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Psalm 27 of David.

The LORD fs my light and my salvation-- whom shall I feare The LORD
is the stronghold of my life— of whom shall 1 be afraide

When evil men advance agatnst me to devour my flesh, when my enemies
and my foes attack me, they will stumble and fall

Though an army besiege me, vy heart will not fear; though war break out
agatnst me, even then will 1 be confident.

One thing 1 ask of the LORD, this is what I seck: that 1 may dwell in the
house of the LORD all the days of my life, to gaze upon the beauty of the
LORD and to seck him tn is temple.

For i the day of trouble he will keey me safe in his dwelling; he will hide
me tn the shelter of his tabernacle and set me high wpon a rock.

Then my head will be exalted above the enemies who surround me; at his
tabernacle will 1 sacrifice with shouts of foy; 1 will sing and make wasic to the
LORD.

Hear my voice when 1 call, O LORD; be werciful to me and answer me.

My heart says of you, “Seek his face!” Your face, LORD, 1 will seck.

Do not hide your face fromt me, do not turn your servant away in anger;
you have been my helyer. Do not reject me or forsake me, O God my Saviour.

Though my father and mother forsake me, the LORD will recetve me.

Teach e your way, O LORD; lead me i a straight path becanse of my
OpprEsSOrs.

Do not tirn me over to the desire of my foes, for false witnesses vise uy
against me, breathing out violence.

1 am still confident of this: 1 will see the goodness of the LORD in the land
of the living.

watt for the LORD; be strong and take heart and wait for the LORD.




Abstract

The Internet and associated network technologies are an increasingly integral part
of modern day working practices. With this increase in use comes an increase in
dependence. For some time commentators have noted that given the level of reliance on
data networks, there is a paucity of monitoring tools and techniques to support them. As
this area is addressed, more data regarding network performance becomes available,
However, a need to automatically analyse and interpret this performance data now
becomes imperative. This thesis takes one-way latency as an example performance
metric. The term ‘Data Exception’ is then employed to describe delay data that is unusual
or unexpected due to some fundamental change in the underlying network performance.
Data Exceptions can be used to assess the effect of network modifications and failures
and can also help in the diagnosis of network faults and performance trends. The thesis
outlines how Data Exceptions can be identified by the use of a two-stage approach. The
Kolmogorov-Smimov test can initially be applied to detect general changes in the delay
distribution, and where such a change has taken place, a neural network can then be used
to categorise the change. This approach is evaluated using both a network simulation and

a test network to generate a range of delay Data Exceptions.
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Introduction

This thesis presents a novel means of detecting changes in low level delay
measurements taken from communication networks. These changes are termed Data
Exceptions. The work originates from a measurement project undertaken by
Loughborough University, funded by BT, where monitor stations are deployed to actively
monitor unidirectional latencies across BT’s SMDS network. A requirement of that
project is that Loughborough University provide reports showing any significant changes
to the measured delay values. These Data Exception reports are provided on a weekly
basis, not in real time as the purpose of these reports is to provide information regarding
the impact of network events rather than the detection of faults which would require real
time analysis. The goal of this thesis then, is to present a novel means of automating the
Data Exception Detection process and the approach presented is the central contribution
of the work. The approach need not operate in real time but had to reliably detect Data
Exceptions without raising large numbers of false alarms which undermine operator’s
confidence in such a system. Another desirable characteristic of the approach was that it

should require a minimum amount of training or parameterisation.

The main approach presented employs the K-S test statistic to detect for the
presence of a significant change in the data. The K-S test is particularly appropriate as it
is distribution free, making no assumptions about the distribution of the delay. Another
strength of the K-S test is that it tests for general changes, whether they are changes in
location or spread. The test is also computationally light and simple to perform. It will
be shown that this approach is a very proficient means of detecting changes in the data

and requires no training or parameterisation.

The second phase of the Data Exception detection process uses a neural network

to classify the change into one of several known categories. These are
= step changes

= changes in Time of Day Delay Variation

Xii



" spikes
»  weekends

Once trained the neural network classifies the changes with a high degree of
accuracy. Data Exception classification may prove to be useful as it allows related Data
Exceptions to be grouped together. These groupings are termed Data Collections and
may eventually allow for a system to output probable causes for the change in
performance that has been observed. It is hoped that further research may show that a
neural network may be trained to recognise generic Data Exception types independent of
the network which they are from. This would enable the entire two-stage approach to be
fully utilised without any training or parameterisation required. This would be a major

benefit over rule-based approaches that need parameterisation.

The thesis is structured in the following way:

Chapter 1
In chapter one an overview of network management is given with specific

reference to network performance monitoring. Consideration is given to different
performance measures, the terminology and what the measures represent. Measurement
tools are discussed and an overview of known tools that measure unidirectional latencies

is provided.

Chapter 2
Chapter two details the background to the thesis in the form of an overview of the

measurement work undertaken by Loughborough University and the measurement
architectures currently deployed. Also attention is given to the AIR (Automatic Incident
Reporting) system which incorporated a form of Data Exception detection. Work from

this thesis contributed to publications on the AIR system. [Phi99][PhiSan00]

xiii



Chapter 3
The concept of Data Exceptions is discussed more fully in chapter three and

examples are given both from monitoring systems at Loughborough and those of other

research projects.

Chapter 4
Chapter four outlines the various data sources available to this project. Aside

from the SMDS network, a simulation and a test network were used to generate delay

data that could be used to develop and assess Data Exception detection methods.

Chapter 5
Two approaches to detecting Data Exceptions are discussed in chapter five. An

early approach used a rule-based method that was implemented as part of the AIR
system. A more sophisticated two-stage approach was subsequently developed which
utilised the K-S test statistic to detect, and a neural network to classify Data Exceptions

and it is this approach that forms the core of the work.,

Chapter 6 .
In chapter six this two-stage approach is tested using data from both the

simulation and the test network and the results are presented.
Chapter 7

The conclusions are given in chapter seven, along with suggestions for further

work.
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1. Network Management and Performance Monitoring
In this chapter a general background to the thesis is given. We take a broad look

at the area of network management as a whole, the role of network performance
monitoring within that and some of the research projects that conduct performance

monitoring, specifically considering delay.

1.1 Network Management
With the rapid development of computer networks in recent times; network

management has become an increasingly important area, Many businesses and
organisations now have a high degree of dependence on network technology. Access to
shared resources and information rely on computer networks and network failures can
seriously impede working practices and even bring things to a standstill. The effect of
network failures can be very serious, costing companies like banks large sums of money.
As networks have grown in both size and complexity so the task of managing them has
become more involved. Understanding the sophisticated devices and systems that make
up a computer network and being able to take advantage of their features is now an

integral part of network management [Hel92].

Network management incorporates many areas. Networks must be designed,
planned out, installed, tested and then maintained and upgraded once the initial
installation phases are complete. Network management is necessary at all levels of
networking, from the physical layer, managing and maintaining the physical media that
form the network, right up to the application layer and the software programs and

processes that operate on the network.

1.1.1. SNMP
Network managers manage their network using software that allows them to

monitor and control the network. Such software will allow a manager to garner statistics
from routers and switches as well as hosts in the network. Software also allows control

of these devices enabling a manager to change device configurations.
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SNMP (Simple Network Management Protocol) is a commeonly used protocol for
network management. SNMP uses the client-server model incorporating agents and
managers. An agent is a server that resides on any network node and contains
performance information about that node. A manager is the client that retrieves
information from the agents or changes some agent attribute. SNMP uses the fetch-store
paradigm. This allows for just two commands; fetch, which retrieves information from

the agent, and store which assigns some new value in the agent.

The agents store information in objects. Each object to which SNMP has access
must have a unique name and be clearly defined. Collectively, the set of all objects that
can be stored at an agent are described as a MIB (Management Information Base). The
objects are accessed using ASN.1 (Abstract Syntax Notation One). SNMP does not
define the objects stored in a MIB, but rather establishes a message format for

communicating with a MIB.

1.2 Network Performance Monitoring
Network performance monitoring plays an important role in network

management. Performance data can be used to spot potential or actual problems on the
network. Trends may appear in performance data that could indicate long term problems.
In the short term these may not give cause for fanlt alarms and consequently might
remain undetected by network managers. Network performance monitoring allows such
trends to be seen and dealt with before any serious problem occurs. Network
performance data can be useful when analysing current problems as well, both in teﬁns of

characterising their nature and their impact.

Network performance data is also key in the planning and development of
networks. Performance data allows network managers to assess the strengths and
weaknesses of various network components and strategies and gives an up to date picture
of how the network is utilised [Cla96][Che00].

1.2.1. Hidden Failures
Interestingly, severe failures are often the easiest to diagnose and correct. Where

connectivity is lost altogether, establishing the location of the problem, its cause and the



Chapter | — Network Management and Performance Monitoring

remedy may be relatively straightforward. In contrast, intermittent failures may be much
harder to detect. Given that network protocols are designed to work with some measure
of loss, hardware failures that occur only infrequently can remain hidden. Although the
network hardware and protocol software contain procedures for dealing with errors
(normally retransmission), network managers still work to detect underlying faults as

they will inevitably have some impact on the overall network performance [Com99].

1.2.2. Improving Network Performance
When a network is performing badly the following loop (figure 1.2-1) is

employed to attempt to improve performance. The relevant network parameters are
measured, analysis is undertaken to try and understand what is taking place and then
changes are made. This loop is repeated until either the performance is deemed good

enough or alternatively there are no further improvements to be gained.

Measure relevant
parameters

Anai;:e and
Interpret data

-_— =
S

Change one
parameter

Figure 1.2-1 The Measurement Process

1.2.3. Performance Monitoring Techniques
There are three main techniques for evaluating network performance. These are

analytical analysis, simulation and practical observation. Analytical models are
mathematical representations, which relate system outputs to inputs by defining
functional relationships between the two. The working of a network can be modelled to

any desired level of detail if the necessary functional relationships are known.
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Simulation is used when the model becomes so detailed that the analytical solution is too
complicated. In these cases an experimental implementation of the network could be

used but this would be a very expensive solution.

Analytical analysis and simulation both fall under the remit of predictive
modelling. Predictive modelling can be very powerful and is necessary in designing and
building a network. For the first implementation of a network no observed performance
measures are available and so designers are completely dependent on predictive
modelling techniques to evaluate likely performance. The limitations of predictive
modelling stem from the simplifying assumptions that often need to be made, without

which the problem can become intractable.

Once a network is built measurements can be made. Performance measurements
are useful in that they monitor the actual, as opposed to the theoretical performance,
thereby exposing design flaws and inefficiencies in the network in addition to effects due

to user traffic.

1.2.4. Active and Passive Measurements
Performance measurements can be made in two ways, either actively (intrusively)

or passively (non-intrusively). Active measurements involve injecting test traffic into a
network for the specific purpose of monitoring some element (or elements) of that
networks performance. Passive measurements make use of traffic already in the network
and glean performance information from it. The advantage of active measurements over
passive measurements is that test traffic is under the monitors control and therefore can
be specified to any given parameters to provide the information required. The
disadvantage is that by injecting test traffic into a network the traffic load is being

increased and may potentially effect performance.

1.2.5. Performance Measures

1.2,5.1 Delay
The first performance measure we shall discuss is delay, Delay is one of the more

fundamentally important measures of network performance and is also a central topic for
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much of this thesis. The total amount of delay associated with information traversing a

network can be thought of as compromising of four parts.

1.2.5.1.1 Propagation delay
This refers to that time which it takes for the signal to be sent along some physical

medium, whether that be wire, fibre or even through the air. It is a fundamental delay

that is essentially constant and characteristic of the medium.

1.2.5.1.2 Switching delay
This is introduced by electronic devices in the network such as routers, switches,

bridges or hubs. This delay consists of a minimum element incurred due to the time it
takes for all the bits of a packet to be received and then for the decision to be taken as to

which destination the packet should be forwarded to.

1.2.5.1.3 Access delay
This arises when hosts have shared access to a network medium. An example

would be a host on an Ethernet network that may have to back off and wait for the
channel to become fiee before it is able to transmit. Similarly on a token ring network a

host has to wait for the token before it can start to send packets.

1.2.5.1.4 Queuing Delay
This occurs when packets are waiting to be serviced at various points in the

network. For instance, at a router where a significant amount of processing may be
required to encapsulate and route packets, packets will be quened until they can be
processed. Various queuing strategies are available to try and ensure a fair queuing

system.

Often when delay measurements are required the Round Trip Time (RTT) is used
as it can be easily obtained using tools such as ping. Round Trip Times refer to the total
amount of time required for a test packet (normally an ICMP packet) to traverse across a

network to some destination and to return again. The packet finally terminates at the
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same host from which it was transmitted. This is advantageous as it eliminates any need
for timing synchronisation. The same clock records the transmit time and the receive

time.

Measuring one-way delay is difficult, as timing synchronisation is required.
[Sid89] Some performance monitoring protagonists have argued that RTT is more than
adequate [Han00] and that there is little to be gained by measuring end to end delay,
given the complexities involved in achieving those measurements. However others have
pointed out that network paths can be asynchronous, meaning that the respective delays
encountered by outward bound packets and returned packets can be very different
[Cla93]. In these cases, RTT could be misleading. Later discussion will look at
performance monitoring projects that do measure end to end delay using GPS to give

timing synchronisation.

1.2.5.2 Throughput
The second fundamental property of the network is throughput. This refers to the

amount of data that can be sent through the network, or a section of the network.
Throughput is generally measured in bits per second (or Megabits/sec or even
Gigabits/sec). Another term that is used to describe throughput is bandwidth. As
bandwidth or throughput are sometimes referred to as the speed of a network it is
important to be clear that throughput and delay are distinct measures. The throughput
describes the amount of data that can be put onto a link, the delay describes the amount of
time the data will take to reach the destination. Comer [Com99] gives the example of a
road that can accept one car every five seconds (throughput 0.2 cars/sec). The road has a
delay of 30 seconds. Now if an extra lane was added to the road then two cars could join
the road every five seconds (throughput has doubled to 0.4 cars/sec) but the delay on the

road would still be 30 seconds.

Although throughput and delay are different measures and describe different
aspects of network performance the two are associated. Congestion occurs on a network
where the rate of traffic being sent over the network exceeds the throughput rate. A
congested network results in packets being queued before they can be sent. It should be

clear that this queuing time will affect the overall delay of the packet.



Chapter 1 — Network Management and Performance Monitoring

1.253 Jitter
Jitter (or delay variation) is the term used to describe the variance in delay. Jitter

is of particular relevance to real time applications such as video or audio streaming
software. In real time applications it’s not enough for the mean delay to be low, the
standard deviation also needs to be small so that there is no noticeable break in

communication.

1.2.54 Loss/Errors
Although loss and packets containing errors are on the whole invisible to a user as

they are generally dealt with by the hardware and software protocols that facilitate the
network, they are still a very important network measure. Where packets contain errors
or are lost they will often require retransmission. The more packets that are lost or

corrupt the greater the inefficiency of the network.

1.3 Current Research / Existing Tools
There is a feeling among the academic community that Network Service

Providers do not collect or make available sufficient performance measures concerning
their networks [Cla96][Pax98c][Che00]. There seems to be two main reasons for this
reluctance to monitor networks more comprehensively. The first difficulty is that no one
seems too sure what to monitor and what statistics to collect. The technology involved is
still in a fast evolving state and there is a suggestion that network service providers do not
know with any great confidence what information would be of use to them and what
would not. The second issue is simply that of priority. Enough effort is required in
getting and keeping network infrastructure operational that performance statistics have
been kept as a secondary concern. [Cla96] The issue is not so much whether generating
performance data would be useful, rather that there is no spare time or clear direction to

bring it about.

Despite the seeming lack of impetus, there is a growing belief that network
performance information is important. The motivating factors come from both within
and outside the telecommunication companies. Performance data is important for
identifying the causes to network faults and for solving them. Detailed information

allows faults to be analysed and understood. Performance data also allows trend analysis,
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potentially allowing managers to identify hot spots before they occur and instigating
preventative measures. These are good arguments for telecommunications companies to
take the initiative. Pressure is also growing from external bodies. As networks are
increasingly employed as a means of communication, users will want performance
guarantees. There is also the introduction of government legislation by bodies such as
OFTEL (UK) [OFTEL] ensuring that certain standards are met. Without performance
measurements there is no means of satisfying these various parties that standards are

being maintained.

1.3.1. Metrics and Methodologies
One of the areas being discussed presently is which performance measures to

collect. There are a number of statistics that can be generated, some probably of greater
use than others. Even where we know what statistics we want they still need to be
carefully defined; so for example, what one person/organisation refers to as one-way
delay is not misunderstood. For instance, when measuring delay, at what point does the
‘clock’ start counting? Ideally, these definitions would be standardised in such a way

that a common set of measurements (or metrics) could be used universally [Pax96].

Methodologies are the means of obtaining metrics. Metrics can be defined where
no methodology currently exists for obtaining them. Conversely there may be many
methodologies for obtaining the same metric. It may be that there are known flaws in
methodologies where the desired metric cannot be measured accurately but a good
indication still obtained. This may still be useful but needs to be documented. IPPM (IP
Performance Metrics) which is part of the IETF (Internet Engineering Task Force) have
undertaken to draw up standards and ratify new metrics and methodologies as

appropriate.

1.3.2. Performance Monitoring - Measurement Tools Overview
There are many measurement tools available, in addition to a quick look at ping

and traceroute, we consider five here. These have been chosen as they are similar to that
used in this project in that they measure similar metrics, namely one-way-delay (all

except ping) and loss.
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1.3.21 ICMP, Ping and Traceroute
The Internet Control Message Protocol (ICMP) is used to report network events.

There are about a dozen types of ICMP messages and they are transported in IP packets.

Some of the more important messages are listed in the table below (figure 1.3-1).

Message Type Description

Destination Unreachable Packet could not be delivered

Time Exceeded Time to live field hit O

Parameter problem Invalid header field

Source quench Choke packet

Redirect Teach a router about geography

Echo request Ask a machine if it is alive

Echo reply Yes | am alive

Timestamp request Same as Echo request, but with
timestamp

Timestamp reply Same as Echo reply, but with
timestamp

Figure 1.3-1ICMP Messages
The ping program makes use of ICMP Echo request and Echo reply messages (or
sometimes Timestamp request and Timestamp reply messages) to either test connectivity
or round trip time. Ping is widely available and comes as standard under operating
systems such as Microsoft Windows (95, 98, NT, 2000) and Linux. Ping was originally
written by Mike Muuss.

Traceroute, developed by Van Jacobson, also uses ICMP. Unlike ping, traceroute
outputs all the intermediate router hops it takes to reach the specified destination. Below

is output taken from both ping (figure 1.3-2) and traceroute (figure 1.3-3).

PING www.bbc.net.uk (212.58.224.31) from 158.125.51.167 : 56(84) bytes of data.

