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ABSTRACT

The aim of this study is to devise detection processes for digital modems operating at
rates of 9600 bit/s and more over telephone lines, using coded QAM signals. The
baseband representation of QAM systems and the signal distortion introduced by the
telephone circuits are first investigated to derive a suitable model for the simulation
of data transmission systems, using a digital computer.

The detection processes studied in the work include both novel and conventional
detectors. The performance comparison of the detection processes is based on the
tolerance to additive Gaussian noise. A new detection process is proposed for the
detection of coded and distorted QAM signals and some near maximum likelihood
detectors, previously described, are modified to suit a coded and distorted QAM
signal. The modification is such that the detector takes account both of the coding
applied at the transmitter and the signal distortion introduced by the channel. The
results of the test show that some of these detectors can achieve a performance close
to that of the optimum detection process. The complexity required by each detector

is also considered.

The effect of noise correlation, introduced by processing the received signal at the

receiver, is also investigated for each detector.

A simple interleaving technique for coded and distorted QAM signals is investigated
as a solution for error extension effects normally encountered in the detection of a
coded signal.

Finally, the most promising of the detectors investigated for 9600 bit/s modems, and
for coded and uncoded signals, are investigated further for data rates of 14400,
16000 and 19200 bit/s.
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GLOSSARY OF SYMBOLS

a(t), A(D) Impulse response and transfer function of transmitter filter

b(t), B(f) Impulse response and transfer function of receiver filter

¢ (i+1)th component of the linear feedforward equalizer (chapter 2)
or the cost of the vector Q;

C Sampled impulse response of the linear feedforward equalizer

C(z) z-Transform of C

c(t), C(f) I_r;lpulse response and transfer function of transmitter lowpass

ilter

d, (i+1)th component of the vector D

d, ‘Minimum free distance of the coded signal

d., Minimum free distance of the uncoded signal

D Sampled impulse response of the adaptive linear filter

D(f) Transfer function of transmitter bandpass filter

D(z) z-Transform of D

Dip Low frequency component of D(f + )

e Sample value of the equalized signal at the input of the detector, at
timeiT

el Sample value of the equalized signal at the output of the linear
feedforward filter (chapter 2)

E() Transfer function of receiver lowpass filter

E{H Low frequency component of E(f+f.)

E, Average transmitted energy per data bit

f Frequency in Hz

f(t) Impulse response of receiver lowpass filter

£ Carrier frequency in Hz

F Sampled impulse response of the linear baseband channel and
linear feedforward equalizer

F() Transfer function of receiver lowpass filter

F(z) z-Transform of F

(g+1) Number of components in the vector Y

G. Coding gain in dB

h(t) Impulse response of transmission path

H(f) Transfer function of transmission path

H{H Low frequency component of H(f+£.)
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]

(K+1)

L(f)
Ly(f)

n(t)

p(t)
pi

P(f)
P

q(t)
Q)
(X6))]

V=1 when not used as subscript

Number of stored vectors {Q;} in the near-maximum likelihood
detectors

Number of corhponents in the vector V
Memory of the convolutional encoder
Transfer function of the bandpass channel
Low frequency component of L(f+£)
Number of transmitted data bits per modulation interval
Number of signal levels _
Delay in detection (in terms of symbols)
White Gaussian noise waveform
Interleaving depth

Demodulated baseband waveform
Sample value of p(t) at time iT

Fourier Transform of p(t)

(n+1)-component vector represents a possible transmitted data
symbols

Transmitted QAM signal (real-valued)

Fourier Transform of q(t)

Low frequency component of Q(f+£)

n-component vector represents a possible transmitted data symbols

sample value of the received signal at the output of the adaptive
linear filter

Rate of the convolutional encoder

Transmitted data symbol at time iT (coded or uncoded)
Real part of s,

Imaginary part of s,

Detected value of s;

Symbol period in seconds

Gaussian random process with zero mean and fixed variance
(noise component in p(t))

sample value of u(t) at time iT

Impulse response of the linear baseband channel

(i+1)th component of the vector V

Sampled impulse response of the linear baseband channel
z-Transform of V

Gaussian random process with zero mean and fixed variance (the
noise component in ; at time iT)
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z(t)

Z:

B

{05}
{654}

{Bi.h}

{61',}1}
()

System IMNC
System INC
System LC
System LU
System MNC
System NC

- System NU

(i+1)-component vector represent a possible received data se-

quence

Possible value of s;
(i+1)th component of the vector Y

Sampled impulse response of the linear baseband channel and
adaptive linear filter

Received waveform at the output of the receiver bandpass filter
An estimate of the received sample p; in the absence of noise
Fourier Transform of z(t)

Low frequency component of Z(f + £}

~Two-sided power spectral density of the additive white Gaussian

noise
Information digits (binary)
Detected or decoded values of {o ,}

Convolutionally or differentialy coded binary digits
Detected or decoded values of {B, ,}
The Dirac impulse function N

Mean square value of the transmitted data symbols {s;} {coded or
uncoded)

Variance of real or imaginary components of the' noise samples
{4}
Signal/noise ratio in dB.

Interleaving system using system MNC

Interleaving system using system NC

Linear equalizer with convolutionally encoded signal

Linear equalizer with an uncoded signal

Modified nonlinear equalizer with convoiﬁtion’ally encoded signal

Simple nonlinear equalizer with convolutionally encoded signal

Nonlinear (decision feedback) equalizer with an uncoded signal




CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF THE RESEARCH

For the past few decades, voiceband data communication has been an active area for
both commercial development and scientific investigation. The advent of the digital
computer in the early 1950°s and the resulting commercial and military interest in
large scale data processing systems led to an interest in using telephone lines for
transmitting digital information. As a result, the demand for high speed data
transmission increased and it became desirable to attempt a more efficient use of the
~ telephone channels [1].

: Efﬁcicnt modulation methods, such as Quadrature Amplitude Modulation (QAM),
h‘évc been used since the late 1960’s to achieve reliable transmission of data at rates
upto 9600 bit/s or more [2].

Channel coding (convolutional or block coding) is used to obtain a better tolerance
of the data transmission system to noise, and the 1980°s has seen the introduction of
the first practical channel coding schemes for telephone line modems, where the
coding and modulation processes are combined together [3-6]. In these schecmes, the
redundancy required by coding is carried by the corresponding increase in the signal
alphabet, so that the bandwidth and the element rate of the transmitted signal are
unchanged. Convolutional codes are normally used here to give a trellis coded
modulation system. Coding gains of up to 6 dB in tolerance to additive white
Gaussian noise can be achieved by such systems, at very Jow error rates [3-5]. In




1984 a trellis coded modulation scheme with a coding gain of 4 dB was adopted by
the International Telegraph and Telephone Consultative Committee ( CCITT ) for
use in high speed modems [5,7-9].

The performance of data transmission systems is normally measured under ideal
conditions, when the transmission path does not distort the signal and when the
receiver uses a maximum likelihood detector, implemented by means of Viterbi
algorithm {3,10-16]. When the telephone circuit introduces significant signal
distortion, the received coded and distorted signal is ideally detected by a Viterbi
algorithm detector that takes due account of both the coding and distortion
[13,14,17,18]. The detector in this case becomes considerably more complex and
may no longer be cost effective [13].

The aim of this thesis is to develop more effective detectors for use with coded and
distorted QAM signals received at 9600 bit/s or more over telephone circuits, and to
assess the likely value of such detectors.

1.2 QUTLINE OF THE THESIS

In Chapter 2, descriptions of some related communication topics are given . The
general model of a serial data transmission system is presented. The teleplione
circuits and the different types of noise and distortion introduced by them is then
described. The available equalization and detection techniques for an uncoded QAM
signal is also presented. Section 2.4 is concemed with convolutional codes. The
general description of the encoder is given, followed by the recent developments of
the combined coding and modulation. Finally, the detection (decoding) of convolu-
tionally encoded signal is discussed




Chapter 3 describes the model of data transmission system when the data is
transmitted at a rate of 9600 bit/s. The differential encoder, which is used with the
uncoded (not convolutionally encoded) signal and the adopted trellis coded modula-
tion schemes are described. The characteristics of the telephone circuits, which are
‘used in the work, and their sampled impulse responses are given.

The detection processes used for an uncoded 16-level QAM signal are described in
Chapter 4. These are the equalizers and near-maximum likelihood detectors. The
detectors are used here as basic systems with which the proposed detectors for
convolutionally encoded and distorted QAM signal are compared. The complexity of
the detection processes are also investigated in this chapter. '

Chapter 5 describes a wide range of detection processes that are suitable for coded
- and distorted signals. The complexity of the detectors are studied and their
performances are compared with those of the corresponding uncoded systems by
using the results of the computer simulation tests, '

The effect of the noise correlation introduced by processing the received signal at the
receiver, on the performance of the detectors which are described in Chapters 4 and
5, is investigated in Chapter 6. '

In Chapter 7, a simple interleaver is used with the coded signal aiming to improve
the performance of the coded systems.

The most promising detectors for encoded and uncoded signalstogether with the
equalizers are tested further in Chapter 8, when the data is transmitted at rates of
14400, 16000 and 19200 bit/s. The model of data transmission systems and the
mapping of the signals at these rates are also described in this chapter. The results of
the computer simulation tests are then presented and discussed.

Chapter 9 gives the conclusions of the investigation and suggestions for further
work.



CHAPTER 2

RELATED THEORY

2.1 INTRODUCTION

A serial data transmission system, in general, consists of three basic parts; the
transmitter, the transmission path and the receiver, as shown in Fig. 2.1, The
information to be transmitted is carried by a sequence of binary digits {o .}, where
h=1,2,... m. These digits are fed to the encoder in groups, each group containing m
binary digits. The goal of the encoder and its mapping process (Fig. 2.1) is to map
the input digits {o;,} into channel input symbols such that the number of errors
between the {o,} and the corresponding digits at the output of the detector/decoder
is minimized [19]. The {o, ,} are statistically independent binary digits and equally
likely to have any of their two possible values 0 and 1. The baseband signal at the
input to the linear modulator in the transmitter, may be expressed as a sequence of
impulses

s(2)=X.5,8( —iT) . 211

where 8(¢) is the Dirac function, s; is the ¢+1)* transmitted data symbol and T is the
interval between the impulses, in seconds. Although in practice the signal fed into
the modulator is always in the form of a rectangular or rounded waveform, the
assumption in Eqn. 2.1 is used to “simplify the theoretical analysis of the system,

The transmitter filter, with impulse response a(t), is employed to shape the spectrum
of the signal fed to the transmission path, to match its available bandwidth and
consequently to maximize the signél power at the receiver input for a given
transmitted signal power, The transmission path could be a lowpass or bandpass
channel with an impulse response h(t) which, for practical purposes, will be of a
finite duration and time invariant. White Gaussian noise n(t), with zero mean and
two sided power spectral density ;v, , is added to the signal at the transmission path
output. Although the transmission path, in practice, introduces different kinds of
additive noise, the tolerances of different data transmission systems to additive white




Gaussian noise is a good measure of their relative tolerances to most practical types
of additive noise [20]. The receiver filter with impulse response b(t), removes the
noise frequencies outside the signal band without excessively band limiting the
signal itself. The transmitter filter, the transmission path and the receiver filter in
cascade are assumed here to form a linear baseband channel with impulse response
v(t) is given by

v(t)=a@) * k) *b() | e 212

~ where * represents the operation of convolution.

The received signal at the output of the receiver filter is given by

p(t)=Xs5;v(t=iT) +u(t) e 213

where u(t) is the noise component in p(t) and is given by

u(y=n@)*b() ' ' ... 214

The waveform p(t) is sampled once per data symbol, at the time instants {iT} , to
give the received samples {p,} , where

X
pi= X5, v,y . 215
Py’

and p,=p(T),v;=v(T) and u;=u(iT) . Thus the sampled impulse response of the
linear baseband channel is given by the (X + 1) -component row vector

V=lv, v, v, . . . vl .. 216

The transmitter and receiver filters are normally designed to have a bandwidth
(measured over positive frequencies) that is close to 1/2T Hz, so that the sampling
rate of lfT samples/s is close to the Nyquist rate for p(t) [20], which ensures that
most of the information carried by the received waveform p(t) is contained also in

the samples {p;}.




The detector/decoder in Fig. 2.1 operates on the samples {,} to produce the detected
values {§;} of the data symbols {s;} and the corresponding detected values {&,} of
the information digits {c;,} .

2.2 TELEPHONE CIRCUITS

Telephone circuits are voiceband channels with a nominal bandwidth of 200-3400
Hz, and they can handle transmission rates of typically up to 19200 bit/s [20-22]. A
telephone circuit connecting two subscribers is normally made up of two or more
links connected in tandem. These links are usually of four different types; unloaded
audio, Joaded audio, PCM and carrier links. Microwave and HF radio links are also
used [20]. Since each of these links has its own properties, different kinds of
distortion and noise may be experienced. Multipath prépagation is a significant
source of the distortions in a telephone circuif, and results from the reflections at two
or more points of mismatch in the circuit. Multipath propagation causes time

dispersion of the received signal elements. Each element now constitutes a main’ -

pulse together with several echoes of thi$ plilse that are dispersed in time [20,22].
The received signal elements therefore overlap each other, and so, any sample of the
received waveform is a function of several elements (and hence of the data symbél
carried by these elements). This effect Gontributes to intersymbol interference which
becomes very serious at the higher transmission rates. The presence of echoes in
the received signal corresponds to the appropriate combination of attention and delay
distortions introduced by the circuit. The characteristics of an ideal telephone circuit
are aconstant group delay over the entire bandwidth and an attenﬁation-frequency
response as shown in Fig. 2.2.a, whereas the attenuation and group delay characteris-
tics of a poor telephone circuit could be as shown in Fig. 2.2,b [23]. The latter
circuit is described in Chapter 3.

Telephone circuits may be divided into two groups: private (leased) and switched
lines. The private lines are not connected through any of the automatic switches in

the exchange and they are also disconnected from the exchange battery supplies.




The attenuation and group delay characteristics of the private lines are constrained to
lie within specified limits [24,25]. The switched line, which is a line on the public
network, is a circuit obtained when using an ordinary telephone to set up a call [20].

The noise experienced over the telephone circuits may be classified into additive and
multiplicative noise. The most important type of additive noise is the impulsive
noise. It comprises short busts of random additive noise and arises from the
- switching equipment in the telephone system [21,24]. White noise with low level
and wide bandwidth may be experienced over telephone circuits. It produces errors
" in the detection only at very low signal level [20]. The noise introduced by the
ADPCM links, which can be considered as a combination of additive and
multiplicative noise, can impair the operation of the tél_ephonc modem at high
transmission rates (around 9600 bit/s) [21]. The effects of the multiplicative noise in
the telephone lines can be divided into amplitude and frequency modulation effects.
Amplitnde modulation effects occur such as transient interruption, sudden signal-
level changes and modulation noise, which appear as amplitude modulation of the
signal by bandlimited White noise [20]. |

~

Frequency modulation effects such as, phase jitter, frequency offset and sudden
phase changes occur only over telephone circuits containing carrier links [20]. Phase
jitter is basically frequency modulation of the transmitted signal by the low
frcquency harmonics of the mains frequency (50 or 60 Hz). This can seriously
degrade the performance of the transmission system at rates of 9600 bit/s and above
[22]. The frequency offset may have a value up to ¥ 5 Hz and is usually -
compensated for by the carrier recovery loop in the demodulator. Sudden carrier '
phase changes may occur quite regularly and involve a large change of phase.
Differential encoding is used normally to limit the effect of the phase changes.

When a transient interruption exceeds a certain duration or when a sudden signal
level or carrier phase change exceeds a certain level, errors are more likely to result
in the detected data symbols [21]. '

The amplitude and frequency modulation effects can be predominant over the
private lines, while the switched lines have in addition a high level of impulsive
| noise which may often mask the other types of noise [20].




2.3 EQUALIZATION AND DETECTION

In this section, the equalizers and different detection techniques ‘are described
briefly. The transmitted data signal is assumed here to be an M-level QAM signal.
The model of the data transmission system, forlQAM signal is described in detail in
Appendix A, and so, all the assumptions made in Appendix A are applicable here
also. Fig, 2.3 shows the discreet time model of the data transmission system, where
the sampled impulse response of the linear baseband channel is given by the (X +1)
-component vector

V=[v, vv v» . . . v] .. 231

and the received sample at the detector input at time t=iT is given by
K . .
P.=hz Sica Vet e 232
=0

where p;,s;_,,v, and u; are complex-valued samples, and the noise samples » are
statistically independent Gaussian random variable with zero mean and variance 2¢° .
When the channel introduces no intersymbol interference Eqn. 2.3.1 can be written

as

V=[v, 0 0 . . . . 0] ..233
and so Eqn. 2.3.2 becomes

D=5Vt o 234
In this case, the detector in Fig. 2.3 will be an appropriate threshold detector for the
given signal. For example, if the QAM signal has 16 levels, as shown in Fig. 2.4,
the threshold levels of the detector are placed at -2, 0 and 2 for each of the real and
imaginary axes, and a correct detection of 5; can be made so long as | /v, i<i [26].
When v,=1 , and for the 16-level QAM signal (Fig. 2.4), it can be shown that the
average probability of §; being incorrect is given by

P, = SQ(-:} . 235

where o is the standard deviation of the Gaussian noise samples {#;} , and Q(.) is the
Gaussian error probability density function which is defined by [20]



Q) =L[%Eexp[—%y2)dy .. 236

Eqn. 2.3.2 can be rewritten as
K
pl.=s,-v0+h2 SiaVat U .. 237
=1

the term £.... represents intersymbol interference and unless the inequality

<l v, |

£
AEIS,-_,,V,,+M,-

is true, the correct detection of 5; will not normally be obtained. | x | is taken to be the
absolute value of the scalar x, and | X | is taken to be the unitary length of the vector
X. '

2.3.1 LINEAR EQUALIZER

The linear equalizer removes the intersymbol interference introduced by the channel
from the received samples {p;} . It may be implemented as a linear feedforward
transversal filter with (q+1) tap gains, as shown in Fig. 2.5. The equalizer here
operates on the received sequence {p;} , which js  held in stores (marked by T in
Fig. 2.5) and !~/ i -2 shifted one place to the right for each new received sample.
- The output of each store is multiplied by the tap value and then summed to give the
equalized sample ¢, , at time iT, where

q
€= X DiyCy : . 238
h=0

The sampled impulse response of the equalizer is given by

C=[¢, ¢, ¢, . . . ¢] we 239

q

and with z-transform

C@)=cy+e, 2 +c,z272 . . . +¢,27 .. 23.10



where {c;} are, in general, complex valued samples.
The z-transform of V (Eqn. 2.3.1) s,

V@E)=ve+ v,z vz L L +sz’K .. 2311

Then the sampled impulse response of the equalizer and the channel will be the
(K +g +1) -component Vector.

F={fy fi £ « « - frsq) .. 2312

with Z-transform

F@)=fitfiz'+£27 . . . +f, 250 o 2313
Clearly F(z) is given by
F(z2)=V()C(z) .. 2314

If the equalizer achieves the exact equalization of the channel, Egn. 2.3.12 becomes

F=[’666.—_0' 10“0] | e 2315

a | -
where h is[positive integer in the range 0 to (K+q)
The value of h here indicates that the channel and the equalizer together introduce a
~ delay of h sampling intervals. Therefore, F(z) (Eqn. 2.3.13) can be written as

Fiz) = : .. 2316
and from Eqn. 2.3.14

Ci) = z"v() e 2317
Clearly C(z) in Eqn. 2.3.17 is a polynomial in ;" with an infinite number of

coefficients, which is the condition for the exact equalization. Eqn, 2.3.17 assumes
that there is no root (zero) of V(z), that lies on the unit circle in the z-plane.

If the exact equalization of the channel is assumed, the equalized sample at the input
to the detector (Fig, 2.5) at time (i+h)T, is given by

ei+h=si+u:+h e 23]8

where 4., is the noise componentin ¢,,, , and is given by

10



g

w,, = }:oc,- Ui vh-j o 239
J-——

Since the noise samples {u;} are statistically independent Guassian random variables

with zero mean and variance 2¢° (as assumed before), {«/,,} are Gaussian random

variables with zero mean and variance »? [22,26], where

=201 ¢ P=20’| C F S .. 2320
I= .

and | C | is the length of the vector C (Eqn. 2.3.9). It can be shown that the average
probability of error in detecting s, from ¢;,, (for the 16-level QAM signal) can be
lower bounded by,

1
P,= e 230
, =30 (aa) | . 23.21
Where Q(.) is defined by Eqn. 2.3.6

When the channel introduces amplitude distortion [Cl>1 and so w*>¢ {22].
However, if the channel introduces only pure phase distortion, the equalizer
performs pure phase equalization and it can achieve the best tolerance to additive
white Gaussian noise., Under this condition, the equalizer is also matched to the |
channel [22,26].

When V(z), the z-transform of the linear baseband channel has no roots (zeros)
outside or on the unit circle of the z-plane, the linear equalizer can be implemented
as a linear feedback transversal filter with only K taps, This is described in Chapter
4,

In practice, only a finite number of taps (q+1) of the equalizer can be used, and the
accuracy of equalization can be increased by increasing the number of taps.
Consequently, Eqn. 2.3.17 becomes

Ce) = 27V .. 2322
where = means approximately equal. '

And so the vector F (Eqn. 2.3.15) may have components with non.zero amplitude

beside the »* component whose value is approximately unity in this case. The




presence of these components represents residual interference in the equalized
signal. Different techniques have been introduced to determine the tap gains of the
equalizer that minimize the residual interference [22,24,27].

When the sampled impulse response of the channel varies with the time, it is
necessary to keep adjusting the tap gains of the equalizer to hold it correctly set for
the channel. The information needed for the optimum setting of tap gains are
derived from the received samples {p;} [22]). The equaliZer in this case is known as
an adaptive linear equalizer. The adaptation techniques of the tap gains are based on
the determination of the error in the equalized signal [2,13,24,28]. An adaptive
linear equalizer is used in many medium and high speed ( 2 4800 bit/s) voiceband
telephone modems.
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2.3.2 NONLINEAR EQUALIZER

The pure nonlinear equalizer has the structure shown in Fig. 2.6. Unlike the linear
equalizer, the nonlinear equalizer uses the detected values of the previously received
data symbols to form an estimate of the intersymbol interference components in the
received samples. Furthermore, it operates correctly whether or not the roots of V(z)
(Eqn. 2.3.11) lie on the unit circle in the z-plane.

The equalized sample at the input to the detector in Fig, 2.6, at time 1T, is given by

1 X '
ei=_(pi_ 2 5w .. 2323
Vv h

0 =1

Where p, is given by Eqn. 2.3.2 and {f,_,} are the detected values of {s;_,} for
h=1,2,...KK ., and when these are correctly detected,

U; .
g=5+— e 2324

Vo ;
where v,#0 as assumed before.

The detector selects as §, the one of the possible values of s; which is closest to ¢; .
Here {u/v,} are the noise components in {¢} and they are Gaussian random variables
with zero mean and variance 2% v, F , where 2¢? is the variance of the noise samples
{u;} . It can be shown, that the probability of error in detecting s, is given by [22]

P,= 3Q(|—E-|J e 2325
c
Eqn. 2.3.25 assumes that the signal is a 16-level QAM (Fig. 2.4), and Q(.) is given
by Egn. 2.3.6. Both p/v, and e, have the same wanted data symbol s; and the same
noise component u/v, , so that the nonlinear equalizer removes the intersymbol
interference without changing the signal/noise ratio [22). When one or more of the
previously received data symbols are incorrectly detected, their intersymbol interfer-
ence in the following received samples are enhanced instead of being eliminated.
Errors in the detection of s, , therefore, tend to occur in bursts and the system suffers
from the error extension effect. This increases the probability of error by a factor
which depends on the signal distortion introduced by the channel and the level of the
transmitted QAM signal. However, at high signal/noise ratios, when v, is one of the
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larger components in the vector V, the error extension effects do not normally
change the signal/noise ratio, for a given low error rate, by more than a factor of 1
dB [22].

When all the roots (zeros) of V(z) lie inside the unit circle of the z-plane, the
nonlinear equalizer usually gives better tolerance to noise than the linear equalizer
[22]. However, when all the roots of V(z) lie outside the unit circle in the z-plane,
the error extension effects become serious and the nonlinear equalizer often gives a
lower tolerance to additive Gaussian noise than the linear equalizer [22]. However,
V(z) frequently has roots outside the unit circle, such that [, |»| v | for 0<j<h and
0<h <K . Under this condition, a better performance can sometimes be achieved with
the nonlinear equalizer by detecting s; from :.» and not from p, as in Eqn. 2.3.24
[27]. Clearly, the latter arrangement leaves intersymbol interference terms which
cannot be removed by the nonlinear equalizer. A further improvement in the
tolerance to additive noise may be obtained by adding a linear filter at the input of
the nonlinear equalizer to remove the intersymbol interference terms that are not
eliminated by the pure nonlinear equalizer [22,27]. Let the z-transform of the
required linear filter with n taps be

D(z)=C{E)Y(2) 2326

where C(z) is the linear equalizer for the channel with (q+1) taps satisfying Eqn.
2.3.22, and '

Y(2)=y,+y, 2 4 y,2%4+ . . . 4y 2 .. 2327
0 1 2 £

The sampled impulse response of the linear filter is given by the n-companent vector

D=[d, 4 d . . . . d_,] - ...2.3.28

with Z-transform

D@)=dy+d 2 +dyz %+ . . . +d,_ 2" .. 2329
which satisfy Eqn. 2.3.26, where

n=g+g+1 e 2330

The z-transform of the linear baseband channel and the filter is
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V(z)D(z)=V(z)C(z)¥(2) - o 2331
By using Eqn. 2.3.22, the above equation becomes '
V(@) D) =27"Y(2) | .. 2332

When the delay of hT seconds is neglected, the sampled impulse response of the
channel and the linear filter is given by the (g+1)-component vector

Y=[yo % Y - - « - ¥l ...2.3.33

The structure of the above arrangement is shown in Fig. 2.7. The sample value at the
output of the linear filter (Fig. 2.7) at time (i+h)T is given by

a-1
e:+h=j§0pi+k-—jdj . 2334

which can be written as (see Eqn. 2.3.32)

g
e!n:jgrosi-j)’j“'wnn . 2335
where ;
n=1 ' _ .
Wirh= 2 Uira-i% ... 2336

and {w,,,} are Gaussian random variables with zero mean and variance
’ a1
n?=26" -Zol d, P=20*| D P .. 2337
J= ,

where | D 1is the length of the vector D and 2¢ is the variance of the noise samples
{u}.

The remaining intersymbol interference components in ¢/,,,will be removed by the
nonlinear filter (Fig. 2.7), and the sample value at the input to the detector is

Cisn= 1<e:+h ~ 28 J’j) ... 2338
Yo i=1

where {£,_;} are the detected values of the data symbols {5;_;} and when these values
are correct
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Wiin

2339

Eon=5+ Yo

The detector then selects one of the possible values of s; , which is closest to ¢,,, as
the detected value of data symbol s; as before,

To minimize the probability of error in the detection of s; , it is necessary to
minimize | D| (see Eqn. 2.3.37). The minimisation is subject to the constraints
imposed by Eqn. 2.3.26. It has been shown [22], that the optimum choice of the
linear filter, with z-transform D(z) (Eqn. 2.3.29), is that which replaces all the roots
of V(z) (the z-transform of the linear baseband channel) which lie outside the unit
circle of the z-plane, by the complex conjugates of their reciprocals. The resultant
impulse response of the linear baseband channel and the linear filter is given by the
vector Y (Eqn. 2.3.33), which now becomes a minimum phase sequence with all the
roots of its z-transform lying inside or on the unit circle of the z-plane. So the linear
filter here concentrates the energy of the sampled impulse response Y towards the

earliest samples and at the same time removing the phase distortion introduced by
~ the channel, without, however, changing any amplitude distortion [22,23], Thus the
signal/noise ratio at the output of the linear filter is not changed and so this
arrangement is optimum in terms of its tolerance to additive white Gaussian noise
(since the signal/noise ratio is unchanged through the pure nonlinear equalizer as
described earlier). The optimization here is subject to the constraint that the
equalizer achieves - accurate equalization of the channel. When the sampled
impuisc response varies with the time, the linear filter must be adaptively adjusted.
This involves the estimation of the sampled impulse response of the linear baseband
channel (V) first and then the determination of the roots in the z-plane. The
knowledge of these roots is now used to adjust the tap gains of the adaptive linear
filter [29,30]. - A comparison of the available nonlinear equalizers is given in [59]
and [60], and it has been shown in the latter that the arrangement just described can
give a better tolerance to additive Gaussian noise over all the other techniques at
high signal/noise ratios.
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2.3.3 THE VITERBI ALGORITHM DETECTOR

It is clear from the description of the equalizers, that only a portion of the received
signal energy is used in the detection, the remaining part being eliminated by the
equalization process. Since p, (Eqn. 2.3.2) contains information about s,_, as well as
5; for h=1,2.... K, a detector that operates simultaneously on a group of {p,} in sucha
way that the intersymbol interference is involved in the joint detection of the {s}
instead of being eliminated may achieve better tolerance to additive white Gaussian
noise than the optimum equalizer [22,26]. An effective arrangement of such a
detector is known as the maximum likelihood detector or maximum likelihood
sequence estimator [31]. The detector here holds in store the distorted and noise
corrupted received samples {p;} . It also holds in store all possible combinations of
the transmitted sequences {s;} based on the knowledge of the possible values of s, .
Noiseless version of the received sequences are then produced by convolving all the
possible sequences of the transmitted data symbols with the sampled impulse
response of the channel, which is assumed to be known to the detector. The detector
then selects one of these sequences which is at the minimum unitary distance (see
Eqn.2.4.5) from the actually received sequence, and the corresponding possible
combination of the data sequence is taken to be the detected sequence of {s;} .

When the transmitted data symbols are statistically independent and equally likely to
have any of their M possible values, and the noise samples are statistically
independent Gau_ssiar_i random variables with zero mean (as assumed here), the
detected sequence becomes the maximum likelihood sequence, and the selection of
this minimizes the probability of error in the detection of the received message [26].
At high signal/noise ratios, the maximum likelihood detector can, for practical
purposes, be taken to minimize the average probability of error in the detection of an
individual data symbol [31,32].

Since a very long streams of data symbols are usually transmitted in any one
message, the maximum likelihood detector can not in practice be implemented to
operate on a complete message, in a single operation. A practical approach
towards the maximum likelihood detection of the received message is the Viterbi
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algorithm detector, which was first proposed for decoding a convolutionally encoded
signal [61]. This detector will now be described. Just prior to the receipt of p, at time
iT, the Viterbi algorithm detector holds in store mM* vectors {Q;_,}

Ql'__1=[x“_n xi_ﬂ+l . e« s . x“_l] Toass 2.3.40

where M is the number of levels (alphabet size) of the signal, (X +1) is the number of
components of the vector V which represents the sampled impulse response of the
channel (Eqn. 2.3.1), x, for h 2 0 may take on any one of the M-possible values of s,
andn>K .

Each vector Q;., is formed by the last n-components of the corrcspbnding
i-componrcnt vector X,_, , which represents a possible received data sequence {s},

X =[x x4 x .- R e 2341
Associated with each vector g, _, is stored its cost ;
i-1
1= 21 P2 F . 2342
where
X .
5= _Zox}l—jvj ... 2343
_ i=
Pr=2,+ U, o 2344

where x, =0 for h<(. Here, z, is the value of p, that would have been received in the
absence of noise, had the given vector X;_, been the actual transmitted sequence of
-data symbols. The value #, is the corresponding estimate of the noise component in
the received sample p, . Itis clear from Eqn. 2.3.42, that the cost ¢;_, is the square of
the unitary distance between the two sequences {p;} and {z,} . The smaller the value
of c;_, the more likely is the corresponding sequence X;_, to be correct [26].

The mM* vectors {Q;_,}, at time (i-1)T, have all »* different possible combinations of
the last K components x;_x,, X_x - --X;_, , and each vector has the smallest cost for its
given combination. k

On the receipt of p; at time t=iT, each vector Q,_; is used to form M vectors {P;} .

Po=[X_y Xiper + + « « Xy X} . 2345
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The first n components of each vector P; are given by the components of the original
vector Q,_, , and the last component x; takes on its M possible values. The cost of
each vector P, is given by

Ci=C£~l+| pPi—2 B . 2346
where ¢;_, is the cost of the original vector Q,_, given by Eqn. 2.3.42, Now the total
number of the vectors {P;} is M**' . The detector next selects, for each of the m*
combinations of the components x;,_y.q X.xk.4 - . - X in the vectors {P;} , the
vector P, with the smallest cost. The resulting M* vectors {P,} are then stored
together with their costs {¢;} . The vector P, with the smallest cost ¢; , forms the last
(n+1) components of the maximum likelihood vector X; [22,31], given by

X=[x, , %, . . . x] e 2347

The value of the first component x;_, of the vector P; with the smallest cost is now
taken as the detected value §,_, of the data symbol s,_, . So, there is a delay in
detection of nT seconds, and this should be made as large as conveniently possible
[22]. To avoid an unacceptable increase in the value of the costs {¢} , the smallest
of the costs of the M* vectors {P,} is subtracted from every cost, thus the smallest
cost is reduced to zero without changing the differences between the various costs
[22]. The first component of each selected vector P; is then omitted to give the
corresponding vector Q; as

Q=X ner Xicwez + + + - Xy x,-]_ . 2348
The process then continues in this way.

The error probability analysis for the viterbi algorithm detector was first performed
in {31] and specific results for the QAM case are investigated in [33). The analysis
is based on the concept of the error event, which is defined as an interval during
which the maximum likelihood vector (sequence) differs from the correct sequence
[31]. The uppef and the lower bounds on the probability of error event are
Jespectively , given by [31]

P <K, Q(d,l20) . 2349

and

P, 2K,0(d,/20) . ... 23.50
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where K, and X, are constants, and they are independent of the noise variance ¢*
[24,31,34], Q(.) is defined in Eqn. 2.3.6 and d,, is the minimum unitary distance
between any two different received sequences in the absence of noise [28]. The
components of these sequences are given by {z} (Eqn. 2.3.43). It has been shown
[34,35], that the value of d,, depends on the energy of the sampled impulse of the
channel and the number of its components. Also it has been shown that the error
probability differs in most cases only by a small factor from the best that can be
achieved for a given channel, thus implying in many cases that the Viterbi algorithm
detector uses all the received signal energy for its detection process, and is
effectively as good as if there is no intersymbol interference {28,31).

