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ABSTRACT

In wireline multicarrier systems a cyche prefix is commonly used to
facilitate simple channel equalization at the receiver. The selection of
the length of the cyclic prefix is a trade-off between maximizing the
length of the channel for which inter-symbol interference 1s eliminated
and optimizing the transmission effictency When the length of the
channel exceeds that of the cyclic prefix, adaptive channel shorteners
can be used to force the effective channel length of the combined chan-
nel and channel shortener to satisfy the cyclic prefix constraint. The
focus of this thesis is the design of new blind adaptive time-domain al-
gorithms for channel shortening in wireline multicarrier systems, with
good convergence properties and low computational complexity

An overview of the previous work in the field of channel shortening
algorithms for use in wireline multicarrrier systems is given. Empha-
sis 18 placed on the family of property restoral algorithms, including
the single lag autocorrelation minimizing (SLAM) blind adaptive algo-
rithm, which forms the basis for the time-domain algorithms considered
in the remainder of the thesis.

The relatively slow initial convergence of the SLAM bhnd adaptive
algorithm is therefore improved by the proposal of a new variable-step
SLAM algorithm and a quasi-Newton adaptive algorithm These algo-

nithms are compared in terms of computational complexity and memory
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usage so that their suitability for real-time implementation can be as-
sessed. Simulation studies are performed on the basis of real carrier
serving area (CSA) loop test channels.

A fundamentally new random lag selection-based blind adaptive
channel shortening algonthm named the exponential probability gen-
eralized lag hopping sum squared autocorrelation minimizing algorithm
(EGLHSAM) is then proposed which overcomes the possibility of 1ll-
convergence in SLAM-type algorithms for particular channels. The
exponential probability 1s chosen to represent approximately the en-
velope behaviour of the CSA loop test channels. The performance of
EGLHSAM is assessed through simulations

Finally, the problem of decay parameter selection within the EGLH-
SAM algorithm is overcome by modifying the exponential probability
density function employed mn the random lag selection to a uniform
form. This algorithm is named the GLHSAM algorithm and 1s demon-
strated to have the capacity to match the convergence properties of the
original sum squared autocorrelation minimization algorithm proposed
by Martin and Johnson whilst retaining the complexity of the SLAM

algorithm proposed by Nawaz and Chambers.
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Chapter 1

INTRODUCTION

1.1 Introduction and Motivation

Advanced wireless and wireline communication systems such as Insti-
tute of Electrical and Electronics of America IEEE 802 11 /g wireless-
fidelity (Wr-Fi), IEEE 802.16 wireless (WiMAX), ADSL, and ADSL2/+,
have adopted multicarrier modulation (MCM) as the signaling tech-
nique either in the form of Orthogonal frequency division multiplexing
(OFDM) (3] for wireless systems, or mn the form of discrete mult: tone
(DMT) for wireline systems, due to its ability to combat the disper-
sive effect of the communication channel For the proper operation of
MCM, a cychc prefix (CP} which 1s at least as long as the length of the
channel impulse response minus 1, has to be appended to the data part
of the transmitted frame The CP is the last v samples of the onginal
N samples to be transmitted. The CP is inserted between transmitted
frames to combat inter symbol and inter carrier interferences (ISI and
ICI) which significantly reduce the system performance. At the receiver
the CP is removed and the remaining N samples are then processed by
the receiver.

However, 1if the length of the channel is large, the throughput effi-

ciency of the system deteriorates significantly with this additional load
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of CP which does not convey user data. It 1s, therefore, desirable ei-
ther to make v as small as possible or to choose a large data length
for the transmitted frame, N Selecting large N will increase the com-
putational complexity, system delay, and memory requirements of the
transceiver. In order to overcome these problems a shorter eychic prefix
can be designed as an engineering compromise to minimize through-
put loss whilst ensuring that a time domain channel equalizer (TEQ),
can be used to shorten the effective channel to be no longer than the
CP used Channel shortening is a generalization of equalization and
the TEQ generally has not to be longer than the channel as its job is
to shorten the channel to a given length, rather than shortening 1t to
length one as is done in classic equalization. The TEQ 1s usually an
FIR filter The focus of this thesis is to develop blind adaptive algo-
rithms for the TEQ design. [4]

Figure (1.1) [1] shows the structure of CP and data frame Here the
length of the data part of the frame 1s 12 while the channel is assumed
to be of length 4. Hence a CP of length 3 15 used Each transmitted
frame will contain user data to be transmitted in the boxes labelled 4
to 15 and the last three boxes are copied to the start of the frame as a

CP to combat ISI and ICI. The loss of throughout is quantified by

v
L T = —_— 1.
0ss of Throughput N (1.1.1)

Therefore, for the frame arrangement in Figure(1.1) the data through-
put loss is 20%. Figure (1.2) [1] shows the place of the TEQ 1n the over-
all block diagram of a baseband MCM system If the TEQ weight vector

w is designed to shorten the effective channel denoted by ¢ (¢ = h*w)
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where the (*) denotes linear discrete time convolution and h is the
channel vector to be of length 2, the CP will reduce to length 1 in the

Figure (1.1) and loss of throughput will reduce to 7 7%
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Dala cp Data CP Data
1 ) | ]
1 ] 1 [

11913 4156|718 91011121314151617181920

-41-3121-110

Figure 1.1. Structure of the data and cychc prefix used in multicarrier
transmission [1].
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Figure 1.2. Baseband block diagram of the OFDM Transmitter and
Receiver showing the channel h, TEQ w, and noise.
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The baseband OFDM multi-carrier model along with the TEQ are
shown in Figure (1.2). The input bits stream is first divided into blocks
of N quadrature amplitude modulation {QAM) symbols. These QAM
symbols are modulated onto N subchannels An efficient means to con-
vert the N subchannels data to the time domain 1s to use an inverse
fast Fourier transform (IFFT). The output of the IFFT is converted
from parallel to serial and the CP is inserted The data are then se-
rially transmitted. At the receiver in the baseband the ISI corrupted
CP 1s discarded and an FFT 1s used to demodulate the signal. Because
of the nature and length of the CP, the linear convolution between the
effective channel ¢ = h*w and the transmitted signal becomes circular.
Therefore, the output of the FFT at each subchannel is the multiplica-
tion of the symbol sent on that subchannel and the frequency response
of the effective channel at the subchannel plus the noise at that sub-
channel. Finally, the transmitted symbols are retrieved by dividing this
output by the one-tap FEQs which are actually the frequency responses

of the effective channel at the respective subchannels

Further examples of multicarrier commumecation systems nclude
wireless local area networks (IEEE 802.11 a/g/n, HIPERLAN/2) [5],
wireless metropolitan area networks (IEEE 802 16) a k.a Fixed WiMax
(IEEE 802.16d) [6], IEEE Mobile WiMax 802.16/e [7], Digital Audio
Broadcast {DAB) [8] and Digital Video Broadcast (DVB) [9] in Europe,
satellite radio (Sirus and XM Radio) [10], and the proposed standard
for multiband ultra wideband (IEEE 802.15 3a). Examples of wire-
line multi-carrier systems mnclude power line communications (Home-

Plug) [11] and Digital subscriber lines (DSL) [12]. [13] discusses the
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application of DMT signalling to high speed back plane interconnects.
Tight power budgets in backplane links impose severe constraints on
DMT block size and suggest the use of channel shortening filters in the
system to maximise throughput OFDM in combination with MIMO
technology is also being investigated for the Fourth Generation (4G)
mobile phone systems [14] [15] {16] [17].

There has been extensive research in proposing TEQ algorithms. A lit-
erature survey of TEQ design methods is given in Chapter 2 However
there remains need for further work to improve the convergence of the
blind adaptive channel shortening algorithms This 1s the focus of the

thesis.

1.2 Organization of the thesis

The remainder of the thesis 1s organmized as follows Chapter 2 presents
a literature survey of the channel shortening algorithms

Chapter 3 proposes techniques to improve the convergence of the SLAM
algorithm The SLAM algorithm is a low complexity channel shortening
approach as it mimimizes the square of only a single fixed autocorrela-
tion value. This chapter in particular details the moving average (MA)
and autocorrelation (AR) implementations of the SLAM algorithm but
later uses the MA 1mplementation for faster convergence of the SLAM
algorithm developed in the chapter. Two schemes are suggested to im-
prove the convergence of the adaptive SLAM algorithm The first one
variable-step-SLAM (VS-SLAM) uses a variable step at each iteration
of the algorithm. The step size is selected automatically according to
the value of the cost at each iteration The second scheme quasi-Newton

SLAM (QN-SLAM) achieves a faster quadratic type convergence using
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a Newton descent type update. The computational complexity and
memory requirements of SLAM, VS-SLAM, and QN-SLAM are pro-
vided It 1s shown that VS-SLAM has identical complexity as SLAM,
whereas QN-SLAM has quadratic complexity in the TEQ length. The
proposed two algorithms are compared with SLAM by shortening 8
carrier serving area (CSA) Loop wireline channels Both proposed al-
gorithms successfully shorten the CSA Loop channels. The channel
shortening effect and the resulting TEQ designs are shown in the sim-
ulations section Achievable bit rate 1s used as the performance metric
to assess the convergence rate of the algorithms. The details of how the
achievable bit rate is calculated are provided The results show that on
average VS-SLAM converges faster than the SLAM algorithm for all 8
CSA Loop channels QN-SLAM 1s faster than SLAM and sometimes
converges earlier than the SAM algorithm. However, its response can
be very noisy. The noisy convergence coupled with the very high com-
putational complexity of the QN-SLAM algorithm makes it less useful
for real time channel shortening applications. VS-SLAM appears to
be the preferred algorithm, but SALM-type algorithms can suffer ill-
convergence.

Chapter 4 proposes an exponential probability generalized lag hopping
version of the SLAM algorithm named EGLHSAM The drawback with
SLAM algonthm 1s that 1t minimizes a fixed autocorrelation value.
There can be some channel impulse responses where the SLAM cost is
zero but the channel impulse response 1s not confined to the required
window length. EGLHSAM overcomes this problem by minimizing a

random lag at each 1iteration from the available range of lags. There-

fore, n a complete adaptation, it visits all the possible lags. This
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reduces the possibiity that EGLHSAM cost is zero but channel is not
short as required resulting in a poor SIR The algorithm selects the lags
with a probability matching the envelope of the impulse response of the
underlying channel This increases the imtial convergence rate of the
EGLHSAM algorithm over that of the SLAM algorithm. The chapter
gives a breakdown of the SIR formula and shows that only minimiz-
ing a fixed autocorrelation, as in SLAM, does not provide guarantee
that SIR wll be increased There is a possibility that few taps outside
the required window are left which is against the channel shortening
phenomenon The histograms of the lags simulated are shown. The
EGLHSAM algorithm is compared with SLAM by shortening 8 CSA
Loop wireline channels. Different decaying slopes for the lags are sunu-
lated for the EGLHSAM algorithm. It successfully shortens the 8 CSA
Loop channels. The channel shortening effect and the resulting TEQ
designs are shown in the simulations section. Achievable bit rate is
again used as the performance metric to assess the convergence rate
of the algorithms. Depending upon the decaying slope of the lags,
EGLHSAM outperforms SLAM. This ‘good’ decaying parameter value
is different for different CSA Loop channels This 1s a problem with the
EGLHSAM algorithm where it needs the optimum decaying parameter
value. It is also mentioned that using a highly decaying nature of the
lags probability excludes some of the lags to be minimized. However,
this is less severe problem than with the SLAM algorithm.

Chapter 5 proposes a generalized lag hopping algorithm but uses uni-
form probability of lag selection The algonthm is named GLHSAM
and 1t overcomes problems with the SLAM and EGLHSAM algorithm

to guarantee high SIR. This algorithm also does not need to know
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the decaying parameter for every channel The GLHSAM algorithm 1s
shown to have 1dentical channel shortening effect as that of the SLAM
and EGLHSAM algorithm The convergence rate of GLHSAM is better
than SLAM and 1s comparable to that of EGLHSAM The convergence
rate can be further increased by incorporating more lags in the update
while keeping an overall uniform probability of lags selection.

