "'\ 
426N Gate I 2 

1 t'1 
~ ./ 1 L- __ - - - -- - - - -

-------- - - - - - - - - - - - - - ------

3 / 4 

1 2 3 4 5 6 

2.2K 

_L... 
5V 

HOLDA.B 
HOLD SET HOLD.B 

(System Bus) 
REC HOLDA (MASTER) (Sys tem Bus) 
(MASTER) 

Figure 6.6.3 The Handshake Connections through Device 7D 

-r-

i 

. .!:-

-.-

l 

~ 

-~ 

+5V 

300 .n. 

470 n 

+5V 

300 n.. 

470 .n 

.... .... 
"" 



114 

line on the system bus go LOW. 

The HOLDA.B line after inversion goes through gate 3 on device 

7D and is received.by the master on RECHOLDA line. This is the 

signal the master has been waiting for to complete the handshake 

of the slave definition procedure. It indicates to the master 

that the slave is in a hold state and that communication can 

take place by direct memory access mode. 

A timing diagram for this handshake procedure is shown in 

Figure 6.6.4. The first line on this figure, the INTSLAV line, 

indicates that the slave has been correctly identified by the 

master through the master-slave identification procedure. 

Events marked M and S are initiated respectively by the MASTER 

and SLAVE. Also shown is the sequence of events that occurs 

after the mas ter has finished communication and resets the HOLDSET 

line. As soon as HOLD is reset (HIGH) the slave returns to 

normal operation. 

6.6.4 Master-Slave Communication 

When the master receives the hold acknowledge signal indicating 

that the slave is in a hold state, communication can take place 

between the master and the slave's communication memory area. 

It is appropriate to discuss first what happens at theslave's 

side of the communication link and then the master's. 

1. Relating to the Slave 

When the slave enters the hold state, all its communication 

buffers are set accordingly. The direction on the address and 

control buffers, devices 4A and 3A, in Figure 6.5.2 and 6D in F 

Figure 6.5.3, is set to be from the system bus to the internal 

bus. The reason for this has already been discussed. The HOLDA 

line is used for this purpose. After inversion, it sets the 

proper direction on the buffers. The enabling action on the 

same buffers is controlled by the HOLDA and HOLD lines. When 

HOLD goes low, indicating that the module is a slave, it enables 

the HOLDA line to control the ENA line. As soon as HOLDA goes 

high (hold state) the buffers are enabled. It is clear that 

as far as the HOLD line remains low, that is, the module is a 

slave, the address buffers and the control buffer are enabled. 



(slave) INTSLAV 

(master) HOLDS ET 

(system bus) HOLD.B 

(slave) ENAHOLD 

(slave) HOLD 

(slave) HOLDA 

(system bus) HOLDA.B 

(master) REC.HOLDA 

_h_~_~----- . -- . f 
------i'I. , -'-,' 

____ m_-f-f-,,? .. j/ m3 _____ _ 
J Held by 

s 

__________ ~i c(~ ______ _ 
Figure 6.6.4 Timing for the Complete Handshake Procedure 

latch on 
99€ll 

,... ,... 
V> 



116 

As can be seen on Figure 6.5.2 and has already been mentioned, 

the four most significant lines on the system address bus do 

not convey information to the slave's internal bus. The 

information on these lines for the internal bus is generated by 

the slave module itself, through the communication address area 

generator. 

This is accomplished by using an octal buffer with three-state 

outputs. The device, a SN 74LS241, is identified by code SA 

on Figure 6.5.2. In the disabled state (input 2G 1S low) its 

data outputs are in high impedance state. When the input 

2G is set to high the data inputs (2Ai) "are enabled through to 

data outputs (2Yi). 

When the slave enters the hold state (HOLDA - high) after being 

asked for (HOLD - Low), the input (2G) to device SA goes to a 

high state and the four most significant lines on the slave's 

internal address bus are set accordingly to the data inputs 

(2Ai) to device SA. 

The choice of where the 2K words communication block will lie 

on the slave's memory map is made through the data inputs to 

device SA. The connections shown in Figure 6.5.2, with all 

data inputs (2Al, 2A2, 2A3, 2A4) made HIGH, indicates that the 

communication block lies between addresses FOOO and FFFE. 

The buffers on the data lines are controlled by lines DBIN and 

HOLDA. When the master wants to read from the slave's memory, 

data flows from the slave's internal bus to the system bus. 

When the master is writing to the slave's memory, the flow is 

from system bus to internal bus. The logic necessary is 

achieved by an exclusive-or (2C - Figure 6.5.3) followed by 

an inverter (3B). Table 6.6.2 gives the logical levels and 

the direction of data flow through the buffers when HOLDA line 

is high or the module is a slave. 

HOLDA DBIN DATDIR DATA FLOW DIRECTION 

HIGH HIGH HIGH Internal to System Bus 

HIGH LOW LOW System to Internal Bus 

Table 6.6.2 



117 

2. Relating to Master 

After receiving the hold acknowledge signal (RECHOLDA) the 

master knows that everything is ready on the slave's side for 

the communication to take place. In order to avoid any loss 

of time, the communication should take place as soon as the 

RECHOLDA signal is received. 

requirement. 

Software design must cover this 

When the master refers to a memory location, correspondant to 

a certain slave, the most significant four lines of the internal 

address bus will contain the slave's identification code. The 

decoder lA on Figure 6.5.2 receives this code and, if it is a 

possible slave address, will recognise and through output W will 

enable the address data and control buffers on the master module, 

through the ENA line, see Figures 6.5.2 and 6.5.3. It is quite 

clear that the same decoder used for slave identification purposes 

is used now for switching the buffers to an external referenced 

memory. The difference is that, as far as no communication 

attempt is made to the memories reserved for identification 

purposes, the buffers (llA), on the slave identification lines, 

will remain disabled. 

is written. 

This should be kept in mind when software 

After the buffers on the master module are enabled, the slave's 

memory communication area looks like an extension of the master's 

own memory. There is a certain" timing restriction related to 

the memory access time on the slave module which we will discuss 

later on. 

Table 6.6.3 gives the logical levels and the direction of data 

flow through the data buffers when HOLDA line is low, or the 

module is a master. 

HOLDA DBIN DATDIR DATA FLOW DIRECTION 

LOW HIGH LOW System to Internal Bus 

LOW LOW HIGH Internal to System Bus 

Table 6.6.3 

Tables 6.6.3 and 6.6.2 complement each other in relation to 

DBIN as it should be. 



118 

6.7 THE TIMING RELATIONSHIP DIAGRAMS 

The timing diagrams for the complete communication system are not able 

to be put together in an easy way to understand. 

and hope the ideas will get clearer as we proceed. 

We will go by parts 

The first timing diagram, given in Figure 6.7.1, indicates what 

happens on the slave module just after it enables the HOLD.B signal in 

by the use of ENAHOLD. The maximum latency time between the hold 

request and the hold acknowledge, is equal to three clock cycles plus 

three memory cycles. The minimum latency time is equal to one clock 

cycle. At 3 MHz and no wait cycles, the maximum time is nine clock 

cycles or 3 microseconds and the minimum time of one clock cycle is 

333 nanoseconds. This indicates that the RECHOLDA line on the master's 

side should be used as an interrupt line if time is not to be lost. 

At the other end of this timing diagram the delay between the slave's 

release by HOLD and the slave's return to normal operation is clearly 

shown. This delay is mainly dictated by the microprocessor's operation 

which requires two ~l clock cycles for releasing of HOLDA. The 

maximum of three clock cycles is meant for the non-synchronisation of 

HOLD and ~l. The delay of three clock cycles is not much of a problem 

because the master will take at least 10 clock cycles to execute the 

next instruction. In the meanwhile, within three clock cycles, the 

HOLDA line is released but the ENAHOLD line is still set to enable HOLD 

and it takes the slave at least 12 clock cycles to reset this line. 

While this line is not reset the HOLD line on the slave's internal bus 1S 

in direct communication with the system bus line HOLD.B and, being so, 

the buffers on the slave module are still under direct command of this 

line. Depending on the communication software used, this will not be a 

serious drawback. ' The master, after communication is finished, would 

check the RECHOLDA line and would not proceed until this line indicated 

that the slave had resumed operation. It would take only an extra 

simple instruction or 12 clock cycles. If the slave's first executed 

instruction after a hold state is a reset of ENAHOLD line this instruc

tion would be executed practically while the master is checking the 

RECHOLDA line. 

Based on this approach and trying to keep the design with the minimum 

number of IC's it was decided not to implement the J-K flip flop 

disabling logic on lines HOLD and ENAHOLD as shown in Figure 6.7.2 with 



HOLD B 

ENA HOLD 

HOLD 

HOLDA 

ENA AD 

AO-A3 

A4-A14 

ME MEN 

ENA 

DO·D1S 

----------------~y 
\ I 

I 
I 

I 

max 3000 ns 
min 330 ns 

Valid Valid 

Comm~nication Phase 

Figure 6.7.1. The HancH hake Timing Diagram 

Hi-z 

H i-z 

Hi-z 

~ 

~ 

"" 



120 

its timing diagram. When the master resets the HOLD.B line on the 

system bus it clocks the J-K flip flop through HOLD and disables the 

NAND gate maintaining HOLD high independently of HOLD.B. The state 

of the flip flop changes again when the slave resets the ENAHOLD but 

the NAND gate remains disabled until a new slave definition is required. 

The implementation of this logic is recommended on a multi-microcomputer 

configuration with more than two microcomputer modules. In our case, 

as we only have two microcmputers, there are no drawbacks in not having 

it implemented and that is what we have done. 

The timing diagrams for the· communication phase are shown in Figure 

6.7.3. 

completeness. 

Read and write cycles are shown for 

As these diagrams are quite self explanatory, the 

important thing to discuss is the time delay introduced by all the logic 

involved in the process related to memory access time. 

When communication is made, at one end of the communication link there 

is a microprocessor and at the other a memory device. The microprocessor 

timing is controlled by its clock and anything to be read or written 

should be available at the right time. If the speed of any device is 

not compatible with the microprocessor's own speed, there is the 

possibility of using the READY input line, already discussed. 

We decided not to use wait states, for there is no reason to believe 

that the 2K words of memory on the communication block could not be 

implemented using fast memory devices compatible with the system bus 

speed requirements. The other point favouring this decision is the 

question of price: slow and fast devices are falling dramatically in 

price and there is always a tendency to have bigger reductions in price 

on the faster devices due to the market demand for them. 

The delay introduced on the communication process is made of many 

different parts. The first is the delay on the generation of the ENA 

line on the master module. The second is the delay on the system bus 

buffers. The third is the delay on the slave's address decoder. 

Table 6.7.1 shows all the IC's involved in the process with respective 

delay intervals. 



121 

ENA HOLD HOLD 

HIGH LOW 

J K 

__ ----I CLR 7473 CK 

ENA HOLD Q Q 

HOLD.B 

ENA HOLD 

ENA HOLD 

Q 

ENA HiiLi5* 

HOLD 

(CK) HOLD 

7408 

HOLD 

HOLD.B (System Bus) 

-------... r- o

----- -

. __ TI~f-_t_y_P_. _ol_8_ns 

__ -_-~- 0-0 ~ -- ...u....J--------.,t...---'Li 

Figure 6.7.2 The HOLDA Delay Logic Protection 



ISTER 

MEMEN 

DBIN 

AD-Aj 

A4-A14 

00-015 

w 

HOLDA 

ENA 

(STEM 

JS 
A4.B-Al4.B 

Control Lin 

00.8-015.8 

LAVE 

HOLDA 

HEHEN 

DBIN 

00-015 

AG-A3 

A4-A14 

READ 

n I 
- -

l'cl - -
/ ---

I I1 
I \ , 

I 
-- --- ---- - - - -

OCl Valid Slave Address X 

'OC Valid Address X 

\' K Input Mode XiiiiiA Dato 

\[\, 
, 

- ---

~) \ 

--- 11 ----

i 

'r'm -- --
Hi;"Z V< Valid Address \ Hi-Z 

- \ (System Bus) I 
~ , 

- -
e 

./ Control Lines 
(Valid) r 

Hi~/ 
, 

Wr I 
Hi-z 

Input Mode I --- -/ / \ J 

I 
---

J 
I 

I \\ / 
- \ 

\ 

'" --- --
i----. 

X Input Mode ~ Data X 
eady 
!---'-' 

---\ 
'...} Valid Address X 

lIIax
193 

typ. 490 ns 

tYP126 ns 
FIGURE 6.7.3 COMMUNICATION TIMING DIAGRAM 

122 

WRITE 

; , 

\ 

X 
Valid Slave Address 

Valid Address 

Write Data 

/ 

\ 
J Va 1 id Address Hi-Z 

\ (System Bus) 

/ Conq-ol Lines 
(Va 1 ~d) 

Hi-z , 
Valid Write Data 

\ 

\ 
Valid Write Data 

X Valid Address L 



123 

MASTER ENA GENERATION BUS SLAVE 

BUFFERS DECODING 

Device LS243 LS08 150 LS04 LS08 LS245 LS245 LS20 

Delay typ 12 10 21 10 10 12 12 10 

max 18 20 30 15 20 18 18 15 

Qty 1 1 1 1 1 2 1 1 

typ 12 10 21 10 10 24 12 10 
Delay 

max 18 20 30 15 20 36 18 15 

Total type 109 ns 

Delay max 172 ns 

Table 6.7.1 

It takes typically 109 ns and a maximum of 172 ns for the address generated 

by the master to get to the slave's communication area. 

With a system clock frequency of 3 MHz, figure 6.7.4 gives the timing 

between the clock phases and other microprocessors' inputs and outputs. 

Using Figures 6.7.3 and 6.7.4 we can say that: 

Using 

1. Master Reading: when rise and fall times for the signals and 

set up time for the data are computed, the memory device should 

have an access time of about 490 ns or less from valid address. 

2. Master Writing: counting rise and fall times plus data hold 

time the cycle time should be less than about 600 ns from 

valid address. 

the timing restrictions imposed by the microprocessor and the delay 

introduced on the cOImnunication link, we can say that for the worst case 

condition and reliable read and write cycles, the memory device must have 

an access time of less than 318 ns from valid address if the maximum delay 

on the link is assumed. It is clear that the memory device used on the 

memory expansion board working under its maximum access time from valid 

address (450 ns) would not suit our requirements. With the experience 

acquired on the use of these devices, it is known that they normally work 

much faster than the expected worst conditions. Under the same view, the 

delay in the communication link is expected to be the typical one or 109 ns. 



INPUT 

ClOCft ",1 

ClOCft ,,2 

CLOCK ,,3 

CLOCK ~ 

CRUClK OUTPUT 

WE OUTPUT 

WAIT OUTPUT 

'clol 
Idol 

tf(O) 

tw(ol 

'<)IL.<,'>2H 

,<,'> 2L." 3H 

'Q3L.04H 

'<,'>4L.?IH 

'<,'>IH.<,'> 2H 

'<,'>2H.03H 

'93H.9 4H 

,<,'> 4H~'2 I H 

'," 
'h 

L 
I tPlH or tPHl 

PARAMETER MIN NOM 

Clock cycle titre 0.3 0.333 

Clock rise time 10 12 

Clock fall time 10 12 

Pulse width. any clock high 40 4S 

Delay time, clock 1 low to clock 2 high (time between dock pulses) 0 5 

Delay time, clock 2 low to clock J high (time between clock pulses) 0 S 

Delay time, clock Jlow to clock 4 high (time between clock pulses) 0 5 

Delay time. clock 4 low to clock 1 high (time between clock pulses) 0 5 

Delay time. clock 1 high to dock 2 high (time between leading edges) 70 80 

Delay time. clock 2 high to dock 3 high hime between leading edges) 70 80 

Delay time. clock 3 high to dock 4 high Ctime between leading edges) 70 80 

Delay time. clock 4 high to clock 1 high (time between leading edges) 70 80 

Data or control setup time before clock 1 30 

Data hold time after clock 1 10 

PARAMETER I TEST CONDITIONS MIN TV> 
Propagation delay time. clocks to ou tputs I CL' 200 pF 20 

Figure 6.7.4 TMS 9900 Microprocessor Signal Timing 

124 

MAX 

O.S 

lOO 

MAX 

40 

I 
I 

-l 

UNIT 

"' 
"' 
"' 
"' n, 
n, 
n, 
n, 
n, 
n, 
n. 
n, 
n, 
n, 

I UNIT 

I n. 
I 



125 

Using this delay, the memory access time should be less than 391 ns. 

This value is only 60 ns less than the 450 ns for maximum access time 

and we assume, at this point, that the memory devices will be capable 

of reaching such speed. If not, we will have to change to faster 

memories or use wait states. 



CHAPTER 7 

THE MULTI-MICROCOMPUTER'S HARDI~ARE IMPLEMENTATION 
AND SOFTWARE COMMUNICATION DESIGN 

126 

7.1 INTRODUCTION 

This chapter is concerned with the hardware implementation of the logical 

design, treated in Chapter 6, and the necessary communication software. 

All the aspects relating to the hardware involved are treated in Section 

7.2. 

For the communication software, the memory expansion board plays a key 

role. Section 7.3 deals with the testing of this important element. 

In Section 7.4, the interconnections between the system bus interfaces 

and the microcomputer are discussed and chosen. The internal bus 

separation provided by the memory expansion board and the reset action 

provided by the system bus are discussed. 

Section 7.5 describes the power supply available to the system. 

As the system bus is formed by well defined sectors, testing is achieved 

by writing software that works through these sectors as independently as 

possible. Section 7.6 is concerned with this software and the system 

bus testing. 

The general communication software for the multi-microcomputer system 

has its design given in Section 7.7. Several concepts are discussed 

there, such as transfer vector and single and global message. Transparency 

to the system user is made possible through the use of word and block 

transfer modes. 

7.2 THE HARDWARE DESIGN IMPLEMENTATION 

7.2.1 Board Manufacturing Process 

The implementation of the logical design to the integrated circuit 

board level has gone through several stages. 

In the first stage, the question of wire wrapped or printed circuit 

board arises. The wire wrapped version gives more flexibility in 

a prototype system like ours. The use of proper wire wrapping 

connectors and tools ensures no problems relating to bad connections. 



127 

Any modifications on the board can be achieved with little effort 

and the increase on the number of integrated circuits can be 

easily accounted for if physical space is available on board. 

This possibility had to be dropped from the start due to the non

availability in the Department of wire wrapping connectors for 

integrated circuits. For some time, the Department has provided 

reasonable facilities for printed circuit board manufacturing and 

all the connectors and tools available are related to it. 

The printed circuit board manufacturing facility includes three 

main baths: the photo resistive coating bath, the developer bath 

and the etching bath. After the board is coated with the photo 

resistive material, it is subjected to an ultra-violet light source 

and the desired mask is transferred to the coated board. When 

the board goes to the developer bath, the ultra-violet light 

affected areas are chemically transformed and can be washed away 

with running water. Then the board goes to the etching bath and 

the ferric chloride attacks and removes all the metallic areas 

non-protected by the resistive coating. After a good wash with 

running water, the board is ready to go to the next step, that is 

the assembly process. 

The first problem in the process appears in the photo resistive 

coating. The board' s metallic cover must be thoroughly cleaned 

to make sure the coating is effective. Any dust particle will 

break the coating layer and the board has to be cleaned again. 

To ensure the metallic surface is really clean one has to rub on 

polishing powder until it is spotless. After removing all the 

remaining polishing powder and drying, the board can go to the 

coating bath. The actual coating takes 10 minutes but the coating 

layer takes 24 hours to dry out before it can be used again. 

The mask for each different board has of course to be manufactured 

and we will talk about it later on. The time under the ultra-violet 

light can be adjusted through a timer and this is the only automated 

part in the process. After some trial runs the time under the 

light for the particular resistive material is set without much 

difficulty. 

The second problem in the process is the one related to the 

developer bath. The time it takes for the developer to act varies 



128 

and one has to keep a close eye on the process. Even working 

very carefully, the developed areas sometimes do not come very 

clear and the process has to be started again from scratch. 

The third problem in the process appears in the etching bath. 

Even with a good developed masking pattern, for reasons not well 

understood but probably due to faulty board's metallic cover, 

the bath is not able to clean all the unprotected areas. The 

idea of leaving more time in the bath is just a remedy f04 as 

long as the board remains in the bath, the ferric chloride is 

acting, even on the protected areas, and at the end destroys 

thin connection lines and the process has to start again from 

scratch. 

When a good board comes out of the photochemical process, the 

next step is to cut it to size and gold plate the edge connector 

side. This measure is really necessary to ensure that there 

will be no change 1n the contact characteristics due to metal 

surface changes. 

The drilling of the board is the next step in the process. To 

this end there is a special high speed mini drilling machine. 

Using whole carbide helical drills, there ·is no problem making 

holes, except for the occasional tool break down and the reminder 

that tools are expensive. 

There is no possibility in the Department to plate through holes 

and the necessity for a double sided board means that through 

pins must be used and extra holes provided for them. 

7.2.2 Card Size and Edge Connectors 

The baths of the photo chemical process already mentioned are all 

of the same size and the maximum board size, which can be manufac

tured without extra problems, is 140 x 230 mm. 

The connector available in stock to suit boards within this size 

is the 43 way double sided edge connector. with 0.1 in pitch and 

position 37 fitted with polarising key (wire wrapping connector). 

This connector limits the connector edge in the board to 114 mm 

and the total number of connections to 84 (42 + 42) in a double 

sided board. In order to be able to.fit the connector properly 



129 

into the racking system, and providing space for expansion, the 

final board size has to be 114 x 202 mm. These dimensions are 

compatible with the maximum possible to be manufactured. 

7.2.3 The Functional Distribution 

Looking back to Figures 6.5.2 and 6.5.3, it is noticed that for 

the implementation of the total logic hardware design, it is 

necessary to have available at least 99 pins (22 + 15 + 34 + 28). 

This of course cannot be achieved using just one board with 82 

(41 + 41) available pins. 

With two boards it is possible to implement the design and it was 

done so. It was decided to have implemented in each board all 

the possible set of logical decisions associated with each sector 

of the system bus. 

The final arrangement is the same as shown in Figures 6.5.2 and 

6.5.3 where the functions associated with the address system bus, 

correspondent to Figure 6.5.2, are grouped in the first board and 

the other functions, correspondent to Figure 6.5.3, in the second 

board. 

7.2.4 The Lay-Out Design and the Final Boards 

The board associated with the address system bus is called from 

now on the address bus board. Its manufacturing mask is shown 

in Figure 7.2.1 and its pin-signal assignment in Table 7.2.1. 

The side with the integrated circuits in it has odd numbered pins 

and the locating key is positioned at pin 73. 

The second board which we call data, control and handshake buses 

board or just data bus board, has its mask shown in Figure 7.2.2 

looking from the component side. The pin-signal assignment for 

this board is shown in Table 7.2.2 with odd pin numbers for the 

component side. 

The boards in their final configuration are shown in Figures 

7.2.3 and 7.2.4. 



FIGURE 7.2.1 MANUFACTURING MASK FOR ADDRESS BUS BOARD 
..... 
w o 



131 

C 
Ik: « 
o 
ID 

(f) 

::J 
-ID 

(f) 
(f) 
W 
Ik: 
C 
C 
« 

(Y) 

N 

r--. 
W 
Ik: 
::J 
t!) 

H 
LL 



132 

ADDRESS BUS BOARD PIN-SIGNAL ASSIGNMENT 

PIN SIGNAL PIN SIGNAL 

1 GND 50 MEMEN.BF 
--2 GND 52 HOLD 

3 +5V 54 HOLDA 

4 +5V 56 A14 

10 INTSLA 58 Al3 

12 FLlPCLR 60 A12 

14 ENA (To Data) 62 All 
-16 WE.BF 64 AID 

18 A14.B 66 A9 

20 A13.B 68 A8 

22 AI2.B 70 A7 

24 AIl.B 72 A6 

26 AIO.B 76 AS 

28 A9.B 78 A4 

30 A8.B 80 A3 

32 A7.B 82 A2 

34 AO.B 84 Al 

36 Al.B 86 AD 

38 A2.B 

40 A3.B 

42 A4.B 

44 AS.B 

46 A6.B 

Table 7.2.1 



DATA 
CONTROL 
HAND-SHAKE 

BUSES 

"ahy.haln 
link 

. _._ .. '. ~_ . __ ..... __ . __ ~._. __ ... _" .. _._ ....... . __ '_. __ ._. __ .~J 

FIGURE 7.2.2 MANUFACTURING MASK FOR DATA BUS BOARD 
.... ..., ..., 



;~r111r,1r;r~MIW~k~k~J~llUIU J4MW'; 
j.) d ~Ji \', 

o,}, I 

, ! I 11 

, : I 
' I ,I 

, , ,I I , : : 
11 I ' 

I 

, 
: , 

, , 

L, 

'" 

134 

o 
0:: 
« 
o 
III 

VI 
::J 
III 

« 
I« o 

... 
N 

i' 

W 
0:: 
::J 
(!) 
H 
LL 



135 

DATA CONTROL AND HANDSHAKE BUSES 
PIN-SIGNAL ASSIGNMENT 

PIN SIGNAL PIN SIGNAL PIN SIGNAL 

1 GND 69 INTMST 2 HOLD.B 

3 +5v 77 SETRACKO 4 HOLDA.B 

5 HOLDSET 79 RBUSBUSY 6 $1.B 
--7 ENAHOLD 81 RINTCTL 8 DBIN .B 

-- --
9 HOLDA 85 RECPRES 10 MEMEN .B 

-- -
11 HOLD 86 SITCTL 12 WE.B 

13 RECHOLDA 24 READY.BF 14 READY.B 
-

35 D7 26 WE.BF 38 DO.B 

37 D6 28 MEMEN .BF 40 Dl.B 

39 D5 30 DBIN.BF 42 D2.B 

41 D4 32 cjl1.BF 44 D3.B 

43 D3 46 D4.B 

45 D2 36 ENA 48 D5.B 

47 D1 (From Address) 50 D6.B 

49 DO 52 D7.B 

53 D15 54 DS.B 

55 D14 56 D9.B 

57 DD 58 DlO.B 

59 D12 72 RACKO 60 Dl1.B 

61 D11 78 TACKO 62 D12.B 

63 D10 82 BUSBUSY 64 D13.B 

65 D9 83 PRES 66 D14.B 

67 D8 84 INTCTL 68 D15.B 

Table 7.2.2 



136 

7.2.5 Line Termination for the System Bus 

The termination of all lines in the system bus is a necessary 

measure when all the possible ten modules are connected to it. 

In this case the bus lines can extend up to 600 mm and the 

analogy to transmission lines has to be considered. Any of the 

already mentioned termination techniques can be used and the 

5-100 bus approach (75) is the more appropriate in a conscious 

power dissipation design. 

In an ideal situation the system bus would be implemented as a 

back plane bus and the terminations would be set on this plane 

at one or both ends for each un~ or bi-directional line respec

tively. In our case, it is not necessary and there is not 

really any possibility, as is shown later on, to implement such 

a back plane bus. As we have only two modules, at the moment, 

to be connected to the system bus, it is simpler and cheaper to 

wire up the bus lines. The terminations on the lines driven by 

other than open-collector drivers are not executed, for there is 

no necessity as the final bus length is less than 150 mm. 

For the open-collector driven lines, the necessary pull-up 

resistors are implemented as line termination Thevenin equivalent 

network. Appendix 7.2.1 shows how the equivalent network is 

found for the different lines and the implications of the choice 

of line drivers. 

7.2.6 The Racking System and. Board Arrangement 

With the memory expansion and the interface boards ready we were 

able to wire wrap all the necessary communication links. 

The position of tfu~ microcomputer boards on the racking system was 

not easily chosen. The horizontal position was chosen finally 

based on the idea that the emulation cable, from the Texas 

development system, could reach the microcomputer on the top, 

avoiding the use of extension cards, at leas t for this board. 

The 7.5 in length in extension board greatly increases the length 

of the transmission lines and it should be avoided. 

The stacking of the microcomputer boards in the horizontai plane 

is not of course the most favourable one for natural cooling. 

For our system with two boards this was thought to be not damaging 



137 

and, if the number of modules increases, it is quite certain that 

forced cooling will be necessary and then horizontal or vertical 

positions will have practically the same effects. 

The microcomputer boards being on the top of the racking system, 

in the horizontal plane, do not leave much space for all the other 

boards to be on the top, so they are placed on the bottom part of 

the rack. Figure7.2.5 shows the racking system with the two 

microcomputer boards on the top and their correspondent memory 

expansion and bus communication boards (2) on the bottom. 

At this moment the drawback of not being able to manufacture 

printed circuit boards in bigger sizes appears very clearly. 

The distance between the microcomputers and the interface boards 

is practically over the limit for a transmission line without 

proper termination. We just accepted these facts and hoped the 

system would behave properly. 

7.3 MEMORY EXPANSION BOARD - GENERAL TEST 

The first links to be wired up were between the microcomputers and the 

memory expansion boards. Having in mind that this memory board is 

the key element in the systems communication process, we must first check 

for any malfunction in the manufactured boards. Table 7.3 gives the 

pin connections and assignment for these links. 

The memory expansion board was tested using the functions which show 

up in the general diagram given in Figure 7.3.1 and are discussed below. 

The first function is implemented by the decoder. The control lines 

and part of the address lines go to the de·coder and, if any memory block 

under its control is addressed, the block must be enabled and no other 

one. The second function is achieved by the remaining address lines. 

These lines must address univocally each independent memory cell in each 

block. The third function is executed by the data bus lines. Data 

must be transferred to and from the memory cells without error. The 

fourth and last function is executed by the memory cell itself. The 

memory cell must be able to store the data without any change. 

The block diagram for the memory test program is shown in Figure 7.3.2 

and its implementation in assembly level language is given in Appendix 

7.3. The message display is achieved using one of the TIBUG monitor 

extended operation routines (XOPs). 

--





(1) MICROCOMPUTER 1 
(2) MICROCOMPUTER 2 
(3) INPUT/OUTPUT 

BOARD 

-------

(2)--
·0f---

(10) DIGITIZER ~ 
FEEDBACK 
BOARD 

@I-------
®@I---------
Q)® 
®=----------------------

(4),(7) ADDRESS BUS 
. BOARD 

(5), (8) DATA BUS 
BOARD 

(6),(9) HEHOO . 
EXPANSION 
BOARD . 

--------'--------

• 



FIGURE 7.2.5 
THE MODULAR MULTI_MICROCOMPUTER CONTROLLER 



139 

The global error message indicates one of the following possible 

source of errors: 

1. no memory chip on the addressed location 

2. decoder logic is not correct or is faulty 

3. short-circuit on the enable lines 

4. short-circuit on the remaining address lines 

5. bad contact somewhere 

Using the TIBUG monitor, it is possible to display the values stored 

on memory and verify where the global test failed (the memory does not 

contain its own address). Then using the source of errors mentioned 

above, find out which one is affecting the system. 

The AAAA test fail message indicates that one of the memory cells cannot 

accept the binary pattern 1010101010101010. 

for this: 

1. one of the memory chips is faulty 

There are two main reasons 

2. there is a short-circuit on the data lines 

The 5555 test fail message indicates that one of the memory cells cannot 

accept the binary pattern 0101010101010101. The reasons for this are 

the same as explained above for the AAAA test. 

The test program was loaded using the Tibug load facility and the memory 

expansion tested. As was mentioned before, due to the very compact 

design used for the board (Appendix 6.3), many broken and short-circuited 

lines were found. The test program helped to find where the simple 

problem was or at least indicated the possible cause for more complex ones. 

Using the test program and the emulation and tracing facilities available 

on the Texas development system, all the faults in the memory expansion 

board were corrected and we proceeded to the next stages of assembling 

and testing. 



140 

INTERCONNECTIONS 
MICROCOMPUTER ANO MEMORY EXPANSION BOARD 

PIN PIN 
SIGNAL SIGNAL 

Memory Micro Memory Micro 

17 48 015 48 57 AO 

19 47 014 46 58 Al 

21 46 013 44 59 A2 

23 45 012 42 60 A3 

25 44 011 38 61 A4 

27 43 OlD 36 62 AS 

29 42 09 40 63 A6 

31 41 08 34 64 A7 

49 40 07 35 65 A8 

51 39 06 37 66 A9 

53 38 05 39 67 AlO 

55 37 04 41 68 All 

57 36 03 43 69 A12 

59 35 02 45 70 A13 

61 34 01 47 71 A14 

63 33 00 

2 90 READY 6 78 HE 

4 22 ~ 8 80 MEMEN 

10 82 .OBIN 12 86 HOLOA 

Table 7.3 



Me 
Bl 

mory 
ock 

.. • :-: 

Memory 
Block 1 

............... 
I 

Decoder 

Enable 1 2 

,....., 

Memory 
Block 2 

../"'-... 

I 

Figure 7.3.1 

141 

Control Bus 
:1 7 

:1 

3 

Address Bus 

) 
( 

......, .. 

Memory 
Block 3 

/""-... 

I I Data Bus 

Memory Board General 
Diagram 



142 

-

( Start ) , 
Get start and 

and address of 
Memory Block 

Write in each 
address the 

address value 

I 
I \ 

Finished ? no 

\ J 
yes 

Write in each Compare each 
Address the Value Memory Value with 

555516 the Address Value 
and compare , ~ 

I \ / \ 
no Equal ? Equal ? no 

\ J "- J 
yes , yes 

I \ f \ There is a 
Finished ? 

no Finished ? no Global Error 

\ J \ 
(message) 

J 
~ yes yes 

No errors Write in each 
(message) Address the Value ( Stop 

AAAA16 
and compare 

l 
I \ 

( Stop Equal ? 
no 

\ / 
~ ves Error on the 

Error on the I \ AAAA test 

5555 test Finished ? 
no (message) 

(message) 
\ J 

I yes ( ) 

Figure 7.3.2 Block Diagram for Memory Test· Program 



7.4 THE SYSTEM BUS AND THE MICROCOMPUTER 

7.4.1 Interrupt Controlled Arbitration Link and 
the Microcomputer Connections 

143 

As can be seen on Figures 6.4.2 and 6.5.3, the interrupt 

controlled arbitration link requires in total 6 communication 

lines to any microcomputer. There is no distinction made here 

between controller, master or slave module. 

According to the direction of flow of information in each line, we 

can separate them in input or output lines when the information 1S 

received or transmitted to the microcomputer. 

allows us to write Table 7.4.1. 

LINE 

Output Input 

SITCTL INTMST 

SETRACKO RBUSBUSY 

SBUSBUSY RINTCTL 

Table 7.4.1 

This separation 

Among the input lines there are only two which really require 

connection to microcomputer interrupt lines to have the fastest 

possible operation. They are the INTMST and the RINTCTL lines. 

All the other lines will be connected to CRU I/O ports through 

the TMS 9901 which has already been described. 

The priorities to be associated to each interrupt line depend on 

the final system configuration and how important the communication 

process is when compared to other ones. It is quite clear that, 

in a multi-microcomputer real-time control environment for certain 

modules, there will be processes with much higher priority than 

the communication one. On the other hand, for other modules, or 

within a defined task, the communication process will be vital. 

It is assumed here that the final choice will be made according 

to the actual environment and, at this moment, we are only interes

ted in checking the hardware design and writing a communication 

software which will be independent of associated priorities. 



Just for convenience, it was decided to associate INTI!ST to 

interrupt level 4 and RINTCTL to interrupt levelS. 

144 

The final interconnections between interrupt controller 

arbitration link lines and the microcomputer and the associated 

software design are shown in the next sections. 

7.4.2 Slave Definition Process and the Microcomputer 

The slave definition process, as was mentioned before, and which 

hardware implementation is indicated in Figure 6.5.2, requires 

one input and one output line to the microcomputer when the 

correspondent module is acting as a slave. Table 7.4.2 shows 

these lines and the direction associated to them. 

LINE 

Output Input 

FLIPCLR INTSLAV 

Table 7.4.2 

The INTSLAV line, which name already gives the indication, is 

going to be connected to an interrupt line. 

interrupt level 3 is used for this line. 

In our case 

The FLIPCLR line is connected to a CRU output line through the 

TMS 9901 interface chip. 

7.4.3 The Handshake Connections 

The master-slave handshake procedure, which hardware implementa

tion is indicated in Figure 6.5.3, requires 2 output and 1 input 

line. The direction associated with each one is indicated in 

Table 7.4.3. 

LINE 

Output Input 

HOLDSET RECHOLDA 

ENAHOLD 

Table 7.4.3 



The HOLDSET and ENAHOLD lines will be connected to CRU output 

lines. 

145 

The RECHOLDA line can be connected either to a CRU or an interrupt 

line. In a general multi-microcomputer environment it should be 

connected to an interrupt line. The reason for this is that the 

master would not have to check this line to receive the HOLD 

acknowledge signal from the slave. It would come normally as an 

interrupt. In our case, for the two modules environment, this 

line can be connected to a normal CRU input line. The master will 

have to keep checking it to receive the acknowledgement signal. 

For our environment we will see that for most cases this set up 

is almost as fast as it would be if the interrupt option were used. 

The interrupt context switch takes twice the average instruction 

execution time. 

7.4.4 CRU and Interrupt Lines - Final Definition 

The interconnections for the I/O and interrupt lines described 

above are shown in Table 7.4.4. The CRU bit number associated 

with each CRU line is also shown for ease of reference when 

software writing. The RECHOLDA line indicates both options for 

CRU and interrupt operation. 

7.4.5 Reset Action through the System Bus 

The signal lines SETPRES and RECPRES, shown in Figure 6.5.3 and 

Table 7.4.4, originate from the system bus line PRES and they 

provide the means to reset all themodules on the system through 

a software command by the controller module. When line SETPRES 

is set LOW by the controller, a microprocessor RESET action is 

initiated in all other modules connected to the system bus. The 

line must be maintained LOW for at least three clock cycles and 

when it is released a level-zero interrupt sequence takes place. 

Means should beprovided for the modules to initiate the correct 

sequence. 



146 

INTERCONNECTIONS 

Interface Boards Microcomputer 

Signal Pin Pin Connec- CRU Signal tor bit 

SITCTL 86 16 P4 19 P3 

RINTCTL 81 17 PI - INT5 

SBUSBUSY 79 10 P4 21 PS 

RBUSBUSY 80 26 P4 24 P8 

~ INTMST 69 18 PI - INT4 
0 
0> 

SETRACKO 77 18 P4 20 P4 
CJl 
::> 

HOLDSET 5 22 P4 17 PI 0> 

..: ENAHOLD 7 14 P4 18 P2 !;;l 
0 

RECHOLDA 13 12 (8) P4 22 P6(INT6) 

SETPRES 85 24 P4 23 P7 
--RECPRES 83 94 PI - PRES 

CJl INTSLA 10 15 PI - INT3 
~CJl§ ::>..: 
00>0 

FLIPCLR 12 20 P4 16 PO 

~ 0> 

Table 7.4.4 

7.4.6 The Internal Bus Separation 

As mentioned in Chapter 6, the control lines on the internal bus 

are split in two parts: one that serves the communication global 

memory area and the other that serves the module's remaining parts. 

The separation is made by a buffer controlled by the HOLDA line. 

The control lines coming from the microcomputer maintain their 

original names. Between the separation buffer, memory cells and 

system bus buffer, they receive a suffix .BF (BUFFER) as indicated 

in Figure 7.4.1 



Memory Board 

Separation 
Buffer 

A 

t 

MODULE 

C NTROL LINES 

Microcomputer 
HOLDA 

CONTROL LINES.BF Memory L 

Cells V~t-I-' __ I 
~,r---------~-----------,-~ 

~--~ ~--~--~ 
System 
Buffer 

147 

~--------------------------------~~r---------~ 
...t-7 

<~ ______________________________________________ S_y_s_t_e_m ___ B_u_S ____________ ~II}> 

Figure 7.4.1 Internal Bus Separation 

7.4.7 Final Interconnections and the System Bus 

With the explanation given above and the help of Figures 6.4.6 and 

7.4.1, we are now ab le to make the remaining internal interconnec-

tions for each module. Tables 7.4.5 and 7.4.6 show the pin-

assignment for these interconnections. The connections to the 

memory expansion board are repeated, when necessary, to show 

that there is a dLrect link.between the boards and due to the 

racking system configuration, the wires come from the memory board. 

The system bus can now have its lines connected between our two 

modules. 

The module correspondent to the microcomputer on top of the racking 

system is identified from now on as MODULE 1 and the other module 

as MODUlE 2. The system bus, in our case, extends between the 

address and data bus boards of each module. Table 7.4.7 shows the 

pin connections for the system bus. 

42 lines in total. 

It is clear that there are 



148 

INTERCONNECTIONS 

Microcomputer Memory Address Data 

Board Expansion Bus Bus 
Board Board Board 

Pin Signal Pin Signal Pin Signal Pin Signal 

9 MEMEN.BF 50 MEMEN .BF 28 MEMEN.BF 

Ul 15 WE.BF WE.BF 26 HE.BF 
~ 11 DBIN.BF 30 DBIN.BF H ..., 
..., 2 READY.BF 24 READY.BF 
0 ..: 13 ~l.BF 32 ~l.BF Eo< z 
0 86 HOLDA 12 HOLDA 54 HOLDA 9 HOLDA u 

92 HOLD 52 HOLD 11 HOLD 

14 ENA 36 ENA 

57 AO 48 AO 86 AO 

58 Al 46 Al 84 Al 

59 A2 44 A2 82 A2 

60 A3 42 A3 80 A3 

61 A4 38 A4 78 A4 
Ul 62 AS 36 I AS 76 AS ~ 
H ..., 63 A6 40 A6 72 A6 
Ul 64 A7 34 I A7 70 A7 Ul 

!il 65 A8 35 A8 68 A8 "" ~ 66 A9 37 A9 66 A9 

67 AlO 39 AlO 64 AlO 

68 All 41 All 62 All 

69 A12 43 A12 60 A12 

70 A13 45 AD 58 A13 

71 A14 47 A14 56 A14 

Table 7.4.5 



149 

INTERCONNECTIONS 

Microcomputer Memory Data 
Expansion Bus Board Board Board 

SIGNAL PIN PIN PIN 

DO 33 63 49 

D1 34 61 47 

D2 35 59 45 

D3 36 57 43 

D4 37 55 41 

D5 38 53 39 

D6 39 51 37 

D7 40 49 35 

D8 41 31 67 

D9 42 29 65 

DlO 43 27 63 

Dll 44 25 61 

D12 45· 23 59 

Dl3 46 21 57 

D14 47 19 55 

D15 48 17 53 

Table 7.4.6 



150 

SYSTEM BUS 

INTERCONNECTIONS 

MODULE 1 MODULE 2 MODULE 1 MODULE 2 
SIGNAL 

SIGNAL DATA BUS BOARD ADDRESS BUS BOARD 

PRES 83 83 34 34 AO.B 

INTCTL 84 84 36 36 Al.B 

SIGNAL PIN PIN SIGNAL 38 38 A2.B 

TACKO 78 72 RACKO 40 40 A3.B 

BUSBUSY 82 82 42 42 A4.B 

HOLD.B 2 2 44 44 AS.B 

HOLDA.B 4 4 46 46 A6.B 

MEMEN .B 10 10 32 32 A7.B 
-
WE.B 12 12 30 30 A8.B 

DBIN.B 8 8 28 28 A9.B 

q,l.B 6 6 26 26 AlO.B 

READY.B 14 14 24 24 A11.B 

DO.B 38 38 22 22 A12.B 

Dl.B 40 40 20 20 Al3 .B 

D2.B 42 42 18 18 A14.B 

D3.B 44 44 

D4.B 46 46 

D5.B 48 48 

D6.B 50 50 

D7.B 52 52 

D8.B 54 54 

D9.B 56 56 

DlO.B 58 58 

D11.B 60 60 

D12.B 62 62 

D13.B 64 64 

D14.B 66 66 

D15.B 68 68 

Table 7.4.7 



151 

7.5 POWER SUPPLY 

The power to the system is supplied by two DC power supplies. Due to 

lack of space, one of them 1S installed on the rack itself, behind the 

identification plate, and the other behind the rack. The specifica

tions for these two power supplies are given in Appendix 7.5. All 

connections between the rack and elements outside it are made through 

easily removable sockets because there is very limited access to the 

back of the rack and any modification or maintenance will require the 

removal of the rack from the box. 

7.6 SYSTEM BUS TESTING - PARTIAL COMMUNICATION SOFTWARE 

We are now able to check the system bus. It was decided to have at 

first the simplest piece of software capable of exercising as many 

functions as possible on the system hardware and then to develop the 

complete communication software. 

As we have only two modules the simpler way to check the system is to have 

two separate tests. The first will check the interrupt arbitration link 

and handshake control and the second will check the slave identification 

and also the handshake control. Both of them, at this stage, will only 

check a limited amount of the address and data transfer capability. 

For the first test we need to define a CONTROLLER for the system. Module 

1, as defined in a previous section, was chosen to act as the system con

troller. There is no special reason for this choice. Any of the modules 

could have been chosen. 

The choice of a controller module implies that the switches on the data 

bus boards (Figure 6.5.3) for module 1 and 2 must be set accordingly. 

Chapter 6 indicates which connections must be made. 

With the connections properly made, the software test program can now be 

developed. 

The first test software design is based on the block diagram of Figure 

7.6.1. The assembly level language implementation is shown in Appendix 

7.6.1. There, we can easily see that, when module 2 sends the message 

to the controller, in this case module 1, the message is sent to address 

location 1000 which is the first location on the global communication area 

associated with module 1, as defined in Chapter 6. 



Controller (Module 1) 

Start ) 
• 

Initialize 
Interrupts 

~ 
Enable Controller 
to be Interrupted 

RINTCTL (INT 5) 

/ Return \ IDLE 
no from -, Interrupt , \ ,- - - , yes 

I ( Stop ) 

L __ _ 

INT 4 
r--

\. 

I 
Allow use \ 

r--------~---------, of Sys
tem Bus' 

no 

no 

L __ 

Transmit Bus 
Granted Signal 

SET RACKO (SBZ 20) 

Check if 
Bus is Busy 
RBUSBUSY 

(TB 24) 

Enable Controller 
be Halted 

ENAHOLD (SBZ 18) 

Disable 
Interrupt 

Return 

__ J 

to Require 
Message 
continue 

to 

Module 2 

( Start 

• 
Ini tialize 
Interrupts 

J 
Interrupt 

- Controller 

SITCTL (SBZf9) , 
Enable Master 

to be Interrupted 

I Return \ ID 
no from 

I Interrupt? 

\ \ ) , lyes - -
\ ( Stop 

L __ __ 

Clear Communication 
Wish 

SITCTL (SBO 19) 

Hold Controller 
HOLDSET (SBZ 17) 

Controller 
no Hal ted ? 

RECHOLDA 
(TB 22) 

es 

Send Message 

Release 
Controller 

Figure 7.6.1 Block Diagram for First Test 

152 

LE 

Send connnu
nication 
wish to 
Controller 

Wait for 
Bus 
Granted 

--, 
I 
I 
I 

\ 
_--1 



153 

With the help of the emulator (only for module 1) and tracing facilities, 

the programs were run and, after a few corrections, like missing and 

short circuited lines, the system was approved and ready to go to the 

next test. 

The second test checks the slave identification process. The identifica-

tion of each slave on the system bus is made through inputs El to ElO on 

device 2A, Figure 6.5.2. For modules 1 and 2, as we have, the recommended 

connections as given by section 6.4.2, are the ones shown in Table 7.6.1. 

INPUT LEVELS 

INPUT El E2 E3 E4 ES E6 E7 E8 E9 ElO 

MODULE 1 

MODULE 2 

H L 

L H 

L - Low Level 

H - High Level 

L L 

H H 

L L L L L L 

H H H H H H 

Table 7.6.1 

So module 1 is identified by slave address lFFE and module 2 by slave 

address 2FFE. 

The second test is based on the block diagram," shown in Figure 7.6.2. 

The assembly level language implementation is shown in Appendix 7.6.2. 

The interrupt routine is, of course, not common to both modules but only 

represented as such for convenience in Figure 

Module 1 identifies module 2 as a slave by writing to address 2FFE. 

Then it sends the message to its internal address 2000 which is received 

by module 2 of address FOOO (see Chapter 6) • Module 2 identifies module 

1 as a slave by writing to address lFFE. Then the message is sent to 

its internal address 1000 which is received by module 1 at address FOOO. 

The slave identification process proved to be the most sensitive among 

all the other processes. Noise on the lines was one of the many sources 

of problems. The final design, for the slave identification decoder, 

shown in Figure 6.5.2, is the result of many hours of emulation and 

tracing and several modifications on the original design. The impossi-

bility to emulate both modules at the same time, proved daunting. 



no 

no 

I 
I 

I 
I 

no 

Module 1 

( Start 

Initialize 
Interrupts 

. Define Slave 

(module 2 - ZFFE) f-

A 

Hold slave 

HOLDSET (SBZ 17) 

I Slave 
Halted ? r---

\ 
A yes 

Send Message 

i 
Release 

Slave 

• 
Enable Slave 
Definition 

I Return \ IDLE 
INT 3 
----' from -Interrupt ? 

\ , - - -

( Stop ) 

- -

Clear Interrup 
FLIPCLR 

Disable 
HOLD in 

IDLE 
3_ 

-

I 
I 
I 
I 

Module 2 

( Start 

I 

Initialize 
Interrupts 

Enable Slave 

Definition 

I Return 
from 

Interrupt 

\ J 

154 

no 
-, 
I 
I 

l -- --- 11 
Define Slave 

(module 1 - lFFE) 

i 

Hold Slave 

HOLDSET (SBZ 17) 

I \ 
Slave 

Halted ? 

\ J 
l yes 

Send Message 

l 

Release Slave 

~ 
( Stop ) 

no 

I 
I 
I 
I 

--' 

Enab e 
HOLD in _J ___ ________ -.J 

Message 
Transmitted 

? 

es 

Figure 7.6.2 Block Diagram for Second Test 



155 

In the end, after a long and lonely time, the design reached a quite 

satisfactory performance, with all the initial problems solved but not 

forgotten. 

In order to check the system's reliability, the memory test program was 

added to the second test. Now, instead of a master just sending one 

word of message to the slave, it would check the whole available slave 

communication area. The program was run in closed form, with both 

modules acti.og as masters or slaves, for 8 consecutive hours on many 

occasions and no error was displayed in any of them. 

7.7 THE GENERAL COMMUNICATION SOFTWARE 

I 

7.7.1 The Controlled Process and Message Exchange 

The communication software for our multi-roicrocomputer system 1S 

based on two fundamental facts: 

1. The system is going to be used as a real-time controller 

and not as a general computer. 

2. The software has to be module oriented in order to maintain 

the flexibility for easy upgrading. 

The real-time controller function implies that there is a process 

to be controlled with well defined characteristics. The control-

ling function, for this well defined process, will probably be 

realised by the execution of many different but interrelated tasks. 

The idea of a well defined process is really important in order to 

take advantage of a multi-microcomputer environment and be able to 

find which different tasks there are. 

It is clear that a defined process will require a finite 

number of tasks to be executed as indicated in Figure 7.7.1. 

I TASK 1 I 
PROCESS 

Figure 7.7.1 Tasks for a Defined 
Process 



156 

The other almost clear feature of such a process is that it is 

wellknown how the tasks interrelate and which, if any, has higher 

priority over the others. 

The interrelation among tasks, as they are executed in the multi

micro environment, is basically the exchange of information between 

them. This exchange is achieved simply by the transfer of messages 

between the tasks. In Figure 7.7.2, four tasks transfer messages 

between them. The arrows indicate the direction in which the 

message flows (sender-receiver). 

message ID card: 

M 4, I, 2 

The title on each arrow is the 

Message Number 

Task Receiver 

Task Sender 

Message 

This title is directly related to a reliable communication software. 

In such software means must be provided in order to have messages 

univocally identified. The first and last numbers on the title 

provide the means to achieve reliability. The first number indicates 

the origin of the message and the last to what the message relates. 

M2, I, TASK 1 
4, I 

I, I, 2 

2 

TASK 2 

M4, 2, 1 

Figure 7.7.2 Message Exchange between Tasks 



157 

Different tasks do not necessarily mean that there are as many 

modules in the control system. Tasks can be grouped and executed 

in one module. It is clear that the ·exchange of information 

between tasks executed on the same module do not require the use 

of the system bus. The system bus will be used only for the 

exchange of messages between tasks executed on different modules. 

7.7.2 Message Identification - The Transfer·Vector 

In our case, for a unified message identification scheme, each 

message contains a well defined identifier added to it. This 

identifier is a l6-bit word with 2 defined fields: the most signi

ficant byte contains the master identification (sender) and the 

least significant byte contains the message identification. 

most 8 bits 8 bits 
, , 

MASTER ID 
MESSAGE 

IDENTIFICATION 

<J-- most byte ----l>1q-least byte ~ 

Figure 7.7.3 Transfer Vector 

least 

This identifier is called from now on a transfer vector and its 

general structure is shown in Figure 7.7.3. As the exchange of 

information is achieved on a master-slave basis, the slave is 

identified· for management purposes on the system controller. 

The value to be given on the master identification field is 

related to the module acting as master, so the module number will 

be used. The message identification depends on the total process 

and will have to be,chosen accordingly. If for instance module 4 

acting as the master transfers message 3. to slave 2 (module 2), 

the transfer vector contains: 

most 
bit 01010101011101010101010101011111 

MASTER 4 
11 

MESSAGE 3 

least 
bit 



158 

When in possession of the transfer vector, the slave knows from 

which module the message is coming and to what it relates. The 

system controller can use the transfer vector to achieve many of 

the functions mentioned in Chapter 6. 

7.7.3 Message Transfer Modes"~ Transparency 

The communication software is designed to achieve modularity. 

It is structured in a way that it can be used by any module in the 

system. It allows any module to transfer messages within the 

system and is totally transparent to the system user in relation 

to the system bus hardware. 

In our communication software a message can be transferred in two 

basic ways: 

I. word transfer 

2. block transfer 

The word transfer mode allows the user to transfer a single word 

with a message identification extra word if necessary. The block 

transfer mode transfers one block of sequentially arranged words. 

Figure 7.7.4 illustrates both modes. 

Master Slave 

//I//Wo!'d,l///////f, 

~ if IllWord 21/1 1/11/ ///I/II///////li 

~ ///1/1///1//11/1 

Word Transfer Mode 

Master Slave 

Block 1 

Block 2 

Block Transfer Mode 

Figure 7.7.4 Word "and Block Transfer Mode 



159 

The word and block transfer modes are accessible as independent 

routines. The extended operation instructions (XOP) are not 

fast but are quite simple and elegant and are used to implement 

the word and block transfer routines. 

Before we develop the mentioned routines we will make some defini

tions which will help their understanding, 

7.7.4 Single "and "Global Message "Definition 

When a module uses the system bus it must do so efficiently. For 

this reason we say that within the period the master has control 

of the bus, it 1.S transferring a global message. This global 

message is formed by several single messages. Each single message 

is related to a particular slave and there will not be two single 

messages to the same slave within a global message. 

Each single message (SM) will contain its own message identifier 

and will be separated from other single messages by an SM 

terminator. Within a single message there can be as many calls 

to the word or block transfer routines as necessary. 

The end of a global message (GM) will be indicated by a GM terminator. 

This terminator indicates to the master that the system bus can be 

released. 

The software "design for the word and block transfer routines is 

based on the diagram shown in Figure 7.7.5. This diagram shows 

only actions taken by the master. The controller and slave actions 

are shown later on. 

For management purposes, the global message has a global identifier 

which is transferred to the system controller as the first single 

message. 

As we are interested in a general software design, the RECHOLDA 

line is assumed to be connected to an interrupt line. 

The block diagram of Figure 7.7.5 indicates very clearly that the 

preparation of the single message tables holds the key for the whole 

operation. Details about it are shown on what follows. 



'---i--
I Word or J 
I Block Trans 
Lfe£. XOP_ ~ 

,-- ---, 
: INTMST I 
I I '-- ____ ...J 

- --, 
CHOLDA I 

I 
___ J 

yes 

• 
Release 

Bus 

( . Return) 

160 

- ( Start ) 
• 

Prepare small 
Message Tables 

l 
I End \ 

of Global ves 
Message 

\ 
.no 

C Return ) 

~ 
Send Communication 

wish to 
Controller , 
C Return ) 

- ( Start 

Send Global Message 
ID to Controller for 
Management Purposes 

Interrupt First 
Slave on Table 

• ( Return ) 

- ( Start ) 

Send 
Single Message 

Release and 
end Message 

• I Global \ Interrupt next 
Message no Slave on 

Complete ? Table 
\ / 

Figure 7.7.5 Master's Communication Actions 



The. global message general structure used in this work is: 

MESSAGE 1 

GM ID 

GLOBAL MESSAGE 

CALL ~lord Transfer Routing (WTRANS) 

Global Message ID (source) 

Address on Controller (destination) 

SINGLE MESSAGE TERMINATION 

MESSAGE 2 CALL Word Transfer Routine (WTRANS) 

MESSAGE ID (source) 

Address on Slave (destination) 

Word 1 (source) 

Word 1,1 (destination) 

Word 2 (source) 

Word 2,1 (desgination) 

CALL Block Transfer Routine (BTRANS) 

Block Address 1 (source) 

Number of words 

Destination Address 1 

SINGLE MESSAGE TERMINATION 

GLOBAL MESSAGE TERMINATION 

161 

It is easily seen that words not sequentially arranged in memory 

can be transferred by just one call to the word transfer·routine. 

This avoids the time wasted on the XOP call. It is very important 

to maintain the sequence: first source and then destination 

specification. 

Assuming that nothing is going to be transferred to or from 

memory locations 0000 and 0001, the single message termination will 

be indicated by 0000 and. the global message termination by 0001. 



162 

The single message tables to be created are: 

TABLES 

SLAVE MODE SOURCE 
ADD . for· ADD 

Controller word source 1 

SM.END 

word source 2 

word source 3 

Slave. 4 1. source 

block number 

SM END 

source 5 

Slave. block number 
J 

SM END 

GM END 

7.7.5 Word·and Block Transfer Routines 

The block diagram for the word and block transfer routines are shown 

in Figures 7.7.6, 7.7.7 and 7.7.8. Their implementation in 

assembly ).eve 1 language is shown in Appendix 7.7.1. 

When the system bus is granted to the master, the interrupt master 

routine, which source program is seen in Appendix 7.7.2, takes 

over and prepares the module for the slave acknowledgement signal 

(RECHOLDA) • 



7.7.6 

Increment 
Source 
Counter 

Store 0001 
(GMEND) 

at Source Table 
and Counter 

Figure 7.7.6 

Send Connnuni
cation wish 
to Controller 

Enable 
INMST 

RETURN 

Global End·Routine 

Complementary Routines 

163 

The acknowledge mas ter routine, shown in Appendix 7.7.3, interrupts 

and sends messages to all the necessary slaves up to completion of 

the global message. It·is triggered by the RECHOLDA line as 

indicated in Figure 7.7.5. 

On the slave side, the communication is triggered by the INTSLV 

line (INT3), and the actions taken are shown in Figure 7.7.9. 

It is clear that the INTSLV line serves two purposes. The first 

is to signal the slave the start and end of message transmission 

and the second is to signal the controller· the start and end of 

bus use o The block, identify and serve message is not developed 

in full here because it depends on the application. The source 

program for Figure 7.7.9 is shown in Appendix 7.7.4. 



164 

Start ) 
1 

Increment Address at 
Table Source Rll-4 

Counter Back 2 words , , 
Save Rll Find out 
at Table most part 
Source + of Address 
Counter 

I ~ 
Increment / 

made External no 

Counter Reference ? 

\ 
~ l 

Set Mode Increment Address at 
to word Slave Rll + 4 
(0000) Counter (skip 2 words) , , 1 

Address at Store Value Find out 
Rll + 4 at Rll Address most 

skip 2 words in Slave Table Address 
+ Counter 

1 1 1 
I End of " Increment I External '\ 

Single yes 
Source ves 

Message ? Counter Reference ? 

J \ J 1 no , 
/ '\ no 

XOP Value at 
( ) no Instruction Table + Source Error 

? Counter = 0 
\ ) 

1. i yes { 
Set Return Address at 
Address = Rll + 4 

Rll (skip 2 words) 

1 
, 

Global 
/ " End 

( Global Return no 
Termination? yes Routin e 

(0001) 

6 \ ) 

Figure 7.7.7 Word Transfer Block Diagram 



( Start 

1 
Increment Address 

Table Rll-6 
Source Counter Back 3 words) , , 

Save Rll 
at Table Find out 
Source + most Address 
Counter , ~ 

Increment I \ 
Mode 

External no 

Counter 
Reference 

\ 
j yes I 
Set Increment 

Mode to Slave 
Block Counter 
(0001) , , 

Address at Store at 
Rll+6 Slave Table 

(skip 3 words) + Counter 

1 , 
I End of 

single 
yes Increment 

Source 
Message Counter 

\ , , 
/ \ 

no XOP Table + Source 
Instruction = 0 

? 

yes, l 
Set Return Address at 
Address = Rll+4 

Rll (skip 2 words 

1 l 
I \ ( Global 

Return no Termina- yes 

tion 
/ \ 

Figure 7.7.8 Block Transfer Routine Diagram 

165 

Address 
Rll+4 

(skip 2 words) 

Find most 
Address 

I External \ 
yes Reference 

\ 
no 

( Error ) 

6 Gl 
En 
Ra 

obal 
d 
utine 



166 

r- - ---, 

( ) I 1 
Start - I INTSLV I 

I L.. _____ J 

I Flag '\ no (slave) for 
Controller 
~aised ? 

yes (controller) 

I Flag '\ 
no for Start 

of Message ? 

\ 

Set Flag / Flag \ 
no (start of messa 

for Start of yes s tart of ge) 

Message message on ? 

'" end of 
messrge yes 

Disable Hold Disable Hold Raise Flag 
in Set Bus Free in for start of 

Message. 

Identify Clear Flag Identify Enable Hold 
and Serve for and Serve in 
Message Controller Message 

I 
C Return 

Figure 7.7.9 Slave ·Interrupt·Actions 



On the controller side, the communication is triggered by the 

RINTCTL line. The actions taken by the controller are shown 

in Figure 7.7.10. 

r----, 
I RINTCTL --
I I 
L ____ -1 

- C START 

I \ 
Is 
Bus no 

\ Free ? ) 

yes 

Grant the 
Bus 

l 

Raise Flag for 
Controlle'r Action 

, 
Disable 

RINTCTL in 

Enable HOLD 
in 

r 
( Return ') 

Figure 7.7.10 'ControllerRINTCTLACtion 

167 

This diagram indicates that a flag is passed to the INTSLV routine 

indicating when there is a controller action involved. The 

Assembly level language for'this routine is shown in Appendix 7.7.5. 

7.7.7 Considerations 

It is clear, from what we have developed, that in order to have a 

communication software as general as possible a price must be paid in 

terms of execution. time. Even writing the software in assembly 

level language, we can feel the overhead imposed by the general 

approach. For our system (2 modules) a much simplified version 



168 

for the communication software is used. It allows communication 

without overhead from general software design. A description of 

its operation mode can be seen in the next chapters. 

The real throughput for the general software could not be tested 

on its whole configuration as we only have 2 modules on the system. 

The test made using dummy slaves is not really a good one for 

checking overall performance. We know that must of the overall 

performance will depend on the particular application and hope 

somebody will go through these tests in the future and make the 

possible necessary tuning on the general communication software. 



169 

CHAPTER 8 

THE CONTROLLER TO ELECTROHYDRAULIC DRIVE INTERFACE 

8.1 INTRODUCTION 

This chapter is concerned with the interface between the modular multi

microcomputer, designed in Chapter 6, to act as the controller for the 

electrohydraulic cylinder drive. 

The hydraulic rig was designed as a general testing facility and 

Section 8.2 gives a description of it. Details of the tables, hydrau-

lic cylinder, electrohydraulic servovalve and power supply are given 

there. 

Section 8.3 discusses the servo amplifier used to drive the servovalve 

and sets up the necessary components to match the valve's electrical 

characteristics. 

The analog nature of signals on the drive requires an analog input/ 

output interface in the controller interface. Section 8.4 discusses 

the choice of such interface and sets up the system configuration. 

The control of position implies a position transducer and Section 8.5 

is concerned with it. There, an optical position transducer is 

chosen and the necessary interface to the controller is designed and 

discussed. 

Throughout this chapter all the necessary interconnections between 

controller and rig and internal to the controller are specified in 

detail to make sure anybody can continue this work from where it has 

stopped. 

8.2 THE HYDRAULIC RIG 

The hydraulic rig used in this work was designed as a flexible tool 

in control systems research. A general view of the hydraulic rig is 

shown in Figures 8.2.1 and 8.5.12. Figure 8.2.lA shows details on the 

hydraulic cylinder and transducers. 

8.2.1 Load Tables 

The primary objective of a servo drive in position control systems 

is to drive a certain load within specified constraints. This 

load has in general two main characteristics, i.e. mass and 

friction; nonlinear friction can be considered to be the 



( I) GUIDEIIAY FOR 
FRICTIONLESS 
TABLE 

(2) SLIDEIIA'Y 
TABlE 
BUFFER 

(3) CAST IRCtl 
BED 

(4) CAST IRON 
TABLE 

(5) LINEAR 
POSITI~ 
TRANSDUCER 
(POT.) 

(S) LINEAR 
VELOCITY 
TRANSDUCER 

- -- - ----, -- --

. , 

.< '-- ---- ~ -- -- --~- -~-

(7) DIFFERENTIAL 
PRESSURE 
TRANSDUCER 

(8) ELECTROHYDRAULIC 
SERVOVALVE 

(9) SUPPLY LINE TO 
SERVOVALVE 

(10) DIFFERENTIAL 
PRESSURE 
TRANSDUCER 



FIGURE 8. 2. I HYDRAULIC RIG - GENERAL VIEW 



3 

(I) DIFFERENTIAL PRESSURE TRANSDUCER 
(2) ELECTROHYDRAULIC SERVOVALVE 
(3) LINEAR VELOCITY TRANSDUCER 
(4) LINEAR POSITION TRANSDUCER(POTENTIOHETER) 
(5) ASYMMETRIC HYDRAULIC CYLINDER 
(S) LINEAR OPTICAL INCREMENTAL POSITION TRANSDUCER 

\ 



., - -.~~.~ 

..,:.a. . ..:.._._ ... 

FIGURE 8. 2. I A HYDRAULIC RIG - DETAILEDVIE~ 

\ 
\ 

171 



172 

summation of viscous friction, static friction and coulomb friction 

components. These characteristics are always present on real 

systems, even if in levels that can be sometimes neglected. In 

order to be able to emulate a certain load, the rig must provide 

means to vary the load characteristics over the range practically 

found. This range must include the possibility of certain 

characteristics having null values as, for example, in a friction

less load. 

The most significant load characteristics in practical systems 

are mass, static friction and coulomb friction. Static and 

coulomb friction are inherent 1n many mechanical systems. Due 

to their nonlinear behaviour they are reduced to the lowest 

possible level and in high precision positioning systems their 

influence must be neutralised. Mass 18 a characteristic which, 

for most systems, is directly related to fri9tion and in a test 

rig there must be a way to vary it without undermining the other 

characteristics. 

In order to represent the most common real loads found in practice, 

and to cope with the possibility of changing characteristics, the 

rig was designed with two main loads or, as called from now on, 

two main tables. The two tables can be driven by the hydraulic 

cylinder independently or coupled together. 

The first table is mounted on a plain slideway with dovetail and 

tapered gib as seen 1n Figure 8.2.2, Section A-A. The table 

weight is 90 kgf. It is really the table of a vertical milling 

machine. 

The second table is mounted on ball bushings, of the open type, 

with provision to have extra plates attached on top of it. The 

table and bearings weigh 32 kgf and each extra plate 15 kgf. 

When the two tables are coupled together, it is possible to 

increase the inertia load, without. undermining friction levels, by 

attaching extra plates to the frictionless ball bushing guided 

table. To emulate a frictionless load, the frictionless table 

can be disconnected from the other table and driven independently 

by the hydraulic cylinder. 



173 

8.2.2 Hydraulic Cylinder 

The hydraulic cylinder used in the rig is of the asymmetric or 

single rod type, as seen in Figure 8.2.2, Section B-B. The 

piston dimensions and maximum stroke are given below: 

Hydraulic Piston 

Bore 38.1508 mm (1.502") 

Rod 26.7716 mm (1.054") 

Stroke 533.40 mm (21.0") 

In order to cope with possible misalignment between the rod centre 

line and the table guideway, the rod is hollow and provided with an 

inner flexure rod which has limited lateral 

Figure 8.2.2, Section B-B. This all round 

flexibili ty, see 

flexibility copes with 

the residual misalignment between the line of action of the cylinder 

and the load guideways. 

The piston is connected to the tables by the use of a metal arm 

which is bolted down to either or both tables. The rod t sinner 

shaft is not fixed to this metal arm against a small shoulder, as 

seen in Figure 8.2.2. The metal arm is a welded element which 

is also used as the force transfer member between the hydraulic 

cylinder and the buffers in case the end of the fixed stroke is 

reached. 

The cylinder is first fixed to a metal plate by bolts through its 

end blocks and then this plate is bolted down to the cast iron bed. 

The use of dowels is necessary to avoid the longitudinal movement 

of cylinder in relation to bed. 

8.2.3 The Servovalve 
r 

The valve available in the rig is a MOOG Series 76, Two-Stage 

Fluid Control Servovalve. This servovalve is a 4-way valve and 

operates with force feedback in the spool position loop. The 

first stage or pilot stage is a symmetrical double nozzle and 

flapper, driven by a double air gap, dry torque motor. The valve 

type is E076-102 and, because it is a key element in the control 

of the rig, more details about it are given in Appendix 8.2.1. 



Section B-B 

out of sC;lle 

A 

r-t> 

Le. 
A 

FIGURE 8.2.2 Detail of Sliding Table and Hydraulic Cylinder 

Arrangement 

Section A-A 



I 

8.2.4 Power Supply 

Power to the hydraulic rig is supplied by a power pack whose 

circuit is shown in Figure 8.2.3. 

Accumulator 

Electric 
Motor Axial 

\--__ /'~~ Piston 
Pump 

Temperature 
Gauge 

Pressure 
Gauge 

Filter 
1 

---1 Relief 
,.......J--, J' Valve . -

Cooler 

Filter 
2 

Tank 

'1 

175 

L. _. - . 
Figure 8.2.3 Hydraulic Rig Power Pack Arrangement 

The pump is a Sperry Vickers PVB5. This is an axial piston pump 

with variable displacement and pressure compensation. At 1800 rpm 

it delivers 19 l/min and its maximum working pressure is 210 bar. 

The electric motor driving the piston pump is a 3 phase and 5, HP 

device with a speed of 1440 rpm. This motor is of course not 

matched to the piston pump relating to their operating speeds. 

The pump delivery will be much lower than the 19 l/min which means 

that we have to accept the maximum cylinder speed 'related to it. 



176 

The filters on the high pressure side are of the high pressure 

type and filter 2 has a 3 pm particles retention capability. 

Filter 3 is 10 pm nominal and has a bypass at 15 psi. 

The cooler is water operated and is capable of maintaining the 

temperature at approximately 370 C for normal operating conditions 

when the tap is fully open. 

8.3 THE SERVO AMPLIFIER 

The servo amplifier used to drive the hydraulic servovalve is a commercial 

MOOG DC servocontroller, Model 82-300. This unit is completely solid 

state using silicon semi-conductors and integrated circuit operational 

amplifiers. 

A schematic diagram for the MOOG servocontroller is shown in Figure 8.3.1. 

There, it is easily seen that there are two operational amplifiers on the 

circuit driving the valve. 

The first, OAl, is an operational amplifier input stage. 

OA2, is associated with the current driven output stage. 

The second, 

The input 

stage sums several dc signals and provides a range of voltage gains (R16). 

There are reasonable controls for setting input signal sensitivity and 

offset bias. The output stage uses the operational amplifier and two 

current boosti.ng transistors. Current feedback is used so that servo-

controller characteristics should not be affected by servovalve coil 

inductance and resistance. 

The input associated with signal e3 has fixed sensitivity. Signal ez 

can be balanced through a range of +/- 10%. 

from 0 to 100%. 

Signal el can be adjusted 

Removing R15 and using capacitors Cll and C6, integral analog control 

can be achieved with appropriate settings. 

With proportional control and R7 fully clockwise the output voltage of 

the OAl stage will be 

ea = - fR1S + Rl6 + RlS . Rl61 [el + L Rl7 J R6 
eZ e3 + -

R3+BAL R2 

The associated current from the output state will be 

io = 
1000 
Rl9 

• ea (mA) 

+ -e4] 
t2 (v) 



R2 to R6 = 100 kn 

R1S = 47 kn 

R16 100 kn 

R17 1 kn 

177 

~~-------------------------------. 
13 l~~}o 
@>-----<CS ~~,ALC,RCU,;~~l'~)--El 
@ <71. . I\~ 
~ .' NOTE: PLUG-IN . \!21 (6. CAPACITYFQRJUST .12 

f'9'\ (51. ONE SPECIAL CIRCUIT 113>---E2 
. \V CARD. 104>---+£2 

., ® ": :'Sr-+El o (3 L __________ ~16>---1-----1 
~ 11 

+£2 

: :R26 
Q1 

N •• CV rrt !:;o.-.... +-r--"t
3 + ., 

::~.: OAI 

RI2 +E2 

"---' 

\ _______ ~~~~~~----~2 • 
"eJ 3r 

.3 
-E2---::i. 

t--oj'KiJ, ~C5 
C6 

R6 
t----<r-: ;--6---------i 

}--=""r+f2 
BIAS CH R9 

"0 

15}----J.._E2 

,Cll 
'Hf-

.l> 

02 

.,7 
: RI6 I 

"'.I.=RjJr J 

os 

07 

DB 

R27 

.,9 2 
~9 

-E2 

~1 

R22 ·EI 
J~.c:;:;..--1=---------(19 

Q- R23 ~ 
SPARE--0 

SPARE--@ 

r---~~-~--li------~~~==~+~E~l~(+~l~B~V~DC~) V 

.39 R30 
3 + ,--, 

"- __ 1 

7 6 .37 
OAJ 

'--I 

• 
2 

+--r--+-~c-rl------------ +E2(+12.BVOC) 
R31 09 

~~C1O R32 

_CB 0)0 R33 

+ C9 
R34 

.lS +-;;;;;;---\-------------r---- - E2(-12 .BVOC) 

2 

.36 
.... --, R40 

L--':=L-:::_'~~-L ___ -l~=-::BC-im;\26 -E1(-lBVOC) 

Figure 8.3.1 Schematic Diagram for the MOOG 82.300 Servocontro11er 



178 

Using the details for the servovalve given in the last section we can 

already set the output stage of the amplifier to match the necessary 

characteristics. 