64 bytes from www1.thdo.bbec.couk (212.58.224.31): icmp_seq=0 tt1=247 time=28.120 msec
64 bytes from www1 thdo.bbe.co.uk (212.58.224.31): icmp_seq=1 tt1=247 time=32.308 msec
64 bytes from www1.thdo.bbc.co.uk (212.58.224.31): icmp_seq=2 tt1=247 time=20.507 msec
64 bytes from www] thdo.bbe.couk (212.58.224.31): icmp_seq=3 tt1=247 time=41.589 msec
64 bytes from wwwl.thdo.bbc.couk (212.58.224.31): icmp_seq=4 tt1=247 time=36.604 msec
64 bytes from wwwl thdo.bbe.couk (212.58.224.31): icmp_seq=>5 tt1=247 time=32.061 msec
64 bytes from www1.thdo.bbe.couk (212.58.224.31): icmp_seq=6 ttl=247 time=30.666 msec
64 bytes from wwwl thdo.bbe.couk (212.58.224.31): icmp_seq=7 ttl=247 time=28.275 msec

--- www.bbc.net.uk ping statistics —-
8 packets transmitted, 8 packets received, 0% packet loss
round-irip min/avg/max/mdev = 20.507/31.266/41.589/5.829 ms

Figure 1.3-2 Ping Output (ping www.bbe.co.uk)

10
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1 el-gateway-50.lut.ac.uk (158.125.50.1) 0.435 ms 0.318 ms 0.294 ms

2 emman-gw.lut.ac.uk (158.125.8.1) 0.987 ms 0.965 ms 1.024 ms

3 uon2-gw-vl.emman.net (194.82.121.130) 4411 ms 6.112 ms 7.201 ms

4 uonl-gw-6.emman.net (194.82.121.42) 12.348 ms 10.344 ms 12,524 ms

5 ce-gw.janet{146.97.25521) 20.145 ms 20.373 ms 23.826 ms

6 ext-gwd.ja.net (193.62.157.113) 21.743 ms 22.255ms 23.573 ms

7 linx-gw.ja.net (193.63.94.249) 15.645 ms 22.558 ms 18.422 ms

8 1t-linx-b.thdo.bbe.co.uk (195.66.225.103) 20.297 ms 25.060 ms 26.070 ms
9  wwwl.thdo.bbe.co.uk (212.58.224.31) 34.144 mg * *

Figure 1.3-3 Traceroute Qutput (traceroute www.bbe.co.uk)

1.3.3. Ping based tools
Ping has been adapted and used by other Network Measurement systems.

Although ping itself is a well-established tool it’s still being used for research as part of
larger schemes. Internet weather reports are provided by sites that poll other sites using
ping on a regular basis and then assess the networks performance using the delay data
gathered by these measurements. In the figure below (figurel.3-4), taken from Andover
News Network ITR site (Intemet Traffic Report) [IntTR], response time is plotted
against time. The response time reflects ping results from several servers that the site

uses to reflect the performance of the Internet.

Europe Response Time(ms) : Past 24 Hours
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Figure 1.3-4 Response time graph from an Internet Weather site [IntTR]

1.3.4. NIMI
The NIMI (National Internet Measurement Infrastructure) project is a network

measurement architecture based in the US [Pax98b][Pax98c]). The key focus of this
project is to create a measurement infrastructure capable of monitoring very large
networks. NIMI makes use of stations set as end-points for a set of measurements

therefore allowing for end-to-end metrics to be measured. NIMI uses Traceroute

11
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[Jac89], Treno [Mat96] and Poip (Poisson Ping) but is designed to allow for any tool to
be used as part of its measurement suite. The NIMI project hopes to move towards
diagnosis of problems by deploying probes at various points along the monitored network

paths. This will allow problem areas to be identified more specifically.

1.3.5. Surveyor
Surveyor [Kal98] measures one-way delay and loss by sending UDP test packets

(40 bytes including IP and UDP headers) between measurement test stations distributed
around the Internet. Timing accuracy is achieved using GPS antenna. Test packets are
sent, on average, every two seconds and then the results are summarised over a one-
minute period. The summary statistics used include centile values for average delay and
percentage loss. Surveyor was making use of some 38 machines in November 1998
having started with just 3. These are mainly at sites in the US but Europe is now

included.

1.3.6. RIPE
The RIPE project [Uij97][Uij98] is similar to Surveyor in that it also uses active

testing with GPS clocks for time synchronisation. The work is centred in Amsterdam and
the testing is conducted mainly across Europe. Again like Surveyor, RIPE transmits
packets using a Poisson sampling rate to avoid synchronisation between the test traffic

and other events on the network. [Flo94]

1.3.7. NLANR - AMP
The National Laboratory for Applied Network Research (NLANR) has been

working on creating a Network Analysis Infrastructure (NAI) [McGO00]. This
encompasses a variety of performance measures including a passive monitoring project
and an active measurement project. NLANR has also been working on the collection of
network management and control data. The Active Measurement Program (AMP)
measures round trip time, topology and loss. They have deployed over 100 AMP
monitors around the high-performance research networks in the United States (figure 1.3-
5).
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Figure 1,3-5 NLANR AMP Monitors [McG00]

1.4 Summary
In this chapter we have looked at the broad area of network management and

given particular consideration to the role of network performance monitoring with that.
Network performance monitoring forms an important part of network management, its
characteristics include delay, throughput, jitter and loss. We’'ve seen that One-Way
Delay can be measured using intrusive measurements although some form of timing
synchronisation is necessary. Examples of one-way delay measurement schemes are the
RIPE project and the Surveyor project. Round Trip Time can also be measured using

tools like ping. A monitoring scheme that measures RTT is the NLANR AMP project.

In chapter two we go on to look more specifically at performance monitoring
work undertaken at Loughborough which provides the setting and background of the

work discussed in this thesis.
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2. Performance Monitoring at Loughborough

2.1 Introduction
In chapter one a broad introduction was given to network management, network

performance monitoring and specifically monitoring tools that measure delay. In this
chapter we look more specifically at work conducted in this area at Loughborough
University as this gives important background information and puts into context the

purpose and aims of this thesis.

2.1.1. Background to Data Exception Detection
Researchers at Loughborough University have been engaged in the area of

network performance monitoring for a number of years. Much of the work provides
useful background to this thesis, as it should give a clear understanding of the motivation

behind and the need for a means to detect Data Exceptions.

2.1.2. Chapter Overview

As has previously been mentioned, measuring one-way delay is a non-trivial task.
Work has been carried out at Loughborough to develop a performance monitoring tool
capable of measuring one-way delay and loss as part of the BT funded URI project. Two
architectures are discussed here: The Walsall Test Architecture and the Portable test
system. The Walsall test architecture is used to continuously monitor the SMDS
network, providing an ‘ever present’ source of information. The portable test system is
used for more specific, short-term tests (hence the portability for ease of installation). In
both cases the aim 1s to indicate the type of performance experienced by the end user (i.e.
one-way delay). This is particularly relevant when consideﬁng service level agreements

that may exist between a network provider and their clients.

In addition to these test architectures a monitoring system, AIR (Automatic
Incident Reporting) is also described. AIR incorporates several aspects of the monitoring
process of which Data Exception Detection is one, hence the pertinence of the discussion

to this thesis,
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2.2 Walsall Test Architecture

2.2.1. Purpose and History
The Walsall Test Architecture was assembled and installed following the design

and implementation of a unidirectional latency and loss tester, developed at
Loughborough. The system was originally set in use, monitoring BT’s SMDS network,
in 1995. The purpose was to provide BT with performance measurements previously
unavailable to them, namely one-way delay. This enabled BT to demonstrate their
compliance with Service Level Agreements negotiated with their customers

[Phi9S][Phi96).

2.2.2, Physical Components and Layout
The architecture (figure 2.2-1) is made up of several components. Chiefly, there

are three monitor stations based at a BT Network Operation Centre (NOC) in Walsall, an
alarm station (also based at Walsall) and a control station based at Loughborough. Ofthe
three monitor stations one is used as the primary test station, one is used to run focus tests
and the third is an emergency backup. The test equipment is connected to the SMDS
network at five separate locations via Megastream links. These locations are
Birmingham, Bristol, Edinburgh, London and Manchester. An SMDS connection links

the control station to the test stations.
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Figure 2.2-1 The Walsall Test Architecture

2.2.3. Testing Strategy
The test points provide twenty one-way paths across SMDS. Test packets are sent

across the SMDS network, testing each route in turn with both small (64 Byte) and large
(1500 Byte) test packets. These represent the smallest and the largest packet sizes
available to us. Test packets are sent at a rate of one per second meaning that each test

(individual packet size and route) is tested every forty seconds.

No clock synchronisation is required as the same machine logs the transmit time
and the receive time. The only variable delay here is in the SMDS network itself; other
delays involved are either negligible (e.g. propagation along the Ethernet at Walsall) or
fixed (e.g. the megastream links). The access network is reserved solely for monitoring
purposes. If this were not the case then the tests would be affected by traffic on the

access network.

Loopback tests were conducted in conjunction with BT to measure the delay

attributable to the non-SMDS element of the test circuit. By subtracting this figure from
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the total delay we obtain a figure that solely represents the delay incurred traversing

SMDS.

2.2.4. Data Storage and Processing
The test stations log packet transmit and receive messages in log files stored on

their local hard drives. These files are retrieved to Loughborough typically twice a week.
The data is then processed to calculate delay and loss information and stored in a
database at Loughborough. The database uses a concept called intermediate information
(figure 2.2-2). This essentially gives a speed up in response time as a trade off against

storage space [Bas98].

‘Measurements  Information
- Intermediate
- Information
“Halfway-House”

Figure 2,2-2 Intermediate Information

2.2.5. Data Reporting
From the monitoring information, delay graphs are produced that show 50™, 95™

and 99" centile values, typically over a three hour window. These graphs are examined
for anomalies (Data Exceptions) and where such anomalies are found a report is
produced describing the change. These reports are generated historically and are
produced on a weekly basis. In addition to the weekly reports the alarm station, based at
Walsall, displays up to date performance information and also has some simplistic

thresholds designed to give warning of any serious performance impairment [Pag99].
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2.3 Portable Test Architecture

2.3.1. Purpose and History
As has been mentioned earlier end to end delay consists of two parts, access

network delay and core network delay. Where end to end performance has degraded it
might be due to either the access network or the core network or both. The portable test
system was designed to measure end to end delay between two arbitrary points in the

network and also to measure the delay on the access networks involved.

In practice the portable test system has been used to measure links between points

within the core network to give benchmark figures for delay.

2.3.2. Physical Components and layout

GPS
Monitor
Station
Station - " re—
Ethernetto SMDS  iSite Site " Ethernet to SMDS
Site A Site B

Figure 2.3-1 The Portable Test Architecture
The portable test system (figure 2.3-1) makes use of two test stations each

receiving a timing pulse via GPS antenna. A laptop computer running Solaris is then
used as the control station. The log files from the portable test stations can be retrieved to

the control station where they can be stored and processed.

2.3.3. Testing Strategy
As was mentioned above, in addition to end to end delay measurements, the local

site access is monitored. This is done by sending a test packet to the local gateway and
back again. Hence there are four tests, one for each site access and two tests traversing
the core network, one in either direction. The size of the test packets and the rate at

which they are sent can be tailored to suit the specific requirements of the test.
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2.3.4. Data Storage, Processing and Reporting
Data storage, processing and reporting is done in a similar manner to that

described under the Walsall Test System. The control station for the portable system is
nominally a laptop that can be taken to a remote site, however any Solaris based machine

that can access the test stations remotely could be used as a control station.

2.4 The Automatic Incident Reporting system (AIR)

2.4.1. Purpose and history
Given that some monitoring information exists, further work can be done to

collect, analyse and present this information so that it can be interpreted and if necessary,
action can be taken. The AIR system addressed these issues with the specific intention of

automating the process as far as possible [Phi99][PhiSan00].

2.4.2, Layered Approach
Jain describes the layered approach referred to here (figure 2.4-1) [Jai91]. In his

model there are scven layers, of which the top three generally involve some human

element.

Management

Console

Interpretation

Presentation

Analysis

Collection

Observation I

Figure 2.4-1 Jain Layered Approach [Jai91]
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The observation layer gathers raw data on individual components of the system,
in this case a network. These then need to be collected and analysed. Analysis at this
stage may simply involve calculating statistical summaries; thresholds might also be used
to trigger alarms. It is in this layer that Data Exception techniques might be
implemented. The information summarised by the analysis layer then needs to be
presented; this can be done in the form of reports, displays and alarms. The information
must then be interpreted; this is generally done by human beings or perhaps an expert
system. The console layer is the means by which managers can interface with and
control the network, allowing the management layer, at the top, to make decisions

regarding any action that may be required.

2.4.3. Observation
The AIR system was designed to incorporate any monitoring information source

that happened to be available. The observation layer could therefore include many types
of monitors. In practice two monitors have been used, the delay and loss monitors
described above in association with the Walsall Test Architecture and also an ATM
tester, that also monitors delay and loss, developed at BT's research laboratories at

Adastrel Park, Martlesham.

2.4.4. Collection
The data is stored in log files on the monitor stations and then retrieved on a

regular basis. It is stored in a database on a control station in a similar manner to that

discussed in the previous two sections.

2.4.5. Analysis
Analysis of the data included the calculation of statistical summaries and then the

application of a rule base to establish whether any Data Exceptions, that is anomalies in
the data, had occurred. Data Exceptions will be discussed more fully in the next chapter

and the rule-based approach used here is described in detail in chapter 5.
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2.4.6. Presentation
Data Exceptions are gathered together in data collections that are then stored in a

database which can be accessed using a viewer (figure 2.4-2).
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Figure 2.4-2 The AIR database viewer (screen shot)

AIR executes these processes auntomatically. By collecting together all relevant
Data Exceptions the aim is to make the interpretation of the data as simple a task as
possible. This might even lead to the automation of this layer although no work has been

attempted in this area. The top three layers are not addressed by AIR.

2.5 Summary
In this chapter we have looked specifically at research undertaken at

Loughborough. Relevant work has led to two test architectures, (The Walsall Test
Architecture and The Portable Test Architecture) and a monitoring system (The AIR
system). This thesis aims to detect Data Exceptions in the delay data observed by

monitor stations such as those discussed in the two test architectures. These Data
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Exception detection techniques may then be used by a system such as AIR as part of a

complete network management system.

In chapter three we discuss Data Exceptions in more detail. Examples of Data

Exceptions are presented and their causes considered.
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3. Data Exceptions
In this chapter the concept of Data Exceptions is discussed in more detail.

Although the concept is not novel or exclusive to this piece of work, very little has been
written describing the nature of Data Exceptions. In this chapter examples are given and

the causes of the different types of Data Exception are discussed.

3.1 What are Data Exceptions?

A given network has an associated set of network performance characteristics
[Pax98]. These may include any metric, which in some way characterises the
.performance of that particular network, These characteristics may be expressed as some
kind of fixed value or alternatively as a distribution of values. Therefore the set of
network performance characteristics fér a network could include the minimum possible
delay between two points on the network which would be expressed as a fixed value. ‘
Altemnatively, a performance characteristic could be the observed throughput along a

certain link, which would be expressed as a distribution of values.

An important assumption here is that these performance characteristics don’t
change except where the state of the network that they characterise changes. For this
assumption to hold we must take in to account the usage characteristics of a network, as
the way a network is used affects many network performance characteristics [Ho097].
The use of a network may change without its state (in a physical sense) changing in any
way. However for the purposes of considering and detecting Data Exceptions, the
general network use will be included as part of the network state. If a network user were
to introduce an excessively large volume of traffic so that it significantly altered the

network performance this would be thought of as a change in network state.

Given that the underlying performance characteristics remain constant so long as
the network is in an unchanged state, we now define Data Exceptions to be data that
reflect a change in these underlying performance characteristics and therefore a change in
the network. Data Exceptions are exceptions from the expected performance

characteristics that define a given networks performance at a given time.
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As was alluded to above there are changes in performance that are brought about
by the changes in network use. Certain usage patterns are included in our definition of
network state as they are consistent and predictable. Network usage on many networks
increases during working hours of the day leading to Time of Day Delay Variation
(which is discussed further on in this chapter). Further to the variation in delay observed
during the day a similar principle is applicable to weekends where less variation in delay
is observed than during the week. These changes are not Data Exceptions as they are

expected and are included as part of the network state.

Data Exceptions reflect some change in network performance due to some change
in network state. This may be due to any kind of network alteration, not just network
faults. Data Exceptions could include planned works, upgrades, reconfigurations as well

as unforeseen errors.

Data Exceptions could be found in any data source. This thesis deals specifically
with one-way delay but there are many other metrics that are being actively monitored
[AIm99a][Alm99b][Pax98a]. Data Exceptions, that is data that differs in some way

from that which was expected, could be detected in any of these sources.

As there are often many different monitoring tools monitoring one network, a
change in the network could trigger many Data Exceptions. Likewise, one monitoring
tool measures many different paths or nodes on a network. Again, one network event

might cause Data Exceptions in more than one of these measurements.

Where there are multiple Data Exceptions all referring to the same network event
it would be useful to have some automated means of collecting these together. Although
this is outside the remit of this thesis a basic means of collecting Data Exceptions

together is discussed at the end of this chapter.

3.2 Examples of Data Exceptions

3.2.1. Step Change
A commonly observed Data Exception, known as a ‘Step Change’, occurs when

the average delay either increases or decreases in such a way that all test packets are
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affected (see figure 3.2-1 for an example). That is to say that delay is altered by a
constant amount for each packet. Step changes can be any size but, as they become very
small it becomes hard to be certain whether or not the change is a genuine step change or
not. Step changes can occur when the network is reconfigured. Packets may travel over a
different route with different associated latency or the same route might be upgraded (or

even downgraded) in some way. [Mat00][PhiSan00]
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Figure 3.2-1 A Series of Step Changes

3.2.2. Time of Day Delay Variation Changes
As can be seen from the graphs, delay varies according to the time of day or to be

more precise delay fluctuates according to the amount of loading on the network, which
follows daily patterns. Therefore delay tends to be higher during the working hours of
the day than at night or at the weekends. Other work has shown that network traffic has
self-similar properties [Lel94]. This seemingly contradicts the notion of load varying
according to some pattern, however the time scales in which the fractal-like nature of
network traffic has been observed are considerably shorter than those being dealt with
here. Leland himself notes the possible presence of a time of day cycle [Lel94] when the
time scale is lengthened. This trend is extended further to bank holidays where again a

difference in delay is noticeable. This effect has been termed ‘Time of Day Delay
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Variation’ [Phi96]. Changes in Time of Day Delay Variation can occur when a link
becomes more reactive to high load. That is to say that during the working period of the
day, the effect of the high load on the network is more severe than previously. Another
potential cause for a Time of Day Delay Variation change could be a significant increase
in load due to client activity. Changes in Time of Day Delay Variation can also result
from reconfiguring the network and it is not uncommon for step changes and changes in
time of day variation to occur in tandem. Figure 3.2-2 shows four weeks of delay data.
During the week delay increases during the working hours of the day. On the fourth

week this additional delay increases.
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Figure 3.2-2 A Change in Time of Day Variation
3.2.3. Loss

Loss exceptions can take two forms, a continuous break or a period of high loss.
Although this work is primarily concerned with detecting changes in delay, the following
could be defined as loss Data Exceptions. If several packets are lost consecutively then
we infer that a short break has occurred. Without testing continuously it is impossible to
be certain that this is true but statistically speaking, if every packet sent over, say, a

twenty minute period (30 packets) is lost then there is a high probability that a short break
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has occurred. Alternatively if a high proportion of loss is observed over a specific period
then this could be reported as a high proportion of loss. By high proportion this might be
anything from 5% of packets upwards.