Chapter 6 concludes this thesis and points out possible areas for further

research




Chapter 2

LITERATURE SURVEY

2.1 Overview

The purpose of this chapter 1s to review the previous work in the field of
channel shortening The minimum mean square error (MMSE) method
13 discussed 1n Section 2 2. The maximum shortening signal-to-noise
ratio (SSNR) method 1s then mntroduced and compared with the MMSE
technique in Section 2 3. Algorithms for time-domain adaptive channel
shortening are introduced 1n Section 2 4, the enhancement of which,
is the focus of this thesis. Finally, in Section 2 5 alternative frequency

domain methods are discounted due to their computational complexity

11
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Figure 2.1. Block diagram of an MMSE channel shortening system
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2.2 Minimum Mean Square Error Method

Figure 2.3 illustrates the structure of the time-domain equalizer (TEQ)
design method reported in [18]. In the block diagram, b = [bg, b1+« - b,, |7
is defined as the target impulse response (TIR}, where ( )T denotes
vector transpose. Also, w = [wg,wi,. -wp,_,]7, is defined as the
TEQ parameter or weight vector which is designed to drive the mean
squared error between the system output and the delayed output of b
to a mmmmum The channel impulse response vector is represented as

h = [hg, k1, k2, ...hg,_,]T- The received signal, in vector form, therefore
becomes

rn = Hx, + v, (221)

where 1, = [r(n),r(n — 1)---r(n — ny + 1)]7, %, = [z(n),z{n —
Deeoz(n — np — ny + DT, v = [v(n),v(n — 1) -+ v(n — n, + DT

and H is the Toephtz convolution matrix given by

ho hi oo Bu, O - 0 )
o | 0 R R e e 0
0
0 v 0 ko h o ha )

In channel shortenung, the elements of x,, are zero mean, unit variance,
data symbols, z(n)}, which form the input to the channel h. Zero-mean
additive white Gaussian noise 1s included in the model equation (2 2.1)

as the elements of v,, All signals throughout this thesis are real-valued
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The mean squared error is therefore

E[¥(n)] = E[(wTr, — bx,)Y
= E[(wTr, — b"x,)(rfw — x b)]

= w'R,,w + b"R,,b — 2w’R,,b (2.22)

where b = [01xabT0;x,])7 and A is the delay parameter. The terms
R.z = E[x,XI], R,z = E[r,x%], and R,, = E[r,r}] are respectively the
transmission signal autocorrelation, channel output/input cross corre-
lation and the channel output autocorrelation matrices. To find the
optimal MMSE solution for w, differentiate equation (2 2 2) and equate

the result to the zero vector,

Ele? -
BN - Bow — Bub =0
R,-.,-W = Rpr (2-2-3)
and therefore
Wopt = Ry R, b (2.2.4)

Substituting equation (2 2.4) into equation (2.2 2)

E[e2(n)] = l‘;T(R:t:a: - RL(RSI)T&z)B

(2.2.5)

which 1s the mimimum mean square error. Solution of equation (2.2.4)
assumes knowledge of the TIR, which can be found from the system
requirements A good hiterature survey of the MMSE TEQ design tech-
nique 15 reported in [19]. Most of the reported techniques in [19] focus
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on mininuizing the complexity of MMSE channel shortening by exploit-
ing the structure of the terms in equation (2.2.4).

The TEQ design method for frequency division multiplexed asynchronous
digital subscriber line (ADSL) (FDM-ADSL) is shghtly different from
that for echo cancelled ADSL (EC-ADSL). In FDM-ADSL, separate
frequency bands are allocated for downstream and upstream transmis-
sion Sharp filters are employed in the analogue front end of the receiver
to achieve this philosophy In EC-ADSL, overlapping spectra are used
for downstream and upstream transmssion whilst echo-cancelling is ap-
plied in [20]. Some researchers note that the MMSE TEQ can possess
high gain in the FDM-ADSL stop-band region (the upstream trans-
mission band) as reported in [21] The output of the discrete fourier
transform, applied after the TEQ, possesses relatively high spectral
side-lobes as reported in [20] The TEQ can then boost the stop band
noise or the near end cross talk from the local upstream transmission
dramatically which can drop the signal-to-noise ratio (SNR) of the ac-
tive sub-carriers. The authors 1n [21] therefore modified the MMSE
cost function to achieve suppression of the TEQ energy in the stop-
band Their simulation results showed a more than 35 percent increase
1 the bit rate of the system after modification

Another issue in relation to the MMSE channel shortening method 18
reported in [22]. This method shortens the channel by mmmmzing the
difference between the TIR and the effective impulse response of the
system. In particular, it aims to minimize the difference inside and
outside the target window. However, the difference inside the target
window is supposed not to cause any ISI. Moreover, the TIR and ef-

fective impulse response generally possess larger magnitude inside the
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target window than outside the target window. This means that the
MMSE method initially tries to minimize the difference inside the win-
dow, which doesn’t cause ISI, more than outside the target window,
which causes ISI. Therefore, minimizing the MMSE to remove ISI is
not always the best choice to design a TEQ for a discrete multi-tone

modulation system.

2.3 Maximum Shortening Signal-to-Noise Ratio (MSSNR) Method

Generally, perfect shortening of the impulse response is not possible
to achieve {23] [24] [25] [26] [27] Some energy will remain outside the
largest (v+ 1) consecutive samples of the effective channel. The main
aim 18 generally to drive as much as possible of the effective impulse
response of the channel to remain inside (v+1) consecutive samples
The MSSNR, TEQ design method reported in [2] tries to maximize the
ratio of the effective channel impulse response energy within a target
window length (v+1) consecutive samples to the energy of the channel
outside of the window. By referring to Figure (2.2), the effective channel

impulse response can be written as 1n

heff=c=h*w (23 1)

where the (*) denotes linear discrete time convolution. The shape of
the resulting impulse response of the effective channel h. is generally
unimportant, what 1s important 1s that the SSNR. be maximized The
result of the MSSNR channel shortening method 1s 1llustrated 1n Fig-
ure (22) If H denotes the convolution matrix of the original channel

h, then the effective channel h.;; = Hw as reported in [2]. The ef-
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Figure 2.2. Original and shortend normalized channel using the
MSSNR method, where A is the transmission delay [2].
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fective channel can then be partitioned into two parts, the first part
is the channel samples lying within the desired (v + 1) window which
is denoted by hy.,, = H,..w, while the second part consists of the
channel samples lying outside this desired window which is denoted by,
hyenr = Hyeyw  Hy,, consists of (v + 1) rows of H starting from po-
sition A, where A is the transmission delay, and H,,,; consists of the
remaining rows of H. The SSNR is defined as

w HL Hyww _ w'Bw

SSNR = AT, =
wTH?  Hyaw wlAwW

(2.32)

The shortening is achieved by minimizing the wall energy (the denomi-
nator) while keeping the window energy (the numerator) equal to unity.
If the length of the TEQ is smaller than (v + 1), matrix B is positive

defimte and can be decomposed by a Cholesky decomposition [28].

B =QAQT
= (QAVH)(AY2QT)
= (QA2)(QAYA)T
= (B*)(B7)V* (2.33)

where A 15 a diagonal matrix of eigenvalues of B and Q is matrix of

orthonormal eigenvectors vectors. Let us denote
s = (BT)?w (2.3.4)

and

w = (BT)"1/2% (2.3.5)
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Then substituting equation (2.3.5) into equation (2 3 2)

sTs

NR=—— 2.36
SSNR 7Cs ( )
where C = (B~Y2)A(BT)~'/2, The MSSNR TEQ method minimizes
the denominator of equation (2 3 6) while setting its numerator equal
to unity. This minimization gives the eigenvector s, corresponding to
the minimum eigenvalue of the matrix C. The resulting TEQ is given

by equation (2 3 5)
Wopt = (BT)_Uzsmm (23 7)

The MSSNIRR method requires knowledge of the channel while it does not
take into account the noise present 1n the channel Maximizing SSNR
does not necessarily maximize the data rate [2]. The choice of the
transmission delay, A, which gives the best SSNR 1s computationally
expensive. There 15 a difference between the MMSE method and the
MSSNR method. As stated before, the error defimtion 1n the MMSE
method also includes the difference between the effective channel and
the target channel inside the window of interest. Therefore minimizing
the MSE does not necessarily minimize the effective channel wall energy
When the length n,,, exceeds the length of the cyclic prefix, the matrix
B becomes singular and (B)~1/2 does not exist. In [29] 1t was suggested
to maximize the energy inside the window i e , w” Bw while keeping the
energy outside the window 1.e , wZ Aw equal to unity. The matrix A is
always positive definite and the arbitrary length TEQ can be selected to
obtain the required performance gains The authors of [30] investigate
further the work reported 1n [29] in the presence of white Gaussian noise

and near/far-end crosstalk Although therr simulations show that a
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longer length TEQ increases the SSNR; it may not necessarily improve
the sub-channel SNR which is directly proportional to the data rate.
This again shows the imnadequacy of increasing the SSNR to maximize
the bit rate of the system.

A low complexity sub-optimal divide and conquer TEQ algorithm was
reported in [31]. This method separates the design of a long length
TEQ into a senes of two-tap TEQs The cost function in each iteration
is the channel energy outside the window of interest and is changed 1n
each iteration by the two-tap TEQ used 1n the previous iteration [19].
This cost function is the same as the denominator of the SSNR. The
final TEQ is the convolution of all the TEQs designed at each step.
This method eliminates the need for matrix inversion as in the MSSNR
method and hence it is less computationally complex.

In [32] the MMSE and the MSSNR methods are compared and it was
illustrated that under the assumption of white input, both the methods
are equivalent. The MMSE 1s better than MSSNR only if implemented
adaptively with an infimtesimal small step size and the noise is assumed
white, then the amount of noise added 1s small in the formulation of 1ts
matrices.

According to [33], the part of the channel response exceeding the CP
length which causes ISI and ICI depends not only on its energy but also
on its distance from the guard interval. Therefore, their cost function
not only includes the energy of the taps of the channel outside the
window of interest, but also their distances from the time center of the
original channel impulse response They use the term “delay spread
equalizer” as opposed to in the MSSNR method where the expression

“energy equalizer” is used. Their simulations show improvement 1n
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that the SNR, distribution and the noise shaping by the TEQ at the
sub-channels does not have notches The delay spread “equalizer” also
has less sensitivity to the symbol synchromzation errors. However,
there is no exphcit dependency on the inclusion of the channel-induced
additive noise or the synchronization error in their design framework

In [34], the algonthm of [33] was augmented. Thewr formulation of a
TEQ algonthm explcitly included the noise and gave new penalizing
functions for the delay spread of the effective channel. The objective
function J 1s a convex combination of the channel shortening objective

and noise-to-signal objective 1 e,

J = adgort + (1 - a)Jnmse

azn f(n — nmzd)lheffP
2 o [hegsf?

a,

+Hl-a notse (2.3 8)
( )aglgrml En |h€ff|2

2

where o € [0,1], Nmaq is the time center of hess, and f(n) is a penalty
function which penalizes the effective channel taps away from the time
center Ny,q The shortening cost function penalizes all of the taps and
not only the taps outside the window. The simulations show some im-
provement in the data rates over those of [32] but there again notches
appear in the sub-channel SNR plot. In [34], the authors extended
therr work to MIMO implementation and the penalizing function is
also changed to take into account only the taps outside the window.

