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Abstract 

The adaptation of an HR filter is a very difficult problem due to its non-quadratic 

performance surface and potential instability. Conventional adaptive HR algo­

rithms suffer from potential instability problems and a high cost for stability 

monitoring. Therefore, there is much interest in adaptive HR filters based on al­

ternative algorithms. Genetic algorithms are a family of search algorithms based 

on natural selection and genetics. They have been successfully used in many differ­

ent areas. Genetic algorithms applied to the adaptation of HR filtering problems 

are studied in this thesis, and show that the genetic algorithm approach has a 

number of advantages over conventional gradient algorithms, particularly, for the 

adaptation of high order adaptive HR filters, HR filters with poles close to the 

unit circle and HR filters with multi-modal error surfaces. The conventional gra­

dient algorithms have difficulty solving these problems. Coefficient results are 

presented for various orders of HR filters in this thesis. In the computer simu­

lations presented in this thesis, the direct, cascade, parallel and lattice form HR 

filter structures have been used and compared. The lattice form HR filter struc­

ture shows its superiority over the cascade and parallel form HR filter structures 

in terms of its mean square error convergence performance. 
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Chapter 1 

Introd uction 

1.1 Introduction 

The adaptation of an HR filter is a very difficult problem due to its non-quadratic 

performance surface and instability. Conventional gradient adaptive HR filter 

algorithms face either potential instability problems or the high cost of stability 

monitoring. In addition, when an HR filter's pole is close to the unit circle, most of 

these algorithms have difficulty during the adaptation. The direct form adaptive 

HR filter has poor numerical precision properties, and with high order HR filters, 

it is difficult to monitor or limit the denominator coefficients to avoid instability. 

All of this makes alternative non-gradient algorithms and filter structures more 

appealing to researchers in adaptive signal processing. 

Genetic Algorithms (GAs) are a family of search algorithms developed in the 

60's and 70's. The basic idea for genetic algorithms originated from natural se-

1 



CHAPTER 1. INTRODUCTION 2 

lection and genetics. They incorporate the genetic operator into the computer 

programming to solve the biological or non-biological problem. They have been 

very successful in solving many problems in biology, computer science, and engi­

neering. These algorithms are general and robust. Our study is concerned with 

applying these algorithms to the adaptation of HR filters, which has generated 

some encouraging results [lJ, [2J. 

The alternative HR filter structures are cascade, parallel and lattice. The 

lattice structures in particular have received a great deal of attention due to 

their superior finite precision properties compared with the direct form struc­

ture. In addition, stability monitoring of the lattice HR filter is extremely simple 

and requires almost no computation. We have paid attention to the lattice form 

structure and proven its superiority. This chapter begins with a review of other 

research applying genetic algorithms to the adaptation of HR filters, a discussion 

of the motivation for the study then follows, and finally, the organization of the 

thesis is described. 

1.2 Related Research 

Early studies using an adaptive genetic algorithm to determine the optimum filter 

parameters of an adaptive system were carried out in [3J and [4J. [3J applied a 

genetic algorithm to the very simple unimodal and bimodal adaptive HR filters, 

with an order one or two transfer function. [4J has applied genetic algorithms to 

determine the optimal control parameters. 
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Recently R. Nambiar and P. Mars [5J - [9J have applied genetic algorithms to 

the adaptation of HR filter, in particular for high order HR filters. These studies 

extended Etter's study [3J, and showed some encouraging results. However, the 

MSE performance still needs to be improved. These studies experimented with 

cascade, parallel and lattice adaptive HR filter structures - the cascade and parallel 

structure transfer functions are not general. For example, the high order filters 

were adapted as a bank of first and second order filters, with the numerator of 

the second order filter set to 1. In our study, we have tried to improve the MSE 

performance and use a general model for cascade and parallel filters. 

1.3 Motivation 

As has been shown, the general performance of genetic algorithms applied to the 

adaptation of HR filters needs to be improved. We also need to perform more 

experiments on various adaptive HR filter structures. 

The first objective of this research is to find a genetic algorithm which can 

provide an improved MSE performance to the adaptation of HR filters, especially 

when the poles of the HR filter are close to the unit circle. The previous studies 

([3J - [9]) concentrated on using the Simple Genetic Algorithm, which has many 

disadvantages in many applications. 

The second objective is to find out which of the alternative filter structure 

gives the best results when applying genetic algorithms to the adaptation of HR 

filters. The disadvantage of the direct form structure has been reported [10], the 
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alternative structures being cascade, parallel and lattice. 

Finally, we consider the coefficients of adaptive HR filters, in terms of quanti­

tative analysis, which most previous research has missed. 

1.4 Outline of the Thesis 

The remainder of the thesis is organized as follows: 

Chapter 2. Overview of Genetic Algorithms 

The concepts, mathematical foundations and operators of genetic algorithms are 

described in this chapter. It lays out the background of genetic algorithms for the 

whole thesis. 

Chapter 3. Adaptive Infinite Impulse Response Filters 

The two fundamental approaches to adaptive HR filter - equation error and output 

error formulation - are introduced. We also outline gradient algorithms for the 

adaptive HR filter. 

Chapter 4. Simulations of Two Gradient HR Filtering Algorithms 

Two recent gradient approaches to the HR filtering problem are reiterated. Com­

puter simulation of these two schemes are conducted, the results of which are 

compared with our genetic algorithm results in later chapters. 

Chapter 5. Applying Simple Genetic Algorithm to HR Filters 

Computer simulation results of applying the Simple Genetic Algorithm to the 

adaptation of HR filtering problems are obtained. Direct, cascade and parallel 

HR filter structures are used in the experiments. 
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Chapter 6. Applying Genitor to HR Filters 

In this chapter, computer simulation results of applying Genitor to the adapta­

tion of HR filtering problems are given. We experiment with a variety of HR 

filtering problems - multi-modal, poles close to the unit circle, and high order 

HR filter problems. We also experiment with different HR filter structures. Sev­

eral discussions based on the results in this chapter and the previous chapter are 

presented. 

Chapter 7. Conclusions 

The final chapter provides a conclusion to the results presented here - both the 

successes and limitations of applying genetic algorithms to HR filtering problems. 

Finally, we propose a variety of topics for further investigation. 



Chapter 2 

Overview of Genetic Algorithms 

Interest in Genetic Algorithms is expanding rapidly. Researchers have found that 

they can apply Genetic Algorithms to many different areas, such as biology, com­

puter science, engineering, economics etc.. In this chapter, the background of 

Genetic Algorithms is presented. 

2.1 Introduction 

In On the Origin of Species by Means of Natural Selection [11], Darwin argued that 

all existing organisms are the modified descendants of one or a few simple ancestors 

that arose on Earth in the distant past - as we now know, over 3000 million years 

ago. He also argued that the main force driving this evolutionary change was 

natural selection [12J. Genetic Algorithms (GAs) are a group of search algorithms 

based on the mechanisms of such natural selection and genetics [13J. The basic 

idea and the fundamental theory were developed by Holland and his student in 

6 



CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 7 

the 60's and early 70's at Michigan University [14], [15]. These algorithms encode 

a potential solution to a specific problem on a simple chromosome-like (or gene­

like) data structure, and apply selection, recombination, mutation and perhaps 

other genetic operations to these structures, so as to preserve critical information 

[16]. 

An implementation of a genetic algorithm begins with a population of (typi­

cally random) chromosomes. These chromosomes can be represented by binary, 

arabic or alphabetical data. One then evaluates these structures and allocates re­

productive opportunities in such a way that those chromosomes which represent a 

better solution to the target problem are given more chances to 'reproduce' than 

those chromosomes which are poorer solutions. The 'goodness' or 'fitness' of a 

solution is typically defined with respect to the current population. 

In a classical GA, the members of the population are represented as fixed­

length strings of binary digits, as shown in Figure 2.1. The length of the string 

L and the population size N are completely dependent on the problem. Either 

may range from a few tens to many thousands [17]. In genetic terms, we say 

that each binary string represents a chromosome, a gene or a genotype, each bit 

position is called the locus, and the locus value is named an allele. The genotype 

is decoded to form the phenotype of the individual. According to the problem we 

intend to solve, for example function optimization, we can convert the phenotype 

to the fitness (or function) value. The fitness values in Figure 2.1 (the second 

parentheses) are obtained through the following fitness evaluation procedure: 

fitness = phenotype/2. (2.1) 



CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 8 

Sometimes we want to find the minimum, so the lowest fitness value is required; if 

we solve the maximum problem, the highest fitness value is required - it is problem 

dependent. In Chapters 5 and 6, we optimize the mean square error (MSE), so 

finding the lowest fitness value is the required optimization. 

In a broader usage of the term, a genetic algorithm is any population-based 

model that uses selection and recombination operators to generate new sample 

points in a search space. Fitness proportionate selection, for example, which em­

bodies the concept of 'survival of the fittest', is used to select parents from the 

population. Genetic recombination (crossover) is applied to pairs of parents to 

create offspring, which will be mutated through the mutation operation and then 

inserted into a new population, forming the next generation of individuals. The 

whole procedure is shown in Figure 2.2. We will discuss these basic genetic op­

erators in section 2.3. In the next section we introduce the concept of schema 

and schema theory, which will give the mathematical background for genetic al­

gorithms. In section 2.4, some advanced operators are introduced, and a practical 

example, which shows how the genetic algorithm works, is given in section 2.5. 
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000 1 0 1 1 1 (23) (11.5) 
1 1 0 0 0 1 0 1 (197) (98.5) 
1 0 0 1 1 0 0 0 (152) (76) 
00 0 1 0 1 1 0 (22) (11) 

10111100 
01000100 
011 101 1 1 
101 0 1 010 

(188) (94) 
(68) (34) 
(119) (59.5) 
(170) (85) 

9 

Figure 2.1: A population of eight binary strings, each with a length of eight bits 

(phenotypes shown in the first parentheses, fitnesses in the second parentheses). 
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Randomly Initialize Population Individuals 

i 
Evalute Fitness of Each Individual 

1 
Select Parent #1 Proportional to Fitness 

1 
Select Parent #2 Proportional to Fitness 

1 
Recombine Two Parents to Form Two Offsprings 

i 
Mutate and Insert Offsprings into New Population 

i 
Yes No 

Size of New Population == N? 

Figure 2.2: The simple genetic algorithm procedure. 
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2.2 Schema and Schema Theorem 

11 

The concept of schema and the schema theorem were developed by Holland in his 

landmark book Adaptation In Natural and Artificial Systems [14]. The schema 

theorem laid a mathematical foundation for genetic algorithms. It provides a 

lower bound on the change in the sampling rate for a single schema (hyperplane) 

from one generation to the next. 

2.2.1 Schema 

A schema is a similarity template describing a subset of strings with similarities 

at certain string positions [13]. These similarities can help guide a genetic search. 

Before presenting further discussion, we introduce the * or don't care symbol for 

the string representation, which can either be 0 or 1, so a genetic string can be 

represented by the set {O, 1, *}. A string with length L represented by the set {O, 

1, *} has 3L different combinations, we say this string has 3L schemata. In Figure 

2.3, string 1 and string 2 have the same bit value on the second and the fourth 

bit position, so they can be written into the schema representation of string 3. 

Given a schema H = {I 0 * * * I}, we introduce two important properties of 

schemata: 

• defining length, denoted by c( H) is the distance between the first and the 

last specific real value (0 or 1) position, here c(H) = 6 - 1 = 5; 

• order, denoted by o(H), is the number or fixed real value (0 or 1) positions. 

In the above example, o(H) = 3. 
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string 1 

string 2 

string 3 

Figure 2.3: Illustration of schemata. 

12 

2.2.2 Genetic Search Space and Schema as Genetic Search 

Space Partition 

Compared with traditional gradient search algorithms, such as least mean square 

(LMS) and recursive least squares (RLS), genetic algorithms are global search 

methods, because they are population based search methods. Every member of 

the population can be a search point, and every generation has N (population size) 

search points. These methods are weak, but robust and general [16J. Normally, the 

optimization problems are encoded into binary or alphabetical representations. If 

the problem is encoded into binary strings with length L, the search space is 2L 

and forms an L-dimensional hypercube. The genetic algorithm samples are the 

corners of this hypercube (Figure 2.4). For a length 15 binary string encoding, 

there are 215 = 32,768 possible solutions in the search space, for a length 32 

binary string encoding, there are 232 = 2,147,483,648 possible solutions in the 

search space. The target for the genetic algorithm is to find out which one is the 

best solution in the genetic search space. 

Genetic algorithms can result in complex and robust searches by implicitly 

sampling hyperplane (schema) partitions of the search space [16]. Using the ex-
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ample from [16], we explain how the search space can be treated as a hypercube, 

and how it is partitioned. In Figure 2.4, the upper and lower cubes represent 

3-dimension and 4-dimension spaces. The lower cube is called a hypercube, and is 

constructed by a cube 'hanging' inside the other cube. The corners are represented 

by strings or the search points in the search space. The numbering scheme for 

the lower hypercube corners is produced by adding a 0 to the upper cube corner 

labels as a prefix to form the corner labels of the outer cube, and a 1 to the upper 

cube corner labels as a prefix to form the corner labels of the inner cube. The 

front plane of the upper cube can be represented by the schema {O * *}, the front 

plane of the inner and outer bottom cube can be represented by the schemata 

{OD * *} and {ID * *}. In the upper cube, 8 points, 12 lines and 6 planes partition 

the 3-D space, making 33 =27 schemata in total including the hypercube (all * in 

schema) itself. 

2.2.3 Schema Theorem 

Suppose at a given generation t there are M samples of a particular schema H 

contained within the population P(t), M can be denoted by M(H, t). We first 

consider reproduction, during which the intermediate samples are created and 

put in the mating pool. The selections are made according their fitness values, 

with the probability of a string being selected as 

Pi = N . 
L;=1 f; 

fi 
(2.2) 
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111 

010 

100 J..--l-------.,.I 101 

000 
0110 0111 

A--------------,? 
1 -;7 

/ /: 1110 1111 ;; 

0010 / / 
~--- --1- J 

1010 

1 

1000 )L---..,.L/'------~-
'-.. 

-~------7' 
1 / 0101 

/ 1001 1 

/ / \ 1 / 
/ 1 / 

~------------- Y 
0000 0001 

Figure 2.4: A 3-D and a 4-D hypercube. The corners of the 4-D hypercube are 

numbered in the same way as in the upper 3-D hypercube, except the addition 

of a 0 to the outer cube corner labels as a prefix, and the addition of a 1 to the 

inner cube corner labels as a prefix. 
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Therefore, after selecting samples from a population P{t) with size N, we expect 

to have M{H, intermediate) representatives of the schema H in the mating pool. 

This can be calculated by 

M(H, intermediate) = N M(~, t)f(H) , 
Lj=l !; 

(2.3) 

where f(H) is the average fitness of schema H. This equation can also be written 

as 

M(H, intermediate) = M(H,t/j), (2.4) 

with 

-f = Lf=l!; 
N ' 

(2.5) 

which is the population average fitness. 

Next crossover is included. After applying crossover to the individuals in the 

mating pool, some individuals will survive, some individuals will die and some 

new individuals will be created. For a schema H, the bigger the defining length 

is, the easier it is disrupted. The probability for schema H being destroyed is 

8(H) 
Pd= L-1' (2.6) 

and the survival probability is 

P. = 1- Pd. (2.7) 

Assuming the crossover probability is Pc, the survival probability of schema H can 

be given as 

8(H) 
P. :::: 1 - Pc L _ 1· (2.8) 



CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 16 

Therefore, by combining reproduction and recombination, the expected represen-

tatives of the schema H in the next generation is 

f(H) 8(H) 
M(H,t+l)~M(H,t) 1 [1- Pc L_l]· (2.9) 

Finally, the mutation operator is considered. Mutation could happen to every 

bit position in a schema. Now suppose the mutation probability is Pm, then for 

every single bit, the probability for it to survive over the mutation is 1- pm. These 

o(H} bit positions have a value of 0 or 1 in the schema H. If the schema survives 

to the next generation, the o(H} bits have to survive, so applying mutation to the 

schema H, the probability for this schema to survive is (1 - Pm)o(H). Thus, the 

equation (2.9) can be rewritten as 

(2.10) 

This is called the schema theorem. Normally, the mutation rate Pm is very small 

(Pm « 1), so the schema theorem (2.10) can be further simplified as 

(2.11) 

From this theorem, we draw the following conclusion: low defining length, 

low order schemata are given exponentially increasing or decreasing numbers of 

samples, depending on a schema's average fitness [13], and are given the special 

name building blocks. Building blocks play a important role in genetic algorithm 

studies, see [13] for details. 
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2.3 Genetic Operators 

17 

The basic genetic algorithm cycle is completed through four phases: evaluation, se­

lection, recombination and mutation [18]. Genetic operators play a very important 

role in this cycle. In this section, three basic operators - selection (reproduction), 

crossover (recombination) and mutation are introduced. 

2.3.1 Reproduction - Selection 

Genetic algorithms start with a random initial population, of size N and string 

length L, with each population individual evaluated for its fitness value. Selection 

is an operator which uses the fitness value to select the fittest string. For example, 

for a maximum optimization problem, apply the selection operator to the popu­

lation in Figure 2.1, then the second and the third strings will have the highest 

probability of being selected, because they have the highest fitness values (94 and 

98.5). The selected individuals will be recombined and mutated, surviving to the 

next generation. The non-selected individuals will die out and not be included in 

the next generation. So under selection alone, individuals can only do one of three 

things: they may be born, they may live or they may die [19]. The selection phase 

is composed of two parts: 1) determination of the individuals' expected values; 

and 2) conversion of the expected values to discrete numbers of offspring [18]. 

The absolute difference between an individual's actual sampling probability and 
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its expected value is defined as selection bias 1 There are many different selection 

schemes: proportionate, ranking, tournament and steady state selection. We now 

give some basic details about these selection schemes. 

Proportionate selection describes a group of selection schemes that choose 

individuals for birth according to their fitness values. In these schemes, the prob-

ability of selection p of an individual from the ith class in the tth generation is 

calculated as 

Pi,t = "N f" 
L.,,3=1 3 

(2.12) 

where N is the population size. Various methods have been suggested for sam-

pling this probability distribution, including roulette wheel selection [13], [15], 

stochastic remainder and stochastic universal selection [18J, etc.. Here we give 

a brief introduction to the roulette wheel selection and the stochastic remainder 

selection. 

