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SYNOPSIS 

The ever increasing demand for power, and the correspondingly greater 
complexity of power systems, is leading to more severe problems of 
system reliability. Modern society is so dependent on the usage of 
electrical power that even a short interruption of service can cause 
serious problems. A public util ity cannot be expected to provide a 
perfect power supply, since many of the possible cau.ses of a power 
disturbance are beyond its control. 

The windings of small diesel-driven 3-phase generator sets are often 
capable of being connected in either a zig-zag or an Edison-delta 
arrangement, to provide a single-phase supply for standby or 
emergency purposes. Although many of these generators are genuinely 
on standby( i.e. they a re brought into operati on 0 nly a sa resul t of 
a system fail ure), many others operate continuously in situations 
where no mains supply is available. 

The thesis aims to investigate both the steady-state and the 
dynamic performance of a 3-phase salient-pole generator, when 
reconnected in either a zig-zag or an Edison-delta configuration, and 
to provide a performance comparison with the more familiar modes of 
single-phase operation involving line-to-line and line-to-neutral 
loading. 

Symmetrical components are used to investigate the steady-state 
performance and a phase model is used to determine both the steady­
state and transient performance. Analytical expressions are 
obtained for the short-circuit currents for various generator 
connections by utf1fsing the modified Clarke transformation. The , 
theoretical results from various models are compared with 
experimental results on a test machine. Losses, efficiency and 
voltage waveforms for various generator connections are 
experimentally obtained for the test machine. Results are discussed 
and suggestions for future research are included. 
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LIST OF PRINCIPAL SYMBOLS 

Connection matrix 
Excitation voltage (RMS) 
Instantaneous a, band c open-circuit phase 
voltages 
Instantaneous Cl, Sand y components of phase 
voltages 
D-axis, q-axis and zero sequence components of 
voltage/current/flux 
Cl, Band y components of voltage/current/flux 
Rate-of-change of inductance matrix 
Current vector 
Instantaneous a, band c armature phase currents 
Instantaneous field current 
Instantaneous d-axis and q-axis damper windings 
currents 
a, band c phase armature currents (RMS) 
Positive, negative and zero-sequence components 
of the a armature phase current 
Positive, negative and zero-sequence components 
of the b armature phase current 
Positive, negative and zero-sequence components 
of the c armature phase current 
Unbalance factor for the armature phase current 
Inductance matrix 
D-axis, q-axis and zero-sequence components of 
inductance 
Constant part of the armature phase self inductance 
Field winding self inductance 
D-axis damper winding self inductance 
Q-axis damper winding self inductance 
Second harmonic coefficient of armature phase self 
inductance 
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Second harmonic coefficient of armature phase 
self inductance of the ideal generator 
Phase-to-d-axis damper winding mutual inductance 
coefficient 
Phase-to-field winding mutual inductance coeffi­
cient 
Field-to-d-axis damper winding mutual i.nductance 
Phase-to-q-axis mutual inductance coefficient 
Constant part of the armature phase-ta-phase 
mutual inductance 
Second harmonic coefficient of the armature phase­
to-phase mutual inductance 
a, band c armature phase flux linkages 
Field winding flux linkages 
a, band c armature phase flux linkages for the 
unloaded generator 
D-axis, q-axis and zero sequence flux linkages 
Friction, windage and iron losses of the DC drive 
motor 
Friction, windage losses of generator 
Generator core losses 
Generator output 
Resistance matrix 
Armature phase resistance 
Field winding resistance 
D-axis damper winding resistance 
Q-axis damper winding resistance 
D-axis open-circuit transient time constant 
D-axis transient time constant 
D-axis subtransient time constant 
Q-axis transient time constant 
Q-axis subtransient time constant 
Voltage vector 
Instantaneous a, band c armature phase voltages 
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a, band c armature phase voltages (Rr,lS) 
Positive, negative and zero sequence components 
of the a armature phase voltage 
Positive, negative and zero sequence components 
of the b armature phase voltage 
Positive, negative and zero sequence components 
of thec armature phase voltage 
Unbalance factor for the armature voltage 
Armature leakage reactance 
D-axis magnetising reactance 
Q-axis magnetising reactance 
D-axis synchronous reactance 
D-axis transient reactance 
D-axis subtransient reactance 
Q-axis synchronous reactance 
Q-axis transient reactance 
Q-axis 5ubtransient reactance 
Zero-sequence reactance 
Negative-sequence reactance 
Impedance matrix 
Positive, negative and zero sequence impedances 
Rotor angle with respect to a-phase (Oe) 
Angular frequency 

Armature windings 
Direct-axis quantities 
Field winding 
Direct-axis damper winding 
Quadrature-axis damper winding 
Quadrature-axis quantities 
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CHAPTER 1 

INTRODUCTION 

While all users of electrical power desire constant frequency, 
voltage stability, and reliability at all times, these features 

clearly cannot necessarily be realised in practice. Within any 
complex system the requi rements are continually changing and 

becoming more demanding and interrelated. 

An electric utility cannot beexpected'to provide an i'deal power 

supply, since many of the possible causes of power disturbance are 
beyond the control of its operators. For example, vehicles hit line 
support poles, lightning strikes overhead lines, high winds blow 
trees, branches and other debris onto the power lines. Lightning, 
wind and rain all cause power disturbances in the form of power 
interruptions or other transients. Tornadoes take their toll on the 
power system, as do the more frequently encountered snow storms, ice 

and floods. Although there is obviously less chance of a supply 

interruption on an underground system, any interruption which does 
occur may last much longer, because of the longer time required to 
locate and repair the failure. Even the malfunction of protective 

devices can cause a power supply disturbance. 

Modern society is so dependent on its usage of electrical power that 
even a short interruption of service can cause serious problems. 
Hospitals must have a highly reliable emergency power supply for 
life-support systems, to ensure that sick and disabled people are 
protected. A machi ne operator may be a hi gh i nju ry-ri sk du ri ng the 
first few seconds after a lightning strike has pl~nged his workshop 
into darkness. Power interruption may cause severe problems for 
lifts. Emergency or standby power for perimeter and security 
lighting is often deemed necessary to reduce the risk of injury, 

theft, or property damage. 
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The windings of small diesel-driven 3-phase generator sets are often 

capable of being connected in either a zig-zag or an Edison-delta 

arrangement, to provide a single-phase supply for ·standby or 

emergency purposes. Although many of these generators are genuinely 

on standby (i.e. they are brought into operation only asa result of 

a failure), many others operate continuously in situations where no 

mains supply is available. It appears to be Griffen 1 who first 

exami ned the poss i bil iti es of such re-·connect ions and also discussed 

the voltage waveforms, power outputs and distribution factors of the 

re-connected generators. 

The problems associated with the performance prediction of unbalanced 

load and unsymmetrical fault conditions of conventional star­

connected 3-phase salient-pole synchronous machine have attracted the 

attention of many authors since the beginning of this century. In 

1918, Fortescue 2 developed the concept of symmetri cal components 

analysis, which has subsequently been applied to many practical 

problems 3,4,S,6. However, a symmetrical component model assumes that 

both balanced and unbalanced current and voltage waveforms are 

sinusoidal, and such a model clearly will give large discrepancies 

when compared with practical results from a system in which the 

currents and voltages contain a considerable harmonic content. 

Blonde1 7 analysed the salient-pole synchronous machine by resolving 

the fundamental space component of mmf along the two axes of 

symmetry, the di rect or pole axis and the quadrature or interpole 

axis. His basic theory has been extended considerably by Doherty and 

Nickle 8,9,10,11,12 and by Park 13 ,14,1S who gave the now familiar 

definition of an ideal synchronous machine. This d-q model has 

subsequently been used to investigate many practical problems 

associated with synchronous machines, with many of the research 

results being presented by Adkins and Harl ey 16. The advantage of the 

d-q model is that its basic differential equations are expressed with 

time-invariant coefficients, leading to analytical solutions for 

balanced load or symmetrical fault conditions. The disadvantage of 

the model arises from certain oversimplifications in the development 
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of its equations, while it also requires further transformations for 

the sol uHon of unbal anced load conditi ons or unsymmetri cal faults. 

In 1954, Chlng and Adklns17 Investigated the transient theory of 3-

phase sal I ent-pol e synchronous generators under unsymmet ri ca 1 fault 

conditions. Laplace transformations appl ied to the basic 

differential equations of an ideal synchronous generator led to 

solutions for the various currents and voltages in the form of 

infinite series. The method of solution is fullyexplained for a 

line-to-line short-circuit fault, although only the equations and the 

results were quoted for line-to-neutral and double-line-to-ground 

short-circuit faults. However, throughout the analysis 

approximations were made on the basis of the relative magnitudes of 

the machi ne parameters. Experimental verification was provided by 

results from a rather special machine, with a uniform air-gap, and no 

damper windings. 

In 1971, Subramaniam and Malik 18 solved the complete phase 

differential equations of an ideal synchronous generator under 

unbalanced load and unsymmetrical fault conditions using a digital 

. computer. Smith and Snider19 included both saturation and space 

harmonics in a digital computer based investigation of unbalanced 

load and unsymmetrical fault conditions, and also verified 

experimentally thei r theoretical results. 

The object i ve of the present study is to i nvesti gate the performance 

of a 3-phase salient-pole synchronous generator when re-connected in 

either a zig-zag or an Edison-delta configuration, and to provide a 

performance comparison with the more familiar modes of single-phase 

operations involving line-to-line or line-to-neutral loading. 

Symmetrical components are used to investigate the steady-state 

performance, with in both cases a phase-model being used as the basis 

for the various generator re-connections. D-q model parameters for 

the experimental machine are measured, and the requi red phase-model 

parameters are determined from those using familiar relationships. 

Analytical expressions are obtained for the short-circuit currents of 
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various generator re-connections, by util ising the modified Clarke's 

transformations and a successive approximation technique. losses, 

efficiency, available power output and voltage waveforms are 

experimentally obtained for the test machine. Results are discussed 

and a comparison between the various generator re-connections is 

made. Suggestions for future research work are also included. 
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CHAPTER 2 

VARIOUS SINGLE PHASE CONNECTIONS 

The users of 3-phase generators need sometim~s to re-arrange the 
connections to the armature windings of their machines so as to 
provide a single-phase output when an existing sing1e~phase generator 
has broken down, or simply when such a machine is unavailable. A 
single-phase supply may be obtained from a 3-phase armature by any 
one of the four following possibilities: 

a) line-to-neutra1 loading 
b) Line-to-1ine loading 
c) Zig-zag connection 
d) Edison-delta connection 

The positive direction of current and vo1tages relating to a 3-phase 
generator are defined in Figure 2~ and these will be used throughout 

the thesis. 

The connection of a 1ine-to:'neutra1 load to the armature of a 
generator is illustrated by Figure 2.2 with the maximum power output 
available clearly being only 33% of the 3-phase rating. Figure 2.3 
illustrates the situation when the load is taken from between two 
output 1 i nes of the generator. Si nce the output vo1 tage is now 13 
times that in the 1ine-to-neutral connection, the maximum power 
output available becomes 57% of the 3-phase rating. The armature 
arrangement in a zig-zag connected generator is shown in Figure 2.4, 
where the two armature phases band c are now series connected. 
Since the armature vo1tages of a 3-phase generator are equal and 
displaced in both space and time phase by 120 0 , the sum of the 
voltages of band c has the same magnitude as, and is in antiphase 

with. thelphase voltage The voltage output V2 is defined as 

V2 = -Vb-Vc in Figure 2.4. The maximum power output avail able from a 
zig-zag connected generator is clearly 67% of the 3-phase rating. 
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Figure 2.5 shows the Edison-delta connection, in which a single-phase 
supply is taken from two corners of a 3-phase delta-connected 
armature, with one of the phases being centre-tapped. Within the 
armature the load current divides in the ratio 1:2, so that the 
maximum available power output obtainable is 50% of the 3-phase 
rating. 

In both thezig-zag and Edison-delta connections, the impedance of 
the two loads should not be allowed to differ by more than 15%1, 

otherwise the magnitude of the reverse rotating field-in the air-gap 
may cause intolerable eddy current losses and excessive heating of 
the rotor body. 
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CHAPTER 3 

SYMMETRICAL COMPONENT MODEL FOR VARIOUS GENERATOR CONNECTIONS 

In 1912, Fortescue2 showed that the three phasors which represent 

any unbalanced 3-phase system can be resolved into three balanced 

systems of phasors: 

a) The positive-sequence components, consisting of three phasors 

equal in magnitude, displaced mutually by 1200 and with the same 

phase sequence as the original unbalanced phasors. 

b) The negative-sequence components, consisting of three phasors 

equal in magnitude, displaced mutually by 1200 and with a phase 

sequence opposite to that of the original phasors. 

c) The zero-sequence components, consisting of three phasors equal 

in magnitude and with zero phase displacement. 

The three sets of balanced phasors which form the symmetrical 

components of the unbalanced phasors are shown in Figure 3.1. Since 

each original unbalanced phasor is the sum of its three components, 

the original phasors can be expressed in terms of their components 

as: 

(3.1 ) 

Reference to Figure 3.1 verifies the following relations, in which 
a = e j 120: 
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(3.2 ) 

and 

so that 

(3.3) 

and 

Conversely, it can be shown that the three unsymmetrical phasors are 
resolved into their symmetrical components by 

(3.4) 

and 

1 
VaO = 3" (Va + Vb + Vc) 

Clearly, a similar discussion is valid for the correspondi n9 set of 
currents, so that 

I = la! + la2 + laO la! 
1 (la + alb + a2lc l a =j 

lb = 2 a lal + ala2 + laO la2 
1 

=j 
2 (la+ a Ib + alc) (3.5) 
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and 

_ 1 
laD - j (la + Ib + le) 

Assuming that a synchronous generator produces only positive-sequence 
components of voltage, the sequence networks for a 3-phase 
machine 20 ,21,22 are given in Figure 3.2, with the corresponding 
lio ltage drop equations bei ng 

(3.6) 

3.1 SHORT-CIRCUIT FAULTS 
3.1.1 Line(1)-to-Centre Point Fault for Zig-Zag Connection 

The circuit diagram for a zig-zag connected 3-phase synchronous 
generator with a line(1)-to-centre point fault is shown in Figure 
3.3. It is clear that, under this condition, the following 
constraints exist: 

Va = 0 (3.7) 

Applying these to the expressions for the symmetrical components of 
the currents yields 

1 
= j la 

1 
= j la (3.8) 

and 

so that 
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,{, V," Vo , 
/VQO 

~v., 
Vb" 

1~' '{L 

Vb' 
a) Positive-sequence b) Negative-sequence c) Zero-sequence 

components components components 

FIGURE 3.1: Symmetrical components of an unbalanced 3-phase system 

1., Z. 101 Zl. I •. Z. 

E l~ } tv •• 

a) Positive-sequence b) Negative-sequence c) Zero-sequence 
. network network network 

FIGURE 3.2: Sequence networks of a 3-phase synchronous generator 
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11-
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C2 

~--------------~----~2) 

FIGURE 3.3: Line (l)-to-centre point fault for zig-zag 
connection 
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(3.9) 

Applying Ki rchhoff's second 1 aw to the phase sequence voltage drop 
equations gives 

(3.10) 

and 

Since phase a is short-circuited Va = 0, and it follows that 

and that 

or 

(3.11) 

Hence 

(3.12) 

The symmetrical components of the phase a voltage are therefore 

(3.13) 
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VaO = _ .,---,-Z .... O_E-,-.....­
Zo + Z1 + Z2 

respectively. Correspondingly, the voltage of the open-circuit phases 

are 

and (3.14) 

respectively. 

Using the parameters of the experimental 3 kVA generator given in 

Appendix I of Zl = 21.2 n /phase, Z2 = 7.20 n/phase and 

Zo = 1.46 n /phase, the short-circuit current for an open-circuit 

voltage of 127 V/phase was calculated as 12.8A compared with a 

measured value of 13.0A. The predicted band c voltages are Vb = Vc 

= 59.2V compared with measured values of Vb = 70.5V and Vc = 68.0V. 

3.1.2 Line(2)-to-Centre Point Fault for Zig-Zag Connection 

The ci rcuit di agram of Figure 3.4 shows a zi g-zag connected generator 

with a line(2)-to-centre point short circuit. The constraints which 

now exist are 

1=0 a (3.15 ) 

and when these are appl ied to the expressions for the symmetrical 

components of the currents, it follows that 
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A1 "-'+:---~:---'---. (1) 

~---------~-----c 

L.--------f~::______o( 2) 
T 

FIGURE 3.4: Line (2)-to-centre point fault for a zig-zag 
connection 
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(3.16) 

and 

Hence the sequence components of voltage are 

(3.17) 

and 

respectively. From the conditions of the fault it follows that 

and therefore that 

Hence 

or 

giving 

(3.18 ) 
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The symmet ri ca 1 component 5 of the short -c i rcu it current are 

= t 12 = 
E 

Ial 4Z0 + Z, + Z . 
2 

Ia2 
, E (3.19) = 3" 12 = 

4Z0 + Zl + Z2 

and 

raO = - ~ 12 = 
2E 

respectively, and the corresp~nding components of the sequence 

voltages are 

Va2 = - Z2 Ia2 = -

and 

4Z0 + Z2 
-=-~~-=-...."..... E 
4Z0 + Z, + Z2 

-=-_...,Z=,,2_--,- E 
4Z0 + Z, + Z2 

2Z0 
VaO = - Zo r aO = - 4Z + Z + Z E o 1 2 

The voltage of the open-circuit phase is 

With the voltage of phaseb being 

and that of phase c 

(3.20 ) 

(3.21 ) 

(3 .22) 

E (3.23) 

The predicted short-ci rcuit current is 12 = 1l.4A compared w.ith a 

measured value of 12 = 10.SA. The predicted a, band c volt ages are 

Va = 32.5V, Vb = 6S.2V and Vc = 65.2V compared with measured val ues 
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of Va = 53.0V, Vb ~ 92.0V and Vc = 92.0V. 

