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psalm 27 of Davtd. 
The LORD is my 10ht and my salvatfon-- whom shall I fear? The LORD 

is the stronghold of my life-- of whom shall I be afraid? 
when evtl men advance against me to devour my flesh, when my enemies 

and my foes attack me, they will stumble and fall. 
Though an army beSiege me, my heart will not fear; though war break out 

against me, even then will I be confident. 
One thi'[5 I ask of the LORD, this is what I seek: that I may dwell in the 

house of the LORD all the days of my life, to gaze upon the beauty of the 
LORD and to seek him in his temple. 

For in the day of trouble he will keep me safe in his dwelling; he will hide 
me in the shelter of his tabernacle and set me h0h upon a rock. 

Then my head will be eXalted above the enemies who surround me; at his 
tabernacle will I sacr~ce with shouts of JoY; I will si'[5 and make music to the 
LORD. 

Hear my voice when I call, 0 LORD; be merc~M to me and answer me. 
My heart says of you, "seek his face!" Your face, LORD, I will seek. 
Do not hide your face from me, do not turn your servant away in a'[5er; 

you have been my he~er. Do not reject me or forsake me, 0 God my Saviour. 
Though my father and mother forsake me, the LORD will receive me. 
Teach me your way, 0 LORD; lead me in a stra0ht path because of my 

opyressors. 
Do not turn me over to the desire of my foes, for fa&e witnesses rise up 

against me, breathing out violence. 
I am sttll confident of this: I will see the goodness of the LORD in the land 

of the ltvi'[5. 
wait for the LORD; be strong and take heart and wait for the LORD. 



Abstract 
The Internet and associated network technologies are an increasingly integral part 

of modem day working practices. With this increase in use comes an increase in 

dependence. For some time commentators have noted that given the level of reliance on 

data networks, there is a paucity of monitoring tools and techniques to support them. As 

this area is addressed, more data regarding network perfonnance becomes available. 

However, a need to automatically analyse and interpret this perfonnance data now 

becomes imperative. This thesis takes one-way latency as an example perfonnance 

metric. The tenn 'Data Exception' is then employed to describe delay data that is unusual 

or unexpected due to some fundamental change in the underlying network perfonnance. 

Data Exceptions can be used to assess the effect of network modifications and failures 

and can also help in the diagnosis of network faults and perfonnance trends. The thesis 

outlines how Data Exceptions can be identified by the use of a two-stage approach. The 

Kolmogorov-Smirnov test can initially be applied to detect general changes in the delay 

distribution, and where such a change has taken place, a neural network can then be used 

to categorise the change. This approach is evaluated using both a network simulation and 

a test network to generate a range of delay Data Exceptions. 
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Introduction 

This thesis presents a novel means of detecting changes in low level delay 

measurements taken from communication networks. These changes are termed Data 

Exceptions. The work originates from a measurement project undertaken by 

Loughborough University, funded by BT, where monitor stations are deployed to actively 

monitor unidirectional latencies across BT's SMDS network. A requirement of that 

project is that Loughborough University provide reports showing any significant changes 

to the measured delay values. These Data Exception reports are provided on a weekly 

basis, not in real time as the purpose of these reports is to provide information regarding 

the impact of network events rather than the detection of faults which would require real 

time analysis. The goal of this thesis then, is to present a novel means of automating the 

Data Exception Detection process and the approach presented is the central contribution 

of the work. The approach need not operate in real time but had to reliably detect Data 

Exceptions without raising large numbers of false alarms which undermine operator's 

confidence in such a system. Another desirable characteristic of the approach was that it 

should require a minimum amount of training or parameterisation. 

The main approach presented employs the K -S test statistic to detect for the 

presence of a significant change in the data. The K-S test is particularly appropriate as it 

is distribution free, making no assumptions about the distribution of the delay. Another 

strength of the K-S test is that it tests for general changes, whether they are changes in 

location or spread. The test is also computationally light and simple to perform. It will 

be shown that this approach is a very proficient means of detecting changes in the data 

and requires no training or parameterisation. 

The second phase of the Data Exception detection process uses a neural network 

to classify the change into one of several known categories. These are 

• step changes 

• changes in Time of Day Delay Variation 
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• spikes 

• weekends 

Once trained the neural network classifies the changes with a high degree of 

accuracy. Data Exception classification may prove to be useful as it allows related Data 

Exceptions to be grouped together. These groupings are termed Data Collections and 

may eventually allow for a system to output probable causes for the change in 

performance that has been observed. It is hoped that further research may show that a 

neural network may be trained to recognise generic Data Exception types independent of 

the network which they are from. This would enable the entire two-stage approach to be 

fully utilised without any training or parameterisation required. This would be a major 

benefit over rule-based approaches that need parameterisation. 

The thesis is structured in the following way: 

Chapter 1 
In chapter one an overvIew of network management is given with specific 

reference to network performance monitoring. Consideration is given to different 

performance measures, the terminology and what the measures represent. Measurement 

tools are discussed and an overview of known tools that measure unidirectionallatencies 

is provided. 

Chapter 2 
Chapter two details the background to the thesis in the form of an overview of the 

measurement work undertaken by Loughborough University and the measurement 

architectures currently deployed. Also attention is given to the AIR (Automatic Incident 

Reporting) system which incorporated a form of Data Exception detection. Work from 

this thesis contributed to publications on the AIR system. [Phi99][PhiSanOO] 

xiii 



Chapter 3 
The concept of Data Exceptions is discussed more fully in chapter three and 

examples are given both from monitoring systems at Loughborough and those of other 

research projects. 

Chapter 4 
Chapter four outlines the various data sources available to this project. Aside 

from the SMDS network, a simulation and a test network were used to generate delay 

data that could be used to develop and assess Data Exception detection methods. 

Chapter 5 
Two approaches to detecting Data Exceptions are discussed in chapter five. An 

early approach used a rule-based method that was implemented as part of the AIR 

system. A more sophisticated two-stage approach was subsequently developed which 

utilised the K-S test statistic to detect, and a neural network to classify Data Exceptions 

and it is this approach that forms the core of the work. 

Chapter 6 
In chapter six this two-stage approach is tested usmg data from both the 

simulation and the test network and the results are presented. 

Chapter 7 
The conclusions are given in chapter seven, along with suggestions for further 

work. 
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Chapter 1 - Network Management and Performance Monitoring 

1. Network Management and Performance Monitoring 
In this chapter a general background to the thesis is given. We take a broad look 

at the area of network management as a whole, the role of network performance 

monitoring within that and some of the research projects that conduct performance 

monitoring, specifically considering delay. 

1.1 Network Management 
With the rapid development of computer networks in recent times; network 

management has become an increasingly important area. Many businesses and 

organisations now have a high degree of dependence on network technology. Access to 

shared resources and information rely on computer networks and network failures can 

seriously impede working practices and even bring things to a standstill. The effect of 

network failures can be very serious, costing companies like banks large sums of money. 

As networks have grown in both size and complexity so the task of managing them has 

become more involved. Understanding the sophisticated devices and systems that make 

up a computer network and being able to take advantage of their features is now an 

integral part of network management [HeI92]. 

Network management incorporates many areas. Networks must be designed, 

planned out, installed, tested and then maintained and upgraded once the initial 

installation phases are complete. Network management is necessary at all levels of 

networking, from the physical layer, managing and maintaining the physical media that 

form the network, right up to the application layer and the software programs and 

processes that operate on the network. 

1.1.1. SNMP 
Network managers manage their network using software that allows them to 

monitor and control the network. Such software will allow a manager to garner statistics 

from routers and switches as well as hosts in the network. Software also allows control 

of these devices enabling a manager to change device configurations. 
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Chapter 1 - Network Management and Performance Monitoring 

SNMP (Simple Network Management Protocol) is a commonly used protocol for 

network management. SNMP uses the client-server model incorporating agents and 

managers. An agent is a server that resides on any network node and contains 

performance information about that node. A manager is the client that retrieves 

information from the agents or changes some agent attribute. SNMP uses the fetch-store 

paradigm. This allows for just two commands; fetch, which retrieves information from 

the agent, and store which assigns some new value in the agent. 

The agents store information in objects. Each object to which SNMP has access 

must have a unique name and be clearly defined. Collectively, the set of all objects that 

can be stored at an agent are described as a MIB (Management Information Base). The 

objects are accessed using ASN.1 (Abstract Syntax Notation One). SNMP does not 

define the objects stored in a MIB, but rather establishes a message format for 

communicating with a MIB. 

1.2 Network Performance Monitoring 
Network performance monitoring plays an important role in network 

management. Performance data can be used to spot potential or actual problems on the 

network. Trends may appear in performance data that could indicate long term problems. 

In the short term these may not give cause for fault alarms and consequently might 

remain undetected by network managers. Network performance monitoring allows such 

trends to be seen and dealt with before any serious problem occurs. Network 

performance data can be useful when analysing current problems as well, both in terms of 

characterising their nature and their impact. 

Network performance data is also key in the planning and development of 

networks. Performance data allows network managers to assess the strengths and 

weaknesses of various network components and strategies and gives an up to date picture 

of how the network is utilised [Cla96][CheOO]. 

1.2.1. Hidden Failures 
Interestingly, severe failures are often the easiest to diagnose and correct. Where 

connectivity is lost altogether, establishing the location of the problem, its cause and the 
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remedy may be relatively straightforward. In contrast, intermittent failures may be much 

harder to detect. Given that network protocols are designed to work with some measure 

of loss, hardware failures that occur only infrequently can remain hidden. Although the 

network hardware and protocol software contain procedures for dealing with errors 

(normally retransmission), network managers still work to detect underlying faults as 

they will inevitably have some impact on the overall network performance [Com99]. 

1.2.2. Improving Network Performance 

When a network is performing badly the following loop (figure 1.2-1) is 

employed to attempt to improve performance. The relevant network parameters are 

measured, analysis is undertaken to try and understand what is taking place and then 

changes are made. This loop is repeated until either the performance is deemed good 

enough or alternatively there are no further improvements to be gained. 

Measure relevant 
parameters 

r--

J ? 
~ 

Analyse and 
Interpret data 

~ ~ 

~ 

Change one 
parameter 

Figure 1.2-1 The Measurement Process 

1.2.3. Performance Monitoring Techniques 

There are three main techniques for evaluating network performance. These are 

analytical analysis, simulation and practical observation. Analytical models are 

mathematical representations, which relate system outputs to inputs by defining 

functional relationships between the two. The working of a network can be modelled to 

any desired level of detail if the necessary functional relationships are known. 
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Simulation is used when the model becomes so detailed that the analytical solution is too 

complicated. In these cases an experimental implementation of the network could be 

used but this would be a very expensive solution. 

Analytical analysis and simulation both fall under the remit of predictive 

modelling. Predictive modelling can be very powerful and is necessary in designing and 

building a network. For the first implementation of a network no observed performance 

measures are available and so designers are completely dependent on predictive 

modelling techniques to evaluate likely performance. The limitations of predictive 

modelling stem from the simplifying assumptions that often need to be made, without 

which the problem can become intractable. 

Once a network is built measurements can be made. Performance measurements 

are useful in that they monitor the actual, as opposed to the theoretical performance, 

thereby exposing design flaws and inefficiencies in the network in addition to effects due 

to user traffic. 

1.2.4. Active and Passive Measurements 
Performance measurements can be made in two ways, either actively (intrusively) 

or passively (non-intrusively). Active measurements involve injecting test traffic into a 

network for the specific purpose of monitoring some element (or elements) of that 

networks performance. Passive measurements make use of traffic already in the network 

and glean performance information from it. The advantage of active measurements over 

passive measurements is that test traffic is under the monitors control and therefore can 

be specified to any given parameters to provide the information required. The 

disadvantage is that by injecting test traffic into a network the traffic load is being 

increased and may potentially effect performance. 

1.2.5. Performance Measures 

1.2.5.1 Delay 

The first performance measure we shall discuss is delay. Delay is one of the more 

fundamentally important measures of network performance and is also a central topic for 

5 
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much of this thesis. The total amount of delay associated with infonnation traversing a 

network can be thought of as compromising of four parts. 

1.2.5.1.1 Propagation delay 

This refers to that time which it takes for the signal to be sent along some physical 

medium, whether that be wire, fibre or even through the air. It is a fundamental delay 

that is essentially constant and characteristic of the medium. 

1.2.5.1.2 Switching delay 

This is introduced by electronic devices in the network such as routers, switches, 

bridges or hubs. This delay consists of a minimum element incurred due to the time it 

takes for all the bits of a packet to be received and then for the decision to be taken as to 

which destination the packet should be forwarded to. 

1.2.5.1.3 Access delay 

This arises when hosts have shared access to a network medium. An example 

would be a host on an Ethernet network that may have to back off and wait for the 

channel to become free before it is able to transmit. Similarly on a token ring network a 

host has to wait for the token before it can start to send packets. 

1.2.5.1.4 Queuing Delay 

This occurs when packets are waiting to be serviced at various points in the 

network. For instance, at a router where a significant amount of processing may be 

required to encapsulate and route packets, packets will be queued until they can be 

processed. Various queuing strategies are available to try and ensure a fair queuing 

system. 

Often when delay measurements are required the Round Trip Time (RTT) is used 

as it can be easily obtained using tools such as ping. Round Trip Times refer to the total 

amount of time required for a test packet (nonnally an ICMP packet) to traverse across a 

network to some destination and to return again. The packet finally tenninates at the 
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same host from which it was transmitted. This is advantageous as it eliminates any need 

for timing synchronisation. The same clock records the transmit time and the receive 

time. 

Measuring one-way delay is difficult, as timing synchronisation is required. 

[Sid89] Some performance monitoring protagonists have argued that RTT is more than 

adequate [HanOO] and that there is little to be gained by measuring end to end delay, 

given the complexities involved in achieving those measurements. However others have 

pointed out that network paths can be asynchronous, meaning that the respective delays 

encountered by outward bound packets and returned packets can be very different 

[Cla93]. In these cases, RTT could be misleading. Later discussion will look at 

performance monitoring proj ects that do measure end to end delay using GPS to give 

timing synchronisation. 

1.2.5.2 Throughput 

The second fundamental property of the network is throughput. This refers to the 

amount of data that can be sent through the network, or a section of the network. 

Throughput is generally measured in bits per second (or Megabits/sec or even 

Gigabits/sec). Another term that is used to describe throughput is bandwidth. As 

bandwidth or throughput are sometimes referred to as the speed of a network it is 

important to be clear that throughput and delay are distinct measures. The throughput 

describes the amount of data that can be put onto a link, the delay describes the amount of 

time the data will take to reach the destination. Corner [Com99] gives the example of a 

road that can accept one car every five seconds (throughput 0.2 cars/sec). The road has a 

delay of 30 seconds. Now if an extra lane was added to the road then two cars could join 

the road every five seconds (throughput has doubled to 0.4 cars/sec) but the delay on the 

road would still be 30 seconds. 

Although throughput and delay are different measures and describe different 

aspects of network performance the two are associated. Congestion occurs on a network 

where the rate of traffic being sent over the network exceeds the throughput rate. A 

congested network results in packets being queued before they can be sent. It should be 

clear that this queuing time will affect the overall delay of the packet. 
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1.2.5.3 Jitter 

Jitter (or delay variation) is the term used to describe the variance in delay. Jitter 

is of particular relevance to real time applications such as video or audio streaming 

software. In real time applications it's not enough for the mean delay to be low, the 

standard deviation also needs to be small so that there is no noticeable break in 

communication. 

1.2.5.4 Loss I Errors 

Although loss and packets containing errors are on the whole invisible to a user as 

they are generally dealt with by the hardware and software protocols that facilitate the 

network, they are still a very important network measure. Where packets contain errors 

or are lost they will often require retransmission. The more packets that are lost or 

corrupt the greater the inefficiency of the network. 

1.3 Current Research / Existing Tools 
There is a feeling among the academic community that Network Service 

Providers do not collect or make available sufficient performance measures concerning 

their networks [Cla96][Pax98c][CheOO]. There seems to be two main reasons for this 

reluctance to monitor networks more comprehensively. The first difficulty is that no one 

seems too sure what to monitor and what statistics to collect. The technology involved is 

still in a fast evolving state and there is a suggestion that network service providers do not 

know with any great confidence what information would be of use to them and what 

would not. The second issue is simply that of priority. Enough effort is required in 

getting and keeping network infrastructure operational that performance statistics have 

been kept as a secondary concern. [Cla96] The issue is not so much whether generating 

performance data would be useful, rather that there is no spare time or clear direction to 

bring it about. 

Despite the seeming lack of impetus, there is a growing belief that network 

performance information is important. The motivating factors come from both within 

and outside the telecommunication companies. Performance data is important for 

identifying the causes to network faults and for solving them. Detailed information 

allows faults to be analysed and understood. Performance data also allows trend analysis, 
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potentially allowing managers to identify hot spots before they occur and instigating 

preventative measures. These are good arguments for telecommunications companies to 

take the initiative. Pressure is also growing from external bodies. As networks are 

increasingly employed as a means of communication, users will want performance 

guarantees. There is also the introduction of government legislation by bodies such as 

OFTEL (UK) [OFf EL] ensuring that certain standards are met. Without performance 

measurements there is no means of satisfying these various parties that standards are 

being maintained. 

1.3.1. Metrics and Methodologies 
One of the areas being discussed presently is which performance measures to 

collect. There are a number of statistics that can be generated, some probably of greater 

use than others. Even where we know what statistics we want they still need to be 

carefully defined; so for example, what one person/organisation refers to as one-way 

delay is not misunderstood. For instance, when measuring delay, at what point does the 

'clock' start counting? Ideally, these definitions would be standardised in such a way 

that a common set of measurements (or metrics) could be used universally [Pax96]. 

Methodologies are the means of obtaining metrics. Metrics can be defined where 

no methodology currently exists for obtaining them. Conversely there may be many 

methodologies for obtaining the same metric. It may be that there are known flaws in 

methodologies where the desired metric cannot be measured accurately but a good 

indication still obtained. This may still be useful but needs to be documented. IPPM (IP 

Performance Metrics) which is part of the IETF (Internet Engineering Task Force) have 

undertaken to draw up standards and ratify new metrics and methodologies as 

appropriate. 

1.3.2. Performance Monitoring - Measurement Tools Overview 
There are many measurement tools available, in addition to a quick look at ping 

and traceroute, we consider five here. These have been chosen as they are similar to that 

used in this project in that they measure similar metrics, namely one-way-delay (all 

except ping) and loss. 
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1.3.2.1 ICMP, Ping and Traceroute 

The Internet Control Message Protocol (ICMP) is used to report network events. 

There are about a dozen types of ICMP messages and they are transported in IP packets. 

Some of the more important messages are listed in the table below (figure 1.3-1). 

Message Type Description 

Destination Unreachable Packet could not be delivered 
Time Exceeded Time to live field hit 0 
Parameter problem Invalid header field 
Source quench Choke packet 
Redirect Teach a router about geography 
Echo request Ask a machine if it is alive 
Echo reply Yes I am alive 
Timestamp request Same as Echo request, but with 

timestamp 
Timestamp reply Same as Echo reply, but with 

timestamp 

Figure 1.3-lICMP Messages 

The ping program makes use ofICMP Echo request and Echo reply messages (or 

sometimes Timestamp request and Timestamp reply messages) to either test connectivity 

or round trip time. Ping is widely available and comes as standard under operating 

systems such as Microsoft Windows (95, 98, NT, 2000) and Linux. Ping was originally 

written by Mike Muuss. 

Traceroute, developed by Van Jacobson, also uses ICMP. Unlike ping, traceroute 

outputs all the intermediate router hops it takes to reach the specified destination. Below 

is output taken from both ping (figure 1.3-2) and traceroute (figure 1.3-3). 