The roulette wheel selection is also called the Monte Carlo selection [15J. It 

uses the gambling roulette wheel to allocate offspring strings with slots sized 

according to their fitness. We list several strings in Table 2.1 together with their 

fitness and the percentage of individual fitness in the fitness sum. Figure 2.5 is a 

roulette wheel with the related string slots. We spin this wheel four times, four 

offspring strings are produced, and these four strings form the mating pool. So 

lThis bias is used by James Baker to analyse election efficiency in [18]. It has different 

definition to the one we are going to use in Chapter 6 
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Table 2.1: The example for roulette wheel selection. 

I String No. I String I Fitness I % of Total I 
1 00010111 12.5 6.3 

2 11000101 98.5 49.7 

3 10011000 76 38.4 

4 00010110 11 5.6 

Figure 2.5: The roulette wheel reproduction. 
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four spins perform the whole selection procedure, and strings 2 and 3 have the 

highest probability of being selected. 

We consider the example in [13], which maximizes the function f(x) = x2 over 

the interval [0-31]' where x is represented by five-bit s~rings in the GA, given in 

Table 2.2, showing the stochastic remainder selection. First, we calculate the mean 

of the fitness, which is equal to (4+576+1+361)/4 = 235.5, then we calculate the 

expected number of copies the string will produce in the intermediate population. 

For string 1, Expect = integer part of (4/235.5) = 0, its remainder = (4/235.5) -

o = 0.017; for string 2, Expect = integer part of (576/235.5) = 2, its remainder 

= (576/235.5) - 2 = 0.45, etc .. Now we have produced three string at the current 

stage, two copies of string 2 and one copy of string 4. According to the remainder, 

we carry out another round of selection from the four strings: if drand48(J2 :::; 

Remainder (roulette wheel), we choose this string, and in this case, the chosen 

string will be string 4. We now construct an intermediate population { 1 1 0 0 0, 

1 1 0 0 0, 1 0 0 1 1, 1 0 0 1 1 }, and use a random set of selecting strings from the 

intermediate population to form the mating pool. The selection procedure used 

is the stochastic remainder selection. If after one string has been selected from 

the intermediate population to the mating pool, this string is dismissed from 

the intermediate population, we call the whole procedure stochastic remainder 

selection with replacement. We will use this selection scheme in the next chapter. 

1). 

Ranking selection is a selection scheme in which each individual receives an 

'drand480 is a random number generation function, generate random number between (0, 
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Table 2.2: The example for stochastic remainder selection. 

String No. String :1) Fitness :1)2 Expect Remainder 

1 00010 2 4 0 0.017 

2 11000 24 576 2 0.45 

3 00001 1 1 0 0.004 

4 10011 19 361 1 0.53 

expected number of offspring based on the rank of its performance and not on 

the magnitude [20]. It can control the rate of convergence, because this selection 

scheme can control the range of trials allocated to any single individual, so no 

individual receives many offspring. We will discuss this scheme further in Chapter 

6. For more detailed studies, see [20]. 

Tournament selection is one of the most commonly used selection schemes 

in genetic algorithms. A group of individuals are randomly chosed from a popu­

lation; select the best individual from this group for recombination, mutate, and 

repeat this procedure as many times as desired (usually until the mating pool is 

filled). Tournaments are often held between pairs (tournament size = 2) or more 

than two individuals [19]. 

Steady state selection is another selection scheme which was used in Genitor 

[21], [22]. We will introduce this scheme in chapter 6. 
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2.3.2 Recombination - Crossover 

Once parents have been selected from the population, their genetic material is 

combined to form the offspring. Picking a pair of strings among the selected indi­

viduals, and crossing them into one another with a probability pc for exchanging 

genetic information, produces a new pair of strings. This procedure repeats a 

certain number of times until the full population is filled. Crossovers can be one 

of 1-point, 2-point, ... , or uniform crossover [23], [24], which exchange 1, 2, ... , 

or L/2 fragments of the strings. The crossover site can be chosen between 1 and 

L (string length), but normally it is randomly chosen. In Figure 2.1, if 1-point 

crossover occurs between the fourth and the fifth binary position, swapping the 

fragments of the first and the second strings produces two offspring, the first string 

becoming {O 0 0 1 1 1 0 O}. It is this improvement in performance (fitness 14), 

which is the purpose of recombination. In Figure 2.6, one-point crossover occurs 

at locus 5; in figure 2.7, two-point crossover occurs between locus 3 and locus 

7. Figure 2.8 shows the uniform crossover. We will apply these recombination 

procedures in Chapter 5. 

2.3.3 Mutation 

When applying crossover on the selected strings, some alleles on a certain locus 

may never be changed through the recombination operation, meaning that a cer­

tain part of the search space will not be searched. To overcome this problem, 

another operator - mutation - is introduced. 
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Mutation is the means by which fundamentally new traits are introduced into 

the population [17J. Mutation occurs randomly and very rarely both in natural 

and artificial genetic systems, but when it does, it may cause chromosomes to take 

on new values which have never occurred in the population before [25J. When the 

mutation does happen to a individual, one bit of the chromosome is chosen and 

set to its complementary value. This provides greater ability to ensure that every 

part of the search space is visited. If mutation happens to the string 

o 00 1 0 1 0 1, 

on locus 8, the allele on the locus will be changed to its complementary value: 

o 0 0 1 0 1 0 O. 

Typically in GAs, only one in many thousand of genotypes are affected by muta­

tion. 

The processes of evaluation for fitness, reproduction, recombination and mu­

tation form one generation cycle in the execution of a genetic algorithm. 

2.4 Some Advanced Operators 

Selection, crossover and mutation are the basic operators for genetic algorithms. 

There are many other operators adopted from natural genetics [12J in genetic algo­

rithms. These operators include low-level operators such as dominance, inversion, 

intrachromosomal duplication, deletion, translocation, and segregation. The high 
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before crossover 

00000000 

111 1 1 1 1 1 

after crossover 

00001111 

11110000 

Figure 2.6: One-point crossover, cross site at locus 5. 

before crossover 

00000000 

111 1 1 1 1 1 

after crossover 

00111100 

11000011 

Figure 2.7: Two-point crossover, cross site at 3 and 7. 

before crossover 

00000000 

11111111 

after crossover 

010 1 0 1 0 1 

10101010 

Figure 2.8: Uniform crossover. 
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level operators include migration, marriage restriction, and sharing functions [13]. 

We introduce two low-level operators. 

Diploidy and Dominance. So far we have only discussed the simplest ge­

netic structure: haploid or single chromosome genetic structure. In genetics, there 

exist diploidy and polyploidy, more complicated structures in which one genotype 

is constructed by two, or more than two, chromosome strings. For example, the 

following genotype (diploidy) is made up of two chromosome: 

aBcDeF, 

AbCdef. 

On the same locus we have two different alleles, which in nature could represent 

different phenotypic characteristics. For example, if B represents the blue eye gene 

and b the yellow eye gene, then the phenotype can not express blue eye and yellow 

eye at the same time, it must use dominance to decide which gene is expressed in 

the next generation. In the above example, if the upper-case letter is dominant 

to lower-case letter, the next generation's expressed phenotype would be 

ABCDeF. 

In nature, animals and plants with diploid or polyploid structure have been the 

most capable of surviving, because their genetic constitution does not easily forget 

the lessons learned prior to previous environmental shifts [13]. The application of 

diploidy and dominance in genetic search can be found in [26]. 

Inversion. Inversion is a reordering operator - it reshufles the chromosome 

structure: 
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before inversion 1 1 0 1 1 1 0 1 

after inversion 1 1 1 1 1 0 0 1. 
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It changes the whole genotype structure, so that a better offspring may be pro­

duced. For more detailed studies of the these operators and other operators, see 

[13J 

2.5 Genetic Algorithm at Work - an Example 

To illustrate the implementation of a simple genetic algorithm and schema pro­

cessing, we will use the simple function optimization example given in [13J. This 

problem is a maximization problem, the first step of which to optimize the function 

J(x) = :1)2 over the interval (i.e. parameter set) [0-31J is to encode the parameter set 

x, for example as a five digit binary string in Table 2.3 [13], generated randomly 

by a random number generator. 

Firstly, we use proportionate selection, for example roulette wheel selection, 

to construct the intermediate population, which can be called the mating pool. 

The strings are selected according their fitness values: the expected numbers for 

a string being reproduced, Id1, for first string is 0.58, the second string is 1.97, 

the third string is 0.22, and the fourth is 1.23. So the number of copies that 

the mating pool receives from the initial population strings are 1, 2, 0, and 1 

respectively. 

Secondly, we apply crossover to the mating pool (Tables 2.3 and 2.4 [13]). Two 

strings are randomly selected to mate, and the crossover sites are also randomly 
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selected. After crossover has been applied to the pairs of strings, the new popula­

tion is obtained. The average fitness of the new population is improved, so is the 

evolution. 

Finally, we consider the involvement of mutation. Suppose the mutation rate 

is 0.001, then the probability for mutation to occur is 0.00h4*5 = 0.02, so in this 

case, no mutation occurs. 

In Tables 2.3 and 2.4, by using the schema theorem (2.11), we can also perform 

schema processing. We chose three schemata: HI = { 1 * * * * }, H2 = {* 1 0 * 

* } and H3 = { 1 * * * 0 }. After reproduction, the expected number of copies of 

the schemata are 

M(HI , intermediate) = 2*469/293 = 3.20, 

M(H2 , intermediate) = 2*320/293 = 2.18, 

M(H3 , intermediate) = h576/293 = 1.64. 

After crossover and mutation, the expected number of copies of the schemata are 

3 

M(HI , t+1) = 2*(469/2931*(1 - h(0/4))(1 - O.OOhO) = 3.20, 

M(H2 , t+1) = 2*(320/293)*(1 - h(1/4))*(1 - 0.00h1) = 1.64, 

M(H3' t+1) = h(576/293l*(1- 1*(4/4))*(1 - 0.00h4) = 0.00. 

Because of the long defining length, the crossover will usually destroy schema 

H3 • Therefore, we can see that string processing and schema processing produce 

3The crossover rate p, = 1.0 means that crossover would definitely happen. The mutation 

rate p= = 0.001. 
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Table 2.3: String Processing and Schema Processing by Hand. 

String Processing 

String Initial 
f(x) 

Expected Actual 

No. Population 
x 

Count Count 

1 01101 13 169 0.58 1 

2 1 1 0 0 0 24 576 1.97 2 

3 o 1 0 0 0 8 64 0.22 0 

4 10011 19 361 1.23 1 

Sum 1170 4.00 4.0 

Average 293 1.00 1.0 

Max 576 1.97 2.0 

Schema Processing 

Before Reproduction 

String Schema Average 
Schema Representatives Fitness f(H) 

Hl 1 * * * * 2, 4 469 

H2 * 10* * 2, 3 320 

H3 1 * * * 0 2 576 
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Table 2.4: String Processing and Schema Processing by Hand, continuation of 

Table 2.3. 

String Processing 

Mating 
Mates Swapping 

New 
f(xl Pool Population x 

o 110 1 1 o 1 1 0 [1] 01100 12 144 
1 1000 2 1 1 0 0 [0] 11001 25 625 
1 1000 2 1 1 [0 0 0] 1 1 0 11 27 729 
10011 4 1 0 [0 1 1] 10000 16 256 

Sum 1754 
Average 439 

Max 729 

Schema Processing 

After Reproduction After All Operators 

Expected Actual String Expected Actual String 
Count Count Respresentives Count Count Respresentives 

3.20 3 2,3,4 3.20 3 2,3,4 
2.18 2 2,3 1.64 2 2,3 
1.97 2 2,3 0.0 1 4 
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similar results. 

2.6 Summary 

In this chapter, we have outlined the basic concepts, mathematical foundations, 

and operators of the genetic algorithm. We have also given a hands-on example 

to show how a genetic algorithm works. 

In fact, many genetic algorithm models have been introduced by researchers 

largely working from an experimental perspective, such as the Simple Genetic 

Algorithm (SGA) [13], Genitor [21], CHC [27J, the Parallel Genetic Algorithm 

[28], etc.. Many of these genetic algorithms are application oriented, and the 

interest is typically in genetic algorithms as optimization tools. In this thesis, we 

apply genetic algorithms to the adaptation of adaptive infinite impulse response 

(HR) filtering problems. We will concentrate on the Simple Genetic Algorithm 

and Genitor in Chapters 5 and 6. 



Chapter 3 

Adaptive Infinite Impulse 

Response Filters 

3.1 Introduction - Adaptive Filters and Their 

Applications 

Adaptive filters involve the use of a programmable filter whose frequency response 

or transfer function is altered, or adapted, to pass without degradation the desired 

components of the signal and to attenuate the undesired or interfering signals, or 

reduce any distortion on the input signal [29]. Figure 3.1 shows an adaptive filter 

configuration. A signal x(n) is the input to an adaptive programmable filter, 

the adaptive filter output y(n) is compared with the desired signal d(n), and the 

difference is sent to an adaptive algorithm to adjust the adaptive filter coefficients. 

This adjustment drives the filter output to become closer and closer to the desired 

31 
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Desired Output d(n) 

Programmable 
Filte r Output 

Filter y (n) 

- ~ + 
Fi Iter Input Update Filter + 

x(n) Coefficients 
Error Out put 

e(n) 

Adaptive 
Algorithm 

Figure 3.1: A Generic Block Diagram of an Adaptive Filter. 

Input 

x(n) 

Coefficients 

Figure 3.2: An FIR Filter Block Diagram. 

Output 

y(n) 
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+ )--+{ )--+(+ 
Output 

y(n) 

x(n) 

Figure 3.3: An HR Filter Block Diagram. 
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output, so the unwanted components in x(n) are eliminated. The desirable features 

of adaptive filters are their ability to operate effectively in an a priori unknown 

environment and also to track time variations in the input statistics. 

Linear adaptive filters can be classified as adaptive finite impulse response 

(FIR) filters and adaptive infinite impulse response (HR) filters. FIR filters (Fig­

ure 3.2) are generally used in the application of adaptive filters due to their in­

herent stability. FIR filter algorithms such as LMS, RLS, FTF and QR-RLS, 

etc., [29J - [35J, are well established. In particular, gradient algorithms are very 

suitable for adaptive FIR filtering as the error surface is quadratic and unimodal 

with respect to the filter coefficients. 

For certain real physical systems, adaptive HR filter (Figure 3.3) [29], [31], 

[36], [37J can be more economical, in the sense of lower filter order, compared to 

their adaptive FIR filter counterparts. However the error surface of an adaptive 

HR filter can be multi-modal, making it difficult for HR adaptation algorithms to 

find the global optimum. Instability is another very important issue to consider, 

especially when the poles are quite close to the unit circle, in which case adaptation 

noise can result in violation of the stability condition. 

The direct form adaptive HR filter implementation can exhibit high roundoff 

noise in the presence of finite precision arithmetic, and remains susceptible to 

quantization limit cycles [38J. If the poles of the HR filter are close to the unit 

circle, for conventional gradient adaptive HR filter algorithms, the direct form 

HR filter's stability is not guaranteed. The algorithms in [39J, which are variants 

of the Steiglitz-McBride technique [40J, where the filter structure remains direct 
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form, fail to converge for this condition. 

This has motivated researchers to look for alternative structures and algo­

rithms. Cascade, parallel and lattice structures have been documented [10], [41] 

and [42]. The solution given in [41] uses the LMS algorithm on parallel and cas­

cade form adaptive HR filters. This introduces additional saddle points into the 

performance surface, which are unstable solutions in the parameter space [41]. 

The solution given in [42] uses the LMS algorithm on the lattice form adaptive 

HR filter, which maintains computational complexity O(M2) for gradient calcu­

lation. The algorithms in [10] are normalized lattice-based, the first algorithm 

being a reinterpretation of the Steiglitz-McBride method, while the second is a 

variation on the output error method, both of them of O(M) complexity. The co­

efficients are updated by using the QR-based Gauss-Newton algorithm [10], [43] 

which requires many matrix computations, and for the case where the poles are 

extremely close to the unit circle, the algorithms fail to converge. 

Genetic Algorithms and stochastic learning automata [44] are alternative so­

lutions to the adaptive HR filtering problems. The latter solution has been shown 

to be successful in tackling some HR filtering problems [44]. In our studies, we 

use the genetic algorithm solution to the HR filtering problems in Chapters 5 and 

6. 

Both FIR and HR filters have been successfully applied in many areas such as 

prediction, communication channel equalization, echo cancellation, system identi­

fication, image processing and pattern recognition, etc .. We give a brief descrip­

tion of the first four applications. 
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• Adaptive signal prediction (Figure 3.4) is an adaptive system configured to 

perform prediction of a signal, based upon its previous values. Here the predicted 

or the desired signal is the current signal. This signal is fed through a delay 

stage into the adaptive filter. The predictor is trying to minimize the error signal, 

which is the difference between the desired signal and the adaptive filter output. 

The adaptive filter output is a combination of previous filter inputs. When the 

error is minimized, this adaptive filter output estimates the current input signal. 

An application of adaptive predictors is cancellation of periodic interference [45]. 

Another application is the efficient encoding of speech signals [46]- [48]. 

• Adaptive channel equalization (Figure 3.5) is inverse modeling [29], [31], [49] 

- [52]. For this technique, the desired adaptive filter output is an estimate of the 

original transmitted message sequence and the input to the adaptive filter is the 

received data sequence, which is subject to distortion due to transmission through 

the channel. The adaptive filter is updated so that the error between the equalizer 

output and the desired response, which is again available as either the training 

data or previous equalizer decisions, is minimized, hence signal distortion caused 

by the transmission channel is removed. 

• Adaptive noise cancellation (Figure 3.6) is an adaptive processing system to 

cancel interference [53]. For this system, a signal, s, is corrupted by interference 

n, resulting in the combined signal, s+n. A correlated, but distorted, estimate of 

this noise, 'it, is also available. So the corrupted signal, s+n, is fed to the desired 

input and the estimated noise is fed to the adaptive filter input. By minimizing 

the difference between the two signals, in term of error, the adaptive filter is 
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Figure 3.4: Adaptive Prediction. 
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Figure 3.7: Adaptive System Identification. 
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configured to estimate the actual noise. The noise estimate may then be sub­

tracted from the noisy signal, resulting in an estimate of the original signal. A 

typical example of the application of this technique is the cancellation of additive 

noise from speech signals [54 J • 

• Adaptive system identification [29], [32], [43J is shown in Figure 3.7. The aim 

of this adaptive filter is to find a system with a transfer function which closely 

approximates to the unknown system's transfer function. A signal x{n) is fed into 

the unknown system and also the adaptive filter. The output, which the unknown 

system gives in response to this input, is the desired response of the adaptive filter 

and so is fed into the desired response input. By minimizing the difference of two 

system's output, the adaptive filter learns to respond like the unknown system. 

