
LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY.

LIBRARY

AUTHOR/FILING TITLE
~A i -- -____________ --,1--~----------------------~

!

--- -- - ---------------_ .. _---- ---- --- ----- - - -----_ .. -'
ACCESSION/COPY NO. !

_________________ Q.~_~_L~~~~~ ________________ _
VOL. NO. CLASS MARK

0401293378

1111" I I """" .

"

THE APPLICATION OF GENETIC
ALGORITHMS TO THE ADAPTATION OF

HR FILTERS

by

Qiang Ma, BEng

A doctoral thesis

submitted in partial fulfilment of the requirements for

the award of Doctor of Philosophy of

Loughborough University of Technology

November 1995

Supervisor: Professor Colin F. N. Cowan
Department of Electronic and Electrical Engineering

©Qiang Ma 1995

j

j

j

1-:---'"-,.''',''-.----1
I~' ~\'l-'1:;~7

j

j

j

j

j

J

j

j

j

j

j

j

j

j

j

j

j

j

j

Acknowledgements

I would like to express my gratitude to Professor Colin F. N. Cowan for his guid­

ance, support and inspiration throughout the course of the research and prepara­

tion for this thesis.

I would also like to thank Dr. Christopher Callender and many other colleagues

within the Communications and Signal Processing Group for their help in the early

stage of the research work.

I must thank Dr. Matthew Levin for reading through the first draft of this

thesis.

Finally, I would like to thank my wife Li Kuan for encouraging me to conduct

my research studies.

11

Abstract

The adaptation of an HR filter is a very difficult problem due to its non-quadratic

performance surface and potential instability. Conventional adaptive HR algo­

rithms suffer from potential instability problems and a high cost for stability

monitoring. Therefore, there is much interest in adaptive HR filters based on al­

ternative algorithms. Genetic algorithms are a family of search algorithms based

on natural selection and genetics. They have been successfully used in many differ­

ent areas. Genetic algorithms applied to the adaptation of HR filtering problems

are studied in this thesis, and show that the genetic algorithm approach has a

number of advantages over conventional gradient algorithms, particularly, for the

adaptation of high order adaptive HR filters, HR filters with poles close to the

unit circle and HR filters with multi-modal error surfaces. The conventional gra­

dient algorithms have difficulty solving these problems. Coefficient results are

presented for various orders of HR filters in this thesis. In the computer simu­

lations presented in this thesis, the direct, cascade, parallel and lattice form HR

filter structures have been used and compared. The lattice form HR filter struc­

ture shows its superiority over the cascade and parallel form HR filter structures

in terms of its mean square error convergence performance.

111

Contents

Certificate of Originality.

Acknowledgements. 11

Abstract 111

Symbols. and Acronyms IX

1 Introduction 1

1.1 Introduction 1

1.2 Itelated Ftesearch 2

1.3 Motivation 3

1.4 Du tline of the Thesis 4

2 Overview of Genetic Algorithms 6

2.1 Introduction 6

2.2 Schema and Schema Theorem 11

2.2.1 Schema 11

2.2.2 Genetic Search Space and Schema as Genetic Search Space

Partition .. 12

IV

2.2.3 Schema Theorem

2.3 Genetic Operators

2.3.1 Reproduction - Selection

2.3.2 Recombination - Crossover .

2.3.3 Mutation

2.4 Some Advanced Operators

2.5 Genetic Algorithm at Work - an Example.

2.6 Summary

3 Adaptive Infinite Impulse Response Filters

3.1 Introduction - Adaptive Filters and Their Applications

3.2 Equation-Error and Output-Error Adaptive HR Filters

3.2.1 Equation-Error Formulation

3.2.2 Output-Error Formulation

3.3 Adaptive HR Filter Algorithms

3.4 Summary

4 Simulations of Two Gradient HR Filter Algorithms

4.1 Introduction

4.2 The Steiglitz-McBride Identification Technique.

4.3 Fan's Algorithms ..

4.4 Regalia's Algorithms

4.5 Summary

v

13

17

17

22

22

23

26

30

31

31

39

40

42

43

45

47

47

48

49

57

64

5 Applying the Simple Genetic Algorithm to HR Filters 65

5.1 Introduction 65

5.2 Modeling .. 66

5.2.1 Direct Form 67

5.2.2 Cascade Form . 67

5.2.3 Parallel Form 68

5.2.4 Lattice Form 69

5.2.5 Direct Form to Lattice Form Coefficient Conversion 70

5.3 Parameter Coding and Decoding 71

5.4 Computer Simulations 72

5.4.1 HR filters with Bi-modal Error Surface 73

5.4.2 HR Filters with Poles Close to the Unit Circle 75

5.4.3 High Order HR Filters 79

5.4.4 SGA Parameters 83

5.5 Discussion 87

5.5.1 Simulation Performance 87

5.5.2 . Coefficient Decoding Range 87

5.6 Summary 88

6 Applying Genitor to the Adaptation of HR Filters 90

6.1 Introduction . 90

6.2 Genitor ... 91

6.2.1 Reproduction - Steady State Selection 92

VI

6.2.2 Recombination

6.2.3 Mutation ...

6.3 Computer Simulations

6.3.1 HR Filters with Bi-modal Error Surface

6.3.2 HR Filters with Poles Close to the Unit Circle

6.3.3 Higher Order HR Filters

6.3.4 Genitor Parameters .

6.4 Discussion....... ..

6.4.1 MSE Performance.

6.4.2 Coefficient results .

6.4.3 Comparison with Gradient Algorithms

6.4.4 Computational Complexity.

6.5 Summary

7 Conclusion

Introduction 7.1

7.2 Conclusions Arising from the Research

7.3 Areas for Further Investigation

References

Appendices

A .Publications

VII

93

94

95

95

96

102

108

115

115

115

116

116

117

119

119

119

122

124

134

134

B Computer Programs

B.1 Source Code for SGA .

B.2 Source Code for Genitor

B.3 Utility and Other Code.

V111

135

135

153

163

Symbols and Acronyms

a(n)

AFM

A(z)

b(n)

B(z)

CHC

dB

d(n)

fi

f(H)

1
FIR

FTF

GA

Genitor

hd

ht(n)

H

H(z)

Feedforward coefficient of direct form HR filter

Adaptive Filter Mode

The z transform of the input x(n) of adaptive HR filter

Feedbackward coefficient of direct form HR filter

The z transform of the output y(n) of adaptive HR filter

Cross generational elist selection, Heterogeneous recombination,

and Cataclysmic mutation

Decibel

Desired signal

Fitness of individual

A verage fitness of schema H

A verage fitness of population

Finite Impulse Response

Fast Transversal Filter

Genetic Algorithm

Genitic implementor

Hamming distance of parent strings

Output coefficient vector of normalized lattice filter

A schema

Transfer function

IX

HARF

I

HR

ki

LMS

L

MSE

M(H, t)

N

NL

o(H)

P(t)

Pc

Pm

P.

Q
Qk
R

RLS

SGA

SIM

Hyperstable Adaptive Recursive Filter

Identity matrix

Infinite Impulse Response

Reflection coefficient of lattice form HR filter

Least Mean Square

String length

Mean Square Error

Samples of a schema H contained within the population

Population size

Normalized Lattice

Order of schema H

Population

Probability of crossover

Probability of destruction

Probability of mutation

Probability of survival

Q matrix in QR method

Givens rotation matrix

R matrix in QR method

Recursive Least Squares

Simple Genetic Algorithm

System Identification Mode

x

Vi

v(n)

x(n)

y(n)

a(n)

f3(x)

8(H)

lJ(n)

T

4>(n)

cp(n)

,p(n)

Strict Positive Real

Givens rotation matrix

Output coefficient of lattice form HR filter

Noise signal

Input signal to an adaptive filter

Output signal of an adaptive filter

Unit delay

Prior error

Linear function for selection

Defining length of schema H

Coefficient of an adaptive filter

A small constant for QR algorithms

Forgeting factor

Step size constant of LMS algorithm

Cost function

Standard deviation of population fitness

Step size constant

Reflection coefficient of normalized lattice filter

Input vector

Gradient vector

XI

Chapter 1

Introd uction

1.1 Introduction

The adaptation of an HR filter is a very difficult problem due to its non-quadratic

performance surface and instability. Conventional gradient adaptive HR filter

algorithms face either potential instability problems or the high cost of stability

monitoring. In addition, when an HR filter's pole is close to the unit circle, most of

these algorithms have difficulty during the adaptation. The direct form adaptive

HR filter has poor numerical precision properties, and with high order HR filters,

it is difficult to monitor or limit the denominator coefficients to avoid instability.

All of this makes alternative non-gradient algorithms and filter structures more

appealing to researchers in adaptive signal processing.

Genetic Algorithms (GAs) are a family of search algorithms developed in the

60's and 70's. The basic idea for genetic algorithms originated from natural se-

1

CHAPTER 1. INTRODUCTION 2

lection and genetics. They incorporate the genetic operator into the computer

programming to solve the biological or non-biological problem. They have been

very successful in solving many problems in biology, computer science, and engi­

neering. These algorithms are general and robust. Our study is concerned with

applying these algorithms to the adaptation of HR filters, which has generated

some encouraging results [lJ, [2J.

The alternative HR filter structures are cascade, parallel and lattice. The

lattice structures in particular have received a great deal of attention due to

their superior finite precision properties compared with the direct form struc­

ture. In addition, stability monitoring of the lattice HR filter is extremely simple

and requires almost no computation. We have paid attention to the lattice form

structure and proven its superiority. This chapter begins with a review of other

research applying genetic algorithms to the adaptation of HR filters, a discussion

of the motivation for the study then follows, and finally, the organization of the

thesis is described.

1.2 Related Research

Early studies using an adaptive genetic algorithm to determine the optimum filter

parameters of an adaptive system were carried out in [3J and [4J. [3J applied a

genetic algorithm to the very simple unimodal and bimodal adaptive HR filters,

with an order one or two transfer function. [4J has applied genetic algorithms to

determine the optimal control parameters.

CHAPTER 1. INTRODUCTION 3

Recently R. Nambiar and P. Mars [5J - [9J have applied genetic algorithms to

the adaptation of HR filter, in particular for high order HR filters. These studies

extended Etter's study [3J, and showed some encouraging results. However, the

MSE performance still needs to be improved. These studies experimented with

cascade, parallel and lattice adaptive HR filter structures - the cascade and parallel

structure transfer functions are not general. For example, the high order filters

were adapted as a bank of first and second order filters, with the numerator of

the second order filter set to 1. In our study, we have tried to improve the MSE

performance and use a general model for cascade and parallel filters.

1.3 Motivation

As has been shown, the general performance of genetic algorithms applied to the

adaptation of HR filters needs to be improved. We also need to perform more

experiments on various adaptive HR filter structures.

The first objective of this research is to find a genetic algorithm which can

provide an improved MSE performance to the adaptation of HR filters, especially

when the poles of the HR filter are close to the unit circle. The previous studies

([3J - [9]) concentrated on using the Simple Genetic Algorithm, which has many

disadvantages in many applications.

The second objective is to find out which of the alternative filter structure

gives the best results when applying genetic algorithms to the adaptation of HR

filters. The disadvantage of the direct form structure has been reported [10], the

CHAPTER 1. INTRODUCTION 4

alternative structures being cascade, parallel and lattice.

Finally, we consider the coefficients of adaptive HR filters, in terms of quanti­

tative analysis, which most previous research has missed.

1.4 Outline of the Thesis

The remainder of the thesis is organized as follows:

Chapter 2. Overview of Genetic Algorithms

The concepts, mathematical foundations and operators of genetic algorithms are

described in this chapter. It lays out the background of genetic algorithms for the

whole thesis.

Chapter 3. Adaptive Infinite Impulse Response Filters

The two fundamental approaches to adaptive HR filter - equation error and output

error formulation - are introduced. We also outline gradient algorithms for the

adaptive HR filter.

Chapter 4. Simulations of Two Gradient HR Filtering Algorithms

Two recent gradient approaches to the HR filtering problem are reiterated. Com­

puter simulation of these two schemes are conducted, the results of which are

compared with our genetic algorithm results in later chapters.

Chapter 5. Applying Simple Genetic Algorithm to HR Filters

Computer simulation results of applying the Simple Genetic Algorithm to the

adaptation of HR filtering problems are obtained. Direct, cascade and parallel

HR filter structures are used in the experiments.

CHAPTER 1. INTRODUCTION 5

Chapter 6. Applying Genitor to HR Filters

In this chapter, computer simulation results of applying Genitor to the adapta­

tion of HR filtering problems are given. We experiment with a variety of HR

filtering problems - multi-modal, poles close to the unit circle, and high order

HR filter problems. We also experiment with different HR filter structures. Sev­

eral discussions based on the results in this chapter and the previous chapter are

presented.

Chapter 7. Conclusions

The final chapter provides a conclusion to the results presented here - both the

successes and limitations of applying genetic algorithms to HR filtering problems.

Finally, we propose a variety of topics for further investigation.

Chapter 2

Overview of Genetic Algorithms

Interest in Genetic Algorithms is expanding rapidly. Researchers have found that

they can apply Genetic Algorithms to many different areas, such as biology, com­

puter science, engineering, economics etc.. In this chapter, the background of

Genetic Algorithms is presented.

2.1 Introduction

In On the Origin of Species by Means of Natural Selection [11], Darwin argued that

all existing organisms are the modified descendants of one or a few simple ancestors

that arose on Earth in the distant past - as we now know, over 3000 million years

ago. He also argued that the main force driving this evolutionary change was

natural selection [12J. Genetic Algorithms (GAs) are a group of search algorithms

based on the mechanisms of such natural selection and genetics [13J. The basic

idea and the fundamental theory were developed by Holland and his student in

6

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 7

the 60's and early 70's at Michigan University [14], [15]. These algorithms encode

a potential solution to a specific problem on a simple chromosome-like (or gene­

like) data structure, and apply selection, recombination, mutation and perhaps

other genetic operations to these structures, so as to preserve critical information

[16].

An implementation of a genetic algorithm begins with a population of (typi­

cally random) chromosomes. These chromosomes can be represented by binary,

arabic or alphabetical data. One then evaluates these structures and allocates re­

productive opportunities in such a way that those chromosomes which represent a

better solution to the target problem are given more chances to 'reproduce' than

those chromosomes which are poorer solutions. The 'goodness' or 'fitness' of a

solution is typically defined with respect to the current population.

In a classical GA, the members of the population are represented as fixed­

length strings of binary digits, as shown in Figure 2.1. The length of the string

L and the population size N are completely dependent on the problem. Either

may range from a few tens to many thousands [17]. In genetic terms, we say

that each binary string represents a chromosome, a gene or a genotype, each bit

position is called the locus, and the locus value is named an allele. The genotype

is decoded to form the phenotype of the individual. According to the problem we

intend to solve, for example function optimization, we can convert the phenotype

to the fitness (or function) value. The fitness values in Figure 2.1 (the second

parentheses) are obtained through the following fitness evaluation procedure:

fitness = phenotype/2. (2.1)

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 8

Sometimes we want to find the minimum, so the lowest fitness value is required; if

we solve the maximum problem, the highest fitness value is required - it is problem

dependent. In Chapters 5 and 6, we optimize the mean square error (MSE), so

finding the lowest fitness value is the required optimization.

In a broader usage of the term, a genetic algorithm is any population-based

model that uses selection and recombination operators to generate new sample

points in a search space. Fitness proportionate selection, for example, which em­

bodies the concept of 'survival of the fittest', is used to select parents from the

population. Genetic recombination (crossover) is applied to pairs of parents to

create offspring, which will be mutated through the mutation operation and then

inserted into a new population, forming the next generation of individuals. The

whole procedure is shown in Figure 2.2. We will discuss these basic genetic op­

erators in section 2.3. In the next section we introduce the concept of schema

and schema theory, which will give the mathematical background for genetic al­

gorithms. In section 2.4, some advanced operators are introduced, and a practical

example, which shows how the genetic algorithm works, is given in section 2.5.

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS

000 1 0 1 1 1 (23) (11.5)
1 1 0 0 0 1 0 1 (197) (98.5)
1 0 0 1 1 0 0 0 (152) (76)
00 0 1 0 1 1 0 (22) (11)

10111100
01000100
011 101 1 1
101 0 1 010

(188) (94)
(68) (34)
(119) (59.5)
(170) (85)

9

Figure 2.1: A population of eight binary strings, each with a length of eight bits

(phenotypes shown in the first parentheses, fitnesses in the second parentheses).

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 10

Randomly Initialize Population Individuals

i
Evalute Fitness of Each Individual

1
Select Parent #1 Proportional to Fitness

1
Select Parent #2 Proportional to Fitness

1
Recombine Two Parents to Form Two Offsprings

i
Mutate and Insert Offsprings into New Population

i
Yes No

Size of New Population == N?

Figure 2.2: The simple genetic algorithm procedure.

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS

2.2 Schema and Schema Theorem

11

The concept of schema and the schema theorem were developed by Holland in his

landmark book Adaptation In Natural and Artificial Systems [14]. The schema

theorem laid a mathematical foundation for genetic algorithms. It provides a

lower bound on the change in the sampling rate for a single schema (hyperplane)

from one generation to the next.

2.2.1 Schema

A schema is a similarity template describing a subset of strings with similarities

at certain string positions [13]. These similarities can help guide a genetic search.

Before presenting further discussion, we introduce the * or don't care symbol for

the string representation, which can either be 0 or 1, so a genetic string can be

represented by the set {O, 1, *}. A string with length L represented by the set {O,

1, *} has 3L different combinations, we say this string has 3L schemata. In Figure

2.3, string 1 and string 2 have the same bit value on the second and the fourth

bit position, so they can be written into the schema representation of string 3.

Given a schema H = {I 0 * * * I}, we introduce two important properties of

schemata:

• defining length, denoted by c(H) is the distance between the first and the

last specific real value (0 or 1) position, here c(H) = 6 - 1 = 5;

• order, denoted by o(H), is the number or fixed real value (0 or 1) positions.

In the above example, o(H) = 3.

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS

string 1

string 2

string 3

Figure 2.3: Illustration of schemata.

12

2.2.2 Genetic Search Space and Schema as Genetic Search

Space Partition

Compared with traditional gradient search algorithms, such as least mean square

(LMS) and recursive least squares (RLS), genetic algorithms are global search

methods, because they are population based search methods. Every member of

the population can be a search point, and every generation has N (population size)

search points. These methods are weak, but robust and general [16J. Normally, the

optimization problems are encoded into binary or alphabetical representations. If

the problem is encoded into binary strings with length L, the search space is 2L

and forms an L-dimensional hypercube. The genetic algorithm samples are the

corners of this hypercube (Figure 2.4). For a length 15 binary string encoding,

there are 215 = 32,768 possible solutions in the search space, for a length 32

binary string encoding, there are 232 = 2,147,483,648 possible solutions in the

search space. The target for the genetic algorithm is to find out which one is the

best solution in the genetic search space.

Genetic algorithms can result in complex and robust searches by implicitly

sampling hyperplane (schema) partitions of the search space [16]. Using the ex-

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 13

ample from [16], we explain how the search space can be treated as a hypercube,

and how it is partitioned. In Figure 2.4, the upper and lower cubes represent

3-dimension and 4-dimension spaces. The lower cube is called a hypercube, and is

constructed by a cube 'hanging' inside the other cube. The corners are represented

by strings or the search points in the search space. The numbering scheme for

the lower hypercube corners is produced by adding a 0 to the upper cube corner

labels as a prefix to form the corner labels of the outer cube, and a 1 to the upper

cube corner labels as a prefix to form the corner labels of the inner cube. The

front plane of the upper cube can be represented by the schema {O * *}, the front

plane of the inner and outer bottom cube can be represented by the schemata

{OD * *} and {ID * *}. In the upper cube, 8 points, 12 lines and 6 planes partition

the 3-D space, making 33 =27 schemata in total including the hypercube (all * in

schema) itself.

2.2.3 Schema Theorem

Suppose at a given generation t there are M samples of a particular schema H

contained within the population P(t), M can be denoted by M(H, t). We first

consider reproduction, during which the intermediate samples are created and

put in the mating pool. The selections are made according their fitness values,

with the probability of a string being selected as

Pi = N .
L;=1 f;

fi
(2.2)

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 14

111

010

100 J..--l-------.,.I 101

000
0110 0111

A--------------,?
1 -;7

/ /: 1110 1111 ;;

0010 / /
~--- --1- J

1010

1

1000)L---..,.L/'------~-
'-..

-~------7'
1 / 0101

/ 1001 1

/ / \ 1 /
/ 1 /

~------------- Y
0000 0001

Figure 2.4: A 3-D and a 4-D hypercube. The corners of the 4-D hypercube are

numbered in the same way as in the upper 3-D hypercube, except the addition

of a 0 to the outer cube corner labels as a prefix, and the addition of a 1 to the

inner cube corner labels as a prefix.

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 15

Therefore, after selecting samples from a population P{t) with size N, we expect

to have M{H, intermediate) representatives of the schema H in the mating pool.

This can be calculated by

M(H, intermediate) = N M(~, t)f(H) ,
Lj=l !;

(2.3)

where f(H) is the average fitness of schema H. This equation can also be written

as

M(H, intermediate) = M(H,t/j), (2.4)

with

-f = Lf=l!;
N '

(2.5)

which is the population average fitness.

Next crossover is included. After applying crossover to the individuals in the

mating pool, some individuals will survive, some individuals will die and some

new individuals will be created. For a schema H, the bigger the defining length

is, the easier it is disrupted. The probability for schema H being destroyed is

8(H)
Pd= L-1' (2.6)

and the survival probability is

P. = 1- Pd. (2.7)

Assuming the crossover probability is Pc, the survival probability of schema H can

be given as

8(H)
P. :::: 1 - Pc L _ 1· (2.8)

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 16

Therefore, by combining reproduction and recombination, the expected represen-

tatives of the schema H in the next generation is

f(H) 8(H)
M(H,t+l)~M(H,t) 1 [1- Pc L_l]· (2.9)

Finally, the mutation operator is considered. Mutation could happen to every

bit position in a schema. Now suppose the mutation probability is Pm, then for

every single bit, the probability for it to survive over the mutation is 1- pm. These

o(H} bit positions have a value of 0 or 1 in the schema H. If the schema survives

to the next generation, the o(H} bits have to survive, so applying mutation to the

schema H, the probability for this schema to survive is (1 - Pm)o(H). Thus, the

equation (2.9) can be rewritten as

(2.10)

This is called the schema theorem. Normally, the mutation rate Pm is very small

(Pm « 1), so the schema theorem (2.10) can be further simplified as

(2.11)

From this theorem, we draw the following conclusion: low defining length,

low order schemata are given exponentially increasing or decreasing numbers of

samples, depending on a schema's average fitness [13], and are given the special

name building blocks. Building blocks play a important role in genetic algorithm

studies, see [13] for details.

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS

2.3 Genetic Operators

17

The basic genetic algorithm cycle is completed through four phases: evaluation, se­

lection, recombination and mutation [18]. Genetic operators play a very important

role in this cycle. In this section, three basic operators - selection (reproduction),

crossover (recombination) and mutation are introduced.