3.1.3 Double Line-to-Centre Point Fault for Zig-Zag Connection 

When a double line-to-centre point fault is applied, the circuit 

diagram of Figure 3.5 shows that the terminal conditions at the fault 
are 

(3.24 ) 

Applying these constraints to the expression for the symmetrical 

components of currents gives 

121 
Ial = J (Ia + alb + a le) = j (Ia - Ib ) 

1 2 1 
Ia2 = j (Ia + a Ib + ale) = j (Ia - Ib ) (3.25) 

and 

Applying Kirchhoff's second law to the phase sequence voltage drops 

gives 

and 

Since 

then 

And since 

1 
Val = E - ZlIal = E -"3 Zl(Ia-Ib) 

Va2 = - Z2Ia2 d - l Z2(Ia-I b) 
3 

VaO = - ZOIaO = - l ZO(Ia + 2I b) 
3 

(3.26) 
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A1 9,;+--...::....:c---~---(1) 

h .. ~ 
~----------~~----c 

~------------~~----~2) 

T 

FIGURE 3.5: Double line-ta-centre point fault for a zig-zag 
connected 3-phase synchronous generator 
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then 

Solving equations (3.27) and (3.28) simultaneously yields 

(3.29) 

so that the symmetrical components of the currents are 

1 _ E 
Ia1 =..,.(I a Ib)-

" Zl +Z2 

I _1(I 1)- E 
a2 - J a" b - Z 1 + Z i (3.30) 

and laD = j (la + 21 b) = 0 

and those of the voltages are 

(3.31) 

and 

The corresponding phase voltages are 

(3.32) 
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The short-circuit currents calculated using the above equations are 

la = 8.9A and Ib = 4.5A, compared with measured values of 12.8A and 
2.6A respectively. Similarly the calculated band c phase voltages of 

Vb= Vc = 54.6V compared with the measure,d values Vb = Vc = 73.0V. 

3.1.4 Line-to-Line Fault for Edison Delta Connected Generators 

The circuit diagram for the Edison-delta connected synchronous 
generator subject to a line-to-line fault is shown in Figure 3.6, 
by giving the terminal conditions at the fault of 

Vb + Vc = 0 (3.33) 

The symmetrical components of the currents are 

and 

Ia2 = ~ (Ia + a2Ib + alc) = ~ (Ia - Ib) 

I aO = ~ (I a + I b + I c) = ~ (I a + 2 I b) 

respectively.The phase-sequence voltage drops are 

1 
= - J Z2(I a-Ib) 

and 1 
= -3" ZO(Ia + 2Ib) 

Since 

(3.34 ) 

(3.35) 
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I -

FIGURE 3.6: Line-to-line fault for Edison-delta connected 
generator 
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then (3.36) 

and since 

then 

Solving equations (3.36) and (3.37) simultaneously yields 

(3.38 ) 

The symmetrical components of the short-circuit currents are 

therefore 

la! =~ (la - Ib ) = 
.) Zl+Z2 

E 

1 .) = E 
Ia2 ="j(la- Ib llH2 

and laO =} (la + 21b) = 0 

and the symmetrical components of the voltages are 

and VaO = -ZOlaO = 0 

The phase voltages are 

,IT Z2E 

= -j ll+l2 

(3.39) 

(3.40) 
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and (3.41) 

The short-circuit current is 

(3.42) 

. The predicted currents are la = a.gA, Ib = 4.5A, Ic = 4.5A and 1 = 
13.4A compared with measured values of la = 12.6A, Ib = 2.4A, lc = 
2.4A and I = 15.2A. The predicted band c voltages are Vb = Vc = 
55.2A compared with measured val ues of Vb = Vc = 72.0A. 

3.2 ANALYSIS OF LOAD CONDITIONS 

3.2.1 Zig-Zag Connection 

Figure 3.7 shows the circuit diagram of a zig-zag connected 3-phase 

synchronous generator supplying unbalanced loads Za and Zb' From the 

figure it is evident that 

(3.43) 

Applying these conditions to the familiar expressions for the 

symmetrical components of the generator currents gives 

(3.44) 
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FIGURE 3.7: A zig-zag connected 3-phase synchronous generator 
on load 
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; .e. la 1 = la2 

Hence 

Va1 = E - Zl la 1 = E - 1. Z 
,3 1 (Ia-Ib) 

Va2 = - Z2 la2 = 1 
- 3" Z2 (Ia-Ib) (3.45 ) 

and VaO = - ZOlaO = 1 
- 3" Zo (Ia-Ib) 

Since 

or 

then 

(3.46) 

and since 

or 

then (3.47) 

Solving simultaneously equations (3.46) and (3.47) yields 

(3.48) 

and 
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The symmetrical components of the generator currents follow as: 

= 3E(3Z0+Za +Zb) 
(ZO+Zl +Z2+3Za) (4ZO+Z1 +Z2+3Zb )- (-2Z0+Z1 +Z2)2 

and 

and the symmetrical components of the voltage as 

and 

respectively. 

The phase vo1tages are therefore 

Va = VaO + Va1 + Va2 

_ E 3E[Zo(Zb-2Za)+Zl(3Z0+Za+Zb) +Z2(3Z0+Za+Zb)] 
- -(ZO+Zl+Z2+3Za) (4AO+Z1+Z2+3ZbJ-(- 220+21+Z2)2 

Vb = VaO+ a2va1 + aVa2 

= a2E _ 3E[Zo(Zb-2Za) + a2Z,(3Z0+Za+Zb)+aZ2(3Z0+Za+Zh)] 
(ZO+Z'+Z2+3ZaJ(4Zo+Z1+Z2+3Zb)-(-Z20+Z,+Z2)2 

(3.50) 

(3.51) 
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Vc = VaO + aVal+ a2Va2 

3E[ZO(Zb-2Za)+aZ,(3Z0+Za+Zb)+a2(3Z0+Za+Zb)] 
= aE - (ZO+Z,+Z2+3Za) (4Z0+Z l +Z2+3Zb)-(-2Z O+Zl+Z2)2 

respectively. 

If an unbalance factor for the generator currents is defined as 

I I a2/Ial l then 

= 1 

while a corresponding unbalance factor for the voltage is 

When the impedances of the two loads are identical 

the load currents become 

and 
I _ 9E (ZO+Z) . 
2 - (ZO+Zl+Z2+3Z ) (4Z0+Zl +Z2+3Z)-(-2Z0+Z 1+Z2)2 

and the generator phase voltages are 

V = E a 

(3.52) 



and v = aE c 
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Under balanced conditions, the unbalance factor for the voltage is 

3.2.2 Edison-Delta Connection 

From the ci rcuit di agram for an Edison-delta connected synchronous 

generator supplying a 2-wire load shown in Figure 3.8, the terminal 

conditions follow as: 

(3.54) 

Hence 

and 
(3.55) 

i.e. 
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L 

z 

FIGURE 3.8: An Edison-delta connected synchronous generator 
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The equations for the phase sequence voltage drop are now 

and 

Since 

then 

and since 

or 

then 

Va2 = - Z2 Ia2 =- t Z2( la-Ib) 

1 
VaO = - laOlO = - j Zo (la + 2Ib)' 

(3.56) 

(-2Z0 + Zl + Z2 + 3Z)la - (4Z 0 + Zl + Z2 + 3Z)lb = 3E(3.58) 

Solving simultaneously equations (3.57) and (3.58) 

(3.59 ) 

and the load current is 

(3.60 ) 

The symmetrical components of the generator currents are 
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and those of the voltages 

and 

The phase voltages are therefore 

3ZE 

[a 
Yb = YaO + a2Yal + aYa2 = 

and 

The unbalance factor for the current is 

= 1 

and that for the voltage is 

(Z2+3Z)-a3Z1E 

Zl+Z2+3Z 

(3.61) 

(3.62) 

(3.63) 
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= 

3.2.3 Line-to-Line Loaded Generator 

From the circuit diagram for a line-to-line loaded star-connected 3-
phase synchronous generator shown in Figure 3.9, it is evident that 

la = 0, ( 3.64) 

Hence 

(3.65 ) 

i.e. 

and the symnmetrical components of the generator voltages are 

It follows that 
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I -

A2 

+ 
(1 + 

FIGURE 3.9: A line-to-line loaded star connected 3-phase 
synchronous generator 

z 
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so that 

(3.67) 

The equ"ations for the phase sequence voltage drops are 

so that 

From equation (3.68) 

Therefore 

and (3.69) 

E 
= - ~Z-1-+"""'Z;='2-+"-"'Z 

Having determined the symmetrical components of a phase current, the 

phase currents Ib and Ic are 

i3E 
j Zl + Z2 + Z 
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and (3.70) 

respectively. 

The symmetrical components of the generator voltages are 

and (3.71) 

respectively. 

Hence the generator phase voltages are 

(3.72) 

and 

With the unbalance factor being 

= 1 

for the currents and 

for the voltages. 
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3.2.4 Line-ta-Neutral Loaded Generator 

The terminal conditions which apply to the line-ta-neutral loaded 
star-connected generator shown in Figure 3.10 are 

(3.73) 

Hence 

(3.74) 

and 

i . e. 

and the phase sequence voltages are 

(3.75) 

and 

It follows from the terminal conditions that 

so that 

(3.76) 

and the symmetrical components of the generator currents are 



39 

I -
z 

FIGURE 3.10: Line-to-neutra1 loaded star-connected synchronous 
generator 
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The corresponding symmetrical components of the voltages are 

E(ZO+Z2+3Z ) 
lo+l'+Z2+3l 

-El 
2 

ZO+Z'+Z2+3Z 

-EZO 

and those of the armature phase voltages are 

(3.77l 

(3.78) 

= (a2-')Zo+(a2-a)l2+3a2lE 
ZO+l,+Z2+3Z 

(3.79) 

The unbalance factor for the generator currents is again 

while that for the voltage is now 

= 



,-----------_._-- - - - -------------
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3.3 CONCLUSIONS 

The steady-state performance'of various connections of a 3-phase 
synchronous generator have been investigated using a symmetrical 
component model. Mathematical expressions for the currents and 

voltag~s were derived and also expressions of unbalance factors for 
both currents and voltages were provided. Practical results using 
values of sequence reactances obtained experimentally were compared 
with theoretically derived results and these were found to agree 
reasonably satisfactorily. The discrepancy that exists is accounted 
for primarily by the presence of harmonics in the voltage and current 
waveforms. This is shown by the experimental voltage waveforms given 
later in Chapter 6, for various voltage settings. Other obvious 
reasons for these discrepancies are the use of unsaturated values for 
negative and zero sequence reactances, and the neglect of saliency in 

the development of the symmetrical component model for the 3-phase 
synchronous machine •. 

It is interesting to observe that the current unbalance factor for 
various single-phase connections is load independent and equal to 
unity. This is because any single-phase connected armature sets up a 
pulsating mmf which may be resolved into equal magnitude contra­
rotat i ng components. Si nce the magnitude of negative- and posi t i ve­
sequence components is equal, the unbalance factor for currents for 
each case is unity. 
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CHAPTER 4 

PHASE MODEL FOR VARIOUS CONNECTIONS 

Although both the transient and the steady-state performances of a 

conventi ona 1 3-phase synchronous generator have been i nvesti gated by 

many authors23 ,24, no attention appears to have been directed towards 

the performance of such a machine when the armature windings are 

arranged in a zig-zag or Edison-delta connection. The present 

chapter investigates therefore both the transient and the steady­

state performance associated with these connections. 

A prediction of either the transient or the steady-state performance 

of a generator requires the development of a mathematical model, in 

the form of a set of simultaneous ordinary differential equations. 

The standard simplifying assumptions which are involved in this 

development are: 

a) The air-gap mmf and the flux density are both sinusoidally 

distributed in space, so that the phase-to-phase mutual 

inductance coefficients and the phase self-inductance 

coefficients are simple trigonometric functions of the rotor 

pos iti on. 

b) The effect of magnetic saturation on both axes is negligible. 

c) There is only one damper winding on each axis. 

d) The effect of hysteresis and eddy currents is negligible. 

e) The speed of the generator is assumed to remain constant after 

any disturbance, i.e. the generator drive is stiff. 
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~ 
A1 + 

A2 

82 

~B1 

FIGURE 4.1: The primitive synchronous generator 

! 



Va R +pL ll pM1Z pM13 pM14 pM15 pM16 ia 

vb pMZl R +pL Z2 pM23 pM24 pM25 pM26 \ 

Vc pM31 pM32 R +pL33 pM34 PM35 pM36 ic 

= 

v
f 

pM41 pM42 pM43 R44+PL44 pM45 0 if 

0 pM51 pM52 pM53 pM54 
. R

55
+pL

55 0 ikd 
. 

. 

0 pM61 pM62 pM63 0 0 R66+pL66 \q 

EQUATION 4.1: Differential equation for the primitive synchronous generator 
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4.1 STATE EQUATIONS FOR A 3-PHASE SYNCHRONOUS GENERATOR 

The differential equations for various connections of a 3-phase 

generator may be obtained from the corresponding equations of the 

primitive machine shown in Figure 4.1. The associated differential 

equations, given in matrix form in equation 4.1, may be written in 

abbreviated form as: 

[V] =p[l][~I] + [R][I] (4.2) 

where V is the voltage vector 

I is the current vector 

R is the resistance matrix 

l is the inductance matrix. 

Sincesome:of the'nductance terms are time variant, the general form 

of equation 4.2 is: 

[V] = [l][pl] + [R+G][I] (4.3) 

where 
. d d de 

[G] = at [L] = de [l] at 

de If the generator is driven at constant speed w = at - constant then 

v 

[G] = w del] 

dt 

and the state~variable form of equation 4.3 becomes 

(4.4) 
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[pI] = [L]-l [[V] - [R+G][I]] (4.5) 

where [G] is the time-rate-of-change of inductance matrix. 

4.2 INDUCTANCE AND· TIME-RATE-DF-CHANGE OF INDUCTANCE COEFFICIENTS 

4.2.1 Inductance Coefficients 

The inductance coefficients forming the [L] matrix of equations 4.2 
and 4.3 are in general dependent on the rotor position, and they have 
therefore to be calculated at each step of a numerical integration of 
these equations. Since the model neglects any effects of saturation, 
the inductances are not functions of currents. 

4.2.1.1 Stator Self-Inductance 

The phase winding self-inductances are25 ,26,27 

(4.6) 

where both LAD and L2 are constant. 
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4.2.1.2 Roto~ self-inductance 

The rotor self-inductances are25.26.27 

(4.7) 

4.2.1.3 Stator mutual inductances 

The phase-ta-phase mutual inductances are25.26.27 

(4.8) 

where both MO and M2 are constant. 

4.2.1.4 Rotor mutual inductances 

The mutual inductance between the field winding and the d-axis damper 
winding does not vary with the rotor position. So that25 ,26,27 

(4.9) 



48 

'4.2.1.5 Stator-to-rotor mutual inductances 

Finally, we consider the mutual inductances between the stator and 

rotor windings, all of which are functions of the rotor position. The 

mutual inductances between the various phase windings and the field 
winding are25 ,26,27 

(4.10) 

The phase to d-axis damper winding mutual inductances are 

(4.11) 

and the mutual inductances between phase and q-axis damper winding 

are 

( 4.12) 



---------- -
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4.2.2 Time-Rate-of-Change of Inductance Coefficients 

4.2.2.1 Time-Rate-of-change of stator self-inductance 

The time-rate-of-change of the self-inductances of the phase windings 
are obtained by differentiating the stator self inductances with 
respect to times 

(4.13) 

4.2.2.2 Time-Rate-of-change of rotor self-inductance 

Since the rotor self-inductances are constant, their rates-of-change 
are zero: 

G55 = 0 (4.14) 

4.2.2.3 Time-Rate-of-change of stator mutual inductance 

The rate-of-change of the phase-ta-phase mutual inductances are 
obtained by differentiating the stator self inductances with respect 
to time 

G12 = G21 = -2wo M2 sin (28-120°) 

G23 = G32 = -2wo M2 sin 28 (4.15) 

G13 = G31 = -2wo M2 sin (28-2400 ) 



I 
I 

I 

so 

4.2.2.4 Time-Rate-of-change of rotor mutual inductances 

The mutual inductance between the field and the d-axis damper winding 
does not vary with the rotor position and its time-rate-of-change is, 
therefore, zero. Similarly, since the mutual inductances between the 
d- and q-axes are also zero: 

(4.16) 

4.2.2.5 Time-Rate-of-change of stator-to-rotor mutual inductances 

The time-rate-of-change of the mutual inductance between the phase 
windings and the field winding are obtained from equation 4.10 

( 4.17) 

Simil arly. the ti me-rate-of-change of the phase wi ndi ng to d-axi s 
damper winding mutual inductances are, obtained from equation 4.11 

(4.18) 
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and the rates-of-change of the phase winding to q-axis damper winding 
mutual inductances are, obtained from equation 4.12 

(4.19) 

4.3 STATE EQUATIONS FOR VARIOUS CONNECTIONS 

The connection matrix which relates the currents in the zig-zag 
connection to those of the primitive synchronous generator may be 
w ri tten from i nspecti on of Fi gure 4.2 as 

, l , , . 
1 

1 i ~ 1 
i 1 a I 

I ' 
; 

; i b -1 i 12 
ic . I -1 : ! ; f (4.20) I : 

; = I I ; 

. if 1 i ikd . I 

i 1 1 !. , 
1 ; 

l ikq, i lkd! I 

! i kqj 
I 

1 
, 

When written in abbreviated matrix form, equation 4.20 becomes 

I = Cl I 

where the connection matrix C is given by 
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( 
1 i , 

I -1 

I -1 

C = I 1 (4.21) 

i 1 

l 1 
J 

where. 

I = Cia ib ic if i kd ikq]t. denotes the currents in the primitive 

synchronous generator. 

and 

l' = [i1 i2 ifi kd ikqJt • denotes the currents in the zig-zag 

connected synchronous generator. 

The relationship between the currents in the Edison-delta connected 

generator and those in the primitive synchronous generator may be 

written from inspection of Figure 4.3 as 

'. 1 1 1 i1 
, 

; 1 a I 
, 

ii b I 1 i2 I. 
1 if i (4.22) 11 c ! 

'= , 
Pf i 1 i kd ! 
I· I , 

1 I 
. I 

,1 kd , 1 kq J 
( I 

i ) 
J i kq i 1 
t. , l 

When written in abbreviated form, equation (4.22) becomes 

I = Cl' 

where the connection matrix C is given by 
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\ 
1 1 

1 

e = 1 (4.23) 
1 ; , 

I 1 
, 
I 

L 1 I 
) 

where, 

I = Cia ib ic ifi kd ikq]t, denotes the currents in the primitive 
synchronous generator. 

and 

I' = [i 1 i2 if i kd ikq]t, denotes the currents in the Edison':delta 
connected synchronous generator. 