The parameters ofthe adaptive filter try to pertain to the unknown system's. The 

output of the unknown system may be corrupted by a small amount of noise, so 

that it can not be identified exactly. Throughout this thesis, system identification 

is used as the main system configuration. 

3.2 Equation-Error and Output-Error Adaptive 

HR Filters 

Fundamentally, there have been two approaches to adaptive HR filtering that 

correspond to different formulations of the prediction error. They are known as 

equation-error and output-error formulations [36J, [37J. 
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3.2.1 Equation-Error Formulation 

In the equation-error formulation [55], the delayed desired response d(n-l) and 

the input 1:(n) are fed into the filter, to generate an estimate of d(n). It can be 

characterized by the nonrecursive difference equation 

M M 
y,(n) = "Ea.(n)1:(n - k) + "Ebk(n)d(n - k), (3.1) 

.=0 .=1 
where a.(n) and b.(n) are the adjustable coefficients. Alternatively, this formula-

tion can be rewritten as: 

y,(n) = A(n,z)1:(n) + B(n,z)d(n), (3.2) 

where the polynomials in z represent time-varying filters and are defined by 

M M 
A(n, z) = "E a.(n)z-' and B(n, z) = "E b.(n)z-'. (3.3) 

.=1 
This formulation is depicted in Figure 3.8 [36J. It does not have feedback, hence it 

is simply operated by all zero and all pole filters, and the corresponding algorithms 

are well understood. The difference with the FIR filter is that the FIR filter is 

strictly an all zero model since B(n, q) = O. The equation-error approach can 

lead to biased estimates of the coefficients [36J, in that the converged coefficients 

obtained with this approach are generally different from those generated by the 

output-error formulation. The error e.(n) = d(n) - y.(n) is a linear function of 

the coefficients, so that the mean square error (MS E) is a quadratic function with 

a single global minimum. 

Equation (3.1) can also be compactly written as the inner product 

(3.4) 
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Figure 3.8: Equation-error formulation 

where the coefficient vector ern) and the signal vector 'Pe(n) each have length 

(2M+l) elements and are defined as 

ern) = [ao(n), ... ,aM(n), b1(n), ... , bM(nW (3.5) 

'Pe(n) = [x(n), ... , x(n - M), d(n - I), ... , d(n - MW. (3.6) 

The equation (3.4) is a linear regression and can be solved by using the LMS 

or RLS algorithms. The LMS (Least-mean-square) algorithm [30J is a recursive 

gradient-descent method that searches for the minimum of the mean square er-

ror; the RLS (recursive-least-square) algorithm [32J recursively minimizes a least-

squares criterion. 
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3.2.2 Output-Error Formulation 

Figure 3.3 shows a direct form output-error adaptive HR filter. This output-error 

formulation can be characterized by the following recursive difference quation: 

M M 
yo(n) = L ak(n)x(n - k) + L bk(n)Yo(n - k), (3.7) 

k=l 

In this formulation, the input signal x(n) and the previous output signals are fed 

into the filter to generate the current output signal. Because this formulation 

depends on the feedback of output signals, it has a greater complexity due to the 

nonlinearity compared with equation-error approach. The equation (3.7) can be 

rewritten as 

A(n, z) 
yo(n) = 1- B(n, z) x(n), (3.8) 

and Figure 3.3 can be redraw as Figure 3.9. 

Equation (3.7) or (3.8) can also be written as the inner product 

(3.9) 

where the coefficient vector is given by equation (3.5) and the signal vector by 

'Po(n) = [x(n), ... , x(n - M), yo(n - 1), ... , yo(n - MW. (3.10) 

Clearly, we can see that the filter output Yo( n) is a nonlinear function of the 

coefficients B(n), the reason being that the output yo(n - k) of 'Po(n) depends 

on previous coefficient values. The error eo( n) = d(n) - Yo( n) is also a nonlinear 

function of the coefficients - the mean square error function is not a quadratic 
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Figure 3.9: Output error formulation. 

function and could have multiple minima [56]. Adaptive algorithms that are 

based on gradient-search methods (LMS or RLS) could converge to one of these 

local solutions, resulting in suboptimal performance and inaccurate estimate of 

the coefficients [36]. We will discuss these matters in the later chapters. In this 

thesis, we mostly use the output-error formulation for our studies. 

3.3 Adaptive HR Filter Algorithms 

Most of the adaptive HR filter adaptation algorithms are gradient based. These 

adaptive filtering algorithms revolve around a generic coefficient update formula 

O(n + 1) = O(n) + fl(n)a:(n)1jJ(n) (3.11) 
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or in Gauss-Newton form [43]: 

n 

8(n + 1) = 8(n) + [2: An-k,p(k),pt(kJrl,p(n)a(n), 0 « A« 1. (3.12) 
k=O 

where 8(n) is the coefficient vector, a(n) represents an a priori error signal, p(n) 

is a sequence of step size parameters, A is the forgetting factor and ,p(n) is a 

gradient vector, whose components are ordered in one-to-one correspondence with 

the elements of 8(n). The recursive adaptive algorithm in [43] adapts the filter 

coefficients to minimize the MSE (mean-square-error) cost function e = E[e2(n)], 

where ern} = d(n) - y(n}. Because e is generally unknown or the signals are 

nonstationary, the algorithm is designed to minimize e at each instant of time, 

and the instantaneous estimate of e(n) is given by e(n) ~ e2(n). The gradient is 

defined as 

8e(n) 
,p(n) =' \lee ~ 88(n) = -e(n)V'ey(n), (3.13) 

where y(n} is the adaptive filter output. 

By using the gradient-descent method and e = E[ e2 (n)] to evaluate the gradient 

vector ,p(n), the equation (3.11) becomes the LMS algorithm [32]. By using the 

formulation 

n 

e = 2: An-k!e(kW, (3.14) 
k=l 

to evaluate the gradient vector ,p(n), the equation (3.12) becomes the RLS algo­

rithm [29], [32], where A is the forgetting factor. 

The earliest study on HR filters using gradient algorithms can be traced back 

to 1976: Feintuch [57] applied the LMS algorithm to HR filters which triggered 
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a rebuttal [58] - [60] as well as new interest in adaptive HR filtering. This work 

[57] - [60] in adaptive HR filtering was mainly restricted to extending Widrow's 

LMS method of adaptive FIR filtering based on gradient search techniques. As 

discussed in [39], these algorithms may have guaranteed global convergence only 

for the unimodal error surface. This severely limits their usefulness. 

Another existing family of adaptive HR filtering algorithms is represented by 

the group of algorithms based on the concept of hyperstability [29], [37], [61] -

[63]. Among these, the hyperstable adaptive recursive filter (HARF) was proven 

asymptotically convergent under the 'strict positive real' (SPR) assumption [62]. 

However, the SPR requirement is a major obstacle in the practical application of 

HARF. 

Recently, two approaches [10], [39] claim that they can either solve the mul­

timodal case or the poles close to the unit circle case, and have a reduced com­

putational complexity. We will choose these two approaches to compare with our 

genetic algorithm approach. The simulation results based on these two approaches 

are given in Chapter 4. 

3.4 Summary 

In this chapter, we have given a brief introduction to adaptive filters and their 

applications. We have described the fundamental approaches to adaptive HR 

filters, namely are the equation-error formulation and output-error formulation, 

and their properties. We have given a generic adaptive algorithm formula, and 
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also reviewed the conventional adaptive HR filter algorithms, their convergence 

and stability properties. Based on the two more recent approaches mentioned in 

this chapter, we present the results of various simulations in the following chapter, 

which will lay a background for comparison with genetic algorithms in Chapters 

5 and 6. 



Chapter 4 

Simulations of Two Gradient IIR 

Filter Algorithms 

4.1 Introduction 

In Chapter 3, we briefly introduced adaptive HR filter algorithms: the gradient 

based algorithms [57] - [60], which may only have guaranteed global convergence 

for the unimodal error surface, and the hyperstable adaptive recursive filter al­

gorithms which require the SPR condition, a major obstacle in practical appli­

cations. A new adaptive HR filter developed by H. Fan and W. K. Jenkins [39] 

overcomes the previous gradient HR filter algorithm's problems. But stability is 

not guaranteed by this algorithm. Thus, in theory, a stability monitoring device 

has to be incorporated into these algorithms [39]. For the case of the filter's poles 

approaching the unit circle, we found this algorithm failed to converge. 

47 
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Another algorithm developed by P.A. Regalia [10] has a number of advantages 

over traditional gradient algorithms, especially multimodal and high order HR 

filter problems. We also found this algorithm failed to solve an HR filter problem 

when the poles are extremely close to the unit circle. In sections 4.3 and 4.4 we 

will present some experimental results to prove our claims. 

4.2 The Steiglitz-McBride Identification Tech-

• nlque 

Both of the HR filtering schemes we describe are based on the Steiglitz-McBride 

identification technique [40], [64]. This technique was developed by K. Steiglitz 

and L. E. Mcbride in 1965. A brief introduction to this technique will be given 

before we proceed on to discussing the algorithms. The Steiglitz-McBride iden-

tification technique is shown diagrammatically in Figure 4.1. It is an iterative 

technique. An initial estimate of the unknown system's denominator polynomial 

Dn(z) is used as a prefilter for both the input and output sequences relating the 

unknown system transfer function. The prefiltered signals are fed to the numer-

ator and denominator polynomials Nn+1(z) and Dn+1(z) to minimize a typically 

quadratic measure of the error ern). The prefilters are updated to 1/ Dn+1 (z) 

for the next sample instant, and the procedure continues by seeking Nn+2 (z) and 

Dn+2(Z), If convergence is obtained, that is, Dn+l(Z) = Dn(z), Figure 4.1 be-

comes Figure 4.2, which is in the form of a converged HR filter whose output is 

subtracted from the unknown system output to produce the error signal. We will 
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x_(:....n:....) ---,------+1 Unknown ~_..( 
System 

1 

Dn(z) 

v(n) 

1 

Dn(z) 

L--__ --i + \----------' 

e(n) 

d(n) 

Figure 4.1: The Steiglitz-McBride identification scheme. 

see how this technique works in both schemes. 

4.3 Fan's Algorithms 

The algorithms in [39] are a family of stochastic approximation variants of the 

Steiglitz-McBride identification scheme. Suppose we have the system model of 

Figure 4.3, which is described by the following equations 

n4 "6 

w(n) = L ai(n):z:(n - i) + L bi(n)w(n - i), (4.1) 
i:::O 

d(n) = w(n) + v(n), (4.2) 
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v(n) 

x _(_n_) --, __ ---+j Unknown I-----+{ + }--_,-_d_(~n) 
System 

~ 
D(z) 

'--------+{+l+-------' 

e(n) 

Figure 4.2: The equivalent system of Fig. 1 at any stationary point. 

no nb 
y(n) = L ai(n)x(n - i) + L bi(n)y(n - i), 

i=O i=1 

e(n) = d(n) - y(n). 

(4.3) 

( 4.4) 

Fan's model (Figure 4.4) is obtained by adding three prefilters to the system 

identification model (Figure 4.3). Here 

no nb 

A = Lai(n)z-i and B = Lbi(n)z-i, (4.5) 
i=1 

nil n6 
A = Lai(n)z-i and B = Lbi(n)z-i. (4.6) 
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v(n) 

A 

1 - B 

x(n) e(n) 

-
A 

1- B y(n) 

I f ______________________ ~ 

Figure 4.3: System identification mode. 

A 

yen) 

1 

1- B 

x(n) 1 
1 - B ,--~'--, Output Error 

o(n) 
1 - B - x'(n 1- B 

i.. 
/ 1 - B Y'(n) / 

1 ______ ---------- ______________________ 1 __________ _ 

Figure 4.4: System identification mode of Fan's algorithm. 
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Fan's system identification model algorithm (SIM) is given by table 3.1 in which 

Table 3.1: Fan's SIM algorithm. 

a.(n+1)=a.(n)+re(n)",'(n-i), i=O,l,.··,na (4.7) 

bj(n + 1) = bj(n) + re(n)d'(n - j), j = 1,2"" ,nb (4.8) 

n. 
:v'(n) = ",(n) + Lb;(n):v'(n - j) (4.9) 

;=1 

n. 
e(n) = e'(n) - L bj(n)e'(n - j) (4.10) 

;=1 

e'(n) = d'(n) - y'(n) (4.11) 

na nIl 

w'(n) = L a,(n):v'(n - i) + L bj(n)w'(n - j) (4.12) 
;=1 

d'(n) = w'(n) + v'(n) (4.13) 

n. 
v'(n) = v(n) + Lbj(n)v'(n - j) (4.14) 

;=1 

n4 n" 
y'(n) = La.:v'(n - i) + Lb;(n)Y'(n - j) (4.15) 

i=O ;=1 
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T is a constant. If T is too large, the adaptive filter coefficients will go beyond the 

stable region and the filter will be unstable [39J. Fan also presents the adaptive 

filter model (AFM) and the independent filter (IF) algorithm. 

We conducted three experiments using this algorithm. In the first one, we 

chose the dynamic plant transfer function [56J as 

H (z) _ 1.0 
p - 1.0 - 1.2z 1 + 0.6z 2 

( 4.16) 

and the adaptive filter as 

( 4.17) 

The converged MSE results for this unimodal case are shown in Figure 4.5. The 

adaptive filter's coefficients, which are obtained by using this algorithm, are a,,(n) 

= 1.000000, b1(n) = 1.200000, and b2(n) = -0.600000. 

The MSE results of the second experiment are shown in Figure 4.6. This is a 

example considered by Johnson [58J, where 

H ( ) 0.05 - OAz-1 

p Z = 1.0 _ 1.1314z-1 + 0.25z-2 
( 4.18) 

H z _ a(n) 
a( ) - 1.0 _ b(n)z-l (4.19) 

This is a hi-modal case, with minima of 0.976 and 0.277. If we choose the initial 

coefficient values near or equal to the local minima, the algorithm can converge 

to the glohal minima after a certain number of adaptations. The coefficients of 

the adaptive filter obtained by Fan's algorithm are a( n) = 0.899225 and b( n) = 

-0.314626. 
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In the third experiment, the plant (unknown system) transfer function is cho-

sen as 

H( ) 1.0 
Z = 1.0 _ 1.4z-1 + 0.98z-2 ( 4.20) 

The adaptive filter transfer function is same as equation (4.17). This plant has 

two poles at O. 7±jO. 7 (modulus = 0.99), which are very close to the unit circle. 

We found that Fan's algorithms always 'blows up' no matter what value T has. 

Fan's algorithms are based on direct form HR filter structures, but have diffi­

culty solving high order HR filter problems and exhibit numerical implementation 

problems [10]. 
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M 
S 
E 

o ~------.-,----~'--------r-------'I--------' 
a:Equation Error -
b: Output Error -
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N umber of Iteration 

Figure 4.5: The unimodal case simulation of Fan's algorithm, MSE (dB) vs number 

of iteration. T is set to 0.002, the initial coefficients are set to zero. The plot of 

mean square errors is obtained by averaging 20 independent square errors. 
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10,-------,-------,--------,-------,--------, 
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o 

-5 

M 
S -10 
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a:Equation Error -
b: Output Error -
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o 10000 20000 30000 40000 50000 
Number of Iteration 

Figure 4.6: The bi-modal case simulation of Fan's algorithm, MSE (dB) vs number 

of iteration. T is set to 0.001, the initial coefficients are set (-0.519, 0.114), which 

are the local minima. The plot of mean square errors is obtained by averaging 20 

independent square errors. 
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u(n) COS<DN 
------,-~-{ + 

+ l--...,--'--.~ 
cos<PN z-l 

w(n) 

hN 

sin<Pt 

+ cos<D1 

"2 (n+1) 

ho 

+ l-----!+ 

Figure 4.7: Normalized lattice filter. 

4.4 Regalia's Algorithms 

y(n) 

Phillip Regalia has proposed two adaptive HR algorithms in [10J. Both of them 

use the normalized lattice filter structure (Figure 4.7) and the QR method to 

update the coefficients. The first algorithm is a reinterpretation of the Steiglitz­

McBride method (Figure 4.8), while the second one is a variation on the output 

error method. State space models are employed in the algorithm derivations. We 

summarize the first QR algorithm in table 4.2. 
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yen) 

u(n) Unknown 

.~ 
den 

x(n) System 
zen) 

) 

I z·1 I Q(n) I z·1 I Q(n) 

wen) s(n) 
x(n+1) z(n+l) 

- ---- - ------------------------------- -------

hl(n) ql(n) 

yen) - + + I den) 

~riOri error 

Figure 4.8: Regalia's algorithms model. 
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Table 4.2: Regalia's QR lattice algorithm. 

[ 
x(n + 1) 1 y(n) = ht(n) 

w(n) 
( 4.21) 

[ 
x(n + 1) 1 [ x(n) 1 = Q(n) 

w(n) u(n) 
( 4.22) 

[ 
z(n + 1) 1 [ z(n) 1 = Q(n) 

s(n) d(n) 
( 4.23) 

(4.24) 

( 4.25) 

[ 
z(n + 1) 1 [ x(n + 1) 1 a(n) = [0 ..• 01J Qt(n) - ht(n) 

s(n) w(n) 

t [ z(n + 1) 1 t [ x(n + 1) 1 = qN+1 -h (n) 
s(n) w(n) 

(4.26) 

_ 8a(n) = 1 Xi+l(n + 1), i = 0,· .. , N - 1 

8hi (n) ( ) . - N w n, 't-

(4.27) 
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811(n) = J -zi(n) nf=i+l c08<pk(n), i = 1,···, N - 1 

8<pi(n) 1 -ZN(n), i = N 

• [ .,p,( n) 1 [ 0 1 Q(n) = 
,Al/2R(n - 1) R(n) 

R(O) = Id 

a(n)g = R(n)Ae(n) 

k-l 

9k = 8in<pk IT C08<Pi, k = 1,2,··· M. 
;=1 

( 4.28) 

( 4.29) 

( 4.30) 

( 4.31) 

(4.32) 

(4.33) 

(4.34) 

( 4.35) 
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x(n) = [xl(n) x2(n) ... xN(n)] is the state vector, w(n) and srn) are intermediate 

signals, Q(n) is an (N+1)x (N+1) matrix, Qiv+1 is the bottom row of Qt(n), 1/lt(n) 

is the gradient vector given by equations 4.27 and 4.28, Q(n) is the Givens rotation 

matrix [32], [35], and <It is the first column of Q(n). 6.8(n) = 8(n+1) - 8(n) is the 

current coefficient value minus the previous coefficient value; ~ is a small constant. 

We performed experiments on two cases using Regalia's QR and LMS 1 algo-

rithms. In the first case, the plant is 

H () 0.5 - 0.4z-1 + 0.89z-2 

p z = 1.0 _ 0.89z-1 + 0.25z-2 ' 
(4.36) 

and the adaptive filter is normalized lattice (Figures 4.7 and 4.8). The mean 

square error plotted against the number of adaptations is shown in Figure 4.9. 