PING www.bbc.net.uk (212.58.224.31) from 158.125.51.167 : 56(84) bytes of data. 
64 bytes from wwwl.thdo.bbc.co.uk(212.58.224.31): icmp_seq=O tt1=247 time=28.120 msec 
64 bytes from wwwl.thdo.bbc.co.uk(212.58.224.31): icmp_seq=1 tt1=247 time=32.308 msec 
64 bytes from wwwl.thdo.bbc.co.uk(212.58.224.31): icmp_seq=2 ttl=247 time=20.507 msec 
64 bytes from wwwl.thdo.bbc.co.uk(212.58.224.31):icmp_seq=3ttl=247 time=41.589 msec 
64 bytes from wwwl.thdo.bbc.co.uk(212.58.224.31): icmp _seq=4 ttl=247 time=36.604 msec 
64 bytes from wwwl.thdo.bbc.co.uk(212.58.224.31):icmp_seq=5 ttl=247 time=32.061 msec 
64 bytes from wwwl.thdo.bbc.co.uk(212.58.224.31): icmp_seq=6 ttl=247 time=30.666 msec 
64 bytes from www1.thdo.bbc.co.uk(212.58.224.31):icmp_seq=7 ttl=247 time=28.275 msec 

--- www.bbc.net.uk ping statistics ---
8 packets transmitted, 8 packets received, 0% packet loss 
round-trip minlavglmaxlmdev = 20.507/31.266/41.589/5.829 ms 

Figure 1.3-2 Ping Output (ping www.bbc.co.uk) 
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1 el-gateway-50.lut.ac.uk (158.125.50.1) 0.435 ms 0.318 ms 0.294 ms 
2 emman-gw.lut.ac.uk (158.125.8.1) 0.987 ms 0.965 ms 1.024 ms 
3 uon2-gw-vl.emman.net (194.82.121.130) 4.411 ms 6.112 ms 7.201 ms 
4 uon1-gw-6.emman.net (194.82.121.42) 12.348 ms 10.344 ms 12.524 ms 
5 ce-gw.ja.net (146.97.255.21) 20.145 ms 20.373 ms 23.826 ms 
6 ext-gw4.ja.net (193.62.157.113) 21.743 ms 22.255 ms 23.573 ms 
7 linx-gw.ja.net (193.63.94.249) 15.645 ms 22.558 ms 18.422 ms 
8 rt-linx-b.thdo.bbc.co.uk (195.66.225.103) 20.297 ms 25.060 ms 26.070 ms 
9 www1.thdo.bbc.co.uk(212.58.224.31) 34.144 ms • • 

Figure 1.3-3 Tracewute Output (traceroute www.bbc.co.uk) 

1.3.3. Ping based tools 
Ping has been adapted and used by other Network Measurement systems. 

Although ping itself is a well-established tool it's stilI being used for research as part of 

larger schemes. Internet weather reports are provided by sites that poll other sites using 

ping on a regular basis and then assess the networks performance using the delay data 

gathered by these measurements. In the figure below (figure1.3-4), taken from Andover 

News Network ITR site (Internet Traffic Report) [IntTR], response time is plotted 

against time. The response time reflects ping results from several servers that the site 

uses to reflect the performance of the Internet. 

1.3.4. NIMI 
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Figure 1.3-4 Response time graph from an Internet Weather site [IntTR] 

The NIMI (National Internet Measurement Infrastructure) project is a network 

measurement architecture based in the US [Pax98b] [Pax98c]. The key focus of this 

project is to create a measurement infrastructure capable of monitoring very large 

networks. NIMI makes use of stations set as end-points for a set of measurements 

therefore allowing for end-to-end metrics to be measured. NIMI uses Traceroute 
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[Jac89], Treno [Mat96] and Poip (Poisson Ping) but is designed to allow for any tool to 

be used as part of its measurement suite. The NIMI project hopes to move towards 

diagnosis of problems by deploying probes at various points along the monitored network 

paths. This will allow problem areas to be identified more specifically. 

1.3.5. Surveyor 
Surveyor [KaI98] measures one-way delay and loss by sending UDP test packets 

(40 bytes including IP and UDP headers) between measurement test stations distributed 

around the Internet. Timing accuracy is achieved using GPS antenna. Test packets are 

sent, on average, every two seconds and then the results are summarised over a one­

minute period. The summary statistics used include centile values for average delay and 

percentage loss. Surveyor was making use of some 38 machines in November 1998 

having started with just 3. These are mainly at sites in the US but Europe is now 

included. 

1.3.6. RIPE 
The RIPE project [Uij97][Uij98] is similar to Surveyor in that it also uses active 

testing with GPS clocks for time synchronisation. The work is centred in Amsterdam and 

the testing is conducted mainly across Europe. Again like Surveyor, RIPE transmits 

packets using a Poisson sampling rate to avoid synchronisation between the test traffic 

and other events on the network. [Flo94] 

1.3.7. NLANR-AMP 
The National Laboratory for Applied Network Research (NLANR) has been 

working on creating a Network Analysis Infrastructure (NAI) [McGOO]. This 

encompasses a variety of performance measures including a passive monitoring project 

and an active measurement project. NLANR has also been working on the collection of 

network management and control data. The Active Measurement Program (AMP) 

measures round trip time, topology and loss. They have deployed over 100 AMP 

monitors around the high-performance research networks in the United States (figure 1.3-

5). 
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Figure 1.3-5 NLANR AMP Monitors [McGOO] 

In this chapter we have looked at the broad area of network management and 

given particular consideration to the role of network performance monitoring with that. 

Network performance monitoring forms an important part of network management, its 

characteristics include delay, throughput, jitter and loss. We've seen that One-Way 

Delay can be measured using intrusive measurements although some form of timing 

synchronisation is necessary. Examples of one-way delay measurement schemes are the 

RIPE project and the Surveyor project. Round Trip Time can also be measured using 

tools like ping. A monitoring scheme that measures RTT is the NLANR AMP project. 

In chapter two we go on to look more specifically at performance monitoring 

work undertaken at Loughborough which provides the setting and background of the 

work discussed in this thesis. 
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2. Performance Monitoring at Loughborough 

2.1 Introduction 
In chapter one a broad introduction was given to network management, network 

performance monitoring and specifically monitoring tools that measure delay. In this 

chapter we look more specifically at work conducted in this area at Loughborough 

University as this gives important background information and puts into context the 

purpose and aims ofthis thesis. 

2.1.1. Background to Data Exception Detection 

Researchers at Loughborough University have been engaged in the area of 

network performance monitoring for a number of years. Much of the work provides 

useful background to this thesis, as it should give a clear understanding of the motivation 

behind and the need for a means to detect Data Exceptions. 

2.1.2. Chapter Overview 

As has previously been mentioned, measuring one-way delay is a non-trivial task. 

Work has been carried out at Loughborough to develop a performance monitoring tool 

capable of measuring one-way delay and loss as part of the BT funded URI project. Two 

architectures are discussed here: The Walsall Test Architecture and the Portable test 

system. The Walsall test architecture is used to continuously monitor the SMDS 

network, providing an 'ever present' source of information. The portable test system is 

used for more specific, short-term tests (hence the portability for ease of installation). In 

both cases the aim is to indicate the type of performance experienced by the end user (i.e. 

one-way delay). This is particularly relevant when considering service level agreements 

that may exist between a network provider and their clients. 

In addition to these test architectures a monitoring system, AIR (Automatic 

Incident Reporting) is also described. AIR incorporates several aspects of the monitoring 

process of which Data Exception Detection is one, hence the pertinence of the discussion 

to this thesis. 
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2.2 Walsall Test Architecture 

2.2.1. Purpose and History 

The Walsall Test Architecture was assembled and installed following the design 

and implementation of a unidirectional latency and loss tester, developed at 

Loughborough. The system was originally set in use, monitoring BT's SMDS network, 

in 1995. The purpose was to provide BT with performance measurements previously 

unavailable to them, namely one-way delay. This enabled BT to demonstrate their 

compliance with Service Level Agreements negotiated with their customers 

[Phi95][Phi96]. 

2.2.2. Physical Components and Layout 

The architecture (figure 2.2-1) is made up of several components. Chiefly, there 

are three monitor stations based at a BT Network Operation Centre (NOC) in Walsall, an 

alarm station (also based at Walsall) and a control station based at Loughborough. Ofthe 

three monitor stations one is used as the primary test station, one is used to run focus tests 

and the third is an emergency backup. The test equipment is connected to the SMDS 

network at five separate locations via Megastream links. These locations are 

Birmingham, Bristol, Edinburgh, London and Manchester. An SMDS connection links 

the control station to the test stations. 
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2.2.3. Testing Strategy 

SMOS 

Control Station 

Meg strea Links 

+r Routers 

Monitor 
Stations 

Figure 2.2-1 The WalsaIl Test Architecture 

The test points provide twenty one-way paths across SMDS. Test packets are sent 

across the SMDS network, testing each route in turn with both small (64 Byte) and large 

(1500 Byte) test packets. These represent the smallest and the largest packet sizes 

available to us. Test packets are sent at a rate of one per second meaning that each test 

(individual packet size and route) is tested every forty seconds. 

No clock synchronisation is required as the same machine logs the transmit time 

and the receive time. The only variable delay here is in the SMDS network itself; other 

delays involved are either negligible (e.g. propagation along the Ethernet at Walsall) or 

fixed (e.g. the megastream links). The access network is reserved solely for monitoring 

purposes. If this were not the case then the tests would be affected by traffic on the 

access network. 

Loopback tests were conducted in conjunction with BT to measure the delay 

attributable to the non-SMDS element of the test circuit. By subtracting this figure from 
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the total delay we obtain a figure that solely represents the delay incurred traversing 

SMDS. 

2.2.4. Data Storage and Processing 
The test stations log packet transmit and receive messages in log files stored on 

their local hard drives. These files are retrieved to Loughborough typically twice a week. 

The data is then processed to calculate delay and loss information and stored in a 

database at Loughborough. The database uses a concept called intermediate information 

(figure 2.2-2). This essentially gives a speed up in response time as a trade off against 

storage space [Bas98]. 

2.2.5. Data Reporting 

. Intermediate 
Information 

"Halfway-House" 
Figure 2.2-2 Intermediate Information 

. Information 

From the monitoring information, delay graphs are produced that show 50th, 95th 

and 99th centile values, typically over a three hour window. These graphs are examined 

for anomalies (Data Exceptions) and where such anomalies are found a report is 

produced describing the change. These reports are generated historically and are 

produced on a weekly basis. In addition to the weekly reports the alarm station, based at 

Walsall, displays up to date performance information and also has some simplistic 

thresholds designed to give warning of any serious performance impairment [Pag99]. 
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2.3 Portable Test Architecture 

2.3.1. Purpose and History 

As has been mentioned earlier end to end delay consists of two parts, access 

network delay and core network delay. Where end to end performance has degraded it 

might be due to either the access network or the core network or both. The portable test 

system was designed to measure end to end delay between two arbitrary points in the 

network and also to measure the delay on the access networks involved. 

In practice the portable test system has been used to measure links between points 

within the core network to give benchmark figures for delay. 

2.3.2. Physical Components and layout 

Site A Site B 

Figure 2.3-1 The Portable Test Architecture 

GPS 

Monitor 
Station 

The portable test system (figure 2.3-1) makes use of two test stations each 

receiving a timing pulse via GPS antenna. A lap top computer running Solaris is then 

used as the control station. The log files from the portable test stations can be retrieved to 

the control station where they can be stored and processed. 

2.3.3. Testing Strategy 

As was mentioned above, in addition to end to end delay measurements, the local 

site access is monitored. This is done by sending a test packet to the local gateway and 

back again. Hence there are four tests, one for each site access and two tests traversing 

the core network, one in either direction. The size of the test packets and the rate at 

which they are sent can be tailored to suit the specific requirements of the test. 
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2.3.4. Data Storage, Processing and Reporting 
Data storage, processing and reporting is done III a similar manner to that 

described under the Walsall Test System. The control station for the portable system is 

nominally a laptop that can be taken to a remote site, however any Solaris based machine 

that can access the test stations remotely could be used as a control station. 

2.4 The Automatic Incident Reporting system (AIR) 

2.4.1. Purpose and history 
Given that some monitoring information exists, further work can be done to 

collect, analyse and present this information so that it can be interpreted and if necessary, 

action can be taken. The AIR system addressed these issues with the specific intention of 

automating the process as far as possible [Phi99][PhiSanOO]. 

2.4.2. Layered Approach 
Jain describes the layered approach referred to here (figure 2.4-1) [Jai91]. In his 

model there are seven layers, of which the top three generally involve some human 

element. 

Figure 2.4-1 Jain Layered Approach [Jai911 
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The observation layer gathers raw data on individual components of the system, 

in this case a network. These then need to be collected and analysed. Analysis at this 

stage may simply involve calculating statistical summaries; thresholds might also be used 

to trigger alarms. It is in this layer that Data Exception techniques might be 

implemented. The information summarised by the analysis layer then needs to be 

presented; this can be done in the form of reports, displays and alarms. The information 

must then be interpreted; this is generally done by human beings or perhaps an expert 

system. The console layer is the means by which managers can interface with and 

control the network, allowing the management layer, at the top, to make decisions 

regarding any action that may be required. 

2.4.3. Observation 
The AIR system was designed to incorporate any monitoring information source 

that happened to be available. The observation layer could therefore include many types 

of monitors. In practice two monitors have been used, the delay and loss monitors 

described above in association with the Walsall Test Architecture and also an ATM 

tester, that also monitors delay and loss, developed at BT's research laboratories at 

Adastrel Park, Martlesham. 

2.4.4. Collection 
The data is stored in log files on the monitor stations and then retrieved on a 

regular basis. Itis stored in a database on a control station in a similar manner to that 

discussed in the previous two sections. 

2.4.5. Analysis 
Analysis of the data included the calculation of statistical summaries and then the 

application of a rule base to establish whether any Data Exceptions, that is anomalies in 

the data, had occurred. Data Exceptions will be discussed more fully in the next chapter 

and the rule-based approach used here is described in detail in chapter 5. 
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2.4.6. Presentation 
Data Exceptions are gathered together in data collections that are then stored in a 

database which can be accessed using a viewer (figure 2.4-2). 
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AIR executes these processes automatically. By collecting together all relevant 

Data Exceptions the aim is to make the interpretation of the data as simple a task as 

possible. This might even lead to the automation of this layer although no work has been 

attempted in this area. The top three layers are not addressed by AIR. 

2.5 Summary 
In this chapter we have looked specifically at research undertaken at 

Loughborough. Relevant work has led to two test architectures, (The Walsall Test 

Architecture and The Portable Test Architecture) and a monitoring system (The AIR 

system). This thesis aims to detect Data Exceptions in the delay data observed by 

monitor stations such as those discussed in the two test architectures. These Data 
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Exception detection techniques may then be used by a system such as AIR as part of a 

complete network management system. 

In chapter three we discuss Data Exceptions in more detail. Examples of Data 

Exceptions are presented and their causes considered. 
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chapter 3 - Data EXCeptions 
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3. Data Exceptions 
In this chapter the concept of Data Exceptions is discussed in more detail. 

Although the concept is not novel or exclusive to this piece of work, very little has been 

written describing the nature of Data Exceptions. In this chapter examples are given and 

the causes of the different types of Data Exception are discussed. 

3.1 What are Data Exceptions? 
A given network has an associated set of network perfonnance characteristics 

[Pax98]. These may include any metric, which in some way characterises the 

perfonnance of that particular network. These characteristics may be expressed as some 

kind of fixed value or alternatively as a distribution of values. Therefore the set of 

network perfonnance characteristics for a network could include the minimum possible 

delay between two points on the network which would be expressed as a fixed value. 

Alternatively, a perfonnance characteristic could be the observed throughput along a 

certain link, which would be expressed as a distribution of values. 

An important assumption here is that these perfonnance characteristics don't 

change except where the state of the network that they characterise changes. For this 

assumption to hold we must take in to account the usage characteristics of a network, as 

the way a network is used affects many network perfonnance characteristics [Hoo97]. 

The use of a network may change without its state (in a physical sense) changing in any 

way. However for the purposes of considering and detecting Data Exceptions, the 

general network use will be included as part of the network state. If a network user were 

to introduce an excessively large volume of traffic so that it significantly altered the 

network perfonnance this would be thought of as a change in network state. 

Given that the underlying perfonnance characteristics remain constant so long as 

the network is in an unchanged state, we now define Data Exceptions to be data that 

reflect a change in these underlying perfonnance characteristics and therefore a change in 

the network. Data Exceptions are exceptions from the expected perfonnance 

characteristics that define a given networks perfonnance at a given time. 
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As was alluded to above there are changes in perfonnance that are brought about 

by the changes in network use. Certain usage patterns are included in our definition of 

network state as they are consistent and predictable. Network usage on many networks 

increases during working hours of the day leading to Time of Day Delay Variation 

(which is discussed further on in this chapter). Further to the variation in delay observed 

during the day a similar principle is applicable to weekends where less variation in delay 

is observed than during the week. These changes are not Data Exceptions as they are 

expected and are included as part of the network state. 

Data Exceptions reflect some change in network perfonnance due to some change 

in network state. This may be due to any kind of network alteration, not just network 

faults. Data Exceptions could include planned works, upgrades, reconfigurations as well 

as unforeseen errors. 

Data Exceptions could be found in any data source. This thesis deals specifically 

with one-way delay but there are many other metrics that are being actively monitored 

[Alm99a)[Alm99b)[Pax98a]. Data Exceptions, that is data that differs in some way 

from that which was expected, could be detected in any of these sources. 

As there are often many different monitoring tools monitoring one network, a 

change in the network could trigger many Data Exceptions. Likewise, one monitoring 

tool measures many different paths or nodes on a network. Again, one network event 

might cause Data Exceptions in more than one of these measurements. 

Where there are multiple Data Exceptions all referring to the same network event 

it would be useful to have some automated means of collecting these together. Although 

this is outside the remit of this thesis a basic means of collecting Data Exceptions 

together is discussed at the end ofthis chapter. 

3.2 Examples of Data Exceptions 

3.2.1. Step Change 
A commonly observed Data Exception, known as a 'Step Change', occurs when 

the average delay either increases or decreases in such a way that all test packets are 
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affected (see figure 3.2-1 for an example). That is to say that delay is altered by a 

constant amount for each packet. Step changes can be any size but, as they become very 

small it becomes hard to be certain whether or not the change is a genuine step change or 

not. Step changes can occur when the network is reconfigured. Packets may travel over a 

different route with different associated latency or the same route might be upgraded (or 

even downgraded) in some way. [MatOO] [PhiSanOO] 
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Figure 3.2-1 A Series of Step Changes 

3.2.2. Time of Day Delay Variation Changes 

As can be seen from the graphs, delay varies according to the time of day or to be 

more precise delay fluctuates according to the amount of loading on the network, which 

follows daily patterns. Therefore delay tends to be higher during the working hours of 

the day than at night or at the weekends. Other work has shown that network traffic has 

self-similar properties [LeI94]. This seemingly contradicts the notion of load varying 

according to some pattern, however the time scales in which the fractal-like nature of 

network traffic has been observed are considerably shorter than those being dealt with 

here. Leland himself notes the possible presence of a time of day cycle [LeI94] when the 

time scale is lengthened. This trend is extended further to bank holidays where again a 

difference in delay is noticeable. This effect has been termed 'Time of Day Delay 
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Variation' [Phi961. Changes in Time of Day Delay Variation can occur when a link 

becomes more reactive to high load. That is to say that during the working period of the 

day, the effect of the high load on the network is more severe than previously. Another 

potential cause for a Time of Day Delay Variation change could be a significant increase 

in load due to client activity. Changes in Time of Day Delay Variation can also result 

from reconfiguring the network and it is not uncommon for step changes and changes in 

time of day variation to occur in tandem. Figure 3.2-2 shows four weeks of delay data. 

During the week delay increases during the working hours of the day. On the fourth 

week this additional delay increases. 
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Figure 3.2-2 A Change in Time of Day Variation 

3.2.3. Loss 
Loss exceptions can take two fonus, a continuous break or a period of high loss. 

Although this work is primarily concerned with detecting changes in delay, the following 

could be defined as loss Data Exceptions. If several packets are lost consecutively then 

we infer that a short break has occurred. Without testing continuously it is impossible to 

be certain that this is true but statistically speaking, if every packet sent over, say, a 

twenty minute period (30 packets) is lost then there is a high probability that a short break 
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has occurred. Alternatively if a high proportion of loss is observed over a specific period 

then this could be reported as a high proportion of loss. By high proportion this might be 

anything from 5% of packets upwards. 

3.2.4. Delay Spikes 
Spikes are sharp increases in delay that last for a relatively short period of time 

(one to two hours). The increase need not affect all the test packets although the more 

test packets it affects the more significant it is likely to be. Spikes can be of any size 

although the spikes need to be clearly observable above fluctuation in delay caused by 

load. Figure 3.2-3 shows an example of a delay spike. 
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Figure 3.2-3 A delay spike 

Other researchers have observed examples of Data Exceptions. Although the 

terminology is not standardised, phenomena such as step changes, 'time of day' variation 

changes and spikes have been noted by the researchers working on the AMP project as 

well as the Surveyor project. [McGOO)[KaI98) 

This example of a step change (figure 3.2-3) comes from the Surveyor project. 

