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‘SYNOPSIS

The ever increasing demand for power, and the correspondingly greater
~complexity of power systems, is leading to more severe problems of
system reliability. Modern society is so dependent'on the usage of
electrical power that even a short interruption of service cah cause
serious problems. A public utility cannot be ekhected to providé d
perfect power supply, since many of the possible causes of a power
disturbance are beyond its control.

The windings of small diesel-driven 3-phase.geherator sets are often
capable of being connected in either a zig-zag or an Edison-delta
arrangement, to provide a single-phase supply for standby or
emergency purposes. Although many of these generators are genuinely
on standby {i.e. they are brought into operationonly asa result of
a system failure}, many others operate continuously in situations
where no mains supply is available.

The thesis aims to investigate.both'the steady-state and the
dynamic performance of a 3-phase salient-pole generator, when
reconnected in either a zig-zag or an Edison-delta configuration, and
to provide a performance comparison with the more familiar modes of
single-phase operation involving 1ine-to-line and line-to-neutral
loading.

Symmetrical components are used to investigate the steady-~-state
performance and a phase model is used to determine both the steady-
state and transient performance. Ana]yticé1 expressions are
obtained for the short-circuit currents for various generator
connections by utilising the modified Clarke transformation. The
theoretical results from various models are compared with
experihenta] results on a test machine. Losses, efficiency and
voltage waveforms for varijous generator connections are
experimentally obtained for the test machine. Results are discussed
and suggeétions for future research are included.
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LIST OF PRINCIPAL SYMBOLS

Connection matrix
Excitation voltage (RMS)
Instantaneous a, b and ¢ open-circuit phase

voltages .

Instantaneous «, B and y components of phase
voltages ' o

D-axis, q-axis and zero sequence components of
voltage/current/flux

o, B and v components of voltage/current/flux
Rate-of-change of inductance matrix

Current vector

Instantaneous a, b and ¢ armature phase currents
Instantaneous field current |
Instantaneous d-axis and g-axis damper windings
currents _ .

a, b and ¢ phase armature currents (RMS)
Positive, negative ahd zero-sequence components
of the a armature phase current ,
Positive, negative and zero-sequence components
of the b armature phase current '
Positive, negative and zero-sequence components

" of the ¢ armature phase current

Unbalance factor for the armature phase current
Inductance matrix o
D-axis, q-axis and zero-sequence components of

inductance _
Constant part of the armature phase self inductance

Field winding self inductance

D-axis damper winding self inductance

Q-axis damper winding self inductance

Second harmonic coefficient of armature phase self
inductance -
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Second harmonic coefficient of armature phase
self inductance of the ideal generator
Phase-to-d-axis damper winding mutual inductance
coefficient

Phase-to-field winding mutual inductance coeffi-
cient _

Field-to-d-~axis damper winding mutual inductance
Phase-to-q-axis mutual inductance coefficient
Constant part of the armature phase-to-phase
mutual inductance | |

Second harmonic coefficient of the armature phase-
to-phase mutual inductance

a, b and ¢ armature phase flux linkages

Field winding flux Tinkages

a, b and c armature phase flux 1inkages for the
unloaded generator

D-axis, g-axis and zero sequence flux linkages
Friction, windage and iron losses of the DC drive
motor

Friction, windage losses of generator

Generator core losses |

Génerator output

Resistancé matrix

Armature phase resistance

" Field winding resistance

D-axis damper winding resistance

Q-axis damper winding resistance

D-axis open-circuit transient time constant
D-axis transient time constant |

D-axis subtransient time constant

Q-axis transient time constant

Q-axis subtransient time constant

Voltage vector

Instantaneous a, b and ¢ armature phase voltages
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Subécripts

a,b,c
d

f

kd
kq

q

= a, b and c armature phase voitages (RMS)

= Positive, negative and zero sequence components
of the a armature phase voltage

= Positive, negative and zero sequence components
of the b armature phase voltage

= Positive, negative and zero sequence components
of the c armature phase voltage

= Unbalance factor for the armature voltage

= Armature leakage reactance

= . D-axis magnetising reactance

= Q-axis mégnetising reactance

= D-axis synchronous reactance

= D-axis transient reactance

= D-axis subtransient reactance

= Q-axis synchronous reactance

= Q-axis transient reactance

= G-axis subtransient reactance

= Zero-sequence reactance

= Negative-sequence reactance

= Impedance matrix

= Positive, negative and zero sequence impedances

= Rotor angle with respect to a-phase (%)

= Angular frequency

Armature windings

Direct-axis quantities

Field winding

Direct-axis damper winding
Quadrature-axis damper winding
Quadrature-axis quantities
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CHAPTER 1

- INTRODUCTION

While all users of electrical power desire constant frequency,
| voltage stability, and reliability at all times, these features
clearly cannot necessarily be realised in practice, Within any
complex system the requ1rements are cont1nua11y changing and
becom1ng more demanding and interrelated.

An electric utility cannot be-expected‘to provide an ideal power
supply, since many of the possible causes of power disturbance are
beyond the control of its operators. For example, vehicles hit Tine
support poles, lightning strikes overhead lines, high winds blow
trees, branches and other debris onto the power Tines, Lightning,
wind and rain all cause power disturbances in the form of power
interruptions or other transients, Tornadoes take their toll on the
power system, as do the more frequently encountered snow storms, ice
and floods. Although there is obviously less chance of a supply
inferruption on an underground system, any interruption which does
occur may last much longer, because of the 1onger time required to
locate and repair the failure. Even the malfunction of protective
- devices can cause a power supply disturbance,

Modern society is so dependent on its usage of electrical power that
even a short interruption of service can cause serious probTems.
Hospitals must have a highly reliable emergency pdwer supply for
life-support systems, to ensure that sick and disabled people are
protected, A machfne operator may be a high injury-risk during the
first few seconds after a lightning strike has plunged his workshop
into darkness, Power interruption may cause severe problems for
1ifts. Emergency or standby power for perimeter and security
lighting ts often deemed necessary to reduce the risk of injury,

theft, or property damage.




The windings of small diesel-driven 3-phase generator sets are often
capable of being connected in either a zig-zag'or an Edison-delta
arrangement, to provide a single-phase supply for standby or
emergency purposes., Althaough many of these generators are genuinely
on standby {i.e,they are brought into operation only as-a result of
a failure), many others operate continudus1y in situations where no

1 who first

mains supply is available, It appears to be Griffen
examined the possibilities of such re-connections and also discussed
- the voitage waveforms, power outputs and distribution factors of the

re-connected generators.

The problems associated with the performance prediction of unbalanced
load and unsymmetrical fault'conditions of conventional star-
connected 3-phase salient-pole synchronous machine have attracted the
attention of many authors since the beginning of this century. In
1918, Fortescue2 developed the concept of symmetrical components
analysis, which has subsequently been applied to many practical

problems3’4’576.

However, a symmetrical component model assumes that
both balanced and unbalanced current and voltage waveforms are
sinusoidal, and such a model é]early will give large discrepancies
‘when compared with practical results from a system in which the

currents and voltages contain a considerable harmonic content,

B]onde]7_ana1ysed the salient-pole synchronous machine by resolving
the fundamental space comhonent of mmf altong the two axes of
symmetry, the direct or pole axis and the quadrature or interpole
“axis. His basic theory has been extended considerably by Doherty and
Nickle 859,10,11,12 5p4 by Park13:14,15 ypg gave the now familiar
definition of an ideal synchronous machine. This d-g model has
subsequently been used ta investigate many practical problems
associated with synchronous machines, with many of the research
results being presented by Adkins and Har]eylﬁ. The advantage of the
d-g model is that its basic differential equations are expressed with
time-invariant coefficients, leading to analytical solutions for
balanced load or symmetrical fault conditions, The disadvantage of
the model arises from certain oversimplifications in the development




of its equations, while it also requires further transformations for
the solution of unbalanced load conditions or unsymmetrical faults.

In 1954, Ching and Adkinsl? investigated the transient theory of 3-
phase salient-pole synchronous generators under unsymmetrical . fault
conditions. Laplace transformations épplied to the basic
differential equations of an ideal synchronous generator led to
solutions for the various currents and voltages in the form of
infinite series. The methbd of solution is fully explained for a
line-to-line short-circuit fault, although only the equations and the
results were quoted for line-to-neutral and double-Tine-to-ground
short-circuit faults, Howéver, throughout the analysis
approximations were made on the basis of the relative magnitudes of
the machine parameters, Experimental verification was provided by
results from a rather special machine, with a uniform air-gap, and no
damper windings,~

In 1971, Subramaniam and Malik1l® solved the complete phase
differential equations of an ideal synchronous generator under
unbalanced load and unsymmetrical fault conditions using a digital
" computer., Smith and sniderl? included both saturation and space
harmonics in a digital comﬁuter based investigation of unba1ancgd
load and unsymmetrical fault conditions, and also verified
experimentally their theoretical results,

The objective of the present study is to investigate the performance
of a 3-phase salient-pole synchronous generator when re-connected in
either a zig-zag or an Edison-delta configuration, and to provide a
performance cbmparison with the more familiar modes of single-phase
operations invelving line-to-line or line-to-neutral 1loading.
Symmetrical components are used to investigate the steady-state
performance, with in both cases a phase-model being used as the basis
for the various generator re-connections. D-q model parameters for
the experimental machine are measured, and the required phase-model
parameters are determined from those using familiar relationships.
fnalytical expressions are obtained for the short-circuit currents of




various generator re-connections, by utilising the modified Clarke's
transformations and a successive approximation technique. Losses,
efficiency, avaitable power o-utput and _voltage waveforms are
experimentally obtained for the test machine. | Results are discussed
and a comparison between the various generator re-connections is
made, Suggestions for future research work are also included.




CHAPTER 2

VARIOUS SINGLE PHASE CONNECTIONS

The users of 3-phase generators need sometimes to re-arrange the
connections to the armature windings of their machines so as to
provide a single-phase output when an existing single-phase generator
has broken down, or simply when such a machine is unavailable. A
single-phase supply may be obtained from a 3-phase armature by any
one of the four following possibilities:

a) Line-to-neutral loading
b} Line-to-line loading
¢} Zig-zag connection
d) Edison-delta . connection

The positive direction of current and voltages relating to a 3-phase
generator are defined in Figure 2.1 and these will be used throughout
the thesis,

The connection of a line-to-neutral load to the armature of a
generator is illustrated by Figure'2.2 with the maximum power output
available clearly being only 33% of the 3-phase rating, Figure 2.3
i1lustrates the situation when the load is faken from between two
output lines of the generator. Since the output vo]fage is now v3
times that in the Tine-to-neutral connectioh, the maximum power
output available becomes 57% of the 3-phase rating. The armature
arrangement in a zig-zag connected generator is shown in Figure 2.4,
where the two armature phases b and ¢ are now series connected,
Since the armature voltages of a 3-phase generator are equal and
displaced in both space and time phase by 1209, the sum of the
voltages of b and ¢ has the same magnitude as, and is in antiphase
with, theaphase volitage . The voltage output Vo is defined as
Vo = -Vp-Ve in Figure 2.4. The maximum power output.available from a

zig-zag connected generator is clearly 67% of the 3-phase rating,




Figure 2.5 shows the Edison-delta connection, in which a single-phase
supply is taken from two corners of a 3-phase delta-connected
armature, with one of the phases being centre-tapped. Within the
armature the load current divides in the ratio 1:2, so that the
maximum available power output obtainable is 50% of the 3-phase

rating.

In both the zig-zag and Edison-delta connections, the impedance of
the twd Toads should not be allowed to differ by more than 15%1,
otherwise the magnitude of the reverse rotating field-in the air-gap
may cause fntolerable eddy current losses and excessive heatihg of
the rotor body. ' |
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FIGURE 2.1: Positive direction of current and voltages

FIGURE 2.2: Line-to-neutral loading

FIGURE 2.3: Line-to-line loading
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FIGURE 2.5: Edison-delta Connection




CHAPTER 3

SYMMETRICAL COMPONENT MODEL FOR VARIOUS GENERATOR CONNECTIONS

- In 1912, Fortescué2 showed that the three phasors which represent
any unbalanced 3-phase system can be resolved into three balanced _
aystems of phasors:

a) The posﬁtivé~sequence components, consisting of three phasors
equal in magnitude, displaced mutually by 120° and with the same
phase sequence as the original unbalanced phasors.

The negative-sequence components, consisting of three phasors
equal in magnitude, displaced mutually by 120° and with a phase
sequence opposite to that of the original phasors.

The zero-sequence cdmponents, consisting of three phasors equal
in magnitude and with zero phase displacement.

The three sets of balanced phasors which form the symmetrical
components of the unbalanced phasors are shown in Figure 3.1. Since
each original unbalanced phasor is the sum of its thrée'components,
the original phasors can be expressed in terms of their components
as:

Var t Va2 * V0 -
= Vp1 *+ Vpo * Vg
= Ve1 + Ve2 * Ve

Reference to Figure 3.1 ver1f1es the following relat1ons inwhich
= 3120°
a=e
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Vp1 = azVal Ve1 = aV¥a)

Vo = aVys Vep a?v,, (3.2)
and .

Vo = VaO‘. Veo = Va0
éo that

Ya i Va1 * Va2 +‘Vab

Vp = aPVyq AV, + Vay O (3.3)
and

-
i

2
¢ T aVap *atVap +Yg

Conversely, it can be shown that the three unsymmetrical phasors are
resolved into their symmetrical components by

1
Vap =3 (Vg +avy + azvc)
v+ ety +av.) (3.4)
Vag =5 (V3 + %V + aVe . .
and
_ ) + +
Vag =3 (Vg + Vp + V()

Clearly, a similar discussion is valid for the corresponding set of
currents, so that

_ R ,
a’ Ial + 130 *+ I3 Tap =3 (14 + aly +a%L;)

4
[l

1.
=l +val, + Ly I =3 (Ip+ a2l +al)  (3.5)

Iy =
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and

T =aly +a%lyp + Ipp  Iap = % (Ia + Ip + I¢)

Assuming that a synchronous generator produces only positive-sequence
components of voltage, the sequence networks for a 3-phase
machine20:21,22 4pq given in Figufe 3.2, with the corresponding
voltage drop equations being

Va1 = E - 115
Va2 = - 22132 ' (3.6)
and Vao = - Zolao

3.1 SHORT-CIRCUIT FAULTS
3.1.1 Line(l)-to-Centre Point Fault for Zig-Zag Connection

The circuit diagram for a zig~zag connected 3-phése synchronous
generator with a line(l)-to-centre point fault is shown in Figure
3.3. It is clear that, under this condition, the following
constraints exist:

Iy, = 0 I =0 Vg = 0 (3.7)

Applying these to the expressibns for the symmetrical components of
the currents yields

1]
o
4
[=1]

1
a1 = 3 (L, + 2l + a%1)

1 | (3.8)

H

i
L

w

1
Iaz =7 (Ia + azlb + aIc)

H

1 1
and Tag = 3 (I + Iy + 1) = 31,

so that
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Vo,
a) Positive-sequence b) Negative-sequence ¢} Zero-sequence
components components components

FIGURE 3.1: Symmetrical components of an unbalanced 3-phase system

L, _Z o e _Za lao 2o
———{ 33—
E . ‘ %‘ qu : Vao -
o ad -0
a) Positive-sequence b) Negative-sequence c) Zero-seguence
‘network network ' network

FIGURE 3.2: Sequence networks of a 3-phase synchronous generator




FIGURE 3.3: Line {1)-to-centre point fault for zig-zag
connection
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Tap = a1 = L2 =3 13 = | (3.9)

Applying Kirchhoff's second Taw to the phase-sequence voltage drop
equations gives

R

Va1 = B - 41131 = E -3 414
] ' '
Vaz = - 22132 = -~3- 2213 (3.10)
. : o . _ 'l
and Vao = -Zolao = - I ZoIa

Since phase a is short-circuited V, = 0, and it follows that

Vao *+ Va1 * V32 = 0

and that
L S T R T A S

-3 f0-a °3 f1'a "3 “2a T

or
3E -

I ol U S N ‘ 3.11

a "Iy LY I ( )
Hence

I I I ' E (3.12)

= = F T Y I Y I, .
a0 __al az 0 + 1 + 2

The symmetrical components of the phase a voltage are therefore

] 1
Vap = E - - 3

(3.13)
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and

Z.E
Vap = - 0

Z0 +_Z] + 2%

respectively. Correspondingly, the voltage of the open-circuit phases
are ' -

2 ) (a2"1)20+(a2-a)22
Vp = Vao + a"Vgy + Vg = E
ZO+Z]+Z2
and o a1)Zgre-azy (3019)
' | Vo = Vap * aVayt @V = £
Zg*Zy*L,

respectivé]y.

Using the parameters of the experimental 3 kVA generator given in
Appendix I of Z; = 21.2 9 /phase, Z, = 7.20 a/phase and
2y = 1.46 o /phase, the short-circuit current for an open-circuit
voltage of 127 V/phase was calculated as 12.8A compared with a
measured value of 13.0A. The predicted b and c voltages are V=V,
= 59.2V compared with measured values of V, = 70.5V and V. = 68.0V.

3.1.2 Line(2)-to-Centre Point Fault for Zig-Zag Connection
The circuit diagram of Figure 3.4 shows a zig-zag connected generator

with a line(2)-to-centre point short circuit. The constraints which
now exist are
Ia = Ib = -12 IC = -12 Vb +VC =0 (3.15)

and when these are applied to the expressions for the symmetrical -
components of the currents, it follows that

1. 20y 1]
Igp =3 (I3 +aly + a_Ic) =3 Ip
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.{1)

a—2)

- FIGURE 3.4: Line (2)-to-centre point fault for a zig-zag
connection -
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L, =) (1 +a2l +al) =1 3.16
a2 =3 (g + a%ly + alg) = 1 1 (3.16)

and

2] 2
lap =g g ¥ Ip + 1) = - 315
Hence the sequence components of voltage are

1

Va1 = E-4ilq1 = E- 3 L1l

Voo = ~ Zolun = =+ 7.1 ' | (3.17)

a2 olag = - 3 L1 | .
and

Vin = = Zalop = 2 741

a0 olag =3 Zol

respectively. From the conditions of the fault it follows that

u
o

Vb + VC
and therefore that

2
a Val + aVa2

=2
[=n
i
-2
fut)
o .
+

_ 2
Ve = Vag * aVag + 3%V,

Hence
Vp + Ve = Va0 - Va1 - Vas
or
22 7000 - E 4+ L 7i1, + 12,0, = 0
3 Lol - 34l + 300, =
giving

(3.18)
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The symmetrical components of the short-circuit current are

=127 375 ; vz
0 1 2

] - £ :
I == I = . (3.19)
a2 2

3 420 + 2.I + Z2

~and
.IaO --Z Ip=-; 2
3 420 + Z.I + 22

réspectively,_and the corresponding components of the sequence
voltages are

420 +7Z

Va1 = E - 14 = L€
420 + Z1 + 22
v Z,1 -’ (3.20)
a2 = -~ L2la2 7 - E .
420 + Z1 + 22
and .
22
Vao = = Tola0 = = g7 o E
: 0 1 2
The voltage of the opén-circuit phase is
_GZOE
Va = Vao + V_al + Voo =m (3.21)
0 "1 %2
With the voltage of phase b being
- o R A
Vy = Va0 + a“Vap + aVao = -J /TWE (3.22)
. 0172
and that of phase ¢
| ) . 2,421,
VC = Vag * aVap v a%Vyp = ] /3 WE (3.23)

The predicted short-circuit current is I, = 11.4A compared with a
measured value of I, = 10.5A. The predicted a, b and ¢ voltages are
Vq = 32.5V, Vp, = 65.2V and V. = 65.2V compared with measured values
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of V, = 53.0V, Vy = 92.0V and V. = 92.0V.