According to MOOe's recommendation we should have: 

a) voltage across R23 (VR23) equal to O.SV when the rated current 

is applied to the servovalve 

b) resistors RIg and R22 chosen so that with 10V out of OAl, the 

voltage across R23 is about O.SV. 

With rated current of lSmA and using the equation for the current at the 

output stage, the recommendations impose the relations: 

and 

IS x 10-3 

R22 
RIg VR23 

10 VR23 
RIg + R23 

There are only two equations for three variables, but if we assume that 

all the rated current goes through R23, the value for it should be approxi-

mately 3311. Assuming R23 = 1811 almost all the rated current will go 

through it and RIg can be chosen with a large value making the current 

coming from the input stage very small. The values chosen were 

RIg = 33kll and R22 = lkll. These v·alues will give a rated current of 

l7mA and a voltage across R23 equal to 0.3V when the output of OAl is 

lOV. 

The connections to the input stage will be discussed later on when the 

digital to analog converter is discussed. 

8.4 ANALOG INPUT/OUTPUT BOARD 

8.4.1 The Analog I/O Necessity 

The use of a typical electrohydraulic servovalve to control the 

movement in the hydraulic rig means that the input to the servo 

amplifier must be an analog signal. Assuming, in our case, that 

this signal is going to be the control function generated by the 

digital controller, there must be a way to convert digital informa-

tion into analog signals. This is the function, of course, of a 

digital to analog converter (D/A). It is mentioned here that there 



179 

is no simpler way to generate a control function for this type of 

system configuration. 

A digital to analog converter costs money and ours had already 

finished by this time. The, great help came from money available 

to bui Id the rig. With this help we were able to choose and buy 

what we mostly needed to finish interfacing the controller to the 

rig: 

a) a digital to analog converter and 

b) a linear incremental position transducer. 

Following on, we will discuss the digital to analog converter and 

in the next section, the position transducer. 

When we started looking for a digital to analog converter, we kept 

in mind that besides the incremental position transducer, many other' 

transducers have an analog output signal. For data acquisition or 

feedback control using this type of transducer, an analog to 

digital converter (A/D) is also necessary, so we started looking 

for both converters. 

On the digital to analog side for our rig, we need at least one 

output channel to control the servovalve. On the analog to 

digital side, in order to have some flexibility, we need at least 

three input channels. 

8.4.2 The Board's Choice 

Having in mind that there is more to look for on D/A and A/D than 

just resolution and speed, we came across a quite reasonable 

device which fulfilled our needs and did not require any hardware 

interfacing to one of our modules. 

This device is the RTI - l24lS analog input/output subsystem from 

Analog Devices. It is totally compatible with the Texas TM9900/ 

lOOM microcomputer board and the only hardware interfacing 

required is connections between the pins on the board's 100 pin 

edge connector. 

The RTI - l24lS is a complete, 12 bit resolution analog I/O sub 

system which functional block diagram is shown in Figure 8.4 

There are on the board 16 single-ended or 8 differential input 

channels and 2 output channels. The general specifications for 



I. 
I 

BUS I 
INTERFACES I 

TO I 
MICROCOMPUTER I 

t : 
DATA 
BUS 

CONTROL 
BUS 

I 

'6, 
I 
, . J 
I 
I 
1-,_ 

. I • 3 
I 
I 
I 

DAC , OUTPUTS 
r , 

ANALOG INPUTS +10V CURRENT 
REFERENCE VOLTAGE LOOP 

1\ ] l-----~-rr 
I 

OFF 
BOARD 
EXPANSION B 

(;=!~:t:::j INPUT 
8 REGISTER 

STROBES 

L-;:~:::::).~~ INPUT 
, 2 REGISTER 

STROBES 

5 

INPUT 
PROTECTION 

1-------) 1 
• I ANALOG INPUT 

MULTIPLEXER 
i I 

[ 
REF 

SOURCE 

·SOFTWARE 
__ I- _ PROGRAMMABLE GAIN 

2 AMPLIFIER 

SAMt"Lt: 
AND HOLD f--, HOLD 
AMPLIFiER 

~ 

i VOLTAGE 
TO 4-20mA 

CONVERTER 

Of 12 BIT 
D/A 

CDNVERTER 
I 

!-'2 

OUTPUT F-'2 
TRISTATE 

BUFFER 

,2 BIT 
AID 

CONVERTER ~ DATA 
CONVERT REGISTER 
COMMAND 

DATA .l--t12 
STROBES W 

,2 DATA 
STROBES 

'6 BIT TWO·WAY DATA BUS 

CONTROL I I 
LOGIC • 

} 

TO 
ADDRESS REGISTER 
DECODER AND 

OUTPUT 
STROBES 

15 ENABLE 

ADDRESS 
BUFFERS 

*2 
STATUS 

REGISTER 

DAC 2 OUTPUTS 

~URRENT' 
VOLTAGE LOOP 

;VOLTAGE 
TO 4-20mA 

CONVERTER 

"11281T 
D/A 

CONVERTER 
I 

+1SV -15V 

t [?! 
I • 

DC/DC 
POWER 

CONVERTER 

t ADDRESS:~.~'='=S=B='=T=A=D=D=R=E=SS==B=U=S~I 
BUS I: . 

,5 I ·OPTlONAl 

, , INTERRUPT 
I RTI,'24' ONLY I 

• I ,15 } 0 

Figure 8.4 RTI-124l S Block Diagram 

'SV 

+5V 

,..... 
et> o 



181 

the RTI - 1240 family is given 1n Appendix 8.4.1. 

The RTI - l24lS was chosen due to its software programmable gains 

on the input channel. This allows more flexibility in dealing 

with various signal sources. 

The RTI - l24lS appears to the controlling microcomputer as a 

block of eight contiguous memory locations in the microcomputer's 

address space (memory mapped) . All control and data transfer 

operations are accomplished by writing into or reading from, one 

or another of the eight words exactly as would be done with read/ 

write memory. Each word has a preassigned function, and the 

eight words taken as a group comprise the memory map of the 

RTI - l24lS. Figure 8.4.1 shows this memory map. Details of 

words and functions associated with this map are important for 

this work and are discussed below. 

Reference 79 

More details can be seen in 

The words in the memory map form a contiguous block of eight 

memory word locations. This block can be positioned anywhere 1n 

the microcomputer's address space by.jumper selection of a base 

address. For convenience all word addresses in the memory map 

are referenced to the base address as seen in Figure8.4.l 

Some words are read only or write only functions and if an 

illegal operation is performed no useful data will result. The 

important words, for our work, are: 

DAC2 

DACl 

GAIN 

(BASE ADDRESS + 0) : Data written into this word is 

converted into an analog signal by the analog output 

channel DAC2. The 12 bit data converted is right-justified 

in the 16 bit microcomputer word; the four most significant 

digits are ignored and can therefore have any value. This 

is a write only address and any writing instruction can be 

used to write to it. 

(BASE ADDRESS + 2): This word functions in exactly the 

same way as DAC2 above, but produces analog output on the 

DACl output channel. 

(BASE ADDRESS + 6): The two least significant bits of 

this word set the gain of the instrumentation,amplifier. 

The codes for each gain are: 



WOR'O 
AOORESS 

BASE +0 

+2 

+4 

+6 

+8 

+A 

+C 

+E 

DATA WORD FORMAT 

rr----~------------------------'A~------------------------------~, 

~ ~ ~ ~ MSB LSB 

~ ~ ~ ~ MSB LSB 
-- -- ,--, 

EOC AUTO EXT 
~ ~ 

INT .Ne CC 
0 

~ 0 G, GO 

~ ~ A, A. As A. A, A, A, Ao 

~ 0 

EOC RANC;E ~ ~ 

S S S S MSB LSB 

Figure 8.4.1 Address Map for RTI-1241 S 

WORD NAME 

DAC2 

OAC 1 
}1241 ONLY 

SETUP 

GAIN 

MPX 

CONVCMD 

STATUS 

ADC DATA 

.... 
cc 
IV 



183 

GO 0 1 0 .1 

Gl 0 0 1 1 

GAIN 1 2 4 8 

This word is read/write. 

MPX (BASE ADDRESS + 8): The eight least significant bits of 

this word select the analog input channel during data 

acquisition operations. The word is read/write. If 

it contains value 3 data is taken on input channel 3. 

ADC DATA (BASE ADDRESS + E) : The results of analog to digital 

8.4.3 

conversion are available in this word. Data will be 

valid until a new conversion is made. The 12 bit ADC out

put data 1S right-justified in the 16 bit microcomputer word. 

The four most significant bits are set to zero when 1n 

unipolar or offset binary coding and are set to the sign of 

the 12 bit value when in two's complement coding. 

word is read only. 

System Configuration 

This 

Before any settings on the Analog I/O board are made, its position 

on the multi-microcomputer controller must be chosen. 

The best configuration for our system, in terms of reliability, as 

we mentioned before, is shown in Figure 8.4.2. There is just one 

module directly connected to the rig (controlling) which minimises 

the risk caused by any system bus failure. 

With this configuration the analog I/O board is mapped into the 

address space of module 2. To avoid any overlapping of positions 

already mapped on this address space, the base address was chosen 

as: 

Analog I/O Board 

BASE ADDRESS I BOOO 

With this selected address the address jumper locations were set 

as: 



MICROCOMPUTER 

TM 990/100M 

Memory ~,.. 
Expansion ."1"--

r-- .. ----, 

: ~t=· .... -- ----Fr--~ 
~" Control 

Buffer 

MICROCOMPUTER 

TM 990/100M 

Memory r. ~i> 
Expansion ~ 

~=:;:::==:::;:::::! " L-_--, 

Counter & n-
Register I "I----] 

Control 
Buffer 

184 

r---·-----------~ I I 
I MICROCOMPUTER: 
I I 
I I 
I I 
I I 
I I 

: I 

.. - - - - - -----7W---J 

,------, ~ 
I l't-1 

: · 1',,-, I L ______ '"" . I I 

I I 
I I 
I I 
I I 

r--~..!::-t 
I I 
I I 
L. __ ,.. ___ l 

~ 
~ 

<~--,,------------S-YS-TTEM._B-US----------_,rT--------------V) 
r 

VDU Linear 
Transducer 

A/D and D/A 
TM 990/1241S 
(16) (2) 

f! l! 
HYDRAULIC RIG 

Figure 8.4.2 System Configuration 

Key 



OPEN 

CLOSED 

185 

Xl X20 X3 

8-1 6-3 05-4 

7-2 8-1 7-2 6-3 5-4 8-1 7-2 6-3 5-4 

An open connection means a high level signal on the input of 

the decoder. 

The analog I/O board was placed on the racking system, below 

the microcomputer belonging to module 2, as can be seen 1n 

Figure 8.4.2. The interconnections between the analog I/O 

board and the microcomputer relating to pin assignment and 

function is shown in Appendix 8.4.2. It is clear that the 

analog I/O board is connected directly to the microcomputer's 

internal bus. 

8.4.4 Analog Output 

The output to the servovalve amplifier was defined as DACl just 

for convenience. From connector PS, which function and pin 

assignments are given in Reference 
0 
79 a two-way screened 

cable was brought to the back of ~he controller box where a 

DIN 5-way 1800 socket was inserted. The connections made on 

the controller box are: 

ANALOG I/O BOARD CABLE 
DIN 1800 

5-WAY SOCKET 

Function PIN (PS) Colour PIN 

DACl(out) 13 red 1 

Analog 12 blue 5 Common 

With these connections made we have the link between the 

controller and the servovalve almost finished. It is only now 

necessary to establish to which of the servo amplifier inputs 

the analog I/O board signal is going to be connected. 

For bi-directional operation of the servovalve, we need a 

bipolar output from DAC1. The output range was chosen to be 

20V (+/- lOV) which is the biggest one available on the analog 

I/O board. This range will give a better definition when 

small inputs to the servovalve are used, especially in the 

presence of noise. The output code is in 2's complement. 



186 

The maximum output current for the RTI - 12415 is +/- 5mA, for 

the chosen range. For this value of current the minimum value 

for the resistor at the input of the servo amplifier should be 

2kO. So with the resistors already existent on the amplifier, 

as can be seen in Figure 8.3.1, any input can be used. It is 

clear that the sensitivity of each input can be changed without 

much difficulty but we decided to maintain them as they are and 

use the input to the amplifier correspondent to signal ez 

(Input 2), which has a balance potentiometer for sensitivity 

adjustment. In order to have the possibility to move the 

servo amplifier around without any cabling problems, a DIN 180
0 

5-way socket was provided on the back of the servo amplifier box 

to receive the command signal from the controller. 

tions made on the servo amplifier box are: 

SERVO AMP BOARD CABLE DIN l80u 
5-WAY SOCKET 

Function Input Colour PIN 

ez 2 red 1 

Ground 6 blue 5 

The connec-

With the manufacturing of a 2m long, 2-way screened cable, with 

DIN 1800 5-way plug in both ends, the link between the controller 

and servo amplifier, carrying the servovalve command signal, is 

completed. The lay-out for this link can be seen in Figure 8.S.lL 

8.4.5 Analog Inputs 

The analog inputs 

on the analog I/O 

to the controller are provided by connector P3 

board. There are 8 full differential input 

channels which, being differential, are effective in reducing the 

effects of noise and bias current. 

From connector P3 on the analog I/O board a 20-way ribbon cable 

with edge connector brings several 

the controller box. There, a DIN 

input channels to the back of 
o 240 socket (only available) 

was inserted and through it provision is made for two full differen-

tial analog inputs. The interconnections between the ribbon 

cable and connector P3 are shown in Appendix 8.4.3. For the 

provided analog inputs, the interconnections and assignments are: 



187 

INPUT CHANNELS 

ANALOG I/O BOARD CABLE 
DIN 2400 

5-WAY SOCKEl 

Function PIN(P3} Colour PIN 

CHO HI 5 white 5 

CHO LO 4 white 4 

CHI HI 7 grey 3 

CHI LO 8 grey 2 

With the analog I/O board in place on the racking system we were 

able to test it and adjust its analog outputs according to 

procedure given in Reference 79 Using a digital voltmeter 

the offset and gain of both digital to analog converters were 

adjusted to give +9.995lV, for maximum positive output and 

-lO.OOOV for maximum negative output. Apart from this necessary 

set up the analog I/O board worked perfectly well. 

It is mentioned here that the analog I/O board is operating with 

necessary jumpers to be reset whenever a system reset occurs. 

Thus, if the RESET switch on the TM990/l00 microcomputer is 

actuated (at power up or to recover from an error) the output of 

both DACl and DAC2 will become OV. This acts as a starting 

and safety mechanism for it will close the servovalve (zero input) 

whenever the RESET switch is actuated. 

8.5 POSITION TRANSDUCER 

8.5.1 The Optical Linear Incremental Position Transducer 

The measurement of position for systems operated by linear actuators 

is easily achieved by the use of linear transducers, for there is 

no need for special gearing or coupling between system and transducer. 

In our case, using a hydraulic cylinder, it is possible to provide 

a stiff coupling between actuator and load in a way that·, in terms 

of dynamic effects, it is practically the same to measure position 

of the load (direct) or position of the actuator (indirect). As 

it is easier to measure the position of the load, that is what is 

normally done and we decided to do this. 



The use of analog position transducers together with digital 

controllers is common and must not be discarded a priori. 

188 

There are many design aspects which sometimes will avoid the use 

of a digital type transducer but there are two points to consider 

before choosing an analog transducer: 

a) The use of an analog position transducer will most certainly 

require an analog to digital converter. 

b) The resolution is directly related to the number of bits 

used for conversion and noise badly affects small resolutions. 

Point a) will of course affect the price on the decision process but 

it is point b) which probably will indicate the chosen transducer, 

as discussed below. 

In our case we have a stroke of approximately 500 mm. Using a 

normal 12 bits analog to digital converter, the smallest increment 

we could measure would be 0.122 mm. This resolution is not enough 

for most practical needs. Increasing the number of bits to 16 

we could go·down in resolution to 7.6 ~m, but if we assume a 20V 

range, the voltage step would go down to 0.3 mV which would be 

certainly affected by any real working environment. 

The position transducer resolution we are looking for 1S around 1 ~m 

and an analog to digital converter of at least 20 bits resolution 

would be necessary. So for our application, a digital position 

transducer is really necessary. 

The chosen transducer,to suit our needs, is a HEIDENHAIN LS 701 

Li~ear Transducer. This transducer is an optical linear incremental 

position transducer of the Moire-fringe type. The grating pitch of 

the transducer is 20 ~m and the chosen version has a pulse shaping 

electronics (EXE) with 5-fold evaluation (cycles of the solar cells 

are subdivided 5-fold such that 1/5 of the. grating pitch is achieved). 

The pulse shaping electronics is independent of the transducer and 

can also be used with a compatible optical angular transducer. In 

addition to the two by 900 phase shifted signal trains, inverted 

signals for noise suppression are also available at the output of 

the pulse shaping electronics. 



189 

The block diagram showing the solar cells and the pulse shaping 

electronics (EXE) is shown in Appendix 8.5.1, with the signal 

diagram for the available outputs. Signal Uao is associated 

with a pulse generated at the middle of the transducer stroke. 

The output signals from the EXE unit are TTL compatible with a 

fan out maximum of 2 standard TTL loads. The recommended slope 

clearance in any of the output signals is to be bigger than 0.5 ps. 

8.5.2 Controller to position Transducer Interface 

The transducer resolution we are trying to achieve is, as mentioned 

before, 1 pm. It is quite clear that we must condition the signals 

coming out of EXE unit as they only represent a resolution of 4 pm 

(20 -0 5). 

Beside it, 

associated 

So a 4-fold subdivision is necessary to achieve 1 pm. 

there is the direction indication which is still 
o to the 90 phase-angle between signals Ual and Ua2. 

The general interface between the position transducer and controller 

will follow the guidelines already discussed by the author (1) 

using a register buffered indirect counting as shown in Figure 8.5.1. 

up clear 

1 1 position 
pulses Data Micro-

. f-- Counter I} Register ]) Computer d· . ~fLOg1C 1rect1o 
r-- v v 

down r r load 

Figure 8.5.1 Register Buffered Indirect Counting 

The operations load and clear.indicated on Figure 8.5.1 are the 

most critical in this interface design, as any loss of pulse means 

an error in position measurement. In order to achieve the end 

results, the up and down pulses must be synchronized with the 

microcomputer's clock and with the sampling instants. 

this will be shown later. 

Details of 



190 

8.5.3 Detailed Interface Design 

The detailed interface design is based on the diagram shown in 

Figure 8.5.2. The functions associated with each block in this 

figure will be discussed now. 

The differential line receiver is used on the input lines coming 

from the transducer's pulse shaping electronics (EXE). These 

lines are already in a suitable configuration to use a differential 

receiver as they are available in pairs with inverted couples. 

The EXE unit available comes with a Im cable and will be enough for 

our needs. If an extension is needed, the receivers will cope 

with at least 20m of cable. 

The chosen receiver is the SN 75182 dual differential line receiver 

(80). It has a +/- l5V common-mode input voltage range and +/~ l5V 

differential input range. The response time control capacitance 

was chosen as 100 pF, which gives a protection against a maximum 

pulse width, applied differentially, of 60 ns. 

After the line receiver the input lines have been combined to give: 

Ual and Ual give CHI (channel 1), Ua2 and Ua2 give CH2 (channel 2) 

and Ua3 and Ua3 give CH3 (channel 3). 

The use of one of the microcomputer's clock phase as the synchronizing 

clock in our design was not possible. As seen in Chapter 6, the 

clock phase has a cycle which is not balanced in relation to LOW and 

HIGH periods. For instance, ~ has a cycle with a LOW period of 

45 ns which will be very restrictive, as can be seen later on, due 

to propagation delays through the logical gates. 

The clock generation block in Figure 8.5.2 indicates the generation 

of a better balanced clock cycle to be used as our synchronization 

clock, or just CLOCK. 

The up and down generation block synchronizes CHI and CH2 pulses 

with the CLOCK and generates up and down pulses to be used by the 

counter. These pulses are now synchronized with the CLOCK pulses. 

The clear and load generation block uses the CLOCK signal and a 

signal associated with the microcomputer's sampling interval, SAMPLE, 

to generate signals that will load the register with the value on 

counter (load) and after will clear the counter (clear). It is 



< I- ADDRESS INTERNAL BUS I) 
DATA INTERNAL BUS 

< ~ 
~ ~ 

POSITION DATA 

I - .. -- -- --. - -_. -- -. -- -- I 
ADDRE SS ~ ENA LOAD I I REGISTER 

DBIN i DECODER 
~ I 

MEMEN CLEAR 

I I SAMPLE 
COUNTER 

CLEAR AND 
LOAD . . 

I 
REGISTER 

I -
I CHI (U

al
) I 

~l 
DIFFEREN 

I CH2 (U
a2

) 
UP/DOWN CLOCK 'I 

TIAL 
-

• GENERATION CLOCK GENERATION I ~, 

I 
I LINE 

I 
CH3 (Uo~) I RECEIVER 

~.'-. 
MIDDLJ!! 

-- -- - L • -- -- -- - . -- _ ._.J 

Figure 8.5.2 position Transducer Interface Diagram 



192 

quite clear that the use of the synchronizing CLOCK is necessary 

to avoid loss of pulses when the counter is cleared. 

The decoder block indicates that the interface will be memory 

mapped on the microcomputer's address space which allows a fast and 

direct access to position data. 

The final and complete logic diagram for the transducer interface 

1S shown in Figure 8.5.3. The description and list of components 

is given 1n Appendix 8.5.2. The detailed analysis of all the logic 

involved is now given. 

8.5.4 Timing Diagram and Interface Discussion 

The CLOCK generation is achieved using the microcomputer's clock 

phases f[ and ~ through a flip-flop, SN74LS74, which is device 

number 22 in Figure 8.5.3. Before going to the flip-flop f[ is 

inverted (device 18) and ~3 is just buffered (device 17). The 

timing diagram resulting from this logic is given in Figure 8.5.4. 

330 ns 

160 ns -1 1- 45 ns 

~l 

CLOCK 

Figure 8.5.4 CLOCK Generation Timing Diagram 

It is clear on Figure 8.5.4 that CLOCK is well balanced having a 

duty cycle of almost 50%. 

Before we can proceed to the next stages in our design, the 

timing on the transducer input signals (Uai) must be analysed. 

The maximum traversing speed permissible by the transducer is 3Om/min 

for 1 IJm resolution ( 81 ). Our design will try not to degrade 

this limitation. 



W 
....J 
Cl.. 
L 
<{ 
Vl 

:: 

18 
g4 

I +5" 
:: .!I !'J 

I 

.. I: 1'1 .. 
21 

" 
~ 
" 

fT ~I 

"I .. 
+SV 'I-------ih--, 

I 

A 

CLOCK1 

"'I 
" .. 

20 

" .. 
16 
,/ ... 

C 
'" .. 

23 

.. 
E ... .. 

23 

.. c 

.. -
... : ~ 

21 
tI .., .. ., 
:09 

I + st 
1 T I 

!I ~I :: 

" A " ~ .. 
20 

/I q '" 
B rt ~ 

grr 
17 

'-..-1 .. 
cl=-

CLOCK 2 

I~ I~ 

18 

= 

22 
A 

17 
'::;.-1 

r !' 1 !! 1 

!!! CLOCK 

19 
!! ) 

= 
19 

g~ 
r 

19 .. 

-L. 
+:11 

<1< =>=> 

25 24 

3 2 .. .. . -
16 16 

y ..... --:-~~:=~==:::::J==~;t---,;;] 
.. ~ I ,.~r ~ .. 

UP 14 
.. " 1 ~ - - ~ 

14 

~ 
15 15 DOWN 

11 
or c .- .. 
.. w 

-~ .,. ....... ., ~ '" .., 

S:."WAOOC' 

12 

.. 
.. 0 

13 

¥ 

:z: :z: 
co w 
o L 

or w 

18 \/ .. 
.. .. 

L 

10 

-.., ... ...,... 

LL . .. IJ 

0- r 
~ UP ~ D~WN !,r=~;:===,.+=I: ... ======1===.--1 

~ "., ~ ~I "I wo !:! ~ . .. 
l' 5 23 

.. ... 

• 1 4 

~ CLEAR COUNTER 

LOAD REGISTER -

,. !: ~ ~ ~ .. ,... ... 1 .. \ .. .. 
8 

J 

l:. 
!! !!! !: ~ .. .., .. .. -

y • • • A 
" .. - • v 

;:1 " 

ENA 

~ I .. • , ~ 

6 ~ 

'" " ~ .. .. " ., ... "I r '" L-

= ", ,. ,.. 10 '!1 !: !t ~ 

"" ",.A AA"'oIIi ..,_""t""r." ... ..,. .. 

9 
tCSaf$GaoCJ<!J 
c.Jtf_"","O.",... .. 

7 

.. ~ .. 

193 

~ ... 
OIl 

'" .... 
'" u .... 
OIl 
o 

...l 

"'" ... 
'" o 

pO 

-'" u 

'" .0 

"'" QJ 

QJ .... 
... 
QJ 

N .... ... .... 
00 .... 
'" 
. 

00 

QJ ... 
::l 
00 .... .... 



194 

Remembering that the output from the pulse shaping electronics (EXE) 

has each cycle associated to 4 pm it is easy to deduce the timing 

diagram for CHI and CH2 when the transducer is moving at 30 m/min (etc). 

This diagram is shown in Figure 8.5.5. 

8 us 

~ -I 
CHI I I I I I 

-I I- 2 us 

I I I CH2 

Figure 8.5.5 Input Signals at Maximum Speed 

It is clear that for a 1 pm resolution, the cycles in CHI and CH2 

must generate 2 pulses each. Associating each pulse with the 

positive and negative going edges of each cycle this is not difficult 

to be achieved. The restriction lies in the timing between 2 

consecutive pulses. From Figure 8.5.5 it is seen that at 30 m/min, 

we have 2 ps between 2 consecutive pulses. So any logic to load 

the register and clear the counter must work within 1 ps in order to 

have a good safety margin. Talking about CLOCK cycles the logic 

must work within 3 cycles (990 ns). 

All the logic in the interface is interrelated, of course, but first 

we will talk about the UP and DOWN pulses generation. 

The UP and DOWN pulses generation is associated to devices 1, 2, 

14 and 16, Figure 8.5.3. Assuming that the SAMPLE line is kept high 

the timing diagram for the UP and DOWN pulses generation 1S shown in 

Figures 8.5.6 and 8.5.7. From these figures it is quite clear that 

2 pulses are generated for each channel cycle. giving the necessary 

4-fold subdivision to achieve the desired 1 pm resolution. The 

relationship between CLOCK 2 and CLOCK will become clear later on. 

The up and down binary counter associated with devices 4, 5, 6, and 

7 is actuated on the positive going edge of input signals UP and DOWN 

which according to Figures 8.5.6 and 8.5.7 is related to a negative 



195 

CLOCK2 JlflIl.JlJUUl 
I • • • 

CHl J 
CH2 

QA --.l 
• QS 
• • 
~ 

QC 

QD 
• • 

f LJ U 
h 

g 

e U 
d 

b U 
a U U 

I I 
I I 

C I I 

I I • • I 

j I • I 
I I 

U • 
• U i I U I 
I I I • • , • H • I 

r1 H UP Jl n n 
I • I I • I 
• I I I I 

DOWN • I I • • I • • • I I I • I I • • • • • • tu • 
LJ UP ~ W :U U 

I I 
• I • • ! • • I 

DOWN • 

Figure 8.5.6 Timing Diagram for UP Pulses Generation 



CLOCK2 

CHl 

f 

h 

g 

e 

d 

b 

a 

c 

j 

i 

UP 

DOWN 

UP 

DOWN 

u 
t , 

, 
I 

W. 

-U--~~' --~--~--~U 

0. i 
lH--~r-~w~: --~--~u 

I : ' 

u 

I I I I I • • I 
I I I I I I • f 

196 

-1,', I , " ' " , Ul------:;~W ! LJI-----iir-.ul----:~L1 : U~--

Figure 8.5.7 Timing Diagram for DOWN Pulses Generation 



197 

going edge of CLOCK 2. This relationship is used in the following 

discussion to achieve the timing imposed by the maximum speed. 

When the sampling instant is reached the microcomputer will set the 

SAMPLE line to a LOW level. This signal will automatically load 

the register and clear the counter and the logic associated to it 

avoids any loss of pulses. The logic involved is easily understood 

through the timing diagram shown in Figure 8.5.8. The register is 

loaded on the positive going edge of LOADREGISTER and the counter 

is cleared on the positive. going edge of CLEARCOUNTER. 

From Figure 8.5.8 it is seen that the required time of 1 ~s is 

achieved. In the worst possible condition a pulse has been accepted 

with the last negative going edge of CLOCK 2 before the break inter

val. This pulse will go to the counter and it will have plenty of 

time to settle down (330 ns) before the LOADREGISTER signal goes 

high. This signal acts as the clock signal for the register latches. 

At this time all the data stored on the counter is transferred to the 

register and then the counter can be cleared, as it is 160 ns later. 

At 30 m/min and in the worst possible condition the next pulse will 

arrive only 2 ~s after the negative going edge of CLOCK 2 on the break. 

So, the designed logic is fast enough to cope with the maximum speed 

and worst possible conditions avoiding any loss of pulses. 

The register, on our design, is implemented using lC SN74 LS374 

which has 3-state outputs. The ENA line, in this design, is connec

ted to the register control lines. When the ENA line goes LOW the 

outputs are enabled and data stored on the register is available on 

the internal data bus. .As we mentioned before, the interface is 

mapped on the microcomputer address space. The address associated 

to it is chosen by switches available at the inputs to device 10 

on Figure 8.5.3. This device together with devices 11 and 12 form 

a decoder with the same characteristics as the one for the slave 

definition phase mentioned in Chapter 6. 

8.5.5 Final Interface Board and Interconnections 

All the logic given in Figure 8.5.3 was implemented in a single 

printed circuit board. For easy reference we called it digitizer 

feedback board and its manufacturing mask is shown in Figure 8.5.9. 

The finished board is shown in Figure 8.5.10 and its associated 

table of functions and pin assignment is given in Appendix 8.5.3. 



CLOCK 

SAMPLE 

CLOCKl 

A 

B 

C 

E 

CLOCK2 

LOAD 
REGISTER 

CLEAR 
COUNTER 

198 

1_ 330 nS-I 
;--~ 

990 ns 

_ 330 n1 
__________ ~I~~~I----------

~ons 
____________ ~Il~ ________ _ 

Figure 8.5.8 Timing Diagram for Load and Clear 



A ~Q~d~ iJn~\J1 -,--;'''-1 
'~~Q~2~~~~g;;-~·-
[1:~j~~~E~.~ -io~' 
rn~n~n;oo,:o. G~_ ~ _ u~u GO O~O~ 

" al' ~ ~~"'" .o_~oo~ooo~ilil-~ 
'O~ 0 9' Q&: ~. ? 

, 11 11 GOO 

!=~c .. ~ m"'=== d= ' 

~i 8.~;5'n~~ . ~,' o~ 
00000 U~o '- 0 ~ 

- : 0 . =r?:: . 

~~M)rrn 8 ~?oooo7d n '_u ___ l< 

" ~3 

::H~ 

FIGURE 8.5.9 MANUFACTURING MASK FOR DIGITIZER FEEDBACK BOARD 
.... 
>D 
>D 



" 11" . 

200 

Cl 
Q:: 
<{ 

o 
ID 

~ 
U 
<{ 
ID 
Cl 
W 
W 
LL 

Q:: 
·W 

N 
H 
t
H 
<.9 
H 
Cl 

CS) 

lJ) 

IX) 

w 
Q:: 
::::> 
<.9 
H 
LL 



1 

201 

The digitizer feedback board is located, on the rack, beside the 

data bus board of module 2 and its interconnections with the 

microcomputer are shown in Appendix 8.5.4. In order to avoid 

the use of long connection cables the necessary signals are brought 

from the nearest available sources. The SAMPLE line was connected 

to a CRU line through the TMS 9901, bit 23. The MIDDLE line which 

indicates a middle stroke for the transducer movement was connected 

to the microcomputer's INT 2 line just to be tested, without any 

consideration to priority at this stage, for it can be changed very 

easily. 

The interconnections between the digitizer feedback board and the 

transducer's pulse shaping electronics (EXE) are made in two stages. 

First the necessary signals are taken to the back of the controller 

box and then to the EXE unit as shown in Figure 8.5.11. In order 

to make the rack totally independent from the controller box, a 

IS-way socket was fixed on the rack and the signals from the 

digitizer feedback board taken to it. To this socket is also 

connected the leads to supply power to the EXE unit (0 and +5V). 

At the back of the controller box was inserted a l2-way socket 

compatible with the cable and plug supplied with the EXE unit. 

To connect the 9-way socket at the back of the controller box to the 

IS-way socket on the rack a screened multi-way cable with a IS-way 

plug at one end was manufactured and installed. The final inter-

connections for the links discussed above are shown in Appendix 8.5.5 

and the lay-out for the external connections to the controller is 

shown in Figure 8.5.11. 

CONTROLLER 

Figure 8.5.11 

5 
EXE 

SERVO 
AMPLIFIER 

position Transducer 

Servovalve 
L--~6 x[J 

Lay-out of External Connections 



- 203 

0:: 
W 
--1 
--1 
o 
0:: 
t
Z 
o 
u 
o 
Z 
<t 
l!) 

H 
0:: 

U 
H 
--1 
::l 
<t 
0:: 
o 
>
I 

N 

l/). 

00: 

W 
. 0::--

rf ~: .. 
H . 
4.. 



The digitizer feedback board was tested and worked perfectly 

well. The software to drive this board is discussed in 

202 

Chapter 9, when the general software for the controller actions 

is developed. 

A complete view of the hydraulic rig with controller and related 

testing equipment is shown in Figure 8.5.12. 



CHAPTER 9 

THE STRUCTURE OF TIlE CONTROLLER· SOFTWARE 
. AND ITS IMPLEMENTATION 

9.1 INTRODUCTION 

204 

This chapter is concerned with the structure and implementation of the 

controller software. Section 9.2 shows the general software structure 

through its different functions. 

are detailed in Section 9.3. 

The functions related to loop closing 

The design of the routine that closes the loop is glven in Section 9.4 and 

Section 9.5 describes the position reference generation. 

The interactive mode between operator and controller is discussed in 

Section 9.6. There, the data acquisition facility is discussed. 

In Section 9.7, the controller tasks are divided between the modules and 

the necessary communications defined. This section also describes the 
/ 

auxiliary functions and the linking structure for the controller software 

on both modules. 

The controller software was written ln assembly level language and details 

of implementation are given throughout the chapter. 

9.2 TIlE GENERAL SOFTWARE STRUCTURE 

The modular multi-microcomputer designed ln previous chapters has only 

the TIBUG software available on its two modules.up to this stage. To 

act as a controller the necessary software must be developed and this is 

done in what follows. 

The main objective for the controller, in our application, is the control 

of position. This does not mean that other variables will not receive 

any attention but only that, basically, we will have a dominant position 

loop. Looking back to Figure 8.5.11 we see this dominant position loop 

represented by the path through module 2, DAC, hydraulic-actuator and 

digitizer. 

A software for position control as the main objective does not mean that 

only following error and references need be catered for. This would be 

enough in simple applications but not flexible enough to achieve our end 

results: the implementation of state-variable control with the possibility 

of easy changing and updating as needed in a changing research environment. 



205 

The availability of an electrohydraulic cylinder drive, for testing 

purposes, must not in any way dictate the rules. The software must be 

capable of dealing with different types of servo drives and the 

peculiarities of each drive easily accounted for. 

The software design is based on the general structure shown in 

Figure 9.2.1. There, each block accounts for several functions and 

will be discussed in detail later on. In Figure 9.2.1 no mention is 

made to which system's module a particular block is associated, unless 

for the loop closing block. It is partially associated with module 2 

which is part of the closed position loop path. The division of tasks 

between the modules will become clear when we discuss details of 

implementation. 

The system initialisation comes on top of the general structure but, as 

normally happens, will be written and discussed after all the other 

functions have been implemented. 

quires first their definition. 

The initialisation of variables re-

The discussion of the functions associated with each block in Figure 

9.2.1 will try to follow, as clcselyas possible, the top-down direction 

starting with the loop closing block. 

9.3 LOOP CLOSING FUNCTIONS 

The functions associated with the loop closing block are shown in Figure 

9.3.1. The loop closing functions are implemented by the general loop 

closing routine which flow diagram is shown in Figure 9.3.2. 

9.4 LOOP.CLOSING ROUTINE 

9.4.1 Sampling FrequencY'Corttrol 

The sampling frequency is controlled by the TMS 9901 internal 

clock, as described in Chapter 6. The possibility to change the 

sampling frequency, while running, is a powerful way to achieve 

a good control action ( tuning) and can be used to achieve certain 

types of adaptive action, when required. The change in sampling 

frequency is associated with a flag called NEWFRE which will have 

to be tested each sampling interval. As mentioned in Chapter 6, 

the internal clock, when enabled, generates an interrupt level 3. 

The loop closing routine is the most important to achieve position 



206 

SYSTEM 

INITIALISATION 

LOOP 

CLOSING 

REFERENCE 

GENERATION 

CONTROL DATA 
ACQUISITION 

SOFTWARE AND 
STORAGE 

OPERATOR 

COMMUNICATION 

INTER-MICRO 

COMMUNICATION 

AUXILIARY 

FUNCTIONS 

Figure 9.2.1 General 'Structure for 'Control 'Software 



207 

SAMPLING 

FREQUENCY 

SYSTEM 
VARIABLES 

ACQUISITION 

SYSTEM 
VARIABLES 

ESTIMATION 

LOOP 

CLOSING 

CONTROL 

FUNCTION 

UPDATING 

FUNCTIONS 

EMERGENCY 

ACTION 

Figure 9.3.1 Loop Closing Functions 



208 

I 3 START ) -
f CHANGE \ 

SAMPLING 
no 

\ 
FREQUENCY 

yes 

SET 
FREQUENCY 

{ 

f. INPUT f 
VARIABLES , 

OBSERVER 

ESTIMATE 
VARIABLES , 

CONTROL FUNCTION 

CALCULATE 
CONTROL 
FUNCTION 

i' 

f "" f COMMAND 
OUT 

OBSERVER 

SOLVE OBSERVER 
EQUATIONS AND 

UPDATE 

UPDATING 

UPDATE 
ALL 

FUNCTIONS 

( RETURN ) 

Figure 9.3.2 General Loop Closing Routine 



209 

control, so it is directly associated to Interrupt 3, that is, 

it is interrupt driven. 

9.4.2 Data Acquisition 

The system variables acquisition in Figure 9.3.1 is represented 

in Figure 9.3.2 by the input variables block. We have restricted 

our work to single input systems but not to single output systemso 

Assuming that position is always available as an output, the 

controller should provide means to have access to all the available 

outputs. This does not mean that it is necessary to have more 

than one output to achieve the desired control action. 

As discussed in Chapter 8, the position transducer and the digitizer 

feedback board provide position information and it is memory mapped 

on the address map. Assuming that any other system output is 

available as an analog signal, the simpler way to gain access to 

this signal is through the analog to digital converter in the I/O 

board. There are 8 differential analog input channels provided 

on the controller. In this work we are only concerned with the 

use of position information and that is the only system output for 

which the software has provided access. For any analog input 

very simple software additions have to be made. 

9.4.3 Position Control 

9.4.3.1 "Feedback"Counter 

The counter and register provided on the digitizer feedback board 

are both 16-bits wide including sign and can of course count and 

store to ! 32768 pulses. In our case, with a position resolution 

of 1 vm this means that we can move only ! 32768 vm around null 

which is, of course, not enough. 

table within! 250 mm or ! 250000 

The requirement is to move the 

vmo For this value, we need to 

read posi tion information in incremental" form and to store position 

in double precision. 

The position information in incremental form is achieved by 

reading and clearing the counter at each sampling interval. The 

problem of loss of pulses, when doing this, has already been solved 

when we designed the digitizer feedback board. 



210 

9.4.3.2 Actual Position 

At each sampling interval, the actual position value must be updated 

by a summation process. The position value at sampling interval 

k is the position value at interval (k-l) plus the feedback counter 

value at interval k, as: 

ACPOS(k) = ACPOS(k-l) + DACPOS(k) 9.1 

As mentioned before, position cannot he represented internally by 

a single word, so ACPOS is a double precision value or ACPOS 

(ACPOSl, ACPOS2) where ACPOSl is the most significant 16 bits wordo 

To deal with double precision values, we need special routines and 

they will be discussed later on. 

For position control the actual position value is not really 

important, when closing the loop, if we have access to the following 

error value. The actual position value is necessary as a display 

and checking value for operator communication and for position 

reference. generation. 

9.4.3.3 'Position 'Following Error 

Position following error is defined as: 

ERROR = POSREF - ACPOS 9.2 

where ERROR is the, following error, POSREF is the position reference 

command and ACPOS is the actual position. POSREF and ACPOS are 

both,represented as double precision values but ERROR does not 

necessarily need to be represented as double precision. It is 

clear of course that the maximum expected following error will 

depend on the gain levels inside the position loop. It is assumed 

here that these gain levels are such that there is no saturation 

within the expected range of working conditions and that the maximum 

following error, for a resolution of 1 \lm, can be represented as a 

single precision value, or ! 32768 \lm. 

If the position reference 1S represented in incremental form, which 

is updated every sampling interval, at interval k we have: 

POSREF(k) = POSREF(k-l) + DPOSREF(k) 9.3 

where DPOSREF(k) is the increment in position reference at interval k. 



211 

Using equations 9.1, 9.2 and 9.3, we can write for the following 

error at interval k: 

ERROR(k) = POSREF(k) - ACPOS(k) 9.4 

and 

ERROR(k) POSREF(k-l) - ACPOS(k-l) + DPOSREF(k) - DACPOS(k) 9.5 

From equation 9.4 we can modify 9.5 to give: 

ERROR(k) = ERROR(k-l) + DPOSREF(k) - DACPOS(k) 9.6 

Defining the incremental error at interval k as: 

DERROR(k) = DPOSREF(k) - DACPOS(k) 9.7 

we have 

ERROR(k) = ERROR(k-l) + DERROR(k) 9.8 

Equations 9.7, and 9.8 are solved in the controller software to 

find the following error. The value for ERROR is represented as 

single precision and the conditions imposed are: there is no 

saturation within the working range and the position reference is 

calculated in incremental form as indicated in equation 9.3. 

Looking back.to equations 9.7 and 9.8, we verify that only two 

incremental values are necessary, after. initialisation, to calculate 

the position following error at any interval. They are the 

position reference increment (DPOSREF) and the actual position 

increment (DACPOS). The position .reference increment generation 

is dealt with on the loop reference generation section and the 

actual position increment is just the feedback counter value at the 

sampling instants. 

9.4.3.4 Feedback Increment 

The digitizer feedback board hardware interface has already been 

described in Chapter 8 and now we will describe the necessary 



212 

software to acquire the actual position increment. The feedback 

register is memory mapped at address BFF2 which we call DPOS in 

the controller software. The line that triggers the feedback 

hardware is connected to bit 23 on the TMS 9901 CRU interface. 

Set TMS 9901 
Base Address 

TRIGGER FEEDBACK 

Load Register 
and 

Clear Couriter 

READ 

Store Actual 
Position Increment 

Value 

LI R12, >100 

SBz; 23 
SBO 23 

MOV @ DPOS, @ DXK 

Figure 9.4.1 ·Feedback Sampling Action 

The necessary software to acqu1re the actual position increment 1S 

shown in Figure 9.4.1, where the increment value is stored at 

address called DXK. The importance of the digitizer feedback 

board is indicated by the simplicity achieved in the necessary 

software interface. 

At this point it seems important to look at the possibility of 

saturation on the feedback counter. For 1 ~m resolution the 

maximum speed allowed by the position transducer is 3Om/min or 

500 mm/sec. If the software is to cope with. this maximum speed 

and no saturation on the feedback counter is admissible, there 

must be a restriction on the minimum sampling frequency for 

reliable operation. Calling the sampling frequency f and the 

sampling period T, we can write 

1 f = 
T 

F{ H z} 
T{ s } 

9.9 



In general, the maximum counter value at a particular sampling 

instant can be written as 

213 

DACPOS 
max 

Vmax 
-f- 9.10 

where Vmax is the maximum speed, 

In our case, for a resolution of 1 ~m and a l6-bit wide, up and 

down counter, the sampling frequency is limited to 

f 
·Vmax 

> 
DACPOS max 

= 15.3 Hz 

So if we expect a speed of 3Om/min, the sampling frequency should 

not be less than 16 Hz for correct operation. 

It is clear that, for a maximum speed smaller than 30 m/min, the 

sampling frequency can be decreased accordingly to equation 9.10. 

Assuming that the sampling frequency is 6 times bigger than the 

load natural frequency on the servodrive and that the expected 

load natural frequencies are between 5 to 100 Hz(84), it is clear 

that the counter will always operate correctly. 

9.4.3.5 Observer·and Control Function 

The blocks labelled observer, control function and updating are 

related exclusively to internal operations on the controller and 

were not generalised in this work. The observer and control 

function blocks are associated to. independent routines which are 

called by the general loop closing routine when necessary. In 

this way, the observer and/or the control action routines can be 

changed without any change on the main loop closing routine. 

routines will be described later on in Chapter 10. 

These 

After the control function has been calculated, it is sent out of the 

controller through the digital to analog.converter (DAC) on the I/O 

board. The DAC is·memory mapped at address B002 (DAC1) and is 

called DACI on the controller software. A simple move instruction 

that moves the control function to location DACl is sufficient to 

send the control signal to the servo amplifier, 



214 

9.4.4 Emergency "Action 

The loop closing function shown in Figure 9.3.1, named emergency 

action, is not shown explicitly on the flow diagram of Figure 

9:3.2, but it is an important part of it. At each stage in 

the calculations, where an overflow is possible, a check is done 

and a branch is made to a called emergency deceleration routine, 

when conditions require. 

The control function in our case (servo amplifier signal) is a 

direct command to the electrohydraulic servovalve and so propor-

tional to actuator velocity. When conditions require the 

emergency deceleration routine will reduce the control function 

towards null by equal steps (constant deceleration). The value of 

the decrementing step depends, of course, on the maximum wanted 

deceleration. Calling the decrementing step DEMU, the control 

function (U) at each sampling interval, when in emergency condition, 

is given by; 

U(k) = U(k-l) - sign {U(k-l)} x DEMU 

for I U(k-l) I > DEMU or 

U(k) = 0 9.11 

for IU(k-l)I < DEMU 

The flow diagram for the emergency deceleration routine is shown in 

Figure 9.4.2 and its implementation in assembly level language in 

Appendix 9.2. 

The emergmcy deceleration routine is associated with two different 

flags on the main routine. These flags indicate which kind of 

action is necessary after the emergency has been served. 

The critical point is related to the following error calculation. 

If there is an overflow it means that an error has occurred on the 

feedback path and the information on the actual position is not 

re liable. When this occurs, the flag FEFLAG is raised and no 

attempt is made to update the actual position value. 



SUBTRACT 
DEMU 

no 

no 

( START 

I CONTROL \ 
FUNCTION 
NULL ? ) \ 

no 

/ CONTROL \ 
FUNCTION 

\ 
<0 J 

'--_---f 

/ 
OVERFLOW? 

\ 
yes 

CLEAR 
CONTROL 

. FUNCTION 

\ 

I SEND 7 COMMAND 
OUT 

( RETURN ) 

yes 

yes 

ADD 
DEMU 

Figure 9.4.2 Emergency Deceleration "Routine 

215 



216 

When overflow occurs in any other calculation the flag EMFLAG 1.S 

raised and after the emergency routine has been executed the 

actual position is updated normally, for there is no indication 

of error on the feedback information. 

The assembly level language implementation for the general loop 

closing routine which general flow diagram is shown in Figure 9.3.2 

is given in Appendix 9.1. The comments make the routine self-

explanatory. There are some points about it which will become 

clearer as we proceed 'in our discussions. 

9.5 POSITION REFERENCE 'GENERATION 

9.5.1 General Considerations 

The position reference generation for machine tools requires linear 

and circular interpolation within restricted error band for several 

axes of movement. It is, one of the most requiring in practical 

terms and, in order to maintain a certain direction of movement, 

the controller must relate the axes movement. Popa (43) has 

discussed all the possible alternatives and best algorithms for 

contour and feedrate control generation for numerical control. 

In our case we restrict ourselves to a single axis of movement and 

try to maintain the software as simple as possible for there is 

a severe limitation of memory available on the system. 

The functions associated with the reference generation block 1.n 

Figure 9.2.1 are indicated in Figure 9.5.1. 

Step 

Reference 

REFERENCE Ramp 

GENERATION Reference 

Other 

References 

Figure 9.5.1 'Reference Generation Functions 



217 

The step and ramp position. reference commands were thought to be 

enough to use in the test environment available. 

As mentioned before, the position reference is calculated in in

cremental form as indicated in equation 9.3 which is repeated here 

for reference. 

POSREF(k) = POSREF(k-l) + DPOSREF(k) 9.3 

From this equation much useful information can be taken for the 

reference generation software. 

The step position reference commands, from a steady-state condition, 

1S generated by any non zero value of DPOSREF at any instant k. 

If a step of height STEP is necessary at instant k, out of a 

steady-state condition, we write 

POSREF(k-l) = POSREF(k-2) 

DPOSREF(k-l) = 0 

DPOSREF(k) STEP 

DPOSREF (k+ 1) 0 

and POSREF(k) POSREF(k-l) + STEP 9.12 

Equation 9.12 indicates very clearly that, out of a steady-state 

condition, any change in position reference means a step into the 

system as the position reference can only change by integer numbers 

of the position resolution. It is clear that using equation 9.12 

we can generate steps with heights from position resolution up to 

saturation levels. 

9.5.2 Ramp·Generation Routine 

The ramp position reference command requires the specification of 

two variables for complete definition. The first variable is 

the velocity and the second the distance to move. 

If we call the velocity V and the sampling period T, we can write 

for the incremental change in position reference 

DPOSREF V x T 9.13 

This incremental change is applied. continuously up to when the 

required distance has been covered. 



218 

For a ramp starting at instant k with defined initial conditions 

and a distance D to move, we have for the initial and final con

ditions 

initial: 

final: 

POSREF(k) DPOSREF(k) 

POSREFfo 1·; POSREF(k) + D 1na 

o 

The software has to calculate, at each subsequent sampling interval, 

the incremental change in position reference and this is given by 

equation 9.13. If the distance to move is an integer multiple 

of the value given by that equation, the problem is completely 

solved. For the majority of cases this is not true and the 

software will have to care for it. In this work the ramp is 

started with the increment defined by 9.13 and the last increment 

to complete the movement is the remaining distance to be moved. 

Defining the distance still to move as a variable, we can write 

using the ramp conditions specified before, 

DlSTA(k) ; D 

DlSTA(k+l) DISTA(k) - V x T 9.14 

where DISTA is the distance still to move on the ramp movement. 

It is easy to show that DISTA(k) and V x T have the same sign. If 

DISTA(k+l) has not got the common sign it means that the distance 

still to move is smaller than the ramp position increment and so 

the next position increment must be the remaining distance to move. 

The flow diagram for the ramp generation is shown in Figure 9.5.2. 

This routine is flexible enough to allow the generation of limited 

position steps when. properly used. 

When a step input is required the step height is the same as the 

distance to move on the ramp routine. If the ramp velocity is 

chosen so that the increment per sampling period given by equation 

9.13 is bigger than the step height, the ramp routine will make the 

position reference increment equal the required step, for there will 

be an overflowon solving equation 9.14. 



219 

START 

I Distance \ 
yes 

still to mare 
DISTA(k) = 0 

\ ? 

no 

Update Distance 
to move 

mSTA(k+ 1) =DISTA(k) -VxT 

I \ 
no OVERFLOW 

yes 

\ J 

DPOSREF(k) = VxT DPOSREF(k) =DISTAI!<) 

Clear Distance 
still to move 
DISTA(k) = 0 

Store 
DPOSREF(k) 

( RETURN ) 

Figure 9.5.2 General Ramp Generation Routine 



220 

The condition for a step input using the ramp generation software 

can be written 

STEP ~ V x T 9.15 

Using equation 9.9, we have 

STEP ~ V/f 9.16 

where f is the sampling frequency. 

The maxlmum allowed velocity for the linear transducer is 3Om/min 

or 500 mm/sec. Using this as the maximum allowed velocity by the 

software, for sampling frequencies varying between 100 and 500 Hz, 

the maximum step input will be between 1 to 5 mm as given by equation 

9.16. 

The range of step inputs allowed by the ramp generation software is 

thought to be suitable for our needs and no special software is 

written for step generation. 

same software. 

Step and ramp are generated by the 

The assembly level language implementation for the ramp, generation 

routine is shown in Appendix 9.3. 

which have not yet been discussed. 

It also includes other functions 

9.6 DATA-ACQUISITION-AND-OPERATOR'SCOMMUNICATION 

The functions associated with data acquisition and storage and operator 

communication, as shown in Figure 9.2.1, are interrelated in this work. 

The restriction in memory size, for data storage, made this quite 

inevitable. The restriction in memory is imposed on the operator who 

must choose which kind of data is to be stored. 

The functions linked to operator communication are shown in Figure 9.6.1. 

9.6.1 Operator's -Options 

The best way to achieve communication with the operator is using 

interactive routines. To start with, a table of possible lines of 

action must be presented and a choice made. The table of options 

must be self-explanatory and, most important of all, easy to be 

changed and/or upgraded, when necessary. 



OPERATOR 

COMMUNICATION 

Figure 9.6.1 

Sampling 

Frequency 

Loop 

Reference 

Data 

Required 

Data 

Display 

Loop 

Restart 

Other 

Functions 

General Operator Communication 
Functions 

221 



222 

In this work, the options offered to the operator are: 

Options 1. Change sampling frequency 

2. Ramp input 

3. Display stored values 

4. Stop and re-initialise 

This table of options is sufficient to operate the system without 

heavy use of memory and can be, as mentioned before, upgraded very 

easily. 

Each option is written as an independent routine and, when a choice 

is made, a branch to the correspondent routine is executed. 

allows easy upgrading of the software. 

Figure 9.6.2 

START 

Display 
Table 

Search through 
available 
Options 

Branch to 
chosen 

Routine 

Table of Options Routine 

This 



The flow diagram for the table of options routine 1S shown in 

Figure 9.6.2 and its implementation in assembly level language 

223 

is given in Appendix 9.10, where it is part of the MODINl routine. 

9.6.2 "Sampling "Period 

The choice of the change the sampling frequency option will cause 

a branch to a routine written under the name NEWFRE. 

diagram for this routine is shown in Figure 9.6.3. 

The flow 

As mentioned in Chapter 6, the minimum frequency allowed by the 

TMS 9901 internal clock is 3 Hz. The software cars for it and 

would not allow frequencies below 5 Hz. With a range of 

frequencies from 5 to 999 Hz, the controller will cope with the 

expected range of load natural frequencies. 

no 

Figure 9.6.3 

START 

Save New 
Frequency 

sampling frequency (5 to 999 Hz) = 

Convert Frequency to 
Period acceptable 
by TMS 9901 clock 

Changing Sampling Frequency 
" Routirte " (NEWFRE) 



224 

At 3 MHz each TMS 9901 clock unit (resolution) equals 21.3 ~s. 

For a sampling frequency, f, the value to be loaded on the clock 

is given by 

PERIOD (clock units) 21.3 x f 

which is approximated, in the calculations, to 

PERIOD = 
"46948 

F 

9.17 

9.18 

This approximation implies an error which is negligible for the 

range of sampling frequencies expected. 

The implementation for the changing sampling frequency routine 

is shown in Appendix 9.4. 

9.6.3 "Ramp Input "Options 

The ramp input option choice will cause a branch to a routine 

called RAMPl. This routine includes the ramp generation, already 

discussed, and here we discuss the operator's communication inter

active facility provided by it. 

For the ramp generation, the two main necessary inputs are the 

velocity and distance to move. 

The velocity is indicated by its modulus (speed) and its direction 

which will be associated with the sign on the distance to move. 

The message asking input of speed is shown in Appendix 9.3. 

The limitation on the maximum speed has already been explained and 

will not be repeated here. The minimum speed allowed by the 

software is determined by the sampling frequency. It was decided 

to allow only speeds down to 1 position resolution (l~m) per 

sampling period. 

Using equations 9.13 and 9.9, the minimum speed is given by 

V. m1n 1 position Resolution x f 9.19 

For a position resolution of 1 ~m and a practical range of sampling 

frequencies from 50 to 500 Hz, the minimum speeds would be within 

3 to 30 mm/min. 



START 

Store speed 
at SPEED 1 

Calculate 
Distance 
to Move 

Calculate 
position Increment 

Per Period 

Increment 
,-_n_o __ -i per Period 

)lrm? 

yes 

no 

yes 

Figure 9.6.4 .. Ramp ·Input ·General ·Sciftware 

Branch to· 
. Display Table· 

of Options 

225 

no 



226 

It is clear that the minimum attainable speed increases with the 

increase in sampling frequency. For high moving speeds this 

restriction was thought to be not important and the software was 

developed according to the flow diagram shown in Figure 9.6.4. 

The distance to move, necessary for the ramp generation, is asso-

ciated with the input of a new position command. It was decided, 

for better understanding between operator and controller, to have 

position represented as absolute values. The zero reference is 

a fixed position in space but the controller assumes that the zero 

reference is the actual position when the system is initialised. 

This allows the absolute reference to float within the possible 

limits. 

The use of absolute reference requires the input of plus and 

minus signs and this is dealt with by a routine called SIGRED, 

shown later on. The distance to move is calculated as 

DISTA COMPO - ACTUL 9.20 

where DISTA is the distance to move, COMPO is the new commanded 

position and ACTUL is the actual position. All three variables 

involved in equation 9.20 are represented as double precision and 

to solve it, and other double precision equations, special 

routines were developed. 

described later on. 

Routines such as TWOCP2 and DB ADD are 

Using equations 9.13 and 9.9 the position increment per period is 

given by 

DPOSREF = 
100 x V 
6 x f 

V{mm/min} 
f{Hz} 9.21 

where V is speed and f sampling frequency. 

With V and f represented as single precision values, equation 9.21 

can be solved using only normal instructions. 

9.6.4 Storing 'Variables 

The next interactive function on the ramp input software is related 

to variables which the operator probably would like to have stored 

during operation for later use. This function is directly related 



227 

to data acquisition. The restriction in memory size, already 

mentioned, allows only one variable to be stored at any time. 

Our interest lies specially in the system behaviour during 

transient conditions and so, within our limitations, 112 words 

were allocated for storage purposes. This block of words is 

filled with the first 112 sampled values of the chosen variable. 

If the ramp movement takes less than 112 sampling intervals 

detailed information for all the movement is obtained. If it 

takes more than 112 sampling intervals only the initial transient 

part of the movement is represented. As we will see later on, 

in our experimental work, the restriction in memory did not impair 

the acquisition of representative information for various testing 

conditions. 

The table of variables which can be stored by the software at 

operator's choice is 

variable 1) Actual position (least word) 

2) Following Error 

3) Control Function 

4) Speed 

5) Acceleration 

6) Transient Acceleration 

Apart from the actual position, all the other variables can be 

represented as single precision values when properly scaled. The 

actual position is a double precision value and to avoid further 

reduction in the available storage space only the least significant 

word is stored. It is clear that this information will only be a 

true representation of actual position when the movement is restric

ted to +/- 32.768 mm around the absolute zero reference. 

The variables chosen to be included on the table mentioned above 

were thought to be the most representative for our case. It is 

clear that any other variable which can be directly measured or 

estimated can be included on the table with no difficulty whatsoever. 

After the variable to be stored is chosen the controller will ask 

the operator if the movement is to be executed or not. With a 

negative answer the software will branch to the start of the 

table of options routine, as indicated in Figure 9.6.4. When an 

affirmative answer is given the software will continue to the ramp 

generation routine which has already been described. 



228 

Details of implementation for the communication software described 

above can be seen in Appendix 9.3. 

9.6.5 Displaying Stored Values 

The display stored values option is directly associated with the 

ramp input data acquisition process. After the ramp movement 1S 

finished the software returns and displays again the table of 

options. If the operator wants to display the stored values he 

will choose the correspondent option and a routine called DISPLA 

is executed. This routine, which assembly level language implemen

tation is shown 1n Appendix 9.5, displays 112 values with 8 values 

in each line. It converts two's complement hexadecimal stored 

values to signed decimals before they are displayed. For this 

a special routine called HEXDEC was written and is described in 

the auxiliary functions section. 

9.6.6 Restarting the System 

The operator's stop and reinitialise option 1S mainly to be used 

as a restart procedure when something goes wrong. It is clear 

that for a software restart, under operator control, at least part 

of the hardware must be working properly. The emergency condition, 

already discussed, caused by overflow errors, requires system 

reinitialisation after it has occurred. 

The system bus provides the way to achieve a complete reinitialisa

tion procedure. Through the appropriate lines the bus controller 

can reset all the modules connected to the system bus. A complete 

reinitialisation is not always necessary even in our case with only 

two modules depending on the task division between them. As 

mentioned before the microcomputer boards have a reset push-button 

which allows any module to be restarted independently from the others. 

For a system as ours, in constant development, the software restart 

means a certain loss of flexibility as it requires the use of 

restart vectors blown in non volatile memory. Any rearrangement 

in software inside the memory would require new vectors and extra 

work which we think would be wasted in our case. 

After some initial developments the stop and reinitialise option 

was left aside but the option maintained on the table of options 



9 .7 

229 

to remind the author/and any future user/that some thought had 

been given to it and when really necessary the required guidelines 

can be taken from here. 

If it is necessary to stop and reinitialise our system the reset 

push-buttons on the microcomputer boards will be actuated. 

TASK DIVISION BETWEEN MODULES 

9.7.1 General Division 

The software developed up to now is totally independent of any 

hardware implementation, which is necessary to achieve maximum 

modularity. At this stage we decided to assign tasks to both 

system modules based on the control software developed so far. 

This will allow, as mentioned at the end of Chapter 7, a much 

simpler implementation for the necessary communication 'software. 

For reasons already discussed, module 2 is part of the position 

control loop and this indicated a task subdivision which was 

used in this work. This subdivision is not unique and, in 

the author's opinion, probably not the best, but that is what is 

interesting about it all: flexibility. 

be implemented and tested very easily. 

Any new subdivision can 

It was decided to implement on module 2 the functions closely 

related to the position control loop and on module 1 the loop 

reference generation and operator communication functions. If 

there are several loops to be controlled, with one module associa

ted to closing each loop, this is the most reasonable task sub-

division in the author's opinion. The tasks associated with 

each module are shown in Figure 9.7.1. 

9.7.2 Master-Slave Communication 

As clearly shown in Figure 9.7.1, the inter-micro communication 

task is associated only with module 2. This suits our needs and 

simplifies significantly the necessary communication software. 

It does not mean that module 1 has not got.part of the communica

tion software but only that we are restricting module 1 to behave 

only as a slave on the system bus. All the necessary transfer 

of information between modules is commanded by module 2. 



230 

Initialisation 

Reference 
Generation 

Data Acquisition 
MODULE 1 and 

Storage 

Operator 
Connnunication 

Auxiliary 
Functions 

Initialisation 

Loop 
Closing 

Data Acquisition 
MODULE 2 and 

Storage 

Inter-Micro 
Communication 

Auxiliary 
Functions 

Figure 9.7.1 Task Subdivision 



231 

The functions associated with the communication software are 

shown in Figure 9.7.2. The distinction between data and flag 

is used to allow a general definition for they are both really 

data as far as the system bus and memories are concerned. The 

controller software must distinguish between them and can take 

advantage of such distinction. 

System Bus 
Communication 

Software 

INTER-MICRO 
Data 

COMMUNICATION Transfer 

Flag 
Transfer 

Figure 9.7.2 General Communication Functions 

For module 2, acting as the master, the general communication 

software is based on the flow diagram shown in Figure 9.7.3. 

The assembly implementation is given in Appendix 9.6 where the 

routine is called COMMUN. 

It is of course clear that this routine is served every sampling 

interval and comes just after the. loop closing routine when all 

variables were input or estimated. At this stage the position 

increment for the next sampling interval must be available or must 

have already been calculated by module 1. 

If the flag for a new frequency is set, module 2 will load the clock 

with the new period at the next sampling interval. The flag loca-

tion on module 1 is reset to indicate that action has already taken 

place and to avoid unnecessary clock loadings. 

For safety reasons, module 2 clears the position increment location 

on module 1 as soon as it is transferred. If module 1 is not able 

to calculate the next increment in time there will not be harmful 

consequences. 



no 

Figure 9.7.3 

START 

Interrupt 
Module I 

(SLAVE) 

Module I 
Halted ? 

Release 
Module 1 

RETURN 

232 

Position Increment 
New Frequency Flag 
Period 

Variables 

Rese t Frequency Flag 
Clear Increment Command 
End of Message 

Module 2 'Communication Software 

As module 1 does not use its internal TMS 9901 clock there is no 

problem of interference,with the slave definition process which 

uses interrupt level 3 (INT3). 

The necessary communication software on module I is quite simple 

and its flow diagram is shown in Figure 9.7.4. The routine is 

driven by interrupt 3 and its implementation is shown in Appendix 

9.7. 



I 3 START ) 

Clear 
Interrupt 

Enable 
Hold in 

i 

f \ 
End 

no of 
\ Message ?J 

yes 

Disable 
Hold in 

Reset 
Flag 

( RETURN ) 

Figure 9.7.4 "Module "I "Communication "software 

9.7.3 Auxiliary "Functions 

The auxiliary functions developed for this work are shown in 

Figure 9.7.5. 

233 

All routines are written to be used with the branch and link 

instruction as this is the most time effective way to make calls 

to any auxiliary routine. Return to the calling program depends 

on the auxiliary routine and detailed instructions are given on the 

correspondent assembly listings. 



234 

Arithmetic 
Routines 

SIGRED Read Sign 
Routine 

AUXILIARY 

FUNCTION 

Read Decimal 
NUMBER 2 Number 

Routine 

Converts 

HEXDEX 
Hexadecimal 

to 
Decimal Routine 

Figure 9.7.5 Auxiliary·Functions 

The arithmetic routines, written for this work, relate to integer 

or fixed point numbers. The use of double precision number was 

inevitable as position is represented as such. Triple precision 

routines were not really thought to be necessary but they were 
\ 

made available 1n case truncation errors caused any problems. 

As can be seen in Figure 9.7.6 instead of having addition and 

subtraction it was decided to have addition and two's complement 

routines as this makes shorter the complete set of routines. 

The multiplication routines are available for signed numbers as the 

microprocessor set of instructions only has unsigned multiplication 

of single precision numbers. 

The assembly level language implementation for the arithmetic 

routines is shown in Appendix 9.B. 

MATHS3/0BJ. 

They are linked under 

To cope with the input of positive and negative numbers, specially 

related to the position command, a special routine called SIGRED 

was written. It reads the sign, input from the terminal, and 

returns a 0000 or FFFF for a positive and negative sign, respec-

tively. Appendix 9.9. shows the listing for this routine. 



235 

TWOCP2 

Two's complement 
of a double 

precision number 

TWOCP3 

Two's complement 
of a triple 

precision number 

DB ADD 

Double 
Precision 

MATHS 3 Add 

ARITHMETIC 

ROUTINES TPADD 

Triple 
Precision 

Add 

SSMUL 

Signed Single 
Precision 

Multiplication 

DSMUl 

Signed Single 
by double 

Multiplication 

Figure 9.7.6 

The input of numbers is the central part on the operator's 

communication interactive process. To simplify it, the routine 

NUMBE2 was written. It reads a character from the terminal, 

assembles the number and checks if it is a valid number from 

o to 9. If it is an invalid character, it. returns to the normal 

address. When a carriage return is input, it skips one word on 

return. For a valid number it skips two words on return. 

Appendix 9.9 also shows the listing for this routine. 

The display of stored values already discussed requires the 



236 

conversion of hexadecimal (really binary) to decimal numbers. 

The conversion is restricted to single precision signed hexadeci

mal numbers and is executed by the HEXDEC routine which listing 

is given in Appendix 9.9. 

9.7.4 Initialisation "R6utines 

The initialisation routines for both modules are quite simple and 

are given in Appendices 9.10 and 9.11. For module 1 the routine 

initialises all variables and flags and the sampling frequency 

to 200 Hz. Then it goes into the operator communication process 

displaying the table of options already discussed. 

For module 2 the routine initialises all the necessary variables 

and flags, sets the deceleration rate for the emergency routine 

and loads the TMS 9901 clock with a period correspondent to a 

sampling frequency of 200 Hz. On return from the loop closing 

routine, the inter-micro communication takes place. This is 

achieved by positioning the COMMUN routine just after MATIN on the 

linking procedure. 

9.7.5 Linking Structure 

All the routines developed so far must be linked to achieve the 

end product, that is, the controller software. This is done, 

independently for each module, using the linking routing (TXLINK) 

available on the Texas Development System. 

As there are several routines to be linked and TXLINK only allows 

three routines to be linked at one time, the partial link (P) 

option must be used. 

The linking arrangement for modules 1 and 2 are shown in Figures 

9.7.7 and 9.7.8. It is recommended that this arrangement be 

followed to avoid any problems. 

The resulting object code programs, MODlP4/0BJ and MOD2P4/0BJ, 

are shown in Appendices 9.13 and 9.14. For more flexibility, 

they are assembled as relocatable object code and can be loaded 

into the respective modules using the load option in the TIBUG 

software. 



In our application, the MOD1P4/0BJ program is loaded in 

module 1 starting at address F120 and the MOD2P4/0BJ program 

loaded in module 2 starting at address FOOO. 

237 



MODIN1/OBJ 

RAMPl/OBJ 

MATHS3/0BJ 

NEWFRE/OBJ 

DISPLA/OBJ 

INT3Ml/OBJ 

IIEXDEC/OBJ 

NUMBE2/0BJ 

SIGRED/OBJ 

Figure 9.7.7 

MODULE 1 

1 
r 

MOD1Pl/OBJ 

1 
r 

MODlP2/0BJ 

1 
I 

MOD1P3/0BJ 

·Linking Arrangement·for Module 1 ·Routines 

MOD1P4/0BJ 

'" w 
00 



MATIN/OBJ 

COMMUN/OBJ 

PROCES/OBJ 

DOBS1/OBJ 

DOBS2/0BJ 

DUCONT/OBJ 

LOOPIN/OBJ 

EMDECE/OBJ 

MATHS3/0BJ 

MODULE 2 

-----11~-- MOD2Pl/OBJ 

-----11--- MOD2P2/0BJ + MOD2P4/0BJ 

----.. f--7, MOD2P3/0BJ -----I 

Figure 9.7.8 'Linking 'Arrangement 'for 'Module '2 'Routines 

N 
W 
-cl 



CHAPTER 10 

STATE-VARIABLE DIGITAL CONTROL OF THE 
ELECTROHYDRAULIC CYLINDER DRIVE 

10.1 INTRODUCTION 

240 

In Chapter 8, the hardware interface, between the multi-microcomputer 

controller and the electrohydraulic drive, has been designed and its 

implementation is described. The general software interface, 

discussed in Chapter 9, is now applied to the electrohydraulic cylin

der drive. 

The computer aided design for the state-variable feedback controller 

needs, at least to start with, an effective mode,l of the system. 

The system modelling, which discussion is shown in Section 10.2, has 

been strongly influenced by earlier published work (83, 84, 85). 

The controller design for the electrohydraulic cylinder drive is 

described in Section 10.3. There, the design methods and simulation 

facilities, described in Chapters 3 and 4, are used. 

The controller equations, including control law and observer, are 

scaled and have their implementation in assembly-level language 

described in Section 10.4. 

10.2 MODEL IDENTIFICATION 

The schematic diagram given in Figure 10.2.1 gives an indication of 

the system we are trying to control 

P s 

u 1 
L..:.J PR 

PI P2 

X2 
I 

~ All ~ LOAD 

1 V2 Ij 1/ 

L1 L2 

Figure 10.2.1 E1ectrohydraulic Cylinder Drive 

11 
I 

11 



241 

The use of an asymmetric cylinder with a four-way symmetric valve is 

not common and merits some discussion before the model is developed. 

10.2.1 Load Natural Frequency 

From Figure 10.2.1, we can write that the oil compliance of the 

hydraulic cylinder, on either side of the piston, is (line 

volume effects are considered to be trivial) 

= 
1 

kZ 
= LZ 

AzB 

which for a series arrangement gives a total compliance 

1 
k 

= 
1 

B(AI + AZ) 
LI Lz 

10.1 

10.2 

where B is the Bulk modulus, Al and Az the areas on both sides. 

The maximum compliance occurs when 

1 

~ ~ . V Al 
L 

10.3 

where L = LI + Lz, giving 

(f) maX = 10.4 

Using equation 10.2 and defining a normalised compliance, 

Figure 10.2.2 can be drawn. It indicates the variation of 

compliance with stroke (LI/L), for our case, where Al = 2AZ. 

For this situation the maximum compliance is re~ched where 

LI/L = 0.59 



BAl 1 
(-)

L k 

242 

0.4 

0.3 

0.2 

0.1 

0.2 0.4 0.6 0.8 1.0 

Figure 10.2.2 Oil Compliance Variation with Stroke 

For easy reference, the characteristics of the hydraulic cylinder 

and load are repeated here. 

