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Synopsis

The use of tilting bodies on railway vehicles is becoming increasingly widespread: a

number of well-established services using tilt technology already exist around the world,

and will appear again in the UK over the next year or so. The motivation for tilting

railway vehicles is that they give a cost-effective means of achieving a substantial re-

duction in journey time by increasing the vehicle speed during curves.

Early tilt controller designs were based upon local vehicle measurements, however

at that time this approach did not prove very successful. Nowadays most European

manufacturers use the so called ‘precedence’ control scheme, utilising measurements

from precedent vehicles to achieve ‘precedence’ information. However, achieving a sat-

isfactory local tilt control strategy is still an important research target because of the

system simplifications and more straightforward failure detection.

The thesis describes a comprehensive study of tilt control, and its aim is to em-

ploy advanced control techniques - based upon practical sensors - with the particular

objective of identifying effective strategies which can be applied to each vehicle inde-

pendently, i.e. without using precedence control. The sensors employed for control

design are in particular mounted on the vehicle passenger coach. Most of the work has

been undertaken using Matlab, and this has included a proper assessment of the ride

quality issues.
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Chapter 1

Introduction

When trains were first introduced as a means of mass transportation they were suc-

cessful due to the fast and reliable services they offered. Since then, the advanced

automobile technology caused the car to become a popular way of transport for short

distances. Nowadays cars on good quality high speed motorways can achieve speeds of

up to 150 − 200(km/h) (depending on law constraints). Similarly, the rapid progress

in the area of aerospace engineering enhanced the use of airplanes for long distances.

The consequence of these developments was that trains were losing their value as a

form of transport. Trains operating on conventional (or existing) tracks were becom-

ing relatively slower and less flexible than other means of transport while the price

remained high, causing uncompetitive services. Building new modern infrastructures

or alternatively improving the existing routes was difficult due to the high cost and

also there was no guarantee of overall profit. The alternative would be the introduc-

tion of trains capable of operating at high speed on the existing tracks, high speed trains.

A high speed train is a dynamically complex system, and Figure 1.1 illustrates the

complex dynamic nature which has evolved over a period of two centuries of railway

development. The ‘passive’ suspension arrangement shown is separated into two parts:

1. the primary suspension between the wheelsets and the vehicle bogies

2. the secondary suspension between the vehicle bogies and the vehicle body.

The former helps with the guidance (running stability) of the vehicle, while the latter

is used to provide passenger ride comfort (high frequency isolation).
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vehicle body

bogie

airspring

wheelset

Roll

Yaw

Pitch

Figure 1.1: Sample of high speed train mechanical arrangement

1.1 Problems Running at High Speed on Existing Tracks

Improved vehicle speeds and reducing journey times also have drawbacks, the primary

problem being that high speed operation affects the performance on both straight and

curved track.

The effect of straight track irregularities perceived by the passengers increases as speed

increases. Likewise, when the vehicle traverses a curve, passengers feel a centrifugal

force which is proportional to the square of the velocity. Softer passive suspensions will

improve the straight track ride quality while stiffer suspensions will guarantee small

suspension deflection on curved paths. This results in a difficult trade-off between

straight track and curving performance.

Traction (the capability of achieving high speed) and braking power (faster trains

need to slow down) can be addressed as associative problems. Safety is not a crucial

issue since the speed at which a train becomes unstable can be very high. However,

passengers object to the increase of train speed especially round corners because it can

make passengers nervous, feeling uncomfortable or nauseated. To accommodate all the

above, a solution is the use of active suspensions which is discussed in the next section.
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1.2 Active Suspensions

Active suspension technology is an expansion of the existing mechanical systems to

include active elements. Figure 1.2 illustrates the difference between passive and active

suspensions. The advances in active suspensions enhance the use of high speed trains.

The use of appropriately arranged active elements affects positively the dynamic prop-

erties of the basic passive configuration, improving the ride quality and keeping the

track maintenance cost low.

mmass

z

zt

m

k c

random input

m

active
element

(actuator)

mass

z

zt

m

k

c F

random input

Passive Setup Active Setup

Figure 1.2: Suspension configuration

A block diagram representation of a railway vehicle dynamic system is shown in Figure

1.3. The response of the vehicle to the inputs (track inputs, load changes, etc.) is

governed by the control law. Hence the overall performance depends on the sensors

and the actuators used as well as on the software of the controller. The feedback action

is used to modify accordingly the response of the mechanical system [Goo97].

Mechanical System

Track inputs

Vehicle outputs

(acceleration,

deflections, etc)

Monitoring

System

(sensors)

Electronic

Controller

Actuators

Drive signals
Measurements

Control 
forces

Figure 1.3: General active suspension scheme
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1.2.1 Main active suspension areas

Three principal areas of active suspensions used in high speed trains are: active pri-

mary, active secondary and tilting.

1. Active primary suspension define active control applied onto the vehicle’s primary

suspensions (i.e. vertical, lateral or longitudinal). The important consideration

is to guarantee running stability and curving performance.

2. Active secondary concerns the use of active control to improve the behaviour of

vertical and lateral secondary suspension systems. The importance is to provide

ride comfort.

3. Tilting, which is a particular form of active secondary suspension, uses full-active

control of the secondary roll suspensions, and is the main focus of this thesis.

1.3 Tilting Train Technology

When a train traverses a curve at high speed the passengers experience a centrifugal

force, and similar forces act on the body and the bogies. The suspension geometry

and the forward speed of the vehicle determine the amount of roll into or out of the

curve by the vehicle. The centrifugal force is a function of v2

R . In order to maintain the

level of centrifugal force while increasing the vehicle forward velocity, the curve radius

must also increase by a certain factor which often for practical reasons is impossible

(i.e. triple the velocity and the curve radius must increase by a factor of nine). This

is why even apparently gentle curves can be much more of a problem while running in

high speed than one might think, due to the fact that the force rises with the square

of velocity.

Often railway operators face a decision for building a high speed railway transport

system. On the one hand is the option to invest money into building new tracks

with larger curve radii dedicated for modern high speed trains without tilt, i.e. TGV

(France) or ICE (Germany). On the other is to use the existing rail infrastructure and

invest money into the trains. However for high speed vehicles to negotiate curves safely

at higher speeds, on existing tracks, while maintaining passenger comfort at acceptable

levels, it is necessary to use tilting technology.

- 4 -
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1.3.1 The concept of tilting trains

The amount of lateral force experienced by the passengers can be reduced by tilting

(leaning inwards) the vehicle body. Figure 1.4(a) illustrates the forces acting on a non-

tilting vehicle traversing a curve, while Figure 1.4(b) presents the situation for a tilting

vehicle on the same curve (θv is the body roll, θo is the track cant angle, R the curve

radius and v the forward speed).

g

2

R
υ

θο

2

R
υ cosθ

sing θ

θv

θ

θ = θο θv

(a) No tilt action, negative
roll angle, i.e. roll out of curve

g

2

R
υ

θο

2

R
υ cosθ

sing θ

θv

θ

θ = θο θv

(b) Tilt action, positive roll angle,
i.e. roll into curve

Figure 1.4: Curving forces applied on a railway vehicle

Figure 1.5 presents a diagram of a curved track. The ‘curve transition’ segment pro-

vides the smooth transition from straight track to steady-state curve (i.e. the section

having a measurable curvature). The cant and curvature change (magnitudes increas-

ing or decreasing linearly) during the curve transition while reaching the steady-state

values on steady-state curve. This of course has an impact on the forces acting on the

train and thus on the levels of lateral acceleration perceived by the passengers. Note

that the duration of curve transitions depends upon the operating vehicle speed. The

curved track is normally canted or banked and designed with a specific speed in mind

(design speed), to compensate for the curving acceleration perceived by the passengers.

Figure 1.6(a) illustrates the passenger acceleration for a non-tilting (conventional) ve-

hicle running at nominal speed for a given track. At higher speeds, and for the same

track, the transition becomes more severe (slope on transition is sharper) due to the

smaller duration time, and also the level of steady-state lateral acceleration felt by the

passengers increase (Figure 1.6(b)). At this point the introduction of tilt action will

allow the vehicle operation at speeds higher than those acceptable to passengers in a
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non-tilting vehicle, Figure 1.6(b). Note that some modern high speed lines (i.e. in

France and Germany) are designed to have curved tracks with longer transitions and

larger curvatures to allow for the operation of non-tilting high speed trains.
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Figure 1.5: Curved track profile
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Figure 1.6: Passenger perceived curving acceleration

Although tilt action can provide an increase in passenger comfort at conventional vehi-

cle speeds, the main commercial benefit from the use of tilting vehicles is the reduction

of journey times without degrading passenger comfort levels on conventional railtracks.

A deciding factor for the reduction in journey time is the frequency of curves appearing

in the particular route, i.e. the more curvaceous the route, the greater is the benefit of

tilt.
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1.3.2 Tilt angle effects

The benefit of introducing tilt angle on the lateral acceleration perceived by passengers

during curves is given in Table 1.1. The curving acceleration (m/s2) is calculated using

the following (small angle approximation) expression:

ÿi =
v2

R
− g(θo + θti), i = 1, 2, 3, ..., n (1.1)

where, v is the vehicle forward speed (m/s), θt is the tilt angle (deg), R the curve

radius (m), θo the track cant angle (deg).

The calculations were based on a curved track profile having a radius of 1200(m) and

6o of track cant angle. The nominal vehicle curving speed was assumed to be 50(m/s).

Table 1.1: Tilt angle effects
Vehicle body Lateral Reduction in Increase in

Vehicle (i) tilt angle acceleration acceleration µÿ curving speed αv

θv (deg) ÿ (m/s2) (%) (%)

without tilt (1) 0 1.06 0 0

with tilt (2) 1 0.88 16.20 4.03
(3) 2 0.71 32.43 7.91
(4) 3 0.54 48.64 11.65
(5) 4 0.37 64.85 15.27
(6) 5 0.20 81.10 18.78
(7) 6 0.03 97.28 22.19

Table 1.1 illustrates the benefits of incorporating tilt action on a vehicle. The second

column lists the passenger lateral acceleration for the nominal speed, while the third

column presents the reduction in lateral acceleration for the corresponding tilt angles

based upon the nominal speed. The percentage in operational speed increase for a

given tilt angle is shown in the fourth column, as this is particularly important. This

is based upon the lateral acceleration experienced by the passengers being equal to

that of a non-tilting train running at a slower speed. The calculation of the quantities

presented in the table are based on the following

• Nominal passenger acceleration for i = 1, ÿo = v2
o

R − gθo, vo = 50(m
s )

• Reduction in passenger acceleration µÿ =
∣
∣
∣
ÿo−ÿi

ÿo
× 100

∣
∣
∣ where ÿi is given in (1.1)

with i = 2, 3, ..., 7

• Speed increase αv =
∣
∣
∣
vo−vi

vo
× 100

∣
∣
∣ where vi =

√

ÿiR+ g(θo + θti), i = 2, 3, ..., 7
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1.3.3 Tilting system mechanical configurations

The early tilt experiments on trains involved vehicle bodies with a low centre of gravity

to allow for the centrifugal forces acting on the carriage to cause a passive vehicle tilt

action. This approach of using inertial forces to let the train tilt was not proven to be

very successful. However, passive tilting technology is undoubtedly cheaper compared

to active tilting and is still used in the case of small tilt angle applications.

Nowadays, there are three basic mechanical configurations for tilt:

1. through (or across) the secondary suspension, (Figure 1.7(a))

2. above the secondary suspension, (Figure 1.7(b))

3. below the secondary suspension, (Figure 1.8(a),1.8(b),1.8(c))

The first option involves control of the airsprings or more recently active anti-roll

bars (or stabilisers) to apply tilt directly through the secondary suspension [PGP98].

Although simple to implement, it tends to restrict the amount of tilt due to limitation

factors from the suspension and the actuators used (in some cases a single central

airspring can be used to allow further tilt action). As a result, most tilt systems

use separate mechanisms which have inclined swing links in order to provide a tilting

bolster which offers tilt action either above (suspension below mechanism) or below

(suspension above mechanism) the secondary suspension. The lateral track forces are

inevitably increased as a consequence, but careful bogie design can mitigate this and

in general railways have found that there is sufficient margin not to compromise safety.

1.3.4 Problem definition of tilting

The requirements for an active tilting system implementation are: sensors to provide

measurements for the control strategy, a controller to provide the tilt signal, and active

elements to rotate the vehicle body. The tilt control system performance is very im-

portant and its aim is to respond fast to changes in track cant and curvature without

significantly degrading the ride quality during straight-track running.

A number of approaches have been used for controlling the tilt systems. These ap-

proaches in general can be divided into three sections: nulling, command-driven and

command-driven with precedence control.

Nulling control, which was the early control approach, attempts to drive the mea-

sured lateral body acceleration to zero on a steady curve, Figure 1.9(a). The feedback
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(a) Across secondary suspension

Body

Pantograph

Bogie

Bolstersecondary
suspn.

(b) Above 2ndary suspen-
sion (early Italian Pendolino,
FIAT)

Figure 1.7: Tilt mechanisms (across and above secondary suspensions)

signal is provided from a body-mounted accelerometer. The clear advantage is that the

body-mounted sensor does not encounter the large effects of track irregularities due to

the action of the secondary suspension as a mechanical filter. The primary drawback

with this strategy is that the sensor, mounted on the tilting vehicle body, is within

the control loop. This causes interactions between suspension and controller dynamics,

which can lead to stability problems.

A further problem is that full compensation of the lateral acceleration does not provide

optimum ride quality when curve transitions are taken into account. Trying to reduce

the lateral acceleration to zero can result in high roll rates which can be uncomfort-

able to passengers. Empirical studies during the 1980s [Har86] assessed the passenger

comfort on curve transitions and enabled the vehicle curving response to be properly

determined.

Command-driven control was the next development, as a result of the ‘nulling’ con-

trol strategy limitations. This approach uses both the cant deficiency, obtained from

an accelerometer mounted on the bogie, and an additional feedback of tilt angle, to

drive the tilt actuators Figure 1.9(b). Full and partial tilt compensation depends on
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(a) German VT612 vehicle
(Adtranz)

(b) Swedish X2000 vehicle
(ABB)

tilt 

compensated

pantograph

tilting

bolster

central

airspring

(c) New scheme from FIAT-
SIG for Virgin West Coast, UK

Figure 1.8: Examples of tilt mechanism configurations below secondary suspensions

gain factor K. Making K equal to unity provides full tilt compensation. However,

setting K less than unity provides partial compensation which proved the essential

point to getting the right transition response. Note that partial compensation can also

be achieved with the nulling controller by adding a tilt angle feedback, shown in the

dotted box of Figure 1.9(a).

In the case of command-driven tilt control the sensor is not affected by the suspension

response (it is now situated outside the control loop). However, there are two main

problems associated with this control approach. Firstly, due to the harsh environment

of the bogie, the accelerometer measures not only the curving acceleration but also

acceleration components due to track irregularities. The tilt system responds to the

effects of the track misalignments and leads to worsening of the straight track per-

formance. Moreover, the addition of a filter to reduce the effects of high frequency

components and the required level of filtering for getting a satisfactory straight track

performance introduces a significant time delay on curve transitions. This led to the

development of the command-driven with precedence control approach.

Precedence control is a command-driven strategy which derives the tilt command

signal from the preceding vehicle with a filter designed in such a way that the delay

introduced will be compensated by the precedence effect, Figure 1.3.4. There has been

some development of the concept, including the use of additional sensors (i.e. roll

gyroscopes) to further optimise the system response, but the overall principles remain
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(b) Command-driven

Figure 1.9: Nulling and command-driven control configurations

the same. Normally a single command signal would be generated from the first vehicle

and transmitted digitally with appropriate time delays down the train. Consequently

the velocity and the direction of travel are important factors for the correct operation

of the tilt system. This strategy proved to be successful and it is nowadays used by

most tilting train manufacturers. However it is a complex scheme, direction-sensitive,

signal connections between trains are required, while the tilt system performance can

be optimised for a specific route operation. Moreover, leading vehicles have inferior

performance due to lack of precedence.

K/g LPF
+

-
Tilt
angle 1

Bogie
accel. 1

+
-

Tilt
angle 2

actuator
demand

actuator
demand

preview
effect

preview
effect ... to vehicle 3, etc

Controller

Vehicle 1

Vehicle 2
K/g LPF

Controller

Bogie
accel. 2

Figure 1.10: Command driven with precedence control scheme

A recent development uses a track database to provide the tilt command signal instead

of the sensors used in the previous strategies. The accuracy of the track information

provided from the database is a vital factor for this approach to produce effective

results.
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1.4 Motivation for this Thesis

That tilting trains have been successful is not in doubt. However, the tilt control sys-

tem design involved mainly intuitive or classical control methods. As a matter of fact,

the published material on tilt system design is primarily based on experimental work.

Still, it may be possible to derive a simpler control approach which provides effective

tilt action based on individual vehicles using a form of advanced signal processing.

Clearly the need of studying ‘in-depth’ the tilt system design from a theoretical point

of view is of great importance.

The motivation of this research is to undertake the first rigorous theoretical study of

tilt control. Tilt controller settings have been mainly derived from experimental work

due to the complex nature of passenger reactions. After the introduction of a com-

fort index during the 1980s [Har86], the need for more demanding design approaches

became essential. Moreover, the mechanical systems which provide the tilt action are

continually being developed.

Hence the objectives and their priority in this thesis are: (i) to investigate the dynamic

behaviour of tilting trains, (ii) examine various tilt mechanisms and (iii) to develop

advanced local, based upon single vehicle, tilt control strategies taking ride quality

properly into account.

1.5 Work Addressed in this Thesis

The body of work described in this thesis takes the proven concept of tilting trains

and enhances it through the use of newer so called ‘modern’ control concepts. The

principal area of investigation is that of control strategies for local, i.e. based on single

vehicles, tilt control. At present tilt control is based on precedence schemes which can

be complex, direction-sensitive and front vehicles have inferior performance due to lack

of precedence.

Applying ‘modern’ control techniques, local vehicle tilt control can be utilised by using

more sophisticated controller structures to provide results comparable to the precedence

schemes.

1.5.1 Thesis structure

The thesis is laid out as follows:
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• Chapter 2 is a detailed survey of work involving tilting trains and their applica-

tions. It also includes a review on the general area of active suspensions.

• Chapter 3 discusses on track geometry and the methods used for assessing the

control strategies developed.

• Chapter 4 presents the prerequisites on designing tilt controllers.

• PART I contains the study of tilting based upon active anti-roll bars (tilt across

secondary suspensions).

– Chapter 5 provide a detailed modelling of a tilting train involving an active

anti-roll bar and investigates the dynamic behaviour of the vehicle.

– Chapter 6 discusses on the limitations of the early ‘nulling’ classical control

strategy, investigates its limitations and illustrates the approach currently

used by tilt manufacturers.

– Chapter 7 proposes alternative control designs based upon advanced con-

cepts for designing local/vehicle tilt controllers for the active ARB; with

improved performance mainly based upon body-mounted sensors.

• PART II presents the study of a tilting mechanism for providing tilt below the

secondary suspension.

– Chapter 8 discusses the modelling of the vehicle using the tilting mechanism

structure. It also reveals the differences relative to the anti-roll bar system.

– Chapter 9 is an adaptation of the control schemes designed for an anti-roll

bar, to the case of the tilting mechanism. It also extends the advanced

control concepts with respect to overall system performance, based upon

the tilting bolster.

• Chapter 10 contains a conclusion and discussion on the overall thesis results,

while suggests possible further work.

• The following information is included in the Appendix: (A) Track Profiles and

Vehicle Parameter Values, (B) Supplement on Theoretical Concepts, (C) PCT

Factor Evaluation, (D) Modelling of Suspension Elements, (E) List of State Space

Model Matrices, (F) Controller Structures for H∞ Schemes, (G) Research Work

Publications, (H) List of Software sample files.
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1.6 Published Work

An amount of work included in this thesis has been published in the following papers:

1. Zolotas, A. C., Goodall, R. M., Advanced Control Strategies for tilting railway

vehicles, UKACC, Control 2000, Cambridge, UK, Sep. 2000

2. Zolotas, A. C., Halikias, G. D., Goodall, R. M., A Comparison of Tilt Control

approaches for high speed railway vehicles, Proceedings ICSE 2000, Coventry, UK,

Vol. 2, pp. 632-636, Sep. 2000

3. Goodall, R. M., Zolotas, A. C., Evans, J., Assessment of the Performance of Tilt

System Controllers, The Railway Conference at Railtex 2000, NEC Birmingham,

UK, Nov. 21-23, 2000

4. Zolotas, A. C., Goodall, R. M., Halikias, G. D., New control strategies for tilting

trains, IAVSD Symposium 2001, Lyngby-Copenhagen, DK, Aug. 20-24, 2001

1.7 Thesis Contributions

This thesis addresses a number of issues concerning tilt controllers and

makes contributions in the following areas:

(a). Fundamental study of the tilt control concept;

(b). Development of detailed vehicle models of tilting trains for control design;

(c). Theoretical investigation of the ‘nulling’ tilt control problem;

(d). Assessment approach of dynamic tilt controllers performance;

(e). The novel idea of employing modern control concepts for tilt control for effi-

cient local tilt control design, especially in the area of estimation and robust H∞

control.
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Literature Survey

The purpose of this review is not to provide an extensive coverage of all the literature

available but to highlight the relevant studies to this research. The first section presents

a brief coverage on literature related to active suspensions, the second part is a survey

on the work done specifically on tilting train.

2.1 Active suspensions

The idea of active suspensions was introduced during the late 1960s. From this a large

number of studies continued particularly in the field of automotive and railway vehicle

suspensions. The basis of most active suspensions was skyhook damping - connecting

the vehicle via a damper to the ‘sky’ - which was introduced by Karnopp et al in 1974

[KCH74]. Since then it has been used as the basic introduction to active suspensions

by many researchers. Of course the implementation of skyhook damping is impossible

using passive components, instead an arrangement of actuators is used to produce the

same effect.

The need for active suspensions is well discussed by both Karnopp [Kar78] and Goodall

and Kortüm [GK90]. There are review papers presenting the benefits of using active

suspension technology in the area of railway vehicles [GK83], [Her81]. General discus-

sion papers also exist [KH91], [Wic92], [AW95], introducing to the basic concepts of

active suspension technology. Williams [Wil86] compares classical and optimal control

approaches for active suspensions, while Pratt [Pra96] is concerned with applying ac-

tive suspension specifically to high-speed trains. Both of the above researchers include

a comprehensive description of the skyhook damping. Other technical papers empha-

sise the limitations related to the use of active suspension technology [Goo93], which

are mainly connected to interactions due to vehicle geometry, the complex nature of
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the active suspension systems and the high power consumption. In search of a more

detailed list of references the reader is referred to Elbeheiry et al [E+95].

2.2 Tilting trains

The theory behind tilting has been understood for many decades but little work had

been done until the 1960s. Certain experiments were carried out both in United States

and Europe [Ano70] involving pendular-suspension coaches. The idea of powered tilt

was introduced by British Railways in 1968. From this point tilting trains start gaining

ground as manufacturers realised that it was one of the cheapest ways to raise the av-

erage speeds (simply run faster through curves!) [Kof70]. Much development work was

undertaken during the 1970s in UK, Sweden, Italy and North America [San74], [Eli97].

Most of the experiments succeeded and the experimental trains continued into com-

mercial operation, apart from UK’s Advanced Passenger Train (APT) [BK82]. From

1982 after the ECE (European Commission for Europe) received a resolution to take

the appropriate steps for improving railway links [Bin87], the situation has changed

much and it is clear that tilting trains ‘are here to stay’. As a matter of fact, UK’s

Virgin Rail will introduce tilting train technology in the West Coast Line [Ano98b] and

its franchise commitments also include the scope for infrastructure upgrade [Wat99].

Articles [Aut99] presenting the commercial benefits offered by using tilting technology

in railway vehicles, e.g. reduced journey time and passenger comfort, may be found.

Other review papers describe the concept of tilting and its application to railway ve-

hicles. For example, Goodall R.M. in two of his papers, [Goo97], [Goo99], gives a

comprehensive study on the concept of tilt and the tilt system configuration and he

also emphasises the role of active suspensions for future development. A detailed re-

view on current tilting train implementation is included in the former of his papers.

Harris et al [HSS98] present the concept of tilting and the performance advantage of

tilting systems while introducing the limits to tilt applications and tilt second order

effects such as increased track forces and fuel savings. Also Schmid [Sch97] presents a

review on the tilt debate from an operations angle and focuses on developments in the

UK.

A number of studies concentrate on specific issues in relation to tilting vehicle technol-

ogy. Gawthorpe and Johnson [GJ] address the importance of the aerodynamic effects

for tilting trains. They also stress that the aerodynamic implications for tilting trains

originate from the higher speeds allowed for tilting trains rather than from the tilting
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action itself. The extent and severity of each effect is described, such as pressure waves

when travelling in tunnels, interaction with other traffic and cross-wind effects. In the

offered solutions the benefits from the use of pressure sealed rolling stock is largely

emphasised.

The use of the bogie in a tilting train structure is also very important. Kayserling

[Kay74] presents a technical description of the work done during the 1970s on power

bogies incorporating body-tilt via secondary air-suspensions for the ET 403 tilting train.

Huber [Hub97] presents the development of a bogie-based tilt option, in which he em-

phasises the simplicity and flexibility with such a configuration. Andersson [And94]

discusses the improvements in tilt and bogie dynamics based on the X2000 high speed

train. The author introduces the X2000 tilting train technology which comprises self-

steering bogies and presents the possibilities and limitations for future developments.

Limitations such as the delay in tilt systems, tilt performance in the presence of straight

track misalignments and infrastructure implementation are presented based on results

from the X2000 experience. He also discusses the safety criteria relevant to the bogie

dynamics and suspensions. A recent paper [AH99] reviews the principal designs of

bogies for tilting trains, the main issues being radial steering and active lateral suspen-

sions.

2.2.1 Work on Control studies

Published papers on tilt control studies may be found, though only few exist on de-

tailed theoretical control studies of tilt system design. One study presented the use of

inverse dynamics to define a tilt control strategy in order to determine the optimum

command signals used in a tilting train through curves [S+96], [G+98]. The inverse

dynamics method is introduced via a simple example and simulation using real track

data demonstrated the effectiveness of the method in the design of the tilt control sys-

tem. Pearson et al [PGP98] presented the design of an active anti-roll bar tilt system,

although for limited tilt action, emphasising the simplicity of the implementation and

the limitation factors introduced, and compared classical and optimal control methods.

The simulation results based on both the single-end and full vehicle models showed good

tilting performance for both methods, the optimal approach being marginally better.

A number of control studies in Japan presented the control of tilting trains via the

airsprings [H+91],[N+97], [N+72]. A recent study in China [Shu99] demonstrated the

control of tilting vehicles using adaptive control based on a new multi-body system

dynamics model, while another in Germany presented a control design using predictive
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[Bär99] control. A H∞ robust approach, although based upon experimental data was

presented in [MH99]. Moreover,a recent paper by Kent and Evans [KE00] discusses

on the analysis and control of a tilting train using ‘hardware-in-loop’ simulation based

upon a demonstration tilting vehicle. Such a technique is an effective tool for testing

before the introduction of real vehicles in passenger service.

2.2.2 Work on Application of Tilt

A number of well-established tilting train services exist in Europe, Japan and North

America, while new project work is undertaken [Goo97]. In Europe tilting trains op-

erate successfully in Italy, Sweden, Spain and Germany and newer development work

is on-going in Switzerland, Austria and Spain. The Italian tilting train Pendolino,

operating since 1988 [CPM96], uses hydraulic actuation and tilts above the secondary

suspension offering a maximum tilt angle of 8o. Sweden developed its own tilting train

the X2000 which started operating in 1990. The system uses hydraulic actuation and

tilts below the secondary suspension [A+95]. In the UK, Virgin will have its first tilting

train in operation. FIAT-SIG developed a tilt system which is based on Pendolino tilt

control but uses electro-mechanical actuation [For95]. In Germany, Adtranz (formerly

AEG) work involved a tilting system using electro-mechanical actuators [Sau96], a con-

cept initially investigated in the UK [PP83]. An experimental work from Siemens SGP

(Austria) is also based on electro-mechanical actuators [Str97], notably the control

strategy is not based on precedence control. Hydraulic actuation was used in experi-

ments undertaken by CAF in Spain on applying inverse dynamics to design the active

tilting system [S+96].

North American tilting train services use vehicles designed by Bombardier, with a

tilt configuration similar to the X2000 Swedish tilting train [Goo97]. On the other

hand, Japanese research work is mainly based on applying active tilting through the

airsprings, due to the narrow gauge of their conventional railway structure [H+91],

[N+72], [N+97]. Most of the Japanese systems use stored track data and train position

information [K+93], [H+91]. There are also new experimental work under way but

no details are given by the manufacturers. A more detailed survey on tilting train

applications can be found in Goodall [Goo97].

2.3 Summary

This review covers aspects on active suspensions and in particular tilting systems:

history, implementation, control studies, applications. The evolution of tilting control
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systems was mainly based on industrial studies, however a number of academic studies

is also referenced.
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Track Geometry and Tilt System

Assessment methods

Track geometry refers to the variety of parameters that describe both the layout and

path of a railway track. Railway vehicles are dynamically-complex systems which are

subject to such a variety of inputs from the track. Broadly these can be categorised

into the following two categories:

(a). Stochastic inputs (or Track irregularities), i.e. random changes in the track ver-

tical, lateral, and cross-level position,

(b). Deterministic (or Design track) inputs, such as curves and gradients.

This thesis deals with two specific forms of track geometry : (a) lateral track irreg-

ularities (random changes in the lateral track position) and (b) deterministic curved

sections.

3.1 Deterministic Inputs

Deterministic inputs arise from the intended geometrical layout of the track, which are

designed by civil engineers to ensure that the effect upon the passengers meets defined

comfort requirements. For tilting trains this relates to curved sections, i.e. track seg-

ments with measurable curvature (R−1) as shown in Figure 3.1.

To minimise the effect of the centrifugal forces experienced by the vehicle on the curve,

the track is leaned inwards or “canted” in order to rotate the vehicle inwards (Figure

3.1).
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R

ψ

Figure 3.1: Deterministic track curvature

The rates of cant and curvature are changing linearly during the curve transitions,

while settling on their steady-state values on steady-state curve, see Figure 3.3.

θο

θο = sin-1 ε
λ

ε

λ

Figure 3.2: Deterministic track cant

The resultant lateral acceleration is known as cant deficiency, which defines the differ-

ence between the existing degree of cant and the degree required to fully eliminate the

effect of centrifugal force at maximum allowable speed [För00]. Note that the amount

of cant angle is limited due to safety and technical reasons (i.e. slow freight trains on

curves, switching).

- 21 -



Chapter 3 Track Geometry and Tilt System Assessment methods

str
aig

ht
straight

tra
nsiti

on
steady-state

transition
R
-1

οθ
}= 0

R
-1

οθ
}i

ncreasin
g

linearly R
-1

οθ }max

R -1

οθ } decreasing
linearly

R -1

ο
θ }

= 0

θο

R-1 metres

metres

max

0

0

max

curve
starts

curve
ends

Figure 3.3: Curved track section

The expression for cant deficiency is

D =
v2

gR
− θo (3.1)

and depends upon vehicle speed v, track curvature R−1 and cant angle θo. Typically

curved tracks in the UK are designed to provide a cant deficiency of around 5.83o (1m
s2 ).

In addition, the transitions are carefully designed for appropriate cant and curvature

rates over a period of approximately 2-3 seconds. A summary of the deterministic track

profiles used in this thesis can be found in Appendix A.1.

3.2 Random (Stochastic) Inputs

No railway track is laid perfectly, as a consequence there will always be small devia-

tions from the ideal path or nominal centerline. Stochastic track inputs represent the

deviations of the actual track from the intended alignment, these could involve lateral

alignment and/or gauge, and vertical alignment and/or cross-level (cant deviations).

A sample of lateral track misalignments can be seen in Figure 3.4.
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Figure 3.4: Lateral Track misalignments

3.2.1 Representation of lateral track irregularities

This thesis involved the use of lateral track irregularities for the purposes of vehicle

response studies. However, accurately representing the lateral track irregularities is

difficult [Pra96]. An approximate expression for the lateral track measured spatial

spectra is:

SS(fs) =
Ωl

f3
s

m2(cycle/m)−1 (3.2)

The above information need to be converted into a temporal form in order to be used

in dynamic analysis. The relationship between the spatial wavelengths of expression

(3.2) and the temporal excitation, is velocity dependent (3.3). That means a given

wavelength would excite the vehicle with a different frequency at a different speed.

fs(cycles/m) =
ft(cycles/s)

v(m/s)
(3.3)

Substituting (3.3) into (3.2), the track wavelengths in terms of the temporal frequency

ft is given by:

SS(ft) =
Ωlv

3

f3
t

m2(cycle/m)−1 (3.4)

Expression (3.4) can be converted to a spectrum with a temporal base by performing

the following division:

ST(ft) m2(cycle/s)−1 =
SS(ft) m2(cycle/m)−1

v (m/s)
(3.5)

Usually the track input is in terms of the velocity rather than the displacement. Hence,

the first step is to express spectrum ST(ft) in terms of radians rather than cycles:

ST(ft) =
Ωlv

2

2πf3
t

m2(rad/s)−1 (3.6)
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Then the derivative of the above spectrum is derived by simply multiplying the spec-

trum by (2πft)
2. Thus,

ṠT(ft) (m/s)2(rad/s)−1 = ST(ft) m2(rad/s)−1 × (2πft)
2 (3.7)

which implies

ṠT(ωt) =
2πΩlv

2

ft
(m/s)2(rad/s)−1 (3.8)

The final expression comes in terms of cycles rather than radians, and is given by:

ṠT(ft) =
(2π)2Ωlv

2

ft
(m/s)2(Hz)−1 (3.9)

It can be easily seen that the lateral track velocity represents a coloured noise and has

a steady roll-off as frequency increases. The result of (3.9) is widely used in this thesis,

characterised by a lateral track roughness of {Ωl} of 0.33·10−8m. An appropriately

defined shaping filter was used to shape the noise spectrum. More details can be found

in Appendix A.1.

3.3 Tilt System Performance Assessment Methods

Although active tilting has become a standard technology incorporated into the railway

industry, a number of issues remain which need to be resolved for determining the

performance of tilting trains. Qualitatively, a good tilt control system will respond

principally to the deterministic track inputs, while ignoring as much as possible any

random track irregularities. In order to assess different tilt control approaches in a

objective manner, it is essential to define appropriate criteria and conditions.