"[This Graph) shows a routing change between two sites. The two sites are in the eastern US, so the change 
took place in the early morning, and is represented by a discontinuity in the delay. The minimum delay 
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along this path dropped by about ten milliseconds. The receiving site is multi-homed, and changed the way 
its network was advertised, resulting in the routing change." 
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Figure 3.2-4 Step cbange example from Surveyor [KaI98] 

Another example of a step change can be seen in the following graph (figure 3.2-

5) taken from data gathered by the Ripe project. [Uij98) 
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Figure 3.2-5 Step change example from Ripe [Uij98] 

Not all network delay measurement schemes will show time of day variation in 

delay. A key difference between the research work described in this thesis and the other 

measurement proj ects discussed in chapter 1 is that the Loughborough work focuses on 

delay across a single network, owned by a single network provider. This allows the 

performance data to be linked to specific network events and gives greater ability to 

identify problem areas. Other network monitoring proj ects have been investigating delay 

across the internet thereby potentially spanning several network providers, usage patterns 

and even time zones which would make the time of day effect very much more complex. 

Another related key difference is that many of the other measurement projects being 

undertaken access the internet via a local network. Often additional delay incurred as a 

direct result of the access network is far higher than the delay incurred from network 

providers core network. The problem here is that the results from a measurement scheme 

accessing the internet via a local network (a campus network for instance as is often the 
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case for Surveyor) may be so dominated by that access network to make it difficult to 

infer much about the performance of anything other than the access network itself. 

This following example (figure 3.2-6) from the AMP project shows two graphs, 

one of loss measurements, one of delay measurements. In the second graph time of day 

variation in delay is visible. 
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Figure 3.2-6 TodVar example from AMP [McGOO] 

3.3 How Can Data Exceptions be used? 

3.3.1. Data Abstraction 

32 

Data Exceptions are an abstraction of the data. In this sense they are inherently 

useful as they present performance information in a condensed and accessible form. 

Information is only presented when something has changed from that expected and then 

only the change itself is presented. This is a key benefit as the volume of measurement 
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infonnation increases. Sifting through the multitude of infonnation for the relevant and 

infonnative is a fonnidable task. Skilled analysts are expensive to train and retain so any 

means of reducing or semi-automating the task is a significant step forward. 

3.3.2. Gauging effects of network events 
Data Exceptions are especially useful when gauging the impact of network events 

such as faults and planned alterations or re-routes. Models or simulations can be used to 

predict the effect that certain changes might have. Observing the direct effect on user 

perceived perfonnance, in tenns of latency, brings a greater degree of certainty that any 

alteration to the network has had the expected effects. It is surprising the degree to which 

network operators are in the dark regarding the actual perfonnance that their networks are 

providing [CheOO][Cla97). The effects of alterations are often different from that which 

was anticipated. Data Exceptions show exactly what the effects of a change were. 

3.3.3. Network event detection and diagnosis 
Data Exceptions can also be used as part of the network event detection and 

identification process. The non-real-time aspect of the Data Exception detection methods 

discussed in chapter 5 make it unsuitable as a front line fault detection method. Fault 

detection at a fundamental level, detecting that a line has gone down for instance, is 

better done using network management tools built around SNMP. However faults can 

occur that are significantly harder to detect and that can remain unnoticed for some time 

[Jai91). Faults of this nature might be detected using Data Exceptions. One network 

event will generally give rise to multiple Data Exceptions, as it is likely to affect multiple 

tests. To identify and interpret network events some means of correlating and collating 

the relevant Data Exceptions must exist. 

3.4 Collections 
Data Exception Collections contain all the Data Exceptions pertaining to one 

network event, or a series of connected network events [PhiSanOO). The aim here is to 

give as complete a picture as possible of a network event. Multiple views of the event 

may be necessary to detennine infonnation about the event. For instance if a test 

monitors the delay between two points on a network and a Data Exception occurs on that 
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test there is no immediate way of knowing whereabouts along the link an event has 

occurred. If tests are being conducted on several paths, some of which show the Data 

Exception and some do not, then it may well be possible, given that some topology 

information is known, to deduce whereabouts the network event that gave rise to the Data 

Exceptions occurred. 

A-8 
A-C 
8-C c 

Figure 3.4-1 A simple example of the need for collections 

In the example above (figure 3.4-1), if we were monitoring each of the paths A to 

B, A to C and B to C then both the Data Exceptions that should be reported on A to Band 

B to C would be necessary to deduce whereabouts the event had occurred. 

The concept of collections was implemented in the AIR system mentioned in 

chapter 2 [Phi99]. Collections were formed by correlating Data Exceptions using three 

fields: testid (route information), time and type. If Data Exceptions matched on two of 

these three fields they were stored together in a collection. Although this is fairly 

rudimentary approach it served its purpose adequately. 
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3.5 Summary 
In this chapter the concept of Data Exceptions has been examined in more detail, 

examples have been given and causes discussed. The idea of Collections has also been 

introduced as a possible further step. In the next chapter we consider the data sources 

available to the project. These data sources were used to develop and assess Data 

Exception detection methods. 
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4. Data Sources 
In this chapter the data sources available to this project are discussed. These data 

sources were necessary in order for Data Exception Detection methods to be developed 

and tested. 

4.1 Essential Criteria 

4.1.1. Data Completeness 
In order to develop and assess techniques for detecting Data Exceptions, 

performance data is required. The data is needed so that correlation between network 

events and network performance data can be observed, learnt and finally validated and 

tested. An essential criterion for the data is that it should be complete. It is of limited use 

to know what network events have occurred without having access to the corresponding 

performance data. Likewise the performance data is only partially useful without 

knowledge of the network it describes. Where the data is incomplete it may be possible, 

by estimation and inference, to make good the shortfall but this path is strewn with 

difficulty and danger and is undesirable. The problem here is that estimation and 

inference can lead to incorrect assumptions. Bogus data may have an adverse effect on 

the derivation of a detection method leading to faulty results. 

4.1.2. Data Range 
Another useful quality that the data set may have concerns the range of events it 

represents. It would certainly be of benefit if as many different types of network event as 

possible are recorded and represented. If during the monitoring process only one kind of 

event is observed out of a large set of possible events, then any detection technique based 

on this data will be tailored to deal with only that event. In a sense this is another kind of 

'incompleteness'. Ideally all network events should be included but this is not possible 

as the range of possible things that may happen to a network is very large. However, a 

broad range of network events, in terms of their impact on the network, can and should be 

considered. 
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4.1.3. Controllable data 
To make experimentation easier it is desirable that the data be in some way 

controllable. The ideal scenario is one in which data can be produced on demand 

allowing for any gaps or thinly covered areas to be supplemented. This necessitates the 

ability to generate or cause network events. One might say that this is a 'desirable' rather 

than 'essential' criterion. The point here is that it is impractical to simply wait for the 

right set of data to be gathered; it might be any length of time before certain network 

events occur. The preferable option is to be able to affect the network in such a way as to 

be able to cause network events and observe the resultant data. 

4.2 Potential Data Sources - an overview 

4.2.1. Commercial network 
These criteria, that the data should be complete and that they should cover the full 

range of network events poses a problem - how can we obtain such a data set? Data from 

a large commercial data network is excellent in that it represents the actual problem in 

hand. However it may not meet the criteria set before us. Firstly, obtaining accurate and 

detailed infonnation regarding network events from commercial data networks is difficult 

as operators are understandably reluctant to make such infonnation public knowledge. 

Even where access is granted to collect perfonnance data, full explanations of the 

network events may not be forthcoming, partly as the company may be reluctant to 

release such infonnation, partly because they may not even know. 

Even if such infonnation were available our second criteria also presents a 

stumbling block. How can we guarantee covering a full range of network events during 

our monitoring period? This data source is definitely not controllable and considerable 

difficulty may be encountered in trying to persuade operations managers to allow live 

network equipment to be tampered with, simply so that perfonnance data can be 

gathered! 

Data from a commercial network (BT's SMDS network) has been available to this 

project. While the data on it's own is not sufficient to enable the design of a reliable 

exception detection method, it has been useful. It has been helpful to be able to verify 

that data generated by other methods (see below) are realistic. If a simulation tool, for 
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instance, were all that was available it would be hard to ascertain whether or not the 

output that was being produced behaved in a manner that was realistic and consistent 

with that of a commercial network. 

The SMDS data was also useful in characterising the nature of delay data. Early 

work on this project investigated the distribution of delay data, of particular interest was 

whether or not the data were normally distributed (see Appendix E). Also Data 

Exceptions that could be grouped together and categorised were identified from the 

SMDS data. 

4.2.2. Network Simulation 
In addition to data from SMDS, two other solutions have been investigated. 

Modelling a network scenario has not been seriously considered due to the immense 

complexity involved in trying to model a network of the size we are considering. 

The first solution is to simulate a network. Various packages exist, both freeware 

(often developed by academics) and commercial software, that allow network scenarios 

to be built, observed and recorded. Simulations have the advantage of allowing 

considerable complexity (in terms of network topology) to be generated with the 

minimum degree of difficulty. This makes them excellent in terms of experimentation as 

large networks can be generated and tom down again with ease, facilitating rapid 

adaptation and easy development to suit the nature of the problem. 

4.2.3. Test Network 
The second solution is to use a test network. This is a relatively expensive 

solution and is not as flexible as a simulation. A test network is advantageous though in 

that simulations, however good, are always going to be simplifications to some degree or 

another. A test network will present 'real' data, inclusive of any quirks that might exist. 

Both solutions allow full control over network events and full access to the 

complete data set. 
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All three of the methods of obtaining data mentioned above were used. The data 

from BT's SMDS network was used primarily for the author's own benefit in 

understanding the nature of Data Exceptions, how they can occur and what they might 

look like and also in verifying work done using the simulation. The data from SMDS 

was not used further due to the limitations described earlier. 

4.3 SMDS Data 
SMDS data has been collected and stored by the High Speed Networks group at 

Loughborough over the past five years. The data is taken from twenty one-way paths 

across SMDS encompassing five ingress/egress points. For a more complete description 

of how this data is obtained please see chapter 2, 'Performance Monitoring at 

Loughborough' . 

4.4 Simulation - NS 
NS [NS], a free network simulator developed in the US at Berkeley University of 

California, was used to simulate a network. NS was chosen due to the readiness of its 

availability (it can be freely downloaded from the internet) and the level of support in the 

form of a comprehensive web site including tutorials, help pages, documentation and a 

mailing list. Of the other network simulation packages considered BONES [BONES] 

was in the throes of becoming obsolete, OPNET [OPNET] was an expensive alternative 

(although probably easier to use) and CNET [CNET] didn't appear to have the required 

level of development and support. 

The network consisted of 8 peripheral nodes, a core of 4 nodes and 3 nodes 

attached at each point on the periphery (3 to each ofthe peripheral nodes) from which the 

various agents sent and received data. Each peripheral node had attached one node that 

was used to send telnet style traffic, one node to send ftp style traffic and one node to 

send monitor traffic. A peripheral node is shown in figure 4.4-1 and the overall topology 

in figure 4.4-2. 
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FTP Source 

Monitor 

Figure 4.4-1 A peripheral uode 

The topology needed to contain sufficient inherent complexity to give rise to 

interesting Data Exceptions. This desire for complexity had to be tempered however with 

the practical considerations ofimplementing the simulation (running time, storage space). 

This structure seemed to allow reasonable flexibility for simulating network events whilst 

still being manageable. 

Figure 4.4-2 The NS Topology 

Telnet sources were linked with a traffic sink at each of the different peripheral 

nodes, meaning that at anyone peripheral node there were seven telnet sources (one for 

each of the remaining nodest These were then set off at random. Similarly, ftp sources 

I The seven telnet sources and the seven ftp sources are represented by just one node each on the diagram. 
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were established at each peripheral node to send to all the other peripheral nodes. Again, 

the traffic from the ftp sources was sent at random. Although both the ftp and the te1net 

sources generated traffic at a random rate, the probability of a source sending traffic at 

anyone time was altered so that the it was higher during the working hours of the day. 

This gives the 'Time of Day Variation' effect discussed in earlier chapters. The ftp and 

te1net sources were chosen to load up the network as they offered contrasting traffic 

profiles and were relatively simple to implement. 

The monitor agents transmitted a fixed size packet to each of the other monitor 

nodes at constant intervals. The latencies experienced by these packets were then 

recorded and later used for analysis. 

The simulation was run over a 336 second period where each second represented 

an hour in real time (24 second days). The simulations are therefore representative of a 

two week period. On each simulation run (at least) one network event was introduced. 

The network events that were simulated were: links going down, nodes going down, links 

simulating faulty behaviour, traffic re-routes, links being introduced and the introduction 

of other erroneous traffic sources. An example of the TCL scripts that were used to 

specify these network scenarios can be found in Appendix A. 

4.4.1. NAM (Network Animator) 

The output from NS is flexible and can be specified. Standard functions exist for 

the generation of text files that are in a fonnat that can be passed on to NAM (Network 

AniMator) (this file is called out.nam). This allows a complete viewing of the entire 

simulation. The NAM files were used mostly in the design phase as they provided a 

good overview of what was going on and could be accessed and understood instantly. 

r·, 321.878·s 6·d 20·p ,ek·, 40·e 5·j 1263144·,5·x (35.2 20.8 4962 ...... • null) 
+·,321.878 ·s 20·d 6·p tcp·' 1000·e 5·j 1263624·,5·x (20.8 35.2 4973 ....... null) 
• ., 321.878·s 20·d 6·p ,cp" 1000·c 5·j 1263624·,5·x (20.8 35.2 4973 ....... null) 
h·, 321.878·s 20·d 6·p tcp" 1000·e 5·j 1263624·,5·x (20.8 35.2 ·1 ...... • null) 
• ., 321.878·s 10·d 32·p ,cp" 1000·e 5·j 1263301·, 5·x (20.7 32.2 6281 .. • .... null) 
h·, 321.878·s 10·d 32·p ,cp" 1000·cS·j 1263301·,5·x (20.7 32.2 ·1 ...... • null) 
r·, 321.878·s ll·d 10·p ebr·e333·o3·j 1263489·,3·x (33.1130.11 6416 ...... • null) 
+·,321.878·s 10·d 30·p ebr·, 333·c 3·j 1263489·,3·x (J3.11 30.13 6416 ...... • null) 
• ., 321.878·s 10·d 30·p ebr·, 333·c 3·j 1263489 ., 3 ·x (J3.13 30.11 6416 ...... · null) 

Figure 4.4-3 'out.nam', text output from the NS simulation 
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The output shown in Figure 4.4-3 is formatted especially to be read by NAM so 

that it can be animated. Below, in Figure 4.4-4, is a screen shot of just such an 

animation. 

Figure 4.4-4 Screen shot from N AM 

4.4.2. Test.out 
A file called 'Test.out' was produced that simply represented the output of every 

action that occurred and the time at which it occurred (see figure 4.4-5). These files 

contained all the information allowing specific analysis but required further processing 

before that analysis could be easily achieved (The test.out files were around 1 GB in size). 

+ 335.999555 1 2 ,ek 40 ------- 5 23.13 35.10 5397 1387120 
- 335.999555 12 ,ek 40 ------- 5 23.13 35.10 5397 1387120 
- 335.99975935 11 tcp 1000 ------- 535.13 32.13 4840 1387092 
r 335.999776 5 0 ebr 333------- 315.733.1 66911387102 
+ 335.999776 0 1 ebr 333------- 3 15.733.166911387102 
- 335.99977601 ebr 333------- 3 15.733.166911387102 
r 335.999885824 ebr 333------- 312.3 24.0 6690 1387039 
r 335.9999432 10 tcp 1000 ------- 025.931.45420 1387071 
+ 335.99994310 31 tep 1000 ------- 025.931.454201387071 
- 335.999943 1031 tep 1000 ------- 0 25.9 31.4 5420 1387071 

Figure 4.4-5 'test.out', text output from the simulation 
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The data that were used to monitor the network were the latencies of the monitor 

packets. These had to be filtered out from the 'test.out' file, this was done in the first 

instance by simply using the 'grep' program in UNIX and the results were put into a file 

called 'monitor.out'. Delay files were generated, one for each of the paths monitored, by 

further processing the delay data. Initially this was done using an A WK script posted on 

the NS users mailing list. Rewriting the script in 'c' gave the process a considerable 

speed up. The overall process is shown below. 

Simulation 
(NS) 

Tcl Script 

Filter 
(grep) 

Post Process 
(C program) 

,-----------L-,/ ~~ 
I Monitor. out ~ Delay files ~ 

Figure 4.4-6 Getting Delay Data from an NS simulatiou 

So for each simulation 56 delay files were produced, showing the one-way delay 

on different routes across the simulated network (The entire process is shown in figure 

4.4-6 above). Each delay file has just two fields, the transmit time (hours since the 

beginning ofthe simulation) and the delay. Below (figure 4.4-7) is a sample delay plot. 
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Figure 4.4-7 A sample delay plot from NS 

4.5 Test Network 

4.5.1. Network Design 

I d,"y I 
-50 per. Mov. Avg. (delay) 

A test network was designed and built usmg equipment donated by Cisco 

Systems. The network consists of eight 2600 series routers and four Catalyst 1900 series 

switches (figure 4.5-2). In designing the network several key aspects were taken into 

consideration. As with the simulation there needed to be sufficient complexity inherent 

in the design to allow for a variety of network events. Whereas with the simulation the 

limiting factor was processing power and storage space, the test network was restricted 

only by the cost of the equipment. This included network components such as the routers 

and the switches and end stations used for monitoring the network and generating traffic 

to load the network. 

The Cisco 2600 routers have a network module slot and two WIC (Wide Area 

Interface Card) slots (see figure 4.5-1). This allows a number of different types of 

interfaces to be fitted to the router depending upon the requirements of the user. 
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Figure 4.5-1 The rear of a Cisco 2611 router 

Both the Network module slot and one WIC slot were fitted with serial interfaces 

giving a total of six serial interfaces, four on the Network module slot and two on the 

WIC slot. These were in addition to the two Ethemet ports that came as standard. 

Figure 4.5-2 Routers and Switches 

The design chosen has two meshes, each with four routers (figure 4.5-3). The aim 

here was to include as much redundancy as possible giving more scope for Data 

Exceptions. Mesh A interconnects the routers using point to point links. The protocol 

used here is LAPB running over serial cables. These links have a capacity of just 

0.12Mb. This is ideal in that it makes the task of loading the network up to capacity far 
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easier. It should be remembered that the purpose of this section of the work is to generate 

Data Exceptions. These do not have to be generated at high data rates. If the test 

network had high performance difficulties would have been encountered in trying to 

generate sufficient traffic to load up the network in a realistic manner. Mesh B, in 

addition to the four routers, makes use of four Ethemet switches. The switches are used 

to COmIect the routers together. The links on this network are Ethemet and have a 

capacity of 10Mb, which is stilI relatively Iow performance (in comparison to the SMDS 

core for instance) but is significantly better than Mesh A, providing a good contrast. The 

two meshes, A and B are inter-linked again using LAPB although this time with a 

capacity of 4Mb. 

. ......................................... . 

............................................. r:::=:::=;. ............................. I 
~ ............... . 

Figure 4.5-3 The test network design 

4.5.2. Traffic Generation 

Traffic was generated using six Linux based pes. Although there is software 

available to perform traffic generation nothing could be found that would easily emulate 
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the varying load seen on wide area networks such as SMDS. Consequently a traffic 

generator was written that would fulfil the desired criteria. The important factors for the 

generator were that it should be able to vary its output in a random manner according to 

the time of day. The traffic generated did not need to emulate profiles observed over 

customer networks in terms of the micro detail such as traffic profile, 'burstiness', 

distribution or type; rather it needed to replicate the general volume of traffic, 

proportionally, as seen on commercial networks. 

Each traffic generator ran a number of sessions. A session described the traffic 

generated between itself and one other generator. A session contained the following 

attributes (figure 4.5-4). 

Name Schedule 

Traffic Level Start Time 

Day Length Server Port Number 

Quantity Server IP Address 

Day Number of days to run 

Transport Type Transmission Rate 

Figure 4.5-4 Table of sessiou attributes 

4.5.2.1 Schedule 

A day consists of 1440 minutes. The schedule is an array containing 1440 

elements and it determines whether or not the traffic generator will be active during each 

of these minutes. 

4.5.2.2 Traffic Level 

A day also consists of 24 hours. The Traffic Level is also an array and contains 

24 elements, it is used when calculating the schedule. Where the Traffic Level is high, 

the probability that activity will be scheduled during anyone of the minutes in that hour 

will also be high. 
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4.5.2.3 Start Time 

The session can be configured to start at any time. This is governed by the system 

clock. 

4.5.2.4 Day Length 

A day need not be 24 hours! Virtual days can last from anything from one minute 

up to 24 hours. This allows results to be generated at a faster rate than real-time. 