3.1.3 Double Line-to-Centre Point Fault for Zig-Zag Connection

When a double line-to-centre point fault is applied, the circuit
diagram of Figure 3.5 shows that the terminal conditions at the fault
are '

Ie=Tp, V=0  Vy+Vv =0 . (3.24)

App1y1ng these constraints to the express1on for the symmetrical
components of currents gives

R 1
Iap =3 (I3 + alp + aZIc) =3 (I3 - Ip)

1 1 -
lp =3 (I, + %1, +al) =3 (I, - Ip) (3.25)
| 1 : |
and Lo =3 (g + Ip + Io) = 3 (I + 21p)

‘App1ying Kirchhoff's second law to the phase sequence voltage drops
gives

Var = E - Z11;1 =E- %‘Zl(laflb)

Vap = = Zplp = - % 1p(1,-1,)  36)
and Va0 = - Zglag = - %. Zo(1, + 21p)
Since Vg =Vap * Va1 * Va2 = 0

then :
(ZO + Z]. "Zz)la - (-220 + 21 + Zz)Ib = 3t (3.27)

And since Vp + Vo = V30 = V31 - Vap = 0
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7

FIGURE 3.5: Double line-to-centre point fault for a zig-zag
connected 3-phase synchronous generator




2]

then :
(225 + 2y + Z,)1, - (4Zy + Z;+ Z,)I; = 3E (3.28)

Solving equations (3.27) and (3.28) simu)taneously yields

¢ - - 2E e
| Ia = ZT$Z-_2’ Ib = -2—]—_*7; (3.29)

so that the symmetrica1 components of the currents are

' 1 _ E
lgg =31y - Ip) = I+,
1, -] (I, = Ip) =0t (3.30)
a2z T '-a b Zi+22 :

and ' IaO %'(Ié + ZIb) =0

and those of the voitages are

Z

. - 2
Va1 =E - Tilay = 7577 E
Zy
Vaz = -22132 = - .Z'iw; E {3.31)

and Vao "ZOIaO =0

The corresponding phase voltages are

Vao + Va1 t Vg2 = 0

2 3
Vao + a Val + aVaz = 'J ZFT-Z" E ) (3.32)
| 2 V3 1,
Vag taVg) + 3V = +Z, E
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The short-circuit currents calculated using the above equations are
I,=8.9A and I, = 4.5A, compared with measured vaTues of 12.8A and
2.6A respectively. Simjlarly the calculated b and c phase voltages of
Vp = V. = 54.6Y compared with the measureg values V, = V. = 73.0V.

3.1.4 Line-to-Line Fault for Edison Delta Connected Generators

The circuit diagram for the Edison-delta connected synchronous
generator subject to @ line-to-line fault is shown in Figure 3.6,
by giving the terminal conditions at the fault of

[=lp-Ty  Ic=lp  Va=0,  Vp+Vo=0 (3.33)

The symmetrical components of the currents are

Iy =-% (I + aly + aZIC)

1
‘3' (Ia - Ib)

laz 2% (Iq + a21b t alg) vly (I - Ip) (3.34)

and Iy (It Iy + 1) =4 (I, + 21p)
respectively.The phase-sequence volitage drops are

1 .
Val =E - 2116.1 =k "-3- Zl(Ia-Ib)

1 .
Va2 = - 22132 = - k) Zz(Ia-Ib) ‘ (3.35)
- 21
and Vao s - ZOIGO = - '3' Zo(Ia + ZIb)
Since Vg =Vap t Vap + Va2 =0
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o~

FIGURE 3.6: Line-to-Tine fault for Edison-delta connected
: generator
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then (Zg 41y + Ip)Ty + (2Zg - Z; - Ip)Ip = 3E  (3.36)
and since Vp + Vo= 2V,9 =V - Vg =0
then

(-22q+ 2y + Zp)1, - (4Zg + Iy + Tp)ly = 3E (3.37)

Solving equations (3.36) and {3.37) simultaneously yields

. 2k = £
Ia "'Z':I—-_I-_-ZE Ib - Z-I_"“—ZE (3.38)

The symmetrical components of the short-circuit currents are
therefore

1 _E
Ial "3' (Ia - Ib) = Z +Z
| 1722
1, =4 (1, = 14) = £ (3.39)
a2 "~ 73 ‘‘a b 'Zszz- .
and Tyo =5 (I + 2Iy) = 0

and the symmetrical components of the voltages are
- 22E
Yar = € - hlay T
. Z-5E
= - = . 2
Vaz = - 5l - 4

(3.40)
1 72 :

gnd Vao = -Zolao =0

The phase voltages are

-, /T 1,E
Vp = Vag * @Vay * @Vap = -J AT,
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and o - O (3.41)
Ve = Vag *aVqy +a%WVgp = J ——5—
1 72
The short-circuit current is E
L _ 38 |

"The predicted currents are Ia = 8,94, Ib = 4,5A, Ic = 4,57 and I
13.4A compared with measured values of I, =12.6A, I}, = 2.4A, I,
2.4A and I = 15.2A. The predicted b and ¢ voltages are Vy = V. =
55.2A c_ompared with measured values of Vb = vc = 72.0A.

3.2 ANALYSIS OF LOAD CONDITIONS
3.2.1 Zig-Zag Connection

Figure 3.7 shows the circuit diagram of a zig-zag connected 3-phase
synchronous generator supplying unbalanced loads Za and Z,. From the
figure it is evident that '

Applying thse conditions to the familiar expressions for the
symmetrical components of the generator currents gives

2| 2 2]
Ial‘"j(la"'alb'l'a Ic) —-g(Ia -Ib)

a2 = 3 Iy valg) = 3 (1 - Tp) (3.44)

(Ia+a

21 - 1 |



FIGURE 3.7: A zig-zag connected 3-phase éynchronous generator
" on Toad ‘
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i.e. I3 = Ia2
Henée
Vap = E - 1, = E - 17 (IyeTy)
Vaz = - Zpl4p = %.22 (14-1p)
and Va0 = - Zplao * %zo (Ia=Ip)
Since Va = 4,15
or Vap + Val\+ Va2 Zaia
then_
(Zg + 2y + Zp + 3Z)1, - (-2Zg + Iy + L)1y = 3E
and since Vp + Ve = Lyl
or 2530 - Vaq "Va2 = Lplh
then = 3E

('220 +Zl ¥ Zz)la - (420 + Zl + 22 + 3Zb)Ib

Solving simultaneously equations (3.46) and {3.47) yields

9E(2Z4+7, )

I, =

and

(ZO+ZI+22+3Za)(420+Z1+22+32b)'("2z

7
0+Z]+22)

(3.45)

(3.46)

(3.47)

(3.48)



The symmetrical components of the generator currents‘fo1low as:

3E(32 +Z +Z )
I

1
a‘l = 73. (Ia"’ Ib) =

(Z 0‘25+z*+3z ey +z]+z +32‘) (- 220+Z]+22)
1y - 3E(3Z5+2,+2;)
2 * 3 ° WWW
- (3.49)
] 3 (2,-22,)
and to = 3 Ta * 2h) = sz oy +L1+Z VLT (2L L 7T,

and the symmetrical components of the voltage as

3E 2, (324+2,4Z,)

Va1 = E - LIy = " T +3z—)(4z +z1+z I (2L T,

(3.50)
3E 7, (3Z4+Z,+7,)

') = =I5l =
a2 222 (I VT LRI TRL I 7L ,73 0, ) - (2L +T5)2
3 2,(22,-2,) -
and V.g= =21 “b
a0 0*a0 ~ (LAY ARy L Y Y +z ;z*+320) (—2L ¥ ¥L,)7
respectively.

The phase voltages are therefore

v =V0+V1+Va2

3E[Z (Z -27 )+Z (32 +Z +Z ) +Z (3ZO+Z +7 )]
e %z*+z Xy4 )(4A +z +z‘+3zb)‘(;2z 2 +z NE

2
Vao* a%Va1 * aVyp
3E[Zy(Z,-22,) + azz](3zo+za+zb)+a22(320+za+zh)]
(Z'+Z'+Zé_32 TAL ¥ p¥ 3L ) - (-2L VI ¥ T, )7

-
or
1

aZE

i

(3.51)
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3E[ZO(Zb-22a)+a2](3ZO+Za+Zb)+a2(3ZO+Za+Zb)]
3301205 +I%2,)2

aE -

(Z.+Z

0™

AT I LYY

respectively.

" If an unbalance factor for the generator currents is defined as
| 1,5/1,1 1 then

IaZ =1
—

al

and
| V ; V.o + aV,q + azv- : :
| a0 al az :
|
i
|
\

while a corresponding unbalance factor for the voltage is

Y
v

-3Z, (32 +Z +Zb)
[(Z YL +L¥3L ) (B14+L +Z +32b) (-2L,¥1 +7,)71- =32 (320+Z +Zb)

a2
al

~ When the impédances of the two loads are identical
Za=2b=Z

the load currents become

3E(22 +7)
Iy = (Z,7L 7L, #3T) (41 +z1+z AR G AN
and 1 o (24+2) - 3s2)
2 =17 e
otertert VR R 0*41%42

and the generator phase voltages are

v 3E[-ZOZ+Z](320+22)+22(320+Z)]
a = = Y =
(ZO+Ll+12+BZ)(4ZO+Z1+22+32) ( ZZO+Z]+ZZ)2
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3E[-Zyl+a 7,(3Zy+21)+al, (3Z,+2Z)]

alE 0

Vp = . (3.53)
, rz5:z;12-:3z7ruz—¢2‘¢Z‘:3zy—rﬁzrfRanr-pz
L o o LTIl (S1pe2)A 1,(314220)]

C iy g
| oterte,t gtertept otorter

Under balanced conditions, the unbalance factor for the voltage is

V| -37, (3zg+22)
Var| |[ZgHFL,7 gtertiptac)=t-ebotiqtl,)2]=34,{505%

3.2.2 Edison-Delta Connection
From the circuit diagram for an Edison-delta connected synchronous
generator supplying a 2-wire load shown 1n Figure 3.8, the terminal

conditions fol]ow as:

Ip=les I=15 =Ty Va=12I, Va+Vy+ V=0 (3.54)

a
Hence
lal ‘-% (I + aly + 2%1¢) = 2 (15 - Tp)
I, = 1 (1, + a%1, + al) = 1 (1, -1p)
| : =V o4 1 (3.55)
and . I —_3'{16 + 1y + IC) ’_3_ (Ia + ZIb)

i-e. Ial = Iaz
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FIGURE 3.8: An Edison-delta connected synchrohous generator
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The equations for the phase sequence voltage drop are now

1
E- 32 (Iplp)

i

Va1 =_E“ Z11a1

1

y Vap = = Lplgp = - 3 Zp(1a-1p) (3.56)
" and Va = - laoZo = - 3 Zg (I, * 21y)
Sjnce  Va = VéO + Va1 t Vap = 21
then
(Zg + 2y *+ 2y + 32)1, + (22y - Z; - Zp3 - 311, = 3E (3.57)
and since ‘ Vb + Ve = Va1 = Vap + V3 = = 11
or o cVap - Vo ZVAO = - I(I, - Iy)
then

(-2Zg + 2y + I, + 31)1, - (8Zg + I + Z, + 327)1, = 3E(3.58)

Solving simultaneously equations (3.57) and (3.58)

2 E
I, = — I = = e {3.59)
A Iy+L,+32 Ly+i,+3L | |
and the load current is
3E
I—Ia -Ib—f']-;_-z-*z':é-z- : (3.60)

The symmetrical components of the generator currents are
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1 E

la1 =3 ¢
E

o0 _
Iaz-g‘ua -Ib)"ZT;ZET_‘gZ‘

-] -
: Iao =7 (Ia + ZID) =0

and those of the voltages

(7,+32)E

E -1 = 737532

Y =
al | 1+5

Z,E
Tl = - gl
2 a2 Z +22+3Z

Va2 :

and Viao = -Zolp =0

The phase voltages are therefore

3ZE

Va = Vag + Va1 + Va2 = 2

fa

fa = W) = Tz

(3.62}

T

(2,+37)-a3L]E

2 -
Vag *+a%Vq * aYaZ =

[a(

{3.63)
Z]+22+3Z

Z.+37)-3Za2]E

and VaO + avaz + azvaz =

The unbalance factor for the current is

Ia2
T

a

1

and that for the voltage is

1
ZE;ZZ+32
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Va2 - 22
Va1 Z,+3l

3.2.3 Line-to-Line Loaded Generator

From the circuit diagram for a iine-to-line loaded star-connected 3-
phase synchronous generator shown in Figure 3.9, it is evident that

Ia = 0, Ib = -IC’ Vb = vC -ZIC (3-64)
Hence

[ =4 (1. +al, +al) = -f — 1

a1 =7 g taly +a%l) = -j o= Iy

Lo =t (I +a2l, +al) =§ -1 3.65)

a2 -3 (lg+ratlp+tald =3 (3.

o=t (I, #1, + i') =0

a0l =3 ‘*a b ¢’ 7

I

i.e. I =-lae=in

and the symnmetrical components Qf the generator voltages are

1w a v 2y + _ 1 .
Va1 =3 (V, + aVp + a%V¢) = -3-[Va - Ve - alIC]
: : {3.66)
- 2 - b 2
Vaz —‘3‘ (Va + aVb + aVc) = 3" [Va -'VC -a ZIC]

It follows that



FIGURE 3.9: A line-to-line loaded star connected 3-phase
synchronous generator '
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Va1 = Va2 =3 (3 - @)1l = 142

soAthat ,
Val = V32_+ ZIal o (3.57)

The equations for the'phase sequence voltage drops are
Va1 = B - 115
Vaz = - 22162 : . . (3.68)
Yao = - Zolap = 0
so that
Va1 = = Zalag + 1 151 = (Zp+2)15
From equation (3.68)
E = leal = (22+Z)Ia2

Therefore

Ial_

and ' - _ (3.69)

' E
Lag = = g1 = - Z1 ¥ 22 ¥ 7

Having determined the symmetrical components of a phase current, the
“phase currents I, and I. are

i . Ak
Ip = Iyg + aplyy +alyy == 3 z;—:rzg—:“z

[
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and
o, I3E
Ie = Tgo * alyy + 2%, = 3,71
“respectively.

The symmetrical components of thé generator voltages are

7.4z

oLk
(L) Ty =z B

va1

and
z
:ZI = 2 E
az 2%a? Z]+22+Z

respectively.

Hence the geherator phase voltages are

(22,47)
a=Vao * Va1 * Va2 =z;:z;:z” E

-
i

2 - 2
Vag +@Vap +aVy, = Z;?Z‘?Z‘ E

-
o
1]

. - 2z _

With the unbalance factor being

for the currents and

Yao| _ | %
Var] | &'

for the voltages.

{3.70)
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3.2.4 Line~to-Neutral Loaded Generator

~ The terminal conditions which apply to the Tine-to-neutral Toaded
.star-connected generator shown in Figure 3.10 are | '

Iy =0, I, =0, Vg = ZIa {(3.73)
Hence
1.1 = 1 (I, + aly, + asl.) = ! 1
al = 3 ‘a b, 2*¢/ T 3 ‘a
T.n = ]'(I + a,ly, +al, . ) I 3.74)-
a2 =3 (Ig + aply +ale) =3I (3. |
and - Lg=a (L #+1.+1.) =41
. a0 ~ 3 \ia b c T3 ‘a
1.8, Iao = ial = 162
and the phase sequence voltages are
Vop = E = 2104 = E = + 741
al 1*al 3 “1a
o o1
Vaz = - Zzlaz = -3 ZZIa (3.75)
and Vog = = TopZn = = 3 21
al a0<0 T "0a
It follows from the terminal conditions that
Vg = T2 = Vgp + Va2_+ Va0
_ 1 1 1
—'“3'Z01a+E""3— lea'-g—lea
so that
I, = 3E (3.76)

a LO ¥ 21 + Z2 + 37

and the symmetrical components of the generator currents are




39

FIGURE 3.10: Line-to~neutral loaded star-connected synchronous
generator -
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I, E
Ia} = lag = Iy = ¥ T332 - {3.77)

The corresponding symmetrical components of the voltages are

E(Z +Z +3Z)

Val 25121—:7.2732

o -EZ
Vaz = ﬁ72—3'2‘0+ e (3.78)
_ ' -EZg '

"0~ T

and those of the armature phase voltages are

= 3EZ

(a2 -1)Z, +(aZ-a)Z, +3a22

2y ‘
Vao + a Val + ay

-l
(=
]

a2 -
ZO+Z1+ZZ+3Z
2
) ? _(a-1)20+(a-a )22+3aZ
Ve = Voo + 3V + 3%y = 3 E
z0 +Z]+22+ J4

_ (3.79)
The unbalance factor for the generator currents is again

Ia2 -1

Ta

Va Zy*L,+31




3.3 CONCLUSIONS

The steady-state performance of various connections of a 3-phase

~ synchronous generator have been investigated using a symmetrical

component model. Mathematical eXpressions for the currents and
voltages were derived and also expressions of unbalance factors for
both currents and voltages were provided. Practical results using
values of sequence reactances obtained experimentally were'compared
with theoretically derived results and these were found to agree
reasonabiy satisfactorily. The discrepancy that exists is accounted
for primarily by the presence of harmonics in the volitage and current
waveforms. This is shown by the experimental yoltage waveforms given
later in Chapter 6, for various voltage settings. Other obvious
reasons for these discrepancies are the use of unsaturated values for
negative and zero sequence reactances, and the neglect of saliency in
the development of the symmetrical component model for the 3-phase
synchronous machine, .

It is interesting to observe that the current unbalance factor for
various single-phase connections is load independent and equal to
unity. This is bécause any single-phase connected armature sets up a
pulsating mmf which may be resolved into equal magnitude contra-
rotating components. Since the magnitude of negative- and positive-
sequence components is equal, the unbalance factor for currents for
each case is unity. '
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CHAPTER 4

PHASE MODEL FOR VARIOUS CONNECTIONS

- Although both the transient and the steady-state performances of a
conventional 3-phase synchronous generator have been investigated by
many author523'24, no attention appears to have been directed towards
the performance of such a machine when the armature windings are
arranged in a zig-zag or Edison-delta connection. The present
chapter investigates therefore both the transient and the steady-
state performance associated with these connections.

A prediction of either the transient or the'steady-state performance
~of a generator requires the development of a mathematical model, in
the form of a set of simultaneous ordinary differential equations.
The standard simplifying assumptions which are involved in this
development are: '

a) The air-gap mmf and the flux density are both sinusoidally
distributed in space, so that the phase-to-phase mutual
inductance coefficients and the phase self-inductance
coefficients are simple trigonqmetric functions of the rotor
position, | '

b) The effect of magnetic saturation on both axes is negligible.

¢} There is only one damper winding on each axis.

d) The effect of hysteresis and eddy currents is negligible.

e} The speed of the generator is assumed to remain constant after
any disturbance, i.e. the generator drive is stiff.




FIGURE 4.1:

43"

KD

The primitive synchronous generator
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EQUATION 4.1: Differential equation for the primitive synchronoué generator

127
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4.1 STATE EQUATIONS FOR A 3-PHASE SYNCHRONOUS GENERATOR

The differential equations for various connections of a 3-phase
generator may be-obtained from the corresponding equations of the
primitive machine shown in Figure 4,1. The associated differential
equations, given in matrix form in equation 4.1, may be written in
abbreviated form as:

[v] =?[LJ[?¥.I] + [RILI] (4.2)

where V is the voltage vector
I is the current vector
R is the resistance matrix
L is the inductance matrix,

Since ‘Some-of theinductance terms are time variant, the general form
of equation 4,2 is:

[v] = [L1[p1] + (R+GI[I] (4.3)
where 6] =G (L) = L1

If the generator is driven at constant spéed W =,%% - constant then

[} = o 40t | (4.4)
dt '

and the state-variable form of equatibn 4,3 becomes
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[p1] = (L7 COVY - [R+GIID] - (4.5)
where [G] is the time-rate-of-change of inductance matrix,

4.2 INDUCTANCE AND- TIME-RATE-OF-CHANGE OF INDUCTANCE COEFFICIENTS

4.2.1 Inductance Coefficients

The inductance coefficients forming the [L] matrix of equations 4.2
and 4.3 are in geneba] dependent on the rotor position, and they have
therefore to be calculated at each step of a numerical integration of
these equations. Since the model neglects any effects of saturation,
the -inductances are not functions of currents,

4,2.1.1 Stator Self-Inductance

The phase winding self-inductances are?5,26,27

Lll = LAO +L2 cos 26
L22 = LAO + Lz cos (26 - 2400) (4.6)

L33 = Lag *Lp cos (26 - 1209)
)

where both Lag and Lo are constant.
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| : 4,2.1,2 Rotor self-inductance

B
The rotor self-inductances are29,26,27

Lag =L
Lgg = Lyd o (4.7)
Les = Lkq

4,2.1.3 Stator mutual inductances

The phase-to-phase mutual inductances are?5,26,27

Mip = Mzi = -Mg + M, cos (26-120°)
Mo3 ; M3y = -Mg + My cos 26~ ‘ (4.8)
M13 . M3y = -My + M, cos (26-240°)

_where'both Mg and M, are constant.