3.3.1 Curve Transition Performance (Deterministic criterion)

The assessment of tilt controllers used in this thesis, is based upon work presented in

[GZE00] which proposes a more rigorous overall approach for accessing the determin-

istic performance of tilt control systems. The procedure is as follows:

The curve transition response is separated into two aspects

1. Investigation of the fundamental tilting response based upon the PCT factor (see

Appendix C)

2. Investigation of the transitional dynamic suspension effects based upon the “ideal

tilting” approach
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The assessment of tilting train curve transition performance based upon the PCT fac-

tors arose from the difficulties with tilting trains, and relies upon a comprehensive

experimental/empirical study undertaken in the 1980s [Har86]. This approach is now

accepted as European Standard [Ano98a] and details on the equations which provide

the values are given in Appendix C, from which it can be seen that the passenger com-

fort is affected by three variables: lateral acceleration, lateral jerk and roll velocity. The

expressions are derived empirically and provide the percentage of passengers who feel

uncomfortable during the curve transition, both standing and seated, hence providing

a realistic and objective measure.The PCT evaluation formula applies for the transition

entry on curves and reverse transitions, having a time duration of at least 2 seconds.

The fundamental tilting response, provided by the PCT factors, must be as good as a

passive vehicle at lower (non-tilting) speed, otherwise the passenger comfort will in-

evitably be diminished, regardless to the effectiveness of the tilt control system. It

is possible therefore to introduce the idea of “ideal tilting”, i.e. where the tilt action

follows the specified tilt compensation in an ideal manner, defined on the basis of the

maximum tilt angle and cant deficiency compensation factor. This combination of pa-

rameters can be optimised using the PCT factor approach for deterministic inputs in

order to choose a basic operating condition, and this will give “ideal” PCT values (one

for standing, one for sitting).

Moreover, it is necessary to quantify the additional dynamic effects which are caused

by the suspension/controller dynamics as the transitions to and from the curves are

encountered, essentially the deviations from the “ideal” response mentioned in the

previous paragraph. These deviations relate to both the lateral acceleration and roll

velocity, although the former is the main consideration. The aim is to minimise the

resultant deviations, and the values derived for a normal passive suspension can be

used as a guide for their acceptable size. The calculation for the deviations is defined

as follows:

• |ÿm − ÿmi |, the deviation of the actual lateral acceleration ÿm from the ideal

lateral acceleration ÿmi , in the time interval between 1s before the start of the

curve transition and 3.6s after the end of the transition (Figure 3.5)

•
∣
∣
∣θ̇m − θ̇mi

∣
∣
∣, the deviation of the actual absolute roll velocity θ̈m from the ideal

absolute roll velocity θ̈mi , in the time interval between 1s before the start of the

curve transition and 3.6s after the end of the transition (Figure 3.5)

The analysis is based upon a perfectly-aligned track in which the cant and curvature
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Figure 3.5: Calculation of deviation of actual from ideal responses for acceleration
and roll velocity

rise linearly with time/distance, while the tilting action is applied in a similarly syn-

chronised manner.

• Example of deterministic tilt performance

Consider the following curved track input:

Curve radius R=1000m; track cant θcant = 6o; transition length = 145m

Cant deficiency = 6o; passive vehicle speed vo= 159km
h

Passive roll-out (assumed) = 0.6o; P
(standing)
CT = 29.0%; P

(seated)
CT = 7.9%

For the tilting case two things need to be specified, the cant deficiency

compensation factor and the “speed-up” factor, i.e. the ratio of tilting

to non-tilting speeds. The right hand diagram of Figure 3.6 shows the

ideal values for a typical tilting condition - 30% increase in speed and 60%

cant deficiency compensation. Comparing the two diagrams shows that,

although the lateral acceleration is reduced, the jerk and roll rates are in-

creased compared to the passive case.

- 26 -



Chapter 3 Track Geometry and Tilt System Assessment methods

The PCT factors for the tilting train can then be evaluated, and compared

with those for the non-tilting vehicle; the required tilt angle also emerges

from the calculation process. Figure 3.7 shows respectively the two PCT

factors and the maximum tilt angle for speed-up factors of 15-35% with

compensation factors varying from 40-80%.

Time

Time

Acceleration (%g)

Roll velocity (deg s-1) Time

Jerk (%g s -1)
Transition (3.2 s)

11.5

3.6

1.7

Passive

Time

Time

Acceleration (%g)

Roll velocity (deg s-1) Time

Jerk (%g s -1)
Transition (2.5 s)

9.9

4.0

5.6

30% speed increase
Compensation factor = 0.6

Figure 3.6: Acceleration, jerk and roll rate time history
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Figure 3.7: PCT factors: (a)seated, (b)standing and (c)max tilt angle

From these it can be seen that to satisfy the requirement for seated pas-

sengers a 30% increase in speed is possible with a compensation factor of

0.63 and a tilt angle of 9 degrees; for standing passengers the corresponding

values are 0.69 and 10 degrees. It is clear therefore that, given the industry

maximum of around 8-9 degrees, 30% speed-up cannot be achieved without
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deteriorating the passengers’ comfort during curve transitions. For a 25%

increase in speed the values are: for seated 0.57 and 6.6 degrees; for stand-

ing 0.61 and 7.8 degrees.

Note that the transition length used is relatively long (more than 3sec at

non-tilting speed). Use of a shorter transition would increase the tilting

PCT , effectively reducing the speed-up potential.

Two sample control strategies were used for comparison based upon the

proposed method: a command-driven with precedence type and a recently

suggested model-based estimation scheme used for local/vehicle control (de-

tails can be found in [GZE00] and in Chapters 7, 9). The assessment in-

volves 30% speed increase and 60% tilt compensation. Since the passive

(non-tilting) case obviously provides a useful baseline for the size of the

deviations, this has been included, and Figures 3.8(a) and 3.8 show the

time histories. The “ideal” acceleration and roll rates are also shown on

the graphs so that the dynamic deviations caused by the suspension and/or

controller dynamics can be clearly seen. Table 3.1 provides a qualitative

comparison, presenting the r.m.s. values of deviations during the curve

transition.
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Figure 3.8: Vehicle responses
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Table 3.1: Sample of Comparison of RMS deviations
Passive Passive Precedence Model-based
@45m

s
@58.5m

s
@58.5m

s
Estim. @58.5m

s

Deviations Roll rate ( deg
s

) 0.009 0.012 0.017 0.016

Deviations Acceleration (%g) 0.90 1.775 1.05 1.40

3.3.2 Straight Track Performance (Stochastic criterion)

The analysis of the performance of the tilting suspension in the stochastic case relies

upon the calculation of precise values for the ride quality in response to the effects of

the track misalignments.

The criterion for straight track performance is to allow the degradation of the lateral

ride quality by no more than a specified margin compared with the non-tilting vehicle,

a typical value being 7.5% which is used throughout in this thesis. It is required for

the assessment of the tilt controller performance this comparison to be made at the

higher speed (note however that the passive vehicle is used only for comparison, and in

reality it will not run at excess speeds). Naturally a comparison of ride quality with a

lower speed vehicle would be also needed, although achieving a acceptable ride quality

at elevated speeds will involve either improved overall suspensions or better quality

railtrack, i.e. not a function of the tilt controller [GZE00].

It is worth mentioning that a number of tilt control approaches include a facility where

the tilt action is disabled on straight track, for example with a roll gyroscope on the

bogie provided to indicate the start of the curve. Nonetheless these are generally

effective only on long sections of straight track. Still, interactions between the lateral

suspensions and the tilt controller will occur both on steady curves and immediately

following a curve, thus the proposed criterion is a sensible target, even with these

enhanced schemes.

3.4 Ride Quality Calculation Methods (Random Inputs)

Ride quality is generally characterised by the Root Mean Square (R.M.S.) acceleration

perceived by the passengers when the vehicle is excited by the roughness of the track

irregularities.

There are three methods of calculating the R.M.S. acceleration values for ride quality

used in this thesis. The first method is is the well known frequency response analysis,

the second is the time based covariance analysis, while the final one is the time history
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analysis.

Ride quality is closely connected to human evaluation of comfort, and its assessment

is based upon given statistics and weighting factors [För00]. However, there is much

argument concerning the appearance of such relations, i.e. choice of weights, statisti-

cal approaches or evaluation formulae. In the author’s opinion the raw accelerations

provide an effective comparative measure of ride quality without the need of additional

weighting functions. Thus, the approach for ride quality assessment described in this

thesis is based upon the use of raw accelerations.

3.4.1 Frequency response analysis

The output power spectrum Sy(ω) is equal to the square of the system transfer function

H(jω) multiplied by the input power spectrum Sw(ω) [Tho93]

Sy(ω) = |H(jω)|2 Sw(ω) (3.10)

In the case where wi, i = 1, 2, ..., N uncorrelated inputs exist for which the cross-

spectral density terms are zero, expression (3.10) can be generalised to define the total

output power spectrum Sytot(ω)

Sytot(ω) =

N∑

i=1

|Hm(jω)|2 Swi(ω) (3.11)

Hm(jω) represents the transfer functions between the output quantity and the various

input signals. Usually this can be multivariable, i.e. when R.M.S. values for more than

one output signals are required relative to a number of inputs, and can be represented

as

Hm(jω) = C (jωI −A)−1W +Dw (3.12)

where A is the state matrix, W the disturbance matrix, C the output state matrix and

Dw the output distribution disturbance matrix.

The mean square value of the response can be now calculated, for a SISO system, using

the following expression

y2 =

∫ ∞

−∞

|H(jω)|2 Sw(ω)dω (3.13)

Note that care should be taken when defining the Fourier Transform for the calculation

of the mean square value. Both the definition of the Fourier Transform and the input

power spectrum should be subject to the same function (either with respect to rads/s or

w.r.t. Hz ). Otherwise, the integration will undoubtedly cause confusion regarding the
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frequency and the result will not be as expected. For example an alternative definition

for the mean square value is

y2 =
1

2π

∫ ∞

−∞

|H(jf)|2 Sw(f)df (3.14)

where Sw(ω) was replaced by Sw(f)
2π so as to integrate w.r.t. Hz.

In practice it is preferable to work with spectral densities over only the positive range

of frequencies, thus (3.13) changes into

y2 = 2

∫ ∞

0
|H(jω)|2 Sw(ω)dω (3.15)

Finally, the root mean square value of the response is given by

yrms =

√

y2 =

√

2

∫ ∞

0
|H(jω)|2 Sw(ω)dω (3.16)

When Sw(ω) is not flat spectrum (i.e. input noise is not white), it is a matter of re-

arranging the system response to also include the shaping filter function Hf (jω) of the

noise spectrum, i.e. H̃(jω) = H(jω)Hf (jω) .

Lateral ride quality is a very important quantity in this thesis, and its R.M.S. can be

evaluated with respect to the track velocity input spectrum from

ÿmrms =

√

2

∫ ∞

0
|Hrq(jω)|2 ṠT (ω)dω (3.17)

where Hrq(jω) is the transfer function between the measured lateral acceleration and

the lateral track velocity input, ṠT is given in (3.8). Sufficient results can be obtained,

from expression (3.16), to indicate as to whether the tilt system provides the required

ride quality. This procedure can be extended for systems with time delays [Pad95] if

required.

3.4.2 Time based Covariance analysis

The frequency-domain analysis can sometimes be computationally intensive, especially

in the case of large scale systems, the reason being the requirement of a complete nu-

merical integration. An alternative technique is the time-based covariance analysis,

which utilises the solution of the Lyapunov matrix stability equation.
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In this method two stages are required: (i) the calculation of the state transition matrix

for a stable dynamic system, and (ii) the solution of the Lyapunov equation (the theory

behicd this concept is included in Appendix B.1). The vehicle model can be represented

using the following linear state-space formulation:

ẋ = Ax+ Γw (3.18)

y = Cx+Hw (3.19)

where A is the state matrix, Γ the disturbance input matrix and w the disturbance

input (note that when the model is strictly proper H = 0). The system is driven by one

random input which is a Gaussian white noise process and can be used in Lyapunov

equation (3.20) to provide the stationary state covariance matrix Px (Ṗx = 0) of the

system.

APx + PxA
T + ΓQwΓT = 0 (3.20)

where Qw is the covariance of the (white) noise input w(t). Matrices A,ΓQwΓT are

square matrices of identical sizes, while Px is a positive definite square matrix, and

also symmetric if ΓQwΓT is symmetric. It should be noted that the positive definite

solution of the Lyapunov equation exists only for stable systems and Px is finite only

when the system is strictly proper.

The covariance of the output vector can be derived by

Py = CPxC
T (3.21)

while the R.M.S. for the individual output quantities is given by

yrms =
√
∣
∣Pyij

∣
∣, for i = j = 1, 2, ..., n (3.22)

Sometimes the model might include pure integrators which is unacceptable with the

covariance analysis, these need to be modified using appropriate low pass filters to

make the technique workable.

In practice there is no white noise excitation process with infinite bandwidth. In such

cases it is viable to develop a shaping filter to modify the white noise input to represent

the characteristics of the actual physical process (i.e. coloured noise processes).The next

step is to incorporate the shaping filter into the dynamics of the system and follow the

same procedure as before [Pad95].
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3.4.3 Time history analysis

A different approach to find the R.M.S. of a signal is to investigate the vehicle model

output responses with respect to the track data recordings. This technique is particu-

larly useful in the case of non-linear systems. Note that both the Frequency domain and

Time-based covariance analysis previously described, require the system to be repre-

sented in a linear state-space form. Thus in the case of non-linear systems or in systems

incorporating active non-linear suspensions, time history analysis may be preferable.

The simplest way of analysing the system is to obtain the track data and simulate the

response of the railway vehicle model on a computer. The outputs from the simulation

will be time histories and either can be used to provide the R.M.S. values directly, or

a ‘Fast Fourier Transform’ can be performed to analyse the frequency information of

the signals (system resonances).

The model can be arranged in a state-space form, i.e.

{

ẋ = Ax+ Γẇ

y = Cx+Hẇ

}

which can

represent either the passive vehicle model or any additional active suspensions. The

model can be also arranged to include non-linearities if necessary. An appropriate ride

index can be then formed by selecting the different variables of interest via matrix C.

The root mean square value for a given output can be found using

yrms =
√

E [y2(t)] =

√

y2 =

√

lim
T→∞

1

T

∫ T

0
y2dt (3.23)

or similarly

yrms ≈

√
√
√
√

1

n

n∑

i=1

y2
i (3.24)

where n is the number of elements in the data sample. From the above expressions it can

be easily seen that the accuracy of the R.M.S. value depends upon the available duration

of track data (i.e. T → ∞) and also the number of sample points n. Therefore for

accurate results a sufficiently long track should be selected together with an adequate

number of sample points. The same applies if an FFT is to be employed, a sufficient

number of points should be used to reveal accurate information of the signal frequency

content (i.e. improve the resolution).

There may be some minor differences in the stochastic assessment of the control strate-

gies from case to case. This is not a problem due to the fact that some cases incorporate

the time history analysis, while other use the covariance approach.
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3.5 Summary

This chapter has introduced the area of track geometry for railway applications related

to both deterministic and stochastic cases. It also presented a way to correctly rep-

resent the characteristics of the lateral track misalignments for the stochastic approach.

The tilt performance assessment is separated into two aspects: (i) the deterministic

criterion based upon the PCT factor and the deviations from the ‘ideal’ tilting re-

sponses, and (ii) the stochastic criterion based upon the evaluation of ride quality (rms

acceleration levels). Three methods were presented for the purposes of calculating

rms values: (i) Frequency response analysis, (ii) time-based covariance, and (iii) time

history. Examples of the assessment approaches can be found throughout this thesis.

- 34 -



Chapter 4

Tilt Control Prerequisites

4.1 System Requirements

In order to apply active tilt control on railway vehicles, the following hardware and

software specifications are necessary:

1. sensors to provide continuous measurements of the required signals for the control

scheme (typically body lateral acceleration, secondary suspension angle, body

absolute roll velocity)

2. a controller structure to determine the tilt demand necessary to compensate for

the perceived lateral forces during the curved track duration and

3. an active means to rotate the vehicle body, this may involve hydraulic, pneumatic

or electro-mechanical actuators

As discussed earlier in the thesis, types of tilt currently used by manufacturers are: tilt

across, below or above the secondary suspensions.

4.2 Full vs Partial Tilt

In the early days of tilt, it was normal to reduce the lateral acceleration on steady-

state curve to zero. However this approach was quickly abandoned because it was

found that the high roll rates of the body during the curve transition caused a signifi-

cant proportion of the passengers to experience motion sickness, a phenomenon which

previously had been extremely rare in trains. As a result tilt control strategies have

been adapted to utilise partial tilt compensation, i.e. compensate only for a portion of

steady-state curving acceleration. This approach not only reduces roll rates but also

minimizes the conflict in human perception which is believed to play an important role
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in motion sickness, see Figure 4.1. Therefore, partial tilt control is employed in the

studies throughout this thesis.

transition steady curve
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tio
n

timeac
ce

le
ra

tio
n

time

transition steady curve

100%100%

Full compensation Partial compensation

- high roll rates
- travel sickness

- lower roll rates
- smoother transition

60%-75%

Figure 4.1: Full vs Partial Tilt Compensation

4.3 Tilt Control Objectives

The performance of the tilt control system on the curve transitions is critical. Primar-

ily the passenger ride comfort provided by the tilting vehicle should not be degraded

compared to the non-tilting vehicle speeds. The main objective of a tilt control system

is to provide an acceptably fast response to changes in track cant and curvature (de-

terministic features) while not reacting significantly to track irregularities (stochastic

features). However, in any tilt control system there is a fundamental trade-off between

the vehicle curve transition response and straight track performance. It should be noted

at this point that any tilt control system directly controls the secondary suspension roll

angle and not the vehicle lateral acceleration.

Incorporating an excessively fast controller may provide high roll rates and also jerk

levels which are unacceptable. On the other hand, a slow controller will provide low

roll rates and probably jerk levels, thus giving an unacceptable increase of the lateral

acceleration during the curve transition before compensating by tilting the vehicle body.
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The lateral acceleration experienced on the vehicle body during a curved track consists

of

a. a component due to the deterministic track features (cant and curvature) com-

bined with the body tilt angle and

b. a component due to the suspension dynamic response (lower sway oscillations)

to both deterministic and stochastic track features.

In summary, the main performance requirements for the tilt control system are:

1. to reduce the lateral acceleration perceived by the passengers on curves,

2. to provide a comfortable response during curve transitions (tilting trains are

designed to operate at higher speeds and the curve transition time therefore

decreases) based upon the PCT and “ideal tilting” criterion and

3. to maintain the straight track performance within acceptable limits (specified as

not more than 7.5% deterioration compared to the passive suspension system at

the same speed).

From a control point of view the objectives of the tilt control system can be translated

as: increasing the response of the system at low frequencies (deterministic track fea-

tures) while reducing the high frequency system response (stochastic track features)

and maintaining stability.

4.4 Tilting Vehicle Configuration Cases

Two tilting vehicle configurations are employed in this thesis for the purposes of tilt

control applications. The first case, which forms the main part of this research work,

involves a vehicle model with an active anti-roll bar, which is a tilt across the secondary

suspension application. The parameters shown in the ‘ARB’ column of Table 4.1 were

arbitrarily chosen to represent realistic conditions.

The second case, ‘Mechanism’, is an extension of the studies to include a more sophisti-

cated vehicle model, which contains a tilting mechanism situated below the secondary

suspensions, in essence providing tilt below the secondary suspension level. The de-

terministic specifications were based upon data used in [KE00], which are somehow

different from the ‘ARB’ model. Moreover, this type of vehicle is currently used in

practice by most tilting train operators. Table 4.1 lists the detailed specifications for

the above two cases. Note that all active tilt control cases refer to high speed, i.e.
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58(m
s ) for both test cases.

Table 4.1: Tilt application test cases
ARB Mechanism

(CASE A) (CASE B)

Tilt compensation 60% 75%

deterministic track∗ (units)

maximum cant angle θomax 6.00 5.84 (degrees)

maximum curve radius Rmax 1000.00 1200.00 (m)

transition length 145.00 145.00 (m) @ each end

track length 1200.00 1200.00 (m)

stochastic track†

track roughness Ωl 0.33e-8 0.33e-8 (m)

track spatial spectrum ST
‡Ωl/f

3 ‡Ωl/f
3
(

m2

(cycle/m)

)

track length 1200.00 1200.00 (m)

[(non-tilting) nominal speed: 45m/s], [(tilting) high speed: 58m/s]
∗ curved track, † straight track lateral irregularities, ‡ see Chapter 3

The next step is to obtain appropriate models for the above vehicle configurations and

design local, i.e. single vehicle based (without using precedence), tilt control structures

based upon the above prerequisites. These concepts are discussed in the remaining

parts of this thesis.

- 38 -



Part I

Active Anti-Roll Bar (ARB)

Studies

39



Chapter 5

Modelling of Vehicle Dynamics

using Active ARB

Obtaining a correct model is essential in any simulation. Based on the design of the

control model, conclusions for a number of cases can be drawn or predicted without

the need of a real life experiment. After the required result is obtained, it can be

appropriately applied in practice resulting in time and money saving.

A railway vehicle is a dynamically complex structure. It consists of: a vehicle body, two

bogies per vehicle and two wheelsets per bogie. Each of the bodies is characterised by

six degrees of freedom: roll, lateral, yaw, pitch, longitudinal and vertical modes. Flexi-

bilities, non-linearities and parasitic effects can affect the dynamics and the behaviour

of the vehicle in unexpected ways. In addition, many of the dynamic modes of the

system are coupled and the coupling in certain situations is very significant which un-

avoidably causes difficulties in mode identification (i.e. vehicle lateral and roll modes)

and also in control system design.

In this chapter mathematical models, based upon the Newtonian approach, of increas-

ing complexity were developed to encapsulate the lateral and roll dynamics of the tilting

vehicle system. The work was based upon linearised equivalents of the end-view of a

vehicle, and in this part involved an active anti-roll bar system to provide the tilt ac-

tion [PGP98]. The advantages of active ARBs results from their relative simplicity, i.e.

small weight increase, low cost, easily fitted as an optional extra to build or as a retro-fit.

A simplified 2 D-o-F end-view vehicle model based upon the anti-roll bar model was

- 40 -



Chapter 5 Modelling of Vehicle Dynamics using Active ARB

used for modal analysis. A non-linear model extension based upon the simplified end-

view vehicle was used for basic vehicle dynamics validation. Throughout the work,

advanced mathematical models were incorporated for model validation and control

design.

5.1 Linear Two Degree-of-Freedom Endview Model

A simplified vehicle end-view model version is developed for modal analysis (no active

control was considered for this part of the work) and is shown in Figure 5.1(a). Such

a configuration represents a two degree-of-freedom model, lateral and roll motion of

the vehicle body. For simplicity the bogie and the wheelsets were assumed to be fixed

on the track, and the vertical motion is ignored. However the effects of the vertical

suspensions on the vehicle roll motion is included by using a pair of airsprings. The

model contains also the stiffness of an anti-roll bar connected between the body and

the bogie frame. Referring to both Figure 5.1(a) and 5.1(b) a mathematical model for

the system can be derived.
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hg1
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(a) End-view model
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(b) Free body diagram

Figure 5.1: Two degree-of-freedom model

The body lateral degree-of-freedom is given by (using small angle approximation) the

following expression

mvÿv +
2∑

i=1

Fyi = −FR + Fg − F ′′ (5.1)
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where,

Fy1 = ksy(yv − h1θv − yo) + csy(ẏv − h1θ̇v − ẏo) (5.2)

Fy2 = Fy1 , FR = mv
v2

R
, Fg = mvgθo, F ′′ = mvhg1 θ̈o (5.3)

By incorporating equations (5.2) and (5.3) into (5.1), the lateral degree-of-freedom

becomes

mvÿv = −2ksy(yv − h1θv − yo) − 2csy(ẏv − h1θ̇v − ẏo) −mv(
v2

R
− gθo + hg1 θ̈o) (5.4)

Likewise for the equation which describes the body roll degree-of-freedom the following

apply

ivrθ̈v − h1

2∑

i=1

Fyi = T + d′F ′ + d1(Fz1 − Fz2) − T ′′ (5.5)

where,

Fz1 = −kazd1θv + kszd1(θv − θr) (5.6)

Fz2 = −Fz1 , T = −kvrθv, F ′ = mvg(yv − yo), T ′′ = ivrθ̈o (5.7)

The incorporated extra roll state for the airspring linear model (see Appendix D.1.1)

is governed by

θ̇r = −θr
(ksz + krz)

crz
+
ksz

crz
θv (5.8)

Substituting (5.2), (5.6) and (5.7) in (5.5), the overall mathematical description of the

body roll degree-of-freedom is as follows

ivrθ̈v = 2h1(ksy(yv − h1θv − yo) + csy(ẏv − h1θ̇v − ẏo)) − kvrθv

− 2d2
1(kaz + ksz)θv + 2d2

1kszθr +mvg(yv − yo) − ivrθ̈o (5.9)

The above mathematical expressions correspond to local track references, and the trans-

lation and rotation of these reference axes associated with curves were allowed for, F ′′

and T ′′, in the equations. Note that equation (5.9) includes an end moment effect,

F ′ = mvg(yv − yo), which models the roll effect of the body weight due to the lateral

displacement of its centre of gravity on the curve (a schematic representation of the

cog is shown in Figure 5.3(a)). There exists significant coupling between the lateral

and roll modes, which is depicted in the block diagram of Figure 5.1 (see page 44).
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Now (5.4), (5.9) and (5.8) can be arranged to represent the model, for system analysis,

in state space form

ẋ = Ax + Γw (5.10)

y = Cx + Hw (5.11)

Expression (5.10) is the system state equation, while (5.11) denotes the system output

equation (which is not used in this section). The individual elements of (5.10) are

ẋ =
[

yv θv ẏv θ̇v θr

]T
w =

[

R−1 θo θ̇o θ̈o yo ẏo

]T
(5.12)

A =











0 0 1 0 0

0 0 0 1 0
−2ksy

mv

2ksyh1

mv

−2csy

mv

2h1csy

mv
0

2h1ksy+mvg
ivr

−(kvr+2h2
1ksy+2d2

1(kaz+ksz))
ivr

2h1csy

ivr

−2h2
1csy

ivr

2kszd2
1

ivr

0 ksz
crz

0 0 −(ksz+krz)
crz











(5.13)

Γ =











0 0 0 0 0 0

0 0 0 0 0 0

−v2 g 0 −hg1 0 0

0 0 0 −1 −g 0

0 0 0 0 0 0











(5.14)

The system modes based upon the above representation and using the parameter values

listed (see Appendix A.2.1).

Table 5.1: System modes of the two degree-of-freedom model
Mode Eigenvalues Damping(%) Frequency(Hz)

1st (Lower sway) −1.13 ± 4.6j 24.0 0.75

2nd (Upper sway) −2.20 ± 11.0j 19.6 1.78

3rd (Airspring) −25.1 ± 0.0j 100.0 4.0

It can be seen from the table that the first two modes are not marked distinctively as

‘lateral’ and ‘roll’ instead they are referred to as ‘lower sway’ and ‘upper sway’. This

situation appears due to the complex behaviour of the vehicle system and the coupling

between the lateral and roll motions which become evident in the next section.
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5.2 Identification of Vehicle Sway Modes

Referring to the equations of motion in Section 5.1, it can be seen that there exists

substantial coupling between the lateral and roll modes. This results in two modes,

called ‘sway modes’ which combine both lateral and roll motion. Their centres of

motion will be located at two points, called ‘motion centers’ or ‘nodes’, other than

the vehicle body centre of gravity. No motion occurs at these nodes, i.e. a passenger

situated at a node would not move if the vehicle was moving in the corresponding

modal motion. In the case where the sway node appears above the vehicle body c.o.g,

the mode is called ‘upper sway’ and its motion is predominantly roll (see Figure 5.5(a)).

The location of the sway node below the c.o.g of the vehicle body incorporates a ‘lower

sway’ mode characterised predominantly by a lateral motion (see Figure 5.5(b)). The

analysis of node location can be very sensitive to slight parameter variations, and plays

an important role in the selection of parameter values [Pal99].
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Figure 5.3: (a) Body cog displacement on curved track (2-DoF model). (b) Sway
mode analysis model

The next step is to identify those modes based upon the equations of motion of the

two degrees of freedom model, see Figure 5.3(b), (models of higher complexity would

result in rather difficult analysis) with the following assumptions for simplicity:

1. Damping coefficients set to zero.
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2. Inputs set to zero (free system response).

Note that item (1) will also result in a simpler airspring model representation (having

a single airspring vertical stiffness).

Consider equations (5.4) and (5.9), by setting the damping coefficient and the inputs

to zero (i.e. free vibration) , they become

mvÿv + 2ksy(yv − h1θv) = 0 (5.15)

ivrθ̈v − 2h1ksy(yv − h1θv) + kvrθv + 2d2
1kairθv −mvgyv = 0 (5.16)

Note that now kair = kaz + kszkrz
(ksz+krz) , which is the total airspring stiffness after the

simplification made for the airspring reservoir (crz = 0). Collecting terms and re-

writing (5.15) and (5.16) into differential form produces

(mvs
2 + 2ksy)yv − 2ksyh1θv = 0 (5.17)

−(mvg + 2h1ksy)yv + (ivrs
2 + 2d2

1kair + 2ksyh
2
1 + kvr)θv = 0 (5.18)

Substitute yv(t) = A1e
st and θv(t) = A2e

st into (5.17) and (5.18) and cancel the est

terms to get

(mvs
2 + 2ksy)A1 − 2ksyh1A2 = 0 (5.19)

−(mvg + 2h1ksy)A1 + (ivrs
2 + 2d2

1kair + 2ksyh
2
1 + kvr)A2 = 0 (5.20)

The solutions for A1, A2 will be non-zero iff the determinant

∣
∣
∣
∣
∣

mvs
2 + 2ksy −2ksyh1

−(mvg + 2h1ksy) (ivrs
2 + 2d2

1kair + 2ksyh
2
1 + kvr)

∣
∣
∣
∣
∣
= 0 (5.21)

Expanding the above determinant gives

(mvs
2 + 2ksy)(ivrs

2 + 2d2
1kair + 2ksyh

2
1 + kvr) − 2ksyh1(mvg + 2h1ksy) = 0 (5.22)

or

mvivrs
4 + (mvkvr + 2mvh

2
1ksy + 2ivrksy + 2d2

1kair)s
2

+ 2ksy[(kvr + 2h2
1ksy + 2d2

1kair) − h1(mvg + 2h1ksy)] = 0 (5.23)

The polynomial in (5.23) is of fourth order and thus has four roots. It can be solved

for s2 using the quadratic formula because it is quadratic in s2 (note that the s and s3
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terms are absent). The mode ratio can be obtained from either (5.19) or (5.20). By

choosing (5.19) the ratio is given as

A1

A2
=

2ksyh1

mvs2 + 2ksy
(5.24)

The mode ratio can be thought of as the ratio of the amplitudes of yv and θv in that

mode. It can be seen from Figure 5.2 that tanψ = yv

θv
and for small angle approximation

yv

θv
=
A1

A2
≈ do (5.25)

where do is the distance of the node for each mode. Note that the amplitude of yv would

be zero if 2ksyh1 = 0, hence do would be zero and the modes would be uncoupled (the

node for each mode would be at the vehicle c.o.g). This is not the case because both

ksy, h1 6= 0 and of course the modes are coupled.

do

yv
+

ψ

θv

node

θv

yv

+ve clockwise

+ve to the right

Figure 5.4: Location of nodes for the sway motions

Using the parameter values given in Appendix A.2.1 and dividing by mvivr, the char-

acteristic equation given by (5.23) becomes

s4 + 149.17s2 + 2688.8 = 0 (5.26)
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The roots in s2 are s21 = −128.2 and s22 = −20.97 (s1 = ±11.32j, s2 = ±4.58j), while

the corresponding frequencies are 1.8Hz and 0.73Hz respectively. Note that both modes

are oscillatory. Substitute numerical values for the parameters into (5.24)

A1

A2
=

468

19s2 + 520
=
yv

θv
≈ do (5.27)

1. For mode 1 (s21 = −128.2)=⇒ do1 ≈ 24.632
−128.2+27.368 = −0.244.

This node is situated 0.244m above the vehicle c.o.g (yv

θv
< 0, also distances

are selected negative above the vehicle c.o.g and positive below the c.o.g for the

mathematical modelling). The natural frequency for this mode is 1.8Hz and it is

the ‘upper sway’ mode (Figure 5.5(a)).

2. For mode 2 (s21 = −20.97)=⇒ do2 ≈ 24.632
−20.97+27.368 = 3.852.

This node is situated 3.852m below the vehicle c.o.g (yv

θv
> 0). The natural

frequency for this mode is 0.73Hz and it is the ‘lower sway’ mode (Figure 5.5(b)).

node
(upper sway

centre)

vehicle
c.o.g

0.244m

(a) Upper Sway

node
(lower sway

centre)

vehicle
c.o.g

3.852m

(b) Lower sway

Figure 5.5: Sway mode centres

The analysis was based upon the assumption of zero damping coefficients. In reality

the system includes viscous damping and this makes the modal analysis more difficult

to accomplish. However there exist ways of simplifying the problems by re-arranging

this damping into, a simpler in terms of study, proportional form [Ewi89, Gaw98].
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5.3 Non-linear Three Degree-of-Freedom Endview Model

To extend the two degree-of-freedom model concept and also to validate the accuracy of

the “local track reference” linear approach, a non-linear vehicle model was formulated

to include three degrees of freedom: (i) vertical, (ii) lateral and (iii) roll, of the vehicle

body. As in Section 5.1, the bogie and wheelsets of the vehicle formed a solid system

directly connected to the track. Moreover, an appropriate representation of a pair of

airsprings was included to comply with the non-linear approach. The stiffness of an

anti-roll bar was also included, connected between the body and the bogie frames. The

mathematical equations refer to absolute reference axis (i.e. the horizontal plane and

not the canted track) and small angle approximation was applied when appropriate.
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Figure 5.6: 3 D-o-F ARB model setup

The approach is based upon Figure 5.6(a) where the forces are calculated as follows:

(i) FzL = mg
2 + δzLkz, FzR = mg

2 + δzRkz, where δzL, δzR are perpendicular relative

movements with reference to the base of the suspension points, and kz the vertical

suspension stiffness. (ii) FyL = δyky, FyR = δyky, where δ1 is the relative movement

parallel to the base, and ky the overall lateral suspension stiffness.
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In the vertical direction (z ↑)

mvz̈v =

{(∑

F
)

z↑

}

=

(
2∑

i=1

Fzi

)

cos θo +

(
2∑

i=1

Fyi

)

sin θo − Fg (5.28)

In the lateral direction (y →)

mvÿv =

{(∑

F
)

y→

}

= −

(
2∑

i=1

Fyi

)

cos θo +

(
2∑

i=1

Fzi

)

sin θo − FR (5.29)

In the roll direction (θ y)

mvθ̈v = T + d11Fz1 − d12Fz2 + h11(Fy1 + Fy2) (5.30)

where d11 = d1 + yg, d12 = d1 − yg, and h11 = h1 − zg. Variables yg, zg characterise the

body c.o.g slide on curved track and are calculated from Figure 5.7. In more details yg

is the lateral displacement of the vehicle body c.o.g parallel and relative to the canted

track, while zg is the vertical displacement of the body c.o.g perpendicular and relative

to the canted track. Note that in both cases is assumed that Fz1 , Fz2 , Fy1 , Fy2 continue

to act at the position before the c.o.g slide. In this case, the model takes into account

the end moment effect implicity compared to the linear models which include the effect

explicitly. To get a correct comparison between the 2 D-o-F linear and this model, the

vertical distance of the secondary suspension from the track is set to h̄2 = h2 + hg2

(note that it is the track that is moving in this case).