3.2.4. Delay Spikes
Spikes are sharp increases in delay that last for a relatively short pertod of time

(one to two hours). The increase need not affect all the test packets although the more
test packets it affects the more significant it is likely to be. Spikes can be of any size
although the spikes need to be clearly observable above fluctuation in delay caused by

lload. Figure 3.2-3 shows an example of a delay spike.
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Figure 3.2-3 A delay spike
Other researchers have observed examples of Data Exceptions. Although the
terminology is not standardised, phenomena such as step changes, ‘time of day’ variation

changes and spikes have been noted by the researchers working on the AMP project as

well as the Surveyor project. [McGO00][Kal98]
This example of a step change (figure 3.2-3) comes from the Surveyor project.

“[This Graph] shows a routing change between two sites, The two sites are in the eastern US, so the change
took place in the early morning, and is represented by a discontinuity in the delay. The minimum delay
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along this path dropped by about ten milliseconds. The receiving site is multi-homed, and changed the way
its network was advertised, resulting in the routing change.”
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» Bih percentide oeRy
« % 1h percentile wlay

Delay statistics over 1-mimate intervals starting 00;00 UTC, Friday, Angust 14, 1998

300
280 | .
260 | . |
240 i
220 b
200 . 1

A 180 ¢ ' -

g 160 -

» 140 - 4

A 120 .
100 F* - 4
8 '; M 1

B0 Pl ags e
o | TR a2 -
) mg_il
2 4 3 8 10 12 14 16 18 20 2 M

Hours since midnight —>

Figure 3.2-4 Step change example from Surveyor [Kal98]
Another example of a step change can be seen in the following graph (figure 3.2-

5) taken from data gathered by the Ripe project. [Uij98]

30



Chapter 3 — Data Exceptions

RibeTrends in the data/Example (2)

[ Median values | Py g i 1 Bt O1 Wt U AL
o' L
()
w
'_E" -
=100 U S S
-ﬂ!; -«M-J‘w‘ - "'“'h.'. b -~ berval
o C ——
21 ] DUOOUROOUURSSORN SN OTPOPTPUURUIUUE SO S e
IQuae
(=t
h il 1
a-M
&0 L
40
20 T
P rt o e vaR'Ty s %am.r
ol s L L L w10’
Q3B7.4 935038 93943 9337.7 9401.2 9404.6 9408.1 411.? 9%15
Date - Time [UTC

+ Different behavior from 10-26, change in routing?

Henk Uijterveal . IEPG, Adelaide,April §, 2000 - hetp: Fvawwripe net

Figure 3.2-5 Step change example from Ripe [Uij98]

Not all network delay measurement schemes will show time of day variation in
delay. A key difference between the research work described in this thesis and the other
measurement projects discussed in chapter 1 is that the Loughborough work focuses on
delay across a single network, owned by a single network provider. This allows the
performance data to be linked to specific network events and gives greater ability to
identify problem areas. Other network monitoring projects have been investigating delay
across the internet thereby potentially spanning several network providers, usage patterns
and even time zones which would make the time of day effect very much more complex.
Another related key difference is that many of the other measurement projects being
undertaken access the internet via a local network. Often additional delay incurred as a
direct result of the access network is far higher than the delay incurred from network
providers core network. The problem here is that the results from a measurement scheme

accessing the internet via a local network (a campus network for instance as is often the
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case for Surveyor) may be so dominated by that access network to make it difficult to

infer much about the performance of anything other than the access network itself.

This following example (figure 3.2-6) from the AMP project shows two graphs,
one of loss measurements, one of delay measurements. In the second graph time of day

variation in delay is visible.
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Figure 3.2-6 TodVar example from AMP [MecGO00]

3.3 How Can Data Exceptions be used?

3.3.1. Data Abstraction
Data Exceptions are an abstraction of the data. In this sense they are inherently

useful as they present performance information in a condensed and accessible form.
Information is only presented when something has changed from that expected and then

only the change itself is presented. This is a key benefit as the volume of measurement
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information increases. Sifting through the multitude of information for the relevant and
informative is a formidable task. Skilled analysts are expensive to train and retain so any

means of reducing or semi-automating the task is a significant step forward.

3.3.2. Gauging effects of network events
Data Exceptions are especially useful when gauging the impact of network events

such as faults and planned alterations or re-routes. Models or simulations can be used to
predict the effect that certain changes might have. Observing the direct effect on user
perceived performance, in terms of latency, brings a greater degree of certainty that any
alteration to the network has had the expected effects. It is surprising the degree to which
network operators are in the dark regarding the actual performance that their networks are
providing [Che00][Cl1a97]. The effects of alterations are often different from that which

was anticipated. Data Exceptions show exactly what the effects of a change were.

3.3.3. Network event detection and diagnosis
Data Exceptions can also be used as part of the network event detection and

identification process. The non-real-time aspect of the Data Exception detection methods
discussed in chapter 5 make it unsuitable as a front line fault detection method. Fault
detection at a fundamental level, detecting that a line has gone down for instance, is
better done using network management tools built around SNMP. However faults can
occur that are significantly harder to detect and that can remain unnoticed for some time
[Jai91]. Faults of this nature might be detected using Data Exceptions. One network
event will generally give rise to multiple Data Exceptions, as it is likely to affect multiple
tests. To identify and interpret network events some means of correlating and collating

the relevant Data Exceptions must exist.

3.4 Collections
Data Exception Collections contain all the Data Exceptions pertaining to one

network event, or a series of connected network events [PhiSan00]. The aim here is to
give as complete a picture as possible of a network event. Multiple views of the event
may be necessary to determine information about the event. For instance if a test

monitors the delay between two points on a network and a Data Exception occurs on that
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test there is no immediate way of knowing whereabouts along the link an event has
occurred. If tests are being conducted on several paths, some of which show the Data
Exception and some do not, then it may well be possible, given that some topology
information is known, to deduce whereabouts the network event that gave rise to the Data

Exceptions occurred.

w > >
1
OO0Ow

Figure 3.4-1 A simple example of the need for collections
In the example above (figure 3.4-1), if we were monitoring each of the paths A to
B, A to C and B to C then both the Data Exceptions that should be reported on A to B and

B to C would be necessary to deduce whereabouts the event had occurred.

The concept of collections was implemented in the AIR system mentioned in
chapter 2 [Phi99]. Collections were formed by correlating Data Exceptions using three
fields: testid (route information), time and type. If Data Exceptions matched on two of
these three fields they were stored together in a collection. Although this is fairly

rudimentary approach it served its purpose adequately.
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3.5 Summary
In this chapter the concept of Data Exceptions has been examined in more detail,

examples have been given and causes discussed. The idea of Collections has also been
introduced as a possible further step. In the next chapter we consider the data sources
available to the project. These data sources were used to develop and assess Data

Exception detection methods.
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4. Data Sources
In this chapter the data sources available to this project are discussed. These data

sources were necessary in order for Data Exception Detection methods to be developed

and tested.,

4.1 Essential Criteria

4.1.1. Data Completeness
In order to develop and assess techniques for detecting Data Exceptions,

performance data is required. The data is needed so that correlation between network
events and network performance data can be observed, learnt and finally validated and
tested. An essential criterion for the data is that it should be complete. It is of limited use
to know what network events have occurred without having access to the corresponding
performance data. Likewise the performance data is only partially useful without
knowledge of the network it describes. Where the data is incomplete it may be possible,
by estimation and inference, to make good the shortfall but this path is strewn with
difficulty and danger and is undesirable. The problem here is that estimation and
inference can lead to incorrect assumptions. Bogus data may have an adverse effect on

the derivation of a detection method leading to faulty results.

4.1.2. Data Range
Another useful quality that the data set may have concerns the range of events it

represents. It would certainly be of benefit if as many different types of network event as
possible are recorded and represented. If during the monitoring process only one kind of
event is observed out of a large set of possible events, then any detection technique based
on this data will be tailored to deal with only that event. In a sense this is another kind of
‘incompleteness’. Ideally all network events should be included but this is not possible
as the range of possible things that may happen to a network is very large. However, a
broad range of network events, in terms of their impact on the network, can and should be

considered.
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4.1.3. Controllable data
To make experimentation easier it is desirable that the data be in some way

controllable. The ideal scenario is one in which data can be produced on demand
allowing for any gaps or thinly covered areas to be supplemented. This necessitates the
ability to generate or cause network events. One might say that this is a ‘desirable’ rather
than ‘essential’ criterion, The point here is that it is impractical to simply wait for the
right set of data to be gathered; it might be any length of time before certain network
events occur, The preferable option is to be able to affect the network in such a way as to

be able to cause network events and observe the resultant data.

4.2 Potential Data Sources — an overview

4.2.1. Commercial network
These criteria, that the data should be complete and that they should cover the full

range of network events poses a problem - how can we obtain such a data set? Data from
a large commercial data network is excellent in that it represents the actual problem in
hand. However it may not meet the criteria set before us. Firstly, obtaining accurate and
detailed information regarding network events from commercial data networks is difficult
as operators are understandably reluctant to make such information public knowledge.
Even where access is granted to collect performance data, full explanations of the
network events may not be forthcoming, partly as the company may be reluctant to

release such information, partly because they may not even know.

Even if such information were available our second criteria also presents a
stumbling block. How can we guarantee covering a full range of network events during
our monttoring period? This data source is definitely not controllable and considerable
difficulty may be encountered in trying to persuade operations managers to allow live
network equipment to be tampered with, simply so that performance data can be

gathered!

Data from a commercial network {BT’s SMDS network) has been available to this
project. While the data on it’s own is not sufficient to enable the design of a reliable
exception detection method, it has been useful. It has been helpful to be able to verify

that data generated by other methods (see below) are realistic. If a simulation tool, for
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instance, were all that was available it would be hard to ascertain whether or not the
output that was being produced behaved in a manner that was realistic and consistent

with that of a commerctal network.

The SMDS data was also useful in characterising the nature of delay data. Early
work on this project investigated the distribution of delay data, of particular interest was
whether or not the data were normally distributed (see Appendix E). Also Data
Exceptions that could be grouped together and categorised were identified from the
SMDS data.

4.2.2. Network Simulation
In addition to data from SMDS, two other solutions have been investigated.

Modelling a network scenario has not been seriously considered due to the immense

complexity involved in trying to model a network of the size we are considering.

The first solution is to simulate a network. Various packages exist, both freeware
(often developed by academics) and commercial sofiware, that allow network scenarios
to be built, observed and recorded. Simulations have the advantage of allowing
considerable complexity (in terms of network topology) to be generated with the
minimum degree of difficulty. This makes them excellent in terms of experimentation as
large networks can be generated and tom down again with ease, facilitating rapid

adaptation and easy development to suit the nature of the problem.

4.2.3. Test Network
The second solution is to use a test network. This is a relatively expensive

solution and is not as flexible as a simulation. A test network is advantageous though in
that simulations, however good, are always going to be simplifications to some degree or

another. A test network will present ‘real’ data, inclusive of any quirks that might exist.

Both solutions allow full control over network events and full access to the

complete data set.
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All three of the methods of obtaining data mentioned above were used. The data
from BT’s SMDS network was used primarily for the author’s own benefit in
understanding the nature of Data Exceptions, how they can occur and what they might
look like and also in verifying work done using the simulation. The data from SMDS

was not used further due to the limitations described earlier.

4.3 SMDS Data
SMDS data has been collected and stored by the High Speed Networks group at

Loughborough over the past five years. The data is taken from twenty one-way paths
across SMDS encompassing five ingress/egress points. For a more complete description

of how this data is obtained please sec chapter 2, ‘Performance Monitoring at

Loughborough’,

4.4 Simulation - NS
NS [NS], a free network simulator developed in the US at Berkeley University of

California, was used to simulate a network. NS was chosen due to the readiness of its
availability (it can be freely downloaded from the internet) and the level of support in the
form of a comprehensive web site including tutorials, help pages, documentation and a
mailing list. Of the other network simulation packages considered BONES [BONES]
was in the throes of becoming obsolete, OPNET [OPNET] was an expensive alternative
(although probably easter to use) and CNET [CNET] didn’t appear to have the required

level of development and support.

The network consisted of 8 peripheral nodes, a core of 4 nodes and 3 nodes
attached at each point on the periphery (3 to each of the peripheral nodes) from which the
various agents sent and received data. Each peripheral node had attached one node that
was used to send telnet style traffic, one node to send fip style traffic and one node to
send monitor traffic. A peripheral node is shown in figure 4.4-1 and the overall topology
in figure 4.4-2.

40



Chapter 4 — Data Sources

elnet Source

,.\

FTP

M
i

ce

['{lm
0
: c
&

Monitor

Figure 4.4-1 A peripheral node
The topology needed to contain sufficient inherent complexity to give rise to
interesting Data Exceptions. This desire for complexity had to be tempered however with
the practical considerations of implementing the simulation (running time, storage space).
This structure seemed to allow reasonable flexibility for simulating network events whilst

still being manageable.

Figure 4.4-2 The NS Topology

Telnet sources were linked with a traffic sink at each of the different peripheral
nodes, meaning that at any one peripheral node there were seven telnet sources (one for

each of the remaining nodes)!. These were then set off at random. Similarly, fip sources

! The seven telnet sources and the seven fip sources are represented by just one node each on the diagram.
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were established at each peripheral node to send to all the other peripheral nodes. Again,
the traffic from the fip sources was sent at random. Although both the fip and the telnet
sources generated traffic at a random rate, the probability of a source sending traffic at
any one time was altered so that the it was higher during the working hours of the day.
This gives the “Time of Day Variation’ effect discussed in earlier chapters. The ftp and
telnet sources were chosen to load up the network as they offered contrasting traffic

profiles and were relatively simple to implement.

The monitor agents transmitted a fixed size packet to each of the other monitor
nodes at constant intervals. The latencies experienced by these packets were then

recorded and later used for analysis.

The simulation was run over a 336 second period where each second represented
an hour in real time {24 second days). The simulations are therefore representative of a
two week period. On each simulation run (at least) one network event was introduced.
The network events that were simulated were: links going down, nodes going down, links
simulating faulty behaviour, traffic re-routes, links being introduced and the introduction
of other erroneous traffic sources. An example of the TCL scripts that were used to

specify these network scenarios can be found in Appendix A.

4.4.1. NAM (Network Animator)
The output from NS is flexible and can be specified. Standard functions exist for

the generation of text files that are in a format that can be passed on to NAM (Network
AniMator) (this file is called out.nam). This allows a complete viewing of the entire
simulation. The NAM files were used mostly in the design phase as they provided a

good overview of what was going on and could be accessed and understood instantly.

r-t321.878 -5 6-d 20 -p ack-e 40 -c 5 -i 1263144 -2 5 -x {35.2 20.8 4962 —--—- nqu}
+-1321.878-520-d 6-p1cp - 1000 5-i 1263624 -2 5 - {20.8 35.2 4973 «---mo- null}
-t321.878 -5 20-d 6 -p tcp -e 1000 -¢ 5 -1 1263624 -a 5 -x {20.8 35.2 4973 ---veun null}
h -1 321.878 -5 20-d 6 -p tcp-e 1000-¢ 5 11263624 -a5-x{20.8 35.2 -1 «-=--m ull}
--1321.878 -5 10-d 32 -p tcp -e 1000 -c 5-1 1263301 -2 5-x {207 32.2 6281 ------- mall}
h -t 321,878 -5 10-d 32 -p tcp -¢ 1000 -¢ 5-i 1263301 -a 5-x {207 32.2 -1 -=emnme null}
r-t321.878 -5 11-d 13 -p cbr-e 333 -c 3-i 1263489 -a 3 -x {33.13 30.13 6416 ---——— null}
+-1321.878 -5 10-d 30 -p cbr-e 333 -¢ 3 -1 1263489 -a 3 -x {33.13 30.13 6416 ------ null}
--1321.878-5 10-d 30-p cbr-e 333 -¢ 3 -1 1263489 -a 3 -x {33.13 30,13 6416 ----—-- null}

Figure 4.4-3 ‘out.nam’, text output from the NS simulation
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The output shown in Figure 4.4-3 is formatted especially to be read by NAM so
that it can be animated. Below, in Figure 4.4-4, is a screen shot of just such an

animation.

]

Figure 4.4-4 Screen shot from NAM

4.4.2. Test.out
A file called ‘Test.out’ was produced that simply represented the output of every

action that occurred and the time at which it occurred (see figure 4.4-5). These files
" contained all the information allowing specific analysis but required further processing
before that analysis could be easily achieved (The test.out files were around 1GB in size).

+335.999555 1 2 ack 40 ~------ 5 23.13 35,10 5397 1387120

- 335999555 1 2 ack 40 ------- 5 23.13 35.10 5397 1387120

- 335999759 35 11 tep 1000 ------- 535.13 32.13 4840 1387092
r335.999776 5 0 cbr 333 -~ 3 15.7 33.1 6691 1387102
+335.999776 0 1 cbr 333 ------- 3 15.7 33.1 6691 1387102

- 335.999776 0 1 cbr 333 ----—- 3 15.7 33.1 6691 1387102
£335.999885 8 24 cbr 333 ----- 312.3 24.0 6630 1387039
r335.999943 2 10 tcp 1000 ----—- 0 25.9 31.4 5420 1387071
+335.999943 10 31 tep 1000 emevene 0259 31.4 5420 1387071

- 335999943 10 31 tep 1000 «---ee- 025.931.4 5420 1387071

Figure 4.4-5 ‘test.out’, text output from the simulation
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The data that were used to monitor the network were the latencies of the monitor
packets. These had to be filtered out from the ‘test.out’ file, this was done in the first
instance by simply using the ‘grep’ program in UNIX and the results were put into a file
called ‘monitor.out’, Delay files were generated, one for each of the paths monitored, by
further processing the delay data. Initially this was done using an AWK script posted on
the NS users mailing list. Rewriting the script in ‘C’ gave the process a considerable

speed up. The overall process is shown below.

Simulation
(NS)

Post Process
{C program)

Tel Seript Test.ouk : : Monitor.out : : Delay files : :

Figure 4.4-6 Getting Delay Data from an NS simulation

So for each simulation 56 delay files were produced, showing the one-way delay
on different routes across the simulated network (The entire process is shown in figure
4.4-6 above). Each delay file has just two fields, the transmit time (hours since the
beginning of the simulation) and the delay. Below (figure 4.4-7) is a sample delay plot.
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Figure 4.4-7 A sample delay plot from NS

4.5 Test Network

4.5.1. Network Design
A test network was designed and built using equipment donated by Cisco

Systems. The network consists of eight 2600 series routers and four Catalyst 1900 series
switches (figure 4.5-2). In designing the network several key aspects were taken into
consideration. As with the simulation there needed to be sufficient complexity inherent
in the design to allow for a variety of network events. Whereas with the simulation the
limiting factor was processing power and storage space, the test network was restricted
only by the cost of the equipment. This included network components such as the routers
and the switches and end stations used for monitoring the network and generating traffic

to load the network.