4,2.1.4 Rotor mutual inductances

The mutual inductance between the field winding and the d-axis damper

winding does not vary with the rotor position. So that25’26’27

= Mgy g

H
o

(4.9)

i
o
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'4,2,1,5 Stator-to-rotor mutual inductances

Finally, we consider the mutual inductances between the stator and
rotor windings, all of which are functions of the rotor position. The
mutual inductances between the various phase windings and the field
windihg_are25’26’27

M1g = Mgy = Mg cos o

Mog = Mgz = Mg cos (e-240°)

= Md cos 6

=
b
o
]
=
w
—
|

Mog = Mg = My cos (8-120°) (4.11)

Mag = Mgy = My cos (6-240°0)

and the mutual inductances between phase and g-axis damper winding

Mg = Mgp = Mg cos (6-120°) | (4.10)
are

M16 = M61 = Mq sin 8

Mog = Mgp = Mg sin (8-120°) (4.12)
M36 = M63 = Mq sin (9-2400) | ‘



4,2.2 Time-Rate-of-Change of Inductance Coefficients

4,2.2.1 'Time-Rate-of-changg of stator self-inductance

The time-rate-of-change of the self-inductances of the phase windings
are obtained'by differentiating the stator self inductances with
respect to times '

= -Zwo Lz sin 29

jp]
—
—
|

fp)
Ny
[t ]

1

= -2uy Ly sin (26-240°) (4.13)

G33 = -2wo Lo sin (23-1200)

4.2.2.2 Time-Rate-of-change of rotor self-inductance

Since the rotor self-inductances are constant, their rates-of-change

are zerag:
Gy =0
Ggg = O (4.14)
Ggg = O

4,2.2.3 Time-Rate-of-change of stator mutual inductance
The rate-of-change of the phase-to-phase mutual inductances are
obtained by differentiating the stator self inductances with respect
to time _ '

G2 = Goy = -2uy My sin (26-1200)

Gp3 = Ggp = -20y My sin 29 {4.15)

Gl3 = G31 = -2w0 M2 sin (29-2400)




( - | : . - .50

4,.2.2.4 Time-Rate-of-change of rotor mutual inductances

The mutual inductance between the field and the d-axis damper winding
does not vary with the rotor position and its time-rate-offchange is,
therefore, zero. Similarly, since the mutual inductances between the
d- and G-axes are also zero: '

Gg5 = G5q = 0
G45 = GG4 =0 (4-16)
Ggg = Ggs = O

The time-rate-of-change of the mutual inductance between the phase
windings and the field winding are obtained from equation 4,10

4.2.2.5 Time-Rate-of-change of stator-to-rotor mutual inductances :

.614 = G41 = -mo Mf sin®

it

Gpg = Ggp = -Uy Mg sin(e-1200) (4.17) :

G34 = G43 = =g Mf sin (9-2400)
Similarly, the time-rate -of-change of the phase winding to d-axis
damper windihg mutual inductances are, obtained from equation 4.11 |
615 = 651 = "b.)d Md sing
625 = Gsz = -wo Md sin (9-1200) (4.18)

G35 = Gg3 = -wy Mg sin (6-2400)

o
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and the rates-of-change of the phase winding to g-axis damper winding
mutual inductances are, obtained from equation 4,12

cos®

o
p—
()]

I

o
o
fay

il

= mo.Hq
Gyg = Ggp = up Mg cos (8-1209) - (4.19)

Gyg = Gg3 = 4, Mq cos (8-2400)

4,3 STATE EQUATIONS FOR VARIOUS CONNECTIONS

The connection matrix which relates the currents in the zig-zag
connection to those of the primitive synchronous generator may be
written from inspection of Figure 4.2 as

a1 ]
"I ' -1 i 12 '
_ic I ! -1 lé.'if (4.20)
e -1 ! ikd
) | o

When written in abbreviated matrix form, equation 4,20 becomes
I=CI'

where the connection matrix C is given by
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~
i

I=[i, ib_ic Te ipyg iqut, denotes the currents in the primitive
synchronous generator, ' '

and :

' o= Ly iy dgiyy 1kq]t, denotes the currents in the zig-zag
connected synchronous generatar,

The relationship between the currents in the Edison-delta connected
generatar and those in the primitive synchronous generator may be
written from inspection of Figure 4.3 as

i ‘ { 1 1 iy }

in ; 1 ip s

e 1 it | (4.22)
e o 1 Tgd |

fea| | 1 Ukq J

Jkg! ¢ L

‘When written in abbreviated form, equatioh (4.22) becomes

1=CI"

where the connection matrix C is given by

\
\
\
\
¢ = | . N (4.21) "
o |
. , 1 R :
. J a |
where, . _
\
\
\
\
\
\
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‘ \
1 1
1
C= . 1 | (4.23)
1 E
] E
! .
J

whefe,

I=1[i, iy fc if-ikd ikq]t, denotes the currents in the primitive
synchronous generator,

and ' R :

I' = [i; 1, i%'ikd 1kq]t, denotes the currents in the Edison-delta
connected synchronous generator,

The matrix operational equation for various generator connections may
be obtained by using the standard impedance transformation CVZC
(where cTis the transpose of C). The matpix operatibnal equation
for various generator connections can be rearranged in the state-
variable form

[1'3 = [L'JCIV'T - [RGI0'TT

which can be solved using the numerical integration technique
described in Appendix IV, to arrive at the machine currents,
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FIGURE 4.2: A zig-zag connected 3-phase synchronous generator
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FIGURE 4.3: Edisoh-de]ta connected synchronous generator




R 4R L] )
0 Pty th3) Phig P P f
‘ L] ] 1 -
; 2R +RL2 , ) ' ) ' )
0 - “P(Mygthy, “P(Mp5 M35 -P(Mpg Mg 12
\
; +p (-L2 5133;"2L23+LL2) ‘
|
Symmetrical about
the leading diagonal ]
0 - , Rapleg 0 id
0 RéPhee Y

~ Equation 4.24: Differential equation for a zfg-zag connected 3-phase synchronous generator
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L] =

Lot
2M0+M2 c0s2¢ Mf-cose Md cose " M sind
+L2 cos 2o _ q
L, n+2L,~=2M
L2 AO 0 Mf cos . Md cose : Mq sing
+(2M,-L,) cos28 '
2 "2
- L M 0
Symmetrical about 44 45
the leading diagonal
bsg 0
L¢s

Equafion 4.25: Inductance matrix for a zig-zag

connected 3-phase synchronous generator

e



-2 w, L2 sinze | -2 Wy M2 s1n2o -ty Mf sin®g -4 Md sing W Mq €oso
-2 wo(ZMZ-L2)51n29 | -t Mf sing W My Siné Wy Mq €oso
0 0 0
6] = Symmetrical about

the leading diagonal

Equation 4.26 Time-Rate-of-change of theinductance matrix for a zig-zag connected 3-phase synchronous generator



[R] = Symmetrical about

the - leading diagonal

Equation 4.27: Resistance matrix for a zig-zag connected 3-phase synchronous generator



0 R+RL+p(HI_+LL) R+p( LrﬁM12+M ) pM]4 pM15 leG T]
| SRp (L 41,40 -
1*hoptlas .
0 A2 4 2M. 22l P(Myg#hpqM30) P(M5*H5Ms) P(Mg#ostiag) | [ 12
12t ateihs) -
i Raq*Plyg My 0 i¢
‘ Symmetrical-about

0_ the leading diagonal R55+PL55 0 ing
0 RegPles. g

Equation 4.28: Differential eduation for an Edison-delta connected synchronous generatbr
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L, b (Lya-2M)
A L : A0 "o Mf coso Md coso Mq'sine
L, c0s26 +(L2-M2) c0s20 .
3(LA0-2M0) 0 0 | 0
Ly = | | las Mg 0
Symmetrical about.
. . L 0
the leading diagonal 55
Leg

Equation 4.29: Inductance matrix for an Edison-delta connected synchronous generator

19



S

29

-2uL, sin2o ~2u(Ly-M,) sin2e -uM sine -uMy sine qu €036
0 0 0 0
0 0 0
[6] = -~ | Symmetrical about
the leading diagonal 0 0
0

Equation 4.30: Tine-Rate-of-change of inducrance matrix for an Edison-delta connected synchroﬁous generator




R+RL R 0 Q, 0
3R 0 0 0
| R4 0 0
Symmetrical about
, . R 0
the Teading diagonal 55
Re6

Equation 4.31: Resistance matrix for

an Edison-delta connected synchronous generator

€9
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4.4 TRANSIENT FAULT TESTS

Short-circuit tests are-useful for verifying the validity of the
_ various assﬁmptions made in Sect{oh 4 in the development of the
machine model and also of the numerical technique described for
predicting generator performance.

Various short-circuit fault tests were carried out on the
experimental machine. During the short-circuit tests the generator
was run at synchronous speed with its field winding excited to give
rated voltage on open-circuit in the phase windings, with the
armature windings connected in the different configurations
considered previously. Various short-circuit faults were applied at
the terminals of the unloaded generator and ultra-violet recordings
of the armature and field currents were taken. Figures 4.4, 4.5 and
4.6 show both the experimental and computed results obtained when a
line {1)-to-centre point, 1ine (2)-to-centre point and double line-
to-centre point fault of a zig-zag connected generator respectively.
Figure 4,7 shows both the experimental and computed result when a
line-to-line short-circuit fault of an Edison-delta connected
generator. '

One feature of particular interest in the figures is that the
unbalanced armature short-circuit currents contain substantial third-
harmonic compbnents, and the existence of these may be qualititavely
explained by the following argument. The fault current in the
armature winding sets up a pulsating field, which can be resolved
into two counter-rotating mmf fields in the air-gap of the
alternator, There is no relative motion between the positively-
rotating field (which is the source of the single-phase armature
reaction) and the field winding, but the negatively-rotating field
travels relatively to the field winding at twice synchronous speed.
Double-frequency voltages are thereby induced in the field winding,
and since this is assumed to be supplied from a source of zero

impedance, a substantial double-frequency current will result. This
will in turn establish a field pulsating at double frequency along
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the axis of thé field winding which may be resolved inte two counter-
rotating air-gap fields. The negatively-rotating field travels
backwards relatively to the armature winding at synchronous speed and
thereby gives rise to negative-sequence voltages of fundamental
frequency in the armature windings. The positively~rotating fields
travels relatively to the armature windings at three times
synchronous speed, and thereby generates third-harmonic voltages of
zero sequence in the armature windings.

The close agreement between the exper1menta1 and pred1cted resu]ts
gives a high degree of confidence in the techniques emp1oyed.
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CHAPTER 5

as Bs y COMPONENT MODEL FOR VARIOQUS GENERATOR CONNECTIONS_

This chapter deals with an anaiytica1 so]ution for the short-circuit
situation in a zig-zag or an Edison-delta connected generator. For this
purpose, the direct phase equations are written down for an ideal

'salient-pole synchronous machine28529, and a modified qu-O

transformation39s31 followed by an o, 8, y transformation32,33,34,35,36
is subsequently applied. The advantage of the modified d-q~0
transformation over the conventional d#q-O transformation37:38 js that
it results in a symmetrical inductance matrix with reciprocaT mutual
inductances. The o, B, y transformation has the advantage of being
power invariant, unlike the o 8, 0 transformation39s40,41  These
various transformations are presented in Appendix VII.

The ideal generator considered in this chapter comprises a stator with
three physically-identical armature windings a, b and ¢, displaced
mutually by 120° (electrical) degrees. On the rotor there is a field
circuit, symmetrical about the d-axis. Damper windings are not
considered here, since these increase the complexity of the
mathematical manipulations invoived, and also necessitate a
questionable extra simplifying assumptjon35. Assuming the machine to
be ideal means that all the assumptions given in Chapter 4 are valid,
although the additional assumbtion must be made that the second-
harmonic components of the armature phase inductance and the phase-to-
phase mutual inductance are equal. Under these conditions the
application of either a conventional or a modified d-q-0 transformation
yields equations in the d-q reference frame with no time-varying
coefficients and thereby enables an analytical solution to be produced.
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In an ideal synchronous machine, the flux linkages of the phése and "

field windings.?‘g’29 are

Va = Lniia * Mppip + Mygic + My
v =

¢ = M3pia + M3aip + Lagic + Mygis | f
Ve o= Mapla + Maglp + Masic + Lagls
while the various self-inductances are =

L1 = tag * Ly cos 2 : ' _ |

Ly cos (20-240°)

t22 = tag * i
L3z = lag + Ly cos (20-1200) _ |
Lag = Lt

Myp = Myy = -Mg + Ly cos (20-120°) s

Maz = M3y = -Mg + L, cos 28

M13.= M3; = -Mg + Ly cos (28-2400)

Myg = Mgq = Mg coso

M24 “.M42 = Mg cos (0-1200y | '

M3 = Mg3 = Mg cos (6-240°)

Park's transformation, as modified by Lewis

30,31 4 |




72

‘f i,

fq = /‘g[fa cose + f, cos (0-1200) + f_ cos(s-2400)]
fq = 7/ 5[fa sine + fy sin (6-120%) + . sin (0-240°)]

(5.3)

ﬁ
[}

1
o= zlfatfp * fel
where f may represent.the currents i, voltages v or flux Tinkages v
of the generator., '
After much mathematical manipulation, application of the modified
Park transformaton to the f]ux/current'equations leads to the flux-

~ linkage equation30

é"l
= Ld1d + /'2' Mf'lf

¢d =
Vg = Lgiq
bo =1L g (5.4)

where

A0
= - 3
lg =Ly *Mo- 3 Lp (5.5)
Lr = LAO - 2M0

‘The advantage of the modified d-q transformation is evident from the
reciprocal form of the mutual inductances 1h the flux linkage
equation (5.4). The circuit representation of a synchronous
generator by d-axis, g-axis and zero-sequence windings is given in
-Figure 5.1.
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EMF

QUADKATURE AXIS
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~
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DIRECT AXIS

ZERD SEQUENCE WINDING WINDING

(STATIONARY ]

FIGURE 5.1: Representation of a synchronous generator by
J direct-axis, quadrature axis and zero-sequence
windings
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5.1 MACHINE EQUATIONS IN TERMS OF a, 8, v COMPONENTS

In &4 series of papers, Hwang:"z’33s34’35'35 has demonstrated the
mathematical convenience of the a; 8; Y transformation and successive
~approximation technique., In the analysis of unsymmetrical short-
circuit faults applied to a conventional star-connected 3-phase
synchronous generator. - In this section, the relationships betweena B
components and d-gq components as well as phase quantities are
established, and synchronous machine equations in terms of «,g,y
components are also provided. |

The transformations from d-q to ,8 components3? are

fu = fd cosd + fq sing
fB = -fd sino + fq cose

or conversely

H

fq

fq

fa cose - fB sing
f sing + f_ coss
o 8

The transformation from phase quantities too, B, v components32'are

2 | 1

o

fo=eop Tyt f (5.8)
B vZ b TVZ ¢ ' ‘
O 1 1 |

fY*nga+ 73-fb+73- fC

or conversely

_ 1 1
- wm Rt m

(5.9)
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where f may represent the currents i, voltagesv or flux'linkages Y

- of the machine.
The «, B, ¥ components of the various f1u£ 1inkages may be expressed
in terms of the o B8, y components of the phase currents 32 by
Ll L-L . L,-L
/3 . d g d e d g . .
¢u Y/ > Mf 1f cose + [ 7 + m—z—ﬂ-cos 28] i, = —p=sing 16
ey L,~L L+l L~k
_ .73 . T . d q__d™q .
b = /'Z Mf i sine - —— sinZe 1q+ [— 2 cosZQ]_1B
=L i .
wY Y1Y (5.10)
Ve =V % Mf.(1a‘cose g sing) + Lf1f
which may be re-written as
wa = Maf ic cose + (A + B cos 26)iu - B sinze Tg
_¢B = - Maf if sine - B sin2o it (A -B cosZe)iB
' (5.11)
lp\( ) LY1Y
wf = Lf1f + Maf cose.1OL - Maf sing 18
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where
| L +L
A = d
o L-L
B--9_9 (5.12)
3"
Maf =/'2 Mg

In terms of o, B, v components, the voltage-current relationships of
the generator are

 (5.13)

o G
ef-Rf1f +“HF

. or, when the resuits of equation 5.13 are introduced

e = -(R+p(AfB cos 26))1a + pB sin26 18 - pMys coOSO g
¢ = PB sin2 i, - (R+p(A-B cos 20))i, + pMy¢ sing it

' (5.14)
e = -(R+pLY)1Y

Ef = (Rf+po)1f + pMaf COSGA 'iu - pMaf siné 18

The circuit representation of a synchronous generator bya, 8 and y

component windings is illustrated in Figure 5.2.
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5.2 SYNCHRONOUS GENERATOR ON NO-LDAD

When a short circuit from no-load is considered, it is necessary‘to
know both the flux linkagesand the voltage conditions prior to the
fault. On no-load, the field and the armature currents of the
generator are

iy =0
1b=0
7 (5.15)
.o
. Te
1t = Ifo

‘where the field current If, Produces rated armature voltage on open-
circuit.,

From equations {5.15), the o, B, Yy components of the armature currents
" are '

'a

T =0 5-16
i ( )
i =0

Y

The flux linkages for an unloaded generator are found by substituting
equations {5.16) into equation (5.11) as

Voo = Maf Igo cOSO
wBo = ~My¢ lgp Sind (5.17)
v, =0

Yo
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~The actual phase flux linkages for an unloaded generator are found by
substituting equation (5.17} into (5.9)

“E

Yao 3 Mag T4 cos®
] 1 o
Yo = - 76 Maflfo coset 77 Mas Lo siné (5.18)

1 . 1 .
Voo = =76 Maf L¢o cosé - 75 Maf Ifo sind

In terms of o, R ycomponents, the phase voltages for an unloaded
generator are '

D
1

a0 = = P Mar cos® g

wo Mag sin g

" % '/g”f sind Igg
=V % Ey sine (5.19)
€gp = P My Sin6 Igy
= 6y Myg cOSO Igy
= Yo /ng cosd Lgg
= /g E, cose | (5.20)
and ng =0 -  (s.21)
where  Eq = ug M Ig | | (5.22)

So that the actual phase voltages are



%0

/7 2
eao"/;eao"' /geYo
R :
_-/3 ./.2 Eos1ne+ 73__0
= -Eosine ‘ | (5.23)

o ] 1 -
®o ¥ - g ®o - VgeBo‘L-‘%. €vo

7%/% £y sine- 1 /3 g coss + 75 0

Y3
E, sime -—7 E, coso . {5.28)

1
—

and . : q
€0 =" V6 %ot VZ %0t V3 &yo

o . . ] 3 ]
2716' /% Eos1n8+72--/?, Eocose+73- 0
= ’]Z E, sing + l/23- E, cos8 (5.25)

5.3 SIMULATION OF DISTURBANCES

During any distUrbance,.the voltages and currents at the various
points in a system can be determined by superimposing the components
resulting from the disturbance upon those which would exist if the
disturbance had not occurred. The components of the voltages and
currents due to a disturbance (such as an unsymmetrical short-
circuit) which reduces the phase voltage to zero, can be determined
by applying a component of the voltage at the point of fault equal in
magnitude but opposite in sign to that which existed at the instant
the fault occurred. |
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5.4 TERMINAL (1)-TO-CENTRE POINT FAULT FOR ZIG-ZAG CONNECTION

A terminal (1)-to-centre- point fault for a zig-zag connected
generator is illustrated in Figure 5.3, The corresponding terminal
conditions are

'ib = 0
i.=0 (5.26)
ey = 0

or, in terms of o, B, y quantities,

/2 1 1
&, V3 & -V % - % €

S ey te) - (5.27)

1 S
g = ~77 &t V7 &

= oy (ep - ec) (5.28)
and .
1 T 1
&, FTT Bt 73 &t YT &
= 7]3- (e + ec) ' (5.29)
_ 1
i.e. & =" e, | (5.30)

Similarly, the terminal conditions for the currents in terms of their
as B, YCOMpONnents are

a '3 'a" V% Vlb'76' Tc

(5.31)

w ™o
el
o




FIGURE 5.3: Terminal (1)}-to-centre point fault for a zig-zag
: connected synchronous generator



and
_ 1. i
TB-- 72-1b+72- 'lc
=0 | o ' (5.32)
and
TR SR i
Y Z'aTvy bt 73 T
1 | SR
i.e. io= L | (5.34)
. v 72“ a . : - -

The change in voltage due to the short circuit is
- /3 .
e = 77 eY ~3 E, sing
The effect of the short circuit on phase a may be simulated by

applying a step voltage Aeu to the armature, with the field voltage
e equal to zero, whence from equation (5.14)

]

- 7% e, - /-% Eo sine = - pM,¢ coSB ig = (R + (A+B cosZe))ia {5.35)

eT = - (R + pLYhy
.iﬂ.
= - (R + pLY) 7 (5.36)
and
0 = (Re + pLgdip + pMgg cOSB i - (5.37)

Substituting equation (5.36) into equation (5.,35) and simplifying
yields

/f% E, simd = pMae cosBig + (r + p(A+B cos 26))ia(5.38)

where | r = .g R
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Equations (5.37) and {5.38) can be solved only by the method of

successive approximations42’4qln the first approximation, all

resistances are neglected and the equations solved simultaneously to

give
Y6 E_ (cose-cos © ) o
i = - 0 0 5.39)
o (R3B") + (R*-B"} cosZe ) (5.
and
L Maf .
ig = - "T;: cosé 1,
) Maf Eo(cose-coseo)cosa s 40)
- 'E;' +B+{A"-E")cos26 *
where 2
Vo af
Xg =wllyq - —rf—)
)(c,=mLY
Xq = qu
X
. 0
Al = 'd+_2_
X
v 0
B' = Xq +-3?

and 8, is the angle between thea and d axes at t = 0.