The individual elements of the above expressions are given by

Fz1 = −kazδza1 − kszδzs1 +
mg

2
, Fz2 = −kazδza2 − kszδzs2 +

mg

2
(5.31)

δza1 = zv + dθv − (zo + dθo), δza2 = zv − dθv − (zo − dθo) (5.32)

δzs1

δza1

(s) =
δzs2

δza2

(s) =
krz
crz

+ s
krz+ksz

crz
+ s

(5.33)

More details on the airspring modelling procedure for this model version are presented

in Appendix D.1.2. For Fy1 , Fy2 the following do apply

Fy1 = ksy(“lat. displ. @ deflected posn.” - “lat. displ. @ static posn.”)

+ csy(“lat. velocity @ deflected posn.” - “lat. velocity @ static posn.”)
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∴ Fy1 = ksy(yv − h1θv − yo − h̄2θo) + csy(ẏv − h1θ̇v − ẏo − h̄2θ̇o), (Fy2 = Fy1) (5.34)

also

T = −kvr(θv − θo − δa) (5.35)

and finally

yg = (yv − yo) cos θo + zv sin θo − hg1 sin θo (5.36)

zg = zv cos θo − (yv − yo) sin θo + hg1(1 − cos θo) (5.37)
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Figure 5.7: Body c.o.g. displacement on curved track (3 D-o-F model)

The overall expressions for the equations of motion are

mvz̈v = −kaz(zv + dθv − zo − dθo) cos θo − kaz(zv − dθv − zo + dθo) cos θo

− kszδzs1 cos θo − kszδzs2 cos θo + 2ksy(yv − h1θv − yo − h̄2θo) sin θo

+ 2csy(ẏv − h1θ̇v − ẏo − h̄2θ̇o) sin θo −mvg(1 − cos θo) (5.38)
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mvÿv = −2ksy(yv − h1θv − yo − h̄2θo) cos θo − 2csy(ẏv − h1θ̇v − ẏo − h̄2θ̇o) cos θo

− kaz(zv + dθv − zo − dθo) sin θo − kaz(zv − dθv − zo + dθo) sin θo

− kszδzs1 sin θo − kszδzs2 sin θo +mvg sin θo −mv
v2

R
(5.39)

ivrθ̈v = −kvr(θv − θo − δa) + (d1 + yg)(−kaz(zv + dθv − zo − dθo) − kszδzs1 +
mg

2
)

− (d1 − yg)(−kaz(zv − dθv − zo + dθo) − kszδzs2 +
mg

2
)

+ 2(h1 − zg)(ksy(yv − h1θv − yo − h̄2θo) + csy(ẏv − h1θ̇v − ẏo − h̄2θ̇o)) (5.40)

The system was developed in Simulink and the ‘parent’ diagram can be seen in Figure

5.10 (see page 55).

5.3.1 Comparison between the 2 D-o-F linear and 3 D-o-F non-linear

models

The next step is to compare the two models in order to find how well does the 2-DoF

linear approach match its 3-DoF extended non-linear equivalent. It is preferred for

control design to use linear models, however recall that linear models should be a good

representation of the real system for the control designs to apply.

It can be seen from Table 5.2 that the two models have identical major modes, i.e.

Body upper, lower sway and Airspring vertical. The modes of the non-linear model

were provided by a linearised state-space equivalent extracted from Simulink with the

advanced linearisation method linmod2. The operating point is at 0, i.e. straight track,

which is acceptable due to the fact the angles are small). The deterministic simulation

Table 5.2: Linear and Non-linear System modes
Linear 2 D-o-F

Mode Eigenvalues Damping(%) Frequency(Hz)

1st (Lower sway) −1.13 ± 4.6j 24.0 0.75

2nd (Upper sway) −2.20 ± 11.0j 19.6 1.78

3rd (Airspring) −25.1 ± 0.0j 100.0 4.0

Non-Linear 3 D-o-F

Mode Eigenvalues Damping(%) Frequency(Hz)

1st (Lower sway) −1.13 ± 4.6j 24.0 0.75

2nd (Upper sway) −2.20 ± 11.0j 19.6 1.78

3rd (Airspring) −25.1 ± 0.0j 100.0 4.0

results in Figure 5.8(a), Figure 5.8(b) show small to negligible differences between the
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two models. This is expected because the non-linear model is relative to the horizontal

track/global references, while the linear is relative to the canted track/local references.

In the case of straight track, Figure 5.8(b), Figure 5.9(a), the behaviour is identical for

0 200 400 600 800 1000 1200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

track (m)

ac
ce

l. 
(m

s−
2 )

Measured Body Lateral  Acceleration

3−DoF non−linear
2−DoF linear

(a) Lateral acceleration

0 200 400 600 800 1000 1200
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

track (m)

an
gl

e 
(d

eg
re

es
)

Body roll angle

3−DoF non−linear
2−DoF linear

(b) Body roll

Figure 5.8: Time history results for deterministic track

both models. Note that on straight track the cant angle is zero and this does not really

affect the way of modelling the system. The characteristics of the tracks used for this

purpose are listed in Table 5.4 on page 60, and for correct model comparison no vertical

and cross-level irregularities were used for straight track simulation in the non-linear

case. Therefore, the linear approach is a good basis for designing control systems for
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Figure 5.9: Time history results for stochastic track

the real system (it was not necessary to include a full non-linear vehicle for this part of

the work). More details on linear/non-linear model comparison can be found in Part

II which presents tilting vehicles using tilting bolsters. The next section introduces the
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vehicle bogie into the system and implements a 4-DoF linear model which will be used

for control system design.
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5.4 Linear Four Degree-of-Freedom Endview Model

This section develops a linear four degree-of-freedom vehicle model, which includes the

lateral and roll dynamics of both the body and the bogie. As in Section 5.1 the ver-

tical suspensions are represented by a pair of airsprings, which only contribute to the

roll motion of the vehicle (vertical degrees of freedom are ignored). At this stage of

the project it was not necessary to model the dynamics of the wheelsets, while their

effect is taken in account for the simulation concerning track irregularities (i.e. low

pass filtering of around 5Hz for the track input signal). The model now also contains

the stiffness of an anti-roll bar connected between the body and the bogie frame. To

provide active tilt a rotational displacement actuator, assumed to be an ideal actuator

in this case, is included in series with the roll stiffness, i.e. the concept of an ‘active

anti-roll bar’ [PGP98]. The list of parameter values used in this section can be found

in Appendix A.2.1, while the description of the symbols can be found in the Glossary.

The mathematical model developed based on Figure 5.11(a) and 5.11(b) is presented

below. The steps taken are very similar to the modelling of the simpler two degree-of-

freedom end-view model. Note that small angle approximation is used throughout the

procedure.
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Figure 5.11: Four degree-of-freedom model
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The equation of motion that describes the body lateral degree-of-freedom is given by

mvÿv +

2∑

i=1

Fyi = −FR + Fg − F ′′ (5.41)

where the individual force components are,

Fy1 = ksy{yv − h1θv − (yb + h2θb)} + csy{ẏv − h1θ̇v − (ẏb + h1θ̇b)} (5.42)

Fy2 = Fy1 , FR = mv
v2

R
, Fg = mvgθo, F ′′ = mvhg1 θ̈o (5.43)

Substitute (5.42) and (5.43) into (5.41) to get

mvÿv = −2ksy{yv − h1θv − (yb + h2θb)} − 2csy{ẏv − h1θ̇v − (ẏb − h1θ̇b)}

−mv(
v2

R
− gθo + hg1 θ̈o) (5.44)

Similarly the equation describing the body roll degree-of-freedom is as follows

ivrθ̈v − h1

2∑

i=1

Fyi = T + d′F ′ + d1(Fz1 − Fz2) − T ′′ (5.45)

where,

Fz1 = −kazd1(θv − θb) − kszd1(θv − θr) (5.46)

Fz2 = −Fz1 , T = −kvr(θv − θb − δa), F ′ = mvg(yv − yb), T ′′ = ivrθ̈o (5.47)

The airspring reservoir roll state is characterised by (see Appendix D.1.3 for details)

θ̇r = c−1
rz {−θr(ksz + krz) + kszθv + krzθb + crz θ̇b)} (5.48)

Substituting (5.42), (5.46) and (5.47) in (5.45), the overall equation for the body roll

degree-of-freedom is

ivrθ̈v = 2h1{ksy(yv − h1θv − yb − h2θb) + csy(ẏv − h1θ̇v − ẏb − h1θ̇b)}

− kvr(θv − θb − δa) − 2d2
1{kaz(θv − θb) + ksz(θv − θr)} +mvg(yv − yb) − ivrθ̈o (5.49)

The equations of motion describing the lateral and the roll degrees of freedom for the

bogie are developed following a similar procedure. For the lateral degree-of-freedom

the expression is

mbÿb +
4∑

i=1

Fyi = −F̄R + F̄g − F̄ ′′ (5.50)
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or

mbÿb − (Fy1 + Fy2 − Fy3 − Fy4) = −F̄R + F̄g − F̄ ′′ (5.51)

where Fy1 is given in (5.42) and,

Fy3 = kpy(yb − h3θb − yo) + cpy(ẏb − h3θ̇b − ẏo) (5.52)

Fy2 = Fy1 , Fy3 = Fy4 , F̄R = mb
v2

R
, F̄g = mbgθo, F̄ ′′ = mbhg2 θ̈o (5.53)

Thus substituting (5.42), (5.52) and (5.53) into (5.51) gives

mbÿb = 2ksy{yv − h1θv − (yb + h2θb)} + 2csy{ẏv − h1θ̇v − (ẏb − h1θ̇b)}

− 2kpy(yb − h3θb − yo) − 2cpy(ẏb − h3θ̇b − ẏo) −mb(
v2

R
− gθo + hg2 θ̈o) (5.54)

Concerning the bogie roll degree-of-freedom, the following apply

ivrθ̈b − h1

2∑

i=1

Fyi − h2

4∑

i=3

Fyi = −T − d1(Fz1 − Fz2) + d2(Fz3 − Fz4) − T̄ ′′ (5.55)

where T , Fz1 are given by (5.47) and (5.46) respectively (note that Fz2 = −Fz1), and

also (with no vertical degrees of freedom considered)

Fz3 = −kpzd2θb − cpzd2θ̇b (5.56)

Fz4 = −Fz3 , T̄ ′′ = ibrθ̈o (5.57)

To get the overall equation of motion for the bogie roll mode, substitute (5.42), (5.52),

(5.46), (5.56) and (5.57) into (5.55)

ibrθ̈b = 2h2{ksy(yv − h1θv − yb − h2θb) + csy(ẏv − h1θ̇v − ẏb − h1θ̇b)}

+ 2h3{kpy(yb − h3θb − yo) + cpy(ẏb − h3θ̇b − ẏo)} + kvr(θv − θb − δa)

+ 2d2
1{kaz(θv − θb) + ksz(θv − θr)} − 2d2

2(kpzθb + cpz θ̇b) − ibrθ̈o (5.58)

The expression for θr is given in (5.48) (see Appendix D.1.3).

Local track references were used, and both the translation and rotation of these refer-

ence axes associated with curves were allowed for in the equations (F ′′, F̄ ′′ and T ′′, T̄ ′′.

Moreover, equation (5.49) includes an end moment effect, F ′ = mvg(yv−yb), modelling

the roll effect of the body weight due to the lateral displacement of its centre of gravity

on the curve (based upon the schematic representation of Figure 5.12). However, this
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Figure 5.12: End-moment effect for the four degree-of-freedom model

effect was neglected in the case of the bogie mass owing to the high stiffness of the

primary suspensions. The high complexity of the system is clearly shown by the set of

equations of motion.

For system analysis and control design, the system needs to be re-arranged in state

space form

ẋ = Ax + Bu + Γw (5.59)

y = Cx + Hw (5.60)

where,

ẋ =
[

yv θv yb θb ẏv θ̇v ẏb θ̇b θr

]T
, u = [δa], . . .

w =
[

R−1 θo θ̇o θ̈o yo ẏo

]T
(5.61)

For simulation purposes only, disturbance signals θo, θ̇o, yo should be incorporated

into the A matrix (in this case the stochastic track includes the filtering effects of the

wheelset). The associated A and B model matrices, with B including both u and

necessary w vectors, can be found in Appendix E.1. More details on the detailed state-

space formulation exist in the relevant matlab files in Appendix H. It should be noted,
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that all necessary C and D output matrices, for control design, can be formed from

the relevant rows (depending on the required outputs) of the given A and B matrices.

For this reason a number of outputs is available such as displacements, velocities,

accelerations of the vehicle body and bogies and also displacements, velocities of the

active elements.

Table 5.3: Four D-o-F ARB vehicle model dynamic modes
Mode Damping (%) Frequency (Hz)

Body lower sway 16.5 0.67

Body upper sway 27.2 1.50

Bogie lateral 12.4 26.8

Bogie roll 20.8 11.1

Airspring 100.0 3.70

In order to verify the accuracy of the model, a series of tests is performed. First an

analysis of the modes of the system guarantees compatibility with the full scale vehicle

model. The modes present in the model are shown in Table 5.3, and they are very

close to the industry norms. Next, a series of transient tests ensure that the vehicle

behaves in a similar manner to its full scale equivalent (real) vehicle (for the passive

model, the actuator is inactive). The track profiles, both deterministic and stochastic,

used for this purpose can be seen in in Table 5.4.

A nominal vehicle speed of vo = 45m
s (162km

h ) is assumed, and the designed cant

deficiency at this speed is v2
o

R − gθo = 5.83o or 1.0(m
s2 ). Figure 5.13(a) shows the lateral

acceleration and corresponding roll angle for the body mass.

Table 5.4: Track profiles for the 4 D-o-F ARB linear model
Curve Transition

maximum cant angle θomax 6.0 (degrees)

maximum curve radius Rmax 1000.0 (m)

transition length 145.0 (m) @ each end

sample track length 1200.0 (m)

Straight Track Lateral Irregularities

track roughness Ωl 0.33e− 8 (m)

track spatial spectrum ST Ωl/f
3
(

m2

(cycle/m)

)

sample track length 1200.0 (m)

The lateral acceleration level is what the passengers would experience on the curve

transition, and it is provided by a lateral accelerometer placed on the vehicle body

c.o.g. The peak value is 13.0%g, while the steady-state value is around 11.93%g at a
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forward vehicle speed of 45(m/s). The increase in lateral acceleration is because the

lateral suspension acts significantly lower than the body centre of gravity, and as a

consequence the body roll-outwards on curves (steady-state 1.0o).

In the case of the bogie mass, Figure 5.13(b), the roll-out is less (steady state value

of 0.43o) due to the stiffer primary suspensions. The steady-state level of the bogie

lateral acceleration of 10.7%g is closer to the cant deficiency for which the track was

designed by the civil engineers. Note that more high frequency components are now

present due to the harsh environment of the bogie system.
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Figure 5.13: Vehicle body/bogie time histories @ 45(m/s)

Figure 5.13(c) shows a comparison between the lateral displacements of the vehicle body

and bogie. The effect of the two different sets of suspensions is clearly evident. The

soft secondary suspensions cause a displacement of 36.5(mm) in steady-state, while the
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primary suspensions owing to the high stiffness have hardly been displaced by 0.3(mm)

in steady-state.

It is also important to test the behaviour of the vehicle model on the straight track

irregularities, which are the primary cause of ride quality degradation. Figure 5.13(d)

presents the time histories for the lateral acceleration of both the body and the bogie

travelling on straight track. The nominal vehicle speed is assumed 45(m/s). The bo-

gie due to its harsh environment has an R.M.S. value of lateral acceleration equal to

16.4%g, while the soft secondary suspensions filter out a large amount of high frequen-

cies and leave the body with an R.M.S. lateral acceleration of 2.932%g.

Finally Table 5.5 presents the assessment of the passive model based upon the methods

discussed in Chapter 3. The table presents a clear view of the suspension effects upon

the model behaviour.

Table 5.5: Assessment of non-tilting vehicle @ 45(m/s)
Deterministic

Lateral accel. - steady-state 11.93 (%g)

(actual vs ideal) - R.M.S. deviation error 1.47 (%g)

- peak value 13.02 (%g)

Roll gyroscope - R.M.S. deviation 0.008 (rad/s)

- peak value 0.044 (rad/s)

PCT (P-factor) - peak jerk level 5.55 (%g/s)

- standing 38.13 (% of passengers)

- seated 11.37 (% of passengers)

Stochastic

passenger comfort - ride quality 2.932 (%g)

5.5 Summary

This chapter presented the issues on modelling the tilting vehicle using an anti-roll bar.

The implementation of a 2-DoF linear model provided an insight into the coupling of

the lateral and roll modes and their resultant sway motions. The comparison of the

2-DoF linear model with its extended 3-DoF non-linear version has shown that it can

be a good basis for control system design to comply with the real system. The chapter

concludes with the development of a 4-DoF linear vehicle model to include the lateral

and roll degree-of-freedom for both the vehicle body and the bogie, which will be used

for control system analysis and design.
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Chapter 6

Basic Tilt Control Strategies for

Active ARB

This chapter presents a classification of the basic tilt control strategies for the active

ARB, listed in Section 1.3.4, before proceeding to the alternative advanced control

studies proposed in this thesis. The purpose is to demonstrate the performance limita-

tions of the early ‘nulling’ tilt control approach and to introduce the solution adopted

by the major tilt vehicle manufacturers.

The chapter is divided into two sections, the first dealing with the early nulling scheme,

the second with the development of the command-driven approaches. To allow the

application of full tilt angle for partial compensation purposes, it was assumed that

1. the active anti-roll bar is able to provide tilt action up to the required amount

of tilt angle, i.e. no limitation on tilt angles is imposed by suspension clearances

(this can be possible in practice by having a single central airspring, rather than

duo airsprings, which allows tilt angles up to 8o or 9o)

2. the secondary suspension deflection allowance is such that no bumpstop limits

arise within the required interval of tilt action. However, it should be noted

that this depends upon available loading gauge, i.e. a series of height and width

profiles which are applied to a given route in order to ensure that a railway vehicle

will not collide with a lineside or overline structure (such as station platforms,

canopies, overhead power supplies (catenary) overbridges, tunnels). Moreover,

loading gauge profiles vary by route, reflecting the constraints on rail vehicle size

caused by the above structures, see Figure 6.1(a).
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6.1 Basic Nulling Tilt Control

In this intuitively formulated control strategy, which is a classical application of SISO

feedback control, the signal from a body-mounted lateral accelerometer is used to pro-

vide a measurement of the curving acceleration experienced by the passengers. The

controller would drive the feedback signal to zero and therefore give 100% compensa-

tion, thus a portion of the suspension roll angle (i.e. the ‘actual tilt’) is included in

the feedback, chosen to provide the specified 60% compensation Figure 6.1(b). This is

actually referred to as ‘partial-nulling’, thus throughout this thesis the term ‘nulling’

will be referring to ‘partial-nulling’ for simplicity. For assessment purposes, the track

input used is listed in Table 4.1 in column ‘ARB (Case A)’ on page 38 (the same as in

the previous chapter, see Table 5.4). The advantage with the nulling strategies is that
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Figure 6.1: Loading gauge and basic nulling tilt

the sensors are mounted on the vehicle body and do not encounter the high levels of

acceleration experienced on bogies (secondary suspensions act as a mechanical filter).

However, it is worth mentioning that the sensor exists within the control loop and the

tilt demand is continuously affected by the system dynamics, which imposes difficulties

on controller design.

The control input comprises an angular displacement (δa) provided by a rotary actuator

in series with the anti-roll bar, which in turn provides a torque to the vehicle body.

Note that the reference signal is ‘zero’, i.e. the system is subject to track disturbances

only. The feedback signal for partial tilt compensation is the effective cant deficiency
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angle θ′dm which is given by

θ′dm =

(

−λ1
ÿvm

g
− λ2θ2sr

)

(6.1)

where ÿvm is the lateral acceleration felt by the passengers as measured from an ac-

celerometer on the body c.o.g (6.1), and θ2sr is the secondary suspension roll angle

(6.2).

ÿvm =
v2

R
− g (θo + θv) + ÿv (6.2)

θ2sr = θv − θb (6.3)

Note the effect of the deterministic track included in (6.1). Factors λ1, λ2 ensure partial

tilt and for 60% compensation need to be set to 0.615 and 0.385 respectively, taking in

account bogie roll-out in (6.3). The necessary C and D matrices can be easily formed

from the relevant rows of state-space matrices A and B.

Remark 6.1.1. The sign of the feedback signal is inverted for correct appli-

cation of negative feedback based upon the current axis system. Recall that

all lateral motions (y) are positive inwards of the curve (i.e. to the right)

and all roll motions (θ) positive clockwise. However, the lateral accelerome-

ter, which is modelled as a mass on a spring, measures positive acceleration

to the left (6.2) (i.e. outwards of the curve). Hence the acceleration is

translated into a positive cant deficiency angle, combined with a portion

of the suspension roll, and is then fed back (note that λ1
ÿvm

g ≥ λ2θ2sr).

The combined signal will of course be a positive angle, which if fed back

using negative feedback causes the controller to provide a negative tilt angle

(i.e. anti-clockwise rotation), consequently destabilising the system. Thus

it is necessary to invert the sign of the feedback signal such that the con-

troller receives a positive angle and rotates the body clockwise for correct

compensation

Conclusions about the stability of the closed-loop may be drawn by investigating the

open-loop frequency response of the system. The nominal open-loop frequency re-

sponses from u := δa to y1 := θ′dm, and y2 := θ2sr can be seen in Figure 6.2. Note

that, while gain reduction is required to stabilise the closed-loop system, the opposite

applies in the case of fast tilt response. Hence, there must be a compromise between

the tilt response and the ride quality.
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Figure 6.2: Nominal open-loop frequency responses

Table 6.1: Open-loop poles and zeros of Gy1u(jω)

OL poles OL zeros

-20.87 ± 167.34j -2.41 ± 125.94j

-14.57 ± 68.38j 29.36 ± 0.00j

-2.56 ± 9.03j -40.73± 0.00j

-0.69 ± 4.12j -26.18± 0.00j

-23.22± 0.00j 6.02± 0.00j

- -3.83 ± 3.13j

A closer investigation of the open-loop poles and zeros of the transfer function Gy1u(s)

reveals that, while the system is open-loop stable, is also non-minimum phase due to

the existence of two RHP zeros at (s− 29.4) and (s− 6.02), Table 6.1. The pole-zero

map of the uncompensated system Gy1u(s) can be seen in Figure 6.3(a). The presence

of RHP-zeros imposes a fundamental limitation on control, and high controller gains

induce closed-loop instability.

A classical root-locus analysis in Figure 6.3(b) shows clearly the limitation of controller

design. Although the illustration involves only proportional gain, the case also holds

for all stable dynamic SISO controllers due to the fact that the OL unstable zeros

will still exist in the designed open-loop (gain path starts from OL poles and ends

at OL zeros!). The combination of the two RHP zeros introduces extra phase lag as

frequency increases, i.e. an extra −180o at ω ≥ 29.36 rads
s . A symbolic analysis - in

Matlab based on the 2-DoF ARB linear model (described in Section 5.1) for simplicity -

reveals that the cause for such a non-minimum phase system is the suspension dynamics
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interaction, and the extra contribution of body roll (or tilt angle) in the body-mounted

lateral accelerometer (detailed results can be found in Appendix B.3).
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Figure 6.3: Non-minimum phase limitations

6.1.1 PI-control of the basic nulling tilt process

To guarantee a zero steady-state error, i.e. zero steady-state effective cant deficiency

angle, integral action is necessary. Therefore, to remove the steady-state offset integral

action is added in the form of a PI -controller, Figure 6.4, described by the following

expression

Kpi(s) = kg

(

1 +
1

sτi

)

(6.4)

∫
- - 1

τi
- +

+
kg-

6

-xiyi yo

Figure 6.4: PI Block

It was necessary to include a ‘Proportional’ term to limit the phase-lag introduced

as frequency increases (the system is already characterised by large phase-lag, thus

is not desirable to introduce significant phase-lag especially at frequencies higher than

6.02 rads
s ). The settings for kg and ti were adjusted to suffice both the deterministic and

stochastic criteria, with the best configuration being kg = 0.225, τi = 0.4 s (to at least
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ensure appropriate stability margins, see Figure 6.6(a)). Table 6.2 presents the overall

Table 6.2: PI-control basic nulling approach assessment @ 58(m/s) - (kg = .225, τm =
0.4 s)

Deterministic

Lateral accel. - steady-state n/a (%g)

(actual vs ideal) - R.M.S. deviation error 5.555 (%g)

- peak value 19.510 (%g)

Roll gyroscope - R.M.S. deviation 0.032 (rad/s)

- peak value 0.086 (rad/s)

PCT (P-factor) - peak jerk level 10.286 (%g/s)

- standing 71.411 (% of passengers)

- seated 22.640 (% of passengers)

Stochastic

Passenger comfort - R.M.S. passive (equiv.) 3.778 (%g)

- R.M.S. active 3.998 (%g)

- degradation 5.802 (%)

controller assessment, while Figure 6.5 and Figure 6.6 present the simulation results

on curved track and the corresponding frequency responses respectively. Clearly the

response is very slow with the steady-state values for acceleration, roll angle and roll

rate profiles not met. Note that, due to the vehicle body inertia at the start and the

end of curve, the body roll angle initially has an inverse response and then rises slowly

up to the required steady-state value. The difference between the control input δa and

the body roll θv is due to the torque imposed by the secondary suspension subject to

the curving forces on the vehicle body. Thus, additional control effort is demanded to

overcome this extra torque and regulate the body roll (via the suspension roll portion)

to the desired value. There is also great difficulty in controlling the roll rates appro-

priately, which has a detrimental effect on the overall system performance.

Recall that the actuator has no direct effect on the position of the secondary sus-

pensions, thus the lateral deflection will increase due to the increased curving forces

compared to the case of the low-speed non-tilting train, see Figure 6.5(d). The simula-

tion yields a steady-state lateral secondary suspension deflection, for the tilting vehicle,

of approximately −85mm (i.e. outwards of the curve). In theory the s.s. suspension

deflection can be found from (5.44), which on steady-state is

0 = −2ksy{yv − h1θv − (yb + h2θb)}
∣
∣
∣
ss
−mv

(
v2

R
− gθo

) ∣
∣
∣
ss

(6.5)
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Figure 6.5: Basic nulling scheme with P + I time history results for design track

and can be re-arranged as

x2dfl

∣
∣
∣
ss

= −
mv

(
v2R−1 − gθo

)

2ksy

∣
∣
∣
ss

(6.6)

where x2dfl = {yv − h1θv − (yb + h2θb)}. Substituting the appropriate values for each

term in (6.6) gives a steady-state lateral secondary suspension deflection of −85.38mm

which agrees with the simulation results.

The complementary sensitivity T , in Figure 6.6(b), shows that the control action in

the frequency range
[
0.4( rads

s ), 4( rads
s )
]

does not affect the system, which causes a slow

response (i.e. insufficient bandwidth). Moreover, higher frequency components enter

owing to the sway mode resonances in the interval
[
4( rads

s ), 10( rads
s )
]
, with the control

action incapable of improving the performance due to |S| > 1. The uncompensated

and compensated open-loop responses are presented in Figure 6.6(a), with the latter

emphasising the integral action at low frequencies.
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Figure 6.6: Basic nulling, designed system frequency responses

6.1.2 Complementary filter approach of the basic nulling tilt process

An alternative way to improve the tilt performance, still based upon the classical con-

trol approach, is to separate the measured acceleration (essentially the measured cant

deficiency) into the (i) tilting component and (ii) the lower sway oscillations component.

This can be achieved by using complementary low pass and high pass filters [BK82], and

hence deal with each component separately by designing its own controller, as shown

in Figure 6.1.2. Note that, since the two filters complement each other (HP +LP = 1),

their net effect introduces unity gain and zero phase shift throughout the frequency

range, i.e. HHP (s) +HLP (s) = 1.

The filters were chosen to have a second order flat “Butterworth response” (ζ = 0.707),

with a corner frequency of wc = 2π × 0.3( rads
s ), such that the secondary feedback for

lower sway will have some degree of control on the vehicle body modes.

HLP (s) =
w2

c

s2 + 2ζwc + w2
c

(6.7)

HHP (s) =
s2 + 2ζwc

s2 + 2ζwc + w2
c

(6.8)

The main loop, related to tilt performance, involved a P+I+{Phase Lead} compensator

given by

K1(s) =
0.225(0.2s+ 1)

0.2s
×

(s+ 1.68)

(0.42s+ 1)
=

(0.045s2 + 0.30s+ 0.378)

s(0.084s+ 0.2)
(6.9)
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Figure 6.7: Complementary filter control approach

while the secondary loop, for lower sway control, incorporated a P+{Phase Lag} con-

troller given by

K2(s) =
0.175(0.1s+ 1.428)

(0.1428s+ 1)
(6.10)

The compensated OL frequency responses for both loops can be seen in Figure 6.8(c)

and 6.8(d), while the related sensitivity and complementary sensitivity functions are

presented in Figure 6.8(a) and 6.8(b).

In this case the control action is effective over a wider range of frequencies compared

to the case in section 6.1.1, with the closed loop bandwidth (for the main loop) being

approximately ωBT = 0.6Hz1 based upon the complementary sensitivity T .

This approach provided some improvement in performance, see Table 6.3, with the

secondary loop trying to minimise high frequency movements as shown in Figure 6.9

on page 73. However, the limitations from the basic nulling scheme still apply regarding

the main feedback loop. The phase lags inherent in the feedback signal of the main loop

induce insufficient stability margins for an acceptable tilt response (with the robustness

of the system being questionable in some cases).

1[SP00] suggests that ωBT , i.e. the B/W based on T, may be misleading in some cases, the reason
being that both its magnitude |T | and phase ∠T should be considered. Instead, it is recommended to
rely on either ωB , B/W in terms of S, or ωc, B/W in terms of L, for a better indication of closed-loop
performance (note that in the case of ωB only |S| needs to be considered).
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Figure 6.8: CF approach, designed system frequency responses

6.2 Basic Command-driven schemes

The difficulties of designing tilt controllers based upon a body-mounted accelerometer

existing within the control loop led to the use of bogie-mounted accelerometers to

provide the tilt reference command. All strategies in this category are called command-

driven and include (i) local command-driven and (ii) command-driven with precedence

(see Section 1.3.4 on page 8). The concept is illustrated in the following sections2.

6.2.1 Local vehicle Command-driven

In the local command-driven, shown in Figure 6.10, the tilt command is provided by an

accelerometer mounted on the bogie of the local vehicle, with low-pass filtering used to

2note that the controllers for this sections are designed for demonstration purposes only and they
would be formed differently in the case where actuator dynamics are introduced.
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Figure 6.9: CF approach, simulation results on curved track
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Table 6.3: Basic nulling complementary filter approach - assessment @ 58(m/s)
Deterministic

Lateral accel. - steady-state 9.53 (%g)

(actual vs ideal) - R.M.S. deviation error 2.97 (%g)

- peak value 13.70 (%g)

Roll gyroscope - R.M.S. deviation 0.030 (rad/s)

- peak value 0.117 (rad/s)

PCT (P-factor) - peak jerk level 8.000 (%g/s)

- standing 57.773 (% of passengers)

- seated 14.406 (% of passengers)

Stochastic

Passenger comfort - R.M.S. passive (equiv.) 3.778 (%g)

- R.M.S. active 3.983 (%g)

- degradation 5.417 (%)
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Vehicle Dynamics

Figure 6.10: Local command-driven scheme

remove unwanted high frequencies due to the bogie harsh environment, while partial

tilt is achieved by setting K < 1 (for 60% compensation K = 0.6152 taking in account

bogie roll-out of ≈ 0.6o). The tilt action is controlled by utilising the secondary sus-

pension roll angle as a feedback.

However the level of low-pass filtering required in practice, to achieve an adequate ride

quality, introduces unacceptable delays in the tilt action on curve transition. Table 6.4

illustrates the effect of the low-pass filter corner frequency on both deterministic and

stochastic tilt performance, while a set of relevant time history results for the determin-

istic case can be seen in Figure 6.11 included in the next page. The controller designed

was chosen to be a P+I, for illustration purposes, given by Kpi(s) = 2
(
1 + 1

s0.5

)
.

It was found again very difficult to achieve all required objectives for tilt control based
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Table 6.4: Effect of low-pass filtering on command-driven control (v = 58(m/s))
LP ωc PCT stand. (R.M.S.) determin. (R.M.S.) determin. Degradation

(Hz) (% of passg) |ÿm − ÿmi | (%g)
���θ̇m − θ̇mi

��� (rad/s) stochastic (%)

2.000 45.39 1.68 0.016 149.132

1.000 46.44 1.96 0.020 37.64

0.500 54.50 2.61 0.024 18.00

0.250 65.39 4.07 0.033 6.588

0.125 76.74 6.37 0.040 2.255

upon this approach. The high frequency noise introduced by the vehicle bogie (which

is there to guarantee running stability) requires heavy filtering to provide the clean

signal of cant deficiency command. Thus, manufacturers proceeded to the concept

of ‘precedence’ control to compensate for the time delays introduced by the filtering

action and it is discussed in the next section.
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Figure 6.11: Command-driven tilt performance on design track
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6.2.2 Command-driven with precedence

The evolution of the tilt control system, due to the problems of the local command-

driven approach, led to the currently used command-driven with precedence scheme

[Goo99] (see Section 1.3.4 on page 8 for more details). An accelerometer mounted on

the leading bogie of the leading vehicle - for this purpose a preview of 29m, approxi-

mately 1.5 vehicle length (depending upon vehicle types), was assumed - provided the

curving acceleration signal, passed via a 0.45Hz second-order low pass filter having a

flat response (zeta (ζ) = 0.707) to remove high frequency elements, as shown in Figure

6.12(a). The schematic interpretation of the scheme for simulation purposes can be

seen in Figure 6.12(b).
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Figure 6.12: Command-driven with precedence approach

To obtain comparable results to the local tilt strategies, the filter delay

was chosen to match the precedence time, however this can be changed to
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emphasise precedence information if necessary. The transfer function of the

LP filter is given by

HLP2(s) =
w2

c2

s2 + 2ζ2wc2 + w2
c2

, wc2 = 2π × 0.45, ζ2 = 0.707 (6.11)

and the time delay introduced is tdLP
=

2ζ2wc2
w2

c2

(see Appendix B.3.1), which

for the current case is 0.5s delay. Thus for the precedence to match the

filter delay, it takes l = 58(m
s )× 0.5s = 29m precedence, i.e. approximately

1.5 vehicle length as mentioned earlier. Note that the tilting response for

the leading vehicle will be too late.