4.5.2.5 Port Number & IP Address 

A server Port Number and IP Address have to be specified for the traffic to be 

sent to. If the transport type is set to UDP a server may not be running on this port 

number but the field must still be set. If the transport type is set to TCP then the port 

number must be set to the number that the server is listening on. 

4.5.2.6 Quantity 

This attribute sets the number of packets that will be sent each time the schedule 

activates the traffic generator. The packets will be of a random size, uniformly 

distributed between 100 and 1500 bytes. The Quantity should be changed depending on 

the day length. If the day length is set to 24 hours then the quantity of packets sent each 

time the traffic generator is called should be significantly larger than if the day length 

was set to 1 hour. Linear scaling is appropriate here. 

4.5.2.7 Day 

Each session starts at day O. This is then incremented at the end of each virtual 

day until it equals the 'Number of Days to Run' attribute. 

4.5.2.8 Transport Type 

This can be set to either UDP or TCP. UDP is generally preferable as there is no 

need to configure a server since a connection does not need to be established. Also the 

TCP protocol prevents any overloading of the network. 

4.5.2.9 Transmission Rate 

The transmission rate is controlled using an active wait. The traffic generators are 

connected to the network via 10Mb/s links. This means that the total amount of traffic 
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produced by one traffic generator cannot exceed IOMb/s. In practice 8Mb/s is a more 

realistic figure for the link speed. The traffic generators have not been tested on faster 

links to see what transmission rates they are capable of but there has been no issue 

utilising the whole of the bandwidth available where required. 

4.5.3. Monitoring the Test Network 
Monitor stations had previously been developed at Loughborough for work on the 

SMDS network (see Chapter 2) and these were used to monitor the Test Network. Four 

monitoring stations were employed, this was the maximum number that could be 

supported without producing more timing cards. Timing synchronisation was achieved 

by configuring three of the monitor stations to draw their timing pulse from the fourth. 

As the network is entirely situated in one place the monitor stations can be placed 

adjacent to one another allowing the timing synchronisation issue to be localised. Where 

the network is more widely distributed timing synchronisation can be obtained using GPS 

(see chapters I & 2). The monitor stations, two on each mesh, monitor paths to each 

other giving twelve one-way test routes, each being tested with both 64byte and 1500byte 

packets. These results are stored in log files on the monitor stations. A control station is 

used to retrieve the log files, process them into a database and draw summaries from 

them as required. A picture of the monitor stations, together with the traffic generators is 

shown in figure 4.5-5. 

Network events were introduced to produce Data Exceptions. These included 

changing router configurations, changing routing priorities, unplugging cables, 

introducing extreme traffic levels. 
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Figure 4.5-5 The Traffic Generators (left) and the Monitor Stations (right) 

The log files containing the raw information are stored on the monitor stations. A 

command language was previously developed to control the monitor stations and this 

allows the log files to be retrieved to a control station where they are processed into a 

database. Querying this database then gives the end to end delay. An example plot is 

given in figure 4.5-6. 
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Test Network (clean 6t04) 
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Figure 4.5-6 Delay plot from the test network 

4.6 Summary 
In this chapter we have looked at the data sources available to this project. Delay 

data is necessary for training and testing exception detection methods. Three sources of 

data have been available to this project. Data from BT's SMDS network has been used to 

learn about the nature of Data Exceptions and validate data produced by a network 

simulation and a test network. NS was used to simulate a network and network events 

were incorporated into these simulations to give Data Exceptions. A test network was 

also constructed and then monitored using monitoring tools discussed in chapter 2. 

Network events were then introduced again to give Data Exceptions. 

In the next chapter we go on to look at two methods of detecting Data Exceptions. 
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5. Detecting and Classifying Data Exceptions 

5.1 Introduction 
Two methods for detecting and classifying Data Exceptions are discussed in this 

chapter. The first, a rule-based approach, was a first attempt at solving the problem of 

Data Exception detection. It was implemented as part of the AIR system [Phi99]. The 

second approach is more refined and makes use of a two-phase process. The K-S statistic 

is used to initially detect the presence of a Data Exception in the data. A neural network 

is then used to classify the type of Data Exception that has occurred. 

5.2 Rule-based Approach 
A rule-based solution has two significant advantages. Firstly, it is the simplest 

solution and secondly it is a predictable solution and easy to trace. If a rule set can be 

found that accurately defines Data Exceptions then it would be the obvious solution and 

presumably the fastest one. There is no sense in devising a complicated process such as a 

neural approach or a statistical approach when it will not better a simpler, readily 

available process such as a rule set [Tar98]. A rule-based system also scores highly in 

that it is predictable. Given a set of inputs the output can be calculated and understood. 

This can be a requirement of 'mission critical' software solutions and is advantageous in 

tracking any errors that may occur. 

A rule-based solution was devised that attempts to describe the different Data 

Exceptions accurately, in such a way that rules can be put in place to test for the different 

exception types. The rules make use of a 'feature set'. A feature set contains various 

features, or statistical properties that describe the data (such as the mean or the standard 

deviation). Features are calculated for new data and a feature set is held over from 

previous data to provide a benchmark for comparisons. These features are combined to 

give 'indicators'. Indicators are, in essence, higher level features that can be tested 

directly against thresholds to check for exceptions. Indicators can be features themselves, 

a combination of current features or a combination of current and historical features. The 

rules return an exception type or no exception if none are found. 
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As Hood notes [Hoo97], the use of thresholds to test for faults is quite common 

both in practice [Mad94][WaI91] and in research [Den93][GoI95] for detecting unusual 

network behaviour. These are generally used to test whether some variable (often stored 

in the MIB) has drifted significantly out of bounds. 

Data 

Current State 
Feature Table 

Feature Tables 
Indicators 

Exception 
Report 

Figure 5.2-1 Exception Report Generation 

A complete list of the features and their derivations is given below in figure 5.2-2. 

Each ofthese features is calculated over a day. 

Feature Derivation Description 

Mean (,u) 
L, di 

The mean will be the sum 

of all the delay 
,u = --

n 
measurements, divided by 

the total number of delay 

measurements. 
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Standard Deviation (from 
L(d'-Il) 

2 The standard deviation is 

the mean) (0) 0 
derived by summing the 

-

n 
squares of the differences 

between each value and the 

mean value. 

Median (M) 
M d where 

The median is the (n+ 1I2)th 
= .. , value ifthe values are put in 

2 

d, :::; d, + , Vi 
rank order. 

Maximum (max) max = de where The maximum from the set 

de :?: d, Vi of delay data. 

Second (sec) sec - de where max The second highest value 

> de"? d; Vi from the set of delay data. 

Minimum (min) min = de The minimum from the set 

where de ::; d, of delay data 

Vi 

Change in delay (Cd) 
Cd, = Id, - d, + ,I A second set of values can 

be derived, that being the 

change in delay (over time) 

at each point 

Mean Change in delay 
LCd, 

As for mean delay 

(CIl) CIl = 

n 

Standard Deviation of 
L(Cd,-CIl) 

2 As for standard deviation of 

Change in delay (from the 
CO = 

delay 

mean) (CO) n 
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Median Change in delay 
CM Cd = 

(MC) ,+1 

2 

where 

Cd, '5, Cd, + I Vi 

Maximum Change in delay Cmax = Cd, 

(Cmax) where Cdc ~ Cd, 

Vi 

Minimum Change in delay Cmin = Cdc 

(Cmin) where Cdc '5, Cd, 

Vi 

Total Change in delay (C Ctot = d j - dn 

tot) 

Figure 5.2-2 Table of Features 

These indicators are then calculated: 

Indicator Derivation 

Peak (P) P = max-sec 

Spike Ratio (SR) SR - P / (sec - min) 

57 

As for median delay 

The maximum from the 

Change in delay set (Cd;) 

The minimum from the 

Change in delay set (Cd;) 

The Total Change in delay 

is the difference between 

the average delay at the 

start of the day and the 

average delay at the end of 

the day 

Description 

The difference between the 

maximum and the second 

highest delay value 

The ratio ofthe difference 

between the maximum and 

the second highest delay 

value against the difference 

between the minimum and 
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the second highest delay 

value 

SO Change (SOC) SOC = SOc - SOo The difference between the 

current standard deviation 

and the observed standard 

deviation 

SO Ratio (SOR) SOR = SDc / SOo The ratio of the current 

standard deviation against 

the observed standard 

deviation 

Maximum Change Max2Max = Maxc- The difference between the 

(Max2Max) Maxo current maximum and the 

observed maximum 

Minimum Change Min2Min - Mine- The difference between the 

(Min2Min) Millo current minimum and the 

observed minimum 

Figure 5.2-3 Table ofIndicators 

These indicators are then compared against thresholds which, if exceeded, flag up 

exceptions. These thresholds can be set differently depending on the source of the data 

being examined. The values to date have been based on experience and 'rule of thumb' 

rather than using any optimisation technique although this would be a useful area to 

explore further. 

The changes in maximum and minimum and the total change in delay are all used 

to detect step changes. Total change in delay is measured over the last day and is the 

simplest of the three measures to relate to a step change. The total change in delay is not 

sufficient on its own to detect step changes. One potential scenario is where there are 

two step changes within the day period. The total change from the beginning of the day 

to the end of the day may be negligible but two step changes would have in fact taken 

place. The changes in maximum and minimum are used to pick this up. In the case of a 

decrease in delay followed by and increase the minimum delay for the day decreases. 
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This is a good measure in that it doesn't suffer much variation, the minimum delay is a 

fairly consistent value relative to step changes. The maximum however is a lot less stable 

and therefore less useful in detecting step changes. 

The spike ratio and the peak value are used for detecting spikes. On some routes, 

high delay variation can make it difficult to detect spikes. The idea here is that the 

increased delay from the spike should be, relatively and numerically significantly higher 

than other observed delay values. 

The changes in time of day variation are detected using the change in standard 

deviation value and the ratio between the current standard deviation and the observed 

standard deviation. This is not a wholly satisfactory measure, as it takes no account of 

when the periods of high delay take place during the day, a key feature of time of day 

variation. However as a temporary feature it does indicate when the time of day variation 

shifts significantly. 

The entire rule set that was implemented in Java as part of the AIR system and is 

given below in extracts from the function. The key objects are the two feature sets, one 

that is the currently stored information (curr) and the other being the information that has 

just been taken from the test (test). These contain all the features mentioned in the above 

table. The thresholds are stored in a TestParameters object called limit. The six 

indicators are declared at the start as float variables. Other variables of note are type 

which refers to the type of exception that has been detected, weekend which is a Boolean 

value indicating whether the test feature set is taken from a weekend and holiday which 

carries over the value of the standard deviation from the last weekend date. 

if ( currmaximumDelay -- 0) { 
if (testmaximumDelay! - 0) { 

) ) 
eke { 

exception +- "Testing Started\n"; 
test.standardDeviation - OJ 
holiday - test.standardDeviation; 
type - "start"; 

if (lastDelay -- 0 &&test.nuximumDelay -- 0) { 
exception +- "No Data"; 
test.standardDeviation - curr.standardDeviation; / / StandardDeviation won't be updated 
type - "loss"; 

if (!t)pe~quals(·start·)) { 
if (test.minimumDelay -- 0 && test.nuximumDelay!- 0) { 
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} 

exception +- "No Delay Data available for three hour period\n~; 
test,standardDeviation - curr.standardDeviatioDj /1 StandardDeviation won't be updated 
type - "loss"; 

In this first code excerpt (above) the function looks for missing data (loss) and for 

the possibility that the monitoring has just started. This is done primarily using the 

maximum and minimum values. Where the maximum value for a feature set is zero, no 

delay data can have been received for that day. Where the minimum value for a feature 

set is zero there has been at least a three hour period where no delay data has been 

received. These scenarios are unusual, certainly for a commercial network, but must still 

be catered for. 

if (!IJll".equah("loss") && Jtwe.equah("start") ) { 
if (min2min > !imit.stepMax) { 

} 
e~e { 

} 

exception +- "Decrease in average delay of .. + min2min + .. micsecs\n"; 
type - "step"; 
magnitude - (int)min2nUn; 
test.standardDeviation - curr.standardDeviation; / / StandardDeviation won't be updated 

if (test.totalCllangelnDelay <-(limit"tepMax)} { 
exception +- "Decrease in average delayof It + (-1 .. test.tota1ClungeInDela~ + It micsecs\n"; 
test.standardOeviation _ curr.standardDeviation; / / StandardDeviation won't be updated 
magnitude - (int)(-l 'test.totalo,angelnDelaJl; 
type - "step"; 

• (min2min <-!imit"tepMax) { 

above) 

exception +_ "Increase in average delay of It + (-1 .. min2min) + .. micsecs\n"j 
type - "step"; 
magnitude - (int)(-! 'min2min); 
test.standardDeviation - curr.standardDeviatioD; / / StandardDeviation won't be updated 

if ( tesuotalCllangeInDelay > (limit"tepMax) ) { 
if «(lastDelay- test.n=imumCllangelnDelaJl -- delay.;et(6] &&min2min >-!imit"tepMax) { 

} 
e~e { 

if (tesuotalCllangelnDelay > !imit.peakMax) { 
exception +- "Increase in average delay likely to be a spike \n"; 
IJll" - "spike"; 
magnitude - (Utt)peak; 

} 
e~e { 

exception +- "Increase in average delay likely to be a step change \n"; 
type - "Step"; 
magnitude - (int)test.totalCllangeInDela)l 
test.standardDeviation - curr.standardOeviation; / / StandardOeviacion won't be updated 
test.minimumDelay - 0; / / mininnunDelaywill be set to the ne}(l day's minimum (see above) 

exception +- "Increase in average delay of " + tesuotalOungelnDelay + " micsecs\n"; 
type - "step"; 
magnitude - (int)test.totalCllangelnDelay; 
test.standardDeviation - CUlT.standardOeviation; / / StandardOeviacion won't be updated 
test.minimumDelay - 0; / / minimumDelaywill be set to the next day's minimum (see 
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Given that there is no exception of type 'loss' or type 'start' this next section 

(above) looks for the possibility of a step change. As was mentioned earlier, the primary 

features and indicators used in this process are the change in minimum, maximum and 

total change. One difficult scenario is where the last delay point of the day increases 

abnormally. It is difficult to judge whether or not the increase will be sustained (i.e. a 

step change) or whether the delay will decrease quickly again (i.e. a spike). The 

judgement is made here on how large an increase has occurred as spikes, on the whole, 

tend to be larger increases than step changes. This is by no means a certainty and is used 

to give a 'best guess' given the available data. 

This next section (below) then tests for the presence of a spike, given that 

exceptions of type 'step', 'loss' and 'start' have not already been detected. The spike 

ratio describes the scale of the spike in proportion to the standard deviation. This is then 

used along with the peak value (effectively the size of the spike) to determine whether an 

exception of type 'spike' has occurred. 

if (!t)pe.equals("start") && !twe.equals("loss") &&(!t}pe.equals("step") && !(tesuotalCllangelnDelay >1irnit.peakM!x)) )( 
if «spilieRario >1irnit.spilieRatioMax) &&(peak >!imit.peakM!x)) { 

exception +_ "Spike of to + peak + to microseconds\n"; 
t)pe - "spilie"; 

The final section taken from the detectException function contains the rules for 

detecting changes in Time of Day Delay Variation. There are two categories of Time of 

Day Delay Variation. One deals with a change during the working days of the week, the 

second category flags up a change in the Time of Day Delay Variation on subsequent 

weekend days. This would compare the first day of the weekend with the last day of the 

previous weekend and then the next day ofthe current weekend. 

if 0weekend) { 
if (!twe.equals("step") && 

!t)pe.equals(OOloss") && 
!t)pe.equals("spilie") && 
!t)pe.equals("start·?) { 

if (SDRatio > lirnit.todVarDecrease && SDCllange > lirnit.todVarLirnit) { 
if 0wTodVarEx) { 

exception +- "Decrease in ToO variation of" + SDOunge +" micsecs\n"; 
curr.standardDeviation - rest.standardDeviation; 
todVarEx - true; . 
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} 
} 
ehe { 

check - true; 
} 
!}Pe - ~tod"; 

} 
if (SDR.cio <limiuodVarlncrease &&SDCl.mge >limit.todVarLimit) { 

exception +- "Increase in ToD variation of· + SDOunge + " micsecs\n"j 
curr.standardDeviacion - test.standardDeviation; 
todVarEx - true; 
tjpe - "tod"; 

} 

if (ltjpe.equals("step") && 
!tjpe.equals("loss"} && 
Itjpe.equals("spike"} && 
!tjpe.equals("stan"}) { 

if (SDR.cio > limit.todVarDecrease && SDo,ange > lirnit.todVarLimit) { 
if OtodVarEx} { 

exception +- "Decrease in ToDvariation of" + SDOlange +" micsecs\n"; 
} 
ehe { 

check - true; 
} 
type - "wtod"; 

} 
if (SDR.tio <lirnit.todVarlncrease && SDCl.mge > limit.todVarLimit) ( 

if OtodVarEx) { 
exception +_ "Increase in ToD variation of" + SDClunge + .. micsecs\n"; 

} 
ehe { 

check - true; 
} 
tjpe - "wtod"; 

} 
if (check) { 

todVarEx - false; 
check - false; 

Figure 5.2-5 shows the 'Exception Database Viewer' developed at Loughborough 

University displaying exceptions detected using rules based on the above. The AIR 

system was a significantly wider project (see Chapter 2 and also [Phi99]) which 

incorporated some of the early research work conducted for this thesis. 
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Figure 5.2-5 The Exception Database Viewer 

The rule-based approach, as has been mentioned, was implemented as part of the 

AIR system and installed at BT labs Martlesham. Although the rule-based solution 

perfonned adequately as a rudimentary exception detection method it was limited as to 

what it could detect and also unadaptable. The rule-base catered for a specific set of 

tightly defined Data Exceptions, should new Data Exceptions be encountered or network 

characteristics change a new rule-base would have to be constructed. An alternative 

approach was deemed necessary that would be more adaptable and more accurate. 

5.3 KS Test/Neural Approach 
The second approach uses two methods, the K-S (Kolmogorov-Srnimov) Statistic 

and a neural network. The K-S statistic is used to identify changes in the network delay 

data. This stage however, does not in any way characterise what change has occurred. 
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These changes are presented to the neural network which is used to classify the changes 

into one (or more or none) of seven Data Exception types. 

The K-S statistic has been chosen as it is the best known of several distribution­

free procedures which compare two sample CDFs (Cumulative Distribution Functions) in 

order to test for general differences between two distributions [Nea88][Ste70]. The K-S 

statistic is more generally used to assess the probability that a sample comes from a 

normally distributed data set. Although more powerful than other goodness-of-fit tests 

such as the chi-squared [MasS1], the Shapiro-Wilk's test has been shown to be more 

powerful still [Sba68]. With regard to testing for general differences between any two 

distributions however, the K-S statistic is both easy to calculate and powerful. As there is 

no assurance that the delay distribution will be in any way standard, our choice of test is 

restricted to distribution-free techniques. More powerful distribution-free tests exist if 

only one aspect of the distribution is of interest (for instance the mean), but the K-S 

statistic is particularly appropriate when testing for general differences [Nea88]. The K­

S test compares two samples CDFs using the maximum vertical distance between them as 

a test statistic. A normalised example of this is shown in Figure 5.3-\. Any kind of 

substantial difference between the two distributions should show up as a significantly 

large difference between the sample CDFs. Such differences may be in location, spread 

or may be more general differences in the shape of the distributions. 
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KS Statistic 

Value 

Figure 5.3-1 The K-S Statistic 

The K-S statistic is calculated as follows: 

Delay distributions are taken from 24 hours worth of data before and after some 

point in time and the K-S test is then applied to determine any differences. Delay 

increases during the working hours of the day, when load is high, but this increase is not 

exceptional. If distributions were chosen using a time period other than complete days 

this change during the working part of the day would be picked up on by the K-S test. By 

comparing data taken from two entire days this issue is circumvented. This issue is also 

relevant when considering the impact of weekends. Delays on a Monday are higher than 

of those on a Sunday but this is not considered to be exceptional. Using the current 

approach the K-S test does flag the beginning and end of weekends as significant. The 

second phase of the system, the trained neural network, will then categorise this change. 