2.3.1 Reproduction - Selection

Genetic algorithms start with a random initial population, of size N and string

length L, with each population individual evaluated for its fitness value. Selection

is an operator which uses the fitness value to select the fittest string. For example,

for a maximum optimization problem, apply the selection operator to the popu­

lation in Figure 2.1, then the second and the third strings will have the highest

probability of being selected, because they have the highest fitness values (94 and

98.5). The selected individuals will be recombined and mutated, surviving to the

next generation. The non-selected individuals will die out and not be included in

the next generation. So under selection alone, individuals can only do one of three

things: they may be born, they may live or they may die [19]. The selection phase

is composed of two parts: 1) determination of the individuals' expected values;

and 2) conversion of the expected values to discrete numbers of offspring [18].

The absolute difference between an individual's actual sampling probability and

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 18

its expected value is defined as selection bias 1 There are many different selection

schemes: proportionate, ranking, tournament and steady state selection. We now

give some basic details about these selection schemes.

Proportionate selection describes a group of selection schemes that choose

individuals for birth according to their fitness values. In these schemes, the prob-

ability of selection p of an individual from the ith class in the tth generation is

calculated as

Pi,t = "N f"
L.,,3=1 3

(2.12)

where N is the population size. Various methods have been suggested for sam-

pling this probability distribution, including roulette wheel selection [13], [15],

stochastic remainder and stochastic universal selection [18J, etc.. Here we give

a brief introduction to the roulette wheel selection and the stochastic remainder

selection.

The roulette wheel selection is also called the Monte Carlo selection [15J. It

uses the gambling roulette wheel to allocate offspring strings with slots sized

according to their fitness. We list several strings in Table 2.1 together with their

fitness and the percentage of individual fitness in the fitness sum. Figure 2.5 is a

roulette wheel with the related string slots. We spin this wheel four times, four

offspring strings are produced, and these four strings form the mating pool. So

lThis bias is used by James Baker to analyse election efficiency in [18]. It has different

definition to the one we are going to use in Chapter 6

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 19

Table 2.1: The example for roulette wheel selection.

I String No. I String I Fitness I % of Total I
1 00010111 12.5 6.3

2 11000101 98.5 49.7

3 10011000 76 38.4

4 00010110 11 5.6

Figure 2.5: The roulette wheel reproduction.

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 20

four spins perform the whole selection procedure, and strings 2 and 3 have the

highest probability of being selected.

We consider the example in [13], which maximizes the function f(x) = x2 over

the interval [0-31]' where x is represented by five-bit s~rings in the GA, given in

Table 2.2, showing the stochastic remainder selection. First, we calculate the mean

of the fitness, which is equal to (4+576+1+361)/4 = 235.5, then we calculate the

expected number of copies the string will produce in the intermediate population.

For string 1, Expect = integer part of (4/235.5) = 0, its remainder = (4/235.5) -

o = 0.017; for string 2, Expect = integer part of (576/235.5) = 2, its remainder

= (576/235.5) - 2 = 0.45, etc .. Now we have produced three string at the current

stage, two copies of string 2 and one copy of string 4. According to the remainder,

we carry out another round of selection from the four strings: if drand48(J2 :::;

Remainder (roulette wheel), we choose this string, and in this case, the chosen

string will be string 4. We now construct an intermediate population { 1 1 0 0 0,

1 1 0 0 0, 1 0 0 1 1, 1 0 0 1 1 }, and use a random set of selecting strings from the

intermediate population to form the mating pool. The selection procedure used

is the stochastic remainder selection. If after one string has been selected from

the intermediate population to the mating pool, this string is dismissed from

the intermediate population, we call the whole procedure stochastic remainder

selection with replacement. We will use this selection scheme in the next chapter.

1).

Ranking selection is a selection scheme in which each individual receives an

'drand480 is a random number generation function, generate random number between (0,

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 21

Table 2.2: The example for stochastic remainder selection.

String No. String :1) Fitness :1)2 Expect Remainder

1 00010 2 4 0 0.017

2 11000 24 576 2 0.45

3 00001 1 1 0 0.004

4 10011 19 361 1 0.53

expected number of offspring based on the rank of its performance and not on

the magnitude [20]. It can control the rate of convergence, because this selection

scheme can control the range of trials allocated to any single individual, so no

individual receives many offspring. We will discuss this scheme further in Chapter

6. For more detailed studies, see [20].

Tournament selection is one of the most commonly used selection schemes

in genetic algorithms. A group of individuals are randomly chosed from a popu­

lation; select the best individual from this group for recombination, mutate, and

repeat this procedure as many times as desired (usually until the mating pool is

filled). Tournaments are often held between pairs (tournament size = 2) or more

than two individuals [19].

Steady state selection is another selection scheme which was used in Genitor

[21], [22]. We will introduce this scheme in chapter 6.

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 22

2.3.2 Recombination - Crossover

Once parents have been selected from the population, their genetic material is

combined to form the offspring. Picking a pair of strings among the selected indi­

viduals, and crossing them into one another with a probability pc for exchanging

genetic information, produces a new pair of strings. This procedure repeats a

certain number of times until the full population is filled. Crossovers can be one

of 1-point, 2-point, ... , or uniform crossover [23], [24], which exchange 1, 2, ... ,

or L/2 fragments of the strings. The crossover site can be chosen between 1 and

L (string length), but normally it is randomly chosen. In Figure 2.1, if 1-point

crossover occurs between the fourth and the fifth binary position, swapping the

fragments of the first and the second strings produces two offspring, the first string

becoming {O 0 0 1 1 1 0 O}. It is this improvement in performance (fitness 14),

which is the purpose of recombination. In Figure 2.6, one-point crossover occurs

at locus 5; in figure 2.7, two-point crossover occurs between locus 3 and locus

7. Figure 2.8 shows the uniform crossover. We will apply these recombination

procedures in Chapter 5.

2.3.3 Mutation

When applying crossover on the selected strings, some alleles on a certain locus

may never be changed through the recombination operation, meaning that a cer­

tain part of the search space will not be searched. To overcome this problem,

another operator - mutation - is introduced.

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 23

Mutation is the means by which fundamentally new traits are introduced into

the population [17J. Mutation occurs randomly and very rarely both in natural

and artificial genetic systems, but when it does, it may cause chromosomes to take

on new values which have never occurred in the population before [25J. When the

mutation does happen to a individual, one bit of the chromosome is chosen and

set to its complementary value. This provides greater ability to ensure that every

part of the search space is visited. If mutation happens to the string

o 00 1 0 1 0 1,

on locus 8, the allele on the locus will be changed to its complementary value:

o 0 0 1 0 1 0 O.

Typically in GAs, only one in many thousand of genotypes are affected by muta­

tion.

The processes of evaluation for fitness, reproduction, recombination and mu­

tation form one generation cycle in the execution of a genetic algorithm.

2.4 Some Advanced Operators

Selection, crossover and mutation are the basic operators for genetic algorithms.

There are many other operators adopted from natural genetics [12J in genetic algo­

rithms. These operators include low-level operators such as dominance, inversion,

intrachromosomal duplication, deletion, translocation, and segregation. The high

OHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS

before crossover

00000000

111 1 1 1 1 1

after crossover

00001111

11110000

Figure 2.6: One-point crossover, cross site at locus 5.

before crossover

00000000

111 1 1 1 1 1

after crossover

00111100

11000011

Figure 2.7: Two-point crossover, cross site at 3 and 7.

before crossover

00000000

11111111

after crossover

010 1 0 1 0 1

10101010

Figure 2.8: Uniform crossover.

24

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 25

level operators include migration, marriage restriction, and sharing functions [13].

We introduce two low-level operators.

Diploidy and Dominance. So far we have only discussed the simplest ge­

netic structure: haploid or single chromosome genetic structure. In genetics, there

exist diploidy and polyploidy, more complicated structures in which one genotype

is constructed by two, or more than two, chromosome strings. For example, the

following genotype (diploidy) is made up of two chromosome:

aBcDeF,

AbCdef.

On the same locus we have two different alleles, which in nature could represent

different phenotypic characteristics. For example, if B represents the blue eye gene

and b the yellow eye gene, then the phenotype can not express blue eye and yellow

eye at the same time, it must use dominance to decide which gene is expressed in

the next generation. In the above example, if the upper-case letter is dominant

to lower-case letter, the next generation's expressed phenotype would be

ABCDeF.

In nature, animals and plants with diploid or polyploid structure have been the

most capable of surviving, because their genetic constitution does not easily forget

the lessons learned prior to previous environmental shifts [13]. The application of

diploidy and dominance in genetic search can be found in [26].

Inversion. Inversion is a reordering operator - it reshufles the chromosome

structure:

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS

before inversion 1 1 0 1 1 1 0 1

after inversion 1 1 1 1 1 0 0 1.

26

It changes the whole genotype structure, so that a better offspring may be pro­

duced. For more detailed studies of the these operators and other operators, see

[13J

2.5 Genetic Algorithm at Work - an Example

To illustrate the implementation of a simple genetic algorithm and schema pro­

cessing, we will use the simple function optimization example given in [13J. This

problem is a maximization problem, the first step of which to optimize the function

J(x) = :1)2 over the interval (i.e. parameter set) [0-31J is to encode the parameter set

x, for example as a five digit binary string in Table 2.3 [13], generated randomly

by a random number generator.

Firstly, we use proportionate selection, for example roulette wheel selection,

to construct the intermediate population, which can be called the mating pool.

The strings are selected according their fitness values: the expected numbers for

a string being reproduced, Id1, for first string is 0.58, the second string is 1.97,

the third string is 0.22, and the fourth is 1.23. So the number of copies that

the mating pool receives from the initial population strings are 1, 2, 0, and 1

respectively.

Secondly, we apply crossover to the mating pool (Tables 2.3 and 2.4 [13]). Two

strings are randomly selected to mate, and the crossover sites are also randomly

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 27

selected. After crossover has been applied to the pairs of strings, the new popula­

tion is obtained. The average fitness of the new population is improved, so is the

evolution.

Finally, we consider the involvement of mutation. Suppose the mutation rate

is 0.001, then the probability for mutation to occur is 0.00h4*5 = 0.02, so in this

case, no mutation occurs.

In Tables 2.3 and 2.4, by using the schema theorem (2.11), we can also perform

schema processing. We chose three schemata: HI = { 1 * * * * }, H2 = {* 1 0 *

* } and H3 = { 1 * * * 0 }. After reproduction, the expected number of copies of

the schemata are

M(HI , intermediate) = 2*469/293 = 3.20,

M(H2 , intermediate) = 2*320/293 = 2.18,

M(H3 , intermediate) = h576/293 = 1.64.

After crossover and mutation, the expected number of copies of the schemata are

3

M(HI , t+1) = 2*(469/2931*(1 - h(0/4))(1 - O.OOhO) = 3.20,

M(H2 , t+1) = 2*(320/293)*(1 - h(1/4))*(1 - 0.00h1) = 1.64,

M(H3' t+1) = h(576/293l*(1- 1*(4/4))*(1 - 0.00h4) = 0.00.

Because of the long defining length, the crossover will usually destroy schema

H3 • Therefore, we can see that string processing and schema processing produce

3The crossover rate p, = 1.0 means that crossover would definitely happen. The mutation

rate p= = 0.001.

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 28

Table 2.3: String Processing and Schema Processing by Hand.

String Processing

String Initial
f(x)

Expected Actual

No. Population
x

Count Count

1 01101 13 169 0.58 1

2 1 1 0 0 0 24 576 1.97 2

3 o 1 0 0 0 8 64 0.22 0

4 10011 19 361 1.23 1

Sum 1170 4.00 4.0

Average 293 1.00 1.0

Max 576 1.97 2.0

Schema Processing

Before Reproduction

String Schema Average
Schema Representatives Fitness f(H)

Hl 1 * * * * 2, 4 469

H2 * 10* * 2, 3 320

H3 1 * * * 0 2 576

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 29

Table 2.4: String Processing and Schema Processing by Hand, continuation of

Table 2.3.

String Processing

Mating
Mates Swapping

New
f(xl Pool Population x

o 110 1 1 o 1 1 0 [1] 01100 12 144
1 1000 2 1 1 0 0 [0] 11001 25 625
1 1000 2 1 1 [0 0 0] 1 1 0 11 27 729
10011 4 1 0 [0 1 1] 10000 16 256

Sum 1754
Average 439

Max 729

Schema Processing

After Reproduction After All Operators

Expected Actual String Expected Actual String
Count Count Respresentives Count Count Respresentives

3.20 3 2,3,4 3.20 3 2,3,4
2.18 2 2,3 1.64 2 2,3
1.97 2 2,3 0.0 1 4

CHAPTER 2. OVERVIEW OF GENETIC ALGORITHMS 30

similar results.

2.6 Summary

In this chapter, we have outlined the basic concepts, mathematical foundations,

and operators of the genetic algorithm. We have also given a hands-on example

to show how a genetic algorithm works.

In fact, many genetic algorithm models have been introduced by researchers

largely working from an experimental perspective, such as the Simple Genetic

Algorithm (SGA) [13], Genitor [21], CHC [27J, the Parallel Genetic Algorithm

[28], etc.. Many of these genetic algorithms are application oriented, and the

interest is typically in genetic algorithms as optimization tools. In this thesis, we

apply genetic algorithms to the adaptation of adaptive infinite impulse response

(HR) filtering problems. We will concentrate on the Simple Genetic Algorithm

and Genitor in Chapters 5 and 6.

Chapter 3

Adaptive Infinite Impulse

Response Filters

3.1 Introduction - Adaptive Filters and Their

Applications

Adaptive filters involve the use of a programmable filter whose frequency response

or transfer function is altered, or adapted, to pass without degradation the desired

components of the signal and to attenuate the undesired or interfering signals, or

reduce any distortion on the input signal [29]. Figure 3.1 shows an adaptive filter

configuration. A signal x(n) is the input to an adaptive programmable filter,

the adaptive filter output y(n) is compared with the desired signal d(n), and the

difference is sent to an adaptive algorithm to adjust the adaptive filter coefficients.

This adjustment drives the filter output to become closer and closer to the desired

31

CHAPTER 3. ADAPTIVE INFINITE IMPULSE RESPONSE FILTERS 32

Desired Output d(n)

Programmable
Filte r Output

Filter y (n)

- ~ +
Fi Iter Input Update Filter +

x(n) Coefficients
Error Out put

e(n)

Adaptive
Algorithm

Figure 3.1: A Generic Block Diagram of an Adaptive Filter.

Input

x(n)

Coefficients

Figure 3.2: An FIR Filter Block Diagram.

Output

y(n)

CHAPTER 3. ADAPTIVE INFINITE IMPULSE RESPONSE FILTERS 33

+)--+{)--+(+
Output

y(n)

x(n)

Figure 3.3: An HR Filter Block Diagram.

CHAPTER 3. ADAPTIVE INFINITE IMPULSE RESPONSE FILTERS 34

output, so the unwanted components in x(n) are eliminated. The desirable features

of adaptive filters are their ability to operate effectively in an a priori unknown

environment and also to track time variations in the input statistics.

Linear adaptive filters can be classified as adaptive finite impulse response

(FIR) filters and adaptive infinite impulse response (HR) filters. FIR filters (Fig­

ure 3.2) are generally used in the application of adaptive filters due to their in­

herent stability. FIR filter algorithms such as LMS, RLS, FTF and QR-RLS,

etc., [29J - [35J, are well established. In particular, gradient algorithms are very

suitable for adaptive FIR filtering as the error surface is quadratic and unimodal

with respect to the filter coefficients.

For certain real physical systems, adaptive HR filter (Figure 3.3) [29], [31],

[36], [37J can be more economical, in the sense of lower filter order, compared to

their adaptive FIR filter counterparts. However the error surface of an adaptive

HR filter can be multi-modal, making it difficult for HR adaptation algorithms to

find the global optimum. Instability is another very important issue to consider,

especially when the poles are quite close to the unit circle, in which case adaptation

noise can result in violation of the stability condition.

The direct form adaptive HR filter implementation can exhibit high roundoff

noise in the presence of finite precision arithmetic, and remains susceptible to

quantization limit cycles [38J. If the poles of the HR filter are close to the unit

circle, for conventional gradient adaptive HR filter algorithms, the direct form

HR filter's stability is not guaranteed. The algorithms in [39J, which are variants

of the Steiglitz-McBride technique [40J, where the filter structure remains direct

CHAPTER 3. ADAPTIVE INFINITE IMPULSE RESPONSE FILTERS 35

form, fail to converge for this condition.

This has motivated researchers to look for alternative structures and algo­

rithms. Cascade, parallel and lattice structures have been documented [10], [41]

and [42]. The solution given in [41] uses the LMS algorithm on parallel and cas­

cade form adaptive HR filters. This introduces additional saddle points into the

performance surface, which are unstable solutions in the parameter space [41].

The solution given in [42] uses the LMS algorithm on the lattice form adaptive

HR filter, which maintains computational complexity O(M2) for gradient calcu­

lation. The algorithms in [10] are normalized lattice-based, the first algorithm

being a reinterpretation of the Steiglitz-McBride method, while the second is a

variation on the output error method, both of them of O(M) complexity. The co­

efficients are updated by using the QR-based Gauss-Newton algorithm [10], [43]

which requires many matrix computations, and for the case where the poles are

extremely close to the unit circle, the algorithms fail to converge.

Genetic Algorithms and stochastic learning automata [44] are alternative so­

lutions to the adaptive HR filtering problems. The latter solution has been shown

to be successful in tackling some HR filtering problems [44]. In our studies, we

use the genetic algorithm solution to the HR filtering problems in Chapters 5 and

6.

Both FIR and HR filters have been successfully applied in many areas such as

prediction, communication channel equalization, echo cancellation, system identi­

fication, image processing and pattern recognition, etc .. We give a brief descrip­

tion of the first four applications.

CHAPTER 3. ADAPTIVE INFINITE IMPULSE RESPONSE FILTERS 36

• Adaptive signal prediction (Figure 3.4) is an adaptive system configured to

perform prediction of a signal, based upon its previous values. Here the predicted

or the desired signal is the current signal. This signal is fed through a delay

stage into the adaptive filter. The predictor is trying to minimize the error signal,

which is the difference between the desired signal and the adaptive filter output.

The adaptive filter output is a combination of previous filter inputs. When the

error is minimized, this adaptive filter output estimates the current input signal.

An application of adaptive predictors is cancellation of periodic interference [45].

Another application is the efficient encoding of speech signals [46]- [48].

• Adaptive channel equalization (Figure 3.5) is inverse modeling [29], [31], [49]

- [52]. For this technique, the desired adaptive filter output is an estimate of the

original transmitted message sequence and the input to the adaptive filter is the

received data sequence, which is subject to distortion due to transmission through

the channel. The adaptive filter is updated so that the error between the equalizer

output and the desired response, which is again available as either the training

data or previous equalizer decisions, is minimized, hence signal distortion caused

by the transmission channel is removed.

• Adaptive noise cancellation (Figure 3.6) is an adaptive processing system to

cancel interference [53]. For this system, a signal, s, is corrupted by interference

n, resulting in the combined signal, s+n. A correlated, but distorted, estimate of

this noise, 'it, is also available. So the corrupted signal, s+n, is fed to the desired

input and the estimated noise is fed to the adaptive filter input. By minimizing

the difference between the two signals, in term of error, the adaptive filter is

CHAPTER 3. ADAPTIVE INFINITE IMPULSE RESPONSE FILTERS 37

Desired Output

Programmable
Filter

Delay - r

x

put + d
(n)

In

Adaptive
Algorithm

Figure 3.4: Adaptive Prediction.

Delay

Programmable
Filter

x I
-r-

put + Channel
(n)

In

Adaptive
Algorithm

Figure 3.5: Adaptive Channel Equalization.

+

+

Ou tput

y(n)

Ou tput

n) y(

CHAPTER 3. ADAPTIVE INFINITE IMPULSE RESPONSE FILTERS 38

Signa + Noise (s+n)

Programmable
Ou tput

Filter y (n)

Nosise I
- .Y--' +

Estimate-n +

Adaptive
Algorithm

Figure 3.6: Adaptive Noise Cancellation.

Unknown
System

In put Programmable Outp ut

x (n) Filter y(n)

I
- V-- +

+

Adaptive
Algorithm

Figure 3.7: Adaptive System Identification.

CHAPTER 3. ADAPTIVE INFINITE IMPULSE RESPONSE FILTERS 39

configured to estimate the actual noise. The noise estimate may then be sub­

tracted from the noisy signal, resulting in an estimate of the original signal. A

typical example of the application of this technique is the cancellation of additive

noise from speech signals [54 J •

• Adaptive system identification [29], [32], [43J is shown in Figure 3.7. The aim

of this adaptive filter is to find a system with a transfer function which closely

approximates to the unknown system's transfer function. A signal x{n) is fed into

the unknown system and also the adaptive filter. The output, which the unknown

system gives in response to this input, is the desired response of the adaptive filter

and so is fed into the desired response input. By minimizing the difference of two

system's output, the adaptive filter learns to respond like the unknown system.

The parameters ofthe adaptive filter try to pertain to the unknown system's. The

output of the unknown system may be corrupted by a small amount of noise, so

that it can not be identified exactly. Throughout this thesis, system identification

is used as the main system configuration.

3.2 Equation-Error and Output-Error Adaptive

HR Filters

Fundamentally, there have been two approaches to adaptive HR filtering that

correspond to different formulations of the prediction error. They are known as

equation-error and output-error formulations [36J, [37J.

CHAPTER 3. ADAPTIVE INFINITE IMPULSE RESPONSE FILTERS 40

3.2.1 Equation-Error Formulation

In the equation-error formulation [55], the delayed desired response d(n-l) and

the input 1:(n) are fed into the filter, to generate an estimate of d(n). It can be

characterized by the nonrecursive difference equation

M M
y,(n) = "Ea.(n)1:(n - k) + "Ebk(n)d(n - k), (3.1)

.=0 .=1
where a.(n) and b.(n) are the adjustable coefficients. Alternatively, this formula-

tion can be rewritten as:

y,(n) = A(n,z)1:(n) + B(n,z)d(n), (3.2)

where the polynomials in z represent time-varying filters and are defined by

M M
A(n, z) = "E a.(n)z-' and B(n, z) = "E b.(n)z-'. (3.3)

.=1
This formulation is depicted in Figure 3.8 [36J. It does not have feedback, hence it

is simply operated by all zero and all pole filters, and the corresponding algorithms

are well understood. The difference with the FIR filter is that the FIR filter is

strictly an all zero model since B(n, q) = O. The equation-error approach can

lead to biased estimates of the coefficients [36J, in that the converged coefficients

obtained with this approach are generally different from those generated by the

output-error formulation. The error e.(n) = d(n) - y.(n) is a linear function of

the coefficients, so that the mean square error (MS E) is a quadratic function with

a single global minimum.

Equation (3.1) can also be compactly written as the inner product

(3.4)

GHAPTER 3. ADAPTIVE INFINITE IMPULSE RESPONSE FILTERS 41

/
x(n)

A(n, z) 1 Yo (n)

1-B(n, z)

/ +
B(n, z) -±(+

V Ye(n)
-

ee (n)
+

+
d(n)

Figure 3.8: Equation-error formulation

where the coefficient vector ern) and the signal vector 'Pe(n) each have length

(2M+l) elements and are defined as

ern) = [ao(n), ... ,aM(n), b1(n), ... , bM(nW (3.5)

'Pe(n) = [x(n), ... , x(n - M), d(n - I), ... , d(n - MW. (3.6)

The equation (3.4) is a linear regression and can be solved by using the LMS

or RLS algorithms. The LMS (Least-mean-square) algorithm [30J is a recursive

gradient-descent method that searches for the minimum of the mean square er-

ror; the RLS (recursive-least-square) algorithm [32J recursively minimizes a least-

squares criterion.