Clearly, from the description of the detection process of the Viterbi algorithm
detector, a storage of M* vectors {Q;_,} and M* costs {¢,_,} are required, and the
detector involves the evaluation of M**' costs and m* searches through M costs, for
each received data symbol. When M or/and K become large, the detector becomes
unacceptably complex. One way to reduce the complexity of the detector, when K is
large, is to use a linear filter , which may be adjusted adaptively, ahead of the
detector in order to reduce the number of the components in the sampled impulse
response of the channel and filter to some desired value [22,36,37]. Many
techniques are presented in the published literature to determine the tap gains of the
linear filter. When the filter performs some amplitude equalization of the channel,
the noise samples at its output will be correlated and the noise variance will be
enhanced. So the optimality of the detection process can no longer be achieved
[22,36,38]. A nonlinear filter (equalizer) may be used instead of the linear filter.
The nonlinear equalizer here makes tentative decisions and uses them to remove
some of the intersymbol interference components, leaving the detector to deal with
the remaining components [38]. Although no noise correlation will be introduced by
the nonlinear equalizer, the arran gernerit suffers from the error extension effects and
some of the sighal energy is eliminated by the intersymbol interference cancellation
process [39]. Another approach towards reducing the complexity of the Viterbi
algorithm detector is to simplify the a]gon'thm itself rather than pre<processing the
received signal linearly or nonlinearly. This is described in the next section.
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It is assumed throughout the above description that the noise samples {#;} at the
detector input are uncorrelated. When these samples are correlated, the Viterbi
algorithm detector does not achieve the optimum performance [31]. In this case, a
whitening matched filter must be used ahead of the detector to achieve the optimum |
pcrformanée. The whitened matched filter consists of a linear filter that is matched
to the channel, a sampler that samples the signal at the output of the linear filter at
times {iT} and a linear noise whitening network implemented as a linear feedforward
transversal filter [26,31,40]. When the received signal is sampled at the Nyquist
rate a noise-whitenjng matched filter is no longer required. Itis now sufficient to use
in its place, a low pass filter with a rectangular (or nearly rectangular) transfer
function and a cut-off frequency equal to the half of the sampling rate followed by
the sampler and then an adaptive linear feedforward transversal filter similar to that
employed in the optimum (conventional) nonlinear equalizer (see the previous
section) [26,41,42].

2.3.4 NEAR-MAXIMUM LIKELIHOOD DETECTORS

These are detectors operating with fewer stored vectors (possible data sequences)
and, therefore, with less computation requirements than the Viterbi algorithm
detector {23,43-57]. Many of these detectors come close to achieving the maximum
likelihood detection (minimum distance) of the received signal, and so they are
known as near maximum likelihood detectors. The principle of operation of these
detectors, is to consider only k vectors {Q,_,} (Eqn. 2.3.40) which have vsually the
lowest costs {c;_,} (Eqn. 2.3.41). Since the greater the cost of a vector the less likely
is it to be correct, the greater. cost vectors are simply discarded. Here ki «M* and
typically 4<k <16 . The near-maximum likelihood detector is usually proceeded by
an adaptive allpass linear filter that is adjusted to make the sampled impulse
response of the channel and the filter minimum phase [23,57]. The adaptive linear
filter here is similar to the linear filter which forms the first part of the optimum
nonlinear equalizer [23,44-47]. In Chapter 4, some near-maximum likelihood
detectors are described.

21



2.4 CONVOLUTIONAL ENCODING

2.4.1 GENERAL DESCRIPTION

A convolutional encoder consists of logic circuits that contain shift registers, logic
gates and a set of connections between them. The encoder accepts a sequence of m
binary digits and it produces at its output k binary coded digits at any time instant,
. where k>m. The code rate is defined as '

R, =mik : e 241

In general, a convolutional encoder with a memory of L bits may be viewed as a
finite state machine with 2¢ possible states. The state of the encoder at any time
instant is determined by the contents of its store (shift register) at that time instant.
Although a convolutional encoder may be described by its generator matrix
[19,24,58] the description employed here is in terms of the states and state transition
diagram of the encoder. Because the state transition diagram is usually called a trellis
diagram, convolutional encoding can be said to be a type of trellis coding. ‘

Let the m input digits form the m-component vector

op=loy, o, . . . o,] . 242

and let the k output digits form the k-component vector

Bi=[Bo By . - . Bieod] e 243

Also let the state of the encoder be defined as the L-component vector

Mi=Elo My - -+ Mpod e 244

where the binary digits o, , B,, and p,, may take any one of their two possible valies
0and 1.
The operation of the encoder may now be described as follows. For each input
sequence (vector) o, , the encoder generates the sequence B; at its output, while
changing its state from ; to its next state p,,, . The coded binary sequences are then
mapped onto a data symbols (signal elements) by using an appropriate modulation
scheme.
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When the channel introduces no intersymbol interference and the noise samples are
statistically independent Gaussian random variables with zero mean and fixed
variance, the received sequence is optimally decoded (detected) by using the .
maximum likelihood decoder [16,61]. The maximum likelihood decoder operates on
the unquantized demodulated samples and it determines the correct transmitted
information sequence by using its knowledge of the possible sequences of signal
elements [3,4,16,61,62].

A coding gain results when the minimum unitary distance between valid coded
signal sequences is greater than that of the corresponding uncoded system [4]. So
the objective of the design is to maximize the minimum unitary distance between all
the possible (valid) coded signal sequences. The minimum unitary distance is
sometimes called the minimum free distance of the code, and can be defined as [63],
d: = Minimum | S, - S, P for all j,h .. 245
Sy =S,
Where S, and S; assume all the valid pairs of coded symbols (sequences) that the
encoder can produce and excludes all the cases where the two sequences are
identical, and | §,-S; | is the unitary distance between the two sequences S, and S; .

The asymptotic coding gain (in dB) of the coded system over the corresponding
uncoded system is given by, [4,64]

G, =10log,, (d2/d>) . 246

where d, is given by Eqgn. 2.4.5 and d4,, is the minimum unitary distance of the
uncoded system. Here Eqn. 2.4.6 assumes that the average transmitted signal energy
of the coded and uncoded system is the same [65]. When dealing with binary
sequences, the distances ( d, and d, ) in Eqn. 2.4.6 may be represented by the
corresponding Hamming distance [61]. Usually, for higher signal Ilevels (non-
binary) the larger Hamming distance does not translate monotonically into larger
unitary distance [8,61]. So d, and 4,, , the unitary distances, are considered here
instead of the Hamming distances.

The important role played by the minimum free distance of the code becomes
evident when the error events of the decoder are examined. The probability of an
error event is defined as the probability of an error event starting at specific time
instant, given that the decoder has correctly identified the encoder state at that time
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instant [64]. The error event probability of the maximum likelihood decoder,
assuming an additive white Gaussian noise channel and a high signal/noise ratio, can
be lower bounded for the case, of the two dimensional signal, by [16]

P,2N,0Q(d,120) - .. 247

where d,, is defined in Eqn. 2.4.5, N,, is the average number of errors at distance 4, ,
o is the standard deviation of the real and imaginary components of the additive
noise samples and Q(.) is the Gaussian error probability density function (Eqn.
2.3.6). To ensure a good performance of the coded system, the encoder is designed
to achieve a good minimum free distance and hence the modulation method that is
used to transmit the coded symbols, becomes important.

2.4.2 COMBINED CODING AND MODULATION

If a code of rate R, (Eqn. 2.4.1) is used in conjunction with an M-level moduiation
scheme where the modulator and encoder are separate, the bandwidth of the coded
signal must be increased by a factor of 1/R, over the uncoded signal that uses the
same M-level modulation. In this case, the coding system may achieve an
imprbvcment in the probability of error for a particular signal/noise ratio at the cost
of increased bandwidth. But for the systems where the modulation scheme has been
designed to use the available bandwidth very efficiently (such as the voiceband
telephone channels), an increase in the signal bandwidth is not tolerable. The
solution here involves the joint design of the encoder and modulator, such that good
distance properties of the coded signal and efficient use of the available bandwidth
can be achieved. This was first considered in [66,67], and 2 more comprehensive
solution to the desigh problem was givén by Ungerboeck [3]. He devised a method
for mapping the signal points, and called it "mapping by set partitioning”. The
redundancy required by the coding process is provided by an increased signal
alphabet (more possible values of a data symbol) but with no change in the data
symbol rate and hence no change in the bandwidth of the transmitted signal. A
general description of the Ungerboeck technique is given below, and this is followed
by some recent developments.
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In this technique, and to transmit m information bits per modulation interval, a
constellation of 2"+ signal points is used. Fig. 2.8 shows the general structure of the
encoder and its mapping process. The =’ bits enter a rate m's(m'+1) binary convolu-
tional encoder, where m'sm and typically m’ = 2 or 3. The m'+1 coded bits are used
to select one of the 2+ subsets of the 2°** signal points. The remaining uncoded bits
determine which of the 2»-~ points in the subset is to be transmitted [68). This is
further described by considering an example, where a 32-level QAM signal
constellation is partitioned into eight subsets, each subset representing four signal
points, giving m=4, and m' =2. The encoder in this example is known as the G8
encoder [9], which is used throughout the work. The encoder is an eight state
convolutional encoder, with a state transition diagram as shown in Fig. 2.7. The
details of this encoder, including the circuit diagram and the truth table, are given in
Chapter 3. In this chapter, only the partitioning of the signal points and the
assignment of the signal subsets to the state transition diagram are described.

The set partitioning of the 32-level QAM signal constellation is shown in Fig. 2.10.
This signal constellation is known as a 32-CROSS signal constellation. The signal
points in Fig. 2,10 are first divided into two subsets BO and B1, which are then
partitioned into subsets C0, C1, C2 and C3, and the latter subsets partitioned further,
to give the final eight subsets DO, D1, .... and D7. The minimum unitary distance
between the points within each subset is increased at each partitioning step. So in
Fig. 2.10

Ay <A <A, <A, .. 248

and

By =\24, ' _ .. 249
where A, is the minimum unitary distance, at the j-th partitioning step. Thus, in this
example, the square of the minimum unitary distance is doubled at each partitioning
step. Each of the subsets DO D1 D2 ..... D7 are defined by a decimal number which
follow the letter D. This number specifies the binary coded digits B, ,.p,; and [3,-,', .
The two uncoded bits ¢, and o, are used to choose a signal point from the selected
subset. Fig. 2.11 gives the 32-CROSS signal constellation, where the bit assign-
ment for each point is shown. The assignment of the subsets to the state transition is
very important and must satisfy the following rules [3].
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1) Any state transition originating from or merging to the same states are assigned
signals from the subsets BO or Bl.

2) Any transition having the same originating and joining states (known as parallel
transitions) are assigned signals from the same subset (D0,D1,.....D7).

3) All signals appear with equal frequency and the state transitions exhibit a
reasonable degree of symmetry.

It can be shown (see Fig. 2.9 and 2.10) that the encoder in the given example
satisfies all these rules, and its free distance is given by [9]

d,=\2A7+A2 - . 2410

with an asymptotic coding gain of 4 dB (see Eqn. 2.4.6) over the uncoded 16-QAM
scheme (Fig. 2.4), where A,=2 . It has been shown [3], that coding gains of upto 6
dB can be achieved by using this technique. '

Despite the advantage of the trellis coded modulation schemes, phase changes
introduced by the transmission path cause a phase rotation of the received signal as
compared to the transmitted signal [4,5]. This can cause catastrophic errors in the
decoding of the received data [4,68]. The problem is solved by employing
differential encoding techniques that remove these rotations [4,5,63]. It has been
shown that the use of differential encoding does not change the distance properties
of the code [5]. Many‘ trellis coded schemes based on the Ungerboeck technique
which use differential encoding, have been considered as international CCITT
Standards for 9600 bit/s transmission over the public switched elephone network
[5,9,68-71], and 14400 bit/s transmission over private lines [7]. The codes used are
8-state trellis codes with a nominal coding gain of 4 dB. The coding technique just
described has been used with multidimensional signals (more than two dimensions)
in recent years [72,73].
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2.4.3 DETECTION (DECODING) OF A CONVOLUTIONALLY
ENCODED SIGNAL

When a coded signal is transmitted over an additive white Gaussian noise channel, a
maximum likelihood decoder, implemented by means of the Viterbi algorithm, gives
the best available tolerance to noise [10,11,61]. If a trellis coded modulation scheme
is used, the operation of the Viterbi algorithm detector may be described by using
the trellis diagram of the code [74]). The Viterbi algorithm detector holds in store 2
possible coded sequences (vectors), where L is the memory of the code. For the
coding scheme considered in the example of the previous section, each sequence is
associated with a different one of the 2* states at time iT (Fig. 2.10), where 2* is 8.
Associated with each vector is stored its cost, which is the square of the unitary
distance between the actual received sequence and the particular stored vector. On
the receipt of the received sample at time (i+1)T, the detector expands each sequence
into 27, where 2" is the number of the permitted (valid) transitions that originate from
each state at time iT (Section 2.4.2). The incremented cost of the expanded sequence
is then given by the square of the difference between the received sample at time
(i+1)T and the possible value of the transmitted coded symbol which is determined
by the particular transition. The cost of an expanded sequence is then given by
adding the incremented cost to the cost of the original sequence. For each state at
time (i+1)T, the detector then selects one of the 2 sequences which has the smallest
cost. The selected sequences (vectors) are called survivors. The detected value of
the coded symbol is then given by the earliest component of the survivor with the
smallest cost. A delay in detection of typically SL sampling intervals is normally
assumed [75]. In Chapter 5, the Viterbi algorithm detector is described in detait .

There are two other methods of decoding convolutional codes, namely sequential
decoding and threshold (majority logic) decoding [76]. The latter is considered as an
algebraic method, and basically involve solving sets of algebraic equations [76]. Its
performance is inferior to both the Viterbi algorithm decoding and the sequential
decoding {76]. Sequentiél decoders search for the most probable sequence (path)
through the trellis by examining one path at a given time instant. For any given state,
each evaluated cost (for the given transition) is compared with a threshold. If the
evalnated cost is below the threshold then the decoder is forced to go back and try
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another transition [74,10]. Clearly, this requires a variable number of operations. It
has been found that the performance of the Viterbi algorithm decoder is better than
that of the sequential decoder over the real channel impairments [19].

For moderate values of L and m, the complexity of the Viterbi algorithm detector
(decoder) can be accepted as the price that needs to be paid for the performance
improvement arising from coding. But, when both the number of states and the
number of signal levels are relatively large, the Viterbi algorithm detector becomes
too complex and its implementation is impractical. Different techniques have been
found to simplify the operation of the Viterbi algorithm decoder. Decoding methods
that come close to achieving the performance of the maximum likelihood decoder
without, however, requiring nearly as much storage or computation per decoded data
symbol as does the Viterbi algorithm detector, have been proposed [55,56,74,77]. A
simple methed of evaluating the costs of the survivors is presented in [78], and a
new approach has been proposed by considering a simple coding scheme, such that
the required decoder is of low complexity [79].

When the channel introduces intersymbol interference, the maximum likelihood
decoder (detector), implemented by means of the Viterbi algorithm, becomes
considerably more complex. A total number of 2‘x2™* states must now be
considered by the detector/decoder [14,17,73], where L is the memory of the
encoder and K 1s the number of interfering components in the sampled impulse
response of the channel (see Eqn. 2.3.1). So, 2*x2™ possible coded sequences must
be processed by the Viterbi algorithm detector/decoder. This number corresponds to
the number of states of the encoder and the channel [81]. A solution to the problem
of high complexity is to use a linear or nonlinear (decision feedback) equalizer to
equalize the channel, followed by a Viterbi algorithm decoder which is suitable for
the encoded, but not  distorted signal [13,14,54,65,78,82-84]. Although, the latter
arrangement is simple to implement, it may degrade the system performance such
that no advantage is gained through coding {13,14,54]. It is the purpose of this work
to develop more effective detection processes for use with a convolutionally encoded
and distorted signal.
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CHAPTER 3

MODEL OF DATA TRANSMISSION SYSTEM

~ In this chapter, the model of the data transmission system is described. The data
transmission system is a synchronous serial system and may operate either with an
uncoded 16-level QAM signal or else with a convolutionally encoded 32-level QAM
- signal, and is shown in Fig. 3.1. In either case the QAM signal has a carrier
frequency of 1800 Hz and an element rate of 2400 symbols/s giving a useful
transmission rate of 9600 bit/s.

The information to be transmitted is carried by the binary digits {c;,} , which are
statistically independent and equally likely to have any of their possible values 0 and
1, for i 0. The {e;,} occur in separate groups of four adjacent digits o, ,,0; ,, 0 ; and
o, , which determine the corresponding coded or uncoded data symbol s; . It is
assumed that o, =0 and 5, =0 for i<0, so that 5; is the (i+1)th transmitted data
symbol. ' |

The lowpass filter and linear modulator at the transmitter, the transmission path and
the linear demodulator at the receiver together form a linear baseband channel, as
shown in Fig. 3.1 (Appendix A). The channel has a complex-valued impulse-res-
ponse v(t), which, for practical purposes, has a finite duration and is time invariant,
such that v(t-iT) is a time shifted version of v(t-jT), for any integers i # j, T here is
the modulation interval (1/2400 seconds). The relationship between the resultant
linear baseband channel and the bandpass transmission path is considered in
Appendix A. The additive white Gaussian noise in Fig. 3.1 is complex valued. It has
a zero mean and a constant two-sided power spectral density of v, for each of its the
real and imaginary parts.

40




3.1 DIFFERENTIAL ENCODING AND THE MAPPING OF
THE UNCODED 16-LEVEL QAM SIGNAL

When the data is uncoded (not convolutionally encoded), the data symbol s, is
derived from the binary digits {o;,} by a process of differential encoding. Here, the
data symbol s; is equally likely to take on any one of its 16 possible values given by
the signal constellation in Fig. 3.2, Thus

5;=58;0+J S, ... 311

S;0,8,=F1 or *3 e 312

and j=v=1. The {s;} are statistically independent.

The encoder in Fig. 3.1 is now taken as a differential encoder. The binary digits o,
and a, , are recoded to give the corresponding two binary digits f; , and B, ; according
to Table 3.1 [85], whereas

Bia=oy, ... 313

and

Ba= 0, .. 314

The resulting group of four binary digits B;,,B;,,B;; and B,, now determine the
corresponding data symbol s, , according to Fig. 3.2{85]. The first two binary digits
in any binary coded number determine the quadrant containing s, , and the remaining
two digits ( B;; and B;,) in any quadrant are the same as those in the all positive
quadrant, if this is rotated to coincide with the given quadrant.

Following the detection of s; , at the receiver, the detected values of the binary digits
Biy»Biz»Bis and B, , are determined from Fig. 3.2, and then the detected values of o,
and a;, are determined from Table 3.1 by using the detected values of By, B;.12, B
and B, , ,whereas the detected values of o, and o, are given by the detected values
of B;; and B, , , respectively, (Eqn. 3.1.3 and 3.1.4).
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It can be seen from Fig. 3.2 and Table 3.1 that a shift of a multiple of /2 radians in
the phase relationship between the reference carriers in the coherent demodulators
and the received signal carrier, giving the corresponding rotation in the phase angle
of a received sample r; , does not change the detected values of o;, and o, ,
corresponding to any given value of s; , nor can it lead to a prolonged burst of errors
in the detected values of {o;,} (for h=1 and 2). This is shown in Appendix B. To
reduce further the number of errors in the detection of {¢,} , the mapping in Fig, 3.2
is as near as possible to Gray coding; the exact realization of this is not attainable

with the given signal, when differential encoding is used 42’85/];

3.2 THE CONVOLUTIONAL ENCODER AND MAPPING OF THE
CODED 32-LEVEL QAM SIGNAL

Fig. 3.3 shows the convolutional encoder used thrbughout the work. The encoder -
carries out a process of convolutional encoding with differential encoding. This
encoder is known as the G8 encoder [9], and is one of the trellis coded modulation
schemes which have been considered as CCITT standards for V32 modems [9,68].
The sequence of the binary information digits {e,} are fed to the encoder in groups,
each contains four binary digits. For each group the resulting five binary digits
B.0sBi1sPizsPis and P, determine the corresponding coded symbol s; , which may
take on any one of the 32 possible values as shown in Fig. 3.4,

In the encoder, differential encoding and convolutional encoding are accomﬁlishcd
by a single finite state machine with eight states. Nonlinear elements (NOT and
AND logic gates in Fig. 3.3) have been used in the encoder circuit to make the code
invariant to s¢° rotations, while maintaining its coding gain [5,9,68]. The differential
encoder is used here to resolve the problem of the phase ambiguity [9]. The coded
signal constellation has a four-way 90* symmetry and therefore it has an inherent
phase ambiguity of integral multiples of =22 [9,68,69]. The constellation of Fig. 3.4
is the same as that used in the example of Section 2.4. in Chapter 2, to describe the
technique of mapping by set partitioning. The symmetry of the above signal can be

42



followed by examining the subsets C0, C1, C2 and C3 in Fig. 2.10, where the phase
rotations By 90" or its multiples reflected only in the bits B;, and B;,. Appendix C
show the effect of phase change on the encoded 32-level QAM signal.

The state transition diagram (trellis diagram) is shown in Fig. 3.5, The state of the

" encoder at time iT is defined by the values of the binary digits p,,,1;, and p, ; at the
outputs of the delay elements in Fig. 3.3. The relations between the input (present)
and output (next) state are given in Table 3.2. The encoder opératcs on o;, and &;, to
determine B, , and B; ,, whereas

Bia= 0, . .. 321

ﬁ;.s =0, e 322
and

Bia=0, .. 323

The values of B,, , B;, and B, , that correspond to any particular values of o, and ¢, ,,
.- depend upon the state of the encoder. Since the truth table (Table 3.2) is independent
of o, and o, , it is evident that, associated with each pair of values of o;, and o, ,
are all four combinations of « ; and o, , , 50 that every row of the truth table holds for.
these four combinations. The state at time (i+1)T is uniquely dcterminéd by the state
at time iT together with either o, and o, or else B, , B;; and B, . Again, o;,, 05,
Bio » Biy and B;, are uniquely determined by the states at the time instants iT and
@i+1)T [14]. Clearly, only the information bit o, is represented non-systematically at
the encoder output. As shown in Chapter 2, the asymptotic coding gain of the above
- encoder is about 4 dB. '

' @THE EQUIPMENT FILTERS AND TELEPHONE CIRCUITS

The equipment filters include all filters in the transmission path such as those used in
the modulation, demodulation, band limiting and main hum rejection [86]. The
equipment filters used here are models of practical filters that have been designed for -
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an actual modem by M. J. Fairfield [23,47]. The attenuation and group-delay
characteristics of the filters are shown in Fig. 3.6. These filters, when considered as
operating on the transmitted bandpass signal, introduce an attenuation of about 15
dB at 600 and 3000 Hz, the attenuation increasing rapidly as the frequency is
reduced below 600 Hz or increased above 3000 Hz, and being less than 1 dB over
the frequency band from 1100 to 2200 Hz. The equipment filters (Fig. 3.6) are
known here as equipment filters-1. °

Models of four telephone circuits are used in the investigﬁtion. Figs. 3.7 to 3.10
show the attenuation and group delay characteristics of these circuits. Telephone
circuit 1 (Fig. 3.7) and telephone circuit 2 (Fig. 3.8) introduce negligible and typical
levels of distortion, respectively, whereas telephone circuits 3 and 4 (Figs. 3.9 and
-.3.10, respectively) are close to the typical worst circuits normally considered for the
trans&liés;i‘on of data at 9600 and 600-1200 bit/s [47). Telephone circuit 3 introduces
severe group delay distortion as well as considerable attenuation distortion, and
telephone circuit 4 introduces very severe attenuation distortion [23,44,46,47]

Table 3.3 shows the'sampled impulse responses of the above four circuits  when
combined with the filters. The derivation of these responses is considered in
Appendix D. Although the telephone circuits normally introduce various types of
additive and multiplicative noise (as described in Chapter 2), it is assumed here that
the only noise introduced by the channel is stationary white Gaussian noise with zero
mean and a flat power spectral density, which is added to the signal at the cutput of
the telephone circuit. The tolerances of different data transmission systems to
additive white Gaussian noise is a good measure of their relative tolerances to miost
practical types of additive noise [20].

The demodulated and filtered waveform, in Fig. 3.1, is a complex-valued baseband
signal p(t), with a bandwidth extending from about -1200 to 1200 Hz, where (see
Appendix A) '

p@)=Xs;v(e—iT)+u(t) .. 331




and v(t) is the resultant impulse response of the filters and telephone circuit, and u(t)
is the noise waveform in p(t). The sampler in Fig. 3.1 samples the received
waveform p(t) once per data symbol, at time instants {iT'} , to give the received
samples {p;} ,

X
Pi=hz SViopty; . 332
=0

where {v,_,} are the components of the vector

V={v, v, v, . . . . vl - ... 333

which represents the resultant sampled impulse response of the linear baseband
channel (Fig. 3.1) formed by the filters and telephone circuit as in Table 3.3.

It is assumed here that the real and imaginary components of the noise-samplcs {u}
(Eqn. 3.3.2) are statistically independent Gaussian random variables with zero mean
and fixed variance. This assumption implies that a little more of the filtering is
carried out at the transmitter than at the receiver. '

3.4 THE ADAPTIVE LINEAR FILTER

The samples {p;} are fed to the adaptive linear filter in Fig. 3.1. The sampled impulse
response of the linear baseband channel, the sampler and the adaptive linear filter in
Fig. 3.1 is given by the (g+1)-component vector

Y=[y, % yz .. .'y8] R ' e 341

with the z-transform

Y(@)=yy+ 32 432" + . . . . Y2 ... 342

where {y;} are complex values, and the delay in transmission over the baseband
channel and the filter, other than that involved in the time dispersion of the received
signal, is neglected here and y, =0 for 0>i or i>g. o '




The adaptive linear filter is a linear feedforward transversal filter that operates so
that all the roots (zeros) of Y(z) lie inside or on the unit circle in the z-plane. The
zeros of Y(z) are derived from the zeros of the z-transform of the sampled impulse
response of the linear baseband channel, shown in Table 3.3, by replacing all the
zeros of the channel that lie outside the unit circle by the complex conjugate of their
reciprocals, leaving the remaining zeros unchanged [22,23,47). Thus, the adaptive
linear filter is an all pass network, with ideally an infinite number of taps, that
adjusts the sampled impulse response of the linear baseband channel and filter to be
minimum phase, without changing any amplitude distortion introduced by the
channel. This in turn concentrates the energy of the channel and filter towards the
earlier samples in such a way as to maximize the ratio of | y, | to the noise variance at
the output of the filter [22,26]. It also removes all phase distortion introduced by the
channel other than any that assists in making the impulse response minimum phase
[47]. This filter is identical to the linear transversal filter that forms the first part of a
conventional nonlinear (decision feedback) equalizer, where the latter is adjusted to
minimize the mean square error (and hence maximize the signal/noise ratio) in its
output signal, subject to the exact equalization of the channel [22]. A technique has
been developed in [29], whereby the adjustment of the adaptive linear filter can be
implemented simply and accurately. Thus, since no serious inaccuracy need in
principle be introduced into the operation of the detector on account of the adaptive
-adjustment of the receiver, the correct adjustment of the adaptive filter is assumed
throughout the work. Furthermore, the gain introduced by the adaptive linear filter .
is adjusted so that '

Yo=1 . 343

where v, is the first component of the vector Y, which represents the sampled
impulse response of the linear baseband channel and the adaptive linear filier. When
- an allowance has been made for the change iri level introduced by the filter, the noise
samples {w;} at its output have the same statistical properties as the noise samples
{1} at its input (see appendix E for the justification of this statement), furthermore,
there is no change in the signal/noise ratio [22]. 'fhus the signal at the output of the
adaptive linear filter, at time t=iT, is the complex valued quantity

-
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1= 2 Sy Vit W L. 344
=0 E

where the real and imaginary components of the {w;} are statistically independent
Gaussian random variables with zero mean and fixed variance (see appendix E ).

Table 3.4 shows the sampled impulse response Y for the four telephone circuits used
here in the test. The telephone circuits 1, 2, 3 and 4 are referred to as channels C,D,
E and F, respectively. Table 3.4 gives an idea about the signal distortion introduced
by each channel. The two remaining channels (not shown in Ta‘Ble 3.4) are channel
A, which introduces no intersymbol interference, and channel B, which is an
idealized partial response channel.

The sampled impulse response Y ( Egn. 3.4.1) is given by

Y=[1 0 0 . . . . 0] : .. 345

for channel A, and

Y=f1 10 .. . . 0] o 346

for channel B.

Channel B is used to compare the proposed detectors with an optimum detector,
which can here be implemented as a Viterbi algorithm detector in the computer
simulation tests, without requiring an unduly large number . of operations.

Appendix F considers the signal/noise ratio used in the investigation and comments
on the computer simulation techniques.
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Channel C Channel D Channel E Channel F

(Telephone circuit 1) |(Telephone circuit 2){(Telephone circuit 3) |(Telephone circuit 4)
Real |Imaginary] Real [|Imaginary| Real (Imaginary| Real [Imaginary

Part Part Part Part Part Part Part Part
0.0326] -0.0045| 0.0145] -0.0006] 0.0176] -0.0175| -0.0038] -0.0049
0.5483} -0.0255] 0.0750f 0.0176] 0.1381] -0.1252| 0.0077| -0.0044
0.8031| 0.0659] 0.3951] 0.0033| 0.4547| -0.1885| 0.0094| 0.0207
02430 -00286] 07491 -0.1718] 0.5078] 0.1622] -00884] 0.0355
0.0066] -0.0176] 0.1951} 0.0972§ -0.1966] 0.3505;% -0.1138} -0.2869
0.0307] 0.0180] -0.2856] 0.1894| -0.2223} -0.2276] 0.5546] -0.2255
-0.0170{ -0.0115} 0.0575| -0.2096| - 0.2797| -0.0158| 0.1903| 0.5813
0.0052¢ 0.0056] 0.0655( 0.1139] -0.1636| 0.1352] -0.2861| -0.0892
-0.0041} -0.0028] -0.0825] -0.0424 0.0594 -0.1400] 0.2332] -0.0384
0.0021| 0.0017] 0.0623 0.00‘85 -0.0084| 0.1111] -0.0652| 0.0428
-0.0001F 0.0001] -0.0438 0.0034 -0.0105] -0.0817 0.0335{ -0.0519
-0.0017| -0.0004| 0.0294| -0.0049 | 0.0152| 0.0572( -0.0323] 0.0170
0.0010] -0.0002{ -0.0181| 0.0032] -0.0131| -0.0406| 0.0044 -0.0023
0.0006] 0.0001] 0.0091] 0.0003] 0.0060] 0.0255| 0.0054] 0.0076
-0.0013}  0.0000] -0.0038] -0.0023] 0.0003| -0.0190[ 0.0008| -0.0051
0.0004| 0.0002| 0.0019] 0.0027| -0.0035| 0.0116] -0.0056! 0.0001
0.0004f 00000 -0.0018] -0.0014| 0.0041) -0.0078| 0.6018] 0.00%2
-0.0002] 0.0001} 0.0006] 0.0003] -0.0031] 0.0038] -0.0009] -0.0015
0.0001| -0.0004] 0.0005] 0.0000 0.0018] -0.0005| -0.0022| -0.0026
-0.0005{  0.0003 -0.0008| -0.0001f -0.0018| -0.0005| 0.0029] 0.0019

Table 3.3 Sampled impulse responses of the linear baseband channels C-F in

Fig. 3.1, for each of the four telephone circuits.
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Channel C Channel D Channel E Channel F
(Telephone circuit 1} (Telephone circuit 2)|(Telephone circuit 3) | (Telephone circuit 4)

Real |Imaginary| Real |Imaginary] Real [Imaginary|] Real [Imaginary
Part Part Part Part Part Part Part Part

10000} o00000] 1.0000] 00000] 1.0000] 00000] 1.0000] 0.0000
03412| 00667] 05091 0.1960| 04861 1.0988| 02544 1.9941
0.1298] -0.0358] -0.1465| 0.0000| -0.5080| 00703| -17394| -0.2019
00263| 00051] 00323] -00171| o0.1702| -0.1938] 06795 -0.8086
00015| 00008 00125 0.02000 -0.0245| 01000 00408 0.5113
00019 -0.0016| -0.0099] -0.0109] 0.0100] -0.0258| -0.1189) -0.1463
-0.0017] 0.0006| 00046| 00074] -0013a] 00110} 00343| 0.0420
-00011| -0.0004| -0.0069| -0.0083| 0.0056| -0.0042] -0.0185| -0.0364
00018] 0.0010] 000s9| 00076| 00003 0.0003] 00139 0.0216
-0.0014] 0.0000[ -0.0025| -0.0053| -0.0008] 0.0041| -0.0102| -0.0009

00008 -0.0004] -00013] 0.0040] 00000 -0.0061| -0.0019| -0.0034
00016 -0.0001] 00024] -00028] 0.0007| -0.0007] 00037} -0.0046
0.0006] 00001 -00009] 0.0018 0.0037] 00002 -0.0028] -0.0006
.0.0006] 0.0003| -0.0006] -0.0006| -0.0019| -0.0025| -0.0019 -0.0046
0.0005| -00001] 00001] -0.0003| 00020 00008 00083 0.0022
00000] 00004| 00002| 0.0008| 0.000s| -00002] -0.00s6| 0.0059
00002/ -0.0003] 0.0000] -0.0006] -0.0022{ 0.0002] -0.0046] -0.0028
.0.0004] 0.0000] -00003| -0.0001] 0.0007| -0.0005] 00049 -0.0019
0.0001] 0.0002] -00002] 0.0003] -0.0008] 0.0002| -0.0009| 0.0037
0.0004| -0.0001] 0.0003| -0.0002| 0.0005| 0.0005] -0.0009] 0.0003

Table 3.4 Sampled impulse responses of the linear baseband channel and adaptive
linear filter in Fig. 3.1, for each of the four telephone circuits.
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Fig.3.1 Model of data transmission system
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CHAPTER 4

DETECTION PROCESSES FOR AN UNCODED
16-LEVEL QAM SIGNAL

4.1 INTRODUCTION

In this chapter, the equalizer and near-maximum likelihood detectors, used in the
detection of the uncoded 16-level QAM signal are described and some results of the
computer simulation tests are presented. The detectors for the uncoded system are
used here as references against which proposed detection processes for a convolu-
tionally encoded signal are compared. The model of the data transmission system is
as described in Chapter 3. The information digits {e; ,} are differentialy encoded, and
then mapped into data symbols {s5;} , which form a 16-level QAM signal as shown in
Fig. 3.2. The sampled impulse response of the linear baseband channel and the
adaptive linear filter is given by the (g+1)-component vector Y

Y = (Y% »n Y2 - -« - ¥ ] .. 411

where y,=1.
The sample value of the received signal at the output of the adaptive linear filter, at
time t=iT, is given by

g .
=X S ntw ' . 412
h=0 - )

where the real and imaginary components of the noise samples {w;} are statistically
independent Gaussian random variables with zero mean and fixed variance (Chapter
3 and Appendix A). The detectors operate on the received sequence {r;} to produce
the detected sequence {.}, using a knowledge of both the sampled impulse response
Y and of the possible values of 5, . As stated in Chapter 3, it is assumed that the
sampled impulse response of the channel is time invariant, and the adaptive linear
filter is ideally adjusted. |
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4.2 LINEAR FEEDBACK EQUALIZER (SYSTEM LU)

Although, the linear equalizer considered in Chapter 2 is a linear feedforward
transversal filter, which is the type normally used in practice, the linear equalization
of the channel may alternatively be achieved by means of a feedback transversal
filter, provided that all the roots of the z-transform of the sampled impulse response
of the channel lie inside the unit circle of the z-plane [22]. The latter condition is
satisfied here by the ideal adjustment of the adaptive linear filter (Chapter 3). The
object here is to compare the performances of the detectors, described later, with that
of an ideal linear equalizer and not to investigate the adjustment of the equalizer
itself. The structure of the linear feedback equalizer is shown in Fig. 4.1. If the
z-transform of Y (Eqn. 4.1.1) is Y(z), the z-transform of the equalizer in Fig. 4.1 is
1/Y(2). It can be shown that such equalizer is stable if and only if all the roots (zeros)
of Y(z) lie inside the unit circle in the z-plane, and when this condition is satisfied ,

~1

2 =(Yot Wz 27+, . . +y,27%) ... 421

Y(z) f

where y, = 1. Under this condition the equalizer achieves the accurate equalization of
the channel with only g taps [22]. On the other hand, the corresponding feedforward
equalizer can in principle only achieve the exact equalization when the number of
taps is infinity.