This means that the neural process could filter out exceptions flagged due to the decrease 

in delay at weekends. 
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The implementation computes the K-S statistic every hour, using the previous 24 

hours of delay data, and the following 24 hours of data. When a Data Exception occurs 

the K-S statistic may remain significant for several hourly points. In such cases the 

maximum point is taken to be the time that the exception occurred. Where two 

exceptions occur at similar or even identical times these would be passed to the neural 

classifier as one detected change, but there is scope within the neural process to 

categorise the change as being the product of two or more exception types. In Figures 

5.3-2, 5.3-3 & 5.3-4, the K-S test is plotted on the same graph as delay (these are raw 

delay values). The scale on the primary y-axis refers to delay while the scale on the 

secondary y-axis refers to the K-S test (which will always return a value between 0 and 

1). The x -axis is the number of hours from the beginning ofthe simulation. 
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Figure 5.3-2 The K-S Test applied to delay data (1). 
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In Figure 5.3-2 the highest two peaks have been caused by the step changes 

present but the K-S values are also high at the beginning and end of each weekend. In 

Figure 5.3-3 the K-S values are again high at the beginning and end of each weekend, 

there is also a peak marking the point where the time of day variation increases. 
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Figure 5.3-4 The K-S Test applied to delay data (3). 
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In Figure 5.3-4, the route shown is less heavily loaded. There are five relatively 

minor peaks in the K -S values. Three of these peaks relate to the beginning and end of 
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weekends, one refers to the spike and one is erroneous. Erroneous events flagged up by 

the K -S statistic are filtered out by the neural process. 

Note that the nature of the test means that this approach cannot be adapted to 

work in real time, although with modification, the approach could be made to work on 

shorter time windows. The motivation behind the work stems from the desire to 

automate the exception detection process, which is currently done by a human operator 

offline in order to investigate the impact of recent changes to the network. Real time 

event detection is geared towards alerting operators to immediate faults. While delay 

information could be used in this way there are other more readably accessible 

performance metrics, often held by network nodes in Mills, that can be used to identify 

faults. For real-time detection methods some preliminary approaches are being examined 

that borrow techniques from industrial statistics such as process charts [McGOO]. These 

however cannot identify the range of Data Exceptions detected by the approach proposed 

in this Thesis as the time window is shorter. For example, a meaningful Time of Day 

Delay Variation exception is only identifiable after a 24 hour period. 

5.4 Neural Network 
A neural network was selected as a means of classifying the changes in 

performance detected by the K-S test. A means of classifying the change in performance 

is desirable as it provides a means for changes, that is Data Exceptions, to be grouped 

together (see section 3.4). A neural network was selected as a method of classifying the 

Data Exceptions. Neural networks are particularly appropriate where some relationship 

exists between the input and output (in this case between the data representing the Data 

Exception and the classification of the Data Exception) that cannot be expressed as 

function or as a set of rules [Tar98]. 

The neural network is trained using a standard back propagation algorithm (for a 

description of this see [Fau94]). The network is fed by an input vector that includes 

representations of the time-of-day and day-of-week that the exception occurred; the route 

on which the exception occurred; and the delays either side of the time that the exception 

occurred. The inputs are scaled so that, on the whole, they are in the range -1 to 1. In 

every case some kind of transformation takes place. Input features whose values have no 
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relative meaning compared to one another are represented as binary vectors in order to 

ensure that no one input is given significance over another by virtue of an arbitrarily 

assigned value. For instance, one egress point is of no greater or lesser significance than 

another egress point. If the egress points had been represented using one input, relative 

value would have been attributed which would be misleading. 

The time-of-day needs to be represented in such a way that 23:59 is next 

to and not the furthest possible point away from 00:00. To achieve this a Sine function is 

used. Considering time of day in hours the transformation is: 

. . (t .i ._me'---_1_2) tIme = sm tr-
12 

The day of the week, the ingress point and the egress point are all 

represented as vector inputs. Therefore the day of the week is represented by seven 

inputs where one input will be I (the day the exception actually occurred) and the others 

-1. 

The delays are represented by 96 inputs, allowing 48 for each day. The 

50th and 95th percentile values are taken from each hour of the day and these are then 

scaled so that generally they fall within the range 1 and -1. The scaling has been set so 

that it is possible for large delay values to transform to values greater than 1. This is so 

that the delays on the whole do not all scale to similar values but that reasonable spread is 

attained. If the maximum observed delay (on any test, on any route) were to be 

represented as 1, the vast majority of delays would fall in a very narrow band. 

From the above we have 8 inputs to represent the ingress point, 8 for the 

egress point, 7 for the day of the week, 1 for the time of day, 96 for the delay values and 

1 input for the K-S value itself. The total length of the input vector is therefore 121. 

These inputs are fed into a hidden layer containing 150 nodes and then into an output 

vector of length 7, representing the seven classes of exception (Figure 5.4-1). The 

choices made here are somewhat arbitrary and could be the subject of further work to 

determine which representation of the data, and number of hidden units will give the 

greatest accuracy in classification. 
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121 inputs 7 outputs 

I bias 150 hidden units 
I bias 

Figure 5.4-1 The neural network 

The activation function used at each node is given below. 

2 
f(x} = 1 

l+exp(-x} 

which has the derivative (necessary for backpropagation of the error) 

f'(x} =W+ f(x)][l- f(x}] 

Weights are initialised at random. 

The output vector represents the class of Data Exception. It might be identified as 

none, one or more ofthe following classes: 

• The beginning of a weekend 
• the end of a weekend 
• a step change up 
• a step change down 
• an increase in time-of-day delay variation 
• a decrease in time-of-day delay variation 
• a spike 

Each component of the output vector is rounded to either 1 or -1 to indicate 

whether or not the Data Exception falls under that classification. 
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5.5 Summary 
In this chapter two approaches to detecting Data Exceptions have been discussed 

and described. The first, a rule-based solution, was implemented as part of the AIR 

system. While a rule-based solution is advantageous in that it is simple, executes quickly 

and is predictable it was thought to be inflexible when adapting to new circumstances and 

was sufficiently inaccurate to necessitate an alternative approach. 

The second approach made use of the K-S statistic to determine when a change in 

network performance, that is a Data Exception, had occurred. These changes were then 

presented to a neural network, which was used to classify them into Exception Types. 

In the following chapter the results are presented from testing the K-S/Neural 

approach with the available data sources. The test schedule is discussed, delay graphs are 

given showing the corresponding K-S values and the classification accuracy is given. 
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chapter 6 - The K-s/NeuraI Approach - RlsuIts 
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6. The K-S/Neural Approach Results 

6.1 Introduction 
The K-S/Neural approach was applied to data taken from both the simulation and 

the test network. Network Events were introduced in the manner described in Chapter 4. 

The K-S Test was applied to the resultant delay data and these Data Exceptions were 

categorised manually using label, a purpose-built program. The list of categorised Data 

Exceptions was split into two files, one for training the neural network and one for testing 

the neural network. The training and testing phases were carried out and the results 

evaluated. This chapter describes this process in more detail and presents the results. 

6.2 Simulated Data 
Delay data was generated using the NS simulation package as described in 

Chapter 4. The simulation was run 24 times, each run lasting fourteen virtual days. At 

least one network event was introduced into each run of the simulation. The figure below 

(Figure 6.2-1) is given for ease ofreference. 

9 

Figure 6.2-1 The NS simulation topology 

The simulation runs were chosen so that all the different types of Data Exception 

would occur, at different types and on different routes. On the simulation only a limited 
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number of events could be introduced. Links could be taken down or introduced, traffic 

could be re-routed and links could be made to drop packets intermittently. At least one of 

these events was introduced, sometimes in quick succession to cause Data Exceptions of 

type Spike. The simulation runs are summarised below. 

I) Core Change I 2) Core Change 2 3) Routing Change 

4) Link 1 to 2 Down 5) Node 0 Down 6) Link 2 to 3 Down 

7) Link 0 to 4 Down 8) Link 6 to 7 Down 9) Link 9 to 10 Down 

10) Link 10 to II Down 11) Link 2 to 10 Down 12) Core fails intermittently 

13) Traffic increase 14) New link 4 to 1 15) Core Re-route 1 

16) Core Re-route 2 17) Spike 1 18) Spike 2 

19) Spike 3 20) Spike 4 21) Spike 5 

22) New link 0 to 2 23) New link 3 to 1 24) Link 2 to 11 down 

These represent the entire set of changes that could be made. The network events 

have not been applied exhaustively, more links could have been taken down for instance, 

but further changes would not introduce any additional types of Data Exceptions. The 

following sections detail the 24 simulation runs, describing the network events that were 

introduced. 

6.2.1. Core Change 1 
At time 120 a link was introduced between nodes 1 and 3. At time 122 the links 

between nodes I and 2 and between 0 and 3 were brought down. This caused Data 

Exceptions of several types. 
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Figure 6.2-2 Delay/KS graph route 4t06 

This first graph (figure 6.2-2) shows a change in Time of Day Delay Variation. 

This is indicated by a peak in the K-S test (at time 122). The K-S test also has a peak 

representing the end of the first weekend. The K-S test is also significant at the 

beginning of the second weekend (time 168) and once during the second week (time 

281). The last of these values does not represent any network event. This would be 

labelled as 'not an exception' so that the neural network can be trained to filter out such 

anomalies. 

The route shown in figure 6.2-2, between node 4 and 6, is one of the least affected 

as the monitoring traffic between the two nodes (4 and 6) traverses the same links before 

and after the changes introduced at times 120 and 122. However the traffic load on this 

route is lightened by the re-routing that the changes cause. 

The changes in performance on other directly effected routes were more dramatic. 

Figure 6.2-3 shows the impact the alterations had on the route between nodes 6 and I!. 

As the traffic now has to take a longer route to reach its destination there is a step change 

in delay. Also as there is now only one link (1 to 3) connecting the two halves of the 
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network and this link has a capacity of2Mb/s as opposed to 5Mb/s ofthe other core links, 

it is consequently very heavily loaded. 
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Figure 6.2-3 De\ay/KS Graph route 6to11 

6.2.2. Core Change 2 
At time 120 the routes from 1 to 3 and from 0 to 2 were activated. At time 122 

the links between 1 and 2 and between 0 and 3 were taken down. This event was similar 

to the one above except that the introduction of two new links avoided the extreme 

congestion seen in the previous section. Figure 6.2-4 below gives a comparison on the 

route from node 6 to node 11. 
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Figure 6.2-4 De\ay/KS Graph route 6to11 

6.2.3. Routing change 
At time 138 the routing is changed by assigning a 'cost' value to the links from 4 

to 5, from 5 and 6 and from 6 to 7 of 1 - reduced from a previous value of 5. The 'cost' 

value is returned to 5 on these links at time 200. The effects of this change can be seen in 

the graph below which plots the monitored delay data from node 5 to node 7. The 

costing of the routes was implemented asymmetrically. That is to say that the route from 

7 to 5 does not exhibit the same characteristics. The step changes in figure 6.2-5 reflect 

the increased latency attached to the different route. 

77 



Chapter 6 - The K-SlNeural Approach Results 

Delay with KS Statistic 

0.1 3 

0.09 

2.5 
0.06 

0.07 
2 

I 
>. 0.05 

~ O.04.JW--..... 
1.5 I Delay I ____ KS 

Figure 6.2-5 De\ay/KS Graph route 5t07 

6.2.4. Link Down 1 to 2 

The link between nodes 1 and 2 was taken down at time 170. Although this 

reduced the number of links supporting traffic between the two halves of the network 

down to 1 (the link between nodes 0 and 3), the capacity of that remaining link meant that 

the congestion was not as high as that experienced in the 'Change Core 1'. In figure 6.2-

6 we see the effects on the route from node 11 to node 7. There is a large step change at 

the time of the event and also a noticeable difference in the Time of Day Delay Variation 

for the subsequent week. 
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Figure 6.2-6 DelaylKS Graph route 11 to7 

6.2.5. Links down from node 0 

At time 300 all the links attached to node 0 were taken down. Those links are 0 to 

1,0 to 3, 0 to 4 and 0 to 5. This caused step changes and changes in Time of Day Delay 

Variation on various routes. 

6.2.6. Link down 2 to 3 

At time 133 the link from node 2 to node 3 was taken down. This resulted in step 

changes and Time of Day Delay Variation changes on certain routes. 

6.2.7. Link down 0 to 4 

At time 200 the link from node 0 to node 4 was taken down. 

6.2.8. Link down 6 to 7 
At time 260 the link from node 6 to node 7 was taken down. 

6.2.9. Link down 9 to 10 

At time 82 the link from node 9 to node 10 was taken down. 
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6.2.10. Down 10to 11 
At time 124 the link between node 10 and node 11 was taken down. This caused 

step changes on the routes between nodes 10 and 11. 

6.2.11. Down 2 to 10 
At time 10 the link between node 2 and node 10 was taken down. This link was 

reinstated at time 78 and then taken down again at time 254. This gave multiple step 

changes as can be seen in figure 6.2-7. 
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Figure 6.2-7 Delay/KS Graph route 4tol0 

6.2.12. Faulty Core 

At time 55 the core links, between node 0 and node 1, node 0 and node 3, node 1 

and node 2 and node 2 and node 3 were caused to fail intennittently. At time 95 the link 

between node 1 and node 3 was brought up. The failure rate was 33%. At time 100 the 

core links were returned to their nonnal state. Figure 6.2-8 shows the kind of effect the 

faulty links had. 
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Figure 6.2-8 Delay/KS Graph route 9t04 

6.2.13. Increase 5 to 6 
At time 168 the traffic sources on the link between node 5 and node 6 start to 

transmit at a higher rate. This had no impact on the delay data. Presumably the link was 

under-utilised and could bear the extra traffic load. 

6.2.14. New link 4 to 1 
At time 75.9 a new link is introduced between node 4 and node 1. This causes a 

step change down on certain links to and from node 4. It also causes a reduction in Time 

of Day Delay Variation on some routes where the load has been decreased. 

In figure 6.2-9 (below), the step change reflects the shorter route now available. 

The lightening of the load on other links is shown in figure 6.2-10. In figure 6.2-10, the 

K-S statistic does not show the seeming change in Time of Day Variation. The occasions 

where this is the case are very rare. 

81 



<"'l 

-- -- r 0000 0 0000 00 "ti 
o 3 ~ g g 9 ~ 0 2 ~ ~ g p ~ ~ ~ 

126 1.~ ~ 
10.5 10.7 I 

U 1D ~ 
~ ., ~ 

= = ~ 
~ ~ ~ 
~ ~ ~ 
66.4 66.4 ~ 

~ - ~ 
64.9 64.8 ~ 

~ ~ ~ ., ~ 

iQ" 103 <iQ' 103 6 
~ 113 E; 113 ~ 
tI> 122 tI) 122 ~ 
a- a- " N 131 N 131 ~ 

~ 140 c ~ 140 C ~ 
=- ~ 150 !!. "0 ... 149 !!. tt 
~ 3" 159 ~ !!. 3' 159 ~ 
- oD ::e ~ CD ::E 

00 t.) ~ 168 - ~ -;: 168 ;::; 
N ~ ~ 177 ~ ~ i 177 ;; 

~ - ~ ~ - 1~ 00 
~ en C') 196 (J) 
Io(J Er ., Er 
;1 205 ~ ~ 205 ~ 
~ ill • ~ 214 • 
., 224 Q 

g 233 s.. 
;- 242 :. 

~ 251 S" 
~ 261 ~ 

27. 
27. 

288 

:1 ~ W7 316 316 

325 325 
~ 3M 

o P . N ~ W 0 P . N ~ W 
~ ~ ~ ~ ~ ~ _D lill _D lill 



Chapter 6 - The K-S/Neural Approach Results 

6.2.15. Core Re-route 1 
The links between node 0 and node I were given an increased cost at time 100. 

The cost on this link was returned to normal at time 200. Also at time 200 the cost on the 

links between node 2 and node 3 was increased. This causes step changes on certain 

links that traverse the core (nodes 0, 1, 2 & 3) and changes in time of day variation in 

others. 
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Figure 6.2-11 Delay/KS Graph route 6108 

In figure 6.2-11 (above) the two changes cause step changes as the test packets 

are sent over different links. In figure 6.2-12 (below) there are no step changes present 

but the time of day variation in delay changes as traffic is routed away from this link. 

This change is marked by a line corresponding to the peak in the K -S Statistic. 
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Figure 6.2-12 Delay/KS Graph route 7t05 

6.2.16. Core Re-route 2 

At time 100 the cost of the link between node 0 and node 3 was increased thereby 

routing traffic away from this link. At time 200 the cost of the link between node 0 and 

node 3 was restored to its normal value but the cost of the link between node I and node 

2 was increased. Step changes and time of day variation in delay changes were seen 

similar to those above. 

6.2.17. Spike 1 

At time 115 the links between node 5 and node 6 were made faulty until time 125. 

This caused a spike in the delay on these links as shown in figure 6.2-13. 
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Figure 6.2-13 De\ay/KS Graph route 5t06 

6.2.18. Spike 2 

At time 165 a fault was introduced on all links connected to node O. This caused 

step changes and spikes on several routes passing through node O. 

6.2.19. Spike 3 

At time 260 the links between node 0 and node 1 and between node 1 and node 2 

are taken down. At time 264 these links are restored. This caused a large step change up 

followed quickly by a step change down. This is classified as a spike. 

6.2.20. Spike 4 
At time 205 the links between node 1 and node 2 and between node 2 and node 3 

are taken down. At time 213 these links are restored. The effects are similar to those 

described for spike 3. 
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6.2.21. Spike 5 
At time 245 a fault is introduce to the links between node 0 and node 3 and 

between node 2 and node 3. This resulted in some small spikes and step changes on 

various routes. 

6.2.22. New link between 0 and 2 

At time 95 a new links was introduced between node 0 and node 2. This caused 

step changes on several routes as shown in figure 6.2-14. 
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A new link is introduced at time 5 between node 3 and node 1. This link is taken 

down again at time 87 and then re-established at time 260. The effects are minimal 

although there are changes in time of day variation on certain routes that would 

incorporate this link. 

6.2.24. Link down then up 2 to 11 

At time 82 the link from node 2 to node 11 is taken down. The link is restored at 

time 216. This causes step changes on all routes from or to node 11 (figure 6.2-15). 
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Figure 6.2-15 Delay/KS Graph route I1toS 

6.3 Data from the Test Network 
Delay data was generated using the test network as described in Chapter 4. The 

network was used to generate 21 sets of data, each lasting fourteen virtual days. Each 

data set contained at least one monitored event. Figure 6.3-1 is given for ease of 

reference. 

RD 0 D 

Figure 6.3-1 Test Network Layout 
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The test network could be altered in a number of different ways. The routers 

could be configured enabling the test network to have a very large number of possible 

configurations. Many of these had no perceptible impact on the network performance as 

monitored by delay. Events that gave clear Data Exceptions were disabling interfaces on 

the routers, restarting a router, changing the bandwidth on a link, reconfiguring the 

routing and changing the queue length on a certain link. 

The table below summarises the events that were introduced. 

I) Berlin interface disabled 2) Increase in Athens traffic 3) Berlin Ethemet down 

4) Berlin Serial down/up 5) Clean (no events) 6) Edinburgh Bandwidth I 

7) Edinburgh Bandwidth 2 8) Edinburgh Queue change 9) Edinburgh Ethemet down/up 

10) Edinburgh Serial down 11) Edinburgh Serial up 12) 3 serial links taken down 

13) London reload 14) Madrid Ethemet down 15) Madrid Ethemet up 

16) Network 11 down + routing 17) Network 11 down 18) Paris Serial up 

19) Routing change 20) Rome serial up 21) Rome serial up 2 

The following sections detail the 21 data sets, describing the network events that 

were introduced. 

6.3.1. Berlin Serial interface disabled 

At time, the Serial interface connecting Berlin to Helsinki was enabled (it had 

previously been disabled). This caused Step Changes and Time of Day Variation in 

Delay Changes. These can be seen in Figure 6.3-2 below. 
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6.3.2. Increased Athens Traffic 
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Additional traffic sources were introduced from the Athens traffic generator for 

the last three virtual days. The traffic level was increased for the last of these three days. 

This caused an increase in Time of Day Variation in Delay. This can be seen in figure 

6.3-3. 
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6.3.3. Berlin Ethernet Port down 

3 

2.5 

2 

1.51 Delay I ___ KS 

@ 

~ 
<= 

0.5 (1) 

The Ethemet port connecting the Berlin router to network 11 was taken down and 

then brought back up again. This caused Step Changes and Time of Day Variation in 

Delay changes on various routes as below (figure 6.3-4). 
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Figure 6.3-4 Delay/KS Graph route Helsinki to Madrid (small packets) 

6.3.4. Berlin Serial Port down and up 

The Serial Port on the Berlin router connecting to Helsinki was taken down and 

then restored again. This introduced Step Changes and changes in Time of Day Variation 

in Delay. 

6.3.5. Clean (no events) 

No events were introduced. Only weekend exceptions were evident. 