CHAPTER 3. ADAPTIVE INFINITE IMPULSE RESPONSE FILTERS 42

3.2.2 Output-Error Formulation

Figure 3.3 shows a direct form output-error adaptive HR filter. This output-error

formulation can be characterized by the following recursive difference quation:

M M
yo(n) = L ak(n)x(n - k) + L bk(n)Yo(n - k), (3.7)

k=l

In this formulation, the input signal x(n) and the previous output signals are fed

into the filter to generate the current output signal. Because this formulation

depends on the feedback of output signals, it has a greater complexity due to the

nonlinearity compared with equation-error approach. The equation (3.7) can be

rewritten as

A(n, z)
yo(n) = 1- B(n, z) x(n), (3.8)

and Figure 3.3 can be redraw as Figure 3.9.

Equation (3.7) or (3.8) can also be written as the inner product

(3.9)

where the coefficient vector is given by equation (3.5) and the signal vector by

'Po(n) = [x(n), ... , x(n - M), yo(n - 1), ... , yo(n - MW. (3.10)

Clearly, we can see that the filter output Yo(n) is a nonlinear function of the

coefficients B(n), the reason being that the output yo(n - k) of 'Po(n) depends

on previous coefficient values. The error eo(n) = d(n) - Yo(n) is also a nonlinear

function of the coefficients - the mean square error function is not a quadratic

CHAPTER 3. ADAPTIVE INFINITE IMPULSE RESPONSE FILTERS 43

d(n)

/
A(n, z) Yo (n)

x (n) I-B(n, z)

/
- v--+
C±)

Figure 3.9: Output error formulation.

function and could have multiple minima [56]. Adaptive algorithms that are

based on gradient-search methods (LMS or RLS) could converge to one of these

local solutions, resulting in suboptimal performance and inaccurate estimate of

the coefficients [36]. We will discuss these matters in the later chapters. In this

thesis, we mostly use the output-error formulation for our studies.

3.3 Adaptive HR Filter Algorithms

Most of the adaptive HR filter adaptation algorithms are gradient based. These

adaptive filtering algorithms revolve around a generic coefficient update formula

O(n + 1) = O(n) + fl(n)a:(n)1jJ(n) (3.11)

CHAPTER 3. ADAPTIVE INFINITE IMPULSE RESPONSE FILTERS 44

or in Gauss-Newton form [43]:

n

8(n + 1) = 8(n) + [2: An-k,p(k),pt(kJrl,p(n)a(n), 0 « A« 1. (3.12)
k=O

where 8(n) is the coefficient vector, a(n) represents an a priori error signal, p(n)

is a sequence of step size parameters, A is the forgetting factor and ,p(n) is a

gradient vector, whose components are ordered in one-to-one correspondence with

the elements of 8(n). The recursive adaptive algorithm in [43] adapts the filter

coefficients to minimize the MSE (mean-square-error) cost function e = E[e2(n)],

where ern} = d(n) - y(n}. Because e is generally unknown or the signals are

nonstationary, the algorithm is designed to minimize e at each instant of time,

and the instantaneous estimate of e(n) is given by e(n) ~ e2(n). The gradient is

defined as

8e(n)
,p(n) =' \lee ~ 88(n) = -e(n)V'ey(n), (3.13)

where y(n} is the adaptive filter output.

By using the gradient-descent method and e = E[e2 (n)] to evaluate the gradient

vector ,p(n), the equation (3.11) becomes the LMS algorithm [32]. By using the

formulation

n

e = 2: An-k!e(kW, (3.14)
k=l

to evaluate the gradient vector ,p(n), the equation (3.12) becomes the RLS algo­

rithm [29], [32], where A is the forgetting factor.

The earliest study on HR filters using gradient algorithms can be traced back

to 1976: Feintuch [57] applied the LMS algorithm to HR filters which triggered

CHAPTER 3. ADAPTIVE INFINITE IMPULSE RESPONSE FILTERS 45

a rebuttal [58] - [60] as well as new interest in adaptive HR filtering. This work

[57] - [60] in adaptive HR filtering was mainly restricted to extending Widrow's

LMS method of adaptive FIR filtering based on gradient search techniques. As

discussed in [39], these algorithms may have guaranteed global convergence only

for the unimodal error surface. This severely limits their usefulness.

Another existing family of adaptive HR filtering algorithms is represented by

the group of algorithms based on the concept of hyperstability [29], [37], [61] -

[63]. Among these, the hyperstable adaptive recursive filter (HARF) was proven

asymptotically convergent under the 'strict positive real' (SPR) assumption [62].

However, the SPR requirement is a major obstacle in the practical application of

HARF.

Recently, two approaches [10], [39] claim that they can either solve the mul­

timodal case or the poles close to the unit circle case, and have a reduced com­

putational complexity. We will choose these two approaches to compare with our

genetic algorithm approach. The simulation results based on these two approaches

are given in Chapter 4.

3.4 Summary

In this chapter, we have given a brief introduction to adaptive filters and their

applications. We have described the fundamental approaches to adaptive HR

filters, namely are the equation-error formulation and output-error formulation,

and their properties. We have given a generic adaptive algorithm formula, and

CHAPTER 3. ADAPTIVE INFINITE IMPULSE RESPONSE FILTERS 46

also reviewed the conventional adaptive HR filter algorithms, their convergence

and stability properties. Based on the two more recent approaches mentioned in

this chapter, we present the results of various simulations in the following chapter,

which will lay a background for comparison with genetic algorithms in Chapters

5 and 6.

Chapter 4

Simulations of Two Gradient IIR

Filter Algorithms

4.1 Introduction

In Chapter 3, we briefly introduced adaptive HR filter algorithms: the gradient

based algorithms [57] - [60], which may only have guaranteed global convergence

for the unimodal error surface, and the hyperstable adaptive recursive filter al­

gorithms which require the SPR condition, a major obstacle in practical appli­

cations. A new adaptive HR filter developed by H. Fan and W. K. Jenkins [39]

overcomes the previous gradient HR filter algorithm's problems. But stability is

not guaranteed by this algorithm. Thus, in theory, a stability monitoring device

has to be incorporated into these algorithms [39]. For the case of the filter's poles

approaching the unit circle, we found this algorithm failed to converge.

47

CHAPTER 4. SIMULATIONS OF TWO GRADIENT IIR ALGORITHMS 48

Another algorithm developed by P.A. Regalia [10] has a number of advantages

over traditional gradient algorithms, especially multimodal and high order HR

filter problems. We also found this algorithm failed to solve an HR filter problem

when the poles are extremely close to the unit circle. In sections 4.3 and 4.4 we

will present some experimental results to prove our claims.

4.2 The Steiglitz-McBride Identification Tech-

• nlque

Both of the HR filtering schemes we describe are based on the Steiglitz-McBride

identification technique [40], [64]. This technique was developed by K. Steiglitz

and L. E. Mcbride in 1965. A brief introduction to this technique will be given

before we proceed on to discussing the algorithms. The Steiglitz-McBride iden-

tification technique is shown diagrammatically in Figure 4.1. It is an iterative

technique. An initial estimate of the unknown system's denominator polynomial

Dn(z) is used as a prefilter for both the input and output sequences relating the

unknown system transfer function. The prefiltered signals are fed to the numer-

ator and denominator polynomials Nn+1(z) and Dn+1(z) to minimize a typically

quadratic measure of the error ern). The prefilters are updated to 1/ Dn+1 (z)

for the next sample instant, and the procedure continues by seeking Nn+2 (z) and

Dn+2(Z), If convergence is obtained, that is, Dn+l(Z) = Dn(z), Figure 4.1 be-

comes Figure 4.2, which is in the form of a converged HR filter whose output is

subtracted from the unknown system output to produce the error signal. We will

CHAPTER 4. SIMULATIONS OF TWO GRADIENT IIR ALGORITHMS 49

x_(:....n:....) ---,------+1 Unknown ~_..(
System

1

Dn(z)

v(n)

1

Dn(z)

L--__ --i + \----------'

e(n)

d(n)

Figure 4.1: The Steiglitz-McBride identification scheme.

see how this technique works in both schemes.

4.3 Fan's Algorithms

The algorithms in [39] are a family of stochastic approximation variants of the

Steiglitz-McBride identification scheme. Suppose we have the system model of

Figure 4.3, which is described by the following equations

n4 "6

w(n) = L ai(n):z:(n - i) + L bi(n)w(n - i), (4.1)
i:::O

d(n) = w(n) + v(n), (4.2)

CHAPTER 4. SIMULATIONS OF TWO GRADIENT IIR ALGORITHMS 50

v(n)

x _(_n_) --, __ ---+j Unknown I-----+{ + }--_,-_d_(~n)
System

~
D(z)

'--------+{+l+-------'

e(n)

Figure 4.2: The equivalent system of Fig. 1 at any stationary point.

no nb
y(n) = L ai(n)x(n - i) + L bi(n)y(n - i),

i=O i=1

e(n) = d(n) - y(n).

(4.3)

(4.4)

Fan's model (Figure 4.4) is obtained by adding three prefilters to the system

identification model (Figure 4.3). Here

no nb

A = Lai(n)z-i and B = Lbi(n)z-i, (4.5)
i=1

nil n6
A = Lai(n)z-i and B = Lbi(n)z-i. (4.6)

CHAPTER 4. SIMULATIONS OF TWO GRADIENT HR ALGORITHMS 51

v(n)

A

1 - B

x(n) e(n)

-
A

1- B y(n)

I f ______________________ ~

Figure 4.3: System identification mode.

A

yen)

1

1- B

x(n) 1
1 - B ,--~'--, Output Error

o(n)
1 - B - x'(n 1- B

i..
/ 1 - B Y'(n) /

1 ______ ---------- ______________________ 1 __________ _

Figure 4.4: System identification mode of Fan's algorithm.

CHAPTER 4. SIMULATIONS OF TWO GRADIENT HR ALGORITHMS 52

Fan's system identification model algorithm (SIM) is given by table 3.1 in which

Table 3.1: Fan's SIM algorithm.

a.(n+1)=a.(n)+re(n)",'(n-i), i=O,l,.··,na (4.7)

bj(n + 1) = bj(n) + re(n)d'(n - j), j = 1,2"" ,nb (4.8)

n.
:v'(n) = ",(n) + Lb;(n):v'(n - j) (4.9)

;=1

n.
e(n) = e'(n) - L bj(n)e'(n - j) (4.10)

;=1

e'(n) = d'(n) - y'(n) (4.11)

na nIl

w'(n) = L a,(n):v'(n - i) + L bj(n)w'(n - j) (4.12)
;=1

d'(n) = w'(n) + v'(n) (4.13)

n.
v'(n) = v(n) + Lbj(n)v'(n - j) (4.14)

;=1

n4 n"
y'(n) = La.:v'(n - i) + Lb;(n)Y'(n - j) (4.15)

i=O ;=1

CHAPTER 4. SIMULATIONS OF TWO GRADIENT IIR ALGORITHMS 53

T is a constant. If T is too large, the adaptive filter coefficients will go beyond the

stable region and the filter will be unstable [39J. Fan also presents the adaptive

filter model (AFM) and the independent filter (IF) algorithm.

We conducted three experiments using this algorithm. In the first one, we

chose the dynamic plant transfer function [56J as

H (z) _ 1.0
p - 1.0 - 1.2z 1 + 0.6z 2

(4.16)

and the adaptive filter as

(4.17)

The converged MSE results for this unimodal case are shown in Figure 4.5. The

adaptive filter's coefficients, which are obtained by using this algorithm, are a,,(n)

= 1.000000, b1(n) = 1.200000, and b2(n) = -0.600000.

The MSE results of the second experiment are shown in Figure 4.6. This is a

example considered by Johnson [58J, where

H () 0.05 - OAz-1

p Z = 1.0 _ 1.1314z-1 + 0.25z-2
(4.18)

H z _ a(n)
a() - 1.0 _ b(n)z-l (4.19)

This is a hi-modal case, with minima of 0.976 and 0.277. If we choose the initial

coefficient values near or equal to the local minima, the algorithm can converge

to the glohal minima after a certain number of adaptations. The coefficients of

the adaptive filter obtained by Fan's algorithm are a(n) = 0.899225 and b(n) =

-0.314626.

CHAPTER 4. SIMULATIONS OF TWO GRADIENT HR ALGORITHMS 54

In the third experiment, the plant (unknown system) transfer function is cho-

sen as

H() 1.0
Z = 1.0 _ 1.4z-1 + 0.98z-2 (4.20)

The adaptive filter transfer function is same as equation (4.17). This plant has

two poles at O. 7±jO. 7 (modulus = 0.99), which are very close to the unit circle.

We found that Fan's algorithms always 'blows up' no matter what value T has.

Fan's algorithms are based on direct form HR filter structures, but have diffi­

culty solving high order HR filter problems and exhibit numerical implementation

problems [10].

CHAPTER 4. SIMULATIONS OF TWO GRADIENT IIR ALGORITHMS 55

M
S
E

o ~------.-,----~'--------r-------'I--------'
a:Equation Error -
b: Output Error -

-50

-100 I- -

-150 -

-200

-250 I- -

~,.
a

I.W:
-300 'I"Y

b

-350 ~------_~I------~--------~I~------~------~
o 10000 20000 30000 40000 50000

N umber of Iteration

Figure 4.5: The unimodal case simulation of Fan's algorithm, MSE (dB) vs number

of iteration. T is set to 0.002, the initial coefficients are set to zero. The plot of

mean square errors is obtained by averaging 20 independent square errors.

CHAPTER 4. SIMULATIONS OF TWO GRADIENT IIR ALGORITHMS 56

10,-------,-------,--------,-------,--------,

5

o

-5

M
S -10
E

-15

-20

-25

a:Equation Error -
b: Output Error -

_30~------~------~--------J-------~------~

o 10000 20000 30000 40000 50000
Number of Iteration

Figure 4.6: The bi-modal case simulation of Fan's algorithm, MSE (dB) vs number

of iteration. T is set to 0.001, the initial coefficients are set (-0.519, 0.114), which

are the local minima. The plot of mean square errors is obtained by averaging 20

independent square errors.

CHAPTER 4. SIMULATIONS OF TWO GRADIENT HR ALGORITHMS 57

u(n) COS<DN
------,-~-{ +

+ l--...,--'--.~
cos<PN z-l

w(n)

hN

sin<Pt

+ cos<D1

"2 (n+1)

ho

+ l-----!+

Figure 4.7: Normalized lattice filter.

4.4 Regalia's Algorithms

y(n)

Phillip Regalia has proposed two adaptive HR algorithms in [10J. Both of them

use the normalized lattice filter structure (Figure 4.7) and the QR method to

update the coefficients. The first algorithm is a reinterpretation of the Steiglitz­

McBride method (Figure 4.8), while the second one is a variation on the output

error method. State space models are employed in the algorithm derivations. We

summarize the first QR algorithm in table 4.2.

CHAPTER 4. SIMULATIONS OF TWO GRADIENT IIR ALGORITHMS 58

yen)

u(n) Unknown

.~
den

x(n) System
zen)

)

I z·1 I Q(n) I z·1 I Q(n)

wen) s(n)
x(n+1) z(n+l)

- ---- - ------------------------------- -------

hl(n) ql(n)

yen) - + + I den)

~riOri error

Figure 4.8: Regalia's algorithms model.

CHAPTER 4. SIMULATIONS OF TWO GRADIENT HR ALGORITHMS 59

Table 4.2: Regalia's QR lattice algorithm.

[
x(n + 1) 1 y(n) = ht(n)

w(n)
(4.21)

[
x(n + 1) 1 [x(n) 1 = Q(n)

w(n) u(n)
(4.22)

[
z(n + 1) 1 [z(n) 1 = Q(n)

s(n) d(n)
(4.23)

(4.24)

(4.25)

[
z(n + 1) 1 [x(n + 1) 1 a(n) = [0 ..• 01J Qt(n) - ht(n)

s(n) w(n)

t [z(n + 1) 1 t [x(n + 1) 1 = qN+1 -h (n)
s(n) w(n)

(4.26)

_ 8a(n) = 1 Xi+l(n + 1), i = 0,· .. , N - 1

8hi (n) () . - N w n, 't-

(4.27)

CHAPTER 4. SIMULATIONS OF TWO GRADIENT IIR ALGORITHMS 60

811(n) = J -zi(n) nf=i+l c08<pk(n), i = 1,···, N - 1

8<pi(n) 1 -ZN(n), i = N

• [.,p,(n) 1 [0 1 Q(n) =
,Al/2R(n - 1) R(n)

R(O) = Id

a(n)g = R(n)Ae(n)

k-l

9k = 8in<pk IT C08<Pi, k = 1,2,··· M.
;=1

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

CHAPTER 4. SIMULATIONS OF TWO GRADIENT HR ALGORITHMS 61

x(n) = [xl(n) x2(n) ... xN(n)] is the state vector, w(n) and srn) are intermediate

signals, Q(n) is an (N+1)x (N+1) matrix, Qiv+1 is the bottom row of Qt(n), 1/lt(n)

is the gradient vector given by equations 4.27 and 4.28, Q(n) is the Givens rotation

matrix [32], [35], and <It is the first column of Q(n). 6.8(n) = 8(n+1) - 8(n) is the

current coefficient value minus the previous coefficient value; ~ is a small constant.

We performed experiments on two cases using Regalia's QR and LMS 1 algo-

rithms. In the first case, the plant is

H () 0.5 - 0.4z-1 + 0.89z-2

p z = 1.0 _ 0.89z-1 + 0.25z-2 '
(4.36)

and the adaptive filter is normalized lattice (Figures 4.7 and 4.8). The mean

square error plotted against the number of adaptations is shown in Figure 4.9.

The converged coefficient result is given in Table 4.3. The normalized lattice

(NL) plant coefficients are calculated according to Gray's formulations in [65],

[66].

Table 4.3: The coefficients of the second order filter using Regalia's algorithm.

I Coefficient I Plant (NL) I Adaptive Filter I
ho(n) 0.818782 0.818527

h1(n) 0.404959 0.404920

h2(n) 0.890000 0.889887

tPt{n) -0.792342 -0.711977

<p2(n) 0.252680 0.250070

1 Replaces the matrix gain term with the stepsize scalar in the Gauss-Newton standard form

coefficient update formula (3.12).

CHAPTER 4. SIMULATIONS OF TWO GRADIENT HR ALGORITHMS 62

M
S
E

10r-~----.-------'--------r-------'-------.

o

-10

-20

-30

-40

-50

-60

a: LMS­
b:QR-

_70L-----~L-------L-------L-------L-----~

o 10000 20000 30000 40000 50000

N umber of Iteration

Figure 4.9: Regalia's normalized lattice algorithm. Second order case, MSE (dB)

vs number of iteration. In the QR algorithm, ,. is set to 0.15, A = 0.9988. In the

LMS algorithm /.L = 0.00075.

OHAPTER 4. SIMULATIONS OF TWO GRADIENT HR ALGORITHMS 63

M

30.-------.--------.--------.--------,-------.

20

10

.0

a: LMS­
b:QR-

S -10
E

-20

-30

-40

-50 '---'--'-----'-----"----"--"-----'
o 10000 20000 30000 40000 50000

Number of Iteration

Figure 4.10: Regalia's normalized lattice algorithm. Second order case, MSE (dB)

vs number of iteration. In the QR algorithm, the ~ is set to 0.15, >. = 0.9988. In

the LMS algorithm, p is set to 0.00075

CHAPTER 4. SIMULATIONS OF TWO GRADIENT IIR ALGORITHMS 64

In the second experiment, the plant transfer function is

H (z) = 0.5 - 0.4z- 1 + 0.89z- 2

p 1.0 - 1.4z 1 + 0.98z 2'
(4.37)

which has the same poles as transfer function (4.17), and the mean square error is

given by Figure 4.10. The mean square error does not converge and the converged

coefficients are not obtained.

4.5 Summary

In this chapter, we presented various adaptive HR filter simulation results using

conventional gradient algorithms - Fan's and Regalia's algorithms. Fan's algo-

rithms do not have guaranteed stability. When the poles are close to the unit

circle, for the extreme case used in our experiments, the algorithms do not work

at all. Since the algorithm model structure remains direct form, it is difficult to

solve high order HR filter problems. Regalia's algorithms have numerical advan-

tages over other conventional gradient algorithms and have the ability to solve high

order HR filter problem, but also may not converge when the poles are extremely

close to the unit circle. In the next two chapters, we will introduce an alternative

to the HR filtering problem - applying genetic algorithms to the adaptation of HR

filters.

Chapter 5

Applying the Simple Genetic

Algorithm to IIR Filters

5.1 Introduction

Applying genetic algorithms to the adaptive filtering problem was first studied

by D.H. Etter, M.J. Hicks and K.H. Cho [3], who used the genetic algorithms

to design adaptive HR filters. R. Nambiar and P. Mars [5] - [9] applied genetic

algorithms to system identification problems, in which the plant is modeled by

HR filters. In their studies, the Simple Genetic Algorithm was used. The Sim­

ple Genetic Algorithm (SGA) was named by Goldberg [13], and uses the basic

genetic operators (for example roulette wheel selection, one-point crossover, and

mutation) in genetic algorithm programming. Based on the Simple Genetic Algo­

rithm, researchers have developed many other genetic algorithms, which are more

65

CHAPTER 5. APPLYING SGA TO HR FILTERS 66

powerful than the SGA.

R. Nambiar and P. Mars have experimented with cascade, parallel and lattice

structures for HR filters, and have shown the positive gain of applying GAs to HR

filtering. In this chapter, we apply the SGA to the adaptation of HR filters. We

also use the cascade, parallel and lattice HR structures, but here we use the more

general transfer functions of these structures, and improved results are obtained.

In the next section, system modeling is introduced; section 3 gives a rough idea of

how HR filter coefficients are coded and decoded in genetic algorithms; the com-

puter simulation results are given in section 4; section 5 discusses the simulation

results; and a summary appears in section 6.

5.2 Modeling

Throughout this thesis, the system identification configuration is used in the com-

puter simulations (Figure 3.7). The unknown system can be an adaptive FIR filter

or HR filter. In our studies, we chose HR filter as the unknown system. The defin­

ing relationship between the input and output variables for the HR (order M) filter

is given by

M M
y(n) = L ak(n)x(n - k) + L bk(n)y(n - k), (5.1)

k=l

or by the transfer function of the HR filter

H(z) = ao(n) + a,(n)z-' + ... + aM(n)z-M = Am(z) ,
1.0 + b,(n)z '+ ... + bM(n)z M Bm(z)

(5.2)

CHAPTER 5. APPLYING SGA TO HR FILTERS

Input
x (n)

Figure 5.1: The cascade form HR filter structure.

67

where A=(z) and B=(z) are the ztransforms of the output and input signal respec-

tively. In system identification, the unknown system can be identified by direct,

cascade, parallel, and lattice form adaptive filter structures. We now introduce

these structures.

5.2.1 Direct Form

The direct form is often used in conventional adaptive HR filter studies (Figure

3.3). Due to the stability problem of the direct form, other HR filter realizations

have been studied.

5.2.2 Cascade Form

The filter (5.1) or (5.2) can be implemented by the cascade form structure, which

is given in Figure 5.1. The equivalent cascade-form representation of H(z) is

(5.3)

where W = (M+l)/2, if M is odd, or W = M/2, if M is even, and p is a constant.