The matrix operational equation for various generator connections may 

be obtained by using the standard impedance transformation eTze 

(where eT is the transpose of C). The matrix operational equation 

for vari ous generator connecti ons can be rearranged in the state­

variable form 

[pI'] = [L'][[V'] - [R'+G'][I']] 

which can be solved using the numerical integration technique 

described in Appendix IV, to arrive at the machine currents. 
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FIGURE 4.2: A zig-zag connected 3-phase synchronous generator 
in load 
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FIGURE 4.3: Edison-delta connected synchronous generator 
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o 
R +Rll 

-p(M12+M13 ) pM14 pM15 pM16 
+p(~ ilL]) 

o 
2R +Rl2 -p(M24+M34 ) -p(M2S+M3S ) -p(M26+M36 ) 
+p(l +~:t2l23+ll2) 22 

~lPL44 pM45 .0 , = 

Symmetrical about 

the leading diagonal 
o . ~5+PL55 0 

o IktP1;6 

Equation 4.24: Differential equation for a zig-zag connected 3-phase synchronous generator 



I 
LAO+LLl 

2MO+M2 cos2e Mf cose Md cose 
+L2 cos2e 

LL2+2LAO· 2MO 
Mf cose Md cose 

+(2M2-L2) cos2e 

[L] = Symmetrical about 
L44 M4S 

the leading diagonal 
LS5 

Equati on 4 .. 25: Inductance matri x for a zi g-zag connected 3-phase synchronous generator 

Mq sine 

Mq sine 

0 

0 

L66 

I 

I 



0 0 0 

[G] = 
Symmetrical about 

the leading diagonal 
0 0 

", co 

o 

Equation d.26 Time-Rate-of-change of the inductance matrix for a zig-zag connected 3-phase synchronous generator 



R+RLl 0 0 0 o· 

2R+RL2 0 0 0 

R44 0 0 

[R] = Symmetrical about 
RSS 0 

the·leading diagonal 
, 

R66 

Equation 4.27: Resistance matrix for a zig-zag connected 3-phase synchronous generator 



. 0 R+RL+P(L . +L ) R+p(~ tM12+M13) pM14 pM15 pM16 11 L 

0 
3R+p(~1+L?2+L33 

p(M14+M24+M34) p(M15+M25+M35) p(M16+M26+M36) 
+2M12+2M13+2H23) 

V. 
T = R44+pL44 M45 0 if 

Symmetrical about 
I----fg; 

0 the leading diagonal R55+pL55 0 

0 R66+pL66 

. . 
Equation 4.28: Differential equation for an Edison-delta connected synchronous generator 



LAO+LL (LAO-2Mo' 
Mf cose Md cose M sine 

+L2 cos2e +(L2-M2l cos2e 
. q. 

3(LAO-2Mo' 0 0 0 

[L] = L44 M45 0 

Symmetrica1 about 

the 1eading diagona1 L55 0 

L66 

Eouation 4.29: Inductance matrix for an Edison-de1ta connected synchronous generator 



-2wL2 sin2e -2w(L2-M2) sin2e -wMf sine -wMd sine wMq 

. 

0 0 0 

0 0 
. 

[G] = Symmetrical about 

the leading diagonal 0 

Equation 4.30: Tir,le-Rate-of-change of inducrance matrix for an Edison-delta connected synchronous generator 

0 

0 

0 

0 

cose 

en 
N 



R+RL R 0 0 

3R 0 0 

R44 0 

[R] = 
Symmetrical about 

the leading diagonal 
I 

R55 

Equation 4.31: Resistance matrix for an Edison-delta connected synchronous generator 

0 

0 

0 

0 

R66 

en 
w 
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4.4 TRANSIENT FAULT TESTS 

Short-circuit tests are useful for verifying the validity of the 

various assumptions made in Section 4 in the development of the 

machine model and also of the numerical technique described for 

predicting generator performance. 

Various short-circuit fault tests were carried out on the 

experi mental machi ne. During the short-ci rcui t tests the generator 

was run at synchronous speed with its field winding excited to give 

rated voltage on open-circuit in the phase windings, with the 

armature wi ndi ngs connected in the different configurations 

considered previously. Various short-circuit faults were applied at 

the terminals of the unloaded generator and ultra-violet recordings 

of the armature and field currents were taken. Figures 4.4, 4.5 and 

4.6 show both the experimental and computed results obtained when a 

line (l)-to-centre point, line (2)-to-centre point and double line­

to-centre point fault of a zig-zag connected generator respectively. 

Figure 4.7 shows both the experimental and computed result when a 

line-ta-line short-circuit fault of an Edison-delta connected 

generator. 

One feature of particular interest in the figures is that the 

unbalanced armature short-circuit currents contain substantial third­

harmonic components, and the existence of these may be qualititavely 

explained by the following argument. The fault current in the 

armature winding sets up a pulsating field, which can be resolved 

into two counter-rotating mmf fields in the air-gap of the 

alternator. There is no relative motion between the positively­

rotating field (which is the source of the single-phase armature 

reaction) and the field winding, but the negatively-rotating field 

travels relatively to the field winding at twice synchronous speed. 

Double-frequency voltages are thereby induced in the field winding, 

and since this is assumed to be supplied from a source of zero 

impedance, a substantial double-frequency current will result. This 

will in turn establish a field pulsating at double frequency along 
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the axis of the field winding which may be resolved into two counter­
rotating air-gap fields. The negatively-rotating field travels 
backward~ relatively to the armature winding at synchronous speed and 
thereby gives rise to negative-sequence voltages of fundamental 
frequency in the armature windings. The positively-rotating fields 
travels relatively to the armature windings at three times 
synchronous speed, and thereby generates thi rd-harmonic voltages of 
zero sequence in the armature windings. 

The close agreement between the experimental and predicted results 
gives a high degree of confidence in the techniques employed. 
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CHAPTER 5 

~, B, Y COMPONENT MODEL FOR VARIOUS GENERATOR CONNECTIONS 

This chapter deals with an analytical solution for the short-circuit 

situation in a zig-zag or an Edison-delta connected generator. For this 
purpose, the direct phase equations are written down for an ideal 
salient-pole synchronous machine 28 ,29, and a modified d~q-O 
transformation30 ,31 followed by an ~, B, y transformation32 ,33,34,35,36 

is subsequently applied. The advantage of· the modified d-q-O 
transformation over the conventional d-q-O transformation37 ,38 is that 
it results in a symmetrical inductance matrix with reciprocal mutual 
inductances. The ~, B, y transformation has the advantage of being 
power invariant, unlike the et, B, 0 transformation 39 ,40,41. These 
various transformations are presented in Appendix VII. 

The ideal generator considered in this chapter comprises a stator-with 
three physically-identical armature windings a, band c, displaced 
mutually by 1200 (electrical) degrees. On the rotor there is a field 
circuit, symmetrical about the d-axis. Damper windings are not 
considered here, since these increase the complexity of the 
mathematical manipulations involved, 
questionable extra simplifying assumption35• 

and also necessitate a 
Assuming the machine to 

be ideal means that all the assumpt ions gi ven in Chapter 4 are val id, 
although the additional assumption must be made that the second­
harmonic components of the armature phase inductance and the phase-to­
phase mutual inductance are equal. Under these condit ions the 
application of either a conventional or a modified d-q-O transformation 
yields equations in the d-q reference frame with no time-varying 
coefficients and thereby enables an analytical solution to be produced. 
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In an ideal synchronous machine, the flux linkages of the phase and 
field windings28 ,29 are 

(5.1) 

while the various self-inductances are 

(5.2) 

Park's transformation, as modified by Lewis 30 ,31 is 
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" 
fd = !¥fa cose + fb cos (e-1200 ) + fc cos (e-240°}j 

1 

fq = 2 / j[fa si ne + fb sin (e-1200) + f c sin ( e-2400)] 

(5.3) 

f = 
° ~ [fa + fb + fc J 

where f may represent the currents i, voltages Y or flux linkages ljJ 

of the generator. 

After much m athemat i cal man i pul at ion, appl icati on of the modified 

Park transformaton to the flux/current equations leads to the flux-

1 i nkage equati on 30 

-, 
ljJd = Ldid + l~ Mfi f 

(5.4) 

where 

L = L + Mo - 3 Lm 
q AO "Z 

(5.5) 

The advantage of the modified d-q transformation is evident from the 

reci procal form of the mutual inductances in the fl ux 1 i nkage 

equation (5.4). The circuit representation of a synchronous 

generator by d-axis, q-axis and zero-sequence windings is given in 

Figure 5.1. 
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FIGURE 5.1: Representation of a synchronous generator by 
direct-axis, quadratllre axis and zero-sequence 
windings 
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5.1 MACHINE EQUATIONS IN TERMS OF a~ a~ y COMPONENTS 

In a series of papers, Hwang 32 ,33,34,35,36 has demonstrated the 

mathematical convenience of the a, a, y transformation and successive 
approximation technique. In the analysis of unsymmetrica1 short­
circuit" faults applied to a conventional star-connected 3-phase 
synchronous generator. In this section, the relationships betweena,a 
components and d-q components as well as phase quantities are 
established, and synchronous machine equations in terms of a,S,y 
components are also provided. 

The transformations from d-q to a,a components 32 are 

or conversely 

fa = fd cose + fq sine 
fa = -fd sine + fq cose 

fd = fa cose - fa sine 
fq = fa sine + fa cose 

The transformation from phase quantities to a, a, y components32 are 

or conversely 

fa =/I fa - ~ fb - ~ fc 

1 1 
fa = -72" fb +72" fc 

f lf 1 f +l f y=7Ja+7Jb 7J c 

f l2'f+1 f 
a=/-J a 7J y 

fb = - -,l.. f - 1 f + 1 f 
vU a 72" a 7J y 

(5.8) 

(5.9) 
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where f may represent the currents i, voltages v or flux linkages '" 

of the machi ne. 

The a, B, y components of the various flux linkages may be expressed 

in terms of the"" S, y components of the phase currents 32 by 

ljJ = L i 
y y y 

(5.10) 

- , 

which may be re-written as 

ljJa = Maf if cose + (A + B cos 2e)i a - B sin2e is 

(5.11) 

ljJ = L i 
. y y y 
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where 

A = 

B = (5.12) 

In terms of ", S, Y components, the voltage-current relationships of 

the generator are 

d", 
Ri " e" = - at 

" 
eS = - Ris 

d",s 
- at 

dljJ 
e = - Ri - Y 

Y Y at 

(5.13) 

ef = Rfi f 
dljJf 

+at 

or, when the results of equation 5.13 are introduced 

e" = -(R+p(A+B cos 26) )i" + pB sin26 is - pMaf cos6 if 

es = pS sin26 i" - (R+p(A-B cos 26) lis + pMaf sine if 

(5.14) 

The circuit representation of a synchronous generator by", Sand y 

component windings is illustrated in Figure 5.2. 
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5.2 SYNCHRONOUS GENERATOR ON NO-LOAD 

When a short ci rcuit from no-load is considered, it is necessary to 

know both the fl ux 1 i nkagesand the voltage conditi ons pri or to the 

fault. On no-load, the field and the armature currents of the 

generator are 

. (5.15) 

where the field current I fo produces rated armature voltage on open­

circuit. 

From equations (5.15), the Cl, S, y components of the armature currents 

are 

i = 0 
y 

(5.16) 

The flux linkages for an unloaded generator are found by substituting 

equations(5.16) into equation (5.11) as 

ojrc.o = Maf Ifo cos e 

(5.17) 
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The actual phase flux linkages for an unloaded generator are found by 

substituting equation (5.17) into (5.9) 

1J!ao = !I Maf I fo cos e 

1 1 
1J!bo = -70 MafI fo ?ose+ 72 Maf Ifo sine (5.18) 

1J!co = 
1 

-70 Maf Ifo cose 
1 

-72 Maf Ifo sine 

In terms of Cl, I'> y components, the phase voltages for an unloaded 

generator a re 

and 

where 

= Wo !1 Mf sine Ifo 

= IF Eo sine 

= Wo Maf cose Ifo 

= Wo !I Mf cose Ifo 

_13 - Il Eo cose 

So that the actual phase voltages are 

(5.19) 

(5.20 ) 

(5.21) 

(5.22) 
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eao = ;reCtO + 
'2 I j eyO 

-4' 3 Eo si nO + I 0 = .I z 73 

= -Eosin e (5.23) 

ebo = -
I 

7b %0 -
I I 

72" eSo + ~ eyo 

I /3' E sine- I II Eo cose 
I 

0 = +73" 7b z o 72" -Z 

I Eo sine 
13 

Eo cose (5.24) = -"""7 
2 

and 
I I I 

eco = - 76 %0+ 72" eSo + 7J eyo 

= I /'3 Eo si ne + vJ. I ~ Eo co se + -!. 0 76 -Z Y,J 

I 13 
= -Z Eo sine + "7 Eo cose (5.25) 

5.3 SIMULATION OF DISTURBANCES 

During any disturbance, the voltages and currents at the various 
pOints in a system can be determined by superimposing the components 
resulting from the disturbance upon those which would exist if the 
disturbance had not occurred. The components of the voltages and 
currents due to a disturbance (such as an unsymmetrical short­
circuit) which reduces the phase voltage to zero, can be determined 

by applying a component of the voltage at the pOint of fault equal in 
magnitude but opposite in sign to that which existed at the instant 

the fault occurred. 
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5.4 TERMINAL (l)-TO-CENTRE POINT FAULT FOR ZIG-ZAG CONNECTION 

A terminal (l)-to-centre pOint fault for a zig-zag connected 

generator is illustrated in Figure 5.3. The corresponding terminal 

conditi ons are 

i = 0 c 

e = 0 a 

or, in terms of ~, S, y quantities, 

and 
1 1 1 

e =71 ea + 71 eb + 71 y 

1 = 71 (eb + ec ) 

; .e. 1 
e - - 72" ey ~ 

(5.26) 

(5.27) 

(5.28) 

ec 

(5.29) 

(5.30) 

Similarly, the terminal conditions for the currents in terms of their 

~, S, y components are 

2 . 
= I j 1 a (5.31) 
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FIGURE 5.3: Terminal (l)-to-centre point fault for a zig-zag 
connected synchronous generator 
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and 

= 0 

and 

i.e. i = 1 i 
y 72" 

the change in voltage due to the short ci rcuit is 

1 I3 E · M = - -..r e -I ~ slne 
" y~ y ~ 0 

(5.32) 

(5.33) 

(5.34) 

The effect of the short circuit on phase a may be simulated by 
applying a step voltage Ae to the armature, with the field voltage 

" ef equal to zero, whence from equation (5.14) 

' ....... 

- ~ ey - I i Eo sine = - pMaf cose if - (R + (A+B cos2e»i" (5.35) 

and 

e = - (R + pL ) i 
y y y 

= -
i 

(R + PLy) 72- (5.36) 

(5.37) 

Substituting equation (5.36) into equation (5.35) and simplifying 

yields 

where 

3' / l Eo sirm = pMaf COS6i f + (r + p(A+B cos 26»i,,(5.38) 

r = 3 R 
l 
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Equati ons (5.37) and (5.38) can be sol ved only by the method of 
successive approximations 42,4~In the first approximation, all 
resistances are neglected and the equations solved simultaneously to 
give 

(A'+B') + (A'-B') cosze (5.39) 

and 
Maf 

if = - T cose ;., 
f 

=v'b 
Maf Eo(cose-coseo)cose 

(5.40) Lf A'+B'+(A'-B')cosZe 

where M2 
X' = w (Ld - af ) 
d Lf 

Xo = w L y 

Xq = wL q 

A' 
X 

X' 0 = d +2 

S' = X 
Xo 

q +2 

and eo is the ang1 e between the Cl and d axes at t = O. 

Applying the formulae give~ in Appendix VI, ia and·i f may be resolved 
into the Fourier series 

Ib Eo '" 
ia = - [cose + L bncos(2n+1)e] A' + IA'B' n=l 

/6 Eo coseo [i + 
'" + L bncos2ne] (5.41) 

lA'B' n=1 

and 
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B5 

and 

Eo [1 + (l+b) 
A'+ lA'S' b 

(5.42) 
respectively, where 

..'iV - ;,.v 
b = yS' + lA 

A correction for resistance is now made by multiplying~ each 

corresponding series for each current expression by a decrement 

factor which is a function of time. The modified currents are 

+ 

and 

Ib Eo ro 

TA"T""'-+--'/A;M'''''B-r, Fl(t) [COSS + I bncos(2n+l)S) 
n=l 

/6 Eo COSSo 
/A'B' 

ro 

(5.43) 

F2(t) [COSS + I bn cos(2n+1)S) 
n=l 

(5.44 ) 
where Fl{t) and F2{t) are undetermined decrement factors, each equal 

to unity at t = 0, and If{t) is a transient DC component introduced 

to include the effect of the field resistance. At t = 0 If{t) is 

obviously equal to zero. 

Fl{t), F2(t) and 'fit) may be found by substituting equations (5.43) 

and (5.44) Into equati ons (5.37) and (5.38), expandi ng the resulti ng 

trigonometric expressions, and equating the coefficients of the 

correspondi ng terms on both sides of the equations. To ensure that 
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the mathematical manipulations are manageable, the relatively small 
resistances in the coefficients of the harmonic terms are neglected 
but those in the DC terms are retained. This results in three 
independent equations with three unknowns (the mathematical 
manipulations involved are given in Appendix VIII). 

-If Eo = Maf If(t) - 4 Eo Fl (t) 

o = r F2(t) + p ~ F (t) w 2 

Solving (5.45) for the decrement factors yield 

-t/-r 
F2(t) = e a 

13 Eo 
If(t) = 2 

wMaf 

X - X' -t/Td I d d 
Xd + Xo + X2 

le - 1] 

,/3 E Maf 1 
le 

-thd, 
- 1] "2" 0 Lt Xd + Xo + x2 

where 

wr 

(5.45) 

(5.46) 

(5.47) 
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The final short-circuit current expressions then become 

i = -16 E Cl 0 

and 

1 
[(X'+X +X 

d 0 2 

1 -thd, 1 m 

X +X +X le + X +X +X ](cose+ L bncos(2-+l)e) 
d 0 2 d 0 2 n=l 

m -tiT 
(1 + L bn cos2ne]e a 
"2" n=l 

(5.48) 

1 -t/-rd, 1 l+b m n 
- X +X +X )e + X +X +X ](1~ !. b cos2ne) 

d 0 2 d 0 2 n=l 

m -tiT 
(l+b)(cose + L bncos(2n+1)e)e a 

n"l 
(5.49) 

where Ifo is the field current existing before the fault. 