The Cisco 2600 routers have a network module slot and two WIC (Wide Area
Interface Card) slots (see figure 4.5-1). This allows a number of different types of

interfaces to be fitted to the router depending upon the requirements of the user.
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Figure 4.5-1 The rear of a Cisco 2611 router
Both the Network module slot and one WIC slot were fitted with serial interfaces
giving a total of six serial interfaces, four on the Network module slot and two on the

WIC slot. These were in addition to the two Ethernet ports that came as standard.
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Figure 4.5-2 Routers and Switches

The design chosen has two meshes, each with four routers (figure 4.5-3). The aim
here was to include as much redundancy as possible giving more scope for Data
Exceptions. Mesh A interconnects the routers using point to point links. The protocol
used here is LAPB running over serial cables. These links have a capacity of just

0.12Mb. This is ideal in that it makes the task of loading the network up to capacity far
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easier. It should be remembered that the purpose of this section of the work is to generate
Data Exceptions. These do not have to be generated at high data rates. If the test
network had high performance difficulties would have been encountered in trying to
generate sufficient traffic to load up the network in a realistic manner. Mesh B, in
addition to the four routers, makes use of four Ethernet switches. The switches are used
to connect the routers together. The links on this network are Ethernet and have a
capacity of 10Mb, which is still relatively low performance (in comparison to the SMDS
core for instance) but is significantly better than Mesh A, providing a good contrast. The
two meshes, A and B are inter-linked again using LAPB although this time with a
capacity of 4Mb.

The Internet

- Lo mas
e renye,.
LITS

I |

d

Figure 4.5-3 The test network design

4.5.2, Traffic Generation
Traffic was generated using six Linux based PCs. Although there is software

available to perform traffic generation nothing could be found that would easily emulate
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the varying load seen on wide area networks such as SMDS. Consequently a traffic
generator was written that would fulfil the desired criteria. The important factors for the
generator were that it should be able to vary its output in a random manner according to
the time of day. The traffic generated did not need to emulate profiles observed over
customer networks in terms of the micro detail such as traffic profile, ‘burstiness’,
distribution or type; rather it needed to replicate the general volume of traffic,

proportionally, as seen on commercial networks,

Each traffic generator ran a number of sessions. A session described the traffic
generated between itself and one other generator. A session contained the following

attributes (figure 4.5-4).

Name Schedule

Traffic Level Start Time

Day Length Server Port Number
Quantity Server IP Address
Day Number of days to run
Transport Type Transmission Rate

Figure 4.5-4 Table of session attributes

4521 Schedule
A day consists of 1440 minutes. The schedule is an array containing 1440

elements and it determines whether or not the traffic generator will be active during each

of these minutes.

4,5.22 Traffic Level
A day also consists of 24 hours. The Traffic Level is also an array and contains

24 elements, it is used when calculating the schedule. Where the Traffic Level is high,
the probability that activity will be scheduled during any one of the minutes in that hour
will also be high,
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4523 Start Time
The session can be configured to start at any time. This is governed by the system

clock.

4.5.2.4 Day Length
A day need not be 24 hours! Virtual days can last from anything from one minute

up to 24 hours. This allows results to be generated at a faster rate than real-time.

" 4525 Port Number & IP Address
A server Port Number and IP Address have to be specified for the traffic to be

sent to. If the transport type is set to UDP a server may not be running on this port
number but the field must still be set. If the transport type is set to TCP then the port

number must be set to the number that the server is listening on.

4526 Quantity
This attribute sets the number of packets that will be sent each time the schedule

activates the traffic generator. The packets will be of a random size, uniformly
distributed between 100 and 1500 bytes. The Quantity should be changed depending on
the day length. If the day length is set to 24 hours then the quantity of packets sent each
time the traffic generator is called should be significantly larger than if the day length

was set to 1 hour. Linear scaling is appropriate here.

4.5.2,7 Day
Each session starts at day 0. This is then incremented at the end of each virtual

day until it equals the ‘Number of Days to Run’ attribute.

4.5.28 Transport Type
This can be set to either UDP or TCP. UDP is generally preferable as there is no

need to configure a server since a connection does not need to be established. Also the

TCP protocol prevents any overloading of the network.
4,5.29 Transmission Rate

The transmission rate is controlled using an active wait. The traffic generators are

connected to the network via 10Mb/s links. This means that the total amount of traffic
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produced by one traffic generator cannot exceed 10Mb/s. In practice 8Mb/s is a more
realistic figure for the link speed. The traffic generators have not been tested on faster
links to see what transmission rates they are capable of but there has been no issue

utilising the whole of the bandwidth available where required.

4.5.3. Monitoring the Test Network
Monitor stations had previously been developed at Loughborough for work on the

SMDS network (see Chapter 2) and these were used to monitor the Test Network. Four
monitoring stations were employed, this was the maximum number that could be
supported without producing more timing cards. Timing synchronisation was achieved
by configuring three of the monitor stations to draw their timing pulse from the fourth.
As the network is entirely situated in one place the monitor stations can be placed
adjacent to one another allowing the timing synchronisation issue to be localised. Where
the network is more widely distributed timing synchronisation can be obtained using GPS
(see chapters 1 & 2). The monitor stations, two on each mesh, monitor paths to each
other giving twelve one-way test routes, each being tested with both 64byte and 1500byte
packets. These results are stored in log files on the monitor stations. A control station is
used to retrieve the log files, process them into a database and draw summaries from
them as required. A picture of the monitor stations, together with the traffic generators is

shown in figure 4.5-5.

Network events were introduced to produce Data Exceptions. These included
changing router configurations, changing routing priorities, unplugging cables,

introducing extreme traffic levels.
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Figure 4.5-5 The Traffic Generators (left) and the Monitor Stations (right)

The log files containing the raw information are stored on the monitor stations. A
command language was previously developed to control the monitor stations and this
allows the log files to be retrieved to a control station where they are processed into a
database. Querying this database then gives the end to end delay. An example plot is
given in figure 4.5-6.
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Figure 4,5-6 Delay plot from the test network
4.6 Summary

In this chapter we have looked at the data sources available to this project. Delay
data is necessary for training and testing exception detection methods. Three sources of
data have been available to this project. Data from BT’s SMDS network has been used to
learn about the nature of Data Exceptions and validate data produced by a network
sirhulation and a test network. NS was used to simulate a network and network events
were incorporated into these simulations to give Data Exceptions. A test network was
also constructed and then monitored using monitoring tools discussed in chapter 2.

Network events were then introduced again to give Data Exceptions,

In the next chapter we go on to look at two methods of detecting Data Exceptions.
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5. Detecting and Classifying Data Exceptions

5.1 Introduction
Two methods for detecting and classifying Data Exceptions are discussed in this

chapter. The first, a rule-based approach, was a first attempt at solving the problem of
Data Exception detection. It was implemented as part of the AIR system [Phi99]. The
second approach is more refined and makes use of a two-phase process. The K-S statistic
is used to initially detect the presence of a Data Exception in the data. A neural network

is then used to classify the type of Data Exception that has occurred.

5.2 Rule-based Approach
A rule-based solution has two significant advantages. Firstly, it is the simplest

solution and secondly it is a predictable solution and easy to trace. If a rule set can be
found that accurately defines Data Exceptions then it would be the obvious solution and
presumably the fastest one. There is no sense in devising a complicated process such as a
neural approach or a statistical approach when it will not better a simpler, readily
available process such as a rule set [Tar98]. A rule-based system also scores highly in
that it is predictable. Given a set of inputs the output can be calculated and understood.
This can be a requirement of ‘mission critical’ software solutions and is advantageous in

tracking any errors that may occur.

A rule-based solution was devised that attempts to describe the different Data
Exceptions accurately, in such a way that rules can be put in place to test for the different
exception types. The rules make use of a ‘feature set’. A feature set contains various
features, or statistical properties that describe the data (such as the mean or the standard
deviation). Features are calculated for new data and a feature set is held over from
previous data to provide a benchmark for comparisons. These features are combined to
give ‘indicators’. Indicators are, in essence, higher level features that can be tested
directly against thresholds to check for exceptions. Indicators can be features themselves,
a combination of current features or a combination of current and historical features. The

rules return an exception type or no exception if none are found.
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As Hood notes [Ho097], the use of thresholds to test for faults is quite common
both in practice [Mad94][Wal91] and in research [Den93][Gol95] for detecting unusual

network behaviour. These are generally used to test whether some variable {often stored

in the MIB) has drifted significantly out of bounds.

Data Feature Tables

Indicators

Exception
Report

U
(]
u).

i

Current State
Feature Table

Figure 5.2-1 Exception Report Generation

A complete list of the features and their derivations is given below in figure 5.2-2.

Each of these features is calculated over a day.

Feature Derivation Description
Mean ( 12} The mean will be the sum
2. di
— of all the delay
ﬂ =
. measurements, divided by
the total number of delay
measurements.
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Standard Deviation (from 5y ( d'—/,l)2 The standard deviation is
the mean) (&) g = ——— derived by summing the
" squares of the differences
between each value and the
mean value.
Median (M) The median is the (n+1/2)th
M=d where _ )
"TH value if the values are put in
d<d.. Vi rank order.
Maximum (max) max = d. where The maximum from the set
d- > di Vi of delay data.
Second (sec) sec = d, where max | The second highest value
>d.>d; Vi from the set of delay data.
Minimum (min) min = d. The minimum from the set
where d. < di of delay data
Yi
Change in delay (Cd) A second set of values can
Cdi = d:' - di + 1 . .
be derived, that being the
change in delay (over time)
at each point
Mean Change in delay S Cd As for mean delay
(Cu) Cut = ——
n
Standard Deviation of S (Cdi~Cu )2 As for standard deviation of
Change in delay (from the co = delay
mean) (CE) n

56




Chapter 5 — Detecting and Classifying Data Exceptions

Median Change in delay As for median delay
CM = Cd
(MC) r
where
Cdi £ Cdi+1 Vi
Maximum Change in delay Cmax = Cd. The maximum from the
(C max) where Cd. > Cd: | Change in delay set (Cd;)
Vi |
Minimum Change in delay Cmin = Cd. The minimum from the
(C min) where Cd. < Cd; | Change in delay set (Cd;)
Vi
Total Change in delay (C Ctot=d, - dn The Total Change in delay
tot) is the difference between

the average delay at the
start of the day and the
average delay at the end of
the day

Figure 5.2-2 Table of Features

These indicators are then calculated:

Indicator Derivation Description

Peak (P) P = max —sec The difference between the
maximum and the second
highest delay value

Spike Ratio (SR) SR = P/(sec —min) The ratio of the difference

between the maximum and
the second highest delay
value against the difference

between the minimum and
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the second highest delay

value

SD Change (SDC) SDC = SD. - SD, The difference between the
current standard deviation_
and the observed standard

deviation

SD Ratio (SDR) _ SDR = SD./SD, The ratio of the current
standard deviation against

the observed standard

deviation
Maximum Change Max2Max = Max.— The difference between the
(Max2Max) Max, current maximum and the
observed maximum
Minimum Change Min2Min = Min,— The difference between the
(Min2Min) Min, current minimum and the
observed minimum

Figure 5.2-3 Table of Indicators

These indicators are then compared against thresholds which, if exceeded, flag up
exceptions. These thresholds can be set differently depending on the source of the data
being examined. The values to date have been based on experience and ‘rule of thumb’
rather than using any optimisation technique although this would be a useful area to

explore further.

The changes in maximum and minimum and the total change in delay are all used
to detect step changes. Total change in delay is measured over the last day and is the
simplest of the three measures to relate to a step change. The total change in delay is not
sufficient on its own to detect step changes. One potential scenario is where there are
two step changes within the day period. The total change from the beginning of the day
to the end of the day may be negligible but two step changes would have in fact taken
place. The changes in maximum and minimum are used to pick this up. In the case of a

decrease in delay followed by and increase the minimum delay for the day decreases.
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This is a good measure in that it doesn’t suffer much variation, the minimum delay is a
fairly consistent value relative to step changes. The maximum however is a lot less stable

and therefore less useful in detecting step changes.

The spike ratio and the peak value are used for detecting spikes. On some routes,
high delay variation can make it difficult to detect spikes. The idea here is that the
increased delay from the spike should be, relatively and numerically significantly higher

than other observed delay values.

The changes in time of day variation are detected using the change in standard
deviation value and the ratio between the current standard deviation and the observed
standard deviation. This is not a wholly satisfactory measure, as it takes no account of
when the periods of high delay take place during the day, a key feature of time of day
variation. However as a temporary feature it does indicate when the time of day variation

shifts significantly.

The entire rule set that was implemented in Java as part of the AIR system and is
given below in extracts from the function. The key objects are the two feature sets, one
that is the currently stored information (curr) and the other being the information that has
just been taken from the test (test). These contain all the features mentioned in the above
table. The thresholds are stored in a TestParameters object called limit. The six
indicators are declared at the start as float variables. Other variables of note are type
which refers to the type of exception that has been detected, weekend which is a Boolean
value indicating whether the test feature set is taken from a weekend and hoeliday which

carries over the value of the standard deviation from the last weekend date.

if { currmaximumDelay ==0) {
if {testmaximumDelay 1= 0) {
exception += "Testing Started\n";
test.standardDeviation = §;
holiday = test.standardDeviation;
type = "stant”;
}

}
else §

if (lastDelay == 0 &8 test.maximumDelay == 0 {
exception += "No Data";
test.standardDeviation = curr.standardDeviation; // StandardDeviation won't be updated
type = "loss";
}
}

if ( Yoype.equals(“start”) ) {
if { testminimumDelay == 0 88 test.maximumDelay = 0) {
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In this first code excerpt (above) the function looks for missing data (loss) and for
the possibility that the monitoring has just started. This is done primarily using the
maximum and minimum values. Where the maximum value for a feature set is zero, no
delay data can have been received for that day. Where the minimum value for a feature
set is zero there has been at least a three hour period where no delay data has been
received. These scenarios are unusual, certainly for a commercial network, but must still

be catered for.

exception += "No Delay Data available for three hour period\n”;
test.standardDeviation = curr.standardDeviation; // StandardDeviation won't be updated

type = “loss”;

f (lopequlClos) 8 ypecu ) {
if (minZmin >limm.stepMax ) {

exception += Decrease in average delay of " + min2rnin + " micsecs\n";

type = "step”;

magnitude = (int)min2min;

test.standardDeviation = curr.standardDeviation; // StandardDeviation won't be updated

else {

if (testtotalChangeInDelay <-(limit.stepMax} } {
exceptiont += "Decrease in average delay of ™ + {1 * testrotalChangeInDelay) + " micsecs\n";
test.standardDeviation = curr.standardDeviation; // StandardDeviation won't be updated
magnivade = (int)(-1 * test.toralChangel nDelay);
type = "step";

}

!

of ( min2min <-limit.stepMax ) {

exception += "Increase in average delay of " + (-1* min?min) + " micsecs\n™;

type = "step";

magnitude w (int)(-1 * minZmin);

test.standardDeviation = currstandardDeviation; // StandardDeviation won't be updated

else {

above)

if ( test.votalChangelnDelay > (limit.stepMax) ) {
if ( {lastDelay - test. maximumChangelnDelay) == delaySet[6] 88 min2min > limir.stepMax) {

else {

if (test.totalChangelnDelay > limir.peakax)
exception += "Increase in average delay likely to be a spike \n";
type = "spike”;

) magnitude = (int)peak;

else {
exception += "Increase in average delay Lkely to be a step change \n";
fype = "step"s
magnitude = (int)rest.rotalChangelnDelay;
test.standardDeviation = curr.standardDeviation; // StandardDeviation won't be updated
test. minimumDelay = 0; // minimumDelay will be set to the next day’s minimum (see above)

exception +="Increase in average delay of * + test.rotalChangelnDelay + " micsecs\n”;

type = "step”;

magnitude = (int)testtotalChangelnDelay;

test.standardDeviation w curr.standardDeviation; // StandardDeviation won't be updated
test.minimumDelay = 0; // minimumDelay will be set to the next day’s minirmum (see
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Given that there is no exception of type ‘loss’ or type ‘start’ this next section
(above) looks for the possibility of a step change. As was mentioned earlier, the primary
features and indicators used in this process are the change in minimum, maximum and
total change. One difficult scenario is where the last delay point of the day increases
abnormally. It is difficult to judge whether or not the increase will be sustained (i.e. a
step change) or whether the delay will decrease quickly again (i.e. a spike). The
jﬁdgement is made here on how large an increase has occurred as spikes, on the whole,
tend to be larger increases than step changes. This is by no means a certainty and is used

to give a ‘best guess’ given the available data,

This next section (below) then tests for the presence of a spike, given that
exceptions of type ‘step’, ‘loss” and ‘start’ have not already been detected. The spike
ratio describes the scale of the spike in proportion to the standard deviation. This is then
used along with the peak value (effectively the size of the spike) to determine whether an

exception of type ‘spike’ has occurred.

if ( ‘type equals("start”) &8¢ type.equals("loss”) 88 (feype.equals(“step™} 88z test totalChangeInDelay > limit.peakiMax)) ){
i { (spikeRatio > limir spikeRatioMax) &&(peak > Limit peakMax)) {
exception +w= Splkc of * + peak + * microseconds\n";

type = "spike”;
}

The final section taken from the detectException function contains the rules for
detecting changes in Time of Day Delay Variation. There are two categories of Time of
Day Delay Variation. One deals with a change during the working days of the week, the
second category flags up a change in the Time of Day belay Variation on subsequent
weekend days. This would compare the first day of the weekend with the last day of the

previous weekend and then the next day of the current weekend.

if (tweekend) {
if { frype.equals("step") &8

Irype.equals("loss”) 88

type.equals("spike”) &8¢

type.equals("stan”) ) {

if {SDRatio > limit.tod VarDecrease &8 SDChange > limit.tod VarLimir} {

if (twTodVarEx) {
exception += "Decrease in ToD variation of * + SDChange + " micsecs\n";
currstandardDeviation = test. standardDewauon,
todVarEx = true;
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else {

t}ype = "tod";

}

if { SDRatio <limit.todVarIncrease &8 SDChange > limit.tod VarLimit) {
exception += "Increase in ToD variation of " + SDChange + " micsecs\n™;
currstandardDeviation = test.standardDeviation;
todVarEx = true;
type = "tod’;

}

check = true;

}

(}EISC {

if { leype.equals(“step™) 88
lype.equals("loss™) &8
leype.equals("spike™) &8z
ltype.equals{"start") ) {

if { SDRatio > limit.todVarDecrease 88z SDChange > limirtodVarLimit ) {
if (ftodVarEx) {
exception += "Decrease in ToD variation of " + SDChange + " micsecs\n";

else {

}
type = “wiod”;

check = true;

}
if {SDRatio <limittodVarIncrease &8 SDChange > limit.todVarLimit) {
if (ttod VarEx) {

exception += "Increase in ToD variation of " + SDChange + " micsecs\n";
}
else {
}
type = "wtod";

}

if {check) {
todVarEx = false;
check = false;

}

check = true;

}
}

Figure 5.2-5 shows the ‘Exception Database Viewer’ developed at Loughborough
University displaying exceptions detected using rules based on the above. The AIR
system was a significantly wider project (see Chapter 2 and also [Phi99]) which

incorporated some of the early research work conducted for this thesis.
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Figure 5.2-5 The Exception Database Viewer

The rule-based approach, as has been mentioned, was implemented as part of the
AIR system and installed at BT labs Martlesham. Although the rule-based solution
performed adequately as a rudimentary exception detection method it was limited as to
what it could detect and also unadaptable. The rule-base catered for a specific set of
tightly defined Data Exceptions, should new Data Exceptions be encountered or network
characteristics change a new rule-base would have to be constructed. An alternative

approach was deemed necessary that would be more adaptable and more accurate.