Applying the formulae given in Appendix VI, i, and if may be resolved
into the Fourier series

V6 E w©
o = - KT—;—%KTET [cose + ) b cos(2n+1)e]
v6 E_ cose 0
* g g+ 1 bcoszne] (5.41)

n=1




and

: respettive1y, where

b =

E

= -g —-raf N'_I_??ATBT [1 +—(l?l~ y] anOSZI'lG]
Nn=
M E_cose_(1+b) o
- ‘4? Ef o /nqg, fcoso+ J b"cos(2n+1)e] .
f _ n=1
| (5.42)
/BT - /AT

A correction for resistance is now made by multiplying- each

corresponding series for each current expression by a decrement

factor which is a function of time. The modified currents are

and

if_

where Fi(t} and
to unity at t =
to include the
obviously equal

V6 E

= - 7\"’7"7%‘13"‘ F1(t) [cose + bncos(2n+1)e]
_ n=1
/& E, cose 1 % n.
+ —— g Fz(t) [ + E] b cos2ng] (5.43)
. h=
M. e E o
6 af 0 1+b n
= 1e(t) + Fo(t)[1+ b 'cos2ne]
f(8) +7 T wwEr h 5 L

O (1+b) Fo{t)[coso + y b" cos(2n+1)6]
‘ " (5.44)
Fz(t) are undetermined decrement factors, each equal
0, and If(t) is a transient'DC component introduced
effect of the field resistance. At t = 0 Ig{t) is
to zero.

Fl(t), Fz(t) and I¢(t) may be found by substituting equations (5.43)
and {5.44) into equations (5.37) and {5.,38), expanding the resulting
trigonometric expressions, and equating the coefficients of the
corresponding terms on both sides of the equations. To ensure that
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the mathematical manipulations are manageable, the relatively small
resistances in the coefficients of the harmonic terms are neglected
but those in the DC terms are retained. This results in three

independent equat1ons with three unknowns (the mathematical
| manipulations involved are given in Append1x VIII).

| 3 M E
3 i
(Re + pLe) T¢(t) V'3 v f‘; F+ETET = O
- /% E, = Mar L(t) - /3 By Fi(t) (5.45)
B

0 =r Fp(t) +p F(t)

Solving (5.45) for the decrement factors yield

"t/Ta

Fz(t) =@

(5.46)

(5.47)




The final short-circuit current expressions then become

T "t/'l.' . o '
. 1 1 d' 1 n
i =-v6E_[{ - Je + J(cose+ b cos(2-+1)8)
o 0 TXgXH gy R0z b \ ( |

e th+ " cosenate @ (5.48)
2 0 n=1
and
Tp= g * @ Mf: Eo x:-z/;d’+ x;_ |
+ /(§1 :EE Eo [(YE;R%;YE— —E;R;;Kg)e-t/rdl+ —~¢%f;Y-](1+lEE ; bnc052ne)

//57 Mg E, cose, -t/T,
vy —E‘-:— W (]+b)(COSB + z b Cos 2n+1)e)e (5.49)

where I¢, 1s the field current existing before the fault.

For convenience in calculating the terms in the series for i, and ig,
equations (5.48) and (5.49) are summed using the formulae presented
in Appendix VI, to give

/E'EO (Fy(t) cose - Fy(t)cose )

s =Y ™ 5.50

1y X5+ X f_(Xd - qu&o; 25+ X ! )

- /f3\ Mar | e_t/TdI 1 2(Fy(t)cose-F,(t)coss )cose
R T Eo X%,

E Xq +*IX31Xq)c0528+X5

' Maf -
Ieg + Ig(t) - 'E; c0s9 iu (5.51)
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These equations are abviously more convenient than equations (5.48)
and:(5.49) when numerical calculations are to be made,

The phase currents for a terminal (1)-to-centre point short-circuit
fault are now readily obtained as '

.
[}
wy

E, (Fy(t) cose_-'rz(t).coseo)
Xd + Xq +,(Xd-Xq)c052 + X0

(5.52)

1]
Q

iy

5.5 TERMINAL (2)-TO-CENTRE POINT FAULT FOR ZIG-ZAG CONNECTION

The terminal conditions for the terminal (2)-to-centre point fault
illustrated in Figure 5.4 are

iy=0

'ib=-1.2 .
(5.53)

1C=-12

eb+ec=0

or in terms of the a, By v quantities

. 2. 1. 1.

S P S P
(5.54)
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FIGURE 5.4: Terminal (2)-to-centre point fault for zig-zag
connected generator
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and
fg=- % i+ —ic
=-0 {5.55)
and
_ o 1 . .
1Y = -73-1a+73.1b+7]3.1c
=~ 2 ' (5.56)
A2 | '
From equations (5.54) and (5.56)
i, = /7 i, y (5.57)

The o, B, v components of the voltage are

_ /2 1 ]
€« "3 -7 € - V6 &
5 _
=7 3¢ (5.58)
and
o1 ] 1
€& T V3% *7V3 et V3 &
1
=Y3 8, (5.59)
le. e =v2e (5.60)
| The change in voltage due to the short-circuit is
. 3
ae, =72 e, - '/'g Eo sing (5.61)

‘The effect of the short-circuit is again simulated by applying se to
the a-axis component of the voltage, with the field voltage es equal

to zero, Thus




9]

/?eY - /igwEo sing = -ﬁ Mas cosfie - (R+p(A+B cos 26))i (5.62)
e = -{R + pLY)iY

= (R+ pL) vZi, | (5.63)

b = (Rg + plg) ig + p Mygp CoSB 7 (5.64)

Substituting equation (5.63) into equation (5.62) and simplifying the
result yields '

3 - ' . ' .
J(;1E0 sing = pMaf coseip + [3R + p(A + |_Y + B c0526)11DL (5.65)

Equations (5.64) and (5.65) can again only be solved by the method of
successive approximation, In the first approximation, with
resistances neglected, equations (5.34) and (5.65)may ke solved
simultaneously to give

(5.66)

v6 E_(cose - cos8 )
ia{t) = - ? >
(CT+D7)+(C"-D") cosZs

M
. - af .
ig(t) 'E;' cosg 1OL

5 Maf Eo(pose - cpseo) €oso
T +0T)+(C7- )

{5.67)

b
o
il
€
—
o
]

><
1

=

—

{5.68)

[qp] po
- o
] 1}
> £
[= r~
+ <
(A
=
o

Lo ]
"

><
0

+

ny

b
o
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 and 8, is the angle between the o~ and d-axes at t = 0.

Applying the formulae given in‘AppendiXZVI, Ty and-if may be resolved
respectively into the Fourier series

/6 E o0
ia = - .C.,__‘__VC.?_UT [cose + nZ_lbncos (2n+1)e)
JE'EO cose, 4 w .
PR g+ ] eos 2o (5.69)
n=
and M E ®
ig = -{2-6 —E‘i— C"??g""ﬁ"' i1 +-(l?)- ) b"cosZne}
n=1
M E coss_(1+4b) © _
- lgr ff 0 /C?D‘ [cose+ § b"cos (2n+1)8]

f n=1
‘ (5.70)

Taking resistance into account, by introducing decrement factors as
in Section 5.4, gives the modified current expressions

6 E

= 0

LI e 11 F](t) [cose+ E b"cos (2n+1)e]

/E'Eo cos8, 1 ®
t——g— Fo(t)z + [ b'cos 2ne] (5.71)
and M E ) o N
i 1e(t) + 5 A g Fey el ], ®"coszne]
© b n=
M E_coss '
- _/g ff g (14b)F,(t) [cose +
f . .
+ E} b" cos (2n+1)e] ' (5.72)
n=

The decrement factors may be found in the same way as in Section 5.4,
After the mathematical manipulations which are given in Appendix IX,
the resulting three independent equations are '
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M
VB af 1
J'F-—‘ 3
J—Z- EO = = wHaf If(t) +1/~2 EO Fl(t) (5.73)
' yC'D" .
R Fp(t) +p 2D Fp(t) = 0
Solving equations (5.73) gives
Fp(t) = e7t/Tp
- (5.74)
] ) - i - :
Fi(t) = :d12§°:§2 [x'fgx +§d e 1]
d "o "2 “d "o "2
and _
't/T |
Le(t) = /5' e d
f 0 fe ]
Z Lf Xd+4X +X2
. ¥ 14X _+X {e -1 *
af d o "2 :
where
. VC'D’
T IR
X444X +X
(- d "o "2
Td T Ydo Y sIX IX. _ {5.76)
d" oty o
\ L
- T
Tdo = 7
f

= /C'D' - 2X,
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The final current expressions are therefore
-t/

. 3 1 1 T bPeos(2r
i,= 8 Ey Uy - ysaways) e + yxayy-] (cose + ] b cos(2n+l)e)
@ O " AgTHg Ty Ryt RgHlotay" n=1 ,

VE'EO cos @, ~t/rb

19 n |
+ e (=+ J b" cos 2ne)
X2 ¥ EXO z =1
{5.77)
and
o - -t/
e =1 +/3EMaf_ e d-]
f_fo ? o T xd+4xo+x2

M “t/1! i
; Iaf" L ! d 1 T4b o0 |
+/; . Eo[(x(5|+4xo+x2 xd+4x0+x2)e + W]UT Z? cos2ne

J/”‘ M E_ coso -t/t ®
3 "af "o 0 b n
- T Yoy (1) (cosé + ] b'cos (2n+1)e)
z f 2 * Ay n=1
(5.78)

where Ig, is the constant field current existing before the fault.

Because of the inconvenience in caTcu1ating iy and ig term-by-term,
these are summed using the formulae given in Appendix VI, to give

VE'EO (Fy(t) cose - Fy(t) cos 6 )

-i = - T LI (5.79)
o ‘Xa +‘X§ + (Xd X&)cos?é + 4X0 _
and
M ;t/T& 2(F,(t)cose - F,(t)coss, )
fe =1, +/ 3 2L E 8 L - 04 ]
f fo 2 L "o X AR Xq + xq + (xd-xq)c052s+ Xo

(5.80)

A1l the phase currents for a terminal (2)-to-centre point fault are
now readily obtained as '




3E, (F](t)cose - Fo(t) coseo)

ip = - , , - (5.81)

Xg t Xq +l(Xd-Xq)c0529 + 4X0 _
.. 3 E0 (F](t)cose - Fz(t)cos eo)‘ : | f
c Xd + Xq + (xd-xq)cosze + 4X0

5.6 DOUBLE LINE-TO-CENTRE POINT FAULT FOR ZIG-ZAG CONNECTION

Figure 5.5 illustrates a double 1ine-to-centre point fault for a zig-
zag connected generator, with the terminal conditions imposed by the
fault being

i, 1
iy = iy
i, = -1y (5.82)
e, = 0
e, +e. =0
or in terms of the ¢, B, v quantities
€ ~ /(giea "7% & - 7% €
; 0 - | - (5.83)

and

= 0 (5.84)
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FIGURE 5.5: Double line-to-centre point fault for zig-zag
' connected generator '
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i.e. i =0 | (5.85)

.Y v
o1, ] N
17-73- 1a+73- 1b+73- iC
= iy - 2i,)
73 V11 - <lp
Sin‘ce | - i, =0
and 2. 1
ia=/§%- L [NEL
=Bl (5.87)
and substituting equation (5.86) into {5.87) : *
iy = /3 (3iy)
i, =8 i, (5.88)
or . . .
iy= iy | (5.89)
and

=0 | (5.90)
The change in voltage due to the short-circuit is
_ /3 .
se = - \/12 E, sin®

With the effect of the fault simulated by a step voltage applied to
the armature, with the field voltage equal to zero
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J/%?EO sine = p Mag cose i¢ +-(R+(A+B cos 20))i,  (5.91)

and
0 = (Re + pLedig + pMyg coso 1, (5.92)
As before, equations (5.91) and f5.92} are solved using the.méthod of

successive approximations. The first approximation with all
resistances neglected, gives

/E'Eo(cose - cosB )

d @ " T TGHHTHGT-HTJeos2e (6.93)
an
M
ig = - —Ef. cose 1,
M. ¢ Eo(cose - coseo)cose
= /5 T, TG F{G"-H")cos 28 (5.94)
where
G' = X,
d
H' = Xg (5.95)
Mz'
Xy=olly - .€i ) -
f‘
Xq = lq

Applying the formulae given in Appendix VI, i, and i may be résolved
into the Fourier series

/6 E

iy = - GT_¢*7%THT (cose + E] b" cos (2n+1)6)
n=

| 3 Eocose0 ]

¥ g g+ 1" cos one)

(5.96)
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and ‘
‘ M E
if =£Z€ f: A /G'H' (a+ 52 E b cos2ne)
M (1+b)cos®
- ig: _Ef “““VGTHT—Q {cose + z b cos(2n+1) )
(5.97)
where
p o A - /G
YA + /G°

Introducing a decrement factor as a correction for the resistances,
gives the modified currents

_. B E
i, T T F1(t) {cos6 + nél b"cos (2n+1)e)
' /E-EOCOSGO ] o . n
+ W Fz(t) ('2' + nZ] b cos 2n8) (5'98)
and
/& M £ E .
fe=Ig(t) + 2 -f_f e Fp(t) (14 42 [ b"cos (2n+1)8)

M (14b)coss
/6 af
- = f E0 T ° t)(cose + E b cos(2n+1)e)

f n=1
' (5.99)

The decrement factors in equations (5.98) and (5.99) are determined
in the same way as described in Section 5.4, After the mathematical
manipulations given in Appendix X, the resulting three independent
equations are '
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(Rf + PLf) If(t) + 12‘6- Ron [ ! =0
VENT (t) +7 3 -
7 By = -wMyp Ie(t) +/ 5 Ej Fy(t) (5.100)
| ETHT
RF,(t) + p TFZ(‘!:) =0
Solving equation (5.100) gives
Fplt) = et/%¢
XL+ X X, - X! -t/t!
d*% AKX d
Fi(t) = [ e - 1] {5.101)
1 Xg ¥ %, Xyg+vXy .
and
M . -t/7! .
3 af 1 d |
Ie{t) = //-‘E - [e - 1] |
f Z "o Lf Xd Xé _
VRN T ey SR B
S 7 el Xyt
where
. L E
¢~ "uR
o XC'I+X2
R |
(5.102)
L |
f |
T =
do F;
XZ = 'G'H'




The final current expressions are obtained by substituting equation
(5.101) into equation (5.98) and equation (5.99) to give

-t/T&

: 1 ] 1 N
i = -v6E [{ - e + ] {cose+ Y b cos(2n+l)e)
o o "Xy KatRy R nzl

Ve Eocos o -t/TC

f—y—— e (% + Z p" cos2ne) (5.103)
2 n=1 ‘
and
-t/
fom 1 43 Mg e 9.
f v} z ALf 'Xd+Xé
M ‘t/'l." : oo
3 Taf ] ] d 1 1+b n
Y E_{( - Je + 1(1+ } b cos2ne)
+7 T T o KR, XKy R SS
M EAcose =t/ e
-3 AL 20 (ub)e  © (cose + I blcos (2n+1))
f 2 n=1

(5.104)

where Ig, is the constant field current existing before the fault.

Summing equations (5.103) and (5.104), term-by-term, using the
- formulae given in Appendix VI, yields

/6 E_(F,{t)coss - F, (t)coss )
i = 9o 1 : g (5.105)
q -7 X& + Xﬁ.+ (X&-Xq)cosZe .

and " -t/1)
af

el 2(F,(t)cose-F,{t)cose_)cose
f fo Z 1 0 Xd+xé X * Xq_+ (Xé-Xq)cosZe

£ d
(5.106)

A11 the short-circuit currents for a double line-to-centre point
fault are now readily obtained as




‘ o B P

2 EO(F](t)cose-Fz(t)coseo)

Xé + Xq + (X&-Xq)COSZB

EO(F}(t)cose - F2(t)coseo)

in = - —
2% XY FXF (XK JeosZo

) ZEO(FT(t)cose - Fz(t)coseo)

a i
Xé + Xq + de-quCOSZB

(5.107)

EO(F](t)cose - Fz(t)coseo)
i, = T -
b Xy + Xq + (XéfdetosZe

E,(F,(t)coso - Fa(t)coseo)

i.= T
C Xa + Xq + (Xd Xq)cd§26

5.7 LINE-TO-LINE FAULT FOR AN EDISON DELTA CONNECTION

Figure 5.6 illustrates a line-to-line fault for an Edison-delta
connected generator, with the terminal conditions imposed by the
fault being ‘

T=7a~1b

1c=ib

(5.108)
e, = 0
eb+ec=0

or in terms of the o, B, y quantities
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.

