

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

,

Pilkington Library

•• Loughborough
., University

AuthorlFiling Title ~~.~ ~~ ~

T Vol. No. Class Mark

Please note that fines are charged on ALL
overdue items.

0402588878

111111 I 11111 I11 11111111111

\
\

"BAQMltVTONE'RIOSS, "
", UNITl BROOK'ST.
,", 'SVSTOr'l,
, KEICESTEFt" (Et' j'GO:

" EI'lGl;Al'~D ',"
'TEL" Q1;j,6: 2602917',;),:
',: FAX: 0116 2696639' ,

Detecting Changes in Network Performance from
Low Level Measurements

By

Mark Sandford

A doctoral thesis submitted In partial fulfilment of the
requirements for the award of Doctor of Philosophy of
Loughborough University

July 2001

psalm 27 of Davtd.
The LORD is my 10ht and my salvatfon-- whom shall I fear? The LORD

is the stronghold of my life-- of whom shall I be afraid?
when evtl men advance against me to devour my flesh, when my enemies

and my foes attack me, they will stumble and fall.
Though an army beSiege me, my heart will not fear; though war break out

against me, even then will I be confident.
One thi'[5 I ask of the LORD, this is what I seek: that I may dwell in the

house of the LORD all the days of my life, to gaze upon the beauty of the
LORD and to seek him in his temple.

For in the day of trouble he will keep me safe in his dwelling; he will hide
me in the shelter of his tabernacle and set me h0h upon a rock.

Then my head will be eXalted above the enemies who surround me; at his
tabernacle will I sacr~ce with shouts of JoY; I will si'[5 and make music to the
LORD.

Hear my voice when I call, 0 LORD; be merc~M to me and answer me.
My heart says of you, "seek his face!" Your face, LORD, I will seek.
Do not hide your face from me, do not turn your servant away in a'[5er;

you have been my he~er. Do not reject me or forsake me, 0 God my Saviour.
Though my father and mother forsake me, the LORD will receive me.
Teach me your way, 0 LORD; lead me in a stra0ht path because of my

opyressors.
Do not turn me over to the desire of my foes, for fa&e witnesses rise up

against me, breathing out violence.
I am sttll confident of this: I will see the goodness of the LORD in the land

of the ltvi'[5.
wait for the LORD; be strong and take heart and wait for the LORD.

Abstract
The Internet and associated network technologies are an increasingly integral part

of modem day working practices. With this increase in use comes an increase in

dependence. For some time commentators have noted that given the level of reliance on

data networks, there is a paucity of monitoring tools and techniques to support them. As

this area is addressed, more data regarding network perfonnance becomes available.

However, a need to automatically analyse and interpret this perfonnance data now

becomes imperative. This thesis takes one-way latency as an example perfonnance

metric. The tenn 'Data Exception' is then employed to describe delay data that is unusual

or unexpected due to some fundamental change in the underlying network perfonnance.

Data Exceptions can be used to assess the effect of network modifications and failures

and can also help in the diagnosis of network faults and perfonnance trends. The thesis

outlines how Data Exceptions can be identified by the use of a two-stage approach. The

Kolmogorov-Smirnov test can initially be applied to detect general changes in the delay

distribution, and where such a change has taken place, a neural network can then be used

to categorise the change. This approach is evaluated using both a network simulation and

a test network to generate a range of delay Data Exceptions.

ii

Acknowledgements

Many thanks to Dr. David Parish, my supervisor, for his help and encouragement. His

continual support and advice have been a great source of strength. David, I hope you

know how much you are appreciated by everyone in the group.

Also I'm very grateful to Dr. lain Phillips whose technical expertise has alleviated many

a problem. How many beers is it now lain?

I should also mention British Telecom plc., who got me going in this whole area to start

with and also Cisco Systems for their kind donation of network equipment.

Finally, Praise be to our Lord and Saviour Jesus Christ who has blessed us with every

spiritual blessing. Glory and honour to his name because he is God and there is no other.

iii

AIR

AMP

ASN.l

ATM

BT

CnF

FTP

GPS

ICMP

IETF

IGRP

IP

IPPM

ITR

KS

MIB

NAI

NAM

NIMI

NLANR

OFTEL

PC

Abbreviations and Acronyms

Automatic Incident Reporting

Active Measurement Program

Abstract Syntax Notation One

Asynchronous Transfer Mode

British Telecom.

Cumulative Distribution Function

File Transfer Protocol

Global Positioning System

Internet Control Message Protocol

Internet Engineering Task Force

Interior Gateway Routing Protocol

Internet Protocol

JP Performance Metrics

Internet Traffic Report

Kolmogorov-Smirnov

Management Information Base

National Analysis Infrastructure

Network Animator

National Internet Measurement Infrastructure

National Laboratory for Applied Network Research

Office of Telecommunications

Personal Computer

iv

RIP Routing Infonnation Protocol

RTT Round Trip Time

SLA Service Level Agreement

SMDS Switched Multimegabit Data Service

SNMP Simple Network Management Protocol

TCL Tool Command Language

TCP Transmission Control Protocol

UDP User Datagram Protocol

URI University Research Initiative

WIC Wide area Interface Card

v

ABSTRACT ... 11

ACKNOWLEDGEMENTS ... III

ABBREVIATIONS AND ACRONYMS .. IV

INTRODUCTION ... XII

1. NETWORK MANAGEMENT AND PERFORMANCE MONITORING 2

1.1
1.1.1.
1.2
1.2.1.
1.2.2.
1.2.3.
1.2.4.
1.2.5.
1.2.5.1
1.2.5.2
1.2.5.3
1.2.5.4
1.3
1.3.1.
1.3.2.
1.3.2.1
1.3.3.
1.3.4.
1.3.5.
1.3.6.
1.3.7.
1.4

NETWORK MANAGEMENT ... 2
SNMP ... 2

NETWORK PERFORMANCE MONITORING ... 3
HIDDEN FAILURES .. 3
IMPROVING NETWORK PERFORMANCE ... 4
PERFORMANCE MONITORING TECHNIQUES ... 4
ACTIVE AND PASSIVE MEASUREMENTS ... 5
PERFORMANCE MEASURES ... 5

Delay ... 5
Throughput .. 7
Jitter ... 8
Loss / Errors .. 8

CURRENT RESEARCH / EXISTING TOOLS .. 8
METRICS AND METHODOLOGIES .. 9
PERFORMANCE MONITORING - MEASUREMENT TOOLS OVERVIEW 9

ICMP, Ping and Traceroute ... 10
PING BASED TOOLS ... 11
NIMI ... 11
SURVEYOR .. 12
RIPE .. 12
NLANR - AMP .. 12

SUMMARy .. 13

2. PERFORMANCE MONITORING AT LOUGHBOROUGH .. 15

2.1 INTRODUCTION ... IS
2.1.1. BACKGROUND TO DATA EXCEPTION DETECTION .. 15
2.1.2. CHAPTER OVERVIEW .. 15
2.2 WALSALL TEST ARCHITECTURE ... 16

vi

2.2.1. PURPOSE AND HISTORY .. 16
2.2.2. PHYSICAL COMPONENTS AND LAYOUT .. 16
2.2.3. TESTING STRATEGY .. 17
2.2.4. DATA STORAGE AND PROCESSING ... 18
2.2.5. DATA REpORTING ... 18
2.3 PORTABLE TEST ARCHITECTURE .. 19
2.3.1. PURPOSE AND HISTORY .. 19
2.3.2. PHYSICAL COMPONENTS AND LAYOUT .. 19
2.3.3. TESTING STRATEGY .. 19
2.3.4. DATA STORAGE, PROCESSING AND REpORTING ... 20
2.4 THE AUTOMATIC INCIDENT REpORTING SYSTEM (AIR) ... 20
2.4.1. PURPOSE AND HISTORY ... 20
2.4.2. LAYERED APPROACH .. 20
2.4.3. OBSERVATION ... 21
2.4.4. COLLECTION ... 21
2.4.5. ANALySIS .. 21
2.4.6. PRESENTATION .. 22
2.5 SUMMARY .. 22

3. DATA EXCEPTIONS ... 25

3.1 WHAT ARE DATA EXCEPTIONS? .. 25
3.2 EXAMPLES OF DATA EXCEPTIONS .. 26
3.2.1. STEP CHANGE ... 26
3.2.2. TIME OF DAY DELAY VARIATION CHANGES .. 27
3.2.3. Loss .. 28
3.2.4. DELAY SPIKES .. 29
3.3 How CAN DATA EXCEPTIONS BE USED? .. 32
3.3.1. DATA ABSTRACTION .. 32
3.3.2. GAUGING EFFECTS OF NETWORK EVENTS ... 33
3.3.3. NETWORK EVENT DETECTION AND DIAGNOSIS .. 33
3.4 COLLECTIONS ... 33
3.5 SUMMARY .. 35