5.3 KS Test/Neural Approach
The second approach uses two methods, the K-S (Kolmogorov-Smirnov) Statistic

and a neural network. The K-S statistic is used to identify changes in the network delay

data. This stage however, does not in any way characterise what change has occurred.
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These changes are presented to the neural network which is used to classify the changes

into one (or more or none) of seven Data Exception types.

The K-S statistic has been chosen as it is the best known of several distribution-
free procedures which compare two sample CDFs (Cumulative Distribution Functions) in
order to test for general differences between two distributions [Nea88][Ste70]. The K-S
statistic is more generally used to assess the probability that a sample comes from a
normally distributed data set. Although more powerful than other goodness-of-fit tests
such as the éhi-squared [Mas51], the Shapiro-Wilk’s test has been shown to be more
powerful still [Sha68]. With regard to testing for general differences between any two
distributions however, the K-S statistic is both easy to calculate and powerful. As there is
no assurance that the delay distribution will be in any way standard, our choice of test is
restricted to distribution-free techniques. More powerful distribution-free tests exist if
only one aspect of the distribution is of interest (for instance the mean), but the K-S
statistic is particularly appropriate when testing for general differences [Nea88]. The K-
S test compares two samples CDFs using the maximum vertical distance between them as
a test statistic. A normalised example of this is shown in Figure 5.3-1. Any kind of
substantial difference between the two distributions should show up as a significantly
large difference between the sample CDFs. Such differences may be in location, spread

or may be more general differences in the shape of the distributions.
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KS Statistic

Rank Order

Value

Figure 5.3-1 The K-S Statistic

The K-S statistic is calculated as follows:

Delay distributions are taken from 24 hours worth of data before and after some
point in time and the K-S test is then applied to determine any differences. Delay
increases during the working hours of the day, when load is high, but this increase is not
exceptional. If distributions were chosen using a time period other than complete days
this change during the working part of the day would be picked up on by the K-S test. By
comparing data taken from two entire days this issue is circumvented. This issue is also
relevant when considering the impact of weekends. Delays on a Monday are higher than
of those on a Sunday but this is not considered to be exceptional. Using the current
approach the K-S test does flag the beginning and end of weekends as significant. The
second phase of the system, the trained neural network, will then categorise this change.
This means that the neural process could filter out exceptions flagged due to the decrease

in delay at weekends.
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The implementation computes the K-S statistic every hour, using the previous 24
hours of delay data, and the following 24 hours of data. When a Data Exception occurs
the K-S statistic may remain significant for several hourly points. In such cases the
maximum point is taken to be the time that the exception occurred. Where two
exceptions occur at similar or even identical times these would be passed to the neural
classifier as one detected change, but there is scope within the neural process to
categorise the change as being the product of two or more exception types. In Figures
5.3-2, 5.3-3 & 5.3-4, the K-S test is plotted on the same graph as delay (these are raw
delay values). The scale on the primary y-axis refers to delay while the scale on the
secondary y-axis refers to the K-S test (which will always return a value between 0 and

1). The x-axis is the number of hours from the beginning of the simulation.
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Figure 5.3-2 The K-S Test applied to delay data (1).

In Figure 5.3-2 the highest two peaks have been caused by the step changes
present but the K-S values are also high at the beginning and end of each weekend. In
Figure 5.3-3 the K-S values are again high at the beginning and end of each weekend,

there is also a peak marking the point where the time of day variation increases.
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Figure 5.3-3 The K-8 Test applied to delay data (2).
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Figure 5.3-4 The K-S Test applied to delay data (3).
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In Figure 5.3-4, the route shown is less heavily loaded. There are five relatively

minor peaks in the K-S values. Three of these peaks relate to the beginning and end of
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weekends, one refers to the spike and one is erroneous. Erroneous events flagged up by

the K-S statistic are filtered out by the neural process.

Note that the nature of the test means that this approach cannot be adapted to
work in real time, although with modification, the approach could be made to work on
shorter time windows. The motivation behind the work stems from the desire to
automate the exception detection process, which is currently done by a human operator
offline in order to investigate the impact of recent changes to the network. Real time
event detection is geared towards alerting operators to immediate faults. While delay
information could be used in this way there are other more readably accessible
performance metrics, often held by network nodes in MIBs, that can be used to identify
faults. For real-time detection methods some preliminary approaches are being examined
that borrow techniques from industrial statistics such as process charts [McG00]. These
however cannot identify the range of Data Exceptions detected by the approach proposed
in this Thesis as the time window 1s shorter. For example, a meaningful Time of Day

Delay Variation exception is only identifiable after a 24 hour period.

5.4 Neural Network
A neural network was selected as a means of classifying the changes in

performance detected by the K-S test. A means of classifying the change in performance
is desirable as it provides a means for changes, that is Data Exceptions, to be grouped
together (see section 3.4). A neural network was selected as a method of classifying the
Data Exceptions. Neural networks are particularly appropriate where some relationship
exists between the input and output (in this case between the data representing the Data
Exception and the classification of the Data Exception) that cannot be expressed as

function or as a set of rules [Tar98].

The neural network is trained using a standard back propagation algorithm (for a
description of this see [Fau94]). The network is fed by an input vector that includes
representations of the time-of-day and day-of-week that the exception occurred; the route
on which the exception occurred; and the delays either side of the time that the exception
occurred. The inputs are scaled so that, on the whole, they are in the range -1 to 1. In

every case some kind of transformation takes place. Input features whose values have no
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relative meaning compared to one another are represented as binary vectors in order to
ensure that no one input is given significance over another by virtue of an arbitrarily
assigned value. For instance, one egress point is of no greater or lesser significance than
another egress point. If the egress points had been represented using one input, relative

value would have been attributed which would be misleading.

The time-of-day needs to be represented in such a way that 23:59 is next
to and not the furthest possible point away from 00:00. To achieve this a Sine function is
used. Considering time of day in hours the transformation is:

time = sin(7 M)
12

The day of the week, the ingress point and the egress point are all

represented as vector inputs. Therefore the day of the week is represented by seven

inputs where one input will be 1 (the day the exception actually occurred) and the others
-1.

The delays are represented by 96 inputs, allowing 48 for each day. The
50" and 95" percentile values arc taken from each hour of the day and these are then
scaled so that generally they fall within the range 1 and —1. The scaling has been set so
that it is possible for large delay values to transform to values greater than 1. This is so
that the delays on the whole do not all scale to similar values but that reasonable spread is
attained. If the maximum observed delay (on any test, on any route) were to be

represented as 1, the vast majority of delays would fall in a very narrow band.

From the above we have 8 inputs to represent the ingress point, 8 for the
egress point, 7 for the day of the week, 1 for the time of day, 96 for the delay values and
1 input for the K-S value itself. The total length of the input vector is therefore 121.
These inputs are fed into a hidden layer containing 150 nodes and then into an output
vector of length 7, representing the seven classes of exception (Figure 5.4-1). The
choices made here are somewhat arbitrary and could be the subject of further work to
determine which representation of the data, and number of hidden units will give the

greatest accuracy in classification.
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121 inputs

1 bias 150 hidden units
1 bias

7 outputs

Figure 5.4-1 The neural network
The activation function used at each node is given below.

2

A 1+ exp(-x) B

which has the derivative (necessary for backpropagation of the error)

[ =31+ (RN - f(x)]
Weights are initialised at random.

The output vector represents the class of Data Exception. It mighf be identified as

none, one or more of the following classes:

The beginning of a weekend

the end of a weekend

a step change up

a step change down

an increase in time-of-day delay variation
a decrease in time-of-day delay variation
a spike

Each component of the output vector is rounded to either 1 or -1 to indicate

whether or not the Data Exception falls under that classification.
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5.5 Summary
In this chapter two approaches to detecting Data Exceptions have been discussed

and described. The first, a rule-based solution, was implemented as part of the AIR
system. While a rule-based solution is advantageous in that it is simple, executes quickly
and is predictable it was thought to be inflexible when adapting to new circumstances and

was sufficiently inaccurate to necessitate an alternative approach.

The second approach made use of the K-S statistic to determine when a change in
network performance, that is a Data Exception, had occurred. These changes were then

presented to a neural network, which was used to classify them into Exception Types.

In the following chapter the results are presented from testing the K-S/Neural
approach with the available data sources. The test schedule is discussed, delay graphs are

given showing the corresponding K-S values and the classification accuracy is given.
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6. The K-S/Neural Approach Results

6.1 Introduction
The K-S/Neural approach was applied to data taken from both the simulation and

the test network, Network Events were introduced in the manner described in Chapter 4.
The K-S Test was applied to the resultant delay data and these Data Exceptions were
categorised manually using label, a purpose-built program. The list of categorised Data
Exceptions was split into two files, one for training the neural network and one for testing
the neural network. The training and testing phases were carried out and the results

evaluated. This chapter describes this process in more detail and presents the results.

6.2 Simulated Data
Delay data was generated using the NS simulation package as described in

Chapter 4. The simulation was run 24 times, each run lasting fourteen virtual days. At
least one network event was introduced into each run of the simulation. The figure below

(Figure 6.2-1) is given for ease of reference.

Figure 6.2-1 The NS simulation topolegy

The simulation runs were chosen so that all the different types of Data Exception

would occur, at different types and on different routes. On the simulation only a limited
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number of events could be introduced. Links could be taken down or introduced, traffic
could be re-routed and links could be made to drop packets intermittently, At least one of
these events was introduced, sometimes in quick succession to cause Data Exceptions of

type Spike. The simulation runs are summarised below.

1) Core Change 1 2) Core Change 2 3) Routing Change

4) Link 1 to 2 Down 5) Node 0 Down 6) Link 2 to 3 Down

7) Link O to 4 Down 8) Link 6 to 7 Down 9) Link 9 to 10 Down

10) Link 10 to 11 Down 11) Link 2 to 10 Down 12) Core fails intermittently
13) Traffic increase 14) New link 4 to 1 15) Core Re-route 1

16) Core Re-route 2 17) Spike 1 18) Spike 2

19) Spike 3 20) Spike 4 21) Spike 5

22) New link 0 t0 2 23) New link 3 to 1 24) Link 2 to 11 down

These represent the entire set of changes that could be made. The network events
have not been applied exhaustively, more links could have been taken down for instance,
but further éha.nges would not introduce any additional types of Data Exceptions. The
following sections detail the 24 simulation runs, describing the network events that were

introduced.

6.2.1. Core Change 1
At time 120 a link was introduced between nodes 1 and 3. At time 122 the links

between nodes 1 and 2 and between 0 and 3 were brought down, This caused Data

Exceptions of several types.
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Figure 6.2-2 Delay/KS graph route 4to6
This first graph (figure 6.2-2) shows a change in Time of Day Delay Variation.

This is indicated by a peak in the K-S test (at time 122). The K-S test also has a peak
representing the end of the first weekend. The K-S test is also significant at the
beginning of the second weekend (time 168) and once during the second week (time
281). The last of these values does not represent any network event. This would be
labelled as ‘not an exception’ so that the neural network can be trained to filter out such

anomalies.

The route shown in figure 6.2-2, between node 4 and 6, is one of the least affected
as the monitoring traffic between the two nodes (4 and 6) traverses the same links before
and after the changes introduced at times 120 and 122. However the traffic load on this

route is lightened by the re-routing that the changes cause.

The changes in performance on other directly effected routes were more dramatic.
Figure 6.2-3 shows the impact the alterations had on the route between nodes 6 and 11.
As the traffic now has to take a longer route to reach its destination there is a step change

in delay. Also as there is now only one link (1 to 3) connecting the two halves of the
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network and this link has a capacity of 2Mb/s as opposed to 5Mb/s of the other core links,

it is consequently very heavily loaded.
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Figure 6.2-3 Delay/KS Graph route 6tol1

6.2.2. Core Change 2
At time 120 the routes from 1 to 3 and from 0 to 2 were activated. At time 122

the links between 1 and 2 and between 0 and 3 were taken down. This event was similar
to the one above except that the introduction of two new links avoided the extreme
congestion seen in the previous section. Figure 6.2-4 below gives a comparison on the

route from node 6 to node 11.
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Figure 6.2-4 Delay/KS Graph route 6toll

6.2.3. Routing change
At time 138 the routing is changed by assigning a ‘cost’ value to the links from 4

to 5, from 5 and 6 and from 6 to 7 of 1 — reduced from a previous value of 5. The ‘cost’
value is returned to 5 on these links at time 200. The effects of this change can be seen in
the graph below which plots the monitored delay data from node 5 to node 7. The
costing of the routes was implemented asymmetrically. That is to say that the route from
7 to 5 does not exhibit the same characteristics. The step changes in figure 6.2-5 reflect

the increased latency attached to the different route.
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Figure 6.2-5 Delay/KS Graph route 5to7

6.2.4. Link Down 1to 2
The link between nodes 1 and 2 was taken down at time 170. Although this

reduced the number of links supporting traffic between the two halves of the network
down to 1 (the link between nodes 0 and 3), the capacity of that remaining link meant that
the congestion was not as high as that experienced in the ‘Change Core 1°. In figure 6.2-
6 we see the effects on the route from node 11 to node 7. There is a large step change at
the time of the event and also a noticeable difference in the Time of Day Delay Variation

for the subsequent week.
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Figure 6.2-6 Delay/KS Graph route 11to7

6.2.5. Links down from node 0
At time 300 all the links attached to node O were taken down, Those links are 0 to

1,0t03,0to4and0to5. This caused step changes and changes in Time of Day Delay

Variation on various routes.

6.2.6. Link down 2to 3
At time 133 the link from node 2 to node 3 was taken down. This resulted in step

changes and Time of Day Delay Variation changes on certain routes.

6.2.7. Linkdown Qto4
At time 200 the link from node 0 to node 4 was taken down.

6.2.8. Linkdown6to 7
At time 260 the link from node 6 to node 7 was taken down.

6.2.9. Link down 9to 10
At time 82 the link from node 9 to node 10 was taken down.
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6.2.10. Down 10 to 11
At time 124 the link between node 10 and node 11 was taken down. This caused

step changes on the routes between nodes 10 and 11.

6.2.11. Down 2 to 10
At time 10 the link between node 2 and node 10 was taken down. This link was

reinstated at time 78 and then taken down again at time 254. This gave multiple step

changes as can be seen in figure 6.2-7.
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Figure 6.2-7 Delay/KS Graph route 4tol0
6.2.12. Faulty Core

At time 55 the core links, between node 0 and node 1, node 0 and node 3, node 1
and node 2 and node 2 and node 3 were caused to fail intermittently, At time 95 the link
between node 1 and node 3 was brought up. The failure rate was 33%. At time 100 the
core links were returned to their normal state. Figure 6.2-8 shows the kind of effect the
faulty links had.
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6.2.13. Increase 510 6
At time 168 the traffic sources on the link between node 5 and node 6 start to

transmit at a higher rate. This had no impact on the delay data. Presumably the link was

under-utilised and could bear the extra traffic load.

6.2.14. New link 4 to 1 ‘
At time 75.9 a new link is introduced between node 4 and node 1. This causes a

step change down on certain links to and from node 4. It also causes a reduction in Time

of Day Delay Variation on some routes where the load has been decreased.

In figure 6.2-9 (below), the step change reflects the shorter route now available,
The lightening of the load on other links is shown in figure 6.2-10. In figure 6.2-10, the
K-S statistic does not show the seeming change in Time of Day Variation. The occasions

where this is the case are very rare.
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Figure 6.2-10 Delay/KS Graph route 7to5
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6.2.15. Core Re-route 1

The links between node 0 and node 1 were given an increased cost at time 100.
The cost on this link was returned to normal at time 200. Also at time 200 the cost on the
links between node 2 and node 3 was increased. This causes step changes on certain

links that traverse the core (nodes 0, 1, 2 & 3) and changes in time of day variation in
others.
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Figure 6.2-11 Delay/KS Graph route 6to8
In figure 6.2-11 (above) the two changes cause step changes as the test packets
are sent over different links. In figure 6.2-12 (below) there are no step changes present
but the time of day variation in delay changes as traffic is routed away from this link,

This change is marked by a line corresponding to the peak in the K-S Statistic,
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Figure 6.2-12 Delay/KS Graph route 7to5

6.2.16. Core Re-route 2
At time 100 the cost of the link between node 0 and node 3 was increased thereby

routing traffic away from this link. At time 200 the cost of the link between node 0 and
node 3 was restored to its normal value but the cost of the link between node 1 and node
2 was increased. Step changes and time of day variation in delay changes were seen

similar to those above.

6.2.17. Spike 1
At time 115 the links between node 5 and node 6 were made faulty until time 125,

This caused a spike in the delay on these links as shown in figure 6.2-13.
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Figure 6.2-13 Delay/KS Graph route 5to6

6.2.18. Spike 2
At time 165 a fault was introduced on all links connected to node 0. This caused

step changes and spikes on several routes passing through node 0.

6.2.19. Spike 3
At time 260 the links between node 0 and node 1 and between node 1 and node 2

are taken down. At time 264 these links are restored. This caused a large step change up

followed quickly by a step change down. This is classified as a spike.

6.2.20. Spike 4
At time 205 the links between node 1 and node 2 and between node 2 and node 3

are taken down. At time 213 these links are restored. The effects are similar to those

described for spike 3.
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6.2.21. Spike 5

At time 245 a fault is introduce to the links between node 0 and node 3 and
between node 2 and node 3. This resulted in some small spikes and step changes on

various routes.

New link between 0 and 2
At time 95 a new links was introduced between node 0 and node 2. This caused

6.2.22.

step changes on several routes as shown in figure 6.2-14.
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6.2.23. New link between 3 and 1

A new link is introduced at time 5 between node 3 and node 1. This link is taken
down again at time 87 and then re-established at time 260. The effects are minimal

although there are changes in time of day variation on certain routes that would

incorporate this link.
6.2.24. Link down then up 2 to 11

At time 82 the link from node 2 to node 11 is taken down. The link is restored at

time 216. This causes step changes on all routes from or to node 11 (figure 6.2-15).
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6.3 Data from the Test Network
Delay data was generated using the test network as described in Chapter 4. The

network was used to generate 21 sets of data, each lasting fourteen virtual days. Each

data set contained at least one monitored event. Figure 6.3-1 is given for ease of

reference.
LD ol nd HD elt st Erdionb B0 e
Pl &r Rlog MD and Alt D ha

T~ T~

Figure 6.3-1 Test Network Layout
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The test network could be altered in a number of different ways. The routers
could be configured enabling the test network to have a very large number of possible
configurations. Many of these had no perceptible impact on the network performance as
monitored by delay. Events that gave clear Data Exceptions were disabling interfaces on
the routers, restarting a router, changing the bandwidth on a link, reconfiguring the

routing and changing the queue length on a certain link.

The table below summarises the events that were introduced.

1} Berlin interface disabled 2) Increase in Athens traffic 3) Berlin Ethernet down

4) Berlin Serial down/up 5) Clean (no events) 6) Edinburgh Bandwidth 1

7) Edinburgh Bandwidth 2 8) Edinburgh Queue change 9) Edinburgh Ethernet down/up
10) Edinburgh Serial down 11) Edinburgh Serial up 12) 3 serial links taken down
£3) London reload 14) Madrid Ethernet down 15) Madrid Ethernet up

16) Network 11 down + routing 17) Network 11 down 18) Paris Serial up

19) Routing change 20) Rome serial up 21) Rome serial up 2

The following sections detail the 21 data sets, describing the network events that

were introduced.