The converged coefficient result is given in Table 4.3. The normalized lattice 

(NL) plant coefficients are calculated according to Gray's formulations in [65], 

[66]. 

Table 4.3: The coefficients of the second order filter using Regalia's algorithm. 

I Coefficient I Plant (NL) I Adaptive Filter I 
ho(n) 0.818782 0.818527 

h1(n) 0.404959 0.404920 

h2(n) 0.890000 0.889887 

tPt{n) -0.792342 -0.711977 

<p2(n) 0.252680 0.250070 

1 Replaces the matrix gain term with the stepsize scalar in the Gauss-Newton standard form 

coefficient update formula (3.12). 
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Figure 4.9: Regalia's normalized lattice algorithm. Second order case, MSE (dB) 

vs number of iteration. In the QR algorithm, ,. is set to 0.15, A = 0.9988. In the 

LMS algorithm /.L = 0.00075. 
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Figure 4.10: Regalia's normalized lattice algorithm. Second order case, MSE (dB) 

vs number of iteration. In the QR algorithm, the ~ is set to 0.15, >. = 0.9988. In 

the LMS algorithm, p is set to 0.00075 
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In the second experiment, the plant transfer function is 

H (z) = 0.5 - 0.4z- 1 + 0.89z- 2 

p 1.0 - 1.4z 1 + 0.98z 2' 
(4.37) 

which has the same poles as transfer function (4.17), and the mean square error is 

given by Figure 4.10. The mean square error does not converge and the converged 

coefficients are not obtained. 

4.5 Summary 

In this chapter, we presented various adaptive HR filter simulation results using 

conventional gradient algorithms - Fan's and Regalia's algorithms. Fan's algo-

rithms do not have guaranteed stability. When the poles are close to the unit 

circle, for the extreme case used in our experiments, the algorithms do not work 

at all. Since the algorithm model structure remains direct form, it is difficult to 

solve high order HR filter problems. Regalia's algorithms have numerical advan-

tages over other conventional gradient algorithms and have the ability to solve high 

order HR filter problem, but also may not converge when the poles are extremely 

close to the unit circle. In the next two chapters, we will introduce an alternative 

to the HR filtering problem - applying genetic algorithms to the adaptation of HR 

filters. 



Chapter 5 

Applying the Simple Genetic 

Algorithm to IIR Filters 

5.1 Introduction 

Applying genetic algorithms to the adaptive filtering problem was first studied 

by D.H. Etter, M.J. Hicks and K.H. Cho [3], who used the genetic algorithms 

to design adaptive HR filters. R. Nambiar and P. Mars [5] - [9] applied genetic 

algorithms to system identification problems, in which the plant is modeled by 

HR filters. In their studies, the Simple Genetic Algorithm was used. The Sim­

ple Genetic Algorithm (SGA) was named by Goldberg [13], and uses the basic 

genetic operators (for example roulette wheel selection, one-point crossover, and 

mutation) in genetic algorithm programming. Based on the Simple Genetic Algo­

rithm, researchers have developed many other genetic algorithms, which are more 

65 
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powerful than the SGA. 

R. Nambiar and P. Mars have experimented with cascade, parallel and lattice 

structures for HR filters, and have shown the positive gain of applying GAs to HR 

filtering. In this chapter, we apply the SGA to the adaptation of HR filters. We 

also use the cascade, parallel and lattice HR structures, but here we use the more 

general transfer functions of these structures, and improved results are obtained. 

In the next section, system modeling is introduced; section 3 gives a rough idea of 

how HR filter coefficients are coded and decoded in genetic algorithms; the com-

puter simulation results are given in section 4; section 5 discusses the simulation 

results; and a summary appears in section 6. 

5.2 Modeling 

Throughout this thesis, the system identification configuration is used in the com-

puter simulations (Figure 3.7). The unknown system can be an adaptive FIR filter 

or HR filter. In our studies, we chose HR filter as the unknown system. The defin­

ing relationship between the input and output variables for the HR (order M) filter 

is given by 

M M 
y(n) = L ak(n)x(n - k) + L bk(n)y(n - k), (5.1) 

k=l 

or by the transfer function of the HR filter 

H(z) = ao(n) + a,(n)z-' + ... + aM(n)z-M = Am(z) , 
1.0 + b,(n)z '+ ... + bM(n)z M Bm(z) 

(5.2) 
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Input 
x (n) 

Figure 5.1: The cascade form HR filter structure. 
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where A=(z) and B=(z) are the ztransforms of the output and input signal respec-

tively. In system identification, the unknown system can be identified by direct, 

cascade, parallel, and lattice form adaptive filter structures. We now introduce 

these structures. 

5.2.1 Direct Form 

The direct form is often used in conventional adaptive HR filter studies (Figure 

3.3). Due to the stability problem of the direct form, other HR filter realizations 

have been studied. 

5.2.2 Cascade Form 

The filter (5.1) or (5.2) can be implemented by the cascade form structure, which 

is given in Figure 5.1. The equivalent cascade-form representation of H(z) is 

(5.3) 

where W = (M+l)/2, if M is odd, or W = M/2, if M is even, and p is a constant. 
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p 

Input 
x (n)--------..jt---+l 
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Output 
f---- y (n) 

Figure 5.2: The parallel form HR filter structure 

5.2.3 Parallel Form 

The filter (5.1) or (5.2) can also be implemented by the parallel form, which is 

given in Figure 5.2. The equivalent parallel-form representation of H(z) is 

(5.4) 

where W = (M+1)/2, if M is odd, or W = M/2 if M is even, and p is a constant. 

For the cascade and parallel structures, the stability of the filters during adap­

tation is guaranteed by constraining the filter coefficients blk(n) and b2k (n) to lie 

within the stability triangle. 
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F.(n) 

Bz.(n) 

V; (n) V,(n) V. (n) 

y (n) 

Figure 5.3: Lattice form !IR filter structure 

5.2.4 Lattice Form 

The filter (5.1) or (5.2) can also be implemented in the form of a lattice with 

different weights vi(n) and ki(n) (Figure 5.3). The lattice form is stable if the 

lattice coefficients le; (n) are alIless than 1. 

The input-output of the lattice filter at time n can be expressed as 

M 
y(n) = L v;(n)B;(n), (5.5) 

i::;:O 

where 

Bi(n) Bi-1(n) + k;(n)Fi_1(n)j i= M, ... ,l (5.6) 

Fi(n) Fi+l{n) - ki(n)Bi(n - l)j i=M-1, ... ,O (5.7) 

FM(n) = x(n) (5.8) 
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and x(n) is the input signal, and 

Bo(n) = Fo(n). (5.9) 

We will use the above four models to identify the high order unknown system 

in our simulation experiments. 

5.2.5 Direct Form to Lattice Form Coefficient Conver-

sion 

Given the coefficients ai(n) and bi(n) of a direct form system, one can calculate the 

corresponding lattice form coefficients ki(n) and vi(n) [65]. The lattice coefficients 

are recursively obtained starting from AM(Z) and BM(Z) (5.2), as follows 

(5.10) 

(5.11) 

B () _ Bm(z) - km_1ZCm(Z) 
m-l Z - 1- k2 

m-l 

(5.12) 

(5.13) 

(5.14) 

for m = M, M-I, ... , 1 with Vo = ao. We will use these conversions later in our 

computer simulations. 
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5.3 Parameter Coding and Decoding 

Applying Genetic Algorithms to the adaptive filtering problem, one has to code 

the adaptive filter coefficients into a form which genetic algorithms can deal with, 

for example, binary strings. In Figure 5.4, a set of second order lattice filter 

coefficients are coded into a binary string. Each lattice filter coefficient has length 

4 (this length is chosen as an example, rather than as a practical length). When 

we decode this binary coefficient string, first we decode the binary string to several 

decimal values, for instance, ko, 0101 to 5; k1 , 0100 to 4, etc, then we map these 

decimal values to a certain range (min, max) to obtain the real coefficient values. , 

For binary string, the widely used mapping formula is given by: 

. max -mtn 
Vc = mtn + Vd * --~-....:..:...:. 

X 
(5.15) 

where Vc is the coefficient value, Vd is the decoded parameter value, (min, max) 

is the mapping range, and X is the value when every bit is equal to 1 in the 

parameter string. For example, the range for k parameters is (-1, 1), then in 

Figure 5.4, kl = -1 + 4*(1+1)/(24-1) = -0.466667. 

This range (min, max) is very important in our simulations, as different min 

and max values can produce different simulation results. For the lattice, ki will 

lie in the range (-1.0, 1.0) according to the stability condition; the range for Vi 

will be chosen from experiment. 
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0001 0010 001 1 0100 0101 

Figure 5.4: Example of a second order lattice parameter coding, individual string 

length L = 20, parameter length is 4. 

5.4 Computer Simulations 

All the simulations in this chapter run 20 independent experiments of the SGA, 

which uses stochastic remainder selection, standard crossover and mutation. The 

fitness values are the inverse of the averaged squared error over the 20 experiments 

f
. 1.0 
ztness = e2 (n)' (5.16) 

so we maximize the fitness values in order to minimize the mean square error. 

Sigma scaling has been used in all the simulations to regulate the individuals in 

the population, so as to avoid some extraordinary poor individuals that take over a 

significant proportion of the population, a leading cause of premature convergence. 

The formula for sigma scaling [13] is 

f. = fi - (1- 2.0 *0'), 

where the 0' is the standard deviation of the population fitness and 

0'= 
L~l(fi _1)2 

N 

(5.17) 

(5.18) 
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f. is the scaled fitness (if f. < 0, we set f. = 0), f. is the fitnesses of individual, 

and 1 is the population average fitness. The high order unknown system transfer 

functions are chosen from [67]. 

5.4.1 HR filters with Bi-modal Error Surface 

We use the example [37] which we have previously used in the last chapter. The 

unknown system 

H( ) 0.05 - 0.4z-1 

Z = 1.0 _ 1.1314z-1 + 0.25z-2 
(5.19) 

is identified by a first order adaptive system 

H z _ a(n) 
( ) - 1.0 - b(n)z-l (5.20) 

According to the paper [37], this example's mean-square-error (MSE) surface is 

bi-modal. The global minimum ~ = 0.277, the local minimum ~ = 0.976, and the 

corresponding coefficient values are (a, b) = (-0.311, 0.906) and (a, b) = (0.114, 

-0.519) respectively. 

In this experiment, where each coefficient is represented by a lO-bit binary 

string, the croSSOVer probability Pc = 0.85, the mutation probability Pm = 0.003, 

population size is 50, we obtained (a, b) = (-0.314, 0.906). The plot of mean 

square error (in dB) against generations is given in Figure 5.5. 

This example was examined using the genetic algorithms in [9] and [68] as 

well. We reexamine this case in this and the next chapter to show that genetic 

algorithms have the ability to tackle multi-modal error surface HR filter problems, 

and present the performance improvement we have obtained. 
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Figure 5.5: Bimodal example, mean squared error (MSE in dB) vs generations 

(averaging 20 independent run). The population size N = 50, string length L = 

20, crossover probability Pc = 0.85, mutation probability Pm = 0.003. One point 

crossover has been used in the simulation. 
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5.4.2 HR Filters with Poles Close to the Unit Circle 

The second order filter 

H( ) 0.5 
z = 1.0 _ 1.4z-t + 0.98z-2' 

(5.21) 

is identified by the filter 

H(z) = ao(n) 
1.0 - bt(n)z t - b2(n)z 2 

(5.22) 

through the SGA. This system has three coefficients to be identified, and has 

poles at o. 7±jO. 7 (modulus = 0.99), which are very close to the unit circle. Many 

gradient algorithms failed to identify this special case, for example, the algorithms 

in [10], [39] (see Chapter 4). The genetic algorithm gives the results illustrated 

in Figure 5.6, which shows the advantage of GAs over gradient algorithms when 

the poles are extremely close to the unit circle. The unknown system is a second 

order system, so we chose direct form adaptive HR filters for this experiment. 

The direct form gives the coefficients ao(n) = 0.501466, bt(n) = 1.399673, b2(n) 

= -0.98045. 

Another example is also a second order filter 

H( ) 
= 0.5 - O.4z- t + 0.89z-2 

z t 0 2' 1.0 - 1.4z + .98z 
(5.23) 

and is identified by the direct adaptive system 

(5.24) 

which has five coefficients to be identified, and we use direct and lattice form 

structures in our computer simulations. The mean squared error (MSE in dB) 
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Figure 5.6: Poles close to the unit circle (three coefficients), MSE (dB) vs genera­

tions. The population size N = 80, string length L = 30, probability of crossover 

Pc = 85, probability of mutation Pm = 0.0075. One-point crossover has been used. 
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Figure 5.7: Poles close to the unit circle (five coefficients)' MSE (dB) vs gen-

erations. The population size N = 50, string length L = 50 (lO-bits for each 

coefficient), the probability of crossover Pc = 1.0, the probability of mutation 

pm = 0.003. One-point crossover has been used. a) direct structure; b) lattice 

structure. 
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Table 5.1: The coefficients of the direct structure using the SGA. 

coefficients plant (direct) adaptive filter 

b1{n) 1.40 1.399637 

b2{n) -0.98 -0.980450 

ao{n) 0.50 0.519062 

al{n) 0.40 0.438905 

a2{n) -0.89 -0.917889 

Table 5.2: The coefficients of the lattice structure using the SGA. 

coefficients plant (lattice) adaptive filter 

ko{n) -0.707071 -0.708700 

kl{n) 0.980000 0.972630 

vo{n) 0.225982 0.251222 

vl{n) 0.846000 0.876833 

v2{n) 0.890000 0.896383 
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is given in Figure 5.7. The coefficients results (best in the population) are gIven 

in Tables 5.1 and 5.2. The corresponding lattice coefficients of equation (5.23) 

can be calculated according to the formulation given in section 5.2.5. 

This experiment shows that both direct and lattice structures work with the 

SGA. Due to the difficulty of judging high order direct structure coefficients, so 

as guarantee the stability, identifying an IIR filter with order greater than two 

normally does not employ the direct structure in the simulation. From here we 

use cascade, parallel and lattice structures in our computer simulation. 

5.4.3 High Order HR Filters 

An order three filter 

H(z) = 0.0154 + 0.0462z- I + 0.0462z-2 + 0.0154z-3 

1.0000 - 1.9900z 1 + 1.5720z 2 - 0.4583z 3 
(5.25) 

is identified by lattice, cascade and parallel adaptive structures. The cascade and 

parallel forms are constructed using first or second order filters (in direct form, 

see section 5.2). The mean square errors are shown in Figure 5.8. We also find 

that only a few of the coefficients groups in the 20 runs are quite close to the ideal 

coefficients combination. The best coefficients group we found in our simulation 

is shown in Table 5.3. 

Another example of order five 

H(z) = 0.0073 - 0.0184z-1 + 0.0115z-2 + 0.0115z-3 
- 0.0184z-4 + 0.0073z-'q.26) 

1.0000 - 4.5064z 1 + 8.2615z 2 - 7.6908z 3 + 3.6326z 4 - 0.6961z 

is identified by lattice, cascade and parallel structure adaptive HR filters. The 

mean square error is given in Figure 5.9. It gives the similar simulation results to 
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Table 5.3: The coefficients of the lattice structure using the SGA. 

coefficients plant (lattice) adaptive filter 

ko{n) -0.875587 -0.851417 

kdn) 0.835463 0.734115 

k2{n) ·0.458300 -0.485826 

vo{n) 0.085646 0.093646 

vl{n) 0.145491 0.186315 

v2{n) 0.076846 0.150147 

va{n) 0.015400 0.056696 

the previous example, that is the lattice gives the best performance, and cascade 

is better than parallel. The coefficient result remains unidentified. 
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Figure 5.8: The third order filter, MSE (dB) vs generations. The population size 

N = 80, the string length L = 70 (lO-bits for each coefficient), the probability of 

one-point crossover Pc = 1.0, the probability of mutation Pm = 0.003. a) lattice 

structure; b) cascade structure; c) parallel structure. 
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Figure 5.9: The fifth order filter, MSE (in dB) vs generations. The population 

size N = 400, the string length L = 88 (8-bits for each coefficient), the probability 

of one-point crossover Pc = 1.0, the probability of mutation Pm = 0.003. a) lattice 

structure; b) cascade structure; c) parallel structure. 
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5.4.4 SGA Parameters 
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All parameters in the previous experiments were chosen on the basis of repeated 

computer simulations. We give several examples here. 

The first example is differences in population size. In Figure 5.10, of the 

various population sizes used in our simulations, a population size of 400 gives 

the best MSE performance. In this experiment, the fifth order filter (5.26) and 

lattice structure are used. 

The second example is changes in the string lengths. The different string 

length for each coefficient used in our simulations are 8-bits, lO-bits, and 15-bits, 

and the MSE performances are given in Figure 5.11. The 8-bits and the 15-bits 

are almost the same and give better performance. The filter (5.26) and lattice 

structure are used in our simulations. 

The third example is concerned with the number of crossover points. We 

experiment with various numbers of crossover points and with uniform crossover, 

and the performance results are given in Figure 5.12. The filter (5.26) and lattice 

structure are used in our simulation, and show the choice of one-point crossover 

is the best. 

We also tried many different crossover rates and mutation rates, among which, 

Pc = 1.0, and Pm = 0.003 are the best in our later simulations. 
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Figure 5.10: The population comparison, MSE (in dB) vs'generations (averaging 

20 independent runs). The string length L = 88 (8-hits for each coefficient), Pc = 

1.0, the mutation rate Pm = 0.003, one-point crossover. a) N = 400j h) N = 300j 

c) N = 200j d) N = 100. 
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Figure 5.11: The string length comparison, MSE (in dB) vs generations (averaging 

20 independent runs). The population size N = 400, the crossover rate Pc = 1.0, 

the mutation rate Pm = 0.003, one-point crossover. a) string length 88; b) string 

length 165; and c) string length 110. 
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Figure 5.12: The different crossover scheme, MSE (in dB) vs generations (averag­

ing 20 independent runs). The population size N = 400, the crossover rate Pc = 

1.0, the mutation rate Pm = 0.003, string length L = 88. a) I-point crossover; b: 

2-point crossoyer; c) 6-point crossover; d) uniform crossover. 
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A convergence prooffor the standard genetic algorithm has been given in [69J. In 

our simulations, it has been shown that the SGA is able to solve low order HR 

filter problems, even with poles close to the unit circle or multi-modal. However 

when the order becomes high, the coefficient results are not very satisfactory. 