Al = 1143.1 mm2 
Piston Areas 

mm2 Az. = 580.2 

Stroke Length L = 500 mm 

Load Mass M = 90 kg 

Table 10.1 

Assuming a bulk modulus of 8000 bar the minimum natural frequency, 

relating oil compliance and load mass, is found using 10.4 as 



w 
o 

243 

10.5 

Using Table 10.1, the minimum natural frequency for load and 

oil compliance is approximately 

w 
o 

= 
1143.1 x 10-

6 
x 8 x 108 x {l + ~)2 ~ 

0.5 x 90 
243 rad 

sec 

10.6 

As shown in Figure 10.2.1, the connection between the piston 

and load was represented as having a stiffness k3' This is 

mainly due to the flexure-rod described in Chapter 8. The 

characteristics of the flexure-rod are repeated here in Table 

10.2. 

Diameter d = 14.224 nnn 

Rod 

Length i = 686.0 nnn 

Table 10.2 

For a cylindrical bar the stiffness, for a load applied axially 

at one end, is given by 

10.7 

where E is the Young's modulus, ~ the area and LB the length 

of the bar. 

Assuming a Young's modulus of 2.1 x 1011 N and using Table 10.2, 
ffi2 

stiffness k3 is given by 

2.1 x lOll x 158.9 x 10-
6 

0.686 
= 486.6 x 105 N 

m 
10.8 

Turning back to equation 10.4 the oil spring stiffness can be 

calculated and found as 

k = 53.1 x 105 N 
m 

10.9 



244 

Associating the oil spring stiffness given by equation 10.9 and 

the flexure-rod stiffness given by equation 10.8, it is clear 

that the oil spring stiffness will dominate the load-drive 

mass-spring system. So the natural frequency given by equa-

tion 10.6 is a reasonable indication of the load natural 

frequency. 

10.2.2 Steady-State Characteristics 

The equilibrium of forces applied to the load and the continuity 

equations for the flow through the electrohydraulic valve's 

orifices will show an interesting situation when the piston is 

made to move from one direction to the other. 

P 
s 

I· 

PI 

at 
'--" ...--.. -Ql 

L] 

Al 

a2 -...--.. -Q2 

Figure 10.2.3 

l y 
• 

-I I' 
L2 

'I I 
I 

A2 . 

I I 
EF 

I P2 ..i.. 

a3 a4 
'--' ---.--,. ...--.. - -

PR 
Q3 Q4 

L.:....J P 
s 

Asymmetric Cylinder and 4-way Valve 

As shown in Figure 10.2.3, we define the total load EF as 

EF = My + cy + F + F 
c e 

10.10 

where y is the piston displacement, M is the load mass, c is 

the coefficient of viscous friction, 

the load's external forces. and F e 

F the coulomb friction 
c 

Applying Newton's second 

law to the forces on the piston we have 

= My + cy + F c + F e 10.11 



245 

where PI, Al and P2, A2 are the pressures and areas on the 

sides of the piston. 

The continuity equation applied to both sides of the cylinder, 

using Figure 10.2.3, gives 

10.12 

where Cd is the discharge coefficient, p the oil mass density, 

aI, a2, a3 and a4 the valve's orifice areas and PR = o. 

Assuming an ideal symmetric 4-way critical centre valve with 

matched orifices, we have 

o 10.13 

or 

o 10.14 

For a steady state condition, pressures PI and P2 are calculated 

as follows. 

For al = a3 > 0 and y > 0 we have 

PIAl - P2Ai = EF 
ss 

10.15 

and 

! VP - PI = !F Ai. s A2 
10.16 

For a2 = a4 > 0 and 
. 
y < 0 we have 

PIAl - PZA2 = EF ss 10.17 



246 

and 

= l\~ 
A2V·S ·2 10.18 

Assuming ~ = 2A2 , equations 10.15, .16 and 10.17, .18, can be 

solved to give, for 

0 PI 
1 +! EFss y > =-P 
9 s 9 ~ 

10.19 

P2 
2 2 EFss =-P 
9 s 9 Al 

0 PI 
4 8 EFss y < =-P +- ""AI 9 s 9 10.20 

P2 8 2 EFss =-P 
Al 9 s 9 

Solution of equations 10.19 and 10.20 is shown in Figure 10.2.4 



247 

From Figure 10.2.4, it is quite clear that there is a jump 

on the cylinder pressures when the piston reverses direction. 

The height of the jump, on both pressures, does not change 

. with the load but is only shifted vertically by it. 

This pressure jump can cause, subject to the level of load 

friction, non-smooth operation around null speed (y. = 0). 

This is a characteristic of the system we have and we did not 

have an asymmetric 4-way valve available, as suggested by 

Viersma (86), to avoid the pressure jumps. 

The linearised analysis for symmetric cylinders given by 

Merritt (87) and Ertan (83) show the influence of valve opening 

and pressure levels on the damping, through the flow-pressure 

coefficient. Here we only talk about the influence of 

different valve openings. Turning back to equations 10.12, 

for a steady state condition, the modulus of velocity for both 

directions is given by (ideal value) 

. 
> 0 \ y \ CdYfG y = al Al P s 

. 
< 0 \yl = Cdff F Y Al P a2 

Assuming the same speed 1n both directions, we have the relation 

10.21 

Using Figure 10.2.3, for a null load (EF), equation 10.21 gives 

=\~.~ 1.42 
V~ 

10.22 

So, for the same speed, the valve opening for an extending 

asymmetric cylinder (AI = 2A2) is 1.42 times smaller than the 

one when it is retracting. Th;, - means that we should expect 

less damped behaviour when the cylinder is extending. 



248 

The other aspect shown by equation 10.22 is related to the 

gain associated with different directions of motion. Assuming 

a linear relationship between current and servovalve opening 

·the velocity/current gain for both directions will be probably 

related by the value given by equation 10.22, 

(KVCY)y>O 
(K ) • vcy y<O 

= 1.42 10.23 

at least for operation outside the null region. 

Reviewing what we have discussed so far, for the symmetric valve

asymmetric cylinder combination, we can say: 

a) there are pressure jumps around null speed and smooth 

operation in this region might be impaired, 

b) the predicted damping is dependent on direction of motion, 

c) the velocity/current gain is also different when extending 

and retracting. 

For very small valve openings, the valve lap dominates its 

behaviour. In our system, in this region, we also have the 

pressure jumps, so we will await the experimental results to 

see how it behaves. 

Outside the null region, alternatives b) and c), shown above, 

indicate the association of two different models, one for each 

direction of movement. It is expected that the models will 

only differ on the load damping associated with them. 

10.2.3 Analytical Model 

The model definition in this work follows the.approach taken 

by Be 11 and de Pennington (84) on the analysis of lightly 

damped electro-hydraulic cylinder drives. 

The transfer function between the servo-amplifier command, u, 

as shown in Figure 10.2.1, and the valve spool displacement, w, 

is generally given as 

= 

0+ 10.24 



where KA is the amplifier gain and ~ the current to spool 

displacement gain. 

249 

Neglecting Coulomb friction and external forces, the resultant 

transfer function, relating output velocity to servo-amplifier 

command, is written 

sy(s) 
u(s) 

\(" ("~oC:"l ~o Ul,hol)+olo.l ~;" 

K 
v 
2P v 
-- s + 
w 

v 
l)(~/ ::i s + 1) 

10.25 

where Pi and w i are load damping and natural frequency respectively. 

For systems with a load natural frequency lower than the natural 

frequency of the servovalve, but comparable with the break 

frequency of the torque motor coil, it is possible to simplify 

the transfer function, given by 10.25, introducing a lag with a 

time constant T
AV 

which fits transfer function 10.24 in the 

region of interest. It is recommended to use TAV 20 to 50% 

greater than the torque motor coil time constant, TM. 

The transfer function reduced to its simpler form is then 

sy(s) 
u(s) = 

(1 + 

K 
v 

10.26 

If the lag TAV is determined experimentally, it should be chosen 

as the 45 0 lag frequency of the amplifier and unloaded servo

valve response. 

The transfer function shown by 10.26 has been normalised and 

its behaviour for varying parameters studied in Appendix 10.1. 

Using that Appendix and the experimental results, we will find 

the parameters Pi' wi and TAV which give the best fit to the 

electro-hydraulic cylinder drive available. 

10.2.4 Open-Loop Dynamic Test Results 

The test on the electro-hydraulic cylinder drive, which diagram 



Z50 

is represented in Figure 10.Z.1, was carried out using 

basically a function generator and a storage oscilloscope. 

The signals from the transducers available on the rig were 

stored on the oscilloscope screen and then photographed with 

a polaroid camera. The various tests made on the rig are 

documented in what follows. 

First and most important of all, we tried to get data in 

order to be able to identify, as we have already discussed, a 

suitable transfer function for the drive. This was done in 

open-loop condition by using a square-wave at the amplifier 

input, u, as shown in Figure 10.Z.1. 

In order to get an indication of parameter variation with 

valve opening, different levels of input signal were used in 

the tests. Due to the open-loop test condition, the short 

length of cylinder travel and mismatch between power pack 

and electro-hydraulic servovalve, the maximum valve opening 

we achieved, safely, was correspondent to approximately 40% 

rated current (15mA). The tests were carried out with the 

piston at mid-stroke as this point lies in the region of 

minimum hydraulic stiffness. 

The results for three representative levels of input signal 

are shown in Figures 10.Z.5, 10.Z.6, and 10.Z.7. In each 

figure, the time responses for velocity, thrust, pressures PI 

and Pz are shown. On the bottom of each PI' Pz and thrust 

displays, the velocity signal is also shown to indicate direc

tion of movement. Thrust is defined here as (total load) 

where PI and Pz are the pressures and Al and AZ the piston 

areas as indicated in Figure 10.Z.Z; 

As expected, Figures 10.Z.5, 10.Z.6 and 10.2.7 show an 

increase in damping for increasing valve opening. The 

difference in damping for both directions is also clearly shown 

with the extending direction displaying less damping for a 

given speed. 



l 

,..... 
+ ..., 

., 

:, 
,..... 
I ..., 

.. 
'" ,Q 

.... 
N 

Velocity x time 

PI x time 

-100 ms 

iI 

... 
'" ..c 

N 
-<t 

Thrust x time 

P
2 

x time 

-100 ms 

. e I e ~ -

[]l[,; " , , , 

Figure 10.2.5 

Open Loop Response 

(5% rated current) 

N 
lJl ...... 

, 



'+ 
-' 

'" 

:1 
'I 

... 
'" ,Q 

.... 
N 

'>J 

Velocity x time 

PI x time 

'160 ms 

il 

... 
'" ,Q 

N ..,. 

Thrust x time 

P2 x time 

Figure 10.2.6 

Open Loop Response 

(20% rated current) 

N 
V1 
N 



'+ 
-..J 

tI) 

~ 

'" o 
'" 

,... 
I --

.... 

;1 

Velocity x time 

Pl x time 

-100 ms 

~I 

.... 
<1l 
.0 

'" '"" 

',·S·, , " _.~. ~i !'h.:">ij·<iJt}.·o'.r,~~;; 

o 

~. ~~ 

I ~= 8 \ o I\~ o 

L. ---. 

Thrust x time 

....... '~'~,.lii\'.,\..' Tjj":"~!~~' ..... ,;' ,!,~,;"'I'" I.· : \: 

;7 . 
0 

o \~~~ 
. 

0 

• 

Ul!r~ 0 . 
0 

0 

~:: I 
I I 

'J 

P
2 

x time 

Figure 10.2.7 

Open Loop Response 

(40% rated current) 

I'V 

VI 
W 



254 

The jump in pressure, as predicted earlier, is an interesting 

characteristic, as shown in these figures. The behaviour 

of the pressures, independently, is remarkable, but their 

" combination generates a thrust without any particular features. 

As the velocity behaviour is consistent with published work in 

this field and well understood, for our model identification 

purposes, this is what we really need. We accept the many 

non-linear characteristics shown in these figures as a fact, 

and hope that future works on modelling and simulation will 

explain the non-clear aspects and benefit from the documenta

tion provided in this work. 

10.2.5 Open-Loop Steady-State Test Results 

The second set of tests carried out relate to steady-state 

behaviour, for analysis of threshold and gain nonlinearities. 

For such tests, a slow sinewave input 15 used to avoid any 

influence of dynamic effects. In our case, the effect of a 

very short stroke complicated the tests twofold. In order to 

get the servo moving back and forward without hitting the end 

stops, the function generator bias was used. Even for low 

levels on the input signal, the minimum achieved frequency 

on the sinewave was not the one desired but we could not do 

much about it. 

results. 

Some dynamic effects are visible in our 

For an input level correspondent to 10% rated current on the 

servovalve, the velocity versus current plot is shown 1n 

Figure 10.2.8. Two important characteristics are clearly 

indicated there. The first, as we predicted before, is 

that there is a different gain (velocity/current) for both 

directions. For the same speed a larger current is necessary 

\kten the cylinder is retracting. The second characteristic 

relates to the behaviour around null velocity. The effect of 

""1\-li-t.o..r,:"h"t.:; is clearly shown causing a servo deadband. 

For higher input levels, the frequency of the sinewave had 

to be increased in order to restrict the maximum displacement. 

Figure 10.2.9 shows the plot for velocity versus current for 

an input level correspondent to 100% rated current_ As soon 



retracting 

extending 

~ 

0.5 mA 

Figure 10.2.8 Velocity x Current 
(10% rated) 

extending 

retracting 

5mA 

Figure 10.2.9 Velocity·x Current 

(Power Pack Saturation) 

255 



256 

as the movement is initiated, the supply pressure starts to 

drop, up to the moment when it reaches the accumulator 

pressure. At this moment, the system stalls and this is 

clearly indicated on the nose shaped appendix on Figure 

10.2.9. This happens first, as one would expect, on the 

extending direction, for it requires a bigger flow to maintain 

the same speed. 

The maximum achieved input level, without noticeable interac

tion between power pack and load, was correspondent to 40% 

rated current (15mA) and, as mentioned before, this was the 

same level used in order to maintain a safety margin from the 

end stops. Figure 10.2.10 shows the velocity versus current 

plot for 40% rated current. The null region in this plot 

is shown enlarged in Figure 10.2.11. 

frequency was 1 Hz. 

The input signal 

The effect of high friction levels on the performance of 

positioning systems is totally undesirable. Sometimes, for 

design reasons, friction cannot be reduced below certain levels 

but one thing the designer must have in mind: if the friction 
• level cannot be reduced, at least allow it to be a well 

behaved non-linear function'. One difficulty experienced in 

this work was that the gib fixture used in our rig, as shown 

in Chapter 8, did not behave properly at first. The 

effects of this were that, basically, the same tests, under 

the "same conditions" would give totally different results. 

With modifications proposed by the author, the gib and gib 

fixture were remachined and the behaviour of the system load 

was·much improved. The stick-slip effect practically disappeared 

and the test results were repeatable at last. 

The friction level after the gib modification, at mid-stroke 

position, is indicated by Figure 10.2.12. It is the result 

of a sinewave input with a frequency of 0.05 Hz. 

In order to show the effect of friction along the stroke, a 

test was made with a speed of 500 mm/min moving in both 

directions. Figure 10.2.13 shows the test result where 



retracting 

Figure 10.2.10 

retracting 

extending 

---.. 
2mA 

Velocity x Current 

(40% rated) 

extending 

lmA 

Figure 10.2.11 Velocity·x Current 

(40% rated) 

257 

'" 

[~ 



extending 

retracting 

retracting. extending 

retracted 

4 mm/s 

Figure 10.2.12 Thrust x Speed 

(steady state) 

extended 
I 

50 mm 

Figure 10.2.13 Thrust x Cylinder 
Stroke 

258 

I~ 



259 

position signal was taken from the linear potentiometer 

position transducer. It is good to remember here that the 

friction we are talking about is the combined friction action 

on the piston and slideway table. Figures 10.2.14 and 10.2.15 

show the necessary thrust for the same input conditions to move 

only the piston and piston plus table. A sinewave input signal 

was used. To show the pressure levels on both sides, pressure 

PI is also shown in these figures. 

The friction levels, considering good lubrication, are not as 

low as one would like to have but are the lowest we could 

achieve under the circumstances. 

10.2.6 The Identified Model 

The tests done so far show that, apart from the particular 

behaviour around null, the velocity response does not show any 

striking difference from symmetric electro-hydraulic cylinder 

drives, if we consider both directions independently. With 

this in mind we decided to use equation 10.24, and the results 

given in Appendix 10.1, and find two models that would fit the 

drive response for each direction. It is of course clear, 

from Figures 10.2.5, 10.2.6 and 10.2.7, that we would need a 

model for each particular operating condition. As we are not 

dealing, in this work, with adaptive systems, we will choose a 

model for a particular condition and the control action will 

have to make the system insensitive to parameters variation 

within the operating conditions range. 

The chosen operating condition was the one correspondent to 

5% of rated current, input to the valve. In our case this 

already gives a speed of almost 2 m/min which was thought to 

be a reasonable reference for practical applications. 

In order to be able to use the results given in Appendix 10.1, 

two extra tests were carried out. They were step inputs 

applied to the servo-amplifier commanded by the multi-micro

computer controller. With the drive at rest, using TIBUG on 

Module 2, by simply writing to memory location B002, a command 

is sent to the servo-amplifier and a step generated. 

With the piston at mid-stroke position, both directions of 

movement were tested and the results are presented in Figures 

10.2.16 and 10.2.18. As the same command signal was asked for, 

the different gain levels for each direction of movement can be 



.. 
'" .c 

.-< 
N 

~I 

5 s 

Figure 10.2.14 Thrust'Pl x time 

(unloaded cylinder) 

5 s 

Figure 10.2.15 Thrust'PI x.time 

(loaded cylinder) 

260 

(extending) 

Thrust 

(retracting) 

(extending) 

Thrust 

(retracting) 



Velocity 
(unit) X10-1 

s 18 

16 

14 

12 

10 

8 

6 

4 

2 

cylinder extending 

20 ms 

Figure 10.2.16 Velocity Step Response 

(Test Result) 

cylinder extending (MODEL) 

01~----.----or----'-----'----.-----.-----r----' 
S 10 IS 20 2S 

Figure 10.2.17 Velocity Step·Response 

(MODEL: a=O.S p=0.07) 

261 



Velocity 
(unit) X10-1 

s 16 

14 

12 

10 

8 

6 

4 

2 

, 
o 

cylinder retracting 

20 ms 

Figure 10.2.18 Velocity Step Response 

(Test Result) 

cylinder retracting (MODEL) 

0~----~---'-----r-----r----'-----T----'r----' 
5 10 15 20 25 

Figure 10.2.19 Velocity Step·Response 

(MODEL :a=O. 5 p=0.13) 

40 

wt 

262 



263 

clearly seen in those figures. 

Using Appendix 10.1 and Figures 10.2.16 and 10.2.18, the 

parameters for the model given by equation 10.26 were found as 

wR. = 28 Hz (176 rad/sec) 

Cl = w R. x TAV = 0.5 

cylinder extending 

= 0.07 

cylinder retracting 

0.13 

Using these values, the model step response was found for both 

damping factors and the results are shown in Figures 10.2.17 

and 10.2.19. The comparison between Figures 10.2.16 and 

10.2.17 and Figures 10.2.18 and 10.2.19 shows an adequate match 

between the time responses of model and real system. So, the 

parameter values defined above will be used to define the 

controlled system when designing the state-variable feedback 

controller, later on. 

In order to illustrate the effect of sudden valve closure On 

the velocity response, a test with a step to null velocity was 

done for both directions. The input was generated through 

module 2 using a delay loop to get the desired timing. The 

results are shown in Figures 10.2.20 and 10.2.21. There, it 

is clearly seen that on valve closure the velocity response 

exhibits a much more damped behaviour for both directions. 

At the end of this work, the electro-hydraulic servovalve, 

used on the drive, was tested at the manufacturer's testing 

facilities according to reference 88. 

for valve no-load flow output to current 

Figure 10.2.22. There, we see that for 

The frequency response, 

input, is shown in 
o 45 phase-lag, the 

correspondent frequency is 60 Hz. This proves that the 

recommendation made by Bell and de Pennington (84) gives a 



cylinder extending 

50 ms 

Figure 10.2.20 Valve Closure Effect 
on Velocity Response 

cylinder retracting 

50 ms 

Figure 10.2.21 Valve Closure Effect 
on Velocity Response 

264 



265 

good fitting for the lag (T
AV

) on equation 10.26 and that our 

model was chosen properly. 

Figure 10.2.22 

10.3 CONTROLLER DESIGN 

No-load. flow output to current input 
frequency response (Moog E076-102) 

10.3.1 Model Equations in State-Space Representation 

The use of state-space methods requires the system representation 

in the stardard matrix form 

x Ax + Bu 10.27 

y = Cx 10.28 

where u is the control input, x the state variables and y the 

output. 



266 

For the digital control problem equations 10.27 and 10.28 

are transformed to difference equations using the arrangement 

shown in Figure 10.3.1. 

System 

u(t) 1 x = Ax + Bu I x(t) 1L.._C_---ll-'-y(.;...t.;..)-? y(k)_ 
u(k) J l HOLD 

'-----' 

Figure 10.3.1 Controlled System and Sampling 

In our case the controlled system and the hold element are 

represented as 1n Figure 10.3.2. The hold action is applied 

by the digital to analogue converter (DAC) while it holds the 

control input constant during the sampling period. 

Hold (DAC) 

u(k) 
Digital to 

u(t) Drive x(t) Analogue and 
Converter Load 

Figure 10.3.2 Servodrive and Hold 

The DAC has a gain, of course, relating maximum output voltage 

to number of bits. Calling one bit as a DAC Unit or just Unit 

the DAC gain for the range set-up in the rig is given by 

or 

10 
~AC = 211 

v 
Unit 

~AC ~ 4.9 mV/Unit 

10.29 

This gain can be incorporated into the gain for the drive and 

load, K , and equation 10.26 can be rewritten as 
v 

sy(s) 

u(s) 
10.30 



267 

where 

As mentioned before, the only output we want to use is position 

so equation 10.30 is modified to give the required transfer 

function, between position (y) and control input (u),as 

10.31 

Defining state-variables as 

position: xl = y 

. 
x 

velocity: x2 = _1 
w

i 
. 

acceleration: 
x2 

x3 = 2 
01 

i 

transient x3 
1O.31A acceleration: 

x4 3 
01 

i 

and variable 

the transfer function given by 10.31 can be transformed to 

standard matrix fo~m x = Ax + Bu to give 

xl 0 1 0 0 xl 0 

• x2 0 0 1 0 x2 0 
1 

= + 
01 • 

x3 0 0 0 1 x3 0 

• 1 -(~l) -(~2~ K x4 0 x4 a wa 

10.32 

U 



268 

The subscripts under the load natural frequency w~ and damping 

p~ have been taken out for easier representation. They are 

now represented simply as w and p. 

Representation 10.32 can be simply written as 

1 • 
-x 
w Ax + Bu* 

where u* = ( ~ u) and 

B = 

o 
o 
o 
1 
Cl 

10.33 

Equation 10.33 is in the appropriate form to be used with the 

STATE Program as defined in Chapter 4 to find the system's 

discrete state equations as 

x(k+l) = $x(k) + LU(k) 10.34 

with output given by 

y(k) = Cx(k) 10.35 

10.3.2 Sampling Period and Delay 

The use of the STATE Program requires the definition of two 

variables: the sampling period, T, and the delay on the control 

funct ion, T
D

, If a change in time scale is made such that 

t* = wt 10.36 

T and TD are changed to 

and 

T* = wT 

T* 
D 

10.37 

10.38 



For the sampling frequency, f, 

1 f = 
T 

and the load natural frequency, w, 

w = 2rrfi (rad/sec) 

where fi (Hz). Equation 10.37 can be rewritten as 

T* 

Assuming 

T* ~ 1 

we have 

269 

10.39 

10.40 

10.41 

10.42 

10.43 

which means that the sampling frequency is more than 6 times the 

load natural frequency (Hz). According to resu1 ts shown by 

Middleditch (89) and Stute (39) equation 10.42 is compatible with 

a wide range of drive characteristics, but we do not try to prove 

it in this work. 

Equation 10.42 introduces a sampling period given by 

1 T ~ - 10.44 
"w 

which 1n our case for w = 176 rad/sec gives 

T ~ 5.7 msec 

For maximum computing time between samples, the sampling period 

should be as long as possible and so we decided to use, in this 

work, 

Tw = 1 10.45 



270 

This would give, in our case, a sampling period of around 5.7 msec 

which is compatible with the software for closing the loop, 

developed so far, which runs in approximately 3 msec. 

The other advantage in using equation 10.45 will become clear 

when the estimation of velocity from position information is des

cribed later on. 

The delay on the control function, TD, is used to account for the 

computation delay in the digital controller, but can be made to 

include any delay of control action on the controlled system itself. 

In our case, the results presented earlier do not show any signifi

cant delay on the controlled system and so TD represents only 

computational delay. 

In this work we assumed a delay equal to a complete sampling 

period, or 

10.46 

for two main reasons. The first, and most important, relates to 

the actual computation delay. A change in the controller software 

will probably change the computation delay but if the delay is 

kept smaller than a sampling period, the system difference equations 

still hold and no adverse effects should be expected, because the 

controller equations are related to the system difference equations. 

The second reason is that the choice of delay given by relation 

10.46 simplifies the representation and solution of system and 

observer difference equations, as will be clearly seen later on. 

10.3.3 Discrete State-Equations 

Using equations 10.45 and 10.46, the discrete state equations are 

found, applying the STATE Program,as developed in Chapter 4, to 

the continuous state equation 10.33. 

When the cylinder drive is extending we have 

p ~ 0.07 

and 

(l ~ 0.5 



<I> = 
1 

which gives matrices 

0 1 

Al 
0 0 

= 
0 0 

0 -2 

'\ and 

o 
o 
o 
2 

0 

1 

0 

-1.28 

271 

SI as 

0 

0 10.47 
1 

-2.14 

10.48 

Using equations 10.45, 10..46, 10.47 and 10.48 as inputs to the 

STATE Program, the resulting discrete state equations are given 

in the form 

With $1 

1.0000 

13.130013 

0.1313013 

0.001313 

0.0131313 

and 

xe (k+l) = $lx (k) + Ll u*(k) 

and Ll taken 

0.9451 

13.81333 

-0.4853 

-13.6000 

0.00130 

L = 
1 

from Appendix 10.2, we 

0.4531 0.0984 

0.8192 13.2426 

0.4927 0.30013 

-0.8693 -0.1493 

0.013013 13.130013 

13.00013 

0.00130 

13.13000 

13.00013 

1.01300 

where the state vector, x (k). is now 
e 

10.49 

have 

0.13549 

13.1967 
10.50 

13.4853 

13.60013 

13.0000 

10.51 



272 

Xl (k) 

x
2

(k) 

X (k) = x
3

(k) 10.52 
e 

x
4

(k) 

u*(k-l) 

When the cylinder is retracting we have 

p = 0.13 

and 

a 0.5 

Matrices A2 and B2 for equation 10.33 are now represented as 

0 1 0 0 

0 0 1 0 

A2 = 
0 0 0 1 10.53 

0 -2 -1.52 -2.26 

0 

0 

B2 0 
10.54 

2 

Using equations 10.45, 10.46, 10.53 and 10.54, as inputs to the 

STATE Program, the resulting discrete state equations are given 1n 

the form 

10.55 

With ~2 and.L2 taken from Appendix 10.3, we have 



~ = 
2 

1.0000 0.9464 0.4478 0.0953 

0.0000 0.8093 0.8015 0.2323 

0.0000 -0.4645 0.4563 0.2766 

0.0000 -0.5532 -0.8850 -0.1688 

0.0000 0.0000 0.0000 0.0000 

and 
0.0000 

0.0000 

0.0000 

0.00013 

1.0000 

where the state vector, x (k), is now 
r 

x (k) = 
r 

Xl (k) 

x
2

(k) 

x
3

(k) 

x
4 

(k) 

u*(k-l) 

273 

0.0536 

0.1907 
10.56 

0.4645 

0.5532 

0. eH'l03 

10.57 

10.58 

In this work, as mentioned before, we only use position information 

available through the linear optical position transducer. We 

assume that. the other state-variables such as velocity and 

acceleration are not available by direct measurement. For both 

directions of movement, the output equation is so given by 

y(k) = [ 1 o o o 0] x(k) 10.59 

where x(k) is either x (k) or X (k) as defined by equations 
e r 

10.52 and 10.58. 



+ 

-

Z74 

10.3.4 Control "Law Definition 

For the control law as a linear combination of all the states, 

we have 

u(k)" = -Kx(k) 10.60 

where the gain matrix K is found in this work by using optimal 

control. Equation 10.60 is shown, applied to our case, in the 

diagram given in Figure 10.3.3. There, it is assumed that all 

the state-variables are available for direct measurement and the 

sampler indicates the discrete action of "the digital controller. 

In our case, we do not have all the state-variables available 

but the separation principle allows us to find the feedback 

gains K., independently of any estimation involved (observer). 
~ 

+ + + ... .... 
- - -

Figure 10.3.3 

u(k) 

Storage 

u(k-l ) 

KS 

K4 ~ 

K3 I--

KZ ~ 

Kl - T 

E lee t rohyd raulic 
Cylinder Drive and ~---, 

Hold (DAC) 

Xl (position) 

State-Variable Feedback 



275 

The performance index for the optimal controller is defined, 

as in Chapter 3, by 

1 N [T IP = 2 E x (k)Ql x(k) 
k=o 

10.61 

The feedback gains must be chosen in order to minimise IP subject 

to the constraints imposed by equation 10.34 (state-equation). 

The solution for this two-point boundary-value problem has already 

been discussed and the sweep method developed by Bryson and Ho (59) 

is used. The program called SWEEP (Chapter 4) helps us find the 

possible candidates for the minimum solution but first we must 

decide about the weighting matrices Ql and Q2' 

For the single-input system, dealt with in this work, matrix Q2 
is 1 x 1 or a scalar. Some weight is always selected for the 

control function, otherwise the solution will include large 

components in the control gain, which is bound to cause saturation. 

Results from the simulation will indicate the best choice for Q2 
in terms of a reasonable control effort. 

Matrix Ql indicates the relative importance given to the various 

states. As we are primarily interested in improving load damping 

the most indicative of the state-variables is velocity (x
2
). 

Since a good velocity behaviour almost certainly indicates well 

behaved acceleration and transient acceleration, it is only 

necessary to give weight to velocity. 

As position is just an effect of other state-variables and control 

function, as shown by equations 10.55 and 10.56, it is really not 

necessary to feed it back just to achieve load damping as will be 

clearly shown when its weight on Ql is set to zero. With an 

improved load damping, we will close an external position loop 

around the load and will have the chance to compare the behaviour of 

a simple digital proportional loop with that of a digital proportional 

loop with state-variable feedback improving load damping. 

10.3.5 Optimal Controller 

Using the already defined discrete-state equations, for both 

directions of movement, as inputs to the SWEEP program, defined 1n 

Chapter 4, we can find the possible solutions for the optimal 



276 

feedback gains. A typical SWEEP sample is shown in Appendix 

10.4. As shown there, the interactive style allows many 

solutions to be obtained very quickly. 

As recommended by Bryson and Ho (59) the weight on the velocity 

variable for matrix Q
l 

was chosen as follows: 

The state-variable x2 is defined as 

v 
w 

where v is velocity and w the load natural frequency. 

a maximum speed of around 200 mm/sec, we have 

1 

and so 

Ql(2,2) 
1 1 = = 

x 2 
2 (max) 

For matrix Ql defined as 

0 0 0 0 0 

0 1 0 0 0 

Ql = 0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

Assuming 

10.62 

10.63 

The steady-state results using SWEEP for both directions of 

movement are shown in Tables 10.1 and 10.2. The feedback gains 

are related to the defined state-variables as shown in Figure 

10.3.3. 



277 

Extending Cylinder 

Test Q2 K1 K2 K3 K4 K5 

1 0.01 0.0 - 0.55 1.05 0.67 1.50 

2 0.1 0.0 - 0.58 0.47 0.38 0.98 

3 0.5 0.0 - 0.48 0.12 0.18 0.57 

4 1 0.0 - 0.40 0.04 0.12 0.41 

5 5 0.0 - 0.20 - 0.03 0.03 0.16 

6 10 0.0 - 0.13 - 0.03 0.02 0.10 

7 20 0.0 - 0.08 - 0.02 0.01 0.06 

8 100 0.0 - 0.02 - 0.01 0.00 0.01 

Table .10.1 

Retracting Cylinder 

Test Q2 Kl K2 K3 K4 K5 

9 0.01 0.0 - 0.39 1.08 0.64 1.45 

10 0.1 0.0 - 0.45 0.49 0.36 0.93 

11 0.5 0.0 - 0.38 0.15 0.17 0.52 

12 1 0.0 - 0.31 0.06 0.11 0.36 

13 5 0.0 - 0.14 - 0.01 0.03 0.13 

14 10 0.0 - 0.08 - 0.01 0.02 0.07 

15 20 0.0 - 0.05 - 0.01 0.01 0.04 

16 100 0.0 - 0.01 - 0.00 0.00 0.01 

Table 10 .2 

The root locus for both sets of tests are shown in Figures 

10.3.4 and 10.3.5. The improvement in load damping is quite 

clear. 

The influence of Q2 on the speed of response is clearly seen 

as the load poles move, initially, towards higher dampings. 

Increasing Q2 makes the response slower as it imposes a 

greater restriction on the control effort. 



TEST 1 

-

TEST 4 

-+-

T 

+ 
1" 

~ -I:. ,+ 

-+-

TEST 2 

Gain Increment 
0.05 

TEST 6 

cylinder extending 

-

Figure 10.3.4 Root Locus for Optimal Control 

~ 

\\ 
N ..., 
0> 



TEST 9 / ~~ "- TEST 10 

TT 
T 

+ 
+ 
T 

- ,+t. j [''''~I 
... ...,. .. 

Gain Increment "-
0.05 

TEST 12 TEST 14 

-

cylinder retracting 

~igure 10.3.5 Root Locus for Optimal Control 

I !, 
~ 1--

1+""" 

r~ 

t 

+ 

~ N ..... 
'" 



280 

The velocity and control function time response for a step 

input using the optimum gains, given in Tables 10.1 and 10.2, 

are shown in Figures 10.3.6, 10.3.7, 10.3.8 and 10.3.9. 

For small values of Q2' as mentioned before, the velocity 

response is fast but the control function exhibits quite 

large overshoots, which means a large control effort. Such 

behaviour can cause saturation and should be avoided. For 

higher values of Q2 the control effort is reduced but the 

velocity response becomes less and less damped. 

The compromise between speed of response and control effort, 

with an acceptable level of load damping, made us decide to 

use the optimum gains associated with tests 4 and 12 as the 

starting point for the state-variable feedback controller. 

10.3.6 Velocity Estimation 

Among the defined state-variables, only position is available 

by direct measurement, as was already mentioned. The implemen

tation of a control law,as given by equation 10.60, requires 

all the state-variables and so the non-available variables must 

be estimated. In this work estimation is achieved by the use 

of observers as described in Chapter 3. 

The non-available variables in our case are velocity, accelera-

tion and transient acceleration. Before we proceed to the 

observer design we will discuss the use of position information 

for velocity estimation. 

The use of a linear optical position transducer makes the feed

back signal free of noise, for practical purposes. This 

noiseless signal can be differentiate to provide information 

about velocity, without expecting the type of problem whiCh is 

normal with pure analog differentiators. Looking carefully 

at the position information provided by an incremental transducer 

it is easy to see that, what we really have is a certain 

increment in position within a certain time or, more explicitly, 

velocity. Position information is achieved by adding 

(integration) position increments as is done by the counter in 

our digitizer feedback board. The sampling interval fixes the 

time in which the summation is done and relates position increment 



TEST 1 

TEST 2 

X10-4 
13 
12 
11 
10 

9 
8 
7 
6 
5 
4 
3 
2 
1 
o 

VELOCITY 

i .... 
o 2 4 6 8 10 12 14 16 18 20 22 24 

X10-4 
13 
12 
11 10 1 

s 
8 
7 
6 
5 
4 
3 
2 
1 
0~ 

, 
-; 

o 2 4 6 8 10 12 14 16 18 20 22 24 

t 

T 

t 
T 

CONTROL FUNCTION 

X10-4 

25~rr'-rT'-rT'-rT-'T<-.~~~-r~~ 

20~~4-~4-~4-~4-+44-+4~+4~~~ 

16~~4-~4-~4-~4-+44-+4~+4~~~ 

10~~~~~~~~~~~~~~~~~ 

5~~~+4~~++~~++~~++~~ 

0+-~4-~4-~4-~4-+44-+4~+4~4-~ 

-5+-~4-~4-~4-~4-+4~+4~+4~4-~ 

-101+-~4-~-+4-~4-+4-+4-~4-+4-+4-~~ 
o 2 4 6 8 10 12 14 16 16 20 22 24 

X10-4 
16 

14 

12 

10 
8 

6 

4 

2 

0 . 
0 2 4 6 6 

t 

T 

10 12 14 16 16 20 22 24 

t 

T 

Figure 10.3.6 Velocity Step Response 

N 
ex> ,... 



TEST 4 

TEST 6 

VELOCITY 

XI0-'1 
13 
12 + 1 
11 
10 

9 1 

8 
7 
6 
5 
4 
3 
2 
1 
0~ -; 

o 2 'I 6 8 10 12 1'1 16 18 20 22 24 

X10-4 
16 

14 • 
12 

o 
8 

6 

4 

2 

01 ~ 1 1 1 1 1 1 1 1 1 I 1 I 1 I 1 I 1 I 1 I I I I I 
o 2 4 6 8 10 12 1'1 16 18 20 22 24 

t 
T 

t 

T 

CONTROL FUNCTION 

X10-4 

12T1-rTl-rro.-rr,-rr"rrTO-rTl-rTO' 
11~-r~r+7-rt~rt~rt~~~~-r~~ 
10~~~~-r~r+~~-r~~~~-r~~~ 
9~-r~rt+-rt~rt~rt~~~~-r+1~ 
8+-r+~+-r+~+-r+~+-r+~+-r+~+-r+~~ 
7~~r+~-r~~r+~-r~~~+1-r~ 
6~-r~rt+-rt~rt~rt~~~~-r~~ 
S+1-r~rt+-rt~rt~rt~~~~-r+1~ 
4~-r~rt+-rt~rt~rt~~~~-r~~ 
3'+-~-r;-~-r;-~-r;-~-r;-~-r;-~-+~ 
2+1~~~~~r+~rt~~+1-r+4~++~ 
1~~~~r+~r+~rt~rr+1-r+4~++~ 
0+-r+~+-r+~+-r+~+-r+~+-r+~+-r+~~ 
o 2 4 6 8 10 12 14 16 18 20 22 24 

X10-4 
12 
11 
10 

9 
8 
7 
6 
5 
4 
:3 
2 
I 
0-h 

t 

T 

-I 
o 2 4 6 8 10 12 14 16 18 20 22 24 

t 

T 

Figure 10.3.7 . Velocity Step Response 

N 
co 
N 



TEST 9 

TEST 10 

Xlla-4 
13 
12 
1 1 
lla 

9 
8 
7 
6 
5 
4 
3 
2 
1 
la. 

VELOCITY 

I "1 

la 2 4 6 8 lla 12 14 16 18 21a 22 24 

Xlla-4 

13~rT.-,,-r'-rT.-,,-r'-rT-r,,-r'-rT~ 
12~-r~-r+1-r++~++~r+1-rr+-rr~~ 
11~~~r+1-r+~r+-r+4-r~-r~rr+-rr~ 
lla~~~rt7-rt~~~~~~~~~+-~1 
9~-r+1-r+1-r++~++~r+1-rr+-r+~~ 
8~~+-r+;-r+~++-r+4-r~-r~rt+-rt~ 
7~-r~-r+1-r++~++~r+;-rr+-rr~~ 
6~rt;-r+;-++-r++-r+4-r~-r~rt+-rt~ 
5+-r+~~-+~r+~~-+~r+~~-+~r+~ 
4~-r~-r+1-r++~++~r+1-r++-rr~~ 

~++t++++++4+4~~~~q=~~ 
'+-~~~T;-+~T;-+~~-+~~-+~~~~ 
0~~+-r+;-~~++-r+4-r~~~rt+-r+~ 
o 2 4 6 8 10 12 14 16 18 20 22 24 

t 
T 

t 
T 

CONTROL FUNCTION 

X10-4 
25 

21a 
15 

10 
5 

o 

-5 

-10 I I 
::'" o 2 4 6 8 10 12 14 16 18 20 22 24 

t 
T 

X10-4 
16~~~~~~~~~~~~~~-r~~ 

141+-r+-r~~4-++-r~~4-++-r~~~++~ 

12~~4-~-r+-r+4-++-r+-r+4-++-r+-r+~ 

101+-~-r~~~~~~~~~~~~~~~ 

8+-~~+-~~+-~~+-~~+-~~+-+4-++-

6~~+-r++-r+4-r+4-++-r+4-r+4~~r+-

4~~4-+4~+-~4-+4~+-~4-+4~+-~~ 

Z~~4-++-r+-r+4-++~+-~4-++~+-~~ 

0~-r+4-r+4~r+4-r++-r+~~~-r+4~ 
o 2 4 6 8 10 12 14 16 18 20 22 24 

t 

T 

Figure 10.3.8 Velocity Step Response 

IV 
ex> 

'" 



TEST 12 

TEST 14 

VELOCITY 

X10-4 
13T-rr'-rT'-rT.-"-r~-rTO",,rr'-rT; 
12+-r+~~~rt-rrt-r+1-r+1-r+1rt~~ 
11~~~~+4~~~~~~4-~~~~-
101~~~~~~~~~~+1~t+~~~ 
91~~~~~~+4~+4~+44-~4-~~-
8:+-~~+44-~~+4~~-r~~~~4-~ 
7~~~~+4~+4~+4-r+44-~4-r+~~ 
6i+-r+4-+44-~-r+4~+4-r~~+-rt1-~ 
5'~rr~rr+4-r+4-r+4-r+4-rr+1-r+~H 

~;tttttttttttttttttttttttt~ 
2:+-~4-+44-~-r+4~+4-r~~~rt1-r+~ 
l~rr~rr+4-r+4-r+4-r+4-rr+1-r+~H 
0'+-~~~-r+4-r+4-r+1-r~~~~1-~~ 
o 2 4 6 8 10 12 14 16 18 20 22 24 

X10-4 
16TOrr'-rT'-rT'-rT-r"-r~-rTO-r,,rr, 
14~rr~~4-rt-r+4-r+4-r+4-r~~+-r+~ 

12~r+1-r+1-rt-r~-r+4-r+4-r~~+-r+~ 

10+-~-r~-+~~-r~-+~~~~~~~~~ 

8~r+~r+1-t+-r+4-r+4-r+4-r+1~+-r+~ 

6+1-r+4-r+4-r++-r+4-rr+4-~+-rr+4H 

4~r+1-r+4-rt-rrt-r+1-r+1-r+1r++-r+~ 
2+-~-+~~-+~~-+~~-+~~-+4-~-+~ 

0+1-r~-r+4-r++-r~-r+44-r+~r+~H 
o 2 4 6 8 10 12 14 16 18 20 22 24 

t 

T 

t 

T 

CONTROL FUNCTION 

X10-4 
12~~'-rT'-rT.-~~~~~-.~-r~~ 
11+4~~~~+4~~~~+4~~~~~ 
10+4~~~f4~~~~4-~~~+1~+4~ 
9+4-r+4-r+4-r++4-+44-~~~~~+4~ 
8+4~}+4-~~~~~~+4~~~~~ 
7+4~++4-~+4-r+4~~+4-rr+~-r+4 
6·~~4-~4-+44-+4-r+4~+4~+4~~~ 
5~r+1-r+4-++-r++-r+4-r+4-r+4-r+1~ 
4~~1-~4-+44-+4-r+4~+4~+4-r~~ 
3'+-r+1-r+4-++-rrt-r+4-r+4-r+4-r+1~ 
2~~4-~4-+44-+4-r+4~+4~+4~~~ 
1+4-r+4-r+4-r++4-+4-r~~~~~+4~ 
0+44-+4~~+44-+4~~+4~~+4~~ 

o 2 4 6 8 10 12 14 16 18 20 22 24 

X10-4 
12_ 
11 
10 

9 
8 
7 
6 
5 
4 
:3 
2 
I 
o 

t 

T 

-
o 2 4 6 8 10 12 14 16 18 20 22 24 

t 

T 

Figure 10.3.9 Velocity Step Response 

N 
(Xl 
".. 



285 

to velocity. 

At sampling instant k, the average velocity over the sampling 

interval is given by 

v(k) ; 

where v ; average. velocity (mm/sec) 

T sampling period (msec) 

R feedback resolution (pm) 
e 

C ; total counter units (unit) 
t 

10.64 

Equation 10.64 indicates that the velocity resolution, or the 

smallest (non-null) increment in velocity which can be measured, 

results from a change in the counter of one unit, that 1S 

R ; 
v 

R 
e 

T 
10.65 

Velocity resolution improves as the sampling period increases 

or the position resolution is reduced. 

In our case, for a feedback resolution of Ipm and a sampling 

period of around 5 msec, the velocity resolution is 

1 mm 
Rv ; 5 ; 0.2 s"ec 

For velocities higher than 10 mm/sec this resolution implies 

an error of less than 5% on the measured velocity and was 

thought to be an acceptable error in this work. 

Using equation 10.64,state-variable x
2

, at instant k, can be 

written 

v(k) Ct(k) 
;--;~-

w wT 

for a feedback resolution (R ) of 1 pm. 
e 

we have 

x
2

(k) 

10.66 

Using equation 10.45 

10.67 



which means that x2 (k) equals the position counter contents 

at instant k without any manipulation. This is a very 

simple and reasonably accurate way to estimate the velocity 

related state-variable and is therefore used in this work. 

10.3.7 Reduced-Drder Observer Design 

10.3.7.1 Matrix Partition and Observability 

286 

With state-variable x
2 

defined by equation 10.67, in terms of 

observer design it can be assumed as an available variable. 

The observer will be designed to give an estimate of accelera

tion and transient acceleration using x
2 

as a measurable output. 

The observer design will be completely described for the 

extending cylinder model and only results will be given for the 

retracting direction, for the procedures are the same. 

Removing xl from state-vector xe (10.52) and ordering with 

the available state-variables on top, we have a modified 

s tate-vP(': tor 

x (k) em 

with state-equations 

0.8033 

$lm 
0.0000 

= 
- 0.4853 

x
2

(k) 

u*(k-l) 

defined by 

0.8192 0.2496 

0.0000 0.0000 

0.4927 0.3000 

-.0.6000 - 0.8693 0.1493 

and 

0.0 

1.0 

0.0 

0.0 

10.68 

0.1967 

0.0000 
10.69 

0.4853 

0.6000 

10.70 



287 

The output is now given by 

=[: 

0 0 ~J x (k) y (k) 10.71 m 1 0 o em 

which indicates a multi-output system due to the delay action. 

Writing $lm and Llm in the partitioned form, for reduced-order 

observer design, as 

[ '., . "] $lm = 
$:b 

10.72 
$ba 

and 

Llm [~] 
we have 

[ 0.8033 0."" ] .[ 0."" 0.19"] $ = $ab aa 0.0000 0.0000 0.0000 0.0000 

$ba [~ 0.4853 0.4927 ] $ =bO.3000 0.4853] = bb 
0.6000 - 0.8693 -0.1493 0.6000 

and 

L = [ : 1 ~ = [:] 10.73 
a 

The check for observability shows that 

rank [ $T TT] 2 10.74 $ bb $ ab . = ab 

Therefore an observer of second order exists. 



288 

10.3.7.2 Observer Design by Pole-Placement Method 

The observer feedback gain matrix, LO, Chapter 3, is set to 

satisfy the chosen characteristic equation 

10.75 

The particular characteristic of matrix ~ab allows a simplifica

tion on the feedback gain matrix, LO, which allows us to use 

the pole-placement design through the ACKER program, defined 1n 

Chapter 4, as if the system were a single-output one. 

From equations 10.73, ~ab is given in general form as 

~ab [ : :] 
10.76 

For LO given by 

[ Wu wu ] 
LO L02l L022 

10.77 

the product LO.~ab is 

LO·~ab = 
[~u 

mL0
2l 

owu] 
nL02l 

10.78 

which indicates that the second row of ~ab does not have any 

influence on the characteristic equation a. Therefore we 
e 

can reduce the order of ~ab to 1 x 2 to have 

~ = abr 10.79 

from the general form of ~ b. , a This reduces the system to single 

output and the pole-placement design can now be done using the 

ACKER program. 

The characteristic equation" given by 10.75, is first modified 

to read 

I T T LOT a e (z) = zI - ~ bb + ~ abr· , r 10.80 



289 

where 

10.81 

and it indicates the input format for the ACKER program. The 

output from this program is the observer feedback gain matrix 

LO • 
r 

For our application, we decided to place the observer poles at 

zero location on the z-plane, that is, to have a deadbeat 

observer and verify its behaviour under noise and modelling 

errors .. The pole-placement design program (ACKER) asks for 

desired poles on the s-plane an~ for a deadbeat design on the 

z-plane, we need s- - 00. The use of the ACKER program 

showed that the feedback gains reach s.teady-state values for 

increasing negative s values long before s _ - 00. 

Using the matrices as defined by 10.80, in the ACKER program, 

as in Appendix 10.5, gives 

With 

LO 
r 

=[ 0.7107J 
- 0.9845 

the complete observer feedback gain matrix is written 

0.7107 

0.9845 

0.0000] 

0.0000 

If the modified state vector (10.68) is written 

and the output 

x (k) 
em 

10.82 

10.83 

10.84 



290 

with 

x (k) [."" ] "1,(k) [ X 3(k)] = a u*(k-1) x4 (k) 

the observer equations are given by 

w(k+l) = [<I>bb - LO <I> ab] w(k) + 

+[( <l>ba - LO <l>aa ) + (<I>bb - LO <l>ab )LO] xa(k) + 

-\- [ ~ - LO La] u*(k) 10.85 

and 

"-
"1,(k) = w(k) + LO xa(k) 10.86 

,.. 
where "1, is the observer estimated value for vector "1, (non-

available variables). 

The coefficient matrices for equation 10.85 are found using 

10.69, 10.70 and 10.82 on program OBSEQU (Chapter 4) which in 

our case, according to Appendix 10.6 '. gives 

__ [-_ 0.0895 
w(k+1) 

0.0628 

+ 
[

O.OJ 
u*(k) 

0.0 

0.1276] [- 1.2454 
w(k) + 

0.0895 0.0581 

0.3455] 
x (k) 

0.7937 a 

Now, the complete set of observer equations. for the extending 

cylinder, can be written in expanded form as 

w
1

(k+l) = - 0.0895 w
1

(k) + 0.1276 w2 (k) - 1.2454 xZ(k) + 0.3455 u*(k-1) 

= - 0.0628 w2(k) + 0.0895 wiCk) + 0.0581 xZ(k) + 0.7937 u*(k-1) 

and 

10.87 



291 

Using the same procedures described for the extending cylinder, 

the observer equations for the retracting cylinder are found 

as 

and 

10.88 

10.3.8 Combined Control Law and Observer 

After designing the observers, we are now able to simulate and 

compare the behaviour of a digital proportional position loop 

with and without state-variable feedback for load damping. 

The general structure for the controller comes out from a slight 

modification on Figure 10.3.3 to include the observer and external 

position loop. Figure 10.3.10 shows this modified structure. 

From this figure it is clear that a simple digital proportional 

posi tion loop,. without state-variable feedback for load damping, 

is achieved by simply setting gains K2to Ks equal to zero. 

In order to simulate the complete system, the state-space must be 

expanded to include the new variables introduced by the observer. 

The general state-equations in the expanded state-space can be 

written, using equations 10.49, 10.83 and 10.85, as 

Xl (k+l) 1 <1>11 <1>12 0 xl(k) 0 

x (k+l) 0 <I> <l>ab 0 x (k) L a aa a a 
= + u*(k) 

~(k+l) 0 <l>ba <l>bb 0 ~(k) ~ 

w(k+l) 0 0 e w(k) M 
10.89 

where <I> aa' ~ ab' <l>ba' <l>bb' and L a and ~ are as defined in 10. n, 
and <1>11 and <1>12 come from 10.49 or 10.55. 



r(k)+ e(k) 
Kl 

+ 

- -

Storage 

u* (k-l) 

+ 

+ 
KS 

+ 
K4 

14 (k) 

+ 
"-

+ x
3

(k) 

K3 

+ 
x

2
,w(k) 

K2 

xl (k) 

Figure 10,3,10 

u*(k) 
'" 

OBSERVER .... 

Electrohydraulic 
Cylinder Drive 
and Hold (DAC) 

velocity 

position (y) 

Digital Proportional position Loop with State-Variable 
Feedback and Observer 

1 
s 

N 

'" N 



293 

From 10.85, we have 

n = ~ba - LO ~aa + (~bb - LO ~ab) LO 10.90 

e 10.91 

and 

10.92 

The observer estimated state-variable equations, given by 10.86, 

can be written in the new expanded space as 

'l, (k) = [0 LO 0 rJ xl (k) 

x (k) a 10.93 
'l,(k) 

w(k) 

where we define matrix 

LOBLW = [0 LO 0 rJ 10.94 

to be used as input on the simulation program. 

The control function, as indicated in Figure 10.3.10, is now 

given by 

u*(k) = Kl r(k) - [ Klx l (k) +K2x2(k) +K;X3 (k) +K4~4 (k)+K5U*(k-l)] 

10.95 

Equation 10.95 shows that u* cannot be represented as a simple 

linear combination of state-variables in the expanded space. 

For this reason, we separate the gain matrix into two, for the 

available and estimated variables. 

therefore given as 

The control function is 

10.96 



294 

where 

Xl (k) 

X (k) 
X (k) 

a 
x 

xb(k) 
10.97 

w(k) 

and in our case 

KMl = [ Kl K2 KS 0 0 0 0] 
and 

=[ K3 K4J KM2 10.98 

10.3.9 Closed-Loop. Simulation 

The simulation was executed only for the extending cylinder 

model as we are really interested in the behaviour of the 

real system, which is available for test. Simulation will 

help to show if there are problems on the controller design 

and if any improvement is achieved by the control action on 

the linear model. 

The position loop was first simulated only with a proportional 

digital controller and the root-locus and velocity response 

for a ramp input (fixed displacement) are shown in Figure 10.3.11. 

From the root-locus it is clear that, for a gain Kl ~ 0.4, the 

drive will. become unstable. The sensitivity to variation in the 

location of the load poles is quite high as these poles move very 

close to the unit circle. 

The position loop simulation results for controller with state

variable feedback is shown in Figure 10.3.12. 

The sensitivity to. variation in the location of the load poles 

is reduced and now the system has a dominant pair of poles which 

slow it down but improve the velocity response. For gain Kl> 0.1 

the position loop will have a natural frequency (w ) given p. 
approximately by 

w T = 0.3 
p 

where T is the sampling period. As we started with a load 



VAR 

X\la-~ 
12 
I I 
IIiI 

9 
8 
7 
B 
5 
~ 

~ 
2 
I 
liI 

-I 13 .... 6 

VAR 

XIIiI-<4 K
l
= 0.1 

O.t. o. \ 12 
I I - - IIiI 

9 
+ 8 

+ 
~++;; 

7 
6 
5 

~+ , .... <4 
~ 

2 
I 
0 

-I ...... 
o 6 10 I 6 21i1 26 31i1 36 <40 <46 60 66 BIiI 

VAR TIME 

K
l
= 0.2 XIIiI-~ 

18 

K
l
= 0.3 

IB 
VAR= Velocity 1<4 

t 
IZ 

TIME=- IIiI 
T 8 

6 
4 
Z 
11 

-Z 
-<4 
-6 
-8 

10 16 21i1 26 31i1 35 ~1iI <45 60 66 BIiI 
'1"'1 

0 6 IIiI 16 20 26 31i1 35 <40 <45 60 66 BIiI 

TIME TIME 
Figure 10.3.11 Proportional Position Loop (Simple) 

Velocity Pulse Response 

N 

'" \J> 



VAR 

XlIa-4 

12 
1 1 
1101 

9 
11 
7 
6 
S 
4 
:3 
2 
1 

101 
111 !i 1111 IS 

VAR 

X19-4 K
l
= 0.1 

12 
1 1 
1101 

9 
11 

7 
6 
5 .. 4 
:3 .. 2 

+ 1 " .. 101 
• IT 1'1'1""" ............... ,' ••• ' •••• , ••••••••••••••.•.•.•. 

101 6 1101 1 6 2101 25 3101 35 4101 45 6101 66 6101 

VAR TINE 

K
l

= 0.2 X19-4 K
l
= 0.3 

1-4 

12 
VAR= Velocity 1101 

t 
S TIME= -

T 
6 

4 

e 
111 

-2 

-4 ""1,,,"11,, 11,, 11" 'I"""'" •• ,,, 'I' •••••••••• ,. ,., ••••• 
Z9 25 3101 35 .- 4S 6101 66 fI 101 101 6 1101 1 6 2101 25 3101 35 -4101 45 6101 66 6101 

TINE 
Figure 10.3.12 Proportional position Loop and State-Variable Feedback 

Velocity Pulse Response 

TINE 
N 

'" '" 



297 

natural frequency given by wT = 1.0, we see that the position 

loop will have one third of the open-loop natural frequency. 

10.4 CONTROLLER EQUATIONS - SOFTWARE IMPLEMENTATION 

The controller software can now be completed with the implementation 

of the control function and observer equations. They are developed 

here in the order they are required in the closing the loop routine. 

After the available state-variables have been sampled by the controller, 

the non-available variables are estimated by the observer through the 

general equation 10.86. This must be done before the control function 

is calculated, for the non-available variables are also necessary. 

In our case, the estimated values are given in general form as 

" x3(k) = KAl ~ KA2 KWlwl(k) + KAx2 (k) ] 10.99 

" KDAl ~ + KDAx2(k)] x4(k) = KDA2 KW2w2 (k) 10.100 

where KAl, KA2, KDA and KDA2 are integers, which allow constants KWl, 

KA, KW2 and KDA to have modulus less or equal to 1. With this 

procedure the fractional constants are represented as single precision 

fixed point (15) binary numbers in the controller memory. The implemen-

tation, in assembly level language, of equations 10.99 and 10.100, is 

shown in Appendix 10.7. 

After the estimated variables are calculated, the control equation can 

be solved. As already described, in the loop closing routine, the 

position error is updated every sampling interval and according to Figure 

10.3.10 it is 

e(k) = r(k) - xl(k) 10 .101 

Using the same procedure as for the estimated values, equation 10.95 is 

given in general form as 

KPl [ u*(k) ;= KP2 KE e(k) + KV '" '" J x2(k) + KA x
3

(k) + KAT x4 (k) + KU u*(k-l) 

10.102 
where KPl and KP2 are integers. 

The assembly level language implementation of equation 10.102 is shown 

in Appendix 10.8. 



298 

After the control function is found and sent out through the DAC, the 

observer state-equation, (10.85) must be solved for the next sampling 

period. According to equations 10.87 and 10.88, the general forms for 

our case are 

KOBlA [ wl(k+l) = KOBlB KIWI wl(k) 

10.103 

which implementation is shown in Appendix 109. 

Before we finish this chapter, the relationship between the control 

functions u and u* must be discussed. 

K 
u* = - u 

w 
or u = ~ u* 

K 

As for equation 10.33 

where w is the load natural frequency and K the open-loop gain. 

10.104 

As the 

actual command function is u, we have to modify the output of equation 

10.102 before it is sent out to the DAC. This modification allows us 

also to increase the open-loop gain by controller action. 

by making 

u(k) = KUCORl u*(k) 
KUCOR2 

This is ·done 

10.105 

where KUCORl and KUCOR2 are integers. 

by the diagram in Figure 10.3.13. 

The modification action is shown 

u*(k) KUCORl 
KUCOR2 

u(k) ---..J DAC 
T 1 ... _----' 

Figure 10.3.13 Control Function Modification 



299 

CHAPTER 11 

EXPERIMENTAL TESTS AND RESULTS 

11.1 INTRODUCTION 

This chapter describes the tests carried out to compare the behaviour 

of the electro-hydraulic cylinder drive under a simple digital pro

portional controller and a state-variable controller. 

First, the open-loop gain is determined and then the coefficients for 

the controller equations are found. 

Two types of position reference input are used: ramp and step input. 

The results obtained, for both controller actions, are shown in 

Section 11.4. 

obtained. 

Section 11.5 contains discussions about the results 

11.2 OPEN-LOOP GAIN 

The control function, as shown in Chapter 10, requires the open-loop 

gain in order to define its coefficients. The results,already 

obtained for the open-loop tests, could be used for this end but 

the required constant can be obtained more directly for the whole 

range of operations using the controller software. 

If we exclude the gain of the controller (software) the open-loop gain 

is given by the product of the three main components 

where 

K ~AC x KAmp x Kvcy ILl 

~AC [U~it] digital-analog converter gain 

KAmp [ mAvJ servo-amplifier gain 

Kvcy [mm~ecJ servovalve-cylinder combined gain 

11.2.1 DAC and Servo-Amplifier Combined Gain 

The gains in the digital to analog converter and the servo

amplifier are linked by the fact that maximum voltage out of 

the DAC must correspond to maximum velocity out of the drive 



300 

and, for normal electro~hydraulic drive, maximum current supplied 

to the servovalve. 

As shown in Chapter 10, our electro-hydraulic drive is not a 

normal system as there is a mismatch between power pack and 

drive elements. The mismatch is evident at speeds in excess of 

13 m/min, i.e. at sOi. of rated current. 

With this in mind we decided to set the servo-amplifier gain to 

a level which would give around 8 mA for maximum output from the 

DAC. 

With this set-up and using open-loop, the bias in the servo

amplifier was used to cancel any movement in the drive, with 

the DAC output set to zero. Under these conditions a test to 

verify the gain associated to the DAC and servo-amplifier and 

linearity was applied. Using the microcomputer, the input 

to the DAC was varied and the current out to the servovalve 

measured using a digital multimeter. As the bias ~urrent to 

stop the asymmetric cylinder can be an important element for 

simulation purposes, the results are shown in two graphs. 

Figure 11.2.1 shows the complete range and Figure 11.2.2 the 

expanded null region. The results show good linearity and a 

bias current of around 0.14 mA. 

The combined DAC and servo-amplifier gain is given by 

~AC x KAmp 
,., mA 
:;: 0.0044 unit 11.2 

(maximum DAC output corresponds to (+/-) 2048 units). 

11.2.2 Servovalve and Hydraulic Cylinder Combined Gain 

The combined servovalve and cylinder gain, K ,was verified 
vcy 

under closed-loop conditions. Using a simple proportional 

loop, the ramp input program was asked to store velocity informa

tion and the current to theelectr~hydraulic servovalve was 

measured by a digital multimeter. 

For both directions of movement, the results are shown in 

Figure 11.2.3, bias current taken out. As predicted before, the 

·gain for the extending direction is higher when we move outside 

the null region. 



· 'I'-~ '~'I:;J:~;~";irJ~;I!'::i ~ltl ttj "I~j~J:;;~~;= f.:~fll::i '-h~i~ ".~:; ... !:. ~;,. r t,,:·t, i ·t· [.1 '," ~.: (~) 'j: (t) .~; ').-'1 ~f::1f"f~ jFi:Jf~li:ll:j~ 
, ,',..' ". ,'.. . ''';1':' , .. ~.' .,. . ,'.' "T" .,.:. ,'. , .' ..,. ,. I I' " , , " .' ". .. ." ,..:1 :" , .. I' I : ! ," " ,I f~ !"", :', '~f' t ,.1', :. : I. ':., .U, ,,; .... I. , '., ~I I l, . , :. t " ! . :- ,I. . . j , ' " •• I .•. d '1'-['" ._:L ...... ~- -·~"I· .... ·-· -·~_I, .. i-' ~", .,- L ~I"- r .. .I. 8 ., • . t· '1" I - .' I /. ·1 I ...... _, •• - ." ... ·Hf . "1' . -/.... ......., .• I' ', .. "''', .... ,.. "',' I ., , . ., • ... • I' .. ... . .. . . "" 'I' " "I"" .. ", .. t' I ~." ' It,' ,""" >I. " ,. '., 1'" t! , • ',. ',' .~.. ! '" /' t ' 1 """" •• t '! . t "'f r' 'I' , 't . " I ,,' 'I 
.. . T· ,I, I. ,,,.: • ';::'i.:~" I l' c, .L:":'J"" :.I. h'" :: ; " :;:. ';'1' '1 .' """'1' ,. '. '·1·,·,1., .. ". I' "I 'I<"! I" I DJ :r I , I., ,:. I.:. '.' '.',' " , .. . ·1· .,. .. . .. ... . ..... ,'I. '. 1'''11'''' I ,. ..' I· I· I' I . , I I" I· • . " ',' .,., .. 

. I, I I, • ; :' ! I' .' ,';' ,'.". ,! 1\1 I,: "~' ;'" '.. I ' I. I' !. . " ·t I! i ,,', ' '.. '! o • 

. ! ... / r.· --;·:-····I·-',. .. :.c.:.L· .. ·fr ... c·r· " .. \ .. ,. ,.,. . 7, I" ',' I I": , .... " ,. .. '1
1 ,; 'I' ,...,.. I .. ·· ,. • " I, 'j -; ::Jf ' I.,. I I j t .1,. " i ,., I " I " "I , I I" 11 I" "I, 

. .:1,. ~ ~Ii~t; ~J.;:. ;,:jll:~ '~r!['~: '>:.:::. r: ~·tt ;l:~I(; >J. L.·l :'J ,{' i:i~ :~':;;:I.;:J:: ~if;:i: ' .. '\ :-Ji;J j .J:: :~'J .. :: ~:I~:'t.: "~r~~:+ (I:.:, :J;.~ :):;~ 
· !. I' ,1;" :1,::':' .... ,': (+)""1 .. ,. '1"lq 'i..,,) . "'!" I . ::,' "'·,·,"1',·" 1.1· " ,'!"'i! .'" ~"". ,' .. ''''I.I~'''':; ... ,.lt '.1.',,", 

· I "'1 : r~. " ....... " ... :-'1" 'I--r' ._,. I,: ,"'' I''': :""1'1111'" f'.r , .. ' ,,,,., ·,,1, .\. '11·. ,.... , I "1" I ... ' "1 I" I I' '1'1" i,lL '. 'r"'" 'I'" . ·ll·r." I , . ,," . , .. H ' '.. •.• ",' 1':J1" "',." , I' . ". , I . " .. , '" 'I .... ',., ., , .. ,. . .... "", .. , ", :': ,I" ::::1 .. 1::.: ':!:!,.', ",: ;~: '. .. ... 1,; 'I;. t~i' It:! r~' ,'. :',; If' ' :,' I • d" "':', iI.:' ." I ,; ",.", ' 'l I ,,' I,. " , . ,:: 'I': ,I: !', " :;;: 
. ; ... tt:; :::~::>7C~T~ C:;;}':-' ,1;1: 8-; '., [1:: '111::~ J-.,:j.~ 41! :..: ... ::; .,.:I:~:~ ',:, :r,j1'·l.· ":.1-:., . ~·,t ".',,/".' i :' ',;: ':ri .:'.~ln;"~ [:ii :Ei ,I ., l '-" -V"'''''' "·T,L.!.,.,.J '1' ., cJfUJ+. IT'·If.~ -fIT. '--I I ,. \ 1 .. .11 , -t'" I·· 'f .j ''\''''1. .j. ',' .I. '" ., , .. I J .... r ..• ,.+ '~" 

'11, :;:. ~!:~~: '~{': ~;tH~; ?ii<~~:; ··j;~:r: ~f;~ ~:~~~~;;'II~;~( ~.: <f ~ ::1 -::1.: .. : .;::; :'; ':: '~:r·i··, .; .~; .. , ,I.:: i :.l' ':'.~ i ::,~~;.; (;:(; :;;;:;~:;; ~:~ 
• . • • ••• , -\.. • .. CI. ' •• '., "1"1'·1.. ...lI:JJ H ... I:.. 1...1, ..I: .... I. . ,. _I" I'" ,," - .1, .1. . . , . I.... ... ""1 / ..... ,'.. . I .... 

'.d I,~ ,,·1,· ,:[:.... . l I, ~, • ', .. I ',I.p, .. 'ftl ~"It.. : I ", • !' 'Iq" I I I I I I I I' , ' , , :' :', 'I, t ,,:1 

.. ;.,.. .. :J.:;:: 'j;_"::'l!,:~':~u.~'''+.'~:':~''.''L-;-;';''i~;:t#1J'' ''-+'''. ~" i' 2 '~'.':.' .1':'\, :.1 i"':I" ., ... [ 1',1 . r~' ',' I. t"';;:':"'''''';''::''~'l'7-(': 
I'r .• I· ';":j 2:'~;;: ~~:tlt,~, :~£li:~' '.: ("1 ~l"· :!~f!w,;r! III ~~: 1.1!,; .,: .. ""::'1< "-;'1" :,1, ',' .'1····1· ·:1 I':": I" ." ,!'I '1 '1' 'I'; ll ... : : ""\~,!':; 'I: .. :,.:1.:" ['''1;::: .'. 'I ,. .' , .... '''''. :.: I':: "1 ;.... , ~ •. 1 '11 Il' 'I', . • ,., ... t·' ' ,', , .. . . " .:, "". I ". I ••• , , .. 
, ". t· ! ,.1'1 :P.:; 11', .. ': ,I :;.': :1: "d .:;! :" ,I j' '. 'I I. I' t' " " . I '" '. :,' ! 

.... - ._. ~ ........ -, "-~,, '.;;r. ·-·· .. I..,~ .... ,~, "' .. , .. ;1" nc; :." ... 1;--- " 1'··· I' , .. L . ,c'I' I .. ' I· , .. ,1. + .. , -,;", .. !::),;I. '.' t' . ': "':I"T' 
.' i t :'1: ,.;,1., ~ '~I~I;' .' I ,1,' If"' I,! pr~ ~I t It:: lp' 11 ",! ' ' , 11 I I,; I t' I I' , " ,,, 01 '!'l '" " 'I' p,I',,' j,' 

, I ,·:·1 ., ...... :C .... JI::JI __ ~· \. I.: .1····1: I, ,')" 11"1 r'i' H,l "r', :,'l ·l.:r;'~I: ,1,. iI .. I . I . '. " , .. I I· ,.. I '1' I I I ,I '. ". . . I' ..... ,-: ~ ! ' • 't· . ..... 'J 'I I " '1' ; l' 1 f" " " I' I ' , . , '" . I' " 1 ' • • ;"''', ':, " , : ,', ,,' ,': !I. ,I :'. " t ' 1 ,. I ~ "i"," I,' I' ''';1' I. I' 1,,1. '1 .. ' ': ! ':;. - " 

, .: ., ... ', 'I ~ I ···1· .. ·' ,:" "', "1"','1"1 '''I ' , . . "1' .", , ,. I " I"'" ,. I I' I' . ,. ,.'1 I' , "'1 ~., .' I, .. tI , '1 " " ,I "I' , 'I I j ~ • I, , • " • , I I l. 
-1800 -1600 '.'-140'1,;-'1200":-1000'1 ;-"800:·" ,;-600'riJ'-: 00,..: -200 ,Ol 1200. 4'00 f 600[· ,,800, "'I ~OOO .1 ]200" 140 . ··100 . ,,! ' .. 

" .-, t" " .. ,: .. " ':-:" • , . I.'. "'1 ql, I I I tF'l~l I" 1:' I. I' 1 I 11 I' t t J' :" I I, ' , I I' ,r, I I I,:: d ~:II 

,. i . I .,1~!--:~ ~;-F~~i::'r::: ~"''ihtrr:'II:-:;~r IT.*,n (:ffil~~' ~ ~~I" :". , .. -1' '+.·1 ':'1· ,I ".' '1·, I" ··I,I':i·' r"( 11'" .I:"'f:!' 'I'; "': !::'! ~+~r tii~{~,J~· 
I •. , .. -,.'! ;:'''::-'1'':''': . "'i'" ." .. , .. u " , I. .• ", .. J" .. 11 - " I . . /.'/' , '·1 . [I . I ,: 'I, . . ··1· .' I,,:· '1(' . .. c, . :,:;·I:~~·::. ~:t:;: :,:f'jh;ifL;:l ~~J'~I~j i.~ :;:~ !j,~f~ li) ~~:t~~ ~'I . J -2,' c, ,. ': ;: .:. '. i';" 1'1 ''/' :,: !':::', !' .. f· ,.I!'~; ::. "'1";; :,j:i'. ':I'f~/ll!l!: l·il!I!;.: ~,:':,!; 
! 1 '. -. ! I '! 1'1, It. ,1\ 1",101'1 'r1. '" ~ I ~l ",1,.1 11 • "t "I I' , '11"1,,, I "11"1" I,· It" ,It, , .. , I' I' '! I,·" .~. J~k ~:'~~l)::fr, ~!lln~ :~:I"': tl~,!:~j-J": J'lt; ~j':!: :;:; j, .. :: • :i·'.· :,.~::i .::\ ,:\::,,; .j .. :;, ,.' .. I. !:;., 1':.1 ' . .) :f., I :,: jl,:U: '~!!j:i' ilHI::~ ,·,:I;,~ :J, !:~l 
. '·T .~,;- .,:.p.;: ;,cc.-l. r~:f!:;'; '.+,; ;'-in' ,,' .. ,!:.i, ";'i':~ :;I:t:'i, l~"I;~ ' .. i:'.:,· -3 :,) ." : ':1.': !; ','1.: ." !.' ., I"' "::1.: I.··:i 4;''': ,; .. I..:! ~t;I':': 'l~,II~l:" ! li:. 