The equalized signal at the input to the threshold detector, (shown in Fig. 4.1) at time
t=iT is given by

g
e =r, -h§1 A 3 e 4232

-

where r; is given by Eqn. 4.1.2. The threshold levels of the detector, for the 16-level
QAM signal, are placed at the values of -2, 0 and 2 for each of the real and
imaginary axes. The detector then selects one of the 16 possible values of s; which is
closest to the equalized sample ¢; and it takes this value as the detected value of the
data symbol s5; . The detected value of s, uniquely determines the detected binary
digits f;,,B:.B:5 and B., . The later digits together with the values of f;_,,B;_.




which are already known at time t=(i-1)T, are used to determine the detected binary
digits o, ;,, &, and &, , of the binary digits o, 0,0 and o, Tespectively. This
is done with the help of Table.3.1 as shown Chapter 3.

4.3 NONLINEAR EQUALIZER (SYSTEM NU)

The nonlinear equalizer used here is the one described in Chapter 2. The linear
feedforward transversal filter that forms the first part of this equalizer, is the adaptive
linear filter. The latter is assumed to be ideally adjusted to perform its operation as
described in Chapter 3 so that all the roots of Y(z) lie inside the unit circle of the
‘z-plane. As shown in Fig. 4.2, the tap gains of the feedback filter in the nonlinear
equalizer are given by the last g components of the vector Y (Eqn. 4.1.1), where
yo=1. The equalized sample at the input to the threshold level detector in Fig. 4.2, at
time t=iT, is given by

g
e,-=r,---'.‘):',1 $ion D .. 431

where §,_, is the detected value of 5;_, , forh=1,2, ... g.
The operation of the detector and the decoding process are identical to that described
in the linear feedback equalizer (Section 4.2)

44 NEAR-MAXIMUM LIKELIHOOD DETECTORS

44.1 SYSTEM 1U

The near-maximum likelihood detector system 1U is known as a pseudoquaternary
detection process [23,45,46]. Just prior to the receipt of , ( Eqn. 4.1.2) the detector
in system 1U holds in store k n-component vectors {Q;_,} , where k can take any
suitable integer and

Qi =X, X - - 0 Xi4) .. 441




and x;_, takes any one of the 16 possible values of s;_, (Fig. 3.2). It is assumed here
that n 2g and when i<0 , x,=0. . The n-component vector @, , forms the last n
components of the i-component vector

Xoo=[x, x, . . . %] .. 442

which represents a possible sequence of the transmitted data symbols {s5;} .
Associated with each vector Q,_, is stored its cost, which is taken to be the cost of the
corresponding vector X;_,, given by

i-1 I3
Ci-l-hgo rk_jgoxh-j Y; r .. 443
where | u | is the absolute value of u. It can be shown [23,26] that, under the assumed
conditions and for the given received sequence {r;} , the vector X;_, most likely to be
correct is that which has the smallest cost (value of ¢;_, ), over all combinations of
the possible values of its i components.

On the receipt of r; , at time t=iT, each vector Q,_, is used to form 4 (n+1)-component
vectors {P;} , where

Pi=[x|'-u X;

 _n el X, x] ) .. 444
The first n components of each of four vectors {P;} , derived from any one Q,_, , are
as in the original vector Q;_, , and the last components of the vectors {P;} , take on
the four different values of their 16 possible values. The cost of each vector P, , is

given by

2
C;=Cat ri_nz Xi—n ¥n r .. 445
=0

where ¢;_, is the cost of the original vector Q,_, as in Eqn. 4.4.3. The four values of x;
in the four vectors {P;} , which are derived from any one vector Q,_, , are determined
by all combinations of the two adjacent possible real parts of x; giving the smallest
costs {¢;} , for any fixed value of the imaginary part, and the two adjacent possible
imaginary parts of x; giving the smallest costs, for any fixed value of the real part
[46). The selection of the four values of x; here can be achieved very simply, by
threshold level comparisons without requiring the evaluation of any cost {23]. After
expanding each vector Q,_, , the detector holds 4k vectors {P;} together with their
costs {¢;} . The detector then selects the vector P; with the smallest cost and takes its
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first component x;_, as the detected value §,_, of the data symbol s;_,. The value of
§;_, is then used to determine the detected values of the information digits
O _y1sO_n20%._ns and o;_, . by using the truth table of the differential encoder as
before. Clearly, the delay in the detection is nT seconds, where T is the symbol
interval. All vectors {P;} for which §;_,#x,_, are now discarded from any future
processing, and the first components of all remaining vectors {P;} (including that
with the smallest cost) are then omitted, to give the corresponding n-component
vectors {Q;} where

Q,-=[x,-_,,+1 .xi_"_._z PR . X,-_l xl-] sae 4.4.6

The cost of the vector Q, is the same as that of the vector P, from which it was
derived. The detector then selects from the resulting vectors {Q.} the k vectors with
the lowest costs {¢;} . The k vectors Q; together with their costs are stored, ready for
the next detection process. To prevent overflow due to the steady increase in costs
over any one transmission, the smallest cost is subtracted from the cost of each
vector after each detection process. Thus the value of the smallest cost is always
reduced to zero. This process is carried out for all the near-maximum likelihood
detectors investigated here. The discarding of the given vectors {P;} is used here to
prevent the merging (becoming the same) of any of the stored vectors, since it
ensures that if these are all different at the start of transmission, no two or more of
them can subsequently become the same. A suitable starting up procedure, for the
- detector and the differential decoder, is to begin with k stored vectors Q,_, that are all
the same and correct, In practice a synchronization procedure must always be used at
the start of transmission, with the data symbols taking on at least some of their
possible values and, therefore, not being set to zero. A zero cost is allocated to one
of the vectors and a very high cost to each of the remaining vectors. After a few
- received samples, the detector must hold k vectors which are all different and are all
derived from the original vector Q,_, with zero cost. The starting up procedure, just
described, and the process of discarding of the vectors, are carried out in all
‘near-maximum likelihood detectors considered here.
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44.2 SYSTEM 2U

The near-maximum likelihood detector here operates as the previous detector
(system 1U), the only exception being that the number of vectors {P;} derived from
each vector Q;_, becomes a function of the relative cost of that vector Q,_; . Thisis a
development of the technique previously proposed for the given application [45].

Just prior to the receipt of r; , the detector holds in store k n-component vectors
{0;.,} (Eqn. 4.4.1) together with their costs {¢;_,} (Eqn. 4.4.3), "where k here is an
intégral multiple of 4. The vectors are arranged according to the value of their costs
{c;_,} , so that the first stored vector Q;_, is the one which has the smallest cost and
the second vector has the second smallest cost and so on.

On the receipt of r; , each vector Q,_, is expanded into a number of the corresponding
vectors {P;} (Eqn. 4.4.4) as follows: the first group of k/4 vectors, with the lowest k/4
costs, are each expanded into four vectors { P} . The second group of k/4 vectors
{0;_,} are each expanded into three vectors {P;} . Each of the third group of k/4
vectors {Q;_,} (i.e the (k/2 +1)th upto the (3k/2)th vector) is expanded into two
vectors {P;} , and the last group of k/4 vectors {Q;_,} in the store are each expanded
into only one vector P; . In any case the vectors {P;} derived from any particular
vector @;_, are those with the smallest cost. The expansion of the vectors in system
2U, just described, is shown in Fig. 4.3. For example, when k=8 the detector expands
each of the first and the second vectors {Q,_,} into four vectors {P;}, each of the third
and the fourth into three vectors, while the fifth and the sixth are each expanded into
two vectors and the last two vectors, i.e the seventh and the eighth, are each
expanded into one vector only. For each vector P; , the detector then evaluates the
cost ¢; according to Egn. 4.4.5. And from the resulting 5k/2 vectors {P;} , the detector
then selects the vector P; with the smallest cost and it takes the first component x,_,
of this vector as the detected value of §,_, of the data symbol s;_, . As before the
detected value of s;_, is then used to determine the detected value of the information
digits o_, 1) % p2, 0.5 and &_,, . After discarding of all vectors {P;} for which
x;,_, #§i.. , the detector omits the first component of each of the remaining vectors
{P;} to give the corresponding n-component vector Q; (Eqn. 4.4.6). The detector then
selects k vectors {@;} from the remaining vectors and it arranges them according to
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the values of their costs. Clearly, the detector in system 2U operates with a smaller
number of vectors {P;} , and therefore it evaluates a smaller number of costs {c;} ,
than that required by system 1U for a given value of k (the mimber of the stored
vectors {Q;_,} in the detector).

4.4.3 SYSTEM 3U

The detector in system 3U operates in a rather different manner from that of system
1U or 2U and it is a modification of a detector known as "system B" in [45].

Just prior to the receipt of r; , the detector holds in store k n-component vectors
{0;_,} (Eqn. 4.4.1) together with their costs {¢;_,} (Eqn. 4.4.3), where k here is a
multiple of 8. The k vectors {Q,_,} are arranged into k/2 groups, as follows; Each of
the first k/8 groups has four vectors, with the same values of x;_, ,x_,.y,....%_; in
any one group, but different values of x;_, . Each of the next k/8 groups has two
vectors, again with the same values of x,_,,x._,.1,....%_, , in any one group, but
different values of x,_, . Each of the last k/4 groups has just one vector. The
arrangement of these groups is shown in Fig. 4.4.

On the receipt of r; at time t=iT, each vector Q,_, is expanded into the vector P; (Eqn.
4.4.4) with the smallest cost, resulting in k vectors {P;} together with their cost {¢;}
(Eqn. 4.4.5). From these vectors, the detector next selects the vector P; with the
smallest cost and takes its first component x;_, as the detected value §;_, of the data
symbol s;_, . As before, the detector then uses the value of §;_, to determine the
detected values of the corresponding information digits. Any vector for which
x;_, #25,_, is now discarded and from the remaining vectors the detector then selects
k/2 vectors {P;} with the smallest costs. The first components of the selected vectors
are then omitted to give the corresponding vectors {Q;} . The vectors {Q;} are then
arranged according to the values of their costs. To each of the first k/8 vectors {Q;} ,
the detector adds three vectors {Q;} differing only in the last component and, usually,
with the smallest costs [23]. For each of the second k/8 vectors {Q.} is added one
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vector g, differing only in the last component and with the smallest cost [47]. No
vectors are added to the last k/4 vectors {Q;} , of the original k/2 vectors. There are
now k vectors {Q;} , together with their costs, ready for the next detection process.

The simulation program of this detector (system 3U) is given in Appendix G1.

4.5 THE COMPLEXITY AND THE EFFECTS OF THE PARAMETERS
k AND n ON THE PERFORMANCE OF THE DETECTORS

In this section, the complexity of the near-maximum likelihood detectors, described
in this Chapter, are examined and the performances of the detectors are presented
with different values of k (the number of stored vectors held by the detector) and n
(the delay in detection, in terms of symbol intervals). Only channel E (see Chapter 3)
is considered here. This channel includes telephone circuit 3, which represents a
typical worst case circuit normally considered for the transmission of data at a rate of
9600 bit/s [23,47]. The complete results of the computer simulation tests for all
systems, including the equalizers, are presented later in Chapter 5, for all channels
considered in this work.

An approximate assessment of the complexity requirements of the three detectors
(systems 1U, 2U and 3U} and the Viterbi algorithm detector (system VU) are given
in Table 4.1. The systems are listed in decreasing order of their complexity and
starting with the most complex detector, which is system VU. System VU has
already been described in Chapter 2. The evaluation of a cost here (Eqn. 4.4.5) is a
considerably more complex process than is one of the operations involved in a
search through the costs. It is clear (Table 4.1) that the near-maximun likelihood
detectors, described in this chapter, involve a great reduction in the complexity
requircmcnté when compared to that required by the Viterbi algorithm detector, for
moderate values of g.

Figs. 4.5, 4.6 and 4.7 show the performances of systems 1U, 2U and 3U,
respectively. System 1U and 2U are tested here with k= 4, 8 and 16, whereas system
3U is tested with k= 8 and 16. The delay in the detection is 32 symbol intervals
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¢ (n=32). The performance of the nonlinear equalizer (system NU) is shown in each
figure for the sake of comparison. The definition of the signal/noise ratio (y) and the
accuracy of the results are described in Appendix F, where A=10 and m=4 in

Eqn.F.6. It is clear from the above figures, that an advantage of about 4 dB in

tolerance of the detectors to additive white Gaussian noise can be gained over the
nonlinear equalizer (system NU) at bit error rate of 10* . When k=1 and n=0, the
near-maximum likelihood detector degenerates into a nonlinear equalizer. The

performance of the linear equalizer (system LU) for channel E is much worse than .

that of the nonlinear equalizer, and is presented later in Chapter 5. The above figures
also show that, for each detector, when the value of k is doubled, an advantage of
about 0.3 to 0.5 dB can be achieved in tolerance of the system to additive noise. And
for a given value of k, the performance of the three systems (1U, 2U and 3U) is
approximately the same when k=8 or 16. But according to Table 4.1, system 3U
requires about three eighths the number of cost evaluations required by system 1U
and three fifths of that required by system 2U. Furthermore, for the same value of k,
system 3U requires a smaller number of searches through the costs than that
required by system 1U or 2U. It follows that, system 3U can give better performance
than that of system 1U or 2U for a given complexity.

Figs. 4.8 to 4.10 show the effect of changing the delay in the detection on the
performance of the above three systems, when operating with 8 stored vectors (k=8).
It is clear from these figures and the perfoﬁnance of the nonlinear equalizer that
there is still an advantage gained by the near-maximum likelihood detectors, tested
here, over the nonlinear equalizer even when there is no delay in detection (n=0).
Generally this advantage is of about ! dB at bit error rate of 10* . When n<g (for
channel E, g=19), the length of the vector Q,_, must be at least 19 components, so
that the cost ¢;_, can be evaluated successfully according to Edgn. 4.4.5. So, in
obtaining the results in Figs. 4.8 to 4.10, the length of the vector is fixed at 32
components, and the detection is performed at a delay of n symbol intervals. The
value of n is varied from O to 32. Although, the best performance of each system is
obtained when n is 32, which is the largest value of n tested here, an increase of n
beyond 8 does not show great improvement in the performances of the systems over
the range of the bit error rates tested here.



No. of No. of No. of No. of
Detector stored expanded cost No. of costs
vectors vectors | evaluations| searches | searched
{G:} {Pi,} through
Viterbi algorithm 16f 16**! 1657 16 164!
(system VU)
System 1U k 4k 4k k 4k
System 2U k 2.5k 2.5k k 2.5k
Systern 3U k k 1.5k 0.5k k

Table 4.1 Complexities of different detectors for uncoded 16-level QAM signal.
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CHAPTER 5

DETECTION PROCESSES FOR CONVOLUTIONALLY
ENCODED 32-LEVEL QAM SIGNAL

5.1 INTRODUCTION

Various detection processes that are suitable for detecting (decoding) a convolution-
ally encoded and distorted QAM signal are described in this chapter. The Viterbi
algorithm detector is described first for the case where the channel introduces no
intersymbol interference and for the case where the channel introduces limited
distortion. The use of the equalizers (linear or nonlinear) to equalize the channel
ahead of the detector is also described. Some of the near-maximum likelihood
detectors, described in Chapter 4, are modified here to suit the encoded signal and a
new detector, which is a direct modification of the Viterbi algorithm detector is
described. The complexity of the systems and the effects of the delay in detection
and the number of the stored vectors held by each detector are next investigated.
Finally the results of the computer simulation tests are presented for all systems
(detectors) studied here together with the uncoded systems described in the previous
chapter.

The coding scheme used here is described in Section 3.2, and all assumptions made
earlier in Chapter 3 are also valid here. The sampled impulse response of the linear
baseband channel and the adaptive linear filter is given by the (g+1)-component row
vector ’

Y=y, 2 »» - - - %] L. 511

where y,=1 and the received sample at the output of the filter, at time t=iT, is given
by

8 g
rl.=hg0s‘-_hyh+wl-=S‘-+h§lsi_hyh+wl' ey 5‘1'2

82




where {s;_,} are the encoded data symbols with possible values as shown in Fig. 5.1,
and the real and imaginary components of the noise samples {w;} are statistically
independent Gaussian random variables with zero mean and fixed variance 26
(Chapter 3 and Appendix E).

5.2 THE VITERBI ALGORITHM DETECTOR (DECODER)

The Viterbi algorithm detector (decoder) to be described operates on a 32-level -
QAM signal that has been convolutionally encoded according to Section 3.2
(Chapter 3), and has been transmitted over channel A, which introduces no
intersymbol interference, so that the vector Y (Eqn. 5.1.1) is given by

Y=[1 0 0 . . . 0] e 321

and the received sample at time t=iT is now given by
n=stw; ... 522

Just prior to the receipt of 7., , at time t=(i+1)T, the detector holds in store 8
different n-component vectors {Q;} , where

Qi=lx_ps1 X%, - - . X] ... 523

and x,_, takes on any of a subset of 16 of the 32 possible values of s;_, in Fig. 5.1.
The two subsets are complementary and each contains 16 possible values. They are
known as subsets B0 and B1 in Fig. 2.10 in Chapter 2, and are shown again in Fig.
52.

When i<0, x;=0 . Each vector Q, is associated with a different one of the eight states
of the encoder at time t=iT in Table 5.1, in the sense that B, ,,B; , and B;, , which form
the first three of the five binary digits determining x; in Fig. 5.1, corresponds t¢ a
transition from a different state at time t=iT. Associated with each transition are the
four possible combinations of B;; and B,, (Table 5.1). The state of a vector is
identified by its storage location. The n-component vector Q; forms the last n
components of the (i+1)-component vector

Xi = [xo xl xz . e e x" ] e 5.2.4
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which represents a possible sequence of the encoded data symbols {s,} . It is evident
from the description of the encoder that, there is a unique one-to-one relationship
between X; and the corresponding possible sequence of the binary digits {o;,} ., so
that the correct detection of {s;} results in the correct detection of the {o;,} .
Associated with each vector @, is stored its cost, which is taken to be the cost of the
corresponding vector X, , given by

Ci=h§°| n—Xx, F . 525

where | u | is the absolute value of u. The cost ¢; is simply the square of the unitary
distance between the two sequences {r,} and {x,} .

On the receipt of the received sample r,,, , each of the eight vectors {Q;} is expanded
to give 16 vectors {?;,,} , where

Piag=Ix_0 Xiop « « < X X4] . 5206

The first n components of P;,, are given by the original vector Q; , and the last
component x;,, takes on its 16 different permitted values. The latter are determined
by the four different permitted combinations of B,,.B:,,, and B.,,. , corresponding
to the given state at time (i+1)T, each associated with the four different combinations
of B; ; and B, , (Fig. 5.2). The cost of the resulting 128 vectors {P,,,} is given by

ci+1=c,-_+[ Y1 =X 3 . 527
where c; is the cost of the original vector Q, . .
The detector now has 16 different vectors {P,,,} , for each of the eight states at time
(i+1)T in Table 5.1 and it selects, for each state at time (i+1)T the one of the 16
associated vectors {P;,,} with the smallest cost ¢;,, , the remaining vectors being
discarded. The detected value §;_,,, of the data symbol s;_,,, is next given by the
value of x;_, ., in the selected vector P,,, with the smallest cost. The detected symbol
$i.441 » in turn determines the detected values 0.,y 15 %_y120 %13 A0 &y 4 OF
the binary digits a‘.._m',,a‘-_”'l,,,u,-_“,_, and o;_,,,. » T€spectively. In the simulation,
this is done by storir{g for each vector the corresponding sequence of {&;,}.
The first component x;_,,, of each of the eight vectors {P,,,} is then omitted to give
- the corresponding vector Q,,, , without changing its cost. Finally the resulting eight
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vectors {Q;,,} are stored together with their costs. To prevent overflow due to the
steady increase in costs over any one transmission, the smallest cost is subtracted
from the cost of each vector Q,,, , thus always reducing the smallest cost to zero.

The detection process just described is referred to asaV A detector.

When the convolutional encoder is used together with a distorting channel, in which
the sampled impulse response Y has (g+1) components as in Eqn. 5.1.1, the true
Viterbi algorithm detector in this case operates with 8 x16f states and therefore with
8x16¢ stored vectors. This number results from the fact that the encoder has § states
(Table 5.1} and the sampled impulse response Y has (g+1) components, while the
value (16) represents the 16 possible values in each subset in Fig. 5.2.

The operation of the Viterbi algorithm detector is described below for the case where
the data is transmitted over channel B (Chapter 3). This is a simple case where g=1
and y,=y,=1, so that 8x16* = 128, and y,=0 for i<0 and i>1. Now

Y=[1. 10 0 . . . 0] vo 9.2.8

and the received sample at the input of the detector, at time t=iT, is
=5t +w v 529

Just prior to the receipt of r;,, , the detector holds in store 128 vectors {Q;} (Eqn.
5.2.3) together with their costs {¢;} , where

Ce=h§_:D| Py =Xy =X5 4 F .o 5210

Since each vector Q; is associated with a different one of the 128 states at time iT,
the vectors {Q;} occur in eight groups, each of which contains 16 vectors and is
associated with a different one of the original eight states of the encoder (Table 5.1).
Furthermore, the 16 vectors in a group have the 16 different pcrmittcd values of x,
that are associated with the given state of the encoder [14].

On the receipt of r;,, , each vector @, is expanded into 16 vectors {P;,,}, as described
previously in the VA detector. The cost of each of the resulting 2048 vectors is
evaluated as

ci+1=C£+| Fis1=Xie1—X; P .. 5211
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where ¢; is the cost of the original vector Q; (Eqn. 5.2.10). The vectors {P;,,} are in
128 groups of 16 each, every group corresponding to a different one of the 128 states
at time iT and being determined by the combination of the state at time iT and the
value of x;,, . The vectors {P;,,} also occur in 128 groups of 16 vectors each, every
group now corresponding to a different one of the 128 states at time (i+1)T, and
being determined by the combination of the state at time (i+1)T and the value of x;
[14).

The detector next selects, for each of the 128 states at time (i+1)T, the one of the 16
associated vectors {P;,,} with the smallest cost, the remaining vectors being
discarded. The detected values of the binary digits &, 1,0 411200 0s1320d 04,414
are then determined, as in VA detector, from the selected vector P,,, with the

smallest cost. The first component of each vector P,,, is then omitted to give the -

corresponding vector Q,,,, without changing its cost as before. The resulting 128
vectors together with their cost are then stored after the smallest cost has been
subtracted from all costs.

It is clear from the above description that the detector now requires a large number
of operations and a large store. Therefore, when g (the number of intersymbol
_interference components introduced by the channel) is greater than 1, the true Viterbi
algorithm detector becomes impractical to implement.

5.3 LINEAR EQUALIZER WITH VITERBI ALGORITHM
DETECTOR (SYSTEM LC)

The structure of this system is shown in Fig. 5.3. The linear feedback equalizer here
is identical to that used in the uncoded system {(Chapter 4), and it can bc used
without risk of instability, because the sequence y,,y,....,y, has been made
minimum phase by the adaptive linear filter that proceeds the detector (see Fig. 3.1).
The detector in Fig. 5.3 operates in the same way as does the Viterbi algorithm
detector where the channel introduces no intersymbol interference. The input signal
to the detector is the sequence of the equalized samples {¢;} , where ¢, , at time iT, is
given by
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£
ei.zrl.—hz ei-hyh=xi+w! .o 531
=1

where r; is given by Eqn. 5.1.2, x, is the possible value of s, w/ is the noise
component in ¢; and y,= 1.
As described in the beginning of the previous section, just prior to the receipt of r,, , ,
the VA detector holds in store eight different vectors {Q.} (Eqn. 5.2.3) together with
their costs {¢;} , where the value of the cost in this system is given by

C,-= E | eh _xh P ) sen 5.3.2
h=0

On the receipt of r,,, , at time (i+1)T, each vector Q, is expanded into 16 vectors
{P;,,} as described in the previous section. The cost ¢;,, of each vector P;,, is
evaluated as

G =CH € =%, F | ... 533
where ¢,,, is the equalized sample at time (i+1)T and ¢, is the cost of the original

vector Q; .
The process then continues as in the VA detector (Section 5.2).

5.4 NONLINEAR EQUALIZER WITH VITERBI
ALGORITHM DETECTOR

54.1 SIMPLE NONLINEAR EQUALIZER WITH VITERBI
ALGORITHM DETECTOR (SYSTEM NC)

The arrangement of this system is shown in Fig. 5.4. The feedback filter here is
identical to that used for the uncoded signal (system NU) in Chapter 4, where the 1ap
gains of the filter are given by the last g components of the vector Y (Eqn. 5.1.1).
The threshold level detector in Fig. 5.4 is suitable for the 32-point constellation of
Fig. 5.1. The Viterbi algorithm detector (VA) operates on the sequence of the
equalized samples {¢,} exactly in the same manner as in system LC (Section 5.3).
Here the equalized sample at time iT, is given by

£
ei=ri-h§l Sica ... 541
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where r; is given by Eqn. 5.1.2 and {§,_,} are the detected values of {s;_,} provided
by the threshold level detector (Fig. 5.4), with correct detection, e;=x, +w;, bearing in
mind that y,=1. The threshold level detector simply selects one of the 32 possible
values of s; , which is closest (in the unitary distance sense) to the equalized sample

€.

5.4.2 MODIFIED NONLINEAR EQUALIZER WITH VITERBI
ALGORITHM DETECTOR (SYSTEM MNC)

The detection process in system MNC is similar to that in system NC, described in
the previous section, with only one exception that the values of {f;_,} are provided
here by the Viterbi algorithm detector (VA) itself and not by the threshold level
detector. So that the latter is no longer required here. The arrangement of this system
is shown in Fig. 5.5

After the receipt of r,,, , at time (i+1)T, the VA detector operates as in system LC or
NC, and the value of x,_,,, in the vector P;,, with the smallest cost is then taken as
the detected value of the data symbol s,_,,, . The latter is then used to determine the
detected values of the transmitted information digits as before. Now, the value of
the last component ( x;,, ) of the vector P;,, with the smallest cost, is used as an early
detected value of the data symbol s, for the equalizer to cancel its intcréymbol
interference terms in the next received samples. The process then continues in this
way.

The simulation program of this system is given in Appendix G2.

5.5 NEAR-MAXIMUM LIKELIHOOD DETECTORS FOR ‘
CONVOLUTIONALLY ENCODED SIGNALS

5.5.1 SYSTEM 1C
System 1C is a near-maximum likelihood detector (decoder) that is a direct

modification of system 1U, which is used for the detection of uncoded QAM signal
in Chapter 4.

88




Just prior to the receipt of r:.1 » at time (i+1)T, the detector in system 1C holds in
store k vectors {Q;} together with their costs {¢;} , where Q, is given by Eqn. 5.2.2
and ¢, is given by

G=2

h=0

5
D) x;.-,-y,-r . 551
j=0

and the value of r, is given by Eqn. 5.1.2. k may be any suitable integer.

On the receipt of r,,, , at time (i+1)T, each vector Q; is used to form four vectors
{P;,,} . The first n components of each vector P,,, (Eqn. 5.2.6) are given by the n
components of the original vector @, , and the last component x;,, is determined as
follows ; for each vector Q, , the detector first calculates the quantity z;,, , where

5
zi+l=ri+1_h¥]xi-h+1yh .. 552

andtﬂ?:-_,m} are given by the particular vector @; . The detector then determines the
- four possible values of x,,, , that are closest to z,,,. The particular values of x,,, are
given by one or other of the two subsets in Fig. 5.2, the subset being determined by
the state of the original vector @, at time iT. So, in fact, the state of each vector is
also stored. The process just described ensures, that only the permitted (valid)
transitions are considered by the detector. The cost of each vector P,,, is given by

. .
Cin1=¢Ct ri+1'_k§0x£—h+1yhr ... 553

where ¢, is the cost of the original vector Q, . Clearly, the four values of x,,, are
selected such that only the four vectors {P;,,} with the smallest costs {c,,,} , that
have originated from any vector Q; , are used by the detector. The detector then
selects from the resulting 4k vectors {P;,,} , the one with the smallest cost and it
takes the first component x;_,,, of this vector to be the detected value §;_,,, of the
data symbol s,_,., . The detected values of the binary digits o;_, .11, 0,12:%_4s1s
and o;_, ,, are then determined as before. Any vector P,,, for which x;_,,,#§; ,,, is
now discarded from any future selection. The detector then selects from the
remaining vectors {P;,,} , including the one with the smallest cost, the k vectors
{P,,,} with the lowest costs {c;,,} . The first component x,_, ,, of each vector P,,, is
then omitted to give the corresponding vector Q;,, . As in the previous systems, the
smallest cost of the vectors is then subtracted from all costs to bring the smallest cost
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to zero. Finally the k vectors {0;,,} together with their states and the values of their
costs {c;,,} are stored for the next detection,
The simulation program of this system is shown in Appendix G3.

5.5.2 SYSTEM 2C

The detector in system 2C operates in the same way as system 1C, with only one
exception, which is that the number of vectors {P;,,} derived from any vector Q;
become a function of the relative cost of that g, . This detector is also a modification
of system 2U used for the detection of the uncoded QAM signal in Chapter 4.

The detector here holds in store k vectors {Q;} , together with their costs {¢;} , where
k is an integral multiple of 4. These vectors are arranged according to the values of
their costs, where the first vector in store has the smallest cost and the second vector
has the second smallest cost and so on.

On the receipt of r,,, , at time (i+1)T, each vector Q; is expanded into a number of
corresponding vectors {P;,,} as follows ; The first k/4 vectors {Q;} are each expanded
into four vectors {P;.,} . The second k/4 vectors are each expanded into three vectors
{P;..} . The third k/4 vectors are each expanded into two vectors {P,,,} and the last
k/4 vectors {Q;} in the store are each expanded into one vector P;,, only. Clearly, the
method of expanding the vectors here is similar to that used in system 2U for the
case where the signal is uncoded as in Fig. 4.3 (Chapter 4). In every case the vectors
{P;,,} derived from any particular vector Q; are those with the smallest cost.
According to the state of the vector Q; at time iT, the value of x;,, (the last
component of the vector P;,, ) may take any one of its 16 possible (permitted) values
defined by the corresponding one of the two subsets in Fig. 5.2. The detector then
evaluates the costs {c;,,} of the vectors {P;,} according to Eqn. 5.5.3. There are now
5k/2 vectors {P;,,}. The detector then selects from these vectors the one with the
smallest cost c;,, , and it takes the value of its first component x;_,,, as the detected
value §;_,,, of the data symbol s;_,,, - This value in turn, gives the detected values of
the binary digits & _,, 11,0 _ue12-%_ns12 and &4, ,,, as before. As in the previous
detector (system 1C), any vector P,,, for which x;_,,,#§._,,, is discarded from any .
future selection. The detector then selects from the remaining vectors {P;,,},
including that with the lowest cost, the k vectors with lowest costs and the smallest
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cost is then subtracted from the cost of each vector. The first components of the
vectors {P;_,} are now omitted to give the corresponding vectors '{Q.‘,-,l} . The k
vectors {0, ,,} together with their costs are then stored after being érranged according
to their costs ready for the next detection. The simulation program of this detector is
shown in Appendix G4.