6.3.6. Edinburgh bandwidth 2Mb to 4Mb 

The bandwidth on the serial link connecting Edinburgh to London was increased 

from 2 Megabits per second to 4 Megabits per second. This gave rise to Step Changes 

and changes in Time of Day Variation in Delay. 

6.3.7. Edinburgh bandwidth 4Mb to 2Mb 
The bandwidth on the serial link connecting Edinburgh to London was reduced 

from 4 Megabits per second to 2 Megabits per second. This gave rise to Step Changes 

and changes in Time of Day Variation in Delay. 
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6.3.8. Edinburgh Queue length reduced 

The Queue length on the Serial interface connecting Edinburgh to London was 

reduced to six packets and then brought back to it's default length of seventy-five 

packets. This caused some minor Time of Day Delay Variation Changes. 

6.3.9. Edinburgh Ethernet Port down and up 

The Ethemet Port connecting the Edinburgh router to network 11 was disabled 

and then re-enabled hours later. This caused spike exceptions as shown in figure 6.3-5 

below. 
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Figure 6.3-5 Delay/KS Graph route London to Helsinki (small packets) 

6.3.10. Edinburgh Serial Port down 

The Serial Port on the Edinburgh router connecting Edinburgh to London was 

taken down at time 61. This caused several Step Changes and changes in Time of Day 

Delay Variation. 
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6.3.11. Edinburgh Serial Port up 

The Serial Port on the Edinburgh router connecting Edinburgh to London was 

brought up at time 191. This caused several Step Changes and changes in Time of Day 

Delay Variation. 

6.3.12. Three Serial links taken down 

The serial links from Edinburgh to London, from Berlin to Helsinki and from 

Madrid to Paris were all taken down for two short periods. This resulted in spikes on 

several routes. See Figure 6.3-6 below. 
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Figure 6.3-6 Delay/I\:S Graph route Berlin to Helsinki (small packets) 

6.3.13. London Reload 

The London router was restarted. This caused a small spike in delay. 

6.3.14. Madrid Ethernet Port down 

At time 126 the Ethemet port that connects Madrid to the 11 network is brought 

down. This causes step changes on links to and from the Madrid test station and 

significantly increased Time of Day Delay Variation. These are shown in Figure 6.3-7. 
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Figure 6.3-7 Delay/KS Graph route Madrid to Helsinki (large packets) 

6.3.15. Madrid Ethernet Port up 

The Ethemet port that connects Madrid to the 11 network is brought up. This 

causes step changes on links to and from the Madrid test station and significantly 

decreased Time of Day Delay Variation. 

6.3.16. Network 11 down and routing changes 

At time 93 the 11 Network was taken down for a short period. At time 252 the 

routing protocol was switched from IGRP to RIP. These events caused spikes and Step 

Changes respectively where Time of Day Delay Variation changes sometimes 

accompanied the step changes. 

6.3.17. Network 11 down 

The 11 Network was taken down for a short period. This caused some spike 

exceptions. 
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6.3.18. ParisSOup 
The Serial Port connecting Paris to Madrid was brought up causing Time of Day 

Delay Variation Changes. 

6.3.19. Routing Change 
The routing protocol was changed from RIP to IGRP at time 307. This caused 

several Step Changes and Time of Day Delay Variation Changes. 

6.3.20. Rome Serial Port up 
The serial port connecting Rome to Athens was brought up causing a change in 

Time of Day Delay Variation. 

6.3.21. Rome Serial Port up 2 
The serial port connecting Rome to Athens was brought up causing a change in 

Time of Day Delay Variation. 

6.4 Generating the training files 
A c program used to implement the K-S test is first applied to the delay data and 

corresponding .ks files are generated for each delay file. These values are plotted on the 

graphs shown above. Another program, written in Java, is then used to aid the data 

labelling process. A neural network requires training data. The several thousand 

exceptions generated by the network events described above required labelling to provide 

a training set and also a test set of data for the neural network. The Java program, label, 

is shown below in figure 6.4-1. It searches for significant K-S values in the data, presents 

these to the operator who must then classify the Data Exception and move to the next 

one. The output files contain information about the route, the day, the type and the time 

for each exception. 
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Figure 6.4-1 The label program 

An example of the training files (.tr) which are the output of the label program is 

given below in figure 6.4-2. The first field is the time, the second field represents the 

date as a (1,7) binary matrix, the third and fourth fields represent the ingress and egress 

points respectively and the fifth field represents the type of exception as a (1,10) binary 

matrix. This final field includes more types of exceptions than we currently classify. 

This is to give scope for new types of exceptions. 

48.0 (0 0 1 0 000) 5 8 (0 1 0 0 0 0 0 000) 
171.0 (1 000000) 5 8 (1 0 0 0 0 00000) 
217.0 (0 0 1 0 0 0 0) 58(0 1 0 0 0 0 0 0 0 0) 
299.0 (0 0 0 0 0 1 0) 58 (0 0 1 0 1 0 0 0 0 0) 

Figure 6.4-2 Output from a training file 

The training files are then collected together, mixed randomly and split into 

different sets; one set for training and one set for evaluation. The file that is actually 

presented to the neural network is of the format shown below in figure 6.4-3. 

211.000000 (0 1 0 0 0 0 0) 5 4 (0 1 0 0 0 0 0) down4toO 0.489583 
211.000000 (0 100000) 107 (0 1 0 0 0 0 0) newlink4to1 0.376227 

56.000000 (0 0 1 00 0 0) 8 9 (0 1 00 0 0 0) up2toO 0266667 
55.000000 (0 0 1 0 0 0 0) 9 7 (0 1 0 0 0 0 0) down4toO 0.536603 

290.000000 (000001 0) 7 8 (0000000) down2to10 0.258333 
209.000000 (0 1 0 00 0 0) 8 4 (0 1 00000) d_u_2to11 0.259195 
100.000000 (00 0 0 1 00) 6 7 (0 0 0 0 0 11) faultj<:ore 0.195833 

75.000000 (0 0 0 1 0 0 0) 8 7 (0 0 0 0 0 0 0) up2toO 0.238227 
100.000000 (0000100) 107 (0 0 0 0 0 11) faultj<:ore 0.308029 

128.000000 (0 0 00010) 76 (0 0 0 0 0 0 0) up3to1 0.325000 

Figure 6.4-3 Output from the exceptions file 
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The format here is as for the training files except that the exception type field has 

been reduced to a (1,7) binary matrix, removing unused classifications and also the 

directory name and the K-S value have been appended in fields 6 and 7. The directory 

name is necessary as the neural network uses the delay values as well as the information 

contained in the exceptions file. The program containing the neural algorithm retrieves 

the delay values based on the information from the exceptions file. 

The above process is described in figure 6.4-4 below. 

I 0 E 
& SU R - DV D S 

3 U HSD U 
& SU R 

Figure 6.4-4 From Delay files to Exception files 

6.5 Results - Simulation 
The K-S Test has proved to be very effective in detecting the presence of a Data 

Exception. Using the simulation previously described, 210 days of delay measurements 

were generated per route, containing on average a Data Exception every 5 days per route. 

The distribution oflabelled Data Exception types is given in figure 6.5-1. 

Of the simulated events, the K-S Test correctly identified over 99.5% as Data 

Exceptions. Of the changes signalled by the K-S Test, around 70% were correctly 

identified as Data Exceptions with around 30% being false positive identifications. 

Although it may seem that the K-S Test is labelling a lot of changes incorrectly as Data 

Exceptions, these figures are entirely satisfactory. The K-S test is only the first phase of 

the detection process and the first priority is that Data Exceptions should not be missed at 

this point. As such, it is preferable at this first stage to over identify rather than to miss 

Data Exceptions. The second phase, the neural network, is then able to conduct further 

filtering to reduce the number of misclassified exceptions. 
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Exception Type Training Set Test Set 

Weekend Begin 229 28 

Weekend End 231 31 

Step Change Up 40 23 

Step Change Down 35 32 

ToDVarUp 42 34 

ToDVarDown 32 19 

Spike 29 15 

Figure 6.5-1 Exception Types 

Mean Square Error Classification 

Training Data Set 0.006 98.94% 

Validation Data Set 0.108 80.09% 

Figure 6.5-2 Classification Error 

Using the previously described parameters for the neural network, the mean 

square error of the output vector after 2000 epochs was 0.006; this gives a classification 

accuracy of98.94% (see figure 6.5-2). Using this trained network on the validation set of 

Data Exceptions, the mean squared error was 0.1 08 giving a classification rate of 

80.09%. The chart below (Figure 6.5-3) breaks up the classification statistics. For each 

Data Exception type the percentage of correct identifications and the percentage of 

correct rejections are shown. 
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Figure 6.5-3 Data Exception Classification (Simulation) 
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As can be seen the results are encouraging. The neural network correctly 

classified each exception type over 90% of the time in every case with the exception of 

Step Down exceptions which were correctly classified with only a degree of accuracy of 

81.25%. The neural network is not generating large numbers of false alarms with fewer 

than 7% of false positives for any given Data Exception type. 

6.6 Results - Test Network 
The K-S Test was again a very effective means of detecting that a change had 

occurred. An interesting difference to the results generated from the simulation is that 

the K-S Test was rarely significant (less than 1% of Data Exceptions) where no event had 

occurred. It's hard to know why the K-S Test should work better when applied to the test 

network in a real world scenario but it would appear that the delay distributions are more 

stable than those created by the simulation. It maybe that delay values generated by the 

simulation could have been subject to changes that were inherent characteristics of the 

simulation. An example of this is where the absolute time for the simulation crosses the 

100 hour barrier. Previously this caused a loss of accuracy in the delay measurements as 

the simulation only worked to a certain number of significant figures and subsequent 
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values were rounded down. This problem was corrected by editing the simulation code 

and recompiling the simulation (an advantage of using an open source simulation). 

However, similar issues may exist that were not identified or corrected. 

Exception Type Training Set Test Set 

Weekend Begin 231 29 

Weekend End 231 30 

Step Change Up 33 12 

Step Change Down 31 24 

ToDVarUp 50 22 

ToDVarDown 53 49 

Spike 39 31 

Figure 6.6-1 Exception Types 

Training Data Set 

Validation Data Set 

Mean Square Error 

0.005 

0.184 

Figure 6.6-2 Classification Error 

Classification 

99.36% 

72.58% 

The parameters described previously were used to train the neural network with 

an additional input to allow for the two different packet sizes used for monitoring the test 

network. The number of each Data Exception types that were used is given in figure 6.6-

1. The mean square error of the output vector after 2000 epochs was 0.005; this gives a 

classification accuracy of 99.36% (see figure 6.6-2). Using this trained network on the 

validation set of Data Exceptions, the mean squared error was 0.184 giving a 

classification rate of 72.58%. The chart below (Figure 6.6-3) breaks up the classification 
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statistics. For each Data Exception type the percentage of correct identifications and the 

percentage of correct rejections are shown. 
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Figure 6.6-3 Data Exception Classification (Test Network) 

Spike 

As with the simulation results the neural network had most trouble identifying 

Data Exceptions of type Step Down but again the results are a positive indication of how 

a neural network could be used to classify Data Exception types. 

6.7 Summary 
In this chapter the K -S/neural approach has been tested and evaluated using two 

data sources, a simulation and a test network. 

The underlying objective is to present a network operator with key information. 

The combination of the K-S test and a neural network is reliably identifying that an event 

of some kind has occurred and this is a significant step forward, potentially saving an 

analyst valuable time. The subsequent classification of the Data Exceptions into types 

will be useful in grouping related Data Exceptions together and perhaps even 

automatically diagnosing the type of event that has occurred. In the next chapter final 

conclusions are drawn and possible further work is discussed. 
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7. Conclusions and Discussion 
Given the speed in which communications networks, and particularly the Internet, 

have become an integral part of every day life, it is perhaps unsurprising that network 

management tools and techniques have been unable to keep pace with development. The 

Intemet is being used in ways that far outstrip the perceived objectives at its inception. 

People use the Internet to communicate with one another, to find information, to buy and 

sell, to advertise, to share tools and ideas, with the number of services available 

increasing at a startling rate. Ten years ago public awareness of the Internet was limited 

to a small percentage of people with specialised interests, now it is a global phenomenon 

and ten years from now it may well be the leading means of communication, the most 

prominent provider of entertainment and the foremost facilitator of trade and commerce. 

This explosion has had to be matched by technology that is able to support the 

many and varied services for which the Internet is now used. This has meant 

communications companies investing in infrastructure so that high bandwidth, high speed 

connections are available to businesses and home users alike. Much research has been 

geared towards providing protocols, coding algorithms and technologies that either 

increase the available bandwidth or decrease the need for it. The driving motivation has 

been to establish network technology that can meet the requirements, both present and 

predicted, of the Internet age. 

While advances in network management have been made and research is being 

conducted into these areas, the relentless pursuit of high performance networks has so 

dominated that there are now significant gaps in management areas such as network 

security and network performance monitoring. While work is being done to redress this 

situation it will take a change in the priorities of communications companies before these 

gaps will be closed up. In the current climate such a change of priorities is unlikely. The 

emphasis will remain on expanding network services until such a time as most of the 

likely avenues for Internet use have been explored and exploited and this could be some 

time away. 
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While management issues are of secondary importance to network providers at 

present that is not to say that they are neglected altogether. As companies increasingly 

use the Internet for business the need for networks to be reliable and well managed 

grows. Network performance data is needed to better understand the behaviour of the 

monitored network as well as to detect faults and identify 'hot-spots' allowing network 

operators to manage networks in an informed manner. 

This thesis has investigated means of detecting Data Exceptions in delay data. 

Data Exceptions are a useful concept for abstracting, summarising and presenting 

network performance information and for potentially identifying network events. 

Common Data Exceptions that relate to delay measurements are Step Changes, changes 

in the Time of Day Delay Variation and Spikes. They reflect some real change in the 

network. Several Data Exceptions may result from a single network event reflecting the 

several tests that may be conducted on that network. 

This thesis has presented two methods of detecting Data Exceptions. The first 

approach utilised a rule base that compared summary statistics from the most recent 

measurements with those of previous measurements. Rules were then applied that tested 

for the presence of the various types of Data Exceptions. Although the rule base was 

integrated as part of the AIR system and had moderate success in detecting Data 

Exceptions there are weaknesses in this approach. Firstly, while the rules could cater for 

the most common Data Exception scenarios, unusual cases could case the rule base to fail 

to classify the Data Exceptions accurately. Secondly, the rule base required 

parameterisation for a specific network before being applied to data from that network. 

A second approach made use of a combined method using the K-S Test and a 

trained neural network as a means of detecting and classifying delay Data Exceptions. 

The K-S test identifies that a change in network performance has taken place. The neural 

network is then used to classify the changes as specific types of Data Exception. 

The K-S Test has proved to be a very effective means of detecting the presence of 

Data Exceptions in the data. Although the nature of the test necessitates a non real time 

approach in order to detect the presence of Time of Day Delay Variation changes, this is 

acceptable for the purpose. Where nearer to real time information is required and Time 
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of Day Delay Variation changes are less significant the approach can be modified to work 

in closer to real time. The K-S Test requires no parameterisation or training and can 

consequently be applied to arbitrary data sets and accurately detect changes in that data 

set. The use of the K-S Test for the purpose of detecting changes in network monitoring 

infonnation is both novel and powerful. Data Exceptions were reliably detected with 

virtually no false alarms. This is an important criteria since network operators may lose 

confidence in a system that either misses events or repeatedly raises reports where no 

event has taken place. 

The neural process has been shown to be an effective means of classifying Data 

Exception types. Although the neural network currently needs training it is hoped that in 

future a neural network could be trained to detect the generic types of Data Exceptions in 

any data source. This would then make the entire process completely generic, allowing 

for it to be applied to unfamiliar networks without any training. 

For a neural solution to identify Data Exception types in arbitrary data sources the 

neural network may need training data from a variety of sources. At present only the data 

sources mentioned in this thesis, that is the simulation, the test network and the 

commercial network are available for use. Additional sources may come from further 

simulation or from other measurement projects. Artificial data could also be generated 

and this may prove to be particularly useful remembering that the aim here is to aid the 

neural network training process to leam generic Data Exception types. 

Further possible development of the work includes extending the idea of Data 

Exception Collections. Data Exceptions can be collected together according to factors 

such as type, time and route to give a complete picture of a network event. It must be 

remembered that a Data Exception refers to data on a single path. A network event may 

impact the perceived perfonnance as measured by several monitoring agents leading to 

several Data Exceptions. A means ofreliably correlating Data Exceptions so that all the 

relevant infonnation regarding a particular network event is reported together would be 

beneficial. Further, once such correlation is achieved, Data Collections may be used to 

give infonnation regarding probable causes and locations of network events. For this to 

be attained, some additional research is necessary to link Data Exception Collections to 
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network events. Other infonuation, such as the topology of the network, may also be 

necessary to establish details such as the location of the event. 

Specific further plans include implementation of the method described in this 

thesis, or a modified version of it, at BT Network Operations Centre, WalsaIl. An alarm 

station that is currently deployed at Walsall could be updated to incorporate a rapid Data 

Exception feedback facility implemented using the K-S Test. In this scenario the K-S 

Test Statistic would be calculated more frequently and would compare data from a 

shorter time period such as an hour. In this deployment no provision would be made for 

detecting changes in Time of Day Delay Variation, instead the system would concentrate 

on giving infonuation pertaining to step changes and spikes, reporting such events within 

an hour of the time the event occurred. 

Another related area which may provide interesting research is methods of 

gaining meaningful one-way delay measurements. All the measurement schemes 

presented in this thesis achieve time synchronisation by using either the same clock to 

record the transmit and receive times or alternatively by using GPS synchronised clocks. 

At present these seem to be the only viable possibilities where a degree of accuracy is 

required within one hundred microseconds. However, as these delays are often averaged 

and summarised it may be that a lower degree of accuracy could be tolerated in order to 

achieve greater flexibility in tenus of use and deployment. Relying on GPS can be 

cumbersome as the GPS antenna need to be positioned so that they are in view of GPS 

satellites (e.g. by a window). This is not always convenient. Alternative means of timing 

synchronisation include the use of NTP (Network Time Protocol). If timing 

synchronisation could be achieved to a sufficient degree using an NTP based monitoring 

station then these stations would be far easier to install and far more cost effective to 

deploy. If monitoring stations could be developed along these lines then an increase in 

the number of monitoring stations a network operator would be willing to utilise is likely 

as the cost to the network operator is significantly less. A means of analysing the data, 

such as the work presented in this thesis, would then become even more pertinent. 
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Appendix A - tcl script for NS 
set ns [new Simulator] 
$ns use·scheduler Heap 
$ns trace-all [open test.out w] 
$ns rtproto DV 

$ns color 1 Blue 
$ns color 2 Red 
$ns color 3 Yellow 
$ns color 4 Green 
$ns color 5 Brown 

set mg [new RNG] 

set numberOfDays 14 
set SamplingRate 0.05 

proc finish () { 
global ns 
$ns flush-trace 
exec grep 333 test.out > monitor.out 
exit 0 

proe remainder { numl num2 } { 
while { $nurn 1 >= $num2 } { 

set numl [expr $numl - $nurn2]; 

return $numl; 

proe attach-expoo-traffic {node sink size burst idle rate} { 
set ns (Simulator instance] 
set source [new AgentlCBRlUDP] 
$os attach-agent $node $source( 
set traffic [new Traffic/Expoo J 
$traffic set packet-size $size 
$traffic set burst-time $bUTSt 
$traffic set idle-time Sidle 
$traffic set rate $rate 
$source attach-traffic $traffic 
$ns connect $source $sink 
return $source 

proc attach-telnet-traffic { node sink interval} { 
set ns [Simulator instance] 
set tcp [new AgentITCP] 
$ns attach-agent $node $tcp 
set tcpsink [new AgentlTCPSink] 
$ns attach-agent $sink $tcpsink 
$ns connect $tcp $tcpsink 
set telnet [new ApplicationtreInet] 
$telnet set interval $interval 
$telnet attach-agent $tep 
return $telnet 

proc attach-ftp-traffic { node sink} { 
set ns [Simulator instance] 
set tcp [new AgentITCP] 
$ns attach-agent $node $tep 
set tcpsink [new AgentITCPSink] 
Sns attach-agent $sink Stcpsink 
$ns connect $tcp $tcpsink 
set ftp [new ApplicationlFTP] 
$ftpattach-agent$tcp 
$tep set fid_ 5 
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The ns object outputs the network events 
as a trace file called test.out. 

rng is a random number generator used 
later. 