The spectral flatness of the TEQ in the MSSNR cost function 1s in-
cluded 1n [35] The imphcit flatness measure 1s the distance of the ef-
fective channel impulse response h.zy from the onginal channel impulse

response h The resulting TEQ does not have nulls in the frequency
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domain Although this method shows lower SSNRs achieved as com-
pared to the original MSSNR method, 1t results 1n higher data rates.
The authors also recommended that the selection of the transmission
delay should be to maximize the SSNR rather than to maximize the

SSNR and the flatness

2.4 Property restoral blind adaptive channel shortening algorithms

In [36], a blind adaptive channel shortening algorithm based on the
redundancy ansing from the CP 1n the transmitted signal is proposed.
The algorithm is called multicarrier equalization by restoration of re-
dundancy (MERRY) [37] [38]. The following is true for the transmitted
OFDM symbol in Figure 1.1

z[(N+v)k+1] = z[(N + v)k + N + 1] 1€ {L,2, ,v} (241)

where k is the symbol index. The mput of the TEQ, r{n) is given by
Ly
r(m) =3 h()a(n— ) +v(n) (242)
3=0

where Ly + 1 is the length of the channel impulse response, and v(n}) 1s

the noise sample at index n The output of the TEQ, y(n), is given by

Loy
y(n) =) w()r(n—7) (243)

where L,,+1 is the length of the TEQ. The ISI destroys the relationship
in equation (2.4 1) as the channel that is longer than v samples will

introduce energy into the sample z|{(N + v) k + v] at the receiver that
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is not equal to the energy received by its dual z[(N +v) k + v+ N] at
the end of the DMT frame. Ignoring the symbol index & for simplicity

reasons, the cost function can be defined as
Jmersy(8) = Ey(v + A) — y(v + N + A))? (2 4.4)

where A is the transmission delay MERRY only updates once per
symbol and its cost function depends on A It shortens the channel
to v rather than v + 1 samples. ISI free transmission is guaranteed as
long as the effective channel 1s smaller than or equal to v+ 1. MERRY
mnimzes the energy outside of a length v window plus the energy
of the filtered noise. In contrast, the MSSNR design minimizes the
energy of the combined impulse response outside of a window of length
v+ 1 without taking into account the noise MERLRY 1s generalized to
the so called forced redundancy with optional data omission (FRODO)
algorithm [39]. FRODO uses more than one sample in the update rule
and allows channel shortening of variable window lengths. The cost

function 1s given by.

Jtrodo(D) = Z E(y(s+ A)Y —y(a + N + A))? (2.4.5)

1€5;
where Sy C {l,...v}. For MERRY S; = {v}. The MERRY cost
function analysis reported in [40] shows that it represents the effective
channel energy outside a window of length v starting from the trans-
mission delay A. It has been further recommended that 1f the number
of comparisons made is more than one (the basic MERRY algorithm),

then the “full” FRODO algorithm tries to suppress all of the channel

taps except one. This 1s against the idea of channel shortening to a
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desired window and actually works to shorten the channel to single
mmpulse. Their simulation results also show that although using more
than one term increases the convergence rate of the FRODO algorithm,
it degrades its asymptotic performance. The MERRY and FRODO al-
gorithms have also been apphed to the MIMO case in [39]. Both the
MERRY and FRODO cost functions depend upon the choice of the
transmission delay A which the authors suggest to calculate by the

following heuristic method

A=Dpeg + 922 (2.4.6)

where Ay, is the delay which maximizes the energy of the un-shortened
channel in a window of length v + 1. As was mentioned earlier, the
MERRY cost function represents the energy of the effective channel
outside a window of length v. If there is no TEQ used, the cost func-
tion will represent the energy of the original channel outside a window
of length v The index A, in which the energy of the channel in-
side the window 18 maximum 1s the index in which the energy of the
channel outside the window will be mimimum. Therefore A.qr can be

estimated by transmtting x symbols and evaluating [39]

~

Apear = mIn 12 (r(Kk+v+d)—r(Kk+v+ N+ d))2 (2.4.7)
k=1

0<d<e—

where s = N +v is the OFDM symbol duration. Substitution of equa-
tion {2.4.7) into equation (2 4 7) gives an estimate of the transmission
delay A for MERRY and FRODO algorithms. This is a low com-
plexity method to avoid the global search over the transmission delay

parameter A and can be used for other TEQ methods as well The
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authors 1n [41] [42] propose another blind, adaptive channel shortening
algorithm sum squared autocorrelation minimization (SAM). SAM 1s
based on minimizing the sum squared autocorrelation of the signal out-
side a window of length v at the output of the TEQ The cost function

is given by:
L.

Jam= 3 (Ru®) (248)

=v+l
where R, (1) 1s the autocorrelation of the output of the TEQ at lag |
and L. 1s the length of the effective channel (¢ = h * w) minus one.
Assuming an uncorrelated transmitted signal at the output of the IFFT
block in Figure (1.2), if the channel is short, the autocorrelation of the
output of the channel should also be short. The good things about
SAM are, it is blind, adaptive, and independent of the transmission
delay A. SAM converges faster than MERRY. SAM can track chan-
nel variations within a symbol because 1t can update once per sample
while MERRY updates once every symhol. However, SAM has higher
complexity than MERRY as can be seen in [41]

In [22,43] a sub-channel SNR model is proposed

Szl Hy™ [
Sn k| HEP? + So| HESP?

SNR; = (249)

where H2'9" Hpose and HIS! are the k — th coefficients of the N point
FFT of hyun, hyay and the TEQ w respectively and S;x and S, are
the k*h sub-channel power spectral densities of the signal and the noise
before the equalizer The numerator contains the portion of the result-

ing transmission channel that contributes to the useful signal and the

denominator includes the contribution of the ISI noise of the shortened
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channel 1mpulse response outside of the desired window. Defining the

following

H,‘:"g"’“' = ql/GH'w
H?! = qf DH'w

nese — qfFw (2.4 10)

wherein the N x T matrix H' 15 the first N rows of the convolution
matrix of the transmission channel, T denotes the length of the TEQ,
and the diagonal N x N matrices G and D give the rows of the vector
Hw corresponding to the desired v+{ window and outside of it, respec-
tively, and the N X T' matrix F when multiplied with w gives the TEQ
vector w plus padding 1t with N — T zeros. Multiplication with the
vector qff where ( )7 denotes Hermitian, or conjugate transpose gives

the kt* coefficient, of the N point FFT. The subchannel SNR would

then be-
SNR. = wlTHTGTq,S, raf GHw
k= WTFquSn,kquW + WTHTDTQkSz,quDHW
WTAkW
= 2411
wiBw ( )
The bit rate of the DMT system 1s given by
SN
bdmt = Z lng (1 + 1_, )
k=usedtone
1 WTAkW

k=usedtone

where I" denotes the SNR gap of the system and 1s assumed to be con-

stant over all sub-channels. The maximum bit rate (MBR) algorithm
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maximizes the non-linear hit rate The optimization toolbox within
MATLAB was used to solve equation (2 4.12), and the matched filter
bound (MFB) was achieved However, the authors concluded that the
MBR method is computationally expensive. Therefore they proposed a
low complexity near optimal min-ISI method. The min-ISI method re-
ported in [22] introduces the idea of frequency weighting 1n the form of
sub-channels. It shapes the frequency response of the TEQ. Specifically,
1t results in increased minimization of ISI noise on the sub-channels with
higher SNRs. The simulations show that the min-ISI method achieves
almost the same data rates as that of MBR method. The min-ISI TEQ

is given by

wwTHTGT GHw=1 Sk

W = arg min [WTHTDTZ (q,c Sak qf ) DHW] (2413)
k

The value of the cost function increases in favour of the sub-channels
with higher SNRs A small reduction in ISI power in these sub-channels
will increase the bit rate. While 1n low SNR sub-channels, the noise
is so dominant that decrease of ISI power does not have a big effect
on the bit rate The min-ISI method is a generalization of the MSSNR
method. The min-ISI method takes into account the frequency response
of h,.; while the MSSNR method only looks at 1ts energy.

Another mteresting pomnt to note 1s that the min-ISI method achieves
almost 96% percentage of the matched filter bound data (MFB) rates
with a TEQ length of only 3 taps. The authors then get maximum
data rates with the min-ISI method using a small value of the CP and a

longer TEQ. In this way they are successful in trading-off the reduction

in the throughput of the system due to CP with the complexity of the
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TEQ

2.5 Per Tone Equalization Scheme

In [44] an alternate equalization structure for multi-carrier systems 1s
proposed where equalization is performed with a T-tap equalizer after
the FFT for each tone/sub-carrier separately, hence the name per tone
equahzation (PTEQ) [45] [46] [47] {48]. A TEQ equalzes all the tones
of a multi-carrier system in a combined fashion. The PTEQ scheme en-
ables true signal-to-noise ratio (SNR) optimization to be implemented
for each tone Their simulation results have compared the performance
of the PTEQ scheme with the MMSE TEQ scheme. The achievable
data rates are always higher with the PTEQ scheme and a smoother
function of the transmission delay A as compared to the MMSE TEQ
scheme. Therefore, PTEQ is not that sensitive to the symbol timing
synchronization (Apeqx) estimation error. The PTEQ scheme has very
large complexaty during the imtiahization mode For DMT-based sys-
tems, it requires nitialization of T x N/2 filter taps instead of only T
taps as in the TEQ scheme. This also increases the memory require-
ments of the PTEQ scheme as compared to the TEQ scheme The
symbol timing synchronization in TE(Q) schemes involves searching for
the optimal delay around Ap.g; while 1t 18 equal to Apeqy in the PTEQ

scheme.
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Figure 2.3. Comparison of TEQ and Per Tone structure of channel
shortemng.
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The PTEQ scheme is generalized to MIMO in [49] PTEQ has been
considered for channel shortening and equalization over doubly selective
OFDM channels {50]. The non-adaptive implementation of the PTEQ
scheme 1n [44] requires knowledge of the channel and the signal and
noise statistics. Recursive least squares (RLS) and least mean square
(LMS) [51] [52] adaptive implementation of the PTEQ scheme, which
need training, have been suggested in [53]. The blind, adaptive version
of the PTEQ scheme 1s discussed 1 [54] [55] by using the constant
modulus algorithm (CMA) and the decision-directed-LMS (DD-LMS)
algorithm. The per tone DD-LMS algorithm is given in [40] as

a(k) = VT ()Fux(k)
(k) = QL (k)] - 2 (k)
Wl +1) = (k) + pe (R)FT (8) (25.)

where i = 1, , N is the subchannel index, k = 1,2,3.. 1s the symbol
index, and @[] 1s the quantization or decision device z,(k) 1s the equal-
1zed output for subchannel + ¥ = [v,7—; - - - Vi0] is the T-tap reversed
PTEQ equalzer for the subchannel 2. The vector F,.r(k) contains in
reverse order (T — 1) required difference terms extracted from the re-
ceived vector r{k) in its first (" — 1) entries, and the :-th value of the
FFT in its last entry

The authors of [54] suggest to use first the CMA PTEQ and then the
DD-LMS PTEQ during the initialization of the equalizer. The simu-
lation shows the characteristics of the SNR distribution on one of the

subchannels as a function of the symbol timing synchromzation error.

The SNR distribution 1s relatively constant over a range of negative
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synchronization error § values and drops in magmtude for the positive
synchronization errors.

The SNR improvement by the PTEQ scheme over the TE(Q) schemes is
more pronounced at higher SNR subchannels of the unequalized chan-
nel. To find a better tradeoff between complexity and bit rate, [56]
propose a dual-path TEQ scheme Two TEQ filters are designed such
that one TEQ equalizes over the entire bandwidth while the other one
optimizes over a selected frequency band. The dual-path TEQ struc-
ture passes the received data through two paths instead of one path
Each path has its own TEQ, FFT and one-tap FEQ The sclective
band TEQ SNR. The TEQ that equalizes over the entire bandwidth
can be designed using any of the TEQ design methods such as MMSE
or MSSNR. The selective band TEQ would need to be designed using a
method that allows frequency selective weighting such as Min-ISI. The
simulations show a 4% increase 1n bit rates over a single path TEQ.
The TEQ-filter bank (TEQ-FB) of [57] is another algorithm similar
to the PTEQ scheme where each subchannel has its own filter but n
the time domain. After the TEQs, the transfer to the frequency do-
main is performed using a bank of Goertzel filters, each one tuned to
the frequency of the desired subchannel and computing a single point
DFT coefficient. This method may have lower memory needs than
the PTEQ scheme but its computational requirements are significantly
higher during data transmission mode [57] Their simulations show a
slightly better performance than PTEQ.

In [58] a blind adaptive equalization algorithm for OFDM systems
which exploits the null carriers present in the system 1s proposed. This

carrier nulling algonthm is based on minimizing a quadratic criterion
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based on the energy of the null carriers

7= Y EIV (252)

1=nullcarriers

where Y, is the received signal after the FF'T 1n the 2 subchannel. A unit
norm constraint is imposed on the equalizer to avoid the trivial solution
This shortens the channel to a single spike i e., complete equahization
The algorithm does not require the transmssion of CP The use of the
blind term for this algonthm is debatable, as transmission of zeros on
certain carrier could be thought of as training signal consisting of zeros

The fundamentals algorithms for blind adaptive channel shortening
have been introduced. the SAM-type algorithm will now be the focus
of the thesis due to 1ts improved convergence properties over MERRY
and its relatively low complexity as compared to frequency domamn

approaches.