. """ .:',:' ,. c'! '11" LI I, .. ;' , ... ':1 I ' ,'" ',. ,.' .'.11'.' .. !'I I' ,11, I ,'. 'I' I' 1'·1' ,.', . , I •. , "'. ·IjI., , , . I ' ,t~, 
. :' ::~~,':-~;:";';r~:~;~::::F:::;rl~,-!;" ~.:·T-··I·hll:,::/~!,!!:i"~~;l:. ::".:I,:.~- .,::~l'~;;l~'I'·'-;"I" "~'I' ;. ,t '1- r I't~l t,t i1'J ·11r:l!:';11!1!i;~I·:,:l'1:ll~1: 
" !;~_: I "I I:,' '''l~' ",d , ,~lj •• " I it': -:~ "t, '1'7 "'; "I ,-,. I I I . I "d 11 !!', ,'" ';, I'! ,! 1," tit I" ,,':' I ! 11,:, : :! ;,,:::-,,~:- <,ij':ji .. ,;]]:;.!' ~C:: ;,:":: ' .. 1'7- '~:'I']:~: i:"I":; ~j:-I' ::>; ., i;-4' . ':!: : ···,'~I':·rJ ',. ,! .~ .. j I . "i':-" I':'il ~'t~ '::1"'1 ~T:: :'::11;::, 
. ,1' "-;: -, ,': ':I,i.l; ',: ~ .. I: ' - .... , I ,1 ,- ~!~:- " " "1 . " ': 'I")' ,'" .' j : I' • 11 • -' i "11:' ~t ,"t 

1,_. ' I .. ,. , ' 11... I ' ," I ' .,' I "", I .. , ,. 'I ,." '1'1" I I, " ," "I' . , . ,', " 'I "" 1,' ,.., "" I, I 1 ' " '., 'I I 1 ' 1. " 'I' I' .. , ..... ·1· --I .• '-"/",. ':'I~" .. 'r '" :: .. -L .. J , """ 'to , .,:1.. I" . I,'·' 5 ,I, , ··,1.1· "I ..... , .... . ·1.··1 . . I. :4··· .. ,I"~ .. ' ., .. ,.; "1,',, 
i ):,.,i:, t .1' ~ A:~: :V .. ,' ,~i '::I:;;!' I. :':. 1',::1" ':':1:" "''1'' " i.-I' I. i' '\:;: .1:1 i ~r:1 I i :,. :.;1 .. , . I .,f·' ::',1 : ~.).:: "ll :1:; 

.. .I.,J::...:: .. '. '''I''':' ':et' .. ~' .. : j .• !.,,+ '.' .:.~ :11:cJ':!.:I~" ' .. , ':1;" ',~I:. '-6:·;'1 ." ','.: ..... 11· .:. '. 'i' .. I ·'1 '1" !. :1· I.:.' ,I ' .: :·l:' .. ~i !: ,;:.: ::,; 
,I); I· : .. ::~ :.:: ~:L .. :;:.:+ .. ;" I. I:' "':'1' ; .. , ;'1 I· ': : !.,';.' " i'· ,.' .. 1.:, : .. " : .11.. '·"I:·:p·,·; I;:: 
·:I'-,L-I-~-·I::~J~l~::!!:~:I~,.;l~;~~.: ki~ ~~':.:::I,.,.>:.'i.' : -7c~r;erit.' iiv ·D~c:uni'ts~ur:;·; }.I .i. ·j'.;:'ui::..J'·'f··i«.l;;:: : !.: .: .'. :'~I:!': !:ii '.' 'f:' ':1.' .;' .1, .. t .... ,.. .' " '1· . •. . I : I' ; .. '''1 " I.! :, ;.I:" .. ' '.:- :- :"-j'''r:' -'1-'1.,.',' '~" .. ' \'. " .. "1. ...... I' (Biased' Test): '., .\. ., ,-, li'''~ 'I"; j,. .... L l.-

'. :::.. .t, I"! ". '. I..:' '.' . • ,. . : .. , . , . . , ." , . ". \.... . " ....... L'.~ .. ·'T-7 .. 1.,.·, "-,- .;, .. t· .",-, I"'I"'~ , .. ·1 : , ... :. ". I, ••. '. ''',' " .• ,.:II·:·.,·I. .. ·I .. ..J:...· 
, , "" 't' , • , 'I l' I' I 1, ' ',' ,t" I, I '1..oJ 

.... _,:: ".,. L.:-: ~:ill' .,~ '7,'11 . ':i:f:' ·t,Figure .1l.2 .• T. DAC and' Amplifier Combined; G ' t· (f 11 . ) :I'''! ·1 I": J '1'; . ":'1: " :-::::ij"~" 
, , . , .. ,t. t "I "., ,I l" 'm' I aln u range . 1 ,. t • .".. '1"1.1' .,' ...... " . j , ' • f' 11" , ,t", ,-., ., ...... ' j", I , ' ".., . '" , .·.t ". ,. , .. . __ ... _._1...:' "I., _L.:..-....0...:.!l:!....._--l..!.-~_ ... h • ..:. ·,L!....l.!.:..-,_.J .• _ . ...:.l_l .. I... 11.' I. : •• 1. ' .•. 1. l.".! ·1.!.. •• _._ ••. _L...:~'··'···"'· 



I. I' ". r 1": :I""F"~'~ ,,·t'· f""""r'"rt ';:I"'r::'I~""j1: r'J'" "I I " "I' " . I, '[" P" I"'a l'" "1 '~;I""'" +-::·wq~ ',' 'a "1' ;''!ll:"' , .. , f I ~ ,T"~ ~l:J,<~~ ;i~( ~~:';:~'[r.~' ~f '~~fl~J' ;~~C~ ~.{'T .: iT.- ", ,:: 'I :::; :',' '''1:: ',r"::-:: _I:. ,,"!" :-.~ "1" :\I~:, i~': :01:~ >f'::~'::~;t'l: r~ 
, .. '1' I:J.:...:~.::...::~:.:)~ . .:.':.: :--!":·l'-"f':'("'~;·u.-4"I"": 1.1 to:' ~ 'i ;",!' 'I "::~"~~: ... "~! :'·rl .. , 
I : .1: '.1 ':: '.; L: . ,:'::,1. ". :',' " ... ;, : .. i 'r::;" :"".1 :' I.' .'.:": .' ',; , I I 1 I' 1 (~) (+,), : I:'::", ": ;,:,', ",,; 
:.: ,;' :-I,rt·'J-:'::-:"I'~j. t,l.i ··::!,;, .. -I~ .... ;r:::ff:'l:, :\;··:,1,1 1'1" ',1,;,:": 1'1",11 " !c:;-, ':Li;;·,T:;,;::.;:r". ,=;:I ""r"',:U:J~;r:rf:I;~~lf;;:i' :":'I:! i:·,:'r:~j:~=I,~~~:~:.:;i(k;. t i.', ':' I 'II,! 1':1: -/' !'~';:i ':l~ ":I"::i':':I:;~,;d~;:::!~i~'+TI! 
, .... 1 ",. I'~' .. , ' .., ... ,.. , , I I I,··, I . 'I :;r T' T"" j" , ,. - " ." '. . : : ! ~'. ;. .." I" ~ "I' : , ., 1 ,. ':. 'I' - ' '. t • -I .,,,,' :'. 

, ", " " .... , -1-- -I'" , :'j' 'I .', ~1··;·'-"l' .. :"" I 0.6 1. 1.:. 1"1 .. '. . ",-1 "1 '; :;"'1T"::-r,l:-;!i C -'l1 

, : :f-'; "11. :~.:', t·,·, '.(' ) l I i.:' "1 : '!JJ ,,';" i' I "I',,: I' ,I "1 "',I I; 'I': : , I: ",I!:" -"'I:'; :;:'1' ,;: .;',1 
• • , " '. 'I + . 1 I " , • •. " • ,. I I' ., .. .. . , . . .,' 

. 1 I 1 " -. ',' ., ;. ~ 'I • :..... • I 'I '! . , . . , .. 'I" 
.. • .• ' '. .' I • ."" I,'" . ,.. ~I I ., "I .. . '. •. ,., : .';':'~' ,::;'I~"~~ '~:t:-11"~!' 1 '~I:'" i '; f n :"'I:'~; ,1. ;;, ',l~:. .. 0; 5 Ihll' ":':',1 ,; 1-' 1 . ~ :,', I. I: t·!:·;.I',"! I''''>.' : .. :,,::- ~'r 'i; :,: '~'II:/I 

,. " ., ,. •• I .,' '" t r' , ,...,.' .., • , . " I • • 

. i l ,L .. . .:...::"..':. -'I.' ~ ',:1.k l,: ... ~ ,_:,rr;J, L:" ::~II ~ , .. ,: : 0' 4 ,,:. ,;'.:1 .,. . :'1--1 '1' 1"1.' i ,,! ~ I:!' 1 .... , ,I t !," J: L:I, .:.~ t· ,r. r" .', !:.; ,- ., I" ,! ,j 1 I' :, I .' l; i: 11 ,1· .' , 1 .1 . I. I .. i .:: I ' I' I I;. I ~ I, ' " j , I •. -Ill ' I I i '.', I;'" 

;-- .. 'f.'~· .I·:·:.::;k:'ii~, 'JJ':I~', ~":'+ l: ':; J;"P~:f>yJ ';. I' 'r:! ,!,,~ "'.;: i: (" " i' ", .'il :; i .'i,; " ":1:' i ; :,:;'1' '. rt··i· ''''F~ "'1'- .,-1,:,-: ;Ctl';':~:I" r . .-II"';';'L'I~,;r-'f"":'['~' ,,'·'-tl'"'+.-·! .. ..:.' 0,·3' 'I "I \"1 .. ", .. :!,·I .' I' , . I le It'''' +. ~.", . .,.,.' ','I' ... ' ;-._J- !. j' :·L l. ,. '~ij!_;:" =- r' f::. I:: :,'~ :/": 1 •. 1' • " . '.' • ," .,.,. I . I' 1" 1 . j : ". •• I ' I:. " ,:1 :, 

!-:'.!·:,:~;·,;::\·,.(:t:.I:>, ,!.i"··'.:.:;r;:I;:l' :;~+;-t" ' ... 1--:' " ", : .~ I>:' j":' I·· ': ;". ,! 'r· (: .: n i ,I' ~".:., ( ,:: 
.... " \'-1-' -"-1---" .. _-, r" . 1 "'~"I"f" . '. I'" \, 1 L.,. , ' .. , , . I': ''':! ",'!.: \': ,,:. ., . I .. '1 ' ,fl., .... , I i : .. ' 1 .. , , ,; 1 " .. '" .' 

, .. ,'. l. ,": ,: :.' "1 ::1",:,"1 ,.1 .. ,'" ' .... '1 I', . '1· I' 'I : I 'I" I '1 ..•. I ' • ,1. , , ., . , • I " " .., ' ,. , ," ''''1' .' I'" ., I . I I" .. "" I I ". '.,' ''', '.,,, ,. ..' ." ,--, - ", .. ,-I· " .. 1-,,' .. I·c.lc .. t-' r .... ,·, 1 1"" 1 ", I .'. I -I I. l·rL.j. I . "I' "":r ' 
. .." , I 1 I I' I ,,', ,I I ' I 1 1 I' ,1" ,', " .I..,. ''', ! .. ! ,.... 
, ". I. ',,!. '", .. .11",;, I 'T' ,I", i· .' :'1·'''':' 'fC ' .. f I" ,i" I' ., I , '. " . ".. I ,., I _ '._ J:~_f'.! l~ ,', r' 'I; t !::r'" , . 1.+;-:- ,!! ! ' I : 1 I I .!" I I':" ,: 'J: ;:..: 
'. .' ~ i·~!.::iod: '·90:1' -'80: ·-!7Q"C'':'.60'·-SOI'''J40; '':'3d '''20 -10 ! 10 20. 30 601 . 70 .,. 80 I:- 90; l'OO~.,.' I."" '.' :.: 

. ! : .,. ,1 , " '., 1:",. 'I' ·1"1;,,, '1' I",··, 'Ij" '" p. I: ·1 .' '. .', ' . ,", ""1 1 ", . I' I I. I ! : ~,"::I"':' '" '.::~" . , " . . .,. I '~ I ' I ,I I . • j,:. . I· .:,.:' 

,·:· .. '-~tt::~J~~f~f:\r:J=::l'~·7:'~"~:~i·~I'::-i·~' .. T"·i '1-
0 ;1' ,.J. ";',j .,,:~!:~ (DA~.~~1.ts ";"I:';'~ 

i ;'; ...... ,.,:-::. ,:·.~")l;[ 't' : ... ·k,·, .Ch~. :..:.:~;; .~ '~:'. c' ~.': t -0 2 ": ,.,. i ,I i.' " I' I I' I .. 1 ,::1 :.: ... ': ' .. ~.L. 
I I i···1 I:' :;.f!: .. lf.j·!.,·: . .I- i , .. !, :."'·l· :','1.: .'!:'.: :,,' , . ;,1':, I '1" .,' . I, 1 ; i'" I,: ""1' I :.'. ,."~. -- '"1'-''' =-,'--- .. J . - .. - .......... 'r. ..... ~ .. , "'., "I I., .. , '( )'1 ..... " ... , .... , .. , 

! ': I';;: :;~~n,' ~~~ ;:j :1,':, :.':,: .', 1',:1' . ',~' ,:: '. I "1'1' , .. :. 'I,: ,'. i" .:';' I ~. I ~. , l:· I . ,: I \: :,l't:: t" 
: ;:' '!.' i lJ~! ::~1t·~j!,r::I;:tj ~r.I::~:I;:~~li~~bl' ;!;I·: ,;0'1:

3
, :!, 1' "1 1 ;,1, '1"1 :'!;. I ':'1'.'('1: 1 ::[/1' I,:"" . 'i:.,:,.II';"'i:~ 

, ., '1' .,. , ... , ....... ,.. . [ , I' t .. "I " I .,~. '1" ., , ,.. I' I I . . J.. I' 1 .•... " .. '11.1 I,· " •• I' , ! '" I ' .. " ,. ,.. " ~"" ' , I . I .. . I' . . I ,I, I I ';, . , , .• , ... .. .,- ' .... ~':...:.t'-·t:·· ·..:;' .. 1 .. · .. ' .. '1" .. , .. -"""['" .'. ',.- +. + ,. -0 4' '., j. ·1·.:. .. ,. ..' I' ,~ ...... ' ";'1"1' -I' .. :'" ''':'''_' . ..,...., ... 1 .. ·t,-,,-. ":,,,'-'1: ' .. : .• ',',1,:" !-:~'" ... I': ; , ':j~':" : :'1 " "'., 'I' "I' . ',; ,. , , I' 1 ., 'I ': I·' I ':' ,. ' .. ,!:"j I"" I ...• .. .'...1" .' ~ ..... , .. '" . "...... ., ' ". .. 1 .... .." .. '1" " .. ,.. '1"-" T .. " .... ,·1,· , . .. .., . .. , 1 .. 1 .,.' I" ". •. , .. I '. '1' , ... , ." ....... " . . " I·'· . I 1 I I" I " , , "I' . ,,' 'I j , ..... , ... '" " , ,.,' . " I , I . • " '.' I ' 
.l· ..... : ·:~'I .. · ... ·:..:..:·,·'--.·-'-+ .. I.'L .. ·' · __ '~·I·,J· , I·· .. ""1'." : . :"'05 '.,"" . I ,. "'1''': : j • .. ·I·-~·.I·" .. I". : ,';:" i ., '.' .. ,'; I'· '.', ., '1'1 I"j , ,I: !. I ' , current, .i v. DAC ·Units, u I' I' .,'" I""";':" 

. . ,... . .• -~.,...I"" .. ' ... :,. Lt f .. ,', , I ' . '.' - ; , ' '. . I ' I I· ',,' I" ' " ·1 .. t. 
I "',. 1,. 'I:":'t :.rJ',: '::i "! ::., ;.!,' :1 . .' i i. I '.1 .,~. • ... , i I I • ~ :. it" , , :'.1 I , ' .! . '.---- ._,. -........ ," --"._, .... , .. ,., .. L ... --'1- -. -'" .. -0 6 (Bused Test) . ' I. 1-',"'1 . -. -..... j 

, I 1 .. '! .' ::,!i::-: J::;: ;; :1" <,,! ;"'1':': " : .. :,;.: i' ::j, !, ; 1 .• I 'i' I I I 11 , I " ',' ,t··· I'::!' 
I .. , ·:·II •. ",~c. ::'1," "I" 'I; .. '!'; . I' .. :'\'" ;'1 ,' .. , , I ,.0; ·1 " . I 11, I, ""'1 . If·, ., ,',.,. l' .. , 11 " . . I' I ' j I" 

'!. <"r,:(·:~t::L:::~·~.j:.I.l.~i~u~~·:~l~~:~ :,DAC an" Amplifier Gain. ;~~P~~ed.·nUll :re~.~oll~. I" : :;.'r~!: I"; .. !~ r, 
'.' .. , "L J .. , l:.. .. 'I . 1 . I..' . ,I .. , ---"'1 'I .... " I ' . , I . , " :. I'; ,'.' " '.;' I t 1 "'. ,., I" .. ,. ,. , . j 1 .' .. . . T , .. , -'."; . : .. ; " .•. 
_l-l_..J~rL_ ... _~l~,L~.·:_I_·~_.J _,_1~ •• -1 :_ L J .. ,~ 1...:'.: .. __ -1 



r~-i~ ! L .:1 

_. __ .--...... -.-, , . 
1.+ .1._' 

.1 . . , 
'-1- - VELOCITY~--,. . . 
• >t 1 "t'" (nnn/min)t,~. 
• • '. ! ' 

~~F -;~-~,-'~T--
....... - - -~ .. , , . , . . ,-

......... -- - '-.. , 
+J900~ ~.~~ _c_. _____ ;_.--~- .. Ll ... . L ':.-,- __ '. ' .• 

, 
T"-- • - f .. _ .. 

'L. , , 
;~[ 
;--1- .. .8000 

" 

' .. . _,' .:.L 

'1' 
·-'6000 

:- , . 
· , 

• - T-. 

i 
J 
.i 

--1 
___ ._ .J 

... . ! 
.i ... , I 

, . 
._,...- -;-- . 

., 
'-- -

L. 

- -_. : 

,- ,. . '. I' l' I' . 3 .4 I 5". .. i 'i( 
t ! f ., - . : r' . r _' • .1. I _I •. . t • t, . ~'... ! 

. i I. i i" ., 0% i ., 20% 30%, i . 40% rated· , 
_ .. ] ... ,...." Figure 11.2.3 Servovalve and Hydraulic Cylinder .' ''''1 . J 

· ,. .. ,. Combined Gain 
.. I 



304 

For conditions outside the null region, the gains are 

cylinder extending K ; 48 rmn/sec 
11.3 vcy mA 

cylinder retracting K ; 31 rmn/sec 
11.4 vcy mA 

11.2.3 Gain Correction by Software 

The gains for both directions of movement, being different, 

cause the following errors to be different. To compensate 

for this, the software correction shown in Figure 11.2.4 is 

used. It is added to the modification shown in Figure 10.3.13. 

It is clear that such correction does not include the variation 

in gain around null but this could be included without much 

difficulty. 

to be enough. 

For our application, this correction was thought 

The correction gain used in this work 1S 

11.2.4 

KCORRl 
KCORR2 = 1.5 

Total Open-Loop Gain 

11.5 

After the correction gain, given by equation 11.5, has been 

introduced, we can go back to the open-loop gain of equation 

11.1 and verify its value. 

Using results from 11.2 and 11.3, as the retracting gain 1S 

corrected to this value, we have 

K ; 0.0044 x 48 rmn/sec 
; 0.21 unit 11.6 

In our case, as mentioned before, the position resolution is 

1 Ilm and we decided to maintain it through the following error. 

This gives an internal position - DAC gain of 1 unit/Ilm. Using 

this value on 11.6, we have the open-loop gain, in the proper 

units, as 

K ; 210 -1 
sec 11. 7 



y>O 

* u (k) KUCOR1 u (k) 
KUCOR2 DAC 

y<O 

KCORR1 
KCORR2 

Figure 11.2.4 Gain Modification for Retracting Direction 

u (t) SERVO 

AMPLIFIER 

..., 
o 
V> 



306 

11.3 COEFFICIENTS FOR THE CONTROLLER EQUATIONS 

Before any experiment can be carried out, all the coefficient values, 

used in the control and observer equations, must be loaded in their 

respective memory locations. As these equations are solved by 

module 2 the memory locations refer to its memory map. Loading is 

done using TIBUG and hexadecimal. representation. It is a manual 

operation but simple and can be done quite quickly. Table 11.1 

is used in this operation and the values shown there refer to the 

extending cylinder control and observer equations. As shown in this 

table, provision is made for coefficients required if the delay 1n 

the control action is greater than one sampling period. The 

equations developed in Chapter 10 admit a delay of one complete 

sampling period in the control action. That is why the coefficient 

values for control actions older than one sampling period are set to 

zero in Table 11.1. 

11.4 EXPERIMENTAL TESTS AND RESULTS 

11.4.1 Experimental Tests 

The experimental tests, which results are shown in this chapter, 

were basically carried out to compare the behaviour of the 

electro-hydraulic cylinder drive under the two controller 

actions described in Chapter 10. The first control action is 

related to a digital proportional position loop and the second 

is related to the same proportional position loop but now with 

an internal state-variable feedback action, in order to. improve 

load damping, as shown in Figure 10.3.10. A typical experimental 

session is shown in Figure 11.4.1. 

11.4.2 position Ramp Input 

For the ramp response test (step in velocity) the drive was 

asked to move a certain distance with a constant velocity. 

With the memory available for data acquisition, the actual 

position was stored by the controller and the velocity, pressures 

and thrust signals, stored 1n an HP storage oscilloscope. 

The velocities chosen for the tests ·are given in Table 11.2 with 

respective percentages of rated current supplied to the servo

valve, for the retracting direction, as given by Figure 11.2.3. 



307 

z 
o 
H 
(f) 
(f) 
W 
(f) 

..J 
<I: 
t
Z 
W 
.~ 
H 
et: 
W 
0.. 
X 
W 



308 

Coefficients for Control and Observer Equations 

Memory Coefficient Decimal Hexadecimal 
Location Value Value 

FE 80 KERRK 0.125 1000 

'" 
FE82 KUK1 - 0.410 CB86 

c: 
0 FE84 KUK2 0.000 0000 .... ... 
os FE86 KUK3 0.000 0000 
" c" .., FE88 KVOK + 0.400 3333 

..... 
0 FE8A KAOK - 0.036 FB65 ... ... 
c: FE8C KDAOK - 0.120 FOA4 0 
u 

FE8E KPMAXA 1 0001 

FE90 KPMAXB 1 0001 

FEA6 K1W1K - 0.0719 F6CC 

FEA8 K1W2K + 0.1025 OOlE 

FEAA K1VK - 1.0000 8001 

FEAC K1UK1 + 0.2744 2381 

FEAE K1UK2 0.0000 0000 , 
FEBO K1UK3 0.0000 0000 

'" FEB2 K2W1K - 0.0628 F7F7 c: 
0 .... FEB4 K2W2K + 0.0895 OB74 ... 
os 

" FEB6 K2VK + 0.0581 076F c" .., 
... FEB8 K2UK1 + 0.7937 6597 
Q) 

> FEBA K2UK2 0.0000 0000 ... 
Q) ., 

FEBC K2UK3 0.0000 0000 .c 
0 

FECE KOB1A 12454 30A6 

FE DO KOB1B 10000 2710 

FED2 KOB2A 1 0001 

FED4 KOB2B 1 0001 

FEEC K3VOK 0.7107 5AF8 
.0 

()< 
FEEE K4VOK - 0.9845 8lFC 

0",,0 FEn KCORRZ 10 OOOA 
A § v 

FE74 KCORR1 15 0005 .>. .>-

c: FE6C KUCOR1 1 0001 .... 
os FE6E KUCORZ 1 0001 <!l 

Table 11.1 



Velocity % rated 

(mm/min) current 

500 1.7% 

1500 4.3% 

3000 9.3% 

6000 20% 

12000 41% 

Table 11.2 

The conventions used in the presentation of the results are 

given in Figure 11.4.2. 

(-) ~ (+) .. • 

309 

Thrust = [p 1 - P22j .Al 

P l' P2 
= pressures 

Al , A2 = piston areas 

Figure 11.4.2 Convention for Results 

All tests were carried out starting from middle-stroke position. 

The results for velocity, pressure and thrust response are 

presented separately for each control type. 

The position loop gain was set to KERRK = 0.125 as it gives 

a velocity gain of around 30 sec '-1 and the simple ~os'ition loop 

shows no overshoot. 

The sampling frequency, according to our design in Chapter 10, is 

set to 

f = Iwl = 176 Hz 

where w is the load natural frequency at middle-stroke (rad/s). 

This is simply done by using the change the sampling frequency 

option in the interactive software. 



310 

11.4.2.1 Digital Proportional Controller (P) 

The results for the simple digital proportional position loop 

control are shown in Figures 11.4.3 and 11.4.4. The results 

are shown for the variables which presented meaningful displays 

on the oscilloscope screen. The thrust traces show considerable 

variation due to friction and the asymmetric characteristic, 

after the drive has stopped. Even so, the thrust displays that 

are included can give reasonable information for a simulation 

study. 

11.4.2.2 State-Variable Controller (SV) 

Before any result is shown for the controller with state-variable 

feedback something must be said about the dual model system we 

used for designing purposes. 

The effect of the two different sets of feedback gains, as chosen 

in Chapter 10, was checked by moving the system in one direction 

with the proper observer, but using the set of gains for the 

opposite direction. As expected, the difference in gains from 

one set to the other is so small that quantization effects and 

drive non-linearities make its effect imperceptible. 

The different set of observer equations was checked by moving 

in one direction with the proper se t of feedback gains but using 

the observer equations for the opposite direction. Here .again, 

there was no major change in the drive response for now we have 

an even bigger quantization effect as more equations are solved. 

With the results mentioned above we decided to use only the 

feedback gains and observer equations for the extending cylinder, 

as they are design~ci"fo;' ~ l~ss·'damped·model. 

The experimental results for the controller with state-variable 

feedback are shown in Figures 11.4.5, .6, .7, .8, .9, for the 

different input conditions as specified in Table 11.2. Again, 

only meaningful results are shown. We draw attention to the fact 

that the time scale on the pressure and thrust displays are 

different from the velocity ones as we tried to show the charac

teristic behaviour of those variables after the drive had stopped. 



(+) 

Velocity 

Response 

(-) 

( +) 

Velocity 

Response 

(-) 

-
100 ms 

1500 mm/min 

100 ms 

( +) 

Velocity 

Response 

(-) 

(+) 

Thrust 

(-) 

;1 
Figure 11.4;'3 Digital Proportional Position Loop 

Responses to Ramp Input(Ve1ocity Pulse) 

100 ms 

3000 mm/m in 

100 ms 

UJ ..... ..... 



( +) 

Velocity 

Response 

(-) 

(+ 

Thrust 

(-) 

iI 

--100 ms 

100 ms 

Figure 11. 4.4 

( +) 

Velocity 

Response 

(-) 

(+) 

Thrust 

(-) 
z 

~l 

Digital Proportional Position Loop 

Responses to Ramp Input(Ve10city Pulse) 

12000 ann/min 

---100 mS 

---100 ms 

IJ.J 
~ 

N 



(-) (+) 

Figure 11.4.5 State-Variable Controller 

Ramp Input Responses(Velocity Pulse) 

Velocity 

500 mm/min 

-
100 ms 

PI 

I 7 bar 
-.. 

500 mB 

I.JJ 
~ 

I.JJ 



~ 

r:: 
o .... ... 
'" " r:: .... ... 
r:: 
o 
() 
~ 

314 



. 

. '" . 

o 

~ 

< 

(-) (+) 

~ 

~ 
.. 

0 

0 

0 

Figure 11.4.6 State-Variable Controller 

Ramp Input Responses(Velocity Pulse) 

Velocity 

1500 nnn/min 

100 ms 

Thrust 

I 160 N 

.--
500 ms 

I.IJ ..... 
V1 



., 
13 

I ... 0 ., 0 

'" VI 

.... 
"" '" -

~ 

~ ~ 
0 

0 

0 

.\. 

... 
os 

I '" ..j 

"" 
N 

'" -

0 

0 

~ 

j 

., 
13 

0 
0 
VI 

o 

~ 

c:: 
o .... ... ., 
" c:: .... ... 
c:: 
o 
u 
~ 

'" ... 
" 00 .... 
~ 

316 



" .. , . ".~ ,. '.- ,';' .,' ~,' ',,' ".. . . . 

·r \ 
o 

, 
. - - - - -

(-) (+) 

, 

o 
o 

I> 

Figure 11.4.7 State-Variable Controller 

Ramp Input Responses(Velocity Pulse) 

Velocity 

3000 mm/min 

-
100 ms 

Thrust 

I 160 N 

-
500 ms 

UJ 
~ 

-J 



'" 8 

I ... 0 .. 0 
~ <I) 

.... 
'"' p.. --. 

,--
" , 

I ~ 
" 

t.;' ' -

] 
c:;: 

0 

0 

" 

... 
" JJ 

'" ..... 

'" -p.. 

0 

0 

• 
~ 

I) 

" . 

'" 8 

I 0 
0 
<I) 

r--

0 

~ 

" o .... ... .. 
:l 

" .... ... 
" o 
u 
~ 

318 



.. i~ j.,,: ,' ... ' i'.-' (; .~, 'I ',,,. I ' " . . ",~,.ill.,,~ . .;!'_ " , i.'l'" "IIj'tj .... _' , .• 

/1 ; t:,~ ),,".YW .. 
! ".! .r,' " 

! I. : 'V ~i~1j;~:V:.,;<. ;:'0 
I; 

h 

~-~'.,. 

• 

• 

(-) 

w 
~ 

\. 
[ 

(+) 
""," , 

. 
~ . -

f\y -;:::::::-

~ 
. 

• '----- , . 

Figure 11.4.8 State-Variable Controller 

Ramp Input Responses(Velocity Pulse) 

._,. 

Velocity 

6000 mm/min 

--
100 ms 

Thrust 

I 400 N 

500 mB 

lJ.J 
-" 
-0 



k 

I 

I 

> ;- '" 

0 

-",-y..,. 
0. -;-'.;,.:;..-' 

:~ :.1' ;'" 

..... 
Po< 

. 

( 

'" a 

I .... 0 

'" 0 
.0 ~ 

,... 

. 

0 

'. 

0 

320 

'" .... 

I 
a 

'" .0 0 
0 

-.1" ~ ..... 

N 
Po< 

~ 

+ 
~ 

~ 

a 
0 ..... ... 
'" ::> a ..... ... 
a 
0 
0 
~ 

• <Xl 

"" ..... ..... 
<ll .... 
::> 
00 ..... 
r« 



o 

(-) (+) 

• 

• 
L\.,. 

\If I~. 
[0 

Figure 11.4.9 State-Variable Controller 

Ramp Input Responses(Velocity Pulse) 

Velocity 

12000 mm/min 

-
100 ms 

Thrust 

I 800 N 

-
500 ms 

lJJ 
N .... 



322 

., 
a .... ., 

.... 

I '" I 
a 

'" 0 .c 
.c 0 0 

'" "'" 0 ..... .-< '" 
.-< N 

'" '" ---. 

~: :'; ... ~ ~< 
~, . < 

. ~ 
.. 

~ • c 
0 ..... 

~ 
.... 
'" :;I 
c ..... .... 
c 
0 
u 
~ 

• er-'. 
"'" . 

.-< 

.-< 

QJ 
.... 
:;I 
00 ..... 
~ 

• 
. -,~ 



323 

11.4.2.3 Position Response 

The ramp position response was obtained by asking the controller 

to store the actual position during the movement. As only 112 

memory locations are available, the distance to move had to be 

restricted to 32 mm. For high speeds, this distance was not 

enough to get out of transient conditions and we, therefore, went 

to store the following error, when necessary. 

A typical figure shows the response, under certain conditions, split 

into two sections. The first shows the transient during accelera-

tion and the second during deceleration. For easier representation 

the initial time on the deceleration transient is set to zero. 

Details of representation are given in Figure 11.4.10. 

The dialogue between operator and controller is shown in Figure 

11.4.11 with the printout for a particular test condition. 

The data was collected from printouts like the one shown in 

Figure 11.4.11 and manually entered into files on the Prime computer. 

The final position response was obtained by submitting those files 

to the GRAPH.DIALOG program provided by the Computer Centre. 

The most representative results are shown in Figures 11.4.12 to 

11.4.16. The first four figures show movements out of the middle-

stroke position in the retracting direction, back to middle-stroke 

position, then out in the extending direction and back to middle

stroke. As mentioned before, the middle-stroke position is the 

reference for our absolute coordinates. Figure 11.4.16 shows the 

following error for a ramp input with a velocity of 12000 mm/min, 

for both directions of movement, from middle-stroke position. 

11. 4.3 position Step Input 

The step response test was carried out using a facility provided 

by the ramp generation program. This gives a step in position 

command when the distance to be moved is smaller than the increment 

in position per sampling period. Asking for the maximum speed 

allowed by the controller (30 m/min), the maximum step input that 

can be generated, for a sampling frequency of around 200 Hz, is 

2.5 mm. With this facility, we chose to test the position loop 

under step input heights of 1 and 2 mm. 



l 
Velocity 

Position 

.-.-

I 

Part 1 

.-.-.-

Figure 11. 4.10 

-- --.-.-.-.-
" 

/ .-.-
/ 

.-.-
" .-.-

.-

/ 

\ 

I kl k2 \ 

I 

~ 
~- -.-.-.-.-

Part 2 

Basis of Tests to show Response to 
Velocity Pulse 

324 

~ 

[% ] 

[% ] 



OPTIONS: l)CHANGE SRNPLING FREOUENC'r' 
2'> RANP INPUT 
J'>DISPLA~' STORED VRLUES 
4'>STOP AND REINT NOM 

EI-ITER SPEEDU5 TO JOOOO NN/N I N.)=12000 

NO~'E TO (UP TO +/-240. 000 Nt-i.> X=+120000 

VAI<IRBLE: 1.>ACTUAL POSIrION(LEAST 140FW.> 
2'> FOL L ON ING ERFW.';' (t'/I CRONS) 
J)CONTROL FUNCTIONeNICRONS.> 
4)SPEED 
5)ACCELU:AT ION 
6.) TRAilS I ENT RCCELEF,'AT I ON 

? 2 

NOV£(~'ESU) .. NO(2»)'? 1 

OPTI ONS: l)cHANGE SRNPL I NG FREOUENC~' 
2'> ~'ANP INPUT 
J'>DI5PLA~' STOREfi VRLUES 
4'>STOP RIiD REINT NOM 

.~., 

:'.,). 

-00011 -00011 01081 02113 01250 

05.')15 057.52 05973 06191 06]:81 

865'1.2 065'505' 0689t7 06926' 06956 

O?04J O?061 e?O?4 e?t18J 0?091 

0712],- 0?:t26 0?126' till2? 07124 

0;:'120 0?121 0?121 tl?121 07121 

0;:'125 0?126 87126 tl?125 0?124 

0;:'116 0?114 0?112 07111 0?110 

0;:'11]: 0;:'116 0?11? 0?120 0?12l 

0;:'120 0;:'118 0?115 O?l11 0?111 

Jj?1.ft8 0;:'106 O?104 ti?10J 0?102 

0;:'10], 0?10J O?10J O?104 0?105 

07105 0;:'105 0?104 O?1tU 071t12 

0;:'100 01101 07102 O?10J t1?1t14 

04184 

06549 

06919 

07101 

07121 

07121 

07122 

0?110 

t1 7122 

0?112 

07102 

07105 

0?101 

t1 ?1t16 

Figure 11.4.11 Operator-Controller Interactive 
Program 

325 

048.52 052t;9 

06666 Ot~149 

tl?t1t12 tl1024 

07108 07116 

07121 1;.17120 

tl7122 0?124 

0?120 0?119 

0?110 0?111 

011.23 01122 

0?111 0?110 

Ml0]' 0?1 tU 

0?105 071t15 

0710tl O?iOO 

O?10? 06988 



Position 

(pm) 

30 

25 

20 

IS 

10 

5 

2 

XII<!2 
91 

90 
Position 

B9 
(pm) 

B8 

B7 

B6 

BS 

B4 

83 

B2 

BI 

BI<! 

79 

7B 

77 

'" 
2 

326 

Cylinder retracting: 1500 mm/min 

4 6 B 10 

4 6 B 10 

,Figure 11.4.12· 

12 14 16 IB 

12 14 16 IB 

P: Proportional 

SV: State-Variable 

20 22 24 26 28 30 

t 
T 

20 22 24 26 2B 30 

t 
k2 T 

Position·Ramp Response 



327 

Cylinder extending: 1500 nnn/min 

XI02 
95 

Position 

(F) 90 

85 

80 

P: Proportional 
75 

SV: State-Variable 

70 

65 

60 

55 
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

t 
T 

XI02 
14 

Position 13 

(ym) 12 

I I 

1 0 

9 

8 

7 

6 

5 

4 

3 

2 

0 

-1 2 4 6 8 10 12 14 16 8 0 

t 
k2 T 

Figure 11.4.13 Position Ram~ Response 



328 

cylinder retracting: 3000 ann/min 

Position 
Xlla2 
70 

(pm) 65 

60 

55 

50 

45 

40 

35 

30 

25 
P: Proportional 

20 

15 
SV: State-Variable 

10 

5 

0 

-5 2 4 6 6 10 12 14 16 16 20 22 24 26 26 30 

t 
T 

X102 
175 

170 Sv 
Position 165 p 

(pm) 160 

155 

150 

145 

140 

135 

130 

125 

120 

115 

110 

105 

100 

95 
0 2 4 6 6 10 12 14 16 18 20 22 24 26 26 30 

t 
k2 - -T 

Figure 11.4.14- Position Ramp-Response 



XI132 
175 

Position 
1713 

<)llD) 1·65 

1613 

155 

150 

145 

140 

135 

130 

125 

120 

115 

1 10 

1135 

1130 

95 
0 

XI132 

Position 40 

<pm) 35 

30 

25 

20 

15 

10 

5 

0 

2 4 6 

329 

cylinder extending: 3000 mm/min 

8 

P: Propor t iona 1 

SV: State-Variable 

10 I 2 I 4 16 I 8 213 22 24 26 2B 30 

t 

T 

p 

2 4 6 8 le 12 I 4 16 18 20 22 24 26 13 

Figure 11.4.15 position Ramp Response 



Following 

Error 

(pm) 

Following 

Error 

XI03 
8 

7 

6 

5 

4 

3 

2 

2 

X 1-,,3 o la'" 2 

-I 

-2 

-3 

-4 

-5 

-6 

-7 

-8 

4 6 

" 6 

330 

cylinder retracting: 12000 mm/m in 

8 

8 

P: Propor tional 

SV: State-Variable 

10 12 1 4 16 1 8 20 22 24 26 28 30 

cylinder extending: 12000 mm/min 

t 

T 

t 

T 

10 12 1 " 16 1 8 20 22 24 26 28 30 

Figure 11.4.16 position·Following·Error(Ramp Input) 



The data shown here was obtained from the controller output 

listings and the graphs were obtained using the GRAPH.DIALOG 

program, as mentioned before. 

331 

For the step input of 1 mm, the drive was asked to move from 

middle-stroke to 1 mm in. the retracting direction and then back 

to middle-stroke position. The results are shown in Figure 

11.4.17. From middle-stroke position, it was then asked to 

move to 1 mm in the extending direction and back to middle-stroke 

position again. The results from this test are shown in Figure 

11.4.18. 

For the step input of 2 mm, the drive was asked to move from 

middle-stroke position to 2 mm in the retracting direction and 

then back to middle-stroke position (extending direction). The 

results from this test are shown in Figure 11.4.19. 

11.5 DISCUSSIONS 

The introduction of the software gain correction for the retracting 

direction, as given by equation 11.5, has achieved its objectives as 

seen in Figures 11.4.12 and 11.4.13. There, the following errors are 

practically the same for both directions of movement. The correction 

introduces a higher gain for the retracing direction, around the null 

region, as is clearly indicated in Figures 11.4.3 and 11.4.5 for a 

velocity of 500 mm/min. 

The improvement in the velocity response introduced by the state-

variable controller 1S quite clear from the presented results. Around 

null, the overshoot in velocity under the state-variable controller can 

be considered acceptable as this region shows the lowest damping. 

Under accelerating or decelerating conditions, the velocity behaviour 

is much improved by the state-variable controller. The deterioration 

in velocity response for high velocities, such as 12000 mm/min, is due 

to the mismatch between power pack and drive. 

The behaviour of the electro-hydraulic cylinder drive under the simple 

proportional. controller shows a good match to the simulation presented 

in Chapter 10, Figure 10.3.11. The frequency of oscillation, on the 

velocity response, is still dominated by the poles introduced by the 

load. The behaviour under the state-variable controller also shows 

a good match with the simulation results in Figure 10.3.12. For this 



Position X1Ja2 
1 1 

(urn) 
11<1 

9 

8 

7 

6 

5 

4 

:3 

2 

__ -.; 1 mm 

o 

p 

Figure 11.4.17 Position ·Step Response 

( 1 mm ) 

t 

T 

332 



Position 

(um) 

Position 

(um) 

.. i 

XI~ 
0 2 

-I 

-2 

-3 

-4 

-5 

-6 

-7] 
i , 

-sj , 
i 

-9j 
-10 

-11 J 

, 

)<102 
I 

0 
2 

-I 

-2 

-3 
'. 
:-4 

-5 

-6 

-7 

-8 

-9 

-10 
*,=,~:A' 

-I I 

4 6 6 

t 
T 

333 

10 12 14 16 16 20 22 24 26 

sv 

o 

P: Proportional 

SV: State-Variable 

-1mm ~---

. t 
T 

6 18 20 22 24 26 

-1 mm 

Figure 11.4.18" Position Step Response 

(lunn) 



xua2 
Position 22 

(um) 20 

18 

16 

1 " 

12 

10 

8 

6 

" 
2 

0 
0 2 " 

2 4 

6 8 

6 8 

334 

2mmr-.---

P: Proportional 

SV: State-Variable 

10 12 '" 1 6 1 8 20 22 24 26 

10 12 14 16 

t 

T 

t 

T 

26 

Figure 11.4.19 position Step Response 

(2nnn) 



335 

controller action, the poles introduced by the load are much faster 

and damped. The drive behaviour is now dominated by the pole 

introduced by the servovalve. 

The position step response results show that, under state-variable 

feedback, there is an almost critically damped behaviour. The res-

ponse under the simple proportional controller cannot be acceptable 

in some applications. 

The more complex computations required by the state-variable controller 

introduces an effect which can cause position error sometimes bigger 

than the one introduced by the simpler controller. This could be 

easily compensated by introducing a higher position loop gain for the 

state-variable controller, as it would still give a nearly critically 

damped re sponse • The gains were maintained the same for both control-

lers just to have a fair basis for comparison. 

Tests for positioning accuracy showed that, under the state-variable 

controller, the position error is within! 0.08 mm. Without changing 

the controller action a reasonable improvement can be made, in our case, 

by decreasing the servovalve cylinder combined gain. Looking back to 

equation 11.1, we see that, for the same open-loop gain, K, decreasing 

K would allow a higher gain in the servo-amplifier and therefore 'an vcy 
improvement in resolution against friction and servovalve non-linearities. 

A maximum speed of around 12 m/min, as in our case, and a rated current 

of 15 mA, would call for a servovalve cylinder combined gain of around 

13 mm/sec which is almost 3 times less than the gain we have. 
mA Main-

taining the same open-loop gain, by increasing the servo-amplifier gain, 

a reasonable improvement in position accuracy could be achieved. 

J 



336 

CHAPTER 12 

CONCLUSIONS AND RECOMMENDATIONS 

The work reported in this thesis leads to a number of significant 

conclusions. The choice of an electro-hydraulic cylinder drive, 

with an asymmetric cylinder and a 4-way servovalve, imposed an extra 

degree of difficulty On the control task but introduced factors which 

led to a heightened awareness of the problems associated with digital 

control. The work reported in this thesis, however, allows a number 

of conclusions to be drawn on the wider implications of the research. 

CONCLUSIONS 

1. The digital control strategy, discussed and designed 1n Chapter 

10, produced a controlled system of good performance with 

relaxation of primary parameters, i.e. stroke, area and mass. 

The same approach would also yield higher performance if an 

equal area cylinder were used. 

2. The use of an asymmetric cylinder has been shown to be 

accommodated by digital controller, with arguably greater 

flexibility than th~ used controllers based on classical 

concepts, which require the use of different gains for 

different directions of movement as a minimum complication. 

3. The variations 1n natural frequency and damping factor which 

were observed did not form an obstacle to the implementation 

of the control strategy. 

4. The influence of non-linearities on the selection of observers 

is evident. The use of models for different operating 

conditions has been shown to be effective, but more work is 

necessary in this area. 

5. The use of state-variable digital control with the controller 

obtained by optimal control methods has been shown to be viable 

for this application and allowed a simple closed form design 

procedure. 



337 

6. Quantization in the controller software can introduce steady

state errors on the controlled variable, through the estimation 

equations. Care must be taken when scaling and implementing 

the controller equations. 

7. The choice of a single transducer, i.e. a displacement sensor, 

as the source of all the state signals has been shown to be 

effecti ve. However, this should not be assumed to constitute 

a general solution. In certain high performance designs the 

selection of transducers will need careful consideration. 

8. The actuator has a natural frequency which varies from 27 to 

30 Hz. This is a relatively low range of values if a high 

performance specification is sought. The results presented 

in Chapter 11 are considered to show digital control to be a 

satisfactory alternative to classical analogue techniques. 

9. The results presented in Chapter 11 show a system performance 

which is practically the same as that presented by Schmutz (82) 

using state-variable analogue techniques, for a system with an 

equal area jack. The results lead to the conclusion that 

the flexibility and ease of implementation of the digital 

approach has more to offer than the analogue method. 

10. The results obtained in this work indicate that digital control 

can add to the performance of electro-hydraulic drives. 

However, there is a clear case for further research on its 

application. 

11. The common bus direct memory access structure'used in this work 

gives an inexpensive, reliable and fast' communication link 

between microcomputers. It allows the implementation of 

paralle 1 processing, for complex algori thms, very easily. 

12. Standardised buses for multi-microcomputer structures are not 

yet attractive to general applications as interfaces are not 

readily available for most of the microcomputers. 



338 

13. The modular approach to the multi-microcomputer design gives 

good expandability and the use of modules with the same hardware 

configuration allows easy maintenance and cheaper replacement. 

14. The communication through the common bus can be made transparent 

to the user. When using just a few modules, communications can 

be faster for a master-slave configuration by the reduction in 

the-necessary handshake time. 

15. Memory mapped techniques, for multi-microcomputer interfacing 

to control tasks, reduce processing time and simplify pro

gramming. 

16. The use of assembly level language enables writing efficient 

programs for fast execution but must only be used for the 

real controlling tasks. 

17. Division of the total control task in subtasks, which need few 

transfers of information between them, allows efficient alloca

tion of tasks to the available modules. 

RECOMMENDATIONS 

1. Implementation, in high level language, of the design methods 

developed in this work, to run on the multi-microcomputer 

controller itself. 

2. Design of an identification algori thm to be executed by the 

controller, on-line. 

3. Study on the influence of using different sampling frequencies 

for different valve openings. 

4. Design of a high gain loop by introducing feed-forward techniques. 

5.- Study on the use of adaptive control such as model reference and 

self-tuning. 



339 

REFERENCES 

1. Lopes, Luiz Eduardo 

"A Study on the Application of Microprocessors to Real-Time 
Control", MSc Thesis, Loughborough University of Technology, 
January 1980. 

2. Franklin, G.F. and Powell, J.D. 

"Digital Control of Dinamic Systems", Addison-Wesley Company, 
USA, 1980. 

3. Katz,Paul 

"Digital Control Using Microprocessors", Prentice/Hall Int., 
USA, 1981. 

4. Isermann, Rolf 

"Digital Control Systems", Springer-Verlag, Germany, 1981. 

5. Fisher, D.G. and Seborg, D.E., 

"Multivariable Computer Control - A Case Study", North
Holland Publishing Company, Netherlands, 1976. 

6. Takahashi, Y. et al 

"Simple Finite-Time Settling Control and Manipulated-Variable 
Softening for Reverse Reaction, Overshoot and Oscillatory 
Processes", Transactions of the ASME, Journal of Dynamic 
Systems, Measurement and Control, lOO, March 1978, 50-58. 

7. Takahashi, Y. et al 

"Di rect Digital Process Control: 
for Microprocessor Application", 
66, 2, February 1978, 199-208. 

8. Takahashi, Y. et al 

Practice and Algorithms 
Proceedings of the IEEE, 

"Simple Discrete Control of Industrial Processes (Finite 
Time Settling Control) Algorithm for Single-Loop Digital 
Controller", ASME, Journal of Dynamic Systems, Measurement 
and Control, December 1975, 354-361. 

9. Dahlin, E.B. 

"Designing and Tuning Digital Controllers, Part In, 
Instruments and Control Systems, 41, June 1968, 77-83. 

10. Dahlin, E.B. et al 

"Designing and Tuning Digital Controllers, Part U", 
Instruments and Control Systems, 41, July 1968, 87-91. 

11. Lopez, A.M. et al 

"Optimal Tuning of Proportional Digital Controllers", 
Ins truments and Control Systems. 41, October 1968, 
97-102. 



12. Floersch, R. 

"A Digital Controller for Cyclic Temperature Control", 
Control Engineering, October 1978, 58-61. 

13. McGreavy, C. and Awda, F. 

340 

"A Robust General Purpose Algorithm for Digital Process 
Control", lEE Int. Conference on Control and Its Applications, 
University of Warwick, UK, 23-25 March 1981, 128-133. 

14. Smith, Otto J.M. 

"A Controller to Overcome Dead· Time", ISA Journal, 6, 2, 
February 1959, 28-33. 

15. Borer, J .R. 

"A Multi-Variable Master Controller", Measurement and Control, 
13, April 1980, 126-132. 

16. Clarke, D.W. et al 

"Feasibility Study of the Application of Microprocessors to 
Self-Tuning Controllers", University of Oxford, Department 
of Engineering Science, Report 1137/75, 1975. 

17. Stevenson, J.W. 

"Servo Compensation with Digital Filters", Control Engineering, 
November 1971, 71-75. 

18. McDonnel, D. 

"Microcomputers for Digital Servo Systems", Microprocessing, 8, 
20, October 1975, 74 and 78. 

19. Lim, A.K. and Koepsel, W.W. 

"A Microprocessor Speed Control System", IEEE Transactions on 
Ind. Elect. and Control Inst., 24, 3, August 1977, 241-247. 

20. Hing, S.A. 

"Etude Theorique de la Stabilite drune Machine a Courant 
Continu Soumise a un Reglage Digital", Bull Assoc. Suisse 
Electr., 68, 22, November 197i. 

21. Dowerty, D.W. and Wells, E.J. 

"Digital Power Drive Controller Dynamics are Characterised 
by ROMS", Control Engineering, October 1978, 58-61. 

22. Maloney, T.J. and Alvarado, F.L. 

"A Digital Method for DC Motor Speed Control", IEEE Transac
tions on Indust. Elect. and Control Inst., 23, I, February 
1976, 44-46. 

23. Burger, P. and Ronchinsky, S. 

"A Microprocessor Driven Digital Servo System", Proceedings 
Indust. Elect. and Control Inst., March 21-23, 1977, 159-
163. 



341 

24. Matsumoto, Y. 

"Evaluation of the Digital Prediction Filter Applied to 
Control a Class of 'Servomotor by Microcomputers", IEEE 
Transactions on Indust. Elect. and Control Inst., 23, 4, 
1976, 359-363. 

25. Ernsberger, G.W. 

26. Anon 

"A Microprocessor Controlled Positioning System Utilizing 
Thyristors in a Reversible DC Drive."" Proceedings Indust. 
Elect. and Control Inst., March 21-23, 1977,152-158. 

"Microprocessor-Controlled AC Servo Drive System for Machine 
Feed Slides", Engineer's Digest, 41, 3, March 1980, 15-19. 

27. Smi th, L. C. 

"Servo-Control through Software", Machine Design, May 25, 
1978, 70-75. 

28. Plant, J.B. et al 

"Microprocessor Control of Position or Speed of an SCR 
DC Motor Drive", IEEE Transactions on Ind. Elect. and 
Control Inst., 27, 3, August 1980, 228-234. 

29. Klein, C.A. and Maney, J.J. 

"Real-Time Control of a Multiple-Element Mechanical Linkage 
with a Microcomputer", IEEE Transactions on Ind. Elect. 
and Control Inst., 26, 4, November 1979, 227-234. 

30. Hartman, J.L. et al 

"Adaptive Position Controller Avoids Complex Algorithms", 
Control Engineering, May 1981, 71-74. 

31. Aylor, J.H. et al 

"Design and Application of a Microprocessor PID Predictor 
Controller", IEEE Transactions on Ind. Elect. and Control 
Inst., 27, 3, August 1980, 133-137. 

32 Schnieder, E. 

"Control of DC Drives by Microprocessors", IFAC Symposium 
on Control in Power Elect. and Elect. Drives, Dusseldorf, 
October 1977, 603-608. 

33. Oumanar, A. et al 

"Design of an Optimal, Autoadaptive Current Loop for DC 
Motor. Realization with an Hybrid Device Including a 
Microprocessor", IFAC Symposium on Control in Power Elect. 
and Elect. Drives, Dusseldorf, October 1977, 593-601. 

34. Tsuchiya, Takeshi 

"Basic Considerations on Applications of Optimal Control and 
the Microprocessor to the Induction Motor Speed Control 
System", Int. J. Control, 31, 2, 1980, 285-302. 



342 

35. Bollinger, J.G. et al 

"Digital Control and Feed Drives State-of-the-Art and New 
Developments", Annals of the CIRP, Vol. 29/2/1980, 497-506. 

36. Brussel, H.Van et al 

"Microprocessors in Hierarchical Control Systems", Annals of 
the CIRP, Vol. 27/1/1978, 265-269. 

37. Brussel, H.Van and Vastmans, L. 

"Direct Digital Control of Feed Drives", 13th CIRP Interna
tional Seminar "Microprocessors. in Manufacturing Systems", 
Leuven, 23-24 June 1981, 103-117. 

38. Duffie, N.A. and Bollinger J.G. 

"Direct Microprocessor Control of SCR Feed Drives", 13th 
'CIRP International Seminar "Microprocessors in Manufacturing 
Systems", Leuven, 23-24 June 1981, 161-175. 

39. Stute, G.and Hesselbach, J. 

"Discrete-Time Position Control at NC Machines Parameter 
and Sys tern Optimization", Annals of the CIRP, Vol. 28/1/1979, 
257-261. 

40. Stute, G. et al 

"Digitale Lageregelung an Numerisch Gesteuerten Maschinen fur 
Hochgeschwindigkeitsbearbeitungen", 13th CIRP International 
Seminar "Microprocessors in Manufacturing Systems l1

, Leuven, 
23-24 June 1981, 79-90. 

41. Rao, G. V. 

"Complex Digital Control Systems", Van Nostrand Reinhold 
Company, New York, 1979. 

42. Schmitt, G.H. and Chang, G.C.C. 

43. 

44. 

45. 

· 46. 

\ 

"Avionics Microprocessor is Heart of Distributed Microcomputer 
System for Machine Tool Control", Proc. IEEE, Nae.con, 1977, 
701:-704. 

Papa, F. 
i 
; 

I 
"The Design and Implementation of a Multicomputer Numerical 
Control System ", PhD Thesis, UMIST, April 1979. 

\ , 
pr,sad, A. 

I "The Design and Development of a Microprocessor Based Control
.' ler of Stepping Motor Drives", PhD Thesis, UMIST. March 1979. 

i 
Stu'Fe, G. and Worn, H. 

\ "Principle and Examples of a Modular Multiprocessor NC System", 
'. 
~. 

f 

Proc. 19th MTDR Conference, September 1978, 13-17. 

, 
Stute, G. et al 

t "A Multiprocessor Control System as a Universal Modular System 
~ for the Design of Machine Tool Controllers", Procs. 2nd IFAC/ 
~ IFIP Symposium, Stuttgart, 22-24 October 1979, 37-46. 
~ . 
I' 

~i 
\; 



47. Stute, G. and Klemm, P. 

"The Application of a Modular Multi-processor NC System", 
Proc. 22nd MTDR Conference, UMIST, 1981, 215-222. 

48. Ilic, V.B. et al 

343 

"Interprocessor Connnunication in the Multi-microprocessor 
CNC Systems", 13th CIRP Int. Seminar on Manufact. Systems, 
Leuven, 23-24 June, 1981, 193-207. 

49. Dalzell, D. et al 

"A Microprocessor Based Hierarchical Control System for 
Machine Tools", 13th CIRP Int. Seminar on Manufact. Systems, 
Leuven, 23-24 June, 1981, 177-191. 

50. Luh, J.S. and Lin, C.S. 

"Multiprocessor-Controllers for Mechanical Manipulators", 
3rd Int. Conf. Computer Software and Applications, Chicago, 
November 1979, 458-463. 

51. Kuisma, A. et al 

"Multimicroprocessor Control System for Special Purpose 
Machine Tools", Proc. IFAC Int. Symposium, Tokyo, October 
1977, 189-193. 

52. Rembo1d, U. 

"Recent Advances in the Use of Computers in Quality Control", 
Proc. 2nd IFAC/IFIP Symposium, Stuttgart, October 1979, 265-277. 

53. Maples, G.C. and Jervis, P. 

"The Structure of Microprocessor Based Control Systems", Cen
tral Elect. Generating Board, RD/LM/CONT/013, 1977. 

54. Jervis, P. 

"A Study of Microprocessor Based Distributed Control Networks", 
Central Elect. Generating Board, RD/L/N63/77, 1977. 

55. Kuo, B.C. 

"Automatic Control Systems", Prentice/Hall Inc., 1975. 

56. Tou, J.T. 

"Digital & Sampled Data Control Systems", McGraw-Hill, 1959. 

57. Gilbert, E.G.· 

"Controllability and Observability in Multivariable Control 
Systems", J .S.LA.M. Control, A, 1, 2, 1963, 128-150. 

58. Ackermann, J. 

"Der Entwurf Linearer Regelungssysteme im Zustandsraum", 
Regelungstechnik und Prozessdatenverarbeitung, 7, 1972, 
297-300. 

59. Bryson, E.A. and Ho, Y. 

"Applied Optimal Control" Blaisdell Publishing Company, USA, 
1969. 



344 

60. Citron, S.J. 

"Elements of Optimal Control", Holt-Rinehart and Wins ton , 
Inc., USA, 1969. 

61. Luenberger, D.G. 

"Observing the State of a Linear System", IEEE Trans. 
on Military Electronics, 8, April 1964, 74-80. 

@. Luenberger, D.G. 

65. 

"Observers for Multivariable Systems", IEEE Trans. on 
Automatic Control, 11, 2, April 1966, 190-197. 7 

Luenberger, D.G. 

"An Introduction to Observers", IEEE Trans. On Automatic 
Control, 16, 6, December 1971, 596-602. _ b 

Gopinath, B. 

"On the Control of Linear Multiple Input-Output Systems", 
The Bell Systems Technical Journal, SO, 3, March 1971, 1063-
1081. -( 

Wellstead, P.E. and Zanker, P. 

"Servo Self-Tuners", Int. J. Control, 30, 1, 1979, 27-36. 

66. Moler, C. and Loan, C.Van 

"Nineteen Dubious Ways to Compute the Exponential of a 
Matrix", SIAM Review, 20, 4, October 1978, 801-836. 

67. Ward, R.C. 

"Numerical Computation of the Matrix Exponential with 
Accuracy Estimate", SIAM J. Numer. Anal., 14, 4, September 
1977, 601-610. 

68. Kallstrom, C. 

"Computing exp(A) andexp(As)ds", Report 7309, Division of 
Automatic Control, Lund Inst. of Techn, Lund, Sweden, 1973. 

69. Fuller, S.H. et al 

"Multi-Microprocessors: An Overview and Working Example", 
Proceedings of the IEEE, 66, 2, 1978, 216-228. 

70. Weitzman, C. 

"Distributed Micro/Minicomputer Systems - Structure, Imple
mentation and Application", Prentice/Hall, USA, 1980. 

71. Anderson, G.A. and Jensen, E.D. 

"Computer Interconnection Structures: Taxonomy, Characteris
tics and Examples", Computing Surveys, 7, 4, .1975, 197-213. 

72. Borrill, P.L. 

"Microprocessor Bus Structures and Standards", Microprocessor 
Systems, North-Holland Publishing Company, 1980, 285-296. 



345 

73. Shere, J.W. 

"An Introduction to the IEEE-488 Bus", Electronic Technology, 
15, February 1981, 30-31. 

74. Fisher, E. and Jensen, C.W. 

"PET and the IEEE-488 Bus (GPIB)", McGraw-Hill, USA, 1980. 

75. Elmquist, K.A. et al 

76. Anon 

77. Anon 

78. Anon 

79. Anon 

80. Anon 

81. Anon 

"Standard Specification for. S-lOO Bus Interface Devices", 
IEEE, Computer Magazine, July 1979, 28-52. 

"TMS 9900 Microprocessor Data Manual", Texas Instruments, 1976. 

"TM 990/l00M Microcomputer User's Guide", Texas Instruments, 
1978. 

"Model 990 Computer TMS 9900 Microprocessor - Assembly 
Language Programmer's Guide", Texas Instruments, March 1978. 

"RTI-1240/l24l User's Reference Manual", Analog Devices Inc. 
1980. 

"The Interface Circuits Data Book", Texas Instruments, 1978. 

"Heidenhain 7010 Digital Readout", Heidenhain (G.B.) Ltd. 

82. Schmutz, R.H. 

"State-Variable Feedback Control of Hydraulic Feed Drives", 
Annals of the CIRP, 29, 1, 1980. 

83. Ertan, U. 

'.' .. "Contributions to the Modellirig and Design of High Performance 
Electro-hydraulic Cylinder Drives used in Position Control", 
PhD Thesis, UMIST, April 1976. 

84. Bell, R. and de Pennington. A. 

"Active Compensation of Lightly Damped Electrohydraulic 
Cylinder Drives using Derivative Signals", Proc. Instn. 
Mechanical Engineers, 184, 4, 1969-70, 83-94. 

85. Bell, R. and de Pennington, A. 

"The Design of Active Damping for Electrohydrau1ic Cylinder 
Feed Drives", Proc. 9th mDR Conf. Birmingham, 1968, 1309-' 
1324. 

86. Viersma, T.J. 

"Analysis, Synthesis and Design of Hydraulic Servosystems and 
Pipelines", Elsevier Scientific Publishing Company, The 
Netherlands, 1980. . 



346 

87 .• Merritt, H.E. 

"Hydraulic Control Systems", John Wiley & Sons, Inc., USA, 
1967. 

88. Thayer, W.J. 

"Specification Standards for Electro-hydraulic Flow Control 
Servovalves", MOOe INC., Technical Bulletin 17, 1962. 

89. Middleditch, A.E. 

"Design Criteria for Multi-Axis Closed Loop Computer Control 
Systems", Trans. of the ASME, Journal of Dynamic Systems, 
Measurement and Control, March 1974, 36-40. 

90. Althoff, H. et al 

"E-Bus System Design Handbook", Texas Instruments, September 
1981. 

91. Farrar, F.A. 

"Microprocessor Implementation of Advanced. Control Modes", 
Conf. in Computer Simulation, Chicago,. July 1977, 339-342. 

92. Irving, E. 

"Implicit Reference Model and Optimal Aim Strategy for 
Electrical Generator Adaptive Control", Int. Symposium on 
Adaptive Systems, Ruhr University, Bochum, 20-21 March, 1980. 