6.3.1. Berlin Serial interface disabled
At time, the Serial interface connecting Berlin to Helsinki was enabled (it had

previously been disabled). This caused Step Changes and Time of Day Variation in
Delay Changes. These can be seen in Figure 6.3-2 below.
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6.3.2. Increased Athens Traffic
Additional traffic sources were introduced from the Athens traffic generator for

the last three virtual days. The traffic level was increased for the last of these three days.
This caused an increase in Time of Day Variation in Delay. This can be seen in figure

6.3-3.
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Figure 6.3-3 Delay/KS Graph route Madrid to London (large packets)

6.3.3. Berlin Ethernet Port down
The Ethernet port connecting the Berlin router to network 11 was taken down and

then brought back up again, This caused Step Changes and Time of Day Variation in

Delay changes on various routes as below (figure 6.3-4).
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6.3.4. Berlin Serial Port down and up
The Serial Port on the Berlin router connecting to Helsinki was taken down and

then restored again. This introduced Step Changes and changes in Time of Day Variation

in Delay.

6.3.5. Clean (no events)
No events were introduced. Only weekend exceptions were evident.

6.3.6. Edinburgh bandwidth 2Mb to 4Mb
The bandwidth on the serial link connecting Edinburgh to London was increased

from 2 Megabits per second to 4 Megabits per second. This gave rise to Step Changes

and changes in Time of Day Variation in Delay.

6.3.7. Edinburgh bandwidth 4Mb to 2Mb
The bandwidth on the serial link connecting Edinburgh to London was reduced

from 4 Megabits per second to 2 Megabits per second. This gave rise to Step Changes

and changes in Time of Day Variation in Delay.
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6.3.8. Edinburgh Queue length reduced
The Queue length on the Serial interface connecting Edinburgh to London was

reduced to six packets and then brought back to it’s default length of seventy-five

packets. This caused some minor Time of Day Delay Variation Changes.

6.3.9. Edinburgh Ethermet Port down and up
The Ethernet Port connecting the Edinburgh router to network 11 was disabled

and then re-enabled hours later. This caused spike exceptions as shown in figure 6.3-5

below.
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Figure 6.3-5 Delay/KS Graph route London to Helsinki (small packets)

6.3.10. Edinburgh Serial Port down
The Serial Port on the Edinburgh router connecting Edinburgh to London was

taken down at time 61. This caused several Step Changes and changes in Time of Day

Delay Variation.
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6.3.11. Edinburgh Serial Port up
The Serial Port on the Edinburgh router connecting Edinburgh to London was

brought up at time 191. This caused several Step Changes and changes in Time of Day

Delay Variation.

6.3.12. Three Serial links taken down
The serial links from Edinburgh to London, from Berlin to Helsinki and from

Madrid to Paris were all taken down for two short periods. This resulted in spikes on

several routes. See Figure 6.3-6 below.
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Figure 6.3-6 Delay/KS Graph route Berlin to Helsinki (small packets)

6.3.13. London Reload
The London router was restarted. This caused a small spike in delay.

6.3.14. Madrid Ethernet Port down
At time 126 the Ethemet port that connects Madrid to the 11 network is brought

down. This causes step changes on links to and from the Madnd test station and

significantly increased Time of Day Delay Variation. These are shown in Figure 6.3-7.
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Figure 6.3-7 Delay/KS Graph route Madrid to Helsinki (large packets)

6.3.15. Madrid Ethernet Port up
The Ethenet port that connects Madrid to the 11 network is brought up. This

causes step changes on links to and from the Madrid test station and significantly

decreased Time of Day Delay Variation.

6.3.16. Network 11 down and routing changes
At time 93 the 11 Network was taken down for a short period. At time 252 the

routing protocol was switched from IGRP to RIP. These events caused spikes and Step
Changes respectively where Time of Day Delay Variation changes sometimes

accompanied the step changes.
6.3.17. Network 11 down

The 11 Network was taken down for a short period. This caused some spike

exceptions.
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6.3.18. ParisS0up
The Serial Port connecting Paris to Madrid was brought up causing Time of Day

Delay Vartation Changes.

6.3.19. Routing Change
The routing protocol was changed from RIP to IGRP at time 307. This caused

several Step Changes and Time of Day Delay Variation Changes.

6.3.20. Rome Serial Port up
The serial port connecting Rome to Athens was brought up causing a change in

Time of Day Delay Variation.

6.3.21. Rome Serial Port up 2
The serial port connecting Rome to Athens was brought up causing a change in

Time of Day Delay Variation.

6.4 Generating the training files
A ¢ program used to implement the K-S test is first applied to the delay data and

corresponding .ks files are generated for each delay file. These values are plotted on the
graphs shown above. Another program, written in Java, is then used to aid the data
labelling process. A neural network requires training data. The several thousand
exceptions generated by the network events described above required labelling to provide
a training set and also a test set of data for the neural network. The Java program, label,
is shown below in figure 6.4-1. It searches for significant K-S values in the data, presents
these to the operator who must then classify the Data Exception and move to the next
one. The output files contain information about the route, the day, the type and the time

for each exception.
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Figure 6.4-1 The label program

An example of the training files (.tr) which are the output of the label program is
given below in figure 6.4-2. The first field is the time, the second field represents the
date as a (1,7) binary matrix, the third and fourth fields represent the ingress and egress
points respectively and the fifth field represents the type of exception as a (1,10) binary
matrix. This final field includes more types of exceptions than we currently classify.

This is to give scope for new types of exceptions.

48.0(0010000)58(0100000000)
171.0(1000000)58(1000000000)
2170(0010000)58(0100000000)
299.0(0000010)58(0010160000)

Figure 6.4-2 Output from a training file
The training files are then collected together, mixed randomly and split into
different sets; one set for training and one set for evaluation. The file that is actvally

presented to the neural network is of the format shown below in figure 6.4-3.

211000000 (0 100000} 54 (010000 0) downto 0.489583
211.000000 (0100000} 107 (01000 0 0) newlinkdtol 0.376227
56.000000 (0010000} 89 (010000 0) up2tod 0266667
55000000 (001 000 0}97 (010000 0) downdtod 0.536603
290.000000 (000001 0) 7 8 {00 0000 0) down2to10 0.258333
209.000000 (0100000)84(0100000)d u_2tol1 0259195
100.000000 (000 0100} 67 (00000 1 1) faukycore 0.195833
75.000000 (000100087 (000000 Q) up2ecd 0.238227
100.000000 (0000100) 107 (00000 1 1) faukycore 0.308029
128.000000 (00000 10) 7 6 (0000 00 0) up3tol 0.325000

Figure 6.4-3 Output from the exceptions file
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The format here is as for the training files except that the exception type field has
been reduced to a (1,7) binary matrix, removing unused classifications and also the
directory name and the K-S value have been appended in fields 6 and 7. The directory
name is necessary as the neural network uses the delay values as well as the information
contained in the exceptions file. The program containing the neural algorithm retrieves

the delay values based on the information from the exceptions file.

The above process is described in figure 6.4-4 below.

. /! DE 3Uu
& SUR - DYD S &

Delay files: : K8 files

Figure 6.4-4 From Delay files to Exception files

Training
files

Exceptions
files

6.5 Results — Simulation
The K-S Test has proved to be very effective in detecting the presence of a Data

Exception. Using the simulation previously described, 210 days of delay measurements
were generated per route, containing on average a Data Exception every 5 days per route,

The distribution of labelled Data Exception types is given in figure 6.5-1.

Of the simulated events, the K-S Test correctly identified over 99.5% as Data
Exceptions. Of the changes signalled by the K-S Test, around 70% were correctly
identified as Data Exceptions with around 30% being false positive identifications.
Although it may seem that the K-S Test is labelling a lot of changes incorrectly as Data
Exceptions, these figures are entirely satisfactory. The K-S test is only the first phase of
the detection process and the first priority is that Data Exceptions should not be missed at
this point. As such, it is preferable at this first stage to over identify rather than to miss
Data Exceptions. The second phase, the neural network, is then able to conduct further

filtering to reduce the number of misclassified exceptions.
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Exception Type Training Set  Test Set
Weekend Begin -~ 229 28
Weekend End 231 31
Step Change Up 40 23
Step Change Down 35 32
ToDVar Up 42 34
ToDVar Down 32 19
Spike 29 15

Figure 6.5-1 Exception Types

Mean Square Error Classification
Training Data Set 0.006 98.94%
Validation Data Set 0.108 80.09%

Figure 6.5-2 Classification Error

Using the previously described parameters for the neural network, the mean
square error of the output vector after 2000 epochs was 0.006; this gives a classification
accuracy of 98.94% (see figure 6.5-2). Using this trained network on the validation set of
Data Exceptions, the mean squared error was 0.108 giving a classification rate of
80.09%. The chart below (Figure 6.5-3) breaks up the classification statistics. For each
Data Exception type the percentage of correct identifications and the percentage of

correct rejections are shown,
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Figure 6.5-3 Data Exception Classification {(Simulation)

As can be seen the results are encouraging. The neural network correctly
classified each exception type over 90% of the time in every case with the exception of
Step Down exceptions which were correctly classified with only a degree of accuracy of
81.25%. The neural network is not generating large numbers of false alarms with fewer

than 7% of false positives for any given Data Exception type.

6.6 Results — Test Network
The K-S Test was again a very effective means of detecting that a change had

occurred. An interesting difference to the results generated from the simulation is that
the K-S Test was rarely significant (less than 1% of Data Exceptions) where no event had
occurred. It’s hard to know why the K-S Test should work better when applied to the test
network in a real world scenario but it would appear that the delay distributions are more
stable than those created by the simulation. It maybe that delay values generated by the
simulation could have been subject to changes that were inherent characteristics of the
simulation. An example of this is where the absolute time for the simulation crosses the
100 hour barrier. Previously this caused a loss of accuracy in the delay measurements as

the simulation only worked to a certain number of significant figures and subsequent
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values were rounded down. This problem was corrected by editing the simulation code
and recompiling the simulation (an advantage of using an open source simulation).

However, similar issues may exist that were not identified or corrected.

Exception Type Training Set  Test Set
Weekend Begin 231 29
Weekend End 231 30
Step Change Up 33 12
Step Change Down 31 24
ToDVar Up 50 22
ToDVar Down 53 49
Spike 39 31

Figure 6.6-1 Exception Types

Mean Square Error Classification
Training Data Set 0.005 99.36%
Validation Data Set 0.184 72.58%

Figure 6.6-2 Classification Error

The parameters described previously were used to train the neural network with
an additional input to allow for the two different packet sizes used for monitoring the test
network. The number of each Data Exception types that were used is given in figure 6.6-
1. The mean square error of the output vector after 2000 epochs was 0.005; this gives a
classification accuracy of 99.36% (see figure 6.6-2). Using this trained network on the
validation set of Data Exceptions, the mean squared error was 0.184 giving a

classification rate of 72.58%. The chart below (Figure 6.6-3) breaks up the classification
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statistics. For each Data Exception type the percentage of correct identifications and the

percentage of correct rejections are shown.
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Figure 6.6-3 Data Exception Classification (Test Network)
As with the simulation results the neural network had most trouble identifying
Data Exceptions of type Step Down but again the results are a positive indication of how

a neural network could be used to classify Data Exception types.

6.7 Summary
In this chapter the K-S/neural approach has been tested and evaluated using two

data sources, a simulation and a test network.

The underlying objective is to present a network operator with key information.
The combination of the K-S test and a neural network is reliably identifying that an event
of some kind has occurred and this is a significant step forward, potentially saving an
analyst valuable time. The subsequent classification of the Data Exceptions into types
will be useful in grouping related Data Exceptions together and perhaps even
automatically diagnosing the type of event that has occurred. In the next chapter final

conclusions are drawn and possible further work is discussed.
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7. Conclusions and Discussion
Given the speed in which communications networks, and particularly the Internet,

have become an integral part of every day life, it is perhaps unsurprising that network
management tools and techniques have been unable to keep pace with development. The
Internet is being used in ways that far outstrip the perceived objectives at its inception.
People use the Internet to communicate with one another, to find information, to buy and
sell, to advertise, to share tools and ideas, with the number of services available
increasing at a startling rate. Ten years ago public awareness of the Internet was limited
to a small percentage of people with spectalised interests, now it is a global phenomenon
and ten years from now it may well be the leading means of communication, the most

prominent provider of entertainment and the foremost facilitator of trade and commerce.

This explosion has had to be matched by technology that is able to support the
many and varied services for which the Internet is now used. This has meant
communications companies investing in infrastructure so that high bandwidth, high speed

. connections are available to businesses and home users alike. Much research has been
geared towards providing protocols, coding algorithms and technologies that either
increase the available bandwidth or decrease the need for it. The driving motivation has
been to establish network technology that can meet the requirements, both present and

predicted, of the Internet age.

While advances in network management have been made and research is being
conducted into these areas, the relentless pursuit of high performance networks has so
dominated that there are now significant gaps in management areas such as network
security and network performance monitoring. While work is being done to redress this
situation it will take a change in the priorities of communications companies before these
gaps will be closed up. In the current climate such a change of priorities is unlikely. The
emphasis will remain on expanding network services until such a time as most of the
likely avenues for Internet use have been explored and exploited and this could be some

time away.
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While management issues are of secondary importance to network providers at
present that is not to say that they are neglected altogether. As companies increasingly
use the Internet for business the need for networks to be reliable and well managed
grows. Network performance data is needed to better understand the behaviour of the
monitored network as well as to detect faults and identify ‘hot-spots’ allowing network

operators to manage networks in an informed manner.

This thesis has investigated means of detecting Data Exceptions in delay data.
Data Exceptions are a useful concept for abstracting, summarising and presenting
network performance information and for potentially identifying network events.
Common Data Exceptions that relate to delay measurements are Step Changes, changes
in the Time of Day Delay Variation and Spikes. They reflect some real change in the
network. Several Data Exceptions may result from a single network event reflecting the

several tests that may be conducted on that network.

This thesis has presented two methods of detecting Data Exceptions. The first
approach utilised a rule base that compared summary statistics from the most recent
measurements with those of previous measurements. Rules were then applied that tested
for the presence of the various types of Data Exceptions. Although the rule base was
integrated as part of the AIR system and had moderate success in detecting Data
Exceptions there are weaknesses in this approach, Firstly, while the rules could cater for
the most common Data Exception scenartos, unusual cases could case the rule base to fail
to classify the Data Exceptions accurately. Secondly, the rule base required

parameterisation for a specific network before being applied to data from that network.

A second approach made use of a combined method using the K-S Test and a
trained neural network as a means of detecting and classifying delay Data Exceptions,
The K-S test identifies that a change in network performance has taken place. The neural

network is then used to classify the changes as specific types of Data Exception.

The K-S Test has proved to be a very effective means of detecting the presence of
Data Exceptions in the data. Although the nature of the test necessitates a non real time
approach in order to detect the presence of Time of Day Delay Variation changes, this is

acceptable for the purpose. Where nearer to real time information is required and Time
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of Day Delay Variation changes are less significant the approach can be modified to work
in closer to real time. The K-S Test requires no parameterisation or training and can
consequently be applied to arbitrary data sets and accurately detect changes in that data
set. The use of the K-S Test for the purpose of detecting changes in network monitoring
information is both novel and powerful. Data Exceptions were reliably detected with
virtually no false alarms. This is an important criteria since network operators may lose
confidence in a system that either misses events or repeatedly raises reports where no

event has taken place.

The neural process has been shown to be an effective means of classifying Data
Exception types. Although the neural network currently needs training it is hoped that in
future a neural network could be trained to detect the generic types of Data Exceptions in
any data source. This would then make the entire process completely generic, allowing

for it to be applied to unfamiliar networks without any training.

For a neural solution to identify Data Exception types in arbitrary data sources the
neural network may need training data from a variety of sources. At present only the data
sources mentioned in this thesis, that is the simulation, the test network and the
commercial network are available for use. Additional sources may come from further
simulation or from other measurement projects. Artificial data could also be generated
and this may prove to be particularly useful remembering that the aim here is to aid the

neural network training process to learn generic Data Exception types.

Further possible development of the work includes extending the idea of Data
Exception Collections. Data Exceptions can be collected together according to factors
such as type, time and route to give a complete picture of a network event. It must be
remembered that a Data Exception refers to data on a single path. A network event may
impact the perceived performance as measured by several monitoring agents leading to
several Data Exceptions. A means of reliably correlating Data Exceptions so that all the
relevant information regarding a particular network event is reported together would be
beneficial. Further, once such correlation is achieved, Data Collections may be used to
give information regarding probable causes and locations of network events. For this to

be attained, some additional research is necessary to link Data Exception Collections to
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network events. Other information, such as the topology of the network, may also be

necessary to establish details such as the location of the event.

Specific further plans include implementation of the method described in this
thesis, or a modified version of it, at BT Network Operations Centre, Walsall. An alarm
station that is currently deployed at Walsall could be updated to incorporate a rapid Data
Exception feedback facility implemented using the K-S Test. In this scenario the K-S
Test Statistic would be calculated more frequently and would compare data from a
shorter time period such as an hour. In this deployment no provision would be made for
detecting changes in Time of Day Delay Variation, instead the system would concentrate
on giving information pertaining to step changes and spikes, reporting such events within

an hour of the time the event occurred.

Another related area which may provide interesting research is methods of
gaining meaningful one-way delay measurements. All the measurement schemes
presented in this thesis achieve time synchronisation by using either the same clock to
record the transmit and receive times or alternatively by using GPS synchronised clocks.
At present these seem to be the only viable possibilities where a degree of accuracy is
required within one hundred microseconds. However, as these delays are often averaged
and summarised it may be that a lower degree of accuracy could be tolerated in order to
achieve greater flexibility in terms of use and deployment. Relying on GPS can be
cumbersome as the GPS antenna need to be positioned so that they are in view of GPS
satellites (e.g. by a window). This is not always convenient. Alternative means of timing
synchronisation include the use of NTP (Network Time Protocol). If timing
synchronisation could be achieved to a sufficient degree using an NTP based monitoring
station then these stations would be far easier to install and far more cost effective to
deploy. If monitoring stations could be developed along these lines then an increase in
the number of monitoring stations a network operator would be willing to utilise is likely
as the cost to the network operator is significantly less. A means of analysing the data,

such as the work presented in this thesis, would then become even more pertinent.
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Appendix A - tcl script for NS

set ns [new Simulator]

$ns use-scheduler Heap

$ns trace-all [open test.out w)
$ns rproto DV

$ns color 1 Blue
$ns color 2 Red
$ns color 3 Yellow
$ns color 4 Green
$ns color 5 Brown

set mg [new RNG]

set numberOfDays 14
set SamplingRate 0.05

proc finish {} {
global ns
$ns flush-trace
exec grep 333 test.out > monitor.out
exit 0

H

proc remainder { numl num?2 } {
while { $numl >=$num?2 } {
set numl [expr Snuml - Snum2];

return $numl;

t

proc attach-expoo-traffic { node sink size burst idle rate } {
set ns [Simulator instance]
set source [new Agent/CBR/UDP]
$ns attach-agent $node Ssource(
set traffic [new Traffic/Expoo]
$traffic set packet-size $size
$traffic set burst-time $burst
$traffic set idle-time $idle
$traffic set rate $rate
$source attach-traffic Straffic
$ns connect $source $sink
retun $source

}

proc attach-telnet-traffic { node sink interval } {
set ns [Simulator instance]
set tcp [new Agent/TCP]
$ns attach-agent Snode Step
set tepsink [new Agent/TCPSink]
$ns attach-agent $sink $tepsink
$ns connect $tep $tepsink
set telnet [new Application/Telnet]
$telnet set interval_ $interval
$telnet attach-agent $tep
return $telnet

}

proe attach-fip-traffic { node sink } {
set ns [Simulator instance]
set top [new Agent/TCP]
$ns attach-agent $node Step
set tepsink [new Agent/TCPSink]
$ns attach-agent $sink $tepsink
$ns connect $tep $tepsink
set ftp [new Application/FTP]
$ftp attach-agent $tcp
$tep set fid_ 5
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The ns object outputs the network events
as a trace file called test.out.

rng is a random number generator used
later.