The reason is that the SGA faces premature convergence caused by the super­

individual in the population, dragging the mean square error to converge to some 

level in the early stage of training. 

For the case when the poles are close to the unit circle, the SGA shows an 

improved solution over many conventional algorithms. Because applying genetic 

algorithms to the adaptation of HR filters does not have a stability problem, the 

first or the second order denominator coefficients are either bounded within (-La, 

1.0) or within the stability triangle. 

5.5.2 Coefficient Decoding Range 

We have mentioned that the coefficient decoding range is very important in our 

simulations. Here we give a detailed discussion on how we deal with this problem 

in our simulations. 

In the direct form structure, we restrict the denominator coefficients to lie 

within the stability triangle. For the example of the second order filter (5.24), 

we let -1 < b,{n) < 1 and -1 - b2 {n) < b1 {n) < 1 + b2 {n). The numerator 
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coefficient range can be decided according to the plant numerator, for example, 

if there is one numerator coefficient which is 1.2, we can set the range (1.0, 1.5) 

in our simulation, which covers the numerator coefficient 1.2. If there are five 

coefficients, we should chose a range which covers these five coefficients. 

In the lattice form structure, we restrict the k coefficients to less than 1 for 

stability reasons. The v coefficient decoding range is chosen according to the plant 

v coefficients. For the example of the plant (5.23), the v coefficients vary from 

-0.707071 to 0.89, and choosing a decoding range (-1, 1) will cover all these five 

coefficients in our simulation. We can also make this range smaller, depending on 

whether we have obtained good results, but normally the right range is obtained 

by conducting many simulations. 

5.6 Summary 

In this chapter, we applied the SGA to the adaptation of HR filter problems. 

We experimented with direct (low order filter), cascade and parallel (high order 

filter) HR filter structures in our computer simulations. In low order cases, the 

direct form's performance is better than the lattice; in high order cases, the lattice 

structure giyes the best results, because of the error propagation of cascade and 

parallel structures. The SGA can identify low order HR filter coefficients, but 

when the order increases, the coefficient results become poor, in the sense that 

the MSE which is obtained by using SGA might converge to the non-global value. 

The reason for this is that the SGA faces the premature convergence problem 
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[19). In all the simulations, we performed a very large number of experiments to 

choose the best SGA parameters. We still need to improve the high order HR 

filter performance, which should improve the genetic algorithm itself. In the next 

chapter, we will study another genetic algorithm which can improve the overall 

performance. 



Chapter 6 

Applying Genitor to the 

Adaptation of IIR Filters 

6.1 Introduction 

In the previous chapter, we applied the Simple Genetic Algorithm to the adapta­

tion of HR filters. We used direct, cascade and parallel structure adaptive systems 

to identify the unknown system. The results showed that the lattice structure gave 

the best performance, and that the cascade structure' 5 performance was better 

than the parallel's. Even the lattice structures' results are not the ideal solution 

for high order HR filters, so we need to look for better genetic algorithms to 

improve these structure's performance. 

In this chapter, we use the same models and coding and decoding methods as 

we used in the previous chapter, applying the steady state genetic algorithm to 

90 
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the adaptation of HR filters. The results of th~ steady state genetic algorithm 

have improved the SGA's performance. The steady state genetic algorithm we 

use is Whitley's Genitor [21J. 

In the next section, we give an introduction to the steady state genetic algo­

rithm. In section 3, computer simulations are conducted through various system 

models and genetic algorithm parameters. In section 4, a number of discussions 

based on the simulations are given. Finally in section 5, a summary is given. 

6.2 Genitor 

Genitor is Whitley's steady state genetic algorithm. It is an acronym for GE­

Netic ImplemenTOR, a genetic search algorithm that differs in three ways from 

the standard genetic algorithms. First, reproduction produces one offspring at a 

time. Two parents are selected for reproduction and produce an offspring that is 

immediately placed back into the population. The second major difference is in 

how that offspring is placed back into the population. Offspring do not replace 

parents, but rather the least fit (or some relative less fit) member of the popula­

tion. In Genitor, the worst individual in the population is replaced. The third 

difference between Genitor and most other forms of genetic algorithms is that 

fitness is assigned according to rank rather than by fitness proportionate repro­

duction. Ranking helps to maintain a more constant selective pressure over the 

course of search [16], [22J. Goldberg [19J names the selection in Genitor steady 

state selection. We now introduce Genitor in detail. 
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6.2.1 Reproduction - Steady State Selection 

In Genitor, the reproduction is implemented through steady state selection [71]. 

It begins with sorting the whole population individuals, from best to worst, then 

uses ranking selection which starts with assigning the number of copies that each 

individual should receive according to a non-increasing assignment function, and 

then performs proportionate selection according to that assignment. The assign-

ment function in Genitor is a linear function (probability distribution of x, linear) 

,8(x) = b - 2(b -1)x, x E [0,1], (6.1) 

where b is the bias which is defined as a number that specifies the amount of 

preference to be given to the superior individuals in a genetic population, that is 

bi Pb ... as=--, 
Pmean 

(6.2) 

where Pbe., and Pm.an are the probabilities of the best and mean individuals re-

ceiving copies in the next generation. For example, a bias of 2.0 indicates that 

the best individual has twice the chance of being chosen as the mean individual. 

Now we can perform proportionate selection according to this assignment func­

tion. The selection formula used in Genitor is 

. _ N(b - Vb2 - 4(b - l)drand48()) 
mdex - 2(b-l) , (6.3) 

where index is the index of strings being selected in the population (an integer 

between 0 and population size N), drand-48(} is random number generator which 

generates random numbers between 0 and 1, and b is the bias. We use this 

selection scheme to select two parent strings for mating. 
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original strings 

000 1 1 1 101 101 0 011 

000 1 0 0 101 0 0 1 0 0 1 0 

reduced strings 

----11---1-----1 

----00---0-----0 

Figure 6.1: The reduced surrogates 

6.2.2 Recombination 
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Recombination is implemented through the crossover operator. The crossover 

used in Genitor is a two point reduced surrogate crossover [70], [71]. It is different 

from that in standard genetic algorithms, in which crossover only occurs in the 

positions where the parent strings differ. So the first job the reduced surrogate 

crossover has to do is to identify all the different positions in the two parent strings. 

Now we consider the two strings and a 'reduced' version of the same strings in 

Figure 6.1, where the bits the strings share in common have been removed. In 

reality, only the different bits in the two parents make sense to the recombination, 

in that the crossover does not change the common bits. Booker refers to strings 

such as {- - - - 1 1 - - - 1 - - - - - I} and {- - - - 0 0 - - - 0 - - - - - O} as the 

reduced surrogates of the original parent chromosomes [70]. In Figure 6.1, the 

reduced surrogate crossover can happen only between the fifth and the last bit 

position. The reduced surrogate crossover's main advantage is that the parents 

are not duplicated in the offsprings. Thus, new sample points in hyperspace are 

generated. "'e use this reduced surrogate crossover on the two parents to produce 

two offsprings. See [71] for details. 
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6.2.3 Mutation 

The mutation operator used in Genitor is the adaptive mutation operator [71]. It 

differs from standard mutation in the way that the mutation is determined to an 

appropriate level according to the hamming distance between its two parents. The 

hamming distance is defined as the number of different bits of two strings, with 

the smaller the difference, the higher the mutation rate. In Genitor, the following 

formula is used to modify the mutation rate: 

Pm 
Padaptivemutation = (ha/ L)100 (6.4) 

where Padaptivemutation is the adaptive mutation rate, Pm is the mutation rate, hd 

is the hamming distance and L is the string length. For example, for the two 

parents strings 

string 1: 1 0 1 0 1 0 0 1 

string 2: 1 1 1 1 1 1 1 1, 

if the mutation rate is 0.005, the adaptive mutation rate would be 

0.005/«4/8)*100) = 0.0001. 

This reduces the unnecessary mutation. For example, mutating the allele on locus 

4 in string 1 will produce a string which is exactly same as string 2. 

After steady state reproduction, reduced surrogate recombination and adaptive 

mutation, one of the child strings is chosen to be inserted back into the population. 

This child string is calculated for fitness value (to see its performance) and replaces 
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the least fit string in the population. In this way, one Genitor's generation cycle 

is completed. 

6.3 Computer Simulations 

The simulations in this chapter are all conducted through 20 independent runs. 

The mean square error (MS E) performances are obtained by averaging those 20 

independent results. Genitor is a minimum optimization which looks for the 

smallest (best) value, so we use the squared error as a fitness value directly. The 

population sizes are chosen relatively large (most of them are 200), because nor­

mally Genitor requires large population sizes or multiple populations to combat 

the premature convergence problem [19]. We run Genitor for 200,000 generations, 

which seems large, but if compared to the SGA in generation terms, it is almost 

the same. In the SGA, in each generation, the fitness value for every individual 

in the whole population has to be calculated, but in Genitor, in each generation, 

only one individual fitness value is calculated. For example, if every member of 

the population is calculated for new fitness values in Genitor, it needs 200 (pop­

ulation size) generations. So 200,000 generations in Genitor are comparable with 

200,000/200 = 1,000 generations in the SGA. 

6.3.1 HR Filters with Bi-modal Error Surface 

We use the same bi-modal example as in the last chapter which uses an order 

one adaptive system to identify the order two system. The transfer functions are 
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given by equation 5.19 and 5.20 respectively. Genitor parameters are: population 

size N = 50, string length L = 20, bias = 1.6955, mutation rate Pm = 0.0555. 

The order one system's coefficients we obtained are (a, b) = (-0.306, 0.912). The 

mean square error is shown in Figure 6.2. 

From this example, we can say that Genitor has the same ability to solve the 

bi-modal HR filter problem as the SGA. 

6.3.2 HR Filters with Poles Close to the Unit Circle 

The second order filter 

If{ ) 0.5 
Z = 1.0 _ 1.4z-1 + 0.98z 2 

(6.5) 

is identified by the adaptive filter 

If{z) = ao{n) 
1.0 - b1{n)z 1 - b2{n)z 2' 

(6.6) 

Using Genitor, the mean square error plot against generations is given in Figure 

6.3. The adaptive coefficients are ao{n) = 0.500978, b1{n) = 1.399673, b2{n) = 

-0.980450. The mean square error performance is an improvement over the SGA, 

and the coefficients have better values than the SGA's. 

In another example, lattice and direct form adaptive structures have been used 

to identify the unknown system 

If{z) = 0.5 - 0.4z-1 + 0.89z-2 

1.0 - 1.4z 1 + 0.98z-2 

The direct form transfer function is 

(6.7) 

(6.8) 
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which has five coefficients to be identified. The squared error (in dB) is given 

in Figure 6.4, and the coefficients obtained from the first run of the 20 from the 

simulation are shown in Tables 6.1 (direct) and 6.2 (lattice). 

This experiment gives the same results as in the previous chapter for the direct 

and lattice form structures. The results show that using Genitor on an HR filter 

problem gives better results than using the SGA. However, as the number of 

coefficients increases, it become increasingly difficult for Genitor to identify the 

coefficients. For high order HR filters, lattice, cascade and parallel structures 

should be used, rather than the direct form. 
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Figure 6.2: Bimodal example, MSE (in dB) vs generations. The population size 

N = 50, string length L = 20 (IQ-bits for each coefficient), the bias is 1.6955, the 

mutation rate Pm = 0.0555, the random seed is 12345678. 
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Figure 6.3: Poles close to the unit circle (three coefficients), MSE (in dB) vs 

generations. The population size N = 50, the string length L = 30 (lO-bits for 

each coefficient), the bias is 1.6955, the mutation rate pm = 0.0555, the random 

seed is 12345678. 
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Figure 6.4: Poles close to the unit circle (five coefficients), MSE (in dB) vs genera­

tions. The population size N = 200, the bias is 1.6955, the probability of mutation 

Pm = 0.0555, the random seed is 12345678. a) direct, string length L = 50 (lO-bits 

for each coefficient); b) lattice, string length L = 75 (15-bits for each coefficient). 
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Table 6.1: The coefficients of the direct structure using Genitor. 

coefficients plant (direct) adaptive filter 

b1{n) 1.40 1.406027 

b2{n) -0.98 -0.978495 

ao{n) 0.50 0.503421 

al{n) 0.40 0.407625 

a2{n) -0.89 -0.874878 

Table 6.2: The coefficients of the lattice structure using Genitor. 

coefficients plant (lattice) adaptive filter 

ko{n) -0.707071 -0.706168 

kl{n) 0.980000 0.978149 

vo{n) 0.225982 0.224730 

vl{n) 0.846000 0.847366 

v2{n) 0.890000 0.893928 
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6.3.3 Higher Order HR Filters 

An order three unknown system 

H(z) = 0.0154 + 0.0462z-1 + 0.0462z-2 + 0.0154z-3 

1.0000 - 1.9900z-1 + 1.5720z-2 - 0.4583z-3 ' 
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(6.9) 

is identified by lattice, cascade and parallel adaptive HR filter structures. The 

cascade and parallel forms are constructed using first or second order filters (in 

direct form, see Chapter 5). The mean squared error performances are given in 

Figure 6.5. It shows that the lattice form gives the best result, and that the 

cascade form has a better performance than the parallel form. The convergence 

speeds for the three forms are similar. The coefficient results (obtained from first 

run of the 20) for lattice structure, given in Table 6.3, shows that the Genitor 

is roughly able to identify the seven coefficients after 200000 generations. The 

overall results are better than the SGA's. 

The second example, a fifth order unknown system 

H(z) = 0.0073 - 0.0184z-1 + 0.0115z- 2 + 0.0115z-3 
- 0.0184z-4 + 0.0073z-klO) 

1.0000 - 4.5064z-1 + 8.2615z-2 - 7.6908z-3 + 3.6326z-4 - 0.6961z-

is identified by the lattice, cascade and parallel structures as well. The mean 

square error (in dB) performances are given in Figure 6.6, and the coefficients of 

the lattice structure in Table 6.4. The results show that the lattice form gives the 

best MSE performance, and that the cascade form is better than the parallel form, 

which is the same as in the previous example. For the coefficients, Genitor can 

roughly identify eight out the eleven coefficients, but not each coefficient exactly. 

The overall results are also better than the SGA's. 
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Table 6.3: The coefficients of the lattice structure using Genitor. 

coefficients plant (lattice) adaptive filter 

ko(n) -0.875587 -0.920591 

k1(n) 0.835463 0.656362 

k2(n) -0.458300 -0.443831 

vo(n) 0.085646 0.115604 

vl(n) 0.145491 0.167254 

v2(n) 0.076846 0.094461 

v3(n) 0.015400 0.015815 

The third example, a seventh order unknown system 

() 
0.000:3 + 0.0011,,-1 + 0.0033 .. - 2 + O.006h- 3 + O.OOlSh-' + 0.0032.&-5 + 0.0011;1;-6 + 0.000:31;-7 

H % = 1.0000 _ 3.9190. 1 + 1.0109 .. :3 _1.219O.c-3 + ".693fz .. -1.8690.& 15 + 0 .... 236&-6 _ 0.0420" l' 
(6.11) 

is identified by the three structures, and the MSE performances are given in Figure 

6.7. Genitor can not identify most of the coefficients. This shows that Genitor 

can not perfectly solve high order HR filter problems in the coefficient sense, but 

it does offer some improvement over most of the conventional LMS algorithms in 

the MSE sense. However, it can be employed in a first stage search, to be followed 

by other search methods to improve its performance. Still, the lattice structure's 

performance is better than cascade and parallel structures. 
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Table 6.4: The coefficients of the lattice structure using Genitor. 

coefficients plant (lattice) adaptive filter 

ko{n) -0.964752 -0.882260 

k\{n) 0.991410 -0.174535 

k2{n) -0.980882 -0.911924 

ka{n) 0.961684 0.958617 

k4{n) -0.696100 -0.649281 

vo{n) 0.000329 0.013298 

v\{n) 0.000760 0.008265 

v2{n) 0.005577 0.006223 

va{n) 0.006815 0.008498 

v4{n) 0.014497 0.014191 

v5{n) 0.007300 0.006724 
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Figure 6.5: The third order filter, MSE (in dB) vs generations. The population 

size N = 200, the string length L = 105 (15-bits for each coefficient), the bias is 

1.6955, the probability of mutation Pm = 0.0555, the random seed is 12345678. a) 

lattice structure; b) cascade structure; c) parallel structure. 
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Figure 6.6: The fifth order filter, squared squared error (in dB) vs generations 

(average 20 independent runs). The population size N = 200, string length L 

= 165 (I5-hits for each coefficient), the hias is 1.6955, the mutation rate pm = 

0.0555, the random seed is 12345678. 
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Figure 6.7: The seventh order filter, MSE (in dB) vs generations. The population 

size N = 200, string length L = 225 (15-bits for each coefficient), the bias is 1.6955, 

the mutation rate Pm = 0.0555, the random seed is 12345678. 
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6.3.4 Genitor Parameters 

The population size. We ran simulations for the various population sizes 50, 

100, 200 and 400, and the MSE performances are given in Figure 6.8. Population 

size 200 gives the best performance, this agrees with the relatively large population 

size requirement of Genitor. However, the population size is problem dependent: 

a population with too many members results in long waiting times for significant 

improvement [72]. The population size of 400 will also double the computation 

cost in our experiments, so a population size of 400 is not a good choice. The 

experimental structure used is the lattice, and the unknown system is given by 

equation (6.9). Similar simulations show that this population size is also the best 

for filters (6.10) and (6.11) 

The results of different string lengths (5, 8, 10, 15, and 20) are observed in 

Figure 6.9, using the filter which is represented by equation (6.9) and the lattice 

structure. It shows that the string length L = 105 (15-bits for each coefficient) 

gives the best result. Similar simulations show that this string length is also the 

best for filters (6.10) and (6.11). 

The bias is bounded between 1.0 and 2.0, and we use many different bias values 

(1.1, 1.2, 1.3, 1,4, 1.5, 1.6, 1.6955, 1.7, 1.8, 1.9, and 2.0) in our simulation, which 

are shown in Figure 6.10. In these simulations, the filter (6.9) and the lattice 

structure were used. The results show that bias = 1.6955 is the best (for ease of 

viewing, we have not given all the bias value results), and we have used this value 

in all the simulations we have performed. 

We tried many mutation rates (0.001, 0.005, 0.01,0.02,0.03,0.04,0.05,0.0555, 
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0.06, and 0.075) in our simulations, several of which are shown in Figure 6.11. We 

found that a mutation rate of 0.0555 is the best, so we again used it in all our 

simulations. In this experiment the filter (6.9) and the lattice structure were used. 