4. DATA SOURCES .. 37

4.1 ESSENTIAL CRITERIA ... 37
4.1.1. DATA COMPLETENESS .. 37
4.1.2. DATA RANGE .. 37
4.1.3. CONTROLLABLE DATA .. 38
4.2 POTENTIAL DATA SOURCES - AN OVERVIEW ... 38
4.2.1. COMMERCIAL NETWORK ... 38
4.2.2. NETWORK SIMULATION .. 39
4.2.3. TEST NETWORK .. 39
4.3 SMDS DATA .. 40
4.4 SIMULATION - NS ... 40
4.4.1. NAM (NETWORK ANIMATOR) .. 42
4.4.2. TEST.OUT .. 43
4.5 TEST NETWORK .. ~. 45

vii

4.5.1.
4.5.2.
4.5.2.1
4.5.2.2
4.5.2.3
4.5.2.4
4.5.2.5
4.5.2.6
4.5.2.7
4.5.2.8
4.5.2.9
4.5.3.
4.6

NETWORK DESIGN .. 45
TRAFFIC GENERATION .. 47

Schedule .. 48
Traffic Level .. 48
Start Time .. 49
Day Length .. 49
Port Number & JP Address ... 49
Quantity ... 49
Day .. 49
Transport Type .. 49
Transmission Rate ... 49

MONITORING THE TEST NETWORK ... 50
SUMMARy .. 52

5. DETECTING AND CLASSIFYING DATA EXCEPTIONS .. 54

5.1 INTRODUCTION ... 54
5.2 RULE-BASED ApPROACH .. 54
5.3 KS TEST/NEURAL ApPROACH ... 63
5.4 NEURAL NETWORK .. 68
5.5 SUMMARY .. 71

6. THE K-S/NEURAL APPROACH RESULTS .. 73

6.1
6.2
6.2.1.
6.2.2.
6.2.3.
6.2.4.
6.2.5.
6.2.6.
6.2.7.
6.2.8.
6.2.9.
6.2.10.
6.2.11.
6.2.12.
6.2.13.
6.2.14.
6.2.15.
6.2.16.
6.2.17.
6.2.18.
6.2.19.
6.2.20.
6.2.21.
6.2.22.
6.2.23.

INTRODUCTION ... 73
SIMULATED DATA ... 73

CORE CHANGE 1 ... 73
CORE CHANGE 2 ... 76
ROUTING CHANGE ... 77
LINK DOWN 1 TO 2 .. 78
LINKS DOWN FROM NODE 0 .. 79
LINK DOWN 2 TO 3 .. 79
LINK DOWN 0 TO 4 .. 79
LINK DOWN 6 TO 7 .. 79
LINK DOWN 9 TO 10 .. 79
DOWN 10 TO 11 ... 80
DOWN 2 TO 10 ... 80
FAUL TV CORE ... 80
INCREASE 5 TO 6 ... 81
NEW LINK 4 TO 1 ... 81
CORE RE-ROUTE 1 ... 83
CORE RE-ROUTE 2 ... 84
SPIKE 1 .. 84
SPIKE 2 .. 85
SPIKE 3 .. 85
SPIKE 4 .. 85
SPIKE 5 .. 86
NEW LINK BETWEEN 0 AND 2 .. 86
NEW LINK BETWEEN 3 AND 1 .. 86

viii

6.2.24.
6.3
6.3.1.
6.3.2.
6.3.3.
6.3.4.
6.3.5.
6.3.6.
6.3.7.
6.3.8.
6.3.9.
6.3.10.
6.3.11.
6.3.12.
6.3.13.
6.3.14.
6.3.15.
6.3.16.
6.3.17.
6.3.18.
6.3.19.
6.3.20.
6.3.21.
6.4
6.5
6.6
6.7

LINK DOWN THEN UP 2 TO 11 .. 86
DATA FROM THE TEST NETWORK ... 87

BERLIN SERIAL INTERFACE DISABLED .. 88
INCREASED ATHENS TRAFFIC ... 89
BERLIN ETHERNET PORT DOWN ... 90
BERLIN SERIAL PORT DOWN AND UP .. 91
CLEAN (NO EVENTS) ... 91
EDINBURGH BANDWIDTH 2MB TO 4MB .•... 91
EDINBURGH BANDWIDTH 4MB TO 2MB ... 91
EDINBURGH QUEUE LENGTH REDUCED .. 92
EDINBURGH ETHERNET PORT DOWN AND UP ... 92

EDINBURGH SERIAL PORT DOWN .. 92
EDINBURGH SERIAL PORT UP .. 93
THREE SERIAL LINKS TAKEN DOWN .. 93
LONDON RELOAD .. 93
MADRID ETHERNET PORT DOWN .. 93
MADRID ETHERNET PORT UP .. 94
NETWORK 11 DOWN AND ROUTING CHANGES .. 94
NETWORK 11 DOWN .. 94
PARlSSOUP .. 95
ROUTING CHANGE .. 95
ROME SERIAL PORT UP ... 95
ROME SERIAL PORT UP 2 .. 95

GENERATING THE TRAINING FILES ... 95
RESULTS - SIMULA TION ... 97
RESULTS - TEST NETWORK ... 99
SUMMARy .. 101

7. CONCLUSIONS AND DISCUSSION ... 103

REFERENCES .. 107

APPENDIX A - TCL SCRIPT FOR NS ... 114

APPENDIX B - POSTPROALL .. 119

APPENDIX C - K-S IMPLEMENTATION ... 121

APPENDIX D - NEURAL NETWORK CODE IMPLEMENTATION 124

ix

APPENDIX E - INVESTIGATION INTO THE DISTRIBUTION OF SMDS DELAY
DATA .. 130

THE K-S TEST FOR NORMALITY .. 131
THE Q-Q PLOT ... 131
NORMAL TEST APPLICATION ... 131
RESULTS ... 135
TEST I ... 135
Comments on Distribution ... 136
TESTII.. .. 136
Comments on Distribution ... 136
TEST ill .. 136
Comments on Distribution ... 137
TESTN .. 137
Comments on Distribution ... 138
7.1.1. TESTV .. 138
Comments on Distribution ... 138

x

Introduction

xi

Introduction

This thesis presents a novel means of detecting changes in low level delay

measurements taken from communication networks. These changes are termed Data

Exceptions. The work originates from a measurement project undertaken by

Loughborough University, funded by BT, where monitor stations are deployed to actively

monitor unidirectional latencies across BT's SMDS network. A requirement of that

project is that Loughborough University provide reports showing any significant changes

to the measured delay values. These Data Exception reports are provided on a weekly

basis, not in real time as the purpose of these reports is to provide information regarding

the impact of network events rather than the detection of faults which would require real

time analysis. The goal of this thesis then, is to present a novel means of automating the

Data Exception Detection process and the approach presented is the central contribution

of the work. The approach need not operate in real time but had to reliably detect Data

Exceptions without raising large numbers of false alarms which undermine operator's

confidence in such a system. Another desirable characteristic of the approach was that it

should require a minimum amount of training or parameterisation.

The main approach presented employs the K -S test statistic to detect for the

presence of a significant change in the data. The K-S test is particularly appropriate as it

is distribution free, making no assumptions about the distribution of the delay. Another

strength of the K-S test is that it tests for general changes, whether they are changes in

location or spread. The test is also computationally light and simple to perform. It will

be shown that this approach is a very proficient means of detecting changes in the data

and requires no training or parameterisation.

The second phase of the Data Exception detection process uses a neural network

to classify the change into one of several known categories. These are

• step changes

• changes in Time of Day Delay Variation

xii

• spikes

• weekends

Once trained the neural network classifies the changes with a high degree of

accuracy. Data Exception classification may prove to be useful as it allows related Data

Exceptions to be grouped together. These groupings are termed Data Collections and

may eventually allow for a system to output probable causes for the change in

performance that has been observed. It is hoped that further research may show that a

neural network may be trained to recognise generic Data Exception types independent of

the network which they are from. This would enable the entire two-stage approach to be

fully utilised without any training or parameterisation required. This would be a major

benefit over rule-based approaches that need parameterisation.

The thesis is structured in the following way:

Chapter 1
In chapter one an overvIew of network management is given with specific

reference to network performance monitoring. Consideration is given to different

performance measures, the terminology and what the measures represent. Measurement

tools are discussed and an overview of known tools that measure unidirectionallatencies

is provided.

Chapter 2
Chapter two details the background to the thesis in the form of an overview of the

measurement work undertaken by Loughborough University and the measurement

architectures currently deployed. Also attention is given to the AIR (Automatic Incident

Reporting) system which incorporated a form of Data Exception detection. Work from

this thesis contributed to publications on the AIR system. [Phi99][PhiSanOO]

xiii

Chapter 3
The concept of Data Exceptions is discussed more fully in chapter three and

examples are given both from monitoring systems at Loughborough and those of other

research projects.