The leading vehicle controller is a P+I given by Kpi(s) =
(
1 + 1

s0.5

)
. For the trailing

vehicle, the controller designed to actively tilt the body is a PI compensator with a

low-pass filter (LPF) in series (this will be redundant in the case of a non-ideal actuator,

i.e. actuator with limited bandwidth3), in order to remove high frequencies from the

secondary suspension roll (those are introduced due to the bogie roll contribution).

The overall controller transfer function is listed below

Ktotal(s) =

(
1.5 + s0.75

s0.5

)

×
400

s2 + 28.28s+ 400

∴ Ktotal(s) =
300s+ 600

s(0.5s2 + 14.14s+ 200)
(6.12)

The compensated and uncompensated open loop together with the overall compensator

frequency response can be viewed in Figure 6.13(a). The corresponding sensitivity and

complementary sensitivity of the closed loop system are presented in Figure 6.13(b),

where it is evident that the control action influences the system over a wider range of

frequencies compared to the previous cases.

A set of time-domain results for the deterministic track case is shown in Figure 6.14

(page 80), where it is obvious that the precedence scheme is superior to the previous

basic approaches. The tilt controller performance is presented in Table 6.5 (page 79),

and it is closer to the ideal performance expected in all cases. In the stochastic case it

can be seen that there is an improvement in ride quality by the active system. When

the precedence time matches the filter delay, which applies in this case, the reference

and the track input will be uncorrelated and the tilt command will compensate for long

wavelengths.

3i.e. electro-mechanical actuators have a bandwidth of up to approximately 5Hz.
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Figure 6.13: Basic nulling, designed system frequency responses

Table 6.5: Basic command-driven with precedence approach - assessment @ 58(m/s)
Deterministic

Lateral accel. - steady-state 9.53 (%g)

(actual vs ideal) - R.M.S. deviation error 1.54 (%g)

- peak value 12.18 (%g)

Roll gyroscope - R.M.S. deviation 0.018 (rad/s)

- peak value 0.104 (rad/s)

PCT (P-factor) - peak jerk level 6.80 (%g/s)

- standing 47.62 (% of passengers)

- seated 13.455 (% of passengers)

Stochastic

Passenger comfort - R.M.S. passive (equiv.) 3.78 (%g)

- R.M.S. active 3.31 (%g)

- degradation -12.12 (%)

Placing more emphasis on precedence information will improve the deterministic per-

formance, subject of course to the amount of precedence used, i.e. too much precedence

(over-precedence) can be disastrous for the normal operation of the train (tilt action will

apply on straight track segments much sooner than the intended start of the curve!).

In addition, the amount of precedence used will influence the stochastic ride quality

either positively or negatively depending upon the correlation of the signals (in the case

where the precedence time differs from the filter delay, the reference and track input

signals are no longer uncorrelated). It should be noted that, even in the precedence

schemes, sensors located on each vehicle (i.e. local sensors) are used to ensure the

correct operation of the overall tilting system (the sensors are always present for safety

purposes).
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Figure 6.14: Command-driven with precedence basic approach, demonstration on
curved track

6.3 Summary

This chapter presented the evolution of the basic tilt control strategies used by tilting

train manufacturers. It included an investigation on the drawbacks of the early basic

“nulling” scheme, and illustrated the advantages of using command-driven strategies

with emphasis on precedence schemes - which are now mainly used by manufacturers.

The next chapter proposes alternative control approaches to design local/vehicle based

tilt controllers, i.e. without using precedence, by using rather more advanced control

methods.
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Advanced Control Studies for

Active ARB

The ‘nulling’ type classical control approach, described in Chapter 6, proved difficult

to solve the tilt control problem in an effective manner. The very nature of this type

of control means that it will be difficult to improve tilt performance while maintain-

ing acceptable ride quality. Clearly a method is required to sustain the simplicity of

‘nulling’ control, and provide tilt performance comparable to the ‘precedence’ control

scheme.

Modern control methods provide an approach where a number of objectives of the

control problem can be simultaneously addressed. Undoubtedly classical control can

be effectively applied to many SISO control-design problems, however modern control

tackles a wider class of control problems including more complicated structures and

especially MIMO systems. It is important to remember that space travel became pos-

sible only because of the advent of modern control theory. The theory is continuously

evolving since the 1960s and has been applied in numerous practical applications, i.e.

in the aerospace industry.

A number of modern control methods is available in control literature, however this

thesis concentrates on the use of the following techniques: (i) optimal LQR, (ii) model-

based estimation nulling control using Kalman filter, and (iii) Robust H∞ and H∞/H2

schemes. The first method is based upon the use of state feedback optimal control to

solve the linear quadratic regulator problem as it is widely known. It also extends the

concept into designing an optimal Proportional+Integral controller. The Kalman filter

is used for estimation of all necessary states, based upon the plant mathematical model,
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in order to provide a more effective feedback signal, for the application of model-based

estimation nulling control. Finally, the robust H∞ and H∞/H2 techniques, usually

referred as post-modern control methods, deal with control designs that guarantee

system robustness. As in Chapter 6 the controllers are developed for the half vehicle

model discussed in Section 5.4.

7.1 Linear-Quadratic Regulator (LQR) optimal control

Optimal control forms a particular branch of modern control theory, which offers a

design solution supposed to be the best possible for a particular system type. Linear

optimal control is a special type of optimal control, where the plant is assumed linear,

and in addition the controller to be designed is constrained to be of a linear form. Such

controller designs are solved by using quadratic performance indices, in terms of the

control, regulation and/or tracking error variables.

Linear optimal control generally possesses a number of advantages compared to other

forms of optimal control. Many engineering plants can in fact be considered to be linear

and implementing linear controllers physically is a simple task. Also, the majority of

linear optimal control problems have readily computable solutions, which often can be

carried over to non-linear optimal control problems. The available literature on the

optimal control problem is extensive [AM90, Fri86, Mac89], and only briefly covered in

this thesis.

7.1.1 LQR Preliminaries - Full State Feedback

The standard description of the plant and output is given by the following equa-

tions(external disturbances or reference inputs not included)

ẋ = Ax + Bu (7.1)

y = Cx + Du (7.2)

where x is (n× 1), u is (m× 1), y is (q × 1). It is assumed that the system is linear,

time-invariant (for simplicity), and controllable. It is desired to find a suitable linear

control law

u = −Krx (7.3)

where Kr is a gain matrix, which minimises the following general form quadratic index

J = lim
T→∞

1

T
E

{∫ T

0
[xTQx + uTRku ]dτ

}

(7.4)
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The weighting matrices Q (state weighting matrix) and Rk (control weighting matrix)

must be symmetric (because J is a scalar), i.e. QT = Q and Rk
T = Rk. There is no

specific restriction about the form in which Q and Rk should appear, but in most cases

they are diagonal matrices. If, instead of the states, the output y is to be controlled

then the quadratic performance index needs to be arranged into

J = lim
T→∞

1

T
E

{∫ T

0
[yTQoy + uTRku ]dτ

}

(7.5)

where Qo is the output weighting matrix, and it can be easily shown that Q = CTQoC

by setting y = Cx for a strictly proper system.

The gain matrix Kr is the solution of the following general form matrix Riccati differ-

ential equation

ATPc + PcA + Ṗc + Q = PcBRk
−1BTPc (7.6)

subject to given A,B,C,Q and Rk. Restricting ourselves in the time-invariant case,

Pc should be constant which states that Ṗc = 0. The Riccati equation is then simplified

to

ATPc + PcA + Q − PcBRk
−1BTPc = 0 (7.7)

and the solution of the gain matrix is given by

Kr = Rk
−1BTPc (7.8)

subject to (A,B) being stabilisable, Rk > 0 (positive definite, for finite control en-

ergy), Q ≥ 0 (positive semi-definite), and that (Q,A) has no unobservable modes on

the imaginary axis [Fri86].

7.1.2 Partial-nulling Optimal P+I control with output regulation

For the current case of the tilt problem and based upon the ‘nulling’ type control

approach, the vehicle is described by the following state-space expression

ẋ = Ax + Bu (7.9)

y = Cx (7.10)

The state vector x includes the vehicle states
[

yv θv yb θb ẏv θ̇v ẏb θ̇b θr

]T

and u = [δa]. The plant is subject to constant external disturbances in the input

(deterministic and stochastic track) and also an assumed constant reference input r
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(which in this case is a zero reference, r = 0).

The design is based upon the feedback of the effective cant deficiency for 60% compen-

sation, as in the case of basic ‘nulling’ tilt, θdm given by

θ′dm =

(

−0.615
ÿvm

g
− 0.385θ2sr

)

(7.11)

where ÿvm is the lateral acceleration provided from the body lateral accelerometer (di-

vided by g to convert into cant deficiency angle), and θ2sr is the secondary suspension

angle.

For disturbance rejection and reference tracking (which is zero in this case), a new

state should be defined and this is the integral of the effective cant deficiency θdm. This

approach will produce an optimal P+I controller [AM90] rather than a Proportional

State feedback controller (recall that set point regulation is required as in the classical

control case). Hence, the system is augmented to include
∫
θ′dm as a state

(

ẋ

ẋ′

)

=

(

A 0

C ′ 0

)(

x

x′

)

+

(

B

0

)

u (7.12)

where x′ =
∫
θ′dm and C ′ is the selector matrix for integral action and is found from

θ′dm = C ′x . The control signal has the form

u = −
(

Kp Ki

)
(

x

x′

)

(7.13)

and for output regulation the quadratic performance index is

J = lim
T→∞

1

T
E

{∫ T

0
[yTQoy + uTRku ]dτ

}

(7.14)

where y = [(θ̇v),
∫
θ′dm] and u = δa. In this case Qo(2, 2) is the most important weight

concerning the speed of the response (
∫
θ′dm), while Qo(2, 2) takes care of unwanted

oscillations. The overall concept is depicted in Figure 7.1 (see next page).

The selection of the quadratic weights Qo, Rk is difficult and mainly depends on the

experience of the designer. The translation of specifications into Qo, Rk is often inaccu-

rate and as a result the initial choices of Qo, Rk may be inappropriate (usually the final

selection is based on a trial and error process). There is an extensive discussion on this

matter in [AM90], where a number of insights into choosing the weighting matrices is

investigated. In this thesis, the elements in Qo and Rk were initially chosen to represent
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Figure 7.1: Optimal P+I output regulation

the square of the inverse of the expected value, 1
(expected value)2

, for each parameter.

Thus, the controller can be tuned by varying the weighting factors and investigating

the performance on both deterministic (the main issue) and straight track (see Chapter

3). The optimal gain is Kr = R−1
k BTPc, with Kr = [Kp Ki], where Pc is the solution

of the following algebraic Riccati equation

ATPc + PcA + CTQoC − PcBRk
−1BTPc = 0 (7.15)

and matrix C represents [(θ̇v),
∫
θ′dm]. Matlab functions ARESOLV (recommended) or

ARE

• [P1,P2,LAMP,PERR,WELLPOSED,P] = ARESOLV(A,Q,R,ARETYPE)

• P = ARE(A,B,C)

provide a stable method to calculate Pc. Table 7.1 presents the controller performance

for variable Qo(6, 6) and fixed Rk and Qo(1, 1).

Table 7.1: LQ output regulation controller performance, v = 58(m
s )

Deterministic Stochastic

Rk Qo(1, 1) Qo(2, 2) ÿe(rms)
ÿe(peak)

θ̇ge(rms)
θ̇ge(peak)

ÿm(rms)
degradation

(%g) (%g) (rad/s) (rad/s) (%g) (%)
1

0.2152 0.01 1 9.53 23.89 0.038 0.053 3.80 0.6
1

0.2152 0.01 1

0.52 6.89 21.30 0.035 0.069 3.71 -1.72
1

0.2152 0.01 1

0.12 2.44 14.16 0.020 0.099 3.20 -15.35
1

0.2152 0.01 1

0.052 1.85 12.8 0.017 0.103 3.13 -17.10
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where ÿe = |ÿm − ÿmi | and θ̇ge =
∣
∣
∣θ̇m − θ̇mi

∣
∣
∣. The degradation in straight track perfor-

mance is compared to the passive train running at 58(m
s ) and is equal to approximately

3.78%g. As the value of Qo(2, 2) increases (
∫
θ′dm → 0 faster), which emphasises extra

integral action, the system response becomes faster (subject to fixed Rk, Qo(1, 1)).

The selection of the values for the weighting factors is actually based on the determin-

istic case, however it enables both deterministic and stochastic aspects to be accom-

modated. Ideally the value of Rk should be as small as possible, however very small

values will provide large feedback gains and result in a high closed loop bandwidth.

The value of Rk in this case was chosen to be 1
0.2152 , i.e. control input is expected

to provide up to 0.215rad angle (indicated in the basic control cases where the ARB

needs to overcome extra suspension forces). The weighting of the body roll velocity

Qo(1, 1) is very useful in the stochastic case where it constrains the roll movement of

body due to the irregularities input, its value was chosen 1
52 . High Qo(1, 1) degrades

the transition performance, because there is no freedom for the roll velocity to increase

quickly up to the required value during curve transition. Finally, the weight on the

integral of the effective cant deficiency was set to 1
0.12 . The corresponding quadratic

performance index is then

J = lim
T→∞

1

T
E

{∫ T

0

(
1

52
θ̇v +

1

0.12

∫

θ′dm +
1

0.2152
u2

)

dτ

}

(7.16)

and the optimal gain for this configuration was found to be

Kr = [0.38 0.07 − 0.1 − 0.04 0.23 0.09 − 0.0003 0.002 0.07 2.15] (7.17)

The controller assessment for the current design is presented in Table 7.2, while the

simulation results are shown in Figure 7.2 and Figure 7.3 in the next pages.

The controller is fast enough to accommodate all stochastic long wavelengths (low

frequency), thus the improvement in ride quality. However, faster controller designs

will unavoidably degrade curve transition performance because of both increased jerk

and roll velocity levels. Extra regulated outputs were also considered such as body

lateral velocity, body-bogie lateral rate, body roll angle, however they did not offer

substantial improvement in controller design. Note that the body roll angle is inher-

ently constrained by weighting its rate.

In the case where all required system states are not available for feedback, which may

be difficult or even impossible to measure, a Kalman filter may be combined with the

optimal controller to provide the necessary state estimates for state feedback [Fri86]
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Figure 7.2: LQR with integral action transition performance, set 1

- 87 -



Chapter 7 Advanced Control Studies for Active ARB

0 200 400 600 800 1000 1200
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
θ

v
 passive actual

θ
v

 active actual

 u command
ideal profile

Tilt angles @ 58 m
s

a
n
g
le

(d
e
g
r
e
e
s
)

track (m)

(a) Tilt angles

0 200 400 600 800 1000 1200
−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01
active @ 58m/s
passive @ 45m/s

Secondary lateral suspension deflection

d
e
fl
e
c
ti

o
n

(m
)

track (m)

(b) Suspension deflection

Figure 7.3: LQR with integral action transition performance, set 2
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Table 7.2: (LQR) optimal P+I control assessment @ 58(m/s)
Deterministic

Lateral accel. - steady-state 9.53 (%g)

(actual vs ideal) - R.M.S. deviation error 2.44 (%g)

- peak value 14.18 (%g)

Roll gyroscope - R.M.S. deviation 0.020 (rad/s)

- peak value 0.099 (rad/s)

PCT (P-factor) - peak jerk level 7.16 (%g/s)

- standing 53.75 (% of passengers)

- seated 15.83 (% of passengers)

Stochastic

Passenger comfort - R.M.S. passive (equiv.) 3.78 (%g)

- R.M.S. active 3.19 (%g)

- degradation -15.66 (%)

(this approach produces very similar results to the LQR scheme). This is known as

the linear quadratic gaussian or LQG problem, shown in Figure 7.4, and its solution

is prescribed by the separation principle (or ‘certainty equivalence’ principle) [Mac89,

SP00]1.

PLANT
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-

Σ

¾¾

-
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?¾n
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LQR
−Kr

Kalman
Filter

Figure 7.4: Plant with Estimator (Kalman filter)

1The separation principle reduces the LQG problem into two sub-problems: (i) find the state esti-
mates and (ii) use this estimates for state feedback and solve the LQR problem. LQG controllers do
not guarantee the robustness and performance properties of their LQR equivalent, however in certain
cases there are procedures to overcome such difficulties i.e. Loop Transfer Recovery [Mac89, SP00].
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7.2 Model Based Estimation ‘Nulling’ Control Incorpo-

rating a Kalman Filter

In the basic ‘nulling’ control scheme it was seen that the suspension dynamic inter-

actions in the body cant deficiency constrained the controller design. This section

proposes an alternative way to obtain the body cant deficiency unaffected by suspen-

sion dynamic interactions, in order to provide a more effective feedback signal for local

tilt control.

7.2.1 Kalman Filter Preliminaries

Consider the following dynamic process

ẋ = Ax+Bu+ Γw (7.18)

with known input u and output measurements given by

y = Cx+ ν (7.19)

where w (process noise) and ν (measurement noise) are usually assumed to be uncor-

related white noise processes having known constant spectral density matrices W , V

respectively. Their covariances are expressed by

E
{
w(t)w(τ)T

}
= Wδ(t− τ) (7.20)

E
{
ν(t)ν(τ)T

}
= V δ(t− τ) (7.21)

E
{
w(t)ν(τ)T

}
= 0, E

{
ν(t)w(τ)T

}
= 0 (7.22)

where E defines the expectation operator and δ(t− τ) the delta function.

The Kalman filter [Kal60, BS89] has the structure of an ordinary observer (state-

estimator), shown in Figure 7.5, which is expressed by the following mathematical

model

˙̂x = Ax̂+Bu+Kf (y − ŷ)
(ŷ=Cx̂)

= Ax̂+Bu+Kf (y − Cx̂) (7.23)

ŷ = Cx̂ (7.24)

where Kf is the optimally chosen observer gain matrix2, minimisingE
{
[x− x̂]T [x− x̂]

}
,

and given by

Kf = PfC
TV−1 (7.25)

2that is why many refer to Kalman filter as the optimal estimator (observer).
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where Pf is the unique positive semi-definite, Pf = PT
f ≥ 0, of the following algebraic

Riccati equation

PfA
T + APf − PfC

TV−1CPf + ΓWΓT = 0 (7.26)

subject to (C,A) being detectable, V > 0,W ≥ 0 and (A,ΓWΓT) has no uncontrol-

lable modes on the imaginary axis. In fact, the optimum estimation problem is dual

to the deterministic optimum control problem [BS89, Fri86].

7.3 ‘Nulling’ Control based upon the ‘True’ Cant Defi-

ciency

A different way to derive the curving acceleration experienced on the vehicle body,

which is unaffected by the suspension dynamic interactions, is to use output estimation

[ZG00]. The new output is defined as the ‘true’ cant deficiency (7.27), which can be

then combined with the tilt angle, as in the case of the ‘nulling’ strategy, in order to

provide a more effective feedback signal for tilt control, see Figure 7.6.

θtd =
v2

gR
− (θo + θv) (7.27)
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A Kalman-Bucy filter can be designed based upon (7.28) combined with the output

equation which represents the measurements.

ẋ = Ax+Bu+ Γw (7.28)

However, the curving acceleration feedback is associated with signals of the disturbance

vector w. These signals are related to the track, on which the vehicle is travelling,

for which no prior knowledge exists and also is not practical to measure such track

parameters. Hence, the system state space should be re-formulated for the design of

the Kalman-Bucy filter in order to treat w as states rather than disturbance inputs

shown in equation (7.29), [HG99, SCW94].

ẋk = Akxk +Bku+ Γkwk (7.29)

where

xk =
[

x w̃
]T

(7.30)

The output equation for the sensors is then given by:

yk = Ckxk +Dku+ ν (7.31)

where Ck and Dk are based upon the relative rows of Ak and Bk.
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The selection of the extra states w̃ depends on the application, the required feedback

signals and the selected output measurements. In the current case of ‘true’ cant de-

ficiency estimate θtd, the application is mainly connected with the performance on

design track, thus signals θo, R
−1 should be incorporated as extra states. It has been

found that only three body measurements were necessary for the Kalman filter design:

(i) body lateral accelerometer (for cant deficiency information), (ii) body roll gyroscope

(cant information) and (iii) yaw gyroscope (extra information about curvature). The

body roll gyroscope measures absolute roll rate (θ̇v + θ̇o), thus θ̇o must be also included

in the state estimates, making a total number of three extra states w̃ = [θo θ̇o R
−1]′.

Hence, the re-formulated state vector becomes

xk =
[

x w̃
]T

(7.32)

=
[

yv θv yb θb ẏv θ̇v ẏb θ̇b θr θo θ̇o R−1
]T

(7.33)

while,

wk =
[

Ṙ−1 θ̈o

]T
(7.34)

Ak =

[

A Γ̃

0 ∆LP

]

Bk =
[

B 03×1

]T
(7.35)

Γk =
[

Γwk
(0 0) (0 1) (1 0)

]T
(7.36)

Appropriate low-pass filters were applied to the extra (track) estimates in the re-

formulated matrix Ak, such that

∆LP =






0 1 0

−ǫ2 −2ǫ 0

0 0 −ǫ




 (7.37)

defining, θ̂o = 1
(s+ǫ)2

θ̈o and R̂−1 = 1
(s+ǫ)Ṙ

−1, where ǫ = 2π×low-pass cut-off frequency.

In reality ǫ should be set to zero, which corresponds to pure integration of the process

‘noise’ input as one would expect. However, a simple analysis reveals that the pair

(C,A) is detectable iff ǫ 6= 0. In this design, the value for ǫ was set to 0.001( rads
s ), cor-

responding to 2π× (0.00016Hz), and imposes minimal effects to the estimation results

(see Figure 7.7). It has to be noted that the Kalman filter is principally a stochastic

device, albeit the approach has been to develop the filter based upon the deterministic

criteria. Any stochastic track inputs, i.e. signals related to track irregularities, were
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Figure 7.7: LQR with integral action transition performance

neglected in the filter design so it is expected that the filter would reject their effects3.

Ultimately the filter design should be effective for both deterministic and stochastic

inputs.

The Kalman-Bucy filter can be now designed off-line using Equations (7.29) and (7.31),

while the state estimates can be calculated by solving the following differential equation

˙̂x = Akx̂+Bku+Kf (yk − Ckx̂−Dku) (7.38)

where x̂ is the vector of the re-formulated state estimates and Kf is the Kalman-Bucy

filter gain matrix which is designed off-line [BS89, Fri86]. The performance of the

Kalman-Bucy filter can be thoroughly assessed by tuning the covariance matrix Qk

for the track process noises where Qk = diag(Qθ̈o
, QṘ−1). The sensor noise levels are

represented by vector ν and characterised by a covariance matrix Rkf .

The design aim is mainly connected to the deterministic performance of the tilt con-

troller and the following procedure of choosing Qkf , Rkf is used as a ‘rule-of-thumb’.

In this design, Rkf is a 3 × 3 diagonal matrix (cross-correlation terms are set to zero)

Rkf =






Rkf (1, 1) 0 0

0 Rkf (2, 2) 0

0 0 Rkf (3, 3)




 (7.39)

3In any case, it is extremely difficult to obtain correct estimates for the stochastic track signals based
only upon body mounted sensors (secondary suspensions act as a low-pass filter). Additional bogie-
mounted and wheelset-mounted sensors would provide information over a greater range of frequencies
necessary for track irregularities estimation, however this approach is not a part of this thesis.
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where Rkf (1, 1) is the covariance of the body lateral accelerometer sensor, Rkf (2, 2)

the covariance of the body roll gyroscope sensor, and Rkf (3, 3) the covariance of the

body yaw gyroscope sensor. The value for each of the covariances is set to

1% of the expected maximum value taken as, 3 times the true R.M.S. value of the sensor

output signal on straight track with irregularities, plus the peak value on the pure curved

track

which corresponds to high quality (realistic) sensors currently used in tilting trains.

In reality, any detailed design would have a real sensor with actual noise values from

the manufacturer, but the thesis uses a typical (sensible) level in the absence of de-

tailed design information. Reducing the measurement noise will obviously improve the

accuracy of the filter.

The values for matrix Qkf were set to

1% of the total area of the process input signal during one transition on design track
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Figure 7.8: ‘True’ cant deficiency estimates, estimate (dark), error (grey)

Figure 7.8 illustrates the estimator performance for the ‘true’ cant deficiency estimate

(7.27), at a speed of 58m/s for the above values of Qkf , Rkf , which are equal to

Rkf =






1.6e− 3 0 0

0 1.883e− 6 0

0 0 1e− 6




 , Qkf =

[

1e− 5 0

0 8.5e− 4

]

(7.40)

for both deterministic and stochastic track inputs, subject to sensor noise corruption.

The Kalman gain obtained for the above configuration was
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Kf =





























−0.18 −3.033 −0.23

−0.08 −2.734 0.033

0.0014 0.103 −0.18

−0.034 −1.11 0.027

−1.074 5.90 −56.99

−0.41 0.633 −0.14

0.062 −0.207 −32.60

−0.166 0.21 2.24

−0.061 −2.20 0.037

0.052 4.33 −0.019

0.433 17.02 −0.18

0.001 −0.003 3.16





























(7.41)

The results obtained from the estimator are very close to the true values, and the

estimation error is mainly due to the sensor noise levels. An extra degree of error asso-

ciated with the unknown information of the track signals was also expected especially

for the stochastic case. This configuration provided the best estimation results and is

used throughout this part of work. Note that the RMS value of the estimation error in

the deterministic case was kept at around 0.0018(rads), while the RMS estimation er-

ror in the stochastic case was 0.0022(rads) (based upon the true cant deficiency (7.27)).

Trade-off sample curves can be obtained by varying the covariance of the deterministic

Qkf11
= cov( 1

Ṙ
) and Qkf22

= cov(θ̈o) as shown in Figure 7.9 (the simulation involves all

three sensors including sensor noise with Rkf fixed). The selected range for Qkf11
, Qkf22

was for Qkf11
=[0.84, 0.084, 8.4e-3, 8.4e-4, 8.4e-5, 8.4e-6, 8.4e-7, 8.4e-8, 8.4e-9]

and for Qkf22
=[2e-6, 2e-7, 2e-8, 2e-9]. It can be seen from the figure that with Qkf11

fixed decreasing Qkf22
eventually will degrade the maximum error on design track,

although this degradation is less emphasised as Qkf11
decreases (due to cancellation

between curvature and cant information). In terms of the R.M.S. value on stochastic

initially there is associated degradation, however this improves as Qkf22
decreases (at

high values of Qkf11
note that the R.M.S error stochastic is approximately fixed).

High Qkf means that much information for the states is available and the estimator

will provide good results in the design track, however noise will penetrate the system

and as a result it degrades the stochastic results. As Qkf decreases then information

especially for the design track signal (cant, curvature) is less effective which unavoidably

degrades the deterministic estimation error, albeit improving or at least stabilising

the stochastic R.M.S. error due to less noise in the system. Note that the trade-off
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between the deterministic and stochastic results is not straightforward, thus extra care

is required in selecting the best weights. It seems that both deterministic and stochastic

errors are improved for high Qkf , owing to cancellations between the curvature and

cant information due to the deterministic design of the filter. Moreover, the maximum

values of other signals exceed the desired limits - for high Qkf - due to the excess of

sensor noise.
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Figure 7.9: Stochastic-Deterministic weighting curves for KBF

Remark 7.3.1. Adding more sensors will always help the estimation process, however

the system design complexity and cost increases. The above choice of three measure-

ments (body accelerometer, roll gyro, yaw gyro) used in the estimation procedure gave a

very satisfactory performance for both design and random track. The filter succeeds in

rejecting the sensor noise, while keeps the extra errors in the stochastic case estimation

sufficiently low. Trials with fewer sensors, i.e. combination of body lateral accelerome-

ter and roll gyroscope or only lateral accelerometer, produced poorer performance due

to the loss of the curvature information (it was necessary to increase Qkf thus allowing

more sensor noise to enter the system). Finally this Kalman filter design can be easily

used in conjunction with the LQR optimal controller for LQG applications4.

4The results are approximately identical to the LQR application and are not included in the thesis.
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7.3.1 Tilt Controller Design upon Model Based Estimator

The next step is to design a classical controller based upon the estimated ‘true’ cant

deficiency to provide partial tilt as in the basic tilt control cases. The feedback signal

for 60% partial tilt is given by (for negative feedback application)

θ′td = −0.6
v2

gR
+ (0.6θo + θ̂t) (7.42)

where θt being the tilt angle (actually the body roll angle estimate).

The scheme incorporates a P+I+D controller given in (7.43) (with approximate deriv-

ative action and also a first order filter in series to attenuate high frequencies due to

the derivative portion)

KPID(s) =

(
(kd + kp/Nd)s

2 + (kp + ki/Nd)s+ ki

)

(1/Nd)s2 + s
×

wc

s+ wc
(7.43)

where the parameters are set to: kd = .25, ki = 3.33, kp = 1, N = 100, wc = 2π ·25( rad
s ).

The schematic diagram of the controller structure and the relative frequency response

are shown in Figure 7.10.
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Figure 7.10: P+I+D with approximate derivative plus series LPF

Figure 7.11(a) on page 100 illustrates the frequency response of the designed open-loop

system including the Kalman filter with the P+I+D type controller. It can be easily

seen from the figure that the new feedback signal resulted in a much easier controller

design compared to the previous basic control schemes. The dynamic complexity is still

preserved via the body roll/tilt angle being taken in account by the control system,

while the non-minimum phase characteristic has disappeared. The bandwidth of the
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closed loop system has improved considerably compared to the basic nulling approach,

as seen in Figure 7.11(b) page 100.

The time domain simulation results shown in Figures 7.12 and 7.13 on page 101 and 102

respectively, illustrate the effectiveness of the model based estimation control scheme

on curved track. The system responds fast on curve and approaches the performance

of a ‘precedence-type’ approach (precedence time = zero), see Table 7.3.

Table 7.3: Model-based estimation scheme assessment @ 58(m/s) - (PID approach)

Deterministic

Lateral accel. - steady-state 9.53 (%g)

(actual vs ideal) - R.M.S. deviation error 1.62 (%g)

- peak value 11.89 (%g)

Roll gyroscope - R.M.S. deviation 0.014 (rad/s)

- peak value 0.102 (rad/s)

PCT (P-factor) - peak jerk level 6.38 (%g/s)

- standing 45.54 (% of passengers)

- seated 12.74 (% of passengers)

Stochastic

Passenger comfort - R.M.S. passive (equiv.) 3.778 (%g)

- R.M.S. active 3.743 (%g)

- degradation -0.93 (%)

It also keeps the stochastic ride quality within acceptable values as shown in Table 7.3,

with small errors introduced due to the estimation process as expected. Unfortunately

even in this case the oscillations due to the lateral suspension effects still exist. This is

mainly due to the coupling through the body roll, which the control system takes into

account. Noticeably in the estimation case with two sensors (body accelerometer and

roll gyroscope) in the Kalman filter design, the process cancels out some of the dynamic

oscillations due to the estimation cancellations between v2

gR and θo in the ‘true’ cant

deficiency expression.
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Figure 7.11: Frequency response analysis of MBE control designed system for partial
‘true’ cant deficiency
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7.4 Robust H∞-based Control Schemes

This section considers the application of robust H∞-based techniques for ’nulling’-

type tilt control. Robust controllers are designed for the so called nominal model,

although yield acceptable performance for a certain plant uncertainty. The section

starts with a brief overview of H∞ and introduces some basic notation. The use of

robust control design is introduced via a mixed sensitivity H∞ control approach. Next a

multi-objective H∞/H2 LMI-based control design is proposed which offers a significant

improvement in tilt performance. The design is based upon using only vehicle body

measurements. The concept of uncertainty is not considered in many details in this

thesis, however the robust controllers are assessed using a provided uncertainty set.

7.4.1 Preliminaries

Researchers began shifting towards H∞ optimisation for robust control during the

1980s, the reason being the weakness of LQG (Linear Quadratic Gaussian) control

to deal with good robustness properties and also its interpretation of uncertain dis-

turbances based upon white noise (which is often unrealistic). Early concepts of H∞

optimisation were encountered in Helton [Hel76], however the most influential work was

that of Zames [Zam81]. Owing to its frequency-domain nature and the systematic in-

corporation of uncertainty, H∞ has become a widely used method in controller design

since the 1990s. Although theory behind H∞ is now established, very few practical

implementations have been reported.

Initial applications on H∞ have been considered in the SISO case, and later extended

in the multivariable case [SP00]. The most useful designs however resulted from mixed

type H∞ problems such as mixed sensitivity approaches [Cas93]. However, all designs

were concentrated on a complete design methodology and many criticised this approach

by referring to the complexity of selecting the frequency-dependent weights especially

in the overlapping frequency areas. Hence, McFarlane and Glover [MG90] proposed a

H∞ approach for loop shaping which is purely based upon providing robust stability

within a classical open loop design.

Recent developments incorporated the use of Linear Matrix inequalities in the H∞

framework [G+94] which can provide effective solutions especially in the case of multi-

objective design problems. Unavoidably the computation required for designing H∞

controllers can be intense but there is available software which is used for this purpose

such as Matlab (The Mathworks, Inc.) and Scilab (INRIA, France).
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7.4.2 Basic Notation

Before proceeding to the main design considerations, a brief introduction to some basic

notation necessary for implementing the controllers is presented.

A continuous time, linear time invariant, state space system is given by

ẋ(t) = Ax(t) +Bu(t) (7.44)

y(t) = Cx(t) +Du(t) (7.45)

where A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n and D ∈ ℜp×m. The above state space system

is characterised by the following transfer function with dimension p× n

G(s) = C(sI −A)−1B +D (7.46)

This thesis adopts the following conventional state-space representation to represent

G(s)

G(s)
s
=

[

A B

C D

]

(7.47)

Note also that the complex conjugate of G(s) is given by

G∗(s) = GT (−s)
s
=

[

−AT −BT

CT DT

]

(7.48)

and if G(s)G∗(s) = I = G∗(s)G(s) for all s ∈ jℜ, then G(s) is said to be all-pass.

Finally if matrix D is invertible, then G−1(s) is given by5

G−1(s)
s
=

[

A−BD−1C BD−1

−D−1C D−1

]

(7.49)

• Frequency Domain Spaces and Norms

This part introduces the meaning of frequency domain spaces and norms of real ratio-

nal, matrix valued, transfer functions. For a more comprehensive study the reader is

referred to McFarlane and Glover [MG90] and also Zhou and Doyle [ZD98].

Let R denote the space of all real rational transfer function matrices. The L2/H2 norm

of G(s) is given by

‖G‖2 ,

√

1

2π

∫ ∞

−∞

tr (G∗(jω)G(jω)) dω (7.50)

5Using the matrix inversion lemma:
(A1 + A2A3A4)

−1 = A−1
1 − A−1

1 A2(A4A
−1
1 A2 + A−1

3 )−1A4A
−1
1 .
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which is used to define the following spaces

(i). RL2 refers to the space of all real rational transfer function matrices with no

poles on the imaginary axis and is characterised by a finite L2 norm.