CHAPTER 5. APPLYING SGA TO IIR FILTERS

p

Input
x (n)--------..jt---+l

68

Output
f---- y (n)

Figure 5.2: The parallel form HR filter structure

5.2.3 Parallel Form

The filter (5.1) or (5.2) can also be implemented by the parallel form, which is

given in Figure 5.2. The equivalent parallel-form representation of H(z) is

(5.4)

where W = (M+1)/2, if M is odd, or W = M/2 if M is even, and p is a constant.

For the cascade and parallel structures, the stability of the filters during adap­

tation is guaranteed by constraining the filter coefficients blk(n) and b2k (n) to lie

within the stability triangle.

CHAPTER 5. APPLYING SGA TO IIR FILTERS 69

F.(n)

Bz.(n)

V; (n) V,(n) V. (n)

y (n)

Figure 5.3: Lattice form !IR filter structure

5.2.4 Lattice Form

The filter (5.1) or (5.2) can also be implemented in the form of a lattice with

different weights vi(n) and ki(n) (Figure 5.3). The lattice form is stable if the

lattice coefficients le; (n) are alIless than 1.

The input-output of the lattice filter at time n can be expressed as

M
y(n) = L v;(n)B;(n), (5.5)

i::;:O

where

Bi(n) Bi-1(n) + k;(n)Fi_1(n)j i= M, ... ,l (5.6)

Fi(n) Fi+l{n) - ki(n)Bi(n - l)j i=M-1, ... ,O (5.7)

FM(n) = x(n) (5.8)

CHAPTER 5. APPLYING SGA TO IIR FILTERS 70

and x(n) is the input signal, and

Bo(n) = Fo(n). (5.9)

We will use the above four models to identify the high order unknown system

in our simulation experiments.

5.2.5 Direct Form to Lattice Form Coefficient Conver-

sion

Given the coefficients ai(n) and bi(n) of a direct form system, one can calculate the

corresponding lattice form coefficients ki(n) and vi(n) [65]. The lattice coefficients

are recursively obtained starting from AM(Z) and BM(Z) (5.2), as follows

(5.10)

(5.11)

B () _ Bm(z) - km_1ZCm(Z)
m-l Z - 1- k2

m-l

(5.12)

(5.13)

(5.14)

for m = M, M-I, ... , 1 with Vo = ao. We will use these conversions later in our

computer simulations.

CHAPTER 5. APPLYING SGA TO HR FILTERS 71

5.3 Parameter Coding and Decoding

Applying Genetic Algorithms to the adaptive filtering problem, one has to code

the adaptive filter coefficients into a form which genetic algorithms can deal with,

for example, binary strings. In Figure 5.4, a set of second order lattice filter

coefficients are coded into a binary string. Each lattice filter coefficient has length

4 (this length is chosen as an example, rather than as a practical length). When

we decode this binary coefficient string, first we decode the binary string to several

decimal values, for instance, ko, 0101 to 5; k1 , 0100 to 4, etc, then we map these

decimal values to a certain range (min, max) to obtain the real coefficient values. ,

For binary string, the widely used mapping formula is given by:

. max -mtn
Vc = mtn + Vd * --~-....:..:...:.

X
(5.15)

where Vc is the coefficient value, Vd is the decoded parameter value, (min, max)

is the mapping range, and X is the value when every bit is equal to 1 in the

parameter string. For example, the range for k parameters is (-1, 1), then in

Figure 5.4, kl = -1 + 4*(1+1)/(24-1) = -0.466667.

This range (min, max) is very important in our simulations, as different min

and max values can produce different simulation results. For the lattice, ki will

lie in the range (-1.0, 1.0) according to the stability condition; the range for Vi

will be chosen from experiment.

CHAPTER 5. APPLYING SGA TO IIR FILTERS 72

0001 0010 001 1 0100 0101

Figure 5.4: Example of a second order lattice parameter coding, individual string

length L = 20, parameter length is 4.

5.4 Computer Simulations

All the simulations in this chapter run 20 independent experiments of the SGA,

which uses stochastic remainder selection, standard crossover and mutation. The

fitness values are the inverse of the averaged squared error over the 20 experiments

f
. 1.0
ztness = e2 (n)' (5.16)

so we maximize the fitness values in order to minimize the mean square error.

Sigma scaling has been used in all the simulations to regulate the individuals in

the population, so as to avoid some extraordinary poor individuals that take over a

significant proportion of the population, a leading cause of premature convergence.

The formula for sigma scaling [13] is

f. = fi - (1- 2.0 *0'),

where the 0' is the standard deviation of the population fitness and

0'=
L~l(fi _1)2

N

(5.17)

(5.18)

CHAPTER 5. APPLYING SGA TO HR FILTERS 73

f. is the scaled fitness (if f. < 0, we set f. = 0), f. is the fitnesses of individual,

and 1 is the population average fitness. The high order unknown system transfer

functions are chosen from [67].

5.4.1 HR filters with Bi-modal Error Surface

We use the example [37] which we have previously used in the last chapter. The

unknown system

H() 0.05 - 0.4z-1

Z = 1.0 _ 1.1314z-1 + 0.25z-2
(5.19)

is identified by a first order adaptive system

H z _ a(n)
() - 1.0 - b(n)z-l (5.20)

According to the paper [37], this example's mean-square-error (MSE) surface is

bi-modal. The global minimum ~ = 0.277, the local minimum ~ = 0.976, and the

corresponding coefficient values are (a, b) = (-0.311, 0.906) and (a, b) = (0.114,

-0.519) respectively.

In this experiment, where each coefficient is represented by a lO-bit binary

string, the croSSOVer probability Pc = 0.85, the mutation probability Pm = 0.003,

population size is 50, we obtained (a, b) = (-0.314, 0.906). The plot of mean

square error (in dB) against generations is given in Figure 5.5.

This example was examined using the genetic algorithms in [9] and [68] as

well. We reexamine this case in this and the next chapter to show that genetic

algorithms have the ability to tackle multi-modal error surface HR filter problems,

and present the performance improvement we have obtained.

CHAPTER 5. APPLYING SGA TO IIR FILTERS

o .---.-,--',----.-,--.-,--',,---.---',,---.-,--.---~

M
S
E

-1 f-

-2

-3

-4

-5

-6

-7

-8
0

"..,.,.. .. ,

50 100

-

-

.J ... 11 _ .'- , , . ,.

, ,
150 200 250 300 350 400 450 500

Generation (X50 samples)

74

Figure 5.5: Bimodal example, mean squared error (MSE in dB) vs generations

(averaging 20 independent run). The population size N = 50, string length L =

20, crossover probability Pc = 0.85, mutation probability Pm = 0.003. One point

crossover has been used in the simulation.

CHAPTER 5. APPLYING SGA TO HR FILTERS 75

5.4.2 HR Filters with Poles Close to the Unit Circle

The second order filter

H() 0.5
z = 1.0 _ 1.4z-t + 0.98z-2'

(5.21)

is identified by the filter

H(z) = ao(n)
1.0 - bt(n)z t - b2(n)z 2

(5.22)

through the SGA. This system has three coefficients to be identified, and has

poles at o. 7±jO. 7 (modulus = 0.99), which are very close to the unit circle. Many

gradient algorithms failed to identify this special case, for example, the algorithms

in [10], [39] (see Chapter 4). The genetic algorithm gives the results illustrated

in Figure 5.6, which shows the advantage of GAs over gradient algorithms when

the poles are extremely close to the unit circle. The unknown system is a second

order system, so we chose direct form adaptive HR filters for this experiment.

The direct form gives the coefficients ao(n) = 0.501466, bt(n) = 1.399673, b2(n)

= -0.98045.

Another example is also a second order filter

H()
= 0.5 - O.4z- t + 0.89z-2

z t 0 2' 1.0 - 1.4z + .98z
(5.23)

and is identified by the direct adaptive system

(5.24)

which has five coefficients to be identified, and we use direct and lattice form

structures in our computer simulations. The mean squared error (MSE in dB)

CHAPTER 5. APPLYING SGA TO IIR FILTERS

M
S
E

10 ,---,----,---,,---,----,----,---,----,----,---.

5

o

-5

-10

-15

-20

-25

-30

-35 L---L-_L-----L-_~~~~~~~~~
o 50 100 150 200 250 300 350 400 450 500

Generation (X50 samples)

76

Figure 5.6: Poles close to the unit circle (three coefficients), MSE (dB) vs genera­

tions. The population size N = 80, string length L = 30, probability of crossover

Pc = 85, probability of mutation Pm = 0.0075. One-point crossover has been used.

CHAPTER 5. APPLYING SGA TO IIR FILTERS

M

6,---------,---------,---------,--------,

4

2

o

a: direct -­
b: lattice --

S -2
E

-4

-6

-8

-10 ~ ________ -L __________ L-________ -L ________ ~

o 500 1000 1500 2000
Generation (X20 samples)

77

Figure 5.7: Poles close to the unit circle (five coefficients)' MSE (dB) vs gen-

erations. The population size N = 50, string length L = 50 (lO-bits for each

coefficient), the probability of crossover Pc = 1.0, the probability of mutation

pm = 0.003. One-point crossover has been used. a) direct structure; b) lattice

structure.

CHAPTER 5. APPLYING SGA TO IIR FILTERS 78

Table 5.1: The coefficients of the direct structure using the SGA.

coefficients plant (direct) adaptive filter

b1{n) 1.40 1.399637

b2{n) -0.98 -0.980450

ao{n) 0.50 0.519062

al{n) 0.40 0.438905

a2{n) -0.89 -0.917889

Table 5.2: The coefficients of the lattice structure using the SGA.

coefficients plant (lattice) adaptive filter

ko{n) -0.707071 -0.708700

kl{n) 0.980000 0.972630

vo{n) 0.225982 0.251222

vl{n) 0.846000 0.876833

v2{n) 0.890000 0.896383

CHAPTER 5. APPLYING SGA TO HR FILTERS 79

is given in Figure 5.7. The coefficients results (best in the population) are gIven

in Tables 5.1 and 5.2. The corresponding lattice coefficients of equation (5.23)

can be calculated according to the formulation given in section 5.2.5.

This experiment shows that both direct and lattice structures work with the

SGA. Due to the difficulty of judging high order direct structure coefficients, so

as guarantee the stability, identifying an IIR filter with order greater than two

normally does not employ the direct structure in the simulation. From here we

use cascade, parallel and lattice structures in our computer simulation.

5.4.3 High Order HR Filters

An order three filter

H(z) = 0.0154 + 0.0462z- I + 0.0462z-2 + 0.0154z-3

1.0000 - 1.9900z 1 + 1.5720z 2 - 0.4583z 3
(5.25)

is identified by lattice, cascade and parallel adaptive structures. The cascade and

parallel forms are constructed using first or second order filters (in direct form,

see section 5.2). The mean square errors are shown in Figure 5.8. We also find

that only a few of the coefficients groups in the 20 runs are quite close to the ideal

coefficients combination. The best coefficients group we found in our simulation

is shown in Table 5.3.

Another example of order five

H(z) = 0.0073 - 0.0184z-1 + 0.0115z-2 + 0.0115z-3
- 0.0184z-4 + 0.0073z-'q.26)

1.0000 - 4.5064z 1 + 8.2615z 2 - 7.6908z 3 + 3.6326z 4 - 0.6961z

is identified by lattice, cascade and parallel structure adaptive HR filters. The

mean square error is given in Figure 5.9. It gives the similar simulation results to

CHAPTER 5. APPLYING SGA TO IIR FILTERS 80

Table 5.3: The coefficients of the lattice structure using the SGA.

coefficients plant (lattice) adaptive filter

ko{n) -0.875587 -0.851417

kdn) 0.835463 0.734115

k2{n) ·0.458300 -0.485826

vo{n) 0.085646 0.093646

vl{n) 0.145491 0.186315

v2{n) 0.076846 0.150147

va{n) 0.015400 0.056696

the previous example, that is the lattice gives the best performance, and cascade

is better than parallel. The coefficient result remains unidentified.

CHAPTER 5. APPLYING SGA TO HR FILTERS

M
S
E

5.-------,-------,-------,-------.------,

o

-5

-10

-15

-20

-25

-30

-35

a: lattice -­
b: cascade -­
c: parallel --

-40 L-______ ~ ______ ~ ______ _L ______ ~ ______ ~

o 200 400 600 800 1000
Generation (X8 samples)

81

Figure 5.8: The third order filter, MSE (dB) vs generations. The population size

N = 80, the string length L = 70 (lO-bits for each coefficient), the probability of

one-point crossover Pc = 1.0, the probability of mutation Pm = 0.003. a) lattice

structure; b) cascade structure; c) parallel structure.

CHAPTER 5. APPLYING SGA TO HR FILTERS

M
S
E

5.-------,--------.--------,--------.-------,

o

-5

-10

-15

-20

-25

-30

-35

c

b

a

a: lattice -
b: cascade -
c: parallel -

-40 L-______ L-______ ~ ______ _L ______ ~ ______ ~

o 200 400 600 800 1000
Generation (X20 samples)

82

Figure 5.9: The fifth order filter, MSE (in dB) vs generations. The population

size N = 400, the string length L = 88 (8-bits for each coefficient), the probability

of one-point crossover Pc = 1.0, the probability of mutation Pm = 0.003. a) lattice

structure; b) cascade structure; c) parallel structure.

CHAPTER 5. APPLYING SGA TO IIR FILTERS

5.4.4 SGA Parameters

83

All parameters in the previous experiments were chosen on the basis of repeated

computer simulations. We give several examples here.

The first example is differences in population size. In Figure 5.10, of the

various population sizes used in our simulations, a population size of 400 gives

the best MSE performance. In this experiment, the fifth order filter (5.26) and

lattice structure are used.

The second example is changes in the string lengths. The different string

length for each coefficient used in our simulations are 8-bits, lO-bits, and 15-bits,

and the MSE performances are given in Figure 5.11. The 8-bits and the 15-bits

are almost the same and give better performance. The filter (5.26) and lattice

structure are used in our simulations.

The third example is concerned with the number of crossover points. We

experiment with various numbers of crossover points and with uniform crossover,

and the performance results are given in Figure 5.12. The filter (5.26) and lattice

structure are used in our simulation, and show the choice of one-point crossover

is the best.

We also tried many different crossover rates and mutation rates, among which,

Pc = 1.0, and Pm = 0.003 are the best in our later simulations.

CHAPTER 5. APPLYING SGA TO IIR FILTERS

M
S
E

-20 ~------~----------------~--------~--------.

-22

-24

-26

-28

-30
.,
" .'

-32

-34

-36

-38

". '.