For convenience in calculating the terms in the series for i Cl and if. 
equations (5.48) and (5.49) are summed using the formulae presented 
in Appendix VI, to give 

16 Eo (Fl(tl cose - F2(t)coseo) 
iCl = - Xd + Xq + (Xd - Xq )cos 2e + Xo (5.50) 

= Ifo + If(t) - cose i Cl 

2(Fl(t)cose-F2(t)coseo)cose 
Xd + Xq + (Xd-Xq)cos2e+xo 

(5.51) 



-------_._--

88 

These equations are obviously more convenient than equations (5.48) 

and (5.49) when numerical calculations are to be made. 

The phase currents for a terminal (I)-to-centre point short- circuit 

fault are now readily obtain'ed as 

= -
3 Eo (Flit) cOS6 - F2it) COS60 ) 

Xd + Xq + (Xd-Xq)COS2 + Xo 

5.5 TERMINAL (2)-TO-CENTRE POINT FAULT FOR ZIG-ZAG CONNECTION 

(5.52) 

The terminal conditions for the terminal (2)-to-centre point fault 

illustrated in Figure 5.4 are, 

i = 0 a 

or in terms of the a. B. y quantities 

(5.53) 



89 

1 
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~----------~-----( 

FIGURE 5.4: Terminal (2)-to-centre point fault for zig-zag 
connected generator 
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and 

= 0 (5.55) 

and 

= - (5.56) 

From equations (5.54) and (5.56) 

i = -Iz i y Cl (5.57) 

The Cl. 1>. y components of the voltage are 

(5.58) 

and 

1 1 1 
ey = 7! ea +7! eb +7! ec 

1 
=7! ea (5.59) 

i.e. e Cl· = 12 e y 
(5.60) 

The change in voltage due to the short-circuit is 

(5.61) 

The effect of the short-circuit is again simulated by applying ~e to Cl 
the Cl-axis component of the voltage, with the field voltage ef equal 

to zero. Thus 
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~ 

12 \ - /~ Eo sine = -p Maf coseif - (R+p(A+B cos 2e))i" (5.62 ) 

e = -(R + pL )i y y y 

= (R + pL ) 12 i 
y " 

(5.63) 

(5.64) 

substituting equation (5.63) into equation (5.62) and simplifying the 

result yields 

If Eo sine = pMaf cosei f + [3R + ptA + Ly + B cos2e)];" (5.65) 

Equations (5.64) and (5.65) can again only be solved by the method of 

successive approximation. In the first approximation, with 

resi stances neglected, equations (5.34) and (5.65)may re sol ved 

simultaneously to give 

and 

where 

. . v'6 Eo (cose - coseo ) 
l,,(t) = - (C'+D')+(G'-D') cos2e 

M 
= - ~ cose i 

'-f " 
Maf Eo(cose - coseo ) cose 

= 10 lLf (C'+D')+(G'-D') cos2e 

Xo = wL y 

(5.66) 

(5.67) 

(5.68) 
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and eo is the angle between the ~ and d-axes at t = O. 

Applying the formulae given in Appendix VI, ia and if may be resolved 
respectively into the Fourier series 

and 

i =­a 

if = 

.0 Eo 
C'+ IC'D' [cose + 

.0 Maf 
2" -er 

[i + Y cos 2ne] 
n=l 

Eo [1 + (l+b) e '+Y'C' D' b 

(2n+1)e] 

(5.69) 

ro 

2 
n=l 

bncos2ne] 

ro 16 Maf EoCOS6
0

(1+b) 
[COS6+ 2 bncos(2n+1)6] 2" -er lIC' D ' n=l 

(5.70) 

Taking resistance into account, by introducing decrement factors as 

in Section 5.4, gives the modified current expressions 

.0 Eo "" i = - F 1 (t) [COS6+ 2 bncos (2n+1 )e] a C'h'C'D' 

16 Eo coseo 1 "" + L bncos 2ne] (5.71) lie' D ' F2(t) ["2" + 

and 
Maf Eo +.0 F1 (t) [1+J1 ilb) 

"" 
if = If(t) 2 bncos2ne] 2" -L- C'+ C'D' 

f n= 1 

.0 Maf Eo cose 
2" -er C'D'o (1+b)F2(t)[cose + 

"" 
+ L bn cos (2n+1)e] (5.72) 

n=l 
The decrement factors may be found in the same way as in Secti on 5.4. 

After the mathematical manipulations which are given in Appendix IX, 

the resulting three independent equations are 
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1 
Eo C' +;'C ' 0 ' = 0 

f:J 3 
17 Eo = - wMaf If(t) +/7 Eo F1(t) 

3R F2(t) + p IC'i)T F2(t) = 0 
w 

Solving equations (5.73) gives 

and 

where 

If{t) =If 7 

=Ii 7 

_ IC'i)T 
Tb - 3Rw 

Xd - Xd 
[X'+4X +X 

d 0 2 

M E af 1 
oTt Xd+4Xo+X2 

Eo Xd - Xd 
w Maf Xd+4\+X2 

-t/Td' 
e + 1] 

-thd , 
[e - 1] 

[e 
-thd, 

- 1] 

(5.73) 

. (5.74) 

(5.75) 

(5.76) 
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The fi nal current expressions are therefore 

+ 

and 

1 ) -tiTd 1 ~ n 
e + X +4x +X ] (cose + L b cos(2n+1)e) 

Xd+4Xo +X2 d 0 2 n= 1 

16 E cos e -tiT 00 

_--.r-0--;--.;v_o_ e b (1 + L bn cos 2ne) 
X2 + 2Xo "2" n=1 

M 
E af 
°Lf 

Eo coseo 
X2 + 2Xo 

(5.77) 

1 -t/Td 1 l+b oo n ' 
X 4x X)e + X 4x X l(l~ Ib cos2ne, 

d+ 0+ 2 d+ 0+ 2 0 n= 1 

-tiT 00 

{l+b)e b (cose + I 
n=l 

bncos (2n+1)e) 

(5.78) 

where I fo is the constant field current existing before the fault. 

Because of the inconvenience in calculating ia and if term-by-term, 
these are summed using the formulae given in Appendix VI, to give 

and 

i =­a 

16 Eo (Fl (t) cose - F2(t) cos eo) 

Xd + Xq + (Xd - xq)cos2e + 4Xo (5.79) 

(5.80) 

All the phase currents for a terminal (2)-to-centre point fault are 
now readily obtai ned as 
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3 Eo (Fl(t)cose - F2(t) coseo) 
ib = -

Xd + Xq + (Xd-Xq)cos2e + 4Xo 

3 Eo (Fl(t)cose - F2(t)cos eo) 
Xd + Xq + (Xd-Xq)cos2e + 4Xo 

5.6 DOUBLE LINE-TO-CENTRE POINT FAULT FOR ZIG-ZAG CONNECTION 

( 5.81l 

Figure 5.5 illustrates a double line-to-centre point fault for a zig­
zag connected generator, with the terminal conditions imposed by the 
fault being 

e = 0 a 

or in terms of the a, S, y quantities 

= 0 

and 

= 0 

(5.82) 

(5.83) 

(5.84) 
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FIGURE 5.5: Double line-to-centre point fault.for zig-zag 
connected generator 
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Since 

and 

i = 0 
y 
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; 1.1; 1; 
y=7j 'a+7j b+7j c 

i = 0 y 

,'".-

. /2. 1. 1 i 
'" = j 'a - 73" 'b - 7j c 

and substituting equation (5.86) into (5.87) 

or 

and 

= 0 

The change in voltage due to the short-circuit is 

(5.85) 

(5.86) 

(5.87) 

• 

(5.88) 

(5.89) 

(5.90) 

With the effect of the fault simul ated by a step voltage appl ied to 
the armature, with the field voltage equal to zero 
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" /2 Eo sine = p Maf cose if + (R+(A+B cos 2e))1" 
2 . 

(5.91) 

and 

(5.92) 

As before, equations (5.91) and (5.92) are solved usi ng the method of 
successive approximations. The first approximation with all 
resistances neglected, gives 

and 

where 

i = 
" 

Ii5 E (cose - cose ) _ 0 0 

(GI+HI)+(GI-H')cos2e 

Maf Eo(cose - coseo)cose 
= 10 Lf (GI+HI)+(GI-R')cos2e 

I 

G' X = d 

H' = X q 

X =w L q q 

2 
M af ) 
T:" . 

f 

(5.93) 

(5.94) 

(5.95) 

Applying the formulae given in Appendix VI, i" and if may be resolved 
into the Fourier series 

Ii5E '" 
• 0 ( ~ n 
1" = - G' + (G'R' cose + L b cos (2n+1 )e) 

n=1 
16 Eocoseo 1 '" 

+ (G'R' (7 + L b
n 

cos 2ne) 
n=1 

(5.96) 
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and 

. 10 Maf Eo 
(1 l+b I n 

lf = 2 Lf G' + IG'R' + 0 n=l 
b cos2ne) 

/6 Maf (l+b)cose 00 

Eo 
0 (cose + L bncos(2n+1)e) -"7 Lf \fG'R' n=l 

(5.97) 

where 

b=&- IG' 
lA' + IG' 

Introducing a decrement factor as a correction for the resistances. 
gives the modified currents 

/6E 
i = 0 
(l - G '+IG 'R ' 

and 

M 
/6 af E 
"7 Lf 0 

00 

F1(t) (cose + I bncos (2n+l)e) 
n=l 

(5.98) 

E o 
G'+IG'R' F1 (t) (1 + ~ I bncos(2n+1 )e) 

n=l 

( 1 +b ) cos e 0 00 

\fG'R' F2(t)(cose + I 
n=l 

bncos(2n+1)e) 

(5.99) 

The decrement factors in equations (5.98) and (5.99) are determined 
in the same way as descri bed inSect i on 5.4. After the mathemat i ca 1 
manipulations given in Appendix X. the resulting three independent 

equat ions a re 



Solving equation (5.100) gives 

and 

where 

F2(t) = e-t / Tc 

Xd + X2 
F 1 (t) = Xd + X2 

If Maf 
If(t) = 7 Eo ~ 

f 

T = 
C 

=/f 

v'G'W 
w R 

Eo 
w Maf 

100 

(5.100) 

Xd - Xd -tIT' e d _ 1] (5.101) [Xd + X2 

1 -tIT' 
Xd - X2 

[e d - 1] 

Xd - Xd -t/Td - 1] Xd + Xd [e 

(5.102) 
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The final current expressions are obtained by substituting equation 
(5.101) into equation (5.98) and equation (5.99) to give 

and 

1 1 -t/Td 
i = -Ib Eo [(X'+X - X +X )e 
a d 2 d 2 

00 

+ X !X J (cose+ I bncos(2n+1)e) 
d 2 n=l 

M 
af E !:fo 

bn cos2ne) 

-tiT 00 

(1 +b)e c (COS8 + L 
n=l 

(5.103) 

bncos (2n+1)8) 

(5.104 ) 

where Ifo is the constant field current existing before the fault. 

Summing equations (5.103) and (5.104), term-by-term, using the 
formulae given in Appendix VI, yields 

and 

Ib Eo(F1(t)cose - F2(t)coseo) 
Xct + Xq + (Xct-Xq)COS28 

-" M 
if = Ifo +/~ L; Eo 

(5.105) 

(5.106) 

All the short-circuit currents for a double 1ine-to-centre point 
fau1 t are now readily obtained as 
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Eo(F1(t)cose - F2(t)cose O) 

- Xd + Xq + (Xd-Xq )cos2e 

2Eo(F1(t)cose - F2(t)cOseo) 
Xd + Xq + (Xd-Xq)COs2e 

EO(F1(t)cose - F2(t)cOseO) 
Xd + Xq + (Xd-Xq)cos2e 

EO(F1(t)cose - F2(t)coseo) 
Xd + Xq + (Xd-xq)cos2e 

5.7 LINE-TO-LINE· FAULT FOR AN EDISON DELTA CONNECTION 

(5.107) 

Figure 5.6 illustrates a line-to-line fault for an Edison-delta 
connected generator. with the terminal conditions imposed by the 

fault being 

e = 0 a 

or in terms of the a, S, y quantities 

(5.108) 
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i -

FIGURE 5.6: Line-to-1ine fault for an Edison-de1ta connected 
generator 



i. e. 

lr4 

- 1 e + 1 ( + e ) - 73" a 73" eb c 

e = 0 y 

i = 0 y 

Since \ = 0 

(5.110) 

(5.111) 

(5.112) 

(5.113) 
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and 

= -/6 ib (5.114) 

or /......, 

i = /3 . ( 5.115) 
" I 'a 

and 
1 • 1 

11:\ = -72" 'b + 72" ic 

is = 0 (5.1l6) 

The change in voltage due to the short-circuit is 

(5.117) 

Simulating again the effect of the line-to-line fault by a step 
voltage /',e" appl led to the ,,-axis component of the voltage, with the 
field voltage ef equal to zero: 

,--, 

3 17Eo sinS = pMaf cose if + {R+p{A+B cos 28»1" (5.H8) 

, I 
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Equations (5.118) and (5.119) are linear differential equations with 
periodically time-varying coefficient, which can only be solved by 
the use of successive approximations. With all resistances neglected 
in the first approximation, equations (5.118) and (5.119) are solved 
simultaneously to give 

and 

i et = -
10 Eo (cose - coseo) 

(M'+N')+(M'-N')cos2e 

'Maf Eo(cose - coseo)cose 
= v5 T (fI'+N')+(M'-N')cos2e 

f 

, 

(5.120) 

(5.121) 

where M' = Xd 

N' = X q 

x = wL q q 

(5.122) 

Applying the formulae given in Appendix VI, iet and if may be resolved 
into the Fourier series 

. 10 Eo 
let = - M'+v'M'N' 

"" 
(cose+ L bncos (2n+1)e) 

n=l 

16 Eo coseo 1 "" 
+ MfI' ("2"+ I bncos2ne) 

n=l 

Eo (1 + (l+b) ~ 
M'+vWN' b n~l 

bncos2ne) 

(5.123) 

Maf Eocoseo (l+b) "" 
L::"""" - IIM'N' (cose + I bncos (2n+1)e) 

f n=l 
(5.124) 
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Introducing a correction for the resistances is made by multiplying 
each corresponding harmonic series by a decrement factor which is a 
function of time, gives 

and 

Ib Eo 
i" = - M'+/M'N' 

00 

Fl(t)[Cose + I bncos(2n+l)e] 
n=l 

(5.125) 

'" Fl (t) [1+ l+b I bncos(2n+l )e] 
o n=l 

E coseo 00 

~'N' (l+b) F2(t)[cose + I bncos(2n+l)e] 
n=l 

(5.126) 
The method for obtaining the decrement factors is described in 
Section 5.4. After the mathematical manipulations given in Appendix 
XI, the resulting three independent equations are 

,..-, 

I~ Eo = -wMaf If(t) +,1 ~ Eo F1(t) (5.127) 

Solving equations(5.127) 
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and 

where 

If(t) =1 

=q 

Eo 
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X· -X' 
d d 

[X'+X 
d 2 

Maf 1 

-tiT' 
e d + 1J 

-th' 

Tf Xd+X2 
[e d 

Eo Xd-Xd -th' 

w Maf Xd+X2 
[e d 

,IWNT 
T = e R 

X'+X , 
T' 2 T _ 

d - do Xd+X2 

T 
Lf 

do = Rf 

(5.128) 

- 1] 

- 1] 

(5.129) 

The final current expressions are 

j = -16 E 
0. 0 

-tiT 00 

e e (1 + L bncos2nS) 
"2" n=1 

and 

00 

(coss + I bncos(2n+1)s) 
n=l 

(5.130 ) 
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M 
E af 
oLf 

1 1 -t/Td 
Eo [(X'+X - X +X ) e 

d 2 d 2 

;
r; M E cose -tiT 

_ 3 af 0 0 (l+b)e e 
"2" Lf . X2 

~ 

(cose + L bncos (2n+1)e) 
. n=l 

(5.131) 

where Ifois the constant field current existing before the fault. 

Summing equations (5.130.) and (5 •. 131) term-by-term, using the 
formulae given in Appendix VI yields 

; =­
Cl 

Ib Eo (F1(t)cose- F2(t) coseo) 
Xd + Xq + (Xd-Xq) cos2e 

(5.132) 

2(F1(t) cose - F2(t) cose )cose 
+ Xd + Xq + (Xd-Xq)cos2e 0 ] 

(5.133) 

All the short-circuit currents for a line-to-1ine fault are now 
readily obtained as 

i = -

i = a 

i = c 

3Eo (F1(t) cose - F2(t)coseo) 

Xd + Xq + (Xd-Xq)cos2e 

2 Eo(Fl (t) cose - F2(t) cose~) 
Xd + Xq + (Xd-xq)cos2e 

Eo(F1(t) cose - F2(t)coseo) 
\j + Xq + (Xd - Xq )cos2e 

Eo (Fl(t)cose - F2(t)coseo) 
Xd + Xq + (XJ-xq)cos2e 

(5.134) 
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5.8 SUMMARY AND COMMENTS 

Analytical solutions for the short-circuit fault conditions in 
unloaded zig-zag and Edison delta connected generators have been 
achieved by utilising modified Clarke transformations, together with 
a succes.sive approximation technique. For this purpose, the flux­
linkage equations for an ideal machine were written down and a 
modified Park transformation was applied to these equations, so that 
flux-linkage equations were obtained in a d-qfixed axis reference 
frame. Then flux-linkage/current equations are expressed in an 
",8 moving axis reference frame using the relationship between 
",8. components and d,q components. Alternatively, the flux-linkage 
equations could have been expressed directly in the ",8 moving axis 
reference frame, using the relationship between direct-phase 
quantities and ", 8 quantities, although this makes the trigonometric 
manipulation longer. The voltage-current equations in terms of ",8,y 
components were obtained from the flux-linkage equations by utilising 
Faraday's voltage law. Various fault conditions for unloaded zig-zag 

and Edison-delta connections have been simulated by application of 
the superposition principle. When terminal constraints for the 
various short-circuit cases were expressed in the form of ".8~ 
components, and substituted into the voltage-current equation, a set 
of ordinary linear time-varying differential equations for the 
armature and field currents resulted. Although these are linear and 
ordinary, the coefficients are periodically time varying. A direct 

analytical solution is not therefore possible and they can only be 
solved by the method of successive approximations. On this basis, 
analytical expressions for the initial short-circuit currents were 
found by neglecting the resistances of both field and armature 

circuits. The effect of resistances was subsequently introduced 
through decrement factors for both the field and armature currents. 
It was assumed that the even harmonics in the field current and the 
odd harmonics in thearmaturecurrents had the same factor, and odd 
harmonics in the field current and even harmonics in the armature 
currents also had the same decrement factors. Modified expressions 
were obtained by re-writing the current expressions to involve these 
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factors, as determined by substituting the modified current 
expressions into the original differential equations, and equating 
the corresponding terms is on the two sides of the equations. When 
doing this, relatively small resistances appearing in the 
coefficients of the harmonic terms are neglected, although those in 
the DC terms are retained. 