(ii). RH2 defines the space of all transfer function matrices in RL2 with no poles in

Re(s) > 0.

The L∞/H∞ norm of G(s) is given by

‖G‖∞ , sup
ω∈ℜ

σ [G(jω)] (7.51)

and

(i). RL∞ refers to the space of all real rational transfer function matrices with no

poles on the imaginary axis (with finite L∞ norm).

(ii). RH∞ defines the space of all transfer function matrices in RL∞ with no poles in

Re(s) > 0.

Also, the H∞ norm of a stable transfer function G(s) is its largest input/output RMS

gain

‖G‖∞ , sup
u∈L2
u 6=0

‖y‖L2

‖u‖L2

(7.52)

where L2 is the space of signals having finite energy and y is the output of the system

G for a given input u. Thus, for any input u of unit energy, the output energy in y is

bounded by the H∞ norm of G(s).

• Linear Fractional Transformations

The basic concept of Linear Fractional Transformations is outlined in this section.

Linear Fractional Transformations (LFT) are frequently used in the area of H∞ op-

timisation as well as in other areas of control theory. They do represent a means of

standardising a wide variety of feedback arrangements [MG90, ZD98].

Let P (s) define a transfer function matrix with the following state-space representation

P (s)
s
=






A B1 B2

C1 D11 D12

C2 D21 D22




 (7.53)

- 105 -



Chapter 7 Advanced Control Studies for Active ARB

which can be also partitioned as

P (s)
s
=

[

P11 P12

P21 P22

]

(7.54)

where

Pij(s) = Ci(sI −A)−1Bj +Dij (7.55)

P (S)

K(S)

¾

¾

- -

¾

¾ w(s)z(s)

u(s)y(s)

Figure 7.14: The Generalised Regulator Configuration

Referring to Figure 7.14, which presents the generalised regulator configuration, the

(lower) linear fractional transformation6 of P and K is given by

FL(P,K) , P11 + P12K(I − P22K)−1P21 (7.56)

for det(I − P22K) 6= 0. P (s) represents the “generalised plant”, consisting of the

nominal model G(s) combined with all frequency weightings appropriately chosen to

shift the emphasis with frequency between different design objectives. In addition,

the signals are: u the control variables, w the exogenous inputs such as disturbances

wd and commands r, y the measured variables and z the regulated outputs, i.e. the

signals need to minimise to meet the design objectives. In fact FL(P,K) represents the

transfer function between w and z in Figure 7.14, i.e.

z(s) =
[
P11 + P12K(I − P22K)−1P21

]
w(s) (7.57)

H∞ and H2 control implies the minimisation of the H∞-norm and the H2-norm of

FL(P,K) respectively, and this is considered in the following sections.

6There is also the concept of the upper LFT which is employed in representing uncertainties in a
system. This is not considered in this thesis work, however details can be found in [MG90, ZD98].
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7.4.3 H∞ Mixed Sensitivity Design

Mixed-sensitivity refers to closed loop transfer function shaping problems where the

sensitivity S is shaped together with other closed loop transfer functions like KS (con-

trol sensitivity) and/or T (complementary sensitivity) [SP00].

Setpoint regulation is employed, i.e. to reject any disturbances which enter at the plant

output and keep the feedback signal to zero in steady-state as shown in Figure 7.15

(measurement noise is assumed insignificant). The basis for this design is a pseudo-

reference or a ‘virtual’ reference signal set to zero (in reality the track is the input

that excites the system, however it is not considered for this design). Note that the

configuration in Figure 7.15 employs positive feedback for design purposes, which is

widely used in H∞ generalised regulator robust control problems.

It is required to keep the steady-state cant deficiency, or in this case the steady-state

effective cant deficiency (6.1) for partial tilt, equal to zero unaffected by disturbances

at the output.

- - K - G
y-

6

+

+

r := 0 e u

?

-?+

+

d

+

+
¾ n

Figure 7.15: A general regulation control problem

The problem is then to design a fixed-structure (model-based) controller K(s), based

upon the H∞ framework, to meet several requirements such as closed loop stability,

good tracking or disturbance rejection performance and robust stability in the presence

of modelling discrepancies in G(s).
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Consider the system in Figure 7.15 where the output of the system can be written as

y = d+Gu

= d+GKe

= d+GK(r + y + n)

y = (I −GK)−1

︸ ︷︷ ︸

S

d+
[

(I −GK)−1GK
]

︸ ︷︷ ︸

T

(r + n) (7.58)

where the term ‘(s)’ is withdrawn for simplicity.

The sensitivity function S represents the transfer function between the disturbance and

the output, and also the transfer function from r to the error e. The complementary

sensitivity T is the transfer function between r and y and also between n and y. The

complementary sensitivity and the sensitivity functions are related by (note positive

feedback)

S − T = I (7.59)

For good tracking, disturbance rejection and robust tracking it is required to minimise

‖S‖∞. In addition, for sensor noise attenuation and good robust stability to output

model uncertainty is useful to minimise ‖T‖∞. Finally, limited control bandwidth and

good robust stability due to additive perturbations in the plant model requires the

minimisation of ‖KS‖∞. Thus, the minimisation problem can be summarised as

min
K∈S

w
w
w
w
w
w
w

(I −GK)−1

GK (I −GK)−1

K (I −GK)−1

w
w
w
w
w
w
w

∞

(7.60)

where S is the set of all internally stabilising controllers.

It is not possible to achieve all design objectives simultaneously, because there is a

fundamental trade-off between S and T as shown in (7.59). However, this problem is

overcome by incorporating appropriate shaping filters to emphasise the minimisation

of each individual transfer function at different frequency ranges of interest. Distur-

bance rejection is usually required at low frequencies, thus S can be minimised at low

frequency range. Moreover, both T and KS can be minimised at higher frequencies

where sensor noise attenuation and limited control action are practically required.

• Mixed sensitivity for tilt control

The block diagram in Figure 7.16 illustrates the general control problem configuration

for tilt control.
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Figure 7.16: S/KS/T mixed-sensitivity General Control problem formulation for tilt
control

The exogenous input w represents a setpoint zero reference command r, and the reg-

ulated outputs are z1 the effective cant deficiency (e.c.d.) error signal, z2 the e.c.d.

output signal and z3 the control signal u, i.e.






z1

z2

z3




 =






(r + θ′dm)

θ′dm

δa




 (7.61)

where, z1 = θ′dm =
(

−0.615 ÿvm

g − 0.385θ2sr

)

. Note that regulating z1 to zero will

provide the required 60% tilt compensation, while the regulation of z2, z3 will satisfy

control limitation and noise attenuation at high frequencies. The state vector used for

the design of the controller is given by

x =
[

yv θv yb θb ẏv θ̇v ẏb θ̇b θr

]T
(7.62)

The associated closed loops from w to z are given by






z1

z2

z3




 =






W1 (I −GK)−1

W2GK (I −GK)−1

W3K (I −GK)−1




w (7.63)

From (7.57)

FL(P,K) =






W1 (I −GK)−1

W2GK (I −GK)−1

W3K (I −GK)−1




 (7.64)
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and expanding the row of the sensitivity function gives

FL(P,K) =







W1

[

I +GK (I −GK)−1
]

W2GK (I −GK)−1

W3K (I −GK)−1







(7.65)

or similarly

FL(P,K) =






W1

0

0




+






W1G

W2G

W3






[

K (I −GK)−1
]

(7.66)

Now the elements of the generalised plant P can be easily obtained as

[

P11 P12

P21 P22

]

=









W1 W1G

0 W2G

0 W3

I G









(7.67)

The main problem of designing the H∞ controller is now the selection of the weighting

filters. As discussed above, in general W1 should be a low pass filter, whereas W2,W3

appropriate high pass filters. Actually, it was found very difficult to satisfy both de-

terministic and stochastic criteria for the tilt problem using the mixed-sensitivity for-

mulation.

W1 was chosen to be a low-pass filter with a very low cut-off frequency essentially to

enforce integral action on z1. In contrast W2, W3 were chosen as high-pass filters with

pole and zero cut-off frequencies.

W1(s) = kw1

(
1 + s/30

1 + s/10−4

)

(7.68)

W2(s) = kw2

(
1 + s/0.1

1 + s/300

)

(7.69)

W3(s) = kw3

(
1 + s/0.01

1 + s/30

)

(7.70)

where kw1, kw2, kw3 are the filter gains to be tuned for appropriate frequency based S,

T , KS infinity norm minimisation. Results are presented for two sets of filter gains:

(i) compromise between deterministic and stochastic criteria and (ii) improved curving

performance. The LMI Matlab toolbox [G+94] was used for the design of the H∞

controllers, and both the Riccati and LMI approaches provided the same results.
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However, it should be noted that the actual procedure followed is to specify a maximum

value of γ for the closed loop RMS gain and find all stabilising controllers which ensure

min
K∈S

‖FL(P,K)‖∞ < γ (7.71)

This problem is known as the suboptimal H∞ problem and γ is referred to as the

prescribed H∞ performance [G+94]. The associated Matlab files for the controller

design can be found in Appendix H.

SET 1: Compromise between deterministic and stochastic criteria. The

gains for the filters in this design were tuned as follows






kw1

kw2

kw3




 =






900.0

0.032

0.0032




 , ⇒

W1(s) = 900
(

1+s/30
1+s/10−4

)

W2(s) = 0.032
(

1+s/0.1
1+s/300

)

W3(s) = 0.0032
(

1+s/0.01
1+s/30

)
(7.72)

The (sub-)optimal H∞ controller was designed using Matlab function hinfric()7,

which implements the Riccati-based approach and produced the following result:

Gamma-Iteration:

Gamma Diagnosis

1.7321 : feasible

0.0721 : infeasible (Hx has imaginary axis eigenvalues)

0.3533 : feasible

0.2127 : infeasible (X is not positive semi-definite)

0.2830 : feasible

0.2479 : feasible

0.2303 : feasible

0.2215 : infeasible (X is not positive semi-definite)

0.2259 : feasible

0.2237 : feasible

Best closed-loop gain (GAMMA_OPT): 0.223702

It can be seen that after few iterations the optimum value for γ was set to approxi-

mately γopt = 0.224. The resulting controller can be found in Appendix F.1.1.

The magnitude Bode plot of the selected weighting functions and the singular values of

the associated controller can be seen in Figure 7.17. At low frequencies the minimisation

7The same results are produced by also using hinflmi() which implements the LMI-based approach.
The only difference is that hinflmi() does not have some regularity rejections attached to hinfric(),
and it is used often in large problems. Both functions are offered in the LMI toolbox.
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of the sensitivity function is dominant (W1), thus providing the required integral action,

while after approximately 0.5rads the cost function takes in account both T (W2) and

KS (W3) as expected. It is expected that such a controller will be sufficiently robust

to changes in the plant, however the response on design track will unavoidably be slow.

The time history results which are presented in Figure 7.18 (page 114 illustrate the

performance of the designed controller. It more or less resembles the performance of

the classical P + I controller, albeit having better robustness properties. However, it

is slow on design track and cannot meet the required objectives regardless of whether

it keeps the stochastic criteria within acceptable values, see Table 7.4 (next page).

SET 2: Improved curving performance. To improve the speed of the response,

the weightings need to be adjusted such that the minimisation of S is dominant over a

wider range of frequencies. To achieve this, the gain of each filter was changed to






kw1

kw2

kw3




 =






900.0

3.2e− 4

3.2e− 5




 , ⇒

W1(s) = 900
(

1+s/30
1+s/10−4

)

W2(s) = 3.2e− 4
(

1+s/0.1
1+s/300

)

W3(s) = 3.2e− 5
(

1+s/0.01
1+s/30

)
(7.73)

The resulting weightings can be seen in Figure 7.19(a), where the crossover between the

different elements of the cost function has been shifted at approximately 4.5rads. It is

expected that the controller will offer an improvement to the tilt response on curved

track.

The Riccati-based approach returned the following results in Matlab:

Gamma-Iteration:

Gamma Diagnosis

1.7321 : feasible

0.0721 : feasible

0.0147 : infeasible (X is not positive semi-definite)

0.0434 : feasible

0.0291 : infeasible (X is not positive semi-definite)

0.0362 : infeasible (X is not positive semi-definite)

0.0398 : feasible

0.0380 : infeasible (X is not positive semi-definite)

0.0389 : feasible

0.0385 : infeasible (X is not positive semi-definite)

0.0387 : infeasible (X is not positive semi-definite)

Best closed-loop gain (GAMMA_OPT): 0.038912
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Figure 7.17: Mixed sensitivity design set 1

Table 7.4: Mixed Sensitivity H∞ approach, weightings set 1, @ 58(m/s)
Deterministic

Lateral accel. - steady-state n/a (%g)

(actual vs ideal) - R.M.S. deviation error 6.78 (%g)

- peak value 21.4 (%g)

Roll gyroscope - R.M.S. deviation 0.038 (rad/s)

- peak value 0.073 (rad/s)

PCT (P-factor) - peak jerk level 10.55 (%g/s)

- standing 75.2 (% of passengers)

- seated 24.22 (% of passengers)

Stochastic

Passenger comfort - R.M.S. passive (equiv.) 3.78 (%g)

- R.M.S. active 4.01 (%g)

- degradation 6.2 (%)
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Figure 7.18: Design track time history results for mixed sensitivity weightings set 1
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Figure 7.19: Mixed sensitivity design set 2

The decrease on the the magnitudes of W2,W3 weights causes the optimal value of

γ to reduce to γopt = 0.0389. The resulting controller for this design is presented in

Appendix F.1.2, while the singular values are plotted in Figure 7.19(b).

Table 7.5: Mixed Sensitivity H∞ approach, weightings set 2, @ 58(m/s)
Deterministic

Lateral accel. - steady-state 9.53 (%g)

(actual vs ideal) - R.M.S. deviation error 2.08 (%g)

- peak value 12.23 (%g)

Roll gyroscope - R.M.S. deviation 0.022 (rad/s)

- peak value 0.111 (rad/s)

PCT (P-factor) - peak jerk level 6.8 (%g/s)

- standing 49.5 (% of passengers)

- seated 13.74 (% of passengers)

Stochastic

Passenger comfort - R.M.S. passive (equiv.) 3.78 (%g)

- R.M.S. active 5.02 (%g)

- degradation 32.86 (%)

From Figure 7.20 (page 117) it can be obtained that the response of the system has

been significantly improved compared to the previous set. The curved performance

is acceptable with the required steady-state compensation achieved as shown in Table

7.5. However, more oscillations have entered to the system as a result of the higher

bandwidth. This also further degrades the stochastic ride quality, due to the fact that

the fast controller excites the suspension modes on random track, Table 7.5.
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In the H∞ mixed sensitivity approach of this section, the problem encountered is that

the formulation proves too restrictive for control design. It is very difficult to design the

controller for both acceptable deterministic and stochastic performance based upon the

choice of r as the unique exogenous input. Trials with additional sensors, i.e. body roll

gyroscope and suspension deflection, did not provide significant improvement. Thus, it

is required to somehow separate the two objectives for the deterministic and stochastic

criteria in the problem formulation and this is discussed in the following section.

7.4.4 Multi-objective H∞/H2 Robust Control via LMI approach

Initial designs using H∞ optimisation were found adequate in terms of providing either

good deterministic or stochastic performance to the closed-loop system; however it was

found difficult to satisfy both objectives simultaneously as discussed earlier. This diffi-

culty was attributed to modelling assumptions of external disturbances implicit in the

H∞ optimality criterion.

Recall that the H∞ norm of a system represents the worst-case energy transfer be-

tween (bounded energy) disturbances to (bounded-energy) regulated outputs, and as

a result can be conservative when disturbances are naturally modelled as persistent

or white noise signals. In such cases, provided that the interests falls upon minimis-

ing the RMS value of a regulated output, the H2 norm [ZD98] of the corresponding

closed-loop transfer function is a more appropriate measure of stochastic performance.

This section considers the multiple-objective H∞/H2 design method for local/vehicle

tilt control [ZHG00].

The design objectives are formulated as an optimisation problem, defined in the gener-

alised -regulator setting shown in Figure 7.21, where P (S) and K(s) are the generalised

plant (inclusive of all weighting factors) and the controller to be designed. The vector

of external disturbances was set to w = [w1 w2]
T , where w1 denotes ( 1

R) the (deter-

ministic) track-curvature (low-frequency) disturbance signal and w2 is the (stochastic)

lateral track position (high-frequency) signal yo. Scaling factors Wi1 ,Wi2 emphasise

the relative weight between the two disturbances for the design. Outputs y1 and y2 are

the measured lateral acceleration and the secondary suspension roll angle, respectively.

It was chosen for the output vector to replicate the sensors used in the basic classical

nulling control. To meet both deterministic and stochastic requirements, the following
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Figure 7.20: Design track time history results for mixed sensitivity weightings set 2
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Figure 7.21: The Generalised Regulator Configuration for multi-objective control

multi-objective optimisation problem was formulated

min
K∈S

α ‖W1Tz1w‖
2
∞ + β ‖W2Tz2w‖

2
2 (7.74)

in which S denotes the set of all internally stabilising controllers. The first regulated

output z1 for infinity-norm minimisation, was chosen as the effective cant deficiency

z1 = θ′dm (6.1). For the minimisation of the 2-norm, z2 was chosen as the control input

u denoting the actuator roll angle δa. Regulating z1 to zero corresponds to 60% tilt

compensation and thus attains the desired (steady-state) level of acceleration on steady

state curve. Tziw (i = 1, 2) denotes the (closed-loop) transfer functions between signals

w and z1, z2 respectively.

Remark 7.4.1. Multi-objective optimisation typically refers to the joint optimisa-

tion of a vector consisting of two or more functions, typically representing conflicting

objectives. Common types of multi-objective optimisation problems include “Pareto-

optimal” (non-inferior) optimality criteria, minimax optimality criteria, etc.

In the context of this work, the term “multi-objective” refers simply to the fact that

the cost function of the optimisation problem involves two different types of norms,

capturing the deterministic and stochastic objectives of the design. The two different

norms that are used here are the two-norm and the infinity norm. Thus, typical

examples of multi-objective problems in our context include:
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1. Constrained minimisation:

Minimise ‖W1Txy‖2 subject to ‖W2Tzw‖∞ < γ,

2. Unconstrained minimisation:

Minimise β ‖W1Txy‖2 + α ‖W2Tzw‖∞, and

3. Feasibility problem: Find a stabilising K(s) (if one exists) such that

‖W1Txy‖2 ≤ γ1 and ‖W2Tzw‖∞ ≤ γ2

Here Txy and Tzw represent two general closed-loop transfer functions, weighted via W1

and W2.

Scalars α and β, in (7.74), are positive definite design parameters which may be used

to shift the emphasis of the optimisation problem between the minimisation of the

‖Tz1w‖∞ term (deterministic objective) and the ‖Tz2w‖2 term (stochastic objective).

The frequency-domain weights W1 and W2 have been chosen as:

W1(s) = 104
s

200 + 1
s

0.0001 + 1
(7.75)

W2(s) = 0.5
s3 + 1.59s2 + 0.58s+ 0.06

s3 + 13.81s2 + 38.4s+ 2.98
(7.76)

W1 is essentially a low-pass filter with a very low pole cut-off frequency (10−4 rads
s ) and

high gain at low frequencies, Figure 7.22(a). Thus W1 emphasises minimisation of the

‖Tz1w‖∞ term in the low frequency range and effectively enforces integral control on the

regulated output (z1). W2 is a high-pass filter with pole (10 rads
s ) and zero (0.2 rads

s ) cut-

off frequencies. A lead/lag network is also included in W2, in the range of [.1 rads
s , 6 rads

s ],

which found to have a positive effect on controller design (by enhancing the cross-

over frequency of W1,W2), Figure 7.22(a). By limiting the high-frequency components

of the control input (z2), effectively places a limit on the closed-loop bandwidth of

the system, which in turn limits the RMS acceleration on random track (stochastic

case). Additional benefits include a smoother control signal and improved robustness

properties of the controller when the effects of uncertainty in P (s) and in the actuator

dynamics are taken into account. Moreover, the relative weighting between w1 and w2

involved the unity matrix, i.e.

Wi =

[

Wi1 0

0 Wi2

]

=

[

1 0

0 1

]

(7.77)

Thus the energy of either of the signals is equally incorporated in the cost function.

Increasing either Wi1 or Wi2 with respect to the other will put more emphasis on the
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Figure 7.22: Multi-objective H∞/H2 LMI approach scheme

deterministic or the stochastic track respectively. However, the current choice of Wi

provided the best results based upon the specifications in this thesis.

The minimisation problem in (7.74) was solved in Matlab using the LMI approach

[G+94]. LMIs represent the problem in a set of Linear Matrix Inequalities and follow a

convex optimisation approach. This technique has very attractive computational prop-

erties and is widely used in systems and control theory and more details can be found

in [B+94].

For controller design, the generalised plant was formulated as follows

ẋ = Ax+B1w +B2u

z∞ = C∞x+D∞1w +D∞2u (7.78)

z2 = C2x+D21w +D22u (7.79)

y = Cyx+Dy1w (7.80)

where all matrices can be formed based upon the A,B,C,D state space matrices in

Appendix E.1 and the specifications in the generalised plant. Note that the state

vector incorporates the same states as in the mixed sensitivity design. The controller

can be then found by using matlab function hinfmix().

The optimisation problem was solved for a few combinations of the α and β parameters

and the results can be seen in Table 7.6. The results shown in the table clearly illustrate

the fundamental trade-off between the deterministic and the stochastic objectives of
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Table 7.6: α-β combinations for the H∞/H2 problem
α β RiQu−Deg.(%) Dev −Det.(%g)

1 1 21.7 1.95

1 2.5 10 2.15

1 5 4.95 2.37

1 10 3.4 2.62

1 20 2.1 2.9

RiQu−Deg.: ride-quality degradation @58m/s of active

system compared to passive @58m/s (straight track)

Dev −Det.: RMS acceleration deviation from the ideal response

of an ideal tilting controller @58m/s (curved track)

the design.

As expected, increasing the value of β relative to α puts more emphasis on the stochastic

aspects of the design, and as a result the RMS acceleration on straight track is reduced.

This is at the expense of deterministic performance and, therefore, the curved track

response becomes slower (larger deviations from the ideal tilt response). Since it is

required that stochastic performance deteriorates by no more than 7.5% compared to

the passive system, the “best” design was obtained for α = 1 and β = 5. The result

returned in Matlab for the “best” configuration is shown below

Optimization of 1.000 * G^2 + 5.000 * H^2 :

----------------------------------------------

Solver for linear objective minimization under LMI constraints

Iterations : Best objective value so far

1

2

3

4

5

6

7

8

9

10

11

12

13

14
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15

16

* switching to QR

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36 1.018621e+005

37 1.018621e+005

38 6.830550e+004

39 6.830550e+004

40 5.029532e+004

41 5.029532e+004

42 4.475980e+004

43 4.226245e+004

*** new lower bound: 3159.072336

44 4.067042e+004

45 3.932891e+004

*** new lower bound: 7515.082450

46 3.869554e+004

*** new lower bound: 1.337229e+004

47 3.813935e+004

*** new lower bound: 2.126712e+004

48 3.768442e+004

*** new lower bound: 2.417974e+004

49 3.731571e+004

*** new lower bound: 2.648882e+004

50 3.731571e+004

*** new lower bound: 2.831748e+004

51 3.669343e+004

*** new lower bound: 2.858709e+004

52 3.654895e+004

*** new lower bound: 3.010962e+004

53 3.634128e+004

*** new lower bound: 3.236723e+004

54 3.617982e+004
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*** new lower bound: 3.294263e+004

55 3.611540e+004

*** new lower bound: 3.334488e+004

56 3.611540e+004

*** new lower bound: 3.392420e+004

57 3.519640e+004

*** new lower bound: 3.393568e+004

58 3.510891e+004

*** new lower bound: 3.406173e+004

59 3.507050e+004

*** new lower bound: 3.416366e+004

60 3.503430e+004

*** new lower bound: 3.424687e+004

61 3.496769e+004

*** new lower bound: 3.431505e+004

62 3.493807e+004

*** new lower bound: 3.437031e+004

63 3.488358e+004

*** new lower bound: 3.441555e+004

64 3.483742e+004

*** new lower bound: 3.450646e+004

Result: feasible solution of required accuracy

best objective value: 3.483742e+004

guaranteed relative accuracy: 9.50e-003

f-radius saturation: 88.219% of R = 1.00e+008

Guaranteed Hinf performance: 1.54e+002

Guaranteed H2 performance: 4.68e+001

Note that, in the first few iterations, the algorithm does not find any solutions for
the problem, however the solution converges soon after. The resulting controller is of
2-input/1-output dimension due to the two measurements used in the formulation, and
can be found in Appendix F.2. The singular value plot is shown in Figure 7.22(b).

The performance of the designed system is assessed in Table 7.7, where it can be seen
that it is very good even if the scheme is based upon “nulling”-type control. This
approach offers a significant improvement compared to the mixed sensitivity, by distin-
guishing the design objectives in the cost function. The associated time history analysis
for the design track is presented in Figure 7.23, with clearly improved system damping
by the fixe-structure H∞ controller.

A further step is to test the controller designed for the nominal plant under parametric

changes, which involved two assumed cases

1. Perturbed (1): 20% increase in body mass with 10% increase in secondary

suspension stiffness and 20% decrease in secondary suspension damping ratio.

2. Perturbed (2): 40% increase in body mass with 20% increase in secondary
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Table 7.7: H∞/H2 multi-objective LMI approach @ 58(m/s)
Deterministic

Lateral accel. - steady-state 9.53 (%g)

(actual vs ideal) - R.M.S. deviation error 2.37 (%g)

- peak value 13.66 (%g)

Roll gyroscope - R.M.S. deviation 0.023 (rad/s)

- peak value 0.101 (rad/s)

PCT (P-factor) - peak jerk level 7.07 (%g/s)

- standing 51.7 (% of passengers)

- seated 14.93 (% of passengers)

Stochastic

Passenger comfort - R.M.S. passive (equiv.) 3.78 (%g)

- R.M.S. active 3.96 (%g)

- degradation 4.95 (%)

suspension stiffness and 40% decrease in secondary suspension damping ratio.

The above cases were chosen such that they represent realistic parametric changes.

However, the decrease in damping was included to observe the performance of the con-

troller under reduced damping in the passive system. It should be noted at this point

that system uncertainty was not considered in the robust controller design procedure.

Results are illustrated for the passenger acceleration on design track in Figure 7.24 in

page 126. The system is stable in all cases and also the transition performance does

not change significantly even though the uncertainty was not taken in account in the

design. There is of course a small change in the steady-state, however this is a function

of the system parameters rather than the tilt controller. Moreover, the stochastic ride

quality was within the required 7.5% degradation margin in all test cases. Thus, the

controller provides sufficient performance and also acceptable robust stability.
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Figure 7.23: Design track time history results for H∞/H2 “best” design

7.5 Concluding remarks

This chapter has considered the design of local/vehicle tilt controllers based upon ad-

vanced control concepts. It has been shown that the optimal LQR with integral action

approach provides a significant improvement in all aspects of the tilt control problem.

It especially illustrates the advantage of using state feedback in the controller design.

The controller has a fast response on design track while improving the ride quality in

the stochastic case and this illustrates the validity of the cost function in the design.

However, in reality a state estimator is required for implementation properties due to

the weakness of measuring all states (LQG control), which does not guarantee the pre-

scribed robustness properties of the LQR controller.

Moreover, a model-based estimation scheme was proposed to provide a more effective

feedback signal for control design. The work concentrated upon Kalman estimators
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Figure 7.24: Controller performance with parametric change

and results have illustrated the effectiveness of the method. The estimator performed

remarkably well although the deterministic and stochastic track features are unknown

and not included with the vehicle dynamics. A simple PID controller completed the

design in order to achieve the required tilt angles. Trials with added sensor noise had

minimal effects on the estimator performance and on the overall designed system. This

estimator can be easily incorporated in the LQR approach for LQG control.

The chapter has also considered the design of H∞ controllers for application to the

tilt control problem. The method was illustrated by using the mixed sensitivity ap-

proach based upon a pseudo-reference command, however it proved too difficult to

attain both deterministic and stochastic criteria. This problem was overcome by using

a multi-objective H∞/H2 approach based upon a direct connection of the cost function

to the two different track profiles. The problem formulation was solved using the LMI

approach, a technique which recently emerges in a variety of control methods. The

H∞/H2 controller offers a very good tilt performance with low overshoots and fast

settling times. Uncertainty was not taken in account during the design stage, albeit
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tests shown that the controller provides good robust stability in the presence of plant

uncertainty. The main problem with such closed-loop based approaches is the selection

of weights which can be a complex procedure.

The next part investigates the tilt control problem in a vehicle configuration which is

widely used in the tilting train industry. It is based upon the use of a tilt mechanism

to provide tilt action. The problem is similar to the previous case of the ARB vehicle

model but the vehicle structure is more complex. The part includes modelling and also

the extension of the control studies for the new model.
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Chapter 8

Modelling of Vehicle Dynamics

using tilting bolster

8.1 Tilt Mechanism Preliminaries

As noted earlier in the thesis, the amount of tilt tends to be rather restricted in the

case of tilting across the secondary suspensions, i.e. via airsprings or by using active

ARBs. Most systems now use what is called a tilting mechanism, connected to the

bogie via swing links (see Section 1.3.3) effectively providing a tilting bolster with the

conventional secondary suspension placed below or above the mechanism.

Modern tilting trains mainly employ mechanisms with the secondary suspension situ-

ated on top, where tilt action is provided below the suspension level. In this arrange-

ment the secondary suspension acts between the tilting bolster and the vehicle body,

as a consequence the lateral suspension does not have to react to the increased curving

forces which reduces the suspension deflections. There are still issues with bogie weight

and complexity as well as with increased actuator force, albeit available technology can

overcome such problems (though such structures are more expensive compared to sim-

pler forms of tilt). Note that the inclined swing links imply that the effective tilt centre

is still above the vehicle body floor level even if the tilt action is applied below the

vehicle body.

The actuator technology in the early mechanism configurations involved mainly hy-

draulic actuators (i.e. X2000 tilt), though trials for the British APT (during the

1980s) made use of electro-mechanical actuators [Goo99]. However, most European

- 129 -



Chapter 8 Modelling of Vehicle Dynamics using tilting bolster

manufacturers now tend to replace hydraulic with electro-mechanical actuator solu-

tions, i.e. VT612 (Adtranz), FIAT-SIG for Virgin West Coast. Details on these vehicle

configurations can be found in [Goo99]1.

8.2 Vehicle Modelling

The mathematical modelling in this part of the research work is based upon a demon-

stration vehicle assembled in VAMPIRE rail vehicle dynamics software package [KE00].

The generated full non-linear vehicle model is illustrated in Figure 8.22, where the

tilting bolster is represented by the mass between the bogie and the body elements.

body

bogie

bolster

wheelset

Figure 8.1: Vampire model of the tilting train (single vehicle)

Although the VAMPIRE model is a full non-linear vehicle dynamic model, involving

39-DoF without and 51-DoF with the bolster, this section develops a linear model

approximation to represent the main vehicle dynamic modes essential for tilt control

design (using the half-vehicle model). The linear model comprises both the lateral and

roll degrees-of-freedom for both the body and the bogie masses, subject to the following

1there is also a website including information on railway technology and related projects, and can
be found at http://www.railway-technology.com.

2the author wishes to thank Jeremy Evans (AEA Technology) for providing the VAMPIRE vehi-
cle model and parameter values. An overview of the VAMPIRE software package can be found in
http://www.aeat.co.uk/rail/pdf/vampire.pdf.
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Figure 8.2: Vehicle with tilt mechanism below secondary

considerations:

• both vertical and lateral, primary and secondary suspension are characterised

by pairs of spring/damper parallel combinations. Damper end-stiffness was also

included in the case of the secondary lateral suspensions.

• also included is the stiffness of an anti-roll bar connected between the body and

the combined bogie/bolster masses (using additional roll damping).

• active tilt is provided by the “tilting bolster” mounted on the bogie mass, with the

tilt action applied between the bolster and the bogie frame via a roll actuator. The

mechanical arrangement is for tilt below secondary suspension, with the motion

illustrated in Figure 8.3(a).

• the actuation system is represented by a position servo in series with the mecha-

nism (see Figure 8.3(b)). The parameters were chosen such that they gave 3.5Hz

bandwidth and 50% damping closed-loop position servo mechanism. The tilting

bolster is able to provide the maximum tilt required, i.e. up to 10 degrees.

• detailed wheelset dynamics were not included for simplicity, however the associ-

ated effects are incorporated in the model by using an appropriate 2nd order LP
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filter (bogie lateral kinematics). The filter was characterised by a 5Hz cut-off

frequency and 20% damping.

tilt
centre

actuator
"zero"
position

roll: (+) clockwise

lateral: (+) to the right
h m
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equilibrium

actuator
"displaced"
position

(a) Motion

s(as+1)

k
m

k
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+

-

tilt
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applied

tilt

Σ

actuator system

(b) Dynamics

Figure 8.3: Actuator configuration

The modelling procedure is very similar to the previous one followed in Section 5.4. The

vehicle model is characterised by the following set of equations of motion (corresponding

to local reference axis, with the rotation and translation associated with curves allowed

for in the equations).

mvÿv = −2ksyyv + 2ksyh1θv + 2 (ksy + kcsy) yb + 2 (ksy + kcsy)h2θb − 2kcsyyes

− [2hmt (ksy + kcsy) −mvg] θm +mvgθo −
mvv

2

R
−mvhg1θ̈o (8.1)

ivrθ̈v = (2h1ksy +mvg) yv −
[
kvr + 2h2

1ksy + 2d2

1 (kaz + ksz)
]
θv

− [2h1 (ksy + kcsy) +mvg] yb +
[
kvr + 2d2

1kaz − 2h1h2 (ksy + kcsy)
]
θb − cvrθ̇v + cvrθ̇b

+ 2kszd
2

1θr + 2h1kcsyyes +
[
kvr + 2d2

1kaz + 2 (ksy + kcsy)h1hmt

]
θm + cvrθ̇m − ivrθ̈o (8.2)

mbÿb = 2ksyyv − 2h1ksyθv − 2 [(ksy + kcsy) + kpy] yb − 2 [h2 (ksy + kcsy) − h3kpy] θb

− 2cpy ẏb + 2h3cpy θ̇b + 2kcsyyes + 2kpyyw + 2cpy ẏw + 2hmt (ksy + kcsy) θm

+mbgθo −
mbv

2

R
−mbhg2θ̈o (8.3)
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ibrθ̈b = 2h2ksyyv +
[
kvr − 2h2h1ksy + 2d2

1 (kaz + ksz)
]
θv − 2 [h2 (ksy + kcsy) − h3kpy] yb

−
[
kvr + 2h2

2 (ksy + kcsy) + 2h2

3kpy + 2d2

2kpz + 2d2

1kaz

]
θb + cvrθ̇v + 2h3cpy ẏb

−
(
cvr + 2d2

2cpz + 2h2

3cpy

)
θ̇b − 2kszd

2

1θr + 2h2kcsyyes − 2h3kpyyw − 2h3cpy ẏw

−
[
kvr + 2d2

1kaz − 2 (ksy + kcsy)h2hmt

]
θm − cvrθ̇m − ibrθ̈o (8.4)

• Additionally, for the actuator and the bogie kinematics respectively:

θm

θmi

(s) =
483.6

s2 + 22s+ 483.6
,

yw

yo
(s) =

987

s2 + 12.57s+ 987
(8.5)

• and also for the damper end-stiffness state and the airspring state respectively:

ẏes = c−1
sy (kcsyyb + h2kcsyθb + csyẏv − csyh1θ̇v − kcsyhmtθm − kcsyyes) (8.6)

θ̇r = c−1
rz {−θr(ksz + krz) + kszθv + krz(θb + θm) + crz(θ̇b + θ̇m)} (8.7)

The model parameter values are listed in Appendix A.2.2, with all other symbols listed

in the Glossary. Furthermore, an end-moment effect, similar to the case of the ARB

model, mvg(yv − yb) (see Figure 5.12 on page 59), was also included to model the

roll contribution of the body c.o.g. displacement on curved track (due to the soft sec-

ondary suspensions). The system is still highly complex with the lateral and roll mode

coupling strongly present, however the actuator has now a direct effect on the lateral

motion (compared to the ARB case) which provides reduced suspension deflection (in

the active case) and some improvement in tilt performance.