Chapter 4
Chapter four outlines the various data sources available to this project. Aside

from the SMDS network, a simulation and a test network were used to generate delay

data that could be used to develop and assess Data Exception detection methods.

Chapter 5
Two approaches to detecting Data Exceptions are discussed in chapter five. An

early approach used a rule-based method that was implemented as part of the AIR

system. A more sophisticated two-stage approach was subsequently developed which

utilised the K-S test statistic to detect, and a neural network to classify Data Exceptions

and it is this approach that forms the core of the work.

Chapter 6
In chapter six this two-stage approach is tested usmg data from both the

simulation and the test network and the results are presented.

Chapter 7
The conclusions are given in chapter seven, along with suggestions for further

work.

xiv

Chapter 1 - Network Management and Performance Monitoring

chapter 1 - Network Management and perfontttUlCe
Monitoring

Chapter 1 - Network Management and Performance Monitoring

1. Network Management and Performance Monitoring
In this chapter a general background to the thesis is given. We take a broad look

at the area of network management as a whole, the role of network performance

monitoring within that and some of the research projects that conduct performance

monitoring, specifically considering delay.

1.1 Network Management
With the rapid development of computer networks in recent times; network

management has become an increasingly important area. Many businesses and

organisations now have a high degree of dependence on network technology. Access to

shared resources and information rely on computer networks and network failures can

seriously impede working practices and even bring things to a standstill. The effect of

network failures can be very serious, costing companies like banks large sums of money.

As networks have grown in both size and complexity so the task of managing them has

become more involved. Understanding the sophisticated devices and systems that make

up a computer network and being able to take advantage of their features is now an

integral part of network management [HeI92].

Network management incorporates many areas. Networks must be designed,

planned out, installed, tested and then maintained and upgraded once the initial

installation phases are complete. Network management is necessary at all levels of

networking, from the physical layer, managing and maintaining the physical media that

form the network, right up to the application layer and the software programs and

processes that operate on the network.

1.1.1. SNMP
Network managers manage their network using software that allows them to

monitor and control the network. Such software will allow a manager to garner statistics

from routers and switches as well as hosts in the network. Software also allows control

of these devices enabling a manager to change device configurations.

2

Chapter 1 - Network Management and Performance Monitoring

SNMP (Simple Network Management Protocol) is a commonly used protocol for

network management. SNMP uses the client-server model incorporating agents and

managers. An agent is a server that resides on any network node and contains

performance information about that node. A manager is the client that retrieves

information from the agents or changes some agent attribute. SNMP uses the fetch-store

paradigm. This allows for just two commands; fetch, which retrieves information from

the agent, and store which assigns some new value in the agent.

The agents store information in objects. Each object to which SNMP has access

must have a unique name and be clearly defined. Collectively, the set of all objects that

can be stored at an agent are described as a MIB (Management Information Base). The

objects are accessed using ASN.1 (Abstract Syntax Notation One). SNMP does not

define the objects stored in a MIB, but rather establishes a message format for

communicating with a MIB.

1.2 Network Performance Monitoring
Network performance monitoring plays an important role in network

management. Performance data can be used to spot potential or actual problems on the

network. Trends may appear in performance data that could indicate long term problems.

In the short term these may not give cause for fault alarms and consequently might

remain undetected by network managers. Network performance monitoring allows such

trends to be seen and dealt with before any serious problem occurs. Network

performance data can be useful when analysing current problems as well, both in terms of

characterising their nature and their impact.

Network performance data is also key in the planning and development of

networks. Performance data allows network managers to assess the strengths and

weaknesses of various network components and strategies and gives an up to date picture

of how the network is utilised [Cla96][CheOO].

1.2.1. Hidden Failures
Interestingly, severe failures are often the easiest to diagnose and correct. Where

connectivity is lost altogether, establishing the location of the problem, its cause and the

3

Chapter 1 - Network Management and Performance Monitoring

remedy may be relatively straightforward. In contrast, intermittent failures may be much

harder to detect. Given that network protocols are designed to work with some measure

of loss, hardware failures that occur only infrequently can remain hidden. Although the

network hardware and protocol software contain procedures for dealing with errors

(normally retransmission), network managers still work to detect underlying faults as

they will inevitably have some impact on the overall network performance [Com99].

1.2.2. Improving Network Performance

When a network is performing badly the following loop (figure 1.2-1) is

employed to attempt to improve performance. The relevant network parameters are

measured, analysis is undertaken to try and understand what is taking place and then

changes are made. This loop is repeated until either the performance is deemed good

enough or alternatively there are no further improvements to be gained.

Measure relevant
parameters

r--

J ?
~

Analyse and
Interpret data

~ ~

~

Change one
parameter

Figure 1.2-1 The Measurement Process

1.2.3. Performance Monitoring Techniques

There are three main techniques for evaluating network performance. These are

analytical analysis, simulation and practical observation. Analytical models are

mathematical representations, which relate system outputs to inputs by defining

functional relationships between the two. The working of a network can be modelled to

any desired level of detail if the necessary functional relationships are known.

4

Chapter 1 - Network Management and Performance Monitoring

Simulation is used when the model becomes so detailed that the analytical solution is too

complicated. In these cases an experimental implementation of the network could be

used but this would be a very expensive solution.

Analytical analysis and simulation both fall under the remit of predictive

modelling. Predictive modelling can be very powerful and is necessary in designing and

building a network. For the first implementation of a network no observed performance

measures are available and so designers are completely dependent on predictive

modelling techniques to evaluate likely performance. The limitations of predictive

modelling stem from the simplifying assumptions that often need to be made, without

which the problem can become intractable.

Once a network is built measurements can be made. Performance measurements

are useful in that they monitor the actual, as opposed to the theoretical performance,

thereby exposing design flaws and inefficiencies in the network in addition to effects due

to user traffic.

1.2.4. Active and Passive Measurements
Performance measurements can be made in two ways, either actively (intrusively)

or passively (non-intrusively). Active measurements involve injecting test traffic into a

network for the specific purpose of monitoring some element (or elements) of that

networks performance. Passive measurements make use of traffic already in the network

and glean performance information from it. The advantage of active measurements over

passive measurements is that test traffic is under the monitors control and therefore can

be specified to any given parameters to provide the information required. The

disadvantage is that by injecting test traffic into a network the traffic load is being

increased and may potentially effect performance.

1.2.5. Performance Measures

1.2.5.1 Delay

The first performance measure we shall discuss is delay. Delay is one of the more

fundamentally important measures of network performance and is also a central topic for

5

Chapter 1 - Network Management and Performance Monitoring

much of this thesis. The total amount of delay associated with infonnation traversing a

network can be thought of as compromising of four parts.

1.2.5.1.1 Propagation delay

This refers to that time which it takes for the signal to be sent along some physical

medium, whether that be wire, fibre or even through the air. It is a fundamental delay

that is essentially constant and characteristic of the medium.

1.2.5.1.2 Switching delay

This is introduced by electronic devices in the network such as routers, switches,

bridges or hubs. This delay consists of a minimum element incurred due to the time it

takes for all the bits of a packet to be received and then for the decision to be taken as to

which destination the packet should be forwarded to.

1.2.5.1.3 Access delay

This arises when hosts have shared access to a network medium. An example

would be a host on an Ethernet network that may have to back off and wait for the

channel to become free before it is able to transmit. Similarly on a token ring network a

host has to wait for the token before it can start to send packets.

1.2.5.1.4 Queuing Delay

This occurs when packets are waiting to be serviced at various points in the

network. For instance, at a router where a significant amount of processing may be

required to encapsulate and route packets, packets will be queued until they can be

processed. Various queuing strategies are available to try and ensure a fair queuing

system.

Often when delay measurements are required the Round Trip Time (RTT) is used

as it can be easily obtained using tools such as ping. Round Trip Times refer to the total

amount of time required for a test packet (nonnally an ICMP packet) to traverse across a

network to some destination and to return again. The packet finally tenninates at the

6

Chapter I - Network Management and Performance Monitoring

same host from which it was transmitted. This is advantageous as it eliminates any need

for timing synchronisation. The same clock records the transmit time and the receive

time.

Measuring one-way delay is difficult, as timing synchronisation is required.

[Sid89] Some performance monitoring protagonists have argued that RTT is more than

adequate [HanOO] and that there is little to be gained by measuring end to end delay,

given the complexities involved in achieving those measurements. However others have

pointed out that network paths can be asynchronous, meaning that the respective delays

encountered by outward bound packets and returned packets can be very different

[Cla93]. In these cases, RTT could be misleading. Later discussion will look at

performance monitoring proj ects that do measure end to end delay using GPS to give

timing synchronisation.