In the Genitor package, the random seed was randomly chosen by D. L. Whit­

ley [71J to be 12,345,678 (it has to be chosen between 1 and 2,147,483,647). We 

also experimented with another 32 random seeds in our simulation (2°, 2' , 22
, ••• 

,231 
- 1), and the corresponding MSE performances are given in Figure 6.12. 
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Figure 6.8: The population comparison (using the third order filter and the lattice 

structure), MSE (in dB) vs generations. The string length L = 105 (IS-bits for 

each coefficient), the bias is 1.6955, the mutation rate Pm = 0.0555, and the 

random seed is 12345678. 
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Figure 6.9: String length comparison (using the third order filter and the lattice 

structure), MSE (in dB) vs generations. The population size N = 200, the bias is 

1.6955, the mutation rate Pm = 0.0555, and the random seed is 12345678. 
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Figure 6.10: The Bias comparison (using the third order filter and the lattice 

structure), MSE (in dB) vs generations. The population size N = 200, string 

length L= 105, the mutation rate Pm = 0.0555, and the random seed is 12345678. 
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Figure 6.11: The mutation rate comparison (using the third order filter and the 

lattice structure), MSE (in dB) vs generations. The population size N = 200, 

string length L= 105, the bias is 1.6955, and the random seed is 12345678. 
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Figure 6.12: The random seed comparison, MSE vs random seed (powers of two). 

The plant (0.5-0.4z-1 +0.89z-2)/(1.0-0.7z-1 +0.1z-2 ) and the lattice structure are 

used. The population size N = 200, string length L = 75 (15-bits for each coef­

ficient), the bias is 1.6955, the data sample window width is 8 samples, and the 

mutation rate is 0.0555. 
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6.4 Discussion 

6.4.1 MSE Performance 

115 

The overall mean square error performances obtained from Genitor are better than 

those obtained using the SGA. The reason is that in Genitor, the steady state se­

lection helps to maintain the population diversity, so as to avoid the premature 

convergence that the SGA had faced. In the second order case, the direct struc­

ture is slightly better than the lattice, for various reasons. In higher order filter 

cases, the lattice structure's performance is the best, and the cascade structure's 

performance is better than the parallel structure's. One reason is that the lattice 

structure has the biggest population diversity, and the parallel structure has the 

least. Another reason why the cascade and parallel structures are not as good as 

the lattice structure is due to the propagation of quantization errors through the 

filter banks, resulting in an erroneous estimate of error for that particular filter 

[5J. 

6.4.2 Coefficient results 

The coefficient results show that increasing the number of coefficients or the order 

would increase the difficulty Genitor has in identifying these coefficients, because 

Genitor is still not a perfect algorithm for solving HR filter problems. But Genitor 

offers a big improvement over the SGA for identifying the coefficients. In previ­

ous studies [5!, [6], the sixth order and the tenth order filters only have six and 

ten coefficients respectively, because of the modeling method. In our study, the 
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third order, fifth order and seventh order filters have seven, thirteen and fifteen 

coefficients respectively. 

6.4.3 Comparison with Gradient Algorithms 

Comparing the results of Chapters 5 and 6 with Chapter 4, we find that the first 

advantage genetic algorithms have over gradient algorithms is that they can tackle 

HR filtering problems with poles close to the unit circle very well. For the case 

we have given in our simulations, gradient algorithms [10J, [39J failed to produce 

any converged result. 

The second advantage of genetic algorithms is that they have the ability to 

solve higher order HR filtering problems. Although the coefficient results are not 

perfect, they can act as a first stage in HR filtering search algorithms. 

6.4.4 Computational Complexity 

Genitor works on a single individual per generation, choosing two individuals for 

the birth according to linear ranking, and choosing the currently worst individual 

in the population for replacement by the newly born individual to form one gen­

eration. Genitor starts with ranking the population. Once an initial ranking is 

established, Genitor does not need to completely sort the population again. Each 

generated individual is simply inserted in its proper place. However, the search for 

this place requires O(logN) steps if a binary search is used. Moreover, the selection 

of a single individual from the ranked list can also be done in O(logN) steps. Since 
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both of these steps must be performed N times to fill an equivalent population (in 

comparison with the generation-based schemes), the computational complexity of 

the selection scheme of Genitor is O(NlogN) [19J. It is obviously greater than the 

SGA requires, which is O(logN) [19J. The crossover and mutation in Genitor are 

more complicated than those in SGA, so the overall computational complexity of 

Genitor is greater than the SGA's. 

6.5 Summary 

In this chapter, we have applied Genitor to the adaptation of IrR filter problems. 

We investigated bi-modal, poles close to the unit circle and higher order filter 

problems, and the performance of direct, lattice, cascade and parallel structures. 

In the bi-modal case, we demonstrated that the Genitor has the ability to solve 

the multi-modal adaptive IrR filter problem. For the case when the poles are 

close to the unit circle, we demonstrated that Genitor has a superior ability to 

tackle these kind of problems over conventional gradient algorithms. For higher 

order adaptive HR filters (three or more), simulation results show that the lattice 

structure is the best structure for Genitor to employ. 

The cascade and parallel structure may have different groups of coefficients 

to realize the same transfer function. For example, the coefficients of one section 

in a cascade or parallel system can be interchanged with those of another while 

still realizing the same overall transfer function. This non-uniqueness introduces 

additional saddle points into the performance surface, causing the search to be-
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come less efficient [10], [41]. This further confirms the preference for the lattice 

structure. 

However, even for the lattice structure, when the filter order increases (in terms 

of the number of coefficients), it will be more difficult for Genitor to identify all 

the coefficients. In all the experiments, we performed a very large number of 

simulations to chose the best Genitor parameter, and use them in all our simula­

tions. Generally, Genitor produce better results than the SGA, but there remain 

improvements which can be made, which will be discussed in the next chapter. 



Chapter 7 

Conclusion 

7.1 Introduction 

The topic of this thesis is the study of the application of genetic algorithms to 

the adaptation of HR filtering problems. Two different genetic algorithms, the 

Simple Genetic Algorithm and Genitor, have been applied to the adaptation of 

HR filtering problems. These studies have shown that genetic algorithms have 

a number of advantages over conventional gradient HR filter algorithms. In the 

following section, the conclusions for this thesis are drawn, and in the final section, 

prospective topics for further study are proposed. 

7.2 Conclusions Arising from the Research 

On the basis of the work performed in this thesis, the following conclusions may 

be drawn: 

119 
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• Genetic algorithms are able to solve HR filtering problems, and offer stable 

performance. 

• Genetic algorithms can identify adaptive HR filter coefficients for certain 

orders. 

• Genitor provides improved performance over its SGA counterpart. 

• Genetic algorithms offer advantages over gradient algorithms for the adap­

tation of HR filters with poles close to the unit circle. 

• The lattice form structure of an HR filter offers the best performance among 

cascade, parallel and lattice form structures. 

Each of these points is considered in greater detail in the following paragraphs. 

The principal difficulty with adaptation of an HR filter is the stability prob­

lem due to the poles of the filter. The conventional gradient algorithms do not 

have guaranteed stability, but require that the stability is monitored. The results 

obtained in Chapters 5 and 6 demonstrate that genetic algorithms provide stable 

performance when solving HR filter problems. The reason is that genetic algo­

rithms code the real decimal coefficients into binary form, and after the results 

are obtained decode them into decimal. The decoded coefficients are limited to a 

certain range, for example the stability triangle, so that the poles of the HR filter 

never go beyond the unit circle. 

In this thesis, we provide some filter coefficient results. The genetic algorithms 

are able to identify the coefficients of an HR filter up to a certain order. The results 

from the S G A show that it can roughly identify the coefficients of order three HR 

filters, which have seven coefficients. When the number of coefficients is greater 
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than this, for example the order five filter, the SGA was unable to identify most 

of the coefficients. Genitor can roughly identify the coefficients of a fifth order HR 

filter. So in a coefficient sense, Genitor provides an improved performance over 

the SGA. 

From the results of Chapters 5 and 6, we can conclude that Genitor provides 

better overall MSE performance compared with its SGA counterpart. The main 

reason is that Genitor differs from the SGA in that reproduction produces one 

offspring at a time, this offspring replaces the least fit individual in the population, 

and ranking selection is used in the selection phase. These prevent the premature 

convergence of the SGA, and lead the algorithm to a better convergence level. 

The results of Chapter 4 show that for an HR filter with poles extremely close 

to the unit circle, gradient algorithms [10] and [39] failed to obtain any convergent 

results. When we conducted the same experiment using the genetic algorithms 

in Chapters 5 and 6, convergent results were obtained. This shows that genetic 

algorithms are global, robust searching algorithms and provide stable convergence. 

The computer simulations have used three HR filter structures: cascade, par­

allel and lattice. Due to the difficulty of judging the coefficient range of higher 

order direct form HR filters, the direct structure was not used for filter orders 

greater than two. The first advantage of the lattice structure is that it is simpler 

to choose the lattice coefficient limiting range than for the cascade and parallel 

structures. In our simulations, we limit the k coefficients within the range (-1,1), 

and for the cascade and parallel structures, we limit the first or the second denom­

inator coefficient to lie within the stability triangle to ensure stable convergence. 
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The second advantage is that the lattice structure provides a numerical stability 

advantage over direct and other structures. The third advantage is that the lattice 

performace surface does not have any saddle points. However, the cascade and 

the parallel structures are faced with this saddle point problem because several 

first or second order filter combinations could realize the same transfer function. 

Together with the simulation results in Chapters 5 and 6, we conclude that the 

lattice structure is the ideal HR filter structure in our studies. 

7.3 Areas for Further Investigation 

To conclude this chapter, several suggestions for further study are presented. From 

the simulation results, we can see that the level of the convergence floor still needs 

to be improved, and that the best performance of Genitor can only identify eight 

out of eleven coefficients of the fifth order filter. For the seventh order HR filter, 

Genitor can not give the correct value of any coefficient. This requires further 

investigation. 

Firstly, the advanced operators of genetics can be used in genetic algorithms. 

These operators include low level operators (diploidy, dominance, inversion, du­

plication and deletion, etc.), and high level operators (migration, marriage restric­

tion, and sharing functions, etc.) [13]. These operators provide a greater ability 

for human beings and animals to survive in nature. 

Secondly, completely different genetic algorithms can be applied to the adap­

tation of HR filter problems, such as CHC (a genetic algorithm) [27], parallel 
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genetic algorithms [28J, [73], and the messy genetic algorithms [74J etc .. 

Thirdly, the similar natural evolution algorithms can be applied to the adap­

tation of HR filter problems, such as Genetic Programming [25J, evolutionary 

programming and evolution strategies [75J. These evolution algorithms emerged 

at the same time as genetic algorithms, but provide different features. 
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Computer Programs 

B.t Source Code for SGA 

/************************************/ 
1* File main.c, the main driver function * / 
/************************************/ 
#incIude "header.h" 

main (argc, argv) 
int argc; 
char *argvO; 
{ 

FILE *fpl, *fp2; 

int i, j, gen, Dj 

double t, p, *mse; 

system ("clear"); 

1* Initialization * / 
iniU-ar 0; 
randomize 0; /* Give a random seed when drand480 is called *1 
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mse = (double *) malloe (sizeof(double)*(maxgen+l)); 
if (mse == 0) 
{ 

printf ("GA runtime error ... out of memory"); 
} 
fpl = fopen (argv[IJ, "w+"); 
fp2 = fopen (argv[2J, "w+") 

for (gen = 0; gen :=; maxgen; gen++) *(mse+gen) = 0.0; 

for (n = 1; n :=; num..run; n++) 
{ 

gen = 0; 

iniLpop 0; 
for (i = 1; i :=; pop..size; i++) 
{ 

} 

for (j = 1; j :=; length..chrom; j++) templDl = oldpop[iJDl; 
evaluation (i, tempt, fold, fitnessold); 

s..scale (sfold, fitnessold); 
statistics (sfold, fitnessold); 

*mse += 1.0/avg; 

/* Generation Loop * / 
for (gen = 1; gen :=; maxgen; gen++) 
{ 

generation 0; 
statistics (sfnew, fitnessnew); 
*(mse+gen) += 1.0/avg; 
if (gen == maxgen-1 11 gen == maxgen) 
{ 

} 

report (gen, fitnessnew, [new, newpop); 
show_cof (fpl); 
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} 

swap_popJit (oldpop, newpop, sfold, sfnew); 

} 
} 

for (gen = 0; gen :.::: maxgen; gen++) 
{ 

*(mse+gen) = (*(mse+gen))/num1un; 
fprintf (fp2, "%d %If\n'', gen, lO*loglO(*(mse+gen))); 

} 
fclose (fpI); 
fclose (fp2); 

/*********************************/ 
1* File: init.c, initialization for SGA * / 
/*********************************/ 

#include "header .h" 
void iniLvar 0 
{ 

char y; 

printf ("******** GA Data Entry Initialization ********"); 
printf ("\ n \ nEnter max generations = "); 
scanf ("%d", &maxgen); 
printf ("Enter population size = "); 
scanf ("%d", &pop-size); 
printf ("Enter chromosome length = "); 
scanf ("%d", &length_chrom); 
printf ("Enter parameter length = "); 
scanf ("%d", &length_parm); 
printf ("Enter parameter numbers = "); 

scanf ("%d", &num_parms); 
printf ("Enter crossover probability = "); 
scanf ("%f', &pcross); 
printf ("Enter mutation probability = "); 
scanf ("%f', &pmutation); 
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} 

printf ("How many cross points do you want = "); 

scanf ("%d", &num_point); 
printf ("How many run do you want in your program = "); 
scanf ("%d", &num_run); 

1* Initialize a population at random * / 

void iniLpop 0 
{ 

int i, jj 
for (i = 1; i $ pop..size; i++) 
{ 

for (j = 1; j $ length_chrom; H+) 
{ 

oldpop[ilDl = flip (0.5); 
} 

} 

/*******************************************************/ 
1* File: newgen.c, function for evolution. Function create new * / 
/* generation through selection, crossover and mutation. * / 
/*******************************************************/ 

# "header .h" 

void generation 0 
{ 

int i, j, n, mate!, mate2j 
int oldchrom1[MAXSTRl, oldchrom2[MAXSTRJ; 
int newchrom1[MAXSTR], newchrom2[MAXSTR]' temp2[MAXSTR]; 
double t, p, q; 

1* Perform any preselection actions before generation * / 
preselect( sfold, &avg..scale); 

for (i = 1; i $ pop..size; i = i+2) 
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} 

{ 

} 

mate1 = select 0; /" Pick pair of mates" / 
mate2 = select 0; 

for (j = 1; j ::; length_chrom; H+) 

{ 

} 

oldchromllil = oldpop[matel]lilj 
oldchrom2lil = oldpop[mate2]lilj 

npoints_cross (oldchroml, oldchrom2, newchrom1, newchrom2)j 
1* uniform..cross (oldchrom1, oldchrom2, newchrom1, newchrom2); "/ 

for (j == 1; j ::; length_chrom; H+) 
{ 

} 

newpop[i]li] = newchromlli]; 
newpop[i+l]lil == newchrom2li]j 

evaluation (i, newchroml, fnew, fitnessnew);m 

parentl[i] == matel; 
parent2[i] = mate2; 

1* xsite[i] = jcross; "/ 

evaluation (i+l, newchrom2, fnew, fitnessnew)j 
parent1[i+l] == matelj 
parent2[i+l] == mate2; 
r xsite[i+1] == jcrossj * / 

s.scale (sfnew, fitnessnew)j 

/ * * *.., * '*. "'.;: * * * * * * * * * * * * * * * * ** * * * * * * * * * ** * * ** * * * * * ** * * * * * *** * ** * * **.* / 
1* File: eYal.c, fitness and coefficients evaluation function, filter order is 3 * / 
1* and lattice structure is used here. * / 
/***** ••• *********************************************************/ 

#include "neader.h" 
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double cof..k[MAXPOP][3], coLv[MAXPOP][4]; 

void evaluation(i, templ, objfunc, fitness) 
int i; templD; 
double objfuncD, fitnessD; 

{ 
int n, k, temp2[MAXSTR]; 
double t; 
extern double objfunO; 
extern double map_parmO; 

t = (double) length_parm; 
jposition = 1; 

for (n = 0; n < 3; n++) 
{ 

extracLparm(templ, temp2, length_chrom, length_parm); 
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cof..k[i][n] = map-parm(decode(length_parm, temp2), 1.0, -1.0, pow(2.0, t)-1.0); 

} 

} 
for (n = 0; n < 4; n++) 
{ 

extracLparm(templ, temp2, length...chrom, length_parm); 
coLv[iJ[n] = map-parm(decode(length_parm, temp2), 0.2, 0.0, pow(2.0, t)-1.0); 

} 
objfunc[i] = objfun(cof..k[i], coLv[i]); 
fitness[i] = 1.0/objfunc[i]; 

r Swap new population to old population and new fitness to old fitness * / 

void swap-pop..flt(al, a2, bl, b2) 
int alO[MAXSTR], a20[MAXSTR]; 
double blD, b20; 
{ 

int i, j; 

for (i = 1; i ::; pop..size; i++) 
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{ 

} 
} 

for (j = 1; j :$ length_chrom; H+) al[iJ[j] = a2[iJ[j]; 
bI[i] = b2[i]; 

/**************************************************/ 
1* File: objfun.c, evaluate objective function value. "/ 
1* filter order is three and lattice structure is used" / 
/**************************************************/ 

#include "header.h" 
extern double gauss 0; 

double objfun (k, v) 
double ok, "v; 

{ 
int i, n; 
double tj 

double d[4]; 1* Plant output" / 
double x[4]; 1* Input to Plant & Adaptive filter" / 
double f[4]j 1* Forward stage output" / 
double b[4]; 
double youtj /" Adaptive filter output "/ 
double error; 

forti = 0; i < 4; i++) 
{ 

} 

x)! = 0.0; 
d)] = 0.0; 
(i' = 0.0; 

b:i: = 0.0; 

t = 0.0: 
for (n = 0; n != 8; n++) 
{ 
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} 

} 

for (i = 3i i != 0i i-) 
{ 

} 

d[i) = d[i-l)i 
xli) = x[i-l)i 

x[O) = gaussOi 
d[O) = 0.0154*x[0]+0.0462*x[1]+0.D462*x[2]+0.0154*x[3] 

+ 1. 9900*d[1]-1.5720 *d[2]+0 .4583 *d[3] i 

f[3] = X[O]i 
forti = 3i i != 0i i-) 
{ 

} 

f[i-l] = f[i]- k[i-l]*b[i-l]i 
b[i] = b[i-l] + k[i-l]*f[i-l]i 

b[O] = f[0J; 

yout = O.Oi 
for (i= Oi i < 4; i++) yout += v[i]*b[i]; 
error = d[O] - yout; 
error = error*error; 
t = t + error; 

t = t/8.0j 1* Average 8 independent random gauss noise * / 
return (t)j 

/**********************************************/ 
/* File: coding.c, functions for coding and decoding * / 
/******-***************************************/ 