A close examination of the armature and field current expressions 
shows that the armature currents contain a fundamental frequency 
component together with odd harmonics, while the field current 
contains a DC component together with even harmonics. As the 
absolute value of b is less than unity, each successive harmonic is 
less than the preceding one. 

Since the process outlined above requires long and tedious 
mathematical manipulations, it does not appear to be a practical 
proposition in the modern computer age. However, harmonic production 
and the effects of initial rotor position on the short circuit 

current can clearly be seen in the analytical expreSSions, and the 
methods also provide simple formulae for the short-circuit currents. 

It is interesting to observe that the a-axis ~omponents of the 

armature currents under various short-circuit conditions for a zig­
zag or Edison-de1ta connected generator are always to zero. 
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CHAPTER 6 

EXPERIMENTAL PROCEDURE USED WITH THE 
VARIOUS GENERATOR CONNECTIONS AND RESULTS 

Any armature winding re-connection not only affects the dynamic and 
steady-state performance of the generator but also changes the 
available power output, the losses both in the rotor and the stator 
and the efficiency, as well as the voltage and current waveforms both 
in the field and the armature windings. These quantities were 
determined on a test machine, the name-plate details of which are 
given in Appendix I. 

6.1 AVAILABLE POWER OUTPUT 

Based simply on the voltage and current rating of the armature 
windings, the output available from the e~perimental machine with its 
rated voltage E of 127 V/ph rated current I of 7.8 A/ph and rated 
power factor cos.p of 0.8 are presented in Table 6.1 for the different 
winding arrangements under consideration. As the table clearly 
shows, the power output is considerably reduced by any re-connection. 
A zig-zag connected generator provides the largest available power 
output, while line-to-neutral loaded generators provide the lowest 
available power output among the single-phase connections for 3-phase 
generator. 
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I 

FIGURE 6.l(a) Zig-zag connected 
generator 

I 

FIGURE 6.l(c) Line-to-line loaded 
generator 

E 

J. 

. ----- -------

3121 

FIGURE 6.l(b) Edison-delta 
connected generator 

I 

FIGURE 6.l(d) Line-to-neutral 
loaded generator 

I 

FIGURE 6.l(e} Star connected 3-phase generator 
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Star Zi g-Zag Edison- Line- Line-
Connection Connection Delta to- to-

Co nnection Line Neutral 
Loading Loading 

a 3El cos <P 2El cos <j> 1. 5El cos'" 3El cos <P El cos<P 

b 2377W 1585W 1189W 1371W 792W 

TABLE 6.1: Available power outputs of re-connected generator: 
a) Mathematical expressions 
b) Numerical values 

6.2 VOLTAGE WAVEFORMS 

Any user of electric power normally desires a sinusoidal voltage 

wa veform free from ha rmon i c d i st ort i on. In p ract ice however the 

voltage waveform supplied by a power utility may sometimes contain a 

certain amount of harmonic distortion. Some of the major effects 
resulting from the presence of harmonics in a power system are 44,45: 

a) Capacitor bank failure, from dielectric breakdown or reactive 

power overload 

b) Interference with ripple control and power 1 ine carrier systems, 

causing mi5-operation of systems which accompl ish remote 

switching, load control, and metering 

c) Excessive losses in and heating of synchronous and induction 

machines 

d) Over-voltages and excessive currents on the system due to 

harmonic resonance 
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e} DielectrIc breakdown of insulated cables resulting from harmonic 

over-voltages on the system 

f}· Inductive interference with telecommunication systems 

g) Error in induction kWh meters 

h) Signal interference and relay malfunction, particularly in solid­

state and microprocessor control system 

i) Interferences with large motor controllers and power excitation 

system 

j) Mechanical oscillations of synchronous generator and induction 

motors 

k) Unstable operation of firing circuits based on zero voltage 

crossing detection or latching. 

Voltage waveforms for both the field and the load are recorded in 

Figures 6.2-6.10 for the experimental machine supplying rated 

armature current at rated voltage and rated power factor. Clearly, 

these waveforms contain considerable harmonic distortion when the 

generator winding is re-connected in any abnormal configuration. Any 

re-connected armature sets up a pulsating mmf, which may be resolved 

into two contra-rotating components. The component in the opposite 

direction to normal rotation induces a second-harmonic component in 

the field, which produces further harmonics across the air-gap by 

inducing a third harmonic in the.armature voltage. Both armature and 

field voltages contain an infinite series of progressively decaying 

harmonics Harmonic production ~n the field and 

armature currents can clearly be seen in the analytical expressions 

for the currents which were obtained in Chapter 5. 
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FIGURE 6.2: Load voltage (Vl ) for a zig-zag connected generator 
supplying rated load (V l is the voltage of the first 
loa~ 

FIGURE 6.3: Load voltage (V2) for a zig-zag connected generator 
supplying rated load (V~ is the voltage of second 
load) '-
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FIGURE 6.4: Field voltage for a zig-zag connected generator 
under rated load 
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FIGURE 6.5: load voltage for an Edison-delta connected 
generator supplying rated load 

FIGURE 6.6: Field voltage for an Edison-delta connected 
generator supplying rated load 
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FIGURE 6.7: Load voltage for line-to-line loaded generator 
supplying rated load 

FIGURE 6.8: Field voltage for line-to-neutral loaded generator 
supplying rated load 
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FIGURE 6.9: Load voltage for line-to-neutral loaded generator 
supplying rated load 

FIGURE 6.10: Field voltage for line-to-neutral loaded generator 
supplying rated load 
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6.3 LOSSES 

. Losses in a generator are very important, since they determine the 
efficiency and heating of the machine, and also appreciably influence 
its operating cost. The various losses in a synchronous generator 
may be summari sed as: 

a) Copper losses which occur in the armature and field windings 

b) Core 10~ses which comprise eddy current and hysteresis losses in 
the·po1e face, teeth, and stator core 

c) Friction and windage losses which are due to bearing and brush 
friction, and to the power required to circulate the cooling air 

d) Load loss attributed to the armature 1eakag~ flux, which causes 
eddy current and hysteresis heating in the iron surrounding the 
armature conductor. 

There are four methods 46 available for measuring the losses in a 
synchronous machine: 

a) Separate-Drive Method 
b) Electric-Input Method 
c) Retardation Method 
d) Cooler Method 

In the present investigation, the separate-drive method was used to 
determine the losses of the experimental machine, and the technique 
is explained briefly in Appendix Ill. 

The sum of the armature copper losses, the iron loss and the friction 
and windage losses of the drive motor is shown in Figure 6.11 as a 
function of the driving motor speed, and the sum of the friction and 
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FIGURE 6.11: Variation of total losses of driving machine with 
speed (on no-load) 
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windage loss of the experimental generator is shown in Figure 6.12 as 
a function of its speed. The experimental generator core loss when 
the generator is on no load at rated speed is shown in Figure 6.13 as 

. a function of the field current. 

The armature copper loss for the various connections of the 
experimental machi ne with rated armature current and rated "Voltage 
are given in Table 6.2. The total losses of the generator were 
determined using the method explained in Appendix III and these are 
shown in Table 6.3, for the various connection and rated voltage and 
current condit ions •. 

Star Zi g-Zag Edison- Line- Line-
Connection Connection Delta to- to-

Connection Line Neutral 
Loading Loading 

a 3RI2 3RI2 1.5RI2 2RI2 RI2 

b 14.96W 14.96W 7.48W 9.97W 4.98W 

TABLE 6.2: Armature copper losses for various generator connections 
a) Mathematical expressions 
b) Numerical values 

6.4 EFFICIENCY 

The efficiency of the generator is defined as 

p 
Efficiency = out 

Pinp 

which can also be expressed in terms of pOwer output and losses as 

p 
Efficiency = out 

P + P . out losses 
= 

P. - p lnp losses 
Pinp 

The generator efficiencies for the various armature connections were 
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FIGURE 6.12: Variation of generator friction and windage loss 
with speed 
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determined at rated armature current and voltage and the results are 

given in Table 6.3. Clearly, the generator efficiency is reduced by 

re-connect ion, with the 1 i ne-to-neutra 1 loaded generator havi ng the' 

lowest efficiency among the single-phase connections. 

Star Zi g-Zag Edison- Line- Line-
Connect ion Connection Delta to- to-

Connection Line Neutral 
Loading Loading 

, 

a 980 1002 918.5 962.8 792.5 

b 71.0 57.8 58.0 58.0 50.8 

TABLE 6.3: Total losses and efficiencies for the various generator 
connections at rated voltage and rated armature current 
and at rated power factor 
a) Total losses, W 
b) Efficiencies, % 
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CHAPTER 7 

CONCLUSIONS AND SUGGESTIONS 

7.1 CONCLUSIONS 

The armature windings of a 3-phase generator are often capable of 
being connected in various configurations, in order to provide a 
single-phase supply for standby or emergency purposes. In this 
thesis, the different methods of obtaining a single-phase supply have. 
been examined, and performance comparisons between these options have 
been made on a 3 kVA microalternator. The different single-phase 
connections investigated were: 

a) When the neutral point of a generator is unavailable and line-to­
line loading is the only possibility. 

b) When the neutral point of a generator is available and both line­
to-line and line-to-neutral loading are possible. 

c) When all the armature terminals are available and line-to-line 
loading, 1ine-to-neutral loading, zig-zag connection and Edison­
delta connection all become possible. 

As a result of the work presented in this thesis, the following 
conclusions can be drawn. 

1. A re-connected generator always produces a negative-sequence 
component in the armature current. In every possible single­
phase connection the magnitude of this component is always equal 
to the positive -sequence component. This is because any single­
phase connected armature sets up a pul sating mmf which may be 
resolved into equal magnitude contra-rotating components. 
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2. The available power output of a generator is considerably reduced 
by any re-connection of the armature windings. This reduction is 
smallest in the case of a zig-zag connection and greatest for 
line-to-neutral loading. 

3. The current in the centre line of a zig-zag connected generator 

is very small when the two loads are identical since the two load 
currents are almost equal. 

4. The unbalance factor for current is always independent of the 
load, for every si ngl e-phase connection, si nce the magnitudes of 
positive and negative-sequence components of the armature current 
are equa 1. 

5. When rated current flows at rated voltage, the armature copper 
losses in a conventional star-connected and a zig-zag connected 
generator are equal, with this loss being clearly lower inthe 
case of line-to-line loading and lowest for line-to-neutral 
load i ng • 

6. The efficiency of the generator is reduced by armature winding 
re-connection. When rated current flows at rated voltage, the 
reduction is greatest in the case of 1 ine-to-neutral loading and 
smallest in the case of line-to-line loading. 

Based on the theoretical and experimental results provided in this 
thesis the following comments can be made: 

a) Symmetrical components are easy. to apply to unsymmetrical fault 

and unbalanced load conditions, since they require neither long 
and tedious mathematical manipulation nor computer programming. 
In addition, the parameters required for the analysis are readily 
measu red by three st ra i ght forward tests. However, the accuracy 
of predictions based on this form of analysis are often poor, 
since the voltage and current waveforms both contain harmonic 
components. Nevertheless a symmetrical component model gives the 
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magni tu de of the negati ve-sequence component in the armature 

current, and enables the temperature rise within the machine and 

eddy current losses within the rotor body to be assessed. The 

model also provides mathematical expressions for the unbalance 

factor.s of both current and voltage. 

bl A phase model for a generator can predict accurately both the 

steady-state and the transient performance of the machine duri ng 

either balanced or unbalanced loading, as well as symmetrical and 

unsymmetrical fault conditions. To obtain the numerical results 

requires a digital computer simulation, with the consequent 

possibil ity of numerical instabil ity. Another disadvantage .of 

the phase model is that the measurement of the machine parameters 

which are involved is a time-consuming process. In addition to 

this, the model requires the inversion of a periodically time 

varying inductance matrix at each step of the numerical 

integration, which clearly increases the computation time. 

cl An Cl, $, Y component model involves many questionable 

simplifications throughout the long and tedious mathematical 

manipulations which are involved in its development. On the 

other hand, harmonic production both in the field and the 

armature currents can be clearly seen in the analytical 

expressions which are obtained. The model also provides simple 

formulae for the time constants of the various short-circuit 

cu rrents. 
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7.2 SUGGESTIONS FOR FURTHER INVESTIGATIONS 

The investigations reported in this thesis have raised several 

interesting points, which could not be investigated further. in the 

time available. 

1. In the development of the phase model for the generator, several 

simplifying assumptions were made. Saturation was neglected, with 

the open-circuit characteristic of the generator assumed to be a 

straight-line within the operating region. If it is desired to 

. include the effect of saturation, Smith and Snider47 have 

described a technique which allows the winding inductance 

vari ati ons with machi ne currents. to be determined, and thereby 

enables the complete nonlinear inductance matrix of the machine 

to be specified. Saturation effects may be accounted for in the 

prediction of the transient performance of a generator by 

employing the techniques described by Smith and Snider, although 

the computation time required for the investigation of any given 

situation will necessarily be increased. 

2. It was also assumed in the development of the phase model that 

the armature phase mmf is sinusoidally distributed which led to 

no harmonics higher than the second appearing in the angular 

variation of the machine inductances. However, it is known 48 

that the winding mmf and ai r-gap permeance harmonics may have a 

significant effect on the winding inductances. Smith and 

Snider19 have shown that space harmonics may be included in a 

generator model and their approach may clearly be used with the 

model developed in this thesis. 

3. It has been shown 49 ,50,51 that synchronous machine models 

employing only one damper winding on each axis may not be 

adequate for representing machine performance over a wide range 

of operating conditions due to eddy currents in the rotor 

structure. For more accurate predictions, the phase model 

developed in this thesis may need to be extended to include the 
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damping effect of the rotor iron, by introducing multiple damper 
circuits on each axis. 

4. Temper'ature changes inside the generator may have a significant 
effect on its performance, since under no-load conditions the 
temperature is typically 20 0-300 whereas under'fu11-10ad 
cond it ions it can exceed 1200C. The correspond i ng i nc rea se in 
the resistance of the generator windings will affect both the 
steady-state operating point of the system as well as' the 
transients which follow the application or rejection of load. 
Sollectio and Swann 52 investigated the effects of temperature 
changes on generator performance. Similar investigation can also 
be carried out using the mathematical model described in this 
thesis. 

5. Certain protective devices in an electrical power system work on 
the basis of the presence of negative-sequence current in a 
supply line •. Since both a zig-zag and an Edison-delta connected 
generator produce negative-sequence current, which may clearly 
cause problems, this should therefore be a subject for further 
investigation. 

6. Generators are probably the most expensive item of plant in an AC 
power system. Winding re-connection will cause an increased 
temperature rise within the generator, which may reduce the 
expected life of the insulation. Protection of zig-zag or 
Edison-de1ta connected generators against overheating may thus be 
a subject for investigation. 

7. Since standby generators are used in a wide variety of 
applications, it is important that the harmonic content of their 
output voltage waveforms should be minimized and that they meet 
any relevant industrial standards. Moore 53 has examined the 
possibil ities of harmonic reduction in star-connected standby 
generators from a design point of view. Similar consideration 
should be given to generators which may operate as standby 
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generators in either a zig-zag or an Edison-delta connection. 

8. Within the last few years, the advent of high-speed computers has 
allowed finite-difference and finite-element methods to be used 
extensively in the solution of field problems in electrical 
machines. The magnetic field distribution of a zig-zag or an 
Edison-delta connected generator may be plotted and the eddy 
currents in the rotor st ructure may be invest i gated us i ng these 
numerical techniques. The temperature distribution within a re­
connected generator, with particular reference to any potential 
hot spots, may be a subject of further investigation. 

9. The phase model developed in this thesis could readily be 
extended to include the excitation circuit, and the automatic 
voltage regulator (AVR). Transient and steady-state performance 
characteristics, the effect of the AVR parameters on the overall 
stability and the optimisation of the transient performance 
should also be the subject of further investigation. 

10. Eddy currents in the rotor structure of a synchronous generator 
affect both the transient and the steady-state performance. 
Although this effect was neglected in the development of the 
phase model, Rogers and Smith 54 have shown that eddy current 
effects can easily be included by an application of Green's 
functions. The model developed in the thesis can similarly be 
extended to include the effect of eddy currents. 

11. The power output of a re-connected generator is reduced by the 
nature of thee connect i on itself, as we 11 as the increased losses 
which arise consequently from the re-connection. Clearly "the 
cost of the energy supplied by a re-connected generator should be 
a subject of investigation. 
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APPENDIX I 

MEASUREMENT OF D-Q PARAMETERS 

1. THE EXPERIMENTAL MACHINE 

Conventional tests were performed to determine the parameters of a 3-

phase salient-pole synchronous generator with the following name­

plate details: 

Rati ng 

Phase voltage 

Speed 

Number of pol es 

Frequency 

Field excitation for rated current at rated voltage 

3 kVA, 0.8 pf 

220V 

1500 rpm 

4 

50 Hz 

7.8A 

The generator was mechanically coupled to a large 1500 rpm shunt­

connected DC machine, which could act as a prime-mover or a load as 

requi red. 