1.2.5.2 Throughput

The second fundamental property of the network is throughput. This refers to the

amount of data that can be sent through the network, or a section of the network.

Throughput is generally measured in bits per second (or Megabits/sec or even

Gigabits/sec). Another term that is used to describe throughput is bandwidth. As

bandwidth or throughput are sometimes referred to as the speed of a network it is

important to be clear that throughput and delay are distinct measures. The throughput

describes the amount of data that can be put onto a link, the delay describes the amount of

time the data will take to reach the destination. Corner [Com99] gives the example of a

road that can accept one car every five seconds (throughput 0.2 cars/sec). The road has a

delay of 30 seconds. Now if an extra lane was added to the road then two cars could join

the road every five seconds (throughput has doubled to 0.4 cars/sec) but the delay on the

road would still be 30 seconds.

Although throughput and delay are different measures and describe different

aspects of network performance the two are associated. Congestion occurs on a network

where the rate of traffic being sent over the network exceeds the throughput rate. A

congested network results in packets being queued before they can be sent. It should be

clear that this queuing time will affect the overall delay of the packet.

7

Chapter 1 - Network Management and Performance Monitoring

1.2.5.3 Jitter

Jitter (or delay variation) is the term used to describe the variance in delay. Jitter

is of particular relevance to real time applications such as video or audio streaming

software. In real time applications it's not enough for the mean delay to be low, the

standard deviation also needs to be small so that there is no noticeable break in

communication.

1.2.5.4 Loss I Errors

Although loss and packets containing errors are on the whole invisible to a user as

they are generally dealt with by the hardware and software protocols that facilitate the

network, they are still a very important network measure. Where packets contain errors

or are lost they will often require retransmission. The more packets that are lost or

corrupt the greater the inefficiency of the network.

1.3 Current Research / Existing Tools
There is a feeling among the academic community that Network Service

Providers do not collect or make available sufficient performance measures concerning

their networks [Cla96][Pax98c][CheOO]. There seems to be two main reasons for this

reluctance to monitor networks more comprehensively. The first difficulty is that no one

seems too sure what to monitor and what statistics to collect. The technology involved is

still in a fast evolving state and there is a suggestion that network service providers do not

know with any great confidence what information would be of use to them and what

would not. The second issue is simply that of priority. Enough effort is required in

getting and keeping network infrastructure operational that performance statistics have

been kept as a secondary concern. [Cla96] The issue is not so much whether generating

performance data would be useful, rather that there is no spare time or clear direction to

bring it about.

Despite the seeming lack of impetus, there is a growing belief that network

performance information is important. The motivating factors come from both within

and outside the telecommunication companies. Performance data is important for

identifying the causes to network faults and for solving them. Detailed information

allows faults to be analysed and understood. Performance data also allows trend analysis,

8

Chapter 1 - Network Management and Peiformance Monitoring

potentially allowing managers to identify hot spots before they occur and instigating

preventative measures. These are good arguments for telecommunications companies to

take the initiative. Pressure is also growing from external bodies. As networks are

increasingly employed as a means of communication, users will want performance

guarantees. There is also the introduction of government legislation by bodies such as

OFTEL (UK) [OFf EL] ensuring that certain standards are met. Without performance

measurements there is no means of satisfying these various parties that standards are

being maintained.

1.3.1. Metrics and Methodologies
One of the areas being discussed presently is which performance measures to

collect. There are a number of statistics that can be generated, some probably of greater

use than others. Even where we know what statistics we want they still need to be

carefully defined; so for example, what one person/organisation refers to as one-way

delay is not misunderstood. For instance, when measuring delay, at what point does the

'clock' start counting? Ideally, these definitions would be standardised in such a way

that a common set of measurements (or metrics) could be used universally [Pax96].

Methodologies are the means of obtaining metrics. Metrics can be defined where

no methodology currently exists for obtaining them. Conversely there may be many

methodologies for obtaining the same metric. It may be that there are known flaws in

methodologies where the desired metric cannot be measured accurately but a good

indication still obtained. This may still be useful but needs to be documented. IPPM (IP

Performance Metrics) which is part of the IETF (Internet Engineering Task Force) have

undertaken to draw up standards and ratify new metrics and methodologies as

appropriate.

1.3.2. Performance Monitoring - Measurement Tools Overview
There are many measurement tools available, in addition to a quick look at ping

and traceroute, we consider five here. These have been chosen as they are similar to that

used in this project in that they measure similar metrics, namely one-way-delay (all

except ping) and loss.

9

Chapter 1 - Network Management and Performance Monitoring

1.3.2.1 ICMP, Ping and Traceroute

The Internet Control Message Protocol (ICMP) is used to report network events.

There are about a dozen types of ICMP messages and they are transported in IP packets.

Some of the more important messages are listed in the table below (figure 1.3-1).

Message Type Description

Destination Unreachable Packet could not be delivered
Time Exceeded Time to live field hit 0
Parameter problem Invalid header field
Source quench Choke packet
Redirect Teach a router about geography
Echo request Ask a machine if it is alive
Echo reply Yes I am alive
Timestamp request Same as Echo request, but with

timestamp
Timestamp reply Same as Echo reply, but with

timestamp

Figure 1.3-lICMP Messages

The ping program makes use ofICMP Echo request and Echo reply messages (or

sometimes Timestamp request and Timestamp reply messages) to either test connectivity

or round trip time. Ping is widely available and comes as standard under operating

systems such as Microsoft Windows (95, 98, NT, 2000) and Linux. Ping was originally

written by Mike Muuss.

Traceroute, developed by Van Jacobson, also uses ICMP. Unlike ping, traceroute

outputs all the intermediate router hops it takes to reach the specified destination. Below

is output taken from both ping (figure 1.3-2) and traceroute (figure 1.3-3).

PING www.bbc.net.uk (212.58.224.31) from 158.125.51.167 : 56(84) bytes of data.
64 bytes from wwwl.thdo.bbc.co.uk(212.58.224.31): icmp_seq=O tt1=247 time=28.120 msec
64 bytes from wwwl.thdo.bbc.co.uk(212.58.224.31): icmp_seq=1 tt1=247 time=32.308 msec
64 bytes from wwwl.thdo.bbc.co.uk(212.58.224.31): icmp_seq=2 ttl=247 time=20.507 msec
64 bytes from wwwl.thdo.bbc.co.uk(212.58.224.31):icmp_seq=3ttl=247 time=41.589 msec
64 bytes from wwwl.thdo.bbc.co.uk(212.58.224.31): icmp _seq=4 ttl=247 time=36.604 msec
64 bytes from wwwl.thdo.bbc.co.uk(212.58.224.31):icmp_seq=5 ttl=247 time=32.061 msec
64 bytes from wwwl.thdo.bbc.co.uk(212.58.224.31): icmp_seq=6 ttl=247 time=30.666 msec
64 bytes from www1.thdo.bbc.co.uk(212.58.224.31):icmp_seq=7 ttl=247 time=28.275 msec

--- www.bbc.net.uk ping statistics ---
8 packets transmitted, 8 packets received, 0% packet loss
round-trip minlavglmaxlmdev = 20.507/31.266/41.589/5.829 ms

Figure 1.3-2 Ping Output (ping www.bbc.co.uk)

10

Chapter 1 - Network Management and Perfonnance Monitoring

1 el-gateway-50.lut.ac.uk (158.125.50.1) 0.435 ms 0.318 ms 0.294 ms
2 emman-gw.lut.ac.uk (158.125.8.1) 0.987 ms 0.965 ms 1.024 ms
3 uon2-gw-vl.emman.net (194.82.121.130) 4.411 ms 6.112 ms 7.201 ms
4 uon1-gw-6.emman.net (194.82.121.42) 12.348 ms 10.344 ms 12.524 ms
5 ce-gw.ja.net (146.97.255.21) 20.145 ms 20.373 ms 23.826 ms
6 ext-gw4.ja.net (193.62.157.113) 21.743 ms 22.255 ms 23.573 ms
7 linx-gw.ja.net (193.63.94.249) 15.645 ms 22.558 ms 18.422 ms
8 rt-linx-b.thdo.bbc.co.uk (195.66.225.103) 20.297 ms 25.060 ms 26.070 ms
9 www1.thdo.bbc.co.uk(212.58.224.31) 34.144 ms • •

Figure 1.3-3 Tracewute Output (traceroute www.bbc.co.uk)

1.3.3. Ping based tools
Ping has been adapted and used by other Network Measurement systems.

Although ping itself is a well-established tool it's stilI being used for research as part of

larger schemes. Internet weather reports are provided by sites that poll other sites using

ping on a regular basis and then assess the networks performance using the delay data

gathered by these measurements. In the figure below (figure1.3-4), taken from Andover

News Network ITR site (Internet Traffic Report) [IntTR], response time is plotted

against time. The response time reflects ping results from several servers that the site

uses to reflect the performance of the Internet.