APPENDICES 



347 

APPENDIX 4. 1 

PSIMAl PROGRAM 
" 

SUBROUTINE PSIMAl(N,P,VARl,PSIl,PSI2) 
DOUBLE PRECISION P(10,10),VARl,Pl(10),PlMAX,VAR2,IDENT(10,10) 
DOUBLE PRECISION APSI(10,10),PSIl(10,10),PSI2(10,10),PSI3(10,10) 
DOUBLE PRECISION P2MAX,PT(10,10),P2(10,10) 
INTEGER N 

C CALCULATE P*VARl 
C 

1=0 
IF(I.EQ.0) GO TO 444 
WRITE(l,100) 

100 FORMAT(lH, 'ENTER ORDER N') 
READ(l,33) N 

33 FORMAT(lH ,11) 
WRITE(l,102) 

102 FORMAT(lH, 'ENTER MATRIX A BY LINES') 
READ(l,*)((P(I,J),J=l,N),I=l,N) 
WRITE(l,l04) 

104 FORMAT(lH, 'ENTER VARIABLE VARl') 
READ(l,*) VAR1 
DO 66 I=l,N 
DO 66 J=l,N 

66 P2(I,J)=DABS(P(I,J» 
444 DO 1000 I=l,N 
1000 pI( 1)=0.0 

DO 2000 J=l,N 
DO 2000 I=l,N 

2000 P1(J)=Pl(J)+P2(I,J) 
DO 2777 1=1, N 

2777 P1(I)=P1(I)*VARl 
P2MAX=0.0 
DO 2002 I=l,N 
PIMAX=P1(I)-P2MAX 
IF(PIMAX.LE.0.0) GO TO 2002 
P2MAX=P1(I) 

2002 CONTINUE 
456 FORMAT(lH ,'P2MAX=',F12.5) 

IF(P2MAX.EQ.0.0) GO TO 2005 
P2MAX=DLOG2(P2MAX) 
IF(P2MAX.LE.0.0) GO TO 2005 
P2MAX=DINT(P2MAX) 
KPSI=IDINT(P2MAX)+1 

43 FORMAT(lH ,14) 
45 FORMAT(lH ,F20.4) 

GO TO 999 
2005 KPSI=0 
C CALCULATE PSI(T/2TO K) 
999 VAR2=VAR1/2.0**KPSI 

DO 2006 I=l,N 
DO 2006 J=l,N 
PSI2(I,J)=0 
APSI(I,J)=0.0 
PSI3(I,J)=0.0 

2006 IDENT(I,J)=0.0 
DO 2007 I=l,N 



2007 IDENT(I,I)=1.0 
DO 2008 I=l,N 
DO 2008 J=l,N 

2008 PSI1(I,J)=IDENT(I,J) 
4444 FORMAT(lH ,12) 

L=30 
L2=L 

2009 DO 2015 I=l,N 
DO 2015 J=l, N 
PSI2(I,J)=0 

2015 PT(I,J)=P(I,J)*VAR2/L 
DO 2010 I=l,N 
DO 2010 J=l,N 
DO 2010 K=l,N 

2010 PSI2(I,J)=PT(I,K)*PSI1(K,J)+PSI2(I,J) 
DO 2011 1=1, N 
DO 2011 J=l,N 

2011 PSI1(I,J)=PSI2(I,J)+IDENT(I,J) 
L=L-1 
IF(L.GT.1) GO TO 2009 

C EXP PSI 
K2=KPSI 
IF(K2.EQ.0) GO TO 9005 

7000 DO 7050 I=l,N 
DO 7050 J=l,N 

7050 PT(I,J)=P(I,J)*VAR1/2.0**(K2+1) 
DO 3000 I=l,N 
DO 3000 J=l,N 
DO 3000 K=l,N 

3000 APSI(I,J)=APSI(I,J)+PT(I,K)*PSI1(K,J) 
DO 4000 I=l,N 
DO 4000 J=l,N 

4000 APSI(I,J)=APSI(I,J)+IDENT(I,J) 
DO 5000 I=l,N 
DO 5000 J=l,N 
DO 5000 K=l,N 

5000 PSI3(I,J)=PSI3(I,J)+APSI(I,K)*PSI1(K,J) 
DO 6000 I=l,N 
DO 6000 J=l,N 
PSI1(I,J)=PSI3(I,J) 
PSI3(I,J)=0.0 
APSI(I,J)=0.0 

6000 CONTINUE 
K2=K2-1 
IF(K2.GT.0) GO TO 7000 

9000 FORMAT(lH ,3F20.4) 
9005 DO 320 I=l,N 

DO 320 J=l,N 
PSI2(I,J)=0.0 

320 PT(I,J)=P(I,J)*VAR1 
DO 330 I=l,N 
DO 330 J=l,N 
DO 330 K=l,N 

330 PSI2(I,J)=PSI2(I,J)+PSl1(I,K)*PT(K,J) 

348 



DO 543 I=l,N 
DO 543 J=l,N 

543 PSI2(I,J)=PSI2(I,J)+IDENT(I,J) 
RETURN 
END 

349 



350 

APPENDIX 4.2 

STATE PROGRAM 

DOUBLE PRECISION A(10,10),B(10),T,TD,TM,T1 
DOUBLE PRECISION PHIT(10,10"),PSI2(10,10),PSIl(Hl,10) 
DOUBLE PRECISION BTM(10),C(10,10),PHITM(10,10),IDENT(10,10) 
DOUBLE PRECISION L2(10),L1(10),PHIT2(10,10),L(10) 

C 
C 

WRITE ( 1 , 71 ) 
CALL TNOUA('ENTER NUMBER OF STATES = ',25) 
READ(l,*) N 
WRITE(l,3) 

3 FORMAT(lH .f, 'ENTER MATRIX A BY LINES') 
WRITE (1, 71 ) 
READ(l,*)«A(I,J),J=l,N).I=l,N) 
WRITE(l,4) 

4 FORMAT(lH ,f, 'ENTER MATRIX B BY COLUMN') 
WRITE (1, 71 ) 
READ(l,*)(B(I),I=l,N) 
WRITE(1.71) 
CALL TNOUA('ENTER SAMPLING PERIOD T(MS)= '.29) 
READ(l,*) T 
T=T*0.001 
WRI TE ( 1 , 71 ) 
CALL TNOUA('ENTER DELAY TD(MICROSECOND) = ',30) 
READ(l,*) TO 
TD=TD*0.000001 
T1=DINT(TDfT)+1.0 
TM=T1*T-TD 
IF(TM.LT.T) GO TO 300 
T1=T1-1.0 
TM=0 
TD=T 
GO TO 400 

300 TD=T-TM 
400 DO 5 I=l,N 

DO 5 J=l,N 
5 IDENT(I,J)=0.0 

DO 6 I=l,N 
6 IDENT(I,I)=1.0 
C 
C CALCULATING PHIT 
C 

CALL PSIMA1(N,A,T,PSI1,PSI2) 
DO 10 I=l,N 
DO 10 J=l,N 
L2(I)=0.0 
L1(I)=0.0 

10 PHIT(I,J)=PSI2(I,J) 
C 
C CALCULATING L2 AND PHITM FOR L1 
C 

CALL PSIMA1(N,A,TM,PSI1,PSI2) 
DO 20 I=l,N 

20 BTM(I)=B(I)*TM 
DO 30 I=l,N 



DO 30 J=l,N 
C(r.J)=0.0 
PHITM(I,J)=PSI2(I,J) 

30 L2(I)=L2(I)+PSI1(I,J)*BTM(J) 
C 
C CALCULATING L1 
C 

40 

50 

60 

500 

600 

700 

800 

1000 

1010 

1020 
C 
C 
C 
2000 

71 

70 
72 

CALL PSIMA1(N,A,TD,PSI1,PSI2) 
DO 40 I=1,N 
BTM(I)=B(I)*TD 
DO 50 I=1,N 
DO 50 J=1,N 
DO 50 K=1,N 
C(I,J)=C(I,J)+PHITM(I,K)*PSI1(K,J) 
DO 60 I=1,N 
DO 60 J=1,N 
L1(I)=L1(I)+C(I,J)*BTM(J) 
N2=IDINT(T1) 
N3=N+N2 
DO 500 I=1,N3 
DO 500 J=1,N3 
PHIT2 (I, J )=0.0 
DO 600 I=1,N 
DO 600 J=1,N 
PHIT2(I,J)=PHIT(I,J) 
J=N+1 
DO 70rzJ I=l,N 
PHIT2(I,J)=L1(I) 
IF(N2.GT.1) GO TO 1000 
L(N+1 )=1.0 
DO 800 I=1,N 
L(I)=L2(I) . 
GO TO 2000 
N3=N+N2-1 
DO 1010 I=1,N3 
L(I)=0 
L (N+N2 )=1.0 
I=N 
K=N+1 
N3=N2-1 
DO 1020 J=1,N3 
PHIT2(I+J,K+J)=1.0 

OUTPUT 

WRITE ( 1 , 71 ) 
CALL TNOUA('MATRIX PHI',10) 
WRITE (1, 71 ) 
DO 70 I=1,N 
WRITE ( 1 , 71 ) 
FORMAT(1H ) 
WRITE(1,72)(PHIT(I,J),J=1,N) 
CONTINUE 
FORMAT(1H ,100F10.4) 

351 



WRITE ( 1 , 71 ) 
CALL TNOUA('MATRIX Ll',9) 
WRITE(l, 71) 
WRITE(1,80)(Ll(I),I=1,N) 

80 FORMAT(lH ,/,F20.4) 
WRITE(l, 71) 
CALL TNOUA( 'MATRIX L2',9) 
WRITE(1,80)(L2(I),I=1,N) 
WRITE(1,71) 
CALL TNOUA('MATRIX PHIT2',12) 
WRITE(l, 71) 
N=N+N2 
DO 82 I=l,N 
WRITE(l, 71) 
WRITE(1,72)(PHIT2(I,J),J=1,N) 
WRITE(6,72)(PHIT2(I,J),J=1,N) 

82- CONTINUE 
WRITE ( 1 , 71 ) 
CALL TNOUA( 'MATRIX L',8) 
WRITE(1,80)(L(I),I=1,N) 
WRITE(6,80)(L(I),I=1,N) 
STOP 
END 

352 



353 

APPENDIX 4.3 

ACKER PROGRAM 

DOUBLE PRECISION PHIl(6,6),GAMMA(6),T,IDENT(6,6),ALFA(6,6) 
DOUBLE PRECISION A,B,Al,Bl,PHITWO(6,6),AlPHI(6,6) 
DOUBLE PRECISION A2IDEN(6,6),CX(6,6),CXl(6),CX2(6) 
DOUBLE PRECISION P(10),DP,ALFAl(6,6) 
INTEGER IA,N,IFAIL,IR,IB 

C 
C ACCEPT DESIRED POLE LOCATIONS ON S-PLANE 
C 

WRITE (1 , 5) 
5 FORMAT(lH ) 

CALL TNOUA ('ENTER NUMBER OF STATES = ',25) 
READ(l,10) N 

10 FORMAT(lH ,11) 
WRITE(l,5) 
CALL TNOUA ('ENTER SAMPLING PERIOD(SEC) = ',29) 
READ(l,*) T 
WRITE(l,20) 

20 FORMAT(lH ,f, 'ENTER MATRIX PHIl BY LINE') 
READ(l,*)«PHIl(I,J),J=l,N),I=l,N) 
WRITE(l,30) 

30 FORMAT(lH ,f, 'ENTER MATRIX GAMMA BY COLUMN') 
READ(l,*)(GAMMA(I),I=l,N) 
DO 40 I=l,N 
DO 40 J=l,N 
PHITWO(I,J)=0.0 
CX(I,J)=0.0 
CXl(I)=0.0 
CX2(I)=0.0 

40 IDENT(I,J)=0.0 
DO 50 I=l,N 

50 IDENT(I,I)=1.0 
DO 60 I=l,N 
DO 60 J=l,N 

60 ALFA(I,J)=IDENT(I,J) 
DO 70 I=l,N 
DO 70 J=l,N 
DO 70 K=l,N 

70 PHITWO(I,J)=PHITHO(I,J)+PHIl(I,K)*PHIl(K,J) 
Kl=N 

120 IF(Kl.LE.0) GO TO 255 
WRITE(l,5) 
CALL TNOUA('ENTER DESIRED POLE S-PLANE REAL= ',33) 
READ(l,*) A 
CALL TNOUA(' IMAG= ',33) 
READ(l,*) B 
IF (B.EQ.0.0) GO TO 130 
Al=-2.0*DEXP(A*T)*DCOS(B*T) 
Bl=DEXP(2.0*A*T) 
DO 90 I=l,N 
DO 90 J=l,N 
ALFAl(I,J)=0.0 

90 AlPHI(I,J)=PHITWO(I,J)+Al*PHIl(I,J)+Bl*IDENT(I,J) 
DO 100 I=l,N 
DO 100 K=l,N 



DO 100 J=l,N 
100 ALFA1(I,K)=ALFA1(I,K)+ALFA(I,J)*A1PHI(J,K) 

DO 110 I=l,N 
DO 110 J=l,N 

110 ALFA(I,J)=ALFA1(I,J) 
K1=Kl-2 
GO TO 120 

130 A1=DEXP(A*T) 
DO 140 I=l,N 
DO 140 J=l,N 
ALFA1 (I , J) =0.0 

140 A1PHI(I,J)=PHI1(I,J)-A1*IDENT(I,J) 
DO 150 I=l,N 
DO 150 J=l,N 
DO 150 K=l,N 

150 ALFA1(I,J)=ALFA1(I,J)+ALFA(I,K)*A1PHI(K,J) 
DO 160 I=l,N 
DO 160 J=l,N 

160 ALFA(I,J)=ALFA1(I,J) 
K1=K1-1 
GO TO 120 

C 
C CONTROLLABILITY MATRIX CX 
C 
255 DO 170 I=l,N 
170 CX1(I)=GAMMA(I) 

K=l 
220 DO 180 I=l,N 
180 CX(I,K)=CX1(I) 

K=K+1 
IF(K.GT.N) GO TO 257 
DO 190 I=l,N 
DO 190 J=l,N 

190 CX2(I)=CX2(I)+PHI1(I,J)*CX1(J) 
DO 200 I=l,N 
CX1(I)=CX2(I) 

200 CX2(I)=0.0 
GO TO 220 

C 
C SCALING BEFORE F01BTF 
C 
250 DO 666 I=l,N 

DO 666 J=l,N 
666 A1PHI(I,J)=DABS(CX(I,J» 

A=A1PHI(1,1) 
DO 2000 I=l,N 
DO 2000 J=l,N 
B=A1PHI(I,J)-A 
IF(B.GE.0.0) GO TO 2000 
A=A1PHI(I,J) 

2000 CONTINUE 
DO 1060 I=l,N 
DO 1060 J=l,N 

1060 CX(I,J)=CX(I,J)/A 

354 



C 
C SOLVING CONTROL LAW 
C 
257 DO 260 I=l,N 

CX2 (I )=1"- 0 
260 CX1(I)=0.0 

CX1(N)=1.0 
DO 270 I=l,N 
DO 270 J=l,N 

270 A2IDEN(I,J)=CX(J,I) 
11 FORMAT(lH ,2F30.10) 

IA=6 
N1=N 
IFAIL=l 
CALL F01BTF(N1,A2IDEN,IA,P,DP,IFAIL) 
IF (IFAIL.EQ.O) GO TO 290 
WRITE(l,280) IFAIL 

280 FORMAT(lH, 'ERROR F01BTF IFAIL=' ,12) 
STOP 

290 IR=l 
IB=6 
N1=N 
IA=6 
CALL F04AYF(N1,IR,A2IDEN,IA,P,CX1,IB,IFAIL) 
DO 300 I=l,N 
DO 300 J=l,N 

300 CX2(I)=CX2(I)+CX1(J)*ALFA(J,I) 
WRITE(l,310) 

310 FORMAT(lH ,1,1,' K') 
WRITE(l,320)(CX2(I),I=l,N) 

320 FORMAT(lH ,F12.4) 
STOP 
END 

355 



APPENDIX 4.4 

SWEEP PROGRAM 

DOUBLE PRECISION PHIT(10,10),PHI(10,10),L(10,10) 
DOUBLE PRECISION Q2,Ql(10,10),SLT(10,10),LT(10,10) 
DOUBLE PRECISION SLT2(10,10),MM(10,10),MMl(10,10) 
DOUBLE PRECISION SLT3(10,10),SL(10,10),SLTl(10,10) 
DOUBLE PRECISION S(10,10),AAl 
INTEGER MA,KCOUNT,I,J,K 
WRITE(l,5) 

5 FORMAT(/) 
CALL TNOUA( 'ENTER ORDER N =',15) 
READ(l,*) N 
WRITE(l,5) 
WRITE (1,30) 

30 FORMAT('ENTER MATRIX PHI BY LINE') 
READ(5,*)«PHI(I,J),J=l,N),I=l,N) 
WRITE(l,40) 

40 FORMAT('ENTER MATRIX L BY COLUMN') 
READ(5,*)(L(I,l),I=l,N) 

45 WRITE(l,5) 
WRITE(l,50) 

50 FORMAT('ENTER MATRIX Ql BY LINE') 
WRITE(l,5) 
READ(l,*)«Ql(I,J),J=l,N),I=l,N) 

46 WRITE(l,60) 
60 FORMAT(lH ,I,'ENTER VALUE Q2') 

WRITE(l,5) 
READ(l,*) Q2 
CALL MATCOP(N,N,Ql,S) 
WRITE(l,5) 
CALL TNOUA( 'ENTER NUMBER OF STEPS =',23) 
READ(l,*) KCOUNT 
WRITE(l,5) 
MA=l 
CALL MATRAN(N,MA,L,LT) 
CALL MATRAN(N,N,PHI,PHIT) 

III CALL MATMUL(N,N,MA,S,L,SL) 
CALL MATMUL(MA,N,MA,LT,SL,SLT) 
AAl=Q2+SLT(l,l) 
AAl=1.0/AAl 
CALL MATMUL(MA,N,N,LT,S,SLTl) 
CALL MATMUL(N,MA,N,SL,SLTl,SLT2) 
CALL MATVRB(N,N,SLT2,AAl,SLT2) 
CALL MATSUB(N,N,S,SLT2,MM) 
CALL MATMUL(MA,N,N,SLTl,PHI,SLT3) 
CALL MATVRB(MA,N,SLT3,AAl,SLT3) 
CALL MATMUL(N,N,N,MM,PHI,MMl) 
CALL MATMUL(N,N,N,PHIT,MMl,MM) 
CALL MATADD(N,N,MM,Ql,S) 
WRITE(l,200)(SLT3(l,I),I=l,N) 

200 FORMAT(lH ,6F12.4) 
KCOUNT=KCOUNT-l 
IF(KCOUNT.GE.0) GO TO III 
WRITE(l,5) 
CALL TNOUA( 'CHANGE Ql(l),CHANGE Q2(2),STOP(3) ',33) 
READ(l,*) DAD 

356 



IF(DAD.EQ.!.0) GO TO 45 
IF(DAD.EQ.2.0) GO TO 46 
STOP 
END 

357 



APPENDIX 4. 5 

MATRICES ARITHMETIC 

C 
C ************MATRICES OPERATIONS PACKAGE************* 
C 
C 
C ***SUBROUTINE FOR MATRICES MULTIPLICATION 
C 
C C(N,M)=A(N,L)*B(L,M) 
C 

C 
SUBROUTINE MATMUL(N,L,M,A,B,C) 

DOUBLE PRECISION A(10,10),B(10,10),C(10,10) 
DO 10 I=l,N 
DO 10 J=l,M 

10 C(I,J)=0.0 
DO 20 I=l,N 
DO 20 J=l,M 
DO 20 K=l,L 

20 C(I,J)=C(I,J)+A(I,K)*B(K,J) 
RETURN 
END 

C 
C *************************************** 
C 
C ***SUBROUTINE FOR MATRICES ADDITION 
C 
C C(N,M)=A(N,M)+B(N,M) 
C 

C 
SUBROUTINE MATADD(N,M,A,B,C) 

DOUBLE PRECISION A(10,10),B(10,10),C(10,10) 
DO 10 I=l,N 
DO 10 J=l,M 

10 C(I,J)=A(I,J)+B(I,J) 
RETURN 
END 

C 
C *************************************** 
C 
C ***SUBROUTINE FOR MATRICES SUBTRACTION 
C 
C C(N,M)=A(N,M)-B(N,M) 
C 

C 
SUBROUTINE MATSUB(N,M,A,B,C) 

DOUBLE PRECISION A(10,10),B(10,10),C(10,10) 
DO 10 I=l,N 
DO 10 J=l,M 

10 C(I,J)=A(I,J)-B(I,J) 

C 
C 
C 
C 

RETURN 
END 

358 



C 
C 
C ************************************** 
C 
C ***SUBROUTINE FOR MATRIX COPYING 
C 
C B(N,M)=A(N,M) A COPIED INTO B 
C 

C 
SUBROUTINE MATCOP(N,M,A,B) 

DOUBLE PRECISION A(10,10),B(10,10) 
DO 10 I=l,N 
DO 10 J=l,M 

10 B(I,J)=A(I,J) 
RETURN 
END 

C 
c ************************************** 
C 
C ***SUBROUTINE FOR IDENTITY MATRIX 
C 
C A(N,N)=IDENTITY MATRIX 
C 

C 
SUBROUTINE IDENTY(N,A) 

DOUBLE PRECISION A(10,10) 
DO 10 I=l,N 
DO 10 J=l,N 

10 A(I,J)=0.0 
DO 20 I=l,N 

20 A(I,I)=1.0 
RETURN 
END 

C 
C *************************************** 
C 
C ***SUBROUTINE FOR TRANSPOSE OF A MATRIX 
C 
C B(M,N) TRANSPOSE OF A(N,M) 
C 

C 
SUBROUTINE MATRAN(N,M,A,B) 

DOUBLE PRECISION A(10,10),B(10,10) 
DO 10 I=l,N 
DO 10 J=l,M 

10 B(J,I)=A(I,J) 
RETURN 
END 

C 
C **************************************** 
C 
C ***SUBROUTINE FOR INVERSE OF A SQUARE MATRIX 
C 
C AINV(N,N) INVERSE OF A(N,N) 

359 



C 

C 

C 

SUBRQUTINE MATINV(N,A,AINV) 

DOUBLE PRECISION A(10,10),AINV(10,10),P(20),DP 
DOUBLE PRECISION BMAINV(10,10),ABMINV(10,10),EMAX,E 
DOUBLE PRECISION IDENT2(10,10),AMTINV(10,10) 

C CROUT DECOMPOSITION 
C 

CALL MATCOP(N,N,A,AMTINV) 
IA=10 
IFAIL=1 
CALL F01BTF(N,AMTINV,IA,P,DP,IFAIL) 
IF(IFAIL.EQ.0) GO TO 20 
WRITE(1,10) IFAIL 

10 FORMAT(1H ,'ERROR ON F01BTF IFAIL=',I2) 
STOP 

C IDENTITY MATRIX 
20 CALL IDENTY(N,IDENT2) 

CALL IDENTY(N,BMAINV) 
IR=N 
IB=6 

C 
C APPROXIMATE SOLUTION OF LINEAR EQUATIONS 
C 

CALL F04AYF(N,IR,AMTINV,IA,P,BMAINV,IB,IFAIL) 
C 
C ITERATION FOR PRECISION 
C 

EMAX=0.000000001 
110 CALL MATMUL(N,N,N,A,BMAINV,ABMINV) 

CALL MATSUB(N,N,IDENT2,ABMINV,ABMINV) 
DO 80 I=1,N 
DO 80 J=1,N 
E=DABS(ABMINV(I,J» 
IF(E.LT.EMAX) GO TO 80 
GO TO 90 

80 CONTINUE 
GO TO 120 

90 CALL F04AYF(N,IR,AMTINV,IA,P,ABMINV,IB,IFAIL) 
CALL MATADD(N,N,BMAINV,ABMINV,BMAINV) 
GO TO 110 

C RESULT 
120 CALL MATCOP(N,N,BMAINV,AINV) 

RETURN 
END 

C 
C *************************************** 
C 
C SUBROUTINE FOR MATRIX TIMES VARIABLE 
C 
C B(N,M)=VARIAB*A(N,M) 
C 

SUBROUTINE MATVRB(N,M,A,VARIAB,B) 

360 



DOUBLE PRECISION A(10,10),B(10,10),VARIAB 
DO 11" I=1,N 
DO 10 J=1,M 

10 B(I,J)=VARIAB*A(I,J) 
RETURN 
END 

361 



362 

APPENDIX 4.6 

OBSEQU PROGRAM 

C OBSERVER EQUATIONS 
DOUBLE PRECISION PHI(10,10),L(10,10),PAA(10,10),PAB(10,10) 
DOUBLE PRECISION PBB(10,10),PBA(10,10),LA(10,10),LB(10,10) 
DOUBLE PRECISION LO(10,10),LOPAB(10,10),LOPAA(10,10),LOLA(10,10) 
DOUBLE PRECISION PLOPAB(10,10),PLOPAA(10,10),LBLOLA(10,10) 
DOUBLE PRECISION PAALO(10,10),PLOLO(10,10) 
INTEGER N,M,NN,MMl,I,J,Ml 

C 
WRITE(1,5) 

5 FORMAT(j) 
10 CALL TNOUA('ENTER SYST ORDER= ',18) 

READ(l,*) N 
WRITE(1,5) 
CALL TNOUA('ENTER OBSERVER ORDER= ',22) 
READ(l,*) M 
Ml=N-M 
IF(Ml.LE.0) GO TO 10 
WRITE(1,20) 

20 FORMAT(lH ,I, 'ENTER ORDERED SYSTEM MATRIX BY LINE') 
READ(l,*)«PHI(I,J),J=l,N),I=l,N) 
WRITE(1,30) 

30 FORMAT(lH ,I, 'ENTER ORDERED INPUT MATRIX BY COLUMN') 
READ(l,*)(L(I,l),I=l,N) 
DO 40 I=l,Ml 
DO 40 J=l,Ml 
PAA(I,J)=PHI(I,J) 

40 CONTINUE 
MMl=Ml+l 
DO 50 I=l,Ml 
DO 50 J=MMl,N 
Jl=J-Ml 
PAB(I,Jl)=PHI(I,J) 

50 CONTINUE 
DO 60 I=MMl, N 
Il=I-Ml 
DO 60 J=l,Ml 
PBA(Il,J)=PHI(I,J) 

60 CONTINUE 
DO 70 I=MMl,N 
Il=I-Ml 
DO 70 J=MMl,N 
Jl=J-Ml 
PBB(Il,Jl)=PHI(I,J) 

70 CONTINUE 
DO 80 I=l,Ml 
LA(I, l)=L(I, 1) 

80 CONTINUE 
DO 90 I=MMl,N 
Il=I-Ml 
LB(Il,l)=L(I,l) 

90 CONTINUE 
WRITE(1,100) 

100 FORMAT(lH ,I, 'ENTER OBSERVER FEED GAINS BY LINE') 
READ(l,*)«LO(I,J),J=l,Ml),I=l,M) 



CALL MATMUL(M,Ml,M,LO,PAB,LOPAB) 
CALL.MATMUL(M,Ml,Ml,LO,PAA,LOPAA) 
NN=l 
CALL MATMUL(M,Ml,NN,LO,LA,LOLA) 
CALL MATSUB(M,M,PBB,LOPAB,PLOPAB) 
CALL MATSUB(M,Ml,PBA,LOPAA,PLOPAA) 
NN=l 
CALL MATSUB(M,NN,LB,LOLA,LBLOLA) 
CALL MATMUL(M,M,Ml,PLOPAB,LO,PLOLO) 
CALL MATADD(M,Ml,PLOPAA,PLOLO,PAALO) 
WRITE 0, 110) 

110 FORMAT(lH ,/,'PBB-LO*PAB') 
DO 120 I=l,M 
WRITE(l,130)(PLOPAB(I,J),J=l,M) 

120 CONTINUE 
130 FORMAT(lH ,6F12.4) 

WRITE(l,180) 
180 FORMAT(lH ,/,'(PBA-LO*PAA)+(PBB-LO*PAB)*LO') 

DO 140 I=l,M 
WRITE(l,130)(PAALO(I,J),J=l,Ml) 

140 CONTINUE 
WRITE(l,150) 

150 FORMAT(lH ,/, 'LB-LO*LA') 
DO 160 I=l,M 
WRITE(l,130) LBLOLA(I,l) 

160 CONTINUE 
STOP 
END 

363 



APPENDIX 4.7 

TIME LOCUS PROGRAM 

C TIME RESPONSE 
C 

DOUBLE PRECISION PHIX(10,10),PHI(10,10),LU(10,10) 
DOUBLE PRECISION VAR,XPLUS(10,10),U(200),XMINUS(10,10) 
DOUBLE PRECISION L(10,10) 
DOUBLE PRECISION HEIGHT,G1 
INTEGER I,J,K,M,NN1 
DOUBLE PRECISION KM1(10,10),KM2(10,10),G2(10,10) 
DOUBLE PRECISION LOBLW(10,10) 

364 

DOUBLE PRECISION RPHILG(10,10),RLG(10,10),BB(20,15) 
DOUBLE PRECISION RR(10),RI(10),VR(15,10),UU(30),VV(10) 
DOUBLE PRECISION VI (15,10) ,KC,KCMIN,KCMAX,KCSTEP,RLB,RUB 
DOUBLE PRECISION XI,TW,XI0,E,X,Y 

C 
C 

REAL RR1(10),RI1(10),VXBEG,VYBEG,VXEND,VYEND,X1,Y1 
INTEGER NXINTS,NYINTS,IA,IB,IFAIL,IVI,IVR,J,MM,MMM,N 
LOGICAL CC(l0) 
DOUBLE PRECISION G(10,10),LG(10,10),LINPUT(10,10) 
DOUBLE PRECISION PHILG(10,10) 
INTEGER INTGER(12),ICNT(12) 
REAL AAA 1 , BBB1 
REAL DKSTEP,Y¥l 
INTEGER KSTEP,KSTEP2,KSTEP3,NSTEP 
DOUBLE PRECISION Z,Zl,WNT,TETA 

5 WRITE(1,10) 
10 FORMAT(lH) 

CALL TNOUA('ENTER ORDER N =',15) 
READ(l,*) N 
NN1=N 
WRITE(1,30) 

30 FORMAT(lH ,I, 'ENTER MATRIX PHI BY LINE') 
WRITE(1,10) 
READ(5,*)((PHI(I,J),J=1,N),I=1,N) 
WRITE(1,40) 

40 FORMAT(lH ,I, 'ENTER MATRIX L BY COLUMN') 
READ(5,*)(L(I,1),I=l,N) 
WRITE(1,10) 

41 CALL TNOUA('ENTER OBSERVER ORDER =',22) 
READ(l,*) NOB 
IF(NOB.EQ.0) GO TO 49 
WRITE (l, 42 ) 

42 FORMAT(lH ,I, 'ENTER FEEDBACK GAIN MATRIX KMl BY LINE') 
WRITE(1,10) 
READ(1,*)(KM1(1,I),I=l,N) 
WRITE(1,44) 

44 FORMAT(lH ,I, 'ENTER FEEDBACK GAIN MATRIX KM2 BY LINE') 
WRITE(1,10) 
READ(1,*)(KM2(l,I),I=1,NOB) 
WRITE(1,46) 

46 FORMAT(lH ,I, 'ENTER OBSERVER MATRIX LOBLW BY LINE') 
WRITE(1,10) 
READ(l,*)((LOBLW(I,J),J=l,N),I=l,NOB) 
M=l 



CALL MATMUL(M,NOB,N,KM2,LOBLW,G2) 
CALLMATADD(M,N,G2,KMl,G) 
GO TO 70 

49 WRITE(I,50) 
50 FORMAT(IH ,I, 'ENTER MATRIX G BY LINE') 

WRITE(I,10) 
READ(I,*)(G(I,I),I=I,N) 

70 WRITE(I,60) 
60 FORMAT(IH ,I, 'ENTER INPUT GAIN Gl') 

WRITE(I,10) 
READ(I,*) Gl 
J=1 
CALL MATVRB(N,J,L,Gl,LINPUT) 
J=1 
CALL MATMUL(N,J,N,L,G,LG) 
CALL MATSUB(N,N,PHI,LG,PHILG) 

7000 CALL TNOUA('ROOT LOCUS(I),TIMERESPONSE(2) ',30) 
READ(I,*) lA 
IF(IA.EQ.l) GO TO 3050 
WRITE(I,10) 
CALL TNOUA('ENTER SAMPLING PERIOD T(MS)=',28) 
READ(I,*) T 
T=T*0.001 
WRITE(I,10) 
CALL TNOUA( 'NUMBER OF STEPS(SOLUTION)=',26) 
READ(I,*) KSTEP 
WRITE(I,10) 
CALL TNOUA('STEP(I) OR RAMP(2) ',19) 
READ (1, *) I 
IF(I.EQ.2) GO TO 15 
WRITE(I,10) 
CALL TNOUA('ENTER STEP HEIGHT(MM)=',22) 
READ(I,*) HEIGHT 
HEIGHT=HEIGHT*0.001 
M=1 
DO 100 K=I,KSTEP 

100 U(K)=HEIGHT 
GO TO 300 

15 WRITE(I,10) 
CALL TNOUA('ENTER SPEED (MM/SEC)=',21) 
READ(I,*) ACCELE 
ACCELE=ACCELE*0.001 
KSTEP2=KSTEP/2+1 
U(I)=0 
DO 200 K=2,KSTEP2 

200 U(K)=(K-l)*T*ACCELE 
KSTEP3=KSTEP2+l 
DO 210 K=KSTEP3,KSTEP 

210 U(K)=U(KSTEP2) 
300 CALL T4010 

CALL PICCLE 
CALL DEVEND 
CALL TNOUA('PRINT STATE VARIABLE=',21) 
READ(I,*) KSTATE 

365 



CALL TNOUA('MAX VALUE VAR=',14) 
READ(l,*) XMAX 
CALL TNOUA('MIN VALUE VAR=',14) 
READ(l,*) XMIN 
DKSTEP=FLOAT(KSTEP) 
Y1=120.0 
CALL T4010 
W=100.0 
V=5eJ.0 

366 

CALL AXIPLO(0,W,V,l,l,KSTEP,10,0,DKSTEP,XMIN,XMAX,'TIME',4, 'VAR', 
3 

*) 
CALL GRID (3,0,0) 
NSTEP=l 
DO 400 K=l,N 

400 XMINUS(K,M)=0 
500 NSTEP=NSTEP+1 

IF(NSTEP.LE.KSTEP) GO TO 350 
CALL CHAPOS(0,Y1) 

701 WRITE(l,700) 
700 FORMAT(lH ,'CHANGE OBSERVER(1),GAIN(2),STOP(3),CONTINUE(4)') 

READ (1, *) I 
CALL PICCLE 
IF(I.EQ.l) GO TO 41 
IF(I.EQ.2) GO TO 49 
IF(I.EQ.3) GO TO 3000 
IF(I.EQ.4) GO TO 300 
GO TO 701 

350 M=l 
CALL MATMUL(N,N,M,PHILG,XMINUS,PHIX) 
VAR=U(NSTEP-l) 
CALL MATVRB(N,M,LINPUT,VAR,LU) 
CALL MATADD(N,M,PHIX,LU,XPLUS) 
YY1=SNGL(XPLUS(KSTATE,M» 
DNSTEP=FLOAT(NSTEP-1) 
IF(XMAX-YY1) 500,501,501 

501 IF (YY1-XMIN) 500,502,502 
502 CALL GRAMOV(DNSTEP,YY1) 

CALL DOT(3) 
CALL MATCOP(N,M,XPLUS,XMINUS) 
GO TO 500 

3000 CALL DEVEND 
STOP 

C 
C 
C 
C 
C 
3050 

4000 

**************** 
**************** 
ROOT LOCUS 
*************** 
*************** 
CALL T4010 
CALL PICCLE 
CALL DEVEND 
CALL TNOUA('ENTER MIN AND MAX GAINS (KCMIN,KCMAX) 
READ(l,*) KCMIN,KCMAX 
CALL TNOUA('ENTER GAIN STEP= ',17) 

, ,40) 



367 

READ(1,*) KC STEP 
CALL.TNOUA('ENTER RANGE ON REAL AXIS (MIN,MAX,STEPS) ',40) 
READ(1,*) VXBEG,VXEND,NXINTS 
CALL TNOUA( 'ENTER RANGE ON lMAG AXIS (MIN,MAX,STEPS) ',40) 
READ(1,*) VYBEG,VYEND,NYINTS 
KC=KCMIN 
CALL T4010 
CALL AXIPLO(1,90.0,90.0,2,2,NXINTS,NYINTS,VXBEG,VXEND,VYBEG, 

*VYEND, 'REAL' , 0, ' lMAG' , 0) 
CALL GRAMOV(1.0,0.0) 
TW=0.0 

4045 X1=SNGL(DCOS(TW)) 
Y1=SNGL(DSIN(TW)) 
CALL GRALIN(X1,Y1) 
TW=TW+.02 
IF(TW.LE.6.30) GO TO 4045 

4040 CALL MATVRB(N,N,LG,KC,RLG) 
CALL MATSUB(N,N,PHI,RLG,RPHILG) 
RLB=0.0 
RUB=10.0 
MM=NN1 
IA=10 
IB=20 
IVR=15 
IVI=15 
IFAIL=1 
CALL F02BCF(RPHILG,IA,NN1,RLB,RUB,MM,MMM,RR,RI,VR,IVR,VI,IVI, 

*INTGER,ICNT,CC,BB,IB,UU,VV,IFAIL) 
IF(IFAIL.EQ.0) GO TO 4010 
WRITE(1,4005) IFAIL 

4005 FORMAT(1H, 'ERROR F02BCF',I2) 
STOP 

4010 DO 4020 I=1,MMM 
AAA1=SNGL(RR(I)) 
RR1(I)=AAA1 
IF(AAA1.GT.VXEND) GO TO 4030 
IF(AAA1.LT.VXBEG) GO TO 4030 

4012 BBB1=SNGL(RI(I)) 
RI! (I )=BBB1 
IF(BBB1.GT.VYEND) GO TO 4030 
IF(BBB1.LT.VYBEG) GO TO 4030 

4020 CONTINUE 
CALL GRASYM(RR1,RI1,MMM, 3,0) 

4030 KC=KC+KCSTEP 
IF(KC.LE.KCMAX) GO TO 4040 

4090 CALL GRASPA(VXBEG,VYBEG,XSP,YSP) 
YSP=YSP-10.0 
CALL SPAGRA(XSP,YSP,XGR,YGR) 
CALL CHAPOS(0.0,10.0) 
WRITE(1,4095) 

4095 FORMAT(1H ,'CONTINUE(1),CHANGE FEED GAINS(2),CTE DAMP(3)') 
CALL TNOUA('CTE WNT(4),CTE XIWNT(5),STOP(6) ',32) 
READ ( 1 , *) lA 
IF(IA.EQ.6) GO TO 6000 



4050 
4070 

4060 

5010 
5020 

5030 

C 
7010 
7020 

7030 

IF(IA.EQ.5) GO TO 7010 
IF(IA.EQ.2) GO TO 49 
IF(IA.EQ.3) GO TO 4050 
IF(IA.EQ.4) GO TO 5010 
CALL CHAPOS(0.0,138.0) 
GO TO 4000 
XI=0.1 
TW=0.0 
CALL GRAMOV(1.0,0.0) 
XI0=XI/(DSQRT(1.0-XI**2» 
E=DEXP(-(XI0*TW» 
X=E*DCOS(TW) 
Y=E*DSIN(TW) 
X1=SNGL(X) 
Y1=SNGL(Y) 
CALL GRALIN(X1,Y1) 
TW=TW+.02 
IF(TW.LE.3.15) GO TO 4060 
XI=XI+.1 
IF(XI.LE.1.0) GO TO 4070 
GO TO 4090 
WNT=0.0 
WNT=WNT+.25 
IF(WNT.GT.3.25) GO TO 4090 
TETA=0.0 
X=DEXP(-(WNT*(DCOS(TETA»» 
X1=SNGL(X) 
CALL GRAMOV(X1,0.0) 
TETA=TETA+.01 
IF(TETA.GT.1.58) GO TO 5020 
Z=(DEXP(-(WNT*(DCOS(TETA»») 
Zl=WNT*DSIN(TETA) 
IF(Zl.GT.3.14) GO TO 5020 
X=Z*(DCOS(Zl» 
Y=Z**2-X**2 
Y=DSQRT(Y) 
X1=SNGL(X) 
Y1=SNGL(Y) 
CALL GRALIN(X1,Y1) 
GO TO 5030 
LOCI OF ROOTS OF CTE XI.WN.T 
WNT=1.0 
WNT=WNT-.1 
IF(WNT.LT.0.1) GO TO 4090 
TETA=0.0 
X=WNT*DCOS(TETA) 
Y=DSQRT(WNT**2-X**2) 
X1=SNGL(X) 
CALL GRAMOV(X1,0.0) 
TETA=TETA+.02 
IF(TETA.GT.3.15) GO TO 7020 
X=WNT*DCOS(TETA) 
Y=DSQRT(WNT**2-X**2) 
X1=SNGL(X) 

368 



Yl=SNGL(Y) 
CALL GRALIN(Xl,Yl) 
GO TO 7030 

6000 CALL DEVEND 
STOP 
END 

369 



370 

! 
~~ 

• -~ .. 
N" :.~ ~ 
:>~ 

~ ! ~ ~ 
J. ~JJ 

o "'..... .... • ~ . ,...,...>-)-)-,..,..,.. 
;; . - . . 0 

" - · • - .. N • • - ~ • ~~- ::> • .; • ...- ~ 
•• u ~~ 

~ ~ % • ;. 'n; ~ , ,r--""-->'-""',-"----, r--. 

2 n 
.. ~ -. 0( .... « .. « 0( < 

. , ~ . . .. · 0 

O-"" ...... "'<l> ..... Q'lQ~ ~ '·0 N ...... ..,"' .... ..,,,,0 ~ ....... « 
00000000000000000( «<."" ...... "'«0( .... "'''' 

u 

'E . J J -. ." 
wO ... :5 ..... ~ !6d z % 

~~ 
~ ~1~~-"" .... ·z~~~~:~~~:~~8~=i~i eee ___ ~ > »u u 0 . 

.:1' ~ z 
0 
N • 

; ~" M g .. 
• -

« « 

H 
Z 

~ 
13 
H 
Ul 
Ul 

>- < 
Z 

Z :::> H 
Cl:: 0.. 
0 

~ of) 
of) ~ W ..... 
U 
0 '" Ul 
Cl:: 

~ "- >< 
H 

-' ~ ~ .. Z 
Cl:: '" H 
>- 0.. ~ z 

~ w U 
U H 

'-' 
0 
o-l 
..... 
I 

:>: 
0 
0 ..... -.. 
0 
a. 

~ 
a. 

+ 
~ 



> o 
• 

" • N • 
< I~ :s .,[ --. 
~!j' --
~ , 

~< c:; 

• , 
~ 

I·· < " 11:, .. - -

~, 1 ·1 

~'J 
" • 
" N ~ , · N · • , 

~ " • , 
L , 
~ :: 

-

" ~ • 
~ J5 
;J~ 
• 

.-
• ~ 
• . 
N • • , 

• 
~ 

" . 
~ . 

" , 
~ ~ 

~ 
" , 
N 
L 

" 1 
• . 
" 

> 
~ 

• 
J.iL-:-' - ~ 

.. 1101'·... I , 

1~)lL·. I 
.,)1,'" 
~I)ln .. I J 
,)01'"" 
.U'Q =J 

371 

0 " .:. ~ 
L L 

• < 
" " u , , 
u t • < 

I I '1 I' 

• • 

li , 
~ 



N N 

• • ~ ~ 

> ! 0 

~ < • 
"~ S" 

• -!. 

< 
0 

NN 
> <_ 
• ~ 

~ • ,. :a ll 
,: j(~!' <. 
< > ;i~!.. 
« ~ 

• 

;< N • ;: " 

; • , 1 
;: ;: 

... 

.::~ 
• 

r; ~ 

t' 

~ 
~ 

,--~ 

• , 
• 

G , 
• 

VJ 
Cl: 
W 
"-
"-
::::l 

'" 
W 
z 
:::J 
--' 
0 
Cl: 
l-
Z 
0 
U 

--' o 
Cl: 
I
Z 
o 
u 

>
Cl: 
o 

'" w 

'" 

372 



I 

l' I ,60 

~ 
'! ~o;; ':0 

.~ ,"0 

If' 11,..~!~Ll 
11 t91U 

T(:~oa 
TY-~:}9ILZ 
';,; , 

r " I r~eOLZ n ... · ... }9IU 

'" I I ... ~!~.u 
I I .... J'~U:Z 
' . 
~ 

IL 
.. ':' ~ 

" , 
11 -. 

" 
~ -" 0 , N_ I1 -; 

q~ 
:>, , 

~~:_I 
IT-"'ll~L 

J" 

" 
, -. 

" ., 
lIT-

, -" 0 , ,.,-, 
q~ 
:>, 

!'l • 0 
Ao;~~ 

tt- r ' ... +-~ "lit- t 

~' J-

" , 11 , 
!I- ~ 

~ " -=il 0 
q-
q~ 

-.il "! 

'" ..... :~ 

:;'~ 
~ 

" 

To! 0 
0 -, 

0 , o .n~ 
o q~ 

~ " o ::J! 6 , 
• 0 , " 0 , , 

10 9 l 
-, 't'1t'XJ1jd 0; , 

~I lq)'!2 ~" 
" ... I : 

...... ~....! aA 
'Il-f\ll~~~ ... 
o J" 'L ~~',~ " 

• ~ 

- 1<1· 

I 

I~~ 

1 , 

~ 

>ex: 
o 
::; 
w 
::; 

::; 
o 
ex: 
Cl. 
w 

373 



>a: 
o 
:::; 
w 
:::; 

374 



,. "0< " 

~I 
,.\.~O'". 

"' 
,. t 

" "'"' ,. = 

",{ 
., 

,,,{ '" 

0" , 
, '"'( 

~oln .... 

." 
~ 

11.1IIt~ D~.O 

Ol.~ . , , , 
'" 'f~' ~OMro 

HUO,. wr- U3 
HlU4llol 

.., .. 
AH 

~ 
U< 

1'4LS24l" , .,. ,. 
"" .. 

~ U~ 
74L.S24)N , 

." 
~ 

'" . , , 
j-J u6 
[CL--

- --

.--"'- A~.I'\ 
Pl·~" ,,,{ • PiAl' 
p'"J<I 

.. 
1"-)) • U7 

.. 5'1- f.J 
1.LSl"J" , 

.~ .. ~~ 
". ,,-"0 .' ,{ 

, , 
,,-s", • 
P'-!oII. • 
'toll 

.. 
+-!>v- p:' U8 

74L524JN , . ., 
.,-.. { ." 
PIe,,) 

, 
1'1-<11. l" t A 

Pt-<l' 
~ .,~- u9 

"' 
7.:iLS24JN 

t4 
, 

." 
I-c 

,. 
A,""" PI-'HI 

Pt-<l1 f .. 
PI'~w lHt. 

, .... I! Dj 

PI'''~ L • :1 AI!.I I 

.. ~v.-t± 

f'I·.o 
PI-~" 
PI-'O 
Pt -!)1 

p, ...... p,-,-, 
PI'Io~ 

P'"101 

PI'~ 

PI"101 Pt_,," 
1'1-10' 

'1-1, 
1'1-11 

"1-10 
1'1-'" 

~ ~ 

DATA/ADDRESS BUS BUFF ERS 

'H' <" 

PI-2!1 
("Uti ,., 

~:_f' 

'" ." , .. 

.. , 
~ 

" 

.' 
~~ 
".0 

, 

PI-)O 

'A' 
'I-'~ 
't-U 
PI-[4 
p,-Z," 

..., 
--.J 

'" 



" 

1II1·~IPRB 

UZ1 
'4\.$0'" 

'lot) .. , .'A 'I'W T J1o' ·5'" 
, i" '0< 

Jft'!Till.1I 1/- .. 

• ,." : ~ 1 
···~~~~I I~Y 'I". CD 

Ul> 

"" 
v- I 1<1\.)0" ± I "~L.' 

IHI! "\'-" L J I .!,~ I 1 

all 
u 

s .. ; ,., 

,. , 
10R[:' , .. 

I~ ;:p WIn !ht, . ,. 
ri- -, 
I .. ·" .. !ut" !I .. t 
L .J Ok ... 

• f) c- 'oh ~IO ~"l 
_IoU .!I\ 'e( IJlg ., 

." 1 ""'1 

? 
'll' IRI)l':)I\.r ..... i):. .. t 

·J':':E Ill.' T .!I ,to I"'·"'""· ~. ,., 
I )M '." 

'iF ~I 
lL. Cl, .>I ',',) ,. 

" ~ .. , ';'f ~ .. ; B£:'HI 

$,,'4L,.,,"Z" 

RESET/LOAD/CLOCK 

.... io!1Il1 31'0 m 
~)I'L;lM" 

n ~~;:~"" I 'H , 
.n 

" 
U<7 • ,v 

-,v I!I' 

." 
.,v ~~··I ' __ ',"" 

"U ._DJ' 
)~1I'41o' .112 

·,v ~ 
'~YOl J' I I t .. e 
.Iil.\), 

~
"K';' ... v 

'_. I'Il4 
,,9 .]'OA.""'W 

.-,=. ill(. ~w {!
-ov 

J6 
Mt._ 
'))0.4." 

>"'" 

DUPLEX SELECTORS 

'It J IWfI'U!lH 
Ill' IN,.ULL, I I r .. :~'H' OD 

.~ .. '" ,."" 
, .. ,,,,,,,11 ,. 

, ' .,v -.. 
, 

"!l107 

MULTI- DROP INTERFACE III '"" ...., 

'" 



377 

PI I SIGNAL 
PI I SIGNAL 

PI I SIGNAL 
PIN PIN PIN 

33 00.8 71 A14.B 12 INT138 
3' D1.B 72 A1S.B 11 INT14.B 
35 02.8 22 m.B " INITS.s 
35 03.B 2' ID.a 28 EXTClX.B 
37 04.8 92 HllTIl.B 3 +5V 
38 05.8 85 HOLOA.B • +5V 
39 06.8 82 oalN.S 97 +5V 
40 07.8 25 ClY8 98 +SV ., 08.8 80 MEMEN.B 75 +12V 
'2 09.8 8' U~.B 7. +12Y 
'3 010.8 78 WE.B 73 -12V 
44 011.8 90 READY.S 74 -12V 

'5 012.8 87 CAUCLK.8 1 GND 
'5 013.8 30 CRuOUT.B 2 GNO 
47 014.8 29 CRUIN,a 21 GND 
48 015.8 19 IAG.a 23 GND 
57 AD.S 94 PIlE.8 25 GND 
5B Al.e B8 IORST.B 27 GND 
59 AZ.S IS iNTTB 31 GND 
60 Al.e 13 IN'rrB 77 GND 
51 A4.B 15 iNn.S 79 GND 
52 AS.S 18 mT4:B 81 GND 
53 AS.S 17 fIlT!>.B 83 GND 
54 A7.e 20 INTS.S 85 GND 
SS AB.S 5 INT7.B 89 GND I 

66 AS.S 5 IIITlrB 91 GND 
, 

67 A1O.S 8 IIITlrB 99 GND 
68 Al1.B 7 INTlO.B 100 GND 
69 A12.a 10 INT11.8 93 RESTART.B 

70 AIJ.S 9 INT12.B 

P4 I 
PIN 

SIGNAL P4\ PIN 
SIGNAL 

20 PO 17 GND 

22 PI 15 GND 

" 
P2 13 GND 

IS P3 11 GND 

18 P.· 9 GND 

10 P5 39 GND 

12 P6 37 GND 

24 rNlT5 or P7 35 GND 

26 iNTT4 or PS 33 GND 

28 INT13 ot pg 31 GND 

30 INTll or PlO 29 GND 

32 INT1i or PI. 27 GND 

34 INTlO or P12 25 GND 

36 iNf9 or PI3 23 GND 

38 iNf"g or P14 21 GND 

40 fNT7 or PIS 19 GND 

7 INT 6 1-6 Spares 
8 1NT5 



t' 

r2 

f3 

r4 

MEMEN 

OBIN 

WE 

AO·AI4 

READY 

WAIT 

00·015 

lAC 

n n n n n n n n n ~ 

~ r n:n n r n n r r 
~n In nl n n In n n In~._ 

l nl n rl n nl n n nl ~ 
I I I 

-----j~ I / ~ /J~i --
I I I 

-----IV I \ I : 
I I I \ (~.!....I --

----f~ VALID ADDRESS : x ~ ·VALlDADDRESS ~':-__ 

XX§CH';{A:RfXXX»' '\XXXX'lO()(?9~'H~R:~ / "<XXXX»~~i~~~E»'X 
I I I I 
I I I / \'----+-1 --

CPU DRIVEN INPUT MODE 

I SHOWN ASSUMING THIS 
-------fr CYCLE IS AN INSTRUCTION 

~ ACOUISITIO: CYCLE I 

MEMORY READ CYCLE WITH NO WAITS 

INPUT CPU DRIVEN CPU WRITE DATA CPU DRIVEN 

\'-__________ ~ ___________ J 1 v-
MEMORY WRITE CYCLE WITH ONE WAIT 

RD· READ OATA 

APPENDIX 6.2.1 

TMS 9900 MEMORY BUS TIMING 

'" .... 
co 



11 
f2 

f 
r 
MEMEN 

AD-A 14 

00·015 

OBIN 

WE 

REAOV 

WAIT 

HOLDA 

HOLD 

n n n n n n !lIt n n rL 
1 

~nnnnnr'1 nnn 
In n n: n : n n :Jl n n ': 
Inn nl n n ~ ~I_ 
I I 

'l V' Hi.Z:S rr-
1 I =1 ~ 1 Hi·Z If q= 

=x r > Hi·Z if , Ci= 
I I . I ~ HI·Z" I 

--'I i 'W I .- '--t-
I \ I Hi·Z" rr 
L I I - 1 

) ~Ht g~R:e\ / ~:o:o~:r:c~~~ :xxxxxxxxxx:xxxxxxx>:O?~·j fHEXXXXXXXXXX 
I I I I 
I / \ I re I 

J - I --;-______ ~_.-.JI' 'f \..+-
\ : {~ ,j I 

I_ PROCESSOR OUTPUTS FLOATING ~I 

APPENDIX 6. 2. 2 

TMS 9900 HOLD TIMING 

w .... 
'" 



z >- lLJ 

~ IQ 13 ~ 
lLJ L 
a:: 

= 

,:3" 

I 
+5~ 

'" " 

er 
.J 

" 

n 

Z 

ID 
o 

.. 

+ ~ ~ Lo--t;CI;n . , ~-I,; 

9 
~ .... 

r 

r 

N 

C> ..-- N,.,., -D ...:t Ln r
<{ <{ <{ <{ <{ <{ <{ <{ 

m 

H~ ~ :±. -:I~ !!:!!? ~ ::: ~ ~ -

.., '" 

_ 0 

on 
-< 

,.. ~ on -

CE1a 
IT1b 

(E1 ( 

<It 
'" 0-w A 

, !!:I -I!:. ~ .... In ~ "!!: ~ 

+~~ ~ 

b4 

(4 

d4 

r .. 

..... 

. ~ .. 
Cl .. .., 

e 
<It 

=-p .c !t ~ ~ :l : = = 

A7-A14 

b3 

(3 

d 3 

.. 
C 

b2 

( 2 

d 2 

~ 
t? 

r--DLn...:t(T'lN~C> 

00000000 

~.~ 
.. A 

f 

b1 

(T'I 

o 
C> 
o 

:! ~ ~ ""'!:l!') 
..................... '---<1 

( 1 

:!' ~ ~ 0'" ~I ~ !:! ::: 

.................. '---<1 

d 1 

380 

e 
'" ... 
00 

'" or< 

'" tJ 
or< 
00 
o ,..., 

"" ... 
'" o 

'" c 
o 

or< 
U} 

C 

'" 0-
X 

W 

;., ... 
o e 
Q) 

:>: 

. 
N 

-0 

x 
or< 

"" C 
Q) 

0-
0-
< 



381 

Q 
Ck: 
<t: 
o 
en 
z: 
o 
H 
(f) 
z: 
<t: 
n... 
X 
W 

>
Ck: 
o 
:L 
W 
:L 

Ck: 
o 
LL 

~ 
(f) 
<t: 
:L 

l!) 

z: 
H 
Ck: 
~ 
t
U 
<t: 
LL 
~ 
z: 
<t: 
:L 



382 

APPENDIX 6.2.3 (cont.) 

MEMORY-EXPANSION BOARD PIN-SIGNAL-ASSIGNMENT 

MEMORY EXPANSION BOARD PIN-SIGNAL ASSIGNMENT 

PIN SIGNAL PIN SIGNAL 

1 GND 2 READY 

3 +5v 4 $i 

9 MEMEN.BF 6 WE 

11 DBIN.BF 8 MEMEN 

13 $i.BF 10 DBIN 

15 WE.BF 34 A7 

17 D15 35 A8 

19 D14 36 AS 

21 Dl3 37 A9 

23 D12 38 A4 

25 Dll 39 AlO 

27 DI0 40 A6 

29 D9 41 All 

31 D8 42 A3 

49 D7 43 A12 

51 D6 44 A2 

53 D5 45 Al3 

55 D4 46 Al 

57 D3 47 A14 

59 D2 48 AO 

61 D1 12 HOLDA 

63 DO 83 GND 

85 +5v 



383 

APPENDIX 6. 2 .4 

LIST AND DESCRIPTION-OF COMPONENTS-FOR MEMORY EXPANSION BOARD 

ID TYPE DESCRIPTION 

al D2111AL-4 256-word by 4-bit Static RAM 

a2 " " 
a3 " " 
a4 " " 
bl D211AL-4 256-word by 4-bit Static RAM 

b2 " " 
b3 " " 
b4 " " 
cl D2111AL-4 256-word by 4-bit Static RAM 

c2 " " 
c3 " " 
c4 " " 
dl D2111AL-4 256-word by 4-bit Static RAM 

d2 " " 
d3 " " 
d4 " " 
e SN74LS345N Octal Bus Transceiver (3-state) 

f SN74LS345N Octal Bus Transceiver (3-state) 

g . SN74LSlON Triple 3-Input Positive NAND 

h SN74LS24lN Octal Buffer (3-state) 

1. SN74LS245N Octal Bus Transceiver (3-state) 

m SN74LS245N Octal Bus Transceiver (3-state) 

n SN74LS74N Dual D-Type Flip Flop 

p SN74LS20N Dual 4-Input Positive NAND 

q SN74LSl55N Dual 2-line-to-4-line Decoder 

r SN74LS04N Hex Inverters 



APPENDIX"6.5.l 

LIST AND DESCRIPTION "OF "COMPONENTS 
FOR ADDRESS BUS BOARD 

ID 

lA 

2A 

3A 

4A 

5A 

6A 

7A 

8A 

9A 

lOA 

llA 

l2A 

13A 

l4A 

l5A 

l6A 

( 

TYPE 

SN74l50 

SN74l50 

SN74LS245 

SN74LS245 

SN74LS24l 

SN74LS30 

SN73LS08 

SN74LS08 

SN74LS08 

SN74LS08 

SN74LS26 

SN74LS14 

SN74LS73 

SN74LS08 

SN74LS14 

SN74LS08 

DESCRIPTION 

1-of-16 Data Selector Multiplexer 

" 
Octal Bus"Transceiver (3-state) 

Octal Bus Transceiver (3-state) 

Octal Buffer (3-state) 

8-Input Positive NAND Gate 

Quadruple 2-Input Positive AND 

" 
" 
" 

Quadruple 2-Input NAND (Open) 

Hex Schmitt Trigger Inverter 

Dual J-K Flip Flop with Clear 

Quadruple 2-Input Positive AND 

Hex Schmitt Trigger Inverter 

Quadruple 2-Input positive AND 

384 

" 



ID 

6A 

8A 

2C 

5C 

6C 

7C 

8C 

4D 

5D 

6D 

7D 

APPENDIX 6.5.2 

LIST·AND DESCRIPTION·OF·COMPONENTS 
FOR DATA BUS BOARD 

TYPE DESCRIPTION 

SN74LSOO Quadruple 2-Input Positive NAND 

SN74LSOl Quadruple 2-Input NAND (Open) 

SN74LS86 Quadruple 2.,-Input Exclusive OR 

SN74LS14 Hex Schmitt Trigger Inverter 

SN74LS14 " 
SN74LS14 " 
SN74LS14 " 
SN74LS245 Octal Bus Transceiver (3-state) 

SN74LS245 " 
SN74LS245 " 
SN74LS26 Quadruple 2-Input NAND (Open) 

385 



386 

APPENDIX "7;2 

OPEN COLLECTOR BUS "DRIVERS "AND "LINE "TERMINATION 

Open"collector drivers are used for the slave identification bus, HOLDA.B 

and HOLD.B lines, the interrupt controller (INTCTL) line and the bus busy 

signal line. 

The necessary pull-up resistors for the open collector drivers are replaced 

by two resistors RLI to +5V and RL2 to ground. These resistors are 

chosen so that their Thevenin equivalent network has a voltage generator 

of +3V, and an impedance equal to the driven line impedance (~O). 

Assuming a characteristic line impedance of l80n (S-100) resistors RLl 

and RL2 are calculated according to: 

3 = 5 

180 

( RL2 
RLl + RL2 

( RL1.RL2 
RLl + RL2 

) 

) 
which gives RLl = 300n and RL2 = 470n (standard). 

In the case of the uni-directional lines as the interrupt controller and 

busbusy line, which configuration is shown in Figure 6.5.3, each NAND 

gate in the worst possible condition must be capable of sinking the 

current coming from the resistor network and the inverter low level input. 

For a "74LS14, these currents add up to 17 mA (16.6 + 0.4 mA) and the 

open collector NAND driver must be the 7438 or 74S38 with a low level 

output current of 48 mA. 

For the bi-directional lines, as the slave identification bus and others, 

shown in Figure 6.5.2, there must be termination at both ends. In this 

case, each NAND gate must sink the current coming from the two resistor 

networks and ten inverter low level inputs. For 74LS14 inverters, these 

currents add up to 37.2 mA (2 x 16.6 + 10 x 0.4 mA). This current is 

compatible with the maximum low level current for the 74S38 device. 



~l 

~2 

~l 

~2 

Configuration for unidirectional lines: 

- Interrupt Controller and Bus Busy Line 

Module 1 (Controller) 

+ 5V 

. . . 

Configuration for bi-directional lines: 

- Slave Identification Bus (Typical line) 
- HOLDA.B Bus System line 
- HOLD.B Bus System line 

+5V 

. . . 

Figure A Loading and Termination on 

o ..... 
Q) ..... 
" "" o 
:>: 

the Open-Collector Driven Lines 

o ..... 

387 

+5V 

~l 

~2 



388 

APPENDIX 7. 3 

MEMORY TEST PROGRAM 

MTE TXMIRA 2.3.0 78.244 00:16:23 01101/00 
MORY TEST ROUTINE 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
001\'1 
0012 
00~3 
0014 
0015 0000 0201 

0002 F000 
0016 0004 C0Cl 
0017 0006 2FA0 

0008 005A' 
0018 000A 0202 

000C F3FE 
0019 
0020 
0021 
0022 
0023 000E CC41 
0024 0010 8081 
0025 0012 lB01 
0026 0014 10FC 
0027 0016 C043 
0028 0018 8C41 
0029 001A 1612 
0030 001C 8081 
0031 001E 1B01 
0032 0020 10FB . 
11033 
0034 
0035 
11036 
0037 0022 0204 

0024 AAAA 
1)038 0026 0205 

0028 5555 
1)039 002A C043 
11040 002C C444 
1)041 002E 8444 
1!l042 0030 160A 
11043 0032 C445 
3044 0034 8445 
11045 0036 160A 
3046 0038 05Cl 
11047 003A 8081 
11048 003C lB0A 
3049 003E 10F6 
11050 

************************************************** 
*THIS ROUTINE TESTS A DEFINED RAM AREA OF MEMORY * 
*IT IS WRITTEN IN RELOCATABLE CODE. * 
*THE STARTING ADDRESS MUST BE GIVEN ON LOCATION * 
* 0002 AND THE FINAL ADDRESS ON LOCATION 000C * 
*WHEN AN ERROR IS FOUND A CORRESPONDENT MESSAGE * 
*IS DISPLAYED. IT USES REGISTERS Rl TO R5 AND IF * 
*THERE IS AN ERROR REGISTER Rl WILL CONTAIN THE * 
*ADDRESS WHERE POSSIBLY THE PROBLEM LIES. * 
************************************************** 

IDT 'MEMTE' 
DEF MEMTE 

**** 
MEMTE LI Rl, )F000 

MOV Rl,R3 
XOP (!1LFCR, 14 

LI R2, )F3FE 

STARTING ADDRESS 

SAVE ADDRESS 
LFCR 

END ADDRESS 

************************************* 
* GLOBAL TEST * 
* WRITES ON LOCATION ITS ON ADDRESS * 
************************************* 
MOV MOV Rl,*Rl+ WRITE ADDRESS ON 

C Rl,R2 FINISHED? 

OUT 
COMP 

JH OUT 
JMP MOV 
MOV R3,Rl 
C Ri, *Rl+ 
JNE MESSl 
C Ri, R2 
JH OUT2 
JMP COMP 

CHECKING 
COMPARE 
MESSAGE ON 
FINISHED? 

ERROR 

******************************************* 
* AAAA AND 5555 TEST * 
* WRITES VALUES AAA A AND 5555 ON LOCATION * 
******************************************* 
OUT2 LI R4, )AAAA 

LI R5, )5555 

MOV R3,Rl 
MOV3 MOV R4,*Rl 

C R4,*Rl 
JNE MESS2 
MOV R5,*Rl 
C R5,*Rl 
JNE MESS3 
INCT Rl 
C Rl,R2 
JH MESS4 
JMP MOV3 

********************** 

STARTING ADDRESS 
WRITE AAAA 
COMPARE 
MESSAGE ON ERROR 
WRITE 5555 
COMPARE 
MESSAGE ON ERROR 
NEXT ADDRESS 
FINISHED? 
NO ERRORS 

PAGE 0001 



389 

MTE TXMIRA 2.3.13 78.244 1313:16:23 131/131/1313 PAGE 1313132 
:MORY TEST ROUTINE 

131351 * OISPLAYNG MESSAGES * 
0052 ********************** 
131353 1313413 2FAeJ MESSl XOP WERR1, 14 GLOBAL TEST FAIL 

131342 0850' 
131354 131344 113138 JMF' RETUR 
0055 131346 2FAeJ MESS2 XOF' WERF:2, 14 AAAA TEST FAIL 

131348 eJeJ6F' 
131356 eJeJ4A 113135 JMF' RETUR 
131357 eJeJ4C 2FAeJ MESS3 XOF' WERR3, 14 5555 TEST FAIL 

eJeJ4E eJeJ7F' 
131358 1313513 113132 JMP RETUR 
131359 0052 2FAeJ MESS4 XOP @ERR4, 14 NO ERRORS 

131354 eJ08F' 
1313613 131356 134613 RETUR B W>8eJ RETURN TO MONITOR 

131358 1313813 
131361 ************ 
131362 * MESSAGES * 
131363 ************ 
131364 eJeJ5A eJAeJD LFCR DATA >eJAeJD LFCR 
131365 eJeJ5C 1313 BYTE 13 
131366 131350 47 ERRl TEXT 'GLOBAL TEST FAIL! ' 
131367 eJeJ6E 1313 BYTE 13 
131368 eJeJ6F 41 ERR2 TEXT 'AAAA TEST FAIL! ' 
131369 eJeJ7E 1313 BYTE 13 
1313713 eJeJ7F 35 ERR3 TEXT ' 5555 TEST FAIL! ' 
131371 008E 1313 BYTE 13 
131372 eJeJ8F 54 ERR4 TEXT ' TEST OK! NO ERRORS' 
131373 eJeJAl 130 BYTE 13 
131374 END 



390 

APPENDIX 7.5 

POWER SUPPLY SPECIFICATION 

POl-lER SUPPLY 1 

Source Code 

QUARNDON QMS PSUl 

Voltage Range Max Current (A) 
(V) 40°C Ambient 

5 
+ 

5% 6.0 -
+ 12 1.0 

- 12 1.0 

- 5 0.1 

* Located at the back .of .the . Rack 

POWER SUPPLY 2 

Source Code 

VERO SPEED 89-2665G 

Voltage Range Max Current (A) 
(V) 40°C Ambient 

Output 1 5 + 5% 1.0 

Output 2. 5 + 5% 1.0 

* Located on the Rack 



APPENDIX 7.6.1 

SYSTEM BUS FIRST TEST PROGRAM 

RSTl TXMIRA 2.3.0 78.244 00:18:55 131/01/00 
E FIRST TEST ROUTINE 1 

0001 
0002 
0003 
0004 
00135 
0006 
0007 
0009 
0010 
0011 
0012 
01313 0000 0300 

00132 0000 
0014 01304 020C 

0006 0100 
0015 0008 0200 

13I3I3A 20130 
0016 0013C 31C0 
0017 000E 13720 

0010 F0013 
0018 0012 0300 

0014 13005 
0019 13016 0340 
01320 0018 04613 

1301A 01380 
0021 
0022 
0023 
0024 001C 020C 

1301E 01013 
0025 0020 0200 

0022 F000 
0026 0024 1E00 
01327 0026 lE14 
0028 01328 IF18 
0029 0132A 16FE 
0030 002C lE12 
0031 13132E C050 
0032 0030 16FE 
0033 0032 1012 
0034 01334 IF18 
13035 0036 13FE 
0036 0038 03813 
01337 

****************************************** 
*FIRST TEST * 
*THIS PROGRAM WAS WRITTEN FOR CONTROLLER * 
*MODULE. IT HELPS CHECKING THE INTERRUPT * 
*ARBITRATION LINK AND HANDSHAKE CONTROL * 
*THE INTCTL LINE IS SERVED BY INT5. * 
****************************************** 

IDT 'FIRST!' 
*************** 
*MAIN PROGRAM * 

*************** 
FIRST1 LIMI 13 

LI R12, >1130 

LI R0, }21300 

LDCR R0,7 
SE TO @}F000 

LIMI 5 

IDLE 
B @}813 

********************** 
*INTERRUPT 5 ROUTINE * 
********************** 
INT5 LI R12, >100 

LA 

CA 

TA 

LI 

SBZ 
SBZ 
TB 
JNE 
SBZ 
MOV 
JNE 
SBO 
TB 
JEQ 
RTWP 
END 

R0, }F000 

o 
20 
24 
LA 
18 
*R0,Rl 
CA 
18 
24 
TA 

DISABLE ALL INTERRUPTS 

TMS 9901 ADDRESS 

ENABLE ONLY INT5 

ON TMS 9901 
FLAG FOR MESSAGE 

ENABLE INT5 ON MICRO 

WAIT INTERRUPT 
RETURN TO MONITOR 

TMS 9901 ADDRESS 

LOCATION FOR MESSAGE 

INTERRUPT MODE 
SET RACKO LINE 
BUS BUSY? 
NO! RETURN TO LA 
ENABLE HOLO IN 
MESSAGE TRANSMITTED? 
NO! 
DISABLE HOLD IN 
BUS FREE? 
NO! 
RETURN TO MAIN 

391 

PAGE 0001 



RST2 TXMIRA 01/01/00 
E FIRST TEST ROUTINE 2 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0009 
0010 
0011 
0012 
0013 0000 0300 

0002 0000 
0014 0004 020C 

0006 0100 
0015 0008 0200 

000A 1000 
0016 000C 31C0 
0017 000E 1E13 
0018 0010 0300 

0012 0004 
0019 0014 0340 
0020 0016 0460 

0018 0080 
0021 
0022 
0023 

****************************************** 
*FIRST TEST * 
*THIS PROGRAM WAS WRITTEN FOR MODULE 2 * 
*IT HELPS CHECKING THE INTERRUPT * 
*ARBITRATION LINK AND HANOSHAKE CONTROL * 
*THE INTMST LINE IS SERVEO BY INT4. * 
****************************************** 

IDT 'FIRST2' 
*************** 
*MAIN PROGRAM * 

*************** 
FIRST2 LIMI 0 

LI 

LI 

LDCR 
SBZ 
LIMI 

IDLE 
B 

R12, >100 

R0, >1000 

R0, 7 
19 
4 

@)80 

********************** 
*INTERRUPT 4 ROUTINE * 
********************** 
INT4 LI R12, >100 

DISABLE ALL INTERRUPTS 

TMS 9901 ADDRESS 

ENABLE ONLY INT4 

ON TMS 9901 
SEND COMMUNICATION WISH 
ENABLE INT4 ON MICRO 

WAIT INTERRUPT 
RETURN TO MONITOR 

TMS 9901 ADDRESS 

392 

PAGE 0001 

0024 001A 020C 
001C 0100 

0025 001E 0200 LI R0,0 MESSAGE TO BE TRANSMITTED 
0020 0000 

0026 0022 1013 
0027 0024 1E11 
0028 0026 1F16 BA 
0029 0028 16FE 
0030 002A C800 

002C 1000 
0031 002E 1011 
0032 0030 1F16 VA 
0033 0032 13FE 
0034 0034 0380 
11035 

SBO 19 
SBZ 17 
TB 22 
JNE BA 
MOV R0,@)1000 

SBO 17 
TB 22 
JEG VA 
RTWP 
END 

CLEAR WISH 
HOLD CONTROLLER 
CONTROLLER STOPPED? 
NO! RETURN TO BA 
SEND MESSAGE 

RELEASE CONTROLLER 
RELEASED? 
NO! RETURN TO VA 
RETURN TO MAIN 



APPENDIX 7.6.2 

SYSTEM BUS SECOND TEST PROGRAM 

CON1 TXMIRA 01/01/00 
E SECOND TEST ROUTINE 1 

0001 
0002 
0003 
000'1 
0005 
0006 
0008 
0009 
0010 
0011 
0012 

***************************************** 
*THIS PROGRAM WAS WRITTEN FOR MODULE 1 * 
*IT HELPS CHECKING THE SLAVE IDENTIFI- * 
*CATION PROCESS. THE INTSLA LINE IS * 
*SERVED BY INT3 * 
***************************************** 

IDT 'SECON1' 
*************** 
*MAIN PROGRAM * 
*************** 
*******MASTER OPERATION*** 
SECON1 LIMI 0 DISABLE ALL INTERRUPTS 

LI R12, >100 TMS 9901 ADDRESS 

393 

0013 0000 0300 
0002 0000 

001'1 000'1 020C 
0006 0100 

0015 0008 0200 LI R0,0 MESSAGE TO BE TRANSMITTED 
000A 0000 

0016 000C 1E10 
0017 000E 1D10 
0018 0010 C80C 

0012 2FFE 
0019 001'1 1E11 
0020 0016 1F16 
0021 0018 16FE 
0022 001A C800 

001C 2000 
0023 001E 1D11 
002'1 0020 1F16 
0025 0022 13FE 
0026 
0027 002'1 0200 

0026 0800 
0028 0028 31C0 
0029 002A 0720 

002C F000 
0030 002E 0300 

0030 0003 
0031 0032 03'10 
0032 003'1 0'160 

0036 0050 
0033 
003'1 
0035 
0036 0038 020C 

003A 0100 
0037 003C 1E10 
0038 003E 1D10 
0039 00'10 1E12 
00'10 00'12 C060 

00'1'1 F000 
00'11 00'16 16FD 
00'12 00'18 1D12 
11043 00'1A 0380 
00'1'1 

MA 

SBZ 16 
SBO 16 
MOV R12,@)2FFE 

SBZ 17 
TB 22 
JNE MA 
MOV R0,@)2000 

RESET FLIP-FLOP 

DEFINE SLAVE(WRITE TO) 

HOLD SLAVE 
SLAVE STOPPED? 
NO! 
SEND MESSAGE 

SBO 17 RELEASE SLAVE 
TA TB 22 RELEASED 

JE~ TA NO! 
*******SLAVE OPERATION**** 

LI R0, )0800 ENABLE ONLY I NT3 

LDCR R0,7 
SETO @)F000 

LIMI 3 

IDLE 
B @80 

********************** 
*INTERRUPT 3 ROUTINE * 
********************** 

LI R12, >100 

SBZ 16 
SBO 16 
SBZ 18 

XA MOV @)F000,R1 

JNE XA 
SBO 18 
RTWP 
END 

ON TMS 9901 
FLAG FOR MESSAGE 

ENABLE INT3 ON MICRO 

WAIT INTERRUPT 
RETURN TO MONITOR 

TMS 9901 ADDRESS 

RESET FLIP-FLOP 
FLIP CLR 
ENABLE HOLD IN 
MESSAGE TRANSMITTED? 

NO! 
DISABLE HOLD IN 
RETURN TO MAIN 

PAGE 0001 



CON2 TXMIRA 2.3.0 78.244 00:21:32 01/01/00 
E SECOND TEST ROUTINE 2 

0001 
0002 
0003 
0004 
0005 
0006 
131308 
13009 
131310 
13011 
0012 
131313 130013 1331313 

0002 013130 
131314 00134 13213C 

00136 131130 
01315 13008 02013 

13I3I3A 081313 
01316 1300C 31C13 
01317 0013E 1El13 
131318 13010 1010 
0019 0012 1331313 

01314 00133 
00213 0016 0340 
0021 

***************************************** 
*THIS PROGRAM WAS WRITTEN FOR MODULE 2 * 
*IT HELPS CHECKING THE SLAVE IDENTIFI- * 
*CATION PROCESS. THE INTSLA LINE IS * 
*SERVED BY INT3 * 
***************************************** 

lOT 'SECON2' 
*************** 
*MAIN PROGRAM * 
*************** 
********SLAVE OPERATION*** 
SECON2 LIMI 13 DISABLE ALL INTERRUPTS 

LI 

LI 

LDCR 
SBZ 
SBO 
LIMI 

R12, >100 

R13. }08130 

R13. 7 
16 
16 
3 

TMS 99131 ADDRESS 

ENABLE ONLY INT3 

ON TMS 9901 
RESET FLIP-FLOP 

ENABLE INT3 ON MICRO 

IDLE WAIT FOR INTERRUPT 
****"**MASTER OPERATION** 

MOV R12,@}lFFE DEFINE SLAVE(WRITE TO) 

394 

PAGE 0001 

13022 13018 C80C 
1301A 1FFE 

0023 1301C 0200 LI R13.13 MESSAGE TO BE TRANSMITTED 
1301E 130013 

131324 0020 1E11 
0025 13022 1F16 
0026 13024 16FE 
0027 13026 C8130 

131328 1000 
13028 002A 1011 
13029 13132C 1F16 
01330 1302E 13FE 
01331 00313 04613 

01332 
0033 
13034 

131332 131380 

01335 01334 1320C 
13036 1311313 

131336 131338 1E10 
01337 1303A 10113 
111338 003C lE12 
0039 1303E C13613 

131340 F0130 
1113413 0042 16FD 
01341 13044 1012 
11042 01346 0380 
0043 

MA 

TA 

SBZ 17 
TE: 22 
JNE MA 
MOV R13, @ >101313 

SBO 17 
TB 22 
JEl'I TA 
B @}80 

********************** 
*INTERRUPT 3 ROUTINE * 
********************** 

LI R12. >1013 

SBZ 16 
SBO 16 
SBZ 18 

XA MOV @}F000.Rl 

JNE XA 
SBO 18 
RTWP 
END 

HOLD SLAVE 
SLAVE STOPPED? 
NO! 
SEND MESSAGE 

RELEASE SLAVE 
RELEASED 
NO! 
RETURN TO MONITOR 

TMS 99131 ADDRESS 

RESET FLIP-FLOP 
FLIP CLR 
ENABLE HOLD IN 
MESSAGE TRANSMITTED? 

NO! 
DISABLE HOLD IN 
RETURN TO MAIN 



395 

APPENDIX 7.7.1 

WORD AND BLOCK TRANSFER ROUTINES 

RANS TXMIRA 2.3.0 78.244 00:22:43 01/01/00 PAGE 0001 
***** WORD TRANSFER ROUTINE ******* 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0014 
0015 
0016 
0017 
0018 
0019 
0020 0000 C060 

0002 0000 
0021 0004 05C1 
0022 0006 C84B 

0008 0000 
0023 000A C0A0 

000C 0000 
0024 000E 05C2 
0025 0010 04E2 

0012 0000 
0026 0014 022B 

0016 0004 
0027 0018 C01B 
0028 001A 130A 
0029 001C 0980 
0030 001E 0280 

0020 0020 
0031 0022 16F0 
0032 0024 C38B 
0033 0026 C801 

0028 0002' 
0034 002A C802 

002C 000C' 
0035 002E 0380 
0036 
0037 
0038 
0039 0030 

0040 
0041 
11042 
0043 
3044 

1)045 

0032 
0034 
0036 
0038 
003A 
003C 
003E 
0040 

022B 
FFFC 
C0DB 
0983 
0603 
1120 
0223 
FFF7 
1510 

************************************************* 

* * * THIS ROUTINE WAS DESIGNED TO BE USED AS XOP 6 * 
* IT PREPARES AND/OR UPDATES TABLES TO BE USED * 
* ON THE COMMUNICATION PROCESS. THE TABLES ARE * 
* SLAVES, MODES, SOURCES OF ADDRESS. WHEN IT IS * 
* FINISHED AND A GLOBAL MESSAGE END IS FOUND IT * 
* SENDS A COMMUNICATION WISH TO THE CONTROLLER * 
* THROUGH USE OF GBLEND ROUTINE. * 

* * ************************************************* 
IDT ' WTRANS' 
DEF WTRANS 
REF GBLEND,ERROR,SRCTBL,MODTBL,SLVTBL 
REF SRCCNT,MODCNT,SLVCNT 

************************************************* 
* WORD TRANSFER ROUTINE * 
************************************************* 
WTRANS MOV mSRCCNT,R1 GET SOURCE TABLE COUNTER 

INCR1 INCT R1 INCREMENT COUNTER E:Y TWO-
MOV R11,mSRCTBL(R1) SAVE ADDRESS AT SRCTBL 

MOV mMODCNT,R2 

INCT R2 
CLR mMODTBL< R2 ) 

AI R11,4 

MOV *R11,R0 
JEQ SNGEND 
SRL R0,8 
Cl R0, )20 

JNE INCR1 
MOV R1!, R14 
MOV R1,mSRCCNT 

MOV R2,mMODCNT 

RTWP 
********************** 
* SINGLE MESSAGE END * 
********************** 
SNGEND AI R11,-4 

MOV *Rll, R3 
SRL R3,8 
DEC R3 
JLT INTER 
AI R3,-9 

JGT INTER 

GET MODE COUNTER 

WORD MODE 

St<IP TWO WORDS 

GET WORD 
END OF SINGLE MESSAGE 
MASt< OFF 
XOP INSTRUCTION? 

NO! 
CHANGE RETURN ADDRESS 
SAVE SOURCE COUNTER 

• MODE 

RETURN 

BACt< TWO WORDS 

GET WORD 
MASt< OFF 

• 

LESS THAN ONE? 
INTERNAL ADDRESS 
MORE THAN TEN? 