#include "neader.h" 

r function for decode binary string to unsigned integr • / 

unsigned int decode(length, chromosome) 
int length, chromosomeO; 
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{ 

} 

int i; 
unsigned int accum, powerof2; 

accum = Dj 
powerof2 = 1; 
for (i = 1; i ::; length; i++) 
{ 

} 

if (chromosome[iJ) accum = accum + powerof2; 
powerof2 = 2*powerof2; 

return (accum); 

1* Map unsigned integer x to a desired value * / 

double map.parm(x, maxparm, minparm, fullscale) 
unsigned int x; 

double maxparm, minparm, fullscale; 

{ 

} 

double a; 
a = minparm + ((maxparm - minparm)/fullscale)*x; 
return(a); 

1* Extract each binary parameter from the whole chromosome * / 

void extract.parm(chromfrom, chromto,lchrom,lparm) 
int chromfromD, chromtoD; 
int lchrom, lparm; 

{ 
int j, jtarget; 

j = 1; 
jtarget = jposition + lparm - 1; 
if (jtarget > lchrom) jtarget = lchrom; 
while(jposition ::; jtarget) 
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} 

{ 

} 

chromtoUJ = chromfrom[jposition]; 
jposition += 1; 

j += 1; 

/* Decode binary string to a desired coefficient * / 

void decode_parms(nparms, lchrom, chrom, parms) 
int nparms, lchrom; 
int chromO, parmsO; 
{ 

} 

int j, jposition, lparm; 
int chromtemp[MAXSTR]; 
double maxparm, minparm, parameter[MAXSTR]; 

j = 1; 1* Coefficient counter * / 
jposition = 1; 1* String position counter * / 

for (j = 1; j S nparms; H+) 
{ 

} 

extracLparm(chrom, parms, lchrom, lparm); 
parameterUJ = map.parm(decode(lparm, parms), maxparm, minparm, 

pow(2.0,lparm)-1); 

1* Sigma scaling procedure * / 

void s.scaie(scaieJitness, fitness) 
double scaieJitnessO, fitnessO; 

{ 
int i; 

favg = 0.0: 
sigma = 0.0; 
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} 

far (i = 1; i ::; pap..size; i++) favg += fitness[i]; 
favg = favg/pap..size; 
far (i = 1; i ::; pap..sizej i++) sigma += paw«fitness[i]-favg), 2.0); 
sigma = sigma/pap..size; 
sigma = sqrt (sigma)j 
far (i = 1; i ::; pap..sizej i++) 
{ 

} 

scale.fitness[i] = fitness[i] - (favg - 2.0*sigma)j 
if (scale.fitness[i] < 0) scale..fitness[i] = 0.0; 

/******************************************/ 
1* File: repart.c, print results an screen ar file. * / 
/******************************************/ 

#include "header.h" 

vaid shaw..string (array) 
int array[MA_\:STR]; 
{ 

int ij 

far (i = length_chram; i != OJ i-) printf ("%d", array[i]); 
} 

show _caf (fp) 
FILE 'fpi 
{ 

int D, i, j~ 
extern double cof..k[MAXPOP][5], coLv[MAXPOP][6]; 1* lattice * / 

for (i = 1: i ::; pop..sizej i++) 
{ 

} 

for (j = 0; j != 5j H+) fprintf (fp, ''%If'', caf..k[ilfj]); 
far (j = 0; j != 6j H+) fprintf (fp, ''%If'', coLv[i]U])j 
fprintf (fp, "\n")j 
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} 

report (g, fitness, obj, pap) 
int g, pop[MAXPOP](MAXSTR]; 
dauble fitness[MAXPOP], abj[MAXPOP]; 
{ 

} 

i, j; 

far (i = 1; i ~ pop..size; i++) 
{ 

printf("%2d) ", i); 
if (g!= 0) printf("( shaw..string (pop[i]); 
printf (" %18.6f %If\n'', fitness[iJ, obj[i]); 

} 
printf("\l1Sumfitness=%lf max=%lf min=%lf\n", sumfitness, max, min); 
printf ("avg = %If \n", avg); 

/**************************************************/ 

1* File statis.c, calculate the statistics of the population * / 
/**************************************************/ 

#include "header .h" 

vaid statistics (fitness, abject) 
dauble fitness[MAXPOP], abject[MAXPOP]; 
{ 

int i; 
dauble sum; 

sumfitness = fitness[l]; 
sum = abject[l]; 
min = abject[l]; 
max = abject[l]; 

far (i = 2; i ~ pop..size; i++) 
{ 
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} 

{ 

sumfitness += fitness[i); 
sum += object[i); 
if (object[i) > max) max = object[iJ; 
if (object[i) < min) min = object[i); 

avg = sum/ pop..size; 
avg..scale = sumfitness/pop..size; 

/*******************************************/ 
1* File srselect.c, Stochastic remainder selection * / 
/*******************************************/ 

extern int pop..size; 
int choices[1001]' nremain; 
double fraction(1001); 

preselect(x1, x2) 

double x1D, *x2; 
{ 

int j, jassign, k; 
double expected; 

if(*x2 == 0) 
for(j = 1; j ~ pop..size; H+) choices m = j; 

else 
{ 

j = 1; 

k = 1; 

do 
{ 

expected = x1Ul/(*x2); 
jassign = (int) expected; 
fractionm = expected - jassign; 
while(jassign > 0) 
{ 
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} 

} 

jassign-; 
choices[k] = j; 
k++; 

} 
H+; 

} while (j ~ pop..size); 

j = 1; 
while(k ~ pop..size) 

{ 

} 

if(j > pop..size) j = 1; 
if(fraction[j] > 0.0) 
{ 

if(flip(fraction[j]) ) 

{ 

} 
} 
H+; 

choices[k] = j; 
fraction[j] = fraction[j] - 1.0; 

k++; 

nremain = pop..size; 

1* Seleetion using remainder method * / 

int seleetO 
{ 

int jpick, sleet; 

jpick = md(1, nremain); 
sleet = choices[jpick]; 
choiceslipick] = choices[nremain]; 
nremain- -: 

ret urn (sleet); 
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} 

/************************************/ 
j* File crossover,c function for crossover * j 
/************************************/ 

#include < stdio.h > 
#include < math.h > 

extern int pop.size; 
extern int length_chrom; 
extern int jcross; 
extern int num_point; 
extern float pcross; 
extern float pmutation; 

void swap_elements(x, y) 
int ox, *y; 

{ 

} 

int temp; 
temp = *x; 

*x = *Yi 
*y = temp; 

void swap_bits( arrayl, array2, x, y) 
int arraylD, array20, x, y; 
{ 

} 

int i, temp; 

forti = x; i :5 y; i++) 
{ 

} 

temp = arrayl[iJ; 
arrayl[i] = array2[i]; 
array2[iJ = temp; 
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void sorLarray (n, array) 
int n, arrayO; 
{ 

} 

register int i, j I mini 

for (i = 1; i < n; i++) 
{ 

} 

min = ij 

for (j = i+1; j :::; nj H+) 
if (arrayUJ < array[min]) min = j; 

swap_elements (&array[i], &array[min])j 

1* N points crossover * / 
void npoints_cross(parentl, parent2, child1, child2) 
int parentlO, parent20; 
int child10, child2Di 
{ 

int i, 0, X, y; 
static int k; 
poinLarray[50]j /* Use to store cross site * / 

1* Randomly produce cross site * / 
for(n = 1; n :::; num_point; n++) poinLarray[n] = rnd(1, length..chrom)i 

1* if crossover points is odd, make it even by using the length as the last 
crosso\"er point * / 

if((num-POint % 2) == 1) 1* the points have to be pairs * / 
{ 

} 
else 

k = num.point + 1; 
poinLarray(k] = length_chromj 

k = num.point; 
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} 

/* Rerrange the cross site from smallest to bigest* / 
sorLarray(k, point..array); 

1* According to crossover rate do cross * / 
if(flip(pcross)) 
{ 

} 

for(n = 1; n :::; k; n = n+2) 
{ 

} 

x = point..array[n)+1; 
y = poinLarray[n+1); 
if(x != y) swap_bits(parentl, parent2, x, y); 

for(i = 1; i :::; length_chrom; i++) 
{ 

} 

child1[i) = mutation(parentl[i), pmutation); 
child2[i) = mutation(parent2[i), pmutation); 

1* Uniform crossover * / 

void uniform..cross(parentl, parent2, child1, child2) 
int parentlO, parent20; 
int child10, child20; 
{ 

int i, j, n; 

if(flip(pcross)) 
for(n = 1; n :::; length_chrom; n++) 

if((n % 2) == 0) swap_elements(&parentl[n), &parent2[n)); 

for(i = 1; i :::; length_chrom; i++) 
{ 

child1[i) = mutation(parentl[i), pmutation); 
child2[i) = mutation(parent2[i), pmutation); 
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} 
} 

/*************************************************/ 
1* File mutation.c, function for mutation, return 0 or 1 * / 
/*************************************************/ 

int mutation(a, b) 
int aj 

double b; 
{ 

} 

int ij 

if (flip(b)) 
{ 

} 

if (a == 1) i = 0; 
if( a == 0) i = 1; 
return (i); 

else 
return(a); 

/************************************************/ 
1* File: header.h, this file include all global variables * / 
/************************************************/ 

";:include <stdio.h> 
#include <math.h> 

#define MAXRAND 2147483647.0 1* 32 bits Maximum random number * / 
#define MAXPOP 1001 1* Maximum population size * / 
::define MAXSTR 201/* Maximum length of chromosomes * / 

extern double drand48 0; 1* Generate random number between (0-1) * / 
double ayg, max, min; 1* Average,maximum and minmum value of fitness * / 
double ayg.scale; 
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float pcross, pmutation; 1* Probability of crossover and mutation * / 
double sumfitness; 1* Sum of fitness value * / 
double fitnessold[MAXPOP], fitnessnew[MAXPOP]; 1* The fitness value of 
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current and new generation */ 
double fold[MAXPOP], fnew[MAXPOP]; 1* Objective function value * / 
double sfold[MAXPOP], sfnew[MAXPOP]; /* Fitness value after sigma scaling * / 
double favg, sigma; 1* Average fitness value and standard deviation of fitness * / 
int parent1[MAXPOP], parent2[MAXPOP]; /* The two individual string chosed 

int pop.size; 1* Current population size * / 
int length_chrom; 1* Length of chromosome string */ 
int length_parm; 1* Length of binary parameter * / 
int num_parms; /* number of parameters * / 

as parents * / 

int oldpop[MAXPOP][MAXSTRJ, newpop[MAXPOPJ[MAXSTR]; 1* Old and new 

population * / 
int xsite[MAXPOP]; /* Crossover site * / 
unsigned int xold[MAXPOP], xnew[MAXPOP]; 1* Decoded value from binary * / 
int jposition; 1* Bit position in chromosome string * / 
int jcross; 1* Crossover site * / 
int maxgen; 
int num.run; 1* Number of individual experements * / 
int num_point; 1* Crossover points number * / 

B.2 Source Code for Genitor 

The Genitor package can be found from ftp site: ftp.cs.colostate.edu, /pub. We will 
give the main driver function and the application functions. The functions have been 
used in these codes but not appeared independently refer to the Genitor package. 

/*****~ •• ** ••• *******************************/ 
1* File: main.c, Genitor applied to HR filter problem * / 
/***** •••••••• *******************************/ 

#include <stdio.h> 
#include <ctype.h> 
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#include "gaJandom.h" 
#include "gene.h" 
#include "ga.global.h" 
#include "ga_params.h" 
#include "ga_pool.h" 
#include "ga.selection.h" 
#include "ga.status.h" 
#include "ga.signals.h" 
#include "op_adapt.rnutate.h" 
#include "opJed.surrog.h" 

extern float iiLevalO; 

int main (argc, argv) 
int argc; 
char *argvD; 
{ 

int i,jj 
int numdiffs, num..exp; 
GENEPTR mom, dad, child; 
FILE 'fp, 'fpl, *fp2, *fp3, *fp4, *fp5, *fp6, *fp7; 

float *k, *v; 

double *mse, *cof; 

1* Set the global parameters according to command line argument '1 
argc- -; 1* not include executable program itself * I 
argv++; 
parse_commandline (argc, argv); 

1* Print parameter values * / 
fprintf (std out, "\ n") 
prinLparams (stdout); 
fprintf (stdout, "\n") 

1* Seed the random number generator *1 
srandom (RandomSeed); 
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1* Allocate a genetic pool referenced by the global, Pool * / 
if ( !(Pool = geLpool(PooISize, StringLength)) ) 

fataLerror(NULL) ; 

/* Allocate temporary storage for parents of reproduction * / 
mom = get~ene (Pool->stringJength); 
dad = get~ene (Pool->stringJength); 

if ( !(mse = (double *) malloc (sizeof(double)*NumberTrials)) ) 
fataLerror(NULL) ; 

if ( !(eof = (double *) malloe (sizeof(double)*NumberTrials)) ) 
fataL.error(NULL); 

if ( !(k = (float *) malloe (sizeof(float)*IO)) ) 
fataL.error (NULL)i 

if ( !(v = (float *) malloe (sizeof(float)*IO)) ) 
fataLerror (NULL); 

for ( i = 0; i < NumberTrials; i++) *(mse+i) = 0.0; 

fp = fopen("mse", "w+"); 
fpl = fopen(Ucof", "w+"); 

for (num_exp = 0; num_exp < Experiments; num_exp++) 
{ 

if (num_exp) CurrentGeneration = 0; 

1* Initialize the genetic pool with data * / 
iniLpool(SeedPool, Pool, 0, Pool->size, iiLeval, k, v); 

/* Sort the initial genetic pool data * / 
sorLpool (Pool); 

/* Optimization * / 
for (; CurrentGeneration < NumberTrials; CurrentGeneration++) 
{ 
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/* Choose two genes for reproduction * / 
get-parents (mom, dad, Pool, linear, SelectionBias); 

1* Reproduce * / 
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numdiffs = red..surrogate...cross(mom->string, dad->string, Pool->stringJength); 

1* Mutation * / 
if (MutateRate > 0.0) 

adaptive.mutate (mom->string, Pool->stringJength, numdiffs, 
MutateRate); 

1* Choose one of the two offspring to insert into 
the genetic pool * / 

child = ((bitgenO == 0) ? mom : dad); 
child->worth = iir-.eval(child->string, StringLength, k, v); 

/* Insert new gene into population according to its worth * / 
insert.gene (child, Pool); 

1* Mean square error * / 
*(mse+CurrentGeneration) += (double) avg_pool (Pool); 

1* Filter coefficients * / 
if (num_exp == Experiments - I) 
{ 

if (Current Generation == NumberTrials - 1) 
{ 

} 

for (i = 0; i < Pool->size; i++) 
{ 

} 

Pool->data[iJ. worth = iir -.eval (Pool->data[iJ.string, 
StringLength, k, v); 

fprintf (fpl, ''%If %If %If %If %If %If %If %If %If %if %If %If 
%If %If %If \ nil , 

v[OJ, v[lJ, v[2], v[3J, v[4J, v[5J, v[6J, v[7J, 
k[OJ, k[lJ, k[2], k[3], k[4J, k[5J, k[6]); 
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} 

} 
} 

} 

for (i = 0; i < NumberTrials; i++) 
{ 

*(mse+i) = *(mse+i)/Experiments; 
if ( i % 100 == 0) fprintf (fp, "%d %If\n'', i, 10*loglO(*(mse+i))); 

} 
fclose (fp); 
fclose (fpl); 

/*********************************************/ 
/* File: iiLeval.e, fitness and coefficient evaluation, * / 
/*********************************************/ 

#include <stdio.h> 
#include <math.h> 
#include "gene.h" 

#define PARMLENGTH 15 

int bitJocation; 

/* Convert binary data to decimal data * / 
unsigned int bin_to_dec (string, length) 
GENE.nATA stringD; 
int length; 
{ 

int ij 
unsigned int decimal, power _oLtwo; 

decimal = 0; 
poweLoLtwo = 1; 

1* From right to left * / 
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} 

for (i = length-I; i != -1; i-) 
{ 

} 

if (string[i] == '1') decimal += poweLoLtwo; 
poweLoLtwo = 2*poweLoLtwo; 

return (decimal); 

1* Bound value between max and min of the range * / 

float bound_parm (x, maxparm, minparm, fullseale) 
unsigned int x; 
float maxparm, minparm; 
double fullseale; 

{ 

} 

float value; 
value = minparm + ( (maxparm-minparm)/fullseale )*x; 
return (value); 

1* Exact eaeh binary parameter from the whole gen, right to left * / 

void extraet.string (string, parm.string, stringJength, length) 
GENE.DATA stringO, parm.stringO; 
int stringJength, length; 
{ 

} 

int i = length - 1, target; 

target = bitJoeation - length + 1; 
if (bitJoeation < 0) bitJoeation = 0; 
while (bitJoeation ~ target) 
{ 

} 

parm.string[i] = string[bitJoeation]; 
bitJoeation -= 1; 
i -= 1; 
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1* Function to evaluate fitness and coefficient values, lattice * / 

float iir _eval (string, length, k, v) 
int length; 
float ok, *v; 
GENE.DATA stringO; 
{ 

int i , j; 
float object; 
double t; 
GENE.DATAPTR temp; /* cofficient string *f 

extern float object~unO; 

if ( !(temp = (GENE.DATAPTR)malloc(sizeof 
(GENE.DATA)*(PARMLENGTH+1»» 

fataLerror( "temp memory NULL"); 

bitJocation = length - 1; 

t = (double) PARMLENGTH; 
for (i = 0; i < 3; i++) 
{ 

} 

extract..string (string, temp, length, PARMLENGTH)i 
k[i] = bound_parm (bin_to_dec(temp, PARMLENGTH), 1.0, -1.0, 

pow(2.0, t)-1.0); 

for ( i = 0; i < 4; i++) 
{ 

} 

extract..string (string, temp, length, PARMLENGTH); 
'·[iJ = bound_parm (bin_to_dec(temp, PARMLENGTH), 0.2, 0.0, 

pow(2.0, t)-1.0); 

free (temp); 
object = object~un (k, v); 
return (object); 
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} 