Chapter 3

FAST CONVERGING SINGLE
LAG AUTOCORRELATION
MINIMIZING ALGORITHMS
FOR REAL TIME CHANNEL
SHORTENING IN WIRELINE
SYSTEMS

3.1 Overview

A blind adaptive channel shortening algorithm based on minumnizing the
squared single lag autocorrelation (SLAM) of the effective channel was
recently proposed [59]. Two approaches are presented in this chapter
to mmprove the convergence of SLAM. Their suitability for real-time
mmplementation is & focus of the work so computational efficiency and
memory requirements are considered In the first approach, a time-
varying step size algorithm is derived on the basis of the work of Math-

ews [60] In the second approach, a quasi-Newton algorithm is derived.

33
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Simulations studies for CSA loop wireline channels are used to confirm

the utility of the schemes.

3.2 Introduction

In [59] the authors propose a low complexity algorithm called SLAM for
blind channel shortening which belongs to the class of property restoral
algorithms defined in [61]. The channel needs to be shorter than CP,
therefore, the channel should also have a autocorrelation shorter than
CP, Assuming an uncorrelated source at the transmitter, SLAM tres
to fulfil this property by shortening the autocorrelation of the output
data.

SLAM 1s an algorithm that aims to achieve channel shortening by min-
imizing the square of only a single autocorrelation value. It is difficult
to make all channel taps zero outside the CP width window. What is
possible is to maximize the SSNR of the effective channel. The initial
choice of the adaptation gain has a marked effect on the convergence of
SLAM due to the multimodahty of the underlying cost function [1] In
this work, methods are therefore investigated to automate the selection
of the adaptation gain and investigate their suitability for real-time im-

plementation.
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Figure 3.1. Overall baseband channel shortening system model.
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3.3 System Model

The system model is shown in Figure 3.1. The signal x{n) 1s a white,
zero mean, wide-sense stationary (W.S.S ), real and umt variance source
sequence which 1s then transmitted through the linear fimte-impulse re-
sponse (FIR) channel h = [A(0)h(1)...h{Ly)]7,v(n) is a zero mean 11.d ,
noise sequence uncorrelated with the source sequence and has variance

o2. The received signal r(n) is

r(n) = Zﬁ h(k)z(n — k) + v(n) (33.1)

k=0

and y(n), the output of the TEQ is given by

Ly,
y(n) = Z w(k)r(n —k) = w'r, (3 3.2)
k=0

where w is the impulse response vector of the TEQ

w = [w(0)w(1)..w(L,)]¥, and r, = [r(n)r(n — 1). .r(n — LT, Ly, L,
and L., are the order of the channel, effective channel and the TEQ
respectively. It is also assumed that 2L, < N holds, N being the FFT
size [59] which is a reasonable assumption in the case of ADSL.

The focus of this work is the design of unsupervised/blind learning
algorithms for the time domain equalizer {TEQ) shown 1n Figure 3.1, to
achieve overall channel shortening, 1 e. essentially reducing the effective

length of the combined channel ¢, to some design requirement.

3.3.1 SLAM algorithm

The cost function of SLAM is defined as

Jspay = R,yy(l)2,l =v+1 (3 3 3)
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where R, {l) is the anutocorrelation function of the real channel output
i.e. E{y(n)y(n — 1)}, and v is the CP length and E denotes the statis-
tical expectation operator.

A steepest gradient-descent type algorithm can be used to minimize

Jsram, ie.,

w(n) = w(n—1) — uVyJspam(n — 1) (334)

and p is the step size, and VyJsrap(n — 1} is the gradient of Jspan

with respect to w(n — 1). Using equation (3 3 3}, it can be calculated

as
vaSLAM(’n, - 1) = 2Ryy(l)a—jg;-tm (3 3 5)
where using (5 3.2), it is written as
ORy(l) _ OE{y(n)yln -}
aw ow
= E{y(n)r(n—1) +y(n — hr(n}} (3.36)

Then, using (3 35) and (3 3 6), the update (3 3 4) can be written as

w(n) = w(n — 1) - 2uR,, (D Efy(n)r(n — ) + y(n - Dr(m)} (3.3.7)

In the real-time implementation the E{.} operator can be realized by

either auto regressive or moving average forms. The practical update
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equation of the moving average (MA) form is given as [40]

(k+1)Navg—1 y(n)y(n — 1)
w(k) = w(k—1) — Z,u{ 3 N—}
n=kNauvg avg
(k+1)Navg—1

g { Z y(n)r(n — lzv-:vz;(n - l)r(n)} (338)

n=kNang

where | = v + 1, k is the averaging block number and the averaging
window length Ng,g 18 the design parameter which determines the algo-
rithm complexity and the accuracy. A fixed step size is not appropriate
for situations where statistics of the measured data change, new var-
able step size algorithms are therefore proposed for SLAM.

Another way of implementing the SLAM algorithm 1s by using the

auto-regressive (AR) estimates. Let

rn—v-—1)
a” = (1= X)a""!+ xy(n)

r(n —v—1-L,)

" = w'a

r(n)
"= (- +xy(n—v-1)

r(n — L) |

where 0 < X < 1is a forgetting factor and 15 a design parameter. Using
these AR estimates and equation (5.3 2), the update rule of equation

(3.3.7) can be written as

w(n)=w(n —1) —2p b".{a" + c"} (339)
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The advantage of AR implementation is that the TEQ is updated at

every time instant rather than at every Ngﬁg time 1nstant as is the case

with the MA implementation, however, due to 1ts straightforward form,

the MA approach is used in this work.

3.4 Accelerating the convergence of SLAM
Two schemes are therefore proposed to increase the convergence rate

of the SLAM algorithm, using MA implementation.

3.4.1 Variable Step SLAM (VS-SLAM)

In order to automatically update the step size p as in (60, the update

equation becomes

p(n) = pln — 1) — pV,Jspam(n — 1) (341)

where p 1s a learning rate. The gradient of Jgrap with respect to u

can be implemented as:

OR,,(l
VuJspam(n —1) = 2Ryy(l)—%%() (34.2)
where a;}%%(_q is given by
aR,, (1) ow
aw o (343)

The first term is calculated as in equation (3.3.6) and the gradient
Ow/0p can be calculated by differentiating equation (3.3 4) with re-

spect to p:

= —VyJsram(n — 1) (34.4)

ow
op
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Substituting equations (3 4 2), (3.4.3), and (3 4 4), into the update rule

(3.4.1), the step size update is obtained as

p(n) = p(n — 1) + 2p [Ryy (VE{y(n)r(n — 1) + y(n — Hr(n)}]"
[Ryy(DE{y(n)r(n — 1) + y(n — Dr(n)}] (34.5)

3.42 QN-SLAM

Faster quadratic-type convergence can generally be obtained by using

a Newton descent type update, which takes the form
w(n) = w(n — 1) — (V3 Jspan(n — 1)) 'VoJsram(n —1) (346)

Equation (3.4.6) mncludes the second order gradient term VZ,Jgrapn(n—
1) which 1s approximated in this work so as to form a Quasi-Newton

algorithm

V2 Jspam(n—1) = 2(VeJspan X (Vedspan)t +

R, xr()r(n=1))"+al) (3.4.7)

where « 18 a parameter chosen to ensure a positive definite form; the
trade-off for real time implementation 1s increased complexity together

with the memory requirements.

3.5 Computational Complexity Comparisons

The estimated computational complexities of MA implementations of
the SLAM, VS-SLAM and QN-SLAM algorithms are shown 1n Tables

(3.1), (3.2) and (3.3) respectively. Their complexities are compared
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m terms of number of multiplications and additions/subtractions per
iteration of the algorithm. SLAM is shown to have complexity propor-
tional to the averaging length N,,, and shortener length L,,. V5-SLAM
has essentially identical complexity to SLAM, whereas QN-SLAM has
quadratic complexity in Lw due to the use of the approximation to
the Hessian matrix, clearly the convergence advantage of QN-SLAM 1s
considerably offset by this increased complexity in a real-time applica-
tion, and the calculation of the matrix inversion in QN-SLAM would
make this situation even more accute. Likewise, in terms of estimated
memory storage requirement for the three algorithms SLAM and VS-
SLAM have essentially the same need, i.e. proportional to L., whilst
QN-SLAM has a level proportional to L2, In conclusion, therefore the
potential convergence advantage of QN-SLAM 1s unlikely to justify its
use in real-time applications unless further simplifications of the matnx

and 1ts inverse are introduced.
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addition
Steps multiplications subtractions
Navg, y{n — )1y,
terms Nowg-{Lw +1} i}
Navg: y(n)rn—l
tern]_s Navyo{Lw + 1} -
Accumulating f‘gﬁ'{Lw -;)1}
above terms ) avg
{L,+1}
Navg: y(n) N -
y(n — 1) terms i
Form gradient - Nopg — 1
1 -
Lo+1 -
Weight update - L,+1
Nayg{Lw + 2}
Total complexity _lf\_rang '5_25“’ +3} I(LKL .= 1)
{L,+1}

Table 3.1. Estimated computational complexity for SLAM
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Variable Multiplication Addition
adaptation gain P subtraction
Ly+2 L,+1
Nowg X {2Ly, + 3} Nawg{2Ly + 3}
Total complexity 4oL, +4 YL,

Table 3.2. Estimated additional computational complexity for VS-
SLAM

Quasi e s Addition
Newton Multiplication subtraction
Nayg X {2Ngpg — 1}
(L, + 1)? {Ly+1}2
+2(L,, + 1) +2{L, + 1}*
Total without Nowg{2L,+3} | Nawg{2Ly
matnx inversion +L,+2 +3} -1

Table 3.3. Estimated additional computational complexity for QN-
SLAM

Algonthm | SLAM VS-SLAM QN-SLAM
Memory |[2(Ly,+1)+1{2(L,+1)+2 | 2(L, +1)+
14+ (Ly, +1)2

Table 3.4. Estimated memory storage requirements for the algorithms
SLAM, VS-SLAM and QN-SLAM




Section 36  Simulations 44

3.6 Simulations

The standard parameters of an ADSL downstream transmission were
simulated. An MA implementation was simulated for the SAM, SLAM,
VS-SLAM and QN-SLAM algorithms. The value of N, was 32. The
cyclic prefix had length 32. The FFT size Nys = 512, the TEQ had
16 taps and the channels used were the eight test ADSL channels CSA
loops provided at [62] [63]. The noise was chosen such that 2| c||?/a2 =
40 dB where || || denotes the Euclidean norm. Single spike 1nitialization
with the center spike of the TEQ initialized to unity was used. The
step size for SAM was 5; whereas, for SLAM 1t was 600, to get SLAM
algorithm to converge in the given number of symbols. The initial step
size for VS-SLAM and QN-SLAM algorithms was also 600 The values
of a and p were 01 and 1 x 10% respectively. All algorithms were
compared with the maximum shortening SNR (MSSNR) solution and
the matched filter bound (MFB) on capacity, which assumes no ICI.
For a point-to-point system with bit loading, the achievable bit rate for
a fixed probability of error (typically 10~7 in DSL) 1s the performance
metric. The SNR gap T is given by

I'=Typ+¥m — e (361)

The bit rate on each subcarrier is determined using noise margin 7,, =
6dB and the coding gain <, = 4.2dB. The value of I'y,, = 98dB 1s

used which corresponds to a probability of error 10~7 and the QAM

modulation used across the sub carriers. The bit rate on each subcarrier
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2 18 calculated based on
b, = log, (1 + 10(SNR-T)/10}) (362)

The total bit rate 1s computed with the formula

Nysef2 F
rate = Z b, 'fot+'u

=1

where F, = 2.208 MHz is the sampling frequency. The achievable bit
rate performance metric will be used to assess the performance of the
TEQ algorithms developed in this thesis.

Figure (3 2) compares the achievable bit rates as a function of averaging
block number by SAM, SLAM, VS-SLAM, and QN-SLAM algorithms
for CSA loop 1. VS-SLAM outperforms SLAM 1 terms of maximum
attamned bite rate and QN-SLAM converges faster than VS-SLAM al-
gorithm. Figure (3.3) compares the achievable bit rates as a function of
averaging block number by SAM, SLAM, VS-SLAM, and QN-SLAM
algonithms for CSA loop 2 Here again VS-SLAM converges faster
than the SLAM algorithm. QN-SLAM converges very marginally ear-
lier than the SAM algorithm.