INTERNAL ADDRESS 



396 

RANS TXMIRA 2.3.0 78.2qq 00:22:q3 01101/00 
***** WORD TRANSFER ROUTINE ******* 

00q6 
00q7 
00q8 
00q9 00q2 0223 

00qq 000A 
0050 00q6 C120 

00q8 0000 
0051 00qA 05Cq 
0052 00qC 0AC3 
0053 00qE 0223 

0050 0FFF 
005q 0052 C903 

005q 0000 
0055 0056 05Cl 
0056 0058 0qEl 

005A 0008' 
0057 005C 0228 

005E 000q 
0058 0060 C15B 
0059 0062 0285 

00M 0001 
0060 0066 1602 
0061 0068 0q60 

006A 0000 
0062 
0063 
006q 
0065 006C C801 

006E 0028' 
0066 0070 C802 

0072 002C' 
0067 007q C80q 

0076 00q8' 
0068 0078 C388 
0069 007A 0380 
0070 
0071 
0072 
0073 007C 0228 

007E 0002 
007q 0080 C0DB 
0075 0082 0983 
0076 008q 0603 
0077 0086 110q 
0078 0088 0223 

008A FFF7 
0079 008C 1501 
0080 008E 1009 
0081 
0082 

********************** 
* UPDATE SLAVE TA8LE * 
********************** 
SLVNMB AI R3, 10 RESTORE 

MOV @SLVCNT,Rq GET SLAVE COUNTER 

INCT Rq 
SLA R3,12 SET SLAVE ADDRESS 
AI R3, )0FFF 

MOV R3, @SLVTBL(Rq) SAVE AT SLAVE TABLE 

INCT Ri 
CLR @SRCTBL(Rl) END OF MESSAGE 

AI Rll, q SKIP TWO WORDS 

GET WORD MOV *Rll,R5 
Cl R5, )0001 END OF GLOBAL MESSAGE? 

JNE NOTEND NO! 
8 @GBLEND BRANCH TO GL08AL END 

******************** 
* NOT A GLOBAL END * 
******************** 
NOTEND MOV Rl,@SRCCNT SAVE SOURCE COUNTER 

MOV R2,@MOOCNT • MODE • 

MOV Rq,@SLVCNT • SLAVE • 

MOV Rll,R1Q CHANGE RETURN ADDRESS 
RTWP RETURN 

***************************** 
* INTERNAL REFERENCE ONLY? * 
***************************** 
INTER AI Rll,2 SKIP WORD 

MOV *Rll,3 
SRL R3,8 
DEC R3 
JLT ERR 
AI R3,-9 

GET WORD 
MASK OFF 
LESS THAN ONE 
ERROR! 
MORE THAN TEN 

JGT ERR ERROR! 
JMP SLVNM8 CONTINUE 

**************************** 
* ONLY INTERNAL REFERENCES * 

0083 **************************** 
008Q 0090 0Q60 ERR B @ERROR BRANCH TO ERROR 

0092 0000 
0085 END 

PAGE 0002 



397 

RANS TXMIRA 2.3.0 78.244 00:24:03 01101/00 PAGE 0001 
***** BLOCK TRANSFER ROUTINE ******* 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0012 
0013 
0014 
0015 
0016 
0017 
0018 0000 C060 

,0002 0000 
0019 0004 05C1 
0020 0006 C84B 

0008 0000 
0021 000A C0A0 

000C 0000 
0022 000E 05C2 
0023 0010 0200 

0012 0001 
0024 0014 C880 

0016 0000 
0025 0018 022B 

001A 0006 
0026 001C C01B 
0027 001E 130A 
0028 0020 0980 
0029 0022 0280 

0024 0020 
0030 0026 16EE 
0031 0028 C38B 
0032 002A C801 

002C 0002' 
0033 002E C802 

0030 000C' 
0034 0032 0380 
0035 
11036 
0037 
11038 0034 022B 

0036 FFFA 
11039 0038 C0DE: 
0040 003A 0983 
1)041 003C 0603 
11042 003E 1120 
11043 0040 0223 

0042 FFF7 
11044 0044 1510 

************************************************* 
* THIS ROUTINE WAS DESIGNED TO BE USED AS XOP 7 * 
* IT PREPARES AND/OR UPDATES TABLES TO BE USED * 
* ON THE COMMUNICATION PROCESS. THE TABLES ARE * 
* SLAVES, MODES, SOURCES OF ADDRESS. WHEN IT IS * 
* FINISHED AND A GLOBAL MESSAGE END IS FOUND IT * 
* SENDS A COMMUNICATION WISH TO THE CONTROLLER * 
* THROUGH USE OF GBLEND ROUTINE. * 
************************************************* 

lOT ' BTRANS' 
DEF BTRANS 
REF GBLEND,ERROR,SRCTBL,MODTBL 
REF SLVTBL,SRCCNT,MODCNT,SLVCNT 

************************************************* 
* BLOCK TRANSFER ROUTINE * 
************************************************* 
BTRANS MOV @SRCCNT,R1 GET SOURCE TABLE COUNTER 

INCR1 INCT R1 INCREMENT COUNTER BY TWO 
MOV R11,@SRCTBLCR1) SAVE ADDRESS AT SRCTBL 

MOV @MODCNT,R2 

INCT R2 
LI R0,1 

MOV R0,@MODTBLCR2) 

AI R11,6 

MOV *Rll, R0 
JEQ SNGEND 
SRL R0,8 
Cl R0, >20 

JNE INCR1 
MOV R11,R14 
MOV R1, @'SRCCNT 

MOV R2,@MODCNT 

RTWP 
********************** 
* SINGLE MESSAGE END * 
********************** 
SNGEND AI R11,-6 

MOV *Rll, R3 
SRL R3,8 
DEC R3 
JLT INTER 
AI R3, -9 

JGT INTER 

GET MODE COUNTER 

BLOCK MODE 

SET 

SKIP 3 WORDS 

GET WORD 
END OF SINGLE MESSAGE 
MASK OFF 
XOP INSTRUCTION? 

NO! 
CHANGE RETURN ADDRESS 
SAVE SOURCE COUNTER 

• MODE • 

RETURN 

BACK THREE WORDS 

GET WORD 
MASK OFF' 
LESS THAN ONE? 
INTERNAL ADDRESS 
MORE THAN TEN? 

INTERNAL ADDRESS 



RANS TXMIRA 2.3.0 78.244 00:24:03 131/01/1313 
***** BLOCK TRANSFER ROUTINE ******* 
0045 
0046 
0047 
0048 0046 0223 

13048 000A 
0049 004A C120 

1304C 0000 
00513 004E 05C4 
0051 01350 0AC3 
0052 0052 0223 

********************** 
* UPDATE SLAVE TABLE * 
********************** 
SLVNMB AI R3, la 

MOV @SLVCNT, R4 

INCT R4 

RESTORE 

GET SLAVE COUNTER 

SLA R3, 12 SET SLAVE ADDRESS 
AI R3, )13FFF 

MOV R3,@SLVTBLCR4) SAVE AT SLAVE TABLE 

INCT Rl 
CLR @SRCTBLCR1) END OF MESSAGE 

AI Rll,4 SK I P TWO WORDS 

GET WORD 

398 

PAGE 01302 

0054 13FFF 
0053 13056 C903 

0058 00013 
0054 005A 05Cl 
131355 1305C 04El 

0135E 0008' 
0056 0060 1322B 

131362 0004 
13057 0064 C15B 
0058 131366 0285 

0068 01301 

MOV *Rll, R5 
Cl R5, )1313131 END OF GLOBAL MESSAGE? 

13059 1306A 1602 
13060 0136C 13460 

0136E 1313013 
13061 
131362 
131363 
131364 1313713 C8131 

131372 1302C' 
13065 0074 C802 

13076 1313313' 
21066 0078 C804 

13137A 0134C' 
21067 007C C38B 
21068 007E 0380 
131369 
2113713 
21071 
0072 01380 1322B 

13082 0004 
0073 131384 C13DB 
21074 01386 13983 
3075 01388 13603 
11076 13138A 11134 
11077 008C 13223 

13138E FFF7 
11078 01390 1501 
111379 13092 10D9 
a0813 
111381 
3082 
111383 131394 0460 

131396 013130 

JNE NOTEND NO! 
B @GBLEND BRANCH TO GLOBAL END 

******************** 
* NOT A GLOBAL END * 
******************** 
NOT END MOV Rl,@SRCCNT SAVE SOURCE COUNTER 

MOV R2,@MODCNT MODE • 

MOV R4,@SLVCNT • SLAVE • 

MOV Rll,R14 CHANGE RETURN ADDRESS 
RTWP RETURN 

*************************** 
* INTERNAL REFERENCE ONLY * 
*************************** 
INTER AI Rll,4 SKIP TWO WORDS 

MOV *Rll, 3 
SRL R3,8 
DEC R3 
JLT ERR 
AI R3,-9 

GET WORD 
MASK OFF 
LESS-THAN ONE 
ERROR! 
MORE THAN TEN 

JGT ERR ERROR! 
JMP SLVNMB CONTINUE 

**************************** 
* ONLY INTERNAL REFERENCES * 
**************************** 
ERR B @ERROR BRANCH TO ERROR 

END 



LEND TXMIRA 2.3.0 78.244 00:25:16 01/01/00 
***** GLOBAL END ROUTINE ******** 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0009 
0010 
0011 
0012 
0013 
0014 
0015 0000 05C1 
0016 
0017 
0018 
0019 0002 0200 

0004 0001 
0020 0006 C840 

0008 0000 
0021 ·000A 020C 

000C 0100 
0022 
0023 
0024 
0025 

0026 

0027 
0028 
0029 

000E 
0010 
0012 
0014 

04E0 
0000 
0300 
0004 

0030 0016 1E13 
0031 0018 0380 
0032 

********************************************* 
* * * THIS ROUTINE IS USED BY WTRANS AND 8TRANS * * IT CLOSES THE GLOBAL MESSAGE TA8LES AND * * SENDS A COMMUNICATION WISH TO CONTOLLER * 
* * ********************************************* 

lOT ' GB LEND' 
DEF G8LEND 
REF SRCT8L,WISHFG 

********************************************* * GLOBAL END ROUTINE * 
********************************************* 
GBLEND INCT R1 INCREMENT COUNTER 
********************************* * CLOSING SOURCE TA8LE CGBMEND) * 
********************************* 

LI R0, >0001 

MOV R0,@SRCT8LCR1) GLOBAL MESSAGE END 

LI R12, >100 9901 8ASE 

******************************* * SET COMMUNICATION WISH FLAG * 
******************************* 

CLR @WISHFG SET WISH FLAG 

LlMI 4 

*************************** * INTERRUPTING CONTROLLER * 
*************************** 

ENABLE INT 4 

SBZ 19 INTERRUPT CONTROLLER 
RTWP RETURN 
END 

399 

PAGE 0001 



APPENDIX 7.7.2 

INTERRUPT MASTER ROUTINE 

TMST TXMIRA 2.3.0 78.244 00:26:01 01/01/00 
***** INTERRUPT MASTER ROUTINE ******* 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0010 
0011 
0012 
0013 
0014 
0015 
0016 

0017 
0018 

0019 

0020 
0021 
0022 
0023 
0024 

0025 

0026 
0027 
0028 
0029 
0030 
0031 

0032 
0033 

0000 
0002 
0004 
0006 
0008 
000A 
000C 
000E 
0010 
0012 
0014 
0016 
0018 
001A 
001C 
001E 
0020 
0022 
0024 
0026 
0028 
002A 
002C 
002E 
0030 

C020 
0000 
161F 
0720 
0002' 
020C 
0100 
1013 
lE15 
lEll 
04Cl 
C0Al 
0000 
0203 
0002 
A0C2 
IF16 
16FE 
C4D2 
IDll 
0720 
0000 
05Cl 
C121 
0000 

******************************************* 

* * * THIS ROUTINE IS USED BY A MASTER MODULE * 
* TO START THE COMMUNICATION PROCESS WITH * 
* SLAVES. IT IS INTERRUPT DRIVEN BY INT 4 * 

* * ******************************************* 
IDT 'INTMST' 
DEF INTMST 
REF CTL,SLVCT1,SRCTBL,SLVTBL 
REF WISHFG,ERROR,MODCT1, SRCCTl 

******************************************* 
* INTERRUPT MASTER ROUTINE * 
******************************************* 
INTMST MOV @WISHFG,R0 COMMUNICATION WISH? 

NO 

JNE ERR 
SETO @WISHFG 

LI 

SBO 
SBZ 
SBZ 
CLR 
MOV 

LI 

R12, >100 

19 
21 
17 
Ri 
@SRCTBL< Rl ), R2 

R3,2 

A R2,R3 
TB 22 
JNE NO 
MOV *R2,*R3 
SBO 17 
SETO @CTL 

INCT Rl 

ERROR! 
RESET FLAG 

9901 BASE 

RELEASE INTCTL LINE 
SET BUS BUSY LINE 
HOLD CONTROLLER 
COUNTER 
GET GLOBAL MESS ID 

DESTINATION 
CONTROLLER STOPPED? 
NO! 
SEND MESSAGE 
RELEASE CONTROLLER 
SIGNAL CONTROLLER 

MOV @SLVTBL(Rl),R4 GET FIRST SLAVE 

400 

PAGE 0001 

0034 
0035 
0036 

0032 0714 SETO 
SBZ 
MOV 

*R4 
17 

INTERRUPT FIRST 
HOLD SLAVE 
SLAVE COUNTER 

SLAVE 

0037 

0038 

0039 
0040 

0041 

0034 
0036 
0038 
003A 
003C 
003E 
0040 
0042 
0044 
0046 

lEll 
C801 
0000 
04E0 
0000 
C801 
0000 
0380 
0460 
0000 

Rl, @SLVCTl 

CLR @MODCTl MODE COUNTER 

MOV R1, @SRCCTl SOURCE COUNTER 

RTWP 
ERR B @ERROR BRANCH TO ERROR 

END 



APPENDIX 7.7.3 

ACKNOWLEDGE MASTER ROUTINE 

KMST TXMIRA 2.3.0 78.244 00:27:10 01/01/00 
***** ACKNOWLEDGE MASTER ROUTINE ******* 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 0000 020C 

0002 0100 
0022 0004 1013 
0023 0006 lE15 
0024 0008 C060 

000A 0000 
0025 000C 05C1 
0026 000E C0Al 

0010 0000 
0027 0012 1612 
0028 
0029 
0030 
0031 
0032 0014 C0A0 

0016 0000 
0033 0018 05C2 
0034 001A C0E2 

001C 0000 
0035 001E 1309 
0036 0020 C133 
0037 0022 C153 
0038 0024 (::554 
il039 0026 05C2 
1il040 0028 C0E2 

002A 001C' 
1il041 002C 1302 
1il042 002E 0642 
1il043 0030 10ED 
11044 0032 C802 

0034 0016' 
11045 0036 1012 
0046 
1J047 
1J048 

************************************************ 

* * * THIS ROUTINE IS USED BY A MASTER MODULE TO * 
* CONTINUE AND FINISH THE COMMUNICATION * 
* PROCESS. IT USES THA TABLES DEFINED BY WTRANS * 
* AND BTRANS. WHEN THE GLOBAL MESSAGE IS * 
* FINISHED IT RELEASES THE SYSTEM BUS. * 
* IT IS INTERRUPT DRIVEN BY RECHOLDA LINE. * 

* * ************************************************ 
lOT ' ACKMST' 
DEF ACKMST 
REF MODCT1,SRCCT1, SLVCTl 
REF SRCTBL,MODTBL,SLVTBL 
REF CTL 

* ************************************************ 
* ACKNOWLEDGE MASTER ROUTINE * 
************************************************ 
ACKMST LI R12, >100 9901 BASE 

SBO 19 
SBZ 21 
MOV @MODCTl,Rl 

MOD21 INCT Rl 

RESET INTCTL LINE 
SET BUS BUSY LINE 
MODE COUNTER 

MOV @MODTBL(Rl),R2 WHICH MODE? 

JNE BMODE 

* ************* 
* WORD MODE * 
************* 

MOV @SRCCTl,R2 

INCT R2 
MOV @SRCTBL(R2),R3 

JEG SNGEND 
MOV *R3+,R4 
MOV *R3,R5 
MOV *R4,*R5 
INCT R2 
MOV @SRCTBL(R2),R3 

JEG SNGEND 
DECT R2 
JMP MOD21 

SNGEND MOV R2,@SRCCTl 

* * * 

JMP GMEND 

BLOCK MODE! 

SOURCE COUNTER 

ADDRESS SOURCE 

END MESSAGE 
SOURCE 
DESTINATION 
SEND MESSAGE 
NEXT 
ADDRESS SOURCE 

END OF MESSAGE 
BACK WORD 
CONTINUE 
SAVE COUNTER 

TEST FOR GLOBAL END 

401 

PAGE 0001 



KMST TXMIRA 2.3.13 78.244 1313:27:113 131/01/1313 
***** ACKNOWL~DGE MASTER ROUTINE ******* 

131349 
1313513 
131351 
131352 131338 CeJAeJ 

eJeJ3A 01334' 
131353 eJeJ3C eJ5C2 
131354 eJeJ3E CeJE2 

1313413 eJeJ2A' 
131355 131342 13F7 
131356 131344 C133 
131357 131346 C1B3 
131358 131348 C153 
131359 eJeJ4A CD74 
1313613 eJeJ4C 136136 
131361 eJeJ4E 16FD 
131362 1313513 eJ5C2 
131363 131352 CeJE2 

131354 1313413' 
131364 131356 16DA 
131365 131358 13642 
131366 eJeJ5A leJEB 
131367 
131368 
131369 
1313713 
131371 eJeJ5C C8eJl 

eJeJ5E eJ0eJA' 
131372 1313613 CeJAeJ 

131362 eJeJ3A' 
01373 131364 eJ5C2 
131374 13066 CeJE2 

131368 131354' 
131375 eJeJ6A 1311 
01376 
01377 
01378 
01379 
2l08eJ eJeJ6C eJ2eJC 

eJ06E 1311313 
2leJ81 130713 1Dll 
01382 131372 13642 
2leJ83 131374 CeJ6eJ 

13076 13131313 
211384 131378 C8eJ2 

eJeJ7A 131362' 
211385 eJ07C CeJAl 

************** 
* BLOCK MODE * 
************** 
BMODE MOV @SRCCT1,R2 SOURCE COUNTER 

INCT R2 
MOV @SRCTBLIR2),R3 GET WORD 

SEND 

JEQ 
MOV 
MOV 
MOV 
MOV 
DEC 

SNGEND 
*R3+,R4 
*R3+,R6 
*R3,R5 
*R4+,*R5+ 
R6 

JNE 
INCT R2 
MOV 

SEND 

@SRCTBLI R2 ), R3 

JNE MOD21 
DECT R2 
JMP SNGEND 

* ************************* 
* END OF GLOBAL MESSAGE * 
************************* 
GMEND MOV R1,@MODCT1 

MOV @SRCCT1,R2 

INCT R2 

END OF MESSAGE 
SOURCE 
NUMBER OF WORDS 
DESTINATION 
SEND MESSAGE 
FINISHED? 
NO! 

ADDRESS SOURCE 

END 
RESTORE 
TEST GLOBAL END 

SAVE MODE COUNTER 

SOURCE COUNTER 

MOV @SRCTBLIR2),R3 MESSAGE 

JEQ RELESE GLOBAL END 

* ****************************** 
* SEND MESSAGE TO NEXT SLAVE * 
****************************** 

LI R12, >1013 99131 E:ASE 

SBO 17 
DECT R2 
MOV @SLVCTl,Rl 

MOV R2,@SRCCTl 

MOV @SLVTBLI Ri), R2 

RELEASE LAST SLAVE 
RESTORE COUNTER 
SLAVE COUNTER 

SAVE COUNTER 

SLAVE ID 

402 

PAGE 1313132 

eJeJ7E 13131313 
111386 1313813 13712 
111387 131382 eJ5C1 
11088 13084 CeJA1 

SE TO 
INCT 
MOV 

*R2 
Ri 

SIGNAL EN~ OF MESSAGE 

131386 eJeJ7E' 
31389 131388 13712 
1)13913 eJeJ8A 1Ell 
1)1391 eJeJ8C 133813 

SETO 
SBZ 
RTWP 

@SLVTBLI Ri ), R2 

*R2 
17 

NEXT SLAVE ADDRESS 

INTERRUPT SLAVE 
HOLD SLAVE 
RETURN 



403 

KMST TXMIRA 2.3.0 78.244 00:27:10 01/01/00 PAGE 0003 
***** ACKNOWLEDGE MASTER ROUTINE ******* 
0092 *************** 
0093 * RELEASE BUS * 
0094 *************** 
0095 008E 04E0 RELESE CLR @SRCCTl 

0090 007A' 
0096 0092 04E0 CLR @MODCTl 

0094 005E' 
0097 0096 04E0 CLR @SLVCTl 

0098 0076' 
0098 009A 020C LI R12, >100 

009C 0100 
0099 009E 0720 SETO @CTL 

00A0 0000 
0100 00A2 1015 SBO 21 
0101 00A4 0380 RTWP 
0102 END 

CLEAR COUNTERS 

9901 BASE 

SIGNAL CONTROLLER(END) 

RESET-BUS BUSY LINE 
RETURN 



404 

APPENDIX 7. 7 • 4 

INTERRUPT SLAVE ROUTINE 

TSLV TXMIRA 2.3.0 78.2qq 00:28:q8 01/01/00 
***** INTERRUPT SLAVE ROUTINE ******* 
0001 
0002 
0003 
000q 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0013 
001q 
0015 
0016 
0017 
0018 
0019 0000 020C 

0002 0100 
0020 000q 1012 
0021 0006 lE10 
0022 0008 C020 

000A 0000 
0023 000C 130C 
002q 000E C020 

0010 0000 
0025 0012 130q 
0026 
0027 
0028 
0029 
0030 
0031 
0032 001q 0qE0 

0016 0010' 
0033 0018 lE12 
003q 001A 0380 
0035 
0036 
0037 
0038 001C 0720 

001E 0016' 
0039 0020 06A0 

0022 0000 
00q0 002q 0380 
0Ml 
00q2 
00q3 
00qq 0026 C020 

0028 001E' 
00q5 002A 1308 
0M6 
00q7 
00q8 

************************************************* 
* * * THIS ROUTINE IS USED BY A SLAVE OR CONTROLLER * * MODULE TO ACCEPT AND CHECK MESSAGES TRANSMIT- * * TED TO THEM. IT IS A TWO PASS ROUTINE. ON THE * * FIRST TIME IT SETS A FLAG TO INDICATE A * * MASTER'S WISH TO COMMUNICATE. ON THE SECOND * * PASS THE MESSAGE IS ALREADY FINISHED AND CAN * * BE CHECKED. IT IS DESIGNED TO BE INTERRUPT * 
* DRIVEN. * 
************************************************* 

lOT 'INTSLV' 
DEF INTSLV 
REF MSGFLG, IDMESL, CTLFLG, IDMECT 

************************************************* * INTERRUPT SLAVE ROUTINE * 
************************************************* 
INTSLV LI R12, >100 9901 BASE 

SBO 18 
SBZ 16 
MOV @CTLFLG,R0 

JE@ CONTLR 
MOV @MSGFLG,R0 

JE@ MESEND 
****************** * SLAVE ACTION * 
**************** 
* * START OF MESSAGE 

* 

* 

CLR @MSGFLG 

SBZ 18 
RTWP RETURN 

* END OF MESSAGE 

* MESEND SETO @MSGFLG 

BL @IDMESL 

RTWP 

********************* * CONTROLLER ACTION * 
********************* 
CONTLR MOV @MSGFLG,R0 

JE@ BUSFRE 

* * BUS IS BEEN USED 

* 

DISABLE HOLD IN 
CLEAR FLIP-FLOP 
CONTROLLER MODULE? 

YES! 
END OF MESSAGE? 

YES! 

SET FLAG FOR MESSAGE 

ENABLE HOLD IN 

RESET FLAG 

IDENTIFY AND SERVE 

RETURN 

END OF MESSAGE 

PAGE 0001 



405 

'TSLV TXMIRA 2.3.0 78.244 00:28:48 01/131/130 PAGE 00132 
***** INTERRUPT SLAVE ROUTINE ******* 
13049 002C lE00 SBZ 0 OISABLE INT5 ON 9901 
0050 0132E 1EeJ5 saz 5 
0051 0030 04E0 CLR @MSGFLG SET FLAG 

0032 0028' 
8052 0034 06A0 BL @IDMECT IDENTIFY AND SERVE 

0036 0000 
13053 0038 0720 SETO @MSGFLG RESET FLAG 

003A 0032' 
131354 * 
0055 * BUS IS FREE 
01356 * 
0057 eJ133C 137213 BUSFRE SE TO mCTLFLG RESET CONTROLLER FLAG 

003E 1300A' 
131358 0040 1E00' SBZ 13 INTERRUPT MOOE 
13059 013'12 1005 SBO 5 ENABLE INTERRUPT 5 
13060 00'1'1 031313 LIMI 5 

01346 1313135 
01361 0048 0380 RTWP RETURN 
131362 END 



406 

APPENDIX 7.7.5 

INTERRUPT CONTROLLER ROUTINE 

TCTL TXMIRA 2.3.0 78.244 00:29:45 01/01100 
***** INTERRUPT CONTROLLER ROUTINE ******* 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0010 
0011 
0012 
0013 
0014 
0015 
0016 0000 020C 

0002 0100 
0017 0004 04E0 

0006 0000 
0018 0008 1F18 
0019 000A 1304 
0020 
0021 
0022 
0023 000C 1E14 
0024 000E 1E00 
0025 0010 1E05 
0026 
0027 
0028 
0029 0012 1E12 
0030 0014 0380 
0031 

************************************************* 
* * * THIS ROUTINE IS USED BY THE CONTROLLER MODULE * * IT IS INTERRUPT DRIVEN BY INTCTL LINE * * A FLAG IS SET TO INDICATE CONTROLLER ACTION * * BY THE MODULE. * 
* * *************'************************************ 

IDT ' INTCTL' 
DEF INTCTL 
REF CTLFLG 

************************************************* * INTERRUPT CONTROLLER ROUTINE * 
************************************************* 
INTCTL LI R12, >100 9901 BASE ADDRESS 

CLR I!1CTLFLG 

TB 24 
JEl'l RET 

*************** * BUS IS FREE * 
*************** 

* 

SBZ 20 
SBZ 0 
SE:Z 5 

* ENABLE GLOBAL MESSAGE IN 

* 
RET 

SBZ 18 
RTWP 
END 

CONTROLLER ACTION FLAG 

BUS FREE? 
NO! 

GRANT E:US 
INTERRUPT MODE 
DISABLE INT5 ON 9901 

ENABLE HOLD iN 
RETURN 

PAGE 0001 



APPENDIX 8.2.1 

SERIES 76 (E076-l02) MOOG SERVOVALVE 

The rated flow for the available valve is 19 l/min (5gpm) at 70 bar 

(1000 psi). 

Figure 1. 

The flows for other supply pressures are given in 

YAWl '~ESSUAE DRO'-bu 

" 111 3D so 70 100 150 zoo lSO 
30 

111 
I 

" , 

ID 

I' \ ,.. 
, 

for -'" 
V 

v 
........ \ , 

'v ,. 
IL5 

IIXI 

7' 
I 

I V 

, , 
I I u..-; 

\\~t.~III~ [.,...o-'! 
<"",,1' , 

71 ~ I I I ~I\\'~~~ 
'!!~I I'; , , 

",'0«>\ ./ : I 
~ IV. , 

J.... !' I I .\ ~ 1 i I 
I \1~~ , , .(11,1\ 

I "Y I I , , , 
"t;llfl\ 

/ I I 5 
11eo'"'' ::,......-"". I I 

~: I I 
.... 

\ I I 
I 

50J 1000 2!XXI DII 4O!D 
VAlvt PUSSllR[ DRO'-IIS' 

!XI 

Figure 1 Change in Rated Flow with Pressure 

The flow gain non linearity is most severe in the null region due to 

407 

variations in the spool null cut. Within ± 5% of rated current input 

the valve flow gain may range from 50 to 200% of the normal flow gain. 

The rated flow tolerance is ~ 10%. 

The pressure gain at null exceeds 30% of supply pressure for 1% of 

rated current and can be as high as 80%. The expected variation in 

other parameters relating to valve performance are given below. 



Parameter Variation (%RC) 

Synnnetry < 10% 

Hysteresis < 3% 

Threshold < !% 

Temperature < + 4% -
Acceleration < + 2% -

::l Supply Pressure < ± 2% ::> z 
Quiescent Current < ± 2% 

Back Pressure < ± 2% 

* RC: Rated Current 

The electrical characteristics for the valve are as follows: 

Nominal 
Resistance 
per Coil 
at 200 C 

.n. 

200 

Recommended 
Rated Current 

(mA) 

Series DF,PL,SC 
Coil 

15 10 

DF Differential Coils 
PL - Parallel Coils 
SC Single Coil 

Approximate Coil 
Inductance - (Henrys) 

Series SC DF 
Coil 

0.72 . 1.1 2.2 

408 

PL 

0.59 

The frequency response for the series 76 servovalves is shown in Figure 

The variation in response with supply pressure, as expressed by the change 

in frequency of the 900 phase point, is given in Figure 2. 

A typical transient step response for the series 76 servovalves is 

given in Figure 2. The straight-line portion of the response represents 

saturation flow from the pilot stage which will increase with higher 

supply pressures. 



I 
v;--..". , 

t-- ,..;::" \ 
I 

...... / -I Vi " <i{ ~ / .. I 
~ 

:.40"1. IUnD CURRUT '\. / ) (\ V !~ 110 IIrr /3tDlllsil ~ '«\ 'XI IW 
I 

::\ 
",'" 

oTE ;Z4 AT 31-!: pOO-F) 

\~ I :! 1= E076-I[1). (076-103 ~ ~. '0 ~\ i2 -ID • c. (076-101. E016-102 
~ .. ",.". , I;; /~ '\ ,,,\ 

-11 tI = m76-2'Jl EOv:23 . EOl ·132 / 

." [016-233/ I ~ '\1 1\ ~ -" 
-11 

___ pu -,; P'"/, \ 
\ o 

so 

.. 
'" 
10 

10 15 ZO 30 4D 10 100 ISO lOO 300 400 
FREQUENCY-M, 

REDUCED AMPLITUDE fREOUENCY RESPONSE 
SUPPLY PRESSURE-llIr 

o 
u 

SO 100 ISO ZOO 

1 i 1.1 

1 1/ 

" 
/ 

I fiEf o.a 
/ 1 1 

/V 1 I 1 /?s IIlTUAAl FREOUENCY AT DTHU PRESSUR!:S 
!'REF: Urt:iJlAl FREOUUCl' AT lID~. POOdI)lIl 

.. 
o. I I 

o IIID Z!XIl DXI GJI 
SUP"" PRESSUIIE-ps1 

, FREQUENCY RESPONSE CHANGE WITH PRESSURE 

FIGURE 2 

i 
~--6 
::\ " .. :! 
;:: -10 
~ 
~ 

100 

., 

" r-

iJ , , 

FREOllfNCT-Kl 

fULL AMPLITUDE fREOUENCY RESPONSE 

{; 
I 

1/ 

(~ 
't; 

Y 

W ,/ 
'/ L 
/ -

I"l = 110 Dlr IlXII 05il 
I" EDi'6-lon. EGi6-11l3 
b = £016-101. EDl6-11J2 
e = [016-104 
Cl = Ul15-13D. ED76-131. 

ms-m 
• 'CeOl6-F 

10 IS 
TIII!E-tlff11l1tZlfld1 

STEP RESPONSE 
" 

409 



APPENDIX 8.4.1 
410 

SPECIFICATIONS FOR I/O ANALOG BOARD 

ANALOC ISPlIT 
Model Numbers 
Input Channels 

Basic Board 
Expansion: On·Board 

Off·Board 
Inpul Range at Card Edge' 
CurrC'nt Loop Inpun] 
Input ProlC'clion 
Swilehin,: 
Input ImpC'dancC' 
Inpul Bia~ Current 

o to +70°C 
Instrumentation Amplifier 
Gain Range 
CMV 
CMRR (dc-SooHz) 
Input SC'lding TimC''' 

ADC Input Rangest 

Rnolution 
Con~'cnion Time 
Throughput RUc' 
Output Codes' 
Nonlinc:ifll)' Enor 
Offw:t Error' 

. COMBINATION 110 BOARDS 

RTI-1241-R 

16 SE. 16 PO, 8 Dirt' 
J2 SE,]2 PO, 16 Oi((.' 
256 Toul 
lOmVFS to !10VFS 
o to SOmA, 0 to lOmA, etc. 
i(VCC .lOY) 
Brcak-Bdorc-Mtkc 
>lO l n 
±SOnA max 
170nA 
Resistor Progr.mmablc Gain 

I to 1000 VN [c .. 1 ... 2
R
Ok] 

1l0V min 
76dB min 
ISps mu (G:: 1) 

!:SV, ±S.12V. ±lOY, !IO.24V, +JOV, 
+lO.24V 

12 Bits 
2Sps mu 
40,000 Channds/scc 
Binuy, Offset Binuy. Two's Complement 
±1I2lSB typ(±ILSB mu} 

Adj. 10 Zero 

RTI-l241-S 

0.62S to :!:lOVFS 

tSnA max 
±SOnA 
Software Programmable Gain 
1,2,4.8VN 

lOps max (G '" 1 to 8) 

;INPUT ONLY BOARDS 

RTHH()'R RTI-I24()'S 

Cain Error' 
OffS(tTC 

Adj. to Zero 
1(1 ... SO)J.JVt"C (RTI) ±so,l . .iVfC (RTI) 

Gain TC 
Noise Error" 

G 
±20ppm of rdgl'C (RTI) !2Sppm of rdgt'C (RTI) 

Ovcn.1I Error @G = 11 
SHA Apenure Dcby 
SUA Apcnurc Width 
SHA Aperture Uncertainty 

A~ALOG OllfPlJf 

±1/4LSB max 
:1JLSB max 
90", 
20", 
500 

Model Kumber RTI·I24I-R 
Output Ch2nnds 2 
RC'>olution 12 Bits 
Output Rangn' (with on board ReO "S\', .. IOV, !:2.S\', :!:SV, !lOV 
Output Current !:SmA min (!' ! lOV 
Nonlinearit), Error@"IOVRc( !0.01% max 
Offset Error Adj. [0 Zt'ro 
Cain Error Adj. to Zt'ro 
Offsct TC !H/JVtC 
Gain TC :1ISppml"C 
Settling Time' (for 20V step to to.Ol%) 10$lS 
Reference Rangt' External' IV to +IOV 
Input Codes Binary, Two's Complement, or 

OTHER OUTPlJfS 

Type 
Output Current Range tO 

Supply Voltage Range 
Input Voltage Range 
Offse' Error 
Gain Error 
Offset TC 
Gain TC 
Nonlinc:arity Error 
Sen.Jing Time 

POWER REQUIREMHrrS 
Model Number 
Without Optiona1 dc-dc 

.. nVH% 
-IS\' H% 
+SV:!:S' 

With dc-dc Option 
+SV 1S-" 

Offsct Binary 

2 Optional Current Loops 

ISA-SSO.I. Type 3, CI~~ L 

4-20mA 
.. ISV to .. 30V 
OVto"IOV 
Adj. 10 Zt'ro 

Adj .. to Zt'ro 
to.4,uAI"C 
!30ppmtC 
±0.01% mu 
SOps max to 0.02% 

RTI-1240 RTI·1241 RTH142 

40mA SOmA 4SmA 

<OmA SOmA BOmA 

llOOmA 1100mA 900mA 

L4A l.SA 1.3A 

RTJ.l24] 

SOmA 

nOmA 
IDOOmA 

1.6A 

MECHANICAL (All Moods) 
Size: 7.S· x 11.0" 090.Smm x 279.4mm) 

RTI-I24J·S 
2 

VII 

10mA 
2mA 

OmA 

mA 

Card Outline 

Card Spacing 

Opentin. Temperature 
Ston!e Temperature 

Conforms to Texas iruuumenlS Drawing SK922121 

0.6- min (-IS.Zmm) 

·s.,me as for RTI-124I·R 
··S"me u ror RTI-124}·S 
•• ·S.me as for RTI·1242 

o to 70°C 
_ZSoC to +8SoC 

Spccification~ subject to cha",e withoul nodce. 

_OUTPUT ONLY BOARDS. 

NOTES 

RTJ.1242 
4 

8 Logic: Drillers 
Open Collector 

300mA sink @O.7V 
+30V ITUX 

• USol"r Sol"lectablC' by wire wnp jumpen. 

RTI·1243 
8 

• The ruu scJ.le inpul SigTlI.' Rnge is the AID conYCrttr r&tlge divided by 
the glin or the instrumentation unplifier. 

'The us.cr m.y instJ.l1 one rninoT pC'r channel (SE or DifO 10 conllert 
the input current to the propef 1I0ltage range. Any inpul cunem spin 
cm thudorc be Iccommodued. 

"'nput seulin, time "pplin 10 eithcr • multipluer chumel change 
or a !.OCtwuC' conuolled g.in chVlge. The loCulinl time incre~ 
to SOJ',@G. 1000. 

'The e{(ectivC' throughpul Ult is duermined by the u~C't's \oftwlre 
dUI handlin, upabilit)'. The mu: throughpul rue liSted is exclu,ive 
of the CPU intnhce operation, which mayor m"y nOI be completed 
during the PJb'lystcm', convcnion time. In CPU hold mode, IhC' u1tr's 
sofrwue "nd interface timC' obviously mu'it be added 10 the conven;ion 
lime [0 delennine the muimum effective throughput rue. 

• For anyone prolurnmable ,Un setting. Mu:imum o!f1tt shift or 
111.5B or g,in Ihitt of 10.02 .... when using I programmable g.in 
IoCUin, otha th&n thl!' ODe used during c..ubruion. 

• NoiK eITOf incrUKs to tlf2LSB mlX@G • 8 rOf the SPG modds 
.nd to tl LSB @ G _ 100 for [hI!' RPG modds. 

• Overall error increased 10 12LSB mu@G· 8 ror the SPG model, 
Uld 2LSB mu.@C • 1000 for the RPG models. 

'Ovr.o.Il enor increlses 10 O.I .... @ I V utemal referC'nce_ 
"Tht CUTTC'nt loop lo.d rni'lt&neC' ranll: is on to 4S0n with a .15V 

oupply_ A lo.d rel;sunee of soon mlY be u\Cd .... ith a .18V supply. 



411 

APPENDIX 8.4.2 

ANALOG I/O BOARD AND MICROCOMPUTER INTERCONNECTIONS 

ANALOG I/O AND MICROCOMPUTER INTERCONNECT 

FUDction Analog Micro(P1) Function Analog Micro(P1) 

DO 33 33 AO 57 57 

D1 34 34 Al 58 58 

D2 35 35 A2 59 59 

D3 36 36 A3 60 60 

D4 37 37 A4 61 61 

D5 38 38 AS 62 62 

D6 39 39 A6 63 63 

D7 40 40 A7 64 64 

D8 41 41 A8 65 65 

D9 42 42 A9 66 66 

DlD 43 43 AlD 67 67 

D11 44 44 All 68 68 

D12 45 45 A12 69 69 

DD 46 46 AD 70 70 

D14 47 47 A14 71 71 

D15 48 48 

WE 78 78 .MEMCYC 84 84 

DBIN 82 82 roRST 88 88 

READY 90 90 



APPENDIX 8.4.3 

ANALOG I/O BOARD AND RIBBON CABLE 
INTERCONNECTIONS 

ANALOG I/O BOARD CABLE ANALOG I/O BOARD 

Function Pin (P3) Colour Function Pin (P3) 

CHO HI 5 white CHO LO 4 

CHI HI 7 grey CHI LO 8 

CH2 HI 11 violet CH2 LO 10 

CH3 HI 13 blue CH3 LO 14 

CH4 HI 17 green CH4 LO 16 

CH5 HI 19 yellow CH5 LO 20 

CH6 HI 23. orange CH6 LO 22 

CH7 HI 25 red CH7 LO 26 

CH8 HI 29 brown CH8 LO 28 

CH9 HI 31 black CH9 LO 32 

412 

CABLE 

Colour 

white 

grey 

violet 

blue 

green 

yellow 

orange 

red 

brown 

black 



Solar cells 
(measuring system) 

EXE 

r------------u:l 

00 III I Ip l I I I '> I, I / I, I I » I I @'" ! I [>f l/n Ual I 
Ua2 I 

[» 
I-

I 
90°rlllle2 i I I > I I ,I / I I ,I I » I I )1 )le2 i [> Vn [> 

I 

Illleo ! [> 
I 

I 
I 

I-

l/n 
L t-

[» 
I-

~ [>-l 

Ua2 I 
UaO I 

I 
UaO I 

I 
I 

~ I-Uas '" 

~ i u"1 
L ___________ ~J 

Lamp Amplifier Trigger Final stage 

EXE-input signals 

EXE-autput signals 

5-times 

Failure detection signal 

APPENDIX 8.5.1 

LINEAR TRANSDUCER SIGNAL DIAGRAM 

1.1 

1.2 

1.0 

Uo1 

Uo2 

UoO 

--- I uo , 

.... 

..... 
"" 



ID 

1 

2 

3 

4 

5 

6 

7 

B 

9 

10 

11 

12 

13 

14 

15 

16 

17. 

lB 

19 

20 

21 

22 

23 

24 

25 

APPENDIX B.5.2 

DIGITIZER FEEDBACK BOARD COMPONENTS LIST 

DIGITIZER.FEEDBACK BOARD COMPONENTS 

Device 

SN74LS95 

SN74LS42 

SN74LS42 

DM74LS193 

DM74LS193 

DM74LS193 

DM74LS193 

SN74LS374 

SN74LS374 

DM74154 

SN74LS245 

SN74LS30 

SN74LS32 

SN74LSlO 

SN74LSOO 

SN74LSOB 

SN74LSOB 

SN74LS14 

SN74LS14 

SN74LS74 

SN74LS74 

SN74LS74 

SN74LS02 

SN751B2 

SN751B2 

CI-C2-C3 

C4-C5-C6 

Description 

4-bit shift register 

4-line-to-lO line decoder 
.. 

Synchronous up/down counter 
.. 
.. 
.. 

Octal D-type flip-flop 

Octal D-type (3-state output) 

4-line-to-16 line decoder 

Octal bus transceiver (3-state) 

B-input NAND gate 

Quadruple 2-input OR gate 

Triple 3-input NAND gate 

Quadruple 2-input NAND 

Quadruple 2-input AND 
.. 

Nex Schmitt-Trugger inverter 
.. 

Dual D-type flip-flop 
.. 
.. 

Quadruple 2-input NOR gate 

Dual differential line receiver 
.. 

Polyester capacitor 0.01 f-F 

Ceramic capacitor 100 pF 

414 



415 

APPENDIX 8.5.3 

DIGITIZER FEEDBACK BOARD PIN-FUNCTION ASSIGNMENT 

DIGITIZER FEEDBACK BOARD 

Function Pin Function Pin 

DO 20 AO 68 

Dl 22 Al 66 

D2 26 A2 64 

D3 24 A3 62 

D4 36 A4 58 

D5 38 AS 56 

D6 42 A6 54 

D7 40 A7 52 

D8 34 A8 50 

D9 32 A9 48 , 
DIO 28 AIO 46 

Dll 30 All 44 

D12 10 SAMPLE 60 

DD 8 DBIN 70 

D14 12 MEMEN 72 

D15 14 "$1 76 

GND 1 $3 71 

GND 85 Ual 77 

+5V 3 Ual 78 

MIDDLE 69 Ua2 79 

Ua2 80 

Ua3 81 

Ua3 82 



Function 

DO 

01 

02 

D3 

D4 

D5 

·06 

D7 

08 

09 

010 

Dll 

D12 

D13 

014 

015 

DBIN 

MEMEN 

APPENDIX 8.5.4 

DIGITIZER FEEDBACK BOARD AND MICROCOMPUTER 
. INTERCONNECTIONS 

PIN INTERCONNECTION 

Databus Digitizer 
Function Address 

Board Board Bus Board 

49 20 AO 68 

47 22 Al 66 

45 26 A2 64 

43 24 A3 62 

41 34 A4 58 

39 32 AS 56 

37 28 A6 54 

35 30 A7 52 

67 36 A8 50 

65 38 A9 48 

63 42 AlO 46 

61 40 All 44 

59 10 Function Micro 

57 8 <1>1 22 (PI) 

55 12 <1>3 24 (PI) 

53 14 SAMPLE 24 (P4) 

30 70 MIDDLE 13 (PI) 

28 72 

416 

Digitizer 
Board 

86 

84 

82 

80 

78 

76 

72 

70 

68 

66 

64 

62 

Oigitizer 
Board 

76 

71 

60 

69 



DIGITIZER 
FEEDBACK 

BOARD 

Function 

Ua1 

Ual 

Ua2 

Ua2 

Ua3 

Ua3 

chassi 

+5V 

CND 

APPENDIX 8.5.5 

EXE ·UNIT AND DIGITIZER FEEDBACK BOARD 
INTERCONNECTIONS 

IS-WAY SCREENED EXE UNIT 
SOCKET CABLE WITH 12-WAY 
(RACK) IS-WAY PLUG SOCKET 

\ 

Pin Pin Colour Function 

77 1 brown Ua1 

78 2 green Ua1 

79 3 grey Ua2 

80 4 pink Ua2 

81 5 orange Uao 
--82 6 black Uao 

- 7 yellow screen 

white-red 

white-blue 

3 9-10-11-12 white +5V 

pale blue 

red 

I 13-14-15 red-brown DV 

red-black 

417 

Pin 

5 

6 

8 

1 

3 

4 

9 

12 

10 



418 

APPENDIX 9.1 

LOOP CLOSING ROUTINE 

IOPIN TXMIRA 2.3.0 78.24400:32:29 01/01/00 PAGE 0001 
NERAL CLOSING THE LOOP ROUTINE 

131301 
01302 
1313133 
0004 
0005 
131306 
01307 
00138 
131309 
131310 
01311 
13012 
131313 
01314 
01315 
0017 
0018 
01319 
131320 
0021 
0022 
0023 
131324 
0025 
13026 
0027 
0028 
01329 
0030 
131331 
13032 0000 0300 

0002 0000 
01333 0004 02E0 

0006 0000 
131334 0008 02eJC 

000A 0100 
01335 
0036 
13037 
0038 000C C060 

000E 0000 
13039 0010 1606 
0040 0012 31E0 

0014 0000 
131341 0016 33E0 

0018 00013 
13042 001A 0720 

001C 000E' 
131343 001E 31EeJ 

0020 0000 
131344 
13045 
01346 
0047 0022 1E17 

**************************************************** 
* * * THIS IS A GENERAL MODULE FOR CLOSING A POSITION * * LOOP. ITS MAIN FUNCTIONS ARE: CHANGES THE SAMPLING * * FREQUENCY, READS FEEDBACK VALUESCSTATE VARIABLES) * * CALCULATES FOLLOWING ERROR,CHECKS FOR POSITION * * FEEDBACK OVERFLOW,ESTIMATES OBSERVED VALUESCIF * * ANY),CALCULATES THE CONTROL FUNCTION,SENDS THE * * CONTROL OUT,SOLVES OBSERVER EQUATIONS, UPDATES * * ALL FUNCTIONS AND THE ACTUAL POSITION. IT HAS * * BEEN DESIGNED TO BE INTERRUPT DRIVEN BY INT3 * * C9901-CLOCK). IT USES RAM FROM FFeJeJ TO FF3E AS * * WORKING AREA. * 
* * **************************************************** 

lOT ' LOOPIN' 
DEF LOOPIN 
REF WORK1,NEWFRE,PERIOD,MASK1,MASK0 
REF DPOS,DXK,EMDECE,FEFLAG,EMFLAG 
REF ERRK,DOBS1,DUCONT,UK,DAC1,DCPK 
REF UK1,UK2,UK3,DUK,DOBS2,W11KP,W12KP 
REF W11K,W12K,W21K,W22K,W21KP, W22KP 
REF ACPOS1,ACPOS2,V01K, V01K1, V01K2 
REF A01K,DA01K 
REF DBADD,KCORR1,KCORR2 
REF DXK1,DXK2,DXK3,XKMXK4 
REF UKCORR,UKOUT,KUCOR1,KUCOR2 

********* * START * 
********* 
LOOPIN LIMI 0 MASK INTERRUPTS 

LWPI WORK1 

LI R12, >100 

**************************** * NEW SAMPLING FREQUENCY ? * 
**************************** 

LOAD POINTER 

99131 E:ASE 

MOV @N~WFRE,R1 NEW SAMPLING? 

JNE MASKIN NO! 
LDCR @MASK0,7 PROTECTS 9900 

LDCR @PERIOD, 15 LOAD CLOCK 

SETO @NEWFRE RESET FLAG 

MASKIN LDCR @MASK1,7 ENABLE INT 9901 

*********************** * READ FEEDBACK VALUE * 
*********************** 

SBZ 23 TRIGGER POSIT. FEED 



419 

OPIN TXMIRA 2.3.1'1 78.244 1'11'1:32:29 01/01/01'1 PAGE 0002 
NERAL CLOSING THE LOOP ROUTINE 

1'11'148 1'11'124 lD17 
1'11'149 1'11'126 1'131'10 

0028 1'11'11'12 
01'151'1 1'11'12A C821'1 

1'102C 1'101'11'1 
1'11'12E 1'11'11'11'1 

SBO 23 
LIMI 2 

MOV @DPOS,@DXK 

ENABLE HIGHER INT. 

READ FEED. INCREM. 

1'11'151 ************************* 
1'11'152 * EMERGENCY CONDITION ? * 
1'11'153 ************************* 
01'154 1'1031'1 C061'1 MOV @EMFLAG,Rl FLAG SET? 

1'1032 1'101'11'1 
1'11'155 1'1034 161'14 
1'11'156 0036 06AI'I 

1'1038 1'11'11'11'1 
1'11'157 1'103A 1'1461'1 

1'103C 016A' 
1'11'158 
0059 
1'11'160 
01'161 1'103E C1'I61'1 

1'11'140 01'101'1 
01'162 1'11'142 161'14 
01'163 1'1044 06AI'I 

1'1046 1'1038' 
0064 0048 0460 

0B4A B18E' 
0065 
1'11'166 
01'167 
1'11'168 BB4C C0A0 

BB4E 1'11'11'10 
0069 
0070 
0071 01'150 60A0 

0052 002E' 
0072 01'154 1903 
0073 
0074 
0075 
0076 0056 B4E0 

01'158 1'1040' 
1'1077 0B5A 10F4 
1'11'178 BB5C A802 

B05E 1'11'101'1 
0079 
0080 
0081 
0082 1'11'161'1 C0A0 

0062 005E' 
0083 01'164 0742 
0084 1'11'166 1'1282 

0068 01'100 
0085 006A 151'12 
0086 006C 04E0 

JNE FECHEK 
BL @EMDECE 

B @UPDAPO 

NO!UPDATE POS. ERROR 
GO TO DECELE. ROUTINE 

****************************** 
* FEEOBACK ERROR CONDITION ? * 
****************************** 
FECHEK MOV @FEFLAG,Rl FEEDBACK ERROR? 

JNE UPOERO 
EMER BL @EMDECE 

B @RETURN 

*************************** 
* UPDATING POSITION ERROR * 
*************************** 
UPDERO MOV @DCPK,R2 

NO! 
GO TO DECELE. ROUTINE 

INCR. ON POS. COMM. 

*FOR POSITION OPEN LOOP INSERT 1000 ON 
*NEXT 6 MEMORY LOCATIONS 

S @DXK,R2 INCR.ON POS. ERROR 

JNO UPERRO 
****************** 
* FEEDBACK ERROR * 
****************** 
SETFE CLR @FEFLAG 

JMP EMER 
UPERRO A R2,@ERRK 

******************* 
* ERROR BANDWIDTH * 
******************* 

MOV @ERRK,R2 

ABS R2 
Cl R2, )1'1001'1 

JGT CALCUL 
CLR @ERRK 

SET FEEDBACK ERROR FLAG 

GO TO DECELE. ROUTINE 
UPDATE ERROR 

ERROR 

ABSOLUTE 
01'1 MICRONS 

CLEAR ERROR 



420 

IOPIN TXMIRA 2.3.0 78.244 00:32:29 01/.01/00 PAGE 0003 
:NERAL CLOSING THE LOOP ROUTINE 

0087 
0088 
0089 
0090 
0091 
0092 

0093 

0094 
0095 

0096 

0097 
0098 
0099 
0100 
0101 
0102 
0103 

006E 0062' 

0070 C060 
0072 0000 
0074 A060 
0076 0052' 
0078 0821 
007A C801 
007C 0000 
007E C820 
0080 0076' 
0082 007C' 

0104 0084 C060 
0086 0082' 

0105 0088 6060 
008A 0000 

0106 008C C801 
008E 0000 

0107 
0108 
0109 
0110 
0111 
0112 

0113 

0114 

0115 

0116 

0117 
0118 
0119 
0120 

0121 
0122 
0123 
0124 

0090 
0092 
0094 
0096 
0098 
009A 
009C 
009E 
00A0 
00A2 

00A4 
00A6 

00A8 
00AA 

C060 
0086' 
A060 
0000 
6060 
008A' 
6060 
009A' 
C801 
0000 

06A0 
0000 

06A0 
0000 

****************************** 
* ESTIMATED SPEED * 
* SPEED/WN=(XK-XK1)/(1*T*WN) * 
* (WN*T )=1 * 
****************************** 
CALCUL MOV @XKMXK4,R1 UPDATE DISTANCE INCRE 

A @DXK,R1 

SRA R1,2 
MOV R1.@V01K 

MOV @DXK,@V01K 

*************************** 
* DIFFERENTIAL ESTIMATION * 

DIVIDE BY 4 
SAVE SPEED 

SAVE SPEED(lSTEP AVER) 

******************************* 
* ACCELERATION * 
* A/WN**2=(V01K-V01K1)/(WN*T) * 
* (WN*T )=1 * 
******************************* 

MOV @V01K,R1 GET ACTUAL SPEED 

S @V01K1,R1 SUBTRACT LAST SPEED 

MOV R1,@A01K SAVE ACCELERATION 

******************************************* 
* TRANSIENT ACCELERATION * 
* DA/WN**3=(V01K-2*V01K1+V01K2)/(WN*T)**2 * 
* (WN*l )=1 * 
******************************************* 

MOV @V01K,R1 GET ACTUAL SPEED 

A @V01K2.R1 ADD LAST-1 SPEED 

S @V01K1,R1 SUBTRACT LAST SPEED 

S @V01Kl.R1 TWICE 

MOV R1,@DA01K SAVE TRANSIENT ACCELE. 

******************* 
* OBSERVED VALUES * 
******************* 

BL @DOBS1 CALCUL. OBSERV. VALUES 

******************** 
* CONTROL FUNCTION * 
******************** 

BL @DUCONT CALCUL.CONTROL FUNCTION 



421 

IOPIN TXMIRA 2.3.eJ 78.244 eJeJ:32:29 eJl/131/eJeJ PAGE eJeJeJ4 
:NERAL CLOSING THE LOOP ROUTINE 

0125 ************************************ 
eJ126 * GAIN MODIFICATION FOR RETRACTING * 
eJ127 * DIRECTION. (POSIT. COMMAND FUNCT) * 
eJ128 ************************************ 
eJ129 eJeJAC CeJ6eJ MOV @Uf(,Rl TAf(E COMMAND 

eJ13AE eJeJeJeJ 
eJ13eJ eJeJBeJ 13eJ8 JE~ NOCORR NULL! NO MODIFICATION 
eJ131 eJ13B2 11eJ7 JLT NOCORR NO MODIFICATION 
eJ132 eJeJB4 386eJ MPY @f(CORR1,Rl MPY BY CTEl 

eJeJB6 eJeJeJeJ 
eJ133 eJeJB8 3C6eJ DIV @f(CORR2,Rl DIV BY CTE2 

eJeJBA 0000 
0134 00BC 0A12 SLA R2, 1 ROUNDING 
0135 00BE 1701 JNC NOCORR NO CARRY 
0136 00C0 0581 INC Rl 
0137 00C2 C801 NOCORR MOV Rl,@Uf(CORR SAVE MODIFIED COMMAND 

00C4 0000 
0138 ************************* 
0139 * CONTROL FUNCTION GAIN * 
0140 ************************* 
0141 00C6 C060 MOV @Uf(CORR,Rl GET COMMAND 

eJ0C8 00C4' 
0142 00CA 1108 JLT NEG12 NEGATIVE 
0143 00CC 3860 MPY @f(UCOR1,Rl MTPY BY f(UCORl 

00CE 0000 
0144 0000 3C60 DIV @f(UCOR2,Rl DIV BY KUCOR2 

0002 0000 
0145 0004 0A12 SLA R2, 1 ROUNDING 
0146 0006 1701 JNC N011 
0147 0008 0581 INC Rl 
0148 00DA 1009 N011 JMP ST12 
0149 00DC 0501 NEG12 NEG Rl TWO'S COMPL. 
0150 00DE 3860 MPY @f(UCOR1,Rl 

00E0 00CE' 
0151 00E2 3C60 DIV @f(UCOR2,Rl 

00E4 00D2' 
0152 00E6 0A12 SLA R2, 1 ROUNDING 
0153 00E8 1701 JNC N012 
0154 00EA 0581 INC Rl 
0155 00EC 0501 N012 NEG Rl 
0156 00EE C801 ST12 MOV Rl,@Uf(OUT SAVE COMMAND FUNCTION 

00F0 0000 
0157 ****************** 
0158 * OUTPUT COMMAND * 
0159 ****************** 
0160 00F2 C820 MOV @Uf(OUT,@DACl SEND COMMAND OUT TO DAC 

00F4 00F0' 
00F6 0000 

0161 ********************* 
0162 * COMMAND INCREMENT * 
0163 ********************* 
0164 00F8 C060 MOV @Uf(,Rl 

00FA 00AE' 
0165 00FC 6060 S @Ul<l, Rl 



422 

IOPIN TXMIRA 2.3.13 78.244 1313:32:29 131/131/1313 PAGE 1313135 
NERAL CLOSING THE LOOP ROUTINE 

13I3FE 13131313 
13166 1311313 C8131 MOV Rl,@DUK SAVE RESULT 

131132 13131313 
13167 ********************* 
13168 * OBSERVER FUNCTION * 
13169 ********************* 
131713 131134 136A13 BL @DOBS2 SOLVE OBSERVER E~UAT. 

131136 13131313 
13171 ********************** 
13172 * UPDATING FUNCTIONS * 
13173 ********************** 
13174 131138 C8213 MOV @UK2,@UK3 U(K-2) TO U(K-3) 

13113A 13131313 
13113C 13131313 

13175 13113E C8213 MOV @UK1,@UK2 U( K-l) TO U( K-2 ) 
131113 13I3FE' 
13112 13113A' 

13176 13114 C8213 MOV @UK,@UKl U( K) TO U( K-l ) 
13116 13I3FA' 
13118 131113' 

13177 *FOR SPEED 
13178 1311 A C8213 MOV @DXK2,(!IDXK3 

1311C 13131313 
1311E 13131313 

13179 131213 C8213 MOV @DXK1,@DXK2 
0122 13131313 
13124 1311C' 

~11813 13126 C8213 MOV @DXK,@DXKl 
13128 1313813' 
1312A 0122" 

13181 1312C 134E13 CLR @XKMXK4 
1312E 131372' 

13182 131313 A8213 A @DXKl, @XKMXK4 
13132 1312A' 
13134 1312E' 

13183 13136 A8213 A @DXK2,@XKMXK4 
13138 13124' 
1313A 13134' 

13184 1313C A8213 A @DXK3,@XKMXK4 
1313E 1311E' 
131413 1313A' 

13185 *FOR DIFFERENTIAL ESTIMATION 
13186 13142 C8213 MOV @VOIKl, @VOIK2 V( K-l) TO V( K-2) 

13144 13139E' 
13146 131396' 

13187 13148 C8213 MOV @VOIK,@V01K1 V( K) TO V( 1(-1 ) 
1314A 131392' 
1314C 13144' 

13188 *FOR OBSEF,VER 
13189 1314E C8213 MOV @WIIKP,@W11K 

131513 13131313 
0152 13131313 

131913 13154 C8213 MOV @W12KP,@W12K 
13156 13131313 



423 

IOPIN TXMIRA 2.3.0 78.244 00:32:29. 01/01/00 PAGE 0006 
:NERAL CLOSING THE LOOP ROUTINE 

0191 

0192 

13193 
0194 

0195 
13196 
0197 

0158 0000 
015A C820 
015C 0000 
015E 0000 
0160 C820 
0162 0000 
0164 0000 

0166 134E13 
13168 13134E' 

13198 1316A C1213 
016C 13128' 

0199 1316E 11132 
1321313 131713 134C3 
132131 13172 113131 
132132 13174-137133 
02133 13176 C13A0 

13178 13131313 
02134 1317A C13613 

1317C 1313130 
02135 017E 136A13 

131813 1301313 
02136 13182 0460 

0184 131356' 
132137 13186 C8131 

13188 017C' 
0208 018A C8132 

1318C 0178' 
0209 
132113 
0211 
13212 1318E 02E13 

131913 FF8A 
13213 0192 13380 
0214 

MOV @W21t<P,@W21t< 

MOV @W22t<P,@W22t< 

*FOR SAFETY 
CLR @DCPt< 

****************************** 
* UPDATING ABSOLUTE POSITION * 
****************************** 

CLEAR COMMAND INCREMENT 

UPDAPO MOV @DXt<,R4 POSITION INCR. 

JLT NEDXt< 
CLR R3 
JMP UPDAl 

NEDXt< SETO R3 
UPDAl MOV @ACPOS2,R2 

MOV @ACPOS1,Rl 

BL @DBADD 

B @SETFE 

MOV Rl,@ACPOSl 

MOV R2,@ACPOS2 

***************************** 
* INT 3 EPROM AREA WP=}FF8A * 
***************************** 

MAt<E IT DOUBLE PRECISION 
POSITIVE 

NEGATIVE 
LATE POSITIDNCLEAST) 

C MOST) 

UPDATE POSITION 

THERE IS OVERFLOW! 

SAVE POSITIONCMOST) 

C LEAST) 

RETURN LWPI }FF8A WORt<SPACE FOR RETURN 

RTWP 
END 



, 424 

10PIN TXMIRA 2.3.0 78.2l!l! 00:32:29 01/01/00 PAGE 0007 
:NERAL CLOSING THE LOOP ROUTINE 

E ACPOSl 0188 E ACPOS2 018C E A01K 008E , CALCUL 0070 
E OACl 00F6 E OA01K 01M2 E D8ADD 0180 E DCPK 0168 
E D08S1 00A6 E D08S2 011116 E DPOS 002C E DUCONT 00AA 
E DUK 0102 E DXK 016C E DXKl 0132 E DXK2 0138 
E DXK3 013E E EMDECE 00l!6 , EMER 00l!l! E EMFLAG 0032 
E ERRK 006E , FECHEK 003E E FEFLAG 0058 E KCORRl 0086 
E KCORR2 008A E KUCORl 00E0 E KUCOR2 00El! o LOOPIN 0000 
E MASK0 001l! E MASKl 0020 , MASK IN 001E , NEDXK 017l! , 

NEG12 00DC E NEWFRE 001C , NOll 00DA , N012 00EC , NOCORR 00C2 E PERIOD 0018 R0 0000 Rl 0001 
R10 000A Rll 0008 R12 000C R13 0000 
Rll! 000E R15 000F R2 0002 R3 0003 
Rl! 000l! R5 0005 R6 0006 R7 0007 
R8 0008 R9 0009 , RETURN 018E 

, SETFE 0056 , ST12 00EE E UK 0116 E UKl 0118 E UK2 0112 
E UK3 010C E UKCDRR 0"0CB E UKOUT 00Fl! 

, UPDAl 0176 , UPDAPO 016A , UPDERO 00l!C , UPERRO 005C E V01K 01l!A 
E V01Kl 01l!C E V01K2 01l!6 E WllK 0152 E WllKP 0150 
E W12K 13158 E W12KP 13156 E W21K eJ15E E W21KP 015C 
E W22K 016l! E W22KP 13162 E WORKl 00136 E XKMXKl! 01l!0 

1300 ERRORS 



425 

APPENDIX 9.2 

EMERGENCY DECELERATION ROUTINE 

IDECE TXMIRA 2.3.0 78.244 00:36:44 01/01/00 
IERGENCY DECELERATION ROUTINE 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0010 
0011 
0012 
0013 
0014 
0015 
0016 0000 C060 

0002 0000 
0017 0004 130E 
0018 0006 1105 
0019 
0020 
0021 
0022 0008 6060 

000A 0000 
0023 000C 1706 
0024 000E 04C1 
0025 0010 1004 
0026 
0027 
0028 
0029 0012 A060 

0014 000A' 
0030 0016 1701 
0031 0018 04C1 
0032 
0033 
0034 
0035 001A C801 

001C 0000 
0036 
0037 
0038 
0039 001E C801 

0020 0002' 

************************************************* 

* * * THIS ROUTINE DECELERATES THE CONTROL FUNCTION * 
* TO ZERO WITH A RATE GIVEN BY VALUE ON * 
* LOCATION 'DEMU'. IT SENDS THE CONTROL OUT * 
* TO DAC1. * 

* * ************************************************* 
IDT ' EMDECE' 
REF UK,DEMU,DACl 
DEF EMDECE 

****************** 
* CONTROL NULL ? * 
****************** 
EMDECE MOV @UK,R1 CONTROL VALUE 

JEQ RETURN 
JL T ADDIT 

************ 
* POSITIVE * 
************ 

S @DEMU,Rl 

JNC OUT 
CLR R1 
JMP OUT 

************ 
* NEGATIVE * 
************ 
ADDIT A @DEMU,Rl 

JNC OUT 
CLR R1 

******************** 
* SEND COMMAND OUT * 
******************** 
OUT MOV R1,@DAC1 

-**************** 
* SAVE COMMAND * 
**************** 

MOV R1,@UK 

CONTROL NULL 
NEGATIVE 

SUBTRACT INCREM. 

ADD INCREM. 

CARRY? 
NULL 

SEND COMMAND 

SAVE COMMAND 

0040 0022 0458 RETURN B *R11 RETURN 
0041 END 

PAGE 0001 



426 

APPENDIX 9.3 

RAMP GENERATION ROUTINE 

IMP1 TXMIRA 2.3.0 78.2qq 00:37:q2 01/01/00 PAGE 0001 
IMPl FUNCTION COMMAND ROUTINE 

0001 
0002 
0003 
000q 
0005 
0006 
0007 
0008 
0010 
0011 
0012 
0013 
001q 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
002q 0000 2FA0 

0002 022C' 
0025 000q 2FA0 

0006 0230' 
0026 0008 0qC2 
0027 000A 0qCq 
0028 000C 0qC6 
0029 000E 0qC8 
0030 0010 0qCA 
0031 0012 06A0 

00H 0000 
0032 0016 1~Fq 
0033 0018 1006 
003q 001A C08q 
0035 001C C106 
0036 001E C188 
0037 0020 C20A 
0038 0022 C281 
0039 002q 10F6 
00q0 
00q1 
00q2 
00q3 0026 38A0 

0028 0000 
00qq 002A 3920 

002C 0000 
00q5 002E 39A0 

0030 0000 
00q6 0032 3A20 

003q 0000 
00q7 0036 A2qA 
00q8 0038 AIC9 

**************************************************** 
* RAMP ** THIS ROUTINE GENERATES A RAMP POSITION * 
* INPUTCCTE VELOCITY). IT IS AN INTERACTIVE ROUTINE * 
* WHERE VARIABLES SUCH AS VELOCITY AND DISTANCE TO * 
* MOVE ARE ASKED FOR. FOR TRANSIENT STUDIES VARIA - * 
* BLES RELATED TO THE MOVEMENT CAN BE STORED AT * 
* USERS CHOICE. * 
**************************************************** 

IDT ' RAMP l' 
DEF RAMP 
REF OPT, MESSAG, DCPK, NUMBE2,SIGRED 
REF ACPOS2,ERRK,UK 
REF STORE1,FREQ 
REF TEN51,TEN52 
REF TENq,TEN3,TEN2,TENl 
REF DBADD,TWOCP2,DSMU1,ERRORl 
REF DISTA1,DISTA2,COMP01, COMP02 
REF SPEED1,SPEED2,ACTUL1, ACTUL2 
REF INCRE1,VOIK,AOIK,DA01K 

********************** 
* READ SPEEDCMM/MIN) * 
********************** 
RAMP XOP @LFCR, lq LFCR 

XOP @SPEED, lq DISPLAY SPEED MESSAGE 

CLR R2 
CLR Rq 
CLR R6 
CLR R8 CLEAR REGISTERS 
CLR R10 

RESPED BL @NUMBE2 READ CHARAC 

JMP RAMP ERROR! 
JMP ASSSPE 
MOV RQ,R2 ASSEMBLE NUMBER 
MOV R6,RQ 
MOV R8,R6 
MOV R10,R8 
MOV Rl,R10 
JMP RE SPED NEW CHARAC 

********************************* 
* ASSEMBLING BINARY SPEED ON R3 * 
********************************* 
ASSSPE MPY @TENQ,R2 R2*10000 

MPY @TEN3,RQ 

MPY @TEN2,R6 

MF'Y .@TEN1,R8 

A 
A 

R10,R9 
R9,R7 

RQ*1000 

R6*100 

R8*10 

R10+R9 
R9+R7 



IMPl TXMIRA 2.3.0 78.2qq 00:37:q2 01/01/00 
IMPl FUNCTION COMMAND ROUTINE 

00q9 003A AH7 
0050 003C A0C5 
0051 003E C803 

00q0 0000 
0052 00q2 1602 
0053 00qq 0q60 

00q6 0000 
005q 
0055 
0056 

A R7,R5 
A R5,R3 
MOV R3,@SPEED1 

JNE DISTl 
B @OPT 

****************************** 
* READ DISTANCE(+/- MICRONS) * 

R7+R5 
R5+R3 
SAVE SPEED 

NOT NULL! 
RETURN TO MAIN 

****************************** 
DIST1 XOP @LFCR, Iq LFCR 

427 

F'AGE 0002 

0057 00q8 2FA0 
00qA 022C' 

0058 00qC 2FA0 
00qE 0251' 

0059 0050 06A0 

XOP @DIST, 1Q DISPLAY DISTANCE MESSAGE 

0052 0000 
0060 005q 10F9 
0061 0056 0qC2 
0062 0058 0qCq 
0063 005A 0qC6 
006q 005C 0qC8 
0065 005E 0qCA 
0066 0060 0qCC 
0067 0062 06A0 

0068 
0069 
0070 
0071 
13072 
0073 
007Q 
13075 
0076 
0077 
0078 
0079 
0080 
0081 

0082 

0083 

008Q 

0085 

0086 

0087 

006q 00H' 
0066 10F0 
0068 1007 
006A C08Q 
006C C106 
006E C188 
0070 
0072 
007Q 
0076 

0078 
007A 
007C 
007E 
0080 
0082 
008Q 
0086 
0088 
008A 
008C 
008E 
0090 
0092 
009Q 
0096 

C20A 
C28C 
C301 
10F5 

C802 
FF2A 
C820 
0000 
FF22 
C820 
0000 
FF2Q 
02E0 
FF20 
06A0 
0000 
0Q60 
0000 
02E0 
FF00 

BL @SIGRED 

JMP DISTl 
CLR R2 
CLR RQ 
CLR R6 
CLR R8 
CLR R10 
CLR R12 

NEXTl BL @NUMBE2 

READ SIGN 

NOT A SIGN! 
CLEAR REG 

READ CHARAC 

JMP DISTl ERROR! 
JMF' ASSDIS 
MOV RQ,R2 ASSEMBLE NUMBER 
MOV R6,RQ 
MOV R8,R6 
MOV R10,R8 
MOV R12,R10 
MOV Rl,R12 
JMF' NEXT1 NEXT CHARAC 

****************************** 
* ASSEMBLING BINARY OISTANCE * 
* (SIGN IS ON R0) * 
****************************** 
ASSDIS MOV R2,@)FF2A R2*100000 

MOV @TEN51,@)FF22 CTE 10001313 

MOV @TEN52,@)FF2Q 

LWPI )FF213 WORKSF' 

E:L @DSMUl MTPY 

B @ERRORl ERROR! 