a: PopSize 400 -­
b: PopSize 300 -­
c: PopSize 200 -
d: PopSize 100

"'~:',,:,,~, : ... :: .. ~ :.: : .. " .: .. " . d . ".' '" :.",'" '~" . :'.' ,:,,:, ,.:: ... :. '. . .:~:
~~~iw. ','.;"';".;."'-".: :;.'.;'."': 

a 
_40L-______ ~ ______ _L ______ ~ ______ ~L-____ ~ 

o 200 400 600 800 1000 
Generation (X20 samples) 

84 

Figure 5.10: The population comparison, MSE (in dB) vs'generations (averaging 

20 independent runs). The string length L = 88 (8-hits for each coefficient), Pc = 

1.0, the mutation rate Pm = 0.003, one-point crossover. a) N = 400j h) N = 300j 

c) N = 200j d) N = 100. 



CHAPTER 5. APPLYING SGA TO HR FILTERS 

M 

-34,-y-----,-------,--------,-------,-------, 

-35 

-36 

a: StringLength 88 -
b: StringLength 110 -
c: StringLength 165 -

S -37 
E 

-38 

-39 

_40L-------~------~-------L------~--------J 

o 200 400 600 800 1000 
Generation (X20 sampes) 

85 

Figure 5.11: The string length comparison, MSE (in dB) vs generations (averaging 

20 independent runs). The population size N = 400, the crossover rate Pc = 1.0, 

the mutation rate Pm = 0.003, one-point crossover. a) string length 88; b) string 

length 165; and c) string length 110. 



CHAPTER 5. APPLYING SGA TO IIR FILTERS 

M 
S 
E 

-22r-------.--------.--------~------_r------_, 

-24 

-26 

-28 

-30 

-32 

-34 

-36 

-38 ~ 

a: 1 point crossover -
b: 2 point crossover -
c: 6 point crossover -

cl: uniform crossover ~ .. -

. .... 

_40L-------~------~-------L------~------~ 

o 200 400 600 800 1000 
Generation (X20 samples) 

86 

Figure 5.12: The different crossover scheme, MSE (in dB) vs generations (averag­

ing 20 independent runs). The population size N = 400, the crossover rate Pc = 

1.0, the mutation rate Pm = 0.003, string length L = 88. a) I-point crossover; b: 

2-point crossoyer; c) 6-point crossover; d) uniform crossover. 



CHAPTER 5. APPLYING SGA TO IIR FILTERS 

5.5 Discussion 

5.5.1 Simulation Performance 

87 

A convergence prooffor the standard genetic algorithm has been given in [69J. In 

our simulations, it has been shown that the SGA is able to solve low order HR 

filter problems, even with poles close to the unit circle or multi-modal. However 

when the order becomes high, the coefficient results are not very satisfactory. 

The reason is that the SGA faces premature convergence caused by the super­

individual in the population, dragging the mean square error to converge to some 

level in the early stage of training. 

For the case when the poles are close to the unit circle, the SGA shows an 

improved solution over many conventional algorithms. Because applying genetic 

algorithms to the adaptation of HR filters does not have a stability problem, the 

first or the second order denominator coefficients are either bounded within (-La, 

1.0) or within the stability triangle. 

5.5.2 Coefficient Decoding Range 

We have mentioned that the coefficient decoding range is very important in our 

simulations. Here we give a detailed discussion on how we deal with this problem 

in our simulations. 

In the direct form structure, we restrict the denominator coefficients to lie 

within the stability triangle. For the example of the second order filter (5.24), 

we let -1 < b,{n) < 1 and -1 - b2 {n) < b1 {n) < 1 + b2 {n). The numerator 



CHAPTER 5. APPLYING SGA TO fIR FILTERS 88 

coefficient range can be decided according to the plant numerator, for example, 

if there is one numerator coefficient which is 1.2, we can set the range (1.0, 1.5) 

in our simulation, which covers the numerator coefficient 1.2. If there are five 

coefficients, we should chose a range which covers these five coefficients. 

In the lattice form structure, we restrict the k coefficients to less than 1 for 

stability reasons. The v coefficient decoding range is chosen according to the plant 

v coefficients. For the example of the plant (5.23), the v coefficients vary from 

-0.707071 to 0.89, and choosing a decoding range (-1, 1) will cover all these five 

coefficients in our simulation. We can also make this range smaller, depending on 

whether we have obtained good results, but normally the right range is obtained 

by conducting many simulations. 

5.6 Summary 

In this chapter, we applied the SGA to the adaptation of HR filter problems. 

We experimented with direct (low order filter), cascade and parallel (high order 

filter) HR filter structures in our computer simulations. In low order cases, the 

direct form's performance is better than the lattice; in high order cases, the lattice 

structure giyes the best results, because of the error propagation of cascade and 

parallel structures. The SGA can identify low order HR filter coefficients, but 

when the order increases, the coefficient results become poor, in the sense that 

the MSE which is obtained by using SGA might converge to the non-global value. 

The reason for this is that the SGA faces the premature convergence problem 



CHAPTER 5. APPLYING SGA TO IIR FILTERS 89 

[19). In all the simulations, we performed a very large number of experiments to 

choose the best SGA parameters. We still need to improve the high order HR 

filter performance, which should improve the genetic algorithm itself. In the next 

chapter, we will study another genetic algorithm which can improve the overall 

performance. 



Chapter 6 

Applying Genitor to the 

Adaptation of IIR Filters 

6.1 Introduction 

In the previous chapter, we applied the Simple Genetic Algorithm to the adapta­

tion of HR filters. We used direct, cascade and parallel structure adaptive systems 

to identify the unknown system. The results showed that the lattice structure gave 

the best performance, and that the cascade structure' 5 performance was better 

than the parallel's. Even the lattice structures' results are not the ideal solution 

for high order HR filters, so we need to look for better genetic algorithms to 

improve these structure's performance. 

In this chapter, we use the same models and coding and decoding methods as 

we used in the previous chapter, applying the steady state genetic algorithm to 

90 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 91 

the adaptation of HR filters. The results of th~ steady state genetic algorithm 

have improved the SGA's performance. The steady state genetic algorithm we 

use is Whitley's Genitor [21J. 

In the next section, we give an introduction to the steady state genetic algo­

rithm. In section 3, computer simulations are conducted through various system 

models and genetic algorithm parameters. In section 4, a number of discussions 

based on the simulations are given. Finally in section 5, a summary is given. 

6.2 Genitor 

Genitor is Whitley's steady state genetic algorithm. It is an acronym for GE­

Netic ImplemenTOR, a genetic search algorithm that differs in three ways from 

the standard genetic algorithms. First, reproduction produces one offspring at a 

time. Two parents are selected for reproduction and produce an offspring that is 

immediately placed back into the population. The second major difference is in 

how that offspring is placed back into the population. Offspring do not replace 

parents, but rather the least fit (or some relative less fit) member of the popula­

tion. In Genitor, the worst individual in the population is replaced. The third 

difference between Genitor and most other forms of genetic algorithms is that 

fitness is assigned according to rank rather than by fitness proportionate repro­

duction. Ranking helps to maintain a more constant selective pressure over the 

course of search [16], [22J. Goldberg [19J names the selection in Genitor steady 

state selection. We now introduce Genitor in detail. 



CHAPTER 6. APPLYING GENITOR TO fIR FILTERS 92 

6.2.1 Reproduction - Steady State Selection 

In Genitor, the reproduction is implemented through steady state selection [71]. 

It begins with sorting the whole population individuals, from best to worst, then 

uses ranking selection which starts with assigning the number of copies that each 

individual should receive according to a non-increasing assignment function, and 

then performs proportionate selection according to that assignment. The assign-

ment function in Genitor is a linear function (probability distribution of x, linear) 

,8(x) = b - 2(b -1)x, x E [0,1], (6.1) 

where b is the bias which is defined as a number that specifies the amount of 

preference to be given to the superior individuals in a genetic population, that is 

bi Pb ... as=--, 
Pmean 

(6.2) 

where Pbe., and Pm.an are the probabilities of the best and mean individuals re-

ceiving copies in the next generation. For example, a bias of 2.0 indicates that 

the best individual has twice the chance of being chosen as the mean individual. 

Now we can perform proportionate selection according to this assignment func­

tion. The selection formula used in Genitor is 

. _ N(b - Vb2 - 4(b - l)drand48()) 
mdex - 2(b-l) , (6.3) 

where index is the index of strings being selected in the population (an integer 

between 0 and population size N), drand-48(} is random number generator which 

generates random numbers between 0 and 1, and b is the bias. We use this 

selection scheme to select two parent strings for mating. 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 

original strings 

000 1 1 1 101 101 0 011 

000 1 0 0 101 0 0 1 0 0 1 0 

reduced strings 

----11---1-----1 

----00---0-----0 

Figure 6.1: The reduced surrogates 

6.2.2 Recombination 

93 

Recombination is implemented through the crossover operator. The crossover 

used in Genitor is a two point reduced surrogate crossover [70], [71]. It is different 

from that in standard genetic algorithms, in which crossover only occurs in the 

positions where the parent strings differ. So the first job the reduced surrogate 

crossover has to do is to identify all the different positions in the two parent strings. 

Now we consider the two strings and a 'reduced' version of the same strings in 

Figure 6.1, where the bits the strings share in common have been removed. In 

reality, only the different bits in the two parents make sense to the recombination, 

in that the crossover does not change the common bits. Booker refers to strings 

such as {- - - - 1 1 - - - 1 - - - - - I} and {- - - - 0 0 - - - 0 - - - - - O} as the 

reduced surrogates of the original parent chromosomes [70]. In Figure 6.1, the 

reduced surrogate crossover can happen only between the fifth and the last bit 

position. The reduced surrogate crossover's main advantage is that the parents 

are not duplicated in the offsprings. Thus, new sample points in hyperspace are 

generated. "'e use this reduced surrogate crossover on the two parents to produce 

two offsprings. See [71] for details. 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 94 

6.2.3 Mutation 

The mutation operator used in Genitor is the adaptive mutation operator [71]. It 

differs from standard mutation in the way that the mutation is determined to an 

appropriate level according to the hamming distance between its two parents. The 

hamming distance is defined as the number of different bits of two strings, with 

the smaller the difference, the higher the mutation rate. In Genitor, the following 

formula is used to modify the mutation rate: 

Pm 
Padaptivemutation = (ha/ L)100 (6.4) 

where Padaptivemutation is the adaptive mutation rate, Pm is the mutation rate, hd 

is the hamming distance and L is the string length. For example, for the two 

parents strings 

string 1: 1 0 1 0 1 0 0 1 

string 2: 1 1 1 1 1 1 1 1, 

if the mutation rate is 0.005, the adaptive mutation rate would be 

0.005/«4/8)*100) = 0.0001. 

This reduces the unnecessary mutation. For example, mutating the allele on locus 

4 in string 1 will produce a string which is exactly same as string 2. 

After steady state reproduction, reduced surrogate recombination and adaptive 

mutation, one of the child strings is chosen to be inserted back into the population. 

This child string is calculated for fitness value (to see its performance) and replaces 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 95 

the least fit string in the population. In this way, one Genitor's generation cycle 

is completed. 

6.3 Computer Simulations 

The simulations in this chapter are all conducted through 20 independent runs. 

The mean square error (MS E) performances are obtained by averaging those 20 

independent results. Genitor is a minimum optimization which looks for the 

smallest (best) value, so we use the squared error as a fitness value directly. The 

population sizes are chosen relatively large (most of them are 200), because nor­

mally Genitor requires large population sizes or multiple populations to combat 

the premature convergence problem [19]. We run Genitor for 200,000 generations, 

which seems large, but if compared to the SGA in generation terms, it is almost 

the same. In the SGA, in each generation, the fitness value for every individual 

in the whole population has to be calculated, but in Genitor, in each generation, 

only one individual fitness value is calculated. For example, if every member of 

the population is calculated for new fitness values in Genitor, it needs 200 (pop­

ulation size) generations. So 200,000 generations in Genitor are comparable with 

200,000/200 = 1,000 generations in the SGA. 

6.3.1 HR Filters with Bi-modal Error Surface 

We use the same bi-modal example as in the last chapter which uses an order 

one adaptive system to identify the order two system. The transfer functions are 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 96 

given by equation 5.19 and 5.20 respectively. Genitor parameters are: population 

size N = 50, string length L = 20, bias = 1.6955, mutation rate Pm = 0.0555. 

The order one system's coefficients we obtained are (a, b) = (-0.306, 0.912). The 

mean square error is shown in Figure 6.2. 

From this example, we can say that Genitor has the same ability to solve the 

bi-modal HR filter problem as the SGA. 

6.3.2 HR Filters with Poles Close to the Unit Circle 

The second order filter 

If{ ) 0.5 
Z = 1.0 _ 1.4z-1 + 0.98z 2 

(6.5) 

is identified by the adaptive filter 

If{z) = ao{n) 
1.0 - b1{n)z 1 - b2{n)z 2' 

(6.6) 

Using Genitor, the mean square error plot against generations is given in Figure 

6.3. The adaptive coefficients are ao{n) = 0.500978, b1{n) = 1.399673, b2{n) = 

-0.980450. The mean square error performance is an improvement over the SGA, 

and the coefficients have better values than the SGA's. 

In another example, lattice and direct form adaptive structures have been used 

to identify the unknown system 

If{z) = 0.5 - 0.4z-1 + 0.89z-2 

1.0 - 1.4z 1 + 0.98z-2 

The direct form transfer function is 

(6.7) 

(6.8) 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 97 

which has five coefficients to be identified. The squared error (in dB) is given 

in Figure 6.4, and the coefficients obtained from the first run of the 20 from the 

simulation are shown in Tables 6.1 (direct) and 6.2 (lattice). 

This experiment gives the same results as in the previous chapter for the direct 

and lattice form structures. The results show that using Genitor on an HR filter 

problem gives better results than using the SGA. However, as the number of 

coefficients increases, it become increasingly difficult for Genitor to identify the 

coefficients. For high order HR filters, lattice, cascade and parallel structures 

should be used, rather than the direct form. 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 

M 
S 
E 

2 ,-------,--------,--------,-,-------,-------, 

o -

-2 r- -

-4 -

-6 -

-8 -

-10 -

-12 ~ _______ L_I. ______ ~ ________ ~i __________ L_I ______ ~ 

o 40000 80000 120000 160000 200000 
Generation (X50 samples) 

98 

Figure 6.2: Bimodal example, MSE (in dB) vs generations. The population size 

N = 50, string length L = 20 (IQ-bits for each coefficient), the bias is 1.6955, the 

mutation rate Pm = 0.0555, the random seed is 12345678. 



CHAPTER 6. APPLYING GENITOR TO!IR FILTERS 

M 
S 
E 

10r--------.-------.,--------,--------,-------, 

o -

-10 

-20 

-30 

-40 r -

-50 -

, 
_60L-------~-------L-------L------~L-----~ 

o 40000 80000 120000 160000 200000 
Generation (X8 samples) 

99 

Figure 6.3: Poles close to the unit circle (three coefficients), MSE (in dB) vs 

generations. The population size N = 50, the string length L = 30 (lO-bits for 

each coefficient), the bias is 1.6955, the mutation rate pm = 0.0555, the random 

seed is 12345678. 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 

10 

5 

0 

-5 

-10 

-15 
M 
S 
E 

-20 

-25 

-30 

-35 

-40 

-45 
0 40000 80000 120000 

Generation (X8 samples) 

a: direct ~ 
b: lattice -I-

160000 200000 

100 

Figure 6.4: Poles close to the unit circle (five coefficients), MSE (in dB) vs genera­

tions. The population size N = 200, the bias is 1.6955, the probability of mutation 

Pm = 0.0555, the random seed is 12345678. a) direct, string length L = 50 (lO-bits 

for each coefficient); b) lattice, string length L = 75 (15-bits for each coefficient). 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 101 

Table 6.1: The coefficients of the direct structure using Genitor. 

coefficients plant (direct) adaptive filter 

b1{n) 1.40 1.406027 

b2{n) -0.98 -0.978495 

ao{n) 0.50 0.503421 

al{n) 0.40 0.407625 

a2{n) -0.89 -0.874878 

Table 6.2: The coefficients of the lattice structure using Genitor. 

coefficients plant (lattice) adaptive filter 

ko{n) -0.707071 -0.706168 

kl{n) 0.980000 0.978149 

vo{n) 0.225982 0.224730 

vl{n) 0.846000 0.847366 

v2{n) 0.890000 0.893928 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 

6.3.3 Higher Order HR Filters 

An order three unknown system 

H(z) = 0.0154 + 0.0462z-1 + 0.0462z-2 + 0.0154z-3 

1.0000 - 1.9900z-1 + 1.5720z-2 - 0.4583z-3 ' 

102 

(6.9) 

is identified by lattice, cascade and parallel adaptive HR filter structures. The 

cascade and parallel forms are constructed using first or second order filters (in 

direct form, see Chapter 5). The mean squared error performances are given in 

Figure 6.5. It shows that the lattice form gives the best result, and that the 

cascade form has a better performance than the parallel form. The convergence 

speeds for the three forms are similar. The coefficient results (obtained from first 

run of the 20) for lattice structure, given in Table 6.3, shows that the Genitor 

is roughly able to identify the seven coefficients after 200000 generations. The 

overall results are better than the SGA's. 

The second example, a fifth order unknown system 

H(z) = 0.0073 - 0.0184z-1 + 0.0115z- 2 + 0.0115z-3 
- 0.0184z-4 + 0.0073z-klO) 

1.0000 - 4.5064z-1 + 8.2615z-2 - 7.6908z-3 + 3.6326z-4 - 0.6961z-

is identified by the lattice, cascade and parallel structures as well. The mean 

square error (in dB) performances are given in Figure 6.6, and the coefficients of 

the lattice structure in Table 6.4. The results show that the lattice form gives the 

best MSE performance, and that the cascade form is better than the parallel form, 

which is the same as in the previous example. For the coefficients, Genitor can 

roughly identify eight out the eleven coefficients, but not each coefficient exactly. 

The overall results are also better than the SGA's. 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 103 

Table 6.3: The coefficients of the lattice structure using Genitor. 

coefficients plant (lattice) adaptive filter 

ko(n) -0.875587 -0.920591 

k1(n) 0.835463 0.656362 

k2(n) -0.458300 -0.443831 

vo(n) 0.085646 0.115604 

vl(n) 0.145491 0.167254 

v2(n) 0.076846 0.094461 

v3(n) 0.015400 0.015815 

The third example, a seventh order unknown system 

() 
0.000:3 + 0.0011,,-1 + 0.0033 .. - 2 + O.006h- 3 + O.OOlSh-' + 0.0032.&-5 + 0.0011;1;-6 + 0.000:31;-7 

H % = 1.0000 _ 3.9190. 1 + 1.0109 .. :3 _1.219O.c-3 + ".693fz .. -1.8690.& 15 + 0 .... 236&-6 _ 0.0420" l' 
(6.11) 

is identified by the three structures, and the MSE performances are given in Figure 

6.7. Genitor can not identify most of the coefficients. This shows that Genitor 

can not perfectly solve high order HR filter problems in the coefficient sense, but 

it does offer some improvement over most of the conventional LMS algorithms in 

the MSE sense. However, it can be employed in a first stage search, to be followed 

by other search methods to improve its performance. Still, the lattice structure's 

performance is better than cascade and parallel structures. 



CHAPTER 6. APPLYING GENITOR TO HR FILTERS 104 

Table 6.4: The coefficients of the lattice structure using Genitor. 

coefficients plant (lattice) adaptive filter 

ko{n) -0.964752 -0.882260 

k\{n) 0.991410 -0.174535 

k2{n) -0.980882 -0.911924 

ka{n) 0.961684 0.958617 

k4{n) -0.696100 -0.649281 

vo{n) 0.000329 0.013298 

v\{n) 0.000760 0.008265 

v2{n) 0.005577 0.006223 

va{n) 0.006815 0.008498 

v4{n) 0.014497 0.014191 

v5{n) 0.007300 0.006724 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 

20 ,-------,-------,--------,-------,-------, 

10 

o 

-10 

M 
S -20 
E 

-30 

-40 

-50 

c 

b 

a 

a: lattice ~ 
b: cascade +­
c: parallel .f3-

-60 L-______ L-______ ~ ______ -L ______ ~ ______ ~ 

o 40000 80000 120000 160000 200000 
Generation (X8 samples) 

105 

Figure 6.5: The third order filter, MSE (in dB) vs generations. The population 

size N = 200, the string length L = 105 (15-bits for each coefficient), the bias is 

1.6955, the probability of mutation Pm = 0.0555, the random seed is 12345678. a) 

lattice structure; b) cascade structure; c) parallel structure. 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 

M 
S 
E 

30 ,--------,-------,--------,--------,--------, 

20 

10 

o 

-10 

-20 

-30 

-40 

-50 

lattice ~ 
cascade +­
parallel e-

-60 ~------~------~--------~------~------~ 
o 40000 80000 120000 160000 200000 

Generaion (X20 samples) 

106 

Figure 6.6: The fifth order filter, squared squared error (in dB) vs generations 

(average 20 independent runs). The population size N = 200, string length L 

= 165 (I5-hits for each coefficient), the hias is 1.6955, the mutation rate pm = 

0.0555, the random seed is 12345678. 



OHAPTER 6. APPLYING GENITOR TO IIR FILTERS 

10 

o 

M 
S -10 
E 

-20 

-30 

lattice ~ 
cascade +­
parallel .e-

-40 L-__ L-__ ~ __ ~ __ ~ __ -L __ -L __ ~ __ ~ ____ L-~ 

o 20000 40000 60000 80000 100000120000140000160000180000200000 
Generation (X20 samples) 

107 

Figure 6.7: The seventh order filter, MSE (in dB) vs generations. The population 

size N = 200, string length L = 225 (15-bits for each coefficient), the bias is 1.6955, 

the mutation rate Pm = 0.0555, the random seed is 12345678. 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 108 

6.3.4 Genitor Parameters 

The population size. We ran simulations for the various population sizes 50, 

100, 200 and 400, and the MSE performances are given in Figure 6.8. Population 

size 200 gives the best performance, this agrees with the relatively large population 

size requirement of Genitor. However, the population size is problem dependent: 

a population with too many members results in long waiting times for significant 

improvement [72]. The population size of 400 will also double the computation 

cost in our experiments, so a population size of 400 is not a good choice. The 

experimental structure used is the lattice, and the unknown system is given by 

equation (6.9). Similar simulations show that this population size is also the best 

for filters (6.10) and (6.11) 

The results of different string lengths (5, 8, 10, 15, and 20) are observed in 

Figure 6.9, using the filter which is represented by equation (6.9) and the lattice 

structure. It shows that the string length L = 105 (15-bits for each coefficient) 

gives the best result. Similar simulations show that this string length is also the 