2. RESISTANCE MEASUREMENT 

A Kelvin double bridge was used to measure the armature phase 

resistance. At an ambient temperature of 200C the mean of the three 

phase resistances was 0.074n. Since the effect of 50 Hz current is 

to increase the effective resistance by about 10%55, the armature 

phase resistance was assumed to be 0.0821< (0.005 pu) for calculation 

purposes. 

The field resistance measured using a sub-standard DC voltmeter and 

ammeter, was found to be 4.23 I< (0.259 pu), again at 20oC. 
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3. REACTANCE MEASUREMENT 

3.1 Direct-axis Synchronous Reactance (Xd) 

The d-axis synchronous reactance Xd was obtained from both open­
circuit and short-circuit tests46 , as well as from a slip test46 • 
The values of Xd determined by these two tests were: 

From open and short-circuit tests: 
From slip test: 

21.3 n /phase (1.31 pu) 
20.8 n /phase (1.28 pu) 

The close agreement between these figures indicates that a reasonable 
value for Xd is 1.30 pu. 

3.2 Quadrature-axis Synchronous Reactance (Xq) 

Theq-axis synchronous reactance was obtained from both a slip test 56 

and a maximum-lagging-current test56• The values of Xq determined by 
these two tests were: 

From the slip test: 12.9n /phase (0.79 pu) 
From the maximum-lagging-current test: 12.3n /phase (0.77 pu) 

The close agreement between these figures indicates that a .reasonable 

value for Xq is 0.78 pu. 

3.3 Armature Leakage Reactance (Xa) 

The armature leakage reactance of a synchronous machine is extremely 
difficult to measure and it is usually assumed to be equal to the 
Potier reactance. This latter reactance, as determi ned from open­
circuit and zero power factor rated-current characteristics, was 
obtai ned as 0.05 pu. 



\I) 
Q.. 

L 
<t -. 
.... 
z 
W 
0: 
0: 
:::> 
u 

w 
\I) 

20 

18 

16 

14 

12 

<t 10 
J: 
Cl. 

w 8 
0: 1.0 (pu) 

~ 6 
<t 
L 
0: I, 
<t 

2 

o 

300 
\I) .... 
-' 270 0 
> 

21,0 
w 1.0 (pu) 
<!> 
<t 210 
':; 
0 
> 180 
w 
t;i 150 
:r 
n. 

120 ____ .!P. ___ _ 
0: 
:::> 90 ..... 
<t 
L 60 
0: 
<t 

30 

-- -- - -- -------------

I 
------------1---

I I 
I 
I 
I 
I 

OPEN CIRCUIT 

O~~--~~--~~--~_r--+_~L-~~--~~~~ 
o 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 l8 2.0 2.2 2.4 2.6 2.8 3.0 

10< 11>C. 

FIELD EXCITATION. (AMPS) 

FIGURE Al.l: Open-circuit, short-circuit characteristics 



~ 

Vl 
>-
-' 
0 
> 

!:!l 
~ 
~ 
0 
> 
lLJ 
VI 
~ 
:t 
0.. 

W 
a: 
::J 

4 
::E 
a: 
~ 

280 

240 

200 

160 

120 

80 

40 

AIR-GAP 
LINE OPEN CIRCUIT 

V: IbX .. 
RATED CURRENT 
ZERO POWER FACTOR. 

O~------------~----------L--r------------~------------~ 
0.0 1.0 2.0 3.0 4.0 

FIELD EXCITATION. (AMPS) 

FIGURE A1.2: Open circuit and rated current zero power factor characteristics 

~ 

w 
0\ 



137 
Q - AXIS D - AXIS 

80 

50 I 
I 

.40 -I 

I 

20 

0 

-20 

-40 

- 50 

-80 I I 
PHASE VOlTAGE ENVELOPE 

4 

3 

2 

1.0.. 
Ir'I'if\ 

0 

-1 

-2 I 

I 
1 -3 I 
I 

- 4 r I 
ARMATURE CURRENT ENVELOPE 

20 

10 

o~----------.-----------~----______________ _ 

-10 

-20 

FIELD VOLTAGE (OPEN CIRCUIT) 

FIGURE Al.3: Slip test voltage and current envelopes 



138 

3.4 Direct-axis Magnetising Reactance (Xmd) 

The magnetising reactance of the d-axis is 

giving a value for Xad of 1.25 pu. 

3.5 Quadrature axis Magnetising Reactance (Xmq ) 

The magnetising reactance of the q-axis is 

giving a value for Xmq of 0.73 pu. 

3.6 Di rect-axi s Transi ent Reactance (X:i) 

The d-axis transient reactance was determined from the transient 
current waveform following a sudden 3-phase short-circuit applied to 
the armature operati ng on open-ci rcui t and at rated speed. The d­
axis transient reactance is the ratio of the open-circuit armature 
voltage to the current obtained by extrapolation of the envelope of 
the alternating component of the transient current wave to the 
instant of the application of the short-circuit, neglecting the rapid 
variation of current during the first few cycles. The d-axis 
transient reactance is 

= 57.7V = 7.15n /phase (0.44 pu) 
BA 



----------~--------------------------------------------------------- ! 

. I 

FIGURE Al.4: Oscillogram of 3-phase fault currents on unloaded generator 

.- - -----------------------------------------------------
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3.7 Direct-axis Subtransient Reactance (Xd) 

This parameter was measured by connecting two phases of the 
experi menta 1 machi ne in seri es and app1yi ng a sing1 e-phase voltage 
across them. With the rotor position adjusted unti 1 maximum 

deflection is indicated on an ammeter in series with the short­
ci rcuitedfield winding, the d~axis subtransient reactance is 

" V 
Xd = 

2 Imax 

= 2 
19V 
3.1A = 3.09Q /phase (0.182 pu) 

3.8 Quadrature-axis Subtransient Reactance (X~) 

This was obtained in a simil ar manner to X;;. except that the rotor 
position was adjusted until minimum deflection was indicated on the 
ammeter in the field circuit. Under these conditions the q-axis 
subtransient reactance is 

" V X q = ",,",,:....--2 I . mln 

= 601{ = 11.9 Q/phase (0.62 pu) 2. 2.5A 

3.9 Negative-sequence Reactance (X2) 

To obtain this parameter the field winding was short-circuited and 
the rotor d ri ven at synch ronou s speed. Ba 1 anced 3 -phase voltages 
were applied to the armature so that a constant amplitude rotating 

armature mmf was produced in the direction opposed to the rotor 
rotation. The negative-sequence reactance is then 
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X2 = r!-r 
= ~= 7.20 n/phase (0.44 pu) 

I 3 4A 

3.10 Zero-sequence Reactance (Xo) 

This test was performed with the three armature windings connected in 
series. the field winding short-circuited and the rotor driven at 
synchronous speed with a single-phase voltage app1 ied to the series­
connected armature windings. The zero-sequence reactance is 

x = V 
o n 

= 13.5V ~ I.son/phase (0.09 pu) 
3.3A 

4. TIME CONSTANTS (T~o. Td' Td) 

The d-axis open-circuit transient time constant Tdo is measured by a 
conventional load rejection test46• The d-axis time constant Td and 

" the d-axis subtransient time constant Td are determined from the 
oscillogram of the short-circuit armature current recorded after the 
appl ication of a symmetrical short-circuit at the terminals. The d­
axis time constants are 

• Tdo = 0.9 sec 
• Td ~ 0.28 sec 
\' T d = 0.07 sec 
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5. SUMMARY OF EXPERIMENTAL MACHINE PARAMETERS 

Xd = 1.30 pu 

Xad = 1.25 pu 

Xq = 0.78 pu 

Xaq = 0.73 pu 

xc! = 0.44 pu 

X" d = 0.184 pu 

" Xq = 0.632 pu 

Xo = 0.09 pu 

R = 0.005 pu 

Rf = 0.259 pu 
I 

Tdo = 0.9 sec 
I 

Td = 0.28 sec 

" Td = 0.07 sec 
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APPENDIX II 

CALCULATION OF PHASE PARAMETERS FROM D-Q PARAMETERS 

In order to employ a coupled-circuit approach in the accurate 
prediction of the performance of a synchronous machine, it is 
necessary to know the relevant parameters of the machine model. 
Although phase model parameters may be measured by ball istic 
techniques47 ,56, the measurement of d-q model parameters is far 
qui cker and the resul ts' obtai ned may subsequently be used to 
determine the phase model parameters. This was the approach followed 
to establish the parameters for the experimental machine. 

The assumptions made in deriving transformations between d-q and 
phase model parameters are 

a) The second-harmonic component -of the self-inductance of an 
armature phase is 0.8 times that of the phase/phase mutual 
inductance in the phase coordi nate reference frame. Although 
application of Park's transformation to the phase coordinate 
reference frame yields no time-varying coefficients in the d-q 
reference frame when the two inductances are assumed to have the 
same magnitudes, it has been shown 57 both theoretically and 
experimentally, that this assumption is in fact far from valid. 

" b) The quadrature-axis short circuit sub-transient time constant Tq 
is equal to the direct-axis short circuit sub-transient time 
con s t ant T"58 d • 

c) The d-axis damper/d-axis armature turns ratio is unity. The 
actual ratio is not however critical, since although the actual 
damper parameters may be incorrect, thei r referred values, mmf 
contribution and power diSSipation will all be correct56 • 
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. d) The. q-axis damper/q-axis armature turns ratio is also unity. 
The· arguments of (c) again apply here. 

1. PARAMETER RELATIONSHIPS 

The relationships given below may be found in any standard text 
b k16,59R .. d t' tt' d 00 • eactances are 1n per-un1tan 1me cons an s 1n secon . 
A bar above its symbol denotes a per-unit value. 

T' T" 
3 U1,-x dd 

• Ad = d T' T" 
do do 

T" 
5. X" = X .rJ- = 'X' q q qo a 

1 
8. Td' = ~ {Xf + - X 

Wo "f X + md a 
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9. Td" = --,-1=-
. 0 Wo Rkd 

10. Td" = ~ 
. Wo kd 

11. T" = W \~ ('lk + 'l ) qoo kq q mq 

12. T" = \ 
q Wo kq 

'lkd 
13. Td = R 

Wo kd 

X 
16.[ = md =M

f md Wo 

'l z - -
= - = LAO - 2M 

"'0 0 

-
18. [ff = Lmd + Lf 

19. [kkd= [md + [kd 

20. [kkq = [mq + [kq 
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2. CONVERSION EQUATIONS 

The conversion equations developed below are all derived from the 
basic relationships defined in the previous section. 

2.1 D-axis Armature/Field Turns Ratio 

The per unit field self-reactanc~ as defined by Rankin60 ,61 is 

, Nd 2 X44 x- j ( ) ff -"2 N
f 

-Z-

N 
where N d is the d-axi s armature/fi el d turns ratio and Z is the base 
impedante given by the ratio of rated phase voltage to rated phase 
currents. 

Therefore 

From relationships 1 and 2 of Appendix 11 

and from relationship 7 

where Wo is the rated angular supply frequency. 
Hence. 

Z 1" 2 
md 
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2.2 Phase Parameters (accessible windings) 

From relationships 14 and 15 

From assumption a 

From relationships 14 and 17 

From relationship 17 

From relationship 7 

I 

L44 = Tdo Rf 

Xmd 
3 Nd "0 

Mf = "2" (N) Z 
f 
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Therefore 
Z -w Xmd 
o 

2.3 D-axis Damper Winding Parameters 

From relationship 3 

Therefore 

Assuming that all 

Hence 

From relationship 3 

the mutu,al reactances on the d-axis are equal 

N 
"Xmd = 3 (_1) 

"2" NS 

2 NS 
Md = j (r.) 

1 

" Tdo = 
T' T" 

d d -r;-

Wo Md 
z 

ZXmd 
Wo 

"X" 
d 



From relationship 9 

Therefore 

2.4 Q-axis Damper Winding Parameters 

From relationship 5 

CX"-X ) 1 
1 = 9 a mq 

kg X +1 - X" 
mg a 9 

Hence 
N Z 1 

L - 2 (6)2 kkg 
66 -"3" N] Wo 

Therefore 
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TU = TU 
Q d 

From relationship 5 

X-
TII . =--.9. TU 

QO X" q 
q 

TU L66 
= ]'{-QO 66 

Hence R66 
L66 

= f" qo 

3. PHASE PARAMETERS FOR THE EXPERIMENTAL MACHINE 

The measured values of the d-q parameters of the experimental machine 
are given in Appendix I. Using these d-q parameters and the 
transform at ions developed in thi s Appendi x, the phase parameters of 
the experimental machine are therefore 

LAO = 0.165 mH 
L2 = 0.055 mH 
MO = 0.080 mH 
M2 = 0.069 mH 
M· = 0.037 mH f 
Md = 0.068 mH 
Mq = 0.032 mH 
M44 = 0.072 H 

M45 = 1.226 mH 
L55 = 0.026 mH 
L66 = 0.116 mH 
Rll = 0.011 n 
R44 = 0.904 n 

RS5 " 1.672 m n 
R66 " 0.584 m n 
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APPENDIX III 

DETERMINATION OF LOSSES 

The various losses in a synchronous generator are: 

1. Fixed losses: (a) core-loss, (b) bearing and brush friction 
loss, (c) windage loss. 

2. Field circuit losses: (a) copper-loss in the field winding, 
(b) brush-resistance loss. 

3. Direct load loss: copper-loss in armature windings. 

4. Stray load loss: (a) in iron pa rts, (b) in conductors. 

Losses 2(b), 3, and 4(a) when combined are referred to as the short­
circuit load loss. 

To determine various losses in the laboratory, the experimental 
machine was used in conjunction with a directly coupled DC shunt 
motor acting as a prime-mover, with the test described below being 
performed. 

The DC motor armature resistance Rm was measured as 0.6011 using a 
sub-standard ammeter and voltmeter. 

1. LOSSES OF THE DRIVING MOTOR 

With the load generator uncoupled, the drive motor was run at the 
rated speed of the generator, when the power input to the armature is 
the sum of its armature copper loss, the armature iron loss and the 
friction and windage loss. If Vm is the motor armature voltage, 
when carrying a current Im. the power requi red to supply the 
windage, friction and iron loss PI is then 
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This loss was obtained for various values of speeds and its variation 
with speed is plotted in Figure 6.15. 

2. WINDAGE, BEARING, FRICTIDN AND BRUSH-FRICTION LOSSES 

With the load generator coupled to the drive motor, and with its 

field unexcited, the set was run at the synchronous speed of the 

generator. Under this condition the power input to the motor 

armature is the total power consumed in the DC machine armature 

(P l + Im2Rml and the generator friction and windage loss. The 

friction and the windage loss of the generator P2 is therefore 

for the given speed. The friction and the windage loss of generator 

P2 is plotted as a function of speed in Figure 6.16. 

3. OPEN CIRCUIT CORE-LOSS 

With the generator coupled to the DC motor and run at the rated 

speed, its field was excited but the armature was left open 

circuited. The drive motor armature current Im and the motor 

armature voltage Vm were recorded as the excitation current of the 

generator was varied, with the driving motor speed kept constant 

throughout the test. Under these conditions, the power input to the 

motor armature Vm1m is the sum of the motor armature copper loss 

RIm2, the DC machine iron, friction and windage loss PI' the 
generator windage and friction loss P2, and the generator core losses 

Pc-Therefore 
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The driving motor armature current la' and the voltage across the 
motor armature Va were recorded as a function of the generator field 
current and since PI and P2 are known from the results of test I and 
test 2, Pc may be determined as a function of the generator 
excitation. The core loss of the generator is plotted in Figure 6.17 
as a function of the excitation current. 

4. TOTAL LOSSES OF THE GENERATOR 

The generator excitation current If was adjusted so that it supplied 
rated load current at rated voltage and at rated power factor, with 
the motor-generator set run at synchronous speed. Under these 
conditions, the generator excitation current If' the voltage of the 
generator field winding Vf , the drive motor armature current Im and 
the armature voltage Vm were all recorded. The generator power output 
was measured using two wattmeters as Pout. The total losses of the 
generator are then: 
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APPENDIX IV 

NUMERICAL INTEGRATION METHODS 

This appendix studies the errors and instabil ities of numerical 

integration, as well as some integration methods, in relation to the 

work undertaken in this thesis. 

1. ROUND-OFF ERROR 

This occurs because it is impossible to perform numerical operations 

with perfect accuracy. The last digit of a number resulting from a 

numerical operation is always doubtful, being dependent on the 

rounding process built into the compiler of the programming language. 

Estimation of this error is extremely difficult, and is often 

inadequately treated, although Henr'i ci 62 does consi der its 

statistical behaviour in some simple numerical integration 

procedures. It suffices to mention here that, for a long integration 

period, use of a small step length (required to ensure stability, 

say) increases the number of calculations, and may lead to a 

significant cumulative round-off error. From a programming 

viewpoint, this error may be minimised by using double precision 

arithmetic. 

2. TRUNCATION ERROR 

This arises because an inexact mathematical process is used to 

approximate to an actual one, as in truncating an infinite series in 

a finite number of terms. In numerical integration, the difference 

equation used to predict the dependence variables may be compared 

with the Tay10r series expansion of the same variables. The order to 

which the difference equation agrees with the Taylor series expansion 

is the order of the method, the Lagrangian remainder in the Taylor 

series neglected by the method being the truncation error of the 

method. Thus the truncation error of the fourth-order Runge-Kutta 
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method is proportional to the fifth power of the step length. It is 
obvious that truncation error may be generally controlled by varying 
the step 1 ength. 

3. INSTABILITY 

The main instabilities are: 

1. Inherent instability - this is caused by the ill-conditioning of 
the differential equations themselves, such that a small change 
in the initial conditions, or a slight approximation in a digital 
computation, leads to a large variation in the solution. This 
instability is independent of the step length and of the method 
of numerical integration. 

2. Partial instability - this arises when the step length is too 
large, such that the sol ution given by the difference equation 
does not tend to the true solution. Consequently, round-off or 
truncation errors become magnified as the integration proceeds. 
This instability is intimately related to the original 
differential equations, the step length and the integration 
method. 

3. Strong instability - this is associated with multi-step 
integration methods, the difference equations for which may 
introduce spurious solutions bearing no relation whatsoever to 
the original differential equations. These spurious solutions are 
parasitic, and are not removed by a reduction in the step length. 