Figure (3 4) compares the achievable bit rates as a function of averaging
block number by SAM, SLAM, VS-SLAM, and QN-SLAM algorithms
for CSA loop 3 VS-SLAM converges a little faster than the SLAM
algorithm QN-SLAM converges quite abit earlier than VS-SLAM but
its convergence is very noisy and most probably related to the approxi-
mation in the second denvative calculation. Figure (3.5) compares the

achievable bit rates as a function of averaging block number by SAM,
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SLAM, VS-SLAM, and QN-SLAM algorithms for CSA loop 4. Again
VS-SLAM converges faster than the SLAM algorithm. QN-SLAM con-
verges even earlier than the SAM algorithm.

Figure (3.6) compares the achievable bit rates as a function of averaging
block number by SAM, SLAM, VS-SLAM, and QN-SLAM algorithms
for CSA loop 5 VS-SLAM are SLAM are comparable in terms of
convergence rate. QN-SLAM 1s quite noisy, though it converges quite
early Figure (3.7) compares the achievable bit rates as a function of
averaging block number by SAM, SLAM, VS5-SLAM, and QN-SLAM
algorithms for CSA loop 6. VS-SLAM 1s faster than SLAM algorithm
while QN-SLAM 1s even faster than SAM and noisy, too

Figure (3 8) compares the achievable bt rates as a function of averaging
block number by SAM, SLAM, VS-SLAM, and QN-SLAM algorithms
for CSA loop 7. Again VS-SLAM converges faster than the SLAM al-
gorithm. QN-SLAM converges even earlier than the SAM algorithm.
Figure (3 9) compares the achievable bit rates as a function of averaging
block number by SAM, SLAM, VS-SLAM, and QN-SLAM algorithms
for CSA loop 8. VS-SLAM converges a little bit faster than the SLAM
algorithm QN-SLAM algorithm converges earlter than SLAM but 1ts
response is very noisy

Figure (3 10) shows the original and shortened CSA Loop 1 {top) and 2
(bottom) by the VS-SLAM algorithm. Similarly, Figures (3.11), (3.12},
and (3 13) show the same for CSA Loop 3,4 and 5,6 and 7,8 respec-
tively. Figure (3 14) shows steady state coefficients of the TEQ given
by the VS-SLAM algonthm for CSA Loop 1 (left) and 2 (right) Fig-
ures (3 15), (3 16), and (3 17) show the same for CSA Loop 3,4 and 5,6

and 7,8, respectively.
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Figure (3 18) shows the original and shortened CSA Loop 1 (top) and 2
(bottom) by the QN-SLAM algorithm. Similarly, Figures (3 19), (3.20),
and (3 21) show the same for CSA Loop 3,4 and 5,6 and 7,8 respec-
tively Figure (3.22) shows steady state coefficients of the TEQ given
by the QN-SLAM algorithm for CSA Loop 1 (left) and 2 (right). Fig-
ures (3.23), (3.24), and (3 25) show the same for CSA Loop 3,4 and 5,6
and 7,8, respectively. All figures confirm the shortening performance

of the proposed novel algorithms.

3.7 Summary

In this chapter, fast converging single lag minimzing autocorrelation
algorithms for real time channel shorteming have been proposed The
QN-SLAM algorithm has been shown to have the fastest convergence
rate however it has largest complexity and 1ts convergence 1s very noisy.
For real-time applications the VS-SLAM algorithm appears to behave
the same as SAM. The results have been achieved by analysis on a

benchmark standard test channel.
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Figure 3.2. Achievable bit rate comparison of VS-SLAM and QN-
SLAM with SLAM, SAM, MSSNR and MFB algorithms for CSA Loop
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Figure 3.3. Achievable bit rate comparison of VS-SLAM and QN-
SLAM with SLAM, SAM, MSSNR and MFB algorithms for CSA Loop
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Figure 3.4. Achievable bit rate comparison of VS-SLAM and QN-
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Figure 3.5. Achievable bit rate comparison of VS-SLAM and QN-
SLAM with SLAM, SAM, MSSNR and MFB algorithms for CSA Loop
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Figure 3.7. Achievable bit rate comparison of VS-SLAM and QN-
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Figure 3.10. Channel shortening of CSA Loop 1 (top) and CSA Loop
2 (bottom) by VS-SLAM. Dotted and solid curves show original and
the shortened channel, respectively.
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Figure 3.11. Channel shortening of CSA Loop 3 (top) and CSA Loop
4 (bottom) by VS-SLAM. Dotted and solid curves show original and
the shortened channel, respectively.
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Figure 3.12. Channel shortening of CSA Loop 5 (top) and CSA Loop
6 (bottom) by VS-SLAM. Dotted and solid curves show original and
the shortened channel, respectively.
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Figure 3.13. Channel shortening of CSA Loop 7 (top) and CSA Loop
8 (bottom) by VS-SLAM. Dotted and solid curves show original and
the shortened channel, respectively.
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Figure 3.14. Steady state coefficients of the TEQ achieved by the
VS-SLAM for CSA Loop 1 (left) and CSA Loop 2 (right).
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Figure 3.15. Steady state coeflicients of the TEQ achieved by the
VS-SLAM for CSA Loop 3 (left) and CSA Loop 4 (right).
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Figure 3.16. Steady state coefficients of the TEQ achieved by the
VS-SLAM for CSA Loop 5 (left) and CSA Loop 6 (right).
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Figure 3.17. Steady state coeflicients of the TEQ achieved by the
VS-SLAM for CSA Loop 7 (left) and CSA Loop & (right).
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Figure 3.18. Channel shortening of CSA Loop 1 (top) and CSA Loop
2 (bottom) by QN-SLAM. Dotted and solid curves show original and
the shortened channel, respectively.
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Figure 3.19. Channel shortening of CSA Loop 3 (top) and CSA Loop
4 (bottom) by QN-SLAM. Dotted and solid curves show original and

the shortened channel, respectively.
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Figure 3.20. Channel shortening of CSA Loop 5 (top) and CSA Loop
6 (bottom) by QN-SLAM. Dotted and solid curves show original and
the shortened channel, respectively.
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8 (bottom) by QN-SLAM. Dotted and solid curves show original and
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Figure 3.22. Steady state coeflicients of the TEQ achieved by the
QN-SLAM for CSA Loop 1 (left) and CSA Loop 2 (right).
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Figure 3.23. Steady state coefficients of the TEQ achieved by the
QN-SLAM for CSA Loop 3 (left) and CSA Loop 4 (right).
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Figure 3.24. Steady state coefficients of the TEQ achieved by the
QN-SLAM for CSA Loop 5 (left) and CSA Loop 6 (right).
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Figure 3.25. Steady state coefficients of the TEQ achieved by the

QN-SLAM for CSA Loop 7 (left) and CSA Loop 8 (right).




Chapter 4

EXPONENTIAL
PROBABILITY
GENERALIZED LAG
HOPPING SAM ALGORITHM
(EGLHSAM)

4.1 OQverview

An exponential probability generalized lag-hopping SAM algorithm
(EGLHSAM) for channel shortening is proposed [64]). The algorithm
minimizes the square of autocorrelation at one lag as for the SLAM
algorithm. It differs though from SLAM algorithm 1n the way it se-
lects the lag to be minimized The SLAM algorithm minimizes a fix
lag whose value is greater than the cychc prefix length. On the other
hand, with EGLHSAM algorithm, the probability of selecting a lag
matches approximately the envelope profile of the impulse response of
the underlying channel to be shortened At each iteration a unique lag

is chosen randomly from the available range so that on the average the

72
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histogram of the lags chosen matches the impulse response of the chan-
nel. The motivation is to match the probability of selecting a lag to
the nature of the underlying channel impulse response. The CSA loop
channels have exponentially decaying impulse response characteristics.
Therefore an exponentially decaying probability distribution is used for
the selection of the lag to use within the cost function to be mimmized.
The simulation results show that the EGLHSAM algorithm improves
the convergence of the SLAM algorithm. This algorithm provides the
ability to select a level of complexity between the sum-squared au-
tocorrelation minimization (SAM) algorithm due to Martin and John-
son and the single lag autocorrelation minimzation (SLAM) algorithm,
proposed by Nawaz and Chambers whilst guaranteeing convergence to

high signal-to-interference-ratio (SIR)
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Figure 4.1. Overall baseband channel shortening system model
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4.2 System Model

In order to make this chapter self contained, details of the system model
are again included. The system model is shown in Figure 4.1. The sig-
nal x(n) 15 a white, zero mean, wide-sense stationary (W S S.), real
and umt vanance source sequence, typically drawn from a finite con-
stellation, which is then transmitted through the linear finite-impulse
response (FIR) channel h = [h(0)h(1)...R(Ls)]7, v{n) 1s a zero mean,
11.d , noise sequence uncorrelated with the source sequence and has

variance o2. The received signal r(n) is

Ly
r(n) = Z h(k)z(n — k) 4+ v(n) (4.2.1)

k=0

and y(n), the output of the TEQ is given by

Luw
y(n) =Y wikyr(n—k) = w'r, (42.2)
k=0

where w is the impulse response vector of the TEQ

w = [w(0)w(1)...w(Ly)]T, and r, = [r(n)r(n —1)..r(n — L,|*. Ly, L,
and L, are the order of the channel, effective channel and the TEQ
respectively It is also assumed that 2L, < N holds, N being the FFT

size [59] which is a reasonable assumption in the case of ADSL.

4.3 SAM and SLAM Cost Functions

The concept of SAM is based on the fact that for the effective channel
to have zero taps outside a window of size (v + 1) 1ts autocorrelation
values must be zero outside a window of size (2v + 1). In SAM the

auto-correlation sequence of the combmed channel-equalizer impulse
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response becomes
Le

Reell) = ) elk)e(k — 1) (43.1)

k=0

and for the shortened channel, which implies that the following must
hold
R.()=0, Y|il>v (432)

The cost function Jg4as 1n SAM is defined on the basis of minimizing

the sum-squared auto-correlation terms, i.e.,

Le
Jsam = Y, Rell)’ (43.3)

i=v+1

SLAM exploits the fact that a single autocorrelation at a lag greater
than the guard interval provides a measure of the presence of the chan-
nel outside the desired guard interval, hence minimizing only this sin-
gle autocorrelation is particularly applicable to subscriber line channels
which are essentially minimum phase. In SLAM the auto-correlation
sequence of the combined channel-equalizer impulse response is also
given by equation (5 4.1) which can be found in Chapter 5 and for a

shortened channel, it follows that
Ree(l)=0, I=v+1 (434)

In this case the cost function Jgraar in SLAM 1s defined based upon
minimizing the squared-auto-correlation of the effective channel only

atlagl=v+1, e,

Jsram = Reo(D)?, l=v+1 (4 3.5)
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4.4 SIR Performance

In |[65], the authors provide an expression for the signal to interference
power ratio (SIR) achieved in the output y(n) when the TEQ is based
on the blind channel shortening metrics of SAM, SAAM, and SLAM.

For non-negative lags 1t can written as

te—o | Bec(D)?

SIR= —
S R 2+ o | Rec (D2

(4.4.1)

It should be noted that the denominator in this expression is the SAM
cost Now considering those shortened responses only which satisfy the

unit energy constraint, the following relation can be derived [65]

SIR(dB) = 10log ( Z |Rcc(l)|2) — 10log(J,)

[=—v

= 10log (1 +23° |Rcc(l)|2) — 101log(J,)
=1

(44.2)

where J, denotes the SAM cost, Jsranr denotes the SLAM cost, and
J, denotes the SAM cost minus SLAM cost. From the second line in
equation (4 4.2), 1t 1s seen that a low SAM cost can be guaranteed to
a give igh SIR at the output of the TEQ. Unfortunately, as stated
m [65], no such result holds for SLAM. This drawback is not present
in the SAM algonthm In order to overcome this problem with SLAM,
the EGLHSAM algorithm is proposed

It selects the lags randomly from the whole range of lags of SAM al-
gorithm, so that a low average EGLHSAM cost, achieved through re-

cursive learning, provided k — oo, guarantees to give a high SIR for
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all types of channels at the output of the TEQ. A second benefit of
the EGLHSAM algonthm is that it increases the convergence rate as
compared to the SLAM algonthm as it selects the lags with a proba-
bility to match the impulse response characteristics of the underlying

channel.