LWF'I )FF130 



IMPl TXMIRA 2.3.eJ 78.2'1,'1 1313:37:'12 131/131/1313 
IMPl FUNCTION COMMAND ROUTINE 

131388 eJ1398 CeJEeJ 
13139A FF26 

eJeJ89 13eJ9C C13A13 
13139E FF2'1 

eJ139eJ eJ13AeJ 392eJ 
13I3A2 eJ1328' 

131391 eJ13M 39A13 
13I3A6 13132C' 

eJ1392 eJ13A8 3A213 
13I3AA 1313313' 

131393 1313AC 3AA13 
13I3AE 13133'1' 

€I 139'1 1313813 A2CC 
131395 131382 A2'18 
eJ1396 13138'1 A1C9 
131397 131386 eJ'IC6 
131398 131388 132E13 

13138A FF136 
eJ1399 13138C 136A13 

13138E 13131313 
1311313 13I3C13 13'1613 

13I3C2 131392' 
131131 1313C'I 132E13 

13I3C6 FF132 
eJl132 1313C8 136A13 

13I3CA 13138E' 
131133 eJ13CC 13'1613 

13I3CE 13I3C2' 
€I 1 13'1 
131135 
131136 
131137 13I3D13 132E13 

1313D2 FFI313 
eJl138 1313D'I C13'12 
131139 13I3D6 C1383 
131113 1313D8 CI3I313 
13111 13I3DA 1313'1 
eJl.12 13I3DC 136A13 

13I3DE 13131313 
13113 1313E13 13'1613 

13I3E2 13I3CE' 
eJl1'1 13I3E'I Cl132 
13115 13I3E6 C13Cl 
13116 1313E8 C13613 

13I3EA 13131313 
13117 1313EC C13A13 

13I3EE 13131313 
13118 13I3F13 C8133 

13I3F2 13131313 
13119 13I3F'I C813'1 

1313F6 13131313 
131213 1313F8 136A13 

1313FA 13I3DE' 
13121 13I3FC 13'1613 

MOV 

MOV 

MPY 

MPY 

MF'Y 

MPY 

A 
A 

·A 
CLR 
LWF'I 

BL 

@}FF26,R3 

@}FF2'1,R2 

@TEN'I,R'I 

@TEN3,R6 

@TEN2,R8 

@TENL Rl13 

R12,Rll 
Rll,R9 
R9,R7 
R6 
}FFeJ6 

@DBADD 

@ERRORl 

LWF'I }FF132 

8L @DE:ADD 

8 @ERRORl 

************************ 
* INCREMENTAL DISTANCE * 
************************ 

LWPI }FFI313 

MOV R2,Rl 
MOV R3,R2 
MOV R13,R13 
JEG! POSDIS 
8L @TWOCP2 

8 @ERRORl 

POSDIS MOV 
MOV 
MOV 

MOV 

MOV 

MOV 

BL 

R2,R'I 
R1,R3 
@ACTULl,Rl 

@ACTUL2,R2 

R3,@COMPOl 

R'I,@COMP02 

@TWOCP2 

@ERRORl 

GET RESULT 

R'I*1I3I3I313 

R6*1131313 

R8*11313 

RleJ*113 

1+113 
1+113+113eJ 
1+113+11313+Hll313 

( R6-R7 )+( R4-R5 ) 

( R'I-R5 )+( R2-R3 ) 

RESTORE WORKSP 

SIGNED RESULT 

POSITIVE 

ERROR 

COMF'O-ACF'OS 

ACTUAL POSIT ION 

SAVE NEW COMMAND 

SUBTR 

ERROR 

428 

F'AGE 1313133 



429 

~MPl TXMIRA 2.3.0 78.2qq 00:37:q2 01/01/00 
~MPl FUNCTION COMMAND ROUTINE 

00FE 00E2' 
0122 0100 06A0 

0102 00CA' 
0123 010q 0q60 

0106 00FE' 
012q 0108 C801 

010A 0000 
0125 010C C802 

010E 0006 
0126 0110 04C0 
0127 0112 C041 
0128 0114 1101 
0129 0116 1001 
0130 0118 0700 
0131 
0132 
0133 
0134 
0135 011A C120 

011C 0040' 
0136 011E 3920 

0120 00AA' 
0137 0122 CIA0 

0124 0000 
e)138 0126 0208 

0128 0006 
0139 012A 3988 
01q0 012C 3007 
0141 
01q2 012E 1902 
0143 0130 0460 

0144 
01q5 
0146 

0132 0000' 

0147 0134 C000 
0148 0136 1301 
01q9 0138 050q 
0150 013A C804 

0151 
0152 
0153 

013C 0000 

0154 013E 2FA0 
0140 022C' 

0155 0142 2FA0 
01q4 0272' 

0156 
0157 
0158 
0159 0146 06A0 

0148 0064' 
0160 014A 10F9 
0161 014C 1002 

BL (WBADD 

B @ERRORl 

MOV Rl,@DISTAl 

MOV R2,@DISTA2 

CLR R0 
MOV Rl,Rl 
JLT NEGA 
JMP PORR 

NEGA SE TO R0 
************************* 
* INCREMENT PER PERIOD * 
* =(SPEED*100)/(6*FREQ) * 
************************* 
PORR MOV @SPEED1,Rq 

MPY @TEN2,R4 

MOV @FREQ,R6 

LI R8,6 

ERROR 

SAVE 

RESET SIGN FLAG 
NEG 

SPEED 

SPEED*100 

FREQUENCY 

FREQ*6 MPY R8,R6 
DIV R7,R4 

INCREMENT PER 
JNO LAPA 
B ~ l!?RAMP 

( SPEED*100 )/( FREQ*6 ) 
PERIOD LESS 1 MICRON START AGAIN 

NO OVERFLOW! 

******************** 
* SIGNED INCREMENT * 
******************** 
LAPA MOV R0,R0 

JEQ POSINC 
NEG R4 

POSINC MOV R4,l!?INCREl 

TRY AGAIN! 

SIGN? 
POSITIVE 
NEGATIVE 
SAVE INCREM 

********************************** 
* DISPLAY VARIABLE OPTIONS TABLE * 
********************************** 
OPTl XOP l!?LFCR, 14 LFCR 

XOP l!?OPVAR, 1.4 

***************** 
* WHICH OPTION? * 
***************** 
RE2 BL WNUMBE2 

JMP OPT! 
JMP CHE2 

DISPLAY OPTIONS 

READ CHARACTER 

ERROR! 
CHECK CHARACTER 

PAGE 0004 



430 

IMPl TXMIRA 2.3.0 78.2"1"1 00:37:"12 01/01/00 PAGE 0005 
IMPl FUNCTION COMMAND ROUTINE 

0162 01"1E C001 MOV Rl,R0 
0163 0150 10FA JMP RE2 WAIT CR 
016"1 0152 06A0 CHE2 BL @SRCH2 SEARCH ROUTINE 

015"1 0172' 
0165 **************** 
0166 * SEAR~H TABLE * 
0167 **************** 
0168 0156 0001 DATA )0001 FIRST OPTION 
0169 0158 0000 DATA ACPOS2 
0170 015A 0002 DATA )0002 
0171 015C 0000 DATA'ERRK 
13172 015E 0003 DATA )0003 
0173 0160 0000 DATA UK 
017"1 0162 000"1 DATA )000q 
0175 016"1 0000 DATA V01K 
0176 0166 0005 DATA )0005 
0177 0168 0000 DATA A01K 
0178 016A 0006 DATA )0006 
0179 016C 0000 DATA DA01K 
13180 016E 0000 DATA )0000 END OF TABLE 
0181 *************************** 
13182 * SEARCH ROUTINE * 
0183 * VARIABLE ADDRESS ON R10 * 
018"1 *************************** 
13185 0170 05CB SRCH0 INCT Rll UPDATE POINTER 
0186 0172 C29B SRCH2 MOV *Rll, R10 SEARCH FAIL? 
13187 017"1 13E"I JEG OPTl YES! 
13188 0176 803B C *Rll+,R13 MATCH? 
e!H39 .0178 16FB JNE SRCH0 NO! 
0190 017A C29B MOV *Rll, R10 VARIABLE ADDRESS 
0191 ************************** 
0192 * MOVE OR RETURN TO MAIN * 
13193 ************************** 
019"1 017C 2FA0 MOVl XOP @LFCR, 1"1 

017E 022C' 
13195 0180 2FA0 XOP @MOVE, lq DISPLAY MOVE MESSAGE 

0182 03"1q' 
13196 018q 06A0 RE3 BL @NUMBE2 READ CHARAC 

0186 01"18' 
0197 0188 10F9 JMP MOVl 
0198 018A 1002 JMP CHE3 CHECK 
0199 018C C001 MOV Rl,R0 SAVE 
020~) 018E 10FA JMP RE3 WAIT CR 
132131 0190 0280 CHE3 Cl R0, 1 MOVE? 

0192 0001 
13202 019"1 1305 JEG MOVEl YES! 
0203 0196 0280 Cl R0}2 NO? 

0198 0002 
1320"1 019A 16F0 JNE MOVl ERROR! 
0205 019C e!q60 B @OPT 

019E 00"16' 
13206 ************************ 
0207 * SYNCHRONIZE MOVEMENT * 
13208 ************************ 



\MPl TXMIRA 2.3.0 7B.24400:37:42 01/01100 
\MPl FUNCTION COMMAND ROUTINE 

0209 01A0 0340 
0210 01A2 0205 

01A4 0070 
0211 01A6 0206 

01AB 0000 
0212 01AA 0720 

01AC 0000 
0213 01AE 0340 
0214 
0215 
0216 
0217 
021B 0180 C0E0 

0182 010A' 
0219 0184 C120 

0186 010E' 
0220 018B 1603 
0221 018A C0C3 
0222 01BC 1601 
0223 01BE 1028 
0224 01C0 04C1 
0225 01C2 C0A0 

01C4 013C' 
0226 01C6 1502 
0227 01CB 0742 
022B 01CA 1002 
0229 01CC 0701 
0230 01CE 0502 
0231 01D0 06A0 

01D2 0102' 
0232 01D4 0460 

01D6 0106' 
0233 
0234 
0235 
0236 
0237 
023B 01DB CIC3 
0239 01DA 1102 
0240 01DC 04C7 
0241 01DE 1001 
0242 01E0 0707 
0243 01E2 C201 
0244 01E4 1102 
0245 01E6 04CB 
0246 01EB 1001 
0247 01EA 070B 
024B 01EC 61CB 
0249 01EE 1307 
0250 01F0 CB04 

01F2 0000 
0251 01F4 04E0 

01F6 0182' 
0252 01FB 04E0 

MOVEl IDLE 
LI R5,l12 

LI R6,STORE1 

SE TO @MESSAG 

SYNCHR INT3 
STORE 112 WORDS 

LOCATION 

SET MESSAGE FLAG 

WAIT3 IDLE 

****************************************** * RAMP MOVEMENT * * STORES FIRST 112 SAMPLES OF CHOSEN VAR * 
****************************************** 
MOVE2 MOV @DISTA1,R3 DISTANCE TO MOVE 

VAl 

NEGl 

ADDB 

MOV @DISTA2,R4 

JNE VAl 
MOV R3,R3 
JNE VA1 
JMP LATA 
CLR Rl 
MOV @INCRE1,R2 

JGT 
ABS 
JMP 
SETO 
NEG 

BL 

NEGl 
R2 
ADDB 
R1 
R2 
@DBADD 

@ERRORl 

NOT EQUAL 

NOT EQUAL 

-DOUBLE PREC INCREM 
INCREM 

NEG TO POS 
ADD 
POS TO NEG 

ADD 

ERROR 

********************************* * INCREM GREATER THAN DISTAN? * * IF (DISTA-INCRE) CHANGES SIGN * * THEN INCRE GT DISTA * 
********************************* 

MOV R3,R7 
JLT NEG5 
CLR R7 
JMP POS5 

NEG5 SE TO R7 
POS5 MOV Rl,RB 

JLT NEG6 
CLR RB 
JMP POS6 

NEG6 SETO RB 
POS6 S RB,R7 

JEQ CONl 
MOV R4,@DCPK SEND LAST INCREMENT 

CLR @DISTAl CLEAR DISTAN 

CLR @DISTA2 

431 

PAGE 0006 



432 

~MPl TXMIRA 2.3,0 78.2qq 00:37:q2 01/01/00 PAGE 0007 
~MPl FUNCTION COMMAND ROUTINE 

01FA 01B6' 
0253 01FC 1007 JMP CON2 
025q 01FE C820 CONI 

0200 01Cq' 
MOV @INCRE1.@DCPK SEND INCREM 

13202 01F2' 
0255 020q C801 

0206 01F6' 
0256 0208 C802 

020A 01FA' 
0257 020C Clq5 
0258 020E 1302 
0259 0210 0605 
0260 13212 CD9A 
0261 1321q 113CC 
0262 13216 Clq5 
0263 13218 13131 
1326q 1321A 113FA 
0265 
0266 
0267 
0268 1321C C8213 

1321E 13I3F2' 
02213 13I3EA' 

0269 13222 C820 
1322q 13I3F6' 
13226 1313EE' 

02713 13228 13q613 
022A 019E" 

0271 
0272 
0273 
1327q 1322C 
0275 022E 

1322F 
0276 132313 
13277 132513 
0278 13251 
0279 13271 
0280 0272 
0281 13299 

1329A 
0282 029B 
0283 02BF 

132C0 
028q 132Cl 
0285 132E6 

02E7 
0286 132E8 
0287 132F9 

02FA 
0288 02FB 
0289 13313 

1331q 
02913 13315 

13A13D 
13A 
1313 
q5 
1313 
qD 
1313 
56 
13A 
13D 
20 
0A 
13D 
213 
13A 
13D 
213 
13A 
13D 
213 
13A 
13D 
213 

MOV Rl.@DISTAl 

MOV R2.@DISTA2 

CON2 MOV R5.R5 
JEQ LATAO 

ZINC DEC R5 
MOV *RI13.*R6+ 

LATAO JMP WAIT3 
LATA MOV R5.R5 

JEQ RET5 
JMP ZINC 

************************** 
* UPDATE ACTUAL POSITION * 
************************** 
RET5 MOV @COMP01.@ACTULl 

MOV @COMP02.@ACTUL2 

B @OPT 

************ 
* MESSAGES * 
************ 
LFCR DATA >13A0D 

BYTE >13A.0 

SAVE DISTANCE TO MOVE 

STORE VARIAE:LE 
WAIT INT3 
COUNTER ZERO? 
YES!RETURN 

F,ETURN TO MAIN 

SPEED TEXT 'ENTER SPEEDC15 TO 30131313 MM/MIN)=' 
BYTE 0 

DIST TEXT 'MOVE TO CUP TO +/-2Q13.1300 MM) X=' 
BYTE 0 

OPVAR TEXT 'VARIABLE: l)ACTUAL POSITIONCLEAST WORD)' 
BYTE >13A. >13D 

TEXT 2)FOLLOWING ERRORCMICRONS)' 
BYTE >0A. >13D 

TEXT ' 3)CONTROL FUNCTIONCMICRONS)' 
BYTE >13A. >13D 

TEXT ' Q )SPEED' 
BYTE . >13A. >13D 

TEXT' 5 )ACCELERATION' 
BYTE >0A. >0D 

TEXT' 6)TRANSIENT ACCELERATION' 



433 

IMP1 TXMIRA 2.3.0 78.2qq 00:37:q2 01/01/00 PAGE 0008 
IMP1 FUNCTION COMMAND ROUTINE 

0291 0337 0A BYTE )0A, )00 
0338 00 

0292 0339 20 TEXT' 7 ' 
0293 03q3 00 BYTE 0 
029q 03qq qD MOVE TEXT ' MOVE( YES( 1 ), NO( 2»7 , 
0295 0358 00 BYTE 0 
0296 ******** 0297 END 

IMP1 TXMIRA 2.3.0 78.2qq 00:37:q2 01101/00 PAGE 0009 
IMP1 FUNCTION COMMAND ROUTINE 

E ACPOS2 0158 E ACTULl 0220 E ACTUL2 0226 , ADD8 0100 
E A01K 0168 , ASSDIS 0078 , ASSSPE 0026 , CHE2 0152 , CHE3 0190 E COMP01 021E E COMP02 022q , CON1 01FE , CON2 020C E DA01K 016C E DBADD 01D2 E DCPK 0202 , DIST 0251 

, DISTl 00q8 E DISTA1 0206 E DISTA2 020A 
E DSMU1 008E E ERRK 015C E E.RROR1 01D6 E FREG 012q 
E INCRE1 0200 , LAPA 013q , LATA 0216 , LATAO 021q , LFCR 022C E MESSAG 01AC MOV1 017C , MOVE 03qq , MOVE1 01A0 , MOVE2 01B0 , NEG1 01CC , NEG5 01E0 , NEG6 01EA , NEGA 0118 NEXTl 0062 E NUMBE2 0186 
E OPT 022A , OPTl 013E , OPVAR 0272 , PORR 011A , POS5 01E2 , F'OS6 01EC POSDIS 00Eq , F'OSINC 013A 

R0 0000 R1 0001 R10 000A R11 000B 
R12 000C R13 0000 R1q 000E R15 000F 
R2 0002 R3 0003 Rq 000q R5 0005 
R6 0006 R7 0007 R8 0008 R9 0009 

0 RAMP 0000 , RE2 01q6 , RE3 018q , RESPED 0012 , RET5 021C E SIGRED 0052 , SPEED 0230 E SPEED1 011C 
E SPEED2 0000 , SRCH0 0170 , SRCH2 0172 E STORE1 01A8 
E TEN1 00AE E TEN2 0120 E TEN3 00A6 E TENq 00A2 
E TEN51 007E E TEN52 008q E TWOCP2 00FA E UK 0160 , VA1 01C0 E V01K 016q , WAIT3 01AE , ZINC 0210 

1000 ERRORS 



434 

APPENDIX 9. 4 

SAMPLING FREQUENCY ROUTINE 

:WFRE TXMIRA 2.3.0 78.244 00:40:55 01/01/00 PAGE 0001 
IANGING SAMPLING FREQUENCY 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 

0019 

0020 
0021 
0022 
0023 
0024 
0025 

0000 
0002 
0004 
0006 
0008 
000A 
000C 

2FA0 
0054' 
2FA0 
0058' 
04C2 
04C4 
MC6 

0026 000E 06A0 
0010 0000 

0027 0012 10F6 
0028 0014 1004 
0029 0016 C084 
0030 0018 C106 
0031 001A C181 
0032 001C 10F8 
0033 
0034 
0035 
0036 

0037 

0038 
0039 
0040 

0041 
0042 

0043 
0044 
0045 
0046 
0047 

001E 
0020 
0022 
0024 
0026 
0028 
002A 
002C 
002E 
0030 
0032 

38A0 
0000 
3920 
0000 
A146 
A0C5 
0283 
0005 
11E8 
C803 
0000 

0048 0034 04C0 

****************************************************** 
* NEWFRE. THIS ROUTINE READS THE SAMPLING FREQUENCY * 
* FROM A TERMINAL IN DECIMAL FORM. IT TRANSFORMS THE * 
* FREQUENCY IN A CORRESPONDENT PERIOD ACCEPTABLE BY * 
* TMS 9901 AND STORES IT AT LOCATION PERIOD. IF THE * 
* PERIOD IS DIFFERENT FROM THE ALREADY EXISTENT THE * 
* ROUTINE SETS THE FLAG FEFLAG (NULL). * 
****************************************************** 

IDT ' NEWFRE' 
DEF NEWFRE 
REF PERIOD,FEFLAG,NUMBE2 
REF OPT,FREQ 
REF TEN3,TEN2,TEN1 

******************* 
* DISPLAY MESSAGE * 
******************* 
NEWFRE XOP @LFCR, 14 LFCR 

DISFRE XOP @FREQ1, 14 DISPLAY FREQ MESSAGE 

CLR R2 
CLR R4 
CLR R6 

CLEAR REGISTERS 

****************** 
* READ FREQUENCY * 
****************** 
REAFRE BL @NUMBE2 READ CHARACTER 

ERROR! JMP NEWFRE 
JMP ASSEM1 
MOV R4,R2 
MOV R6,R4 
MOV R1,R6 
JMP REAFRE 

ASSEMBLE NUME:ER 

******************************** 
* ASSEMBLING BINARY FREQ ON R3 * 
******************************** 
ASSEM1 MPY (HEN2, R2 R2*100 

MPY @TEN1,R4 R4*10 

A R6,R5 R6+R5 
A R5,R3 R5+R3 
Cl R3,5 LESS THAN 

JLT NEWFRE YES! 
MOV R3,@FREQ SAVE FREQ. 

************************************** 
* CONVERTING FREQ TO PERIOD * 
* PERIOD(CLOCK UNITS)=10**6/(F*21.3) * 
* PERIOD=46948/F * 
************************************** 

CLR R0 

5 HZ? 



435 

oWFRE TXMIRA 2.3.0 78.244 00:40:55 01/101/00 PAGE 0002 
~ANGING SAMPLING FREQUENCY 

0049 0036 0201 LI R1,46948 R0+R1=46948 
0038 B764 

0050 003A 3C03 DIV R3,R0 46948/FREQ 
"0051 003C 0A10 RESM SLA R0, 1 
0052 003E 0580 INC R0 9901 CLOCK REQUIREMENT 
0053 0040 0300 LIMI 0 PROTECT 

0042 0000 
0054 0044 C800 MOV R0,@PERIOD STORE AT PERIOD 

0046 0000 
0055 0048 04E0 CLR @FEFLAG SET FLAG 

004A 0000 
0056 004C 0300 LIMI 3 ENABLE 

004E 0003 
0057 0050 0460 B @OPT RETURN TO OPTIONS 

0052 0000 
0058 ************ 
0059 * MESSAGES * 
0060 ************ 
0061 0054 0A0D LFCR DATA )0A0D 
0062 0056 0A BYTE )0A,0 

0057 00 
0063 0058 53 FREQ1 TEXT ' SAMPLING FREQUENCY(5 TO 999 HZ)=' 
0064 0078 00 BYTE )0 
0065 ******** 
0066 END 

,WFRE TXMIRA 2.3.0 78.244 00:40:55 01/01/00 PAGE 0003 
~ANGING SAMPLING FREQUENCY 

, ASSEM1 001E , DISFRE 0004 E FEFLAG 004A E FREQ 0032 , FREQ1 0058 , LFCR 0054 0 NEWFRE 0000 E NUMBE2 0010 
E OPT 0052 E PERIOD 0046 R0 0000 R1 0001 

R10 000A R11 0008 R12 000C R13 0000 
R14 000E R15 000F R2 0002 R3 0003 
R4 0004 R5 0005 R6 0006 R7 0007 
f~8 0008 R9 0009 , REAFRE 000E , RESM 003C 

E TEN1 0024 E TEN2 0020 E TEN3 0000 

1000 ERRORS 



436 

APPENDIX 9.5 

DISPLAYING VALUES ROlITINE 

ISPLA TXMIRA 2.3.0 78.244 00:41:50 01/01/00 PAGE 0001 
ISPLAY SAMPLED VALUES OF CHOSEN VAR 

0001 
0002 
0003 
0004 
0006 
0007 
0008 
0009 
0010 
0011 
0012 0000 04C1 
0013 0002 0209 

0004 FFF8 
0014 0006 2FA0 

0008 0000 
0015 000A C0A1 

000C 0000 
0016 000E 0742 
0017 0010 1103 
0018 0012 0200 

0014 2000 
0019 0016 1002 
0020 0018 0200 

001A 2D00 
0021 001C 06A0 

001E 0000 
0022 0020 2F80 
0023 0022 2E02 
0024 0024 0AC3 
0025 0026 0A84 
0026 0028 0A45 
0027 002A A146 
0028 002C A105 
0029 002E A0C4 
0030 0030 2E83 
0031 0032 05C1 
0032 0034 0281 

0036 00E0 
0033 0038 1305 
0034 003A 0589 
0035 003C 13E2 
0036 003E 2FA0 

0040 0048' 
0037 0042 10E3 
0038 0044 0460 

0046 0000 
0039 
0040 
0041 
0042 0048 2020 
0043 004A 2000 
0044 

*************************************************** * THIS ROUTINE DISPLAYS 112 SAMPLES OF CHOSEN * * VARIABLE STORED BY THE RAMP INPUT OPTION * 
*************************************************** 

IDT 'DISPLA' 
DEF DISPLA 
REF OPT,STORE1,HEXDEC,LFCR 

*************************** * DISPLAY TABLE OF VALUES * 
*************************** 
DISPLA CLR RI 
R9B LI R9,-8 

XOP @LFCR, 14 

TAVA MOV @STORE1(Rl),R2 

ABS R2 
JLT NEG 
LI R0, )2000 

JMP POS 
NEG LI R0, )2D00 

POS BL @HEXDEC 

RET 

XOP 
XOP 
SLA 
SLA 
SLA 
A 
A 
A 
XOP 
INCT 
Cl 

JEQ 
INC 
JEQ 
XOP 

JMP 
B 

*********** * MESSAGE * 

R0, 14 
R2,8 
R3, 12 
R4,8 
R5,4 
R6,R5 
R5,R4 
R4,R3 
R3, 10 
RI 
R1,224 

RET 
R9 
R98 
@SPACE3, 14 

TAVA 
@OPT 

*********** 
SPACE3 DATA )2020 

DATA )2000 
END 

COUNTER 
LINE COUNTER 

LFCR 

GET VALUE 

ABS VALUE 
NEGATIVE! 
SPACE FOR POSITIVE 

NEGATIVE SIGN 

HEX-DEC CONVERT 

DISPLAY SIGN 
R2U0000 
PREPARE FOR DISPLAY 

DISPLAY NUMBER 
INCREM COUNTEr< 
END? 

RETURN 
LINE 

3 SPACES 

RETURN TO MAIN 



437 

ISPLA TXMIRA 2.3.0 78.244 00:41:50 01/01/00 PAGE 0002 
ISPLAY SAMPLED VALUES DF CHOSEN VAR 

D DISPLA 0000 E HEXDEC 001E E LFCR 0008 , NEG 0018 
E OPT 0046 , POS 001C R0 0000 R1 0001 

R10 000A Rll 0008 R12 000C R13 000D 
R14 000E R15 000F R2 0002 R3 0003 
R4 0004 R5 0005 R6 0006 R7 0007 
R8 0008 R9 0009 , R98 0002 , RET 0044 , SPACE3 0048 E STORE1 000C , TAVA 000A 

0000 ERRORS 



438 

APPENDIX 9.6 

MODULE 2 COMMUNICATION SOFTWARE 

lMMUN TXMIRA 2.3.0 78.244 00:42:36 01/Bl/00 PAGE 0001 
lMMUNICATION ROUTINE FOR LOOP CLOSING 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 

0036 
0037 
0038 

0000 
0002 

1FF0 
1000 
1002 
1004 
1006 
1008 
100A 
100C 
100E 
1010 
1012 
1014 
1016 

0300 
0000 

******************************************************* 
* * * THIS IS THE SYSTEM BUS COMMUNICATION ROUTINE TO * * BE USED BY MODULE 2 . IT INTERRUPTS MODULE 1 (SLAVE) * * AND HOLDS IT UP TO MESSAGE COMPLETION. * 
* * ******************************************************* 

IDT ' COMMUW 
DEF COMMUN,MIDCPK,M1FEFG,M1PER 
DEF M1ACP1,M1ACP2,M1ERRO,M1UK 
DEF M1MESS,M1VOIK,M1A01K, MDA01K 
REF DCPK,PROCES,NEWFRE,PERIOD 
REF ACPOS1,ACPOS2,ERRK,UK 
REF MESSAG,VOIK,AOIK,DAOlK 

*************************************************** * MODULE 1 IS REACHED ON ADDRESSES }1000 TO }lBFE * * WHICH CORRESPOND TO ADDRESSES }F000 TO }FBFE * * ON MODULE 1 * 
*************************************************** 
MOD1 EQU }lFF0 ADDRESS FOR MODl INT. 
MIDCPK EQU }1000 DCPK ON MODl 
MIFEFG EQU }1002 NEWFRE ON MOD1 
MIPER EQU >1004 PERIOD ON MOD1 
MIACPl EQU >1006 ACPOSl ON MOD1 
M1ACP2 EQU }1008 ACPOS2 ON MOD1 
MIERRO EQU }100A ERRK ON MODl 
M1UK EQU }100C UK ON MODl 
MIVOIK EQU >100E VELOCITY ON MODl 
M1AOIK EQU }1010 ACCEL. ON MODl 
MDAOIK EQU >1012 TRANS ACCEL. ON MODl 
MIMESS EQU >1014 MESSAGE INDEX 
ENMEFG EQU }1016 END OF MESSAGE FLAG 
********* 
COMMUN LIMI 0 JUST FOR SAFETY 

********************** * INTERRUPT MODULE 1 * 
********************** 

0039 0004 C800 MOV R0,@MODl INT MOD1(WRITE TO IT) 

0040 
0041 
0042 

0006 IFF0 

0043 0008 020C 
000A 0100 

0044 000C lEll 
0045 000E IF16 
0046 0010 16FE 
0047 
0048 
0049 
0050 0012 C820 

0014 1000 
0016 0000 

*********************** * HOLD(CHECK)MODULE 1 * 
*********************** 

LI R12, >100 

SBZ 17 
TRY TB 22 

JNE TRY 
***************** * READ COMMANDS * 
***************** 

MOV @M1DCPK,@DCPK 

9901 BASE ADDRESS 

SET HOLD LINE 
HAS IT STOPPED? 
NO? WAIT 

READ COMMAND INCREM. 



IMMUN TXMIRA 2.3.0 78.244 00:42:36 01/01/00 
IMMUNICATION ROUTINE FOR LOOP CLOSING 

0051 0018 04E0 
001A 1000 

0052 001C C820 
001E 1002 
0020 0000 

0053 0022 0720 
0024 1002 

0054 0026 C820 
0028 1004 
002A 0000 

0055 002C C820 

0056 
0057 
0058 

002E 1014 
0030 0000 

0059 0032 C820 
0034 0000 
0036 1006 

0060 0038 C820 

CLR @M1DCPK 

MOV @M1FEFG,@NEWFRE 

SETO @M1FEFG 

MOV @M1PER,@PERIOD 

MOV @M1MESS,@MESSAG 

*************** * SEND STATUS * 
*************** 

MOV @ACPOS1,@M1ACP1 

MOV @ACPOS2,@M1ACP2 

MOV @ERRK,@M1ERRO 

CLEAR 

NEW FREQ. FLAG 

RESET FLAG 

NEW PERIOD 

ACTUAL POSIT I ON 

(2 WORDS) 

FOLLOWING ERROR 

439 

PAGE 0002 

003A 0000 
003C 1008 

0061 003E C820 
0040 0000 
0042 100A 

0062 0044 C820 MOV @UK, @MlUK CONTROL FUNCTION VALUE 
0046 0000 
0048 100C 

0063 004A C820 
004C 0000 
004E 100E 

0064 0050 C820 
0052 0000 
0054 1010 

0065 0056 C820 
0058 0000 

0066 
0067 
0068 

005A 1012 

MOV @V01K,@M1V01K 

MOV @A01K,@M1AOIK 

MOV @DA01K,@MDA01K 

**************************** * SEND END OF MESSAGE FLAG * 
**************************** 

VELOCITY 

ACCELERATION 

TRANS. ACCEL. 

0069 005C 04E0 
005E 1016 

CLR @ENMEFG SET FLAG 

0070 
0071 
0072 
0073 0060 1Dll 
0074 0062 0300 

0075 
0076 

0064 0003 

******************** * RELEASE MODULE 1 * 
******************** 

SBO 17 
LIMI 3 

**************************** * BRANCH AND WAIT FOR INT3 * 
0077 **************************** 0078 0066 0460 B @PROCES 

0068 0000 
0079 END 

RESET HOLD LINE 
ENABLE I NT3 



440 

lMMUN TXMIRA 2.3.0 78.244 1313:42:36 01/131/130 PAGE 013133 
lMMUNICATION ROUTINE FOR LOOP CLOSING 

E ACPOSl 131334 E ACPOS2 13133A E AOlt< 131352 0 COMMUN 0131313 
E OAOlt< 131358 E OCPt< 131316 ENMEFG 11316 E ERRt< 130413 
0 MIACPl 10136 0 MIACP2 113138 0 MIAOlt< 113113 0 Ml0CPt< 1131313 
0 MIERRO 11313A 0 MIFEFG 113132 0 MIMESS 1014 0 MIPER 11304 
0 MlUt< 1130C 0 MIVOlt< 11313E 0 MOAOlt< 11312 E MESSAG 1313313 

MOOl IFF13 E NEWFRE 1313213 E PERIOD 13132A E PROCES 01368 
R13 13131313 Rl 1313131 Rl13 131313 A Rll 1313138 
R12 13I3I3C R13 1313130 R14 13I3I3E R15 13130F 
R2 1313132 R3 1313133 R4 1313134 R5 1313135 
R6 130136 R7 1313137 R8 131308 R9 13009 , TRY 13013E E Ut< 0046 E VOlt< 0134C 

1131313 ERRORS 



441 

APPENDIX 9.7 

MODULE 1 COMMUNICATION SOFTWARE 

IT3Ml TXMIRA 2.3.0 78.244 00:43:47 01/01/00 PAGE 0001 
ITERRUPT 3 ROUTINE FOR MODULE 1 

0001 
0002 
0003 
0004 
0005· 
0006 
0007 
0009 
0010 
0011 
0012 
0013 
0014 
0015 0000 020C 

0002 0100 
0016 0004 lE10 
0017 0006 lD10 
0018 
0019 
0020 
0021 0008 lE12 
0022 
0023 
0024 
0025 000A C2E0 

000C 0000 
0026 000E 16FD 
0027 
0028 
0029 
0030 0010 lD12 
0031 
0032 
0033 
0034 0012 0720 

0014 000C' 
0035 0016 0380 
0036 

***************************************************** * THIS IS THE SYSTEM BUS ~OMMUNICATION FOR MODULE 1 * * IT IS INTERRUPT DRIVEN BY INTERRUPT 3. * * AFTER THE INTERRUPT IS CLEARED ON THE FLIP-FLOP * * THE HOLD LINE IS ENABLED IN. THE END OF MESSAGE * * FLAG MUST BE CLEARED AT THE END OF COMMUNICATION * 
***************************************************** 

IDT 'INT3Ml' 
DEF INT3Ml 
REF ENMEFG 

******************* * RESET FLIP-FLOP * 
******************* 
INT3Ml LI R12, >100 9901 BASE ADDRESS 

SBZ 16 CLR INT3 
SBO 16 RESET 

****************** * ENABLE HOLD IN * 
****************** 

sez 18 ENABLE HOLD IN 
******************** * END OF MESSAGE ? * 
******************** 
CONTl MOV @ENMEFG,R11 END OF MESSAGE? 

JNE CONT1 NO! 
******************* * DISABLE HOLD IN * 
******************* 

seo 18 DISABLE HOLD IN 

********~******************** * RESET END OF MESSAGE FLAG * 
***************************** 

SETO @ENMEFG RESET FLAG 

RTWP RETURN 
END 



442 

~T3Ml TXMIRA 2.3.0 78.244 00:43:47 01101/00 PAGE 0002 
~TERRUPT 3 ROUTINE FOR MODULE 1 

, CONTl 000A E ENMEFG 0014 D INT3Ml 0000 R0 0000 
Ri 0001 R10 000A Rll 0008 R12 000C 
R13 000D R14 000E R15 000F R2 0002 
R3 0003 R4 0004 R5 0005 R6 0006 
R7 0007 R8 0008 R9 0009 

3000 ERRORS 



APPENDIX 9.S 

ARITHMETIC ROUTINES 

~OCP2 TXMIRA 2.3.0 78.244 00:46:13 01/131/013 
~O'S COMPLEMENT DOUBLE PRECISION ROUTINE 

0001 
013132 
01303 
1313134 
1313135 
00136 
1313137 
13008 
0009 
0010 
01312 
0013 
0014 0001 
0015 0002 
0016 000B 
0017 
0018 
0019 
00213 13000 0541 
0021 00132 0502 
0022 013134 1703 
0023 01306 0581 
0024 1313138 1901 
0025 13 13 eJA 045B 
13026 0eJ0C 0228 

00eJE 1313134 
0027 0010 0458 
0028 

********************************************** 

* * * THIS ROUTINE FINDS THE TWO'S COMPLEMENT * 
* OF A DOUBLE PRECISION(32 8ITS) FIXED POINT * 
* NUMBER. IT IS ASSUMED THE NUMBER IS ON * 
* REGISTERS 1 AND 2. RESULT IS RETURNED * * ON THE SAME REGISTERS. IF THERE IS NO * 
* ERROR RETURN SKIPS TWO WORDS. * 

* * ********************************************** 
lOT 'TWOCP2' 
DEF TWOCP2 

A EGU 1 
B EGU 2 
LINK EGU 11 

********** 
* TWOCP2 * 
********** 
TWOCP2 INV A 

NEG 
JNC 
INC 
JNO 
B 

RETURN AI 

B 
RETURN 
A 
RETURN 
*LINK 
LINt<, 4 

B *LINt< 
END 

ONE'S COMPLE.A 
TWO'S COMPLE. B 
CARRY? 
CARRY TO A 

RETURN WITH ERROR 
NO ERROR 

jOCP2 TXMIRA 2.3.0 78.244 00:46:13 01/01/013 
10'S COMPLEMENT DOUBLE PRECISION ROUTINE 

A 013131 B 1313132 LINt< 13008 R0 
R1 13001 R10 13013A Rll 000B R12 
R13 01300 R14 000E R15 13130F R2 
R3 0003 R4 0004 R5 0005 R6 
R7 131307 R8 1313138 R9 0009 , RETURN 

0 TWOCP2 013130 

1000 ERRORS 

443 

PAGE 13001 

PAGE 013132 

01300 
00eJC 
130132 
01306 
0130C 



~OCP3 TXMIRA 2.3.0 78.244 00:46:51 01/01/00 
~O'S COMPLEMENT TRIPLE PRECISION ROUTINE 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0011 
0012 
0013 
0014 0001 
0015 0002 
0016 0003 
0017 000B 
0018 
0019 
0020 
0021 0000 0541 
0022 0002 0542 
0023 0004 0503 
0024 0006 1705 
0025 0008 0582 
0026 000A 1703 
0027 000C 0581 
0028 000E 1901 
0029 0010 045B 
0030 0012 022B 

0014 0004 
0031 0016 0458 
0032 

********************************************** 

* * * THIS ROUTINE FINDS THE TWO'S COMPLEMENT OF * 
* A TRIPLE PRECISION NUMBER( 48 BITS). IT IS * 
* ASSUMED THE NUMBER IS GIVEN ON REGISTERS * 
* 1,2 AND 3. RESULT IS RETURNED ON SAME REG. * 
* IF THERE IS NO ERROR RETURN SKIPS 2 WOROS * 

* * ********************************************** 
lOT ' TWOCP3' 
DEF TWOCP3 

**** 
A EQU 
B EQU 
C EQU 
LINK EQU 
********** 
* TWOCP3 * 
********** 
TWOCP3 INV 

INV 
NEG 
JNC 
INC 
JNC 
INC 
JNO 
B 

RETURN AI 

8 
END 

1 
2 
3 
11 

A 
8 
C 
RETURN 
8 
RETURN 
A 
RETURN 
*LINK 
LINK,4 

ONE'S COMPL. A 
ONE'S B 
TWO'S C 
CARRY? 

CARRY? 

RETURN WITH ERROR 

RETURN NO ERROR 

IOCP3 TXMIRA 2.3.0 78.244 00:46:51 01/01/00 
10 'S COMPLEMENT TRIPLE PRECISION ROUTINE 

A 0001 8 0002 C 0003 LINK 
R0 0000 Rl 0001 R10 000A Rll 
R12 000C R13 0000 R14 000E R15 
R2 0002 R3 0003 R4 0004 R5 

R6 0006 R7 0007 R8 0008 R9 
, RETURN 0012 0 TWOCP3 0000 

1000 ERRORS 

444 

PAGE 0001 

PAGE 0002 

000B 
000B 
000F 
0005 
0009 



445 

BADD TXMIRA 2.3.0 78.2qq 00:q7:25 01/01/00 PAGE 0001 
DUBLE ADD ROUTINE 

0001 ********************************************** 
0002 * * 
0003 * THIS ROUTINE ADDS TWO DOUBLE PRECISION (32 * 

. 000q * BIT) FIXED POINT NUMBERS IN TWO'S COMPL. * 
0005 * IT IS ASSUMED THE NUMBERS ARE ON REGISTERS * 
0006 * 1,2(Al+Bl) AND 3,q(A2+B2).THE RESULT IS * 
0007 * RETURNED ON REGISTERS 1,2. IF THERE IS NO * 
0008 * ERROR RETURN SKIPS TWO WORDS. * 
0009 * * 
0010 ********************************************** 
001,1 * 
0013 IDT ' D8ADD' 
001q DEF D8ADD 
0015 0001 Al EQU 1 
0016 0002 81 EQU 2 
0017 0003 A2 EQU 3 
0018 000q 82 EQU q 
0019 0008 LINK EQU 11 
0020 ************** 
0021 * DOU8LE ADD * 
0022 ************** 
0023 0000 A08q D8ADD A 82, 81 ADD 82 TO B1 
002q 0002 1703 JNC AIA2 CARRY? 
0025 000q 0581 INC Al 
0026 0006 1901 JNO AIA2 OVERFLOW? 
0027 0008 1005 JMP OVERRO RETURN WITH ERROR 
0028 000A A0q3 A1A2 A A2, A1 ADD A2 TO A1 
0029 000C 1901 JNO RETURN OVERFLOW? 
0030 000E 1002 JMP OVERRO YES! 
0031 0010 0228 RETURN AI LINK, q RETURN NO ERROR 

0012 000q 
0032 001q 0q5E: OVERRO 8 *LINK 
0033 END 

3ADD TXMIRA 01/01/00 PAGE 0002 
lU8LE ADD ROUTINE 

Al 0001 , A1A2 000A A2 0003 B1 0002 
E''') 000q D D8ADD 0000 LINK 0008 , OVERRO 001q 
.~ 

R0 0000 R1 0001 R10 000A Rll 0008 
R12 000C R13 000D RH 000E. R15 000F 
R2 0002 R3 0003 Rq 000q R5 0005 
R6 0006 R7 0007 R8 0008 R9 0009 

, RETURN 0010 

!000 ERRORS 

.~ , -. 



~ADD TXMIRA 01/01/00 
~IPLE PRECISIDN ADD 

0001 
0002 
0003 

-0004 
0005 
0006 
0007 
0008 
0009 
0010 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 

0001 
0002 
0003 
0004 
0005 
0006 
000B 

0025 0000 A0C6 
0026 0002 1705 
0027 0004 0582 
lilel28 0006 1703 
0029 0008 0581 
0030 000A 1901 
0031 000C 100A 
0032 000E A085 
0033 0010 1703 
0034 0012 0581 
0035 001'1 1901 
0036 0016 1005 
0037 0018 A044 
0038 001A 1901 
0039 001C 1002 
0040 001E 0228 

0020 0004 

********************************************** 

* * * THIS ROUTINE ADDS TWO TRIPLE PRECISION * 
* NUMBERS(48 BITS) IN TWO'S COMPLEMENT FORM * 
* IT IS ASSUMED THE NUMBERS ARE ON REGISTERS * 
* 1,2 AND 3(Al+Bl+Cl) AND 4,5,6(A2+B2+C2) * 
* RESULT IS RETURNED ON Rl, R2 AND R3. IF * 
* THERE IS NO ERROR RETURN SKIPS TWO WORDS * 

* * ********************************************** 

**** 

IDT ' TPADD' 
DEF TPADD 

Al EQU 1 
Bl EQU 2 
Cl EQU 3 
A2 EQU 4 
B2 EQU 5 
C2 EQU 6 
LINK EQU 11 
************************ 
* TRIPLE PRECISION ADD * 
************************ 
TPADD A C2,Cl 

JNC 81B2 
INC Bl 
JNC BIB2 
INC A1 
JNO B182 
JMF' OVERRO 

B182 A B2,B1 
JNC A1A2 
INC A1 
JNO A1A2 
JMP OVERRO 

A1A2 A A2, Al 
JNO RETURN 
JMF' OVERRO 

RETURN AI LINK,4 

ADD C2 TO Cl 
CAHHY? 

ADD 82 TO B1 
CAHRY? 

OVERFLOW? 
OVERFLOW? 
ADD A2 TO A1 

OVERFLOW 
RETURN NO ERROR 

0041 0022 045B OVERRO B *LINK RETURN WITH ERROR 
0042 END 

446 

PAGE 0001 



447 

PADD TXMIRA 2.3.0 78.244 00:48:01 01/011013 PAGE 0002 
RIPLE PRECISION ADD 

A1 0001 , 
A1A2 0018 A2 0004 81 0002 , 

B182 000E B2 13005 Cl 13003 C2 0006 
LINK 13I3I3B , 

OVERRO 0022 R13 131300 R1 0001 
R10 0013A Rll 000B R12 1300C R13 0000 
R14 01313E R15 13130F R2 0002 R3 0003 
R4 00134 R5 00135 R6 01306 R7 13007 
R8 013138 R9 1313139 , RETURN 001E D TPAOO 131300 

0131313 ERRORS 



SMUL TXMIRA 2.3.13 78.244 1313:48:42 131101/00 
INGLE-SINGLE MULTIPLICATION 

1313131 
1313132 
0003 
013134 
013135 
0006 
1313137 
1313138 
01309 
013113 
131311 
01312 
01313 
131315 
131316 
01317 
01318 013131 
131319 1313132 
013213 1313133 
131321 1313134 
01322 1313135 
131323 13I3I3B 
0024 FEF8 
0025 
13026 
131327 

********************************************** 
* * * THIS ROUTINE MULTIPLIES A SINGLE PRECISION * * BY A SINGLE PRECISION(FIXED POINT)NUMBER .* * BOTH NUMBERS ARE IN TWO'S COMPLEMENT FORM * * IT IS ASSUMED NUMBERS ARE ON REGISTERS 1 * * AND REGISTER 3. RESULT IS RETURNED * * ON REGISTERS 1,2. IF THERE IS NO ERROR * * RETURN SKIPS TWO WORDS. * * IT USES ROUTINE TWOCP2 AND REGISTERS 1 TO * * 5. LOCATION FEF8 IS USED TO STORE THE * * RETURN ADDRESS. * 
********************************************** 

lOT ' SSMUL' 
REF TWOCP2 
DEF SSMUL 

Al E~U 1 
B11 E~U 2 
A2 E~U 3 
SAl E~U' 4 
SA2 E~U 5 
LINK E~U 11 
SALINI E~U }FEF8 
*********************** * SAVE RETURN ADDRESS * 
*********************** 

448 

PAGE 00131 

131328 13131313 C8eB 
1313132 FEF8 

SSMUL MOV LINK,@SALINl SAVE RETURN ADDRESS 

131329 
1313313 
131331 
131332 1313134 ce41 
131333 1313136 15137 
131334 1313138 11133 
131335 eeeA e4Cl 
131336 000C 04C2 
01337 000E 11313 
0038 0010 0704 
13039 0012 0501 
0040 0014 1001 
0041 0016 04C4 
0042 
0043 
0044 
0045 01318 C0C3 
0046 001A 1505 
0047 001C 1101 
0048 00lE 10F5 
0049 00213 0705 
13050 0022 0503 
0051 13024 1001 
01352 0026 04C5 
13053 
01354 

********************* * NEGATIVE NUMBER ? * 
********************* 

MOV Al,AI 
JGT POSITl 
JL T NEGATl 

NULL CLR Al 
CLR B11 
JMP POSIT3 

NEGATl SE TO SAl 
NEG A1 
JMP DEALA2 

POSITl CLR SAl 
********************* * NEGATIVE NUMBER ? * 
********************* 
DEALA2 MOV A2,A2 

JGT POSIT2 
JLT NEGAT2 
JMP NULL 

NEGAT2 SETO SA2 
NEG A2 
JMP MULT 

POSIT2 CLR SA2 

****************** * MULTIPLY A2*A1 * 

SIGN? 
POSITIVE 
NEGATIVE 
NULL RESULT 

SET NEGATIVE SIGN 
TWO'S Al 

SET POSITIVE SIGN 

SIGN? 
POSITIVE 
NEGATIVE 
NULL RESULT 
SET NEGATIVE SIGN 
TWO'S COMPL. A2 

SET POSITIVE SIGN 



449 

SMUL TXMIR~ 2.3.0 78.244 00:48:42 01/131/00 P~GE 0002 
INGLE-SINGLE MULTIPLIC~TION 

0055 ****************** 
0056 0028 3843 MULT MPY ~2.~1 MULTPY A1 BY A2 
0057 002~ 6105 S S~2.SA1 RESULT SIGN 
0058 002C 1304 JE@ POSIT3 POSITIVE 
0059 002E 06~0 BL (HWOCP2 TWO'S COMPL. RESULT 

0030 0000 
0060 ********* 
0061 * ERROR * 
0062 ********* 
0063 0032 0460 B @RETURN 

0034 0040' 
0064 ************* 
0065 * RESULT Ot< * 
0066 ************* 
0067 0036 C2E0 POSIT3 MOV @SALIN1. LINt< GET RETURN ADDRESS 

0038 FEF8 
0068 003~ 0228 AI LINt<. 4 St<IP TWO WORDS 

003C 0004 
0069 003E 045B B *LINt< RETURN 
0070 0040 C2E0 RETURN MOV @SALIN1. LINt< 

0042 FEF8 
0071 0044 045B B *LINt< 
0072 **** 
0073 END 

SMUL TXMIRA 2.3.0 78.244 00:48:42 011131/00 PAGE 0003' 
INGLE-SINGLE MULTIPLICATION 

Al 0001 A2 0003 Bll 0002 , OEALA2 0018 
LINt< 000B MULT 0028 NEGATl 0010 , NEGAT2 0020 , NULL 000A POSITl 0016 , POSIT2 0026 , F'OSIT3 0036 
R0 0000 Rl 0001 R10 000A Rl1 000E: 
F<12 000C R13 0000 R14 000E R15 000F 
R2 0002 R3 0003 R<1 000<1 R5 0005 
R6 0006 R7 0007 R8 , 0008 R9 0009 , RETURN 0040 SAl 0004 SA2 0005 SALINl FEF8 

D SSMUL 0000 E TWOCP2 0030 

~000 ERRORS 



450 

'SMUl TXMIRA 2.3.0 78.244 00:49:51 01/01/00 
10UBLE-SINGLE MULTIPLICATION 

0001 
0002 
0003 

·0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 

0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 

0046 
0047 
0048 

0000 
0002 

0004 
0006 
0008 
000A 
000C 
000E 
0010 

0012 
0014 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
000B 
FEF8 

C80B 
FEF8 

C041 
150A 
1103 
C082 
1324 
1006 
0706 

06A0 
0000 

0049 0016 0460 
0018 0066' 

0050 001A 1001 
0051 001C 04C6 
0052 

.> .. 

********************************************** 
* * * THIS ROUTINE MULTIPLIES A DOUBLE PRECISION * * BY A SINGLE PRECISION(FIXED POINT)NUM8ER * * BOTH NUMBERS ARE IN TWO'S COMPLEMENT FORM * * IT IS ASSUMED NUMBERS ARE ON REGISTERS 1,2 * * ( Al +Bl ) AND REGISTER 5 (A2). IF THERE * * IS NO ERROR RETURN SKIPS TWO WORDS. * * RESULT IS RETURNED ON REGISTERS 1,2 AND 3. * * IT USES ROUTINES TWOCP2 • TWOCP3 AND * * REGISTERS 1.TO 7. LOCATION FEF8 IS USED TO * * STORE THE RETURN ADDRESS. .* 
* * ********************************************** 

lOT ' DSMU1' 
REF TWOCP2.TWOCP3 
DEF DSMUl 

Al EGU 1 
811 EGU 2 
81 EGU 3 
812 EGU 4 
A2 EGU 5 
SAIBl EGU 6 
SA2 EGU 7 
LINK EGU 11 
SALINl EGU )FEF8 

*************** * SAVE RETURN * 
*************** 
DSMUl MOV LINK,@SALIN1 SAVE RETURN 

********************* * NEGATIVE NUM8ER ? * 
********************'* 

MOV Al,Al 
JGT POSITl 
JL T NEGATl 
MOV 811, B11 
JEG NULL 
JMP POSIT1 

NEGATl SETO SA181 

******************** * TWO·S COMPLEMENT * 
******************** 

BL @TWOCP2 

********* * ERROR * 
********* 

8 @OVERRO 

JMP DEALA2 
POSITl CLR SA1B1 
********************* 

SIGN? 
POSITIVE 
NEGATIVE 
NULL? 

SET NEGATIVE SIGN 

TWO'S COMPLE. AIBl 

GO TO TIBUG ON ERROR 

SET POSITIVE SIGN 

PAGE 0001 



451 

ISMU1 TXMIRA 2.3.13 78.244 1313:49:51 131/01/1313 PAGE 1313132 
'OUBLE -S I NGLE MULTIPLICATION 

131353 * NEGATIVE NUMBER ? * 
131354 ********************* 
0055 13elE C145 DEALA2 MOV A2,A2 SIGN? 
131356 1313213 1505 JGT POSIT2 POSITIVE 
131357 13022 11131 JLT NEGAT2 NEGATIVE 
131358 131324 1318 JEQ NULL NULL RESULT 
131359 131326 137137 NEGAT2 SETO SA2 SET NEGATIVE SIGN 
1313613 131328 0505 NEG A2 TWO'S COMPL. A2 
131361 ee2A 113131 JMP MULT 
131362 ee2C e4C7 POSIT2 CLR SA2 SET POSITIVE SIGN 
131363 ****************** 
131364 * MULTIPLY A2*81 * 
131365 ****************** 
131366 ee2E ceC2 MULT MOV 811,81 SAVE 81 
131367 1313313 38C5 MPY A2,81 MULTY 81 8Y A2 
131368 ****************** 
131369 * MULTIPLY A2*Al * 
1313713 ****************** 
131371 131332 3845 NOSIGN MPY A2,A1 MUL TY Al 8Y A2 
131372 131334 A1383 A 81,811 ADD 81 TO 811 
131373 131336 17133 JNC SIGN1 CARRY? 
131374 131338 13581 INC Al 
131375 ee3A 19131 JNO SIGN! 
131376 ee3C 11314 JMP OVERRO 
131377 ee3E ceC4 SIGNl MOV 812,81 ASSEMBLE RESULT 
131378 eelle 6187 S SA2,SA1Bl RESULT SIGN 
131379 131342 13134 JEQ POSIT3 POSITIVE 
1313813 131344 e6Ae 8L (l'TWOCF'3 TWO'S COMPL. f~ESUL T 

131346 13131313 
131381 131348 134613 8 I!?OVERRO GO TO TI8UG ON ERROR 

ee4A 131366' 
131382 ee4C C2Ee POSIT3 MOV I!?SALIN1, LINt< 

ee4E FEF8 
131383 1313513 13228 AI LI Nt<, 4 RETURN WITH NO ERROR 

0052 1313134 
131384 131354 e45B 8 *LINt< 
131385 131356 e4Cl NULL CLR Al NULL RESULT 
131386 131358 e4C2 CLR 811 
131387 ee5A e4C3 CLR 81 
131388 ee5C C2Ee MOV I!?SALIN1, LINt< 

ee5E FEF8 
131389 1313613 e22E: AI LINt<, 4 RETURN WITH NO ERROR 

131362 1313134 
1313913 131364 13458 8 *LINt< 
131391 131366 C2Ee OVERRO MOV I!?SALINl, LINt< 

131368 FEF8 
131392 ee6A 13458 8 *LINt< 
131393 END 



452 

SMUl TXMIRA 2.3.0 78.2qq 00:q9:51 01/01/00 F'AGE 
OUBLE-SINGLE MUL TIF'LICATION 

Al 0001 A2 0005 81 0003 811 0002 
B12 000q , OEALA2 001E 0 OSMUl 0000 LINK 0008 , MULT 002E , NEGATl 0010 , NEGAT2 0026 , NOSIGN 0032 

. , NULL 0056 , OVERRO 0066 , F'OSITl 001C , f'OSIT2 002C , 
POSIT3 00qC R0 0000 RI 0001 R10 000A 
Rll 000B R12 000C R13 0000 Rlq 000E 
R15 000F R2 0002 R3 0003 Rq 000q 
R5 0005 R6 0006 R7 0007 R8 0008 
R9 0009 SAIBl 0006 SA2 0007 SALINl FEF8 , SIGNl 003E E TWOCF'2 001q E TWOCF'3 00q6 

0000 ERRORS 

0118MATHS3 A0000805q18050281703805818190180q58802288000480q587F2q7F 
0012805q1805q280503817058058281703805818190180q58802288000q7F310F 
0028B0q5B8Ae!8q8170380581819e!1810058A0q38190181002B02288000q7F306F 
003E80q588A0C68170580582817e!380581B19e!18100ABA08581703805817F2CCF 
0e!5QB1901810058A0qq8190181002802288000q80q588C80BC00AA8C0417F2DQF 
e!06A815078110380QC180QC281013807e!Q805018100180QC48C0C3B15057F2FIF 
008081101810F5807058e!5e!381e!01B04C5838438610581304B06A0C000e!7F318F 
e!096B0460C00AQ8C2E0Ce!0AA802288e!0e!48e!4588C2Ee!Ce!e!AAB04588e!0007F299F 
e!e!ACBC8e!88FEF88Ce!41815e!A811038C082B1324Ble!e!6Be!7068e!6A0Ce!00e!7F291F 
e!e!C28e!46e!Ce!l1281e!e!lBe!4C6BC145B1505Bl101813188e!707B0505810017F31DF 
00D8B04C78C0C2838C5838458Ae!83B1703B058181901810148Ce!C4861877F293F 
00EE81304806A0C0e!1280Q6e!C01128C2E08FEF88022880e!0480458804C17F296F 
010Q80QC2804C38C2E08FEF88022880e!04804588C2E08FEF8804587F346F 
0000TWOCF'250012TWOCF'35002A08ADD 5004e!TF'AOD 50064SSMUL 7F2ADF 
00ACDSMUl 7FD26F 

MATHS3 01/01/00 00:19:16 TXLINK 2.3.0 

0003 



453 

APPENDIX 9.9 

AUXILIARY ROUTINES 

IGRED TXMIRA 2.3.13 78.244 1313:53:413 131/01/1313 PAGE 013131 
ODULE TO READ THE SIGN OF A NUM8ER 

1313131 
01302 
1313133 
013134 
1313135 
013136 
1313137 
131308 
1313113 
131311 
131312 
131313 013013 2EC0 
0014 0002 0280 

00134 2800 
01315 01306 16132 
0016 0008 04C0 
0017 000A 1004 
13018 eJ00C 02813 

00eJE 2D00 
13019 0010 1602 
0020 0012 1371313 
131321 01314 eJ5CB 
131322 131316 13458 
131323 

************************************************ * ROUTINE TO READ THE SIGN OF A NUMBER * * SIGN IS READ ON REGISTER R0 USING TIBUG * * XOP 11.FOR NEGATIVE SIGN R0 IS SETO AND FOR * * POSITIVE IT IS CLEARED. RETURN SKIPS A WORD * * IF THERE IS NO ERROR. * 
************************************************ 
* lOT 'SIGRED' 

DEF SIGRED 

* SIGRED XOP 
Cl 

JNE 
CLR 
JMP 

NEG Cl 

JNE 
SETO 

RET INCT 
ERROR B 

END 

R0, 11 
R0, )2BeJ0 

NEG 
ReJ 
RET 
ReJ, )2D00 

ERROR 
R0 
Rll 
*R11 

REAO CHARACTER 
POSITIVE? 

NO! 
YES! 

NEGATIVE? 

RETURN ON ERROR 
NEGATIVE FLAG 
NO ERROR. SKIP A WORD 
RETUF:N 

IGRED TXMIRA 2.3.13 78.244 1313:53:413 131/01/1313 PAGE 
ODULE TO READ THE SIGN OF A NUM8ER 

, ERROR 01316 , NEG 000C R0 130013 R1 0001 
R10 000A Rll 01308 R12 eJeJeJC R13 000D 
R14 000E R15 00eJF R2 130132 R3 1313133 
R4 1313134 R5 1313135 R6 1313136 R7 1313137 
R8 1313138 R9 1313139. , RET 01314 D SIGRED 13131313 

1313013 ERRORS 

00132 



IUMBE2 TXMIRA 2.3.0 78.244 00:54:14 01/01100 
:EADING A DECIMAL NUMBER 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0010 
0011 
0012 
0013 0000 2ECl 
0014 0002 0281 

0004 0000 
0015 0006 1308 
0016 0008 06Cl 
0017 000A 0221 

000C FFD0 
0018 000E 1105 
0019 0010 0281 

0012 0009 
0020 0014 1502 
0021 0016 05CB 
0022 0018 05CB 
0023 001A 0458 
0024 

*********************************************** * ROUTINE TO READ A DECIMAL NUM8ER(0-9) * * IT USES XOP 11 FROM TIBUG.NUMBER IS READ ON * * REGISTER Ri. NO SKIP IF THERE IS AN ERROR. * * SKIPS A WORD IF CARRIAGE RETURN. SKIPS TWO * * WORDS IF CHARACTER READ IS A DECIMAL NUMBER * 
*********************************************** 
* 

* 

lOT 'NUMBE2' 
DEF NUMBE2 

NUMBE2 XOP R1,11 

T1 
ERROR 

Cl Ri, )0000 

JEQ T1 
SWPB Rl 
AI Rl, )FFD0 

JLT ERROR 
Cl R1,9 

JGT 
INCT 
INCT 
8 
END 

ERROR 
Rll 
R11 
*R11 

READ CHARACTER 
CARRIAGE RETURN? 

YES!SKIP A WORD 

MASK OFF ASCI I 

GREATER THAN 9 

RETURN ON ERROR 
SKIP TWO WORDS 

UM8E2 TXMIRA 2.3.0 78.244 00:54:14 01/01100 

EADING A DECIMAL NUM8ER 

, ERROR 001A 0 NUMBE2 0000 R0 0000 R1 
R10 000A Rll 0008 R12 000C R13 
R14 000E R15 000F R2 0002 R3 
R4 0004 R5 0005 R6 0006 R7 
R8 0008 R9 0009 T1 0018 

0000 ERRORS 

454 

PAGE 0001 

PAGE 0002 

0001 
0000 
0003 
0007 



455 

EXDEC TXMIRA 2.3.13 78.244 1313:54:46 131/131/1313 PAGE 1313131 
EXDEC CONVERT ROUTINE 

1313131 
1313132 
1313133 
,1313134 
1313135 
1313137 
1313138 
1313139 
1313113 
131311 
131312 
131313 13131313 ceC2 
131314 1313132 e4C2 
131315 1313134 3CAe 

1313136 13131313 
131316 1313138 Cle3 
131317 eeeA e4C3 
131318 eeec 3CEe 

eeeE 13131313 
131319 1313113 C144 
1313213 131312 e4C4 
131321 131314 3D2e 

131316 13131313 
0022 131318 C185 
131323 eelA e4C5 
(~e24 eelC 3D6e 

eelE 13131313 
0025 1313213 e45E: 
131326 

************************************************* 
* THIS ROUTINE CONVERTS AN HEXA NUMBER GIVEN * 
* ON R2, INTO A DECIMAL. IT USES REGISTERS R2 TO * 
* R6.RESULT:R2*lee13e+R3*leee+R4*lee+R5*le+R6*1 * 
************************************************* 

IDT ' HEXDEC' 
DEF HEXDEC 
REF TEN4,TEN3, TEN2, TENl 

********************** 
* CONVERSION ROUTINE * 
********************** 
HEXDEC MOV R2,R3 TWO WORDS 

CLR R2 
DIV @TEN4,R2 R2*leeee 

MOV R3,R4 REMAINDER 
CLR R3 
DIV @TEN3,R3 R3*1eee 

MOV Rq,R5 REMAINDER 
CLR R4 
DIV @TEN2,R4 R4*1ee 

MOV R5,R6 
CLR R5 
DIV @TEN1,R5 

B *Rl1 
END 

EXDEC TXMIRA 2.3.13 78.244 1313:54:46 131/131/1313 PAGE 
EXDEC CONVERT ROUTINE 

0 HEXOEC 13131313 Re 13131313 Rl 1313131 Rle eeeA 
Rll eeeE: R12 eeec R13 eeeD R14 eeeE 
R15 eeeF R2 1313132 R3 1313133 R4 1313134 
R5 1313135 R6 1313136 R7 1313137 R8 1313138 
R9 1313139 E TENl eelE E TEN2 131316 E TEN3 eeeE 

E TEN4 1313136 

13131313 ERRORS 

1313132 



456 

APPENDIX 9.10 

MODULE 1 INITIALIZATION ROUTINE 

ODIN1 TXMIRA 2.3.0 78.244 00:55:19 01101/00 PAGE 0001 
001 INITIALIZATION ROUTINE 

0001 
0002 
0003 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 F000 
0021 F002 
0022 F004 
0023 F006 
0024 F008 
0025 F00A 
0026 F00C 
0027 F00E 
0028 F010 
0029 F012 
0030 F014 
0031 F016 
0032 F018 
0033 F01A 
0034 F01C 
0035 F01E 
0036 F020 
0037 F022 
0038 F024 
0039 F026 
0040 F028 
0041 F02A 
0042 F030 
0043 
0044 
0045 
0046 
0047 0000 0300 

0002 0000 
0048 0004 02E0 

0006 FF00 
0049 0008 020C 

000A 0100 
0050 000C 1E10 
0051 000E 1010 
0052 0010 0201 

***************************************************** 
* MODULE 1 INITIALIZATION ROUTINE * 
***************************************************** 

lOT 'MODIN1' 
DEF MODIN1,DPT,STOREl 
DEF MESSAG 
DEF DCPK,FEFLAG,PERIOD,ENMEFG 
DEF ACPOS1,ACPOS2,ERRK,UK,V01K,A01K,DA01K 
DEF INCRE1,ACTUL1, ACTUL2,SPEEDl 
DEF TEN4,TEN3,TEN2, TEN1,LFCR 
DEF TEN51,TEN52,ERRDR1,FREQ 
DEF DISTA1,DISTA2,COMP01,COMP02 
REF NEWFRE,RAMP,NUMBE2 
REF DISPLA, INT3Ml 
DEF REINT 

*************************** 
* COMMUNICATION LOCATIONS * 
*************************** 
DCPK EQU >F000 
FEFLAG EQU >F002 
PERIOD EQU >F004 
ACF'OS 1 EQU >F006 
ACF'OS2 EQU >F008 
ERRK EQU >F00A 
UK EQU >F00C 
V01K EQU >F00E 
A01K EQU >F010 
DA01K EQU >F012 
MESSAG EQU >F014 
ENMEFG EQU >F016 END OF MESSAGE FLAG 
DISTAl EQU >F018 DISTANCE TO MOVE 
DISTA2 EQU >F01A 
COMPOl EQU >F01C COMMAND POSITION 
COMP02 EQU >F01E 
ACTUL1 EQU >F020 ACTUAL POSITION 
ACTUL2 EQU >F022 
FREQ EQU >F024 SAMPLING FREQ. 
SPEED1 EQU >F026 
INCREl EQU >F028 
REINT EQU >F02A 
STORE1 EQU >F030 BLOCK OF 100 WORDS 
*THIS BLOCK GOES FROM >F030 TO >F130 
******************** 
* RESET INTERRUPTS * 
******************** 
MODINl LIMI 0 MASK OFF All INT 

LWPI )FF00 WORKSPACE POINTER 

LI R12, >100 9901 BASE ADDRESS 

SBZ 16 RESET FLIP-FLOP INT3 
SBO 16 
LI Rl, >0800 MASK BUT 3 



457 

10DINl TXMIRA 2.3.0 78.2qq 00:55:19 01/01/00 PAGE 0002 
10Dl INITIALIZATION ROUTINE 

0012 0800 
0053 00Iq 31Cl LDCR Rl,7 LOAD CRU 
005q ********************************** ·8055 * INITIALIZE INTERRUPT ROUTINES * 
0056 ********************************** 
0057 0016 0201 LI Rl, )q60 INIT INT3 

0018 0q60 
0058 001A C801 MOV R 1, (!1>FF88 

001C FF88 
0059 001E 0201 LI Rl, INT3Ml 

0020 0000 
0060 0022 C801 MOV RI. @ )FF8A 

002q FF8A 
0061 ************************ 
0062 * INITIALIZE VARIABLES * 
0063 ************************ 
006q 0026 0qE0 CLR @DCPK CLEAR VARIABLES 

0028 F000 
0065 002A 0qE0 CLR @ACF'OSl 

002C F006 
0066 002E 0qE0 CLR @ACF'OS2 

0030 F008 
0067 0032 0qE0 CLR @ERRK 

003q F00A 
0068 0036 0qE0 CLR @UK 

0038 F00C 
0069 003A 0qE0 CLR @DISTAl 

003C F018 
0070 003E 0qE0 CLR @DISTA2 

00q0 F01A 
0071 00q2 0qE0 CLR @COMF'Ol 

00qq F01C 
0072 00q6 0qE0 CLR @COMF'02 

00q8 F01E 
0073 00qA 0qE0 CLR @ACTULl 

00qC F020 
007q 00qE 0qE0 CLR @ACTUL2 

0050 F022 
0075 0052 0720 SE TO @FEFLAG RESET FLAG 

005q F002 
0076 0056 0720 SE TO @ENMEFG RESET FLAG( END MESSAGE) 

0058 F016 
0077 005A 0201 LI Rl, >177 INIT FREl'l TO 250 HZ 

005C 0177 
0078 005E C801 MOV R1, @PERIOD SAVE 

0060 F00q 
0079 0062 0300 LIMI 3 ENAE:LE INT3( COMMUN ) 

006q 0003 
0080 **************************** 
0081 * DISPLAY TABLE OF OPTIONS * 
0082 **************************** 
0083 0066 2FA0 OPT XOF' @LFCR, Iq 

0068 009E' 
008q 006A 2FA0 XOP @OPTAB1, 1q 



458 

IODIN1 TXMIRA, 2.3.0 78.244 00: 55: 19 01101/1313 
1001 INITIALIZATION ROUTINE 

131385 
0086 

-131387 
0088 

13089 
0090 
131391 
0092 
13093 

13094 
13095 
0096 
13097 
0098 
0099 
0100 
131131 
0102 
131133 
0104 
13105 
0106 
13107 
0108 
131139 
13110 
13111 
0112 
0113 
13114 
0115 
13116 
13117 
13118 
0119 
13120 

13121 
13122 

13123 
0124 

0125 
0126 

13127 
0128 

13129 
13130 

006C 00A2' 

006E eJ6A0 
0070 00013 
0072 10F9 
0074 1002 
0076 C001 
0078 10FA 
007A 06A0 
007C 0092' 

007E 0001 
0080 0000 
0082 0002 
0084 0000 
0086 0003 
0088 0000 
008A 0004 
008C FeJ2A 
008E 0000 

0090 05C8 
0092 C058 
0094 13E8 
0096 8038 
0098 16FB 
009A C2DE: 
009C 045B 

009E 0A0D 
00A0 0A 
00A1 00 
00A2 4F 
00C6 0A 
00C7 00 
00C8 20 
0000 0A 
00DE 00 
00DF 20 
00FF 0A 
01013 00 
131131 20 
eJ11F eJA 
01213 130 
13121 3F 
0122 00 

***************** 
* WHICH OPTION? * 
***************** 
RE1 8L @NUMBE2 

JMP OPT 
JMP CHE1 
MOV R1,ReJ 
JMP RE1 

CHE1 BL @SRCH1 

**************** 
* SEARCH TABLE * 
**************** 

DATA }0eJ01 
DATA NEWFRE 
DATA }0eJel2 
DATA RAMP 
DATA }el003 
DATA DISPLA 
DATA }el004 
DATA REINT -
DATA 0 

****************** 
* SEARCH ROUTINE * 
****************** 
SRCHel INCT R11 
SRCH1 MOV *R11,R1 

JEQ OPT 
C *Rl1+, R0 
JNE SRCHel 
MOV *R11,R11 
B *R11 

******************* 
* OPTION MESSAGES * 
******************* 
LFCR DATA )eJAelD 

BYTE }elA,0 

READ CHARACTER 

ERROR! 
CHECK CHARACTER 
SAVE 
WAIT CR 
SEARCH ROUTINE 

FIRST OPTION 

SECOND 

FOURTH 

END OF TABLE 

UPDATE POINTER 
SEARCH FAIL? 
YES! RETURN 
MATCH? 
NO, NEXT ENTRY 
ENTRY ADDRESS 

LFCR 

OPTAE:1 TEXT' OPTIONS: 1 )CHANGE SAMPLING FREQUENCY' 
BYTE }0A, )00 

OPTAB2 TEXT , 2 )RAMP INPUT' 
BYTE }elA, )00 

OPTAB4 TEXT , 3)DISPLAY STORED VALUES' 
BYTE )elA, }elD 

OPTAB5 TEXT , 4)STOP AND REINT MOD2' 
BYTE )0A, )00 

OPTAB6 TEXT " ?' 
BYTE 13 

PAGE 013133 



459 

OOINl TXMIRA 2.3.0 78.244 00:55:19 01/01/00 PAGE 0004 
001 INITIA~IZATION ROUTINE 

0131 ************* 
0132 * CONSTANTS * 
0133 ************* 
0134 0124 0001 TEN51 DATA )0001 
0135 0126 86A0 TEN52 DATA )86A0 
0136 0128 2710 TEN4 DATA 10000 
0137 012A 03E8 TEN3 DATA 1000 
0138 012C 0064 TEN2 DATA 100 
0139 012E 000A TENl DATA 10 
0140 0130 0000 ERRORl DATA )0000 
0141 END 

OOINl TXMIRA 2.3.0 78. 244 00:55:19 01/01/00 PAGE 0005 
001 INITIALIZATION ROUTINE 

0 ACPOSl F006 0 ACPOS2 F008 0 ACTULl F020 o ACTUL2 F022 
0 A01K F010 , CHEl 007A 0 COMPOl F01C o COMP02 F01E 
0 OA01K F012 0 OCPK F000 E OISPLA 0088 o OISTAl F018 
0 OISTA2 F01A 0 ENMEFG F016 0 ERRK F00A o ERFWRl 0130 
D FEFLAG F002 0 FREQ F024 D INCREl F028 E INT3Ml 0020 
0 LFCR 009E 0 MESSAG F014 0 MOOINl 0000 E NEWFRE 0080 
E NUMBE2 0070 0 OPT 0066 , OPTABl 00A2 OPTAB2 00C8 , OPTAB4 000F , OPTAB5 0101 OPTAB6 0121 0 PERIOD F004 

R0 0000 Rl 0001 R10 000A Rll 000B 
R12 000C R13 0000 R14 000E R15 000F 
R2 0002 R3 0003 R4 0004 R5 0005 
R6 0006 R7 0007 R8 0008 R9 0009 

E RAMP 0084 , REl 006E 0 REINT F02A o SPEEOl .F026 , SRCH0 0090 , SRCHl 0092 0 STOREl F030 D TENl 012E 
0 TEN2 012C 0 TEN3 012A 0 TEN4 0128 D TEN51 0124 
D TEN52 0126 0 UK F00C 0 VOlt< F00E 

0000 ERRORS 



460 

APPENDIX 9. 11 

MODULE 2 INITIALIZATION ROUTINE 

ATIN TXMIRA 2.3.0 78.244 00:56:57 01/01/00 PAGE 0001 
NITIALIZATION FOR LOOP CLOSING(MOD2) 

0001 _ 
0002 
0003 
0004 
0005 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
lil016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0(-)27 
0028 
0029 
0030 
0031 
0032 FE80 
0033 FE82 
0034 FE84 
0035 FE86 
0036 FE88 
0037 FE8A 
0038 FE8C 
0039 FE8E 
0040 FE90 
0041 FE92 
0042 FE94 
0043 FE96 
0044 FE98 
0045 FE9A 
~0046 FE9C 
0047 FE9E 
0048 FEA0 
0049 FEA2 
0050 FEA4 
0051 
0052 FEA6 
0'053 FEA8 
0054 FEAA 
0055 FEAC 