"5.5.3 SYSTEM 3C

System 3C is a near-maximum likelihood detector that is a direct modification of the
Viterbi algorithm detector for a convolutionally encoded and distorted signal,
involving a considerable reduction in the number of stored vectors [14].

Just prior to the receipt of r;,, , at time (i+1)T, the detector holds in store k vectors
{Q;} , together with their costs {c;} , where k here is an integral multiplé of 8, the
latter represents the number of states of the encoder. Each vector @, is given by Eqn.
5.2.3 and its cost is given by Eqn. 5.5.1. The k vectors {Q,} are arranged in eight
groups, each of which has k/8 vectors and corfcsponds to a different state of the
encoder at time iT (Table 5.1). On the receipt of r,,, each vector Q, is expanded into
16 vectors {P,,,} . The first n components of each vector P,,, (Eqn. 5.2.6) are given
by the n components of the original vector Q; , and the last component x;,, takes on
the 16-possible values defined by one of the two subsets in Fig, 5.2, The selection of
the particular subset is determined by the state of the vector @, at time iT. The
resulting 16k vectors {P;,,} occur in eight groups, each .with 2k vectors and
associated with a different state of the encoder at time (i+1)T. The cost ¢;,, of the
vector P;,, is evaluated according to Eqn. 5.5.3. The detector then selects from the
16k vectors {P,,,} the vector P;,, with the smallest cost ,,, , and uses the value of its
first component x,_,,, to determine the detected values of the binary digits
O nar1s®iona120Ci_ssrs and o_,,, 4 as before. To avoid possible merging, as in the
previous detectors, any vector P, for which x,_,,,#:_.,, is now discarded from any
future selection. From the remaining vectors {P;,,} (including that with the smallest
cost) the detector next selects, for each of the eight states-‘of the encoder at time
(i+1)T, the k/8 vectors {P;,,} with the smallest costs. The first component of each of
the selected vectors is now omitted to give the corresponding vector Q,,, , without
changing its cost. The smallest cost of all vectors is then subtracted from the value of
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each cost, and the resulting k vectors {Q;,,} are then stored together with their costs.

Unlike system 1C or 2C, the storage of the state for each vector in system 3C is not™

required. Instead the location of the vector in the store is used as a guide for its state.
The simulation program of this system is shown in Appendix G5.

5.6 COMPLEXITY AND THE EFFECTS OF THE PARAMETERS k
AND n ON THE PERFORMANCE OF THE DETECTORS

In this section the complexity required by each near-maximum likelihood detector
for the encoded signal (described in the previous section) are compared to that
required by the Viterbi algorithm detector. The effects of the detection delay and the
number of the stored vectors on the performance of these detectors are also
examined here. |

Table 5.2 shows the complexities of different detectors (systems). System VC is the
Viterbi algorithm detector, that is suitable for the convolutionally encoded signal
transmitted over a channel whose sampled impulse response has (g+1) components
(Eqn. 5.1.1). This detector is tested here with channel B (defined by Eqn. 5.2.8) and
its performance is presented in the next section. The systems in Table 5.2 are listed
- according to their complexity and starting with the most complex detector (the
Viterbi algorithm detector). It is clear, that the number of the stored vectors k, held
by the near-maximum likelihood detector, is independent of the value of g, whereas
in the case of system VC (the Viterbi algorithm detector) this number is equivalent
to 8x16 . As in all maximum or near-maximum likelihood detectors, the most
complex process of the individual processes is the evaluation of the costs. It is clear
(Table 5.2) that the complexities of systems 1C, 2C and 3C are well below that of
the true Viterbi algorithm detector. The number of cost evaluations and the number
of searches through the costs of system 1C or 2C are smaller than those of system
1C, for a given value of k.

" Channel E, which includes telephone circuit 3, (Chapter 3) is used again to show the
effect of changing the values of k and n on the performance of the near-maximum
likelihood detectors proposed here. Figs. 5.6, 5.7 and 5.8 show the performance of
the three systems 1C, 2C and 3C, respectively, when operating with different
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numbers of stored vectors {Q;} . System 1C and 2C are tested here with k=4,8 and
16, whereas system 3C is tested with k=8,16,32 and 64. The delay in the detection is
32 symbol intervals (n=32), and the definition of the signal/noise ratio y is given by
Eqn. F.6 (Appendix F), where for the encoded 32-level QAM signal A =20 and m=4.
An advantage of about 0.5 dB can be gained, at bit error rate of 10, in tolerance of
the system to additive white Gaussian noise when the value of k is-increased by a
factor of two for system 1C, and for the particular channel tested here, (Fig. 5.6).
The corresponding advantage for system 2C is about 0.3 dB (Fig. 5.7). An increase
of the value of k from 8 to 16 for system 3C gives an advantage of about 2.6 dB at
bit error rate of 10, while an increase of k from 16 to 32 (or from 32 to 64) gives an
advantage of about 0.5 dB at the same bit error rate (Fig. 5.8).

Figs. 5.9, 5.10 and 5.11 show the performances of systems 1C, 2C and 3C,
respectively, when operating with 16 stored vectors (k=16) and different values of n
(the delay in the detection in terms of symbols interval). Channel E is used here. As
in the similar tests carried out for the case where the signal is uncoded in Chapter 4,
the number of the components of the vectors {Q;} is fixed at 32 components and the
detection is performed with different values of n. where n varies from 0 to 32. Figs.
5.9-5.11 show that, in general, an increase of n from 8 to 32 gain an advantage fora
particular system, in tolerance to additive white Gaussian noise, of about 0.25 dB at
bit error rate of 10* . Furthermore, it was found that an increase of n beyond 16 has
no effect on the performance of the systems tested here. On the other hand, an
increase of n beyond 8 has no effect on the performance of the corresponding
uncoded systems, as is shown in Chapter 4. '

5.7 ASSESSMENT OF VARIOUS SYSTEMS FOR CODED-
AND UNCODED QAM SIGNALS

The results of the computer simulation tests on the different detectors described in
this chapter and in the previous chapter (Chapter 4) are shown in Figs. 5.12-5.24, A
total of typically 2.5x10° data symbols were transmitted in plotting any one curve, and
the 95% confidence limits for the relative positions of any one curve is generally
better than + 0.5 dB. Each curve in the above figures represents the variation of the
bit error rate against the signal/noise ratio y . Here vy is defined according to Eqn. F.6
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in Appendix F, where the value of A is 10 for the uncoded signal and 20 for the
convolutionally encoded signal, and m=4 for both signals. The computer simulation
programs for different detection processes are given in Appendix G.

The performance curves of the detectors are labelled by the corresponding systems,
and the numeral at the end of the label represents the number of the stored vectors
{Q:} used by the particular detector (system). Thus, for example, the curve labelled
by 1U16 is system 1U (which is used for the uncoded signal in Chapter 4) operating
with 16 stored vectors, and system 2C8 is system 2C (used for convolutionally
encoded signal) operating with 8 stored vectors. The letter C or U in each label
specify the type of the signal used, C for a convolutionally encoded signal and U for
the uncoded signal. In Fig. 5.12, the curve labelled by VA represents the
performance of the Viterbi algorithm detector that is suitable for the encoded signal
when transmitted over channel A (defined by Eqn. 5.2.1), which introduces no
intersymbol interference. This detector is used together with the equalizers (systems
LC, NC and MNC) as described in Section 5.3 and 5.4. The curves labelled by VU
and VC in Fig. 5.18 represent the performance of the Viterbi algorithm detectors for
the uncoded and convolutionally encoded signals when transmitted over channel B
(defined by Eqn. 5.2.8), respectively. System VC for this channel is described in
Section 5.2 and, system VU is described in Section 2.3.3 in Chapter 2.

It is clear from Fig. 5.12 that, in the absence of any signal distortion (channel A), an
improvement in tolerance to noise between 2 and 3 dB'is achieved, at bit error rates
of 107 to 10, through the use of the convolutional encoder. A Simplc threshold level
detector is used here for the uncoded signal. The above improvement is reduced by
about 0.5 dB, when system 1C8 (or 2C8) replaces the Viterbi algorithm detector for
the encoded signal (system VA). And the corresponding reduction for system 1C4
(or 2C4) is about 1 dB. Although, systems 1C8 and 2C8 use the same number of
vectors (8) as that for system VA, for the given channel (channel A). The amount of
operations required by systems 1C and 2C is much less than that required by the
Viterbi algorithm detector as shown in Table 5.2, where g=0.

Figs. 5.13-5.17 show the performance of the nonlinear equalizers together with the
VA detector for the case where the signal is convolutionally encoded, when
operating over channels B-F. These figures show that the modified nonlinear
equalizer together with VA detector (system MNC) consistently has a better
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performance than system NC. The latter uses a threshold detector to determine the
detected values of the data symbols, which are used by the equalizer to perform an
estimate of the intersymbol interference in the received samples. It is clear from the
above figures that the improvement of system MNC in tolerance to additive white
Gaussian noise over system NC is relatively higher over channels B, E and F. This
results from the fact that there are relatively longer error bursts in system NC, with
these channels, than that in system MNC.

Figs. 5.18-5.24 show the performance of different arrangements of the systems
(detectors). The linear equalizer has not been tested with channel B (Fig. 5.18), since
the z-transform Y(z) of the vector Y {Eqn. 5.2.8) has a root on the unit circle of the
z-plane, which prevents satisfactory operation being achieved with linear equalizer.
It is evident from Figs. 5.19, 5.20, 5.22 and 5.24 that a linear equalizer gives a
relatively poor performance, compared with other systems, whether or not the signal
is convolutionally encoded. The Viterbi algorithm detector (VA) is used with the
equalizer when the signal is coded. The additional degradation in the performance
that occurs with channel E and F, when the signal is coded, is at least partly due to
the noise correlation that is introduced by the linear equalizer into the neighbouring
noise components {w;} . The Viterbi algorithm detector (VA) used here assumes that
the noise samples at its input are uncorrelated. This is investigated further in the next -
chapter (Chapter 6).

Although the nonlinear equalizer has a much better performance than the linear
equalizer, particularly with the poorer channels (channel E and F), it is inferior to all
remaining systems tested here. Again with the poorer channels, the use of coding
degrades the performance of the equalizer. There is, however, no correlation of the
noise components here. The additional degradation in the performance with a coded
signal here is due to the fact that the detector with the coded signal (VA detector) is
more sensitive to the error extension effects than that used with the uncoded signal
which uses a threshold detector.

Over channel B and at bit error rates in the range of 107 to 10, the best performance
is given by a Viterbi algorithm detector, operating on a coded signal, (system VC).
This gains an advantage in tolerance to noise of between 1.5 and 2 dB over a Viterbi
algorithm detector operating on an uncoded signal (system VU), as shown in Fig.
5.18. System 3C64 is only about 0.25 dB inferior to the Viterbi algorithm detector
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(system VC), and system 3U16 is only about 0.25 dB inferior to the Viterbi
algorithm detector (system VU). The systems 3C64 and 3U16 are, therefore, likely
to have performances that are not greatly inferior to those of the corresponding
Viterbi algorithm detectors, over the channels C to F.

System 3U16 has consistently the best performance of all systems, tested with
uncoded signal, over channels C to F, Although a performance almost as good as
that of this system can be achieved by system 1U16 (Chapter 4), the complexity of
system 3U16 is less than that of any other near-maximum likelihood detector,
studied here with an uncoded signal. It, therefore, follows that the most promising of
the systems for an uncoded signal is system 3U16. This achieves a better
performance over the channels tested here than that obtained with any equalizer,
regardless of whether the equalizer is used with a coded or uncoded signal. Fig. 5.18
show that over channel B, system 3C64 has the best performance of all systems
tested here, except the Viterbi algorithm detector (system VC). However, system
3C64 is very complex as shown in Table 5.2. Therefore, a potentially more cost
effective arrangement is system 1C16, which has a tolerance to noise generally less
than 1 dB inferior to that of system 1C64. Although system 2C is slightly less
complex than system 1C, the latter has a better performance than system 2C for the
same number of stored vectors and over the channels tested here. At bit error rates
not greater than 107 , .syslem 1C16 has a performancgnbetter than that of any
near-maximum likelihood detector or equalizer tested with{uncoded signal.

There does not appear to be much purpose in using a simple detector with a coded
signal, such as systems 1C, 2C and 3C with 8 siqred vectors or less. The use of the
equalizers with the coded signal also does not appear to be very promising.
However, these arrangement are relatively simple to implement. Thus, the preferred
arrangement for the coded signal is system 1C16 and for the uncoded signal is
system 3U16. These systems, together with the equalizers, are tested further in
Chapter 8 where the information rate is more than 9600 bit/s. It is to be further noted
that system 1C16 has already been tested by L. A. Alfakhri over an ADPCM link
having nonlinear distortion and has been found to perform well.
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The expansion of the vectors {Q;} in the systems for the coded signal is restricted to
the signal points which result in valid transitions according to the states of the
vectors. This make the near-maximum likelihood detectors for the convolutionally
encoded signal more complex than those used for the uncoded signal. Furthermore,
in the coded systems extra storage is required to store the states of the vectors.
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No. of No. of No. of No. of
Detector stored expanded cost searches
vectors vectors evaluations through
{0:} {P:11} the costs
8x(16 searches
Viterbi algorithm 8x16f 8x16°" 8x16°" through 16"
(system _VC) costs)
_ 8x(k/8 searches
System 3C -k 16k 16k through 2k
costs)
k searches
System 1C k 4k 4k through 4k
costs
. k searches
System 2C k 2.5k 2.5k through 2.5k
cOsts

Table 5.2 Complexities of different detectors for coded 32-level .QAM signal.
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Fig.5.6 Performance of system 1C over channel E .
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Fig.5.7 Performance of system 2C over channel E .
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Fig.5.11 Performance of system 3C16 over channel E .
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Fig.5.12 Performance of various systems over channel A.
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Fig.5.13 Performance of nonlinear equalizers with a coded
signal over channel B .
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Fig.5.17 Performance of nonlinear equalizers with a coded
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Fig. 5.19 Performance of various systems over channel C.
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CHAPTER 6

THE EFFECT OF NOISE CORRELATION ON THE
PERFORMANCE OF THE DETECTORS

The effect of noise correlation on the performances of the various detectors
(systems) described in Chapters 4 and 5, is investigated here. The noise correlation
considered here is introduced when the uncorrelated noise samples, at the output of
the adaptive linear filter, are fed through a linear equalizer. The noise samples at the
receiver filter output are uncorrelated [24,39].

6.1 THE EFFECT OF NOISE CORRELATION INTRODUCED
BY THE LINEAR EQUALIZER

The model of data transmission system is described in Chapter 3, and is shown again
here in Fig. 6.1 and all assumptions made earlier are valid in this section also. The
received sample, at time iT, at the output of the adaptive linear filter is given by

g
r£=hzosi—hyh+wi ... 6.1.1

where {s;_,} are the transmitted data symbols (coded or uncoded), and the real and
imaginary parts of the noise samples {w,} are statistically independent Gaussian
random variables with zero mean and fixed variance, and so they are uncorrelated
[87]. The above properties of the noise samples follow from the fact that the
absolute value of the square” of the receiver filter transfer function is an even
function and satisfies Nyquist’s Vestigial Symmetry Theorem, about the frequency
1/2T Hz, and the adaptive linear filter in Fig. 6.1 does not change the statistical
properties of the noise samples as shown in Appendix E, where the filter here is
assumed to be ideally adjusted to perform its function as described in Chapter 3.

When the linear equalizer is used at the receiver to equalize the distortion introduced
by the channel, the equalized sample, at time iT, is given by
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e =X+ . 612

where x; is the possible value of 5; and w/ is thé noise components in ¢; . Clearly, Eqn.
6.1.2 can be used in both the coded and uncoded system, where x; take the
corresponding value of the coded or uncoded symbol.

In the case where the linear equalizer is implemented as a feedback transversal filter,
as assumed here, the noise component w/ in Eqn. 6.1.2 can be written as

Z
! /
Wi=wi-h§lwf-hy’l ) sae 6-1.3

Since the noise safnples {w;} are processed by the linear equalizer, the level of the
noise samples {w} is increased whenever one or more of the components
Yt1 Y25 .-+ ¥, are nonzero. The increase in the level of the noise is determined by the
sum of the squares of the components of the sampled impulse response of the
equalizer. Furthermore, in this case, the noise components in the equalized sequence
are correlated (as can be seen from Eqn. 6.1.3). In the particular case where the
channel introduces pure phase distortion (no ami:litude distortion),
Y, =Y.=....=y, =0, and so no equalizer is required.

It has been shown in Chapter 5 that the use of a linear equalizer may degrade the
performance of the coded system to a level no better than that of the uncoded
system, when the latter also uses a linear equalizer. Since, for a given channel, the
linear equalizer has the same impulse response whether the signal is coded or not,
the change in the noise level is the same in the two systems. As mentioned above,
another effect of the linear equalizer in the two systems is the introduction of a
correlation between the neighbouring noise samples in the equalized signal. In the
case of the uncoded signal, the linear equalizer is followed by a threshold level
detector. This detector performs separate decisions on the equalized samples at its
input and produces the corresponding detected values of the transmitted data
symbols one at a time. So its operation is not significantly affected by whether or
not the noise samples, at its inplit, are correlated. On the other hand the equalized
samples in the coded system (system LC) is processed by the Viterbi algorithm
detector (VA), where the operation of the latter is optimum only when the channel
and the equalizer introduces no intersymbol interference, and the noise samples in .
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the equalized signal are uncorrelated [31]. Computer simulation tests have been |
carried out to show the amount of degradation in the performance of system LC due
to the noise correlation introduced by the equalizer.

The absolute value of the autocorrelation function of the noise samples {w/} at the
outfmt of the linear equalizer is plotted in Fig. 6.2, for channels C to F. 100000
noise samples {w;} , which are statistically independent Gaussian random variables
with zero mean, are generated and passed through the equalizer for each channel.
The absolute values of the normalized autocorrelation function are determined as
follows. First are evaluated the quantities {4,} , where

100000 , .

A= wiwl,, 6.1.4

i=

for all integer values of h. |x|is the absolute value of the complex quantity x.

The values {4,} are then normalized by setting to unity the maximum value, which
occurs at h=0.

Fig. 6.2 shows that the correlation of the noise samples {w/} , introduced by the
linear equalizer, is relatively higher in the cases of channels F and E. The four
channels (C to F) are arranged according to their level of amplitude distortion
(Chapter 3). A study of Fig. 6.2 and the performance of systems LC and LU over
these four channels, shows that the greater the amplitude distortion that is equalized
by the linear equalizer, the greater is the correlation of the neighbouring noise
samples, and hence the greater the degradation of the performance of systém LC
over system LU. In order to show how much degradation in the performance of
system LC is caused by this correlation, further tests have been carried out. The
results of these tests are presented in Figs. 6.3 to 6.6, where the performances of
system LC over channels C to F are given under two conditions. In the first
condition, system LC operates exactly as described in Chapter 5 (Section 5.3), and
the corresponding performance is labelled "system LC", whereas, in the second
condition (which is rather unrealistic) the noise components in the equalized samples'
are assumed to be uncorrelated. Here the equalizer is assumed only to change the
amplitude level of the noise samples rather than introducing correlation. The
performance curves for the second condition are labelled "system LC (uncorr-
elated)”. Figs. 6.3 to 6.6 show that the degradation in the performance of system LC
due to the noise correlation is a function of the amplitude distortion introduced by
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the channel. At bit error rates of 10° to 10, the amount of this degradation is about 3
to 3.8 dB over channel F, while over the same range of bit error rates the
corresponding degradation is about 2.5 to 3 dB over channel E. In the case of
channel D and C, the degradation is reduced to about 1.3 to 1.8 dB and 0.7 to 1.4 dB,
respectively. It is clear from the above figures that the effect of the noise correlation
at bit error rates above 10 is relatively small over the channels tested here.

6.2 THE EFFECT OF NOISE CORRELATION INTRODUCED
BY THE RECEIVER FILTER

It is assumed throughout this work that the transfer function of the receiver filter is
deliberately chosen so that the noise components at the receiver filter output are
uncorrelated. In this section it assumed that the filtering carried out by the data
transmission system (Fig. 6.1) is equally shared between the transmitter and the
receiver filters. The attenuation and the group delay characteristics of the equipment
filters used here is shown in Fig. 6.7. This is different from that used in the model of
the data transmission system described in Chapter 3, and is here called equipment
filters-2. These filters are actually a combination of equipment filters-1 (Chapter 3)
and a radio filter, which has been used for the transmission of data at a rate of 9600
bit/s over a model of an HF radio link {39,88]. The equipment filters-2 introduce
slightly higher levels of signal distortion than the equipment filters-1. When the
filtering is equally shared between the transmitter and receiver filters, the noise at the
output of the receiver filter becomes correlated. In fact, this is the main reason
behind the usage of the equipment filters-2 in this section. The sampled impulse
responses of the transmitter and the receiver filters, when the filtering is equally
shared between them, are shown in Table 6.1, and these are derived in the manner
described in Appendix D.

The assumptions made in the model of data transmission system (Fig. 6.1) are the
same as that given in Chapter 3. The sampled impulse response of the linear
baseband channel and the adaptive linear filter of Fig. 6.1 is given in Table 6.2,
‘'where the transmission path is assumed to be ideal and introduces no signal
distortion. The received sample at the output of the adaptive linear filter (Fig. 6.1),
at ime iT, is given by
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.
ri= X Sy htwi ... 621
h=0

where {w‘} are the noise samples at the output of the adaptive linear filter, and they
are correlated as described above. The absolute value of the autocorrelation function,
defined in Eqn. 6.1.4, of the noise samples {w} is shown in Fig. 6.8.

Computer simulation tests have been carried out to evaluate the performances of the
different detectors described in Chapters 4 and 5 for the case where there is no
telephone circuit (these are referred here to as the back-to-back tests). The tests have
been carried out under two conditions. In the first, the filtering in the system is
assumed to be equally shared between the transmitter and receiver filters, so that the
noise samples {w;} are correlated as described above, and the results of the tests are
shown in Fig. 6.9. In the second condition the receiver filter introduces no
correlation between the neighbouring noise samples {w{} as in the remaining parts of
this work and the results are shown in Fig. 6.10, The results in Figs. 6.9 and 6.10 do
not include the linear equalizers which are shown in Fig. 6.11. Each curve in the
above figures is labelled by the corresponding detector (system) as in Chapters 4 and
5. It is clear from Figs. 6.9 and 6.10 that in the case where the receiver filter
introduces correlation the performances of the systems, tested here, irrespective of
whether the signal is convolutionally coded or not, are slightly better than the

corresponding systems in the case where the receiver filter introduces no correlation. -

On the other hand, the improvement in the performances of the coded systems, in
tolerance to additive noise, over the uncoded systems remains unchanged. For
example, in Fig. 6.10 system 3C64 (which is system 3C used for the encoded signal
with 64 stored vectors) has an advantage in tolerance to additive noise of about 2 dB
over system 3U16 (which is system 3U for the uncoded signal with 16 stored
vectors) at bit error rate of 10, and the corresponding advantage of system 3C64
over system 3U16 in Fig. 6.9 is also about 2 dB. Systems LU and LC in Fig, 6.11
give a relatively poor performance when compared to all other systems for the case
where the receiver filter introduces no correlation between the neighbouring noise
samples {w{} . When the filtering is equally shared between the transmitter and
receiver filters, however, the linear equalizers give surprisingly better performances,
as can be seen in Fig. 6.11. In this case system L.C is only about 1 dB below system
3C64 at bit error rate of 10 , while the performance of system LU is about 1.1 dB
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below system 3U16 at the same bit error rate, as it is clear from Figs. 6.9 and 6.11.
These figures also show that the performance of system LC is as good as system
1C16, with a slightly better performance at bit error rates above 10? . System LC
gains an advantage of about 1 and 1.3 dB over systems 2C8 and 3C8, respectively, at
bit error rate of 10* . It also gives a better performance than system MNC (the
modified nonlinear equalizer for a coded signal). Figs. 6.9 and 6.11 show that, in the
case where the signal is uncoded, the performance of the linear equalizer for the
uncoded signal (system LU) is better than that of the nonlinear equalizer (system
NU). Furthermore, as can be seen from Fig. 6.11, the use of a linear equalizer with
the convolutionally encoded signal (system LC) gains an advantage of about 1.5 to
2.1 dB over the corresponding uncoded system over the range of bit error rates of 10”
to 10 , when the receiver filter introduces noise correlation. In the case where the
receiver filter introduces no noise correlation there is no such advantage and the
performance of system LC is only better than that of system LU at bit error rates
below 2x10™ . So the linear equalizefs, unlike the other systems, are affected by the
presence of the noise correlation. In fact, the correlation introduced by the receiver
filter works in favour of the coded system (system LC). But it has been shown in the
previous section that the correlation introduced by the linear equalizer itself may
degrade the performance of the coded system. As mentioned earlier in the
back-to-back tests there is no telephone circuit included in the model, and so the
sampled impulse response of the linear baseband channel in Fig. 6.1 is the resultant
response of the transmitter and the receiver filters (Table 6.1). Now, since the
adaptive linear filter has no effect on the amplitude distortion introduced by the
linear baseband channel when perfectly adjusted, as assumed here, the linear
equalizer here equalizes the amplitude distortion introduced by the resultant response
of the transmitter and receiver filters. When the filtering is shared equally between
the transmitter and receiver filters, the equalizer equalizes twice the distorticn
introduced by the receiver filters, and so it tends to reduce the levels of the noise
components at the output of the receiver filter, and at the same time it reduces the
correlation between the noise samples. Fig. 6.12 shows the absolute value of the
autocorrelation function of the noise samples at the outputs of the receiver filter and
the linear equalizer, for the case where the filtering is equally shared between the
transmitter an receiver filters. The autocorrelation function of the noise samples at
the output of the linear equalizer for the case where the receiver filter introduces no
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correlation between the neighbouring noise samples is also shown in Fig. 6.12. Itis
clear from this figure that the equalizer reduces the correlation between the
neighbouring noise samples, when the filtering is equally shared between the
transmitter and receiver filters, This explains why there is an improvement in the
performance of the linear equalizers (systems LC and LU) over the corresponding
systems for the case where the receiver filter introduces no noise correlation. It is
clear that the improvement of system LC here is greater than that of system LU.
This is due to the fact that system LC performs, relatively, better than system LU
when the noise correlation is reduced.

Finally, to show the effect of the noise correlation (introduced by the receiver filter)
on the performance of the linear equalizers in the presence of a telephone circuit,
further tests have been carried out. In these tests, telephone circuit 3 (Chapter 3) is
used. The sampled impulse response of the linear baseband channel and the adaptive
linear filter is given in Table 6.3. Equipment filters-2 (Fig. 6.2) is also used here.
The results of the tests are shown in Fig. 6.13, for the two cases where the receiver
filter introduces noise correlation between the neighbouring noise samples (the
filtering is equally shared between the transmitter and receiver filters) and when the
receiver filter introduces no noise correlation. Clearly, Fig. 6.13 shows that there is
no significant change in the relative performances between system LC and LU in the
two cases. Unlike the results of the back-to-back tests, the equalizers here have no
role in reducing the correlation introduced by the receiver filter. Instead, it actuaily
introduces further correlation between the neighbouring noise componenfs in the
equalized samples, and it also increases the noise level. Although no results of
other systems are presented here, it is clear from the results of the back-to-back tests
that their performances are not effected by the presence of the noise correlation,
introduced by the receiver filter. ‘
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Transmitter filter Receiver filter
Real - Imaginary Real Imaginary
Part Part Part Part
-0.0037334 0.04893466 -0.04079517 0.02862715
-0.206655 0.94708762 -0.73830338 0.57427385
-0.0719658 0.18095437 -0.23593839 0.15276818
0.06370091 -0.11603890 0.15783024 -0.10705166
-0.03112757 0.03610002 -0.07081625 0.03986585
0.01077012 -0.00268702 0.02202331 -0.01014814
-0.0065853 -0.00483293 -0.00652528 0.00415777
-0.00092260 0.00081502 0.00155247 0.00197557

Table 6.1 Sampled impulse responses of the transmitter and receiver filters
(Equipment filters-2) at sampling rate of 2400 samples/s.
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Real Imaginary
Part Part
1.0000000 0.0
0.6280652 0.0670085
-0.2245447 -0.0292450
0.0200149 0.0061246
0.0321720 0.0095349
0.0189756 -0.0071542
0.0069501 0.0069183
-0.00022625 -0.0034449
-0.004014 0.0009599
0.0002131 -0.0001827
-0.0000618 0.0000209
0.0000204 0.0000208
0.0000047 -0.0000008
0.0000003 -0.0000002

Table 6.2 Sampled impulse responses of the linear baseband
channel (without telephone circuit) and
adaptive linear filter in Fig. 6.1.
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Real Imaginary
Part Part
1.0000000 0.0
0.54635 0.10526
-0.60866 0.13043
0.13559 -0.22501
-0.01326 0.10803
0.00260 -0.01811
-0.01624 0.01245
0.00605 -0.01110
-0.00080 0.00740
-0.00069 0.00382
-0.00091 -0.00760
0.00123 0.00481
0.00197 -0.00111
-0.00116 -0.00856
0.00203 0.00562
0.00284 - 0.00385
-0.00616 -0.00531
-0.00220 -0.00410
-0.00266 -0.00169
-0.00063 0.00065

Table 6.3 Sampled impulse response of the linear baseband
channel and adaptive linear filter in Fig. 6.1,
for telephone circuit 3 (channel E).
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CHAPTER 7

SIMPLE INTERLEAVER FOR CONVOLUTIONALLY
ENCODED QAM SIGNAL

7.1 INTRODUCTION

It is clear from the results of Chapter 5, that the use of a nonlinear (decision
feedback) equalizer together with the Viterbi algorithm detector (VA) for the
encoded signal (systtm NC or MNC) does not appear to be a very promising
arrangement. The performance of such a system can be considerably inferior to that
of the corresponding arrangement with an uncoded signal over the poorer channels
tested here. The main reason behind the poor performances of the above systems
(system NC and MNC) when compared to other systems is their sensitivity to the
error extension effects. When the detected values of the previously received data
symbols are incorrect, they lead to a series of incorrect detectionsof the next received
symbols. As described in Chapter 5, the detected values, which are used to cancel
the intersymbol interference terms in the received samples, are provided by the
threshold detector in system NC and by the early decisions of the Viterbi algorithm
detector (VA}) in system MNC. So any attempt to improve the performances of such
systems should be concentrated towards reducing the error extension effects. This
may be achieved by a suitable interleaver/deinterleaver arrangement [19,76,89,90].

An interleaver is a device at the transmitter that rearranges the ordering of a
sequence of symbols in a deterministic manner. Associated with an intcrleaver is a
deinterleaver at the receiver that applies the inverse ordering to the received symbols

to restore the sequence to its original ordering form. In such an arrangement, the
encoded data symbols at the output of the encoder are interleaved prior to
transmission and deinterleaved prior to the detection. This may reduce the lengths of

error bursts that introduced by the channel and so the errors are distributed more |
uniformly at the detector input [76]. The above is known as an external interleaver,




while an internal interleaver interleaves the information digits prior to the encoding
process and the corresponding detected (decoded) digits at the detector output are
then deinterleaved; the latter is not considered here.

Different interleaving systems are described in the published literatures [76,89]. In
most of these arrangements the interleaving/deinterleaving process introduces a
delay of many symbol intervals. Usually, the number of errors in a burst, which are
needed to cause an error in the interleaved system, increase with the delay caused by
interleaving [89]. Unfortunately, the direct application of any of these arrangements
to system MNC may not lead to a successful operation of the detector, due to the fact
that system MNC employs the early decisions of the Viterbi algorithm detector (VA)
to cancel the intersymbol interference terms in the received samples, and no delay is
tolerable in these decisions. The preferred arrangement of the interleaver/deinter-
leaver here, is the one which is suitable for the system MNC, since the performance

of this system is better than that of system NC, over all channels considered here

(Ch'apte‘r ).
7.2 MODEL OF DATA TRANSMISSION SYSTEM

Fig. 7.1 shows a simplified model of data transmission system. The interleaver and
deinterleaver consist of commutator switches. The information to be transmitted is
carried by the binary digits {c,} . Each encoder at the transmitter operates exactly in
the same manner as the encoder described in Chapter 3. The linear baseband channel
and the function of the adaptive linear filter in Fig. 7.1 are as described in Chapter 3.
The received sample at the output of the adaptive linear filter, at time iT, is given by

4 .
r.—=hz Soay+w e 121
=0

-

where {s;_,} are the encoded data symbols, the real and imaginary components of the
noise samples {w;} are statistically independent Gaussian random variables with zero
mean and fixed variance o* (Chapter 3 and Appendix D) and the sampled impulse
response of the linear baseband channel and the adaptive linear filter is given by the
(g+1)-component vector '

Y=[yo % ¥ - . . ¥l e 122
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where y,=1 as described in Chapter 3. _
The commutator switches A, B, C and D in Fig. 7.1 are assumed to be perfectly
synchronized, so that when switch A, for example, is at the jth position, all the

remaining switches (B, C and D) are also at the jth position, The arrangement in
Fig. 7.1 uses N encoders at the transmitter and N decoders at the receiver. N here
represents the interleaving depth. Each encoder (or decoder) operates every N
symbol intervals. So, when the binary digits o;,, o ,, 0, and o, , ,at time iT, are fed to
the first encoder, the latter produces the encoded data symbol s; at its -output as
described in Chapter 3. No signal is fed or produced from this encoder at the time
instants (i+1)T , (+2)T,. . . (+N-1)T, but at time (i+N)T a new set of four binary
information digits are applied to the first encoder. These digits are given by
O n,1s%aw.2:0, v and & v, , and the corresponding encoded symbol s,y is then
produced at the output of the particular encoder.

When the interleaving arrangement uses system NC as a detection process, as shown
in Fig. 7.1, the system is called here "system INC", and when the arrangement uses
system MNC it is called "system IMNC", where the detectors and the equalizer in
the latter system are shown in Fig. 7.2.