FIGURE 5.6: Line-to-1ine fault for an Edison-delta connected
generator
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{5,109)

(5,110)

(5.111)

' {5.112)

{5.113}
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and —

= /8 i (5.114)
or T
ig=V3i, | (5.115)
and
_ 1 1
lg=~vz 1yt 72 1¢
1
= 7y (-'[b + ‘ic)
ig=0 C (5.116)
The change in voltage due to the short-circuit is
ey = - /(glEo sino (5.117)

Simulating again the effect of the line-to-line fault by a step
voltage Ae , applied to the a-axis component of the voltage, with the
field voltage ep equal to zero:

—

/h%Eo siné = pM,e cose ip + (Rp(A+B cos 20))i,  {5.118)

0= (Rg + plelip + pMyp cose i, (5.119)
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Equations (5.118) and (5.119) are linear differential equations with
periodically time-varying coefficient, which can only be solved by
the use of successive approximations. With all resistances neglected
in the first approximation, equations (5.118) and (5.119) are solved
simu1taneou51y to give

Ve E, (cosé - coss )

(5.120)

'ia = - (MI+NI)+(MI“N')C0528
and : g
A Maf 5§
1f = - —[-f- Ccos a
"M E (cose - €0s6_)cose
= F A TS {5.121)
f. ,
i
where M' = Xy
N' = Xq | |
* M2 . (5.122)
X' = af
d*= w(Ld - -'EF‘)
Xq = vlq

Applying the formulae given in Appendix VI, i, and is may be resolved
into the Fourier series

VB E,
i, = MT_VMTNT (cose+ nz b"cos (2n+1)6)
/6 E, cose, (1 § n
S LA + ) bcos2ne) (5.123}
and
3 af Eo (1+b) ¢ .n
ig="7% T, e (U 5~ 21 b cos2ne)
. nZ
M E cose  (1+b) ®
- /-% ff o /M'ﬁ' (cose + § b"cos (2n+1)6 )
f _ n=1

(5.124)
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where

_.‘/Ml_‘/Nl
b= AT

Introducing a correction for the resistances is made by mﬁ]tiplying‘
each corresponding harmonic series by a decrement factor which is a
function of time, gives

V6 E '
i = - MT—VM'?-NT‘ F](t)[CDSG + Z b C05(2n+]) 1

/B E €058, ® p
+ '"“7$FTTr"' Folt) [+ y b cos2ne] (5.125)

n=1

and

-ty
H

' M E
3
I¢(t) +v/;'1 —EE MT;7§TNT Fi(t) [T+ 1+b { b cos(2n+1)e]

/3 Maf Eocose
-1/-2- T W (T+b) Fz(t fcose + z b COS(ZH‘H)G]

f
(5.126)
The method for obta1n1ng the decrement factors is described in

Section 5.4. After the mathematical manipulations given in Appendix
XI, the resulting three independent equations are

& M .
(Re + pLe) Lelt) + = R “fi“:om%ww= 0

e _ '
3By = e Lg(t) 4/ 5 Eg Fplt) (5.127)

RFo(t) + p —— '” Fo(t) = 0

Solving equations(5.127)

Fz(t) = e't/'fe
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and | | Lyt
XL+X X=X -t/7!
‘ d "2 d 'd d
Fel(t) = [y e + 1]
1 Xd+x2 X3+ %5 .
(5.128)
and ‘
| Ly /3 b 1Y
ARG T el s> AL
f d "2 .
5B RN U
= : e -
where |
‘ —
' Te®™ T R
\ X'+Xy
T -
d~ do Xd+5(2 _
(65.129)
7! - ﬁ
do Rf
XZ = ’M'Nl
The final current éxpressions are
' -t/ o
: 1 1 d 1 n
i =-BE [{gry - e + y=y) (cose + ] blcos(2n+l)e)
- V6 E_cose -t/ o
+___§?_° e Clp+ 1 b"cos2ns) | (5.130)

and



T

-t/
3 Maf e d _
fo 2 o Lf xaixz

1

M -t/ o
+’/%1'1§§ o [(?Elxz ) Rdlxz) o0 RE}YE] (1 52 z]bnc052na)
n=

2 M_. E_ coss -t/t o
) %- ff‘ 2= (l4b)e  © (coso + ] b"cos (2n+1)e)
f 02 =1

(5.131)

where Ig is the constant field current existing before the fault.

Summing equations (5.13¢.) and (5..131) term-by-term, using the
formulae given in Appendix VI yields

V& E_ (F,(t)cose- F (t) cose
i, = - — ( ;( ) - 2(t) €os6) (5.132)
a7 q + d-Xq) cosZe

. "t/TI
o 3 Mg e d_y . 2(F,(t) cose -_Fz(t) coseo)cose
f fo "4 ‘E;f 0 Xy, X& + Xq + (X&-X 10528

2
(5.133)

A1l the short-circuit currents for a line-to-line fault are now
~readily obtained as
3E0 (F](t) coso - Fz(t)coseo)

Xd + Xq + (Xé*Xq)cosZG_

i = -

2 Eo(Fl(t) cosp - F2(t) coseo)

a Xd + Xq +_IXd Xq)cosZe

(5.134)

: EO(F](t) c0s8 ~ Fz(t)cosao)

i . T
b Xy T X, ¥ (g - X )cosze

E0 (F](t)cose - Fz(t)coseo)

i.= Y T
¢ Xd + Xq + (Xd-XQ)cos2e
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5.8 SUMMARY AND COMMENTS

Analytical solutions for the short-circuit fault conditions in
unloaded zig-zag and Edison delta connected generators have been
achieved by utilising modified Clarke transformations, together with
a successive approximation technique, For this purpose, the flux-
linkage equations for an ideal machine were written down and a
modified Park transformation was applied to these equations, so that
flux-Tinkage equations were dbtained in a d-q fixed axis reference
frame, Then flux-linkage/current equations are expressed in an
o, B moving axis reference frame using the relationship between
o,B, components and d,q components. Alternatively, the flux-linkage
equations could have been expressed directly in the @, 8 moving axis
reference frame, uSing the relationship between direct-phase
quantities and o, 8 quantities, although this makes the trigonometric
manipulation longer. The voltage-current equations in terms of «,B,y
components were obtained from the flux-linkage equations by utilising
Faraday's voltage law. Various fault conditions for unloaded zig-zag
and Edison-delta connections have been simulated by application of
the superposition principle. When terminal constraints for the
varijous short-circuit cases were expressed in the form of a B,y
components, and substituted into the voltage-current equation, a set
of ordinary linear time-varying differential equations for the
armature and field currents resulted. Although these are linear and
ordinary, the coefficients are periodically time varying. A direct
analytical solution is not therefore possible and they can only be
solved by the method of successive approximations. On this basis,
analytical expressions for the initial short-circuit currents were
found by neglecting the resistances of both field and armature
circuits. The effect of resistances was subsequently introduced
through decrement factors for both the field and armature currents.
It was assumed that the even harmonics in the field current and the
odd harmonics in thearmaturecurrents had the same factor, and odd
harmonics ih the field current and even harmonics in the armature
currents also had the same decrement factors., Modified expressions .
were obtained by re-writing the current expressions to involve these
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‘factors, as determined by substituting the modified current
expressions into the original differential equations, and equating
the corresponding terms is on the two sides of the equations. When
doing this, relatively smaill resistances appearing in the
coefficients of the harmonic térms are neglected, although those in
the DC terms are retained. |

A ciose examination of the armature and field current expressions
shows that the armature currents contain a fundamental frequency
component together with odd harmonics, while the field current
contains a DC component together with even harmonics. As the
absolute value of b is less than unity, each successive harmonic is
less than the preceding one.

Since the process outlined above requires long and tedious
mathematical manipulations, it does not appear to be a practical
proposition in the modern computer age. However, harmonic production
and the effects of initial rotor position on the short circuit
. current can clearly be seen in the analytical expressions, and the
methods also provide simple formulae for the short-circuit currents.

It is interesting to observe that the g-axis components of the
armature currents under various short-circuit conditions for a zig-
zag or Edison-delta connected generator are always to zero,




CHAPTER 6

- EXPERIMENTAL PROCEDURE USED WITH THE
VARIOUS GENERATOR CONNECTIONS AND RESULTS

Any armature winding re-connection not.only affects the dynamic and
steady-state performance of the generator but also changes the
available power output, the Tosses both in the rotor and the stator
and the efficiency, as well as the voltage and current waveforms both
in the field and the armature windings. These quantities were
determined on a test machine, the name-plate details of which are
given in Appendix I.

6.1 AVAILABLE POWER OUTPUT

Based simply on the voltage and current rating of the armature
windings, the output available from the experimental machine with its
rated voltage E of 127 V/ph rated current I of 7.8 A/ph and rated
power factor cos¢ of 0.8 are presented in Table 6.1 for the different
winding arrangements under consideration, As the table clearly
shows, the power output is considerably reduced by any re-connection.,
A zig-zag connected generator provides the largest available power
output, while 1ine-to-neutral loaded generators provide the lowest
available power output among the single-phase connections for 3-phase

generator,




FIGURE 6.1(a) Zig-zag connected : FIGURE 6.1(b) Edison-delta
generator : connected generator

+_*

L FE—

FIGURE 6.1(¢) Line-to-1ine loaded FIGURE 6.1(d) Line-to-neutral
generator loaded generator

FIGURE 6.1(e) Star connected 3-phase generator
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Star Lig-Zag Edison- Line- Line=-
Connection {Connection Delta to- ] to-
: Connection | Line Neutral
: Loading Loading

a 3EI coséd 2E1 cos¢ | 1.5E1 cosd 3EI cosd EI cos¢

b 2377W 1585HW 11894 1371W 7924

TABLE 6.1: Avaitable power outputs of re-connected generator:
a) Mathematical expressions '
b) Numerical values

6.2 VOLTAGE WAVEFORMS

"~ Any user of electric power normally desires a sinusdida1 voltage
waveform free from harmonic distortion. 1In practice however the
voltage waveform supplied by a power utility may sometimes contain a
certain amount of harmonic distortion. Some of the major effects
resulting from the presence of harmonics in a power system are44’45:

a) Capacitor bank failure, from dielectric breakdown or reactive
power overload

b) Interference with ripple control and power line carrier systems,
causing mis-operation of systems which accomplish remote

éwitéhing, load control, and metering

¢) Excessive losses in and heating of synchronous and induction
machines o

d) Over-voltages and excessive currents on the system due to

harmonic resonance




Rk

‘e) Dielectric breakdown of insulated cables resu]twng from harmonic
over-voitages on the system '

f) Inductive interference with telecommunication systems
g} Error in induction kWh meters

h) Signal interference and relay malfunction, particularly in solid-
state and microprocessor control system

i) Interferences with large motor controllers and power excitation
system

j) Mechanical oscillations of synchronous generator and induction
motors

k} Unstable operation of firing circuifs based on zero voltage
crossing detection or latching. '

Voltage waveforms for both the field and the Toad are recorded in
Figures 6.2<6.10 for the expebimenta1 machine supplying rated
armature current at rated voltage and rated power factor, Clearly,
these waveforms contain considerable harmonic'distortion when the
generator winding is re-connected in any abnormal configuration. Any
re-connected armature sets up a pulsating mmf, which may be resolved
into two contra-rotating components., The component in the opposite
direction to normal rotation induces a second-harmonic component in
the field, which produces further harmonics across the air-gap by
inducing a third harmonic in the armature voltage. Both armature and
field voltages contain an infinite series of progressively decaying
harmonics - " Harmonic production in the field and

armature currents can clearly be seen in the ana?yt1ca1 expressions
for the currents which were obtained in Chapter 5.
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FIGURE 6.2:

Load voltage (V]) for a zig-zag connected generator
supplying rated load (V1 is the voltage of the first
load)

FIGURE 6.3:

Load voltage (V,) for a zig-zag connected generator
supplying rated load (V2 is the voltage of second
Toad) -
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FIGURE 6.4: Field voltage for a zig-zag connected generator
' under rated load



'FIGURE 6.5: Load voltage for an Edison-delta connected
generator supplying rated load

FIGURE 6.6: Field voltage for an Edison-delta connected
generator suppliying rated load
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FIGURE 6.7: Load voltage for line-to-line loaded generator
supplying rated load

FIGURE 6.8: Field voltage for line-to-neutral loaded generator
supplying rated load
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FIGURE 6.9: Load voltage for line-to-neutral loaded generator
supplying rated load

FIGURE 6.10: Field voltage for Tine-to-neutral loaded generator
. supplying rated load ‘




6.3 LOSSES

"Losses in a generator are very important, since they determine the

efficiency and heating of the machine, and also appreciably influence
its operating cost. The various losses in a synchronous generator
may be summarised as: '

a) Copper losses which occur in the armature and field windings

D) Core losses which comprise eddy current and hysteresis losses in
the pole face, teeth, and stator core

¢} Friction and windage losses which are due to bearing and brush
friction, and to the power required to circulate the cooling air

d) Load loss attributed to the armature leakage flux, which causes
eddy current and hysteresis heating in the iron surrounding the
armature conductor, '

There are four methods#6 available for measuring the losses in a
synchronous machine: '

a) Separate-Drive Method
b) Electric-Input Method
¢) Retardation Method

d) Cooler Method

In the present investigation, the separate-drive method was used to
determine the losses of the experimental machine, and the technique
is explained briefly in Appendix IlI.

The sum of the armature copper losses, the iron loss and the friction
and windage losses of the drive motor is shown in Figure 6,11 as a
function of the driving motor speed, and the sum of the friction and
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‘windage loss of the experimental generator is shown in Figure 6,12 as

a function of its speed. The experimental generator core loss when’

the generator is on no load at rated speed is shown in Figure 6.13 as
~a function of the field current. ‘

The armature copper loss for the various connections of the
experimental machine with rated armature current and rated voltage
are given in Table 6.2, The total losses of the generator were
determined using the method explained in Appendix III and these are
shown in Table 6.3, for the various connection and rated voltage and
current conditions. ' o

Star lig-Zag Edison- Line- Line-
Connection | Connection| = Delta to- to-
- Connection Line Neutral
Loading Loading
a 3R12 3R1Z 1.5R12 2R12 RIZ
b 14.96W 14.96W ' 7.48W 9.974 4._98W

TABLE 6.2: Armature copper losses for various generator connections
a) Mathematical expressions _
b) Numerical values

6.4 EFFICIENCY

The efficiency of the generator is defined as

P
Efficiency = out

inp
which can also be expressed in terms of power output and losses as
p .-
Efficiency = out P1np P1osses

Pout ¥ P]osses P1‘np

The generator efficiencies for the various armature connections were



124

5001 _ s

4001

3001

2001

100} o

FRICTION AND WINDAGE LOSSES , W

400 800 1200 1400
SPEED , rpm

FIGURE 6.12: Variation of generator friction and windage loss
with speed




125

1
250 1 .
| O
it | | 0
= 20.0 | NI
-
7]
{aw]
= 150+ 5
(W]
o
()
— (0]
X 1001
=3 o
o
Z .
w504 ©
O
10 20 30 40 50

FIELD CURRENT, A

FIGURE 6.13: Variation of generator core loss with excitation
current




126

determined at rated armature current and voitage and the results are
giveh in Table 6.3. Clearly, the generator efficiency is reduced by
re-connection, with the line-to-neutral loaded generator having the
lowest efficiency among the single-phase connections,

_ Star . lig-Zag Edison- Line- - Line-
Connection | Connection Delta to- to-
Connection Lina Neutral
Loading Loading
980 1002 918.5 962.8 792.5
71.0 57.8 58.0 58.0 50.8

TABLE 6.3:

Total losses and efficiencies for the various generator
connections at rated voitage and rated armature current
and at rated power factor
a) Total losses, W
b) Efficiencies, %
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CHAPTER 7

CONCLUSIONS AND SUGGESTIONS

7.1 CONCLUSIONS

The armature windings of a 3-phase genérator are often capabie of
being connected in various configurations, in order to pkovfde a
single-phase supply for standby or emergency purposes. In this
thesis, the different methods of obtaining a single-phase supply have
been examined, and performance comparisons between these options have
been made on a 3 kVA microalternator., The different single-phase
connections investigated were:

a) When the neutral point of a generator is unavailable and line-to-
line loading is the only possibility.

b} When the neutral point of a generator is available and both line-
to-line and 1ine-to-neutral loading are possible.

¢} When all the armature terminals are available and Tine-to-line
loading, line-to-neutral loading, zig-zag connection and Edison-
delta connection all become possible.

As a result of the work presented in this thesis, the following
conclusions can be drawn.

1. A re-connected generator always produces a negative-sequence
component in the armature current. In every possible single-
phase connection the magnitude of this component is always equal
to the positive -sequence component. This is because any single-
phase connected armature sets up a pulsating mmf which may be
resolved into equal magnitude contra-rotating components.




The available power output of a generator is considerably reduced
by any re-connection of the armature windings. This reduction is
smallest in the case of a zig-zag connection and greatest for
Tine-to-neutral loading.

The current in the centre line of a zig-zag connected generator
is very small when the two lToads are identical since the two load
currents are almost equal.

The unbalance factor for current is always independent of the
10ad for every s1ngle ~-phase connect1on, since the magnitudes of
positive and negat1ve -sequence components of the armature current
are equal,

When rated current flows at rated voltage, the armature copper
losses in a conventional star-connected and a zig-zag éonnected
generator are equal, with this loss béing clearly lower in the
case of line-to-line loading and lowest for line-to-neutral
lToading.

The efficiency of'the'generator is reduced by armature winding
re-connection. When rated current flows at rated voltage, the
reduction is greatest in the case of line-to-neutral loading and
smallest in the case of line-to-line loading,

Based on the theoretical and experimental results provided in this

thesis the following comments can be made:

a)

Symmetrical components are easy to apply to unsymmetficaT fault
and unbalanced load conditions, since they require neither long
and tedious mathematical manipulation nor computer programming.
In addition, the parameters required for the analysis are readily
measured by three straightforward tests, However, the accuracy
of predictions based on this form of analysis are often poor,
since the voltage and current waveforms both contain harmonic

~components. Nevertheless a symmetrical component model gives the
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magnitude of the negative-sequence component in the armature
cUrreht, and enables the temperature rise within the machine and
eddy durrent losses within the rotor body to be assessed. The
model also provides mathematical expressions for the unbalance
factors of both current and voltage.

A phase model for a generator can predict accurately both the
steady-state and the transient performance of the machine during

‘either balanced or unbalanced toading, as well as symmetrical and

unsymmetrical fault conditions. To obtain the numerical results
requires a digital computer simulation, with the consequent
possibitity of numerical instability. Another disadvantage of
the phase model is that the measurement of the machine parameters
which are involved is a time—conéuming process, In addition to
this, the model requires the inversion of a periodically time
varying inductance matrix at each step of the numerical
integration, which clearly increases the computation time, l

An o, B8, vy component model involves many questionable-

simplifications throughout the long and tedious mathematical

~manipulations which are involved in its development, On the

other hand, harmonic production both in the field and the
armature currents can be clearly seen in the analytical

“expressions which are obtained. The model also provides simple

formulae for the time constants of the various short-circuit

currents.
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7.é SUGGESTIONS FOR FURTHER INVESTIGATIONS

The investigations reported in this thesis have raised several
interesting points, which could not be investigated further in the
time available, '

1-

In the deveiopment of the phase model for the generator, severa}
simplifying aséumptjbns were made, Saturation was neglected, with
the open-circuit characteristic of the generator assumed to be a
straight-]ine‘within the operating region. If it is desired to

~inctude the effect of saturation, Smith and Snider47 have

described a technique which allows the winding inductance

~variations with machine currents to be detérmined, and thereby

enables the complete nonlinear inductance matrix of the machine

" to be specified. Saturation effects may be accounted for in the

prediction of the transient performance of a generator by
employing the techniques described by Smith and Snider, although
the computation time required for the investigation of any given
situation will necessarily be increased. '

It was also assumed in the development of the phase model that
the armature phase mmf is sinusoidally distributed which led to
no harmonics higher than the second appearing in the angular
variation of the machine inductances. However, it is known 48
that the winding mmf and air-gap permeance harmonics may have a
significant effect on the winding inductances. Smith and
sniderld have shown that space harmonics may be included in a

generator model and their approach may clearly be used with the

- model developed in this thesis.

1t has been shown39-30,51 ¢pat synchronous machine models
employing only one damper winding on each axis may not be
adequate for representing machine performance over a wide range
of operating conditions due to eddy currents in the rotor
stfucture. For more accurate predictions, the phase model
developed in this thesis may need to be extended to include the
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damping effect of the rotor iron, by introducing multiple damper
circuits on each axis.

'Temperaturé changes inside the generator may have a significant

effect on its performance, since under no-load conditions the
temperature is typically 20°9-30° whereas under ‘full-load
conditions it can exceed 120°C. The corresponding increase in
the resistance of the generator windings will affect both the
steady-state operating point of the system as well as the
transients which follow the application or rejection of 1oad.
52 investigated the effects of temperature
changes on generator performance. Similar investigation can also
be carried out using the mathematical model described in this

thesis.

Certain pfqtective devices in an electrical power system work on

the basis of the presence of negative-sequence current in a
supply line.. Since both a zig-zag and an Edison-delta connected
generator produce negative-sequence current, which may clearly
cause problems, this should therefore be a subject for further
investigation,

Generators are probably the most expensive item of pTanf in an AC
power system. Winding re-connection will cause an increased
temperature rise within the generator, which may reduce the
expected life of the insulation. Protection of zig-zag or
Edison-delta connected generators against overheating may thus be
a subject for investigation.