Of these three instabilities, there is little that can be done about 
I, although 3 may be avoided by an appropriate selection of the 
difference equat ion. Parti a 1 i nstabil ity may cl ea r1y be overcome by 
a suitable choice of the step length. 
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4. CHOICE OF INTEGRATION METHOD 

The set of differential equations to be solved can be expressed as 

Dy = f(x,y) 

and a solution is required for given initial conditions over a given 
period of time. Expansion of the Taylor series about the nth point 
(assumed to be known) will. in theory, always produce a solution at 
the (n+llth point 

though difficulties in calculating the higher derivatives make this 
method of 1 i ttl e practical val ue. Most practical numerical 
integration methods use the Taylor series expansion only as a 
reference, and can be categorised into three main types 

63,64,65 
1. One-step methods (both explicit and implicit) 
2. Multi-step methods66 

3. Iteration methods 67,68,69 

The advantages and disadvantages of each category are summarised in 
Table A4.I. 

The use of iteration methods is complex, and they will not be 
considered further here. The main difference between one-step and 
multi-step methods is that the former use information from only the 
nth point to calculate the value at the (n+l)th point, while the 
1 atter require data from several points prior to the nth as well. 
Use of multi-step methods therefore requires the use also of a one­
step method of similar accuracy at any discontinuity in the solution 
for the first few steps. 



TYPE OF METHOD ADVANTAGES DISADVANTAGES . . 

One-step methods 1 • Self-starting 1. Slow, as f(x,y) needs to.be 
(explicit and implicit) 2. Changing the step length is ·evaluated several times per 

easy step 

3. Implicit methods have good 2. Estimate of the per-step 
truncation error not generally stability and hence large step available lengths possible 

4. Explicit methods have high 3. Explicit methods have poor 
accuracy stability 

• ! 

Multi-step methods 1. Relatively fast as f(x,y) 1. Not self-starting 
evaluated only a few times 2. Changing the step length is per step difficult and requires re-

2. Estimate of per-step trun- starting the solution 
cation error usually 
avai lable 

3. Generally more stable than 
explicit one-step methods 

Iteration Methods 1. Good stability, permitting 1. Extremely complex when applied 
large step length to sets of equation 

TABLE A4.l: Comparison of different types of numerical integration method 
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.4.1 Explicit One-step Numerical Integration Method 

63 
The simplest of these is the so-called 'modified Euler method' , in 

which the Taylor series expansion is truncated after"its second 

derivative. Its accuracy is however poor, and higher-order methods 

are normally used, an example being the fourth-order Runge-Kutta 
method 63 

where 

K 
KZ = flxn +~, Yn +-t) 

K 
K3 = f(xn +~, Yn + z2) 

4.2 Implicit One-step Integration Methods 

By expressing the dependent vari able as a function of its own 

derivative, an alternative procedure for the solution of the 

differential equation can be found. Truncating the Taylor series 

after the second derivative yiel ds the trapezoidal method of 

numerical integration, expressed as 64,65 

Individual features of the Runge-Kutta and trapezoidal methods are 

summarised in Table M.2. 



159 

70 
Granborg has produced an analysis which derives the optimum step 
length for a single differenti al equation, in terms of the system 
time constant. The results are given in Figure A4.1 and show that, 
when using the trapezoidal method, a step length several times that 
for a Runge-Kutta method can be used. The number of steps required 
for simulation of a given time period can therefore be much reduced, 
providing that the forcing function is still represented with 
sufficient accuracy. 



-------------------------------------------------- ------

RUNGE-KUTTA METHOD TRAPEZOIDAL METHOD 

1. Being a 4th order method, it has high 1. It is of low order, and therefore not ilS 

accuracy accurate as a Runge-Kutta method 

2. From Fig. A4.1 it can be seen that a 
reasonably large step length can be 

2. It is evident from Figure A4.l that a large 
step length (several times that of a Runge-

used Kutta method) can be used 

3. The method is relatively slow, 3. The method is relatively fast 
requiring the evaluation of the 
function many times per step 

4. By introducing the modifications due 4. No estimate of the per-step truncation 
to Merson an estimate of the local error is possible 
truncation error can be found, and used 
to control the step length 

TABLE A4.2: Comparison of Runge-Kutta and trapezoidal numerical integration methods 

~ 

en 
O. 

.1 
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UNSTABLE 
.1 --------------

1.0 

(0 

(ii) 

2D ( ... ) III 

STABLE 

3.0 

STABLE 
-1 ----------------

i) 4th order Runge-Kutta 
ii) Runge-Kutta Merson 

iii) Trapezoida1 

h = step length 
T = system time constant 

UNSTABLE 

h/1: 

FIGURE A4.1: Step length limits for numerical integration procedures 
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APPENDIX V 

SOME MATHEMATICAL MANIPULATIONS 

The following mathematical manipulations are used in Chapter 4. 

1. L22 + L33 = LAO + L2 cos (29 -240°) + LAO + L2 cos (29 -120°) 

= 2 LAO - L2cos 29 

2. M12 + M13 = -MO + M2 cos (29-120°) - MO + M2 cos (29-240°) 

= -2MO - M2 cos 29 

3. M24 + M34 = Mf cos (9-120°) + Mf cos (9-240°) 

= -Mf COS9 

4. M25 + M35 = Md cos (9 -120°) + Md cos (9 _240°) 

= -Md cose 

5. M26 + M36 = Mq sin (8 -120°) + Mq sin (9 -240°) 

= -Mq sin9 

6. L22 + L33 + 2M 23 = LAO + L2 cos (28-240°) + LAO + 
L2 cos (29-120°) - 2MO + 2M2 cos 28 

= 2 (LAO - MO) + (2M2 - L2) cos 28 

7. LU + L22 + L33 = LAO + L2 cos 28 + LAO + L2 cos (29 -120°) 

+ LAO + L2 cos (28-240°) 

= 3LAO 
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8. LU + M12 + M13 = LAO + L2 cos 2e - MO + M2 cos (28-120°) - MO 

+ M2 COS (2 e-2400) 

= (LAO - 2MO) + (L 2 - M2) cos 23, 

9. Lll+ L22 + L33 + 2M12 + 2M13 + 2M23 = LO +L2 cos 28 + lO 

+ L2 COs (28-240°) + LO + L2 cos (2e-1200) - 2MO 

+ 2 M2 cos (2e-1200) - 2Mo + 2M2 cos 28 -'2MO + 2M2 cos (2~2400) 

= 3(LO - 2MO) 

10. M14 + M24 + M34 = Mf COs8 + Mf cos (e -120°) + Mf cos (e _240°) 

= 0 

11. MI5 + M25 + M35 = Md cose + Md cos (e -120°) + Md cos (e _240°) 

= 0 

12. MI 6 + M26 + M36 = Mq cose + Mq cos (8 -120°) + Mq cos (e _240°) 

= 0 

13. M12 + M13 + M23 = -MO + M2 cos (28-120°) - MO + M2 cos 2e 

- MO + M2 cos (28 -240°) 

= -3 MO 
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APPENDIX VI 

SERIES EXPANSION OF SOME MATHEMATICAL EXPRESSIONS 

The mathemati cal expressions necessary for the series expansions 

used in Chapter IV are given below. 

1. 

2. 

4. 

5. 

6. 

1 1 [1 + ~ bn cos 2ne) 
x + y + (x-y) cos 29 = Ixy "2 n~l 

1 1 [-l- + I ( -b) n cos 2ne] 
x + y - (x-y) cos 2e = ixy c. n=l 

sine 1 
x + y + (x-y) cos 2e '" y + Ixy 

sine 
x - y - (x-y) cos 2e = x + Ixy 

cose = _..:..1-,--
x + y + (x-y) cos 2e x + Ixy 

cose 1 
x + Y - ( x-y) cos 29 = Y + Ixy 

'" 
[sine + I b

n 
sin (2n+1)e) 

n=l 

'" 
[sine + I (_b}n sin (2n+1}e] 

n"'l 

'" 
[cose + I bn cos (2n+1}e] 

n=1 

"" 
[COS9 + I (_b)n cos (2n+1}9] 

n=l 
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sine cose 1 1 1 00 

7. x + y _ (x-y) cos 2e = I x + Ixy (0 - 1). I b
n 

sin 2ne 
n=l 

sine cose 
8. x + Y - (x-y) cos 2e 

1 1 1 00 

= '2" y + 1xy (- 0 - 1) I (_b)n sin 2ne 
n=l 

cos 2 e 1 1 
9. x + Y + (x-y) cos 28 = '2" x + 1xy [1 

+ l+b ~ bn o L cos 
n=l 

2nel 

cos 2e 1 1 10. - [1 x + Y - (x-y) cos ze - '2" y + 1xy 
l-b ~ n - 0 I (-b) cos 2nel 

n=l 

11. x + ~i~ f~-Y) cos 2e = y +l;XY (~+ 1) Y bn 
sin 2ne 

n=l 

sin 2e 1 12 • = --:-'-r--X + Y - (x-y) cos 2e x + hy 

00 1 . 
(- 0+ 1) I (_b)n sin 2ne 

n= 1 

14. cos 2e _ 1 [b b2+ 1 ~ (b) n 
x + y - (x-y) cos ze - 2 hy - - --0 t. - cos 2ne 1 n=l 

15. cos 3e _ 1 1 
x + y + (x-y) cos 2e - '2" x + Ixy 

[3+b (b+ 1 ) 2 ~ n 
"'""'2 cos e + 25 /. b cos (2n+ 1) e 1 

n=l 



166 

16. cos 3e _ 1 1 [3-b _ (l2~)2 ~ n 
x + y - (x-y)cos 2e -"2- y+/xy 2 cose L (-b) cos(2n-1)eJ 

n=l 

17. cos 2e cose 1 1 cose +b
2

+1 '" 
x + y + (x-y) cos 2e =7 x+lxy [(l+b) --Z L bn cos(2n+1)e] 

n=l 

18. cos 2e cose 1 1 b2+1 '" 
x + y - (x-y) cos 2e =7 y+ hy [(l-b) cose - -T L (-b)ncos(2n+l)e] 

n=l 
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APPENDIX VII 

TRANSFORMA TI ONS 

The transformations used in this thesis are: 

1. Park's transformation: 

fd = fa eose + fb eos (e-1200) + fe eos (e-2400) 

f = q fa sine + fb sin (e -120°) + fe si n (e-2400) 

fo=}[fa + fb + fe] 

2. Modified Park's transformation: 

f d = 2 ,; j[fa eose + fb eos (e -120°) + fe eos (e-2400)] 

f -,; 2 q - j [fa si ne + fb sin (e-1200) + fe sin (e-2400) 1 

f = 1 [fa + fb + f e] 
° j 

3. Clarke's transformation: 

2 1 1 fe f" = ,; jfa - 7b fb - 7b 

1 1 
fe fS =- -;Zfb + 7l 

f = 1 fa + 
1 fb + 

1 fe 
° '3" j j 



16b 

4. Modified Clarke's transformation: 

2 1 1 
fa =lj f a-76 fb - 76" fe 

f . 1 . 1 
fc =- 72"f b + 72" 8 

1 1 1 
fy = 7j fa + 73 fb + 73 fc 

where f may stand for the current vo1 tages or f1 ux 1 i nkage of 

the generator. 
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APPENDIX VII I 

CALCULATION OF DECREMENT FACTORS FOR 

. TERMINAL (1) TO CENTRE POINT FAULT 

From equations (5.43) and (5.44), i (land if are given by 

and 

i (l = -
16 Eo· n 

A'+IfA'B' F1(t) [cose + I b cos (2n+1)6] 
n=l 

16 E cose 00 

+ IA'B' 0 F2(t) [~+ I b
n 

cos 2ne] 
n=l 

(A8.1 ) 

. = I (t) + 16 Maf 
lf f 2"" Lf A'h'A'B' F1 (t) [1 + l+b Y bn cos 2ne] 

o n=l 

Eo coseo 00 

IA'B' (l+b) F2(t) [cose + 1 bn cos(2n+l)e] 
n=l 

(A8.2) 

respectively. Using the expressions of Appendix VI, i(l and if can 

then be summed to gi ve 

and 

icx, = 
16 Eo (F,(t) cose - F2(t) cos eo) 

(A'+B' )+(A'-B') cos 29 

M 
if = If(t) + 16 af 

Tf 
Eo(F,(t) cose - F2(t) COS90)COS9 

A'+B' + {A'-B')cos 2e 

respecti ve'y. 

(A8.3) 
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From equation (5.37) 

(A8.5) 

When ia and if as given by equations (A8.3) and (A8.6). are substituted 
into equation (A8.5l. the result is 

or 

EO(Fl (t) cos e - F2(t)cos e coseo) 
A'+B' + (A'-B')cos 2 

cos 2e - F2(t) cose cos e ) 
° = 0 + (A'-B') cos 2e 

(A8.6) 

~1 
a f E F ( t) --,,..,...,..,-,.;Ci-T0.=.S,,..2 ert-,=-...".,,-Lf ° 1 A'+B'+(A'-B' )cos 2e 

= 0 (A8.?) 

Using the series expansions given in Appendix VI 



1 +b 00 n 
[1 + 0 Y b cos 2ne] 

n=l 

10 pF1 (t) l+b 00 n 
+"2 Malo.A'+,IA'B' [1 + -b- t b cos 2ne] 

n=l 

00 

+ y bn cos (2n+l)e] 
n=l 

pF2(t) 00 

A'+{A'B' [cose + I bncos(2n+l)e] 
n=l 

16 F 1 (t) 1 +b 00 n 
+"2 t1alo cos eo A'+{A'B' [1 + 0 l: b cos 2ne] 

n=l 

= 0 (A8.8) 

Neglecting the derivative of the decrement factor, and equating the 
coefficients of the DC terms 

M 
(Rp + pLf ) If(t) + 16 R af E "2 f Lf 0 

F 1 (t) 
A'+IA'B' = 0 (A8.9) 



172 

From (4.91) 

~ L 
/~ Eo sine = pMaf cose if + (r + piA + -i + B cos 2s))i a (A8.10) 

Substituting. if and ia into equation (A8.10) 

or 

--, 

I 3 E sine = 2 0 

M2 
+ p/6 af 

l:f 
EO(F1(t)cose -F2(t)coseo)cos 2e 

(A'+B')+(A'-B')cos2e 

/6 Eo(F1(t)cosS-F2(t)COS6
0

) 

- r A'+B'+(A'-B') cos2e 

L 
- ptA + 7) /6 Eo(F1(t)cose - F2(t) coseo) 

A'+B'+(A'-B')cos2e 

/6 B E (F1(t) cose - F2(t) cose )cos2e o - 0 
- P A'+B'+(A'-B') cos2e 

f3'B sl'ne M e I 7 0 = 1) a f cos 

(A8.11) 



'73 

16 cose 16 ' -r 6 Eo F,(t) A'+B'+(A'-B') cos2e + r 6 Eo F2(t) coseo A'+B'(A'-B')cos2e 

L 
-ptA + -f)F, (t) A'+B'+(A~:~' )cos2e 

L " 
+ ptA + -f) 16 Eo F2(t) coseo A'+B'A(A'-B')cos2e 

16 cose cos2e 
-p 6 B Eo F,(t) A'+B'+(A'-B')cos28 

16 cos2e 
+ p 6 B Eo F2(t) coseo A'+B'+(A'~B')cos2e (A8.'2) 

Using the series expansions given in Appendix VI 

,-. 

I { Eo sine = pMaf coseIf(t) 

+ 16 
P2" 

2 w 

[~ cose + ~ r bncos(2n+' )e] , 
n=' 

M2f F2(t) cose 
a E ' 0 [' lL.f 0 A'+7A'B' 

w 

+~ L 
n= , 

bn cos2ne] 
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00 

-r 10 Eo A,+h'8' Fl (t) [cose + L bncos (2n+l )e] 
n=l 

16 
+ r lA' B' 

00 

[} + I 
n=l 

L 1 00 

- 16 p(A + -f) Eo A'+/A'8' Fl (t)[cose + L bncos + (2n+l )8] . 
n=l 

00 

[} + y 
n=l 

n b cos2ne] 

2 00 

[b + ~ I. 
n=l 

(A8.l3) 

Equating the sine terms on the two sides of the above equation. and 
neglecting any resistances present inthe harmonic terms 

-. 
/ i Eo sine = -w Maf sine If(t) 

M~f E Fl (t) 3+b. 
-r: 0 A'+lA'8' -z- Slne 

f 

10 L 1 
+ w-z 2(A+ -f) Eo A'+lA'B' Fl(t) sine 

10 1 
+w -z B Eo A'+/A'B' Fl(t) (l+b) sine (A8.l4) 
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After performing the necessary mathematical manipulation, this equa­
tion may be re-written as 

(A8.15) 

Equating the coefficients of the DC terms in equation (A8.13) 

(A8.16) 

which may be re-written as 

(A8.17) 

The required decrement factors may be calculated by solving equations 
(A8.9) and (A8.15) and (A8.17) simultaneously. Thus, on obtaining 
the Lap1ace transform of equation (A8.17) 

(A8.18) 
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or 

rw 
s + lA'B' 

(A8.19) 

Taking the· inverse Lap1ace transformation 

(A8:20) 

where 

(A8.21) 

Taking the Lap1ace transforms of equations (A8.9) and (A8.l5) yields 
respectively 

which may be solved simultaneously to give 

_., M 

If(s)=/3E af 
1 0 Lf [ I 

s +­
Ta 

1 - -] s 

(A8.22) 

(A8.24) 



]77 

and 

__ 1-,- + .1.] 
s + _I s 

(A8.25) 

'a 

where 

X2 = v'.li'1l' - O. 5 X 0 

, Lf (A8.26) 'do =r. 
f 

"" = , Xd + Xo + X2 
od 'do Xd + Xa + X2 

Taking inverse lap1ace transforms of equations (A8.22) and (A8.25) 

r~ M 
If{t) = /3 E af 

"2" 0 Lf 
1 -th' 

[e a - 1] 

(A8.27) 
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APPENDIX IX 

CALCULATION OF DECREMENT FACTORS FOR 
TERMINAL (2)- TO-CENTRE POINT FAULT 

From equations (5.69) and (5.70). ia and if are 

and 

/bE 
• 0 
la = - C' + lIt'D' 

00 

F1(t) [cose + I bncos (2n+1)e] 
n=l 

v'b Eo coseo loon 
= le'D' F2(t) ['2" + L b cos2ne) 

n=l 
(A9.1 ) 

Eocoseo 00 

;iC'D' (l+b) F2(t) [cose+ I bncos(2n+1)e] 
n=l 

(A9.2) 

respectively. Using the expressions of Appendix VI, ia and if can 
be summed to give 

and 

i =­
a 

v'b Eo (F1(t)cose - F2 (t)coseo) 
C' + D' + (C'-D')cosZe 

E
O

(F1(t) cose - F2(t) coseo)cose 
C' + D' + (C'~D' )cosze 

(A9.3) 

(A9.4 ) 
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respectively. 