best for filters (6.10) and (6.11). 

The bias is bounded between 1.0 and 2.0, and we use many different bias values 

(1.1, 1.2, 1.3, 1,4, 1.5, 1.6, 1.6955, 1.7, 1.8, 1.9, and 2.0) in our simulation, which 

are shown in Figure 6.10. In these simulations, the filter (6.9) and the lattice 

structure were used. The results show that bias = 1.6955 is the best (for ease of 

viewing, we have not given all the bias value results), and we have used this value 

in all the simulations we have performed. 

We tried many mutation rates (0.001, 0.005, 0.01,0.02,0.03,0.04,0.05,0.0555, 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 109 

0.06, and 0.075) in our simulations, several of which are shown in Figure 6.11. We 

found that a mutation rate of 0.0555 is the best, so we again used it in all our 

simulations. In this experiment the filter (6.9) and the lattice structure were used. 

In the Genitor package, the random seed was randomly chosen by D. L. Whit­

ley [71J to be 12,345,678 (it has to be chosen between 1 and 2,147,483,647). We 

also experimented with another 32 random seeds in our simulation (2°, 2' , 22
, ••• 

,231 
- 1), and the corresponding MSE performances are given in Figure 6.12. 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 

-35rro------,-------,--------,-------,-------, 

-40 

M 
S -45 
E 

-50 

PopSize 50 ~ 
PopSize 100 -f­
PopSize 200 e­
PopSize 400 ·x· . 

_55L-------L-------~-------L------~------~ 

o 40000 80000 120000 160000 200000 
Generation (X20 samples) 

110 

Figure 6.8: The population comparison (using the third order filter and the lattice 

structure), MSE (in dB) vs generations. The string length L = 105 (IS-bits for 

each coefficient), the bias is 1.6955, the mutation rate Pm = 0.0555, and the 

random seed is 12345678. 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 

-40,,~-----r-------'--------.--------'--------. 

M 
S 

-42 

-44 

-46 

E -48 

-50 

-52 

-54 

o 40000 

x. 

80000 120000 

StringLength 35 ~ 
StringLength 56 +­
StringLength 70 -!3-

StringLength 105 'X' . 
StringLength 140 ./:::,. . 

.. /:::,. .. t::,.. 

·X. 
"X" 

·X ... 

160000 200000 
Generation (X8 samples) 

111 

Figure 6.9: String length comparison (using the third order filter and the lattice 

structure), MSE (in dB) vs generations. The population size N = 200, the bias is 

1.6955, the mutation rate Pm = 0.0555, and the random seed is 12345678. 



CHAPTER 6. APPLYING GENITOR TO HR FILTERS 

-40 r-r------,--------,--------,,--------,--------, 

M 
S 

-42 

-44 

-46 

E -48 

-50 

-52 

-54 

o 40000 80000 120000 
Generation (X8 samples) 

Bias 1.5 ~ 
Bias 1.6 +-

Bias 1.6955 -B­
Bias 1.7 oX- • 
Bias 1.8 .f::, . 
Bias 1.9 .* .. 
Bias 2.0 -<>-

160000 200000 

112 

Figure 6.10: The Bias comparison (using the third order filter and the lattice 

structure), MSE (in dB) vs generations. The population size N = 200, string 

length L= 105, the mutation rate Pm = 0.0555, and the random seed is 12345678. 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 

-40~~----.-------'--------r-------'-------' 

M 
S 

-42 

-44 

-46 

E -48 

-50 

-52 

-54 

o 40000 

MutationRate 0.001 ~ 
MutationRate 0.005 +­
MutationRate 0.03 e­
MutationRate 0.05 'X' . 

MutationRate 0.0555 ./':,. . 
MutationRate 0.075 .* .. 

·X .. 
x. 

'"X'" . 
·X .. 

' .. 

80000 120000 160000 200000 
Generation (X8 samples) 

113 

Figure 6.11: The mutation rate comparison (using the third order filter and the 

lattice structure), MSE (in dB) vs generations. The population size N = 200, 

string length L= 105, the bias is 1.6955, and the random seed is 12345678. 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 

M 
S 
E 

-40 .------,------,-------,------,,------,-------ro 

-42 

-44 

-46 

-48 

-50 L-____ ~ ______ -L ______ L-______ L-____ ~ ______ ~ 

o 5 10 15 
Power of 2 

20 25 30 

114 

Figure 6.12: The random seed comparison, MSE vs random seed (powers of two). 

The plant (0.5-0.4z-1 +0.89z-2)/(1.0-0.7z-1 +0.1z-2 ) and the lattice structure are 

used. The population size N = 200, string length L = 75 (15-bits for each coef­

ficient), the bias is 1.6955, the data sample window width is 8 samples, and the 

mutation rate is 0.0555. 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 

6.4 Discussion 

6.4.1 MSE Performance 

115 

The overall mean square error performances obtained from Genitor are better than 

those obtained using the SGA. The reason is that in Genitor, the steady state se­

lection helps to maintain the population diversity, so as to avoid the premature 

convergence that the SGA had faced. In the second order case, the direct struc­

ture is slightly better than the lattice, for various reasons. In higher order filter 

cases, the lattice structure's performance is the best, and the cascade structure's 

performance is better than the parallel structure's. One reason is that the lattice 

structure has the biggest population diversity, and the parallel structure has the 

least. Another reason why the cascade and parallel structures are not as good as 

the lattice structure is due to the propagation of quantization errors through the 

filter banks, resulting in an erroneous estimate of error for that particular filter 

[5J. 

6.4.2 Coefficient results 

The coefficient results show that increasing the number of coefficients or the order 

would increase the difficulty Genitor has in identifying these coefficients, because 

Genitor is still not a perfect algorithm for solving HR filter problems. But Genitor 

offers a big improvement over the SGA for identifying the coefficients. In previ­

ous studies [5!, [6], the sixth order and the tenth order filters only have six and 

ten coefficients respectively, because of the modeling method. In our study, the 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 116 

third order, fifth order and seventh order filters have seven, thirteen and fifteen 

coefficients respectively. 

6.4.3 Comparison with Gradient Algorithms 

Comparing the results of Chapters 5 and 6 with Chapter 4, we find that the first 

advantage genetic algorithms have over gradient algorithms is that they can tackle 

HR filtering problems with poles close to the unit circle very well. For the case 

we have given in our simulations, gradient algorithms [10J, [39J failed to produce 

any converged result. 

The second advantage of genetic algorithms is that they have the ability to 

solve higher order HR filtering problems. Although the coefficient results are not 

perfect, they can act as a first stage in HR filtering search algorithms. 

6.4.4 Computational Complexity 

Genitor works on a single individual per generation, choosing two individuals for 

the birth according to linear ranking, and choosing the currently worst individual 

in the population for replacement by the newly born individual to form one gen­

eration. Genitor starts with ranking the population. Once an initial ranking is 

established, Genitor does not need to completely sort the population again. Each 

generated individual is simply inserted in its proper place. However, the search for 

this place requires O(logN) steps if a binary search is used. Moreover, the selection 

of a single individual from the ranked list can also be done in O(logN) steps. Since 



CHAPTER 6. APPLYING GENITOR TO IIR FILTERS 117 

both of these steps must be performed N times to fill an equivalent population (in 

comparison with the generation-based schemes), the computational complexity of 

the selection scheme of Genitor is O(NlogN) [19J. It is obviously greater than the 

SGA requires, which is O(logN) [19J. The crossover and mutation in Genitor are 

more complicated than those in SGA, so the overall computational complexity of 

Genitor is greater than the SGA's. 

6.5 Summary 

In this chapter, we have applied Genitor to the adaptation of IrR filter problems. 

We investigated bi-modal, poles close to the unit circle and higher order filter 

problems, and the performance of direct, lattice, cascade and parallel structures. 

In the bi-modal case, we demonstrated that the Genitor has the ability to solve 

the multi-modal adaptive IrR filter problem. For the case when the poles are 

close to the unit circle, we demonstrated that Genitor has a superior ability to 

tackle these kind of problems over conventional gradient algorithms. For higher 

order adaptive HR filters (three or more), simulation results show that the lattice 

structure is the best structure for Genitor to employ. 

The cascade and parallel structure may have different groups of coefficients 

to realize the same transfer function. For example, the coefficients of one section 

in a cascade or parallel system can be interchanged with those of another while 

still realizing the same overall transfer function. This non-uniqueness introduces 

additional saddle points into the performance surface, causing the search to be-



GHAPTER 6. APPLYING GENITOR TO IIR FILTERS 118 

come less efficient [10], [41]. This further confirms the preference for the lattice 

structure. 

However, even for the lattice structure, when the filter order increases (in terms 

of the number of coefficients), it will be more difficult for Genitor to identify all 

the coefficients. In all the experiments, we performed a very large number of 

simulations to chose the best Genitor parameter, and use them in all our simula­

tions. Generally, Genitor produce better results than the SGA, but there remain 

improvements which can be made, which will be discussed in the next chapter. 



Chapter 7 

Conclusion 

7.1 Introduction 

The topic of this thesis is the study of the application of genetic algorithms to 

the adaptation of HR filtering problems. Two different genetic algorithms, the 

Simple Genetic Algorithm and Genitor, have been applied to the adaptation of 

HR filtering problems. These studies have shown that genetic algorithms have 

a number of advantages over conventional gradient HR filter algorithms. In the 

following section, the conclusions for this thesis are drawn, and in the final section, 

prospective topics for further study are proposed. 

7.2 Conclusions Arising from the Research 

On the basis of the work performed in this thesis, the following conclusions may 

be drawn: 

119 



CHAPTER 7. CONCLUSION 120 

• Genetic algorithms are able to solve HR filtering problems, and offer stable 

performance. 

• Genetic algorithms can identify adaptive HR filter coefficients for certain 

orders. 

• Genitor provides improved performance over its SGA counterpart. 

• Genetic algorithms offer advantages over gradient algorithms for the adap­

tation of HR filters with poles close to the unit circle. 

• The lattice form structure of an HR filter offers the best performance among 

cascade, parallel and lattice form structures. 

Each of these points is considered in greater detail in the following paragraphs. 

The principal difficulty with adaptation of an HR filter is the stability prob­

lem due to the poles of the filter. The conventional gradient algorithms do not 

have guaranteed stability, but require that the stability is monitored. The results 

obtained in Chapters 5 and 6 demonstrate that genetic algorithms provide stable 

performance when solving HR filter problems. The reason is that genetic algo­

rithms code the real decimal coefficients into binary form, and after the results 

are obtained decode them into decimal. The decoded coefficients are limited to a 

certain range, for example the stability triangle, so that the poles of the HR filter 

never go beyond the unit circle. 

In this thesis, we provide some filter coefficient results. The genetic algorithms 

are able to identify the coefficients of an HR filter up to a certain order. The results 

from the S G A show that it can roughly identify the coefficients of order three HR 

filters, which have seven coefficients. When the number of coefficients is greater 



CHAPTER 7. CONCLUSION 121 

than this, for example the order five filter, the SGA was unable to identify most 

of the coefficients. Genitor can roughly identify the coefficients of a fifth order HR 

filter. So in a coefficient sense, Genitor provides an improved performance over 

the SGA. 

From the results of Chapters 5 and 6, we can conclude that Genitor provides 

better overall MSE performance compared with its SGA counterpart. The main 

reason is that Genitor differs from the SGA in that reproduction produces one 

offspring at a time, this offspring replaces the least fit individual in the population, 

and ranking selection is used in the selection phase. These prevent the premature 

convergence of the SGA, and lead the algorithm to a better convergence level. 

The results of Chapter 4 show that for an HR filter with poles extremely close 

to the unit circle, gradient algorithms [10] and [39] failed to obtain any convergent 

results. When we conducted the same experiment using the genetic algorithms 

in Chapters 5 and 6, convergent results were obtained. This shows that genetic 

algorithms are global, robust searching algorithms and provide stable convergence. 

The computer simulations have used three HR filter structures: cascade, par­

allel and lattice. Due to the difficulty of judging the coefficient range of higher 

order direct form HR filters, the direct structure was not used for filter orders 

greater than two. The first advantage of the lattice structure is that it is simpler 

to choose the lattice coefficient limiting range than for the cascade and parallel 

structures. In our simulations, we limit the k coefficients within the range (-1,1), 

and for the cascade and parallel structures, we limit the first or the second denom­

inator coefficient to lie within the stability triangle to ensure stable convergence. 



CHAPTER 7. CONCLUSION 122 

The second advantage is that the lattice structure provides a numerical stability 

advantage over direct and other structures. The third advantage is that the lattice 

performace surface does not have any saddle points. However, the cascade and 

the parallel structures are faced with this saddle point problem because several 

first or second order filter combinations could realize the same transfer function. 

Together with the simulation results in Chapters 5 and 6, we conclude that the 

lattice structure is the ideal HR filter structure in our studies. 

7.3 Areas for Further Investigation 

To conclude this chapter, several suggestions for further study are presented. From 

the simulation results, we can see that the level of the convergence floor still needs 

to be improved, and that the best performance of Genitor can only identify eight 

out of eleven coefficients of the fifth order filter. For the seventh order HR filter, 

Genitor can not give the correct value of any coefficient. This requires further 

investigation. 

Firstly, the advanced operators of genetics can be used in genetic algorithms. 

These operators include low level operators (diploidy, dominance, inversion, du­

plication and deletion, etc.), and high level operators (migration, marriage restric­

tion, and sharing functions, etc.) [13]. These operators provide a greater ability 

for human beings and animals to survive in nature. 

Secondly, completely different genetic algorithms can be applied to the adap­

tation of HR filter problems, such as CHC (a genetic algorithm) [27], parallel 



CHAPTER 7. CONCLUSION 123 

genetic algorithms [28J, [73], and the messy genetic algorithms [74J etc .. 

Thirdly, the similar natural evolution algorithms can be applied to the adap­

tation of HR filter problems, such as Genetic Programming [25J, evolutionary 

programming and evolution strategies [75J. These evolution algorithms emerged 

at the same time as genetic algorithms, but provide different features. 



References 

[1J Ma, Q. and Cowan, C.F.N., 'Genetic Algorithms Applied to the Adaptation 

of IrR Filters', SIGNAL PROCESSING, in press. 

[2J Ma, Q. and Cowan, C.F.N., 'Steady State Genetic Alogrithm Approach to 

the Adaptation of HR Filters', Proceeding of International Conference on 

Digital Signal Processing, vol. 1, pp. 148-153, Cyprus, June 1995. 

[3J Etter, D.H., Hicks, M.J., and Cho, K.H., 'Recursive Adaptive Filter Design 

Using an Adaptive Genetic Algorithm', Proceeding of International Confer­

ence on Acoustics, Speech, and Signal Processing, pp. 635-638, 1982. 

[4J Grefenstette, J.J., 'Optimization of Control Parameters for Genetic Algo­

rithms', IEEE Transactions on Systems, Man, and Cybernetics, 16, No. 1, 

pp. 122-128, 1986. 

[5J ?\ambiar, R., and Mars, P., 'Genetic Algorithms for Adaptive Digital Fil­

tering', lEE Colloquium on Genetic Algorithms for Control Engineering, 

London, 1992. 

124 



REFERENCES 125 

[6] Nambiar, R. and P. Mars, 'Genetic and Annealing Approaches to Adaptive 

Digital Filtering', Proceeding of IEEE 26th Asimolar Conference on Signals, 

Systems and Computers, pp. 871-875, Monterey California, 1992. 

[7] Nambiar, R., Tang, C. K. K., and Mars, P., 'Genetic and Learning Automata 

Algorithms for Adaptive Digital Filters', Proceeding of IEEE International 

Conference on Acoustics, Speech and Signal Process., San Francisco, March 

1992. 

[8] Nambiar, R., and Mars, P., 'Adaptive HR Filtering Using Natural Algo­

rithms' , lEE Workshop on Natural Algorithms In Signal Processing, Lon­

don, November 1993. 

[9J Nambiar, R., 'Genetic Algorithms and Adaptive Digital Filtering', Internal 

Report, School of Engineering and Computer Science, University of Durham, 

September 1991. 

[1OJ Regalia, P.A., 'Stable and Efficient Lattice Algorithms for Adaptive HR 

Filtering', IEEE Transaction on Signal Processing, vol. 40, pp. 375-388, 

1992. 

[11] Darwin, C., On the Origin of Species by Means of Natural Selection, Murray, 

London, 1859. 

[12J Smith, J .M., Evolutionary Genetics, Oxford University Press, Oxford, 1989. 

[13J Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine 

Learning, Addison-Weslley Publishing Company, 1989. 



REFERENCES 126 

[14J Holland, J., Adaptation In Natural and Artificial Systems, University of 

Michigan Press, 1975. 

[15J DeJong, K., An Analysis of the Behavior of a Class of Genetic Adaptive 

Systems, PhD Dissertation, Department of Computer and Communication 

Sciences, University of Michigan, Ann Arbor, 1975. 

[16J Whitley, D.L, A Genetic Algorithm Tutorial, Technical Report CS-93-103, 

Department of Computer Science, Colorado State University, 1993. 

[17J Collins, R.J., Studies in Artificial Evolution. PhD Dissertation, Department 

of Computer Science, University of California at Los Angeles, 1992. 

[18J Baker, J.E., 'Reducing Bias and Inefficiency in the Selection Algorithm', 

Proceeding of the Second International Conference on Genetic Algorithms 

and Their applications, pp. 14-21, 1987. 

[19J Goldberg, D.E. and Deb, K., 'A Comparative Analysis of Selection Schemes 

Used in Genetic Algorithms', Foundations of Genetic Algorithms, G. Raw­

lines, ed., Morgan Kaufmann, pp. 69-93, 1991. 

[20J Baker, J.E., 'Adaptive selection methods for genetic algorithms'. Proceeding 

of an International Conference on Genetic Algorithms and Their Applica­

tions, pp. 101-111, 1985. 

[21J Whitley, D.L. and Kauth, J., 'GENITOR: A Different Genetic Algorithm' 

Proceedings of the Rocky Mountain Conference on Artificial Intelligence, pp. 

118-130, Denver, 1988. 



REFERENCES 127 

[22] Whitley, D.L., 'The GENITOR Algorithm and Selection Pressure: Why 

Rank-Based Allocation of Reproductive Trials is Best'. Proceeding of the 

Third International Conference on Genetic Algorithms, pp. 116-121, 1987. 

[23] Spears, W.M., and DeJong, K.A., 'An Analysis of Multi-Point Crossover', 

Foundation of Genetic Algorithms, G. Rawlins, ed., pp. 301-315, 1991. 

[24] Syswerda, G., 'Uniform Crossover in Genetic Algorithms', Proceedings of the 

Third International Conference on Genetic Algorithms, Morgan Kaufmann 

Publishing, 1989. 

[25] Tackett, W.A., Recombination, Selection, and The Genetic Construction of 

Computer Programs, PhD Dissertation, Department of Computer Science 

University of Southern California, 1994. 

[26] Smith, R.E., and Goldberg, D.E., 'Diploidy and Dominance in Artificial 

Genetic Search', Complex Systems 6, pp. 251-285, 1992. 

[27] Eshelman, L., 'The CHC Adaptive Search Algorithm', Foundations of Ge­

netic Algorithms and Classifier Systems, G. Rawlins, ed., pp. 265-283, 

Morgan-Kaufmann, 1991. 

[28] Pettey, C.B., Leuze, M.R., and Grefenstette, J.J.,'A Parallel Genetic Al­

gorithm', Proceeding of the 2nd International Conference on Genetic Algo­

rithms, pp. 155-161, MIT, 1987. 

[29] Cowan C.F.N. and Grant, P.M., Adaptive Filters, Prentice-Hall, Inc., En­

glewood Cliffs, New Jersey, 1985. 



REFERENCES 128 

[30] Widrow B. and Stearns S.D., Adaptive Signal Processing, Prentice-Hall, Inc., 

Englewood Cliffs, New Jersey, 1985. 

[31] Mulgrew B. and Cowan C.F.N., Adaptive Filters and Equalisers, Kluwer 

Academic Publishers, Norweel, Mass., 1988. 

[32] Haykin, S, Adaptive Filter Theory, 2nd edition, Prentice Hall, 1991. 

[33] Cowan, C.F.N., 'Performance Comparisons of Finite Linear Adaptive Fil­

ters', lEE Proceedings, Part F, vol. 134, no. 3, pp. 211-216, June 1987. 

[34] Cioffi, J. M. and Kailath, T., 'Fast, Recursive Least Squares Transversal Fil­

ters for Adaptive Filtering', IEEE Transaction on Acoustics, Speech, Signal 

Processing, vol. ASSP-32, No. 2, pp. 304 - 337, 1984. 

[35] Yang B. and B6hme J. F, 'Rotation-Based RLS Algorithms: Unified Deriva­

tions, Numerical Properties, and Parallel Implementations', IEEE Transac­

tion on Signal Processing, vol. 40, No. 5, pp. 1151 - 1166, 1992. 

[36] Shynk J. J., 'Adaptive IIR Filtering', IEEE ASSP Magazine, pp. 4 -21, April 

1989. 

[37] Johnson C. R, JR., 'Adaptive IIR Filtering: Current Results and Open 

Issues', IEEE Transaction on Information Theory, vol. IT-30,' No. 2, pp. 

237 - 250, March 1984. 

[38] Claasen, T.A.C.M, Mecklenbrauker, W.F.G, and Peek, J.B.H., 'Effects of 

Quantization and Overflow in Recursive Digital Filters', IEEE Transaction 



REFERENCES 129 

on Acoustics, Speech, and Signal Processing, vol. ASSP-24, pp. 517-529, 

1976. 

[39] Fan, H., and Jenkins, W.K., 'A New Adaptive HR Filter', IEEE Transaction 

on Circuits Systems, vol. CAS-33, pp. 939-947, 1986. 

[40] Steiglitz, K and McBride, L. E., 'A Technique for the Identification of 

Linear Systems', IEEE Transaction on Automatic Control, vol. AC-10, pp. 

461-464, October 1965. 

[41] Nayeri, M., and Jenkins, W.K, 'Alternate Realizations to Adaptive HR 

Filters and Properties of Their Performance Surfaces', IEEE Transaction 

on Circuits and Systems, vo1.36, pp. 485-496, 1989. 

[42] Parikh, D., Ahmed N., and Stearns, S.D., 'An Adaptive Lattice Algorithms 

for Recursive Filters', IEEE Transaction on Acoustics, Speech, and Signal 

Processing, vol. ASSP-28, pp. 485-496, 1989. 

[43] Ljung, L. and Soderstrom, T., Theroy and Practice of Recursive Identifica­

tion, MIT Press, Cambridge, 1983. 

[44J Tang, C. K. K, and Mars, P., 'Stochastic learning Automata and Adaptive 

HR Filters', lEE PROCEEDINGS-F, vol. 138, August 1991. 

[45] Glover, J.R., 'Adaptive noise cancelling applied to sinusoidal interferences', 

IEEE Transaction on Acoustics, Speech, Signal Processing, vol. ASSP-35, 

pp. 481-491, December 1977. 



REFERENCES 130 

[46] Atal, B.S. and Schroeder, M.R., 'Adaptive Predictive Coding of Speech 

Signals', Bell System Technical Journal, vo!. 49, pp. 1973-1986, October 

1970. 

[47] Atal, B.S. and Schroeder, M.R., 'Predictive Coding of Speech and Sub­

jective Error Criteria' IEEE Transaction on Acoustics, Speech, and Signal 

Processing, vo!. ASSP -27, pp. 247-254, June 1979. 

[48] Makhoul, J., 'Linear Prediction: A Tutorial Review', Proceeding of the 

IEEE, vo!. 63, No. 4, pp. 561-580, April 1975. 