Since standby generators are used in a wide variety of

"~ applications, it is important that the harmonic content of their

output voltage waveforms should be minimized and that they meet
any relevant industrial standards. Moore®3 has examined the
possibilities of harmonic reduction in star-connected standby
generators from & design point of view, Similar consideration
should be given to generators which may operate as standby
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generators in either a 2ig-zag or an Edison-delta connection,

Within the Tast few years, the advent of high-speed computers has
allowed finite-difference and finite-element methods to be used
extensively in the solution of field problems in-electrical
machjnes; The magnetic field distribution of a zig~zag or an
Edison-delta_connected generator may be plotted and the eddy

~currents in the rotor structure may be investigated using these

numerical techniques. The temperature distribution within a re-
connected generator, with particular reference to any potential
hot spots, may be a subject of further investigation,

The phase model developed in this thesis could readily be
extended to include the excitation ¢circuit, and the automatic
voltage regulator (AVR). Transient and steady-state pefformance
characteriétics, the effect of the AVR parameters on the overall
stability and the optimisation of the transient performance
should also be the subject of further investigation,

Eddy currents in the rotor structure of a synchronous generator
affect both the transient and the steady-state performance.
Although this effect was neglected in the development of the
phase model, Rogers and smith5% have shown that eddy current
effects can easily be included by an application of Green's
functions. The model developed in the thesis can similarly be
extended to include the effect of eddy currents.

The power output of a re-connected generator is reduced by the
nature of the’connection'itself, as well as the increased losses
which arise consequently from the re-connection. Cleér]y the
cost of the energy supplied by a re-connected generator should be
a subject of investigation. '
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APPENDIX 1

MEASUREMENT OF D-Q PARAMETERS

1. THE EXPERIMENTAL MACHINE

Conventional tests were performed to determine the parameters of a 3-
phase salient-pole synchronous generator with the following name-
plate details: ‘

Rating u ’ ‘ 3 kVA, 0.8 pf
Phase voltage 220V

Speed i 1500 rpm
Number of bo]es 4

Frequency _ , 50 Hz

Field excitation for rated current at rated voltage 7.8A

The generator was mechanically coupled to a large 1500 rpm shunt-
connected DC machine, which could act as a prime-mover or a load as
required,

2. RESISTANCE MEASUREMENT

A Kelvin double bridge was used to measure the armature phase

resistance, At an ambient temperature of 20°C the mean of the three
phase resistances was 0.074%, Since the effect of 50 Hz current is
to increase the effective resistance by about 10%55, the armature
phase resistance was assumed to be 0.0820 (0,005 pu) for calculation
purposes, ‘ '

The field resistance measured using a sub-standard DC voltmeter and
ammeter, was found to be 4.23¢ (0.259 pu), again at 20°C.
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3. REACTANCE MEASUREMENT

3.1 Direct-axis Synchronous Reactance (X4)

The d-axis synchronous reactance X4 was obtained from both open-
circuit and short-circuit tests45, as well as from a slip test?,
The values of X4 determined by these two tests were:

From open and short-circuit tests: 21.30 /phase (1.31 pu)
From slip test: 20.8¢ /phase (1.28 pu)

The close agreement between these figures indicates that a reasonable
value for X4 is 1.30 pu.

3.2 Quadrature-axis Synchronous Reactance (Xq)

The ‘q-axis synchronous reactance was obtained from both a slip test 26
and a maximum-lagging-current test96, The values of Xq'determined by
these two tests were:

From the slip test: 12.92 /phase (0.79 pu)
From the maximum-lagging-current test: = 12.32 /phase (0.77 pu}

The close agreement between these figures indicates that a reasonable
value for Xq is 0.78 pu.

3.3 Armature leakage Reactance (Xa)

The armature leakage reactance of a synchronous machine is extremely
difficult to measure and it is usually assumed to be equal to the
Potier reactance. This latter reactance, as determined from open-
circuit and zero power factor rated-current characteristics, was

obtained as 0.05 pu.
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3.4 Direct-axis Magnetising Reactance (X.4)

The magnetising reactance of the d-axis is

Xmd = X4 = X3

giving é value for X,4 of 1.25 pu.

3.5 Quadrature axis Magnetising Reactance (Xmg)

The magnetising reactance of the g-axis is

of 0.73 pu.

~giving a value for xmq

3.6 Direct-axis Transient Reactance (Xg)

The d-axis transient reactance was determined from the transient
current waveform following a sudden 3-phase short-circuit applied to
the armature operating on open~circuit and at rated speed, The d-
axis transient reactance is the ratio of the open-circuit armature
voltage to the current obtained by extrapolation of the envelope of
the alternating component of the transient current wave to the
instant of the application of the short-circuit, neglecting the rapid
variation of current during the first few cycles. The d-axis
transient reactance is

X, = E
477

= 57.7V - 7.150 /phase (0.44 pu)
8A '
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3.7 Direct-axis Subtransient Reactance (Xj)

This parameter was measured by connecting two phases of the
experimental'machine fn_series and applying a single-phase voltage
across phem. With the rotor position adjusted until maximum
deflection is indicated on an ammeter in series with the short-
circuited field winding, the d-axis subtransient reactance is

w oo v
X4 2 1
max

19v
73 1A = 3.092 /phase (0.182 pu}

3.8 Quadrature-axis Subtransient Reactance (Xa)

This was obtained in a similar manner to x;, except that the rotor
position was adjusted until minimum deflection was indicated on the
ammeter in the field circuit. Under these conditions the g-axis

‘subtransient reactance is

n V
X L
q _ 2 Imw‘n

- - 11.99/phase (0.62 pu)

L] *

3.9 Negative-sequence Reactance (X,)

To obtain this parameter the field winding was short-circuited and
the rotor driven at synchronous speed. Balanced 3-phase voltages
were applied to the armature so that a constant amplitude rotating
armature mmf was produced in the direction opposed to the rotor
rotation, The negative-sequence reactance is then '
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¥
v 31

= _S0A - 7 20 qa/phase (0.44
Y 3 4A /p ( Pu)

3.10 Zerc-gequence'Reactance (Xo)

This test was performed with the three armature windings connected in
series, the field winding Shdrt-circuited and the rotor driven at
.synchronous speed with a single-phase voltage applied to the series-
~connected armature windings. The zero-sequence reactance is -

= 1.50 2 /phase (0.09 pu)

I

Yo <

>mH
=Z .

4. TIME CONSTANTS (Tgo, Tg» Ty)

The d-axis open-circuit transient time constant Téo is measured by a
- conventional load rejection test45. The d-axis time constant Ty and
the d-axis subtransient time constant T; are determined from the
oscillogram of the short-circuit armature current recorded after the
application of a symmetrical short-circuit at the terminals. The d-
axis time constants are ' '

Td; = 0.9 sec
T

Te
d

0.28 sec
0.07 sec
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5. SUMMARY OF _EXPERIMENTAL MACHINE PARAMETERS

X =1.30 pu
Xaqg = 1425 pu

Xq = 0.73 pu
xaq = 0.73 pu

X =0.44 pu
X; = 0.184 pu
= 0.632 pu
Xo . 0.09 pu
R = 0.005 pu
Reg = 0.259 pu
Tago = 0.9 sec
Tq =0.28 sec

Tq = 0,07 sec




13

APPENDIX II

CALCULATION OF PHASE PARAMETERS FROM. D-Q PARAMETERS

In order to employ a coupled-circuit approach in the accurate
prediction of the performance of_a-synchronous machine,_it is
necessary to know the relevant parameters of the machine model.
Although phase model parameters may be'measured by ballistic
| techniqdes47’56, the measurement of d-q model parameters is far
quicker and the results obtained may subsequently be used to
determine the phase model parameters. This was the approach followed
to establish the parameters for the experimental machine,

The assumptions made in deriving transformations between d-q and
phase model parameters are '

a) The second-harmonic component -of the self-inductance of an
armature phase is 0.8 times that of the phase/phase mutual
inductance in the phase coordinate reference frame. Although
application of Park's transformation to the phase coordinate
reference frame yields no time-varying coefficients in the d-q
reference frame when the two inductances are assumed to have the
same magnitudes, it has been shown®/ both thearetically and
experimentally, that this assumption is in fact far from valid.

, q
is equal to the direct-axis short circuit sub-transient time

The quadrature-axis short circuit sub-transient time constant T
constant T358.

The d-axis damper/d-axis armature turns ratio is unity. The
actual ratio is not however critical, since although the actual
damper parameters may be incorrect, their. referred values, mmf
contribution and power dissipation will all be correct5®,
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~d) The q-axis damper/q-axis armature turns ratio is also unity.
The- arguments of (c) again apply here. '

1. PARAMETER RELATIONSHIPS

The ?e1ationships given below may be found in any standard text
book . “Reactances are in per-unit and time constants in second.
A bar.above its symbol denotes a per-unit value.

1. Xd - Yﬁd * Xa
T! X X
d md " f
2. X, =X =X, +
d d idO a xmdﬂrf
Té Tg Yﬁd Yf ka

>d
1]
Q..><

=X, +
a " Xog%e * Xna¥kd * ¥elkd
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9. T = (X, , + Ydef )
0 ug Ry kA gy
‘ 16. T" =_____]___ (Y YI't’ld YaY )
| S d 5oRyd kd 'R' X. + % X +XY

md”a md" f




2. CONVERSION EQUATIONS -

The conversion equations developed below are_a11 derived from the

2.1 D-axis Armature/Field Turns Ratio

The per unit field self-reactancg as defined by Rankin69-61 js

~ Ny2 X
=3¢ d 44
LR A el &

N
where ﬁg is. the d-axis armature/fieid turns ratio and Z is the base

impedan%e given by the ratio of rated phase voltage to rated phase

currents.,
Therefore Nﬂ =/ -%‘ ?ff ‘Z
f 44
From relationships 1 and 2 df Appendix 1]
- 2
And
R o
d ~ “d

and from relationship 7

Xa4 = Tgo ®o Rag

where w . is the rated angular supply frequency.

0
Hence.

2
Nd_ﬁ X%
" '3-‘

&0 Yo R44 (RH'XE)

|
|
|
|
|
|
|
basic relationships defined in the previous section.
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2.2 Phase Parameters (accessible windings)

From relationships 14 and 15

From assumption a

Mz =1.25 Lz

From relationships 14 and 17

From relationship 17

Lpo =5 Xy + oM,
From ré]ationship 7

Lgg = T(Iiol Re

Ynd = % (;Q) ;% Me

-t




-
Therefore M = 12; (Ng) T‘”—E ¥md
Ry = LR

2.3 D-axis Damper Winding Parameters

From relationship 3

_‘ X X, (F'-X.)
X, = md™f ‘"d "3’
kd - Rds - Xee(KgXy)

Yekd = kd * *nd

.3 1,2 o755
Rd 27 (7)°
Therefore Lo = 2 (NS) Z"-(kkd
5 3Ny "
0
Assuming that all the mutua) reactances on the d-axis are equal
Ny w M
=3 ,.1y 70 '4d
-xmd 7 (WS‘) 7
' 2 s, 2 Xing
ence _ Md K] NT wo
From relationship 3
o TaTy %y




From relationship 9.

Therefore
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2.4 Q-axis Damper winding Parameters

From relationship 5

Hence

Therefore

Y'dY
Rd-__TT_" (Ryq + nd *
k - _—
"o 'do A g’ Xf
N
2 M52
Raq =3 (—N%) Riq -
N
Mg5 = (ﬁf‘) M14
g - (X2X,) ¥,
Yﬁq+¥; - Yﬁ
Ykkg = Xkq * *mg
3 N2 éoles

N ZX
2 ,76:2 ° "kk
N, 6 M
qu:%(‘:;)‘gzﬂ
N, ZX
Mq=§(wf]§)ﬂ_m
o
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u "
‘ ) - Tq= T4
From relationship §
%
Too= % Ta
q
oL 66
‘ 9 " Rgg
‘ L
Hence - ‘R66'= ng

3. PHASE PARAMETERS FOR THE EXPERIMENTAL MACHINE
The measured values of the d-q parameters of the experimental machine

|

|

|

\

\
are given in Appendix I. Using these d-q parameters and the
transformations developed in this Appendix, the phase parameters of

the experimental machine are therefore

Lpg = 0.165 mH

Ly = 0.055 mH
My = 0.080 mH
M, = 0.069 mH
Mg = 0.037 mH
Mg = 0.068 mH
My = 0.032 mH
Mgq = 0.072 H

Mys = 1.226 mH
Lgg = 0.026 mH
L66 = 0.116 mH
Ryp = 0.011¢

R44 = (0.904 Q

R55 = 1.672. mg
Rgs = 0.584 ma
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APPENDIX. III

DETERMINATION OF LOSSES

- The various losses in a synchronous generator are:

1. Fixed losses: {a) core-loss, (b} bearing and brush friction
Toss, {c) windage loss.

2. Field circuit Yosses: {a) coppér~1oss in the field winding,
(b) brush-resistance loss. '

3. Direct load loss: copper-loss in armature windings.
4. Stray Toad loss: ({a) in iron parts, (b) in conductors.

Losses 2(b), 3, and 4(a) when combined are referred to as the short-
circuit load loss.

To determine various losses in the laboratory, the experimental
machine was used in conjunction with a directly coupled DC shunt
motor acting as a prime-mover, with the test described below being
performed. |

The DC motor armature resistance R, was measured as 0.608 using a
sub~standard ammeter and voltmeter, '

1. LOSSES OF THE DRIVING MOTOR

With the 1oad generator uncoupied, the drive motor was run at the
rated speed of the generator, when the power input to the armature is
the sum of its armature copper loss, the armature iron 1055 and the
friction and windage Joss. If YV, is the motor armature voltage,
when carrying a current I., the power required‘to supply the
windage, friction and iron Toss Py is then
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. I . 2'
P1 - Vm m - RmIm

- This loss was obtained for various values of speeds and its variation
with speed is plotted in Figure 6.15.

2. WINDAGE, BEARING, FRICTION AND BRUSH-FRICTION LOSSES

With the Toad generator coup1ed to the drive motok,uand Qifh its
field unexcited, the set was run at the synchronous speed of the
generator. Under this condition the -pawer input to the motor
armature is the total power consumed in the OC machine armature
(Py + Imsz) and the generator friction and windage loss. The
friction and the windage loss of the generator P, is therefore

2
P2 = Voln = Rulm -~ P1

for the given speed. The friction and the windage loss of generator
P, is plotted as a function of speed in Figure 6.16.

3. OPEN CIRCUIT CORE-LOSS

With the generator coupled to the DC motor and run at the rated
speed, its field was excited but the armature was left open
circuited. The drive motor armature current I, and the motor
armature voltage V, were recorded as the excitation current of the
generator was varijed, wfth the driving motor speed kept constant
throughout the test. Under these conditions, the power input to the
motor armature V1., is the sum of the motor armature copper loss
' RImz, the DC machine iron, friction and windage loss Py, the
generator windage and friction loss Py, and the generator core losses

Pc' Therefore

-Pa-Py
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The driving motor armature current 1,, and the voltage across the
~motor armature V, were recorded as a function of the generator field
current and since Py and P, are known from the results of test 1 and
test 2, P. may be determined as a function of the generator
excitation. The core loss of the generator is plotted in Figure 6.17
as a function of the excitation current. '

4. TOTAL LOSSES OF THE GENERATOR

The generator excitation current Iy was adjusted so that it supplied
rated load current at rated voltage and at rated power factor, with
the motor-generator set run at synchronouﬁ speed. Under these
conditions, the generator excitation current Ig, the voltage of the
generator field winding V¢, the drive motor armature current I and
the armature voltage Y, were all recorded. The generator power output
was measured using two wattmeters as P,,. The total losses of the
generator are then:

_ 2
Pr = VoIm * Vels - Rylp - P1 - Pout
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APPENDIX TV

NUMERICAL INTEGRATION METHODS

This appendix studies the errors and insfabi]ities of numerical
integration, as well as some integration methods, in relation to the
work undertaken in this thesis.

1. ROUND-OFF ERROR

This occurs because it is impossible to perform numerical operations
with perfect accuracy. The last digit of a number resulting from a
numerical operation is always doubtful, being dependent on the
rounding process built into the compiler of the programming language.
Estimation of this error is extremely difficult, and is often
inadequately treated, although Henr'ici62 does consider its
statistical behaviour in some simple numerical integration
procedures. It suffices to mention here that, for a Tong integration
period, use of a small step length (required to ensure stability,
say) increases the number of calculations, and may lead to a
significant cumulative round-off error. From a programming
viewpoint, this error may be minimised'by using double precision
arithmetic.

2. TRUNCATION ERROR

This arises because an inexact mathematical process is used to
approximate to an actual one, as in'tranating an infinite series in
a finite number of terms. In numerical integration, the difference
equation used to predict the dependence variables may be compared
with the Taylor series expansion of the same variables. The order to
which the difference equation agrees with the Taylob series expansion
is the order of the method, the Lagrangian remainder in the Taylor

series neglected by the method being the truncation error of the
method, Thus the truncation error of the fourth-order Runge-Kutta
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method is proportional to the fifth power of the step length., It is

obvious that truncation error may be generally controlled by varying

the

3I

2.

step length.
INSTABILITY
main instabilities are:

Inherent instability - this is caused by the ill-conditioning of
the differential equations themselves, such that a small change
in the initial conditions, or a slight approximation in a digital
computation, leads to a large variation in the so1ution. This
instability is independent of the step length and of the method
of numerical 1ntegratlon.

Partial instability - this arises when the step length is too
large, such that the solution given by the difference equation
does not tend to the true solution. Consequently, round-off or
truncation errors become magnified as the integration proceeds.
This instability is intimately related to the original
differential equat1ons, the step length and the integration
method.

Strong instability - this is associated with multi-step
integration methods, the difference equations for which may
introduce spurious solutions bearing no relation whatsoever to
the original differential equations. These spur1ous solutions are
parasitic, and are not removed by a reduction in the step length.

Of these three instabilities, there is 1ittle that can be done about
1, although 3 may be avoided by an appropriate selection of the
difference equation. Partial instability may clearly be overcome by

a suitable choice of the step length.
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4. CHOICE OF INTEGRATION METHOD ‘

The set of differential equations to be solved can be expressed as
Dy = f(x,y)

and a solution is required for given initial conditions over a given
period of time. "Expansion of the Tay?or'series about the nth point
~ {assumed to be known) will, in theory, always produce a solution at
‘the (n+l)th point

h2 5 h3 g -
_yn+1 = ¥n + h Dyn + T Dz_yn + 3T D3yn + I!'D4yn + .es

though difficulties in calculating the higher derivatives make this
method of little practical value. Most practical numerical
integration methods use the Taylor series expansion only as a
reference, and can be categorised into three main types

’64’?goth expTicft and implicit)
66

67,68,69

1, One-step methods'6
2, Multi-step methods
3. 1Iteration methods

The advantages and disadvantages of each category are summarised in
Table A4.1. |

The use of iteration methods is complex, and they will not be
considered further here. The'main.difference between one-step and
multi-step methods is that the former use information from only the
nth point to calculate the value at the (n+l}th point, while the
lTatter require data from several points prior to the nth as well.
Use of multi-step methods therefore requires the use also of a one-
step method of similar accuracy at any discontinuity in the solution
for the first few steps.




TYPE OF METHOD

ADVANTAGES

DISADVANTAGES .