4.5 EGLHSAM Blind Adaptive Algorithm

The steepest gradient-descent algorithm to minimize the SAM cost

Jear becomes

~—

Le
W = w — ¥V, Y (Ely(n)y(n - 1)])? (45.1)

I=v+1

where [ is the lag index, u denotes the step size, and V,, represents the
gradient with respect to w. The instantaneous cost at time instant %,
where the expectation operation is replaced by a moving average over

a user-specified window of length N,,, is defined as

< Le  (k+1)Nang—1 B

where N,,, 13 a design parameter and 1t should be large enough to yield
a reliable estimate of the expectation, but no larger, as the algorithm
complexity is proportional to N,,e. The gradient descent algorithm

becomes

(k+1)Navg—1

wik+1)=w(k) — va( Z { Z w}z)

{ € Lagset n=kNgug avg
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e ylmyin— )
wk+1) = wk)—2u Y { ¥ Y }
1 ¢ Lagset n=kNavg evg
(k+1)Napg—1

x{vw( 3 Mﬁ)} (4.5.3)

N,
n=kNaug avg

and using equation (5.3.2), the lag hopping algorithm becomes.

e y(nyln - 1)
wk+1) = wik) —2u Z { E —M;_;__}
{ € Lagset n=kNayg
(k-+1)Nayg—1

% {( Z y(n)r,— —;vff: - l)r(n)) } (45 4)

n=kNavg

where ;...In, ;s Within the Lagset are chosen to be individually unique
and to be drawn with exponentially decaying probability from the range
of available lags, initially v+1, .,L, The number of lags, Ly, ,¢. can
be chosen over the range 1,..,L. — v, and when Npags = 1, with
exponential probability, the algorithm takes the form of a lag-hopping
version of SLAM, named EGLHSAM

4.6 Probability of lags selection

The range of autocorrelation lags to be included in the SAM family of
cost functions is v + 1,...,L,. The SAM algorithm suggests mnimiz-
ing the sum-squared autocorrelation at all of these lags. On the other
hand, the SLAM algorithm takes into account only the lag at v + 1.
EGLHSAM algorithm suggests to select from one to L, — (v + 1) + 1
lags from the range, randomly but uniquely and with exponentially de-
caying probability of selecting the lags from the range. This has been
demonstrated 1n Figure (4 4). The x-axis shows the available range of

lags and y-axis shows their exponentially decaying probability
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The goal of the EGLHSAM algorithm 1s to get an exponential prob-
ability of selecting the lags from the available range This purpose 1s
achieved by the following steps on the random number tvar generated
between 0 and 1 with uniform probability The equations are given in

Matlab notation

tvar2 = abs(exp(a *tvar) — 1) (4.6 1)

tvar2 = tvar2/abs(exp(a* 1) — 1) (46.2)

The purpose of the above two lines is to shape the variable tvar to Lie
exponentially between 0 and 1 according to the parameter a. A positive
value of a gives exponentially decaying behavior of tvar while a negative
a gives exponentially increasing behavior of tver The second line in the
equation 1s for normalizing tvar2 between 0 and 1. The transformation
from tvar to tvar2 is shown in the Figure (4.2) As before, the lag ! is

decided using

l=(v+1)+ round(tvar2 « (L, — (v +1))) (463)

Figure (4 3) shows the exponentially decreasing as well as increasing
probabilities of the lags during the simulations of the EGLHSAM algo-
rithm. The values of a used are mentioned 1n the simulation. Figure
(4.3) shows the histograms of the lags simulated for the EGLHSAM
algorithm In this figure, the top left plot represents the SLAM al-
gorithm. The other three plots represent EGLHSAM algorithm with
different slopes of exponentially decaymg probabilities The titles of

these three plots show the parameter which controls their slope, with
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smaller number suppressing more the selection of higher lags.
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Figure 4.2. The lags and their exponentially decaying probability.

The complexity of the SLAM algorithm is about 1/500 times that
of SAM for typical CSA loop channels [1]. EGLHSAM enjoys the same
advantage with the SLAM compared to the SAM algorithm.

4.7 Simulations

The standard parameters of an ADSL downstream transmission were
again simulated. An MA implementation was simulated for the SAM,
SLAM and EGLHSAM algonithms The value of N,,, was 32. The
cyclic prefix had length 32 The FFT size Njs = 512, the TEQ had
16 taps and the channels used were the eight test ADSL channels CSA
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Figure 4.3. Histogram of the lags for SLAM and EGLHSAM al-
gorithms. The values of the lags are between v+1=33 and L,=526
The titles of EGLHSAM plots show the parameter which controls their
slope, with smaller number suppressing more the selection of higher
lags
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loops provided at [62]. The noise was chosen such that ¢2||c||*/o2 = 40
dB where |.|| denotes the Euclidean norm. 89 OFDM symbols were
employed. This value was chosen such that the whole range of avail-
able lags is exhausted at least 3 times by the EGLHSAM algorithm.
The decaying parameter values of -0.04,-0.03 and -0.01 were employed
to simulate different decaying slopes. The resulting histograms are
shown 1n Figure (4 3). Single spike initialization with the center spike
of the TEQ 1mmitialized to unity was used. The step size for SAM was 5;
whereas, for SLAM and EGLHSAM, 1t was 600 to obtain the respec-
tive algorithms converge 1n the given number of symbols All algorithms
were compared with the maximum shortening SNR (MSSNR) solution
and the matched filter bound (MFB) on capacity, which assumes no
ICI Figure (4.4).

Figure (4 5) shows the original and shortened CSA Loop 1 (top)
and 2 (bottom) by the EGLHSAM algonithm with ¢ = —0.04. Simi-
larly, Figure (4 6) shows the original and shortened CSA Loop 3 (top)
and 4 (bottom) by the EGLHSAM algorithm with o = —004 (47)
and (4 8) show the same for CSA Loop 5,6 and 7,8 respectively Figure
(4.9) shows steady state coefficients of the TEQ given by the EGLH-
SAM algorithm for CSA Loop 1 (left) and 2 (night). Figures (4 10},
(4.11), and (4.12) show the same for CSA Loop 3,4 and 5,6 and 7,8,
respectively.

Figure (4.13) compares the achievable bit rates by SAM, SLAM, and
EGLHSAM algorithms for CSA loop 1. Note that, the stopping cri-
terion is not applied [66] where learning is stepped at peak bps. It is
evident that EGLHSAM with a = —0.04 clearly outperforms SLAM

in terms of convergence rate, whereas EGLHSAM with a = -0 03 and
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o« = ~001 match the convergence rate of the SLAM. Note that the
curves with higher number represent lesser suppressing of higher lags
but a decrease in the convergence rate is seen from blue to green and
cyan curve.

Figure (4.14) compares the achievable bit rates by SAM, SLAM, and
EGLHSAM algorithms for CSA loop 2 Again the increase in the con-
vergence rate is observed for EGLHSAM algorithm with a = -0 04
and @ = —003. But the cyan curve with & = —001 even degrades
more than the SLAM algorithm.

Figure (4.15) compares the achievable bit rates by SAM, SLAM, and
EGLHSAM algorithms for CSA loop 3. Again the increase in the con-
vergence rate 1s observed for EGLHSAM algorithm with o = —0 04,
a = —003 and o = —0.01. But the green curve with a = —0 03 out-
perform the other two EGLHSAM curves in terms of convergence rate
Figure (4.16) compares the achievable bit rates by SAM, SLAM, and
EGLHSAM algorithms for CSA loop 4. Again the increase in the con-
vergence rate is observed for EGLHSAM algorithm with o = —004
and a = —003. But the cyan curve with @ = —001 even degrades
than the SLAM algorithm.

Figure (4.17) compares the achievable bit rates by SAM, SLAM, and
EGLHSAM algorithms for CSA loop 5. All the EGLHSAM are better
than SLLAM in terms of convergence rate. The convergence rate of the
cyan curve outperform other EGLHSAM curves.

Figure (4 18) compares the achievable bit rates by SAM, SLAM, and
EGLHSAM algorithms for CSA loop 6. Again the increase in the con-
vergence rate 1s observed for EGLHSAM algorithm with o = —0.04

and & = —003. But the cyan curve with o = —001 even degrades
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more than the SLAM algorithm.

Figure (4.19) compares the achievable bit rates by SAM, SLAM, and
EGLHSAM algorithms for CSA loop 7 The convergence rate of the
EGLHSAM algorithm with &« = —0 04 and & = —0.03 are comparable
with the SLAM algorithm, but the cyan curve with @ = —001 even
degrades more than the SLAM algorithm

Figure (4.20) compares the achievable bit rates by SAM, SLAM, and
EGLHSAM algorithms for CSA loop 8 Again the mcrease in the con-
vergence rate 15 observed for EGLHSAM algorithm with o = —0.04
and @ = —003. But the cyan curve with @ = —0 01 1s comparable

with that of the SLAM algorithm.

4.8 Summary

A new lag hopping blind adaptive channel shortening algorithm has
been proposed The proposed EGLHSAM algorithm essentially achieves
the same result in terms of reducing the effective channel length as
SLAM and SAM The proposed algorithm shortens all types of chan-
nels, where SLAM does not have the capability to shorten all types of
channels EGLHSAM is also intuitive to match the probability of lag
selection to the impulse response of the underlying channel to improve
the convergence rate. The algorithm has low complexity as for the
SLAM algorithm. The simulations have revealed that the performance
of the EGLHSAM algorithm for at least the ADSL downstream CSA
loops 1 to 8 is better than that of the SLAM for all the channels.

The detailed discussion 1n the simulations section shows that the EGLH-
SAM converges faster than the SLAM algorithm For different CSA

loops, this improvement in convergence is achieved at different val-
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ues of a. In practice, however, the optimum o for the channel to be
shortened cannot always be found. This fact makes the EGLHSAM
algorithm specific to the channel being shortened As the value of o
15 decreased, more and more higher lags are suppressed and they are
not minimized by the EGLHSAM algorithm. This situation resembles
that of the SLAM algonthm. For certain channels, 1t 1s possible that
EGLHSAM with lower value of & has zero cost, but the channel might
not be shortened as not all the lags are minimized. Of course this
problem is not that severe as with the SLAM algonthm In the next
chapter, another lag hopping algorithm is being introduced where the
exponentially decaying condition on the lag selection 1s being relaxed
and all the lags are being randomly and umquely chosen with uniform

probability.
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Figure 4.4. Transformation of tvar to tvar2 to get an exponential
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Figure 4.5. Channel shortening of CSA Loop 1 (top) and CSA Loop
2 (bottom) by EGLHSAM with a@ = —0.04. Dotted and solid curves
show original and the shortened channel, respectively.
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Figure 4.6. Channel shortening of CSA Loop 3 (top) and CSA Loop
4 (bottom) by EGLHSAM with o = —0.04. Dotted and solid curves

show original and the shortened channel, respectively.
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Figure 4.7. Channel shortening of CSA Loop 5 (top) and CSA Loop
6 (bottom) by EGLHSAM with a« = —0.04. Dotted and solid curves

show original and the shortened channel, respectively.
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Figure 4.8. Channel shortening of CSA Loop 7 (top) and CSA Loop
8 (bottom) by EGLHSAM with a = —0.04. Dotted and solid curves
show original and the shortened channel, respectively.
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Figure 4.9. Steady state coefficients of the TEQ achieved by the
EGLHSAM for CSA Loop 1 (left) and CSA Loop 2 (right).
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Figure 4.10. Steady state coefficients of the TEQ achieved by the
EGLHSAM for CSA Loop 3 (left) and CSA Loop 4 (right).
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Figure 4.11. Steady state coefficients of the TEQ achieved by the
EGLHSAM for CSA Loop 5 (left) and CSA Loop 6 (right).
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Figure 4.12. Steady state coeflicients of the TEQ achieved by the
EGLHSAM for CSA Loop 7 (left) and CSA Loop 8 (right).
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Figure 4.13. Achievable bit rate comparison of GLHSAM with 1, 15
lags with SLAM, SAM, MSSNR and MFB algorithms for CSA Loop 1.
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Figure 4.14. Achievable bit rate comparison of GLHSAM with 1, 15
lags with SLAM, SAM, MSSNR and MFB algorithms for CSA Loop 2.
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Figure 4.15. Achievable bit rate comparison of GLHSAM with 1, 15
lags with SLAM, SAM, MSSNR and MFB algorithms for CSA Loop 3.
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Figure 4.16. Achievable bit rate comparison of GLHSAM with 1, 15
lags with SLAM, SAM, MSSNR and MFB algorithms for CSA Loop 4.
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Figure 4.17. Achievable bit rate comparison of GLHSAM with 1, 15
lags with SLAM, SAM, MSSNR and MFB algorithms for CSA Loop 5.
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Figure 4.18. Achievable bit rate comparison of GLHSAM with 1, 15
lags with SLAM, SAM., MSSNR and MFB algorithms for CSA Loop 6.
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Figure 4.19. Achievable bit rate comparison of GLHSAM with 1, 15
lags with SLAM, SAM, MSSNR and MFB algorithms for CSA Loop 7.
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Figure 4.20. Achievable bit rate comparison of GLHSAM with 1, 15
lags with SLAM., SAM., MSSNR and MFB algorithms for CSA Loop 8.