**************************************************** 

* * * MODULE 2 INITIALIZATION ROUTINE * 

* * **************************************************** 
IDT ' MATIN' 
REF LOOPIN 
DEF MATIN,WAIT3 
DEF ERRK,UK,UK1,V01K,V02K,A01K,A02K 
DEF V01Kl,V01K2 
DEF UK2,UK3,DA01K,DA02K,WllK, W12K 
DEF W21K,W22K,WllKP,W12KP,W21KP,W22KP 
DEF K1W1K,K1W2K,K1VK,K1UK1,K1UK2,K1UK3 
DEF K2W1K,K2W2K,K2VK,K2UK1,K2UK2,K2UK3 
DEF K081A,K0818,K082A,K0828 
DEF K3VOK,K4VOK 
DEF NEWFRE,PERIOD,MASK1,MASK0,DCPK 
DEF DEMU,EMFLAG,FEFLAG,DAC1,DPOS 
DEF KERRK,KUK1,KVOK,KAOK 
DEF KUK2,KUK3,KDAOK,KPMAXA,KPMAX8 
DEF WORK1,WORK22,WORK33,WORK44,WORK55 
DEF MESSAG,ACPOS1,ACPOS2 
DEF SALIN1,SALIN2,SALIN4 
DEF DXK,DXK1,DXK2,DXK3,DUK,XKMXK4 
DEF KCORR1,KCORR2,KUCOR1,KUCOR2 
DEF UKCORR,UKOUT 

****************************************** 
* CONSTANTS AND VARIA8LES INITIALIZATION * 
****************************************** 
*CONTROL FUNCTION 
KERRK EGU )FE80 
KUKl EGU )FE82 
KUK2 EGU )FE84 
KUK3 EGU )FE86 
KVOK EGU )FE88 
KAOK EGU )FE8A 
KDAOK EGU )FE8C 
KPMAXA EGU )FE8E 
KPMAX8 EGU )FE90 
ERRK EGU )FE92 
UKl EGU )FE94 
UK2 EGU )FE96 
UK3 EGU )FE98 
V01K EGU )FE9A 
V02K EGU )FE9C 
A01K EGU )FE9E 
A02K EGU )FEA0 
DA01K EGU )FEA2 
DA02K EGU )FEA4 
*****OBSERVER 
K1W1K EGU )FEA6 . 
K1W2K EGU )FEA8 
K1VK EGU )FEAA 
K1UKl EGU }FEAC 



461 

ATIN TXMIRA 2.3.13 78.244 1313:56:57 131/01/1313 PAGE 1313132 
NITIALIZATION FOR LOOP CLOSING(MOD2) 

131356 FEAE KlUK2 EQU )FEAE 
0057 FEB13 K1UK3 EQU )FEB13 
131358 FEB2 K2W1K EQU )FEB2 

-131359 FEB4 K2W2K EQU )FEB4 
1313613 FEB6 K2VK EQU )FEB6 
131361 FEB8 K2UKl EQU )FEB8 
131362 FE BA K2UK2 EQU )FEBA 
131363 FE BC K2UK3 EQU )FEBC 
0064 ******** 
131365 FEBE WllK EQU )FEBE 
0066 FEC13 W12K EQU )FEC13 
131367 FEC2 W21K EQU )FEC2 
0068 FEC4 W22r< EQU )FEC4 
131369 FEC6 WllKP EQU )FEC6 
013713 FEC8 W12KP EQU )FEC8 
131371 FECA W21KP EQU )FECA 
0072 FECC W22KP EQU )FECC 
131373 - ******** 
0074 FECE KOB1A EQU )FECE 
131375 FED13 KOB1B EQU )FED13 
0076" FED2 KOB2A EQU . )FED2 
131377 FED4 KOB2B EGIU )FED4 
01378 ******************* 
131379 * ACTUAL POSITION * 
00813 ******************* 
131381 FED6 ACPOS1 EQU )FED6 
00B2 FED8 ACPOS2 EQU )FED8 
01383 ********************** 
0084 * FEEDBACK INCREMENT * 
0085 ********************** 
01386 FED A DCPK EGU )FEDA 
131387 ***************** 
0088 * CONTROL VALUE * 
01389 ***************** 
1313913 FEDC UK EGU _)FEDC 
01391 FEDE NEWFRE EGU )FEDE 
131392 FEE13 PERIOD EGU )FEE13 
131393 FEE2 MASK13 EGU )FEE2 
131394 FEE4 MASK1 EGU )FEE4 
0095 FEE6 DEMU EGU )FEE6 
01396 FEE8 EMFLAG EGU )FEE8 
01397 FEEA FE FLAG EGU )FEEA 
131398 ************************ 
0099 * OBSERVED VALUES GAIN * 
1311313 ************************ 
131131 FEEC K3VOK EGU )FEEC 
131132 FEEE K4VOK EGU )FEEE 
131133 *********************** 
131134 * INITIALIZING PERIOD * 
131135 *********************** 
131136 FEF13 PER13 EGU )FEF13 
131137 ***************** 
131138 * MESSAGE INDEX * 
131139 ***************** 



~TIN TXMIRA 2.3.0 78.244 00:56:57 
~ITIALIZATION FOR LOOP CLOSING(MOD2) 

0110 
0111 
0112 

·0113 
0114 
0115 
0116 
0117 
0118 
0119 
0120 
0121 
0122 
0123 
0124 
0125 
0126 
0127 
0128 
0129 
0130 
0131 
0132 
0133 
0134 
0135 
0136 
0137 
0138 
0139 
0140 
0141 
0142 

FEF2 

FEF4 
FEF6 
FEF8 
FEFA 
FEFC 
FEFE 
FE7E 
FE7C 
FE7A 

FE78 
FE76 

FE74 
FE72 
FE70 

FE6E 
FE6C 
FE6A 

0143 B002 
0144 
0145 
0146 
0147 BFF2 
0148 
0149 
0150 
0151 FF00 
0152 FF04 
0153 FF08 
0154 FF0C 
0155 FF10 
0156 

MESSAG EQU )FEF2 

******************* * ESTIMATED SPEED * 
******************* 
DXKl EQU )FEF4 
DXK2 EQU )FEF6 
DXK3 EQU )FEF8 
XKMXK4 EQU )FEFA 
SALIN2 EQU )FEFC 
SALIN4 EQU )FEFE 
SALINl EQU )FE7E 
DXK EQU )FE7C 
DUK EQU )FE7A 

*************************** * DIFFERENTIAL ESTIMATION * 
*************************** 
VOIK1 EQU )FE78 
VOIK2 EQU )FE76 

********************************* * GAIN MODIF. FOR RETRACT. DIR. * 
********************************* 
KCORRl EQU )FE74 
KCORR2 EQU )FE72 
UKCORR EQU )FE70 

************************* * GAIN COMMAND FUNCTION * 
************************* KUCORl EQU )FE6E 
KUCOR2 EQU )FE6C 
UKOUT EQU )FE6A 

******************************* * DIGITAL TO ANALOG CONVERTER * 
******************************* 
DACl EQU )B002 

********************* * FEEDBACK REGISTER * 
********************* 
DPOS EQU )BFF2 
***************** * WORKING AREAS * 
***************** 
WORK1 EQU )FF00 
WORK22 EQU )FF04 
WORK33 EQU )FF08 
WORK44 EQU )FF0C 
WORK55 EQU )FF10 

******** 

01/01/00 

MATIN LIMI 0 MASK OFF ALL INT 

462 

PAGE 0003 

0157 0000 0300 
0002 0000 

0158 0004 02E0 
0006 FF00 

LWPI )FF00 LOAD WORKSPACE POINTER 

0159 
0160 
0161 

************************** * INITIALIZING VARIABLES * 
************************** 



463 

ATIN TXMIRA 2.3.0 78.244 00:56:57 01/131/00 PAGE 0004 
NITIALIZATION FOR LOOP CLOSING(MOD2) 

0162 0008 0201 LI Rl, 14 CLEAR 8 CONSECUTIVE 
000A 000E 

0163 000C 04El CLTABl CLR @W11K( Rl ) MEMORY LOCATIONS 
000E FEBE 

0164 0010 0641 DECT R1 STARTING AT W11K 
0165 0012 1101 JLT OUTl 
0166 0014 10FB JMP CLTAB1 
0167 0016 0201 OUTl LI R1, 18 CLEAR 10 CONSECUTIVE 

0018 0012 
0168 001A 04E1 CLTAB2 CLR @ERRK(R1) MEMORY LOCATIONS 

001C FE92 
0169 001E 0641 DECT R1 STARTING AT ERRK 
0170 0020 1101 JLT OUT2 
0171 01322 10FE: JMP CLTAB2 
0172 0024 04E0 OUT2 CLR @DXK1 CLEAR SPEED 

0026 FEF4 
0173 0028 04E0 CLR @DXK2 

002A FEF6 
0174 002C 04E0 CLR @DXK3 

002E FEF8 
0175 0030 04E0 CLR @XKMXK4 

0032 FEFA 
0176 0034 04E0 CLR @DCPK CLEAR COMMAND INCRE 

0036 FEDA 
0177 0038 04E0 CLR @DXK 

0133A FE7C 
13178 1303C 04E0 CLR @UK 

1303E FE DC 
0179 0040 04E0 CLR @ACF'OSl 

13042 FED6 
0180 13044 04E0 CLR @ACF'OS2 

0046 FED8 
0181 0048 04E0 CLR @V01K1 

004A FE78 
0182 004C 04E0 CLR @VOIK2 

004E FE76 
0183 0050 04E0 CLR @UKCORR 

0052 FE70 
0184 0054 04E0 CLR @UKOUT 

0056 FE6A 
0185 ***************************** 
13186 * INITIALIZE BRANCH TO INT3 * 
0187 ***************************** 
13188 0058 0201 LI R1, }460 E:RANCH 

005A 0460 
0189 005C C801 MOV R1,@}FFAA 

005E FFAA 
0190 01360 0201 LI Rl,LOOF'IN 

0062 0000 
0191 01364 C801 MOV Rl,@}FFAC 

13066 FFAC 
0192 *************** 
0193 * CLEAR FLAGS * 
0194 *************** 



464 

ATIN TXMIRA 2.3.0 78.2qq 00:56:57 01/01/00 PAGE 0005 
NITIALIZATION FOR LOOP CLOSING(MOD2) 

0195 0068 0720 
006A FEEA 

0196 006C 0720 
006E FEE8 

0197 0070 0720 
0072 FEDE 

0198 
0199 
0200 
0201 007q 0201 

0076 00q1 
0202 0078 C801 

007A FEE6 
0203 
021N 
0205 
0206 007C 0201 

007E 7800 
0207 0080 C801 

0082 FEEq 
0208 008q 0qE0 

0086 FEE2 

SETO @FEFLAG 

SETO @EMFLAG 

SE TO @NEWFRE 

************************* 
* SET DECELERATION RATE * 
************************* 

LI Rl, )ql 

MOV R1,@DEMU 

*********************** 
* SETTING MASK VALUES * 
*********************** 

LI Rl, }7800 

MOV Rl,@MASK1 

CLR @MASK0 

DECELERATION 

STORE AT DE MU 

0209 
0210 
0211 
0212 

************************************** 
* LOAD CLOCK FOR 200 HZ * 
* VALUE=(q69q8/200)*2+1=lD7(BASE 16) * 
************************************** 

0213 0088 0201 
008A 0107 

021q 008C C801 
008E FEF0 

0215 0090 020C 
0092 0100 

0216 009q lE17 
0217 0096 1017 
0218 0098 lE10 
0219 009A 1010 
0220 009C 31E0 

009E FEE2 
0221 00A0 33E0 

00A2 FEF0 
0222 00M 31E0 

00A6 FEEq 
0223 00A8 0300 

00AA 0003 

LI Rl, >107 

MOV 

LI 

SBZ 
SE:O 
SBZ 
SBO 
LDCR 

Rl,@F'ER0 

R12, >100 

23 
23 
16 
16 
@MASK0,7 

LDCR @PER0, 15 

LDCR @MASK1,7 

LIMI 3 

022q ************************* 
0225 * WAIT SAMPLING INSTANT * 
0226 ************************* 
0227 00AC 03q0 WAIT3 IDLE 
0228 END 

STORE AT PER0 

9901 BASE ADDRESS 

CLEAR FEEDBACK COUNTER 
RESET 
RESET FLIP-FLOP INT3(SLAVE) 

MASK OFF INTERRUPTS 9901 

LOAD CLOCK FOR 250 HZ 

ENABLE INT. 9901 

ENABLE 1Nl. 9900 

WAIT FOR INT3 



465 

IATIN TXMIRA 2.3.13 7S.2'1'1eJeJ:56:57 131/131/1313 PAGE 1313136 
:NITIALIZATION FOR LOOP CLOSING(M002) 

0 ACPOSl FE06 0 ACPOS2 FEOS 0 AOlt< FE9E D A02t< FEAeJ , CLTABl eJeJeJC , CLTAB2 13131 A 0 OACl BeJeJ2 D DAOIK FEA2 
0 OA02K FEA'I 0 OCPK FEOA 0 OEMU FEE6 D OPOS BFF2 
0 OUK FE7A 0 OXK FE7C 0 OXKl FEF'I D OXK2 FEF6 
0 OXK3 FEFS 0 EMFLAG FEES 0 ERRK FE92 D FEFLAG FEEA 
0 KIUKl FEAC 0 KIUK2 FEAE 0 KIUK3 FEBeJ D KIVK FE AA 
0 KIWIK FEA6 0 KIW2K FEAS 0 K2UKl FEBS D K2UK2 FEBA 
0 K2UK3 FEBC 0 K2VK FEB6 0 K2WIK FEB2 D K2W2K FEB'I 
0 t<3VOK FEEC 0 K'IVOK FEEE 0 KAOt< FE SA D KCORRl FE7'1 
0 KCORR2 FE72 0 KOAOK FESC 0 KERRK FESeJ D KOBIA FECE 
0 KOBIB FEOeJ 0 KOB2A FE02 0 KOB2B FEO'l D KPMAXA FESE 
0 KPMAXB FE9eJ 0 KUCORl FE6E 0 KUCOR2 FE6C D KUKl FE82 
0 t<UK2 FES'I 0 KUK3 FES6 0 KVOK FESS E LOOPIN 01362 
0 MASKeJ FEE2 0 MASKl FEE 'I 0 MATIN 13131313 D MESSAG FEF2 
0 NEWFRE FEOE , OUll 131316 , OUT2 0132'1 PEReJ FEFeJ 
0 PERIOO FEEeJ ReJ 13131313 RI 1313131 RleJ 000A 

RH 0eJeJB R12 eJ00C R13 0000 RI'1 000E 
R15 0eJeJF R2 13002 R3 0003 R4 000'1 
R5 00135 R6 0006 R7 0007 RS 000S 
R9 0009 0 SALINl FE7E 0 SALIN2 FEFC o SALIN'I FE FE 

0 UK FEDC 0 UKl FE9'1 0 UK2 FE96 D UK3 FE9S 
0 UKCORR FE7eJ 0 UKOUT FE6A 0 VOIK FE9A D VOIKl FE78 
D VOIK2 FE76 0 V02K FE9C 0 W IlK FEBE D WI1KP FEC6 
D W12K FEC0 0 W12KP FECS 0 W21K FEC2 D W21KP FECA 
0 W22K FEC'I 0 W22KP FECC 0 WAIT3 00AC D WORK 1 FF00 
D WORK22 FFeJ'I 0 WORK33 FF0S 0 WORK'I'I FF0C o WORK55 FF10 
0 XKMXK'I FEFA 

1301313 ERRORS 



466 

APPENDIX 9.12 

PROCESS SOFTWARE (Dummy) 

'ROCES TXMIRA 2.3.0 78.244 00:59:11 01/01/00 PAGE 0001 
'ROCESS ROUTINE 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 0000 0460 

0002 0000 
0018 

.-

****************************************************** 
* * * THIS ROUTINE IS EXECUTED BETWEEN SAMPLING INSTANTS * * ON MODULE 2 . IT TRIES TO REPRESENT ANY OTHER * * ROUTINES TO BE EXECUTED BESIDES THE LOOP CLOSING * 
* ONES. * 
* * ****************************************************** 

IDT 'PROCES' 
DEF PROCES 
REF WAIT3 

*********************************** * THERE IS NO OTHER ROUTINE . * * RETURN TO WAIT SAMPLING INSTANT * 
*********************************** 
PROCES B @WAIT3 WAIT FOR INT3(EMPTY) 

END 



467 

APPENDIX 9.13 

MODULE 1 OBJECT CODE PROGRAM 

106D8MOD1P4 A0000B0300B0000B02E0BFF00B020CB0100B1E10B1D10802017F243F 
,0012B0800B31C1B0201B0460BC801BFF88B0201C066ABC801BFF8AB04E07F28FF 
,00288F000B04E0BF006B04E0BF008804E0BF00AB04E0BF00C804E08F0187F26CF 
,003EB04E08F01A804E0BF01C804E08F01EB04E0BF020B04E0BF022B07207F264F 
,0054BF002B07208F016B0201B0177BC801BF004B0300B0003B2FA0C009E7F205F 
,006AB2FA0C00A2B06A0C06A4810F981002BC001B10FAB06A0C0092B00017F2A8F 
,0080C05A4B0002C0132B0003C061E80004BF02AB0000B05CBBC058813E87F2C4F 
,0096B803BB16FBBC2D8B045BB0A0DB0A00B4F50B5449B4F4EB533AB20317F241F 
,00AC82943~4841B4E478452085341B4D50B4C49B4E47B2046B5245B51557F29EF 
,00C2B454EB4359B0A0DB2020B2020B2020B2020B2032B2952B414DB50207F2F4F 
00D8B494EB5055B540AB0020B2020B2020B2020B2020B332984449853507F2EEF 
,00EE84C41B5920B5354B4F52B4544B2056B414CB5545B530AB0020B20207F2AAF 
,010482020B2020B2020B3429B5354B4F50B204184E44B2052B4549B4E547F2F6F 
,011AB204DB4F44B320AB003F8000080001B86A0B2710B03E8800648000A7F2BBF 
,0130B0000B2FA0C035EB2FA0C0362B04C2B04C4B04C6B04C8B04CAB06A07F283F 
,0146C06A4B10F4B10068C084BC106BC188BC20ABC281B10F6B38A0C01287F283F 
,015CB3920C012AB39A0C012CB3A20C012EBA24ABA1C9BA147BA0C58C8037F259F 
,0172BF026B1602B0460C0066B2FA0C035EB2FA0C0383B06A0C06C0810F97F29AF 
,0188B04C2B04C4B04C6B04C8B04CAB04CCB06A0C06A4B10F081007BC0847F26EF 
,019EBC106BC188BC20ABC28CBC301B10F5BC802BFF2ABC820C01248FF227F21BF 
,0184BC820C0126BFF24B02E0BFF20B06A0C0538B0460C0130B02E08FF007F283F 
,01CABC0E0BFF26BC0A0BFF24B3920C0128B39A0C012AB3A20C012CB3AA07F230F 
01E0C012EBA2CCBA24BBA1C9B04C6B02E0BFF06B06A0C04B6B0460C01307F24AF 
,01F6B02E0BFF02B06A0C04B6B0460C0130B02E0BFF00BC042BC083BC0007F280F 
020CB1304B06A0C048CB0460C0130BC102BC0CIBC060BF020BC0A0BF0227F2A3F 
,0222BC803BF01CBCa04BF01EB06A0C048CB0460C0130B06A0C04B6B04607F295F 
0238C0130BC801BF018BC802BF01AB04C0BC041B1101B1001B0700BC1207F2CFF 
,024EBF026B3920C012CBC1A0BF024B0208B0006B3988B3007B1902B04607F2B3F 
0264C0132BC000B1301B0504BC8048F028B2FA0C035EB2FA0C03A4B06A07F29FF 
027AC06A4B10F981002BC001B10FAB06A0C02A4B0001BF008B0002BF00A7F2A6F 
,029080003BF00CB0004BF00EB0005BF01080006BF012B0000B05CBBC29B7F2B7F 
02A6B13E4B803B816FBBC29BB2FA0C035EB2FA0C0476B06A0C06A4B10F97F22BF 
,02BCB10028C001B10FAB0280B0001B1305B0280B0002B16F0B0460C00667F2F8F 
,02D2B0340B020580070B0206BF03080720BF014B03408C0E0BF018BC1207F2DCF 
02E8BF01AB1603BC0C3B1601B1028B04C18C0A08F028B1502B0742B10027F2A7F 
,02FEB0701B0502B06A0C04B6B0460C0130BC1C3Bl102B04C7B100lB07077F2D7F 
0314BC201Bl102B04C8B1001B0708B61C8B1307BC804BF000B04E0BF0187F2C6F 
032AB04E0BF01AB1007BC820BF028BF000BC801BF018BC802BF01ABC1457F263F 
0340B1302B06058CD9AB10CCBC145B1301B10FABC820BF01CBF020BC8207F26CF 
0356BF01EBF022B0460C0066B0A0DB0A00B454EB5445B5220B5350B45457F2B5F 
036CB442883135B2054B4F20B3330B3030B3020B4D40B2F4DB494EB293D7F295F 
0382B0040B4F56B4520B544FB2028B5550B2054B4F20B2B2FB2D32B34307F2A7F 
0398B2E30B3030B204DB4029B2058B3D00B5641B5249B4142B4C45B3A207F2B6F 
03AEB3129B4143B5455B414CB2050B4F53B4954B494FB4E28B4C45B41537F289F 
03C4B5420B574FB5244B290AB002082020B2020B2020B2020B2032829467F2FAF 
030AB4F4CB4C4FB5749B4E47B2045B5252B4F52B2840B4943B524FB4E537F239F 
03F0B290AB0020B2020B2020B2020B202082033B2943B4F4EB545284F4C7F2C9F 
0406B2046B554EB4354B494FB4E28B4D49B4352B4F4EB5329B0A0DB20207F270F 
041C82020B2020B2020B2020B3429B5350B4545B440AB0D20B2020B20207F322F 
0432B2020B2020B2035B2941B4343B454CB4552B4154B494FB4E0A800207F204F 
0448B2020B2020B2020B2020B2036B2954B5241B4E53B4945B4E54B20417F307F 
045EB4343B454CB4552B4154B494FB4E0AB0D20B2020B2020B20208203F7F2BAF 
0474B2000B4D4FB5645B2859B4553B2831B292CB4E4FB2832B2929B3F207F291F 
04aAB0000B0541B0502B1703B0581B1901B045BB022BB0004B045BB05417F306F 
04A0B054280503B1705B0582B1703B0581B1901B045BB022BB0004B045B7F2FAF 



4b8 

,04B6BA084B170380581B1901810058A04381901810028022880004804587F2F4F 
104CC8A0C681705805828170380581819018100A8A0858170380581819017F2CAF 
,04E281005BA044819018100280228B0004804588C808C05368C041815077F2D4F 
104F8B1103B04C1804C281013B0704B0501B1001804C48C0C3B1505811017F2F0F 
1050E810F5B070580503B1001B04C583843B610581304806A0C048C80460ZF2E3F 
10524C05308C2E0C0536B022880004B045BBC2E0C0536B0458B00008C8087F2AFF 
1053A8FEF88C0418150A81103BC082B1324B1006B0706806A0C048CB04607F2A0F 
10550C059EB1001804C68C145815058110181318807078050581001804C77F2F5F 
105668C0C2838C5838458A083B17038058181901B10148C0C486187813047F2B4F 
1057C806A0C049E80460C059E8C2E0BFEF8802288000480458804C1804C27F252F 
10592804C3BC2E08FEF88022880004B04588C2E08FEF88045882FA0C05F87F205F 
105A882FA0C05FC804C2B04C4804C6806A0C06A4810F6810048C0848C1067F25DF 
105BE8C181810F8838A0C012C83920C012EBA146BA0C58028380005811E87F27AF 
105D48C8038F024B04C0802018876483C0380A108058080300800008C8007F2C8F 
,05EA8F004804E08F002803008000380460C006680A0D80A008534184D507F2BFF 
1060084C49B4E478204685245851558454E84359828358205484F20839397F280F 
10616839208485A8293D80000804CIB02098FFF882FA0C009E8C0A18F0307F260F 
1062C80742811038020082000810028020082D00806A0C068282F8082E027F305F 
1064280AC380A8480A458A1468A1058A0C482E83B05C180281800E0813057F289F 
10658B0589B13E282FA0C0666810E380460C006682020820008020C801007F2E6F 
1066E81E10BID1081E12BC2E08F016B16FD81D12807208F016803808C0C27F262F 
10684804C283CA0C0128BC103804C3B3CE0C012A8C144804C483D20C012C7F27CF 
1069A8C185804C583D60C012E8045882EC18028180D0081308B06C1802217F28FF 
106808FFD0B11058028180009B1502805C8805C88045882EC080280828007F280F 
106C681602B04C0810048028082D008160280700805C8804587F4FDF 
i0000MDDIN1500660PT 6F030STORE16F014MESSAG6F000DCPK 7F2CCF 
,F002FEFLAG6F004PERIOD6F016ENMEFG6F006ACPOS16F008ACPOS27F209F 
,F00AERRK 6F00CUK 6F00EVOIK 6F010AOIK 6F012DAOIK 7F39FF 
,F028INCRE16F020ACTUL16F022ACTUL26F026SPEED150128TEN4 7F28DF 
i012ATEN3 5012CTEN2 5012ETENl 5009ELFCR 50124TEN51 7F38AF 
i0126TEN52 50130ERROR16F024FREQ 6F018DISTA16F01ADISTA27F2A9F 
,F01CCOMP016F01ECOMP02505A4NEWFRE50132RAMP 506A4NUM8E27F22EF 
i061EDISPLA5066AINT3M16F02AREINT 506C0SIGRED50486D8ADD 7F240F 
i048CTWOCP250538DSMUl 5049ETWOCP3504CCTPADD 504F0SSMUL 7F221F 
i0682HEXDEC7FD13F 

MODIP4 01/01/00 00:04:54 TXLINK '2.3.0 



469 

APPENDIX 9.14 

MODULE 2 OBJECT CODE PROGRAM 

~0644MOD2P4 A0000B0300B0000B02E0BFF00B0201B000EB04EIBFE8EB06417F20DF 
_0012Bl101B10FBB0201B0012B04EIBFE92B0641Bl101810FBB04E08FEF47F298F 
_0028B04E0BFEF6B04E0BFEF8B04E08FEFAB04E0BFEDA804E08FE7CB04E07F19BF 
_003EBFEDCB04E08FED6804E08FED8B04E08FE78B04E0BFE76B04E08FE707F19BF 
_0054B04E08FE6AB020180460BC801BFFAA80201C03748C8018FFACB07207F250F 
_006ABFEEA80720BFEE880720BFEDEB020180041BC8018FEE6B0201878007F220F 
_00808C801BFEE4B04E08FEE2B0201B01D78C801BFEF08020CB0100BIE177F23FF 
_0096BID1781E10BID10831E0BFEE2B33E08FEF0B31E08FEE4B0300B00037F23FF 
_00AC8034080300B00008C800BIFF08020CB010081EIIBIF16816FE8C8207F2AIF 
_00C2B1000BFEDAB04E0B1000BC820810028FEDEB0720B1002BC820810047F290F 
\00D88FEE0BCB20B1014BFEF2BCB20BFED6B1006BCB20BFEDBB100BBC8207FIFDF 
\00EEBFE92B100ABCB20BFEDCB100C8C820BFE9A8100EBCB20BFE9EB10107FIDDF 
\0104BCB20BFEA2B1012804E0B1016BIDIIB0300B000380460C0118B04607F2FIF 
\011AC00ACB1000BCB08BFEFCBC0E0BFE9A8C060BFEEC806A0C0590804607FIEFF 
\0130C050BB0AIIBC0E0BFEBEBA0438C8018FE9EBC0E0BFE9ABC0608FEEE7F18BF 
\0146B06A0C0590B0460C050BB0AIIBC0E0BFEC2BA0438C801BFEA2BC2E07F252F 
\015C8FEFCB045BBC808BFEFEBC0E08FEA68C060BFEBEB06A0C0590804607FIA2F 
\0172C0508B02E0BFF04BC0E0BFEA8BC060BFEC2B06A0C0590B0460C05087F250F 
\0188B02E0BFF08BC060BFEAABC0E0BFE9AB06A0C0590B0460C0508B02E07F22EF 
\019E8FF0CBC060BFEACBC0E0BFE94B06A0C0590B0460C0508B02E0BFF087F203F 
\01B4B06A0C0556B0460C0508B02E0BFF04806A0C055680460C0508802E07F28DF 
\01CABFF00806A0C055680460C0508B0Al180A12B1801B100280221800017F2E7F 
\01E0BC041B1502Bl103B100CB04C581002B0705B0501BC0E08FECE838437F2A5F 
\01F683C608FED08C145B1301B0501BC8018FEC68C0E08FEB2BC060BFE8E7FIE0F 
\020C806A0C0590B0460C0508802E0BFF04BC0E0BFEB4BC060BFEC2B06A07F23FF 
\0222C0590B0460C0508B02E0BFF088C060BFEB6BC0E0BFE9AB06A0C05907F24BF 
\0238B0460C0508B02E0BFF0CBC060BFEB8BC0E0BFE94B06A0C0590B04607F249F 
\024EC0508B02E0BFF08B06A0C0556B0460C0508B02E0BFF04B06A0C05567F28FF 
\0264B0460C0508B02E0BFF00B06A0C0556B0460C0508B0AIIB0Al2B18017F2DAF 
\027AB1002B0221B0001BC041B1502Bl103B100CB04C5B1002B0705B05017F325F 
\0290BC0E0BFED2B3843B3C60BFED48C145B1301B0501BC801BFECA8C2E07F210F 
\02A68FEFEB04588C80B8FE7EBC060BFE928C0E0BFE80B06A0C0590804607FIDAF 
\02BCC0508B02E0BFF04BC060BFE94BC0E0BFE82B06A0C0590B0460C05087F24AF 
102D2B02E0BFF08BC060BFE9ABC0E0BFE88B06A0C0590B0460C0508802E07F239F 
102E8BFF0CBC060BFE9EBC0E0BFE8AB06A0C0590B0460C0508802E0BFF107F204F 
\02FEBC060BFEA2BC0E0BFE8CB06A0C0590B0460C0508B02E0BFF0CB06A07F215F 
10314C055680460C0508802E0BFF08B06A0C0556B0460C0508802E08FF047F2AFF 
1032AB06A0C0556B0460C0508B02E0BFF00B06A0C0556B0460C050880A117F2C6F 
10340B0A12B1801B100280221800018C041B1502Bl1038100CB04C5810027F32CF 
10356B0705B0501BC0E0BFE8EB3843B3C60BFE90BC14581301805018C8017F27CF 
1036CBFEDCBC2E0BFE7EB045BB0300B0000802E0BFF00B020CB01008C0607F243F 
10382BFEDEB1606B31E0BFEE2B33E0BFEE0B0720BFEDEB31E0BFEE4BIE177FIB6F 
10398BID17B0300B0002BC820BBFF2BFE7CBC060BFEE8B1604806A0C05087F249F 
103AEB0460C04DEBC060BFEEAB1604B06A0C0508B0460C05028C0A0BFEDA7F231F 
103C4B60A0BFE7CB1903B04E0BFEEAB10F4BA802BFE92BC0A08FE92807427FIF2F 
103DAB0282B0000B1502B04E0BFE92BC060BFEFABA0608FE7C8082IBC8017F239F 
103F0BFE9ABC820BFE7CBFE9ABC060BFE9AB6060BFE78BC8018FE9EBC0607F18BF 
10406BFE9ABA060BFE76B6060BFE78B6060BFE78BC801BFEA2806A0C011C7F201F 
,041CB06A0C02AABC060BFEDCB1308Bl107B3860BFE74B3C608FE72B0A127F233F 
,0432B1701B0581BC801BFE70BC060BFE70Bl108B3860BFE6EB3C60BFE6C7F238F 
044880A128170180581B1009B0501B38608FE6EB3C60BFE6CB0A12B17017F293F 
045EB0581B0501BC801BFE6ABC820BFE6ABB002BC060BFEDCB6060BFE947F200F 
0474BC801BFE7AB06A0C0160BC820BFE96BFE98BC820BFE94BFE96BC8207FIE6F 
048ABFEDCBFE94BC820BFEF6BFEF8BC820BFEF4BFEF6BC820BFE7CBFEF47F10EF 
04A0B04E0BFEFABA820BFEF4BFEFABA820BFEF6BFEFABA820BFEF8BFEFA7Fl16F 



\04B6BC820BFE78BFE76BC8208FE9A8FE788C820BFEC6BFEBEBC820BFEC87F155F 
\04CCBFEC0BC820BFECABFEC28C820BFECCBFEC4B04E0BFEDABC120BFE7C7F12AF 
\04E2Bl102B04C3B1001B0703BC0A0BFED8BC060BFED6B06A0C0556B04607F272F 
\04F8C03CABC801 BFED6BC802BFED8B02E0BFF8AB0380BC060BFED'CBI30E7F 1 B8F 
\050EB1105B6060BFEE6B1706B04CIB1004BA060BFEE6B1701B04CIBC8017F27AF 
\0524BB002BC801BFEDC8045B80541B0502B1703B0581B1901B045BB022B7F2A4F 
\053AB0004B045BB0541B0542B0503B1705B0582B1703B0581B190IB045B7F302F 
\0550B022BB0004B045BBA084B1703B0581B1901B1005BA043B190IB10027F306F 
\0566B022BB0004B045BBA0C6B1705B0582B1703B0581B1901B100ABA0857F2D2F 
1057CB1703B0581B1901B1005BA044B1901B1002B022B800048045BBC8087F2E0F 
10592C05D6BC041B1507Bl103B04CIB04C2B1013B0704B0501B100IB04C47F2F4F 
105A8BC0C3B1505Bl101B10F5B0705B0503B1001B04C583843B6105B13047F2E9F 
105BEB06A0C052CB0460C05D0BC2E0C05D6B0228B0004B045BBC2E0C05D67F267F 
105D4B045BB0000BC80BBFEF8BC041B150ABl103BC082B1324B1006B07067F295F 
105EAB06A0C052CB0460C063EB1001B04C6BC145B1505B1101B1318B07077F2C7F 
10600B0505B1001B04C7BC0C2838C5B3845BA083B1703B0581B190IB10147F2DDF 
10616BC0C4B6187B1304B06A0C053EB0460C063EBC2E0BFEF8B0228B00047F272F 
1062CB0458B04CIB04C2B04C3BC2E0BFEF8B022BB0004B045BBC2E08FEF87F216F 
10642B045B7FD9FF 
i0374LOOPIN50000MATIN 500ACWAIT3 6FE92ERRK 6FEDCUK 7F2BEF 
,FE94UKl 6FE9AVOIK 6FE9CV02K 6FE9EAOIK 6FEA0A02K 7F325F 
,FE78VOIKl 6FE76VOIK2 6FE96UK2 6FE98UK3 6FEA2DAOIK 7F31BF 
,FEA4DA02K 6FEBEWIIK 6FEC0W12K 6FEC2W21K 6FEC4W22K 7F324F 
,FEC6WIIKP 6FEC8W12KP 6FECAW21KP 6FECCW22KP 6FEA6KIWIK 7F24CF 
,FEA8KIW2K 6FEAAKIVK 6FEACKIUKl 6FEAEKIUK2 6FEB0KIUK3 7F276F 
,FEB2K2WIK 6FEB4K2W2K 6FEB6K2VK 6FEB8K2UKl 6FEBAK2UK2 7F2B9F 
,FEBCK2UK3 6FECEKOBIA 6FED0KOBIB 6FED2KOB2A 6FED4KOB2B 7F269F 
,FEECK3VOK 6FEEEK4VOK 6FEDENEWFRE6FEE0PERIDD6FEE4MASKl 7F157F 
,FEE2MASK0 6FEDADCPK 6FEE6DEMU 6FEEBEMFLAG6FEEAFEFLAG7FIF0F 
,B002DACl 6BFF2DPOS 6FE80KERRK 6FE82KUKl 6FE88KVOK 7F2DFF 
,FE8AKAOK 6FEB4KUK2 6FEB6KUK3 6FEBCKDAOK 6FEBEKPMAXA7F24CF 
,FE90KPMAXB6FF00WORKl 6FF04WORK226FF0BWORK336FF0CWORK447FIA6F 
,FF10WORK556FEF2MESSAG6FED6ACPOSI6FEDBACPOS26FE7ESALIN17F154F 
FEFCSALIN26FEFESALIN46FE7CDXK 6FEF4DXKl 6FEF6DXK2 7F234F 
FEFBDXK3 6FE7ADUK 6FEFAXKMXK46FE74KCORR16FE72KCORR27FIE9F 
,FE6EKUCORI6FE6CKUCOR26FE70UKCORR6FE6AUKOUT 500AECOMMUN7F110F 
1000MIDCPK61002MIFEFG61004MIPER 61006MIACP16100BMIACP27F320F 
100AMIERR06100CMIUK 61014MIMESS6100EMIVOIK61010MIAOIK7F2C4F 
1012MDAOIK50118PROCES5011CDOBSl 50590SSMUL 5050BEMDECE7F2BBF 
0160DOBS2 50556DBADD 502AADUCONT5052CTWOCP25053ETWOCP37F259F 
056CTPADD 505D8DSMUl 7FA89F 

'MOD2P4 01/01/00 00:09:39 TXLINK 2.3.0 

470 



APPENDIX 10.1 

CONTROL FUNCTION TO VELOCITY TRANSFER 
FUNCTION ANALYSIS 

The transfer function analysed in this Appendix 1S 

sy(s) 
u(s) = 

1 

471 

1 

making sy(s) = v(s), the time response for a unit step input on the 

command function u, or 

u(t) = 0 for t< 0 

u( t) = 1 for t> 0 

can be found as (t ~ 0) • 

v(t) 
-pwt [ .r?' = 1 - Ze SpZ(S-2)cos(V1-pZ wt) + 

Sp (S-2)+1 

where 

and 

wt 
e a 

a= wT 

1 
pa 

Changing the time scale to t* = wt, equation Z can be solved for 

different values for p and a. Figure 1 shows the percentage overshoot 

(PO) function of a with p as a parameter. Figures 2 to 8 show the 

normalised step response for different pairs p and a. 



472 

PQ(%1 

XIJaI 
113 

9 

El 

7 

6 

5 

" 
:3 

2 

I 
13 " 6 

Figure 1. Percentage Overshoot x n 



.;j 
QJ 

'" 473 ,. ;;; c: .. 0 

"' c. .. 
'" .. QJ 

0<: 

QJ 

8 ... 
E-< 

I 
"0 
QJ 
N 

N ... 
N 0 .... 
.... 0 ~ 

"' 0 11 ... 
" a. 0 

I: Z 
.... 
l- N 

QJ ... 
" CD ... 
~ 

.. 
I 

'" "! 

.;j ..J ... ,. ;;; ,. .. .. .. ... "' .. .. ... 

j 
.. 

0 
<X) N • 0 

t 
" ... 11 w 

I: " I: 
.... H 

I- I-

I 
~ 

'I' ;;; 
I 

"' "' "! "! 

..J .;j W ,. ;;; ,. ;;; .. .. 
i!I w 

CO .. ... 

N 

'" . 
... . 0 

"' 
.... 

11 • z: " z: 
" .... .... 

I- I-

'I' 'I' 
"' "' "! .. 
to !I .. 

!I ~ ~ "' i!I .. 
..; oi • ..; oi • 



Z.DE lIQ 

D.DE-Qt -111'----....----- ------t----- .VELOC 

~.DE Clt • D.DE-CII T J: /1 E 

a=O.2 

t.DE DD 

D.IIE-Qt .j.11L-___ t-___ -;-___ __<_---- .VEL 

~.DE III • D.aE-Qt T J: /1 E 

a-lo6 

'J 

I' -,,----~----- v'VEL '( ·i-·------'--.--,------~~---------
,QE-QI T J: M E ~.DE DI • DE-CI I T J: /1 E 

a= 1. 2 

.VEL 

~.DE ClI 

• DE-CI I 

a=O.8 

T J: /1 E 

a-2;O 

.VEL 

-4.s;aE '" 

p= 0.04 

Figure 3 Normalized Time Response 

..,.. 

.... ..,.. 



.;:J 
., 
UI 

~ a c 475 
~ 0 

~ c. 
UI 

~ ., 
0:: ., 
8 ..... 

E-< 

"C ., 
N 

"" ..... 
'" 0 .... 
.... 0 ~ .., 11 n ... 
" a. 0 

"' Z 
H ... "" ., ... 

:l 
00 ..... 

0.. 

.. ~:---.- ~ 

,. a 
I 

'" ~ 
.... .... .;:J ,. 

'" ~ 
,. 

Cl 
W ~ 
Cl W 

'" ... 
~ 

0 
co 

'" 0 • 

t " w 11 

" w 

"' r "' ... ... 
l-

f 

I-

'1 ;; 
W I 
~ W 

Cl 

.;:J .;:J ,. 
co 

,. co 
~ ~ 

w .... 
Cl Cl 

• ... 

'" "" 0 .... 
w 11 w • " " "' "' H H 

... ... 

;; '1 I 
W W 

~ +---. ~ 
!I Cl !I Cl 

~ 

* 
IV 

* ,; co • ,; co • 



~,~E ~ 

lI, QE-III I1 vVEL 

• 8,8E-lIl T J: I't E ~,IIE III 

a=0.2 
~,QE ~ 

II,IIE-III ... 1''----0------.----....... - __ _ vVEL 

~,lIE III • 8,8E-III T J: I't E 

a-1.6 

,liE-ill T J: I't E 

a=0.8 

vVEL 

~,~E III 

-----t------II _____ ..... ____ _ vVEL 

-4.Q£ QI ,8[-111 T J: I't E 

a-2.0 

,8E-1I1 

,-, 
'i 

T J: I't E 

CI= 1.2 

p=O.O,8 

v VEL 

~,QE III 

Figure 5 Normalized Time Response 

... .... 
a-



'" '" r;I c: 477 ;> 0 
~ 

co Cl. 

'" '" ~ '" ~ 
a: 

'" 8 .... 
~ 

." 

'" N .... 
N ... ... 
... 0 i'l 

11 11 ... 
'" " a. 0 

Z 
i z:: 

H '" .. 
'" ... 
::l 
00 .... 
~ 

co 
I 

'" Cl! 

r;I cl ;> 
~ 

co ;> co 
~ 

'" '" co co 
~ ~ 

0 
<Xl N 

0 • 
11 " 

'" " '" z: z: 
H H .. .. 

co .. 
I 

~ 
I 

W 
Cl! 

r;I r;I 
". co ;> co 
~ ~ 

'" w 
~ ~ 
~ ~ 

N 

'" . 
0 ... 

'" 11 '" • " " z: z: 
H H .. .. 

.. .. 
I I 

III '" at 

:I ~ 
at :I iii at 

III III * .., co • ,; co • 



'" d 
co 
c: 478 ,.. .. 0 

po Co .., '" .. '" ~ <>: 

'" 8 .... 
E-< 

"0 

'" ... 
N .... 

N ... ..... 
..... 0 ~ 
" 11 ... 

"' Cl a. 0 
Z 

z: 
H 

I-
..... 

'" ... 
::I 
00 .... ... 

.. 
I 

III 

d d ,.. 
Cl ;-

po po .. .., .., 
~ '". 
~ ~ 

0 

co N • 0 Cl 
11 

'" Cl .., 
z: 

r 
z: 

H H 
I- I-

1 
I 

.. .. 
I 

~ 
I .... 
~ 

iil iil ,.. .. ,.. .. 
po po 

'" 
.., .. ~ 

~ ~ 

N '" 
0 ..... ... 11 '" • Cl Cl 

z: z: 
H H 

I- I-

.. Cl 

~ 
I ... 

i 
~ 

i , co ii Cl 

W W ~ 
" 

.. • " Cl • 



~.DE BB 

a.8EHII ¥V----t-----t----·-t---- v VEL 

• II.DE-III TIN E ~.BE 81 

a=O.2 

~.IIE BB 

a.DE-III +1.L--~----_1>__---t_--- .,VEL 

~.IIE III • a.DE-al 1 I N E 

a-1.6 

. DE-a I 

.DE-al 

1 I N E 

a= o. 8 

TIN E 

(1-2.0 

.,VEL 

~.BE al .IIE-III 

v VEL 

~.BE BI 

TIN E 

a= 1. 2 

p= o. l~ 

v VEL 

~.IIE al 

Figure 8 Normalized Time Response 

.,.. .., 
\0 



APPENDIX 10.2 

DISCRETE STATE EQUATIONS FOR EXTENDING DIRECTION 

ENTER NUMBER OF STATES = 4 

ENTER MATRIX A BY LINES 

0,1,0,0 
0,0,1,0 
0,0,0,1 
0,-2,-1.28,-2.14 

ENTER MATRIX B BY COLUMN 

0,0,0,2 

ENTER SAMPLING PERIOD T(MS)= 1000 

ENTER DELAY TD(MICROSECOND) = 1000000 

MATRIX PHI 

1.0000 0.9451 0.4531 0.0984 

0.0000 0.8033 0.8192 0.2426 

0.0000 -0.4853 0.4927 0.3000 

0.0000 -0.6000 -0.8693 -0.1493 

11ATRIX L1 MATRIX L2 
0.0000 

0.0549 
0.0000 

0.1967 
0.0000 

0.4853 
0.0000 

0.6000 

MATRIX PHIT2 

1. 0000 0.9451 0.4531 0.0984 

0.0000 0.8033 0.8192 0.2426 

0.0000 -0.4853 0.4927 "1.30"10 

0.0000 -0.6000 -0.8693 -0.1493 

0.0000 0.0000 0.0000 0.0"100 

MATRIX L 
0.0000 

0.0000 

0.0000 

0.0000 

1.0000 

"1."1549 

"1.1967 

0.4853 

"1.6000 

"1.0"10"1 

480 



APPENDIX 10.3 

DISCRETE STATE EQUATIONS FOR RETRACTING DIRECTION 

ENTER NUMBER OF STATES = 4 

ENTER MATRIX A BY LINES 

e,l,e,e 
e,e,l,e 
e,e,e,l 
e,-2,-1.52,-2.26 

ENTER MATRIX B BY COLUMN 

e,e,e,2 

ENTER SAMPLING PERIOD T(MS)= 1e0e 

ENTER DELAY TD(MICROSECOND) = 1eeeJeJeJe 

MATRIX PHI 

1.eJeeeJ e.9464 0.4478 ~L e953 

e.eJeee e.8eJ93 0.8015 e.2323 

e.eJeeeJ -e.4645 0.4563 0.2766 

e.eJeeeJ -eJ.5532 -0.8850 -0.1688 

MATRIX L1 MATRIX L2 

0.0536 0.000e 

e.1907 0.0e00 

e.4645 
0.0000 

e.5532 0.0000 

MATRIX PHIT2 

1.e0ee e.9464 e.4478 0.0953 

e.eeee e.8e93 0.8e15 0.2323 

e.eeJ0e -e.4645 e.4563 0.2766 

e.e00e -0.5532 -0.885e -0.1688 

e.eeJee e.eeJeJ0 0.000e 0.0000 

MATRIX L 
e.ee00 

e.0000 

0.0000 

0.0000 

1.0eJ00 

eJ.0536 

0.1907 

0.4645 

0.5532 

eJ.0000 

481 



APPENDIX 10.4 

SAMPLE OF THE SWEEP PROGRAM 

ENTER ORDER N =4 

ENTER MATRIX PHI BY LINE 
ENTER MATRIX L BY COLUMN 

ENTER MATRIX Ql BY LINE 

1,0,0,0 
0,0,0,0 
0,0,0,0 
0,0,0,0 

ENTER VALUE Q2 

.01 

ENTER NUMBER OF STEPS =30 

0.0000 
0.6340 

-0.2520 
-0.3875 
-0.3867 
-0.3880 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 
-0.3882 

0.0000 
3.3265 
1.2777 
1.0768 
1. 0831 
1.0799 
1.0795 
1. 0795 
1.0795 
1. 0795 
1. 0795 
1.0795 
1. 0795 
1.0795 
1. 0795 
1. 0795 
1. 0795 
1. 0795 
1. 0795 
1. 0795 
1. 0795 
1. 0795 
1.0795 
1.0795 
1. 0795 
1. 0795 
1. 0795 
1. 0795 
1.0795 
1. 0795 
1.0795 

0.0000 
1.5238 
0.7089 
0.6400 
0.6430 
0.6417 
0.6415 
0.6415 
0.6415 
0.6415 
0.6415 
0.6415 
0.6415 

·0.6415 
0.6415 
0.6415 
0.6415 
0.6415 
0.6415 
0.6415 
0.6415 
0.6415 
0.6415 
0.6415 
0.6415 
0.6415 
0.6415 
0.6415 
0.6415 
0.6415 
0.6415 

CHANGE Ql(l),CHANGE Q2(2),STOP(3) 
3 

**** STOP 
OK, 

0.0000 
2.6945 
1.5196 
1.4452 
1.4505 
1.4485 
1.4483 
1.4483 
1. 4483 
1. 4483 
1. 4483 
1.4483 
1.4483 
1.4483 
1.4483 
1.4483 
1.4483· 
1.4483 
1.4483 
1.4483 
1.4483 
1.4483 
1.4483 
1.4483 
1.4483 
1.4483 
1.4483 
1.4483 
1.4483 
1.4483 
1.4483 

482 



APPENDIX 10.5 

OBSERVER POLE-PLACEMENT DESIGN 

cylinder extending 
-

ENTER NUMBER OF STATES = 2 

ENTER SAMPLING PERIOD(SEC) = 1 

ENTER MATRIX PHI1 BY LINE 
.4927,-.8693 
.3,-.1493 

ENTER MATRIX GAMMA BY COLUMN 
.8192,.2426 

ENTER DESIRED POLE S-PLANE REAL= -20000 
IMAG= 0 

ENTER DESIRED POLE S-PLANE REAL= -20000 
IMAG= 0 

K 
0.7107 

-0.9845 

**** STOP 
OK, 

cylinder retracting 

ENTER NUMBER OF STATES = 2 

ENTER SAMPLING PERIOD(SEC) = 1 

ENTER MATRIX PHI1 BY LINE 
.4563,-.885 
.2766,-.1688 

ENTER MATRIX GAMMA BY COLUMN 
.8015,.2323 

ENTER DESIRED POLE S-PLANE REAL= -20000 
IMAG= 0 

ENTER DESIRED POLE S-PLANE REAL= -20000 
IMAG= 0 

K 
0.6623 

-1.0477 

**** STOP 
OK, 

483 



APPENDIX 10.6 

MATRIX COEFFICIENTS FOR OBSERVER EQUATIONS 

cylinder extending 
ENTER SYST ORDER= 4 

-
ENTER OBSERVER ORDER= 2 

ENTER ORDERED SYSTEM MATRIX BY LINE 
.8033,.1967,.8192,.2426 
0,0,0,0 
-.4853,.4853,.4927,.3 
:".6, . 6, -.8693, -.1493 

ENTER ORDERED INPUT MATRIX BY COLUMN 
O,1,O,O 

ENTER OBSERVER FEED GAINS BY LINE 
.7107,O 
-.9845,O 

PBB-LO*PAB 
-O.0895 O.1276 
-O.0628 O.0895 

(PBA-LO*PAA)+(PBB-LO*PAB)*LO 
-1.2454 0.3455 

O.0581 0.7937 

LB-LO*LA 
O.0000 
O.0000 

cylinder retracting 
ENTER SYST ORDER= 4 

ENTER OBSERVER ORDER= 2 

ENTER ORDERED SYSTEM MATRIX BY LINE 
.8093,.1907,.8015,.2323 
0,0,0,0 
-.4645,.4645,.4563,.2766 
-.5532,.5532,-.8850,-.1688 

ENTER ORDERED INPUT MATRIX BY COLUMN 
O,1,O,O 

ENTER OBSERVER FEED GAINS BY LINE 
.6623,O 
-1.0477,O 

PBB-LO*PAB 
-O.0745 O.1227 
-O.0453 O.0746 

(PBA-LO*PAA)+(PBB-LO*PAB)*LO 
-1.1785 O.3382 

O.1866 O.7530 

LB-LO*LA 
O.0000 
O.0000 

484 



485 

APPENDIX' 10. 7 

ESTIMATED VARIABLES 

~OBSl TXMIRA 2,3,0 78,244 00:02:09 01/01/00 PAGE 0001 
CALCULATING OBSERVER VARIABLES 

0001 *************************************************** 
0002 * * 
0003 .. * THIS ROUTINE CALCULATES THE OBSERVER'VARIABLES * 
0004. * FOR THIS CASE THEY ARE ESTIMATED VALUES FOR * 
0005 * ACCELERATION AND TRANSIENT ACCELERATION * 
0006 * * 
0007 *************************************************** 
0009 lOT ' DOBS1' 
0010 DEF DOBSl 
0011 REF V01K,V02K, A01K, A02K, DA01K, DA02K 
0012 REF K3VOK,K4VOK,WllK, W12K, W21K,W22K 
0013 REF SALIN2,DBADD,SSMUL,EMDECE 
0014 000B LINK EGU 11 
0015 0000 1000 DOBSl NOP Fl.AG FOR NO OBSERVER 
0016 ******************** 
0017 * ESTIMATED VALUES * 
0018 ******************** 
0019 * ACCELERATION * 
0020 **************** 
0021 0002 C80B MOV LINK, (l!SALIN2 SAVE LINK 

0004 0000 
0022 0006 C0E0 MOV (l!V01K,R3 VEl.OCITY 

0008 0000 
0023 000A C060 MOV (l!K3VOK,Rl CTE B15 

000C 0000 
0024 000E 06A0 Bl. (l!SSMUL . MTF'Y 

0010 0000 
0025 0012 0460 B (l!EMDECE OVERFl.OW 

0014 0000 
0026 0016 0A11 Sl.A Rl, 1 BINARY 0 
0027 0018 A060 A (l!W11K, Rl AC/WN**2 

001A 0000 
0028 001C C801 MOV Rl,(l!A01K SAVE OBSERVED VAl. 

001E 0000 
0029 ************************** 

. 0030 * TRANSIENT ACCELERATION * 
0031 ************************** 
0032 0020 C0E0 MOV (l!V01K,R3 VEl.OCITY 

0022 0008' 
0033 0024 C060 MOV (l!K4VOK,Rl CTE B15 

0026 0000 
0034 0028 06A0 BL (l!SSMUL 

002A 0010' 
0035 002C 0460 B (l!EMDECE OVERFLOW 

002E 0014' 
0036 0030 0A11 SLA Rl, 1 BINARY 0 
0037 0032 A060 A (l!W21K,Rl TAC/W**3 

0034 0000 
0038 0036 C801 MOV Rl,(l!DA01K SAVE VALUE 

0038 0000 
0039 003A C2E0 RETUR MOV (l!SALIN2, LINK RETURN ADDRESS 

003C 0004' 
0040 003E 045B B *LINK RETURN 
0041 END 



486 

DOBSl TXMIRA 2.3.13 78.2'1'1 1313:132:139 131/131/1313 PAGE 1313132 
CALCULATING OBSERVER VARIABLES 

E AOIK 13131E E A02K 13131313 E DAOIK 131338 E DA02K 13131313 
E DE:ADD 13131313 D DOE:Sl 13131313 E EMDECE 13132E E K3VOK elelelC 
E K'IVOK 131326 LINK 13el13B Rel 13131313 Rl 1313131 

Rlel el00A Rll 0130B R12 0013C R13 0elelD 
Rl'1 el00E R15 000F R2 01302 R3 0003 
Rq 13130'1 R5 013135 R6 0006 R7 013137 
R8 1313138 R9 1313139 , RETUR 1303A E SALIN2 el03C 

·E SSMUL 13132A E VOIK 0822 E V02K 131300 E WllK 13ellA 
E W12K 130130 E W21K 13133'1 E W22K 13131313 

1313130 ERRORS 



487 

APPENDIX 10.8 

CONTROL EQUATION 

)UCONT TXMIRA 2.3.0 78.244 00:02:57 01101/00 PAGE 0001 
:ONTROL FUNCTION -POSITION FORM 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 0000 

0002 
0025 
0026 
0027 
0028 0004 

0006 
0029 0008 

000A 
0030 000C 

000E 
0031 0010 

0012 
0032 0014 

0016 
0033 
0034 
0035 
0036 0018 

001A 
0037 001C 

001E 
0038 0020 

01322 
0039 ·0024 

0040 

0041 
0042 
0043 

0026 
0028 
002A 

C808 
0000 

C060 
0000 
C0E0 
0000 
06A0 
0000 
0460 
0000 
02E0 
0000 

C060 
0000 
C0E0 
0000 
06A0 
000E' 
0460 
0012' 
02E0 
0000 

0044 002C C060 

*********************************************************** 

* * * THIS ROUTINE SOLVES THE CONTROL EQUATION * 

* * * KPMAXA * 
* U( K )=------( K 1 E( K )+K2X2( K )+K3X3( K )+K4X4( K )+K5U' ( K-l ) J * 
* KPMAX8 * 

* * *********************************************************** 
lOT 'DUCONT' 
DEF DUCONT 
REF ERRK,UK1,V01K, V02K, A01K, A02K 
REF DA01K,DA02K,UK2,UK3 
REF KERRK,KUK1,KVOK,KAOK,UK 
REF KUK2,KUK3 
REF KDAOK,KPMAXA,KPMAX8 
REF WORK1,WORK22,WORK33,WORK44,WORK55 
REF EMDECE 
REF D8ADD,SSMUL, DSMU1, SALINl 

********* 
* START * 
.********* 
DUCONT MOV R1l,@SALIN1 

************** 
* K*E( K ) * 
************** 

MOV @ERRK,Rl 

MOV @KERRK,R3 

8L @SSMUL 

B @EMDECE 

LWPI WORK22 

************** 
* K*U(K-l) * 
************** 

MOV @UK1,R1 

MOV @KUK1,R3 

BL @SSMUL 

8 @EMDECE 

LWPI WORK33 

************** 
* K*V/W * 
************** 

MOV @V01K,Rl 

SAVE RETURN 

E( K ) 

CTE 815 

MTPY 

MOVE POINTER 

CTE 

MOVE POI NTER 



488 

DUCONT TXMIRA 2.3.0 78.244 013:132:57 01/01/013 PAGE 0002 
:ONTROL FUNCTION -POSITION FORM 

002E 0000 
0045 0030 C0E0 MOV C!'t<VOt<,R3 CTE 

0032 0131313 
0046 0034 06A0 BL C!'SSMUL MTPY 

01336 0822' 
0047 13038 0460 B C!'EMDECE 

0133A 0026' 
0048 003C 02E0 LWPI WORt<44 MOVE POINTER 

003E 0000 
0049 ************** 
131350 * t<*A/W**2 * 
0051 ************** 
0052 0040 C1360 MOV C!'A01t<,Ri 

01342 0000 
0053 0044 C0E0 MOV C!'t<AOt<,R3 CTE 

0046 0000 
0054 0048 06A0 BL C!'SSMUL MTPY 

004A 0036' 
0055 004C 0460 B C!'EMDECE 

004E 003A' 
0056 0050 02E0 LWPI WORt<55 MOVE POINTER 

0052 0000 
0057 ************** 
0058 * t<*DA/W**3 * 
0059 ************** 
0060 0054 C060 MOV C!'DA01t<,R1 

0056 0000 
0061 0058 C0E0 MOV C!'t<DAOt<,R3 CTE 

005A 0000 
0062 005C 06A0 BL C!'SSMUL 

005E 004A' 
0063 0060 0460 B C!'EMDECE 

0062 1304E' 
0064 ************** 
0065 * RESULT * 
0066 ************** 
0067 0064 02E0 LWPI WORt<44 BACt< PO INTER 

0066 003E' 
0068 0068 06A0 BL C!'DBADD t<*DA+t<*A 

006A 00013 
0069 006C 0460 B C!'EMDECE' 

006E 0062' 
01370 0070 02E0 LWF'I WORt<33 BACt< 

0072 002A' 
0071 0074 06A0 BL I!1DBADD 

0076 006A' 
0072 0078 0460 B C!'EMDECE 

007A 1306E' 
0073 007C 132E0 LWPI WORt<22 

007E 0016' 
01374 0080 06A0 BL C!'DBADD 

0082 0076' 
01375 01384 0460 B @EMDECE 

0086 007A' 



489 

DUCONT TXMIRA 2.3.0 78.244 00:02:57 01/01/00 PAGE 0003 
CONTROL FUNCTION -POSITION FORM 

0076 0088 02E0 LWPI WORK1 
008A 0000 

0077 008C 06A0 BL @DBADD 
008E 0082' 

.0078 0090 0460 B @EMDECE 
0092 0086' 

0079 ********************************** 
0080 * RESULT*SCALING AND PROP. GAIN * 
0081 ********************************** 
0082 0094 0A11 SLA Ri, 1 SHIFT Ri 
0083 0096 0A12 SLA R2, 1 CARRY? 
0084 0098 1801 JOC CACA YES 
0085 009A 1002 JMP RESULl NO 
0086 009C 0221 CA CA AI Ri, 1 ADD 1 TO Ri 

009E 0001 
0087 ***************************** 
0088 * U=CKPMAXA/KPMAXB)*RESULT * 
0089 ***************************** 
0090 00A0 C041 RESULl MOV Ri, R1 CHECK SIGN 
0091 00A2 1502 JGT F'OSIT 
0092 00A4 1103 JLT NEGAT 
0093 00A6 100C JMF' SAV 
0094 00A8 04C5 POSIT CLR R5 
0095 00AA 1002 JMP SCA 
0096 00AC 0705 NEGAT SETO R5 
0097 00AE 0501 NEG Ri 
0098 00E:0 C0E0 SCA MOV @KPMAXA,R3 

00E:2 0000 
0099 0084 3843 MF'Y R3,R1 MULT KF'MAXA 
0100 0086 3C60 DIV @KF'MAXB,R1 DIV KF'MAXB 

0088 0000 
0101 008A C145 MOV R5,R5 SET SIGN 
0102 008C 1301 JEQ SAV 
0103 008E 0501 NEG Ri 
0104 00C0 C801 SAV MOV R1.@UK SAVE CONTROL UCK) 

00C2 0000 
0105 00C4 C2E0 MOV @SALINi, R11 GET RETURN ADDRESS 

00C6 0002' 
0106 00C8 0458 8 *R11 RETURN 
0107 END 



490 

DUCONT TXMIRA 2.3.0 78. 244 00:02:57 01/01/00 PAGE 0004 
CONTROL FUNCTION -POSITION FORM 

E AOlt< 0042 E A02t< 0000 , CACA 009C E DAOlt< 0056 
E DA02t< 0000 E D8ADD 008E E DSMU1 0000 D DUCONT 0000 
E EMDECE 0092 E ERRt< 0006 E t<AOt< 0046 E t<DAOt< 005A 
E t<ERRt< 000A E t<PMAXA 0082 E t<PMAX8 0088 E t<Ut<l 001E 
E t<Ut<2 0000 E t<Ut<3 0000 E t<VOt< 0032 , NEGAT 00AC , POSIT 00A8 R0 0000 Rl 0001 R10 000A 

Rll 0008 R12 000C Rl3 000D R14 000E 
R15 000F R2 0002 R3 0003 R4 0004 
R5 0005 R6 0006 R7 0007 R8 0008 
R9 0009 , RESULl 00A0 E SALIN1 00C6 , SAV 00C0 , SCA 0080 E SSMUL 005E E Ut< 00C2 E Ut<l 001A 

E Ut<2 0000 E Ut<3 0000 .E VOlt< 002E E V02t< 0000 
E WORt<1 008A E WORt<22 007E E WORt<33 0072 E WORt<44 0066 
E WORt<55 0052 

0000 ERRORS 



491 

APPENDIX 10. 9 

OBSERVER EQUATIONS 

00BS2 TXMIRA 2.3.0 78.244 00:04:19 €l1/01/00 PAGE 0001 
OBSERVER EQUATIONS 

0001 ************************************************** 
0002 * * 
0003 * THIS ROUTINE SOLVES THE OBSERVER EQUATIONS OR * 
00€l4 * UPOATES THE OBSERVER VARIABLES FOR THE NEXT * 
0005 * SAMPLING INTERVAL. * 
0006 * * 
0007 ************************************************** 
00€l9 IDT ' 00BS2' 
0010 OEF 00BS2 
0011 REF W11K,W12K, W21K,W22K,V01K, V02K 
0012 REF UK1,UK2,UK3,W11KP,W12KP, W21KP,W22KP 
0013 REF K1W1K,K1W2K,K1VK,K1UK1,K1UK2,K1UK3 
0014 REF K2W1K,K2W2K,K2VK,K2UK1,K2UK2,K2UK3 
0015 REF KOB1A,K081B,KOB2A,KOB2B 
0016 REF SSMUL,OSMU1,EMDECE,DBADD,WORK1 
€l017 REF WORK22,WORK33,WORK44,WORK55 
0018 REF SALIN4 
0019 *********** 
0020 * Wl( K+1 ) * 
0€l21 *********** 
0022 0€l00 C8€lB 00BS2 MOV R1!. @SALIN4 

0002 €l€l0€l 
0023 00€l4 C€lE€l MOV @K1W1K,R3 

0€l06 €l€l€l0 
0024 0€l€l8 C€l60 MOV @W11K,R1 

0€l0A €l€l€l0 
0025 0€l0C €l6A0 BL @SSMUL 

€l0€lE 000€l 
0026 0010 0460 B @EMDECE 

0012 €l0€l€l 
0027 €l014 02E€l LWPI WORK22 

€l016 €l€l€l0 
0028 0018 C€lE€l MOV @K1W2K,R3 

€l01A €l€l00 
0029 0€l1C C€l60 MOV @W21K,R1 

001E €l0€l0 
0030 0020 06A0 8L @SSMUL 

, 0022 00€lE' 
0031 0024 0460 B @EMDECE 

€l026 0012' 
0032 €l028 02E0 LWPI WORK33 

€l02A 0000 
0033 €l02C C€l60 MOV @K1VK,R1 

002E €l€l€l0 
0034 003€l C€lE0 MOV @V01K,R3 

0032 €l000 
0035 0034 06A0 BL @SSMUL 

€l€l36 0022' 
0036 €l038 046€l B @EMDECE 

0€l3A €l€l26' 
0037 0€l3C €l2E0 LWPI WORK44 

003E €l€l€l€l 
0038 €l€l4€l C06€l MOV @K1UK1,Rl 

€l€l42 €l€l0€l 



492 

DOBS2 TXMIRA 2.3.0 78.2'1'1 00:0'1:19 01/01/00 PAGE 0002 
OBSERVER EGUATIONS 

0039 00'1'1 C0E0 MOV @Ut<1,R3 
00'16 0000 

00'10 00'18 06A0 BL @SSMUL 
00'1A 0036' 

00'11 00'1C 0'160 B @EMDECE 
00'1E 003A' 

00'12 0050 02E0' LWPI WORt<33 
0052 002A' 

00'13 005'1 06A0 BL @DBADD 
0056 0000 

00'1'1 0058 0'160 B @EMDECE 
005A 00'1E' 

00'15 005C 02E0 LWPI WORt<22 
005E 0016' 

00'16 0060 06A0 BL @DBADD 
0062 0056' 

00'17 006'1 0'160 B @EMDECE 
0066 005A' 

00'18 0068 02E0 LWPI WORt<l 
006A 0000 

00'19 006C 06A0 BL (WBADD 
006E 0062' 

0050 0070 0'160 B @EMDECE 
0072 0066' 

0051 007'1 0All SLA Rl, 1 
0052 0076 0A12 SLA R2, 1 
0053 0078 1801 JOC CACAl 
005'1 007A 1002 JMP CACA2 
0055 007C 0221 CACAl AI Rl, 1 

007E 0001 
0056 0080 C0'11 CACA2 MOV Rl, Rl 
0057 0082 1502 JGT POSITl 
0058 008'1 1103 JLT NEGATl 
0059 0086 100C JMP SAVl 
0060 0088 0'1C5 POSITl CLR R5 
0061 008A 1002 JMP SCAl 
0062 008C 0705 NEGATl SETO R5 
0063 008E 0501 NEG Rl 
006'1 *RESULT*SCALING AND PROP. GAIN 
0065 0090 C0E0 SCAl MOV @t<OB1A,R3 

0092 0000 
0066 009'1 38'13 MPY R3,Rl 
0067 0096 3C60 DIV @t<OB1E:,Rl 

0098 0000 
0068 009A Cl'15 MOV R5 1 R5 
0069 009C 1301 JEG SAVl 
0070 009E 0501 NEG Rl 
0071 00A0 C801 SAVl MOV Rl, @Wllt<P 

00A2 0000 
0072 ************ 
0073 * W2( t<+1 ) * 
007'1 ************ 
0075 00A'I C0E0 MOV @t<2Wlt<,R3 

00A6 0000 



493 

OOBS2 TXMIRA 2.3.0 78.2"1"1 00,0"1,19 01/01/00 PAGE 0003 
OBSERVER EQUATIONS 

0076 00A8 C060 MOV @W11K, R1 
00AA 000A' 

0077 00AC 06A0 BL @SSMUL 
00AE 00"1A' 

0078 00B0 0"160 B @EMOECE 
00B2 01372' 

0079 e0B"I e2E0 LWPI WORK22 
eeB6 ee5E' 

013813 e0B8 ceE0 MOV @K2W2K,R3 
0eBA 1313130 

0081 0eBC ce60 MOV @W21K,R1 
0eBE ee1E' 

0082 0eC0 e6A0 BL @SSMUL 
00C2 0eAE' 

0083 0eC"I 13"160 E' @EMOECE 
0eC6 00B2' 

008"1 0eC8 02Ee LWPI WORK33 
eeCA 0052' 

0085 e0CC C060 MOV @K2VK,R1 
00CE 0000 

0086 0000 C0E0 MOV @V01K,R3 
0002 0032' 

0087 00D"I 06A0 BL @SSMUL 
0006 00C2' 

0088 0eD8 13"160 B @EMDECE 
00DA 00C6' 

0089 000C 02E0 LWPI WORK"I"I 
e0DE 003E' 

00913 00E0 C060 MOV @K2UK1,R1 
00E2 0000 

01391 0eE"I C0E0 MOV @UK1,R3 
00E6 00"16' 

0092 00E8 06A0 BL @SSMUL 
00EA 00D6' 

0093 00EC 0"160 B @EMDECE 
00EE 00DA' 

009"1 00F0 02E0 LWPI WORK33 
00F2 00CA' 

0095 00F"I 06A0 BL @DBADD 
00F6 006E' 

0096 00F8 0"160 B @EMDECE 
00FA 00EE' 

0097 00FC 02E0 LWPI WORK22 
00FE 00B6' 

0098 0100 06A0 BL @DBADD 
0102 00F6' 

0099 010"1 0"160 B @EMDECE 
0106 00FA' 

0100 0108 02E0 LWPI WORK1 
010A 006A' 

0101 010C 06A0 BL @DBADD 
010E 0102' 

0102 0110 0lI60 B @EMDECE 
0112 0106' 



494 

DOBS2 TXMIRA 2.3.0 78.244 00:04:19 01/01/00 PAGE 
OBSERVER EQUATIONS 

0103 0114 0All SLA Rl, 1 
0H14 0116 0A12 SLA R2, 1 
0105 0118 1801 JOC CACA3 
0106 011A 1002 JMP CACA4 
0107 011C 0221 CACA3 AI Rl, 1 

011E 0001 
0108 0120 C041 CACA4 MOV Rl,Rl 
0109 0122 15132 JGT POSIT2 
0110 0124 1103 JLT NEGAT2 
0111 0126 100C JMP SAV2 
0112 0128 04C5 POSIT2 CLR R5 
0113 012A 1002 JMP SCA2 
0114 012C 0705 NEGAT2 SETO R5 
0115 012E 0501 NEG Rl 
0116 *RESULT*SCALING AND PROP. GAIN 
0117 0130 C0E0 SCA2 MOV (!?I<OB2A,R3 

0132 0000 
0118 0134 3843 MPY R3,Rl 
0119 0136 3C60 OIV (!?I<OB2B,Rl 

0138 0000 
0120 013A C145 MOV R5,R5 
0121 013C 1301 JEQ SAV2 
0122 013E 0501 NEG Rl 
0123 0140 C801 SAV2 MOV R1,(!?W21I<P 

0142 0000 
0124 0144 C2E0 MOV (!?SALIN4, R11 

0146 0002' 
0125 0148 045B B *R11 
0126 **** 
0127 END 

DOBS2 TXMIRA 2.3.0 78. 244 00: 04: 19 01/01/00 PA 
OBSERVER EQUATIONS 

, CACA1 007C , CACA2 0080 , CACA3 011C , CACA4 0120 
E DBAOO 010E 0 D08S2 0000 E OSMU1 0000 E EMOECE 0112 
E I< lUl< 1 0042 E I<lUI<2 0000 E I<lUI<3 0000 E 1<1 VI< 002E 
E I<lW11< 0006 E 1<1W21< 001A E 1<2UI<1 00E2 E 1<2UI<2 0000 
E 1<2UI<3 0000 E 1<2VI< 00CE E 1<2W11< 00A6 E 1<2W21< 008A 
E 1<081A 0092 E 1<0818 0098 E 1<082A 0132 E 1<082E: 0138 
, NEGATl 008C , NEGAT2 012C , POSIT1 0088 , POSIT2 

R0 0000 Rl 0001 R10 000A R11 
R12 000C R13 0000 R14 000E R15 
R2 0002 R3 0003 R4 0004 R5 
R6 0006 R7 0007 R8 0008 R9 

E SALIN4 0146 , SAV1 00A0 , SAV2 0140 , SCA1 , SCA2 0130 E SSMUL 00EA E Ul<l 00E6 E UI<2 
E UI<3 0000 E V011< 0002 E V021< 0000 E W111< 
E W111<P 00A2 E W121< 0000 E W121<P 0000 E W211< 
E W211<P 0142 E W22t< 0000 E W221<P 0000 E WORl<l 
E WORI<22 00FE E WORI<33 00F2 E WORI<44 000E E -WORI<55 

0000 ERRORS 



I, 

,I , 
\ 