1.3.4. NIMI

R 343

E
S
P
o
N

Europe Response TIMe(Ms) : Past 24 Hours

--S 244
E IV , , Jl ",)L,

"
03 .. T

I
M
E 145

\ VV'Jl N\-hAf
12/14 12/14 12/14 12/14 12/14 12/15
05:15 09U5 13:15 17:15 21115 OU15

Time in EST (add 510r GMn
@2000Andover.Net W/lAALlnternetTrafficReport.oom

12/15
05:00

Figure 1.3-4 Response time graph from an Internet Weather site [IntTR]

The NIMI (National Internet Measurement Infrastructure) project is a network

measurement architecture based in the US [Pax98b] [Pax98c]. The key focus of this

project is to create a measurement infrastructure capable of monitoring very large

networks. NIMI makes use of stations set as end-points for a set of measurements

therefore allowing for end-to-end metrics to be measured. NIMI uses Traceroute

11

Chapter I - Network Management and Performance Monitoring

[Jac89], Treno [Mat96] and Poip (Poisson Ping) but is designed to allow for any tool to

be used as part of its measurement suite. The NIMI project hopes to move towards

diagnosis of problems by deploying probes at various points along the monitored network

paths. This will allow problem areas to be identified more specifically.

1.3.5. Surveyor
Surveyor [KaI98] measures one-way delay and loss by sending UDP test packets

(40 bytes including IP and UDP headers) between measurement test stations distributed

around the Internet. Timing accuracy is achieved using GPS antenna. Test packets are

sent, on average, every two seconds and then the results are summarised over a one­

minute period. The summary statistics used include centile values for average delay and

percentage loss. Surveyor was making use of some 38 machines in November 1998

having started with just 3. These are mainly at sites in the US but Europe is now

included.

1.3.6. RIPE
The RIPE project [Uij97][Uij98] is similar to Surveyor in that it also uses active

testing with GPS clocks for time synchronisation. The work is centred in Amsterdam and

the testing is conducted mainly across Europe. Again like Surveyor, RIPE transmits

packets using a Poisson sampling rate to avoid synchronisation between the test traffic

and other events on the network. [Flo94]

1.3.7. NLANR-AMP
The National Laboratory for Applied Network Research (NLANR) has been

working on creating a Network Analysis Infrastructure (NAI) [McGOO]. This

encompasses a variety of performance measures including a passive monitoring project

and an active measurement project. NLANR has also been working on the collection of

network management and control data. The Active Measurement Program (AMP)

measures round trip time, topology and loss. They have deployed over 100 AMP

monitors around the high-performance research networks in the United States (figure 1.3-

5).

12

Chapter 1 - Network Management and Performance Monitoring

"
1 '. t.rt~nlkac~:
I .. ", ,,',' h'd,-

1.4 Summary

NDSU i UWf~i;'. MTU ' ' , ~ U!~~ on~:;: . ,1
.' ' I ' j! ','I," MnW~llkrf I, ",!" ,I: I,' "', i

UWlst ,MSl' lTRoch,..' D'~.~tlJ •
100U UlowaShlltap .WSU ,,rt ' .. ,J'. 'NTNU

•• NWlJ U"" Lt., ,'< UMa<>s., BU.Ml1:
Slit. UIC " ". P&l!· , uc .. ~ OOH'lfml

FNAL ' ' •• COhll.",.·Yal, j
~Ri~1 llJCM~~~.u~~V~hl.~~~.n., .','

K •• ~" S,".l' • .UC UMrl JJIU",~ACCESS'.l
•. UMbnarl ,.- GM Gurgduw.', '

Ul(all~1Ui • • ' UVII'''.i~ ODU
Oklaboru State \YUSTL

I y rbllt' UlK .. ' NC~E)lINCSC
uorOkl;,llulml .:,1. ~NC-CH'.'D.kt :~' ,

UAII • .' GATtli1 . NCSU
. MIS'ilulppl , "'Ur/.Gtorgia

SMU Slat" two!')' ~
", • e 'VAB I'

, UII "

• ru«

,'. I:'

.. I'

Figure 1.3-5 NLANR AMP Monitors [McGOO]

In this chapter we have looked at the broad area of network management and

given particular consideration to the role of network performance monitoring with that.

Network performance monitoring forms an important part of network management, its

characteristics include delay, throughput, jitter and loss. We've seen that One-Way

Delay can be measured using intrusive measurements although some form of timing

synchronisation is necessary. Examples of one-way delay measurement schemes are the

RIPE project and the Surveyor project. Round Trip Time can also be measured using

tools like ping. A monitoring scheme that measures RTT is the NLANR AMP project.

In chapter two we go on to look more specifically at performance monitoring

work undertaken at Loughborough which provides the setting and background of the

work discussed in this thesis.

13

Chapter 2 - Performance Monitoring at Loughborough

chapter 2 - performance Monitoring at
Loughborough

14

Chapter 2 - Performance Monitoring at Loughborough

2. Performance Monitoring at Loughborough

2.1 Introduction
In chapter one a broad introduction was given to network management, network

performance monitoring and specifically monitoring tools that measure delay. In this

chapter we look more specifically at work conducted in this area at Loughborough

University as this gives important background information and puts into context the

purpose and aims ofthis thesis.

2.1.1. Background to Data Exception Detection

Researchers at Loughborough University have been engaged in the area of

network performance monitoring for a number of years. Much of the work provides

useful background to this thesis, as it should give a clear understanding of the motivation

behind and the need for a means to detect Data Exceptions.

2.1.2. Chapter Overview

As has previously been mentioned, measuring one-way delay is a non-trivial task.

Work has been carried out at Loughborough to develop a performance monitoring tool

capable of measuring one-way delay and loss as part of the BT funded URI project. Two

architectures are discussed here: The Walsall Test Architecture and the Portable test

system. The Walsall test architecture is used to continuously monitor the SMDS

network, providing an 'ever present' source of information. The portable test system is

used for more specific, short-term tests (hence the portability for ease of installation). In

both cases the aim is to indicate the type of performance experienced by the end user (i.e.

one-way delay). This is particularly relevant when considering service level agreements

that may exist between a network provider and their clients.

In addition to these test architectures a monitoring system, AIR (Automatic

Incident Reporting) is also described. AIR incorporates several aspects of the monitoring

process of which Data Exception Detection is one, hence the pertinence of the discussion

to this thesis.

15

Chapter 2 - Peiformance Monitoring at Loughborough

2.2 Walsall Test Architecture

2.2.1. Purpose and History

The Walsall Test Architecture was assembled and installed following the design

and implementation of a unidirectional latency and loss tester, developed at

Loughborough. The system was originally set in use, monitoring BT's SMDS network,

in 1995. The purpose was to provide BT with performance measurements previously

unavailable to them, namely one-way delay. This enabled BT to demonstrate their

compliance with Service Level Agreements negotiated with their customers

[Phi95][Phi96].

2.2.2. Physical Components and Layout

The architecture (figure 2.2-1) is made up of several components. Chiefly, there

are three monitor stations based at a BT Network Operation Centre (NOC) in Walsall, an

alarm station (also based at Walsall) and a control station based at Loughborough. Ofthe

three monitor stations one is used as the primary test station, one is used to run focus tests

and the third is an emergency backup. The test equipment is connected to the SMDS

network at five separate locations via Megastream links. These locations are

Birmingham, Bristol, Edinburgh, London and Manchester. An SMDS connection links

the control station to the test stations.

16

Chapter 2 - Performance Monitoring at Loughborough

2.2.3. Testing Strategy

SMOS

Control Station

Meg strea Links

+r Routers

Monitor
Stations

Figure 2.2-1 The WalsaIl Test Architecture

The test points provide twenty one-way paths across SMDS. Test packets are sent

across the SMDS network, testing each route in turn with both small (64 Byte) and large

(1500 Byte) test packets. These represent the smallest and the largest packet sizes

available to us. Test packets are sent at a rate of one per second meaning that each test

(individual packet size and route) is tested every forty seconds.

No clock synchronisation is required as the same machine logs the transmit time

and the receive time. The only variable delay here is in the SMDS network itself; other

delays involved are either negligible (e.g. propagation along the Ethernet at Walsall) or

fixed (e.g. the megastream links). The access network is reserved solely for monitoring

purposes. If this were not the case then the tests would be affected by traffic on the

access network.

Loopback tests were conducted in conjunction with BT to measure the delay

attributable to the non-SMDS element of the test circuit. By subtracting this figure from

17

Chapter 2 - Performance Monitoring at Loughborough

the total delay we obtain a figure that solely represents the delay incurred traversing

SMDS.

2.2.4. Data Storage and Processing
The test stations log packet transmit and receive messages in log files stored on

their local hard drives. These files are retrieved to Loughborough typically twice a week.