It is now a matter of re-arranging the equations into a state space form for system

analysis and control design as follows

ẋ = Ax + Bu + Γw (8.8)

y = Cx + Hw (8.9)

where,

ẋ =
[

yv θv yb θb ẏv θ̇v ẏb θ̇b θr yes yw ẏw θm θ̇m

]T
, . . .

u = [θmi ],w =
[

R−1 Ṙ−1 θo θ̇o θ̈o yo ẏo

]T
. (8.10)

For simulation purposes only, disturbance signals Ṙ−1, θo, θ̇o, yo should be incorporated

into the state vector. The associated A and B matrices can be seen in Appendix E.2,

with more details available in the relevant matlab files. The analysis of the system

modes ensures compatibility between the matlab and vampire models listed in Table

8.1 (indicating the major system modes).
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Table 8.1: Tilt mechanism vehicle model dynamic modes
Matlab linear model

Mode Damping(%) Frequency(Hz)

Lower sway 21.8 0.48

Upper sway 20.9 1.35

Bogie lateral 9.95 16.7

Bogie roll 28.3 7.26

Vampire full non-linear model

Mode Damping(%) Frequency(Hz)

Lower sway 22.5 0.44

Upper sway 21.3 1.44

Bogie lateral 11.76 16.0

Bogie roll 30.46 6.6

Table 8.2: Track profiles for the tilting mechanism linear model
Curve Transition

maximum cant angle θomax 5.84 (degrees)

maximum curve radius Rmax 1200.0 (m)

transition length 145.0 (m) @ each end

sample track length 1200.0 (m)

Straight Track Lateral Irregularities

track roughness Ωl 0.33e− 8 (m)

track spatial spectrum ST Ωl/f
3
(

m2

(cycle/m)

)

sample track length 1200.0 (m)

Table 8.3: Assessment of passive (tilt mechanism) vehicle @ 45(m/s)
Deterministic

Lateral accel. - steady-state 8.89 (%g)

(actual vs ideal) - R.M.S. deviation error 1.49 (%g)

- peak value 9.67 (%g)

Roll gyroscope - R.M.S. deviation 0.007 (rad/s)

- peak value 0.040 (rad/s)

PCT (P-factor) - peak jerk level 3.85 (%g/s)

- standing 25.0 (% of passengers)

- seated 6.73 (% of passengers)

Stochastic

passenger comfort - ride quality 2.114 (%g)

- 134 -



Chapter 8 Modelling of Vehicle Dynamics using tilting bolster

0 200 400 600 800 1000 1200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Body lateral acceleration @ 45 m
s

Body roll angle @ 45 m
s

a
c
c
e
l.

(
m s
2

)
ro

ll
a
n
g
le

(d
e
g
r
e
e
s
)

track (m)

track (m)

(a) Vehicle body

0 200 400 600 800 1000 1200
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0 200 400 600 800 1000 1200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Bogie lateral acceleration @ 45 m
s

Bogie roll angle @ 45 m
s

a
c
c
e
l.

(
m s
2

)
ro

ll
a
n
g
le

(d
e
g
r
e
e
s
)

track (m)

track (m)

(b) Vehicle bogie

0 200 400 600 800 1000 1200
−0.06

−0.04

−0.02

0

0.02

0 200 400 600 800 1000 1200
−4

−2

0

2
x 10

−4

Secondary lateral suspension

Primary lateral suspension

d
e
fl
e
c
ti

o
n

(m
)

d
e
fl
e
c
ti

o
n

(m
)

track (m)

track (m)

(c) Suspension deflection on determ. track

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1

0 200 400 600 800 1000 1200
−6

−4

−2

0

2

4

6

Body lateral acceleration @ 45 m
s

Bogie lateral acceleration @ 45 m
s

a
c
c
e
l.

(
m s
2

)
a
c
c
e
l.

(
m s
2

)

track (m)

track (m)

(d) Lateral acceleration on stoch. track

Figure 8.4: Simulations results for the passive (tilt mechanism) vehicle

Figure 8.4 presents a set of simulation results for the linear model for both the deter-

ministic and stochastic case, with the track profile characteristics listed in Table 8.2.

With the nominal vehicle speed assumed vo = 45m
s , the designed cant deficiency is

v2
o

R − gθo = 4.0o or 0.686(m
s2 ). However, the steady-state body lateral acceleration is

0.8725(m
s2 ) due to the body roll-out of 1.1o, while the peak acceleration reaches a value

of 0.95(m
s2 ) (Figure 8.4(a)). In the stochastic case, the R.M.S. value of the body lateral

acceleration is 2.114(%g). The overall assessment of the passive model is presented in

Table 8.3 (previous page).
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Figure 8.5: Comparison of Vampire (dash-dotted) and Matlab (solid) generated mod-
els for the deterministic case based upon the vehicle body
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In addition, the accuracy of the linear model was further verified via a comparison with

the non-linear vampire model based on the above track profile for the deterministic

case3. It can be easily seen from the results in Figure 8.5 (previous page) that the

linearised model forms a very good approximation of the non-linear model structure.

8.3 Summary

This chapter discussed on the modelling of a vehicle structure with a tilting bolster

used for active tilt control. It also presented an overview of tilting mechanisms used

in railway vehicles. The developed linearised model was based upon a full non-linear

vehicle generated in Vampire software package. Moreover, a series of transient tests

demonstrated the compatibility between these two models, and shown that the linear

approximation can be an effective basis for system analysis and control design.

3the stochastic track profile specified in matlab was found to be incompatible with vampire, thus a
thorough comparison between the two models was not possible. For these reasons the stochastic track
case was not considered.
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Control Studies for the Tilt

Mechanism Application

This chapter describes the control strategies applied for the railway vehicle including

the tilt mechanism. It includes an outline of the basic tilt control methods to accom-

modate the tilt mechanism, and also extends and adapts the advanced control concepts

already implemented in the anti-roll bar case (Chapter 7), to the tilt mechanism model.

Moreover, it extends the above advanced approaches to further improve the active tilt

performance based upon the tilt mechanism.

9.1 Basic control approaches

The evolution of the basic control approaches to overcome the tilt control problems

has been already presented in Chapter 6, the same applies in this case with minor

adjustments to accommodate the tilt mechanism structure. The procedure is briefly

illustrated for the basic partial-nulling and basic precedence strategies.

The tilt application for this model case is based upon 75% partial tilt compensation on

steady curve at a high speed of 58(m/s), and relates to a nonlinear simulation study

presented in [KE00]. The track profile is given in column ‘Mechanism (Case B)’ Table

4.1 on page 38 (it is also listed in Table 8.2 in the previous chapter).

9.1.1 Basic Partial-nulling control

The basic partial-nulling control structure for the mechanism model is depicted in

Figure 9.1, which is very similar to the ARB model case in Chapter 6. However,

the feedback signal, effective cant deficiency (9.1), now incorporates a portion of the
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actuator roll angle, rather than the vehicle roll, which forms a more direct measurement

of vehicle tilt (it is easier to fit sensors on the active elements of the vehicle, i.e. the

tilt mechanism model in this case).

θ′dmm = −k1
ÿvm

g
− k2θa (9.1)

where, ÿvm = v2

R − g (θo + θv) + ÿv. For the purposes of 75% tilt compensation, factors

k1, k2 were adjusted to 0.7652 and 0.2348 respectively in order to accommodate any

discrepancies from the secondary suspension roll due to the remaining curving forces.

For the explanation regarding the sign used for feedback the reader is referred to remark

6.1.1 on page 65 (replacing θ2sr with θm).

Vehicle+Actuator
Dynamics

y
acc

+
-

1
g

(effective cant deficiency)

actuator
roll

θm

Controller

Track

(equivalent cant
deficiency angle)

θd

k1

k1

k2
-1

Figure 9.1: Basic partial-nulling scheme for vehicle with tilting bolster

The control input comprises the angular displacement (θmi) provided by the tilting

bolster, which in turns provides a rotary and an associated lateral displacement to the

vehicle body. The uncompensated OL frequency response for the controller design is

shown in Figure 9.2 and the system is still characterised by two RHP-zeros (a complex

pair) at 5.08 ± 4.2, which as described in earlier chapters limits the control design.

A typical controller design based upon classical methods would incorporate a P+I

compensator (9.2), setting k = 0.2, τ = 0.4sec, to guarantee the required steady-state

tilt compensation and limit higher frequency phase lag due to the RHP zeros.

KPI(s) =
k(1 + sτ)

sτ
(9.2)

The resulted compensated OL together with the associated complementary sensitivity

and sensitivity functions are shown in Figure 9.3(a) and Figure 9.3(b) respectively

(page 141).
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Figure 9.2: Uncompensated OL frequency response from u to effective cant deficiency

The time domain results are shown for the curved track in the set of Figure 9.4 and

Figure 9.5 (page 142, 143), and the overall assessment in Table 9.1. The controller

does not perform well (which is expected due to classical control limitations with this

scheme), still failing to provide the steady-state value of tilt and including significant

oscillations in the roll rates (poor gain margin).

Table 9.1: Mechanism basic nulling scheme assessment @ 58(m/s) - (PI approach)

Deterministic

Lateral accel. - steady-state n/a (%g)

(actual vs ideal) - R.M.S. deviation error 4.65 (%g)

- peak value 13.02 (%g)

Roll gyroscope - R.M.S. deviation 0.03 (rad/s)

- peak value 0.093 (rad/s)

PCT (P-factor) - peak jerk level 6.95 (%g/s)

- standing 47.87 (% of passengers)

- seated 13.98 (% of passengers)

Stochastic

Passenger comfort - R.M.S. passive (equiv.) 2.725 (%g)

- R.M.S. active 2.888 (%g)

- degradation 5.97 (%)
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Figure 9.3: Basic nulling for mechanism, designed system frequency responses

9.1.2 Basic Command-Driven with Precedence Control

This scheme is used by all tilting train manufacturers, where the tilt signal in most

cases is provided from the first vehicle and transmitted digitally with appropriate time

delays to the rest of the coaches, see Figure 9.6(a).

In this case there is no need to include an extra feedback of tilt angle, which is taken

in account by the mechanism itself which acts just like a servo (see Figure 8.3(b) on

page 132). Simply, the mechanism output angle will closely follow the provided com-

mand input tilt command, subsequently providing the required tilt action to the vehicle

body. Hence, the control design is redundant (unless a more complex design is extra

required) and the only prerequisite is a prefilter to guarantee a tilt command for 75%

compensation. The above idea is illustrated in Figure 9.6(b).

The designed prefilter involves a second order low pass filter to remove high frequencies

from the bogie-based acceleration signal. An extra proportional term of 0.75/g converts

the acceleration into cant deficiency and provides the command for 75% tilt compensa-

tion. The cut-off frequency of the low pass filter is set to 0.45Hz with damping factor

equal to 0.707, which introduces a 0.5sec delay. Note that the preview time is chosen to

match the filter delay for comparable results with all other localised control strategies,

however it can be up to the designer to decide how much preview is needed for further

improvement in tilt performance.

From an assessment point of view the results are in Table 9.2, and as in the ARB case
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performs very well for both curves and random track. In the latter case, the correlation

between the input command and the random track input produces the best results (due

to preview time = filter delay). The design track simulation results are shown in Figure

9.7, Figure 9.8 in the next pages. The advantage of using a mechanism can be seen from

Figure 9.8(b), where the active system keeps the suspension deflection low compared

to the theoretical passive configuration at the same speed. Moreover, Figure 9.8(a)

illustrates how the body roll closely follows the mechanism tilt command. There are

of course other more complex control approaches for such precedence scheme, however

they are not a part of this thesis.

Table 9.2: Mechanism basic precedence scheme assessment @ 58(m/s)
Deterministic

Lateral accel. - steady-state 4.6 (%g)

(actual vs ideal) - R.M.S. deviation error 0.725 (%g)

- peak value 5.342 (%g)

Roll gyroscope - R.M.S. deviation 0.015 (rad/s)

- peak value 0.11 (rad/s)

PCT (P-factor) - peak jerk level 3.047 (%g/s)

- standing 22.06 (% of passengers)

- seated 4.04 (% of passengers)

Stochastic

Passenger comfort - R.M.S. passive (equiv.) 3.122 (%g)

- R.M.S. active 2.269 (%g)

- degradation -27.31 (%)

9.2 Advanced Control I (Modern Control)

This section presents the first part of the advanced control concepts proposed in this

thesis, and presents the extension of the LQR nulling and Model Based Estimation for

the mechanism model case.

9.2.1 LQR (Optimal P+I) Nulling Tilt Strategy for Tilt Mechanism

Model

The concept of this scheme and also the theory behind it are well discussed in Chap-

ter 7, and the following example presents how it can be adapted to work for the tilt

mechanism model. The design makes use of output regulation, which is more a realistic

approach, however state regulation can be also employed if required.
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For correct tilt compensation and also good disturbance rejection, the required extra

state introduced is the effective cant deficiency based upon the mechanism model (9.3).

This structure results in an optimal P+I controller.

θ′dmm = −k1
ÿvm

g
− k2θm (9.3)

where, k1 = 0.75, k2 = 0.25 and ÿvm = v2

R − g (θo + θv) + ÿv. Thus the augmented

system is now of the form
(

ẋ

ẋ′

)

=

(

A 0

C ′ 0

)(

x

x′

)

+

(

B

0

)

u (9.4)

where x′ =
∫
θ′dmm and C ′ is the selector matrix for integral action and is found from

θ′dmm = C ′x . All the above are based upon the state space matrices for the vehicle

model with the tilt mechanism listed in Appendix E.2. Note that the state vector x

now includes the following vehicle states (for the new model):

[

yv θv yb θb ẏv θ̇v ẏb θ̇b θr yes yw ẏw θm θ̇m

]T

and also u = [θmi ]. The control signal is

u = −
(

Kp Ki

)
(

x

x′

)

(9.5)

and the quadratic performance index for output regulation is

J = lim
T→∞

1

T
E

{∫ T

0
[yTQoy + uTRku ]dτ

}

(9.6)

where y = [(θ̇v − θ̇m),
∫
θ′dmm] and u = θmi . The weight of

∫
θ′dmm emphasises the

system speed, while the weight of (θ̇v − θ̇m) minimises the oscillations between body-

mechanism (recall that the secondary suspensions are situated on top of the bolster).

The weights Qo, Rk were initially set to represent the square of the inverse of the ex-

pected value, 1
(expected value)2

, for each parameter of interest. The controller can be

easily designed by varying the above weights until a satisfactory design arises. The

tuning process is the same as the one followed in the ARB case, and this section only

illustrates the results from the best system design.

The weights for the best design were set to the following values

Qo =

(
1

0.52 0

0 1
0.052

)

, Rk =
1

0.142
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making the corresponding performance index to be minimised equal to

J = lim
T→∞

1

T
E

{∫ T

0

(
1

0.52
(θ̇v − θ̇m) +

1

0.052

∫

θ′dmm +
1

0.142
u2

)

dτ

}

(9.7)

and finally the optimal gain for this above setup was found to be (Kr = [Kp Ki])

Kr = [.94 − 1.8 .25 − .07 .43 .075 .006 .015 .131 − .16 .06 − .004 2.53 .26 − 2.8] (9.8)

The controller assessment in Table 9.3 shows that this scheme works well for the mech-

anism model, even if it is based upon the nulling approach. The controller can also

accommodate all low frequency elements in the random track offering an improved ride

quality. The designed OL singular value plot can be seen in Figure 9.9(c), while the tilt

performance is illustrated in Figure 9.9(a) and Figure 9.9(b). In addition, the choice

of the relative body roll-mechanism roll rates proved effective in minimising unwanted

oscillations.

Table 9.3: Mechanism LQR+I advanced control scheme assessment @ 58(m/s)
Deterministic

Lateral accel. - steady-state 4.6 (%g)

(actual vs ideal) - R.M.S. deviation error 2.34 (%g)

- peak value 9.34 (%g)

Roll gyroscope - R.M.S. deviation 0.02 (rad/s)

- peak value 0.1 (rad/s)

PCT (P-factor) - peak jerk level 5.05 (%g/s)

- standing 34.9 (% of passengers)

- seated 9.11 (% of passengers)

Stochastic

Passenger comfort - R.M.S. passive (equiv.) 3.2 (%g)

- R.M.S. active 3.0 (%g)

- degradation -5.86 (%)
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9.2.2 Extension of Model-Based Estimation Control for Tilt Mecha-

nism Model

This work extends the successful MBE control scheme, designed for the ARB model,

to apply in the vehicle model with the tilt mechanism [ZGH01]. It should be noted

that the true cant deficiency signal for the mechanism case is given by

θtdm =
v2

gR
− (θo + θm) (9.9)

which employs the mechanism roll as a measurement of tilt angle rather than the body

roll itself.

The design of the Kalman estimator is very similar to the one followed in Section 7.3,

however there are some different aspects to be considered with the new model structure

for controller design and those are presented below.

• Estimator Design

The estimator design was again based upon three sensors measuring: body lateral

acceleration, body absolute roll rate and body yaw rate. Recall, that the system should

be re-formulated to include a set of track signals as states for correct estimation of the

feedback signals. The procedure is identical to the ARB case (see section 7.3), with

the model matrices in this case corresponding to the new model with the mechanism.

Note that the state vector of the re-formulated system now holds the following states

xk =
[

yv θv yb θb ẏv θ̇v ẏb θ̇b θr yes yw ẏw θm θ̇m θo θ̇o R−1
]T

(9.10)

and also the process noise is characterised by

wk =
[

Ṙ−1 θ̈o

]T
(9.11)

The values for matrices Rkf , Qkf were set, based upon the guide of page 95, as follows

Rkf =






1.1e− 3 0 0

0 1.42e− 6 0

0 0 1e− 6




 , Qkf =

[

8.3 − 6 0

0 8.32e− 4

]

(9.12)

which provided the best estimator design results (see Figure 9.10). The Kalman gain

was given by

Kf = PfC
TV −1 (9.13)
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where Pf is the unique positive semi-definite, Pf = P T
f ≥ 0, of the following algebraic

Riccati equation

PfA
T +APf − PfC

TV −1CPf + ΓWΓT = 0 (9.14)
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and the values obtained for the current configuration were

Kf =








































−0.289 −3.734 −0.304

−0.102 −2.952 0.0125

−0.0112 −0.219 −0.246

−0.0464 −1.121 −0.0193

−1.519 1.889 −57.62

−0.4879 −1.85 −0.0758

0.0592 −0.575 −41.41

−0.22 −1.561 −4.244

−0.0737 −2.11 −0.014

−0.0254 −0.491 −0.275

−3.698e− 015 −2.1306e− 015 −2.0679e− 013

1.605e− 013 6.4297e− 013 1.6618e− 012

4.178e− 015 −2.1598e− 014 −4.2143e− 013

−4.339e− 014 1.4898e− 013 1.3174e− 012

0.0735 4.55 −0.00767

0.523 19.39 −0.0627

0.000396 −0.00169 2.886








































(9.15)

The results can be seen in Figure 9.10 (sensor noise is included) and are very close to

the true values. The estimation error is mainly due to the sensor noise levels (plus a
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small percentage due to the effect of the stochastic track signals). The signal employed

is the designed cant deficiency estimate, i.e. v2

gR̂
− θ̂o because still the passive model is

used. The estimator can now be used for further control design.

• Tilt Controller Design based upon Model Based Estimator

The control scheme applied in this section is depicted in Figure 9.11 where two loops are

employed: the main loop for tilt performance and the secondary loop for suppressing

unwanted oscillations. The main loop incorporates the feedback signal required for

75% tilt compensation

θ̂′tdm = 0.78
v2

gR̂
− (0.78θ̂o + θ̂t) (9.16)

where θ̂t in this case is the actual roll angle of the tilt mechanism := θm. The secondary

loop uses the estimate of the absolute body roll rate (
˙̂
θv +

˙̂
θo). Initially only the main

loop was considered, however trials with the secondary loop shown that the overall

performance is much improved. Note that the compensation factor in (9.16) was set to

0.78 to accommodate the remaining 25% of uncompensated acceleration on the vehicle

body, which forces the body to roll slightly out compared to the mechanism.
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Figure 9.11: MBE-based control approach for tilt mechanism model

The main loop incorporates a P+I control configuration, K1(s) (9.17), for zero steady-

state error. The secondary loop involves a P+D controller, K2(s) (9.18), to feedback
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a portion of the absolute body roll rate to the system and improve the transient be-

haviour. Note that the main loop is closed using positive feedback due to the notation

used, i.e. positive tilt angle is required to tilt the body inwards.

K1(s) =
0.675s+ 2.25

0.3s
(9.17)

K2(s) =
0.01s+ 0.2

0.01s+ 1
(9.18)

Figure 9.12 illustrate the uncompensated and compensated open loop for the main

and the secondary loop respectively. In reality only the mechanism roll incorporates

dynamics in the system and the design is based upon that, the other two signals in the

true e.c.d. do not have any associated dynamics. Moreover, the closed loop system for

the main loop can be seen in Figure 9.13 (improved CL bandwidth compared to the

previous schemes). Note that the Kalman filter is already incorporated in the system.
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Figure 9.12: MBE control design - Open loop

Figure 9.14, page 156, illustrates the performance of the controlled system on design

track in the time domain. The body roll smoothly achieves the required amount of

required tilt 0.138(rads) approx. 7.9o, as expected (recall that this scheme mimics the

precedence-type)1.

However, there are still oscillations on the acceleration felt by the passengers due to

the secondary suspension. Some of the oscillations can be accommodated by increasing

the complexity of the overall controller, however an extra active element is the ideal

1The mechanism will roll slightly more in order to force the required body tilt angle, due to the
remaining 25% uncompensated cant deficiency forces (approximately 0.35o more).
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Figure 9.13: Main Closed Loop designed system

solution for this problem.

The assessment in Table 9.4 on page 156 reveals in more details the performance of the

controller. It can be seen that the designed system performs well in both design and

random track. It actually provides improved ride quality, while maintaining very good

passenger comfort on curve transition. Note that the system does not include sensor

noise for correct comparison with all other schemes. However, sensor noise does not

have a significant effect on the controller performance and all above characteristics are

maintained.
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Figure 9.14: Mechanism advanced MBE scheme results (design track)

Table 9.4: MBE-based advanced control scheme assessment @ 58(m/s)
Deterministic

Lateral accel. - steady-state 4.6 (%g)

(actual vs ideal) - R.M.S. deviation error 1.23 (%g)

- peak value 6.02 (%g)

Roll gyroscope - R.M.S. deviation 0.018 (rad/s)

- peak value 0.109 (rad/s)

PCT (P-factor) - peak jerk level 4.42 (%g/s)

- standing 26.78 (% of passengers)

- seated 5.95 (% of passengers)

Stochastic

Passenger comfort - R.M.S. passive (equiv.) 3.2 (%g)

- R.M.S. active 3.04 (%g)

- degradation -4.89 (%)
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9.3 Advanced Control II (Post-Modern Control)

Previous work presented in Chapter 7 involved mixed sensitivity and also a multi-

objective approach within the H∞ framework for the ARB model. Those designs

incorporated the formulation of the control problem in closed-loop and as such the

weights selection proved a difficult task. Studies in this section are based upon a robust

control approach proposed in [MG90], which makes use of H∞ methods to provide

robust stability in an open loop shaping framework to achieve certain specifications for

the closed loop system.

9.3.1 H∞ Loop Shaping Robust-Control Design via the Co-Prime Fac-

torization Method

The design of the controller was based on the normalized coprime-factor plant descrip-

tion introduced by McFarlane and Glover [MG90]. In this method, the nominal plant is

factored as G = M−1(s)N(s), where M(s) and N(s) are stable transfer functions rep-

resenting a left coprime factorization of G(s). Coprime factorizations are not unique;

however, it is always possible to make the factors M(s) and N(s) essentially unique

(i.e. unique up to left multiplication by a unitary matrix), by forcing them to satisfy

the normalization equation NN⋆ +MM⋆ = I. In this setting, the perturbed plant is

described by the set:

G∆ = {(M + ∆M )−1(N + ∆N ) | ‖[∆M ∆N ] ‖ǫ < ǫ} (9.19)

where ǫ quantifies the “size” of model uncertainty. In the context of robust stabi-

lization, left and right coprime factor descriptions were first proposed by Vidyasagar

[Vid85]. Their main advantage over alternative descriptions of unstructured uncer-

tainty (e.g. additive, multiplicative, etc) is that the corresponding robust-stabilisation

results are free from the assumption that the nominal and perturbed systems have

the same number of poles in the right-half plane. The robust-stabilization problem

associated with (9.19) can now be posed as follows: “Given a fixed ǫ, does there exist

a feedback controller K(s) which internally stabilizes the closed-loop system of Figure

9.15 for every G ∈ G∆ ?”. The corresponding maximum robust stabilization problem

is: “Find the largest ǫ = ǫo so that the feedback loop of Figure 9.15 is internally stable

for all G ∈ G∆, and the corresponding set of all optimal controllers K(s)”.

It turns out that, when the normalization condition is imposed on the coprime factors,

the two problems have surprisingly simple solutions. In particular, the maximum sta-

bility radius ǫo and the set of all optimal controllers can be obtained in closed form, i.e.

- 157 -



Chapter 9 Control Studies for the Tilt Mechanism Application

Σ Σ MN
-1

K

∆ N ∆ M

+

+ +

+

G∆

Figure 9.15: Coprime factor robust stabilisation problem

without the need to carry out an iterative procedure (“γ-iteration”), typically charac-

terising H∞ problems of this type. If one insists on the exact optimal solution however,

the derivation of a state-space realisation for the optimal controller is slightly compli-

cated due to a pole/zero cancellation phenomenon occurring at optimality [MG90]; in

this case, a singular perturbation procedure is needed to obtain the required realiza-

tions. To avoid this procedure, a slightly sub-optimal approach can be adopted, by

setting the robust-stabilization radius to ǫ = (1 − δ)ǫo, where δ = 0.01. The corre-

sponding (slightly sub-optimal) controller has one state that is almost non-minimal,

and can be removed with minimal effect on the controller’s frequency-response charac-

teristics.

The solution to the normalized coprime-factor robust stabilization problem is summa-

rized by the following result [MG90]:

Theorem 9.3.1. [McFarlane & Glover]: Let G(s) have a minimal state-space realiza-

tion (A, B, C, D) and let X and Z be the unique stabilizing solutions to the generalized

control and filtering algebraic Riccati equations,

(A−BS−1D∗C)∗X +X(A−BS−1D∗C) −XBS−1B∗X + C∗R−1C = 0

and

(A−BD∗R−1C)Z + Z(ABD
∗R−1C)∗ − ZC∗R−1CZ +BS−1B∗

respectively, where R = I + DD∗ and S = I + D∗D. Define further the control gain

matrix F = −S−1(D∗C +B∗X). Then:
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(i). The maximum robust stability radius is given by ǫo = (1 + λmax(ZX))−
1
2 .

(ii). For each ǫ < ǫo the ǫ-suboptimal central controller has a state-space realization

(Ak, Bk, Ck, Dk) where Ak = A+BF+ǫ−2W−∗
1 ZC∗(C+DF ), Bk = ǫ−2W−∗

1 ZC∗,

Ck = B∗F and Dk = −D∗, in which W1 = I + (XZ − ǫ−2I).

The design procedure based on this method proceeds by shaping the open-loop charac-

teristics of the plant by means of a weighting function W (s) (see Figure Figure 9.16(a)).

The plant is temporarily redefined as Ĝ(s) = W (s)G(s) and Theorem 9.3.1 is applied

to Ĝ to find the H∞ optimal controller K̂(s); finally the weighting function is absorbed

into the controller by defining K(s) = K̂(s)W (s) as shown in Figure 9.16(b).

G(s)

K(s)

W (s)

(a) Augmented problem (Shaped Plant, Gs = W × G)

G(s)

K(s) W (s)

(b) Augmented Problem (Final Controller, K̂ = K × W )

Figure 9.16: Coprime factors loop shaping design process

• H∞ coprime factorisation for tilt control

The work on control design involved a number of plant output configurations based on

body-mounted sensors and those were:
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[Case 1] (y1) combined signal (effective cant deficiency) for 75% partial tilt compen-

sation

[Case 2] (y1) combined signal (effective cant deficiency) for 75% partial tilt compen-

sation, plus (y2) body roll gyroscope

[Case 3] (y1) combined signal (effective cant deficiency) for 75% partial tilt compen-

sation, plus (y2) body roll gyroscope, plus (y3) tilt angle (actual mechanism roll)

In addition, the state vector for control design incorporated the following states

x =
[

yv θv yb θb ẏv θ̇v ẏb θ̇b θr yes yw ẏw θm θ̇m

]T
(9.20)

Trials with only one output (‘case 1’) were unsuccessful as very little information was

available to design a sufficiently fast controller. System performance has been signif-

icantly improved by using two outputs for the design procedure (‘case 2’), while the

three outputs (‘case 3’) produced very similar results to ‘Case 2’. Hence, the design

procedure is illustrated for the second case with the two outputs configuration. Note

that plant uncertainty was again not represented in detail in the design procedure,

rather the controller was designed based upon the nominal model and then tested for

robust stability.

Using two outputs for controller design (effective cant deficiency signal and body roll

gyroscope) will require the weighting function W (s) to be a two by two matrix, each

channel of W (s) corresponding to a separate measurement. For the current case W (s)

was chosen as:

W (s) =

(
k1(1+sT )

sT 0

0 k2
1+s/ωc

)

,
T = 0.25s

ωc = 30( rad
s )

(9.21)

W11(s) forces integral action in the controller, which guarantees the correct level of

steady-state acceleration on curved track, i.e. 75% tilt compensation. The additional

pole in W22(s) introduced at ωc = 30 rad
s increases the roll-off rate of the open-loop at

high frequencies and thus helps to suppress any high frequencies of the output signal

of roll rate. Note that the dynamic behaviour of the roll gyroscope depends only upon

the body roll velocity part of the roll gyroscope signal.

The gain factors k1, k2 included in W (s) may be used to adjust the (target) open-

loop bandwidth of the design, by placing emphasis on either the first or the second

output, and thus the speed of transient response, and also, indirectly, the level of

RMS acceleration on straight track due to track irregularities. Table 9.5 presents a
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comparison for different values of k1 by fixing k2. The reason for doing this is that

k1 governs the speed of the system, while k2 relates to the extra amount of damping

to be introduced and in that case the comparison with a varying k2 would not be as

straightforward. Note that the fourth column of the table is the RMS error between

the actual body lateral acceleration signal and the ideal lateral acceleration profile as

described in Chapter 3. The final column represents the robust stability radius ‘ǫ’.

Table 9.5: Trade-off of coprime factorisation with variable k1 (@ 58m/s)
k2 k1 peak accel. error accel. degrad. ǫ

determ.(%g) determ.(%g) stoch.(%)

0.3 0.1 20.0 8.81 -6.1 0.55

0.3 0.5 10.4 3.17 -3.1 0.38

0.3 1.0 8.74 2.39 1.9 0.26

0.3 1.25 8.43 2.25 4.9 0.22

0.3 1.75 8.13 2.1 9.6 0.17

0.3 2.0 8.05 2.06 11.2 0.15

0.3 5.0 7.8 1.94 17.6 0.06
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Figure 9.17: Best design for coprime factorisation H∞ method frequency responses

The design may be used successfully to trade-off performance and robust-stability re-

quirements for the deterministic characteristics of the design (i.e. curved track). Note,

however, that if the target open-loop bandwidth is set too high (large k values), the

robust stability margins are reduced, and the stochastic performance index starts de-

teriorating excessively. In addition, it was found that very fast designs tend to produce

unstable controllers, which is clearly impractical.
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To comply with the design objectives required in the controller assessment of the the-

sis, the best design was obtained for k1 = 1.25 and k2 = 0.3. The singular value

plot of the original and shaped plant, G(s) and W (s)G(s) respectively, are shown in

Figure 9.17(a) (page 161). Note that the type of weight chosen forces integral ac-

tion in the controller as expected. The designed controller and also the designed open

loop are shown in Figure 9.17(b) (page 161), while the controller structure can be found

in Appendix F.3. The matlab file which implements the design is listed in Appendix H.

The detailed assessment of the controller performance has revealed some interesting

results, Table 9.6. The performance is very much improved even if the scheme is

just based on an open-loop shaping procedure without directly including information

about the track disturbances. The stochastic ride quality is successfully kept within

acceptable limits, while the tilt performance is acceptably fast on curved track. It

should be noted that the choice of the weights is by far easier compared to the mixed

sensitivity case of previous chapters.

Table 9.6: H∞ coprime approach controller assessment “best” design @ 58(m/s)
Deterministic

Lateral accel. - steady-state 4.6 (%g)

(actual vs ideal) - R.M.S. deviation error 2.25 (%g)

- peak value 8.43 (%g)

Roll gyroscope - R.M.S. deviation 0.023 (rad/s)

- peak value 0.10 (rad/s)

PCT (P-factor) - peak jerk level 5.606 (%g/s)

- standing 33.69 (% of passengers)

- seated 8.88 (% of passengers)

Stochastic

Passenger comfort - R.M.S. passive (equiv.) 2.725 (%g)

- R.M.S. active 2.86 (%g)

- degradation 4.9 (%)

Results from the simulation of the controller on design track can be viewed in Figure

9.18, and are very closely connected to Table 9.6. Initially, there is a small delay for

the controller to start reacting to the start of the curve transition as shown in Figure

9.18(c) but soon after quickly provides the required tilt action. The controller provides

the full amount of required tilt angle equal to approximately 7.9 degrees, however the

mechanism tilts slightly more in order to compensate for the remaining 25% curving

forces. The effect of the controller on the roll rates is also evident from Figure 9.18(b)

due to the incorporation of the roll gyroscope in the design. Thus, by rejecting high
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frequency components, the controller controls the roll rates in such a way that damping

in the system is highly improved (this is also expected by referring to the stability radius

ǫ = 0.22). Of course, the robust stability radius can be increased in the expense of tilt

performance.
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Figure 9.18: Design track time history results for H∞ coprime “best” design

The above design attains both deterministic and stochastic design objectives. The

degree of the controller may be reduced, if required, by following the closed-loop model

reduction method introduced in [MG90].