The variables numberOfDays and 
Sampling Rate define the length of the 
simulation and the test packet transmission 
rate respectively. 

finish is called when the simulation is 
completed. The file test.out is parsed for 
lines containing the numerical sequence 
333. This is the size of the test packets 
and it significantly reduces the amount of 
processing required later on. 

remainder returns the remainder from 
num1 divided by num2. 

attach-expoo-traffic, attach-telnet-traffic, 
attach-ftp-traffic and attach-monitor­
traffic all create a traffic source and attach 
it to a node. 
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return $ftp 

proc attach-monitor { from to interval size} { 
set os [Simulator instance] 
set monitor [new AgentlCBR] 
$os attach-agent $from $monitor 
set sink [new Agent/Null] 
$os attach-agent $to $sink 
$monitor set interval $interval 
$monitor set packetSlze _ $size 
$monitor set fid _ 3 
$ns connect $monitor $sink 
return $monitor 

for {setiO} {$i<36} {incri} { 
set nISi) [$ns node 1 

# Set up the network core 
# -----------------------

$ns duplex-link $n(O) $n(1) 5Mb 3.5ms SFQ 
$ns duplex-link $n(2) $n(3) 5Mb 6.Sms SFQ 
$ns duplex-link $n(O) $n(3) 5Mb S.lms SFQ 
$ns duplex-link $n(l) $n(2) 5Mb 7.4ms SFQ 

$ns duplex-link $n(l) $n(3) 2Mb l1.4ms SFQ 
$ns duplex-link $n(O) $n(2) 2Mb 12.9ms SFQ 

$ns rtmodel-at 0.1 down $n(O) $n(2) 
$ns rtmodel-at 0.1 down $n(l) $n(3) 

# Set up the perimeter 
# --------------------

$ns duplex-link $n(O) $n(4) 6Mb 4.5ms SFQ 
$ns duplex-link $n(O) $n(5) 6Mb Sms SFQ 
$ns duplex-link $n(4) $n(5) 4Mb 11.7ms SFQ 
$ns duplex-link $n(5) $n(6) 4Mb 12.2ms SFQ 
$ns duplex-link $n(l) $n(6) 6Mb 5.Sms SFQ 
$ns duplex-link $n(l) $n(7) 6Mb 5.4ms SFQ 
$ns duplex-link $n(6) $n(7) 4Mb 7.lms SFQ 
$ns duplex-link $n(3) $n(8) 6Mb 3.2ms SFQ 
$ns duplex-link $n(3) $n(9) 6Mb 9.1 ms SFQ 
$ns duplex-link $n(S) $n(9) 4Mb S.3ms SFQ 
$ns duplex-link $n(9) $n(lO) 4Mb 14.1ms SFQ 
$ns duplex-link $n(2) $n(lO) 6Mb 3.9ms SFQ 
$ns duplex-link $n(2) $n(l1) 6Mb 6.6ms SFQ 
$ns duplex-link $n(IO) $n(ll) 4Mb 5.3ms SFQ 

# Some routing priorities 
# -------------------

$ns cost $n(4) $n(5) 5 
$ns cost $n(5) $n(4) 5 
$ns cost $n(6) $n(5) 5 
$ns cost $n(5) $n(6) 5 
$ns cost $n(7) $n(6) 5 
$ns cost $n(6) $n(7) 5 
$ns cost $n(9) $n(8) 5 
$ns cost $n(S) $n(9) 5 
$ns cost $n(9) $n(IO) 5 
$ns cost $n(1 0) $n(9) 5 
$ns cost $n(l1) $n(lO) 5 
$ns cost $n(lO) $n(ll) 5 

$ns cost $n(O) $n( 4) 3 
$ns cost $n(4) $n(O) 3 
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The nodes are created using a single for 
loop_ Links are then set up between the 
nodes. The links include latency and 
throughput values. Links are created 
between node 0 and node 2 and between 
node 1 and node 3. These are then taken 
down immediately. This is so that they can 
be introduced at a later point. 

Routing priorities are given here. The 
default value (cost) of a link is 1. Routes 
are calculated based on the total cost of 
the route. 
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$ns cost $n(O) $n(5) 3 
$ns cost $n(5) $n(O) 3 
$ns co,t $n(l) $n(6) 3 
$ns cost $n(6) $n(l) 3 
$n, cost $n(l) $n(7) 3 
$nscost $n(7) $n(l) 3 
$n, co,t $n(3) $n(S) 3 
$n, co,t $n(S) $n(3) 3 
$n, co,t $n(3) $n(9) 3 
$n, co,t $n(9) $n(3) 3 
$nsco't $n(2) $n(lO) 3 
$n, co,t $n(lO) $n(2) 3 
$n, co,t $n(2) $n(ll) 3 
$n, co,t $n(ll) $n(2) 3 

# Set up periphery 
# ----------------

# First some traffic related variables 
set scale 10 
set scale2 0.5 
set scale3 0.5 
set scale4 4 

set tr(4) 0.05 
set tr(5) 0.3 
,et tr(6) 0.2 
set tr(7) 0.1 
set tr(S) 0.1 
set tr(9) 0.3 
set tr(10) O.OS 
set tr(ll) 0.3 

set fr(O) 1 
set fr(l) 4 
set fr(2)3 
set fr(3) 2 
set fr(4) 2 
set fr(5) 4 
set fr(6) 1.5 
set fr(7) 4 

set mg [new RNG] 
$mg seed 0 

# What follows are a list of the nodes on the periphery 
# traffic source(s attached to the nodes and the patterns 
# of traffic output connected to them 

# From node 4 

$n, duplex-link $n(4) $n(12) 2Mb lOm' SFQ 
$n, duplex-link $n(4) $n(13) 6Mb lOm' SFQ 
$n, duplex-link $n(4) $n(14) 6Mb lOm, SPQ 

# Monitor traffic 
# sent every 0.2 seconds, probing different paths in the network 

Traffic levels are scaled according to the 
day of the week (lower at weekends) and 
according to the route. scale, trO and frO 
are combined to calculate the traffic level 
for a particular link. tr defines the level of 
telnet traffic, fr defines the level of ftp 
traffic. 

The traffic sources are then created and 
started. This is done at each node 
although the code for only one node is 
shown here (node 4). 

set source(12,l) [attach-monitor $0(12) $0(15) $SamplingRate 333] 
,et ,ource(12,2) [attach-monitor $n(12) $n(IS) $SamplingRate 333] 
set ,ource(12.3) [attach-monitor $n(12) $n(21) $SamplingRate 333] 
set ,ource(12,4) [attach-monitor $n(12) $n(24) $SamplingRate 333] 
set source(12.5) [attach-monitor $n(12) $n(27) $SamplingRate 333] 
set ,ource(12.6) [attach-monitor $n(12) $n(30) $SamplingRate 333] 
set source(12,7) [attach-monitor $n(12) $n(33) $SamplingRate 333] 

$ns at 1.43 "$source(12,l) start" 
$ns at 1.44 "$source(12,2) start" 
$ns at 1.45 "$source(12,3) start" 
$ns at 1.46 "$source(12,4) start" 
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$ns at 1.47 "$source(12,5) start" 
$os at 1.48 "$source(12,6) start" 
$os at 1.49 "$source(12,7) start" 

# Telnet traffic, loading up the network trying to follow daily patterns 

set source(13,I) [attach-telnet-traffic $n(13) $n(16) 0.5J 
set source(13,2) [attach-telnet-traffic $n(13) $n(19) 0.5J 
set source(13,3) [attach-telnet-traffic $n(13) $n(22) O.5J 
set source(13,4) [attach-telnet-traffic $n(13) $n(25) 0.5J 
set source(13,5) [attach-telnet-traffic $n(13) $n(28) O.5J 
set source(13,6) [attach-telnet-traffic $n(13) $n(31) O.5J 
setsource(13,7) [attach-telnet-traffic $n(13) $n(34) O.5J 

set source(14,1) [attach-ftp-traffic $n(14) $n(17)J 
set source(14,2) [attach-ftp-traffic $n(14) $n(20)J 
set source(14,3) [attach-ftp-traffic $n(14) $n(23)J 
set source(14,4) [attach-ftp-traffic $n(14) $n(26)J 
set source(14,5) [attach-ftp-traffic $n(14) $n(29)J 
set source(14,6) [attach-ftp-traffic $n(14) $n(32)J 
set source(14,7) [attach-ftp-traffic $n(14) $n(35)J 

# set the telnet traffic sources off 

for {set day O} {$day < $numberOfDays} finer day} { 
for (sel i O} ($i < 8} (incr i} ( 

for (selj I} ($j < 8} (incr j} ( 
set i2 [expr $i * 3 + 13] 

set i3 [expr $i + 41 
selj2 [expr $j + 3J 
if($i<$j} ( 

selj2[expr$j+4J 
} 
if($day-O} ( 

The telnet and ftp sources are set off at 
random times. These loops calculate the 
start and finish times for the telnet and ftp 
sessions. They make use of the random 
number generator (rng) and of the scale, 
frO and trO variables. 

$os at 0.0 "$source($i2,$j) start" 

$tr($j2»/$scale ]" 

} 
set thisDay [remainder $day 7]; 
if ($lhisDay > I} ( 

$os at [expr $day*24 + 8.0] "$source($i2,$j) set interval_ [expr ($tr($i3) + 

# These next lines are for changing the traffic rate 
# if ($i -I && $j2 -6 &&$day>6} ( 
# $os at [expr $day*24 + 8.1] "$source($i2,$j) set interval_ 0.001" 
# puts "telnet from $i to $j2 set to interval 0.001" 
# 

$tr($ j2 ))/$scale2 J" 

$tr($j2)Y$scale2 ]"} 

$ns at [expr $day*24 + 17.0] "$source($i2,$j) set interval_ [expr ($tr($i3) + 

if {Si = 1 && $j2 = 6} {puts "telnet from $i to $j2 set to interval [expr ($tr($i3) + 

# set the ftp traffic sources off randomly 

for {set day O} {Sday < SnumberOfDays} liner day} { 
for (selkO} ($k<8} (incrk} ( 

set k2 [expr 3*$k + 14] 
for (seti I} ($i<24} (incri} ( 

for {setj I} ($j<8} (incrj} ( 
set rate2 [expr int«$fr($k) + $fr($j»)/$scale3)J 
set test [$rng integer $rate2] 
set thisDay [remainder $day 7]; 
if ($i>7 && $i < 18 &&$thisDay> I} ( 

set ratel [expr int«$fr($k) + $fr($j»/$scale4)J 
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# This next line is for changing the traffic rate 
# 

} 

if {$k~~ I && $j ~ 2 && $day>6} {setratel I} 

if{$ratel~O) {setratell} 
set test [$mg integer $rate 1] 

if{Stest~O} { 

#Sns rtmodel Exponential {55 0.2 0.1 lOO} Sn(3) Sn(2) 
#Sns rtmodel-at 120 up $n(O) Sn(2) 
#Sns rtmodel-at 120 up $n(l) $n(3) 
#Sns rtmodel-at 24 down Sn(9) Sn(O) 
#Sns rtmodel-at 35 up $n(9) Sn(O) 
#$ns rtmodel-at 60 up $n(l) Sn(6) 
#$ns rtmodel-at 300 down Sn(O) $n(5) 
#Sns rtmodel-at 260 down Sn(6) $n(7) 
#$n, at 168 "$ns cost Sn(4) Sn(5) I" 
$ns at 100 "Sns cost $n(O) Sn(l)2" 
$ns at 100 "Sns cost $n(l) $n(O) 2" 
$ns at 200 "$ns cost $n(O) Sn(l) I" 
$ns at 200 "$ns cost $n(l) Sn(O) I" 
Sns at 200 "$ns cost $n(2) $n(3) 2" 
$ns at 200 "$ns cost $n(3) $n(2) 2" 
$ns at [expr $numberOfDays*24] "finish" 
$nsrun 

set stop($k2,$j,$i) [$mg exponential] 
set start($k2,$j,Si) [expr Sday'24 + [$mg uniform Si [expr $i + I]]] 
set stop(Sk2,Sj,$i) [expr Sstop($k2,$j,$i) + $start($k2,Sj,Si)] 
$ns at $start($k2,$j,$i) "$source($k2,$j) start" 
$ns at $stop(Sk2,$j,Si) "Ssource($k2,$j) stop" 
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Routing priorities are given here. The 
default value (cost) of a link is 1. Routes 
are calculated based on the total cost of 
the route. 
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Appendix B - PostProAII 
# include <ltdio.h> 
# include <ruing.h> 
# include <Stdlih.h> 
# include <math.h> 

PostProAII takes the file monitor.out 
generated by the simulation and creates 
delay files for the different routes that are 
monitored across the network. 

void process _ data(char fname[50D; 

int main(void) 
{ 

chat fname[50]- {"monitor.out"); 

process _ data(fname); 
retum(O); 

void process _ data(char fname[]) 
{ 

FILE ·WiIe; 
FILE '~outfile; 
char outname[30]j 
char temp[150]; 
float starttime[JO]; 
int pid[JO~ 

char action[5]; 
char time[20]; 
char node 1[5]; 
char node -2[5]; 
char src[IO~ 
char size[7]; 
chat flow id[10]; 
chat node 1 address[lOb 
chatnode-2-address[IOb 
chatse~no[lo~ 
int packet_id; 

int source; 
int dest; 
int se,clt; 

int ref-O; 

float duration; 

The file monitor.out is interpreted a line at 
a time. The file is read using fgets and 
then parsed using strtok. 

for (source -4;sowce <12;source++} { 
for (dest - 4; dest < 12; dest++) { 

if (source!- dest){ 
Wile - fopen(fname,"r"); 
sprintf( outname," %dto%d.dly" ,source,dest}; 
outfile .. fopen(outname,"w"}; 

se .. source .. 3; 
clt -dest"3; 

printf("Doing file %s\n",outname)j 
while(feof(WiIe) - -0) 
{ 

fgets(temp,150,infile); 
if(strlen(temp) > 10) { 

strcpj\action,trtok(temp; \n")); 
if(strcmp(action, Or") -- 0 11 strcmp(action; +") -- 0 11 strcmp(action,"-") -- 0) { 

strcpj\time,trtok(NUIL," \n ")); 
strcpj\node _1'trtok(NUIL," \n")); 
strcpj\node_2~trtok(NUIL," \n")); 
strcpj\src,trtok(NUIL," \n")); 
strcpj\sae,trtok(NUIL,· \n")); 
strcpj\flow_ id,trtok(NUIL," \n")); 
strcrnflow_ id,tnok(NUIL," \n")); 
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re£); *f 

} 
} 

} 

} 
fclose(infile); 
fclose(outfile); 

int getref(int packet )d, int pid[lO] 
{ 

intx-Oj 
int finished - 1; 
int result - -1; 

while(x <lO &&finished --1) 
{ 

} 
X++j 

} 
rerum result; 

result - X; 

finished - 0; 

strcpy(node _1_ address~tnok(NUlL," \n")); 
strcpy(node_ 2 _ address~trtok(NUlL," \nO)); 
strcpy(se'L no,smok(NUlL," \n")); 
packet_id - ato~stnok(NUlL," \n")); 

if(atoi(size) -- III && (int)atof(node_2_address) -- dt && 

if(getref(packet_id,pid) --.1) { 
starnime[re£] - atof(tirne); 
pid[ re£] - packet_id; 
if(ref -- 29){ref - O;} ehe {ref++;} 

if(strcmp(action,"r") -- 0 &&atoi(node_ 2) -- dt) { 
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duration - atof(time). starttime[getref(packet_id,pid)1 
fprintf( outfile,"%f %f\n" ~tarttirne[getref(packet_ id,pid) l,duration); 
f *printf("%f %f %d\n" ~tarttirne[getref(packet_ id,pid)1duration, 

pid[gecref(packet _ id,pid)] - 0; 

Packets are logged in an array that 
contains start times. When they reach their 
final destination the delay is calculated and 
then written to a file. This file takes the 
format "<src>to<dest>.dly" 

getref is a function that searches the array 
of packets that have been sent for a 
packet_id. The array is continually 
overwritten as packet information is not 
needed once the delay is calculated. 
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Appendix C - K-S implementation 
The K-S implementation varied slightly for the two main data sources. The 

implementation given here was used to calculate the K-S statistic for the data generated 

by the Cisco Test Network. 

# include <stdio.h> 
# include <string.h> 

typedef struct { 
float delay; 
int distribution; 
float cdfl; 
float cdf2; 

} tableEntry; 

typedef struct { 
float delay; 
float time; 

} fileEntry, 

int readData(char filename[ 40]. fileEntry store[7000D; 
int createTable(int tiIre, fileEnuystore[70001 tableEnuytable[lOOOl int dist, int startingPoint); 
void sortTable(tableEnt1}'table[lOOO], int length}; 

int main(voKl} { 
fileEntry store[7000]; 
tableEntrytable[IOOOl; 
int lengthl; 
int length2j 
intlength; 
int storel.ength; 
int time; 
char filename[40] - "4toI0.dly'·; 
charoutname[40] - "4tolO,ks-j 
int Xj 

float diff; 
float K-S - 0; 
intcdfl - Dj 
intcdf2 - Dj 
FILE 'oudile; 
int egress; 
int ingress; 
int node[ 4]; 
int size; 

node[O]-I; 
node[I]- 4; 
node[2]- 6; 
node[3] - 8; 

for (ingress - 0; ingress <4; ingress++) { 
for (egress - 0; egress <4, egress++) { 

if (ingress 1- egress) { 
for (size - 0; size <3; size +-2) { 

sprintf(fileoame. "%d%d%dtest.d1y", node[ingressl node[egress1 size); 
sprintf(outname, "%d%d%dtest.ks", node[ingress], node[egress], size); 
printf("Doing %5 .... ",outname); 
outfile - fopen(outname, IOW;; 
storeLength - readData(fi1ename, store}; 
for(time -30; time <312; time +-I} { 
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ks - 0; 
cdfl - 0; 
cdf2 - OJ 
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return 0; 
} 

int readData(char filenarne[ 401 fileEntry store(7000] { 
FILE 'infile; 
intx-D; 

infile - fopen(filenarne,"r"); 
while(feof(infile)--O &&x <7000) { 

} 

lengthl .. createTable(time, store, table, 1, O}; 
length2 - createTable(time+24, store, table, 2, lengthl); 
length -Iengthl + length2; 
sortTable(table,lengtb); 
for(x - 0; x <length; x++) { 

} 

if(table[x].distribution -- I) { 
cdfl++; 

} 
e~e { 

cdf2++; 
} 
table[xl.cdfl - (fIoat)cdfl/lengthl; 
table[xl.cdf2 - (fIoat)cdf2/length2; 
cliff - table[xj.cdfl. table[xj.cdf2; 
if (diff <0) { 

diff* .. ·lj 

} 
if (table[xl.delay!- table[x.lj.delay&& diff >ks) { 

ks - dilf; 

fprintf(outfile. "%d %£\n", time, ks); 

printf("done\n"); 
fclose(outfile); 

fscanf(infile, "%f%f", &Store[x].time, &store[xl.delaJ3; 
X++j 

} 
whiIe(store[x.l].time <- 0) { 

X--j 

} 
fclose(infile); 

return X; 

int createTable(int time, fileEntrystore[70001, tableEntrytable[IOOO1, int dis~ int startingPoint) { 
intx -Dj 
int y .. startingPoint; 

whiIe(store[x].time <tirne-24) { 
X++j 

} 
whiIe(store[xl.time <time) { 

table[y].delay - store[x].delay; 
"ble[y].d~tribu!ion - dis!; 
X++j 

Y++j 

return y- startingPoint; 

void sortTable(tableEntrytable[lOOO1, in! length) { 
tableEntryexchange; 
int x. y; 

for(x - 0; x <length; x++) { 
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fo«y - x; y <length; y++){ 
if(table[x].dehy >table[y].deh0 { 

exchange - table[x]; 
table[xJ- table[y]; 
table[yJ - exchange; 
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Appendix 0 - Neural Network Code Implementation 

/* This is the implementation of neural net algorithm which takes 
.tt •. d1yand .ks files from f eefhsn4/ eljmsltdScriptsftestNetwork ... 
ltestRuns/14daytests and then classifies the exceptions highlighted by 
the K-S test. The.tt are training data (pre-classified data). 

1his is version3 which changes the input vector so that the delays 
are put in the same place in the vector according to the hour 
of the day. This version also reduces the nwnber of output 
classes to 7. We no longer consider either ramps or troughs 
in this version. 