The variables numberOfDays and
SamplingRate define the length of the
simulation and the test packet transmission
rate respectively.

finish is called when the simulation is
completed. The file test.out is parsed for
lines containing the numerical sequence
333. This is the size of the test packets
and it significantly reduces the amount of
processing required later on.

remainder returns the remainder from
num1 divided by num2.

attach-expoo-traffic, attach-telnet-traffic,
attach-ftp-traffic and attach-monitor-
traffic all create a traffic source and attach
it to a node.
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return $ftp
}

proc attach-monitor { from to interval size } {
set ns [Simulator instance]
set monitor [new Agent/CBR]
$ns attach-agent $from $monitor
set sink [new Agent/Null]
$ns attach-agent $to $sink
Smonitor set interval_ Sinterval
Smonitor set packetSize_ $size
$monitor set fid_ 3
$ns connect $monitor Ssink
return $monitor

}

for {seti0} {$i <36} {incri} {
set n($i) [$ns node]
}

# Set up the network core

$ns duplex-link $n(0) $n(1) 5Mb 3.5ms SFQ
$ns duplex-link $n(2) $n(3) 5Mb 6.8ms SFQ
$ns duplex-link $n(C) $n(3) 5Mb 8.1ms SFQ
$ns duplex-link $n(1) $n{2) 5Mb 7.4ms SFQ

$ns duplex-link $n(1) $n(3) 2Mb 11.4ms SFQ
$ns duplex-link $n(0) $n(2) 2Mb 12.9ms SFQ

$ns rtmodel-at 0.1 down $n(0) $n(2)
$ns rtmodel-at 0.1 down $n(1) $n(3)

# Set up the perimeter

B moemeemrnne

$ns duplex-link $n(0) $n{4) 6Mb 4.5ms SFQ
$ns duplex-link $n{0) $n{5) 6Mb 8ms SFQ

$ns duplex-link $n(4) $n(5) 4Mb 11.7ms SFQ
$ns duplex-link $n(5) $n(6) 4Mb 12.2ms SFQ
$ns duplex-link $n(1) $n(6) 6Mb 5.8ms SFQ
$ns duplex-link $n(1) $a(7) 6Mb 5.4ms SFQ
$ns duplex-link $n(6) $n(7) 4Mb 7.1ms SFQ
$ns duplex-link $n(3) $n(8) 6Mb 3.2ms SFQ
$ns duplex-link $n(3) $n(9) 6Mb 9.1ms SFQ
$ns duplex-link $n(8) $n(9) 4Mb 8.3ms SFQ
$ns duplex-link $n(9) $n(10) 4Mb 14.1ms SFQ
$ns duplex-link $n(2) $n(10) 6Mb 3.9ms SFQ
$ns duplex-link $n(2) $n(11) 6Mb 6.6ms SFQ
$ns duplex-tink $n(10) $n(11) 4Mb 5.3ms SFQ

# Some routing priorities

S

$ns cost $n(4) $n(5) 5
$ns cost 3n(5) $n(4) 5
$ns cost $n(6) $n(5) 5
$ns cost $n(5) $n{6} 5
$ns cost $n(7) $n(6) 5
$ns cost $n(6) $n(7) 5
$ns cost $n(9) $n(B) 5
$ns cost $a(8) $n(9) 5
$ns cost $n(9) $n(10) 5
$ns cost $n(10) $n(9) 5
$ns cost $n(11) $n{10) 5
$ns cost 3n(10) $n(11) 5

$ns cost In(0) $n(4) 3
$ns cost $n(4) $n(0) 3
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The nodes are created using a single for
loop. Links are then set up between the
nodes. The links include latency and
throughput values. Links are created
between node 0 and node 2 and between

node 1 and node 3. These are then taken
down immediately, This is so that they can

be introduced at a later point.

Routing priorities are given here. The
default value (cost) of a link is 1. Routes
are calculated based on the total cost of
the route.
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$ns cost $n(0) $n(5) 3
$ns cost 3n(5) $n(0) 3
$ns cost $n(1) $n{6) 3
8ns cost Sn(6) $n(l1) 3
$ns cost $n(1) $n(?) 3
$ns cost $n(7) $n(1) 3
$ns cost $n(3) $n(8) 3
$ns cost $n(8) $n(3) 3
$ns cost 3n(3) $n(M 3
$ns cost $n(9) $n(3) 3
$ns cost $n(2) $n(10) 3
$ns cost $n(10) $n(2) 3
$ns cost $n(2) $n(11) 3
$ns cost $n(11) $n(2) 3

# Set up periphery

# First some traffic related variables
set scale 10

set scale2 0.5

set scale3 0.5

set scaled 4

set tr(4) 0.05
set tr(5)0.3
set tr(6) 0.2
set tr(7) 0.1
set (8} 0.1
set r{9) 0.3
set tr{10) 0.08
settr{11)0.3

set fr(0) 1
set fr(1) 4
setfr(2)3
setfr(3)2
setir(4)2
set fr(5)4
setfr(6) 1.5
set fr(7) 4

set mg [new RNG]
$mgseed 0

# What follows are a list of the nodes on the periphery
# traffic source(s attached to the nodes and the patterns
# of traffic output connected to them

# Fromnode 4

$ns duplex-link $n(4) $n(12) 2Mb 10ms SFQ

$ns duplex-link $n{4) $n(13) 6Mb 10ms SFQ

$ns duplex-link $n(4) $n(14) 6Mb 10ms SFQ

# Monitor traffic

Traffic levels are scaled according to the
day of the week (lower at weekends) and
according to the route. scale, tr() and fr()
are combined to calculate the traffic level
for a particular link. tr defines the level of
telnet traffic, fr defines the level of ftp
traffic.

The traffic sources are then created and
started. This is done at each node
although the code for only one nede is
shown here (node 4).

# sent every 0.2 seconds, probing different paths in the network

set source(12,1) [attach-monitor $n(12) $n(15) $SamplingRate 333]
set source(12,2) [attach-monitor $n{12) $n(18) $SamplingRate 333]
set source(12,3) [attach-monitor $n(12) $n(21) $SamplingRate 333]
set source(12,4) [attach-monitor $n(12) $n(24) $SamplingRate 333]
set source(12,5) [attach-monitor $n(12) $n(27) $SamplingRate 333]
set source(12,6) {attach-monitor $n(12) $n(30) $SamplingRate 333]
set source(12,7) [attach-monitor $n(12) $n(33) $SamplingRate 333]

$ns at 1.43 "$source(12,1) start”
Sns at 1.44 "$source(12,2) start”
$ns at 1.45 "$source(12,3) start"
Sns at 1.46 "Ssource(12,4) start”
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$ns at 1.47 "$source(12,5) start”
$ns at 1.48 "$source(12,6) start”
$ns at 1.49 "$source(12,7) start"

# Telnet traffic, loading up the network trying to follow daily patterns

set source(13,1) [attach-telnet-traffic $n(13) $n(16) 0.51
set source(13,2) [attach-telnet-traffic $n(13) $n(19)0.51
set source(13,3) [attach-telnet-traffic $n(13} $n(22) 0.5]
set source(13,4) [attach-telnet-traffic $n(13) $n(25)0.5]
set source(13,5) [attach-telnet-traffic $n(13) $n(28)0.5]
set source(13,6) [attach-telnet-traffic $n(13) $n(31)0.5]
set source(13,7) [attach-telnet-traffic $n(13) 3a(34) 0.5]

set source(14,1) [attach-fip-traffic $n{14) $n(17)]
set source(14,2) [attach-fip-traffic $n{14) $n(20)}
set source(14,3) [attach-fip-traffic $n(14) $n(23))
set source(14,4) [attach-fip-traffic $n(14) $n(26)]

set source(14,5) [attach-fip-traffic $n(14) $n(29)] The telnet and ftp sources are set off at
set source(14,6) [attach-ftp-traffic $n({14) $n(32)] A
set source(14,7) [attach-fip-traffic $n(14) $n(35)] random times. These loops calculate the
, start and finish times for the telnet and ftp
# set the telnet traffic sources off sessions. They make use of the random

for {sct day 0} {$day < SnumberOfDays} {incr day} { number generator (rng) and of the scale,

for {seti 0} {$i <8) incri) { fr() and tr() variables.
for {setj 1} {8j <8} {inerj} {
seti2 [expr §i *3 + 13]
set i3 [expr $i + 4]
set j2 [expr $j + 31
if {8i<§j} {
set j2 [expr §j + 4]

if {$day ==0} {
$ns at 0.0 "$source($i2,%j) start"

1
set thisDay [remainder $day 7];
if {SthisDay > 1} {
$ns at [expr $day*24 + 8.0] "$source($i2,$]) set interval_ [expr ($tr($i3) +

$tr{$j2))/$scale]”

# These next lines are for changing the traffic rate

# if {$i=1&& §j2 =6 && $day> 6} {

# $ns at [expr $day*24 + 8.1) "$source($i2,$j) set interval_ 0.001"
# puts "telnet from $i to §j2 set to interval 0.001"

# }

$ns at {expr $day*24 + 17.0] "$source($i2,8j) set interval_ [expr (3tr($i3) +
$tr($j2))/$scale2]"

if {$i=1 && $j2 = 6} {puts "telnet from $i to $j2 set to interval [expr ($tr($i3) +
Str(§j2))/$scale2]")

}
# set the fip traffic sources off randomly

for {set day 0} {$day < $numberQOfDays} {incrday} {
for {set k 0} {$k < 8} {incrk} {
set k2 [expr 3*$k + 14]
for {setil} {3i<24} {incri} {
for {setj 1} {$j <8} {incrj} {
set rate2 [expr int{(3fr(Fk) + $fr(Fj))/Iscalel)]
set test [$mg integer Srate2)
set thisDay [remainder $day 7):
if {$i>7 && $i < 18 && SthisDay>1) {
set rate1 [expr int{(3fr($k) + $1r{$j))/$scaled))
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# This next line is for changing the traffic rate
# if{Sk==1&& §j =2 && $day>6} {setratel 1)

if {$ratel == 0} {setratel 1}
set test [$rg integer Sratel]

}
if { $test=01} {
set stop($k2,$j,81) [$mg exponential]
set start($k2,%;,51) {expr $day*24 + [$rng uniform $i [expr $i + 17]]
set stop(5k2,%],5i) [expr $stop($k2,%;,$i) + Sstart($h2,%j,$i)]
$ns at Sstart($k2,%1,50) "$source($k2,%j) start”
$ns at $stop($k2,5j,$i) "$source($k2,%j) stop"

H

#$ns rtmodel Exponential {55 0.2 0.1 100} $n(3) $n(2)
#$ns rtmodel-at 120 up $n{0) $n(2)

R A A Routing priorities are given here. The

- n . .
e 35 e i default value (cost) of a link is 1. Routes
#$ns rtmodel-at 60 up $n(1) $n(6) are calculated based on the total cost of
#%ns rtmodel-at 300 down $n(0) $n(5) h t
#$ns rtmodel-at 260 down $n(6) $n(7) the route.

#8ns at 168 "Sns cost $n(4) En(5) 1"

$ns at 100 "$ns cost $n(0) $n(1) 2"

$ns at 100 "$ns cost $n(1) $n(0) 2"

$ns at 200 "$ns cost $n(0) $n(1) 1"

$ns at 200 "$ns cost $n(1) $n(0) 1"

$ns at 200 "$ns cost Sn(2) $n(3) 2"

$ns at 200 "$ns cost 3n(3) 3n(2) 2"

$ns at [expr $numberOfDays*24] "finish"
$ns run
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Appendix B — PostProAll

# include <stdioh>
#include <string.h>
# include <stdlib.h>
#include <math.h>

void process_data(char fname[5C];
int main(void)
char fname[50] = {"monitor.out"};

process_data(fname);
return(0);

void process_data(char fname[

FILE *infile;
FILE "outfile;
char outname[30];
char temp[15C];
float starttime[30];
int pid[30}

char action[5];

char time[20];

char node_1[5};

char node_2[5];

char sre[10);

char size[7);

char flow_id[10};

char node 1_address[10];
char node 2 address[lO],
char seq_no[lO],

int packer_id;

int source;

int dest;

int sc,dt;

it ref =0;

float duration;

for (source = 4; source <12; source++) {

for (dest = 4; dest <12; dest+4) {
if (source 1= dest) {

PostProAll takes the file monitor.out
generated by the simulation and creates
delay files for the different routes that are
monitored across the network.

The file monitor.out is interpreted a line at
a time. The file is read using fgets and
then parsed using strtok.

infile = fopen(fname,”r");
sprintf(outname,"%dto%d.dly" source dest);
outfile = fopen(outname,”w");

sc = source * 3;
dt = dest ¥ 3;

printf("Doing file %s\n",cutname);

while(feofinfile) = =0)

fgers(temp,150,infile);
if{strlen{temp} >10) {
strepy(action,strtok(temp,” \n"));
if(stremp(action,s”) == 0 | | stremp(action,” +") == 0 | | stremp(action,™") == C) {

strepy({time streok(NULL," \n"});
strepy(node_1,strtok{NULL," \n"));
Str(tpy(node_lstrtok(NULl," \n"k
strepy(srestrtok(NULL,” \n"));
strepy(size strtok(NULL," \n"));
strepy(flow_id strtok{NULL," \n"));
strepy(flow_id strtok{INULL," \n™));
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(intdatof(node_1_address) == sc) {

ref); */

St Y

}

}
felose(infile);
fclose{outfile);

!
}
}

int getref(int packet_id, ine pid[30])
{
intx = 0;
int finished w 1;
int result =-1;
while(x <30 88 finished we 1)
{
if{packet_id == pidfx)
{

result = x;
finished = 0;

X+

return result;

strepy{node_1_address,strtck(NULL," \n"));
strepy{node_2_address,strtok(NULL," \n"});
strepy(seq_no,strtok(NULL,” \n"));
packet_id = atoi(strtok{INULL," \n"));

if(atoifsize) == 333 && (int)atof(node 2 address) == dt &&

if(getref (packet_id,pid) == -1} { :
starttime[ref] = atof(time);
pid[ref] = packet_id;
f{ref == 29){ref = 0;} else {ref++;}
}

if{stremp(action,"r") == 0 &8¢ atoi{nede_2) ==di) {
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duration = atof{time) - starttime[getref(packet id,pid)];
fprintf{outfile,"%f %f\n" starttime[getref(packer_id,pid}]duration);
/#prinaf("%f %f %d\n" starttime[getref(packet_id,pid)]duration,

pid[getref(packet_id,pid}] = 0;

Packets are logged in an array that
contains start times. When they reach their
final destination the delay is calculated and
then written to a file. This file takes the
format “<src>to<dest>.dly”

getref is a function that searches the array
of packets that have been sent for a
packet_id. The array is continually
overwritten as packet information is not
needed once the delay is calculated.
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Appendix C — K-S implementation

The K-S implementation varied slightly for the two main data sources. The
implementation given here was used to calculate the K-S statistic for the data generated

by the Cisco Test Network.

#include <stdioh>
#include <string.h>

typedef struct {
float delay;
int distribution;
float <dft;
float ¢df2;

} tableEntry;

typedef struct {
float delay;
float time;
} fileEntry,

int readData{char filename[40], fleEntry store[7000]);
int creare Table(int time, fileEntry store[7000), tableEntry table{1000], int dist, int startingPoint);
void sortTable(tableEntry table[1000), int length);

int main(void) {
fileEntry store[7000];
tableEntry table[1000];
int lengthl;
int length2;
int length;
inc storeLength;
int tirne;
char filename[40] = "4t010.dly";
char outname[40] = "4to10.ks"™;
nt x;
float diff;
float K-§ = 0;
int edfl = 0;
int cdf2 = 0;
FILE *owtfile;
int egress;
int ingress;
int node[4}
int size;

node[0] = 1;
node[1] = 4;
node[2] = 6;
node[3] = §;

for (ingress = 0; ingress <4; ingress++) {
for (egress = 0; egress <4; egress++) {
if (ingress 1= egress) {
for (size = 0; size <3; size+=2) {

sprintf (filename, "%d%d%dtest.dly”, node[ingress], nodefegress], size);

sprintf(autname, "%d%d%dtest.ks", node[ingress), node[egress], size);

printf("Doing %s ... ", outname);

outfile = fopen{outname, "w");

storeLength = readData(filename, store);

for{time = 30; time <312; time +=1) {
ks = 0;
cdfl =0;
cdf2 = 0;
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lengthl = createTable{time, store, table, 1, C);

length? = createTable(time +24, store, table, 2, length1);
length = lengthl + length2;

sort Table(table, length);

for(x = 0; x <length; x++4) {

if(table[x}distribution == 1) {
cdfl++;
}

else {
cdf2+4

t}able[x].cdfl = (float)cdf1/lengthl;
table[x].cdf2 = (float)cdf2/length2;
diff = table[x].cdfl - table[x]edf2;
if (diff <0) {

oiff *w -1;

!

if (tablefx] delay = tablelx- 1]delay &8¢ diff >ks) {
ks = diff;

!

¥

}
fpeinmf(ounfile, *%d %f\n", time, ks);

printf("done\n");
felose(outfile);

}

return 0;

}

mnt readData(char fillename[40), fileEnrry store[7000]) {
FILE *infile;
intx =0
wfile = fopen(filename,"");
while(feof(infile) ==0 882 x <7000) {

fscanf(infile, "%{%f", &store[x]time, &store[x].delay);

X4

zvhile(store[x- 1]time <=0) {

X
i}"close(infile);

return x;

}

int create Table{int time, fileEntry store[7000], tableEntry table[1000], int dist, int startingPoint) §

intx =0
int y = startingPoint;
while(store[x]1ime <time-24) {

X++

}

while(store[x].time <time) {
table[y]delay = storefx])delay;
table[y]distrbution = dis;

X4
y++
}
return y- startingPoins;
}
void sortTable(tableEntry table[1000], int length) {
tableEntry exchange;
intx,y;

for(x = 0; x <length; x++) {
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for(ly =x; ¥ <length; y++) {

H(table[x]delay >table[yldelay) {
excharge = table[x];
table[x] = table[yl
table[y] = exchange;
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Appendix D — Neural Network Code Implementation

/* This is the implementation of neural net algonthm which takes
1z, dly and ks files from /ee/hsn4/eljms/tcScripts/testNetwork ..
ftestRuns/ 14daytests and then classifies the exceptions highlighted by
the K-§ test. ‘The tr are training data {pre-classified data).

This is version3 which changes the inpu vector so that the delays
are put in the same place in the vector according to the hour

of the day. This version also reduces the mumber of output
classes to 7. We no longer consider either ramps or troughs

in this version.