The data is then processed to calculate delay and loss information and stored in a

database at Loughborough. The database uses a concept called intermediate information

(figure 2.2-2). This essentially gives a speed up in response time as a trade off against

storage space [Bas98].

2.2.5. Data Reporting

. Intermediate
Information

"Halfway-House"
Figure 2.2-2 Intermediate Information

. Information

From the monitoring information, delay graphs are produced that show 50th, 95th

and 99th centile values, typically over a three hour window. These graphs are examined

for anomalies (Data Exceptions) and where such anomalies are found a report is

produced describing the change. These reports are generated historically and are

produced on a weekly basis. In addition to the weekly reports the alarm station, based at

Walsall, displays up to date performance information and also has some simplistic

thresholds designed to give warning of any serious performance impairment [Pag99].

18

Chapter 2 - Performance Monitoring at Loughborough

2.3 Portable Test Architecture

2.3.1. Purpose and History

As has been mentioned earlier end to end delay consists of two parts, access

network delay and core network delay. Where end to end performance has degraded it

might be due to either the access network or the core network or both. The portable test

system was designed to measure end to end delay between two arbitrary points in the

network and also to measure the delay on the access networks involved.

In practice the portable test system has been used to measure links between points

within the core network to give benchmark figures for delay.

2.3.2. Physical Components and layout

Site A Site B

Figure 2.3-1 The Portable Test Architecture

GPS

Monitor
Station

The portable test system (figure 2.3-1) makes use of two test stations each

receiving a timing pulse via GPS antenna. A lap top computer running Solaris is then

used as the control station. The log files from the portable test stations can be retrieved to

the control station where they can be stored and processed.

2.3.3. Testing Strategy

As was mentioned above, in addition to end to end delay measurements, the local

site access is monitored. This is done by sending a test packet to the local gateway and

back again. Hence there are four tests, one for each site access and two tests traversing

the core network, one in either direction. The size of the test packets and the rate at

which they are sent can be tailored to suit the specific requirements of the test.

19

Chapter 2 - Performance Monitoring at Loughborough

2.3.4. Data Storage, Processing and Reporting
Data storage, processing and reporting is done III a similar manner to that

described under the Walsall Test System. The control station for the portable system is

nominally a laptop that can be taken to a remote site, however any Solaris based machine

that can access the test stations remotely could be used as a control station.

2.4 The Automatic Incident Reporting system (AIR)

2.4.1. Purpose and history
Given that some monitoring information exists, further work can be done to

collect, analyse and present this information so that it can be interpreted and if necessary,

action can be taken. The AIR system addressed these issues with the specific intention of

automating the process as far as possible [Phi99][PhiSanOO].

2.4.2. Layered Approach
Jain describes the layered approach referred to here (figure 2.4-1) [Jai91]. In his

model there are seven layers, of which the top three generally involve some human

element.

Figure 2.4-1 Jain Layered Approach [Jai911

20

Chapter 2 - Performance Monitoring at Loughborough

The observation layer gathers raw data on individual components of the system,

in this case a network. These then need to be collected and analysed. Analysis at this

stage may simply involve calculating statistical summaries; thresholds might also be used

to trigger alarms. It is in this layer that Data Exception techniques might be

implemented. The information summarised by the analysis layer then needs to be

presented; this can be done in the form of reports, displays and alarms. The information

must then be interpreted; this is generally done by human beings or perhaps an expert

system. The console layer is the means by which managers can interface with and

control the network, allowing the management layer, at the top, to make decisions

regarding any action that may be required.

2.4.3. Observation
The AIR system was designed to incorporate any monitoring information source

that happened to be available. The observation layer could therefore include many types

of monitors. In practice two monitors have been used, the delay and loss monitors

described above in association with the Walsall Test Architecture and also an ATM

tester, that also monitors delay and loss, developed at BT's research laboratories at

Adastrel Park, Martlesham.

2.4.4. Collection
The data is stored in log files on the monitor stations and then retrieved on a

regular basis. Itis stored in a database on a control station in a similar manner to that

discussed in the previous two sections.

2.4.5. Analysis
Analysis of the data included the calculation of statistical summaries and then the

application of a rule base to establish whether any Data Exceptions, that is anomalies in

the data, had occurred. Data Exceptions will be discussed more fully in the next chapter

and the rule-based approach used here is described in detail in chapter 5.

21

Chapter 2 - Performance Monitoring at Loughborough

2.4.6. Presentation
Data Exceptions are gathered together in data collections that are then stored in a

database which can be accessed using a viewer (figure 2.4-2).

·'<"""'''7:''''':''''< -, .
, File' Hew All

Collections

Typt

Testld

Desalptlon

J!ij!!!i~!ill~!! 11 EI.m,""

Comment

S99/AIR/D0048

;:""tocl' -on--te-~iJd-4

176.8411

,

" ..
moo

" ..
s ~ S ~ S ~ ~ ...

Figure 2.4-2 The AIR database viewer (screen shot)

'''T--'

......... ··1·
I

AIR executes these processes automatically. By collecting together all relevant

Data Exceptions the aim is to make the interpretation of the data as simple a task as

possible. This might even lead to the automation of this layer although no work has been

attempted in this area. The top three layers are not addressed by AIR.

2.5 Summary
In this chapter we have looked specifically at research undertaken at

Loughborough. Relevant work has led to two test architectures, (The Walsall Test

Architecture and The Portable Test Architecture) and a monitoring system (The AIR

system). This thesis aims to detect Data Exceptions in the delay data observed by

monitor stations such as those discussed in the two test architectures. These Data

22

Chapter 2 - Performance Monitoring at Loughborough

Exception detection techniques may then be used by a system such as AIR as part of a

complete network management system.

In chapter three we discuss Data Exceptions in more detail. Examples of Data

Exceptions are presented and their causes considered.

23

Chapter 3 - Data Exceptions

chapter 3 - Data EXCeptions

24

Chapter 3 - Data Exceptions

3. Data Exceptions
In this chapter the concept of Data Exceptions is discussed in more detail.

Although the concept is not novel or exclusive to this piece of work, very little has been

written describing the nature of Data Exceptions. In this chapter examples are given and

the causes of the different types of Data Exception are discussed.

3.1 What are Data Exceptions?
A given network has an associated set of network perfonnance characteristics

[Pax98]. These may include any metric, which in some way characterises the

perfonnance of that particular network. These characteristics may be expressed as some

kind of fixed value or alternatively as a distribution of values. Therefore the set of

network perfonnance characteristics for a network could include the minimum possible

delay between two points on the network which would be expressed as a fixed value.

Alternatively, a perfonnance characteristic could be the observed throughput along a

certain link, which would be expressed as a distribution of values.

An important assumption here is that these perfonnance characteristics don't

change except where the state of the network that they characterise changes. For this

assumption to hold we must take in to account the usage characteristics of a network, as

the way a network is used affects many network perfonnance characteristics [Hoo97].

The use of a network may change without its state (in a physical sense) changing in any

way. However for the purposes of considering and detecting Data Exceptions, the

general network use will be included as part of the network state. If a network user were

to introduce an excessively large volume of traffic so that it significantly altered the

network perfonnance this would be thought of as a change in network state.

Given that the underlying perfonnance characteristics remain constant so long as

the network is in an unchanged state, we now define Data Exceptions to be data that

reflect a change in these underlying perfonnance characteristics and therefore a change in

the network. Data Exceptions are exceptions from the expected perfonnance

characteristics that define a given networks perfonnance at a given time.

25

Chapter 3 - Data Exceptions

As was alluded to above there are changes in perfonnance that are brought about

by the changes in network use. Certain usage patterns are included in our definition of

network state as they are consistent and predictable. Network usage on many networks

increases during working hours of the day leading to Time of Day Delay Variation

(which is discussed further on in this chapter). Further to the variation in delay observed

during the day a similar principle is applicable to weekends where less variation in delay

is observed than during the week. These changes are not Data Exceptions as they are

expected and are included as part of the network state.

Data Exceptions reflect some change in network perfonnance due to some change

in network state. This may be due to any kind of network alteration, not just network

faults. Data Exceptions could include planned works, upgrades, reconfigurations as well

as unforeseen errors.

Data Exceptions could be found in any data source. This thesis deals specifically

with one-way delay but there are many other metrics that are being actively monitored

[Alm99a)[Alm99b)[Pax98a]. Data Exceptions, that is data that differs in some way

from that which was expected, could be detected in any of these sources.

As there are often many different monitoring tools monitoring one network, a

change in the network could trigger many Data Exceptions. Likewise, one monitoring

tool measures many different paths or nodes on a network. Again, one network event

might cause Data Exceptions in more than one of these measurements.

Where there are multiple Data Exceptions all referring to the same network event

it would be useful to have some automated means of collecting these together. Although

this is outside the remit of this thesis a basic means of collecting Data Exceptions

together is discussed at the end ofthis chapter.