Testing the controller. The designed controller was also tested in the presence of

parametric uncertainty even if uncertainty was not an integral part in the current design

procedure. The cases were chosen similar to the ones in the H∞ design of Chapter 7:

1. Perturbed (1): 20% increase in body mass with 10% increase in secondary

suspension stiffness and 20% decrease in secondary suspension damping ratio.
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2. Perturbed (2): 40% increase in body mass with 20% increase in secondary

suspension stiffness and 40% decrease in secondary suspension damping ratio.

The two cases represent realistic parametric changes, with the decrease in damping to

observe the performance of the controller under reduced damping in the passive sys-

tem. The controller was simulated for the perturbed cases together with the nominal

case and results are presented for the passenger acceleration and the body roll rates on

design track in Figure 9.19 (in the next page).

The system is stable in all cases and also the transition performance does not change

significantly for the nominal and the first perturbed model. There is of course a small

change in the steady-state, however this is a function of the system parameters rather

than the tilt controller. However, it can be seen that in the second perturbed model,

oscillations appear and those are contributed by the lateral modes of the system. The

overall system is still stable and the oscillations eventually die out.

The problem was further investigated by running simulation tests on the ‘perturbed (2)’

passive model and those oscillations were still evident. Modal analysis of the passive

model has revealed that the lower sway was poorly damped, which in reality will be an

unrealistic situation. Thus, the problems are introduced because of the passive model

structure. This enforces the effectiveness of such a robust controller, which sustains

acceptable robust stability even in a ‘worst case’ model situation.
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Figure 9.19: Robust performance test for coprime H∞ design
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9.4 Concluding remarks

This chapter included an introduction to the basic tilt control for the new vehicle model

of the tilt mechanism and also proposed new schemes for local/vehicle tilt comparable

with the basic precedence scheme currently used by manufacturers.

It has been shown that the LQR and Model Based Estimation control schemes can be

extended for the tilt mechanism model case. They both offer substantial improvement

in tilt performance and in some cases compensate for stochastic ride quality even at

high speeds. The MBE scheme provides results very similar to the basic precedence

scheme, although the deterministic and stochastic track features are unknown and not

included with the vehicle dynamics. It was possible to achieve higher system bandwidth

based upon the above proposed schemes, without being affected by tilt limitations en-

countered in the basic control cases.

A further investigation into H∞ control revealed the possibility of using the coprime

factorisation method for tilt control design. The scheme follows a straightforward open-

loop shaping method to design the controller for robust stability and performance.

Results have illustrated the potential of the design method in solving the localised

tilt control problem. It should be noted that the controller manages to sustain good

robust performance even in the worst case uncertainty, although detailed uncertainty

modelling was not included.
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Conclusions and Future Work

10.1 Conclusions

Since the 1980s there have been varying levels of interest in employing active suspen-

sions for railway vehicles. Significant use however has only emerged during the 1990s

with the advent of tilting trains in service operation, which is now approaching the

stage of being accepted as a standard for numerous high speed passenger trains and

increasingly for regional/cross-country services. The clear commercial benefit of tilt-

ing trains is that offers substantial reduction in journey times on conventional railway

infrastructure.

Early tilt control designs using classical methods with local vehicle measurements

proved limited in terms of system performance. Thus, manufacturers were forced to em-

ploy measurements for precedent vehicles in order to improve tilt performance, known

as “precedence” tilt control. However, these schemes tend to be rather complex with

signal connections between vehicles, direction-sensitive, while the tilt system is opti-

mised for a specific route. Additionally, the performance of the first vehicle remains

inferior due to the lack of precedence. A similar solution is provided by employing

track databases for providing ‘precedence’ tilt information, nevertheless this approach

is still under investigation and its use is limited in few tilt applications.

Generally, literature in tilt control design is mainly concentrated upon the use of prece-

dence signals or signals provided by track databases for tilt control, with only few papers

in the detailed theoretical formulation. However, tilt control based upon localised vehi-

cle measurements may provide simpler and more straightforward, in terms of solutions

compared to the currently used approaches.
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This thesis re-visits the idea of early local ‘nulling’-type tilt control and concentrates on

a number of problems associated with these schemes and the use of advanced control

concepts in improving the tilt performance. Some very interesting results have been

obtained and these are discussed in this section. In addition, the thesis refers to the

partial-nulling tilt case, i.e. were the passenger acceleration is partially compensated on

steady curves, in order to comply with what is used in practice by tilting train operators.

In general, tilt control assessment methods were mainly concentrated upon human re-

sponses and motion sickness. An assessment approach is proposed in this thesis which

may be used (and has been used throughout this research work) for assessing the per-

formance of tilt system controllers. The method is connected to established methods

of tilt assessments, i.e. PCT factor evaluation, for practical validation of the control

schemes.

The author has concentrated his research work on detailed linear tilt vehicle system

models for control analysis and design. Two tilt configurations were developed, one

using an active anti-roll bar for tilt application across the secondary suspensions, while

the second involved a tilt mechanism structure for tilt below the secondary suspen-

sions. The latter model is used to compensate for the large suspension deflections

when large amounts of tilt are necessary within limited track gauge. The validity of

the linear models was proved by appropriate modal analysis and realistic time history

tests compared to full non-linear equivalents. This permits the assumption that the

simulation responses of the linearised models represent the true responses of a real train.

The first part of the work incorporated control studies on the vehicle with the active

anti-roll bar structure, and this model was actually used for the majority of the pro-

posed control systems. A simplified linear model was developed in order to introduce

the important vehicle modes for tilt control design, namely the body upper and lower

sway. However, the control designs were based upon a more detailed linear model to

include the lateral and roll modes of both the body and the vehicle bogie.

The evolution of the basic control approaches was illustrated via appropriate control de-

sign examples to show how the system performs in these schemes. The work included a

detailed theoretical analysis of the fundamental problem of using straightforward classi-

cal methods for local nulling-type tilt. From a control point of view, the body-mounted

accelerometer which provides the main information introduces RHP zeros which pose
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significant limitations on control design. Further symbolic analysis in Matlab software,

based upon a simplified vehicle model, has revealed that the RHP zeros are introduced

due to the measurement of absolute vehicle acceleration with respect to the horizontal

(not canted) level of the track. It seems that problems like this are unavoidable in

“pendulum”-like structures (usual system instabilities and/or RHP zeros). Solutions

given by the command-driven schemes, and especially the ‘precedence’ approach, were

presented. The latter was set as a basis for comparison with the proposed control

strategies.

The linear quadratic regulator (LQR) has always been used in regulation control prob-

lems. An LQR controller was designed for the tilt control problem, with the addition of

integral action for elimination of steady-state errors, and promises a great deal. The-

oretically it offers stability and tilt performance superior to the classical control, and

also manages to significantly improve ride quality on random track geometry. Issues

are raised concerning the implementation, because in practice an estimator is needed

for providing state estimates. Though, assessment of the LQG equivalent controller has

proved that the controller manages to perform sufficiently well even with representative

parametric changes in the model.

It was seen that the accelerometer used to provide the feedback signal in the ba-

sic ‘nulling’ control was affected by suspension interaction and caused limitations in

control design. For that reason a model based estimation approach was developed,

utilising a Kalman filter, to estimate the (pure) cant deficiency which is unaffected by

such unwanted interactions. In practice this would be very similar to the signal which

is provided in ‘precedence’-type controllers, but derived locally rather than being trans-

mitted from an adjacent vehicle. The estimator not only estimates the vehicle states

but also the unknown track signals required for correct estimation of cant deficiency.

Only practical body-mounted sensors were used and it was found that three measure-

ments were sufficient for the estimation. A classical PID controller finalised the design,

and the overall controller (+ estimator) performed exceptionally well in both determin-

istic and stochastic track. It is worth noting that the stochastic track was not taken in

account during the design procedure. The closed-loop bandwidth was highly improved

(approx. 12-15 rads/s) and consequently the tilt performance. Trials with sensor noise

shown minimal effects on the overall controller, especially in stochastic ride quality.

The designed estimator may be used with an LQR controller for the purposes of LQG

control, although an LTR (Loop Transfer Recovery) approach should be followed to

guarantee robustness performance.
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Compared to classical and some well known modern control methods (LQR, Model

Based Estimation) very few robust controllers exist in tilt control literature. Within

the robust control field, the area currently receiving most interest is the subject of H∞

control. A reason for this lack of practical applications of H∞ control theory is that,

at first, the theory and the design procedure itself seem rather complex and computa-

tionally intensive. However, there is a number of software routines currently available

for solving such problems that they now become less complex. This research work

suggested two H∞-based control approaches, based upon the idea of ‘nulling’ control

by only using body-mounted sensors.

The first approach followed the common H∞ mixed sensitivity control method. This

method refers to the minimisation of the infinity norm of the appropriately weighted

sensitivity and complementary sensitivity functions to reduce the effects of disturbances

and sensor noise in the system. For tilt control design the control sensitivity function

was also added in the cost function for control bandwidth limitation and also to guaran-

tee robustness properties in terms of additive uncertainty in the model. Unfortunately,

the scheme could not achieve both deterministic and stochastic criteria simultaneously

and this was attributed in difficulty of the method to distinguish successfully between

the design and random track inputs.

The second H∞ approach was concentrated upon forming the tilt control requirements

into a multi-objective optimisation problem. This approach incorporated directly into

the design both the deterministic and stochastic track ‘disturbances’ and formed ap-

propriate closed-loop transfer functions to tackle the problem of improving tilt per-

formance. It was found that while infinity norms (with the appropriate weightings)

can improve tilt performance, the two norm (2-norm) is a better measurement for the

stochastic criterion. The problem was formed and solved by using the LMI (Linear Ma-

trix Inequalities) approach, which is widely used in the control community for solving

such classes of control problems. Simulation have revealed promising results and also

superb controller performance in the presence of model parametric uncertainty, even if

this was not included in details during the design process. It is worth mentioning that

both this approach and the mixed sensitivity approach result in fixed-structure con-

trollers usually larger in size than to the plant models due to the additional weighting

function required. This is an unavoidable consequence, because weights are required for

appropriate frequency-shaping of the sensitivity, complementary sensitivity and con-

trol sensitivity. In addition both of those H∞ schemes fall within a closed-loop shaping
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framework and as such the choice of the weighting functions are not straightforward

and usually require some trial and error procedure.

The second part of this thesis presented an extension of the research studies over a

vehicle model which involves a tilting bolster or tilt mechanism situated below the sec-

ondary suspension level. This type of vehicle is more complex compared to the ARB

equivalent but provides full amounts of tilt angles and also small suspension deflection.

The latter being very important for railway operators concerned with limited track

gauge.

A detailed linearised model of the vehicle structure was developed for control system

analysis and design. In addition, the passive model was compared to a full non-linear ve-

hicle implemented in a non-linear railway vehicle simulation package called ‘Vampire’.

The two models shown very similar behaviour, with minor difference especially on

steady state curved track due to modelling assumptions during the linearisation process.

The concept of basic control strategies was also presented this model, especially for the

‘nulling’ and the ‘precedence’ approaches for the purposes of introducing the differences

between the tilt mechanism and the anti-roll bar. For example, in the tilt mechanism

model the feedback signal can now incorporate the roll angle of the mechanism which

is a much straightforward signal to be measured compared to the secondary suspension

roll angles.

The tilt control problem is very similar in both the ARB and mechanism model cases

and this was demonstrated by extending the LQR and the Model Based Estimation

schemes to the mechanism model. As expected the results were very similar in both

cases and this proved the validity of the strategies for the new model.

It was seen that the weightings function in previous H∞ controllers, for the ARB model,

were not as straightforward to define. A contribution of this research work has been

to develop a H∞ scheme for robust control design by formulating the problem of tilt

control within an open loop shaping framework. The approach is slightly simpler than

the mixed sensitivity and multi-objective method and is based on what is known as

‘coprime factorisation’ method, which incorporates the solutions of appropriate Riccati

equations for the controller and the weighting functions. This approach was also based

upon the idea of ‘nulling’ control and used only body-mounted sensors. The compu-

tation of the H∞ optimal controller was very fast and simulations shown very good
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performance on both design and random tracks. The controller was also tested under

parametric changes in the plant model and performed very efficiently, even if one test

case involved a worst uncertainty set.

Throughout the research work, the proposed assessment of tilt controllers has provided

a useful means of comparing the various control schemes. Work has proved that ad-

vanced control schemes can offer great potential of using local vehicle tilt controllers

simple to implement with results comparable to ‘precedence’-type control. The author

attempts a classification of the proposed control strategies relative to their potential

for localised tilt control design and this is summarised in Table 10.1 on page 173. The

scale chosen for this purpose is in the range of [1 to 5], with 1 : 5 being ‘very low

potential’ while 5 : 5 refers to ‘very high potential’.
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Table 10.1: Overall research classification of proposed tilt control strategies

TILT CONTROL STRATEGIES RESEARCH SUMMARY

Strategy Active ARB-across secondary Tilt Mechanism-below secondary

Attempted Development Attempted Development
prospective prospective

Partial-Nulling type

Model Based Estim. (body sensors) Yes 5 : 5 Yes 5 : 5

Optimal LQR Yes 3 : 5 Yes 3 : 5

H∞ mixed sens. Yes 2 : 5 No

H∞/H2 multi-obj. Yes 5 : 5 No

H∞ coprime factors No Yes 5 : 5

*N.B.: The above classification is based upon the author’s personal opinion.
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10.2 Suggestions for Future Work

From the results obtained for the optimal LQR control scheme it was seen that the

method provides an efficient way of tackling the tilt control problem and also ride qual-

ity. Moreover, Kalman estimator designs, from the MBE control scheme, show that

the sensor noise has minimal effects on the estimator performance. Thus, the next

step would be a detailed investigation of the LQG equivalent control based upon LTR

methods to guarantee sufficient robust performance.

Fault detection studies for the Kalman filter structure in the model-based estimation

scheme would be necessary for future practical implementation and especially to guar-

antee overall tilt system safety. The Kalman filter could be also extended to estimate

uncertain parameters such as body mass or inertia. In addition, if there are issues of

increased controller size, then designs of reduced order controllers could be followed.

Digital implementation would be necessary as the majority of real applications use

some form of digital control.

Studies of the assessment of ride quality on both stochastic and design curved tracks

are concentrated on the human perspective and motion sickness. Based upon this, the

proposed assessment procedure could be extended in order to associate it with human

motion sickness criteria.

Uncertainty was not included in a detailed manner during control system design. An

extension of the concept would be to introduce structured (parametric) and maybe

unstructured uncertainty, i.e. uncertainty between non-linear to linear models, and

follow a theoretical investigation of robust control system design which can be based

on the µ-analysis and synthesis method. This will guarantee good robustness approach

regardless of the uncertainty within the system.

H∞-based controllers result in fixed-structure controllers, which may be of larger size

compared to the plant model due to the extra weighting factors required for control

design. However, there are many controller reduction techniques which can be used in

order to accommodate this problem such as Balanced Truncation, Schur model reduc-

tion, Hankel norm approximation. In addition, more computational power is becoming

available and computers can easily solve even complex computational problems. Thus

H∞ controllers can be easily incorporated for practical implementation of tilt con-

trollers.
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An important next step would be to test the controllers with a full non-linear vehi-

cle model using a multi-body software such as VAMPIRE, although in present Matlab

routines cannot be used directly and it is necessary to convert them into a “user sub-

routine”.
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[GK83] R. M. Goodall and W. Kortüm, Active control in ground transportation -

a review of the state of the art and future potential, Proceedings 11th IFAC

World Congress, Tallinn (Estonia) 12 (1983), 225–258. 2.1

[GK90] , Active suspension for railway vehicles - an unavoidable luxury or an

inevitable consequence?, Proc. 11th IFAC World Congress, Tallinn (Estonia)

12 (1990), 219–225. 2.1

[Goo93] R. M. Goodall, Performance limits for active secondary railway suspensions,

Proceedings, International Conference on Speed-Up Technology for Railway

and Maglev Vehicles, STECH 93, Yokohama (Japan) 2 (1993), 81–86. 2.1

[Goo97] , Active railway suspensions: Implementation status and technological

trends, Vehicle System Dynamics 28 (1997), 87–117. 1.2, 2.2, 2.2.2

[Goo99] , Tilting trains and beyond - the future for active railway suspensions,

part 1 improving passenger comfort, Computing and Control Engineering

Journal IEE (1999), 153–160. 2.2, 6.2.2, 8.1

[GZE00] R.M. Goodall, A. Zolotas, and E. Evans, Assessment of the performance of

tilt system controllers, The Railway Conference at Railtex ’00, NEC Birm-

ingham (UK), November 2000. 3.3.1, 3.3.1, 3.3.2

- 179 -



Bibliography

[H+91] H. Higaki et al., An active pneumatic tilting system for railway cars, Pro-

ceedings, Vehicle System Dynamics Supplement, Dynamics of Vehicles on

Roads from Tracks, 12th Symposium, Lyon-FRANCE 20 (1991), 254–268.

2.2.1, 2.2.2

[Har86] P. R. Harborough, Passenger comfort during high speed curving - summary

report, Tech. Report 260-386-038, British Rail Research (BRR), May 1986.

1.3.4, 1.4, 3.3.1

[Hel76] J. Helton, Operator theory and broadband matching, In Proceedings of the

11th Allerton Conference on Communications, Control and Computing, 1976.

7.4.1

[Her81] J. K. Herdrick, Railway vehicle active suspensions, Vehicle System Dynamics

10 (1981), 267–283. 2.1

[HG99] L. Hong and R. M. Goodall, State estimation for active steering of railway

vehicles, IFAC ’99 (1999). 7.3

[HSS98] N. R. Harris, F. Schmid, and R. A. Smith, Introduction: Theory of tilting

train behaviour, Proceedings, Institution of Mechanical Engineers 212 (1998),

no. F1, 1–5. 2.2

[Hub97] B. H. Huber, The bogie-based tilt option - simplicity and flexibility, Proceed-

ings, Institution of Mechanical Engineers 212 (1997), no. F1, 19–32. 2.2

[K+93] Y. Kurokawa et al., Limited angle tilt control systems by air-springs, Pro-

ceedings, STECH93, JSME 2 (1993), 361–364. 2.2.2

[Kal60] R. E. Kalman, A new approach to linear filtering and prediction problems,

Journal of Basic Engineering, Trans. ASME Series D 82 (1960), 35–45. 7.2.1

[Kar78] D. C. Karnopp, Are active suspension really necessary?, The American So-

ciety of Mechanical Engineers Winter Meeting (San Francisco), Paper 78-

WA/DE-12 (1978). 2.1

[Kay74] U. Kayserling, Power bogies of the DB 200 km/h ET 403 incorporating

body-tilt through the secondary suspension, Rail Engineering International

4 (1974), no. 9, 414–418. 2.2

[KCH74] D. C. Karnopp, M. J. Crosby, and R. A. Harwood, Vibration control using

semi-active force generators, Journal of Engineering for Industry (1974), 619–

626. 2.1

- 180 -



Bibliography

[KE00] S. Kent and J. Evans, Hardware-in-loop simulation of railway vehicles with

tiltng and active suspension systems, Vehicle System Dynamics, Supplement

33 (2000). 2.2.1, 4.4, 8.2, 9.1

[KH91] D. C. Karnopp and G. Hees, Electronically controlled vehicle suspensions,

Vehicle System Dynamics 20 (1991), 207–217. 2.1

[Kof70] J. L. Koffman, Higher speeds through curves, Railway Gazette 126 (1970),

61–64. 2.2

[Mac89] J. M. Maciejowski, Multivariable feedback design, Addison-Wesley, 1989. 7.1,

7.1.2, 1

[MG90] D.C. McFarlane and K. Glover, Robust controller design using normalised

coprime factor plant descriptions, lecture notes in control and information

sciences, vol. 138, Springer-Verlag, 1990. 7.4.1, 7.4.2, 7.4.2, 6, 9.3, 9.3.1,

9.3.1, 9.3.1

[MH99] Y. Mingli and Z. HanQuan, Robust H∞ control to active tilting train: An

experimental research, Proceedings of the IEEE International Vehicle Elec-

tronics Conference 1 (1999), 290–293. 2.2.1

[N+72] A. Nishio et al., A high speed powered tilting vehicle with air-springs, The

Sumitotmo Search (1972), no. 7, 70–77. 2.2.1, 2.2.2

[N+97] Y. Nishioka et al., Tilting control system for railway vehicles using long-stroke

air-spring, The Sumitomo Search (1997), no. 59, 102–107. 2.2.1, 2.2.2

[Pad95] J. E. Paddison, Advanced control strategies for maglev suspension systems,

Ph.D. thesis, Loughborough University (UK), Department of Electronic and

Electrical Engineering, 1995. 3.4.1, 3.4.2

[Pal99] W. J. III Palm, Modelling, analysis, and control of dynamic systems, John

Wiley & Sons, Inc, 1999, 2nd Edition. 5.2

[PGP98] J. T. Pearson, R. M. Goodall, and I. Pratt, Control system studies of an

active anti-roll bar tilt system for railway vehicles, Proceedings, Institution

of Mechanical Engineers 212 (1998), no. F1, 43–60. 1.3.3, 2.2.1, 5, 5.4

[PP83] K.W. Pennington and M. G. Pollard, The development of an electro-

mechanical tilt system for the advanced passenger train, Conference, Institu-

tion of Mechanical Engineers, Electric vs Hydraulic Drives C299-83 (1983),

21–28. 2.2.2

- 181 -



Bibliography

[Pra96] I. Pratt, Active suspension applied to railway trains, Ph.D. thesis, Loughbor-

ough University (UK), Department of Electronic and Electrical Engineering,

1996. 2.1, 3.2.1, A.1

[S+96] A. Suescun et al., Use of inverse dynamics in the development of tilt control

strategies for rail vehicles, Vehicle System Dynamics, Supplement 25 (1996),

655–667. 2.2.1, 2.2.2

[San74] Ing. O. Santanera, FS and RENFE try out tilt-body prototype trains, Railway

Gazette International 130 (1974), 101–104. 2.2

[Sau96] B. Sauer, The BR 611 DMU with new tilting technology, Proceedings, Insti-

tution of Mechanical Engineers, International Conference Railtech 96 C511-

8-076-96 (1996). 2.2.2

[Sch97] F. Schmid, Control and operation of tilting train services, Proceedings, In-

stitution of Mechanical Engineers 212 (1997), no. F1, 73–84. 2.2

[SCW94] K. Sharma, D. A. Crolla, and D. A. Wilson, The design of a fully active

suspension system incorporating a kalman filter for state estimation, IEE

Control 1994 Conference Publication (1994), no. 389. 7.3

[Shu99] X. Shu, On the adaptive control of railway tilting coaches, Proceedings, IFAC

14th World Congress (1999), no. P-8b-02-5, 515–520. 2.2.1

[SP00] S. Skogestad and I. Postlethwaite, Multivariable feedback control: Analysis

and design, Wiley, 2000, Reprinted Version. 1, 7.1.2, 1, 7.4.1, 7.4.3, B.2.1,

B.3

[Str97] A. Stribersky, The development of an integrated suspension control technol-

ogy for passenger trains, Seminar S479, Institution of Mechanical Engineers,

Tilting Trains in the UK (1997). 2.2.2

[Tho93] W. T. Thomson, Theory of vibration with applications, Chapman & Hall,

1993, 4th Edition. 3.4.1

[Vid85] M. Vidyasagar, Control system synthesis - a coprime factorisation approach,

MIT Press, 1985. 9.3.1

[Wat99] H. Waters, The commercial benefits of tilting trains - VIRGIN’s strategy for

the new WEST COAST and CROSSCOUNTRY fleets, Proceedings, Interac-

tive Conference ’Can your Railway Benefit From Tilting Train Technology?’,

Part: COMMERCIAL BENEFITS (1999). 2.2

- 182 -



Bibliography

[Wic92] A. H. Wickens, A review progress in the application of active suspension to

railway vehicles, IEE Colloquium - Active Suspension Technology for Auto-

motive and Railway Applications (1992), 1/1–1/3. 2.1

[Wil86] R. A. Williams, Comparison of classical and optimal active suspension con-

trol system, Ph.D. thesis, Loughborough University (UK), Department of

Electronic and Electrical Engineering, 1986. 2.1

[Zam81] G. Zames, Feedback and optimal sensitivity, model reference tranformations,

multiplicative seminorms, and approximate inverse, IEEE Transactions on

Automatic Control AC-26 (1981), 301–320. 7.4.1

[ZD98] K. Zhou and J. C. Doyle, Essentials of robust control, Prentice Hall Interna-

tional Editions, 1998. 7.4.2, 7.4.2, 6, 7.4.4

[ZG00] A. C. Zolotas and R. M. Goodall, Advanced control strategies for tilting rail-

way vehicles, UKACC Control 2000, Cambridge UK, UKACC (UK), Sep-

tember 2000. 7.3

[ZGH01] A.C. Zolotas, R.M. Goodall, and G.D. Halikias, New control strategies for

tilting trains, 17th Symposium Dynamics of Vehicles on road and tracks

IAVSD 2001, Copenhagen(Lyngby) (DK), Int’l Association for Vehicle Sys-

tem Dynamics, August 2001. 9.2.2

[ZHG00] A.C. Zolotas, G.D. Halikias, and R.M. Goodall, A comparison of tilt control

approaches for high speed railway vehicles, Proceedings ICSE 2000, Coventry

UK, ICSE, September 2000, pp. 632–636. 7.4.4

Please note: All URLs included in this thesis were operational when this thesis was produced.

The author accepts no responsibility in case any of the referenced URLs does not either operate

properly or for some reason its operation is terminated in the future.

* The figure in the dedication page (page ii) presents an example of an ancient greek col-

umn/pillar found in ancient Greek temples. It is of Ionic order found in the Greek islands and

Eastern/North-Eastern Greece. [source: http://www.ancientgreece.com]

- 183 -



Part IV

Appendices

184



Appendix A

Summary of Track Profiles and

Vehicle Parameter Values

This Appendix list the time history profiles of the track inputs used for both the

anti-roll bar and tilt mechanism studies. In addition it includes a list of the vehicle

parameter values for the tilt vehicle models developed in this thesis.
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A.1 Track Profiles

A.1.1 Anti-Roll Bar studies
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Figure A.1: Track features for anti-roll bar studies
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A.1.2 Tilt Mechanism Studies
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Figure A.2: Track features for tilt-mechanism studies
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A.2 Vehicle Parameter Values

A.2.1 Vehicle with Active Anti-Roll Bar

Table A.1: Parameters based upon the Bombardier Pro Rail current best configura-
tion

mv, ivr Half body: mass, 19,000(kg), roll inertia, 25,000(kgm2)
mb, ibr Bogie: mass, 2,500(kg), roll inertia, 1,500(kgm2)

* Values per bogie side *

kaz Airspring area stiffness, 210,000(N
m)

ksz Airspring series stiffness, 620,000(N
m)

krz Airspring reservoir stiffness, 244,000(N
m)

crz Airspring reservoir damping, 50,000(Ns
m )

ksy Secondary lateral stiffness, 260,000(N
m)

csy Secondary lateral damping, 33,000(Ns
m )

kvr Anti-roll bar stiffness per bogie, 2,000,000(Nm
rad )

kpz Primary vertical stiffness, 3,000,000(N
m)

cpz Primary vertical damping, 25,000(Ns
m )

kpy Primary lateral stiffness, 35,000,000(N
m)

cpy Primary lateral damping, 16,000(Ns
m )

d1 Airspring semi-spacing, 0.9(m)
d2 Primary vertical suspension semi-spacing, 1.00(m)
h1 Secondary lateral suspension spacing (bogie cog), 1.0(m)
h2 Secondary lateral suspension spacing (bogie cog), 0.25(m)
h3 Primary lateral suspension spacing (bogie cog), -0.09(m)
hg1 Height ARL of body cog, 1.520(m)
hg2 Height ARL of bogie cog, 0.37(m)

source: [Pra96], PhD Thesis, Loughborough University (UK)
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A.2.2 Vehicle with Tilting Mechanism below Secondary Suspension

Table A.2: Parameters based loosely based on post-apt test coach 48204 (seats full)
with slightly increased lateral stiffness

mv, ivr Half body: mass, 16,000(kg), roll inertia, 20,000(kgm2)
mb, ibr Bogie: mass, 3,680(kg), roll inertia, 2,500(kgm2)

* Values per bogie side *

kaz Airspring area stiffness, 201,500(N
m)

ksz Airspring series stiffness, 300,000(N
m)

krz Airspring reservoir stiffness, 201,000(N
m)

crz Airspring reservoir damping, 20,000(Ns
m )

ksy Secondary lateral stiffness, 100,000(N
m)

csy Secondary lateral damping, 18,000(Ns
m )

kcsy Secondary lateral damper end-stiffness, 8,000,000(N
m)

kvr Anti-roll bar stiffness per bogie, 1,500,000(Nm
rad )

cvr Anti-roll bar damping per bogie, 18,200(Nsm
rad )

kpz Primary vertical stiffness, 1,600,000(N
m)

cpz Primary vertical damping, 20,000(Ns
m )

kpy Primary lateral stiffness, 18,600,000(N
m)

cpy Primary lateral damping, 20,000(Ns
m )

d1 Airspring semi-spacing, 0.835(m)
d2 Primary vertical suspension semi-spacing, 1.00(m)
h1 Secondary lateral suspension spacing (bogie cog), 0.844(m)
h2 Secondary lateral suspension spacing (bogie cog), 0.252(m)
h3 Primary lateral suspension spacing (bogie cog), 0.194(m)
hmt Mechanism c.o.g. vertical separation from effective tilt centre, 0.6(m)
hg1 Height ARL of body c.o.g., 1.696(m)
hg2 Height ARL of bogie c.o.g., 0.6(m)

source: Jeremy Evans, AEA Technology, Derby (UK)
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Theory Supplement

The topics in this Appendix are included as background material for the thesis.

B.1 Covariance analysis of systems excited by white noise

inputs

Consider the state-space representation, Figure B.1, of the following general linear

system [Fri86]

ẋ = Ax+Bu+ Γw (B.1)

y = Cx+Hν (B.2)

where w, ν represent Gaussian white noise processes. For simplicity ignore both the

measurement noise ν and the control input u. Therefore the focus of the analysis is

the effect of the process noise w on the output y.

- B -Σ

Γ-

? - ∫ -

A

6
Σ -

H-

?

νw

u ẋ x
yC -+

+

+

+
+

Figure B.1: General linear system
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The system is simplified to

ẋ = Ax+ Γw (B.3)

y = Cx (B.4)

which is asymptotically stable (i.e. all Re(eig{A}) < 0)and strictly proper.

The solution of (B.3) in terms of the transition matrix is given by

x(t) = Φ(t, t0)x(to) +

∫ t

t0

Φ(t, ψ)F (ψ)w(ψ)dψ (B.5)

where t0 is a fixed initial time.

The expected value of the states is E
{
x(t)xT (τ)

}
(assuming zero mean, i.e. x(t) = 0),

where the product x(t)xT (τ) is

x(t)xT (τ) = Φ(t, t0)x(to)x
T (to)Φ

T (t, t0)

+ Φ(t, t0)x(to) ·

∫ t

t0

wT (ψ)F T (ψ)ΦT (t, ψ)dψ

+

∫ t

t0

Φ(t, ψ)F (ψ)w(ψ)dψ · xT (to)Φ
T (t, t0)

+

∫ t

t0

∫ τ

t0

Φ(t, ψ)F (ψ)w(ψ)wT (µ)F T (µ)ΦT (t, µ)dψdµ (B.6)

Recall that w is a white noise process with zero mean E {w(t)} = 0, thus

E

{

Φ(t, t0)x(to) ·

∫ t

t0

wT (ψ)F T (ψ)ΦT (t, ψ)dψ

}

=

Φ(t, t0)x(to) ·

∫ t

t0

E
{
wT (ψ)

}
F T (ψ)ΦT (t, ψ)dψ = 0 (B.7)

the same applies to E
{∫ t

t0
Φ(t, ψ)F (ψ)w(ψ)dψ · xT (to)Φ

T (t, t0)
}

.

Hence E
{
x(t)xT (τ)

}
reduces to the following correlation state matrix

Rx(t, τ) = E
{
x(t)xT (τ)

}
= Φ(t, t0)E

{
x(to)x

T (to)
}

ΦT (t, t0)

+

∫ t

t0

∫ τ

t0

Φ(t, ψ)F (ψ)E
{
w(ψ)wT (µ)

}
F T (µ)ΦT (t, µ)dψdµ (B.8)

Define the covariance matrix of x(t0), Px(t0) = E
{
x(t0)x

T (t0)
}
, and also recall that

E
{
w(ψ)wT (µ)

}
= Qw(ψ)δ(ψ − µ) (B.9)
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Thus

∫ t

t0

∫ τ

t0

Φ(t, ψ)F (ψ)E
{
w(ψ)wT (µ)

}
F T (µ)ΦT (t, µ)dψdµ =

∫ t

t0

Φ(t, ψ)F (ψ)Qw(ψ)

{∫ τ

t0

δ(ψ − µ)F T (µ)ΦT (t, µ)dµ

}

dψ (B.10)

where

∫ τ

t0

δ(ψ − µ)F T (µ)ΦT (t, µ)dµ =







F T (µ)ΦT (t, µ) for µ ∈ (t0, t),

0 otherwise.
(B.11)

Therefore

Rx(t, τ) = Φ(t, t0)Px(t0)Φ
T (τ, t0) +

∫ t̄

t0

Φ(t, ψ)F (ψ)Qw(ψ)F T (ψ)ΦT (τ, ψ)dψ (B.12)

with t̄ = min(t, τ)

Note that the state transition matrix Φ(t, τ) has the property Φ(t1, t3) = Φ(t1, t2)Φ(t2, t3),

∀ t1, t2, t3[Fri86]. Thus

ΦT (τ, t0) = [Φ(τ, t)Φ(t, t0)]
T = ΦT (t, t0)Φ

T (τ, t)

ΦT (τ, ψ) = [Φ(τ, t)Φ(t, ψ)]T = ΦT (t, ψ)ΦT (τ, t)

Substitute the above expressions into (B.12) to get

Rx(t, τ) = Px(t)ΦT (τ, t), for τ ≧ t (B.13)

where

Px(t) = Φ(t, t0)Px(t0)Φ
T (t, t0) +

∫ t

t0

Φ(t, ψ)F (ψ)Qw(ψ)F T (ψ)ΦT (t, ψ)dψ (B.14)

Px(t) is the covariance matrix of the state x(t) at time t. Note that (B.14) holds only

for τ ≧ t, however the symmetry property Rx(t, τ) = RT
x (τ, t) can be used to find

Rx(t, τ) for t ≧ τ using (B.13)[Fri86].