Chapter 5
GENERALIZED LAG
|
|

HOPPING SAM ALGORITHM
(GLHSAM)

5.1 OQverview

A generalized blind adaptive lag-hopping channel shortening SAM (GLH-
SAM) algorithm based upon squared autocorrelation minimization is
proposed [67] This algorithm provides the ability to reduce the com-
putational complexity of the sum-squared autocorrelation mimimization
(SAM) algorithm due to Martin and Johnson as in the single lag au-
tocorrelation minimization (SLAM) algorithm, proposed by Nawaz and
Chambers whilst guaranteeing convergence to high signal-to-interference-
ratio (SIR). The drawback of the EGLHSAM algorithm in terms of es-
timating the optimum decaying parameter « is overcome in the GLH-
SAM algorithm At each iteration a number of unique lags are chosen
randomly and uniformly from the whole available range so that on the
average GLHSAM has the same cost as the SAM algorithm As, on
the average, all of the available lags are chosen, the drawback of the

SLAM is also overcome. The performance of the proposed GLHSAM

104
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algorithm 18 confirmed through simulation studies

5.2 Introduction

A low complexity blind adaptive algorithm to design a TEQ, called
sum-squared auto-correlation mmimization (SAM) was proposed 1n [41]
which achieves channel shortening by mimmizing the sum-squared au-
tocorrelation terms of the effective channel impulse response outside a
window of a desired length. The drawback with SAM is that it has a
significant computational complexity. SLAM [59], on the other hand,
achieves channel shortening by minimizing the squared value of only
a single autocorrelation at a lag greater than the guard interval The
drawback with the SLAM cost, as noted 1n the previous chapter, 1s that
a low value does not necessarily guarantee convergence to high SIR for
all types of channels [65] As noted in the previous chapter, a low value
of EGLHSAM cost also does not necessarily guarantee convergence to
high SIR for all types of channels [65]. The contribution 1n this chap-
ter is therefore to propose a new channel shortening algorithm with
random lag selection which has complexity at each iteration as that of
SLAM whilst retaining the advantage that a low GLHSAM cost does
infer and guarantee high SIR too for all types of channels Plus the

new algorithm also does not need to know the value of o
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Figure 5.1. Overall baseband channel shortening system model.
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5.3 System Model

For the completeness of the chapter, the system model 1s shown in
Figure 5.1. The signal x(n} is a white, zero mean, wide-sense stationary
(W.S 8.}, real and unit variance source sequence, typically drawn from a
finite constellation, which is then transmitted through the linear finite-
impulse response {(FIR) channel h = [R(0)A(1).. A(L4)]T, v(n) is a zero
mean, i 1d , noise sequence uncorrelated with the source sequence and

has variance o2. The received signal r(n) is

Ly
r(n) = h(k}z(n — k) + v(n) (5.31)
k=0

and y(n), the output of the TEQ is given by

Lo
y(n) = Z w(k)r(n — k) = wTr, (532)
k=0

where w is the impulse response vector of the TEQ w = [w(0)w(1)...w({Ly)]7,
and r, = [r{(n)r(n—1).. r(n— Ly]¥. Ly, L, and L,, are the order of the
channel, effective channel and the TEQ respectively. It 1s also assumed

that 2L, < N holds, N being the FFT size [59] which is a reasonable

assumption 1n the case of ADSL.

The notion of SAM is founded on the fact that for the effective channel
to have zero taps outside a window of size (v + 1) 1ts autocorrelation
values must be zcro outside a window of size (2v + 1). In SAM the

5.4 SAM and SLAM Cost Functions
auto-correlation sequence of the combmmed channel-equalizer impulse
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response becomes
Le

Ree(D) = clk)e(k - 1) (5.4.1)

k=0

and for the shortened channel, the following must hold
R ()=0, V|l|>v (5.4.2)

The cost function Jgay 1n SAM is defined on the basis of mimimizing

the sum-squared auto-correlation terms, i.e.,

L,
Jsam = D Ro(l)? (5.4 3)

I=v+1

SLAM is based on the fact that a single autocorrelation at a lag greater
than the guard interval provides a measure of the presence of the chan-
nel outside the desired guard interval, hence mimimizing only this sin-
gle autocorrelation 18 particularly applicable to subscriber line channels
which are essentially minimum phase. In SLAM the auto-correlation
sequence of the combined channel-equahizer impulse response 1s also
given by equation (5.4.1) and for a shortened channel, the following
must hold

R ()=0, l=v+1 (544)

In this case the cost function Jgr4ps in SLAM is defined based upon
mimmizing the squared-auto-correlation of the effective channel only

atlagl=v+1,1e,

Jopam = Ree(1)?, l=v+1 (5.4.5)
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In [65], however, it has been pownted out that minimizing (5.4.4) only
does not guarantee high SIR for certain combined channel and shortener
responses To overcome this problem the contribution is to generahze
a lag hopping version of SLAM, where at each iteration of the learn-
ing algorithm, the lag parameter 1n (54 4) 1s chosen at random to lie
within the range v + 1, ...., L., with equal probability of selecting any-
one lag, to the case of selecting randomly, but uniquely, any number of
lags between 1 and L. — v, so that on average the cost is identical to
(5 4.3) when 1mplemented in an adaptive learning algorithm and the
speed of convergence of the algorithm compared to SLAM is likely to
be improved. The computational complexity at each 1teration of the

algorithm could therefore be chosen between that of SLAM and SAM.

5.5 GLHSAM Adaptive Algorithm

The steepest gradient-descent algorithm to minimize the SAM cost

Jgan becomes

Le
W = w -y, >~ (Ely(n)y(n - 1)) (551)
l=v41

where ! is the lag index, p denotes the step size, and V, represents
the gradient with respect to w. The instantaneous cost at time instant
k, where expectation operation 1s replaced by a moving average over a

user-specified window of length N,,, is defined as

L (k+1)Navy—1

Le 2
Y Emym-npr= 3 { L LRV 5y

I=v+1 I=v+1  n=kNgwg evy




Section 55 GLHSAM Adaptive Algonithm 110

where N,,, 15 a design parameter and it should be large enough to yield
a reliable estimate of the expectation, but no larger, as the algorithm
complexity is proportional to N,,;. The gradient descent algorithm

becomes

(k+1)Nayg—1

wik+1) =wk) -uvu( > { 2 _y(n);z— z)}z)

LeLagset n=kNavg

{k+1)Nawg—1 y(n)y(n — 1)
wlk+1) = wk) -2z Y. { S Y }
LeLagset n=kNavg avg
(k+1) Nogg—1

x{Vw( D %‘—”)} (5.5.3)

n=kNaug

and using equation (5.3.2), the GLHSAM algorithm becomes:

R ynyn—)
wik+1) = wik) — 2 Z{ 3 “_F_}
avg
LeLagset n=kNavg
(k-+1) Navg—1

« {( Z y(n)ro— +y(n — l)r(n))} (5 5.4)

N,
n=kN g avg

where I;. Iy, ., Within the Largest elements are chosen to be individ-
ually umque and to be drawn with umiform probability from the range
of available lags, mitially v + 1, .., L,. The number of lags, Ly, s,
can be chosen over the range 1, .., L, — v, and when Nysqs = 1, the
algonithm takes the form of a lag-hopping version of SLAM, named
GLHSAM(1) in sumulations, and when Npsgs = L. the algonthm 1s
identical to SAM. The key advantage of the random lag hopping in the
proposed GLHSAM algorithm is that as k — oo since all of the lags in

the SAM cost will be visited with probability tending to unity during




Section 55 GLHSAM Adaptive Algorithm 111

adaptation, the average cost which is minimized 1s identical to that of
SAM, and thereby should retain the same convergence properties. Fig-
ure (5.2) shows the histogram of the lags minimized by the GLHSAM

algorithm in the simulations.
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Figure 5.2. Unmiform Histogram of lags minimized during the simula-
tions of GLHSAM algorithm.




Section 56  SIR Performance 113

The complexity of the SLAM algorithm 1s about 1/500 times that of
SAM for typical CSA loop channels [1]] GLHSAM(1) enjoys the same
advantage with the SLAM algonithm.

5.6 SIR Performance

With reference to equation (4 4 2), the GLHSAM algorithm selects lags
randomly with uniform probability, so that a low average GLHSAM
cost, achieved through recursive learning, will be identical to a low
SAM cost, provided & — oo which guarantees to give a high SIR at
the output of the TEQ, as on the average algorithm 1t employs all the
lags as in SAM. This feature is absent in the EGLHSAM algorithm
especially when the decaying parameter « is large

The convergence rate (and hence achievable SIR) n a given adaptation
time can be increased by taking more lags in one update of the GLH-
SAM algorithm. To demonstrate this fact, simulations of the GLHSAM
algorithm with 15 random and distinct lags are performed and conver-

gence rate is shown to be improved 1n the simulations.

5.7 Simulations

The standard parameters of an ADSL downstream transmission were
again stmulated An MA implementation was simulated for the SAM,
SLAM and GLHSAM algorithms The value of N,,, was 32. The cyclic
prefix had length 32. The FFT size Ngs = 512, the TEQ had 16 taps
and the channels used were the eight test ADSL channels CSA loops
provided at [62] The noise was chosen such that a2|c||?/o2 = 40 dB

where ||.|| denotes the Euchdean norm. 89 OFDM symbols were em-
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ployed. This value was chosen such that the whole range of available
lags is exhausted at least 3 times by the GLHSAM algorithm. Sin-
gle spike initialization with the center spike of the TEQ itialized to
unity was used The step size for SAM was 5; whereas, for SLAM
and GLHSAM, it was 600 to get the respective algorithms converge in
the given number of symbols and also to keep the results comparable
with those of the previous chapter. GLHSAM(15) had a step size of
100. GLHSAM(15) converges faster than SLAM and GLHSAM(1} al-
gorithms and a smaller step size has been chosen to show that even
with a smaller step size, it converges earlier than the other two algo-
rithms. All algorithms were compared with the maximum shortemng
SNR (MSSNR) solution and the matched filter bound (MFB) on ca-
pacity, which assumes no ICI

Figure (5 3) shows the original and shortened CSA Loop 1 (top) and
2 (bottom) by the GLHSAM(1) algorithm Similarly, Figures (5.4),
(5 5), and (5.6} show the same for CSA Loop 3,4 and 5,6 and 7,8 re-
spectively Figure (5.7) shows steady state coeflicients of the TEQ given
by the GLHSAM(1) algorithm for CSA Loop 1 (left) and 2 (right). Fig-
ures (5.8), (5.9), and (5 10) show the same for CSA Loop 3,4 and 5,6
and 7,8, respectively.

Figure (511) compares the achievable bit rates as a function of av-
eraging block number by SAM, SLAM, and GLHSAM(1) and GLH-
SAM(15) algorithms for CSA Loop 1. GLHSAM(1) converges faster
than the SLAM algorithm. As expected GLHSAM(15) 1s faster than
GLHSAM(1) but slower than SAM. The same comments apply to Fig-

ure (5 12) which compares the achievable bit rates as a function of

averaging block number by SAM, SLAM, and GLHSAM(1) and GLH-
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SAM(15) algorithms for CSA loop 2.