One-step methods
(explicit and impiicit)

Self-starting

Changing the step length is
easy

Slow, as f(x,y) needs to.be

-evaluated several times per:

step

A

. 2. Estimate of the pek-step
Implicit methods have good :
stability and hence large step ;C:?f:ﬁ{gn error not generally
lengths possible T _
. Explicit methods have high 3. E?g;}?}ﬁymEthqu have poor
. accuracy
Multi-step methods Relatively fast as f(x,y) 1. Not self-starting
e;i122§Ed only a few times 2. Changing the step length is
P P : - difficult and requires re-
Estimate of per-step trun- starting the solution
cation error usuaily
available
Generally more stable than
explicit one-step methods
Iteration Methods 1. Extremely complex when applied

Good stability, permitting
large step length .

to sets of equation

TABLE A4.1: Comparison of different types of numerical integration method

{51
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4.1 Explicit One-step Numerical Integration Method

The simplest of these is the so-called 'modified Euler methodﬁ3,'in
which the Taylor series expansion is truncated after its second
derivative. Its accuracy is however poor, and higher-order methods
are normally used, an example being the fourth- order Runge-Kutta

method &3

.Yn]_:.yn+%EK1+2K2+2K3+K4]

where
Ky = flxg, ¥q)
K2=f(X +'2‘:yn+.i)
K
K3=f‘x +,2.'yn+—)
K4 = f(xn s yn + K3)

4.2 Implicit One-step Integration Methods

-By expressing the dependent variable as a function of its own
derivative, an alternative procedure for the solution of the
differential equation can be found. Truncating the Taylor series
after the second derivative yields the trapezoida1 method of

numerical integration, expressed as 64,65

Ynel = In * %'[f(xn’yn) * fxpe1s Ynep)]

Individual features of the Runge-Kutta and trapezoidal methods are
summarised in Table A4.2,
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70
Granborg has produced an analysis which derives the optimum step

‘1ength for a single differential equation, in terms of the system

time constant. The results are givenin Figure A4.1 and show that,
when using the trapezoidal method, a step length several times that
for a Runge-Kutta method can be used. The number of steps required
for simulation of a‘given time period can therefore be much reduced,
providing that the forcing function is still represented with
sufficient accuracy. | ‘



RUNGE-KUTTA METHOD

TRAPEZOIDAL METHOD

1. Being a 4th order methed, it has high
accuracy

| 2. From Fig. A4.1 it can be seen that a
reasonably large step length can be
used

3. The method is relatively slow,
requiring the evaluation of the
function many times per step

4. By introducing the modifications due
to Merson an estimate of the local
truncation error can be found, and used
to control. the step length

It is of low order, and therefore not as
accurate as a Ruhge-Kutta methcd

It is evident from Figure A4.1 that a large

step length (several times that of a Runge-

Kutta method) can be used

The method is re]afive]y fast

No estimate of the per-step truncation
error is possible

TABLE A4.2: Comparison of Runge-Kutta and trapezoidal numerical integration methods

09l
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i) 4th order Runge-Kutta
i1) Runge-Kutta Merson
ii1) Trapezoidal

=
1]

step ]ength
system time constant

—
[]]

FIGURE A4.1: Step length limits for numerical integration procedures
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APPENDIX ¥

SOME MATHEMATICAL MANIPULATIONS

The following mathematical manipulations are used in Chapter 4.

1.

2.

4,

5,

6.

7.

Lpp + L3z = Lpg + Lp cos (28-240%) + Lpq + L2 cos (2 -120°)
2 LAO - L2COS 2

Mg + My3 = -Mg + My cos (20-120°) - Mg + M cos (20-240°)

-2M - M2 cos 28

M24 + M34 = Mf COlS (6-120_0) + Mf cos (© -2400)
; = -Mf €os6
Mps + Mgz = My cos (0-120°) + My cos (0-240°)

-Md cos9

Myg + M3g = Mg sin (8 -120°) + My sin (6-240°)

= -Mq sing

q

Lzz + L33 + 2M23 = LAO + Lz cos (29-2400) + LAO +
L, cos (20-1200) - 2Mg + 2M, cos 28
=2 {Lpg - Mg) + (2My - L)) cos %

Lll + L22 + L33 = LAU + L2 cos X + LAO + L2 COS (%"1200)
+ LAO + Lz cos (29-2400)

=3lao



8.

9.

10.

11.

12.

13.

; '.163'

Lyp + Mg + My3=Lpg +Lpcos 20 - Mg+ My cos (26-120°) - Mg
+ M, cos (26-240°)
(Lpg = Mg) + (Lp - Mp) cos &

Lyp + Lpp + Lgg + 2Mpp + 2My3 + 2Mp3 = Lo +'Lp cos 28 + Lg

+ L, cos (26-240°) + Ly + L, cos (26-120°) - 2M

+2 My cos (20-1200) - 2M, + 2My cos 26 - 2M, + 2M; cos (20:240°)
3Lg - My) |

M14 + M24 + M34 = Mf cos9 + Mf cos (9 -1200) + Mf cos (9 -2400)
= Q

Mys + Mg + Mgg = Mg cose + Mg cos (6 ~1200) + My cos (o -240°)

0

cos (o-240°)

Mg + Mpg * M3g = Mg COS + Mg cos (9-120°) + My

0

Myp + Myg + Moy = Mg + My cos (20-120°) - Mg + M, cos 20
- My + My cos (20 -240°)
= -3 Mo




APPENDIX VI

SERIES EXPANSION OF SOME MATHEMATICAL EXPRESSIONS

The mathematica) expressions necessary for the series expansions
used in Chapter IV are given below,

1. R Tl-y) =55 28‘: /%y p% + nz] b" cos Zne)
2. 1Ty -(l-y) cqs 76 w;y [%'+ ng] (-b)" cos Zne]
3. X ¥y +S%§?§) gos’?h "y +]/xy [sine + nz1 b" sin (2n+1)e]
1= Y 'Si(g?ﬂ cos 26 X +]7xy .[sine + n; (-b)" 515 (2n+1)e]
> I y +E%;?Y) cos ?E. 5 X +]7kg [cos + § b" cos (2n+1)0]

_ n=1
6. 056 | . [cose + E‘ (-b)n cos (2n+1)9]

X+y -~ (x-y)cos 20 "y + /xy

n=



7. < +s;n?'€:f§) e = %‘i'117§§'(%" 1),%21 b" sin 2ng

8. % +s;n? ((:2?3) cos 20 =%§‘:]_¢’@ _(' 115 =) :Z; (-b)" sin 2ne
9. X + §0i2?x-y) €oS 26 ']Z X _+]fxy. 0 +_l§2 ni bn_cés' 2nel
0. ;ofz?x-ﬂ cos 26 ’}y }]7xy [ - J'E_Tb'n:yc-; (-b)" cos 2no]
. 3 ;12 %i-y) cos 28 Yy +.]/xy (‘t]? +1) ni] b sin 2no

. et e w80 L (0" sin o

‘ cos 26 1 b2+1 © 0
13. X +y + (x-y) cos 286 2‘7,(__\,‘ (b + T)nzl b" cos 2ne

It

: cos 29 1 b24] o 0
o y - (%x-y) cos 28 ~ 2 Vxy b - 5 XI (-b)" cos 2ns]

| cos 3¢ .1 3+b (b+1)2 § .n -
15, XFy + {xy) 0528 " ZXT Ny [2 cos @ +T nZ] b” cos(2n+1)8]
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_cosd 1 _ 1 3b (1-5)2 = . .n )
16, x5y = (xy)cos 25 = 2 yivxy Lz €00 - ”"251‘ nz](-b) cos(2n-1)6]
 COS 28 COSH 1 1 b

[(1+b) cose +E—§l- T b" cos(2n+1)e]
n=1

17. x+y + (x-y) cos 2o =7 x+Vxy L

' Cco0s 26 cosé 1 1 b241 n
8. Ty - xy) cos 28 -7 yrwxy L(1-b) cose -~ Z] (-b)"cos (2n+1)e]
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APPENDIX VII

TRANSFORMATIONS

The transformations used in this thesis are:
1. Park's transformation:

f, cosd + fy cos (6-120°) + f_ cos (8-240°)

—
1]

fy sime + fy sin (8-120°) + f. sin (9-240°)

)
)

1
o= [fa+fp+fcl

2. - Modified Park's transformation:

fq = /Zg[fé coss + fp cos (6-120°) + f. cos (9-2400)1
fq = /% [fa sing + f, sin (6-120°) + f_ sin (0-2400)]
fo= 5 [fg+fp+ fc]

3. Clarke's transformation:

2 1 1
W="3fa- 7% - 7w T
L . fy + ! f |
g~ VZ2'b T V7 'c

1 1 1
fo=3rfa+'3 fb+~— fC
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4, Modified Clarke's transformation:

2 1 1
f,="3fa-7% fb- 7w fc
NS PR
s =~ vzfp t 77 T

3 1 1
fY =.7§fa+7§fb+_7§ fC

where f may stand for the current voltages or flux linkage of

the generator. .




‘ : ' APPENDIX VIII

CALCULATION OF DECREMENT FACTORS FOR
~ TERMINAL (1) TO CENTRE POINT FAULT

From equations (5.43) and (5.44), i  and i¢ are given by

N : -
ig= - greyagr Fi(t) [cose + nzl b" cos (2n+1)e]
3 E, cos® 1 °
+ g Fo(t) {5+ ] b cos 2ng]
n=1 ,
- (A8.1)
and
. | /& M E » b ©
ig = L(t) +—§- -{i% NFWR"B"' Fy(t) 11 +--l"_;—b nZ] b" cos 2ne]

.M E_ cose -
- -/g {f OJAIBIO “‘i'b) Fz(t) [cose + E bn COS(ZFH'])Q]
f n=1
(A8.2)
respectively, Using the expressions of Appendix VI, i, and i can
then be summed to give

. 3 E, (Fq(t) cose - Fy(t) cose )

o T (A¥BT)+(A-B"y cos 26 (A8.3)

and -

M E (F{{t) cose - F,(t} cose_)cose
1f = I (t) + /6' af 0 ] : : |2 Q
f Lf AT+B" + (AT-BT)cos 28

respectively.
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From equation (5.37)

(Re + pLg) if + pMys cOSB i = 0 (A8.5)

When 1a and 1f as given by equations (A8.3) and'(AS.G), are substituted
into equation (A8.5), the result is

M E (F,{t) cose - F,{t)cos 8 coso )
_ af “o‘' 1 2 - 0
Lp(t) + /6 7 KB F [A™=B")cos 2

(Rp + pL)

e T Phe Tr

) 3 Ey Map (Fp(t) c0s26 - F,(t) cose cos 8,)
P AT#B" + (A'-B') cos 26

=0
(A8.6)

or

M

cos?e

cosze
+ /B M (£ PR (t) g +(K™=B") cos 26
) €0s6
/“ M, cEo Fz(t) cos AT+BT+(AT-B"Jcos 2o
cos26
+ /6 E ol £ DF]( ) AT+BT+{A"-BT} cos 28
o | (A8.7)

Using the series expansions given in Appendix VI
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: M t) o
Vb f 1+
(Re + PLELL(E) + 5 R T By T [+ 5 R b"cos 2no]
pF(t) .
+ g”aon ﬁ-lWAT—B_r [] + ]+b y b folel 2n9]

af 1
- /6 R —"'; E F (t) [Coseo A +/8 BT Cqse

+ 7 b cos (2n+1)e]
n=1

| pF,(t)
- Ag‘Maon €os6, KT_VKT'T [cose + [ b"cos (2n+1)e]

Fy(t)

/TB_M 'FEO COSB NI:IFTETB‘T [ + .I+b E b cos 2ne]

=0 | (A8.8)

Neglecting the derivative of the decrement factor, and equating the
coefficients of the DC terms

Fy(t)
o A'+/A'B'

/6 r Mar
p * Phe) Le(t) + 7 Re 1

(R E =0 (A8.9)
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From (4.91)

N L
V/% E, sine = pM o cose i, + (r + p(A +-7§'+ B cos 20))i_ (A8.10)

Substituting if and ia into equation (A8.10)

M2 EO(F](t)cose -Fz(t)coseo)COSZB

f

—
3 . _ af
Y 5 E, sine = pM ccose I.(t) + p/E L (AT+BT)+{AT-B"}cos?Zs

Yo E ( [t)cose -F (t)cose )
F AT +(A‘ -B') cosZe

L & E {F,(t)cose - F,(t) cose )
: o' 1 2 0
p(A +—3) AR (A A T

v6 B E,(Fy(t) cose - F,(t) cose )cos2s

- P AI+B|+(A|_B|) C0s7% (Ag.]])

2.

‘ M
/3 . cos3e
B0 sing = pMaf €050 If(t) + pv6 “E“'Eo Fof

~

Cos

MZ

af c0s28
f-'I_' Eo Falt) coss, AT +(A"-B") cosZ@
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1
o AT+BT(A"-B")cosce

' : c0s6 ey e

L
- Y c0sH
P(A + —)F (L) KA~ Ycos2s

L
Y ']
* (A + ) /B B, Fylt) cossy prprrrAT=pycosze

€COS6 c0529
-p /g.B EO F](t) A"+B"+{A"-B" )cosZe

+ p/B B E Fy(t) cos mﬁ%‘?mﬁ - : (A8.12)

Using the series expansions given in Appendix VI

P ¥

3 .
/-z E0 s1nQ

pMaf cosBIf(t)

MZ

Fy(t) | 2 @
P l/’zg —i?;f Fo erlww 32 cose + Lol né] b"COS(Znﬂ)e] :

+

2 |
/& My Fplt) cose, 2 .n
- p "_2' T EO AT +/A'R" [] + T z b C052n6]

f n=1



BRVZY

-r v6 Eo A"W]A"'B"' F](t) [cose + '} bcos (2n+1)6]

n=1

1, ¢ :
+r 7?\"/%" Eo Fz(t) Coso, [7 + n;} bnc952ne]

. L ‘ ® -
/& p(A + %) E TT-W]VB_" F,(t)[cose + n£1 b"cos + (2n+1)e]

L . e
+ p{A + -%-7?%-,- E, Fy(t) cose, [% + 7 bcos2ne]
: n=]
- pB ‘/EW% F.(t) [(1+b) cose + _B_bz"] Df b"cos(2n+1}6]
+ pB %EVIYLF Eol F2(t) cos8 (b + Eigl ) b"cos2ns] (A8.13)
_ i _

Equating the sine terms on the two sides of the above equation, and
neglecting any resistances present inthe harmonic terms

3 o .
/-2 Eo sing = =uw Maf sing If(t)

M2 Fo(t) |
& afp 1 b .
TYT T To RAET Tz ST

| L
+ mig 2(A+ ) E Wﬂ Fp(t) sine

+u %6" BE, F:lvmv Fy(t) (1+b) sine (A8.14)
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After performing the necessary mathematical manipulation, this equa-

tion may be re-written as

fﬁg‘zo = - Mo To(t) +/(§‘Eo Fi(t) ' (A8.15)

Equating the coefficients of the DC terms-in equation {A8.13)

Mgf Fo(t) cose, B . 1
P> —[;- E0 TR ' UEET E0 Fz(t) Cose, »
L _
+p (A +-€})-Zﬁigf E, Fz(t) cosg, %—+ pB 1§j7ﬂl§T Bon(t)coseo b=0
(A8.16)
which may be re-written as
rFy(t) +p B F (1) =0 (A8.17)

The required decrement factors may be calculated by solving equations
(A8.9) and (A8.15) and (A8.17) simultaneously. Thus, on gbtaining
the Laplace transform of equation (A8.17)

”K;B (s Fals) = 1) = 0 | (A8.18)

r Fz(s)'+




ar : . :
Fols) = —— ° o (A8.19)

Taking the inverse Laplace transformation

e ,
Fyt) =e @ | (A8 :20)

where

=
oo

T, = | | (A8.21)

Taking the Laplace transforms of equations (A8.9) and (A8.15) yields
respectively

E - |
. /g 2 =My, Le(s) - /% E, Fq(s) C o (A8.22)

(Re + sLe) s)+/7 . Lf E, g Le(s) = O (A8.23)

which may be solved simultaneously to give

I.(s) = 3¢ laf 1 —— - (A8.24)
f 770 L XKy o TS




RV

and

XY+ X+ X X, - X!
d 0 2 d d 1 1 :
1 XKg v X t % Xyt X+ X% o, T 753 :
. T Ta
where

X2 = VF‘B' - 0.5 X0

Lf '
= . {AB.26)
do ~ Re

.

o Xyt %, * X2_
d do Xd + Xa +‘X2

Taking inverse Laplace transforms of equations (A8.22) and (A8.25)

o M : -t/’c 1
3 af 1 : a

I.(t) =/3E [e - 1]

f 70 Lf X4 xo + X2

(A8.27)

' - - '

FLt) - id : io : §2 . fdx fdk. AT DS

' d 0 2 d 0 2
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APPENDIX IX

CALCULATION OF DECREMENT FACTORS FOR
‘ ' TERMINAL (2)- TO-CENTRE POINT FAULT

From equations (5.69) and (5.70), i, and i are

v E w©

i = - ETTF"V%TUT. Fy(t) [cose + ] b"cos (2n+1)e]

- n=1 : '
JE'EO coso,, n ' | '
- 2 F (t 5+ E b" cos2ne] (R9.1)
and
M E
if = If(t) + —/-g-gf C""—'VC"'D"' F](t) [1 + 5 1+b nI]b cosZne]

Maf Eocose
—[;- o (1+b) Fz(t) (coso+ [] b cos(2n+])s]

SE

(89.2)

respectively. Using the expressions of Appendix VI, i, and if can
- be summed to give

73 E0 (Fy(t)cose - F,(t)cose,)

o= — T F DT CD")<0575 | (R9.3)
and
M E (F,(t) cose - F,(t) coso_)cose _
— = af o'l 2 0
?f - If(t) + Yo Le Ct+ D" + (C"-D")cosZ6 (A9f4)




respectively,

From equation (5.64)
(Re + ple)ip + pM g coso i =0 (A9.5)

If the values of i, and if obtained from equations'(AQ.B) and (A9.6)
are substituted into equation (A9.5)

. M . E (F (t) cos2e - F_(t)coso,_ cose
af o'l 2 0
(Resple)le(t) + /6 T T+ D" ¥ (C-D'kosZe

. V& E, Moe (F(t) cos?s - Fo(t)cose coss ) _

C' +D' + (C'-D')cos2e
or

(Retplc)1 (t)+/"RM EF(t) cos?e
L T T+ D"+ (C'=D') cos26

c0s5%6

+ 8 Maf o P F (t) Ct+ D"+ {C"-D7") cosde

+

coso :
/6 Mg B PFp(t) cosey erpr(ervyessze

+ -

0520
JE.EO Mag P Fl(t) CT + D" + (C'-D")cos2e
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Using the series expansions given in Appendix VI:

| U A 14
RetpLelle(t) + 7 Re 1 B o e D'[1 i

Z b"cos 2ns]
nE ‘

PPy (t) 1+b

'7T af‘ 0'—r-—"7CT§T [+ E b" cos2ne]

/6 R

i _Tf_ E Fz(t) c0s® -ﬁ——-znrqgr [cose +

+ ¥ b" cos (2n+1)e]
n=1

sz(t) - n
- /8 M.¢ E, €OS8, rrverprlcos + nZT b cos(2n+1)e]

Fp(t) 14
Maf EO COSGO mr [] + E b cosZne]

5
7
(A9.8)

Neg1ectihg the derivative of the decrement factor and equating the

coefficients of the DC terms

6 Mag Fy(t) .
t R B oy =0  (R9.9)

(Retple) Tc(t) »



BT E

From (4.136)

3 . | . .
/(;1 Eo sing = pMaf cosé 1. + [3R+p (A+ 2LY + B cos 268)] i,
(A3.10)

Substitutiﬁg equationé (A9.3) and (A9;4) into equation (A9.10)

2
M, ¢ EO(F1(t)cose-Fz(t)coseo)cosze

) 3 ] _. . ’
/?. Ey sine = pM ¢ cose 1e(t) + p/6 3~ —prproTrreos o

anl

5 E, (Fl(t)cose'- F,(t)cose, )

- 3R T+ D" ¥ (C'-D")cos78
VE'EO(FI(t) coso - Fz(t) coseo)
- p(A+2L:) T - T
Y CT+ D" +(C'-D")cosée

/E'Eo (Fy(t) cose - F,(t) cose )cos2e

- P Tr+ D" + (C-D")cosZe (A9.11)

or
I 2 3
'3 Co af €05°0
/'? Ep sin® = pM,¢ coso Le(t) + pJg'_E;'Eo F(t) g +{CT-D"jcos2e

2

M
af
- p/b /— Eo F2(t)

L

2
€05
COS8q TTF T (C"-D")coses

cose
+ D' +(C'-D"}cosde

1
o CT + D" (C"-D")cos2e

- R B E F(t) v

+ 3RJ€'F2(t) coso
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cosG
+DT+{ €Os<H