7.3 DETECTION PROCESSES IN THE INTERLEAVING SYSTEMS -

The detection processes here ,in principle, are the same as those of systems NC and
MNC. The only exception here is that, each detector in Fig. 7.1 or Fig. 7.2 operates
every N sampling intervals. This requires a slight modification in the detection
process and will be described here. '
Assume that the data symbol s, is produced at the output of the first encoder at time
iT. Thus at time (i+j-1)T each of the four commutator switches is at the jth position,
where 12j2N . When the encoded symbol s,_;,, is produced at the output of ihe jth
encoder, the corresponding received sample at the output of the adaptive linear filter
,at time (i+j-1)T, is given by

g .
r:'-l»j-l=A2_:0s£+j—h-1yh+wi+j-1 ' e 131

and the corresponding equalized sample at the jth detector input is given by
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€yj1= i1~ Ef.ﬂ h=1Yn . e 132

where £;,;_,_, is the detected value of the data symbol s;,;.,., for h=1, 2, . . . g
These values are provided by the threshold detector in system INC and by the
Viterbi algorithm detector (VA) in system IMNC. The equalized sample e, ;., is then
processed by the jth detector. Just prior to the receipt of ¢;, ;_, at time (i+j-1)T the jth
detector holds in store eight n-component vectors {Q/,,,_,} (the superscript j
specifies the detector), where

'-N+; =X i1 Xicpaawajore o Xicowejo1Xionej-1) e 7133
and x;_w,;-; takes on any one of the 16 of the 32 possible values of s;_u.;_, , s
described in Chapter 5. Each vector {g/.,,;,} is associated with a different one value
of the eight states of the jth encoder at time (i-N+j-1)T. And since each encoder and
each detector operates every N symbol intervals, these states are also the states at
time (i+j-2)T. Associated with each vector @/ ,.;_, is stored its cost, which is given
by

C—N+j 1= znl €iamN+j-1 x-kN-u-lF e 134

On the receipt of r,,;_, , at time (i+j-1)T, each vector @/ ,,,., is expanded into 16
vectors {Pf,;_;}

P.J”- =0 i1 Xicuetwajors + + XicNajo1%iejo1] .. 135
where the first n-components of each vector #/,;_, are given by the original vector
0! y.;-, and the last component x;,;_, takes on its 16 different permitted values. The
latter are determined by the state of the particular vector @/ ,.,., at time (i-N+j-1)T.

The cost of each of the resulting vectors {P},,_,} is given by

i — pnd
Ci+j-1"ci-N+j-—1+I Civj17Xinj- 1'2 .. 1356

where ¢/.y,,., is the cost of the original vector o/ ,.;., .

There are now 16 different vectors {#/,,_,} , for each of the states at time {(i+j-1)T and
the detector selects, for each state, the one of the 16 associated vectors {#/,,_,} with
the smallest cost </,,_, , the remaining vectors being discarded. The detected value
§i-wsj1 Of the data symbol s;_u,;_, is next given by the value of x,_,v,;., of the
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vector P,,_, with the smallest cost. The detected value §;_,;_, in turn determines the
detected values of the binary digits o _wv.;-11 % wajor20Cioawsjoss aNA 0wy 34 85
described in Chapter 5. Since s;_u.;-, is detected here after the receipt of r,,;_, there
is a delay of nN symbol intervals in the detection. |

The first component x;_.,;, of each of the eight vectors #/,,_, is then omitted, to
give the corresponding vector @/,;_, , without changing its cost. The smallest cost is
then subtracted from the cost of each vector 0/,;_, , to bring the smallest cost to zero.
The eight vectors {g/,;.,} together with their costs {c/,;_,} are then stored. As in the
original systems (system NC and MNC) the detected value of the data symbol s;,;_,
is either given by the threshold detector in system INC or by the jth detector as is the
case in system IMNC.

7.4 COMPUTER SIMULATION TESTS AND
ASSESSMENT OF THE SYSTEMS

Computer simulation tests have been carried out on the proposed interleaving
systems, when the convolutionally encoded signal is transmitted over channels B to
F. These channels are described in Chapter 3. The results of the tests are given in
Figs. 7.3 to 7.12, and each curve in these figures is labelled by the corresponding
system together with the value of N (the interleaving depth). The systems are tested
here with N=4 and 8. The performance of system NC and MNC are also shown in
- each figure for the purpose of comparison. Systems NC and MNC can be
considered as a special case of the interleaving systems where N=1. The curves in
Figs. 7.3 to 7.7 show the variation of bit error rate against the signal/noise ratio vy,
and v is defined by Eqn. F.6 { A =20 and m=4) in Appendix F. In Figs. 7.8 t0 7.12
the performances of the systems are presented in terms of the variation of the
average probability of emor event against y , to show the capabiliiy of the
interleaving systems in reducing the number of error bursts. The event error rate is
given by the number of error events divided by the total number of the transmitted
data symbols {s;} . An error event is counted here, when at least 32 successive data
symbols are correctly detected followed by any incorrect detection of one or more
data symbols. The delay in the detection involved in each detector is n symbol
intervals in the interleaving systems, where n is fixed at a value of 32.
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As can be seen from Fig. 7.4 or 7.5, the interleaving systems INC and IMNC have a
better performance than the corresponding systems NC and MNC, respectively,
when operating over channels C or D. Over channel C (Fig. 7.4) an advantage of
about 1.8 dB in tolerance to additive white Gaussian noise can be achieved, at bit
error rate of 167 , by system IMNC with N=8 over system MNC, and an advantage of
the similar order also achieved here by system INC with N=8 over system NC. The
corresponding advantages of system IMNC with N=4 is about 1.4 dB over system
MNC and that of system INC (with N=4) over system NC is about 1.3 dB. Fig. 7.5
shows the performances of the systems when operating over channel D, where the
advantages gained by interleaving are relatively less than those achieved over
channel C. The improvement in the performances of the interleaving systems
becomes evident when the variation of the event error rates against the signal/noise
ratio is examined as in Figs. 7.9 and 7.10. It can be seen from these figures that the
interleaving systems (IMNC and INC) reduces the number of error events when
compared to that of the original systems (NC and MNC), since for a given value of y
the probability of error event is reduced by the process of interleaving. The above
figures also show that system IMNC, which is the interleaving system based on the
modified nonlinear equalizer with the Viterbi algorithm detector (VA), has a better
performance than that of system INC for the same value of N (the interleaving
depth).

It can be seen from Figs. 7.3, 7.6 and 7.7 that there is no improvement in the
performances of the interleaving systems over the original systems (NC and MNC)
when operating over channels B, E and F. A similar behaviour of the systems over
these channels can also be seen from Figs. 7.8, 7.11 and 7.12, where the
performances of the systems are given in terms of event error rates. Channel E and F
include the poorest telephone circuits (circuit 3 and 4 in Chapter 3) c¢onsidered in this
work, and channel B has a relatively high level of signal distortion. In fact the
behaviour of the performance of the interleaving systems over these three channels
suggest that an improvement may be achieved at error rates below 10 .

It is clear from the results, that the interleaving systems ,tested here, do not appear to
be very promising over channels that introduce severe amplitude distortion as in the
case of channels B, E and F. This is due to the fact that the number of errors in a
burst is relatively large so that N=8 or less (as is the case here) seems to be not
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enough to reduce the number of errors in a burst over such channels. For large values
of N, the arrangement of interleaving systems requires a relatively large storage, On
the other hand and over channels C and D, the interleaving system IMNC with N=§
comes close to achieving the performance of the near-maximum likelihood detector
system 3C with 64 vectors (system 3C64). The latter system has the best
performance over all other systems, tested over channel C and D (see Chapter 5).

Although, the interleaving systems require as many encoders and detectors as the
interleaving depth (N), they involve the same number of arithmetic operations per
received data symbol as that of system NC or MNC .This is due to the fact that there
is only one encoder (and the corresponding detector) in operation at any one time,
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CHAPTER 8

DETECTION OF QAM SIGNALS FOR TRANSMISSION
RATES HIGHER THAN 9600 bit/s

- 8.1 INTRODUCTION

In this chapter, the most promising near-maximum likelihood detectors for coded
and uncoded QAM signals described in Chapters 4 and 5, are tested further for
application where the data are transmitted at rates of 14400, 16000 and 19200 bit/s.
These detectors are known as system 3U16 and 1C16 in Chapters 4 and 5,
respectively. The equalizers are also tested here.

An increase of transmission rate is achieved here either by increasing the signal
alphabet (the possible values of the transmitted data symbols), so that more
information digits can be transmitted per data symbol, or by increasing the
modulation rate (number of transmitted signal elements per second). A possible
increase in transmission rdte can also be achieved by increasing both the number of
signal levels and the data symbol rate.

8.2 MODEL OF 14400 bit/s SYSTEM

A model of a synchronous serial data transmission system is shown in Fig. 8.1. The
system may operate either with an uncoded 64-level QAM signal or else with a
coded 128-level QAM signal. In each case the QAM signal has a carrier frequency
of 1800 Hz and an element rate of 2400 bauds, giving a useful transmission rate of
14400 bit/s. The information to be transmitted is carried by the binary digits {e;,} ,

which are statistically independent and equally likely to have either one of their

possible values 0 or 1. Furthermore, the information digits {o,} occur in separate
groups of six adjacent digits &,,0,...0;5 , which determine the corresponding
uncoded or coded symbol 5, . As before, it is assumed that {¢;,} =0 and s, =0 for i<0,
so that s, is the '(i+1)th transmitted data symbol.

166




When s; is uncoded (not convolutionally encoded), it is derived from the {o;,} by a
process of differential encoding. In the differential encoder, the binary digits o;, and
o, , are recoded to give the corresponding binary digits f;, and B;, according to Table
8.1 (as in Chapter 3), while

Bia=0Cy forh=3,4,5,6 | ..821

The resulting group of the six binary digits B;,pB:;...B.,s now determines the
appropriate data symbol s; according to Fig. 8.2 {42]. As in the case of the 16-level
QAM signal in Chapter 3, the first two binary digits in any binary coded number
determine the quadrant containing s; . The remaining four digits determine the
position of s; in the quadrant, the latter digits in any quadrant are the same as those in
the all-positive quadrant, if this is rotated to coincide with the given quadrant
[14,42,85]. The data symbol s, is equally likely to take on any one of its 64 possible
values given by the signal constellation in Fig. 8.2. Following the detection of s, , at
the receiver, the corresponding detected values of the six binary digits B, B;...Bis
are determined first from Fig. 8.2. The detected values of o, and o, are then
determined from Table 8.1, using the detected values of B;_,, , Bi_y2, B;, and B, ,
while the detected values of o, , o, , ;5 and o4 are given by the corresponding
detected values of Bi.s s Bis s B.s and B;, , respectively, as in Eqn. 8.2.1. Any phase
rotation of a multiple of « /2 radians, introduced into the received samples during the
transmission, can not lead to an extended sequence of errors in the detected binary
digits {&;,} . This can be verified in the same way as that for the 16-level QAM
signal in Appendix B.

When s; is coded, it is derived from the {c; ,} by a process of convolutional encoding.
The convolutional encoder used here is the same as that used in Chapter 3 and is
shown again here in Fig. 8.3, where, in the case of 14400 bit/s system, m=6, so that
the rate of the encoder is 6/7. It can be shown that the asymptotic coding gain in this
case is also 4 dB as in the case where the encoder operates at a rate of 4/5 (Chapter
3) [8,68,91). The encoded symbol s; has a total of 12§ po'séiblc values, given by the
signal constellation of Fig. 8.4. For each set of six input digits o, 0;,... 06 , the
resulting seven digits §,,B;,...B.¢ at the output of the encoder determine the
appropriate point in the signal constellation of Fig. 8.4. This gives the encoded
symbol s; , which, for any value of i, can take on any 64 of the 128 possible values in
Fig. 8.4, the permitted 64 values belonging to one or other of two disjoint sets that
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together include all 128 values. The truth table for the encoder is given in Table 8.2,
which is the same as that given in Chapter 3. Each of the eight states of the encoder,
at time iT, is determined by the values of w1, and p;, (Fig. 8.3). The encoder
operates on o, and ¢, , to determine B, and B, , , whereas

Bl’.h=ai,h far h=2,3,4,5,6 ...8.2.2

Clearly, the values of B, , B, , and B, ; ,that correspond to any particular values of o,
and a,, , depend upon the state of the encoder. Since the truth table is independent of
Oy, O a, 05 and o, it is evident that, associated with each pair of values of o, ;, and
a;, , are all sixteen combinations of a5, , o;, , o5 and o , S0 that every row of the
truth table holds for these sixteen combinations. The state at time (i+1)T is uniquely
determined by the state at time iT, together with either the values o, and o, or else
by the values B;, , B;, and B, , . The 16 possible values of s; (Fig. 8.4), for any given
set of values of B;, , B;, and B;, , are selected according to Ungerboeck’s technique of
set partitioning {3], in order to maximize the minimum distance between any two of
the sixteen {s;} , over all sets of values of B,, , B;, and B;, . This corresponds to the
arrangement described Chapter 2 (Section 2.4.2). Fig. 8.5 shows the set partitioning
of the encoded signal constellation into eight final states (DO, D1, D2, D3,....D7),
for different numbers of signal levels [9].

The linear baseband channel in Fig. 8.1 is the same as that described in Chapter 3 for
the transmission of data at 9600 bit/s. The noise introduced in transmission is
stationary white Gaussian noise, which is added to the data signal at the output of the
transmission path to give the complex valued noise waveform u(t) at the oufput of
the receiver filter. The resulting waveform at the output of the receiver filter is,
therefore the complex valued baseband signal (Chapter 3 and Appendix A)

p@)=3sv(t —iT)+u() ‘ ... 823

where v(t) is the impulse response of the linear baseband channel, which consists of
the baseband signal generator, the linear modulator, the telephone circuit and the
linear demodulator,

The waveform p(t) has a bandwidth extending from about -1200 to 1200 Hz and is
sampled once per data symbol, at time instants {iT} , to give the received samples
{p;} which are fed to the adaptive linear filter (Fig. 8.1). The sampling rate is 2400
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samples/s and is close to the Nyquist rate for_ p(t). The receiver filter, as in Chapter 3,
is such that the real and imaginary components of the noise samples at its output are
statistically independent Gaussian random variables with zero mean and fixed
variance [20]. The adaptive linear filter, in Fig. 8.1, is an allpass network, with
ideally an infinite number of taps, that adjusts the sampled impulse response of the
linear baseband channel and filter to be minimum phase, thus concentrating the
energy of the sampled impulse response of the channel and filter towards the earlier
samples and at the same time removing the phase distortion introduced by the
channel other than any that tends to make the sampled impulse response of the
channel and filter minimum phase, without however changing any amplitude
distortion (Chapter 3 and [22,23]). The noise components {w;} at the output of the
linear filter have the same statistical properties as the noise samples at its input
(Appendix E). The sampled impulse response of the linear baseband channel and the
linear filter in Fig. 8.1 is given by the (g+1)-component row vector

Y=[y, 2 Y2 « - - ¥ | ... 824
Where y, =1, and Y(z) (the z-transform of Y) have no roots outside the unit circle in
the z-plane.

The delay in transmission over the baseband channel and the filter, other than that -
involved in the time dispersion of the received signal is neglected here and y; =0 for
i<0 and i>g. Thus the signal at the filter output, at time iT, is given by the
complex-valued sample

g
".'=hz Sion YW, ... 825
=0

where the real and imaginary components of the noise samples {w} are statistically
independent Gaussian random variables with zero mean and fixed variance {Appen-
dix E). ‘ ‘

8.3 MODEL OF 16000 bit/s SYSTEM
When the data transmission system operates at a rate of 16000 bit/s, the information

digits {o,,} occur in separate groups of five adjacent digits oy,0;,...0% . These
digits determine the corresponding uncoded or coded data symbol s; . The system,
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here, may operate either with an uncoded 32-level QAM signal or else with a coded
64-level QAM signal. In each case the QAM signal has a carrier frequency of 1800
Hz and an element rate of 3200 bauds, giving a useful transmission rate of 16000
bit/s. ' '

The uncoded data symbol s, is derived from {o;,} by a process of differential
encoding, where the latter is the same as that described in the previous section (and
in Chapter 3). The binary digits a,, and o, are used to determine B, , and B,, (Table
8.1), whereas

Bﬂ',h-__ (. for h=39495 ...8.3.1

The resulting group of the five binary digits B;,.B;,,B:1.B:« and B;; now determine

the appropriate data symbol s, according to Fig. 8.6. The mapping of these digits

follow the same principle as that used in the previous section and it is different from
that used in Chapter 3 for the convolutionally encoded 32-level QAM signal.

When s, is convolutionally encoded, it is derived from {¢;,} by using the encoder in
Fig. 8.3, where here m=5 and the coding rate is 5/6. The encoded symbol s5; has a
total of 64 possible values given by the signal constellation in Fig. 8.7. For each set
of the five input digits, the encoder determines the resulting six output digits which
in turn determine the appropriate point in the signal constellation of Fig. 8.7. In the
truth table of the encoder (Table 8.2), each of the eight states at time iT is
determined by the values of p,,,1;, and y, , (Fig. 8.3) as before. The encoder operates
on ¢, and «; , to determine B;, and B, , whereas

Bi,h=a&',h for h=2a3,435 ) ..832

-Associated with each pair of values of o, and o,, , in Table 8.2, are all eight
combinations of o, , &, and ;5 , 50 that every row in the truth table holds for these
eight combinations. The eight possible values of the encoded symbol s; , for any
given set of values of B, , B;, and B, , are selected such that the minimum unitary
distance between any of the eight {s;} is maximized, as in Fig. 8.5 (here m=5).
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The linear baseband channel and the adaptive linear filter (Fig. 8.1) are as described
in the previous section. The only difference here is the value of the data-symbol rate,
which is 3200 symbol/s here. The sampling rate of the sampler in Fig. 8.1 is 3200
samples/s. The sampled impulse response of the linear baseband channel and
adaptive linear filter is given by Eqn. 8.2.4 and the received sample at the output of
the linear filter at time iT is given by Eqn. 8.2.5.

8.4 MODEL OF 19200 bit/s SYSTEM

When the data transmission system (Fig. 8.1) operates at a rate of 19200 bit/s, it uses
either an uncoded 64 level QAM signal or else a coded 128-level QAM signal here.
The carrier frequency of the QAM signal in either case is 1800 Hz the element rate
of the system is 3200 bauds. The information to be transmitted is carried by the
binary digits {o;,} . As before these digits are statistically independent and equally
likely to have any of their two possible values 0 or 1. The {a;,} occur in a separate
groups of six adjacent digits o, @,...0¢ , Which determine the corresponding
uncoded or coded data symbol s, .

The differential encoder used throughout the work is used here to determine the
uncoded data symbol s; . The operation of the differential encoder, the mapping of
the uncoded data symbol and the operation of the differential decoder at the receiver
are exactly the same as those described in Section 8.2 for the 14400 bit/s system.
And when the transmitted data are convolutionally encoded, the operation of the
encoder is also exactly the same as that described for the 14400 bit/s system. The
only difference here between the 14400 and 19200 bit/s systems is the value of the
data-symbol rate, which is 3200 symbol/s in the 19200 bit/s system and 2400
symbol/s in the 14400 bit/s system.
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TjQ:LEPHONE CIRCUITS AND EQUIPMENT FILTERS

Modclls of two telephone circuits are used here to evaluate the performance of the
detectors, when the data are transmitted at different rates, The telephone circuits are
the telephone circuits 2 and 3 in Chapter 3. As described before, telephone circuit 2
introduces typical levels of signal distortion, whereas telephone circuit 3 is close to
the poorest circuit normally considered for the transmission of data at a rate of 9600
bit/s [23,47]. The attenuation and group delay characteristics of telephone circuit 2
and 3 are shown in Fig.3.8 and Fig. 3.9, respectively, in Chapter 3.

When the data are transmitted at a rate of 14400 bit/s, with a data-symbol rate of
2400 symbol/s, the equipment filters (which are the combination of the transmitter
and receiver filters) are the equipment filters-1, which are used in Chapter 3 for the
transmission of data at a rate of 9600 bit/s. The attenuation and group-delay
characteristics of the filters are shown in Fig.3.6 in Chapter 3. For data transmission
systems operating at data-symbol rates greater than 2400 symbol/s and with
telephone circuits which introduce typical levels of signal distortion (such as
telephone circuit 2), the use of the equipment filters-1 result in excessive signal
distortion [42]. This can be verified by inspecting the attenuation and group-delay
characteristics of the equipment filters-1 and telephone circuit 2. Thus, a reduction in
signal distortion, accompanied by the corresponding improvement in tolerance to
noise, can be achieved by increasing the bandwidth of these filters [39,42). Thus,
wider-band equipment filters (called here equipment filters-3) are used for the
transmission systems operating at rates of 16000 and 19200 bit/s. These systems
operate with a data-symbol rate of 3200 symbol/s. The attenuation and group-delay
characteristics of equipment filters-3 are shown in Fig. 8.8, where it can be seen that
the bandwidth of the filters is wider than that of equipment filters-1 (Chapter 3} by
about 200 Hz (at the -6 dB frequencies) at both the low and high frequency limits of
the characteristics. Equipment filters-2 have been used successfully for transmission
of an uncoded QAM signal (identical to the signal constellation in Fig. 8.2) over
: telcphbne lines at a rate of 19200 bit/s [46,92].

The sampled impulse responses of the linear baseband channel (Fig. 8.1) are derived
in the same way as for the corresponding channel in Chapter 3 and described in




Appendix D. Clearly the sampled impulse responses of the linear baseband channels
for the case where the data is transmitted at a rate of 14400 bit/s are the same as
those used in Chapter 3, where equipment filters-1 and a symbol rate of 2400
symbol/s are used. The sampled impulse responses of the linear baseband channels
which include telephone circuits 2 and 3 (known here as channel D and E,
respectively, as in Chapter 3), are shown in Tables 8.3 and 8.4 for the cases where
the data-symbol rates are 2400 and 3200 symbol/s, respectively. As described above,
. equipment filters-3 is used here when the data-symbol rate is 3200 symbol/s.

The sampled impulse responses of the linear baseband channel and the adaptive
linear filter (given by the vector Y in Eqn. 8.2.4) for the two circuits are shown in
Tables 8.5 and 8.6 for the case where the data-symbol rates are 2400 and 3200
symbol/s, respectively. '

8.6 DETECTION PROCESSES

In Chapters 4 and 5, different detectors have been proposed for the detection of an
uncoded and coded (convolutionally encoded) QAM signals. The preferred arrange-
ments of these are used here for the data transmission systems operating at rates of
14400, 16000 and 19200 bit/s. These detectors are system 3U16, which is system 3U
with 16 stored vectors as described in Chapter 4, and system 1C16, which is system
1C with 16 stored vectors as described in Chapter 5. The equalizers are also tested
here.

Although, the principle of operation of a detector here is the same as that for the
corresponding detector, described in Chapter 4 or 5, its opcrationé here is slightly
modified due to the larger numbers of signal levels in the data transmission system
operating at a rate of 14400, 16000 or 19200 bit/s. For example, when a linear or
nonlinear equalizer is used together with the appropriate threshold detector for the
uncoded 32-level QAM signal, which is used by the 16000 bit/s system, the
threshold levels are placed at -4, -2, 0, 2 and 4, for each dimension (real or imaginary
part) in the constellation in Fig. 8.6 and the corresponding levels for the uncoded
64-level QAM signal (in the 14400 or 19200 bit/s system) are -6, -4, -2, 0,2, 4 and 6
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(Fig. 8.2). These levels are also used by system 3U16 to determine the possible
-values of the received data symbol for which the expanded vectors have the lowest
costs, as described in Chapter 4.

When the transmitted sigﬁal is convolutionally encoded, the Viterbi algorithm
detector (VA), which is used together with the equalizers in system LC or MNC, is
modified here to consider more possible transitions than those used in Chapter 5 for
the case where the transmission rate is 9600 bit/s. Although, the number of states (or
the number of stored vectors) is 8, which is not changed here, the number of
transitions from each state at time iT to a valid states at time (i+1)T vary according
to the number of the transmitted signal levels. When the transmission system
operates at a rate of 14400 or 19200 bit/s, the above number of transitions is 64
(Section 8.2), whereas the corresponding number for the 16000 bit/s system is 32
(Section 8.3).

When the near-maximum likelihood detector system 1C16 is used for the coded
signal, each vector is expanded into four new vectors as described in Chapter 5. The
expansion of these vectors must correspond to permitted transitions according to the
truth table of the encoder, and such that the four vectors, which are derived from any
original vector have the four lowest costs. This implies, that the search for the above
permitted (valid) expansions is more complicated than that required for the case of
the coded 32-level QAM signal, which is used in the 9600 bit/s system in Chapter 5.

8.7 RESULTS OF COMPUTER SIMULATION TESTS

Computer simulation tests have been carried out to evaluate the performances of the
different detectors (systems), considered in the previous section, when the data are
transmitted at rates of 14400, 16000 and 19200 bit/s over channel D and E. The
results of the tests are shown in Figs. 8.9 to 8.21, where the performances are given
in terms of the variation of bit error rate against the signal/noise ratio y . The latter is
defined by Eqn. F.6 in Appendix F and the value of A (the mean square value of the
transmitted data symbols {s;} ), and m (the number of transmitted information digits
carried by each data symbol) used in this equation for the different data transmission
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systems considered in this Chapter are given in Table 8.7. Information about each
system, such as the signal constellations for the uncoded and coded signal, the
equipment filters and the modulation rates are also given in Table 8.7.

In Figs. 8.9 to 821, a total of at least 2.5 x10* data symbols were transmitted in
plotting any one curve, and the 95% confidence limits for the relative positions of
any two curves is generally better than + 0.5 dB.

The performances of the optimum detectors for the uncoded 32-level and coded
64-level QAM signals in the absence of any signal distortion (channel A) are shown
in Fig. 8.9. The corresponding performances of the uncoded 64-level and coded
128-level QAM signals are also shown in Fig. 8.10. The optimum detector for the
uncoded signal, over channel A, is the threshold detector and that for the coded
signal is the Viterbi algorithm detector (VA). Fig. 8.9 shows that an improvement in
tolerance to additive white Gaussian noise of about 1.8 to 2.8 dB is achieved at bit
error rates of 10° to 10 through the use of coding, whereas the corresponding
improvement in Fig. 8.10 is about 1.6 to 2.6 dB.

In Figs. 8.11 to 8.21, the curves are labelled by the corresponding systems as in
Chapters 4 and 5. These figures show that the linear equalizers (systems LC and LU)
give relatively poor performances when compared to the other systems tested here.
Although the nonlinear equalizers have a much better performances over the two
channels tested, and particularly when the data are transmitted at symbol rates of
3200 symbol/s, than the linear equalizers, their performances are inferior to those of
the near-maximum likelihood detectors, as expected. Figs. 8.12, 8.14, 8.16, 8.18 and
8.20 show that the use of the modified nonlinear equalizer with the Viterbi algorithm
detector (system MNC) for the coded signal degrades the performance of the coded
system below that of the uncoded system, when the latter also uses a nonlincar
equalizer. '

The results here show that system 3U16 gains a relatively large advantage in
tolerance to noise over all systems which use an equalizer, whether the signal is
convolutionally encoded or not. The best performance, of the systems tested here, is
given by system 1C16, which is the near-maximum likelihood detector used for the
encoded signal. Table 8.8 shows the relative advantages, in tolerance to additive
noise, (in dB) gaincd by system 1C16 over system 3U16 over channel D and E,
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the results of Chapter 5, show that the advantages gained here are approximately

when the data are transmitted at different rates. A comparison bétwecn this table and
similar to those gained when the data are transmitted at a rate of 9600 bit/s. ‘
\

It is clear from the above results that the proposed detection processes (tested in this
chapter) have a behaviour similar to that when the data are transmitted at a rate of
9600 bit/s.
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Channel D - Channel E
(Telephone circuit 2) (Telephone circuit 3)
Real Imaginary Real Imaginary
Part Part Part Part
0.0145 -0.0006 0.0176 -0.0175
0.0750 0.0176 0.1381 -0.1252
0.3951 0.0033 0.4547 -0.1885
0.7491 -0.1718 0.5078 0.1622
0.1951 0.0972 -0.1966 0.3505
-0.2856 0.189%4 -0.2223 -0.2276
0.0575 -0.2096 0.2797 -0.0158
0.0655 0.1139 -0.1636 0.1352
-0.0825 -0.0424 0.0594 -0.1400
0.0623 0.0085 -0.0084 0.1111
-0.0438 0.0034 -0.0105 -0.0817
0.0294 -0.0049 0.0152 0.0572
-0.0181 0.0032 -0.0131 -0.0406
0.0091 0.0003 0.0060 £ 0,0255
-0.0038 -0.0023 0.0003 -0.0190
0.0019 | 0.0027 -0.0035 0.0116
-0.0018 -0.0014 0.0041 -0.0078
0.0006 0.0003 - -0.0031 0.0038
0.0005 0.0000 0.0018 -0.0005
-0.0008 -0.0001 -0.0018 -0.0005

Table 8.3 Sampled impulse responses of the linear baseband channels D
and E, at sampling rate of 2400 samples/s. '
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Channel D Channel E
(Telephone circuit 2) (Telephone circuit 3)
Real Imaginary Real Imaginary
Part Part Part Part
0.001966 0.000544 0.001155 -0.001275
0.016707 0.003912 0.011734 -0.016035
0.067284 0.008166 0.057043 -0.059210
0.221772 0.000227 0.170236 -0.103845
0.502139 -0.056595 0.289941 -0.041411
0.548069 -0.110307 0.203587 0.140088
0.046425 0.064073 -0.106333 0.175431
-0.294318 0.210038 -0.188929 -0.059493
0.006498 -0.101885 0.098031 -0.135501
0.145968 -0.128412 0.116619 0.098686
-0.070121 0.184022 -0.141349 0.062653
-0.051347 -0.055243 0.004742 -0.126885
0.084641 -0.087113 0.115057 0.052773
-0.017438 0.127455 -0.106427 0.058291
-0.048800 0.070772 0.013733 -0.100340
0.059209 -0.008137 0.067016 0.061483
-0.029553 0.055785 -0.085331 0.007381
-0.007553 -0.058468 0.049681 - -0.055936
0.028324 0.035002 0.000236 0.061144
-0.031788 -0.007764 -0.035259 ~0.039069

and E, at sampling rate of 3200 samples/s.
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Channel D Channel E
(Telephone circuit 2) (Telephone circuit 3)
Real Imaginary Real Imaginary
Part Part Part Part
1.0000 0.0000 1.0000 0.0000
0.5091 0.1960 0.4861 1.0988
-0.1465 - 0.0000 05980 | 0.0703
0.0323 -0.0171 0.1702 - -0.1938
0.0125 0.0200 -0.0245 0.1000
-0.0099 -0.0109 0.0100 -0.0258
0.0046 0.0074 -0.0134 0.0110
-0.0069 -0.0083 0.0056 -0.0042
0.0059 0.0076 0.0003 0.0003
-0.0025 -0.0053 -0.0008 0.0041
-0.0013 0.0040 0.0000 -0.0061
0.0024 -0.0028 0.0007 -0.0007
-0.0009 0.0018 0.0037 0.0002
-0.0006 -0.0006 -0.0019 -0.0025
0.0001 -0.0003 0.0020 | 0.0008
0.0002 0.0008 0.0005 -0.0002
0.0000 -0.0006 -0.0022 0.0002
-0.0003 -0.0001 0.0007 -0.0005
-0.0002 0.0003 -0.0008 0.0002
0.0003 -0.0002 0.0005 0.0005

Table 8.5 Sampled impulse responses of the linear baseband channel and
adaptive linear filter in Fig. 8.1, for telephone circuits 2 and 3,
at sampling rate of 3200 samples/s.
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Channel D Channel E
(Telephone circuit 2) (Telephone circuit 3)
Real Imaginary Real Imaginary
Part Part Part Part
1.0000 0.0000 1.0000 0.0000
1.2281 0.2098 1.2234 1.3398
-0.1585 0.1141 -0.8484 1.0919
-0.1567 -0.0519 -0.4543 -0.6497
0.2092 0.0299 0.4840 0.0337
-0.1170 0.0069 -0.2570 0.2106
-0.0086 -0.0100 0.0002 -0.2023
0.0473 0.0075 0.0982 0.0929
-0.0227 0.0048 -0.0705 0.0089
0.0115 0.0044 0.0238 -0.0229
-0.0040 -0.0045 -0.0022 0.0164 -
0.0000 0.0036 -0.0054 -0.0032
0.0002 0.0030 0.0046 -0.0016
-0.0018 -0.0059 -0.0040 -0.0002
0.0005 0.0048 0.0048 -0.0052
-0.0002 -0.0022 0.0012 0.0023
0.0009 0.0005 -0.0011 -0.6033
-0.0006 0.0015 0.0077 -0.0025
-0.0007 00024 00041 | 0.0030
0.0012 0.0015 0.0041 | -0.0035

Table 8.6 Sampled impulse response of the linear baseband channel and
adaptive linear filter in Fig. 8.1, for telephone circuit 2 and 3,
at sampling rate of 3200 samples/s.

182




No. of Signal Mean square
Modulation| data bits constellation value of {s;} Equipment
System Tate per
symbol A
(bauds) m
Uncoded | Coded | Uncoded | Coded
14400 2400 6 Fig. 8.2 |Fig. 8.4 42 84
bit/s _
16000 3200 5 Fig. 8.6 |Fig. 8.7 20 42
bit/s .
19200 3200 6 Fig. 8.2 | Fig. 8.4 42 84
bit/s

Table 8.7 Information about each system tested in chapter 8.
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Bit error
rates 10 107 10
S.ystem
14400 bit/s -0.10 0.70 1.30
16000 bit/s -0.10 0.55 1.30
19200 bit/s -0.10 0.60 1.30

Table 8.8.a Relative tolerance to additive white Gaussian noise (dB) of detector
1C16 to that of 3U16 at different bit error rates, when operating over

telephone circuit 2 {channel D).