1* Function to evaluate fitness and coefficient values, parallel or cascade *; 

float iiLeval (string, length, a, b) 
int length; 
float *a, ob; 
GENE..DATA stringO; 
{ 

int i, j; 
float object; 
double t; 
GENE..DATAPTR temp; 1* cofficient string *; 

extern float object.funO; 

if ( !(temp = (GENE..DATAPTR)malloc(sizeof 
(GENE..DATA)*(PARMLENGTH+l)))) 

fataLerror("temp memory NULL"); 

bitJocation = length - 1; 

t = (double) PARMLENGTH; 

1* first order cofficients *; 
extract.string (string, temp, length, PARMLENGTH); 
a[O] = bound_parm (bin_to..dec(temp, PARMLENGTH), 1.0, -1.0, 

pow(2.0, t)-1.0); 

extract.string (string, temp, length, PARMLENGTH); 
a[l] = bound_parm (bin_to..dec(temp, PARMLENGTH), 2.0, -2.0, 

pow(2.0, t):l.O); 

1* constant cofficient *; 
extract.string (string, temp, length, PARMLENGTH); 

a[2] = bound_parm (bin_to..dec(temp, PARMLENGTH), 3.0, 0.0, 

pow(2.0, t)-l.O); 
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} 

1* sencond order cofficients * / 
extract~tring (string, temp, length, PARMLENGTH); 
b[O] = bound_parm (bin_to_dec(temp, PARMLENGTH), 1.0, -1.0, 

pow(2.0, t)-1.0); 
extract~tring (string, temp, length, PARMLENGTH); 
b[1] = bound_parm (bin_to-<lec(temp, PARMLENGTH), 1.0-b[0], 

-1.0+b[O], pow(2.0, t)-1.0); 
for ( i = 0; i < 2; i++) 
{ 

} 

extract~tring (string, temp, length, PARMLENGTH); 
b[i+2] = bound_parm (bin_to..dec(temp, PARMLENGTH), 1.12, -1.12, 

pow(2.0, t)-1.0); 

free (temp); 
object = object.fun (a, b); 
return (object); 

/*************************************************/ 
1* File: objfun.c, lattice form see source code for SGA, * / 
1* here give the function parallel and cascade * / 
/*************************************************/ 

#ifdef PARALLEL 
#define FILTERJlTRUCT 1 
#else 
#ifdef CASCADE 
#define FILTERJlTRUCT 0 
#endif 
#endif 

extern double gaussO; 

float object.fun( a, b) 
float "a, *bj 
{ 
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int i, n; 
float t; 
float d[4]; 1* Plant output * / 
float x[4]; 1* Input to Plant & Adaptive filter * / 
float yl[3]; 1* First order filter output * / 
float y2[3]; 1* Second order filter output * / 
float yout; 1* Adaptive filter output * / 
float error; 

1* Initialization all input and output to zero at time zero * / 
for (i = 0; i < 4; i++) 
{ 

} 

xli] = 0.0; 
d[i] = 0.0; 

for (i = 0; i < 3; i++) 
{ 

} 

yl[i] = 0; 
Y2[i] = 0; 

t = 0.0; 
for (n = 0; n != 8; n++) 
{ 

for (i = 3; i != 0; i-) 
{ 

} 

d[iJ = d[i-I]; 
xli] = x[i-I]; 

for (i = 2; i != 0; i-) 
{ 

} 

yl[i] = yl[i-I]; 
y2[i] = y2[i-I]; 

r Gauss white noise input * / 
x:OJ = (float) gaussO; 

162 



APPENDIX 

} 

} 

d[O] = O.0154*x[O]+O.0462*x[1]+O.0462*x[2]+O.0154*x[3] 
+ 1.9900*d[1]-1.5720*d[2]+0.4583*d[3] i 

1* If cascade structure is being used * / 
if (!FILTER..5TRUCT) 
{ 

} 

yl[O] = a[2]*x[O]- a[2]*a[1]*x[1] + a[O]*yl[l]i 
y2[O] = yl[O]- b[3]*yl[1]- b[2]*yl[2] + b[1]*y2[1] + b[O]*y2[2]i 
yout = y2[O]i 

1* If parallel structure is being used * / 
if (FILTER..5TRUCT) 
{ 

} 

yl[O] = a[l]*x[O] + a[O]*yl[l]; 
y2[O] = b[3]*x[O]- b[2]*x[1] +b[1]*Y2[1]+ b[O]*y2[2]i 
yout = a[2]*x[O] + yl[O] + y2[O]i 

/* Error obtained via minus adaptive out from plant output * / 

error = d[O]- youti 
error = error*error; 

t = t + errori 

return (t)i 

B.3 Utility and Other Code 
/*******************************************/ 
/* File: gen_util.c, utility for genetic algorithms * / 
/*******************************************/ 
#include <stdio.h> 
#include <math.h> 
extern double drand48 Oi 

int flip (a) 
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double a; 

{ 

} 

int f; 

if (a == 1.0) f = 1; 
else 
{ 

} 

if (drand48 0 :$ a ) f = 1; 
else f = 0; 

return (f); 

1* Return a random integer between low and high inclusive * / 

int rnd(low, high) 
int low, high; 
{ 

} 

int i, j; 
double t; 

if (low ~ high) i = low; 
else 
{ 

} 

t = drand480*(high-low+1)+low; 
i = (int) t; 
if (i > high) i = high; 

return (i); 

1* GiYe a random seed * / 

void randomizeO 
{ 

double X; 
printf("Enter seed random value = "); 
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} 

scanf (''%If'' , &x); 
srand48 (x); 

/*******************************************/ 
1* File: guass.c, generate gauss random number * / 
/*******************************************/ 

#include <stdio.h> 

#include <math.h> 

extern double drand48 0; 

double gauss 0 
{ 

} 

double i, j; 
double value; 

i = drand48 0; 
j = drand48 0; 
value = sqrt( -2.0*log(i) )*cos( 2*3.141592654*j ); 
return (value); 

/*********************************************/ 
1* This program synthesis direct form HR filter to * / 
1* lattice form (coefficient calculation). * / 
/*********************************************/ 

~include <stdio.h> 
::include <stdlib.h> 
~include <math.h> 

#define N 3 1* Filter order, can be changed * / 

\"Did mainO 
{ 

int n, i, jj 
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} 

double a[N); 1* Denominator of direct form * / 
double p[N); 1* Numerator of direct form * / 
double v[N); /* Output coefficients * / 
double k[N-1); /* Lattice reflects coefficients * / 
double b[N); 

1* Direct form coefficients * / 
a[O) = 1.0; a[l) = -1.4; 
a(2) = 0.98; 

prO) = 0.5; p[l) = -0.4; 
p(2) = 0.89; 

for(n = N-1; n != 0; n-) 
{ 

} 

for(i = 0; i < N; i++) 
b[i) = a[n-i); 

k[n-l) = a[n); 

for(i = 0; i < n; i++) 
a[i) = (a[i)- k[n-1)*b[i))/(1.0 - k[n-1)*k[n-1]); 

y[n) = p[n); 

for(i = 0; i < n; i++) 
p[i) = p[i)- b[i)*v[n); 

v[O) = prO); 

for(n = 0; n < N; n++) 
printf("v[%d) = %If\n'', n, v[n)); 

printf(" \n"); 
for(n = 0; n < N-1; n++) 

printf("k[%d) = %If\n'', n, k[n)); 
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Abstract 

This paper presents a steady state Genetic Algorithm approach to the adaptation of 
adaptive HR filters. Conventional adaptive HR filter algorithms slIch as LMS and RLS 
algorithms suffer from potential instability and complexity problems. Applying Genetic 
Algorithms to HR filtering problems provides an alternative way to approach the HR filter­
ing problem. Genetic Algorithms as HR filter learning algorithms can provide guaranteed 
filter stability. In this paper three filter structures - cascade, parallel and lattice are stud­
ied, the computer simulation results show that the Genetic Algorithm has advantage in 
the case where poles are close to the unit circle and for high order filter problems. 

1 Introduction 

Adaptive infinite impulse response (HR) filters are used in a wide variety of signal processing 
and control applications due to the superior system modeling abilities afforded by the poles of 
an HR filter transfer function. The difficulties for adaptive HR filters are, first the potential 
instability, and sec.ond, the mean square error surface of an HR filter can be multi-modal, 
causing learning algorithms to converge to a local minimum. 

Genetic Algorithm approaches to adaptive HR filtering have been developed recently [1] 
[2]. Positive results by using the Genetic Algorithm to tackle the adaptive HR problem has 
been demonstrated in [2], especially for high order filters. This work in [2] experimented with 
cascade, parallel and lattice structures for HR filters. In this paper, we also explore cascade, 
parallel and lattice structures. We use more general filter models as both the unknown and the 
adaptive systems in system identification, which are more difficult for the Genetic Algorithm 
to solve compared to the models in [2]. 

The adaptive HR filter and Genetic algorithms is brielly discussed in section 2 and system 
modeling and steady state Genetic Algorithm in section 3. The results of some computer 
simulations of steady state Genetic Algorithm for HR filters are presented in section 4. 

2 Adaptive HR filters and Genetic Algorithms 

Adaptive filters can be classified as adaptive finite impulse response (FIR) filters and adaptive 
infinite impulse response (HR) filters. Adaptive FIR filters face computational complexity 
problems, although there are many fast algorithms. For certain real physical systems, adaptive 
HR filters can be more economical, in the sense of lower filter order compared to adaptive FIR 
filter counterparts. Adaptive HR filter poles can provide a good match to many real systems. 

Adaptive HR filters face instability problems, especially when the poles are close to the 
. unit circle. Adaptive HR filters' error surface can be multi-modal, making adaptive HR filter 
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algorithms very difficult in terms of finding the global optimum. The direct form adaptive 
HR filter implementation can exhibit high roundoff noise in the presence of finite precision 
arithmetic, and remains susceptible to quantization limit cycles [3]. If the HR filter's pole is 
near the unit circle, for conventional gradient adaptive HR filter algorithms, the direct form 
HR filter's stability is not guaranteed. For example, algorithms in [4] failed to converge for 
this condition, algorithms in [4] are variants of Steiglitz.McBride technique [5] where the filter 
structure remains direct form. This has motivated researchers to look for alternative structures. 
Cascade, parallel and lattice structures have been documented, see [6], [7] and [8], etc .. The 
solution given in [6] uses the LMS algorithm on parallel and cascade form adaptive HR filters. 
It introduces additional saddle points in the performance surface which are unstable solutions 
in the parameter space [6]. [7] uses the LMS algorithm on the lattice form adaptive HR filter 
and maintains computational complexity O(M2) for gradient calculation. The algorithms in [8] 
are normalized lattice· based, the first algorithm is a reinterpretation of the Steiglitz-McBride 
method, while the sec.ond is a variation on the output error method, both of them are O(M) 
complexity. The coefficients are updated by using the QR-based Gauss-Newton algorithm 
in [8] which needs many matrix computations and for some cases where poles are extremely 
close to the unit circle, the algorithms also failed to converge. Genetic Algorithms are another 
alternative solution to the adaptive HR filtering problem which is very successful in tackling 
the poles close to the unit circle and high order filter problems. 

Genetic algorithms are search algorithms based on the mechanics of natural selection and 
genetics [9]. These algorithms encode a potential solution to a specific problem on a sim­
ple chromosome·like data(noTInally binary) structure and apply genetic operators to these 
structures so as to preserve critir.al information [10]. 

Genetic algorithms are a population based, robust optimisation method, especially used 
to tackle high-dimensional, muti-modal search space problems. The Genetic Algorithm op­
erators include mainly selection, recombination(crossover) and mutation. Applying Genetic 
Algorithms to optimisation problems begins with a population of chromosomes, which are 
randomly initialized. After that each binary individual of the population is decoded to a set 
of parameters(coefficients), the parameters are applied to the optimisation function(such as 
mean square error) to evaluate the function values. In Genetic Algorithms the function values 
are termed as the fitness values. Among the population, according to the fitness values, a 
selection operator is used to select the best iudividual which will possibly survive in the next 
generation and form the intermediate population. At this stage the recombinatiQn operator 
can be applied. Picking up a pair of strings among the intermediate population, and crossing 
them into one another with a probability Pc for exchanging genetic information to produce a 
new pair of strings. This procedure repeats a certain lllimber of times until the full population 
is filled. After recombination, the mutation operator can be performed. Each bit of every 
individual in the whole population can mutate with a very low probability Pm. This provides 
greater ability to ensure that every part of the search space is visited. After these three oper­
ators have been performed, the new population can be evaluated. The evaluation, selection, 
recombination and mutation construct one Simple Genetic Algorithm (SGA) generation cycle 
[9]. 

3 System Modeling and Steady State Genetic Algorithm 

Applying Genetic Algorithms on the adaptive filtering problem was first studied by Etter [1]. 
Later Nambiar and Mars [2] applied Genetic Algorithms to system identification problems. In 
this paper we again explored system identification by using direct, cascade, parallel and lattice 
structures. 

In system identification, the unknown system can be identified by direct, cascade, parallel 
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and lattice form adaptive filter structures. For an Mth order HR filter (M > 2) 

(1) 

the equivalent cascade· form representation of H(z) is 

(2) 

where W = (M+1)/2, if M is odd or W = M/2, if M is even, the equivalent parallel-form 
representation of H(z) is 

If ~ aOk(n) - alk(n)z-l 
p(z) = p + L..J 1.0 _ b (n)z-l _ b .(n)z-2' 

k=l lk 2k 
(3) 

where W = (M+1)/2 if M is odd or W = M/2 if M is even, q and p are constants. The 
stability of filters during adaptation is guaranteed by constraining the filter coefficients blk(n) 
and b2k(n) to lie within the stability triangle [2]. 

The filter (1) can also be implemented in the form of a lattice with different weights v.(n) 
and k.(n), which is stable if the lattice coefficients k.(n) are all less than 1. The input-output 
of the lattice filter at time n c.an be expressed as: 

where 

M 

y(n) = 2: v.(n)B.(n) 
i=O 

Bi(n) = B._1(n)+ k.(n)F;_l(n)j 

F;(n) = F'+l(n) - k.(n)B.(n -1)j 

FM(n) = x(n) 

and x(n) is the input signal, and 

Bo(n) = Fo(n). 

i= M, ... , 1 

i = M -1, ... ,0 

(4) 

(5) 

(6) 

(7) 

(8) 

We will use the above three models to identify the high order unknown system in our simulation 
experiments. 

The genetic algorithm we use in this paper is Genitor [10], which can be termed as the 
steady state Genetic Algorithm. It provides better performance relative to the Simple Genetic 
Algorithm and has a few different features relative to the Simple Genetic Algorithm (SGA) 
which has been used in [2]. First, reproduction prodnces one offspring at a time. Two parents 
are selected for reproduction and produce an offspring that is immediately placed back in 
the population. The second major difference is in how that offspring is placed back in the 
population. Offspring do not replace parents, but rather the least fit (or some relatively less 
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fit) member of the population. In Genitor, the worst individual in the population is replaced. 
The third difference between Genitor and the Simple Genetic Algorithm is that fitness is 
assigned according to rank rather than by fitness proportionate reproduction. Ranking helps 
to maintain a more constant selective pressure over the course of the search[lO]. 

4 Simulation Results 

We present here simulations for direct, cascade, parallel and lattice structures. The squared 
error has been chosen as the fitness value. In all the results, the squared error obtained from 
each generation is plotted against the generation number, we use different window lengths to 
average the instantaneous error to form the error for each experiment shown in the plotted 
results. The results are obtained after averaging 20 independent simulations, the population 
size chosen was 200, because normally Genitor requires large population sizes or multiple 
populations to combat the premature convergence problem [11]. We run Genitor for 200,000 
generations, which seems large, but if compared to the SGA in computation terms, it is 
relatively efficient. In the SGA, in each generation, fitness values for every individual in the 
whole population has to be calculated, but in Genitor, in each generation, only one individual 
fitness value is calculated. The Genitor (or steady state) selection bias is 1.6955, the crossover 
operator in Genitor is two point reduced surrogate form crossover [10] the mutation operator 
is adaptive mutation, the mutation rate is 0.0555, each coefficient has 15 binary bits. 

Experiment 1. Lattice and direct form adaptive structures have been used to identify the 
unknown system: 

H(z) = 0.5 - OAz-l + 0.89z-2 
• 

1.0 - 1.4z-1 + 0.98z 2 
(9) 

This system has poles at 0.7±jO.7, which are close to the unit circle. Many gradient algorithms 
failed to identify this special case, for example, algorithms in [4] and [8]. The genetic algorithm 
gives the results illustrated in figure 1 which shows the advantage of GA over the gradient 
algorithms for poles close to unit circle problem. The unknown system is a second order 
system, so we chose lattice and direct form adaptive HR filters for this experiment. 

Experiment 2. An order three system: 

H(z) = 0.0154 + 0.0462z-1 + 0.0462z-2 + 0.0154z-3 

1.0000 - 1.9900z 1 + 1.5720z 2 - OA583z-3 (10) 

is identified by lattice, cascade and parallel adaptive structures. The cascade and parallel 
forms are constructed by using first or second order filters (in direct form). The results are 
given in fignre 2. It shows that the lattice form gives the best result, the cascade form has 
better performance than the parallel form. The convergence speeds for the three forms are 
similar. 

Experiment 3. A much higher order seventh unknown system: 

H(.) = 0.0002 + 0.0011.-1 + 0.0032.-2 + 0.0054.-3 + 0.0054.-( + 0.0032.-5 + 0.0011.-6 + 0.0002.-7 (11) 
1.0000 - 3.9190.-1 + 7.0109.-2 -7.2790.-3 + 4.6934. (-1.8690.-5 + 0.4236. 6 - 0.0420.-7 

is identified by the three structures, the results are given in figure 3. This shows that the 
Genetic Algorithm has the power to solve a high order problem better than the other structures. 
The results show the same trend as in Experiment 2. 
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Experiment 4. We run the simulation for various population sizes, see figure 4. Population 
size 200 gives the best performance, this agrees with the relatively large population size re· 
quirement of Genitor. The experimental structure used is the lattice, filter with the unknown 
system given by equation (10). 

5 Conclusion 

In this paper, applying Genetic Algorithms to the adaptation of HR filtering has been studied. 
The simulation results do show that the Genetic Algorithm approach to the adaptive HR 
filtering problem has some advantages. Above all the lattice structure gave the best results. 
The cascade structure is better than parallel form. We can draw a condusion: the lattice 
structure is the ideal structure, it not only gives the best performance, but also it is easy to 
choose the coefficient dec.oding region for genetic algorithm adaptation. 
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Figure I: The second order filter, squared 
error (in dB) vs generations. 

Figure 2: The third order filter, squared error 
(in dB) vs generations. 
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Figure 3: The seventh order filter, squared 
error (in dB) vs generations. 

Figure 4: Squared error (in dB) vs generations 
for various population sizes. 
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