From equation (5.64) 

(A9.5) 

If the values of i" and if obtained from equations (A9.3) and (A9.6) 
are substituted into equation (A9.5) 

or 

EO(Fl(t) cos 2s - F2(t)cosSo cosS 
C' + D' + (C'-D'~os2S 

10 Eo Maf (Fl(t) cos2 s - F2(t)cosS cose ) 
_ p 0 = 0 

C' + D' + (C'-D')cos2S 

cos 2s 
+ 10 Maf Eo p Fl(t) C' + D' + (C'-D') cos2S 

] 

16 cose 
+ 6 Maf Eo pF2(t) COSSo C' + D' + (C'-D')cos2e 

= 0 
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Using the series expansions given in Appendix VI: 

Fl (t) l+b 00 

+ !C'D' [1 + D L 
n=l 

bncos 2ne] 

. '6 pFl(t) 1 b 00 

YO M E [1 + + '.' bn 2] +:r af 0 C' + IC'D' D n~l cos n0 

00 

+ L bn cos (2n+l)e] 
n=l 

v'6 Fl (t) +.!;E. t. bncos2ne] + :r Maf Eo coseo c' + Ve'D' [1 u i-
n=l 

= 0 (A9.8) 

Neglecting the derivative of the decrement factor and equating the 

coefficients of the DC terms 

= 0 (A9.9) 
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From (4~ 136) 

If Eo sine = pMaf cose if + [3R + p (A + 2L + B cos 2e)] i 
y <X 

(A9.10) 

Substituting equations (A9.3) and (A9.4) into equation (A9.10) 

or 

" / i Eo sine = pMaf cose If(t) 
M!f Eo(F1(t)cose-F2(t)coseo)cos2e 

+ pl6 T C' + D' +(C'-D')cosze 

16 Eo (F1(t)cose - F2(t)coseo) 
- 3R C' + D' + (C'-D')cosze 

16 Eo(F1(t) cose - F2(t) coseo) 
- p(A+2L~) C' + D' +(c'~D')cos2e 

16 Eo (F1(t) cose - F2(t) coseo)cos2e 
- p C' + D' + (C'-D' )cos2e (A9.11 ) 

,'-' 
3 I I Eo sine = pMaf cose c' + D' +{C'-D')cosZe 

cos eo C' + D' + (C'-D')cos2e 

.16 ( ) cose 
- 3R 6 Eo F1 t C' + 0' +(C'-D')cos2e 

1 
+ 3R16 F2(t) coseo c' + D' (C'-D' )cosze 
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cose ". 1 
-p(A+2Ly )F1(t) C'+D'+(C'-D'leos2e +p(A+2Ly )1b Eoeoseo C'+D'+(C'-D')eos2e 

16 B' E F (t) eoseeos2e 16 B E F (t)' eos2e 
-p 01· C'+D'+(C'-D'leos2e + p 02 coseo c'+O'+(C'-O'leos2e 

(A9.12) 

Using the series expansions given in Appendix VI 

Ib 
- P 2" 

[~ eose+ (b+l)2 I bneos(2n+l)e] 
(. 2b n=l 

00 

[1 + l+b 2 bneos2ne] 
o n=l 

00 

- 3RIb Ro Ci+~C'D' F1(t) [eose + I bneos(2n+l)e] 
n=l 

1 '" 
-16 p(A+2Ly ) Eo C'+/C'D' F1(t) [eose + L bneos(2n+l)e] 

n=1 

'" 
+ p(A+2Ly) ~ Eo F2(t) eoseo [i + n~l bneos2ne] 



,183, 

- P B ~C'+~C'D' F1(t) I(l+b)cose + b2ti1 f bncos(2n+1)e] 
n=l 

16 1 
+,pB "'2 '''c'D' (A9.13) 

Equating the sin terms on the two sides of equation (A9.13), and neg1ec-

ting any resistances present in the harmonic terms, 

2 
16 MafE F1(t) 3+b. 

- w:r -r- 0 C'+JC'Q' -z- Slne 
f 

Equation (A9.14) may be re-written as 

(A9.14) 

(A9. 15) 
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Equating the coefficients of the DC terms in equation (A9.l3) 

(A9.l6) 

After considerable mathematical manipulation, equation (A9.l6) may be 

re-written as 

(A9.l7) 

The required decrement factors can be calculated by solving equations 

(A9.9) and (A9.l5) and (A9.l7) simultaneously. Thus, taking Laplace 

transforms of equation (A9. 17) 

or 

1 
3Rw 

s + iCIOI 

(A9.l8) 

(A9.l9) 
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Taking the inverse Laplace transformation of F2(sl 

where 

~ 
Tb = 3Rw 

(A9.20) 

(A9.21) 

Taking Laplace transform of equations (A9.9) and (A9.l5) yields 

which may be solved simultaneously to give 

and 

Xd - Xd 
[" + 4x + X lid 0 2 

[ 1 
s + I 

Td' 

1 - -] s 

(A9.l2) 

(A9.23) 

(A9.24) 

(A9.25) 
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Xd + 4Xo + X2 
Xd + 4Xo + X2 

186 

(A9.26) 

(A9.27) 

(A9.28) 

Taking inverse Laplace transforms of equations (A9.24) and (A9.25) 

1 -tiT, 
[e d - 1] . (A9.29) 

(A9.3D) 
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APPENDIX X 

CALCULATION OF DECREMENT FACTORS FOR 
DOUBLE LINE-TO-CENTRE POINT FAULT 

From equations (5.98) and (5.99), i" and if are given by 

and 

G'+iti'A' 

(A10.l) 

Fl (t) [1 + l+b ~ bncos2ne] 
o n=l 

Eo coseo ~ 
/G'A' (l+b) F2(t) [cose + I bncos(2n+l )e] 

n=l 
(A10.2) 

respectively. Using the expressions in Appendix VI,i" and if may be 

summed to give 

, and 

IiJ Eo (F1(t) cose - F2(t) coseo) 
i" = (G'+H'l + (G'-H'lcos2e 

EO(F1(t) cose - F2(t)coseo)cose 
G' + A' + (G'-H')cos2e 

(A 10.3) 

(A10.4) 
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respectively. 

From equation (5.92) 

(A10.5) 

. If the values of ia and if obtained from equations (A10.3) and (A10.4) 

are substituted into equation (A10.5). the result is 

Eo(Fl(t) cos2e- F2(t)cose coseo) 
(G'+R') + (G'-H')cos2e 1 

_p 16 Eo Maf (Fl(t) cos2 e- F2(t) cose coseo) 
(G'+H') + (G'-H' )cosze = 0 (A10.6) 

or 

(G'+R') + (G'-H')cos2e 

cos2e 
+10 Maf Eo pFl (t) (G'+R') + (G'-R' )cos2e 

M 
16 A E F (t) cose 

- 6 Rf L
f 

0 2 coseo (G'+R') + (G'-R' )cos2e 

cose 
- 10 Maf Eo pF2(t) coseo (G'+H') + (G'-R' )cos2e 

/C cos 2e . 
+ vo Eo Maf pFl(t) (G'+A') + (G'-H')cosze (A10.7) 
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Using the series expansions for the mathematical expressions given 

in Appendix VI 

M 
(Rf+pLf ) If(t) + 16 R ~ 2" f Lf 

Fl(t) 
Eo G'+/G'R' {l + ~ I bncos2nS] 

n:l 

+16 
2" 

pFl(t) 1 b 00 

Maf Eo G'+/G'R' {l + + 1. bncos2nS] o n=l 

1 '; 
F2(t) cosso G'+IG'R' {COSS + L 

n=l 
bncos2ne] 

. pF2(t) 00 

- 16 Maf Eo coseo G'+IG'R' {cose + 1. bncos(2n+l)e] 
n=l 

bncos2ns] 

(A1C.8) 

Equating the coefficients of the DC terms and neglecting the derivative 

of the decrement factor 

(A1C.9) 

From (5.91) 

~ Eo sins = pMaf cose if + (R + p(A+B cos2e))i a (A1C.10) 
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substituting equations (A1D.3) and (A.104) into equation (A10.10) 

or 

2 
M f E Fl(t)cose-F2(t)cose )cos 2s 

/6 a 0 . 0 
+p. t f (G'+H')+(G'-H')cosze 

/6 Eo (Fl(t)cose - F2(t) cosSo) 
- R (G'+R')+<G'-H')cos2s 

~ Eo(Fl(t)cose - F2(t) COSSo) 
- pA (G'+A') + (G'-A')cos2e 

/6 B Eo (Fl(t) cose - F2(t)coseo)cos2e 
- p (G'+H')+(G'-A')cos2e 

!I Eo sine = pMaf cose 

·cos2e 
coseo G'+R'+(G'-R')cosze 

coss 
-RIG Eo Fl(t) G'+A'+(G'-R')cos2S 

1 
+ Rib Eo F2(t)cose (G'+H')+(G'-A')coszs 

(A10.ll ) 
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case 16 1 
-pA F1{t) G'+R'+(G'-R'lcos2e + pA 6 Eo F2{t) coseo G'+R'+(G'-R'lcos2e 

16 case cos2e 
-p 6 B Eo F1(t) G'+R'+(G'-R'lcos2e 

cos2e (A10.12) (G'+R')+(G'-R')cos2e 

Using the expressions given in Appendix VI· 

.'""l 

yli Eo sine = p.Maf case If{t) 

[~cose + (b;b)2 y bncos(2n+1)e) 
n=l 

Ib 
-p 2" l+b ~ n [1 + -0- L b cos2ne] 

n= 1 

00 

-RIO Eo G'+;~'A' F1 (t) [case + I bncos(2n+1 )e] 
n=l 

00 

-10 p A Eo G,+jG'A' F1{t)[cose + y bncos{2n+1)e] 
n=l 



--------------------------

192 

10 00 

+ pA Y'G'R' Eo f 2(t) COSSo [~+ y bncos2nS] 
<. n= 1 

16 Eo b2+1 00 n 
-pB 2" G'+JG'R' Fl(t) [(l+b) cose + ---0- L b cos(2n+l)s] 

n=l 

(A1D.13) 

Equating the sine terms the on the two sides of equation (A10.13), and neglec­

ting any small resistances in the harmonic terms, gives 

10 
- w 2" 3+b 

2 sine 

+ 16 2 A E 1 F (t) . s w 2" 0 G'+Y'G'H' 1 Sln 

16 1 
+ w 2" B Eo G'+Y'G'R' Fl(t) (l+b)sins (A10.14) 

After considerable mathematical manipulation, equation (A1D.14) may be 

re-written as 
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(A 10.15) 

Equating the coefficients of the DC terms in equation (A10.13) 

(A10.16) 

After considerable mathematical manipulation, equation (A10.l) may 

be re-written as 

(A10.1?) 

The r~quired decrement factors may be calculated by solving si~u1taneously 

equations (A9.9) and (A10.15) and (A.10.17). 

The Laplace transform of equation (A10.l7) is 

(A10.la) 

or 

1 (A10.19) 
s + R~' 

.fGTHT 
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or, on taking the inverse Lap1ace transformation of F2(S) 

(A10.20) 

where 

(A10.2l) 

Taking Laplacetransform of equations (A10.9) and (A10.15) yields 

(A10.22) 

(A10.23) 

which may be solved simultaneously to give 

M 
I (s) = Ib E af 1 [ 1 1 (A1O.24) Xd + X2 I - -j f "2 oLf 

S +-r S 

Td 

and 

F 1 (s) 
Xd + X2 Xd - Xd 1 1 (A1O.25) = Xd + X2 [Xd + X

2 I - -j 
5 +::0- s 

Td 
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where 

x - >'G'fjT 2 -

(A10.26) 

T ' - T' d - do 

The inverse Lap1ace transforms of equation (A10.24) and (A10.25) are 

1 . -t/Td 
~ [e - 1] 
d 2 

and 

-t/Td 
e + 1] (A10.27) 

respectively. 
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APPENDIX XI 

CALCULATION OF DECREMENT FACTORS FOR 
LINE-TO-lINE FAULT OF EDISON-DELTA CONNECTION 

From equations (5.125) and (5.126).i Cl and if are giv~n by 

and 

Eo l+b ~ n 
+ IMiNi Fl(t) [1 + -0- L b cos 2ne] 

n=l 

(All.l) 

Eo coseo 00 

IMiNi (l+b) F2(t) [cose + I bncos(2n+l)e] 
n=l 

(Al1.2) 

respectively. Using the expressions of Appendix VI. iCl and if may be 
summed to gi ve 

and 

Ib Eo (Fl(t)cose - F2(t) coseo) 
(Mi+Ni) + lM'-Ni) cosze 

Eo (Fl(t)cose - F2(t) coseo)cose 
M' + Ni + (M'-N') cos2e 

respectively. 

(All.3) 

(All.4) 
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From equation (5.119) 

(All.5) 

If the values of i~ and if from equations (All.3) and (All.4) are 
substituted into equation (All.5). the result is 

or 

Eo(F1(t)cos 2e - F2(t)cose coseo) 
(M'+N') + (N'-N')cos2e 

Ii5 Eo Maf (F1(t) cos 2e - F1(t)cose coseo) 
- p (M'+N') + (M'-N') cos2e j= 0 

cos 2e 
+ Ii5 Maf Eo P F1(t) (M'+N') + (M'-N')cos2e 

cose 
cosSo (H'+N') + (M'-N')cos2s 

cos 2s 
+ Ii5 Eo Maf P F 1 (t) (M' +N') + (M'-N') cos2s 

(All.6) 

(Al1.7) 
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Using the expressions given in Appendix VI 

[1 + ~ ~ bncos2ne] 
n=l 

00 

coseo M'+~M'N' [cose + L bncos2ne] 
n=l 

p F
2
(t) 00 

- 16 Maf Eo coseo M'+iM'N' [cose + L bncos(2n+1)e] 
n=l 

(All.8) 

Equating the coefficients of the DC terms in equation (A11.8) and 
neglecting the derivative of the decrement factor 

M 
(Rf+pLf)If(t) + 16 R af 2: fLf 

From equation (5.118) 

;1\ Eo sine = p Maf cose if + (R+ ptA + B cos2e))i a 

(A11.9) 

(A11.10) 
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Substituting ia and if from equations (All.3) and (All.4) into 

equation (All.10) 

Ii5 Eo(Fl(t)cosS - F2(t)cosSo) 
- R (M' +N' )+(M '-N' ) cos2s 

Ii5 Eo(Fl(t) cosS - F2(t)coseo) 
-pA (M'+N' )+(M'-N' )cos2s 

16 B Eo(Fl(t)cosS - F2(t)COS90)cos2S 
- p (M'+N' )+CM'-N' )COS29 

or (All.l1) 

/, 
3 12 Eo sins = p Maf cose 

cosso {M'+N')+{M'-N')cos29 

~ ( ) coss 
- Rvo Eo Fl t M'+N'+(M'-N'lcos2s 

1 
+ RIO Eo F2(t)cosso M'+N'+(M'-N' )cos2e 
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( l eose,16 1 
- pA F1 t M'+N'+(M'~N')eos2e + pA 6 Eo F2(tl eoseo M'+N'+(M'-N')eos2e 

,16 (l eose eos2e,16 -eos2e 
p 6 B EO F1 t M'+N'+CM'-N')eos2e + p 6 B EO F2(t) M'+N'+(M'-N')eos2e 

Using the" expressions of Appendix VI 

IG 
+ p 2" 

(A11.12) 

[~ eose + ~ y bneos(2n+1)e] 
n=l 

'" [1 + l+b L bneos2ne] 
o n=l 

'" 
- RIG Eo M'+~~'N' F1(t) [eose + Y bneos(2n+1)e] 

n=l 

'" 
-15 pA Eo M'+i~'N' F1(t) [eose + L bneos(2n+1)e] 

n=l 



v'6 
- pB 2" 

EO 
"!I'M 'i"7+-ilMrr, N<n'- F 1 (t) 

20T 

2 '" 
[(l+b)cose + ~ L bncos(2n+1)e] 

n=l . 

2 '" 
[b +~ L 

n=l 
bncos2ne] 

(All.13) 

Equating the coefficients of the sine terms on the two sides of equation 

(All. la) , and neglecting any small resistances in the harmonic terms, 

gives 

( . . .; i Eo sine = - wMaf sine If(t) 

F 1 (t) 
M'+>'M'N' 

3+b . e 2 Sln 

v'6 1 
+ w2" 2A Eo M'+JM'N' F1(t) sine 

v'6 nE 1 
+w 2" 0 0 M'+lM'N' F1(t) (l+b) sine (A11.14) 

After considerable mathematical manipulation equation, (All.14) may be 

re-written as 
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,-' 
/ ~ EO = -w Maf If(t} + -4" EO Fl (t) (Al1.1S) 

Equating the coefficients of the DC terms in equation (All.13) 

(All.16) 

After considerable mathematical manipulation, equation (All.16) may be 
re-written as 

(All.l7) 

The required decrement factors may be obtained by solving simultaneously 
equations (All.9) and (All.1S) and (All.17). Taking Laplace transforms 
of equation (All.17) 

(All.18) 

or 

(All.19) 
Rw 

s + MiNi 
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The inverse Laplace transform of F2(s) is 

where 

The Laplace transformsof equations (All.9) and (All.15) are 

and 

respectively, which may be svlved simultaneously to give 

and 

T"" d 

1 - -] s 

. (Al1.20) 

(Al1.2l) 

(All.22) 

(Al1.23) 

(All.24) 

(All.25) 



where 

·L 
, f 

T =-do Rf 
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(All.26) 

The inverse Laplace transform of equations (All.24) and (All.25) are 

and 

I (t) = 16 E Maf 
f zOLf 

respectively. 

(All.27) 
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