Bit error ,
rates 107 107 10
System
14400 bit/s . -0.30 0.25 0.80
16000 bit/s -0.45 0.15 0.80
19200 bit/s -0.40 0.20 0.75

Table 8.8.b Relative tolerance to additive white Gaussian noise (dB) of detector
1C16 to that of 3U16 at different bit error rates, when operating over -
telephone circuit 3 (channel E).
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Fig.8.3 The convolutional encoder
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Fig.8.4 Signal constellation for coded 128-level QAM signal.
(the binary coded number against each point is Bi.OBi. 1ﬁi,25i.3ﬂi_4[3i.5ﬁi.5 )
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Imaginary part

. o 5L o °
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LJ ® 5L @ o
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Fig.8.6 Signal constellation for uncoded 32-level QAM signal .
(the binary coded number against each pbim is Bi‘lﬂi_zﬂi‘3|35.4ﬂi.5 )
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Imaginary part 4
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Fig.8.7 Signal constellation for coded 64-level QAM signal .

(the binary coded number against each point is B; oB; ;B; ,B; 3B, ;5 )
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CHAPTER 9

CONCLUSION

9.1 SUGGESTIONS FOR FURTHER WORK

It has been assumed in this thesis that the channel is known and time invariant.
However, some of the systems (detectors) developed here appear to be well suited
for use over a time-varying channel. These systems could, therefore, be studied
further for use over a time-varying channel,

The propossd arrangements are tested here for the case where QAM signals are
transmitted over telephone lines. Further tests may be carried out on the promising
system for other modulation schemes or when the data signal is transmitted over
other transmission paths, such as HF or satellite links.

The interleaving arrangement studied in this thesis is quite simple. This could be
studied further and modified such that an improvement in the performance of the
coded system can be achieved over channels that introduce severe distortion.

Pe

The detailed hardware designs of the more promising systems (detectors) developed

in this thesis could be produced to assess the cost effectiveness of these systems for _

use in a synchronous serial data transmission systems.
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9.2 CONCLUSION

-

For the convolutionally coded and distorted signal, a detector emplyngthe maximum
likelihood detection (implemented by means of the Viterbi algorithm detector),
which takes account of both the coding and distortion, achieves the best tolerance to
additive white Gaussian noise, but it suffers from an unduly complex implementa-
tion in practice.

Near-maximum likelihood detectors have been proposed. These detectors take
account of both the coding and the distortion introduced by the channel. Some
arrangements of these (such as system 3C with 64 vectors) come close to achieving
the performance of the optimum detector (the Viterbi algorithm detector)., The
complexity of the proposed detectors is considerably less than that required by the
corresponding Viterbi algorithm detector.

The results of the study show that the use of a convolutionally encoded signal
together with a linear or nonlinear (decision feedback) equalizer and Viterbi
algorithm detector (known in the thesis as systems LC, NC and MNC), does not
appear to be very promising arrangement. The performance of such systems can be
considerably inferior to that of the corresponding uncoded signal and an appropriate
near-maximum likelihood detector at the receiver.

The poor performance of the arrangement which uses the linear equalizer (system
LC) is at least partly due to the noise correlation, which is introduced by the linear
equalizer between the neighbouring noise samples in the received signal. On the
other hand and when the nonlinear equalizer is used with the coded signal (system
NC or MNCQC), relatively longer error bursts occur over the channels that introduce a
high level of amplitude distortion.

- The preferred arrangement with a coded signal is system 1C (of Chapter 5) with 16

stored vectors (system 1C16). This system (detector) has a better tolerance to noise
(at high signal/noise ratios) than the preferred arrangement with an uncoded signal,
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which is system 3U (of Chapter 4) with' 16 vectors (system 3U16). System 1C16 also
give a better performance than system 3U16 when the data is transmitted at rates of
14400, 16000 and 19200 bit/s.

Unlike the case with the uncoded signal, there does not appear to be much purpose in
using a near-maximum likelihood detector operating with less than 16 vectors for the
coded signal. The performan%% of such a system is at best only a little better than that
of the preferred system with{uncoded signal (system 3U16).

The simple interleaving arrangement, described in Chapter 7, can improve the
performance of the coded system. Over channels which introduce low and typical -
levels of attenuation distortion, such an arrangement can achieve a performance
which is close to that of the best near-maximum likelihood detector proposed here
(system 3C64). However, the performance of such an arrangement is not encourag-
ing over channels which introduce higher levels of signal distortion.
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APPENDIX A

MODEL OF DATA TRANSMISSION SYSTEM
FOR QAM SIGNAL

Fig. A.1 shows the detailed model of the data transmission system for the case where
a QAM signal is transmitted over a linear bandpass channel. The two multipliers at
the transmitter form a linear modulator, while the two multipliers together with the
receiver lowpass filters form a linear demodulator. The white Gaussian noise in Fig.
A.2 is real valued and has a two-sided power spectral density of in, . Each of the
lowpass filters in the transmitter has an impulse response c(f) and transfer function
C(f), and each of the two lowpass filters in the receiver has an impulse response f(t)
and transfer function of F(f). The two bandpass filters together with bandpass
transmission path form a linear bandpass channel, with transfer function L(f).

For an M-level QAM signal, s;, and s, , are VM -level polar signals.' The signal at the
output of the adder (at the transmitter) is the real-valued waveform g(t),

g0 =2 s, o c(t =iT) cos2nf.t)

2%, , ¢ (¢ —iT)sin(2nf.1) . Al

where £, is the carrier frequency in Hz and T is the modulation interval in seconds.
It can be shown [21] that the signal q{t) can be written as

q(t)?"\};‘;sidt—iT)CXP(ith)

1 .
+—=X.5,c(t —iT)exp(-j2nft) e A2
! PET2. |
where s; is the complex conjugate of s; , j=v-1and

S; =580+ 851 .. A3
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Since the Fourier transform of s;c(t —iT) is s,.C(f)exp(-j2rfiT) , the Fourier transform
of Lsce-Nexpianfs) I8 FsCy-flespi-jonf-£)Ty and the Fourier transform of
Lsiet-Menpi-jaafn IS siC@-fyespijonf+£)T) , the Fourier transform of q(t) is given by
[21),

1 ' . ,
o —-—\E_E‘_:s,- C(f —f.) exp(—j2n(f - £.)iT)

+;}—§‘Zs; C(f +£.) exp(~j2n(f + £.)iT) . A4

The Fourier transform of the received signal at the output of the receiver bandpass
filter in the absence of noise, is

Z(N=2NLK .. AS

where L(f) is the transfer function of the bandpass transmission channel, formed by
the two bandpass filters and bandpass transmission path in Fig. A.1.

If imaginary values are now ascribed to the signals following the lower multiplier in
the demodulator of Fig. A.1l, the two multipliers in the demodulator together
multiply the signal z(t) (at the output of the receiver bandpass filter) by

V2 cos(2nf,t +0) — jN2 sin(2nft +)
= V2 exp(~j2nf.t +0)) .. A6

where ¢ is the carrier phase at the demodulator.

The demodulator can therefore be represented by Fig. A.2, where the lowpass filter
is the same as each receiver lowpass filter in Fig. A.1 [21]. When there is no phase
difference between the carriers at the modulator and demodulator the value of ¢ is
zero and this will be assumed here.

The multiplication of z(t) by VZexp(—j2ns,r) causes Z(f) to be shifted in the negative
direction by £, Hz and hence to be replaced by Z(f+f£.) .

Let Z(f) be the low frequency component of Z(f +j:) , and since in the absence of
noise

ZE+L)=QG+LE+L) o AT

it follows that



Z(N=0,(N L) .. AS

where Q,(f) and Ly(f) are the low frequency components of Q(f+f£) and L(f+f£) ,
respectively. Thus the Fourier transform P(f) of the demodulated baseband signal
p(t) at the output of the lowpass filter in Fig. A.2 is given by [21],

PO =\N2Z(" F() .. A9
Using Eqn. A.8 gives
PO =200 LN F () . A0

Changing the variable f in Eqn. A.4 to (f+£,) , gives

1 .
QU +1) -7-52_25'.- C(f) exp(~j2nfiT)

1 . , e
+\/.2_§'.s,- C(f +2f,) exp(=j2n(f + 21)iT) .. A.ll
Thus
0 =753 5,C exp(-j2nfil) AR

and so Eqn. A.10 become

P(f) =S V() exp(~j2nfiT) e A3

where
ViH=CHLNF{) e Ald4
the demodulated baseband waveform in the absence of noise is given by

p)=33(¢ -iT)*v(t)=X 5, v(t ~iT) ...A15

where * indicates convolution and V(f) is the Fourier transform of v(t), which
assumed here to be time invariant. Furthermore, Eqn. A.14 can be written as

V(H)=CH D Ho(f)Eo(f)F(f) .. A.16
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where Dy(f), H{f) and E(f) are the low frequency components of D{f+£) ,H{(f +£.} and
. E(f+f) , respectively. It follows that a linear bandpass transmission path, proceeded

by a linear modulator at the transmitter and followed by a linear demodulator at the

receiver can be considered as the corresponding baseband channel. The transfer
function of the baseband channel can be obtained as follows. The frequency
characteristic of each of the separate bandpass filters or channels is converted into
the corresponding baseband characteristic, by deleting the negative part of the
characteristic and shifting the positive frequency part down in frequency by £, Hz, to
give a baseband characteristic, which is the required transfer function.

Fig. A.3 shows the baseband model of the QAM system of Fig. A.1. The transfer
function of the transmitter filter A(f) and the receiver filter B(f) in Fig. A.3 are given
by

Al =CODL . AT

and

B()=E(F(N | .. A8

and the transfer function of the transmission path in Fig. A.3 is given by Hy(f) . So
the transfer function of the linear baseband channel in Fig. A.3 may be written as

V=AW H(N BN .. Al9
It is assumed that the impulse response of the transmitter and receiver lowpass filters
in Fig. A.1 are real valued, so they introduce no coupling between the in-phase and
quadrature channels. But, since the bandpass filters (and the channel) in Fig. A.1 can
introduce coupling between the in-phase and quadrature channels, so also can the
transmitter and the receiver filters in Fig. A.3. Thus the impulse response of each of
these filters may be complex valued, and so may the impulse response v(t) of the
linear baseband channel in Fig. A.3. :
It has been assumed in the previous analysis that there is no additive noise. In the
presence of the noise the received waveform p(t) at the output of the linear baseband
channel in Fig. A.3 is given by

p(t)=2w(t ~iT)+u(t) | . A9
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where u(t) is bandlimited complex valued Gaussian noise waveform.

The two-sided power spectral density i, of the real-valued white Gaussian noise n(t)
in Fig. A.1 is increased to N, for the complex-valued white Gaussian noise in Fig.
A.3, because in the demodulation process, the noise is multiplied by VZexp(~j2nf)
(where ¢ =0 in Eqn. A.6) which doubles the noise power spectral density.

Since the impulse response of the receiver lowpass filters in Fig. A.1 are real valued,
it can be shown [21,22,39,93] that, if the absolute value of the transfer function of
the receiver bandpass filter in Fig A.1 is symmetrical about the carrier frequency or
else if the absolute value of the transfer function of the receiver filter in Fig. A.3 is
‘an even function (symmetrical about f=0), any sample of the real part of u(t) and any
sample of the imaginary part of u(t) must now be statistically independent Gaussian
random variables with zero mean and fixed variance. The two sided power spectral
density of each of the real and imaginary parts of the bandlimited Gaussian noise
waveform u(t), at the output of the receiver lowpass filter in Fig. A.3 is imispl If
,in addition, the absolute value sequared of the transfer function of the receiver filter
in Fig. A.3 satisfies Nyquist vestigial symmetry theorem, about the frequency 1/2T
Hz, then the real parts of the noise samples {«} are statistically independent, as are
the imaginary parts [20]. The above conditions are assumed to be hold throughout
the thesis.

The waveform p(t) in Fig. A.1is sampled once per data symbol, at the time instants
{iT} to give the received samples {p,} , where

4
pi= X Syt ‘ .. A20
h=0

and p,=p(T),v,=v(hT) and u;=u(ih) .

Here the delay in transmission is neglected so that vg= 0 and v(hT)=0 fr h>K . Thus
the sampled impulse response of the linear baseband channel in Fig. A.3 is given by
(K+1)-component vector '

V=ivg, vy v, . . . . %] - .. A2l

The transmitter and receiver filters are normally designed to have a bandwidth close
to 1/2T Hz, so that the sampling rate of 1/T samples/s is quite close to the Nyquist

213



rate for p(t). This ensures that most of the information carried by the received
waveform p(t) is contained also in the samples {p;} , so that there is no serious loss in
performance induced through operating on the samples {p,} in place of p(t).

It is shown in this appendix that the QAM system can be represented as a linear

baseband model. This leads to a simple representation of the data transmission

system and therefore it eases any attempt to improve the performance of the system,
which is usually carried out by the computer simulation as is the case in this work.
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APPENDIX B

THE EFFECT OF PHASE ROTATION ON
THE UNCODED SIGNAL

In this section, the effect of phase rotation in the uncoded signal is examined. The
transmitted data symbol may take any one of the 16 possible values, as shown in Fig,
3.2. The information digits are generated randomly and then differentialy encoded
according to Section 3.1. The resulting coded digits are then mapped into the
corresponding data symbols and transmitted over the linear baseband channel. Here
it is assumed that the channel introduces no distortion or noise, so that the
signal/noise ratio is infinity. Phase changes of = integral multiples of =2 of the
received signal as comparcd to the transmitted signal element,are introduced by the

transmission path.

Table B.1 shows the transmitted information digits, the transmitted data symbols, the
phase introduced by the transmission path and the received samples. The differentia-
ly decoded digits and the number of erroneous digits in the detection (decoding) of
each data symbol is also shown in Table B.1. It is clear from this table that errors
occur only in two successive symbols following the phase rotation, furthermore,

these errors effect the detection (decoding) of the first two digits only.
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pata| Data Phase Received | Decoded No. of
I | bits | symbol |rotation sample bits incorrect
1234 | Re, Im Deg. Re. Im. 1234 bits

1 [ 1000 -3 3 0 -3 3 1000 0
2 | 1101 3 -1 0 3 -1 1101 0
3 [ oo00] 3 -3 0 3 -3 0000 0
4 1 1100(-3 3 0 -3 3 1100 0
5 | 00003 -3 3 90 3 3 1000 1
6 | 0101 -1 -3 0 -1 -3 1101 1
7 | 0001]-1 -3 0 -1 -3 0001 0
8 | 1000| -3 3 0 -3 3 1000 0
9 0111 | -1 -1 0 -1 -1 0111 0
10 | 0010 -3 -1 0 -3 -1 0010 0
11 | 1000 -3 3 0 -3 3 1000 0
12 | 1000 3 3 o 3 3 1000 0
13 | 1101 -1 -3 0 -1 -3 1101 0
14 { 1100 3 3 0 3 3 1100 0
15 | 0010} 3 1 180 -3 -1 1110 2
16 | 0100 -3 3 0 -3 3 1000 2
17 { 1101 3 ~1 0 3 -1 1101 0
18 1011 -1 -1 0 -1 -1 1011 0
19 | 1100 3 3 0 3 3 1100 0
20 1001 3 -1 0 3 1 1001 0
21 1001 -1 -3 0 -1 -3 1001 0
22 i1y 1 1 0 1 1 1111 0
23 {1010 1 -3 0 1 -3 1010 0
24 [ 0101 1 3 0 1 3 0101 0
25 j 0100 -3 3 0 -3 3 0100 0
26 { 0101 -1 -3 0. -1 -3 0101 0
27 11190 K} 1 0 3 1 1110 0
28 11010 1 -3 0 1 -3 1010 0
29 j1110) -1 3 0 -1 3 1110 0
30 (1101 3 -1 -90 1 3 0101 1
31 | 1100 -3 1 0 -3 1 0101 1
32 | 0110 -3 -1 0 -3 -1 0110 0
33 ;11107 3 1 0 3 1 1110 0
34 (0011} 1 1 0 1 1 0011 0
35 1111 | -1 -1 0 -1 =1 1111 0
36 {1000} -3 3 0 -3 13 1000 0
37 1111 1 -1 0 1 -1 1111 0
38 j1011] -1 -1 0 -1 -1 1011 0
39 o110} 1 -3 0 1 -3 0110 ]
40 | 0100] 3 3 0 33 0100 0

Table B.l1 The effect of phase rotation
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APPENDIX C

THE EFFECT OF PHASE ROTATION ON THE
CONVOLUTIONALLY ENCODED SIGNAL

The effect of phase rotation of the encoded signal is examined in this section. The
transmitted digits {c ,} are generated randomly and then convolutionally encoded to
give the corresponding encoded data symbols {s;} according to Section 3.2. The
initial state of the encoder is taken to be (000). As in Appendix B, the only effect of
the transmission path is the introduction of phase rotations of _ integral multiples of
w2 of the received signal as compared to the transmitted signal.

The decoder here is the Viterbi algorithm detector (VA) (Chapter 5)

As can be seen from Table C.1, any phase rotation of n/2 or its multiple results in an

incorrect detection (decoding) of the first two data digits only.
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"Data | Data Phase Received | Decoded No. of
I | bits | symbol |rotation sample bits incorrect
1234 | Re, Im, Deg. Re, Im, 1234 bits
1 (1000} 1 1 0 1 1 1000 0
2110115 -1 ¢ 5 -1 1101 0
3 10000} 2 1 0 1 1 0000 0
4 | 1100 (-3 1 0 -3 1 1100 0
510000} 1 -1 a0 -1 -1 1100 2
6 ] 0101 }-5 1 0 -5 1 0101 0
7 ] 0002{-3 -5 0 -3 -5 0001 0
8 | 1000[|-1 1 0 -1 1 1000 0
9 (0111 }-5 ~1 0 -5 -1 0111 0
10 | 0010] 3 3 0 3 3 0010 0
11 | 10001 1 1 0 1 1 1000 0
12 1400 1 -1 0 1 -1 1000 0
13 11010 1 5 0 1 5 1101 0
14 {1100 1 3 0 1 3 1100 0
15 | 0010 (-3 -3 180 3 3 1010 1
16 { 0100 3 -1 0 -1 1000 2
17 | 1101 | -1 =5 0 -1 -5 0101 1
18 11011 | 5 3 0 5 3 0011 1
19 1100 -3 1 0 -3 1 1100 0
20 | 1001 ]| -3 =5 0 -3 =5 1001 0
21 | 1001} 5 -3 0 5 -3 1001 0
22 11113 -1 5 0 -1 5 1111 0
23 11010 (-3 -3 0 -3 -3 1010 0
24 10101 5 -1 0 5 -1 0101 0
25 0100 1 3 0 1 3 0100 0
26 {0101} -5 1 0 -5 1 0101 0
27 1110 3 1 0 3 1 1110 0
28 (1010 3 3 0 3 3 1010 0
29 [ 1110 | -3 -1 0 -3 -1 1110 ]
30 {1101 }-1 -5 0 -1 -5 1101 0
31 1101 | -5 1 0 -5 1 1101 0
32 [o0110§~-1 3 0 -1 3 0110 0
33 11190 1 -3 0 1 -3 1110 0
34 [0012 ) 5 13 0 5 3 0011 0
35 (1111 {1 -5 -90 5 1 0011 2
36 1000} 1 1 0 1 1 1000 0
37 1111 (-1 5 )] -1 5 1111 0
38 | 1011 |-3 5 0 -3 5 1011 0
39 | 0110 |-3 -1 0 -3 -1 0110 0
40 0100 1 3 0 1 32 0100 o

Table C.1 The effect of phase rotation in the coded system,
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APPENDIX D

DERIVATION OF THE SAMPLED IMPULSE RESPONSE FROM THE
ATTENUATION AND GROUP-DELAY CHARACTERISTICS

The impulse responses are derived here with respect to the carrier frequency 1800
Hz. The values of the attenuation and group-delay of the equipment filters and the
telephone circuit are read from the corresponding graphs (Chapters 3, 6 and 8) every
50 Hz over the frequency range 50 - 3750 Hz. The sample values of the attenuation
and group-delay for the telephone circuit and the equipment filters are added
together for each frequency. The combined response is then normalized so that the
attenuation and group delay at the carrier frequency are both zero. The amplitude
and phase angle at each frequency are then calculated from the combined responsé
as follows [86].

The amplitude is given by

ATT

A=10 % - ... D1

where A is the value of the amplitude and ATT is the value of the attenuation in dB,
which is given by the frequency characteristics of the combined response.

The phase angle at each frequency is derived with respect to the phase angle at the
carrier frequency, which is taken to be zero here. The relation between the phase
angle and the group delay is given by [24]

d¢ -

MGD =—-— _ .. D2

dw

where MGD is the mean gro_up delay and ¢ is the phase angle and o=2xf.
Now Eqn. D.2 can be expressed numerically as

MGD = (§,_,—4,)2rAf ... D3
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where Af is 50 Hz and, ¢, and ¢,_, are the phase angle at the frequencies £, and £_,
Jespectively.
Eqn. D.3 can be written as

¢; = ¢, —2n.Af.MGD . DA

which gives the value of the phase angle ¢, at frequency f; assuming the phase angle
¢,_, atf_,1is known.
The definition of the mean group delay MGD is

MGD =(d,+d,_ )2 | .. D5

| where d; and d;_, are the values of the group delay (in seconds) at the frequencies £
and f;_, , respectively. These values are available from the group-delay characteris-
tics. As a result Eqn. D.4 becomes

6;=0;_,~mAf(d+d;_,) . .. D6

Thus the phase angles at frequencies above and below the carrier frequency can be
derived from the group delay by using Eqn. D.6, where the phase angle at the carrier
frequency is zero.

The resultant complex valued frequency response of the telephone circuit and the
equipment filter are then determined by calculating the values of the real and
imaginafy componcn{s of the response at each frequency, as follows

R, = A, cos(¢,) ' ... D7

I; = A; sin(¢,) .. DB

where A; and ¢; are determined by Eqn. D.1 and D.6, respectively, for the given value
of frequency ( £ ). In the above equations R; and J; are the real and i}naginary vatues
of the resultant frequency response, respectively. These values are then formatted for
the inverse discreet Fourier wansform (IDFT) routine. To ensure finely spaced
samples of the calculated impulse response, the frequency range is extended upto 48
kHz by assuming the amplitude of all the values outside the known range to be zero.
The resultant impulse response is then sampled at the required rate, which is 2400
sample/s for the 9600 and 14400 bit/s systems, and 3200 sample/s for the 16000 and
19200 bit/s systems.
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NOTE

It was found, in the final stage of the work,that the sampled impulse responses of the
linear baseband channel derived here are different from that of the actual responses.
However, the difference is only in the sign of the imaginary parts of the responses,
so that the sampled impulse responses presented in this thesis are the complex
conjugates of the actual responses. To avoid any change in the sampled impulse
responses, it is assumed here that the negative sign of the term —2sin(2nfs) in the
model of QAM system described in Appendix A is changed into plus sign. The
corresponding changes in Figs. A.1 and A.3 (Appendix A) of the above sign are also
assumed here.
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APPENDIX E

STATISTICAL PROPERTIES OF THE NOISE SAMPLES AT
THE OUTPUT OF THE ADAPTIVE LINEAR FILTER

In this appendix, the statistical properties of the noise samples at the output of the
adaptive linear filter, are examined, for the case where the noise samples at its input
are statistically independent Gaussian random variables with zero mean and fixed
variance.

Let the sampled impulse response of the filter be given by the (n+1)-component
vector

D=[dy, d, d . . . . d] ... El1

where {d,} are the tap gains of the filter, and they are complex-valued quantities in
general.

The properties of the filter are described in Chapters 2 and 3. For the ideal operation
of the filter the number of its tap gains is infinity, and so the value of n here is
assumed to be very large. It is also assumed throughout the work that the gain
introduced by the filter is adjusted such that the first component y, of the sampled
impulsc-rcsponsc of the linear baseband channel and the filter is unity (Chapter 3).
This assumption is ignored in the following analysis, and it is assumed that the filter
introduces no gain or attenuation, thus

|IDPF=3d,d, =1 | .. E2
t -

where | D | is the unitary length of the vector D,

It has been shown [22], that under this condition and when the filter is ideally
adjusted, if the sequence D is reversed in time, the reversal being pivoted about its
component at time t=0 and if each component is replaced by its complex conjugate,
the resultant sequence is the inverse of the original sequence, and so

%d‘d:+,,=0 for k%0 .. E3
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Also Eqn. E.3 implies that

Re.(gdhd;+h)=0 for h#0 ... E4
and
Im.(%dtd:M]#O for h#0 ... ES5

where Re.(x) and Im.(x) are the real and imaginary components of the quantity x,
respectively.

The real and the imaginary components of the noise samples {«;} at the filter input
are statistically independent Gaussian random variables with zero mean and variance
o?, and therefore they are uncorrelated [87], thus

E[u,']=E[ui,o]=E[us,1]=0 .. Eb

where E[x] is the expected value of x, and u;, and u;, are the real and imaginary
components of the noise sample », , respectively.

Also
Elu; ou;_4 0] =0 for h#0

=0 for h=0 .. ET
Elu; \u;_y 4] =0 for h=20

=& for k=0 .. ES8
Efu; u;_, =0 for all h ) ... E9
and
E[u.u; —h] =0 for h=0

=20 for h=0 o E0

where * indicates a complex conjugate.

The noise samples at the output of the filter, at time t=iT, is given by
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w, =2 U4, \ .. E.l1
k

The mean value of {w,-} is given by
Epw] =E| T4-14]
= %‘,d,,.E [;_,]
=0 | .. EI2

So, the mean value of {w} is zero. Also, it can be shown that each of the real and
imaginary components of the samples {w;} have zero mean.
The variance of {w,} is given by

E [w,-.w;] =E [(? U; -kdk).(g i -kdk).]
=E[(dy+udi+ . . . Hu_,d,)
X dy +u_yd + . . . 4 ,d)] .. E.13

and by using the properties of the noise samples {;} given in Eqns. E.7 to E.10, the
above equation become

E[w,.w] =20" ) dd,

=20° ... El14

So, the variance of {w;} is 2¢* . It can be shown, in a similar way, that the variance of
each of the real and imaginary components of the noise samples {w;} is o*.

To prove that the real and imaginary components of the noise samples {w;} are
statistically independent random variables, and therefore they are uncorrelated, it is
sufficient to show that for any non zero integer h [87],

Efw, ow;_, 0}=0 ‘ ... El5a
Elw; oWi_s,1=0 ... EI15b
and
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E[w, ;. W;_4,]=0 | ... El5¢

where w;, and w;, are the real and imaginary components of w; , respectively, and
w;_, is the noise sample at the output of the filter at time (i-h)T, which is given by

wx‘—h=:‘:ui—h—kdk ... E.16

The left hand side of Eqn. E.15.a can be written as.

E [Wi,O'w:' -h,o]

= E[Re G' ¥ —kdt).Re G: Ui i -ada)‘]

=E[(u; odo 0=t o1+ 81,0810 Wi 1,181,1 + +  Fy o o 0~ Ui 1n 1) ¥

(4 -5, 00,0 — Ui — 4,191 F U g 1,080 = Wi noy,1810 - HU_h g om0 = Ui g p 18 0)]

E.17

where d4,, and d,, are the real and imaginary components, respectively, of the
(k+1)-th tap (d, ) of the filter,

By using the properties of the noise samples {u;} and Eqn. E.4, Eqn. E.17 becomes
E[w, 0-W; _s,0}

=E(u, dy oo+ s dostho+ Uy et

+u;'2-h—ldl.1dh+l.l + ... +ui2—n.0dn,0+ “;z.iu y 414,01

= OJ.Re.(gdkd:u.)

= . .. E.18

so the real components of the noise samplés w; and w,_, (for & #0) are uncorrelated.

In a similar way and by using Eqn. E.5, it can be shown that the left hand side of
Eqn. E.15.b is given by

ElW; o Wioss] = o"Jm.@dkdIﬂ)

=0 .. E.JI9
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so the real and imaginary components of the noise samples w, and w,_, at the output
of the filter, for non zero values of h are uncorrelated. Also it can be shown that Eqn.
E.19 is satisfied for h=0,

Again by using Eqn. E.4 and by following the above steps, the left hand side of Eqn.
E.15.c can be written as

Elw, w4 4] = o .Re .(%dkd:ﬂ)

=0 ... E20

and so, the imaginary components of the noise samples w; and w;_, at the output of
the filter, for non zero values of h, are uncorrelated.

It follows that, the real and imaginary components of the noise samples {w,-}. are
statistically independent Gaussian random variables with zero mean and variance o? ,
just like the noise samples {u,} .

So, the adaptive linear filter used in the model of data transmission system
throughout the work does not change the statistical properties of the noise samples at
its output.




APPENDIX F

SIGNAL/NOISE RATIO DEFINITION AND NOTES
ON THE COMPUTER SIMULATION

The signal/noise ratio in the received samples {p;} at the output of the demodulator
may be defined generally as

SNR =10log,((K.Ell 5, FVEl u, P1) .. F.1
where E[x] is the expected value of x, s; is the transmitted complex valued data -
symbol (coded or uncoded), K, is constant determined by the resultant transfer
function of the transmitter filter and ; is the complex valued noise sample in p; . The
real and imaginary components of the noise samples {«} are sample values of
statistically independent Gaussian random variables with zero mean and fixed
variance.

Let A be the mean square value of the coded or uncoded data symbols {s;} , then

l —_-En S,' F]
= E[s?]+E[s?,) .. F2

where s, and s; , are the real and imaginary components of s, , respectively.
If the data transmission system transmits m information bits per modulation interval,
the average transmitted energy per bit is given by

E, =K .\m : +.F3

where A is given by Eqn. F.2.
The variance of each of the real and imaginary components of the noise samples {x}
in the received samples {p;} is given by [22,14]

o’=%N0.K, .. F4

where v, is the two-sided power spectral density of the additive white Gaussian
noise at the output of the telephone circuit (see Chapter 3), and X, is a constant
determined by the resultant transfer function of the receiver filters. Thus
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—=K,K,.— ... F5

Since the values of X, and X, do not change from one telephone circuit to another for
the particular transmission rate, the signal/noise ratio (measured in dB) is taken to be

A
=101log,,—— . ... F.6
v ngm.ol

The definition given by Eqn. F.6 is used throughout the work. Furthermore, the
attenuation or gain introduced by the model of telephone circuit is adjusted such that
the vector, which represents the sampled impulse response of the channel, has a unit
gain,

The value of Mm for an uncoded 16-level QAM signal is 2.5 and for a coded 32-level
QAM signal is 5.0 (see the cofrcsponding signal constellations in Chapter 3). In

Chapter 8, the values of Mm for different signal constellations used for transmitting
the data at rates of 14400, 16000 and 19200 bit/s are given in Table 8.8.

All simulation programs used in this work are written in Fortran 77. The computer
simulation tests carried out in this work employ the standard Numerical Algorithm
Generator (NAG) random number generator subroutines to gcneréte the information
digits {o;,} and the noise samples. The information digits are generated with a
uniform distribution, and the real and imaginary parts of the noise samples are
generated as Gaussian random number generator with zero mean and a standard
deviation o . The latter is determined by the particular value of the signal/noise ratio
v from the following relation (see Eqn. F.6) .

_¥
o’=l.1o 10 .. F1

m

In Chapter 7, the performance of the interleaving systems is given in terms of the
probability of error events against the signal/noise ratio y . The error event defined
as follows, following an incorrect decoded data symbols s; , if N, or more subsequent
detected symbol are correct, the next incorrect detected symbol will be considered as
the start of a new error event, otherwise this error will be taken as part of the present
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error event. The selected value of N, must be sufficiently large such that the first
error in an error event is independent of all errors in the previous event. The value of
N, is taken here to be 32.

A total of typically 25x10° data symbols were transmitted in plotting any one curve
that represents the error rate performance. This number is increased to around 1x10’
in Chapter 7 for the interleaving systems. To increase the accuracy in the measured
performance of the systems, the bit error rate is determined after a sufficient number
( N, ) of independent error events occur at the particular value of the signal/noise
ratio. It has been shown [21,94], when this number is greater than 30, the 95%
confidence limits in the values of the error probability can be approximated by
p £2pAN, , where p is the probability of error. In the computer simulation tests, the
value of N, is taken to be around 40, whenever it is possible, and so the 95%

confidence limits for the values of p are approximately p(1 + 0.3).




APPENDIX G

LISTINGS OF COMPUTER PROGRAMS

Gl - SIMULATION OF SYSTEM 3U.
G2 - SIMULATION OF SYSTEM MNC.
G3 - SIMULATION OF SYSTEM 1C.
G4 - SIMULATION OF SYSTEM 2C.

G5 - SIMULATION OF SYSTEM 3C.
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APPENDIX G1

THE FOLLOWING PROGRAM SIMULATES THE OPERATION OF SYSTEM 3U16 .
THE DATA IS AN UNCODED 16-LEVEL QAM SIGNAL AND THE INFORMATION
DIGITS ARE DIFFERENTIALLY ENCODED.