*/

#include <stdio.h>
#include <stdlibh>
#include <mathh>
#include <string.h>

typedef struce {

float getDelay(float delay{100), int centile, int count);

floas f{float x);

float f2(float x);

trainingPair copy(trainingPair tp);

void writeWeight VectorV(char filename[30), float v{122]150], int %, int y);
void writeWeight VectorW(char filename[30], float w{151)7}, int x, int y);

int main(void) {

trainingPair tp{2000} /* training Pairs*/

int noc = 7; /* nurnber of classes */
int noi = 121; /* number of inputs */
int nohu = 150; /* number of hidden units */
float y{nock; /* Qutpur vector */
float y_in[noc; /* input to unit y */

float Z{nohu + 1}; /* Hidden Layer */

float z_in[nohu + 1J; /* inpug to hidden layer unic */
float vnoi+1 nohul; /* weights applied to x */

float w{nohu +1]nock /* weights applied to z %/

{loat yerror{nock; /* error in output y*/

float zerror{nohu+1]; /* error in output fromz ¥/

float zerror_in[nolu+1%;

float dvinoi+1Tnohu); /* correction matrix for v */

float dw{nohu+1]noc}; /* correction matrix for w */
float delay{100];

trainingPair dummyTP;

int ingress;

ine egress;

FILE ™u;

FILE *dly;

FILE *outfile;

char fname1[20};

char fname2[100];

char directory{30%

float time, tm;

int n, count, templ, temp2, i, j, ks
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int timeThreshold;

charch;

floar 1;

float learningRate = 0.005; s 1e .

int epoch; Initialise weights (set to small random
Hoat mserror, numbers).

nt exceptions;

int index;

/* Initialise weight vectors */
srand(2);

/*weight vector v */
for(j = 0;j <nohu;j++) {
for{i = 0;1 <=noi;i++) {
t = (floatirand()/RAND_MAX - 0.5;
il =5

}

/*weight vector wr*/
for (k = 0 k <noc; k++) {
for (j = 0;j <= nohuy; j++) {
r o (floatyrand(/ RAND_MAX - 0.5;
w{jIk] =5

}

/* Read in training Pairs */
exceptions = 0; . .
strepy{fnamet, “Exceptions2 e"); Read in the training pairs (.tr files)

f{{tr = fopen(fuamel, "r"}) ==0) {
prntf("Problem opening file Exceptions2.txt\n™);

exit(1);
}
eke {

printf("Opened Exceptions2.oat\n");
while(lfeof(er)) {

tp{exceptions] 0] = 1; /* set bias */

/*** Express time as a number between -1 and 1 *%*/

fscanf(tr, "%f", Saime);

tplexceptions]od1] = (float)({div{{int)time,24).rem - 12) / 12.0 + {rime - (int)time));
tp{exceptions]x{1] = (float) (sin{tplexceptions] 1}*M_PI));

/** Read the day of the week and convert to 1 or -1 4/
fscanf(tr, " (%{", Baxplexceptions]=[2]);
tplexceptions]x{2] = (tp[exceptions] 2] == 0)? -1 : tplexceptions] x[2];
for{count = 3; count <§; count++) {
fscanf(tr, " %f", Baplexceptions])¥count]);
tplexceptions]x[count] = (tplexceptions].a{count] == 0) ? -1 : tp[exceptions]x{count];

!
fscanf(tr, " %f)", xplexceptions].x8];
tplexceptions].x[8] = {tp[exceptions].x[8] == 0)? -1 : tp[exceptions].«[8]);

/#** Read the target values and convert to 1 or-1 ***/
fscanf(tr, " %d %d (%d", &dingress, &egress, 8aplexceptions]t{0]);
for{count = 0; count <{noc-2); count++) {
fscanf(er, " %d”, 8axplexceptions]fcount+1]);
tplexceptions]i{count+1] = (tpfexceptions].{count+1] == 0)? -1 ; tp[exceptions)tfcount+1];

}

fscanflr, " %d) ", Saplexceptions]{noc- 1)

tplexceptions]t{noc-1] = {tplexceptions]t{noc-1] == 0)? -1 : tp[exceptions].{6];
tplexceptions] 0] = (tplexceprions)f0] == C)? -1 ; tp[exceptions {0}
fscanf|(tr, "%bs ", 8directory);

fscanf(tr, "%f\n", &xplexceptions]{{121];  /* K-S statistic */

/¥ turn the ingress and egress points into inpurs **+%/
for {count = 9; count <<17; count++) {
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tplexceptions] x[count] = {count - 4 == ingress) ? 1:-1;

for (count = 17; count <25; count++) {
tplexceptions]x[count] = (count - 4 =m egress) ? 1:-1;

/* Now fetch the delay values either side of the target time.
These need to be summarised into a limited number of

inputs, */

sprintf(fname?, "/ ee/hsnd/eljms/wlScripts/testNerwork/testRuns/ 14dayTests/ Yos/%dro%d dly", directory,

ingress, egress);

if {(dly = fopen(fnameZ ") ==0) {
printf("Error opening file %s\n", fname2);

exit(1);

/* Centile values are calculated over a time period of one hour */

time Threshold = 1;
count = Q;

while(feof(dly) 88 time Threshold <49} {
fscanf(dly, "%f %f\n", 8zm, 8delay{count]);
if (tm > (time - 24) 8& tm <= {time +25)) {

count++;

if (tm >>wtimeThreshcld + {time -24)) {

}
felose(dly);

exceptions ++;

felose(tr);

index = (int)div{zm, 24}.remy
index++;
index *e=2;
if (m <time) {
index 4= 23;
}

else {
index +=71;

}

tplexceprions)findex] = getDelay(delay, 50, count - 1);
tplexceptions]xfindex + 1] = getDelay{delay, 95, count - 1);
time Threshold + +;

count = (;

/* Having got the input vector we are niow ready to proceed with the training/use of the neural

network */
outfile = fopen("error.tar”,
for {epoch = 1; epoch <2000 epoch++){

for (count = 0; count <exceptions; count+-+) {
tplcount]mdNum = rand{);

for (templ = 0; templ <exceptions; templ++) {
for (temp2 = temp1 + 1; temp2 <exceptions; temp2++) {
if (tp[temp1].mdNum > tpltemp2].mdNurm) {

}

}
printf("epoch = %d\n", epoch};
msetror = (;

for (n = 0; n <exceptions; n++) {
/* Compute hidden layer inpur */
for (j = 1;) <= nohu; j++) {

The exceptions (or training
pairs) are sorted into a
random order at the start of
each epoch, which aids the
learning process.

dummyTP = copy{tpltemp1]);

tp{temp1] = copy{tp{temp2]);
tp{temp?] = copy{dummyTP);

Feedforward: The values are
passed forward to the hidden
layer that then applies the
activation function.

z_infj] = v[OT}- 1}

for (i =1;i <=noLi++) {

2_infj) += tpln){iTF 1
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/* Compute hidden layer output */
70l =1
for (j = 1;j <= nohu; j+4) {

24j] - f(z_inljD;

/* Having calculated the outputs of the hidden units we can now calculate the output vector */
for (k = 0; k <noc; k++) {

y_infk] = w{OTk]
for (j = 1;] <= nohy j++) {
y_in[k] += AjP*e{iTk}
}
/* compute the output */
for (k = 0; k <noc; k++} {
yik] = £(y_infk]);

/* The errors in the output are now calculated (training only) */

for (k = 0;k <noc; k++} {
yerrorfk] = (tp{n]efk] - y{kD*f2(y infk]);
} mserror += (tpln]afk] 51D * (cplalfk)- 0D

for (k = 0; k <noc; k++) {
for j = 1;§ <= nohuy; j++4) {
dwljTk] = learningRate * yerror[k] * =[j;

}
dw{0Tk] = leamingRate * yerroifk});
for (j = 1;§ <= nohu; j++) {
zerror_infj] = O;
for (k = 0; k <noc; k++} {
} zerror_in(j] += yerror[k] * w{j Tk}
zerrorfj] = zerror_in[j]2(z_in(j];

for j = 1;j <= nohu; j++4) {
for (i = 1;1 <= noi; i+4) {

Once the outputs have been
calculated they can then be
compared to the target results
to give an error value.

Backpropagation: The weight
corrections are calculated
using the error information
term. These are then applied
below.

dv{iJj-1] = learningRate * zerror[j] * tp[n] «i};

<}iv[01i- 1] = learningRate * zerrotj];

/*Now that the updates have been calculated they can be performed on the weight matrices */

for (j = 0;j <= nohu; j+4) {
for (k = 0; k <noc; k++4) {
wijIk] += dw{jTk}

}

for (1 = 0;i <= noi; i+4) {
for (j = 0;j <=nohu; j++) §
) Wilj] += dviiLjk

}
}

mserror = mserror / {exceptions * noc);
fprincf{outfile,"%d %E\n", epoch, mserror);

write WeightVectorW("W.oet", w, nohu+1, noc);

writeWeightVectorV("V.xt", v, noi+1, nohu);
felose(oufile);
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float getDelay{float delay{100], int centile, int count) {
int ref, a, b;
float temp;

for (a = 0; 2 <count; a++) {
for (b =a+1; b <count; b++) {
if (delay{a] >delayb] {
temp = delayfa};
delay[a) = delay{b};
delay{b] = temp;

}
}

ref = (int}{count * centile / 100) - 1;

if (count >0
return (delay{ref}/0.05) - 1;
else

return -1;

}
float f(float %} {

| return (float)2/(1 + exp(-)) - 1;

These functions, f and f2 are the activation function
and it's derivative. getDelay is used to get the delay
information that will be used to train the neural

network and copy is used to copy trainingPairs

float £2(floar x) {

\ return (floa)){(1 + GOV (1-E(¥))/2;

trainingPair copy(trainingPair tp) {

trainingPair rtn;
nt count;

for (count = 0; count <122; count++) {
rin.x{count] = tpxfcount);

for (count = 0; count <7; count++) {
rintfcount] = tp.afcount];

rta.mdNum = tp.rmdNum;

retuLn 1

}

void writeWeightVectorV(char filename[30], float w{122]150], int %, int 3) {
int a, b;
FILE *outfile;

outfile = fopen(filename, "w");
for{a=0;a <xa++) {
for(b=0;b <y b++) {
fprintf(outfile, "%f ", wlalb];

}
fprintf{outfile, “\n");

felose{ourfile);
}

void write Weight VectorW(char filename[3C], float w{151]7], int x, int ) {
it a, by
FILE *outfile;

outfile = fopen(filename, "w");
for (a=0;a <xma++} |
for(b=0;b <y b++) {
fprintf{outfile, “%f ", w{aIb];
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during the random sorting process.

The two functions writeWeightVectorW
and writeWeightVectorV are used to write
the two weight matrices to file. These are
the trained matrices that can then be used
for classification purposes.
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fprimf(outfile, "\n");
!

fclose(ourfile);
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Appendix E - Investigation into the Distribution of SMDS Delay
Data

Work done at Loughborough prior to the installation of the Walsall test system
topology involved using IP ICMP echo request and reply messages (known as ‘Ping’) to
characterise the SMDS network delay profile. The results showed the effect of loading
on delay. During the working week the delay distribution differed significantly from that
observed at weckends, heavier tails signifying that more packets were experiencing
longer delay. [PHI95]

An early implementation of the Walsall test architecture gave a more unexpected
result. The observed delay distribution appeared to be dual peaked. In fact, these dual
peaks corresponded to a planned change on the network and so the observed distribution
contained data from the network in two different states, By plotting the delay distribution
at different points in time, the shift from one network state to another was highly visible,

which in itself, was a useful result. [PHI96]

With Data Exception detection in mind, we consider the delay distribution. To
deploy certain statistical methods it is often necessary to assume that the data is normally
distributed. In practice no real data set will be normal as the data will always be discrete
and bounded but a good approximation to the normal distribution is sufficient to maintain
a practical level of accuracy. If the sample size is relatively large a weaker normal
goodness of fit can be tolerated although care should be taken if there is significant
departure from the normal distribution. Consequently it was thought to be beneficial to
investigate the delay data from SMDS with respect to normality and furthermore, to
design and implement software for conducting such an investigation and any similar

investigations that might be deemed beneficial, in the future.

Various procedures exist for examining the closeness of a sample to the normal
distribution. The most commonly discussed of these (although not necessarily the most
powerful) is the Kolmogorov-Smirnov (K-S) test. Essentially the K-S test compares the
empirical distribution function {(EDF} with a theoretical distribution function (in this case

the normal).
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In addition to analytical techniques, such as the K-S test, there also exist graphical
techniques for assessing normality. The quantile-quantile plot (Q-Q plot) compares the
observed quantiles (Q(p)) to the theoretical quantiles (Q*(p)). The Q-Q plot will be a

straight line if the data are normally distributed.

The software developed by the author implements both the K-S test and the Q-Q
plot. The procedures are described below but for a more comprehensive explanation,
refer to Jobson [JOB91].

The K-8 Test for Normality
To calculate the K-S statistic, first the standardized order statistics z; are

computed.

zi=(x—-X)/s
Then the corresponding theoretical cumulative probabilities are determined

(generally by tables) and denoted by F;. The K-S test statistic, D, is given by

D=max(|i/n— [ |)

The Q-Q Plot
The Q-Q plot, plots the observed quantiles, Q(p), against the theoretical quantiles

Q*(p) where
Q(p) = x

To caleunlate Q*(p), first calculate p where

p=((i-05)/n
then Z(p) where Z(p) is the standardized order statistic from which Q*(p) can be

derived using tables.

Normal Test Application
The software reads in a file of values and then assesses for normality using the

described methods., There are no restrictions on the file although the software will take
no account of numbers beyond the first 250 (The tests lose significance for large

samples). The data is sorted and then read into fields in two records, one for the K-S test
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and one for the Q-Q plot. The other fields in these records are calculated from this data
(see above). Where the normal density function is required, tables are used (from file)

with linear interpolation. -

Assessing for normality for
Load new data file 2010.7TXT

The K-3 Statistic is 0.6516

Change Paramneters This is not significant.

Draw O - 0 plot

Draw Distribution

Fig E.1 The K-S statistic is outputted to the sereen with a text message commenting on its
significance,

For the SMDS delay data, a plug in procedure has been added to sub sample
according to parameters such as the time of day and the centile fastest packets (such as
the 95% fastest or 5% slowest). This can be removed for the general case or perhaps

modified to cater for other cases that might require sub sampling in a similar way.
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Please set parameters_and
then assess for normalituy

First hour

Last hour

.Sample size

Upper Centile

Laower Centile

Start Date

End Date

Assesno

Fig E.2 These parameters can be modified to allow tests on sub samples from the delay data.

The software outputs the K-S (or D) statistic and gives a text interpretation of the
significance of this statistic. The user has options to view the Q-Q plot or the delay
distribution. The Q-Q plot is drawn as described above, with the least squares estimate of
the linear relationship superimposed to give a better indication of how close the plot is to
being linear and hence the data to being normal. The delay distribution, it is emphasized,
is a rough guide to the shape of the density function and shouldn’t be used independently
to assess normality. It is intended to supplement the K-S test and the Q-Q plot by giving

further clues as to where problems with the sample might lie.
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10300

Q - Q= Plot

Fig E.3 The Q-Q plot, The data should lie in an approximately straight line for normal distribution

Proportion

0.22

10850 10950

Dalay

Distribution Plot

Fig E.4 The delay distribution. This is as a rough guide only, and shouldn’t be used independently
for analysis.
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Results
The software was used to investigate the delay distribution of SMDS test packets.

Data samples were taken from each test route, both for small (64 bytes) and large (1500
bytes) test packets transmitted over a three week period from 5 January 1998 to 25
January 1998. It should be noted that during this period there were instances of
exceptional data that might effect the results. Results that were subject to exceptional

data are shown in the tables in Italics.

As was expected, there is a poor correlation between the SMDS delay data and
the normal distribution. Even allowing for the large amounts of data available for
sampling, it would be unwise to compose tests requiring the normality assumption for the
delay data. The distributions tended to be skewed to the right with heavy tails and
occasional outliers. Improvements could be made by considering only the 95% fastest
test packets and by restricting the sampling to times of the day with similar load (i.e. over
night). Although this might be of some use it severely restricts the scope for tests

requiring the normality assumption.

Test |
Small / Large Packets. Percentile _100% (all packets)

Time (ofday)__ O to_ 24 . (hours)

Dates from___ 5 to__ 25 . (of Jan 1998)

| 2.117 2w 1.518 1.238
B 2.536 1.905 1.555
.Edinburgh' o 2.164 2.065 2.61 1.402
2.971 2582 3.604 2.791

1.63 1.886 15 0.6711
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Comments on Distribution.
There is highly significant evidence to suggest that the data are not normally

distributed.

The distribution plot showed that the delay distribution is skewed to the right.

Test Il
Small-/ Large Packets. Percentile 100%

Time {ofday)_ 0  to__ 24

Dates from 5 to_ 25

Birmingham | Bristol - Edinburgh’ [ London’ Manchester
Bmmngha:m | 1242 1654 1.527 1.058
Bristol” § 1.492 2464 2.066 1.292
Edmburgh ” 2.042 1.774 2.221 0.919
London 2.86 2477 3.461 2.712
M?_’,}@?Ster | 1.216 1.215 1.471 1.25

Comments on Distribution.
There is highly significant evidence to suggest that the data are not normally

distributed.
The distribution plot showed that the delay distribution is skewed to the right.

The results for large packets closely mirror those for small packets. This was

found to be consistent throughout the testing.

Test I
Small / Large Packets. Percentile _ 95% fastest

Time (ofday)_ 0 to 24
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Dates from___5 to__25

Binninghgrp Br_i_sﬁpl _ Edmburgh Londo_n.j_ | M,_anchester.
‘B!%Tningham; [ 2.066 2.732 ” | 1627 - 1.203
an“’l o 2795 3.269 1971 1.679
Edi‘_ﬁburgh'. 2.944 2.733 2.701 1.704
L‘{ndon 3.617 3.216 3713 2.686
.Manche“er | 2532 2.175 3.112 2.523

Comments on Distribution.
There is highly significant evidence to suggest that the data are not normally

distributed.

The distributions were varied.

Test IV
Small / Large-Packets. Percentile __5% slowest
Time (ofday)__ 0 to__ 6
Dates from 5 to__ 25

Birmingl}gm Brigtol London_';; o _Nganchestelf::
Bil‘r!flinghaﬁ1 ) 1.649 2.195 2.333 1.208
B_{ift?l 1.909 2.264 2.448 1.562
Edjnburgh 2.576 2.456 3.442 1.75
London | 1.654 1.402 2.105 1011
Mgnchester 1.061 1.275 2.005 1357
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Comments on Distribution.
There is highly significant evidence to suggest that the data are not normally

distributed.

The distribution plot showed that the delay distribution has a very long and heavy

tail.
711, TestV
Small / Barge Packets. Percentile __95% fastest

Time (ofday)__ 0 to 6

Dates from 5 to 25

Birmingham | Bristol =~ | Edinburgh London Manchester
.Birmingham 0.6516 0.5544 0.4424 1.289
Briﬁt_"l:s_ 0.8289 3.029 0.9215 09657
[Edinburgh:. 0.6375 1211 0.9131 0.8099
London 0.6238 1.421 1.467 1.05
Manchester. -- 0.9471 1.067 0.9993 1.596

Comments on Distribution.
There is some evidence to suggest that the data are not normally distributed.

Distribution plots varied.
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