3.2 Examples of Data Exceptions

3.2.1. Step Change
A commonly observed Data Exception, known as a 'Step Change', occurs when

the average delay either increases or decreases in such a way that all test packets are

26

Chapter 3 - Data Exceptions

affected (see figure 3.2-1 for an example). That is to say that delay is altered by a

constant amount for each packet. Step changes can be any size but, as they become very

small it becomes hard to be certain whether or not the change is a genuine step change or

not. Step changes can occur when the network is reconfigured. Packets may travel over a

different route with different associated latency or the same route might be upgraded (or

even downgraded) in some way. [MatOO] [PhiSanOO]

80000

70000

60000

en 50000 ..::
>-.. .0000
Qj
C

30000

20000

10000

Step Changes

I
\.~ ~. -.,

I' .1 f/\IAr'~ IF-'\t'--''I~)\ ,'t..,. ,W\,,,,,- /',"-_. . 'A jc.,

~ ~(\~ ~.

Time (4 weeks)

!
·~.c ,:l.~!~, .,~.'

-50% small

-5
-95

0% large

% small
% large

% small
% large

-95

-99

" 99

NI

-"= .-~,~~

Figure 3.2-1 A Series of Step Changes

3.2.2. Time of Day Delay Variation Changes

As can be seen from the graphs, delay varies according to the time of day or to be

more precise delay fluctuates according to the amount of loading on the network, which

follows daily patterns. Therefore delay tends to be higher during the working hours of

the day than at night or at the weekends. Other work has shown that network traffic has

self-similar properties [LeI94]. This seemingly contradicts the notion of load varying

according to some pattern, however the time scales in which the fractal-like nature of

network traffic has been observed are considerably shorter than those being dealt with

here. Leland himself notes the possible presence of a time of day cycle [LeI94] when the

time scale is lengthened. This trend is extended further to bank holidays where again a

difference in delay is noticeable. This effect has been termed 'Time of Day Delay

27

Chapter 3 - Data Exceptions

Variation' [Phi961. Changes in Time of Day Delay Variation can occur when a link

becomes more reactive to high load. That is to say that during the working period of the

day, the effect of the high load on the network is more severe than previously. Another

potential cause for a Time of Day Delay Variation change could be a significant increase

in load due to client activity. Changes in Time of Day Delay Variation can also result

from reconfiguring the network and it is not uncommon for step changes and changes in

time of day variation to occur in tandem. Figure 3.2-2 shows four weeks of delay data.

During the week delay increases during the working hours of the day. On the fourth

week this additional delay increases.

A Change In TIme of Day Variation -50% small

-50% large

70000
-95%sman
-95% large
-99% small

60000 99% large

50000
ii

];
.~ ii

, -.A/V~

>- 40000 ..
Gi
Q 30000

20000

10000

0

Time (4 weeks)

Figure 3.2-2 A Change in Time of Day Variation

3.2.3. Loss
Loss exceptions can take two fonus, a continuous break or a period of high loss.

Although this work is primarily concerned with detecting changes in delay, the following

could be defined as loss Data Exceptions. If several packets are lost consecutively then

we infer that a short break has occurred. Without testing continuously it is impossible to

be certain that this is true but statistically speaking, if every packet sent over, say, a

twenty minute period (30 packets) is lost then there is a high probability that a short break

28

Chapter 3 - Data Exceptions

has occurred. Alternatively if a high proportion of loss is observed over a specific period

then this could be reported as a high proportion of loss. By high proportion this might be

anything from 5% of packets upwards.

3.2.4. Delay Spikes
Spikes are sharp increases in delay that last for a relatively short period of time

(one to two hours). The increase need not affect all the test packets although the more

test packets it affects the more significant it is likely to be. Spikes can be of any size

although the spikes need to be clearly observable above fluctuation in delay caused by

load. Figure 3.2-3 shows an example of a delay spike.

A Delay Spike

160000

140000

120000 ~
50% small

-50% large
-95% small
-95% large
-99% small
-99% large

~

III 100000 ;j, - 11

>.

'" 80000
Gi !
C

60000

" --j\--------~--~------ .~---- .! \V---~-'--
40000

20000

0

Time (1 week)

Figure 3.2-3 A delay spike

Other researchers have observed examples of Data Exceptions. Although the

terminology is not standardised, phenomena such as step changes, 'time of day' variation

changes and spikes have been noted by the researchers working on the AMP project as

well as the Surveyor project. [McGOO)[KaI98)

This example of a step change (figure 3.2-3) comes from the Surveyor project.

"[This Graph) shows a routing change between two sites. The two sites are in the eastern US, so the change
took place in the early morning, and is represented by a discontinuity in the delay. The minimum delay

29

Chapter 3 - Data Exceptions

along this path dropped by about ten milliseconds. The receiving site is multi-homed, and changed the way
its network was advertised, resulting in the routing change."

• Jablhdra al!Jay
, JOtllptrtfbfUtOrl'll,.
• 'IlOthpMWlItIJt"lIY

De1ay.tatlstial over1-minutemtuv&1o startiug 00,00 1JTC, Friday. August 14, 1998
300

280

260

240

220

200

~ 180

1 160

i 140

I'l 120

100

80

, .
• . \. .

60 '.: I : :.::. '

~
-. 1· ~ ~~

40 t ,_ ~ .:~:-«H,' . 1& ."
20 - s,. ,t' 7 •

o ~--~
2 4 6 8 10 12 14 16 18 20 22 24

Hnun oIn<a mldnlght->

Figure 3.2-4 Step cbange example from Surveyor [KaI98]

Another example of a step change can be seen in the following graph (figure 3.2-

5) taken from data gathered by the Ripe project. [Uij98)