/*JOB S3U16,EUELAKK, ST=MFX, (=S, TI=1280,
/* PW=K
FTNS,DB=0/PMD, L=0.
LIBRARY, PROCLIB.
NAG (FTN5S)
LGO.
4445
PROGRAM S3U16
REAL GOS5DDF,GOSDAF,P,W1,W2
REAL C1(16),C2(16),C3(8,32),C22(16),21(16),22(16),C11(8}

c ,E1(16),E2(16),E11(16),E22(16),Y1(20),Y2(20)

INTEGER 151(33),152(33),1S851(16),1IS8582(16),IX1(16,33)}
C ,IX2(16,33),1XX1(24,33),IXX2(24,33),IXT1(16)
c (IXT2(16),IXXX1(16,33),IXXX2(16,33),1IA(33,4)
c ,IB(33,4),IAD(4),IBD(4),IPRES{16),IPREV(16)
c ;INA(16),XK(8),1SER, IBER, IEVA, IEVK

DATA KK/4,4,2,2,1,1,1,1/
C TABLE FOR DIFF. ENCODING /DECODIN
DATA INA/0,2,3,1,0,2,3,1,0,2,3 ,
DATA IPREV/0,0,0,0,2,2,2,2,3,3 , 1/
DATA IPRES/0,2,3,1,2,3,1,0,3,1 . 3/
DATA 18S1/-3,-3,3,3,-3,-1,1,3,-1,-3,3,1,-1,-1,1,1/
DATA 18S82/-3,3,-3,3,-1,3,-3,1,-3,1,-1,3,-1,1,-1,1/
C LOAD THE SAMPLED IMPULSE RESPONSE OF TH CHANNEL.
DATA Y1/ 1.0000, 0.4861,-0.5980, 0.1702,-0.0245, 0.0100

ING AND SIGNAL MAPPING.
:1,0,2,3,1/
$3;3,1,1,1,
,0,2,1,0,2,
' 1

c ,-0.0134, 0.0056, 0.0003,-0.0008, 0.0000, 0.0007
c , 0.0037,-0.0019, 0.0020, 0.0005,-0.0022, 0.0007
c ,-0.0008, 0.0005/
DATA Y2/ 0.0000, 1.0988, 0.0703,-0.1938, 0.1000,-0.0258
c , 0.0110,-0.0042, 0.0003, 0.,0041,-0.0061,~0.0007
c , 0.0002,-0.0025, 0.0008,-0.0002, 0.0002,-0.0005
c , 0.0002, 0.0005/
C SETTING OF IRITIAL VALUES .
IBIT=4
LEV=2**IBIT
M=6
10=23
K=16
L=100000
N=33
N1=N-1
N2=N+1
LN=L+N1
SNR=17.5
SNRD=0. 25
CALL GOSCBF (IQ)
C SCALING THE SMPLED IMPULSE RESPONSE.
YY=0.0

po 2 1=1,20,1
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10

20

30

40

YY=YY+Y1 (I) #*2+Y2 (1) **2
CONTINUE

Y=SQRT (YY)

DO 3 I=1,20,1

Y1 (I)=Y1(I)/Y
Y2(I)=Y2(1) /Y

OPEN {1, FILE=' QUTPUT' )

MAIN DO LOOP (SELECT SNR)

DO 1000 MM=1,M,1
SNR=SNR+SNRD
P=SQRT(2.5/(10.0**(SNR/10.0))}

SET INITIAL VALUES OF ALL ARRAYS

IDPRES=0
IDPREV=0

po 10 I=1,N,1
ISER=0

IBER=0

IEVA=0

IEVE=0
IS1(I)=-3
IS2(I)=-3

Do 10 J=1,K,1
IX1(J,1)=-3
IX2(J,1)=-3
DO 20 I=2,K,1
C1{I)=100000.0

2ERQ COST FOR THE FIRST VECTOR.
C14{1)=0.0

Do 30 I=1,N,1

po 30 J=1,1IBIT,1

IA{I,J)=0

IB{1,J)=0

SECOND DO LOOP (TRANSMISSION) .
DO 440 LLL=1,1LN,1 :
SHIFT ALL ARRAYS

DO 40 I=1,N1,1

11=1+1

IS1(I)=151(I1)

1S2(1)=152{I1}

DO 40 J=1,K,1

IX1(J, I)=IX1(J,I1)

1X2(J, I)=IX2(J,I1)

DO 50 I=1,N1,1

I1=1+1

DO 50 J=1,IBIT,1
IA(I,J)=IA(I1,J)
1B(I,J)=1B(I11,J)

CALCULATE ISI FOR ALL VECTORS
Do 70 I=1,K,1

221=0.0

222=0.0
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DO 60 J=2,20,1

J1=N-J41

221=ZZ14REAL (IX1 (I, J1)) *¥Y1{J) ~REAL (IX2(I,J1)) *Y2(J)

60 222=2Z2+REAL (IX1 (I, J1)) *¥2 (J) +REAL (IX2 (X, J1)) *Y1 (J)
z1(I)=221

70 22 (I)=222

C GENERATE INFORMATION DIGITS
po 80 I=1,IBIT,1

80 IA(N, I)=NINT(GOSDAF (0.0,1.0))

C DIFF. ENCODING AND SIGNAL MAPPING

ITPREV=IB(N1,1)+2*IB (N1, 2)
ITINA=IA(N,1)+2*IA(N,2)
po 110 I=1,K,1
IF{ITINA.EQ.INA(I)) THEN
IF{ITPREV.EQ.IPREV(I)) THEN
II=1
ENDIF
ENDIF
110 CONTINUE
pO 111 I=3,IBIT,1
111 IB(N,I)=IA{N,I)
IF (IPRES(II).LT.2) THEN
IF (IPRES(II}) 112,112,113
112 IB(N,1)=0
IB (N, 2)=0
GO TO 120
113 IB(N,1)=1
IB(N,2)=0
GO TO 120
ELSE
IF (IPRES(II)-3) 114,115,115
114 IB(N,1)=0
IB(N,2)=1
GO TO 120
115 IB(N,1)=1
IB(N,2)=1
ENDIF
120 IN=IPRES(II)+4*IA(N,3)+8*IA (N, 4)
IS1(N)=ISS1{IN+1) '
1S2 (N)=18S2 (IN+1)

C CALCULATE THE RECEIVED SAMPLE AND ADD THE NOISE
R1=0.0 ‘
R2=0.0
PO 130 1=1,20,1
J=N=-I+1
R1=R1+REAL(IS1(J))*Y1(I}-REAL(IS2(J))*Y2(I}

130 . R2=R2+REAL{IS1(J)) *¥Y2(I)+REAL(IS2(J)} *Y1(I)

W1=GOS5DDF (0.0, P)
W2=GOSDDF (0.0,P)
R1=R1+W1
R2=R2+W2
c EXPAND EACH VECTOR INTO ONE VECTOR
poO 150 I=1,K,1
E1{(I}=R1-21(1)
E2 (I)=R2-22(I)
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140

150

160

170
180

185
186
190

200
210

220
230

240

E1{I)=E1 (I)*Y

E2(I)=E2(I}*Y

CALCULATE TH COST OF EACH VECTOR.
D=100000.0

DO 140 J=1,LEV,1

D1=El {I)~-REAL{ISS1(J})

D2=E2 (T} -REAL(ISS2(J))
DD=D1*D1+D2*D2

IF (DD.LT.D) THEN

D=DD

JI=J

ENDIF

CONTINUE

C2(I)=C1(I)+D

IXT1(I)=IS51(JJ)
IXT2(1)=1552(JJ)

SELECT THE BEST VECTQR (WITH THE SMALLEST COST)
CC=500000.0

Do 160 I=1,K,1

IF (C2(I).LT.CC) THEN

CC=C2{I1)

II=T

ENDIF

CONTINUE :
DETECTION AND ERRCRS CALCULATION
IEVK=IEVK+1

IF{IS1{1)}-IX1(IL,1)) 180,170,180
IF (I82(1)-IX2¢{II1,1)) 180,190,180
ISER=ISER+1

IF (IEVK-32) 185,185,186
IEVA=IEVA+]

IEVE=0

CONTINUE

DIFFERANTIAL DECODING. and BER calculation.
DO 220 I=1,LEV,1

IF (ISS1{1)-IX1(IX,1)) 220,200,220

IF (ISS2(I)-IX2(11,1)) 220,210,220

IND=I

GO TO 230

CONTINUE

CONTINUE

IBB=IND-1

DO 240 I=IBIT,1,-1
J=2** (I-1)

IF {IBB.LT.J) THEN
IBD(I)=0

ELSE

IBD (I}=1
IBB=1BB-J

ENDIF

CONTINUE
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IDPREV=IDPRES

IDPRES=IBD (1}+2*1BED (2)
DO 270 I=1,K,1
IF (IDPREV.EQ.IPREV{I)) THEN
IF (IDPRES.EQ.IPRES(I)) THEN
11I=I
GO TO 280
ENDIF
ENDIF

270 CONTINRUE

280 IAA=INA (III)+4*IBD (3)+8*IBD(4)
DO 290 I=IBIT,1,-1
J=2%* (I-1)
IF (IAA.LT.J) THEN
IAD{I)=0
ELSE
IAD (1) =1
IAA=IAA-J
ENDIF

290 CONTINUE
DO 310 I=1,IBIT,1
IF (IAD(I)-IA(1,I)) 300,310,300

300 IBER=IBER+1
310 CONTIRUE
c DISCARD ALL VECTORS WHICH DISAGREE IN THE FIRST COMP.

CC=500000.0
Do 360 I=1,K,1
IF (IX1(I,1)-IX1(II,1}) 350,340,350

340 IF (IX2(I,1)-IX2(I1,1)) 350,360,350
350 C1(I)=CC
C2(I)=CC
360 CONTINUE
C SELECT THE BEST 8 VECTORS,ADD 3,3,1 AND 1 TO THE 1ST,2ND
c ,3RD AND 4TH VECTORS AND CALCULATE THEIR COSTS.
Il=0

Do 410 I=1,8,1
CC=500000.0
DO 370 J=1,K,1
IF (C2(J) .LT.CC) THEN
CC=C2(J)
JJJ=J
ENDIF

370 CONTINUE .-
C11(I1)=C1 (JJJ)
E11(I}=E1(JJJ)
E22(I)=E2(JJJ)
€C2(JJ3J3)=600000.0
DO 380 Jl=1,N1,1
IXX1(I,J1)=IX1(JJ37,J1)

380 IXX2(I,J1)=I1X2(JJJ,J1)
DO 390 J=1,LEV,1
390 C3{I,J)=C11{I)+{E11(I)~REAL(ISS1(J)))}**2
c 4+ (E22 (I)-REAL(ISS2(J)))**2
DO 410 J1=1,KK(1),1
I1=I1+1
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CC=500000.0
DO 400 J=1,1EV,1
IF(C3(I,J).LT.CC) THEN
CC=C3 (I' J)
JJ=J
ERDIF

400 CONTINUE
€22 (I1)=C3(1,JJ)
C3(1,JJ3)=700000.0
IXXX1 (1I1,N)=I881{JJ)
IXXX2(I1,N)=I352 (JJ)
‘DO 410 I2=1,N},1
IXXX1(I1,I2)=IXX1(I,I2}
IXXX2{I1,12)=IXX2{I,12)

410 CONTINUE
DO 415 I=1,K,1
DO 415 J=1,N,1
IX1{I,J)=IXXX1(I,J)

415 IX2(I,3)=IXXX2(I,J)

c SUBTRACT THE SMALLEST COST FROM ALL COST.
CC=500000.0
DO 420 I=1,K,1
IF{C22(1).LT.CC) THEN

II=1
CC=C22(1)
ENDIF
420 . CONTINUE
CCC=CC
DO 430 I=1,K,1
430 Cl({I)=C22(I)-CCC
C THE PROCESS CONTINUE WITH THE NEXT SYMBOL.
440 CONTINUE
c CALCULATE ERROR RATES AND PRINTOUT ALL RESULTS

WRITE (1, *)

WRITE (1,500) SNR,P**2
SER=REAL (ISER) /REAL {L)
EVE=REAL (IEVA) /REAL (L)
BER=REAL (IBER) /REAL ( (L) *IBIT)
WRITE (1, 600) SER,EVE,BER

500 FORMAT (1X, 4HSNR=, F12. 6, 2X, 10HNOISE VAR=,F12.6)
600 FORMAT (1X, 4HSER=,F9.7, 1X, 4HEVE=,F9.7,1X, 4HBER=,F9.7)
1000 CONTINUE

END i

$¥445
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APPENDIX G2

THE FOLLOWING PROGRAM SIMULATES THE OPERATION OF THE MODIFIED
NONLINEAR EQUALIZER WITH VITERBI ALGORITHM DETECTOR (SYSTEM MNC})
THE TRANSMITTED SIGNAL IS A CONVOLUTIONALLY ENCODED 32-LEVEL QAM
SIGNAL

/*JOB SMNC, EUELAKK, ST=MFX, C=S, TI=1280,
/* PW=K .
FTNS, DB=0/PMD, L=0.

LIBRARY, PROCLIB.

NAG (FTN5)

LGO.

#4445

PROGRAM SMNC
INTEGER IS1(33),IS2(33),1SS(34),IA(33,4),IAA(4)
C, IXXX1(128),IXXX2(128),IXXX3 (128), IXNX4(128), IXXX5(128)
C,InDpD{8,33),IaD(8,33), ISTATP (8),IEVA,IEVK
C, ISER, IBER, IX1(8,33),1X2(8,33),IXX1(8,33},IXX2(8,33)
REAL Y1(20),Y2(20),E1,E2,C1(8),C2(8,128),CC1(8)
REAL P, SNR, SNRD, GOSDDF, GOSDAF, Bl (20) ,B2(20)
C LOAD THE SAMPLED IMPULSE RESPONSE OF THE CHANNEL
DATA Yl / 1.0000, 0.4861,-0.5980, 0.1702,-0.0245, 0.0100

C ,=0.0134, 0.0056, 0.0003,-0.0008, 0.0000, 0.0007
c 0.0037,-0.0019, 0.0020, 0.0005,-0.0022, 0.0007
C +-0.0008, 0.0005/

DATA Y2 / 0.0000, 1.0988, 0.0703,-0.1938, 0.1000,-0.0258
C , 0.0110,-0.0042, 0.0003, 0.0041,-0.0061,-0.0007
o , 0.0002,-0.0025, 0.0008,~0.0002, 0,0002,-0.0005
C , 0.0002, 0.0005/

c LOAD TABLE FOR ENCODER/DECODER

DATA IXxXx1/9,9,0,0,0,9¢,9,0,9,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1
c 01,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
C +13,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4, 4,4, 4,4
c 14,4,4,4,4,4,4,4,5,5,5,5,5,5/5,5,5,5,5,5,5,5,5,5
C r6l676!616l616l61 6,6;6,6,6;6,6'6,7,7,7,7;7,7;7;7
c 1 707:7,7,7,7, 7,7/

DATA 1XXX2/9,0,0,0,2,2,2,2,4,4,4,4,6,6,6,6,0,0,0,0,2,2,2,2
c ,4,4,4,4,6,6,6,6,0,0,0,0,2,2,2,2,4,4,4,4,6,6,6,6
C ,0,0,0,0,2,2,2,2,4,4,4,4,6,6,6,6,1,1,1,1,3,3,3,3
C 15.'5'5ISP7I7I‘7l’7!111f1r1f3'3l3f3!50515l51-?I?r-’l?
C 111111r1:3r3r3r3r5r515:51717r7171111r1f113:3»'1:3
c 1515:5,5,7,7,7,7/

DATA IXXx3/-1, 3,-5, 3,-3, 1, 1, 5, 3,-1,-1,-5, 1,-3, 5,-3
r 1:’3r 5f'3r 3:‘11'1r‘5r‘3r 1, 1, 5,-1, 3f'sr 3
’ 3:'1r‘1r‘51 1:"3r 5;‘3t‘1r 3:“5r 3,-3, 1, 1, 5
l-3l 1, 1, 5,-1, 3,-5, 3, 1,-3, 5:*31 3r‘1:'11‘5
¢ 1,-3,-3, 5,71, 3,-5,-1, 1,-3, 5, 1,-1, 3, 3,-5
=1, 3,-5,71, 1,-3,-3, 5,71, 3, 3,-5, 1,-3, 5, 1
v 1,73, 5 1,-1, 3, 3,-3 1,-3,-3, 5,-1, 3;-5,-1
|-1| 3' 3;-5' 1,-3' 5, l,'l, 3'-5,-1' 1;"3,"3’ 5/

DATA Im4/-1, 3' 3,-5' 1,"'3' 5, 1'-1, 3,"'5,"1' 1,-3"_3' 5
¢ 1,-3,-3, 5,-1, 3,-5,-1, 1,-3, 5 1,-1, 3, 3,~5
1y 3,-5,-1, 1,-3,-3, 5-1, 3, 3,-5, lf-3l 5,1
¢ 1,-3, 5, 1,-1, 3, 3,-5 1,-3,-3, 5,-1, 3,-5,-1

eNeNe Nz Rt NS RE

e NeKe
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1, 3,-5, 3,'3r 1, 1, 5, 3!‘1r‘1r‘5r 1:'31 5!'3
=3, 1, 1, 5,-1,; 3,-5, 3, 1,-3, 5,-3, 3,-1,~1,-5
v 3,-1,-1,-5, 1,-3, 5,-3,-1, 3,-5, 3,-3, 1, 1, 5
¢t 1,-3, 5,-3, 3,-1,-1,-5,-3, 1, 1, 5,-1, 3,-5, 3/

DATA IXXX5/ 0, 4, 8,12, 2, 6,10,14, 2, €,10,14, 0, 4, 8,12
., 1, 5, 9,13, 3, 7,11,15, 3, 7,11,15, 1, 5 9,13

2, 6,10,14, 0, 4, 8,12, 0, 4, 8,12, 2, 6,10,14

3, 7,11,1%5, 1, 5, 9,13, 1, 5, 9,13, 3, 7,11,15

s, 9,13, 3, 7,11,15, 3, 7,11,15, 1, 5, 9,13

2, 6,10,14, 0, 4, 8,12, 0, 4, 8,12, 2, 6,10,14

3, 7,11,15, 1, 5, 9,13, 1, 5, 9,13, 3, 7,11,15
, 0, 4, 8,12, 2, 6,10,14, 2, €,10,14, 0, 4, 8,12/

CPEN (1, FILE='OUTPUT')

SET ALL PARAMETERS .

MM=3

N =33

N1=K-1

N2=N+1

1=100000

LN=L+N1

MK=8

I10=10

SNR=18.5

SNRD=( .25

CRLL GOSCBF (IQ)

SCALING THE SAMPLED IMPULSE RESPONSE

YYY=0.0

po 10 1=1,20,1

YYY=YYY+Y1 (I} *Y1{I)+Y2(I)*Y2(I)

Y¥=SQRT (YYY)

Do 20 1=1,20,1

Y1(I)=Y1(I)/YY

Y2 {I)=Y2(I)/YY

MAIN DO LOOP (SELECT SNR)

DO 1000 mvM=1,MM, 1

DO 1 I=1,MK,1

DO 1 J=1,N,1

IXX1(1,J)=0

IXX2 (I, J)=0

SNR=SNR+SNRD

P=SQRT(5.0/(10.0*%* (SNR/10.0)))

INITIALIZATION OF ALL ARRAY AND VARIABLES.

ISER=0

IBER=0

IEVA=0

IEVK=0

DO 40 I=1,N,1

IS1(1)=~1

IS2(I)=-1

ISS(I)=0

DO 30 J=1,4,1

IA(I,J})=0

DO 40 Ji=1,MK,1

IX14{Jl,1I)=-1

IX2(J1,I)=-1

- W W™ W™
[
-
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40 IAD(J1,1)=0
DO 50 I=2,MK,1
DO 45 1=1,20,1
Bl (I)=-1.0
45 B2(I)=-1.0
50 C1(1})=100000.0
C ASSIGN DIFFERENT STATES TO THE VECTORS WITH ZERO COST
c TO THE VECTOR WITH THE CORRECT STATE .
DO 60 I1=0,7,1
J=I+1
60 ISTATP (J) =1
C1{1)=0.0
ISS(N2)=0
c SECOND DO LOOP ( TRANSMISSICN )
Do 900 LLL=1,LN,1
c SHIFT ALL ARRAYS .
po 100 J=1,N1,1
JA=J+1
1S1(J)=IS81(JA)
182 (J)=IS2(JA)
1SS (J)=1I8S{JA)
DO 90 1=1,4,1
90 IA(J,1)=IA(JA,1)
DO 100 K=1,MK,1
IX1 (K, J)=IX1 (K, JA)
IX2 (K, J)=IX2 (K, JA)
100 IAD (K, J)=IAD (K, JA)
Do 105 J=20,2,-1
Bl (J)=B1({J-1)
105 B2 (J)=B2 (J-1)
ISS{N)=ISS(N2)
c GENERATE INFORMATION DIGITS.
DO 110 I=1,4,1
110 IA (N, I)=NINT {GOSDAF(0.0,1.0)}
C  CONVOLUTIONAL ENCODING AND SIGNAL MAPPING
INPUT=IA (N, 1) +2*IA(N,2) +4*IA (N, 3)+8*IA(N, 4)
DO 140 I=1,128,1
IF (ISS(N) .EQ.IXXX2(I).AND.INPUT.EQ.IXXX5(I)) THEN
I1I=I
ENDIF
140 CONTINUE
IS8 (N2)=IXXX1(II) : -
IS1(N)=IXXX3(I1)
IS2 (N)=IXXX4{II)
c CALCULATION OF THE RECEIVED SAMPLE
RR1=0.0
RR2=0.0
DO 150 I=1,20,1
Ju=N+1-1
RR1=RR1+REAL (IS1 {J)) *Y1{(I)-REAL(IS2(J))*¥2(I)
150 RR2=RR2+REAL (IS1 (J)) *¥Y2 (I) +REAL(IS2(J)) *Y1 (1)
c ADD THE NOISE.
W1=GOS5DDF (0.0, P)
W2=GOS5SDDF (0.0, P)
RR1=RR1+W1
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RR2=RR2+W2
o CALCULATE THE EQUALIZED SAMPLE.
221=0.0
222=0.0
DO 160 J=2,20,1
221=2Z1+B1 (J) *Y1{J)-B2 (J) *¥2(J}
160 222=Z22+B1 (J) *Y2(J) +B2 (J) *Y1 (J}
El=(RR1-2Z1) *YY
E2=(RR2-222) *YY
C SEARCH FOR ALL VALID TRANSITION AND COST CALCULATIONS FOR
o ALL VECTORS.
DO 180 I=1,128,1
DO 180 J=1,MK,1
180 C2(J,I)=1000000.0
DO 210 I=1,MK,1
DO 210 J=1,128,1
IF (ISTATP (I) .EQ.IXXX2(J)) THEN
D1=E1-REAL (IXXX3 (J})
D2=E2~REAL (IXXX4 (J})
C2(I,J)=C1 (I)+D1*D14D2*D2

ENDIF
210 CONTIRUE
c FIND THE VECTOR WITH THE SMALLEST COST .

CC=500000.0
DO 220 I=1,MK,1
DO 220 J=1,128,1
IF(C2(I,J) .LT.CC) THEN
cC=C2 (1, J)
II=1
JJ=J
ENDIF
220 CONTINUE
IX1(II,N)=IXXX3(JJ)
IX2(1I,N)=1XXX4 (JJ)
IAD (II,N)=IXXX5 (JJ)
v ERROR CALCULATION
IEVK=I1EVK+1
IF (IS1(1)-IX1(IX,1)) 250,240,250
240 IF (IS2 (1) -IX2(II1,1)) 250,290,250
250 ISER=ISER+1
IF (IEVK-32) 260,260,270
260 IEVA=IEVA+1
270 IEVK=0
290 CONTINUE
IAAD=IAD (I, 1}
DO 300 I=4,1,-1
JJ=2%% (I-1)
IF (IAAD.LT.JJ) THEN
IAA (1)=0
ELSE
IAA(I) =1
IAAD~IAAD-JJ
ENDIF
300 CONTINUE
DO 320 I=1,4,1
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IF(IAA(I)-IA(1,I)) 310,320,310
310  IBER=IBER+1
320  CONTINUE
C PASS THE DETECTED VALUE OF THE CODED SYMBOL TO
c FEEDBACK LOOP OF THE NONLINEAR EQUALIZER .
B1 (1) =REAL(IX1(II,N))
B2 (1) =REAL (IX2 (1I,N))
DISCARDING OF ALL VECTOR WHICH DISAGREE IN THE
FIRST COMPONENT AND SELECTING OF MK VECTOR FOR
THE NEXT SAMPLE
CC=1000000.0
DO 360 I=1,MK,1
| IF(IX1(II,1)-IX1(1,1)) 340,330,340
330 IF(IX2(II,1}-IX2(I,1)) 340,360,340
340  CONTINUE
DO 350 J=1,128,1
350  C€2(I,J)=CC
360  CONTINUE
J1=0
001=0
DO 430 I1=0,7,1
CC=1000000.0
J1=J1+1
DO 380 1=1,128,1
DO 380 J=1,MK,1
IF (I1.EQ.IXXX1(I)) THEN
IF(C2(J, 1) .LT.CC) THEN
cC=C2(J, 1)
JI=3
IT=I
ENDEF
ENDIF
380  CONTINUE
001=0Q1+1
IXX1 (J1,N)=IXXX3 (II)
IXX2 (J1,N)=IXXX4 (11)
IADD (J1, N} =IXXX5 (IT)
DO 420 K=1,N1,1
IXX1(J1,K)=IX1 (JJ,K)
IXX2 (J1,K) =IX2 (JJ, K)
420  IADD (J1,K)=IAD(JJ,K)
CC1 (J1)=C2 (JJ, I1)
€2 (J3,11)=1000000.0
ISTATP (J1) =IXXX1(II)
430  CONTINUE
c TRANSFER ALL ARRAYS
DO 440 I=1,MK,1
DO 440 J=1,N,1
IX1 (I, J)=IXX1(I,J)
IX2 (I,J)=IXX2(1,J)
440  IAD({I,J)}=IADD(I,J)
CC=2000000.0
DO 450 I=1,MK,1
IF (CC1(1).LT.CC) THEN
CC=CC1{I)

QG
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II=1
ENDIF
450 CONTINUE
DO 460 I=1,MK,1
460 C1(I)=CCl(I)-CC1{II)
900 ' CONTINUE
¢ CALCULATE ERROR RATES AND PRINTOUT ALL RESULTS
WRITE (1, %) '
WRITE (1,500) SNR,P**2
SER=REAL {ISER) /REAL (L)
EVE=REAL (IEVA} /REAL (L)
BER=REAL (IBER) /REAL ( (L) *IBIT)
WRITE(1,600) SER,EVE,BER
500 FORMAT (1X, 4HSNR=,F12.6, 2X, 10HNOISE VAR=,F12. 6)
- 600 FORMAT (1X, 4HSER=,F9.7,1X, 4HEVE=, F9.7,1X, 4HBER=, F9.7)
1000  CONTINUE
: END
$H#4S
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" APPENDIX G3
THE FOLLOWING PROGRAM SIMULATES THE OPERATION OF SYSTEM 1C16.
THE DATA IS CONVOLUTIONALLY ENCODED ( 32-LEVEL QAM SIGNAL).

/*JOB S1C16, EUELAKK, ST=MFYX, C=S, TI=1280,
/* PW=K

FTNS, DB=0/PMD, L=0.

LIBRARY, PROCLIB.

NAG (FTN5)

LGO.

$1$4S

PROGRAM S1C16
INTEGER IS1(33),IS2(33),ISS(34),IA(33,4),IAA(4)
C, IXXX1 (128) , IXXX2 (128) , IXXX3 (128) , IXXX4 (128}, IXXXS5 (128)
C, IADD (64,33) , IAD (16,33}, ISTATP (16}, IEVA, IEVK, ISTATPP {64)
C, ISER, IBER, IX1(16,33),IX2(16,33), IXX1 (64, 33), IXX2 (64, 33)
REAL Y1(20),Y2(20),21(16),22(16),C1(16),C2{64),CCL (16)
REAL P, SNR,SNRD, GOSDDF, GO5DAF,C3 (16,128)

c LOAD
DATA

THE SAMPLED IMPULSE RESPCNSE OF THE CHANNEL
Yl / 1.0000, 0.4861,-0.5980, 0.1702,-0.0245, 0.0100

DATA

aan

.0134, 0.0056,
.0037,-0.0019,
»=0.0008, 0.0005/
Y2 / 0.0000, 1.0988,
, 0.0110,-0.0042,
Fi 0-0002,“0-0025,
¢ 0.0002, 0.0005/

0.0003,-0.0008, 0.0000, 0.0007
0.0020, 0.0005,-0.0022, 0.0007

0.0703,-0.1938, 0.1000,-0.0258
0.0003, 0.0041,-0.0061,=0.0007
0.0008,-0.0002, 0.0002,~0.0005

C LOAD
DATA

TABLE FOR ENCODER/DECODE
Ixxxi/¢,0,0,0,0,0,0,0,
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19:5,5
IXXX3/—1, 31“51 3;‘31 1, 1, 5, 3r‘1r'1r‘5r 1r‘3r 5,-3
? 1;'3; 5;‘3; 3;'1,'1;‘5;'3; 1' 1, 5,-1, 3'-51 3
¢ 3,-1,-1,-5, 1,-3, 5,-3,-1, 3,-5, 3,~3, 1, 1, 5
/-3, 4, 1, 5,-1, 3,-5, 3, 1,-3, 5,-3, 3,-1,-1,-5
, 1,-3,-3, 5,-1, 3,-5,-1, 1,-3, 5, 1,-1, 3, 3,-5
"1’ 3'-5,_1, 1;'3,-3; 5,_1, 3; 3,'5' 1’-3, 5, 1
’ 1,-3' 5; 1,'1' 3; 3"5, 1,'3;-3, 5,“1, 3;'5;-1
,~1, 3, 3,-5, 1,-3, 5, 1,-1, 3,-5,-1, 1,-3,-3, S/
IXxx4/~-1, 3, 3,-5, 1,-3, S, 1,-1, 3,-5,-1, 1,-3,-3, 5
I 1'-3,-3' 5,-1, 3'_5'-1, 1,-3, 5' 1;-1, 3, 3'“5
,-1, 3,*5,“1; 1,“3,-3' 5,“1' 3, 3,'5;\1,_3; 5, 1
F 1;“3; 5, 1,”1, 3, 3;‘5, 1,—3'-3' 5;“1, 3"5,-1
,‘1, 3,-5' 3,-3' 1' 1' 5' 3'-1'-1,-5’ 1,-3' 5,-3

DATA

rReNoNeNsNe Ne

DATA

QOO0
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,-3, 1, 1, 5,-1, 3,-5, 3, 1,-3, 5,-3, 3,-1,-1,-5

- 31-1'-1;-5' 1,'3[ 5;"'3’-1, 3,'5; 3;-3' 1' 1' 5

v 1,-3, 5;"3, 3:'1:'11‘5r'3r 1r 1, 5,-1, 3,-5, 3/
DATA IXXXS/ 0, 4, 8,12, 2, 6,10,14, 2, 6,10,14, O, 4, 8,12

, 1, 5, 9,13, 3, 7,11,15, 3, 7,11,15, 1, 5, 9,13
2, 6,10,14, 0, 4, 8,12, 0, 4, 8,12, 2, 6,10,14
3, 7,11,15, 1, 5, 9,13, 1, 5, 9,13, 3, 7,11,15
1, 5, 9,13, 3, 7,11,15, 3, 7,11,15, 1, 5, 9,13
6,10,14, 0, 4, 8,12, 0, 4, 8,12, 2, 6,10,14
3, 7,11,15, i, s, 9,13, 1, 5, 9,13, 3, 7,11,15
0, 4, 8,12, 2, 6,10,14, 2, 6,10,14, 0, 4, 8,12/
OPEN(1,FILE='QUTPUT’)

- wm W w m ow
N
-~

SET ALL PARAMETERS.

MM=4

N =33

Nl=N-1

N2=N+1

L=100000

LN=L+N1

MK=16

MKK=2

I10=22

SNR=12.5

SNRD=1.0

CALL GO5CBF{IQ)

SCALING THE SAMPLED IMPULSE RESPONSE
YYY=0.0

po 10 1=1,20,1
YYY=YYY+Y1 (I) *Y1{I)+Y2 (I) *Y2(T)}
YY=SQRT (YYY)

DO 20 I=1,20,1

Y1(I)=Y1(I)/YY

Y2(I)=Y2(I)/YY

MAIN DO LOOP (SELECTION OF SNR)
DO 1000 MMM=1,MM,1

DO 1 I=1,MK,1

Do 1 J=1,N8,1

IXX1(I,J0)=0

IXX2 (1,J)=0

SNR=SNR+S5NRD
P=SQRT(5.0/(10.0**{SNR/10.0))}.
INITIALIZATION OF ALL ARRAY AND VARIABLES.
ISER=0

IBER=0

IEVA=0

IEVK=0

DO 40 I=1,N,1

I1S1(1)=-1

182(1}=-1

1SS(1)=0

DO 30 J=1,4,1

IA (I, J)=0

DO 40 Jl-l,HK,l

IX1(J1,I)=-1
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IX2(J1,1)=-1

40 IAD {J1, 1) =0
DO 50 I=2,MK,1
50 C1(1)=100000.0
c ASSIGN DIFFERENT STATES FOR THE VECTORS WITH ZERO COST
C TO THE VECTOR WITH THE CORRECT STATE.