Of 

# include ~dio.h > 
# include <>tdlib.h> 
# include <Jnath,h> 
# include <string.h> 

twedef stmet { 
float >[122]; 
int t[7]; 
float mdNum; 

} trainingPair; 

float getDelay(float dela}{l001 int centi1e. int count); 
float f(float x); 
float f2(float x); 
trainingPair copy(trainingPair tph 
void writeWeigh'VectorV(chatfilename[301 float v(122II50]. in, x, in'~; 
void writeWeigh,VectorW(chat filename[30]. float w[151I7J. in, x, in'~; 

int main(void) { 

trainingPair 'P[20001 
int Doe -7; 
int nei - 121; 
int nohu - 150; 
float )( noe]; 
float y)n[noe]; 
float z[nohu + 1]; 
float z in[ nohu + 1]; 
float vf Doi + 1 I nohu]; 
float w[ nohu + 1 I Doe 1 
float ~rror[ noe}; 
float zerror[ nohu + 1 h 
float zerror in[ nohu +1]; 
float clv[ 00[+ 11 nohu]; 
float dw[nohu+lInoc]; 

float delaj{100~ 

trainingPair dununy1P; 

int ingress; 
int egress; 

FILE "'tr; 
FILE *d1y, 
FILE *outfile; 

chatfname1[201 
chat fname2[I00~ 
char director)!30]; 

float time, un; 
int n, count, temp1, temp2, ~ j, k; 

/* training Pairs*/ 
/* nwnber of classes */ 
/* nwnber of inputs */ 
/* nwnberof hidden units */ 
/* Output vector */ 

/* input to unit y */ 
/* Hidden La~r */ 
/* input to hidden layer wllt */ 
/* weights applied to x */ 
/* weights applied to z */ 
/* error in output y*/ 
/* error in output from z */ 

/* correction matrix for v */ 
/* correction matrix for w */ 
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int cimeThreshold; 
charchj 
float r; 
float leamingRate - 0.005; 
int epoch; 
float mc;error; 
int exceptions; 

Initialise weights (set to small random 
numbers). 

int index; 

/* Initialise weight vectors */ 

srand(2); 

/*weight vector v */ 
foru -O;j <nohu;j++){ 

} 

for (i - 0; i <- n04 i++) { 

) 

r - (float)randQfRAND _MAl{. 0.5; 
v(iIi] - r, 

/* weight vector w */ 
for (k - 0; k <noc; k++) { 

for G - O;j <- nohu; j ++) { 

) 

r - (float)r:mdQfRAND _MAl{. 0.5; 
wUIk] - r, 

f* Read in training Pairs *f 

exceptions - 0; 
strcpy(fnamel. "Exceptions2.txt")j 
if((tr - fopen(foarnel, Or")) __ 0) { 

Read in the training pairs (,tr files) 

} 
ehe ( 

printf("Problem opening file Exceptions2.txt\n")j 
e,ot(I); 

print£(ttOpened Exceptions2.txt\n")j 

while(!feof(tr)) { 
tp(exceptions].x(O]- I; f* set bUs *f 
/*>t* Express time as a munber between -1 and 1 ***/ 
fscanf(tr, "%f", 8a:ime); 
tp{exceptions].x(I]- (float)((div((int)time,24).rem. 12) f 12.0 + (time· (int)time)); 
tp{exceptions].x(I]- (float)(sin(tp{exceptions].x(ll*M]I)); 

/*** Read the dayef the week and conven to 1 or-1 ***/ 
fscanf(tr, " (%f", &tp{exceptions].x(2); 
tp[exceptions].x(2]- (tp[exceptions].x(2] -- O)?I ,tp[exceptions].x(2]; 
for(count - 3; count <8; count++) { 

fscanf(tr, "%f", &tp{exceptions]J<[count}; 
tp[exceptionsJ.x[count] - (tp[exceptioru].x[count] -- O)? -1: tp[exceptionsJ,x[count]j 

} 
fscanf(tr, " %Q", &tp{exceptions ].x(8}; 
tp{exceptions].x(8]- (tp{exceptions].x(8]-- O)?·I 'tp{exceptions].x(8]; 

j"''It*Read the target values and convert to 1 or-1 ***/ 
fscanf(tr, " %d %d (%d", &ingress, &egress, &tp{exceptions].t[OD; 
for(count - 0; count «noc-2)j count++) { 

fscanf(tr, "%d", &tp{exceptions].t[count+I}; 
tp{exceptions].t[count+l] - (tp[ex.ceptionsJ,t[cOlUlt+l] -- O)?1: tp[exceptions].t[count+l]; 

) 
fscanf(tr, "%d)", &tp{exceptions].t[noe.I}; 
tp{ exceptions ].t[ noe·l] - (tp{ exceptions].t[ noe·l] -- O)? ·1 ,tp{ exceptions].t[ 6]; 
tp{exceptions].t[O]- (tp{exceptions].t[O]-- O)?I, tp{exceptions].t[O]; 
fscanf(tr, "%s ", &direct01J?j 
fscanf(tr, "%f\n", &tp[exceptions].:x[121D; ;* K-S statistic */ 

I*"'* turn the ingress and egress points into inputs ***/ 
for (count - 9; count <17; count++) { 
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ingress, egress); 

) 
fclose(tr); 

tp[exceptlons].x[count] - (count - 4 -- ingress) ? 1 : -1; 
) 
for (count - 17; count <25; cooot++) { 

tp[exceptions].x[count] - (count - 4 -- egress) ? 1 : -1; 

/* Now fetch the delay values either side of the target time. 
These need to be swrunarised into a limited number of 
inputs. */ 

sprintf(fname2. "I ee/hsn4/ e1jrml tclScriptsl testNetworkl testRunsl 14dayTestsl %s/%dto%d.dly" • directory, 

if «dly - fopen(fn=e2, "r")) -- 0) { 
printf("Error opening file %s\n", fname2); 
e,ot(I); 

/* Centile values are calculated over a time period of one hour */ 
timeThreshold - I; 
count - 0; 
while(!feof(dlJl &&tm"Threshold <49) { 

fscanf(dly, "%f %f\n", &tm, &dela)(count]; 
if (tm > (time • 24) &&tm <- (time +25)) { 

) 
fclose(dlJl; 
exceptions ++j 

count++; 
if (tm >-timeThreshold + (time .24)) { 

index - (int)div(tm, 24).rem; 
index++; 
index *-2; 
if (tm <time) { 

index +- 23; 
) 
e~e { 

index +-71; 
) 
tp[exceptions].x{index] - getDelay(delay, 50, count - 1); 
tp[exceptions].x[index + I] - getDelay(delay, 95, count· I); 
time Threshold ++i 
count - 0; 

/* Having got the input vector we are now ready to proceed with the training/use of the neural 
network*/ 

outfile - fopen("error.oo", "w")j 
for (epoch -1; epoch <2000; epoch++) { 

for (count - 0; count <exceptions; count++) { 
tp(countJ.mdNum - r.mdO; 

} 
for (temp1 - 0; temp1 <exceptions; temp1++) { 

} 

for (temp2 -rempl +1;temp2 <exceptions;temp2++){ 
if (tp(templJ.mdNum >tp(temp2].mdNwn) { 

dummylP - copy(tp(templ]; 
tp[templ]- copy(tp(temp2]; 
tp[temp2] - copy(dummylP); 

printf("epoch - %d\n", epoch); 
mserror - 0; 
for (n - 0; n <exceptions; n++) { 

/* Compute hidden layer input */ 
for G - 1; j <- nohu; j++) { 

z_in[j]-v[OIj-I]; 
for (i -1; i <- n01;i++) { 

z _ in[j] +- tp[n].x[i]"v[ilj-Il 

} 
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pairs) are sorted into a 
random order at the start of 
each epoch, which aids the 
learning process. 

Feedforward: The values are 
passed forward to the hidden 
layer that then applies the 
activation function. 
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/* Compute hidden layer output */ 
z(0) -I; 
for G - 1; j <- nohu; j++) ( 

z[j) - f(z)n(j]; 

/* Having calculated the outputs of the hidden units we can now calculate the output vector */ 

for (k - 0; k <noe; k++) ( 
y)n(k) - w[OIkJ; 
for G - 1; j <- nom.; j++) ( 

y)n[k) +- z[j)"'{iIkJ; 

/* compute the output */ 
for [k - 0; k <noe; k++) ( 

y[k) - f(y)n[k]; 

,,,,, The errors in the output are now calculated (training anl" */ 

for (k - 0; k <noe; k++) ( 
l"rrOllk) - (tp{n].t[k). y[k]*f2(y_in[k]; 
mserror +- (tp[o].t[k). y[k] * (tp[n).t[k). y[k]; 

for (k - 0; k <noe; k++) ( 
forG -I;j <-nohu;j++) ( 

dwUIk) -learningRate *l"rrot[k) * zU); 
} 
dw[OIk) -learningRate *)"rrot[k); 

for G -I; j <- nohu; j++) ( 
zerror_ in(j) - 0; 
for (k - 0; k <noe; k++) ( 

zerror _ in(j) +-)"rrot[k) • wUIk); 
} 
zerroJ(j) - zerror_in(jJ*f2(z_in(j]; 

for G -I; j <- nohu; j++) { 
for (i -1; i <- Dei; i++) { 

Once the outputs have been 
calculated they can then be 
compared to the target results 
to give an error value. 

Backpropagation: The weight 
corrections are calculated 
using the error information 
term. These are then applied 
below. 

dv[iJj.IJ -learningRate * zerroJ(j) * tp[nJ.xli); 
} 
dv[OJj-I) -learningRate * zerroJ(j); 

} 

j* Now that the updates have been calculated they can be perfonned on the weight matrices ",. / 

} 

for G - O;j <- nohu; j ++) { 
for (k - 0; k <noe; k++) { 

wUlkJ +- dwUIkJ; 

for (i - 0; i <- 004 i++) { 
for G - 0; j <-nobu; j++) ( 

v[iJj] +- dv[ilj); 

mserror - mserror / (exceptions ... noel; 
fprintf(outfile;%d %I\n", epoch, mserror); 

writeWeightVectorW(~W.txt·. w, nohu+l, Doe); 
writeWeightVectorVrV.txt", v, noi+l, nohu); 
fclose(outfile); 
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float getDela){float delaj{IOO], nU centile, int coum) { 
int ref, a. b; 
float temp; 

for (a - Oj a <count; H+) { 
for (b - a+l; b <count; b++) { 

if (delaj{a] >delaJ{bD { 
temp - delaj{ a 1 
delaj{ a] - delaJ{b 1 
delaJ{b] - temp; 

rei - (int)(count' centile / lOO) - I; 

if (count > 0) 
return (delaj{ref]/0.05) - I; 

return-I; 

float I(float x) { 

return (float)2/(1 + exp(.x)) . I; 

floatf2(float x) { 

These functions, f and f2 are the activation function 
and it's derivative. getDelay is used to get the delay 
information that will be used to train the neural 
network and copy is used to copy trainingPairs 
during the random sorting process. 

return (float)((1 + l(x))'(I-I(x)))/2; 

tniningPan cop){trainingPan tp) { 

trainingPair nn; 
int count; 

for (count -Ojcount <122;count++} { 
nn.x[count] - tp.x(countl; 

) 
for (count - Oj count <7; count++) ( 

nn.t[count] - tp.t[countl; 
) 
rtn.mdNum - tp.mdNwn; 

return rtn; 

void writeWeightVectorV(charfilename[lO]. float w[1221150]. int x, int II { 
int a, hi 
FILE 'outfile; 

autfile - fopen(filename, "w"); 
lor (a - 0; a <X; a++) { 

lor (b - 0; b <)I b++) { 
fprintf(outfile, "%f ", w[aIb]; 

) 
Iprintf(outfile. "\n"); 

fclose(outfile}; 

void writeWeightVeaorW(char lilename[lO]. float w[151JJ], ll1t x, ll1t II { 
int a, bi 
FILE 'outfile; 

outfile - lopen(lilename. "WO); 
for (a - 0; a <x; H+) { 

lor (b - 0; b <y; b++) { 
Iprintf(outfile. "%1". w[aIhD; 
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the two weight matrices to file. These are 
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fprintf(outfile, "\n"); 

fclose(outfile); 
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Appendix E - Investigation into the Distribution of SMDS Delay 
Data 

Work done at Loughborough prior to the installation of the Walsall test system 

topology involved using IP ICMP echo request and reply messages (known as 'Ping') to 

characterise the SMDS network delay profile. The results showed the effect of loading 

on delay. During the working week the delay distribution differed significantly from that 

observed at weekends, heavier tails signifying that more packets were expenencmg 

longer delay. [PHI9S] 

An early implementation of the Walsall test architecture gave a more unexpected 

result. The observed delay distribution appeared to be dual peaked. In fact, these dual 

peaks corresponded to a planned change on the network and so the observed distribution 

contained data from the network in two different states. By plotting the delay distribution 

at different points in time, the shift from one network state to another was highly visible, 

which in itself, was a useful result. [PHI96] 

With Data Exception detection in mind, we consider the delay distribution. To 

deploy certain statistical methods it is often necessary to assume that the data is normally 

distributed. In practice no real data set will be normal as the data will always be discrete 

and bounded but a good approximation to the normal distribution is sufficient to maintain 

a practical level of accuracy. If the sample size is relatively large a weaker normal 

goodness of fit can be tolerated although care should be taken if there is significant 

departure from the normal distribution. Consequently it was thought to be beneficial to 

investigate the delay data from SMDS with respect to normality and furthermore, to 

design and implement software for conducting such an investigation and any similar 

investigations that might be deemed beneficial, in the future. 

Various procedures exist for examining the closeness of a sample to the normal 

distribution. The most commonly discussed of these (although not necessarily the most 

powerful) is the Kolmogorov-Smirnov (K-S) test. Essentially the K-S test compares the 

empirical distribution function (EDF) with a theoretical distribution function (in this case 

the normal). 
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In addition to analytical techniques, such as the K -S test, there also exist graphical 

techniques for assessing normality. The quantile-quantile plot (Q-Q plot) compares the 

observed quantiles (Q(P» to the theoretical quantiles (Q*(P ». The Q-Q plot will be a 

straight line if the data are normally distributed. 

The software developed by the author implements both the K-S test and the Q-Q 

plot. The procedures are described below but for a more comprehensive explanation, 

refer to Jobson [JOB91]. 

The K-S Test for Normality 

To calculate the K-S statistic, first the standardized order statistics Zj are 

computed. 

Zi = (Xi - X) / s 
Then the corresponding theoretical cumulative probabilities are determined 

(generally by tables) and denoted by Fj. The K-S test statistic, D, is given by 

D = max(1 i / n - Fi I) 

The Q-Q Plot 

The Q-Q plot, plots the observed quantiles, Q(P), against the theoretical quantiles 

Q*(P) where 

Q(p) = X, 

To calculate Q*(P), first calculate p where 

p = (i - 0.5) / n 

then Z(p) where Z(P) is the standardized order statistic from which Q*(P) can be 

derived using tables. 

Normal Test Application 

The software reads in a file of values and then assesses for normality using the 

described methods. There are no restrictions on the file although the software will take 

no account of numbers beyond the first 250 (The tests lose significance for large 

samples). The data is sorted and then read into fields in two records, one for the K-S test 
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and one for the Q-Q plot. The other fields in these records are calculated from this data 

(see above). Where the normal density function is required, tables are used (from file) 

with linear interpolation. 

Change ParaMeters 

Draw 0 - Q plot 

Draw Distribution 

Exit 

Fig E.1 The K-S statistic is outputted to the screen with a text message commeutiug on its 
significance. 

For the SMDS delay data, a plug in procedure has been added to sub sample 

according to parameters such as the time of day and the centile fastest packets (such as 

the 95% fastest or 5% slowest). This can be removed for the general case or perhaps 

modified to cater for other cases that might require sub sampling in a similar way. 
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Upper Centile 

Lower Centile 

Start Date 

End Date 

Assess 

Fig E.2 These parameters can be modified to allow tests on sub samples from the delay data. 

The software outputs the K-S (or D) statistic and gives a text interpretation of the 

significance of this statistic. The user has options to view the Q-Q plot or the delay 

distribution. The Q-Q plot is drawn as described above, with the least squares estimate of 

the linear relationship superimposed to give a better indication of how close the plot is to 

being linear and hence the data to being normal. The delay distribution, it is emphasized, 

is a rough guide to the shape of the density function and shouldn't be used independently 

to assess normality. It is intended to supplement the K-S test and the Q-Q plot by giving 

further clues as to where problems with the sample might lie. 
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Fig E.3 The Q-Q plot. The data should lie in an approximately straight line for normal distribution 

Fig E.4 The delay distribution. This is as a rough guide only, and shouldn't be used independently 
for analysis. 
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Results 
The software was used to investigate the delay distribution of SMDS test packets. 

Data samples were taken from each test route, both for small (64 bytes) and large (1500 

bytes) test packets transmitted over a three week period from 5 January 1998 to 25 

January 1998. It should be noted that during this period there were instances of 

exceptional data that might effect the results. Results that were subject to exceptional 

data are shown in the tables in Italics. 

As was expected, there is a poor correlation between the SMDS delay data and 

the normal distribution. Even allowing for the large amounts of data available for 

sampling, it would be unwise to compose tests requiring the normality assumption for the 

delay data. The distributions tended to be skewed to the right with heavy tails and 

occasional outliers. Improvements could be made by considering only the 95% fastest 

test packets and by restricting the sampling to times of the day with similar load (i.e. over 

night). Although this might be of some use it severely restricts the scope for tests 

requiring the normality assumption. 

Test I 
Small / bafge Packets. Percentile 100% Call packets) . 

Time (of day) 0 to 24 (hours) 

Dates from 5 to 25 . (ofJan 1998) 

Bristol. 
:::,,!',::: 

2.117 2.429 1.518 1.238 

2.536 1.905 1.555 

2.065 2.61 1.402 

2.582 3.604 2.791 

1.886 1.5 0.6711 
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Comments on Distribution. 

There is highly significant evidence to suggest that the data are not nonnally 

distributed. 

The distribution plot showed that the delay distribution is skewed to the right. 

Test 11 
SmaH-! Large Packets. Percentile _----'l~O""O""'%'----_ 

Time (of daY),---,O,,--_to 24 

Dates from,_--,5,,--_ to 25 

Binningham Bristol Edinburgh .. London Manchester 

Binningham 1.242 1.654 1.527 1.058 

•• 

Bristol 1.492 2.464 2.066 1.292 

Edinburgh 2.042 1.774 2.221 0.919 

London 2.86 2.477 3.461 2.712 

Manchester 1.216 1.215 1.471 1.25 ... 

Comments on Distribution. 

There is highly significant evidence to suggest that the data are not nonnally 

distributed. 

The distribution plot showed that the delay distribution is skewed to the right. 

The results for large packets closely mirror those for small packets. This was 

found to be consistent throughout the testing. 

Test III 
Small ! Large Packets. Percentile 95% fastest . 

Time (of day) ° to 24 
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Dates from_~5!....-__ to 25 

Birmingham Bristol Edinburgh London Manchester 
".'j, >" . ,,' ., 

1 1, ....... 1."[ 
Birmingham'!! 2.066 2.732 1.627 1.203 

Bri~:ol 2.795 3.289 1.971 1.679 

Edinburgh 2.944 2.733 2.701 1.704 

London 3.617 3.216 3.7/3 2.686 

Manchester , 
2.532 2.175 3.\12 2.523 

Comments on Distribution. 

There is highly significant evidence to suggest that the data are not normally 

distributed. 

The distributions were varied. 

Test IV 
Small / ba!'ge-Packets. Percentile 5% slowest 

Time (of day) 0 to 6 

Dates from 5 to 25 

-
Birmingham Bristol Edinburgh London Manchester 

.. . '" . 

Birmingham 1.649 2.195 2.333 1.298 

Bristol 1.909 2.264 2.448 1.562 

Edinburgh 2.576 2.456 3.442 1.75 

London 1.654 1.402 2.105 1.011 

Manchester 1.061 1.275 2.005 1.357 
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Comments on Distribution. 

There is highly significant evidence to suggest that the data are not nonnaIIy 

distributed. 

The distribution plot showed that the delay distribution has a very long and heavy 

tail. 

7.1.1. TestV 
Small / barge Packets. Percentile 95% fastest 

Time (of day) 0 to 6 

Dates from 5 to 25 

, . Binningham Bristol Edinburgh London Manchester 
," ,' .. 

Binningham 0.6516 0.5544 0.4424 1.289 

Bristol 0.8289 3.029 0.9215 0.9657 
. 

Edinburgh .. 0.6375 1.211 0.9/31 0.8099 

London 0.6238 1.421 1.467 1.05 

Manchester 0.9471 1.067 0.9993 1.596 

Comments on Distribution. 

There is some evidence to suggest that the data are not nonnaIIy distributed. 

Distribution plots varied. 
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