[49] Proakis, J.G., Digital Communications, Second Edition, McGraw-Hill, Sin­

gapore, 1989. 

[50] Qureshi, S.U.H., 'Adaptive Equalization', Proceeding of the IEEE, vo!. 73, 

No. 9, September 1985. 

[51] Mulgrew, B, and Cowan, C.F.N., 'An Adaptive Kalman Equalizer: Struc­

ture and Performance', IEEE Transaction on Acoustics, Speech, and Signal 

Processing, vo!. ASSP-35, No. 12, pp. 1727-1734, December 1987. 

[52] Gibson, G.J., Siu, S, and Cowan, C.F.N., 'The Application of Nonlinear 

Structures to the Reconstruction of Binary Signals', IEEE Transaction on 

Signal Processing, VD!. 39, No. 8, pp. 1877-1884, August 1991. 

[53] Widrow, B. 'Adaptive Noise Cancelling: Principles and Applications', Pro­

ceeding of IEEE, vo!. 63, pp. 1692-1716, 1975. 



REFERENCES 131 

[54] Harrison, W. A., Lim, J. S. and Singer, E., 'A New Application of Adap­

tive Noise Cancellation', IEEE Transaction Acoustics, Speech, and Signal 

Process, vol. ASSP-34, pp. 21-27, January 1986. 

[55] Mendel, J. M., Discrete Techniques of Parameter Estimation: The Equation 

Error Formulation. Marcel Dekker, New York, 1973. 

[56] Stearns, S. D., 'Error Surfaces of Recursive Adaptive Filters',IEEE Trans­

action on Circuits Systems, vol. CAS-28, pp. 603-606, 1981. 

[57] Feintuch, P. L., 'An adaptive recursive LMS filter', Proceeding of the IEEE, 

vol. 64, pp. 1622-1624, November 1976. 

[58] Johnson, C.R. Jr., and Larimore, M.G., 'Comment on and Additions to "An 

Adaptive Recursive LMS Filter"', Proceeding of the IEEE, vol. 65, pp. 1399 

- 1402, September 1977. 

[59] Widrow, B. and McCool, J. M., 'Comments on "An Adaptive Recursive 

LMS Filter"', Proceeding of the IEEE, vol. 65, pp. 1402-1404, September 

1977. 

[60] Parikh, D., and Ahmed, N., 'On an Adaptive Algorithms for UR Filters', 

Proceeding of the IEEE, vol. 66, pp. 585-588, May 1978. 

[61] Larimore, M. G., Treichler, J. R., and Johnson, C. R., Jr., 'SHARF: An 

Algorithm for adapting HR digital filters', IEEE Transaction on Acoustics, 

Speech, and Signal Processing, vol. ASSP-28, August 1980. 



REFERENCES 132 

[62] Johnson, C. R. Jr., 'A Convergence Prooffor A Hyperstable Adaptive Recur­

sive Filter', IEEE Transaction Information Theory, vo!. IT-25, Nov. 1978. 

[63] Johnson, C.R. Jr., and Taylor, T., 'Failure of A Parallel Adaptive Identifier 

with Adaptive error Filtering', IEEE Transaction on Automatic Control, 

vo!. AC-25, December 1980. 

[64] Stoica, P. and Soderstrom, T., 'The Steiglitz-McBride Algorithm Revisited 

- Convergence Analysis and Accuracy Aspects', IEEE Transaction on Au­

tomatic Control, vo!. AC-26, pp. 712-717, 1981. 

[65] Gray, A.H., Jr. and Markel, J.D., 'Digital Lattice and Ladder Filter Syn­

thesis', IEEE Transaction on Audio and Electroacoustics, vo!. AU-21, pp. 

491-500, 1973. 

[66] Gray, A. H., JR, and Markel, J. D., 'A Normalized Digital Filter Structure', 

IEEE Transaction on Acoust. Speech and Signal Processing, vo!. ASSP-23, 

June 1975. 

[67] Mitra, S.K. and Kaiser, J.F., ed, Handbook for Digital Signal Processing, 

Wiley, New York, 1993. 

[68] S. J. Flockton and M. S. White, 'The Application of Genetic.Algorithms 

to Infinite Impulse Response Adaptive Filters', lEE Colloquium on Signal 

Processing, London 1992. 



REFERENCES 133 

[69J Yao, L., and Sethares, W.A., 'Nonlinear Parameter Estimation via the Ge­

netic Algorithm', IEEE Transaction on Signal Processing, vo!. 42, No. 4, 

pp. 927-935, April 1994. 

[70J J. Booker, 'Improving Search in Genetic Algorithms', in Genetic Algorithms 

and Simulated Annealing, L. Davis, ed. Morgan Kaufman, 1987, pp. 61-71. 

[71J Whitley, D.L., The Genitor Package, ftp site: ftp.cs.colostate.edu, /pub. 

[72J Goldberg, D.E., 'Sizing Populations for Serial and Parallel Genetic Algo­

rithms', Proceeding of the Third International Conference ong Genetic Al­

gorithms, Morgan Kaufmann Publishers, San Mateo, California, 1989. 

[73J Mii.hlenbein, H, 'Evolution in Time and Space - The Parallel Genetic Algo­

rithm, Foundations of Genetic Algorithms Classifier Systems, G. Rawlins, 

ed., pp. 317-337, 1992. 

[74J Deb, K, Binary and Floating-point Function Optimisation using Messay Ge­

netic Algorithms, PhD dissertation, Department of Engineering Mechanics, 

The University of Alabama, 1991. 

[75J Biick, T, Rudolph, G and Schwefe, H, 'Evolutionary Programming and Evo­

lution Strategies: Similarities and Differences', Proceeding of the Annual 

Conference on Evolutionary Programming, San Diego, CA, 1993. 



Appendix A 

Publications 

[lJ Qiang Ma and Colin F. N. Cowan, 'Genetic Algorithms Applied to the Adap­

tation of IIR Filters', Signal Processing, vo!. 48, issue 2, January 1996. 

[2J 1 Qiang Ma and Colin F. N. Cowan, 'Steady State Genetic Algorithms Ap­

proach to the Adaptation of HR Filters', Proceeding of The International Confer­

ence on Digital Signal Processing, Vo!. 1, pp. 148-153, Cyprus, June 1995. 

1 Appended at back of thesis 

134 



Appendix B 

Computer Programs 

B.t Source Code for SGA 

/************************************/ 
1* File main.c, the main driver function * / 
/************************************/ 
#incIude "header.h" 

main (argc, argv) 
int argc; 
char *argvO; 
{ 

FILE *fpl, *fp2; 

int i, j, gen, Dj 

double t, p, *mse; 

system ("clear"); 

1* Initialization * / 
iniU-ar 0; 
randomize 0; /* Give a random seed when drand480 is called *1 

135 



APPENDIX 

mse = (double *) malloe (sizeof(double)*(maxgen+l)); 
if (mse == 0) 
{ 

printf ("GA runtime error ... out of memory"); 
} 
fpl = fopen (argv[IJ, "w+"); 
fp2 = fopen (argv[2J, "w+") 

for (gen = 0; gen :=; maxgen; gen++) *(mse+gen) = 0.0; 

for (n = 1; n :=; num..run; n++) 
{ 

gen = 0; 

iniLpop 0; 
for (i = 1; i :=; pop..size; i++) 
{ 

} 

for (j = 1; j :=; length..chrom; j++) templDl = oldpop[iJDl; 
evaluation (i, tempt, fold, fitnessold); 

s..scale (sfold, fitnessold); 
statistics (sfold, fitnessold); 

*mse += 1.0/avg; 

/* Generation Loop * / 
for (gen = 1; gen :=; maxgen; gen++) 
{ 

generation 0; 
statistics (sfnew, fitnessnew); 
*(mse+gen) += 1.0/avg; 
if (gen == maxgen-1 11 gen == maxgen) 
{ 

} 

report (gen, fitnessnew, [new, newpop); 
show_cof (fpl); 

136 



APPENDIX 

} 

swap_popJit (oldpop, newpop, sfold, sfnew); 

} 
} 

for (gen = 0; gen :.::: maxgen; gen++) 
{ 

*(mse+gen) = (*(mse+gen))/num1un; 
fprintf (fp2, "%d %If\n'', gen, lO*loglO(*(mse+gen))); 

} 
fclose (fpI); 
fclose (fp2); 

/*********************************/ 
1* File: init.c, initialization for SGA * / 
/*********************************/ 

#include "header .h" 
void iniLvar 0 
{ 

char y; 

printf ("******** GA Data Entry Initialization ********"); 
printf ("\ n \ nEnter max generations = "); 
scanf ("%d", &maxgen); 
printf ("Enter population size = "); 
scanf ("%d", &pop-size); 
printf ("Enter chromosome length = "); 
scanf ("%d", &length_chrom); 
printf ("Enter parameter length = "); 
scanf ("%d", &length_parm); 
printf ("Enter parameter numbers = "); 

scanf ("%d", &num_parms); 
printf ("Enter crossover probability = "); 
scanf ("%f', &pcross); 
printf ("Enter mutation probability = "); 
scanf ("%f', &pmutation); 

137 



APPENDIX 

} 

printf ("How many cross points do you want = "); 

scanf ("%d", &num_point); 
printf ("How many run do you want in your program = "); 
scanf ("%d", &num_run); 

1* Initialize a population at random * / 

void iniLpop 0 
{ 

int i, jj 
for (i = 1; i $ pop..size; i++) 
{ 

for (j = 1; j $ length_chrom; H+) 
{ 

oldpop[ilDl = flip (0.5); 
} 

} 

/*******************************************************/ 
1* File: newgen.c, function for evolution. Function create new * / 
/* generation through selection, crossover and mutation. * / 
/*******************************************************/ 

# "header .h" 

void generation 0 
{ 

int i, j, n, mate!, mate2j 
int oldchrom1[MAXSTRl, oldchrom2[MAXSTRJ; 
int newchrom1[MAXSTR], newchrom2[MAXSTR]' temp2[MAXSTR]; 
double t, p, q; 

1* Perform any preselection actions before generation * / 
preselect( sfold, &avg..scale); 

for (i = 1; i $ pop..size; i = i+2) 

138 



APPENDIX 

} 

{ 

} 

mate1 = select 0; /" Pick pair of mates" / 
mate2 = select 0; 

for (j = 1; j ::; length_chrom; H+) 

{ 

} 

oldchromllil = oldpop[matel]lilj 
oldchrom2lil = oldpop[mate2]lilj 

npoints_cross (oldchroml, oldchrom2, newchrom1, newchrom2)j 
1* uniform..cross (oldchrom1, oldchrom2, newchrom1, newchrom2); "/ 

for (j == 1; j ::; length_chrom; H+) 
{ 

} 

newpop[i]li] = newchromlli]; 
newpop[i+l]lil == newchrom2li]j 

evaluation (i, newchroml, fnew, fitnessnew);m 

parentl[i] == matel; 
parent2[i] = mate2; 

1* xsite[i] = jcross; "/ 

evaluation (i+l, newchrom2, fnew, fitnessnew)j 
parent1[i+l] == matelj 
parent2[i+l] == mate2; 
r xsite[i+1] == jcrossj * / 

s.scale (sfnew, fitnessnew)j 

/ * * *.., * '*. "'.;: * * * * * * * * * * * * * * * * ** * * * * * * * * * ** * * ** * * * * * ** * * * * * *** * ** * * **.* / 
1* File: eYal.c, fitness and coefficients evaluation function, filter order is 3 * / 
1* and lattice structure is used here. * / 
/***** ••• *********************************************************/ 

#include "neader.h" 

139 



APPENDIX 

double cof..k[MAXPOP][3], coLv[MAXPOP][4]; 

void evaluation(i, templ, objfunc, fitness) 
int i; templD; 
double objfuncD, fitnessD; 

{ 
int n, k, temp2[MAXSTR]; 
double t; 
extern double objfunO; 
extern double map_parmO; 

t = (double) length_parm; 
jposition = 1; 

for (n = 0; n < 3; n++) 
{ 

extracLparm(templ, temp2, length_chrom, length_parm); 

140 

cof..k[i][n] = map-parm(decode(length_parm, temp2), 1.0, -1.0, pow(2.0, t)-1.0); 

} 

} 
for (n = 0; n < 4; n++) 
{ 

extracLparm(templ, temp2, length...chrom, length_parm); 
coLv[iJ[n] = map-parm(decode(length_parm, temp2), 0.2, 0.0, pow(2.0, t)-1.0); 

} 
objfunc[i] = objfun(cof..k[i], coLv[i]); 
fitness[i] = 1.0/objfunc[i]; 

r Swap new population to old population and new fitness to old fitness * / 

void swap-pop..flt(al, a2, bl, b2) 
int alO[MAXSTR], a20[MAXSTR]; 
double blD, b20; 
{ 

int i, j; 

for (i = 1; i ::; pop..size; i++) 



APPENDIX 

{ 

} 
} 

for (j = 1; j :$ length_chrom; H+) al[iJ[j] = a2[iJ[j]; 
bI[i] = b2[i]; 

/**************************************************/ 
1* File: objfun.c, evaluate objective function value. "/ 
1* filter order is three and lattice structure is used" / 
/**************************************************/ 

#include "header.h" 
extern double gauss 0; 

double objfun (k, v) 
double ok, "v; 

{ 
int i, n; 
double tj 

double d[4]; 1* Plant output" / 
double x[4]; 1* Input to Plant & Adaptive filter" / 
double f[4]j 1* Forward stage output" / 
double b[4]; 
double youtj /" Adaptive filter output "/ 
double error; 

forti = 0; i < 4; i++) 
{ 

} 

x)! = 0.0; 
d)] = 0.0; 
(i' = 0.0; 

b:i: = 0.0; 

t = 0.0: 
for (n = 0; n != 8; n++) 
{ 

141 



APPENDIX 

} 

} 

for (i = 3i i != 0i i-) 
{ 

} 

d[i) = d[i-l)i 
xli) = x[i-l)i 

x[O) = gaussOi 
d[O) = 0.0154*x[0]+0.0462*x[1]+0.D462*x[2]+0.0154*x[3] 

+ 1. 9900*d[1]-1.5720 *d[2]+0 .4583 *d[3] i 

f[3] = X[O]i 
forti = 3i i != 0i i-) 
{ 

} 

f[i-l] = f[i]- k[i-l]*b[i-l]i 
b[i] = b[i-l] + k[i-l]*f[i-l]i 

b[O] = f[0J; 

yout = O.Oi 
for (i= Oi i < 4; i++) yout += v[i]*b[i]; 
error = d[O] - yout; 
error = error*error; 
t = t + error; 

t = t/8.0j 1* Average 8 independent random gauss noise * / 
return (t)j 

/**********************************************/ 
/* File: coding.c, functions for coding and decoding * / 
/******-***************************************/ 

#include "neader.h" 

r function for decode binary string to unsigned integr • / 

unsigned int decode(length, chromosome) 
int length, chromosomeO; 

142 



APPENDIX 

{ 

} 

int i; 
unsigned int accum, powerof2; 

accum = Dj 
powerof2 = 1; 
for (i = 1; i ::; length; i++) 
{ 

} 

if (chromosome[iJ) accum = accum + powerof2; 
powerof2 = 2*powerof2; 

return (accum); 

1* Map unsigned integer x to a desired value * / 

double map.parm(x, maxparm, minparm, fullscale) 
unsigned int x; 

double maxparm, minparm, fullscale; 

{ 

} 

double a; 
a = minparm + ((maxparm - minparm)/fullscale)*x; 
return(a); 

1* Extract each binary parameter from the whole chromosome * / 

void extract.parm(chromfrom, chromto,lchrom,lparm) 
int chromfromD, chromtoD; 
int lchrom, lparm; 

{ 
int j, jtarget; 

j = 1; 
jtarget = jposition + lparm - 1; 
if (jtarget > lchrom) jtarget = lchrom; 
while(jposition ::; jtarget) 

143 



APPENDIX 

} 

{ 

} 

chromtoUJ = chromfrom[jposition]; 
jposition += 1; 

j += 1; 

/* Decode binary string to a desired coefficient * / 

void decode_parms(nparms, lchrom, chrom, parms) 
int nparms, lchrom; 
int chromO, parmsO; 
{ 

} 

int j, jposition, lparm; 
int chromtemp[MAXSTR]; 
double maxparm, minparm, parameter[MAXSTR]; 

j = 1; 1* Coefficient counter * / 
jposition = 1; 1* String position counter * / 

for (j = 1; j S nparms; H+) 
{ 

} 

extracLparm(chrom, parms, lchrom, lparm); 
parameterUJ = map.parm(decode(lparm, parms), maxparm, minparm, 

pow(2.0,lparm)-1); 

1* Sigma scaling procedure * / 

void s.scaie(scaieJitness, fitness) 
double scaieJitnessO, fitnessO; 

{ 
int i; 

favg = 0.0: 
sigma = 0.0; 

144 



APPENDIX 

} 

far (i = 1; i ::; pap..size; i++) favg += fitness[i]; 
favg = favg/pap..size; 
far (i = 1; i ::; pap..sizej i++) sigma += paw«fitness[i]-favg), 2.0); 
sigma = sigma/pap..size; 
sigma = sqrt (sigma)j 
far (i = 1; i ::; pap..sizej i++) 
{ 

} 

scale.fitness[i] = fitness[i] - (favg - 2.0*sigma)j 
if (scale.fitness[i] < 0) scale..fitness[i] = 0.0; 

/******************************************/ 
1* File: repart.c, print results an screen ar file. * / 
/******************************************/ 

#include "header.h" 

vaid shaw..string (array) 
int array[MA_\:STR]; 
{ 

int ij 

far (i = length_chram; i != OJ i-) printf ("%d", array[i]); 
} 

show _caf (fp) 
FILE 'fpi 
{ 

int D, i, j~ 
extern double cof..k[MAXPOP][5], coLv[MAXPOP][6]; 1* lattice * / 

for (i = 1: i ::; pop..sizej i++) 
{ 

} 

for (j = 0; j != 5j H+) fprintf (fp, ''%If'', caf..k[ilfj]); 
far (j = 0; j != 6j H+) fprintf (fp, ''%If'', coLv[i]U])j 
fprintf (fp, "\n")j 

145 



APPENDIX 

} 

report (g, fitness, obj, pap) 
int g, pop[MAXPOP](MAXSTR]; 
dauble fitness[MAXPOP], abj[MAXPOP]; 
{ 

} 

i, j; 

far (i = 1; i ~ pop..size; i++) 
{ 

printf("%2d) ", i); 
if (g!= 0) printf("( shaw..string (pop[i]); 
printf (" %18.6f %If\n'', fitness[iJ, obj[i]); 

} 
printf("\l1Sumfitness=%lf max=%lf min=%lf\n", sumfitness, max, min); 
printf ("avg = %If \n", avg); 

/**************************************************/ 

1* File statis.c, calculate the statistics of the population * / 
/**************************************************/ 

#include "header .h" 

vaid statistics (fitness, abject) 
dauble fitness[MAXPOP], abject[MAXPOP]; 
{ 

int i; 
dauble sum; 

sumfitness = fitness[l]; 
sum = abject[l]; 
min = abject[l]; 
max = abject[l]; 

far (i = 2; i ~ pop..size; i++) 
{ 

146 



APPENDIX 

} 

{ 

sumfitness += fitness[i); 
sum += object[i); 
if (object[i) > max) max = object[iJ; 
if (object[i) < min) min = object[i); 

avg = sum/ pop..size; 
avg..scale = sumfitness/pop..size; 

/*******************************************/ 
1* File srselect.c, Stochastic remainder selection * / 
/*******************************************/ 

extern int pop..size; 
int choices[1001]' nremain; 
double fraction(1001); 

preselect(x1, x2) 

double x1D, *x2; 
{ 

int j, jassign, k; 
double expected; 

if(*x2 == 0) 
for(j = 1; j ~ pop..size; H+) choices m = j; 

else 
{ 

j = 1; 

k = 1; 

do 
{ 

expected = x1Ul/(*x2); 
jassign = (int) expected; 
fractionm = expected - jassign; 
while(jassign > 0) 
{ 

147 



APPENDIX 

} 

} 

jassign-; 
choices[k] = j; 
k++; 

} 
H+; 

} while (j ~ pop..size); 

j = 1; 
while(k ~ pop..size) 

{ 

} 

if(j > pop..size) j = 1; 
if(fraction[j] > 0.0) 
{ 

if(flip(fraction[j]) ) 

{ 

} 
} 
H+; 

choices[k] = j; 
fraction[j] = fraction[j] - 1.0; 

k++; 

nremain = pop..size; 

1* Seleetion using remainder method * / 

int seleetO 
{ 

int jpick, sleet; 

jpick = md(1, nremain); 
sleet = choices[jpick]; 
choiceslipick] = choices[nremain]; 
nremain- -: 

ret urn (sleet); 

148 



APPENDIX 

} 

/************************************/ 
j* File crossover,c function for crossover * j 
/************************************/ 

#include < stdio.h > 
#include < math.h > 

extern int pop.size; 
extern int length_chrom; 
extern int jcross; 
extern int num_point; 
extern float pcross; 
extern float pmutation; 

void swap_elements(x, y) 
int ox, *y; 

{ 

} 

int temp; 
temp = *x; 

*x = *Yi 
*y = temp; 

void swap_bits( arrayl, array2, x, y) 
int arraylD, array20, x, y; 
{ 

} 

int i, temp; 

forti = x; i :5 y; i++) 
{ 

} 

temp = arrayl[iJ; 
arrayl[i] = array2[i]; 
array2[iJ = temp; 

149 



APPENDIX 

void sorLarray (n, array) 
int n, arrayO; 
{ 

} 

register int i, j I mini 

for (i = 1; i < n; i++) 
{ 

} 

min = ij 

for (j = i+1; j :::; nj H+) 
if (arrayUJ < array[min]) min = j; 

swap_elements (&array[i], &array[min])j 

1* N points crossover * / 
void npoints_cross(parentl, parent2, child1, child2) 
int parentlO, parent20; 
int child10, child2Di 
{ 

int i, 0, X, y; 
static int k; 
poinLarray[50]j /* Use to store cross site * / 

1* Randomly produce cross site * / 
for(n = 1; n :::; num_point; n++) poinLarray[n] = rnd(1, length..chrom)i 

1* if crossover points is odd, make it even by using the length as the last 
crosso\"er point * / 

if((num-POint % 2) == 1) 1* the points have to be pairs * / 
{ 

} 
else 

k = num.point + 1; 
poinLarray(k] = length_chromj 

k = num.point; 

150 



APPENDIX 

} 

/* Rerrange the cross site from smallest to bigest* / 
sorLarray(k, point..array); 

1* According to crossover rate do cross * / 
if(flip(pcross)) 
{ 

} 

for(n = 1; n :::; k; n = n+2) 
{ 

} 

x = point..array[n)+1; 
y = poinLarray[n+1); 
if(x != y) swap_bits(parentl, parent2, x, y); 

for(i = 1; i :::; length_chrom; i++) 
{ 

} 

child1[i) = mutation(parentl[i), pmutation); 
child2[i) = mutation(parent2[i), pmutation); 

1* Uniform crossover * / 

void uniform..cross(parentl, parent2, child1, child2) 
int parentlO, parent20; 
int child10, child20; 
{ 

int i, j, n; 

if(flip(pcross)) 
for(n = 1; n :::; length_chrom; n++) 

if((n % 2) == 0) swap_elements(&parentl[n), &parent2[n)); 

for(i = 1; i :::; length_chrom; i++) 
{ 

child1[i) = mutation(parentl[i), pmutation); 
child2[i) = mutation(parent2[i), pmutation); 

151 



APPENDIX 

} 
} 

/*************************************************/ 
1* File mutation.c, function for mutation, return 0 or 1 * / 
/*************************************************/ 

int mutation(a, b) 
int aj 

double b; 
{ 

} 

int ij 

if (flip(b)) 
{ 

} 

if (a == 1) i = 0; 
if( a == 0) i = 1; 
return (i); 

else 
return(a); 

/************************************************/ 
1* File: header.h, this file include all global variables * / 
/************************************************/ 

";:include <stdio.h> 
#include <math.h> 

#define MAXRAND 2147483647.0 1* 32 bits Maximum random number * / 
#define MAXPOP 1001 1* Maximum population size * / 
::define MAXSTR 201/* Maximum length of chromosomes * / 

extern double drand48 0; 1* Generate random number between (0-1) * / 
double ayg, max, min; 1* Average,maximum and minmum value of fitness * / 
double ayg.scale; 

152 



APPENDIX 

float pcross, pmutation; 1* Probability of crossover and mutation * / 
double sumfitness; 1* Sum of fitness value * / 
double fitnessold[MAXPOP], fitnessnew[MAXPOP]; 1* The fitness value of 

153 

current and new generation */ 
double fold[MAXPOP], fnew[MAXPOP]; 1* Objective function value * / 
double sfold[MAXPOP], sfnew[MAXPOP]; /* Fitness value after sigma scaling * / 
double favg, sigma; 1* Average fitness value and standard deviation of fitness * / 
int parent1[MAXPOP], parent2[MAXPOP]; /* The two individual string chosed 

int pop.size; 1* Current population size * / 
int length_chrom; 1* Length of chromosome string */ 
int length_parm; 1* Length of binary parameter * / 
int num_parms; /* number of parameters * / 

as parents * / 

int oldpop[MAXPOP][MAXSTRJ, newpop[MAXPOPJ[MAXSTR]; 1* Old and new 

population * / 
int xsite[MAXPOP]; /* Crossover site * / 
unsigned int xold[MAXPOP], xnew[MAXPOP]; 1* Decoded value from binary * / 
int jposition; 1* Bit position in chromosome string * / 
int jcross; 1* Crossover site * / 
int maxgen; 
int num.run; 1* Number of individual experements * / 
int num_point; 1* Crossover points number * / 

B.2 Source Code for Genitor 

The Genitor package can be found from ftp site: ftp.cs.colostate.edu, /pub. We will 
give the main driver function and the application functions. The functions have been 
used in these codes but not appeared independently refer to the Genitor package. 

/*****~ •• ** ••• *******************************/ 
1* File: main.c, Genitor applied to HR filter problem * / 
/***** •••••••• *******************************/ 

#include <stdio.h> 
#include <ctype.h> 



APPENDIX 

#include "gaJandom.h" 
#include "gene.h" 
#include "ga.global.h" 
#include "ga_params.h" 
#include "ga_pool.h" 
#include "ga.selection.h" 
#include "ga.status.h" 
#include "ga.signals.h" 
#include "op_adapt.rnutate.h" 
#include "opJed.surrog.h" 

extern float iiLevalO; 

int main (argc, argv) 
int argc; 
char *argvD; 
{ 

int i,jj 
int numdiffs, num..exp; 
GENEPTR mom, dad, child; 
FILE 'fp, 'fpl, *fp2, *fp3, *fp4, *fp5, *fp6, *fp7; 

float *k, *v; 

double *mse, *cof; 

1* Set the global parameters according to command line argument '1 
argc- -; 1* not include executable program itself * I 
argv++; 
parse_commandline (argc, argv); 

1* Print parameter values * / 
fprintf (std out, "\ n") 
prinLparams (stdout); 
fprintf (stdout, "\n") 

1* Seed the random number generator *1 
srandom (RandomSeed); 

154 



APPENDIX 

1* Allocate a genetic pool referenced by the global, Pool * / 
if ( !(Pool = geLpool(PooISize, StringLength)) ) 

fataLerror(NULL) ; 

/* Allocate temporary storage for parents of reproduction * / 
mom = get~ene (Pool->stringJength); 
dad = get~ene (Pool->stringJength); 

if ( !(mse = (double *) malloc (sizeof(double)*NumberTrials)) ) 
fataLerror(NULL) ; 

if ( !(eof = (double *) malloe (sizeof(double)*NumberTrials)) ) 
fataL.error(NULL); 

if ( !(k = (float *) malloe (sizeof(float)*IO)) ) 
fataL.error (NULL)i 

if ( !(v = (float *) malloe (sizeof(float)*IO)) ) 
fataLerror (NULL); 

for ( i = 0; i < NumberTrials; i++) *(mse+i) = 0.0; 

fp = fopen("mse", "w+"); 
fpl = fopen(Ucof", "w+"); 

for (num_exp = 0; num_exp < Experiments; num_exp++) 
{ 

if (num_exp) CurrentGeneration = 0; 

1* Initialize the genetic pool with data * / 
iniLpool(SeedPool, Pool, 0, Pool->size, iiLeval, k, v); 

/* Sort the initial genetic pool data * / 
sorLpool (Pool); 

/* Optimization * / 
for (; CurrentGeneration < NumberTrials; CurrentGeneration++) 
{ 

155 



APPENDIX 

/* Choose two genes for reproduction * / 
get-parents (mom, dad, Pool, linear, SelectionBias); 

1* Reproduce * / 

156 

numdiffs = red..surrogate...cross(mom->string, dad->string, Pool->stringJength); 

1* Mutation * / 
if (MutateRate > 0.0) 

adaptive.mutate (mom->string, Pool->stringJength, numdiffs, 
MutateRate); 

1* Choose one of the two offspring to insert into 
the genetic pool * / 

child = ((bitgenO == 0) ? mom : dad); 
child->worth = iir-.eval(child->string, StringLength, k, v); 

/* Insert new gene into population according to its worth * / 
insert.gene (child, Pool); 

1* Mean square error * / 
*(mse+CurrentGeneration) += (double) avg_pool (Pool); 

1* Filter coefficients * / 
if (num_exp == Experiments - I) 
{ 

if (Current Generation == NumberTrials - 1) 
{ 

} 

for (i = 0; i < Pool->size; i++) 
{ 

} 

Pool->data[iJ. worth = iir -.eval (Pool->data[iJ.string, 
StringLength, k, v); 

fprintf (fpl, ''%If %If %If %If %If %If %If %If %If %if %If %If 
%If %If %If \ nil , 

v[OJ, v[lJ, v[2], v[3J, v[4J, v[5J, v[6J, v[7J, 
k[OJ, k[lJ, k[2], k[3], k[4J, k[5J, k[6]); 



APPENDIX 

} 

} 
} 

} 