DO 60 1=0,7,1
: DO 60 J=2*I+41,2%(I+1),1
60 ISTATP (J) =1
C1(1)=0.0
1SS (N2)=0
c SECOND DO LOOP ( TRANSMISSION )
DO 900 LLL=1,1LN,1
C SHIFT ALL ARRAYS .
po 100 J=1,M1,1
JA=J+1
181 (J)=1S1(JA)
182 (J)=1S2(JA)
1SS (J)=1SS(JA)
po 90 1=1,4,1
90 IA(J,I)=1IA(JA, 1)
DO 100 K=1,MK,1
IX1{K, J)=IX1 (K, JA)
IX2 (K, J)=1X2 (K, JB)
100 IAD (K, J) =IAD (K, JA)
1SS (N)=ISS(N2)
C GENERATE INFORMATION DIGITS.
DO 110 1I=1,4,1
110 IA (N, I)=NINT(GO5DAF{0.0,1.0))
c CONVOLUTIONAL ENCODING AND SIGNAL MAPPING .
INPUT=IA(N,1)+2*IA(N,2)+4*IA(N,3)+8*IA(N,4)
PO 140 1=1,128,1
IF (ISS(N).EQ.IXXX2 (I).AND,INPUT.EQ.IXXX5{I)) THEN
I11=I
ENDIF
140 CONTINUE
1SS (N2)=IXXX1(II)
IS1(N)=IXXX3{II)
I1S2 (N)=IXXX4 (II) A
C CALCULATION OF THE RECEIVED SAMPLE
RR1=0.0
RR2=0.0
Do 150 I1=1,20,1
J=N+1-1
RR1=RR1+REAL (IS1(J)) *Y1{I)-REAL(IS2(J))*Y2(I)
150 RR2=RR2+REAL (IS1{J)) *Y2 (I} +REAL(1S2(J) ) *Y1(I)
c GENERATE AND ADD THE NOISE SAMPLES.
W1=GOSDDF (0.0,P)
W2=GOSDDF (0.0, P)
RR1=RR1+W1
RR2=RR2+W2
C CALCULATE ISI FOR EACH STORED VECTOR
DO 170 I=1,MK,1
z221=0.0
222=0.0
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DO 160 J=2,20,1
J1l=N+1=~J
221=2Z1+REAL (IX1 (I, J1))*Y1(J) -REAL {IX2(I, J1)) *Y2(J)
160 222=2Z2+REAL (IX1 (I, J1)) *Y2 (J) +REAL (IX2(I,J1))*Y1(J)
21 (I})=(RR1-221) *YY
170 22 (I)=(RR2-222) *YY
C - SEARCH FOR ALL VALID TRANSITION AND COST CALCULATIONS FOR
C ALL VECTORS.
DO 180 I=1,128,1
DO 180 J=1,MK,1
180  C3(J,1)=1000000.0
J2=0
DO 210 I=1,MK,1
DO 215 J=1,128,1
IF (ISTATP (I) .EQ.IXXX2(J)) THEN
D1=21 (I) -REAL {IXXX3 (J))
D2=22 (I) ~REAL {IXXX4 (J) )
C3(I,J)=C1(I)+D1*D14D2*D2
ENDIF
215  CONTINUE
DO 216 J1=1,4,1
J2=J2+1
CC=1000001.0
Do 217 J=1,128,1
IF (C3(I,J) .LT.CC) THEN
CC=C3(I,J)
JJ=J
ENDIF
217  CONTINUE
ISTATEP (J2) =IXXX1 {JJ)
IADD (J2, N) =IXXX5 (JJ)
IXX1 (J2, N) =IXXX3 (JJ)
IXX2 (J2,N) =IXXX4 (JJ)
DO 225 Ki=1,N1,1
IXX1 (J2,K1)=1X1 (I,K1)
IXA2 (J2,K1)=IX2(I,K1)
225 IADD {J2, K1) =IAD (I, K1)
C2(J2)=CC
C3(I,JJ}=1000001.0
216 CONTINUE
210 CONTINUE
c FIND THE VECTOR WITH THE SMALLEST COST . .
- CC=500000.0
DO 220 I=1,MK*4,1
IF (C2(I).LT.CC) THEN
CC=C2(I)
II=1
ENDIF
220 CONTIRUE
C ERROR CALCULATION
IEVK=IEVK+1
IF (1S1(1)-IXX1(II,1)) 250,240,250
240 IF (IS2(1)~-IXX2(II1,1)) 250,290,250
250 ISER=ISER+1
IF {(IEVK-32) 260,260,270
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260
270
290

300

310
320

330
340
360

380
420

430

450
160

900

IEVA=IEVA+1

IEVK=0

CONTINUE

IAAD=IAD (II,1)

DO 300 I=4,1,-1

JJ=2%% (I-1)

IF (1AAD.LT.JJ) THEN

IAR(I)=0

ELSE

IAA(I)=1

IAAD=TIAAD-JJ

ENDIF

CONTINUE

DO 320 I=1,4,1

IF (IAR(I)-IA(1,I}) 310,320,310
IBER=IBER+1

CONTINUE

DISCARDING OF ALL VECTOR WHICH DISAGREE IN THE
FIRST COMPONENT AND SELECTING OF MK VECTOR FOR
THE NEXT SAMPLE

CC=1000000.0

DO 360 I=1,MK*4,1

IF (IXX1 (II,1)-IXX1(I,1)) 340,330,340
IF (IXX2 (II,1)-IXX2(I,1)) 340,360,340
C2(1)=CC

CONTINUE

DO 430 J1=1,MK,1

CC=1000000.0 -

DO 380 I=1,MK*4,1

IF (C2(I) .LT.CC) THEN

CC=C2(I)

11=1I

ENDIF

CONTINUE

DO 420 K=1,N,1

IX1(J1,K)=IXX1(II,K)

IX2(J1,K)=IXX2 (I1,K)

IAD {(J1,K)=IADD (1I,K)

CC1(J1)=C2(II)

€2 (11)=1000000.0

ISTATP (J1)=ISTATPP (II)

CONTINUE

CC=2000000.0

DO 450 I=1,MK,1

IF {CC1(I) .LT.CC) THEN

CC=CC1 (I}

1I=I

ENDIF

CONTINUE

SUBTRACT THE SMALLEST COST.

DO 460 I=1,MK,1

C1(I}=CC1(I)-CCl(II)

THE PROCESS CONTINUE WITH THE NEXT SYMBOL.
CONTINUE -

CALCULATE ERROR RATES AND PRINTOUT ALL RESULTS
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500
600
1000

#H#45

WRITE (1, *)

WRITE({1,500) SNR,P**2

SER=REAL (ISER) /REAL{L)

EVE=REAL (IEVA) /REAL (L)
BER=REAL (IBER) /REAL ( (L) *4)

WRITE (1, 600) SER,EVE,BER

FORMAT (1X, 4HSNR=, F12. 6, 2X, 10HNOISE VAR=,F1Z2.6}

FORMAT (1X, 4HSER=, F9.7, 1X, 4HEVE=,F9.7, 1X, 4HBER=,F9.7)
CONTINUE '

END
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APPENDIX G4

THE FOLLOWING PROGRAM SIMULATES THE OPERATION OF SYSTEM 2C16
THE TRANSMITTED DATA IS CONVOLUTIONALLY ENCODED 32-LEVEL QAM
SIGNAL., THE PETECTOR OPERATES WITH 16 VECTORS.

/*JOB $2C16,EUVELAKK, ST=MFX, C=S, TI=1280,
/* PW=K

FTNS,DB=0/PMD, L=0.

LIBRARY,PROCLIB,

NAG (FTN5)

LGO.

#1445

PROGRAM S2C16

INTEGER IS1(33),1S2(33),1IS5(34),IA(33,4),IAA(4)
C, IXXX1(128) , IXXX2 (128), IXXX3 (128} , IXXX4 (128) , IXXX5 (128)
C, IADD (64,33), IAD (16,33), ISTATP (16) , IEVA, IEVK, ISTATPP (64)
C,ISER, IBER, IX1(16,33),IX2(16,33), IXX1 (64,33),1IXX2(64,33)
C,KK1(16) , KK2 (16)

REAL Y1(20),Y2(20),21(16),22(16),C1{16),C2(64),CC1(16)

REAL P, SNR, SNRD, GOSDDF, GOSDAF,C3 (16, 128)

DATA KK1/1,5,9,13,17,20,23,26,29,31,33,35,37,38,39,40/
DATA KK2/4,8,12,16,19,22,25,28,30,32,34,36,37,38,39,40/

c LOAD THE SAMPLED IMPULSE RESPONSE OF THE CHANNEL
DATA Y1 / 1.0000, 0.4861,-0.5980, 0.1702,-0.0245, 0.0100
C ,~0.0134, 0.0056, 0.0003,-0.0008, 0.0000, 0.0007
c , 0.0037,-0.0019, 0.0020, 0.0005,-0.0022, 0.0007
c ,~0.0008, 0.0005/

DATA Y2 / 0.0000, 1.0988, 0.0703,-0.1938, 0.1000,-0.0258

C , 0.0110,-0.0042, 0.0003, 0.0041,~0.0061,-0.0007
C , 0.0002,-0.0025, 0.0008,~-0.0002, 0.0002,-0.0005
C ., 0.0002, 0.0005/
c LOAD TABLE FOR ENCODER/DECCDER AND SIGNAL MAPPING

DATA IXXX1/0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,1%,1,1,1,1
c :1,3,1,%,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
C $3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4
c 14,4,4/4,4,4,4,4,5,5,5,5/5,5,5,5,5,5:5,5,5,5, 5,5
c 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7
C ¢, 7,7,7,7,7,7/

DATA 1IXXX2/0,0,0,0,2,2,2,2,4,4,4,4,6,6,6,6,0,0,0,0,2,2,2,2
C +4,4,4,4,6,6,6,6,0,0,0,0,2,2,2,2,4,4,4,4,6,6,6,6
C ,0,0,0,0,2,2,2,2,4,4,4,4,6,6,6,6,1,1,1,1,3,3,3,3
c 1515,5,5,7,7,7,7,1,1,1,1,3,3,3,3,5,5,5,5,7.,7, 7,7
c :1,1,1,1,3,3,3,3,5,5,5,5,7,7,7,7,1,1,1,1,3,3,3,3
c 15¢5,5,5,7,7,7,7/

DATA IXXX3/-1, 3|"5, 3;"3, 1, 1; 5, 3;‘1,"'1,'5; 1"3' 5,'3
v 1,3, 5,3, 3:’1v'1:'5t‘3r 1, 1, 5,-%, 3,-5, 3
¢ 3,-1,-1,-5, 1,-3, 5,-3,-1, 3,5, 3,-3, 1, 1, 5
r‘3r 1, 1, 5,-1, 3,-5, 3, 1,-3, 5,-3, 3,-1,-1,-5
¢ 1,-3,-3, 5,-1, 3,-5,-1, 1,-3, 5, 1,-1, 3, 3,~5
=1, 3;‘5r‘1r 1,-3,-3, 5,-1, 3, 3,-5, 11’31 5,1
y 1,-3, 5 1,-1, 3, 3,-5, 1,-3,-3, 5,-1, 3,-5,-1
=1, 3y 3,-5, 1,-3, 5, 1,-1, 3,-5,-1, 1!'31'31 5/

QO aQao
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DATA IXX)M/-I, 3, 3,-5' 1,"’3; 5, 1'-1; 3,-5;"1, 1;'3,"3; S
; 1,-3,-3, 5,-1, 3,-5-1, 1,-3, 5, 1,-1, 3, 3,-5
""1' 3'-5'-1’ 1;-3,-3’ 5,"1' 3; 3,"5’ 1""3; 5' 1
¢ 1,73, 5, 1,-1, 3, 3,-5, 1,-3,-3, 5,-1, 3,-5,-1
=1, 3,-5, 3,-3, 1, 1, 5, 3,-1,-1,-3, 1,-3, 5,~3
1-3, 1, 1, 5'-1, 3;'5, 3' 1;-3, 5;—3, 3"1,-1,-5
, 3,-1,-1,-5, 1,-3, 5,-3,-1, 3,-5, 3,3, 1, 1, 5
. 1,-3, 5,-3, 3,-1,-1,-5,-3, 1, 1, 5,-1, 3,-5, 3/
DATA IXXXS/ 0, 4, 8,12, 2, 6,10,14, 2, 6,10,14, 0, 4, 8,12

eNeNeEeEs KNy

Do 20 I1-1,20,1

Y1(I)=Y1(I)/Y¥Y

20 Y2 (I)=Y2(I)/YY

C MAIN DO LOOP (SELECTION OF SNR)
DO 1000 MMM=1,MM, 1
DO 1 I=1,MK,1
Do 1 J=1,N,1
IXX1 {1, J)=0

1 IXX2 (1,J)=0
SNR=SNR+SNRD _
P=SQRT (5.0/ (10.0%* (SNR/10.0)))

C INITIALIZATION OF ALL ARRAY AND VARIABLES.
ISER=0
IBER=0
IEVA=0
IEVK=0
DO 40 I=1,N,1
1S1(I)=-1
IS2(I)=-1
ISS(I)=0

c , 1, 5, 9,13, 3, 7,11,15, 3, 7,11,15, 1, 5, 9,13 |
c , 2, 6,10,14, 0, 4, 8,12, 0, 4, 8,12, 2, 6,10,14 |
¢ , 3, 7,11,15, 1, 5, 9,13, 1, 5, 9,13, 3, 7,11,15 |
c , 1, 5, 9,13, 3, 7,11,15, 3, 7,11,15, 1, 5, 9,13 |
C , 2, 6,10,14, 0, 4, 8,12, 0, 4, 8,12, 2, 6,10,14
c , 3, 7,11,15, 1, 5, 9,13, 1, 5, 9,13, 3, 7,11,15 -

c , 0, 4, 8,12, 2, 6,10,14, 2, 6,10,14, 0, 4, 8,12/
OPEN (1, FILE=' OUTPUT’ )
C SET ALL PARABMETERS.
MM=3 .
N =33
N1=N-1
N2=N+1
L =100000
LN=L+N1
MK=16
MKK=2
10=1111
SNR=14.0
SNRD=0.5
CALL GO5CBF {IQ)
C SCALING OF THE SAMPLED IMPULSE RESPONSE
YYY=0.0
Do 10 I=1,20,1
10 YYY=YYY+Y1 (1) *Y1 (I} +Y2 (I) *Y2(I)
YY=SORT (YYY)
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DO 30 J=1,4,1
30 IA(I,3)=0
DO 40 Jl=1,MK,1
IX1(J1,1)=-1
IX2(J1,I)=-1

40 IAD (J1, 1) =0
DO 50 I=2,MK,1
50 €1 {I)=100000.0
c ASSIGN DIFFERENT STATES FOR THE VECTORS WITH 2ERO COST
o TO THE VECTOR WITH CORRECT STATE.

DO 60 1=0,7,1
DO 60 J=2*I+1,2*(I+1),1
60 ISTATP {J) =I
C1(1)=0.0
1SS (N2)=0
c SECOND DO LOOP (TRANSMISSION )
DO 900 LLL=1,LN,1 _
c SHIFT ALL ARRAYS . |
po 100 J=1,N1,1
JA=J+1
151 (J) =151 (JA) |
1S2 (J) =152 (Ja)
1SS (J) =188 (JA)
po 90 1=1,4,1
90 IA(J, I)=IA(JA, I)
DO 100 K=1,MK,1
IX1 (K, J) =IX1 (K, JA)

IX2 (K, J) =IX2 (K, JA)
100  IAD(K,J)=IAD(K,JA)
ISS (N)=ISS (N2)
c GENERATE INFORMATION DIGITS.
Do 110 I-1,4,1
110  IA(N,I)=NINT(GOSDAF (0.0,1.0))
c CONVOLUTIONAL ENCODING.
INPUT=IA (N, 1) +2*IA (N, 2) +4*IA (N, 3) +8*IA (N, 4)
DO 140 I=1,128,1
IF (ISS (N} .EQ. IXXX2 (1) .AND.INPUT,EQ.IXXX5(I)) THEN
1I=I
ENDIF
140  CONTINUE
ISS (N2)=IXXX1(II)
IS1 (N) =IXXX3 (II) -
IS2 (N) =IXXX4 (II)
c CALCULATION OF THE RECEIVED SAMPLE
RR1=0.0
RR2=0.0
DO 150 I=1,20,1
J=N+1-1 |
RR1=RR1+REAL (IS1{J)) *Y1 (I) ~REAL(IS2{J)) *¥2(I)
150  RR2=RR2+REAL{IS1(J))*¥2 (I) +REAL (IS2(J))*¥1(I)

c GENERATE AND ADD TH NOISE.
W1=GOS5DDF (0.0,P)
W2=G0S5DDF (0.0, P)
RR1=RR14+W1
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160

170

180

215

217

225

216
210

220

RR2=RR2+W2

CALCULATE ISI FOR EACH STORED VECTOR

DO 170 I=1,MK,1

z21=0.0

222=0.0

DO 160 J=2,20,1

J1=N+1-J

221=2Z1+REAL (IX1(I,J1))*Y1 (J) -REAL {IX2 (I, J1}) *¥Y2(J)
222=222+REAL (IX1 (I, J1)) *¥2 (J) +REAL (IX2 (I, J1}) *Y1(J)
21 (I)=(RR1-221) *YY

22 (X)=(RR2-222) *YY

SEARCH FOR ALL VALID TRANSITION AND COST CALCULATIONS FOR
ALL VECTORS.

DO 180 I=1,128,1

DO 180 J=1,MK, 1

€3 (J,I)=1000000.0

J2=0

DO 210 I=1,MK,1

po 215 J=1,128,1

IF (ISTATP (I) .EQ.IXXX2{J)} THEN

D1=21 (I) -REAL {IXXX3 (J})

D2=22 {I) -REAL (IXXX4 (J))

C3(I,J)=C1(I)+D1*D1+D2*D2

~ ENDIF

CONTINUE .
DO 216 J1=KK1(I),KK2(I},1
J2=J2+1

CC=1000001.0

DO 217 J=1,128,1
IF(C3(I,J) .LT.CC) THEN
CC=C3(I,J

JJ=J

ENDIF

CONTINUE
ISTATPP (J2) =IXXX1 (JJ)
IADD (J2, N) =IXXX5 (JJ)

IXX1 (J2, N} =IXXX3 (JJ)

IXX2 {J2,N) =IXXX4 (JJ)

DO 225 K1=1,N1,1

IXX1 (J2,K1)=IX1(I,K1) .
IXX2 (J2,K1)=IX2 (I,K1)
IADD {J2,K1) =IAD (I,K1)
C2(J2)=CC
C3(I,J3)=1000001.0
CONTINUE

CONTINUE

FIND THE VECTOR WITH THE SMALLEST COST .
CC=500000.0

DO 220 I=1,KK2{16),1

IF (C2 (1) .LT.CC) THEN
CC=C2 (1)

1I=1

ENDIF

CONTINUE

ERROR CALCULATION
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IEVK=IEVEK+1
IF (IS1(1)-IXx1(I1,1)) 250,240,250
240 IF(IS2(1)-IXX2(II,1)) 250,290,250
250 ISER=ISER+1
IF (IEVK-32) 260,260,270
260 1IEVA=IEVA+1
270 IEVK=0
290 CONTINUE
IAAD=IAD(II,1)
DO 300 I=4,1,-1
JJ=2%**(I-1}
IF (IAAD.LT.JJ) THEN
IAR{I)=0
ELSE
IAR(I}=1
IAAD=IAAD-JJ
ENDIF
300 CONTINUE
DO 320 I=1,4,1
IF (IAA(I)-IA(1,I)) 310,320,310
- 310 IBER=IBER+1
320 CONTINUE

C DISCARDING OF ALL VECTOR WHICH DISAGREE IN THE
C FIRST COMPONENT AND SELECT MK VECTORS FOR
c THE NEXT SAMPLE

CC=1000000.0
PO 360 I=1,KR2(16),1
IF (IXX1(IT,1)-IXX1(I,1)) 340,330,340
330 IF (IXX2(I¥,1)-IXX2(1I,1)) 340,360,340
340  C2(I)=CC
360  CONTINUE
DO 430 Jl1=1,MK,1
cC=1000000.0
DO 380 I=1,KK2(1€),1
IF (C2(T) .LT.CC) THEN
CC=C2 (I}
I1=I
ENDIF
380 CONTINUE
DO 420 K=1,N,1
1X1(J1,K)=IXX1(1I,K)
IX2(J1,K)=IXX2 (II,K)
420 IAD(J1,K)=IADD (II,K}
CC1(J1)y=C2(II)
€2(11)=1000000.0
ISTATP (J1) =ISTATPP (I1)
430  CONTINUE
CC=2000000.0
DO 450 I=1,MK,1
1F (CC1(I) .LT.CC) THEN

CC=CC1 (1)
I1=1 '
ENDIF
450 CONTINUE
c SUBTRACT THE SMALLEST COST.
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460

900

500
600
1000

HHS

DO 460 I=1,MK,1

C1{I)=CC1(I)-CC1{II)

THE PROCESS CONTINUE WITH THE NEXT SYMBOL.
CONTINUE

CALCULATE ERROR RATES AND PRINTOUT ALL RESULTS
WRITE (1, *)

WRITE (1,500) SNR,P**2

SER=REAL (ISER) /REAL (L)

EVE=REAL (IEVA) /REAL (L)
BER=REAL (IBER) /REAL{ (L) *4)

WRITE {1,600} SER,EVE,BER

FORMAT (1X, 4HSNR=, F12.6, 2X, 10HNOISE VAR=,F12.6)

FORMAT (1X, 4HSER=,F9.7, 1X, 4HEVE=,F9.7, 1X, 4HBER=,F9.7)

CONTINUE
END
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APPENDIX G5 ~

THE FOLLOWING PROGRAM SIMULATES THE OPERATION OF SYSTEM 3Cl6 .
THE TRANSMITTED SIGNAL IS A CONVOLUTIONALLY CODED 32-LEVEL QAM
SIGNAL THE DETECTOR OPERATES WITH 16 STORED VECTCRS .

/*JOB S3C16, EUELAKK, ST=MFX, C=5, TI=1280,
/* PW=K
FTN5, DB=0/PMD, L=0.
LIBRARY, PROCLIB.
NAG (FTNS)
1GO.
5445
PROGRAM S3C16
INTEGER IS1(33),IS82(33),155{(34),1A(33,4),IAA{4)
C,IXXXI(lZB),IXXXZ(lZB),Ixxx3(128),Ixxx4(128),IXXX5(128)
C, IADD (16,33),IAD (16,33),ISTATP (16),IEVA, IEVK, IXX2(16,33)
C,ISER, IBER, IX1(16,33),IX2(16,33),IXX1(16,33) '
REAL Y1(20),Y2(20),21(16),22(16},C1(16),02(16,128),CC1(16)
REAL P, SNR, SNRD, GO5DDF, GOSDAF

C LOAD THE SAMPLED IMPULSE RESPONSE OF THE CHANNEL
DATA Y1 / 1.0000, 0.4861,-0.5980, 0.1702,-0.0245, 0¢.0100
C ,-0.0134, 0.0056, 0.0003,-0.0008, 0.0000, 0.0007
c , 0.0037,-0.001%, 0.0020, 0.0005,-0.0022, 0.0007
-0.0008, 0.0005/
0.0000, 1.0988, 0.0703,-0.1938, 0.1000,-0.0258
0.0110,-0.0042, ©0.0003, 0.0041,-0.0061,-0.0007
0.0002,-0.0025, 0.0008,-0.0002, 0.0002,-0.0005
0.0002, 0.0005/
c LOAD TABLE FOR ENCODER/DECODE
DATA IXxxi/o0,0,0,90,0,0,0,0,

DATA X2

Q00
- e W™ W

el
-

[sNeEe Nz N

- ™ W™ w

DATA TIXXX2

-
S =T~ - N 7
e L T T T

- w W™ W W ™

Wl AN W

-
OO s W
= O O] o
- W wm a ™ W W w w ™
= O O ] =

-
-~ w W W W W W W w W
W= ORI W=
- m e W M WM M W W™ W
W~ NN N I W
- m ™M % WM wm w W W ™
W -J NN -J & W

P N L L I L

- W e ™

-

s EeEeETES)

+5:15:5:5,7,7, 7,7
DATA IXXX3/-1, 3,-5, 3,-3, 1, 1, 5, 3,-1,-1,-5, 1,-3, 5,-3
' 1,-3, 5,-3, 3,-1,-1,-5,-3, 1, i, 5,-1, 3,-5, 3
¢ 3,-1,-1,-5, 1,-3, 5,-3,-1, 3,-5, 3:'3r 1, 1, 5
=3 1/ 1, 5,1, 3,-3, 3 1,-3, 5,-3, 3,-1,-1,-5
’ 1:‘3r'3r 5,-1, 3,-5,-1, 1,-3, 5, 1,-1, 3, 3,-5
=1, 3,-5,-1, 1,-3,-3, 5,~1, 3, 3,-5, 1,-3, 5, 1
’ 1,~-3, 5, 1,-1, 3, 3,-5, 1,-3,-3, 5,-1, 3,-5,-1
,-1' 3' 3,“5, 1,’3; 5' 1,“1' 3’-5,-1, 1,'3,“3' 5/
DATA IXXX4/-1, 3; 3'-5, 1;-3; 5' 1"1; 3,“5"1' 1,'3'“3; 5
: 1,-3,-3, 5,-1, 3,-5,-1, 1,-3, 5, 1,-1, 3, 3,-5
=1, 3,-5,-1, 1:'30'31 5,-1, 3, 3,-5, 1,-3, 5, 1
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, 1,-3, 5, 1,71, 3, 3,-5, 1,-3,-3, 5,-1, 3,-5,-1
,-1, 3,-5, 3,-3, 1, 1, 5, 3,-1,-1,-5, 1,-3, 5,-3
,-3, 1, 1' 5["1] 3;"5; 3, 1,-3, 5'-3; 3;'1,"1,-5
' 3,-1,-1,-5, 1,-3, 5,-3,-1, 3,-5, 3,-3, 1, 1, 5
’ 1,"3' 5,"3' 3'—1'-1’-5"-3| 1' 1' 5,—1, 3,"5' 3/
DATA IXXXS/ 0, 4, 8,12, 2, 6,10,14, 2, 6,10,14, 0, 4, 8,12
1, s, 9,13, 3, 7,11,15, 3, 7,11,15, 1, 5, 9,13
2, 6,10,14, 0, 4, 8,12, 0, 4, 8,12, 2, 6,10,14
3, 7,11,15, 1, 5, 9,13, 1, 5, 9,13, 3, 7,11,15
1, 5, 9,13, 3, 1,11,15, 3, 7,11,15, 1, 5, 9,13
6,10,14, 0, 4, 8,12, 0, 4, 8,12, 2, 6,10,14
3, 7,11,15, 1, 5, %,13, 1, 5, 9,13, 3, 7,11,15
0, 4, 8,12, 2, 6,10,14, 2, 6,10,14, 0, 4, 8,12/
c SET ALL PARAMETERS.
MM=2
N =33
N1l=N-1
N2=N+1
L=100000
LN=L+N1l
MK=16
MKK=2
I0=10
SNR=17.25
SNRD=0.25
CALL GO5CBF{IQ)
C SCALING OF THE SAMPLED IMPULSE RESPONSE
YYY=0.0
DO 10 I=1,20,1
10 YYY=YYY+Y1 (1) *Y1{I)+Y2(I)*Y2(I)
YY=SQRT (YYY)
DO 20 I=1,20,1
Y1(I)=Y1(I}/YY
20 Y2(I)=Y2(I)/YY
C MAIN DO LOQP (SELECTION OF SNR)
DO 1000 MMM=1,MM, 1
DO 1 I=1,MK,1
po 1 J=1,N,1
CIXX1(I,J)=0
1 IXX2(1,J)=0
SNR=SNR+SNRD v
P=SQRT{5.0/(10.0** (SNR/10.0)))
c INITIALIZATION OF ALL ARRAY AND VARIABLES.
ISER=0
IBER=0
IEVA=0
IEVK=0
DO 40 I=1,N,1
IS1({I)=-1
152 (I)=-1
ISS(I}=0
DO 30 J=1,4,1
30 IA{I,J)=0
DO 40 J1=1,MK,1
1X1(J1, 1) =-1
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IX2(J1,I)=-1

40 IAD (J1,1)=0
DO 50 I=2,MK,1
50 €1(1)=100000.0
c ASSIGN DIFFERENT STATES FOR THE VECTORS WITH ZERO COST
c TO THE VECTOR WITH THE CORRECT STATE.

po 60 1=0,7,1
DO 60 J=2%I+1,2%* (I+1),1
60 ISTATP (J) =1
C1(1)=0.0
IS8 (N2)=0
c SECOND DO LOOP (TRANSMISSION)
DO 900 LLL=1,LN,1
o SHIFT ALL ARRAYS .
DO 100 J=1,N1,1
Ja=J+1
151 (J) =151 (JA)
152 (J)=IS2 (JA)
1SS (J) =ISS (JA)
DO 90 I=1,4,1
90 IA(J, T)=IA(JA,I)
DO 100 K=1,MK,1
IX1 (K, J)=IX1{K, JA)
IX2 (K, J) =IX2 (K, JA)
100  IAD(K,J)=IAD(K,JA)
1SS {N)=ISS (N2)
C GENERATE INFORMATION DIGITS.
DO 110 1=1,4,1
110 IA (N, 1)=NINT(GOSDAF{0.0,1.0))
c CONVOLUTIONAL ENCODING AND SIGNAL MAPPING
. INPUT=IA (N, 1) +2*IA (N, 2) +4*IA (N, 3) +8*IA (N, 4)
DO 140 1=1,128,1
IF (ISS (N) .EQ. IXXX2 (I) .AND.INPUT.EQ.IXXX5(I)) THEN
II=I
ENDIF
140  CONTINUE
© ISS(N2)=IXXX1(II)
IS1 (N} =IXXX3(II)
152 {(N) =IXXX4 (II)
c CALCULATION OF THE RECEIVED SAMPLE
RR1=0.0
RR2=0.0 , -
DO 150 I=1,20,1
J=N+1-1
RR1=RR1+REAL (IS1 (J)) *Y1 (1) -REAL(IS2(J))*Y2{I)
150 = RR2=RR2+REAL (IS1 (J))}*Y¥2 (I)+REAL(IS2(J))*Y1(I)
c GENERATE AND ADD TH NOISE. :
W1=GOSDDF (0.0, P)
W2=G0SDDF (0.0, F)
RR1=RR14W1
RR2=RR2+W2
c CALCULATE ISI FOR EACH STORED VECTOR
DO 170 I=1,MK,1
2z1=0.0
222=0.0
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DO 160 J=2,20,1
Jl=N+1-J
221=ZZ1+REAL {IX1 (I, J1)}*Y1 {(J)-REAL{IX2(T, J1) )Y *Y2(J)
160 Z22=ZZ22+REAL (IX1(I, Jl))*YZ(J)+REAL(Ix2(I J1y)*Y1(J)
21 (I) = (RR1~ZZ1) *YY
170 22(I)={(RR2-222) *YY
C SEARCH FOR ALL VALID TRANSITION AND COST CALCULATIONS FOR
Cc ALL VECTORS.
DO 180 I=1,128,1
DO 180 J=1,MK,1
180  C2(J,1)=1000000.0
DO 210 I=1,MK,1
DO 210 J=1,128,1
IF (ISTATP (I) .EQ.IXXX2(J}) THEN
D1=21 (I} ~REAL(IXXX3(J})
D2=22{1)-REAL (IXXX4(J))
C2(I,J)=Cl1(I)+D1*D1+D2*D2
ENDIF
210 CONTINUE
Cc FIND 'THE VECTOR WITH THE SMALLEST COST .

|
CC=500000.0
DO 220 I=1,MK,1
DO 220 J=1,128,1

IF (C2(I,J) .LT.CC) THEN
cC=C2 (1, J)
11=1
JJ=J
ENDIF
220  CONTINUE
IX1(II,N)=IXXX3 (JJ)
IX2 {1I,N)=IXXX4 (JJ)
IAD{II,N)=IXXX5{JJ)
c ERROR CALCULATION
IEVK=IEVK+1
IF (IS1(1)-IX1(1I,1)) 250,240,250
240 IF(IS2(1)-IX2(II,1)) 250,290,250
250 ISER=ISER+1
IF {IEVK-32) 260,260,270
260 IEVA=IEVA+1
270 1EVK=0
290 CONTINUE
IAAD=IAD (II, 1)
DO 300 I=4,1,-1
JJ=2%% (I~1)
IF (IAAD.LT.JJ) THEN
IAA(I)=0
ELSE
IAA(I)=1
IAAD=IAAD~JJ
ENDIF
300  CONTINUE
DO 320 I=1,4,1
IF (IAA(I)-IA(1,I)) 310,320,310
310 IBER=IBER+1
320  CONTINUE
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330
340

350
360

380

420

430

440

450

460

DISCARDING OF ALL VECTOR WHICH DISAGREE IN THE
FIRST COMPONENT,
CC=1000000.0

DO 360 I=1,MK,1
IF(IX1(IX,1)-1X1(I,1)) 340,330,340
IF (IX2(II,1)-IX2(I,1)) 340,360,340
CONTIRUE

po 350 J=1,128,1
€2(I,J)=CC

CONTINUE

SELECT 2 VECTORS FOR EACH STATE .
Ji=0 '
Q01=0

po 430 11=0,7,1

DO 430 JJ1=1,MKK,1
CC=1000000.0

J1=J141

po 380 I=1,128,1

DO 380 J=1,MK,1

IF (I1.EQ.IXXX1(I)) THEN
IF(C2(J,I) .LT.CC) THEN
€C=C2{J,I)

JJ=J

II=1

ENDIF

ENDIF

CONTINUE

001=001+1

IXH1 (J1, N) =IXXX3 (II)
IXX2 (J1,N) =IXXX4 (II)
IADD (J1,N)=IXXX5 (II)

DO 420 K=1,K1,1

IXX1 (J1,K)=IX1(JJ,K)
IXX2 (J1, K) =IX2 (JJ, K)
IADD (J1,K)=IAD{(JJ,K)
CC1(J1)=C2(JJ,1I)
C2{JJ,II)=1000000.0
ISTATP (J1) =IXXX1 (II)
CONTINUE

TRANSFER ALL ARRAYS

DO 440 I=1,MK,1

DO 440 J=1,N,1

IX1 (I, J)=1XX1(I,J)

IX2 (1, J)=IXX2(I,J)
IAD(I,J)=IADD(I,J)
CC=2000000.0

DO 450 I=1,MK,1
IF(CC1(I).LT.CC} THEN
CC=CC1 (1)

11=1

ENDIF

CONTINUE

SUBTRACT THE SMALLEST COST.
PO 460 I=1,MK,1
C1(I)=CCl(I)}=-CC1l(II)
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c THE PROCESS CONTINUE WITH THE NEXT SYMBOL.
900 CONTINUE
C CALCULATE ERROR RATES AND PRINTQUT ALL RESULTS
WRITE (1, *)
WRITE (1,500) SNR,P**2
SER=REAL {ISER) /REAL {L)
EVE=REAL (IEVA) /REAL (L)
BER=REAL (IBER} /REAL { (L) *IBIT)
WRITE (1, 600) SER,EVE,BER
500 FORMAT (1X, 4HSNR=,F12.6, 2X, 10HNOISE VAR=,F12.6)
600 FORMAT (1X, 4HSER=,F9.7,1X, 4HEVE=,F9.7,1X, 4HBER=,F9.7)
1000 CONTINUE

END
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