1

-p(A+2L. ) o CTHDTH(CT-D")cos28

S |
+p(A+2Ly,M€'Eocose

_ ‘ €056Cc0526 c0s26
p/6 B EoFl(t) CT+D™+{C"-D")cos26 +p/6 B Eo F (t)coseo C'+D"+{C"-0")cosZe

(A9.12)

Using the series éxpansions given in Appendix VI

|

Ve .
Jﬁ? E0 sind = p M . coso If(t)
M2 F (t)
+p 1%? af ED-CT—7CTUT [ coso+ iﬁ;%—— [ b cos(2n+1)e]
s M:f F (t)cose 1+b

Py Eo “C"?TFWTr_ [+ 5 Z b"cos2ne]

n=1

3RM§'R0 CT?%TTET'F1(t) [cose + RE] bncos(2n+1)a]

£
3R 7 Eo Fz(t)cose % + nzl b" cosZne]

o4

. o
_/E'p(A+2LY) E0 T F](t) [cose + n£1 bncos(2n+])e]

/5 ) 1. 7 .n
+ p(A+2LY) 75T Eo Falt) coso, [ + n£1 b cos?pe]
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vE E() b2+1 3-0

- p B grrgpr Fy(t) [(1+b)cose + 222 b"cos (2n+1)6]
| ' 1

n:

<o

/6 1 ' b2+1 n
+.pB 7 7CO" EO FZ(t) COS@O [b+—-5— nz] b coszZné] (A9.13)

Equating the sin terms on the two sides of equation.(A9.13), and neglec-

ting any resistances present in the harmonic terms,

3 . .
/2;‘ E0 sing = - wMaf sine If(t)

_ 2
I S L T
w—z- —rf O-C-'_W ‘T‘S'Ine

/& g '.
+w A 2(A+2L'Y) EO T F-I(t)S'ine

rull

B Ey cryprpr Fq(t) (14b)sing (A3.14)

Equation (A9.14) may be re-written as

Z

| ./:?EO = - Mo T(t) + /g AACE | (A9.15)
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Equating the coefficients of the DC terms in equation (A9.13)

5 -
Maf Fz(t) coso, /5

% 1
P72 T B T R B Falt) cose, 7

/5 ' 1 B o b
+p(A+2LY) 7T EO Fz(t) Coseo Vi + pB WA Eo Fz_(t)cosﬁo b=0

(A9.16)

After considerable mathematical manipulation, equation (A9.16) may be'

re-written as

3R F,(t) +p T Fy(t) = 0 | (A9.17)

The required decrement factors can be calculated by solving equations
(A9.9) and (A9.15) and (A9.17) simultaneously. Thus, taking Laplace

transformsof equation {A9.17)

3R Fy(s) + (s Fpls) - 1) =0 ' (A9.18)

W

- 1 (A9.19)




. | .]‘85-

Taking the inverse Laplace transformation of FZ(S)

-t/be , " o
Fplt) = e _ o (A9.20)
‘where
T =.£3fc—r|rr[?r | | | | (A9.21)
Taking Laplace traﬁsform of eqdations (A9.9) and (A9.]§) yields
"/'g E—f = oM ¢ If(s)' - /73: Es Fl(s) | (A9.12)

(R +sL s) +J/ 5 f "E“ E0 ETIV%TET FI(S) =.0 (A9.23)

which may be solved simultaneously to give

. ™ M ‘ .
3 af 1 ] 1
I.(s) = // E [ - =] (R9.24)
f Z o Lf Xd ¥ 4X0 + XE Ls . 3
d
and
X' + 48X + X X, - X!
d o "2 . dT M 1 ]
F.(s}) = [ — + =] (A9.25)
1 Xd + 426 + XE‘ Ag t 4X0 + x2 S + ?L s
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= JODT - 2X (A9,26)

X2 0
IR - (A9.27)
f ' ' S
1 XU + 4% + X : ’
th = d 0 2
d do (A9.28)
Xd + 4X0 + X2 ‘

Taking inverse Laplace transforms of equations (A9.24) and (A9.25)

M “t/t
3 af 1 !
1.(t) = /ﬁE | [e d-1] - (A9.29)
f 70 Lf Xd + 4X6.+ X2
Xé + 4X0 + X2 Xd-X& —t/r&

+1] (A9.30)

Fi(t) = (e
1 )(d+4.xo+x2 )(d+4§(0+)(2




CALCULATION OF DECREMENT FACTORS FOR
DOUBLE LINE-TO-CENTRE POINT FAULT

From equations (5.98) and (5.99), ia and if are given by

B E,

i, = erogrge F(t) [coso + 2 b"cos (2n+1)e]

o
"n=1 )

v:3
E0 cose0

* —— Fa(t) [% + nz1 b"cos2ne) (A10.1)
and

M E o
if = If(t) + 1%: —E; GT?VETHT F](t) [1 + lEE nzl bnc052ne]

-

M . E_coss
%6— i -WO (14b) Fy(t) [cose + I b"cos (2n+1) 6]

n=1

187
APPENDIX X |
(A10.2)

respectively. Using the expressions in Appendix VI,ia and if may be

summed to give

iy = T+ (G"=H" o575 (A10.3)
> and
M E (F (t) cose - F (t)cose Ycose
. af "o 2
fe = Telt) + B e (R (A0.4)

VE'EO (Fi(t) cosg - Fz(t) coseo)
f
|
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respectively.
From equation (5.92)

(Re#pLe)ic + p M o cose i =0  (A10.5)

If the vaTUes of ia and if obtained from equations (A10.3) and (A10.4)

are substituted into equation (A10.5), the result is

M. E_(Fy(t) cos2e- F,(t)cosd cose )
af o' 1 2 0
(Re#pLe)[Ie(t) + /6 (R N (AR T

) V6 E, ¢ (Fy(t) cos26- F,(t) cose cosé,) ) ) 410.6)
P | (GT+H"] + (G"-H")cosZe ) (A10.

or

af cos?e
(Re#ple) Te(t) + /6 Re T, E, Fi(t) (G™*T) ¥ (G -H"Jcos28

: €528
+ B Mg By PR () rgra (G -A"ycos 20

Maf cos®

Jg-Rf "f; Eq Fplt) cossy {G+H"} + (G"-H"ycos?s

t

c0s8
4 Maf Eo pF2(t) €os®, {G"™+H") + (G"-H")cosZe

1

cosZe :
By Mae PR (V) T (G- o575 (A10.7)

-+
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in Appendix VI

M F, (t)
VE'R af ¢ 14+b

T B s _1_TTFTTr [+ 5 Z b cos2ne]
f

(Retplg) T¢(t) + 53

- PFy(t)
+ 3%; Mg E o_EjﬁﬁﬁiqTr 1+ ]+b f b"cos2ne]

M
af E

"8 Re T Fo Falt) costy grvgrlcose +nZT b"cos2ne]

. pF, (t)
- M f E c0sH —T-7ETHT[cose + y b"cos(2n+1)e]

Vs Fy (t)
+ -5 M af E CUSBO W[.I .I+b z b cOSZne]

(A10.8)

Equating the coefficients of the DC terms and neglecting the derivative

of the decrement factor'

| M F.(t) -
(Re#pLe) Le(t) +ﬁ§ R, g -0 (A10.9)

3 1 ¥
f Lf o GT+/G"H

From (5.91)

i
Using the series expansions'for the mathematical expressions given .
f/g? E0 sing = -pMaf cosq g+ (R + p{A+B cosZe))iu (A10.10)



‘ Substituting equations (A10.3) and (A.104) into equation (A10.10)

! . 2 ' Maf oF 1 (t)cose- Fz(t)cose )cos2e

3 .
z Ey sTne = pM¢ coso If(t) * pyr' (GTH T+ (GT-H " jcosZ®e

JE'EO (F](t)cose - Fy(t) cose)
{GT+HT}+{G"-H" )cos26

3 EO(F1(t)cose - Fz(t) coseo)

- PR G ¥ ATy cos 70

/6 B E, (F](t) cos6 - F2(t)coseo)c0529
=P G+ Y+ (G =H")co528

(A10.11)

or

VEY:

o cos3e
o SN0 = pM ¢ cose I (t)+ pﬁg--t;-EoF1(t) ST (G -H"JCos78

2 _
cos?6
) p/h.“f“' o Falt) cose, GT+H +{G-H"Jco526

‘ €os9
-R/6 Eo Fl(t) G +H"+{G"-H Jcos7e

i
(G'+H")+(G"-H" )cosZ8

+ RVG E, Fa(t)cose




coso

“PA By (t) grre-HTycoszo |

G +H +(G"-H"Jcos2o

' i C0SO €020
-p/E'B Eo F1(t)

co

+ pAVE'Eo Fy(t) :

526

f p/S'B E0F2(t) cos @,

Using the expressions given in Appendix VI.

~
3 .
V/?'Eo sine = p M, coso I.(t)

2
' Fi(t) 2 @
+p B e e B2 coso + & L bcos (2n+1 o]

& Mar c Fz(t)cose0
o G'+/GH’

i+

1+b- &
)

b

n=

(G"+H"}+(GT-H )cosZe

b"cos2ne]
1

-RYE E, grevgre Fq(t)[cose + § blcos(2n+1)6]

Vb 1

+ R VGTFI'T EO Fz(t) COSBO ['2-

n=1

+ § b

n=1

ncosZne}

-6 p A E0 GT?%G*HT F1(t)[cose + nzl bncos(2n+l)e]

o GTHHTF(G-H")c0570



+ PA 7y B, Falt) cossg [z + T b"cos2ne]

_ B, ' o2
-pB 28 S Fi(£) [(14b) coso + 2t 7

n=1

b2+l &

/6
+pB "?'VGlHT Eo Fz(t)coseo b +=5— ] bnc052ne]

n=1

i

bncos(2n+1)e]

(A10,13)

Equating the sing terms the on the two-;ides of equation (A10.13), and neglec-

ting any small resistances in the harmonic terms, gives

VE . .
/2;‘E0 sing = -~w Maf-s1ne If(t)

2
Maf Fr(t) 34

‘“"/g T % govgET 7 sine
£ oG+ .

+ w 157 2 A E, GT¢;ETHT F1(t)sine

/6 .
+ _g B E, ET¥7éTHT F1(t) (1+b)sine

(A10.14)

After considerable mathematical manjpulation, equation (A10.14) may be

re-written as
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3 _ _ /6
’/’; Eg = -0 Mg Le(t) + =5 B, Fy(t)

[+

Equating the coefficients of the DC terms in equation (A10.13)

. ,
o Maf : (t)cose . R
P2 _E;‘ 0 "T?“F‘VEFTTF V”ﬂTTr

V& /5

o ]
+ A 77T Eq Fa(t) 080, 7 + pB 7 gy

2(t) cose %

(A10.15)

E, F2(t) coseo_b=0

(A10.16)

After considerable mathematical manipulation, equation (A10.1°) may

be re-written as

The required decrement factors may be calculated by solving simultaneously

equations (A9.9) and (A10.15} and (A.10.17).

The Laplace transform of equation (A10.17) is

RF, (t) N "Gw” (s Fp(t) = 1) =0

or

(A10.19)

(A10.17)

(A10.18)
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or, on taking the inverse Laplace transformation of Fé(s)

Fo(t) =e  °© . | 8 (A10.20)

where

(A10.21)

Taking Lap1ace'transfofm of equations {A10.9) and (A10.15) yields

£ e ‘
- ﬁzg 0 s M I(s) - l/?"’Tl-:0 Fy(s)  (A10.22)
& Mg ]

which may be solved simultaneously to give

& Mar 1 1
I.(s) =—E _ [ - =] A10.24
f 20 T XX, s+ 1 S ( )
_ T4
and
XY+ X X, - X!
2 [d d 1 1
F.(s) = [ - =] : A10,25
1 g+ %, X FX “11 5 ( )
d
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where

X, = /GHT
L S | ‘
o e | . . (N0.26)
o Xtk
d ™ do X, +%,

The inverse Laplace transforms of equation (A10.24) and (A10.25) are

| A . M o1 Tty
[e(t) = — E 1~ yax; [e - 1]
RS
and '
v ‘ ooyt - '
JOR M. Ju 1 P
R IR

(A10.27)
respectively.




196

APPENDIX XI

CALCULATION OF DECREMENT FACTORS FOR
LINE-TO-LINE FAULT OF EDISON-DELTA CONNECTION

- From equations (5.125} and (5.126).i ; and if are givén by

V6 E_

'ia = - MT“:VMQNT F](t) fcoss + né1 b cos (2n+1)a]:
Y6 E, cose, i @
t—— Fz(t) [ + nZI b cos 2ne] (A11.1)
and
| A & Mag & T+b ¢ .n
'If = If(t) +—2- —t? W—rmr F-l(t) [1 +—5—nz=]b cos 2n9]
/e M E_cos® _ >
-2 f: © > (14b) F,(t) [coso + nz1 b"cos (2n+1)e]

(A11.2)

respectively. Using the expressions of Appendix VI, ia and if may be

summed to give

/B E, (Fy(t)cose - Fp(t) cose) (A11.3)

Ty = = — Wy F (I-N") cos28
and
M E (F,(t)cose - F,(t) cose_ )cose
. af "o ‘1 2 0 4
l¢ = If(t) + /6 Ef M+ N" + (M'-N") cosée (A11.4)

respectively.
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From equation (5.119)
(Retplo)ie + M . cose g =0 - (An.5)

If the values of i, and i; from equations (A11.3) and (A11.4) are
substituted into equation (A11.5), the result is

: M E (F,(t)cos%s ~ F,(t)cose cose )
af o' 1 2 0
(RetpLe) [Te(e) + /6 IRy + (N=-N"Jcos25

25 -
VE'EO M ¢ (Fi(t) cos?6 - F,(t)coss cose )

TP )+ (= ) o578 =0 (A11.6)

or

M
(Rf+po)1f(t) + B R, o Fr(t) mry—(w—nﬂm?z—

cos%o

1/E-Ma‘l’ Eo'p Fl(t) (H' Ny + (W-N")cosZe

-+

/E'Rf _E; Eo Fz(t) 50590'(H'+N') + (M"-N"Ycos?8

coso
af Eo P Falt) cos®y mpmpmy i —Nycosze

e M

| . 05?9
/6 By Mar P Fy(t) Ry (=N cosze (A11.7)

+
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Using the expressions given in Appendix VI

: ' M Fy (t)
(Rf+po)If(t) + fg f Ef Eo MT'VMTNT [+ I+b [ b" cosZne]
'¢g pF,(t)

"""2' af OW[] 1+b z b"cos2ne]

M ¢
- /6 R T‘ E, Fo(t) cose W [cose + nz] b"cos2ne]

i p Fy(t)
- /6 M, E cose Fp—7mpﬂw-[cose + { b cos(2n+1)e]

| Fa(t)
+ ﬁg af E o €06, FF—THIWTT [n+ 1+b I b cosZne]

(A11.8)

Equating the coefficients of the DC terms in equation (A11.8) and
neglecting the derivative of the decrement factor

| M FL(t) | .
(RetpLe)Lelt) + 2 Ry ‘Ej £ WA 0 - (A9

From equation {5.118)

. |
3 . . .
J(; E, sine = p M ¢ cose i + (R+p(A+8B cos?e))1Ol (A11.10)



Substituting i, and i, from equations (A11.3) and (A11.4) into
equation (A11.10) ' '

;f 0(F (t)cose -F (t)cose )cose

o coge If(t) + P“ﬁ-“["' (MT+N1)+(M'-N )cosZB

/3
/?E sing = p M

VE'EO(F](t)cose - Fo(t)cose )
(MT+NT)}+(M"-N")cosco

) /E'EO(F](t) cos8 - F,(t)cose,)
P N Y+ (M"-N"Ycos 20

/E'B-EO(F1(t)cose - F,(t)cose )cos26

- P (M) +{MT-N")cosZo
o - (A11.11)
- i ;
'3 . C0s~0
V3 E, sine = p M . cose [(t) + —[- Eo Fy(t) | TN o528

2
M )
af Ccos%86
) pJE-'f;'Eo Fa(t) coso [(MTHN)+(M"-N")cos26
cose
B RVE-EO Fl(t) WM -N"JcosZ6

+

1
RVB £ Fplt)coss, grogrer—NTcos2s




coso 1

- pA Fy(t) AT eos28 * PAYE B, Fy(t) COS, prommr{M—N"Jcos2s

oS0 c0526 " _ €0s28
- p/6 B 12 F (t) gy + p/6 B B Fo(t) gragsMm=N")cos70

+(M"-N")cosce

(A11.12)

Using the expressions ©F Appendix VI

p Maf coso If(t)

=

M2 Fq(t) ,
p !gj 2t E ﬁT—VﬂTNT [EEE cose + 19?%1_ ni1 b cos{2n+1)8]

2 '
ﬂi'Maf Fz(t)coseo 0

P2 T Bo WEAET

1+b Z b"cos2ne]

/g ] 5 " 6
R/6 Fo M Fi(t) [cose +_nZ] b 'cos(2n+1)e]

5o ®
R 7MT%f E0 Fz(t) cos, [% + n§1 pnc052ne]

T+

1 BRI
..l/-é- pA EO W—mr F-l(t) [COSG + nZ] b COS(ZfH‘])ﬁ]
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VB 1 e N
+ PA oy B Fz(t) cose, [ + nz1 b cos2ne]

I T b2 T
- pB —g- MT17ﬁTNT_ F](t) [(1+b)cose + 97}1 nZ]bncos(2n+1)e]

6 1 | 5241 v .n
+ pB — s Ey Fo(t) cose  [b + -—5—-nz1 b cos2ne]
(A11.13)
Equating the coefficients of the sine terms on the two sides of equation
(A11.13), and neglecting any small resistances in the harmonic terms,
gives

/

. 1
3 N .
.J-Z Eo sing = “Maf sing If(t)

C g2
- _.‘/.6_- _Ma_f F1(t) 3+b'sine
77 T, WeNNT T

E | .
+ m~g— 2A EO M-r;m}rrn-r F](t) s1né

6

+u B8 € promme Fq(t) (14b) sine (A11.18)

After considerable mathematical manipulation equation, (A11.14) may be

re-written as



_{g’ £, F(t) (A11.15)

J3E = Mo I(t) +

Equating the coefficients of the DC terms in equation (A11.13)

i Mgf Fp(t)cose /-' .
-p = _7F E, _MT_7MTNT“ * R E 2(t)-cose0 >

3 Y6
*+ pA ?HTgT By Falt) Coseo'% + pB —g'VMlNT Eq Falt) Coseo'% -

(A11.16)

After considerable mathematical manipulation, equation (A11.16) may be
re-written as -

fM N'

R Fz{t) sp B Fo(ty =0 - (A11.17)

The required decrement factors may be obtained by solving simultaneously
equations (A11.9) and (A11.15) and (A11.17). Taking Laplace transforms
of equation (A11.17)

R Fols) + (sFp(s) = 1) =0 | (A11.18)
lOF

Fo(s) = ——— . (A11.19)
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The inverse Laplace fransform of Fz(s) is

“t/t.
.Fz(t) = ¢
where
INI
e " Rw

- 2 _g.szaf If() L/Z-—E F(s)

V3 M
(Rf+po) If(s) + = Rf af ¢

\

‘respective]y, which may be sulved simultaneously to give

_ b ¢ Mar 1
1) = 3 &y By ot d
a2z stor ‘
d

~and

|
+ .
—
[

: | __ '
() : Xd+X2 [Xd Xd 1
] Xd+)(2 Xd Xz

1
+ —r
Td

0 M'+;M'N' F](s) =0

(AT

(A1

(A11

(A11

(A1

(AN

.20)

.21)

.22)

.23)

.24)

.25)
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where
X, = MR
th = Ei '
do £
SR Xqt¥o
d do Xd+X2

(A11.26)

The inVerse Laplace transform of equations (A11.24) and (A11.25) are

JE M -t/
%“)=%£o%f¥ﬁ$[e d. 1
~and : -
X4, X =Xi -t/th
d "2 d"d d
Fi(t) = { e + 1]
1 YH+X2 Xy

respectively. |

(A11.27)
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