Figure (5.13) compares the achievable bit rates as a function of averag-
ing block number by SAM, SLAM, and GLHSAM(1) and GLHSAM(15})
algorithms for CSA loop 3. Here the SLAM algorithm has not even con-
verged yet GLHSAM(1) is again faster than SLAM and slower than
GLHSAM(15) algorithm. The convergence rates of the algorithms are
similarly comparable in Figure (5 14) which compares the achievable
bit rates as a function of averaging block number by SAM, SLAM, and
GLHSAM(1) and GLHSAM(15) algorithms for CSA loop 4.

Figure (5 15) compares the achievable bit rates as a function of averag-
ing block number by SAM, SLAM, and GLHSAM(1} and GLHSAM(15)
algorithms for CSA loop 5. Here again the SLAM algorithm has not
even converged yet. GLHSAM(1) is faster than SLAM and slower than
GLHSAM(15) algorithm Figure {5.16) compares the achievable it
rates as a function of averaging block number by SAM, SLAM, and
GLHSAM(1) and GLHSAM(15) algorithms for CSA Loop 6. GLH-
SAM(1) converges faster than the SLAM algorithm. As expected GLH-
SAM(15) 1s faster than GLHSAM(1} but slower than SAM.

Figure (5.17) compares the achievable bit rates as a function of averag-
1ng block number by SAM, SLAM, and GLHSAM(1) and GLHSAM(15)
algorithms for CSA Loop 7. Here the SLAM and GLHSAM(1) are
comparable but GLHSAM(15) 1s surely faster than them. Figure (5 18)
compares the achievable bit rates as a function of averaging block num-
ber by SAM, SLAM, and GLHSAM(1} and GLHSAM(15) algorithms
for CSA Loop 8. GLHSAM(1) converges faster than the SLAM al-
gorithm. As expected GLHSAM(15) is faster than GLHSAM(1) but
slower than SAM.
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The simulations of all the 8 CSA Loops show that GLHSAM with even
one lag is faster than the SLAM algorithm. Importantly, the speed
with which the GLHSAM algorithm reaches the best performances in-
creases with the number of lags Therefore GLHSAM can use different
combinations of convergence speeds and computational complexity and
thereby gives the designer the maximum flexibility. It should be noted

that the stopping criterion given 1n [59] is not used in these simulations

5.8 Summary

A new generahzed lag hopping blind channel shortening algorthm has
been proposed. The proposed algorithm GLHSAM essentially achieves
the same result in terms of reducing the effective channel length as
SLAM Importantly, the disadvantage of SLAM and EGLHSAM in
terms of the SIR performance has been overcome by the proposed algo-
rithm. The algorithm is more general than the EGLHSAM algorithm
in that it does need to know the decaying parameter « The algorithm
has low complexity as the SLAM algorithm and a low GLHSAM cost
is also identical to a low SAM cost as on the average the proposed al-
gorithm uses all the lags as in SAM. It 1s also demonstrated through
simulations that the convergence performance of GLHSAM can be in-
creased by incorporating more lags 1n 1ts update. Therefore, there is a

tradeofl between the complexity of the algorithm and its convergence

rate.
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Figure 5.3. Channel shortening of CSA Loop 1 (top) and CSA Loop
2 (bottom) by GLHSAM(1). Dotted and solid curves show original and

the shortened channel, respectively.
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Figure 5.4. Channel shortening of CSA Loop 3 (top) and CSA Loop
4 (bottom) by GLHSAM(1). Dotted and solid curves show original and
the shortened channel, respectively.
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Figure 5.5. Channel shortening of CSA Loop 5 (top) and CSA Loop
6 (bottom) by GLHSAM(1). Dotted and solid curves show original and
the shortened channel, respectively.
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Figure 5.6. Channel shortening of CSA Loop 7 (top) and CSA Loop
8 (bottom) by GLHSAM(1). Dotted and solid curves show original and
the shortened channel, respectively.
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Figure 5.7. Steady state coeflicients of the TE(Q achieved by the
GLHSAM(1) for CSA Loop 1 (left) and CSA Loop 2 (right).
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Figure 5.8. Steady state coefficients of the TEQ achieved by the
| GLHSAM(1) for CSA Loop 3 (left) and CSA Loop 4 (right).
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Figure 5.9. Steady state coeflicients of the TEQ achieved by the
GLHSAM(1) for CSA Loop 5 (left) and CSA Loop 6 (right).
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GLHSAM(1) for CSA Loop 7 (left) and CSA Loop 8 (right).
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Figure 5.11. Achievable bit rate comparison of GLHSAM with 1, 15
lags with SLAM, SAM, MSSNR and MFB algorithms for CSA Loop 1.
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Figure 5.12. Achievable bit rate comparison of GLHSAM with 1, 15
lags with SLAM, SAM, MSSNR and MFB algorithms for CSA Loop 2.
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Figure 5.13. Achievable bit rate comparison of GLHSAM with 1, 15
lags with SLAM, SAM, MSSNR and MFB algorithms for CSA Loop 3.
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Figure 5.14. Achievable bit rate comparison of GLHSAM with 1, 15
lags with SLAM, SAM, MSSNR and MFB algorithms for CSA Loop 4.
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Figure 5.15. Achievable bit rate comparison of GLHSAM with 1, 15
lags with SLAM, SAM, MSSNR and MFB algorithms for CSA Loop 5.
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Figure 5.16. Achievable bit rate comparison of GLHSAM with 1, 15
lags with SLAM, SAM, MSSNR and MFB algorithms for CSA Loop 6.
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Figure 5.17. Achievable bit rate comparison of GLHSAM with 1, 15
lags with SLAM, SAM, MSSNR and MFB algorithms for CSA Loop 7.
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Figure 5.18. Achievable bit rate comparison of GLHSAM with 1, 15
lags with SLAM, SAM, MSSNR and MFB algorithms for CSA Loop 8.



Chapter 6

CONCLUSIONS AND
FUTURE WORK

In this chapter general conclusions are drawn and suggestions for fur-
ther work are given.

Chapter 3 proposes techniques to improve the convergence of the SLAM
algorithm. The SLAM is a low complexity channel shortening algorithm
as 1t minimizes the square of only a single fixed autocorrelation. This
chapter details the MA and AR implementations of the SLAM algo-
rithm but later uses the MA implementation for the faster cousins of
SLAM developed in the chapter. Two schemes have been suggested to
improve the convergence of the adaptive SLAM algorithm. The first
one VS-SLAM uses a variable step at each iteration of the algorithm.
The step size 13 selected automatically according to the value of the
cost at each iteration. The second scheme QN-SLAM uses a faster
quadratic type convergence using a quast Newton descent type update
The computational complexity and memory requirements of SLAM,
VS-SLAM, and QN-SLAM are provided. It is shown that VS-SLAM
has 1dentical complexity as SLAM, whereas QN-SLAM has quadratic
complexity in the TEQ length. The proposed two algorithms are com-
pared with SLAM by shortening 8 CSA Loop wireline channels. Both
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proposed algorithms successfully shorten the CSA Loop channels. The
channel shortening effect and the resulting TEQ designed are shown in
the simulations section Achievable bit rate 15 used as the performance
metric to assess the convergence rate of the algorithms. The details of
how the achievable bit rate is calculated are provided. The results show
that on average VS-SLAM converges faster than SLAM algorithm for
all 8 CSA Loop channels. QN-SLAM 1s faster than SLAM and some-
times converges earlier than the SAM algorithm. However, its response
is very noisy. The noisy convergence coupled with very high computa-
tional complexaty of the QN-SLAM algorithm makes it less useful for
real-time channel shortening applications. VS-SLAM appears to be the
preferred algorithm.

Chapter 4 proposes an exponential probability generalized lag hopping
version of the SLAM algorithm named EGLHSAM. The drawback with
SLAM algorithm 1s that it mimmizes a fixed autocorrelation value.
There can be some channel impulse responses where the SLAM cost is
zero but the channel impulse response is not confined to the required
window length. EGLHSAM overcomes this problem by minimizing a
random lag at each iteration from the available range of lags. Therefore,
in a complete adaptation, 1t visits all the possible lags This reduces
the possibility that EGLHSAM cost is zero but channel is not short as
required resulting in a poor SIR Furthermore, the algorithm selects the
lags with a probability matching the envelope of the impulse response
of the underlying channel This increases the convergence rate of the
EGLHSAM algorithm than that of the SLAM algorithm. The chapter
gives breakdown of the SIR formula and shows that only minimizing

a fixed autocorrelation, as in SLAM, does not provide guarantee that
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SIR will be increased. There is a possibility that a few taps outside the
required window are left which is against the channel shortening phe-
nomenon. The histograms of the lags simulated are shown. EGLHSAM
algorithm is compared with SLAM by shortening 8 CSA Loop wirelme
channels. Different decaying slopes for the lags are simulated for the
EGLHSAM algonthm. It successfully shortens the 8 CSA Loop chan-
nels The channel shortening effect and the resulting TEQ designed
are shown in the simulations section. Achievable bit rate 15 again used
as the performance metric to assess the convergence rate of the algo-
rnithms. Depending upon the decaymng slope of the lags, EGLHSAM
outperforms SLAM. This ‘good’ decaying parameter value is different
for different CSA Loop channels. This 1s a problem with EGLHSAM
algorithm where 1t needs the optimum decaying parameter value. It 13
also mentioned that using a highly decaying nature of the lags proba-
bility excludes some of the lags to be minimized However, this is less
severe problem than with the SLAM algorithm.

Chapter 5 proposes a generalized lag hopping algorithm but uses uni-
form probability of lag selection. The algorithm is named GLHSAM
and it overcomes problems with SLAM and EGLHSAM algorithm to
guarantee high SIR. This algorithm also does not need to know the de-
caying parameter for every channel GLHSAM algorithm 1s shown to
have identical channel shortening effect as that of SLAM and EGLH-
SAM algorithms. The convergence rate of GLHSAM 1s better than
SLAM and 1s comparable to that of EGLHSAM. The convergence rate
can be further increased by incorporating more lags in the update while

keeping an overall uniform probability of lags selection.
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6.1 Future Research

e The performance of the proposed algorithms need to be confirmed

for the upstream channels

¢ Complete equalization in OFDM/ADSL requires the estimation
of the FEQ as well. The proposed algorithms can be comple-
mented by providing FEQs designs.

A stopping criterion has not been used in these algorithms. The
cost surface is very shallow for all the proposed algorithms and
algorithms are needed to ensure that the solution does not diverge

from the global minima

To calculate the range of lags to be minimized, all the proposed
algorithms assume the knowledge of the length of the channel In
that sense, they are not truly blind. Although, EGLHSAM and
GLHSAM algonthms do shorten the channels even 1if a reduced
range of lags is minimized Therefore, a rough knowledge of the

length of channel is not impractical.

In wireline and wireless systems the channel characteristics may
change due to temperature vanations or due to the movement
of the transmitter and/or the recewver. In this thesis, though,
the channel 1s assumed not to change during at least one OFDM

block transmssion time. Such channels anse in the case of ADSL
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and fixed multipath wireless channels This allows the channel
shorteners to mitigate the effects of ISI which is the result of the
delay spread of the wireline channel or of the length of multi-
path of the wireless channel greater than the value of the CP
used More challenging extensions of the thesis will address the
environments where channel characteristics change more rapidly
with time. As with the adaptive equalizers, adaptive channel
shorteners are well-suited for time varying channel environments
Therefore, the adaptive channel shortening algorithms suggested

1n this thesis are expected to perform well in such scenarios, too

Current IEEE 802 11 recervers do not typically employ TEQs be-
cause the expected delay spreads are not very long and through-
put loss due to CP is small. Future wireless standards such as
IEEE 802 11/n or WiMax may be designed for longer channels,
necessitating the need for channel shortening to reduce the loss of
throughput Multiple-input multiple-output (MIMO) configura-
tion [68] [69], more aggressive coding, including a larger constella-
tion, higher convolutional code rate, and a reduced guard interval
are some of the suggestions put forward by the IEEE task groups
to improve the data rate in Wi-Fi and take them to as high as
100 Mbps {70]. Channel shortening 1s the answer to decrease the

required length of the guard interval

Also WiMax uses a variable length guard mterval [7] With a

very clear channel, a small guard interval is used increasing the
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throughput or the spectral efficiency. For longer channels, though,
a long CP is required Channel shortening can be used for such
channels to keep the spectral efficiency at the maximum whle
shortener block can be turned off for the clear or smaller delay
spread channels. The algorithms can be extended to such scenar-

ios.
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