for (i = 0; i < NumberTrials; i++) 
{ 

*(mse+i) = *(mse+i)/Experiments; 
if ( i % 100 == 0) fprintf (fp, "%d %If\n'', i, 10*loglO(*(mse+i))); 

} 
fclose (fp); 
fclose (fpl); 

/*********************************************/ 
/* File: iiLeval.e, fitness and coefficient evaluation, * / 
/*********************************************/ 

#include <stdio.h> 
#include <math.h> 
#include "gene.h" 

#define PARMLENGTH 15 

int bitJocation; 

/* Convert binary data to decimal data * / 
unsigned int bin_to_dec (string, length) 
GENE.nATA stringD; 
int length; 
{ 

int ij 
unsigned int decimal, power _oLtwo; 

decimal = 0; 
poweLoLtwo = 1; 

1* From right to left * / 

157 



APPENDIX 

} 

for (i = length-I; i != -1; i-) 
{ 

} 

if (string[i] == '1') decimal += poweLoLtwo; 
poweLoLtwo = 2*poweLoLtwo; 

return (decimal); 

1* Bound value between max and min of the range * / 

float bound_parm (x, maxparm, minparm, fullseale) 
unsigned int x; 
float maxparm, minparm; 
double fullseale; 

{ 

} 

float value; 
value = minparm + ( (maxparm-minparm)/fullseale )*x; 
return (value); 

1* Exact eaeh binary parameter from the whole gen, right to left * / 

void extraet.string (string, parm.string, stringJength, length) 
GENE.DATA stringO, parm.stringO; 
int stringJength, length; 
{ 

} 

int i = length - 1, target; 

target = bitJoeation - length + 1; 
if (bitJoeation < 0) bitJoeation = 0; 
while (bitJoeation ~ target) 
{ 

} 

parm.string[i] = string[bitJoeation]; 
bitJoeation -= 1; 
i -= 1; 

158 



APPENDIX 

1* Function to evaluate fitness and coefficient values, lattice * / 

float iir _eval (string, length, k, v) 
int length; 
float ok, *v; 
GENE.DATA stringO; 
{ 

int i , j; 
float object; 
double t; 
GENE.DATAPTR temp; /* cofficient string *f 

extern float object~unO; 

if ( !(temp = (GENE.DATAPTR)malloc(sizeof 
(GENE.DATA)*(PARMLENGTH+1»» 

fataLerror( "temp memory NULL"); 

bitJocation = length - 1; 

t = (double) PARMLENGTH; 
for (i = 0; i < 3; i++) 
{ 

} 

extract..string (string, temp, length, PARMLENGTH)i 
k[i] = bound_parm (bin_to_dec(temp, PARMLENGTH), 1.0, -1.0, 

pow(2.0, t)-1.0); 

for ( i = 0; i < 4; i++) 
{ 

} 

extract..string (string, temp, length, PARMLENGTH); 
'·[iJ = bound_parm (bin_to_dec(temp, PARMLENGTH), 0.2, 0.0, 

pow(2.0, t)-1.0); 

free (temp); 
object = object~un (k, v); 
return (object); 

159 



APPENDIX 

} 

1* Function to evaluate fitness and coefficient values, parallel or cascade *; 

float iiLeval (string, length, a, b) 
int length; 
float *a, ob; 
GENE..DATA stringO; 
{ 

int i, j; 
float object; 
double t; 
GENE..DATAPTR temp; 1* cofficient string *; 

extern float object.funO; 

if ( !(temp = (GENE..DATAPTR)malloc(sizeof 
(GENE..DATA)*(PARMLENGTH+l)))) 

fataLerror("temp memory NULL"); 

bitJocation = length - 1; 

t = (double) PARMLENGTH; 

1* first order cofficients *; 
extract.string (string, temp, length, PARMLENGTH); 
a[O] = bound_parm (bin_to..dec(temp, PARMLENGTH), 1.0, -1.0, 

pow(2.0, t)-1.0); 

extract.string (string, temp, length, PARMLENGTH); 
a[l] = bound_parm (bin_to..dec(temp, PARMLENGTH), 2.0, -2.0, 

pow(2.0, t):l.O); 

1* constant cofficient *; 
extract.string (string, temp, length, PARMLENGTH); 

a[2] = bound_parm (bin_to..dec(temp, PARMLENGTH), 3.0, 0.0, 

pow(2.0, t)-l.O); 

160 



APPENDIX 

} 

1* sencond order cofficients * / 
extract~tring (string, temp, length, PARMLENGTH); 
b[O] = bound_parm (bin_to_dec(temp, PARMLENGTH), 1.0, -1.0, 

pow(2.0, t)-1.0); 
extract~tring (string, temp, length, PARMLENGTH); 
b[1] = bound_parm (bin_to-<lec(temp, PARMLENGTH), 1.0-b[0], 

-1.0+b[O], pow(2.0, t)-1.0); 
for ( i = 0; i < 2; i++) 
{ 

} 

extract~tring (string, temp, length, PARMLENGTH); 
b[i+2] = bound_parm (bin_to..dec(temp, PARMLENGTH), 1.12, -1.12, 

pow(2.0, t)-1.0); 

free (temp); 
object = object.fun (a, b); 
return (object); 

/*************************************************/ 
1* File: objfun.c, lattice form see source code for SGA, * / 
1* here give the function parallel and cascade * / 
/*************************************************/ 

#ifdef PARALLEL 
#define FILTERJlTRUCT 1 
#else 
#ifdef CASCADE 
#define FILTERJlTRUCT 0 
#endif 
#endif 

extern double gaussO; 

float object.fun( a, b) 
float "a, *bj 
{ 

161 



APPENDIX 

int i, n; 
float t; 
float d[4]; 1* Plant output * / 
float x[4]; 1* Input to Plant & Adaptive filter * / 
float yl[3]; 1* First order filter output * / 
float y2[3]; 1* Second order filter output * / 
float yout; 1* Adaptive filter output * / 
float error; 

1* Initialization all input and output to zero at time zero * / 
for (i = 0; i < 4; i++) 
{ 

} 

xli] = 0.0; 
d[i] = 0.0; 

for (i = 0; i < 3; i++) 
{ 

} 

yl[i] = 0; 
Y2[i] = 0; 

t = 0.0; 
for (n = 0; n != 8; n++) 
{ 

for (i = 3; i != 0; i-) 
{ 

} 

d[iJ = d[i-I]; 
xli] = x[i-I]; 

for (i = 2; i != 0; i-) 
{ 

} 

yl[i] = yl[i-I]; 
y2[i] = y2[i-I]; 

r Gauss white noise input * / 
x:OJ = (float) gaussO; 

162 



APPENDIX 

} 

} 

d[O] = O.0154*x[O]+O.0462*x[1]+O.0462*x[2]+O.0154*x[3] 
+ 1.9900*d[1]-1.5720*d[2]+0.4583*d[3] i 

1* If cascade structure is being used * / 
if (!FILTER..5TRUCT) 
{ 

} 

yl[O] = a[2]*x[O]- a[2]*a[1]*x[1] + a[O]*yl[l]i 
y2[O] = yl[O]- b[3]*yl[1]- b[2]*yl[2] + b[1]*y2[1] + b[O]*y2[2]i 
yout = y2[O]i 

1* If parallel structure is being used * / 
if (FILTER..5TRUCT) 
{ 

} 

yl[O] = a[l]*x[O] + a[O]*yl[l]; 
y2[O] = b[3]*x[O]- b[2]*x[1] +b[1]*Y2[1]+ b[O]*y2[2]i 
yout = a[2]*x[O] + yl[O] + y2[O]i 

/* Error obtained via minus adaptive out from plant output * / 

error = d[O]- youti 
error = error*error; 

t = t + errori 

return (t)i 

B.3 Utility and Other Code 
/*******************************************/ 
/* File: gen_util.c, utility for genetic algorithms * / 
/*******************************************/ 
#include <stdio.h> 
#include <math.h> 
extern double drand48 Oi 

int flip (a) 

163 



APPENDIX 

double a; 

{ 

} 

int f; 

if (a == 1.0) f = 1; 
else 
{ 

} 

if (drand48 0 :$ a ) f = 1; 
else f = 0; 

return (f); 

1* Return a random integer between low and high inclusive * / 

int rnd(low, high) 
int low, high; 
{ 

} 

int i, j; 
double t; 

if (low ~ high) i = low; 
else 
{ 

} 

t = drand480*(high-low+1)+low; 
i = (int) t; 
if (i > high) i = high; 

return (i); 

1* GiYe a random seed * / 

void randomizeO 
{ 

double X; 
printf("Enter seed random value = "); 

164 



APPENDIX 

} 

scanf (''%If'' , &x); 
srand48 (x); 

/*******************************************/ 
1* File: guass.c, generate gauss random number * / 
/*******************************************/ 

#include <stdio.h> 

#include <math.h> 

extern double drand48 0; 

double gauss 0 
{ 

} 

double i, j; 
double value; 

i = drand48 0; 
j = drand48 0; 
value = sqrt( -2.0*log(i) )*cos( 2*3.141592654*j ); 
return (value); 

/*********************************************/ 
1* This program synthesis direct form HR filter to * / 
1* lattice form (coefficient calculation). * / 
/*********************************************/ 

~include <stdio.h> 
::include <stdlib.h> 
~include <math.h> 

#define N 3 1* Filter order, can be changed * / 

\"Did mainO 
{ 

int n, i, jj 

165 



APPENDIX 

} 

double a[N); 1* Denominator of direct form * / 
double p[N); 1* Numerator of direct form * / 
double v[N); /* Output coefficients * / 
double k[N-1); /* Lattice reflects coefficients * / 
double b[N); 

1* Direct form coefficients * / 
a[O) = 1.0; a[l) = -1.4; 
a(2) = 0.98; 

prO) = 0.5; p[l) = -0.4; 
p(2) = 0.89; 

for(n = N-1; n != 0; n-) 
{ 

} 

for(i = 0; i < N; i++) 
b[i) = a[n-i); 

k[n-l) = a[n); 

for(i = 0; i < n; i++) 
a[i) = (a[i)- k[n-1)*b[i))/(1.0 - k[n-1)*k[n-1]); 

y[n) = p[n); 

for(i = 0; i < n; i++) 
p[i) = p[i)- b[i)*v[n); 

v[O) = prO); 

for(n = 0; n < N; n++) 
printf("v[%d) = %If\n'', n, v[n)); 

printf(" \n"); 
for(n = 0; n < N-1; n++) 

printf("k[%d) = %If\n'', n, k[n)); 

166 



Steady State Genetic Algorithm Approach to the Adaptation 
of HR Filters 

Qiang Ma and Colin F. N. Cowan 

Department of Electronic and Electrical Engineering, 
Loughborough University of Technology, Loughborough, Leics. LE11 3TU 

Tel: +44 1509228119, e-mail: q.ma@lut.ac.uk 

Abstract 

This paper presents a steady state Genetic Algorithm approach to the adaptation of 
adaptive HR filters. Conventional adaptive HR filter algorithms slIch as LMS and RLS 
algorithms suffer from potential instability and complexity problems. Applying Genetic 
Algorithms to HR filtering problems provides an alternative way to approach the HR filter­
ing problem. Genetic Algorithms as HR filter learning algorithms can provide guaranteed 
filter stability. In this paper three filter structures - cascade, parallel and lattice are stud­
ied, the computer simulation results show that the Genetic Algorithm has advantage in 
the case where poles are close to the unit circle and for high order filter problems. 

1 Introduction 

Adaptive infinite impulse response (HR) filters are used in a wide variety of signal processing 
and control applications due to the superior system modeling abilities afforded by the poles of 
an HR filter transfer function. The difficulties for adaptive HR filters are, first the potential 
instability, and sec.ond, the mean square error surface of an HR filter can be multi-modal, 
causing learning algorithms to converge to a local minimum. 

Genetic Algorithm approaches to adaptive HR filtering have been developed recently [1] 
[2]. Positive results by using the Genetic Algorithm to tackle the adaptive HR problem has 
been demonstrated in [2], especially for high order filters. This work in [2] experimented with 
cascade, parallel and lattice structures for HR filters. In this paper, we also explore cascade, 
parallel and lattice structures. We use more general filter models as both the unknown and the 
adaptive systems in system identification, which are more difficult for the Genetic Algorithm 
to solve compared to the models in [2]. 

The adaptive HR filter and Genetic algorithms is brielly discussed in section 2 and system 
modeling and steady state Genetic Algorithm in section 3. The results of some computer 
simulations of steady state Genetic Algorithm for HR filters are presented in section 4. 

2 Adaptive HR filters and Genetic Algorithms 

Adaptive filters can be classified as adaptive finite impulse response (FIR) filters and adaptive 
infinite impulse response (HR) filters. Adaptive FIR filters face computational complexity 
problems, although there are many fast algorithms. For certain real physical systems, adaptive 
HR filters can be more economical, in the sense of lower filter order compared to adaptive FIR 
filter counterparts. Adaptive HR filter poles can provide a good match to many real systems. 

Adaptive HR filters face instability problems, especially when the poles are close to the 
. unit circle. Adaptive HR filters' error surface can be multi-modal, making adaptive HR filter 

148 DSP95 



algorithms very difficult in terms of finding the global optimum. The direct form adaptive 
HR filter implementation can exhibit high roundoff noise in the presence of finite precision 
arithmetic, and remains susceptible to quantization limit cycles [3]. If the HR filter's pole is 
near the unit circle, for conventional gradient adaptive HR filter algorithms, the direct form 
HR filter's stability is not guaranteed. For example, algorithms in [4] failed to converge for 
this condition, algorithms in [4] are variants of Steiglitz.McBride technique [5] where the filter 
structure remains direct form. This has motivated researchers to look for alternative structures. 
Cascade, parallel and lattice structures have been documented, see [6], [7] and [8], etc .. The 
solution given in [6] uses the LMS algorithm on parallel and cascade form adaptive HR filters. 
It introduces additional saddle points in the performance surface which are unstable solutions 
in the parameter space [6]. [7] uses the LMS algorithm on the lattice form adaptive HR filter 
and maintains computational complexity O(M2) for gradient calculation. The algorithms in [8] 
are normalized lattice· based, the first algorithm is a reinterpretation of the Steiglitz-McBride 
method, while the sec.ond is a variation on the output error method, both of them are O(M) 
complexity. The coefficients are updated by using the QR-based Gauss-Newton algorithm 
in [8] which needs many matrix computations and for some cases where poles are extremely 
close to the unit circle, the algorithms also failed to converge. Genetic Algorithms are another 
alternative solution to the adaptive HR filtering problem which is very successful in tackling 
the poles close to the unit circle and high order filter problems. 

Genetic algorithms are search algorithms based on the mechanics of natural selection and 
genetics [9]. These algorithms encode a potential solution to a specific problem on a sim­
ple chromosome·like data(noTInally binary) structure and apply genetic operators to these 
structures so as to preserve critir.al information [10]. 

Genetic algorithms are a population based, robust optimisation method, especially used 
to tackle high-dimensional, muti-modal search space problems. The Genetic Algorithm op­
erators include mainly selection, recombination(crossover) and mutation. Applying Genetic 
Algorithms to optimisation problems begins with a population of chromosomes, which are 
randomly initialized. After that each binary individual of the population is decoded to a set 
of parameters(coefficients), the parameters are applied to the optimisation function(such as 
mean square error) to evaluate the function values. In Genetic Algorithms the function values 
are termed as the fitness values. Among the population, according to the fitness values, a 
selection operator is used to select the best iudividual which will possibly survive in the next 
generation and form the intermediate population. At this stage the recombinatiQn operator 
can be applied. Picking up a pair of strings among the intermediate population, and crossing 
them into one another with a probability Pc for exchanging genetic information to produce a 
new pair of strings. This procedure repeats a certain lllimber of times until the full population 
is filled. After recombination, the mutation operator can be performed. Each bit of every 
individual in the whole population can mutate with a very low probability Pm. This provides 
greater ability to ensure that every part of the search space is visited. After these three oper­
ators have been performed, the new population can be evaluated. The evaluation, selection, 
recombination and mutation construct one Simple Genetic Algorithm (SGA) generation cycle 
[9]. 

3 System Modeling and Steady State Genetic Algorithm 

Applying Genetic Algorithms on the adaptive filtering problem was first studied by Etter [1]. 
Later Nambiar and Mars [2] applied Genetic Algorithms to system identification problems. In 
this paper we again explored system identification by using direct, cascade, parallel and lattice 
structures. 

In system identification, the unknown system can be identified by direct, cascade, parallel 

DSP95 149 



and lattice form adaptive filter structures. For an Mth order HR filter (M > 2) 

(1) 

the equivalent cascade· form representation of H(z) is 

(2) 

where W = (M+1)/2, if M is odd or W = M/2, if M is even, the equivalent parallel-form 
representation of H(z) is 

If ~ aOk(n) - alk(n)z-l 
p(z) = p + L..J 1.0 _ b (n)z-l _ b .(n)z-2' 

k=l lk 2k 
(3) 

where W = (M+1)/2 if M is odd or W = M/2 if M is even, q and p are constants. The 
stability of filters during adaptation is guaranteed by constraining the filter coefficients blk(n) 
and b2k(n) to lie within the stability triangle [2]. 

The filter (1) can also be implemented in the form of a lattice with different weights v.(n) 
and k.(n), which is stable if the lattice coefficients k.(n) are all less than 1. The input-output 
of the lattice filter at time n c.an be expressed as: 

where 

M 

y(n) = 2: v.(n)B.(n) 
i=O 

Bi(n) = B._1(n)+ k.(n)F;_l(n)j 

F;(n) = F'+l(n) - k.(n)B.(n -1)j 

FM(n) = x(n) 

and x(n) is the input signal, and 

Bo(n) = Fo(n). 

i= M, ... , 1 

i = M -1, ... ,0 

(4) 

(5) 

(6) 

(7) 

(8) 

We will use the above three models to identify the high order unknown system in our simulation 
experiments. 

The genetic algorithm we use in this paper is Genitor [10], which can be termed as the 
steady state Genetic Algorithm. It provides better performance relative to the Simple Genetic 
Algorithm and has a few different features relative to the Simple Genetic Algorithm (SGA) 
which has been used in [2]. First, reproduction prodnces one offspring at a time. Two parents 
are selected for reproduction and produce an offspring that is immediately placed back in 
the population. The second major difference is in how that offspring is placed back in the 
population. Offspring do not replace parents, but rather the least fit (or some relatively less 

150 DSP95 



fit) member of the population. In Genitor, the worst individual in the population is replaced. 
The third difference between Genitor and the Simple Genetic Algorithm is that fitness is 
assigned according to rank rather than by fitness proportionate reproduction. Ranking helps 
to maintain a more constant selective pressure over the course of the search[lO]. 

4 Simulation Results 

We present here simulations for direct, cascade, parallel and lattice structures. The squared 
error has been chosen as the fitness value. In all the results, the squared error obtained from 
each generation is plotted against the generation number, we use different window lengths to 
average the instantaneous error to form the error for each experiment shown in the plotted 
results. The results are obtained after averaging 20 independent simulations, the population 
size chosen was 200, because normally Genitor requires large population sizes or multiple 
populations to combat the premature convergence problem [11]. We run Genitor for 200,000 
generations, which seems large, but if compared to the SGA in computation terms, it is 
relatively efficient. In the SGA, in each generation, fitness values for every individual in the 
whole population has to be calculated, but in Genitor, in each generation, only one individual 
fitness value is calculated. The Genitor (or steady state) selection bias is 1.6955, the crossover 
operator in Genitor is two point reduced surrogate form crossover [10] the mutation operator 
is adaptive mutation, the mutation rate is 0.0555, each coefficient has 15 binary bits. 

Experiment 1. Lattice and direct form adaptive structures have been used to identify the 
unknown system: 

H(z) = 0.5 - OAz-l + 0.89z-2 
• 

1.0 - 1.4z-1 + 0.98z 2 
(9) 

This system has poles at 0.7±jO.7, which are close to the unit circle. Many gradient algorithms 
failed to identify this special case, for example, algorithms in [4] and [8]. The genetic algorithm 
gives the results illustrated in figure 1 which shows the advantage of GA over the gradient 
algorithms for poles close to unit circle problem. The unknown system is a second order 
system, so we chose lattice and direct form adaptive HR filters for this experiment. 

Experiment 2. An order three system: 

H(z) = 0.0154 + 0.0462z-1 + 0.0462z-2 + 0.0154z-3 

1.0000 - 1.9900z 1 + 1.5720z 2 - OA583z-3 (10) 

is identified by lattice, cascade and parallel adaptive structures. The cascade and parallel 
forms are constructed by using first or second order filters (in direct form). The results are 
given in fignre 2. It shows that the lattice form gives the best result, the cascade form has 
better performance than the parallel form. The convergence speeds for the three forms are 
similar. 

Experiment 3. A much higher order seventh unknown system: 

H(.) = 0.0002 + 0.0011.-1 + 0.0032.-2 + 0.0054.-3 + 0.0054.-( + 0.0032.-5 + 0.0011.-6 + 0.0002.-7 (11) 
1.0000 - 3.9190.-1 + 7.0109.-2 -7.2790.-3 + 4.6934. (-1.8690.-5 + 0.4236. 6 - 0.0420.-7 

is identified by the three structures, the results are given in figure 3. This shows that the 
Genetic Algorithm has the power to solve a high order problem better than the other structures. 
The results show the same trend as in Experiment 2. 

DSP95 151 



Experiment 4. We run the simulation for various population sizes, see figure 4. Population 
size 200 gives the best performance, this agrees with the relatively large population size re· 
quirement of Genitor. The experimental structure used is the lattice, filter with the unknown 
system given by equation (10). 

5 Conclusion 

In this paper, applying Genetic Algorithms to the adaptation of HR filtering has been studied. 
The simulation results do show that the Genetic Algorithm approach to the adaptive HR 
filtering problem has some advantages. Above all the lattice structure gave the best results. 
The cascade structure is better than parallel form. We can draw a condusion: the lattice 
structure is the ideal structure, it not only gives the best performance, but also it is easy to 
choose the coefficient dec.oding region for genetic algorithm adaptation. 

References 

[1] Etter, D.H., 'Recursive Adaptive Filter Design Using an Adaptive Genetic Algorithm', 
Proc. ofIEEE Conf. on ASSP, pp.635-638, 1982. 

[2] Nambiar, R, and Mars, P., 'Genetic and Annealing Approaches to Adaptive Digital Filter­
ing', Proc. IEEE 26th Asimolar Conference on Signals, Systems and Computers, Monterey 
California, Oct. 1992. 

[3] Claasen, T.A.C.M., Mecklenbranker, W.F.G., and Peek, J.B.H., 'Effects of Quantization 
and Overflow in Recursive Digital Filters', IEEE Trans. Aconst., Speech, Signal Process­
ing, voL ASSP-24, pp.517-529, 1976. 

[4] Fan, H. and Jenkins, W.K., 'A New Adaptive HR Filter', IEEE Trans. Circuits Systems, 
voL CAS-33, pp.939-947, 1986. 

[5] K. Steiglitz and L.E. McBride, 'A technique for the identification fo linear systems', IEEE 
Trans. Automat. Contr., vo!. AC-I0, pp375-388, 1965. 

[6] Nayeri, M., and Jenkins, W.K., 'Alternate Realizations to Adaptive HR Filters and Prop­
erties of Their Performance Surfaces', IEEE Trans. on Circuits and Systems, voL36, 
pp485-496, April 1989. 

[7] Parikh, D., Ahmed, N., and Steams, S.D., 'An Adaptive Lattice Algorithms for Recursive 
Filters', IEEE Trans. Ac.oust., Speech, Signal Processing, voL ASSP-28, pp. 485-496, April 
1989. 

[8] Regalia, P.A., 'Stable and Efficient Lattice Algorithms for Adaptive HR Filtering', IEEE 
Trans. on Signal Processing, vo!. 40, pp. 375-388, 1992. 

[9] Goldberg, D.E., 'Genetic Algorithms in Search, Optimization, and Machine Learning', 
Addison-Weslley Publishing Company, 1989. 

[10] Whitley, D., 'A Genetic Algorithm Thtorial', Colorado State University Technical Report 
CS-93-103, November 1993. 

[11] Goldberg, D. and Deb, K., 'A Comparative Analysis of Selection Schemes Used in Genetic 
Algorithms', in 'Fonndations of Genetic Algorithms'. G. Rawlins, ed. Morgan Kaufmann, 
1991. 

152 DSP95 



dB 

15.----.----.-----,----, 
10 
5 
o 

-5 
-10 
-IS 
-20 
-25 
-30 

direct ~ 
lattice +-

dB 

-35 l----=::::~=±:::b:l=±J -40 
o 50000 100000 150000 200000 

Generations (X8 samples) 

20r----.-----,r----~1--_. 

10 parallel ~ -
o r cascade +- -

lattice -e-­
-IO~ 

-20 -
-30 ~~ 
-40 ~2~H~~~A$---<~~ 
-50 -~ -'-

I I -60 L-__ --'-____ --L ____ -'--__ --' 

o 50000 100000 150000 
Generations (X8 samples) 

200000 

Figure I: The second order filter, squared 
error (in dB) vs generations. 

Figure 2: The third order filter, squared error 
(in dB) vs generations. 

20 I I I -35 

10 
parallel ~ _ PopSize 50 ~ 
cascade +- -40 PopSize lOO +-

0 lattice -e-- _ PopSize 200 -e--
PopSize 400 ·x· . 

dB -10 - dB -45 

-20 ~-" -

.~. 
-50 

-30 • . • 

-40 
,. 

-55 
0 50000 100000 150000 200000 0 50000 100000 150000 200000 

Generations (X20 samples) Generations (X8 samples) 

Figure 3: The seventh order filter, squared 
error (in dB) vs generations. 

Figure 4: Squared error (in dB) vs generations 
for various population sizes. 

DSP95 153 