Differentiating both sides of (B.14) w.r.t. time gives

∂Px

∂t
=
∂Φ(t, t0)

∂t
Px(t0)Φ

T (t, t0) + Φ(t, t0)Px(t0)
∂ΦT (t, t0)

∂t

+
∂

∂t

(∫ t

t0

Φ(t, ψ)F (ψ)Qw(ψ)F T (ψ)ΦT (t, ψ)dψ

)

(B.15)
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and hence the differential equation for Px is

Ṗx = APx + PxA
T + ΓQwΓT (B.16)

using Leibnitz’s rule of differentiating integrals ∂
∂t

∫ t
0 f(t, λ)dψ = f(t, t) +

∫ t
0

∂f(t,λ)
∂t dψ

and also the property of ∂Φ(t,τ)
∂t = A(t)Φ(t, τ), ∀ t, τ .

For time-invariant systems Ṗ = 0 thus (B.16) simplifies to

APx + PxA
T = −ΓQwΓT (B.17)

which is the Lyapunov stability matrix equation. Px is a positive definite square matrix,

and also symmetric subject to ΓQwΓT being symmetric. The positive definite Px exists

only for stable systems and is finite when the system is strictly proper.

For the correlation matrix regarding the output y(t) the following applies

y(t) = C(t)x(t)

which then becomes

y(t)yT (t) = C(t)x(t)xT (t)CT (t)

Take expectations on both sides

E
{
y(t)yT (t)

}
= C(t)E

{
x(t)xT (t)

}
CT (t)

Finally

Py(t) = C(t)Px(t)CT (t) (B.18)

Matlab Implementation of (i) covariance, (ii) frequency response and

(iii) time history analysis

(i) function [rmsv,Qo,Xs] = rmsc(sys,Qw)

%

% RMSC : function [rmsv,Qo,Xs] = rmsc(sys,Qw)

%

% RMS value based upon Covariance Analysis (C).

% Input assumed white noise with flat spectrum.

%

% rmsv : rms value

% Qo : output covariance matrix

% Xs : state covariance from Lyapunov eqn

%

% sys: system with appropriate i/o selection
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% Qw : track spectrum covariance input

%

% minimal realisation (using default tolerance=sqrt(eps))

sys_om = minreal(sys);

%

[A_om,G_om,C_om,D_om] = ssdata(sys_om); % get ss data from sys_om

%

% stationary covariance solution (Lyapunov eqn)

Xs = lyap(A_om,G_om*Qw*G_om’);

%

Qo = C_om*Xs*C_om’; % curving accel o/p

%

rmsv = sqrt(abs(diag(Qo))); % rms value(s)

(ii) function [rms_value] = rmsf(sys_siso,w,Qn)

% RMSF : function [rms_value] = rmsf(sys_siso,f,Qn)

%

% RMS value based upon Frequency Response Analysis (F).

% Input assumed white noise with flat spectrum.

%

% Inputs:

% sys_siso ........ LTI SISO system

% w ............... Frequency range (rads/s)

% Qw .............. Track spectrum covariance input

% in terms of cycles (Hz)

%

% Outputs:

% rms_value ....... RMS value from frequency analysis

%

% minimal realisation

sys = minreal(sys_siso);

[mag,phase] = bode(sys,w); % frequency still in rads/s

mag2 = mag.^2;

% Initialise integration

m1 = 0; w1 = 0; Area = 0;

for i=1:max(size(f));

Area = Area+(w(i)-w1)*(m1+mag2(i))/2;

m1 = mag2(i);

w1 = w(i);

end

% multiply by 2 due to double sided integral

% and get correct value by dividing variance with (2*pi)

rms_value = sqrt(2*Qn*Area/(2*pi));
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(iii) function [rms_value] = findrms(vector_in)

% FINDRMS : function [rms_value] = rmsf(vector_in)

%

% RMS value based upon Time history analysis (T).

%

% Inputs:

% vector_in ....... Input time history vector

%

% Outputs:

% rms_value ....... RMS value from time history analysis

%

rms_value = sqrt(mean(vector_in.^2));

B.2 Basic Control Theory

B.2.1 Feedback Control Systems

- -K(s) - G(s) -

6

+

-

r e u y

Figure B.2: One-degree of freedom feedback control system

From Figure B.2 the input to the plant is

u = K(s)(r − y) (B.19)

where, r is the setpoint or reference input, e the control error, u the control input and

y the plant output. Moreover, the plant model can be written as

y = G(s)u (B.20)

or by substituting (B.19) into (B.20)

y = G(s)K(s)(r − y) (B.21)

or

(I +GK)y = GK r (B.22)
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and finally

y = (I +GK)−1GK
︸ ︷︷ ︸

T

r (B.23)

Note also that the control error is

e = r − y = r −GK e⇒ e = (I +GK)−1

︸ ︷︷ ︸

S

r (B.24)

And the corresponding control input to the plant is

u = KS r (B.25)

To summarise

L = GK Loop Transfer Function
S = (I +GK)−1 Sensitivity Function

T = (I +GK)−1GK = GK(I +GK)−1 Complementary Sens. Function
KS = K(I +GK)−1 Control Sensitivity Function

Note that S + T = I.

If positive feedback arrangement is used then

L = GK Loop Transfer Function
T = (I −GK)−1GK = GK(I −GK)−1 Complementary Sens. Function

S = (I −GK)−1 Sensitivity Function
KS = K(I −GK)−1 Control Sensitivity Function

and also S − T = I or T − S = −I.

For more details on practical feedback control the reader is referred to [SP00].

B.3 Non-Minimum Phase System Symbolic Analysis

The symbolic analysis, carried out in Matlab, is based upon the 2-DoF ARB linear

model described in Section 5.1. For simplicity, the model does not include airsprings

and damper elements.

Matlab results

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! NO AIRSPRING INCLUDED IN THE MODEL !

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

****************************************************

* Case 1: not including damping coefficient "c_sy" *

****************************************************
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A =

[ 0, 0, 1, 0]

[ 0, 0, 0, 1]

[ -2*k_sy/m_v, 2*k_sy*h_1/m_v, 0, 0]

[(2*k_sy*h_1+m_v*g)/i_vr, (-k_vr-2*h_1^2*k_sy)/i_vr, 0, 0]

C =

[ -2*k_sy/m_v, 2*k_sy*h_1/m_v-g, 0, 0]

D =

0

I =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

% G = C*inv(s*I-A)*B+D

G =

(-4*k_sy^2/m_v*h_1/(s^4*m_v*i_vr+s^2*m_v*k_vr+2*s^2*m_v*h_1^2*k_sy...

+2*k_sy*s^2*i_vr+2*k_sy*k_vr-2*k_sy*h_1*m_v*g)*i_vr...

+(2*k_sy*h_1/m_v-g)*(s^2*m_v+2*k_sy)/(s^4*m_v*i_vr+s^2*m_v*k_vr+2*s^2*m_v*h_1^2*k_sy...

+2*k_sy*s^2*i_vr+2*k_sy*k_vr-2*k_sy*h_1*m_v*g)*i_vr)*k_vr/i_vr

nG =

-i_vr*m_v*(-2*k_sy*h_1*s^2+m_v*g*s^2+2*g*k_sy)*k_vr

dG =

m_v*(s^4*m_v*i_vr+s^2*m_v*k_vr+2*s^2*m_v*h_1^2*k_sy+2*k_sy*s^2*i_vr+2*k_sy*k_vr...

-2*k_sy*h_1*m_v*g)*i_vr

G =

-(-2*k_sy*h_1*s^2+m_v*g*s^2+2*g*k_sy)*k_vr/(s^4*m_v*i_vr+s^2*m_v*k_vr...

+2*s^2*m_v*h_1^2*k_sy+2*k_sy*s^2*i_vr+2*k_sy*k_vr-2*k_sy*h_1*m_v*g)

nG =

-(-2*k_sy*h_1*s^2+m_v*g*s^2+2*g*k_sy)*k_vr
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dG =

s^4*m_v*i_vr+s^2*m_v*k_vr+2*s^2*m_v*h_1^2*k_sy+2*k_sy*s^2*i_vr...

+2*k_sy*k_vr-2*k_sy*h_1*m_v*g

nG_c =

-(-2*k_sy*h_1+m_v*g)*k_vr*s^2-2*g*k_sy*k_vr

r =

[ 1/(-2*k_sy*h_1+m_v*g)*(-(-4*k_sy*h_1+2*m_v*g)*g*k_sy)^(1/2)]

[ -1/(-2*k_sy*h_1+m_v*g)*(-(-4*k_sy*h_1+2*m_v*g)*g*k_sy)^(1/2)]

Solutions

[ 1/2 ]

[ (-(-4 k_sy h_1 + 2 m_v g) g k_sy) ]

[ ------------------------------------ ]

[ -2 k_sy h_1 + m_v g ]

[ ]

[ 1/2]

[ (-(-4 k_sy h_1 + 2 m_v g) g k_sy) ]

[- ------------------------------------]

[ -2 k_sy h_1 + m_v g ]

=> Normally in railway vehicles (2*k_sy*h_1) > (m_v*g)

There are two solutions for the numerator (i.e. two system zeros) of the SISO system

transfer function from u (actuator input angle) to y (lateral accelerometer signal) given

±
√

2gksy

2 ksy h1−mv g , with the positive being the non-minimum phase zero. This imposes

limitations on controller design, subsequently leading to system instability for high

controller gains [FL88]. The solutions are becoming more complex by increasing the

complexity of the system dynamics. Additional details on non-minimum phase system

limitations on control design, and especially bandwidth limitation can be found in

[SP00].

B.3.1 Calculation of Time Delay Introduced by Low-Pass Filters

Assume the following second-order low-pass filter structure

H(s) =
α

γs2 + βs+ α
(B.26)
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Next, consider the situation portrayed in Figure B.3.1, where a ramp input (with laplace

transform x(s) = 1
s2 ) is fed into the low-pass filtered and then compared to its original

version.

- H(s) - Σ

?
-x y

+
- e

tdLP(   )

e

original delayed

Figure B.3: Open-loop system including original and LP delayed signals for compar-
ison

The error between the original signal x(s) and the low-pass filtered signal y(s) is given

by

e(s) = x(s) − y(s), where y(s) = H(s)x(s) (B.27)

Thus,

e(s) = (1 −H(s))x(s) (B.28)

From the above, the time delay can be found by

tdLP
= lim

s→0

(

s

[(

1 −
α

γs2 + βs+ α

)

×
1

s2

])

(B.29)

∴ tdLP
=

1

s

(
γs2 + βs

γs2 + βs+ α

)
∣
∣
∣
∣
∣
s→0

=
γs+ β

γs2 + βs+ α

∣
∣
∣
∣
∣
s→0

Therefore,

tdLP
=
β

α
(B.30)
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Evaluation for curve transition

passenger comfort

C.1 PCT Factor Calculation

PCT = (Aÿ +B
...
y − C)≥0 +D(θ̇)E (C.1)

where A, B, C, D, E are constants defined below:

Condition A B C D E

Standing passengers 2.80 2.03 11.1 0.185 2.283

Seated passengers 0.88 0.95 5.9 0.120 1.626

and

PCT = passenger comfort index on curve transition, representing the percentage of

passengers that will feel discomfort

ÿ = maximum vehicle body lateral acceleration, in the time interval between the begin-

ning of the curve transition and 1.6sec after the end of the transition (expressed

in %’age of g), g denotes gravity (see Figure C.1 next page)

...
y = maximum lateral jerk level, calculated as the maximum difference between two

subsequent values of ÿ no closer than 1sec, in the time interval between 1sec

before the start of the curve transition and the end of the transition (expressed

in %’age of g per second) (see Figure C.1 next page)

θ̇ = maximum absolute value of vehicle body roll speed, in the time interval between

the beginning of the curve transition to the end of the curve transition (expressed
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in degrees per second), dot denotes the derivative with respect to time t (see

Figure C.1 below)

Graphical interpretation
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Figure C.1: Calculation of quantities ÿ,
...
y and θ̇ for PCT factor evaluation
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Suspension Components

Modelling

D.1 Airspring Modelling

D.1.1 Model One

This model is relevant for the case of the 2 D-o-F vehicle model (ARB).

k
az

k
rz

k
sz

c
rz

z r

F
zR

F
zL

(+) sign
convention

zv

θv

F
z

ground

Figure D.1: Airspring Model 1
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The total airspring force is given by

Fz = FzL + FzR (D.1)

where

FzL = −kaz(zv + d1θv) (D.2)

FzR = −ksz(zv + d1θv − zr) (D.3)

An equivalent expression for FzR is

FzR = −krzzr − crz żr (D.4)

From (D.3) and (D.4) an expression for żr can be easily obtained

żr = c−1
rz {−zr(ksz + krz) + ksz(zv + d1θv)} (D.5)

It is assumed that vertical degrees of freedom are ignored and also zr is replaced by

the equivalent d1θr (roll contribution). Thus (D.5) changes to

θ̇r = c−1
rz {−θr(ksz + krz) + kszθv} (D.6)

Finally the airspring force becomes

Fz = −kazd1θv − kszd1(θv − θr) (D.7)

The notation used is as follows d1 is the airspring semi-spacing, subscript ‘v’ denotes

vehicle body, subscript ‘r’ denotes airspring reservoir.

D.1.2 Model Two

This section is relevant to the three degree-of-freedom non-linear ARB vehicle model.

Assuming pure vertical and lateral movement of the suspension and taking in account

the static deflection of the suspension due to the weight of the vehicle body

Fz = FzL + FzR +
mg

2
(D.8)

or

Fz = −kazδzai
︸ ︷︷ ︸

FzL

FzR
︷ ︸︸ ︷

−kszδzsi +
mg

2
(D.9)

where δzai = (“vert. displ. @ deflected posn.” - “vert. displ. @ static posn.”) which is

δzai = zv + d1θv − (zo + d1θo) (D.10)
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−δ    )zs i

ground

Figure D.2: Airspring Model 2

Moreover δzsi = is the deflection across the left series stiffness ksz, and it is given by

the following transfer function at point β (Figure D.2)

kszδzsi = krz(δzai − δzsi) + scrz(δzai − δzsi) (D.11)

Re-arranging gives

δzsi(
krz + ksz

crz
+ s) = δzai(

krz

crz
+ s) (D.12)

∴
δzsi

δzai

(s) =
krz
crz

+ s
krz+ksz

crz
+ s

(D.13)

Due to the two airsrpings the associated forces will be

Fz1 = −kazδza1 − kszδzs1 +
mg

2
(D.14)

Fz2 = −kazδza2 − kszδzs2 +
mg

2
(D.15)

where

δza1 = zv + dθv − (zo + dθo) (D.16)

δza2 = zv − dθv − (zo − dθo) (D.17)
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and

δzs1

δza1

(s) =
δzs2

δza2

(s) =
krz
crz

+ s
krz+ksz

crz
+ s

(D.18)

D.1.3 Model Three

This airspring model can be incorporated in both 4 D-o-F vehicle (ARB) and tilting

mechanism models.

k
az k

rz

k
sz

crz

z r

FzR

FzR

FzL

FzL

(+) sign
convention

zv

zb

θv

Fz

Fz

σ

θb

Figure D.3: Airspring Model 3

This section incorporates motion from the vehicle bogie (subscript ‘b’) as seen from

Figure D.3 and it is an extended form of Section D.1.1. The total airspring force is

given again by

Fz = FzL + FzR (D.19)

where now

FzL = −kaz(zv + d1θv − zb − d1θb) (D.20)

FzR = −ksz(zv + d1θv − zr) (D.21)

FzR is also given by

FzR = −krz(zr − zb − d1θb) − crz(żr − żb − d1θ̇b) (D.22)
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Thus żr can be easily obtained from (D.21) and (D.22)

żr = c−1
rz {−zr(ksz + krz) + ksz(zv + d1θv) + krz(zb + d1θb) + crz(żb + d1θ̇b)} (D.23)

Vertical degrees of freedom are not considered in the modelling procedure and also zr

is replaced by the equivalent roll contribution d1θr. Thus (D.23) becomes

θ̇r = c−1
rz {−θr(ksz + krz) + kszθv + krzθb + crz θ̇b)} (D.24)

Hence the airspring force is

Fz = −kazd1(θv − θb) − kszd1(θv − θr) (D.25)

Remark D.1.1. In the case of the tilt mechanism model, the requirement is to replace

θb, θ̇b with (θb + θm), (θ̇b + θ̇m). This is due to both bogie and mechanism movements

in the base of the airspring.

D.2 Suspension having Dampers with End-Stiffness

This damper with end-stiffness model is used in conjunction with the tilting mechanism

model.

xxxxxxxx
xxxxxxxx
xxxxxxxx
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xxxxxxxx
xxxxxxxx
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xxxxxxxx
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xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

csy

ksy

kcsy

yes

motion from the
bogie and the
mechanism

motion from the
body

y mb θb

yv θv

y*
my* = θmmth

F1

F2

F
F1

F2

F

Figure D.4: Damper with end-stiffness
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The overall force F = F1 + F2 where

F1 = ksy(−yv + h1θv + yb + h2θb + ym) (D.26)

F2 = csy(−ẏv + h1θ̇v + ẏes), or (D.27)

F2 = kcsy(−yes + yb + h2θb + ym) (D.28)

From (D.27) and (D.28)

csy(−ẏv + h1θ̇v + ẏes) = kcsy(−yes + yb + h2θb + ym) (D.29)

thus,

ẏes = c−1
sy

[

csyẏv − csyh1θ̇v + kcsyyb + kcsyh2θb + kcsyym − kcsyyes

]

(D.30)

where ym = −hmtθm.
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E.1 Anti-Roll Bar Model (4 DoF Linear) A, B

Av =

(yv) (θv) (yb) (θb) (ẏv) (θ̇v) (ẏb)

0 0 0 0 1 0 0...

0 0 0 0 0 1 0...

0 0 0 0 0 0 1...

0 0 0 0 0 0 0...

−
2ksy

mv

2ksyh1

mv

2ksy

mv

2ksyh2

mv
−

2csy

mv

2h1csy

mv

2csy

mv
...

(2h1ksy+mvg)

ivr
−

(kvr+2h2
1ksy+2d2

1(kaz+ksz))

ivr
−

(2h1ksy+mvg)

ivr

(2d2
1kaz−2h1h2ksy+kvr)

ivr

2h1csy

ivr
−

2h2
1csy

ivr
−

2h1csy

ivr
...

2ksy

mb
−

2h1ksy

mb
−

2(ksy+kpy)

mb
−

2(h2ksy−h3kpy)

mb

2csy

mb
−

2h1csy

mb
−

2(csy+cpy)

mb
...

2h2ksy

ibr

(kvr−2h2h1ksy+2d2
1(kaz+ksz))

ibr
−

2(h2ksy−h3kpy)

ibr
−

(kvr+2h2
2ksy+2h2

3kpy+2d2
2kpz+2d2

1kaz)

ibr

2h2csy

ibr
−

2h2h1csy

ibr
−

2(h2csy−h3∗cpy)

ibr
...

0 ksz

crz
0 krz

crz
0 0 0...

0 0 0 0 0 0 0...

0 0 0 0 0 0 0...

0 0 0 0 0 0 0...

(θ̇b) (θr) (θo) (θ̇o) (yo)

...0 0 0 0 0

...0 0 0 0 0

...0 0 0 0 0

...1 0 0 0 0

...
2h2csy

mv
0 g 0 0

... −
2h1h2csy

ivr

2kszd2
1

ivr
0 0 0

... −
2(h2csy−h3cpy)

mb
0 g 0

2kpy

mb

...1 − (ksz+krz)
crz

0 0 0

...0 0 0 1 0

...0 0 0 0 0

...0 0 0 0 0

, Bv =

(δa) (R−1) (θ̈o) (ẏo)

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 −v2 −hg1 0
kvr
ivr

0 −1 0

0 −v2 −hg2
2cpy

mb
−kvr

ibr
0 −1 −

2h3cpy

ibr

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1
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E.2 Tilt Mechanism Model A

Av =

(yv) (θv) (yb) (θb) (ẏv) (θ̇v) (ẏb)

0 0 0 0 1 0 0...

0 0 0 0 0 1 0...

0 0 0 0 0 0 1...

0 0 0 0 0 0 0...

−
2ksy

mv

2ksyh1

mv

2(ksy+kcsy)

mv

2(ksy+kcsy)h2

mv
0 0 0...

2h1ksy+mvg

ivr
−

(kvr+2h2
1ksy+2d2

1(kaz+ksz))

ivr
−

(2h1(ksy+kcsy)+mvg)

ivr

(kvr+2d2
1kaz−2h1h2(ksy+kcsy))

ivr
0 − cvr

ivr
0...

2ksy

mb
−

2h1ksy

mb
−

2((ksy+kcsy)+kpy)

mb
−

2(h2(ksy+kcsy)−h3kpy)

mb
0 0 −

2cpy

mb
...

2h2∗ksy

ibr

(kvr−2h2h1ksy+2d2
1(kaz+ksz))

ibr
−

2(h2(ksy+kcsy)−h3kpy)

ibr
−

(kvr+2h2
2(ksy+kcsy)+2h2

3kpy+2d2
2kpz+2d2

1kaz)

ibr
0 cvr

ibr

2h3cpy

ibr
...

0 ksz

crz
0 krz

crz
0 0 0...

0 0
kcsy

csy

h2kcsy

csy
1 −h1 0...

0 0 0 0 0 0 0...

0 0 0 0 0 0 0...

0 0 0 0 0 0 0...

0 0 0 0 0 0 0...

0 0 0 0 0 0 0...

0 0 0 0 0 0 0...

0 0 0 0 0 0 0...

0 0 0 0 0 0 0...
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Tilt Mechanism Model A continues

(θ̇b) (θr) (yes) (yw) (ẏw) (θm) (θ̇m) (θo) (θ̇o) (R−1) (yo)

...0 0 0 0 0 0 0 0 0 0 0

...0 0 0 0 0 0 0 0 0 0 0

...0 0 0 0 0 0 0 0 0 0 0

...1 0 0 0 0 0 0 0 0 0 0

...0 0 −
2kcsy

mv
0 0 −

2hmt(ksy+kcsy)+mvg

mv
0 g 0 −v2 0

... cvr
ivr

2kszd2
1

ivr

2h1kcsy
ivr

0 0
(kvr+2d2

1kaz+2(ksy+kcsy)h1hmt)

ivr

cvr
ivr

0 0 0 0

...
2h3cpy

mb
0

2kcsy
mb

2kpy
mb

2cpy
mb

2hmt(ksy+kcsy)

mb
0 g 0 −v2 0

... −
(2d2

2cpz+2h2
3cpy+cvr)

ibr
−

2kszd2
1

ibr

2h2kcsy
ibr

−
2h3kpy

ibr
−

2h3cpy
ibr

(−kvr−2d2
1kaz+2(ksy+kcsy)h2hmt)

ibr
−cvribr 0 0 0 0

...1 −
(ksz+krz)

crz
0 0 0 krz

crz
1 0 0 0 0

...0 0 −
kcsy
csy

0 0 −
hmt∗kcsy

csy
0 0 0 0 0

...0 0 0 0 1 0 0 0 0 0 0

...0 0 0 −ω2
cm0 −2ζm01ωcm0 0 0 0 0 0 ω2

cm0

...0 0 0 0 0 0 1 0 0 0 0

...0 0 0 0 0 ω2
cm1 −2ζm1ωcm1 0 0 0 0

...0 0 0 0 0 0 0 0 1 0 0

...0 0 0 0 0 0 0 0 0 0 0

...0 0 0 0 0 0 0 0 0 0 0

...0 0 0 0 0 0 0 0 0 0 0
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Tilt Mechanism Model B

Bv =

(θmi) (Ṙ−1) (θ̈o) (ẏo)

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 −hg1 0

0 0 −1 0

0 0 −hg2 0

0 0 −1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

ω2
cm1 0 0 0

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1
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Appendix F

H∞-based Controller Structures

The controllers listed in this appendix refer to full order controller size.

F.1 Mixed Sensitivity for ARB model

The H∞ controllers designed for the mixed sensitivity formulation in Chapter 7, section

7.4.3 are represented in the following transfer function form

K(s) =
num(s)

den(s)

and the coefficients of the numerator and denominator for each case with their eigen-

values are listed in the following sections.

F.1.1 K(s) for weightings set 1

The poles and zeros of the controller are:

poles zeros

-6.2136e+002 -3.0000e+002

-1.9814e+001 ±1.3152e+002j -2.0867e+001 ±1.6734e+002j

-3.9320e+001 ±5.1565e+001j -1.4574e+001 ±6.8381e+001j

-4.2488e+001 -3.0000e+001

-2.3218e+001 -2.3215e+001

-6.1938 ±8.9729j -2.5558 ±9.0273j

-2.4277 ±3.3371j -6.8778e-001 ±4.1196j

-1.0000e-004 -
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Table F.1: Controller TF coefficients for mixed sensitivity set 1
num(s) den(s)

s12 0 1
s11 1 822.57
s10 431.3 1.62e+5
s9 7.92e+4 2.7e+7
s8 15.20e+6 2.7e+9
s7 1.2e+9 1.75e+11
s6 8.2e+10 6.8e+12
s5 3.1e+12 1.43e+14
s4 5.4e+13 1.7e+15
s3 49.1e+13 1.24e+16
s2 3.9e+15 4.42e+16
s1 1.e+16 9.23e+16
s0 4.47e+16 9.23e+12

F.1.2 K(s) for weightings set 2

The poles and zeros of the controller are:

poles zeros

-6.3849e+002 -3.0000e+002

-3.4555e+002 -2.0867e+001 ± 1.6734e+002j

-1.9459e+001 ± 1.3343e+002j -1.4574e+001 ± 6.8381e+001j

-3.1794e+001 ± 4.9865e+001j -3.0000e+001

-2.3428e+001 -2.3215e+001

-9.6822 ± 1.4755e+001j -2.5558 ± 9.0273j

-3.6241 ± 3.0871j -6.8778e-001 ± 4.1196j

-1.0000e-004 -
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Table F.2: Controller TF coefficients for mixed sensitivity set 2
num(s) den(s)

s12 0 1
s11 1.43e+2 1.14e+3
s10 6.17e+4 4.0e+5
s9 1.13e+7 6.62e+7
s8 2.17e+9 9.4e+9
s7 1.72e+11 7.38e+11
s6 1.2e+13 3.94e+13
s5 4.5e+14 1.18e+15
s4 7.7e+15 2.07e+16
s3 7.0e+16 2.2e+17
s2 5.6e+17 1.04e+18
s1 1.43e+18 2.32e+18
s0 6.4e+18 2.32e+14
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F.2 Multi-Objective H∞/H2 for ARB Model

State space continuous-time Matlab format A_k, B_k, C_k, D_k

A_k =

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 -60.72 -16.92 -5.139 45.29 -6.434 69.97 -401.8 43.05 9.321 2647

x2 -0.6867 0.7032 -2.738 -8.276 3.551 -10.74 40.91 4.741 -8.975 -310

x3 -40.32 -11.78 -13.99 35.89 -18.85 49.85 -306.2 3.836 40.43 2136

x4 -536.4 -170.5 12.02 589.7 -136.3 868 -4540 288.7 285.2 3.08e+004

x5 -556.8 -180.8 -7.856 646.2 -150.8 936.2 -4876 337.3 273.2 3.299e+004

x6 814 259.3 -3.092 -900.1 204.6 -1323 6937 -467.5 -410.1 -4.695e+004

x7 -612.7 -182.4 46.35 565.9 -147.2 867.2 -4667 188.9 427.7 3.202e+004

x8 -528.3 -180.1 -12.03 687.3 -161.2 984.1 -5045 348.7 268.8 3.415e+004

x9 68.29 14.17 -10.16 -9.749 5.512 -23.52 216.4 -0.00608 -37.77 -1495

x10 -280.4 -126.7 -49.7 639.2 -136.2 870.7 -4147 359.1 104.2 2.787e+004

x11 2.259e+005 7.169e+004 -776.8 -2.474e+005 5.637e+004 -3.607e+005 1.906e+006 -1.284e+005 -1.136e+005 -1.29e+007

x12 4553 1445 -15.76 -4984 1136 -7268 3.841e+004 -2587 -2289 -2.6e+005

x13 -1067 -338.4 3.692 1168 -266.1 1702 -8999 606 536.3 6.091e+004

x11 x12 x13

x1 2.902e+004 8473 1.088e+005

x2 -3279 4559 5.857e+004

x3 2.311e+004 7487 9.615e+004

x4 3.35e+005 -1.308e+004 -1.684e+005

x5 3.593e+005 2162 2.736e+004

x6 -5.111e+005 -7419 -9.471e+004

x7 3.467e+005 -5.217e+004 -6.706e+005

x8 3.722e+005 1.568e+004 2.009e+005

x9 -1.615e+004 -4240 -5.444e+004

x10 3.047e+005 -1.47e+004 -1.892e+005

x11 -1.405e+008 -1.644e+004 -4.857e+004

x12 -2.83e+006 -416.7 -1548

x13 6.63e+005 89.42 246
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B_k =

u1 u2

x1 3 -19.39

x2 -0.3749 -7.949

x3 2.434 -12.39

x4 35.43 -3.705

x5 37.97 30.75

x6 -53.74 0.7161

x7 36.38 -117.2

x8 38.94 100.7

x9 -1.738 72.29

x10 31.63 338.4

x11 -1.467e+004 6572

x12 -295.6 133.2

x13 69.24 -31.18

C_k =

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

y1 -0.6711 -0.0713 -0.08947 -0.5179 0.1186 -0.4317 -0.3876 0.04353 0.2626 1.8 21.58 531.4 6827

D_k =

u1 u2

y1 0.00285 -4.981e-006

(continues in the next page...)
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Controller_poles =

-140427607.250319

-91.3446261264934

-42.5627952703617 + 50.6245843212897i

-42.5627952703617 - 50.6245843212897i

-11.3318349929862 + 30.8019859941792i

-11.3318349929862 - 30.8019859941792i

-11.9844265559739 + 8.83656137739561i

-11.9844265559739 - 8.83656137739561i

-11.7140384056253

-4.88118335331778

-3.40343575033742

-0.0803788208499184

-0.0378971322263747
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F.3 H∞ Coprime Factorisation for Tilt Mechanism Model

State space continuous-time Matlab format A_k, B_k, C_k, D_k

A_k =

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 -53.7 -5.339 1.289 -0.07628 -104.4 -26.3 0 1 0 0

x2 3.897 -15.98 2.891 -0.1711 -234.1 -59 0 0 0 0

x3 -1.092 215.6 -52.03 3.08 4214 1062 1 0 0 0

x4 -108.8 312.8 -75.49 4.469 6115 1541 0 1 0 0

x5 5.628 20.09 -4.849 0.2871 392.8 98.97 0 0 1 0

x6 26.27 102.1 -24.64 1.459 1996 503 0 0 0 1

x7 -112.9 1055 -267.1 25.62 2.163e+004 5452 0 0 0 0

x8 -829.8 -601.8 161.5 -125.7 -1.246e+004 -3048 0 -0.91 0 0.91

x9 30.61 210.6 3.526 -42.86 -1.039e+004 1889 0 0 -10.87 2.109

x10 -69.81 669 -141.3 872.3 1.433e+004 331.6 0 7.28 3.104 -23.88

x11 -117.2 235.5 -56.83 18.36 4603 1170 0 0 0 1

x12 112.9 11.54 -2.785 0.1649 670 168.8 1 -0.844 0 0

x13 9.623e-013 5.515e-013 -1.331e-013 7.879e-015 1.078e-011 2.717e-012 0 0 0 0

x14 9.034e-011 -4.487e-011 1.083e-011 -6.41e-013 -8.771e-010 -2.21e-010 0 0 0 0

x15 -165.5 59.7 -14.41 0.853 1167 294.1 0 0 0 0

x16 -45.53 1806 -460.3 287 -1.153e+004 -1825 -341.7 -206.2 26.98 10.06

x17 0 0 0 0 0 0 0 0 0 0

x18 0 0 0 0 0 0 0 0 0 0

x11 x12 x13 x14 x15 x16 x17 x18

x1 0 103.1 0 0 61.94 0 -23.7 -5.339

x2 0 231.3 0 0 138.9 0 3.897 -15.98

x3 0 -4162 0 0 -2501 0 -1.092 215.6

x4 0 -6039 0 0 -3629 0 -108.8 312.8

x5 0 -387.9 0 0 -233.1 0 5.628 20.09

x6 0 -1971 0 0 -1184 0 26.27 102.1

x7 0 -2.137e+004 0 0 -1.283e+004 0 -112.9 1055

x8 20.92 1.229e+004 0 0 7481 0.91 -829.8 -601.8

x9 0 282.1 1.011e+004 10.87 198.5 0 30.61 210.6

-
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x10 -167.3 -1.13e+004 -2887 -3.104 -7493 -7.28 -69.81 669

x11 -25.05 -4546 0 0 -2721 1 -117.2 235.5

x12 0 -667.2 0 0 -400.5 0 112.9 11.54

x13 0 -1.065e-011 0 1 -6.397e-012 0 9.623e-013 5.515e-013

x14 0 8.662e-010 -987 -12.57 5.205e-010 0 9.034e-011 -4.487e-011

x15 0 -1153 0 0 -692.6 1 -165.5 59.7

x16 -133.3 9342 3500 47.14 3894 -81.97 154.1 -612.2

x17 0 0 0 0 0 0 -30 0

x18 0 0 0 0 0 0 0 0

B_k =

u1 u2

x1 0 -1.335

x2 0 -3.994

x3 0 53.9

x4 0 78.2

x5 0 5.023

x6 0 25.53

x7 0 263.7

x8 0 -150.5

x9 0 52.65

x10 0 167.2

x11 0 58.87

x12 0 2.885

x13 0 1.379e-013

x14 0 -1.122e-011

x15 0 14.93

x16 0 -153

x17 1 0

x18 0 1

C_k =

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

-
220

-



A
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en

d
ix

F
H

∞
-ba

sed
C

o
n
tro

ller
S
tru

ctu
res

y1 0.4127 -5 1.257 -0.6116 -0.9015 -2.462 0.7066 0.4263 -0.05579 -0.0208 0.2756 5.122 -7.237

x14 x15 x16 x17 x18

y1 -0.09747 5.632 0.124 0 0

D_k =

u1 u2

y1 0 0

Controller poles =

-361.813295265681

-240.871071875492

-7.0032467864159 + 104.038049766736i

-7.0032467864159 - 104.038049766736i

-14.1195265627634 + 49.5983224916336i

-14.1195265627634 - 49.5983224916336i

-4.25363768561572 + 34.313249130666i

-4.25363768561572 - 34.313249130666i

-29.9343265868606

-23.8050891812024

-8.80994469622064

-2.49215127206927 + 3.80207914136297i

-2.49215127206927 - 3.80207914136297i

-3.01487757288307

-6.28318530717995 + 30.7811959238846i

-6.28318530717995 - 30.7811959238846i
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0
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