30

Chapter 3 - Data Exceptions

~~~c Trends in the data/Example (2) 
I Median values 11 ,.' ............. " .. - ...... " ... ·';" .. 'f,;O .. ·'V .... 'u'u,. 1 I 

. . '''~ ... ''''''N .... '· ... ' ... _'''... . 

'if .. 
E 
';:100 

; 
..... "' ....... _.1.. ..... -~.i. ....... ---,...,. ~w.,' i ~ •. _,.t'. 1"': 

• 
BO ._ .... _ .... _._ ......... j .............................. ·1··············+···· __ ·······················-i······......... :~. 

i i ~,~u~~ .. 

60 

40 

, 
-; 

: I i 

I~ 

20 ._._._._._ .. _ •. _ .. _.~_l ..•..•.••.••.••.••.••.••.• _ .••. t_ .• _. __ . __ ._ •. _~ .••.••.••.•••••.••••••••.••••• l ............ . 
..... ............. ~....... !! ...... !.-.~ I 

I I: I 
I I I I 

o'-'--~-~ ; i i i x10' 
9387.4 9390.8 9394.3 9397.7 9401.2 9404.6 9408.1 J!411.Q 9415 

Oato - Time lUTe] 

• Different behavior from 10-26, change in routing? 

Henk Uljterv.aal lE PG, Adelaide,April5, 2000 tttp:IWWJII.rlpe.neI: 

Figure 3.2-5 Step change example from Ripe [Uij98] 

Not all network delay measurement schemes will show time of day variation in 

delay. A key difference between the research work described in this thesis and the other 

measurement proj ects discussed in chapter 1 is that the Loughborough work focuses on 

delay across a single network, owned by a single network provider. This allows the 

performance data to be linked to specific network events and gives greater ability to 

identify problem areas. Other network monitoring proj ects have been investigating delay 

across the internet thereby potentially spanning several network providers, usage patterns 

and even time zones which would make the time of day effect very much more complex. 

Another related key difference is that many of the other measurement projects being 

undertaken access the internet via a local network. Often additional delay incurred as a 

direct result of the access network is far higher than the delay incurred from network 

providers core network. The problem here is that the results from a measurement scheme 

accessing the internet via a local network (a campus network for instance as is often the 

31 

34 



Chapter 3 - Data Exceptions 

case for Surveyor) may be so dominated by that access network to make it difficult to 

infer much about the performance of anything other than the access network itself. 

This following example (figure 3.2-6) from the AMP project shows two graphs, 

one of loss measurements, one of delay measurements. In the second graph time of day 

variation in delay is visible. 

Al\I1P web info (2) 
, 

, , 
, ;'f' 

Ilmp-princetonfro~ amp-wsu,~ 
::, ,". ,: '(1J::,:~:{I$c:X::"}.4l'Jr':'[,6.t--r1rmcrtc'rsl'.:'·" ."'> 

,_ ,.: ....... " _.,_." Fill in aU gruph:i . 

',~I :::;=:::::;=::=================:::,~,=" =====~"" 
I 
I I ',' " 
I ,; ~,,! 

:1 r:--: : 
le ~~ 
I,,',F~ 
.I".",';' , ' '/" ,;I'~ ',; i 
119 Apr 1999 (S<I") IroLlto, 
1 ' '" " 

j,7Apr "~9~ (S.t) IroLlte', I 
16 ARr 's9S (Erj) ~:: 

mml:U~~:j 
: 1'3 At)!" 1999 (rue) Iroute'. !. 

'I ,,~; 
Ir-- w, 

'" 

' .. ,,' "''',, 'j ..... --,," --
PI"~ --

, 
T,.. J •• , Tt.. r."1 :,\,,1 

"", -':-

", '.: 
.,"';'- I 

11111'1: 91.0D (ms) , 
mCiJn: 9r!o.eZ (ms) 
I\I'X: Z16,OD (ms) 
stddc..,: 8.3Z '" 

12 October, 2000 measurement and network analysis -- http://www.nlanr.net 

Figure 3.2-6 TodVar example from AMP [McGOO] 

3.3 How Can Data Exceptions be used? 

3.3.1. Data Abstraction 

32 

Data Exceptions are an abstraction of the data. In this sense they are inherently 

useful as they present performance information in a condensed and accessible form. 

Information is only presented when something has changed from that expected and then 

only the change itself is presented. This is a key benefit as the volume of measurement 

32 



Chapter 3 - Data Exceptions 

infonnation increases. Sifting through the multitude of infonnation for the relevant and 

infonnative is a fonnidable task. Skilled analysts are expensive to train and retain so any 

means of reducing or semi-automating the task is a significant step forward. 

3.3.2. Gauging effects of network events 
Data Exceptions are especially useful when gauging the impact of network events 

such as faults and planned alterations or re-routes. Models or simulations can be used to 

predict the effect that certain changes might have. Observing the direct effect on user 

perceived perfonnance, in tenns of latency, brings a greater degree of certainty that any 

alteration to the network has had the expected effects. It is surprising the degree to which 

network operators are in the dark regarding the actual perfonnance that their networks are 

providing [CheOO][Cla97). The effects of alterations are often different from that which 

was anticipated. Data Exceptions show exactly what the effects of a change were. 

3.3.3. Network event detection and diagnosis 
Data Exceptions can also be used as part of the network event detection and 

identification process. The non-real-time aspect of the Data Exception detection methods 

discussed in chapter 5 make it unsuitable as a front line fault detection method. Fault 

detection at a fundamental level, detecting that a line has gone down for instance, is 

better done using network management tools built around SNMP. However faults can 

occur that are significantly harder to detect and that can remain unnoticed for some time 

[Jai91). Faults of this nature might be detected using Data Exceptions. One network 

event will generally give rise to multiple Data Exceptions, as it is likely to affect multiple 

tests. To identify and interpret network events some means of correlating and collating 

the relevant Data Exceptions must exist. 

3.4 Collections 
Data Exception Collections contain all the Data Exceptions pertaining to one 

network event, or a series of connected network events [PhiSanOO). The aim here is to 

give as complete a picture as possible of a network event. Multiple views of the event 

may be necessary to detennine infonnation about the event. For instance if a test 

monitors the delay between two points on a network and a Data Exception occurs on that 

33 



Chapter 3 - Data Exceptions 

test there is no immediate way of knowing whereabouts along the link an event has 

occurred. If tests are being conducted on several paths, some of which show the Data 

Exception and some do not, then it may well be possible, given that some topology 

information is known, to deduce whereabouts the network event that gave rise to the Data 

Exceptions occurred. 

A-8 
A-C 
8-C c 

Figure 3.4-1 A simple example of the need for collections 

In the example above (figure 3.4-1), if we were monitoring each of the paths A to 

B, A to C and B to C then both the Data Exceptions that should be reported on A to Band 

B to C would be necessary to deduce whereabouts the event had occurred. 

The concept of collections was implemented in the AIR system mentioned in 

chapter 2 [Phi99]. Collections were formed by correlating Data Exceptions using three 

fields: testid (route information), time and type. If Data Exceptions matched on two of 

these three fields they were stored together in a collection. Although this is fairly 

rudimentary approach it served its purpose adequately. 

34 



Chapter 3 - Data Exceptions 

3.5 Summary 
In this chapter the concept of Data Exceptions has been examined in more detail, 

examples have been given and causes discussed. The idea of Collections has also been 

introduced as a possible further step. In the next chapter we consider the data sources 

available to the project. These data sources were used to develop and assess Data 

Exception detection methods. 

35 



Chapter 4 - Data Sources 

chapter 4 - Data Sources 

I', 

36 



Chapter 4 - Data Sources 

4. Data Sources 
In this chapter the data sources available to this project are discussed. These data 

sources were necessary in order for Data Exception Detection methods to be developed 

and tested. 

4.1 Essential Criteria 

4.1.1. Data Completeness 
In order to develop and assess techniques for detecting Data Exceptions, 

performance data is required. The data is needed so that correlation between network 

events and network performance data can be observed, learnt and finally validated and 

tested. An essential criterion for the data is that it should be complete. It is of limited use 

to know what network events have occurred without having access to the corresponding 

performance data. Likewise the performance data is only partially useful without 

knowledge of the network it describes. Where the data is incomplete it may be possible, 

by estimation and inference, to make good the shortfall but this path is strewn with 

difficulty and danger and is undesirable. The problem here is that estimation and 

inference can lead to incorrect assumptions. Bogus data may have an adverse effect on 

the derivation of a detection method leading to faulty results. 

4.1.2. Data Range 
Another useful quality that the data set may have concerns the range of events it 

represents. It would certainly be of benefit if as many different types of network event as 

possible are recorded and represented. If during the monitoring process only one kind of 

event is observed out of a large set of possible events, then any detection technique based 

on this data will be tailored to deal with only that event. In a sense this is another kind of 

'incompleteness'. Ideally all network events should be included but this is not possible 

as the range of possible things that may happen to a network is very large. However, a 

broad range of network events, in terms of their impact on the network, can and should be 

considered. 

37 



Chapter 4 - Data Sources 

4.1.3. Controllable data 
To make experimentation easier it is desirable that the data be in some way 

controllable. The ideal scenario is one in which data can be produced on demand 

allowing for any gaps or thinly covered areas to be supplemented. This necessitates the 

ability to generate or cause network events. One might say that this is a 'desirable' rather 

than 'essential' criterion. The point here is that it is impractical to simply wait for the 

right set of data to be gathered; it might be any length of time before certain network 

events occur. The preferable option is to be able to affect the network in such a way as to 

be able to cause network events and observe the resultant data. 

4.2 Potential Data Sources - an overview 

4.2.1. Commercial network 
These criteria, that the data should be complete and that they should cover the full 

range of network events poses a problem - how can we obtain such a data set? Data from 

a large commercial data network is excellent in that it represents the actual problem in 

hand. However it may not meet the criteria set before us. Firstly, obtaining accurate and 

detailed infonnation regarding network events from commercial data networks is difficult 

as operators are understandably reluctant to make such infonnation public knowledge. 

Even where access is granted to collect perfonnance data, full explanations of the 

network events may not be forthcoming, partly as the company may be reluctant to 

release such infonnation, partly because they may not even know. 

Even if such infonnation were available our second criteria also presents a 

stumbling block. How can we guarantee covering a full range of network events during 

our monitoring period? This data source is definitely not controllable and considerable 

difficulty may be encountered in trying to persuade operations managers to allow live 

network equipment to be tampered with, simply so that perfonnance data can be 

gathered! 

Data from a commercial network (BT's SMDS network) has been available to this 

project. While the data on it's own is not sufficient to enable the design of a reliable 

exception detection method, it has been useful. It has been helpful to be able to verify 

that data generated by other methods (see below) are realistic. If a simulation tool, for 

38 



Chapter 4 - Data Sources 

instance, were all that was available it would be hard to ascertain whether or not the 

output that was being produced behaved in a manner that was realistic and consistent 

with that of a commercial network. 

The SMDS data was also useful in characterising the nature of delay data. Early 

work on this project investigated the distribution of delay data, of particular interest was 

whether or not the data were normally distributed (see Appendix E). Also Data 

Exceptions that could be grouped together and categorised were identified from the 

SMDS data. 

4.2.2. Network Simulation 
In addition to data from SMDS, two other solutions have been investigated. 

Modelling a network scenario has not been seriously considered due to the immense 

complexity involved in trying to model a network of the size we are considering. 

The first solution is to simulate a network. Various packages exist, both freeware 

(often developed by academics) and commercial software, that allow network scenarios 

to be built, observed and recorded. Simulations have the advantage of allowing 

considerable complexity (in terms of network topology) to be generated with the 

minimum degree of difficulty. This makes them excellent in terms of experimentation as 

large networks can be generated and tom down again with ease, facilitating rapid 

adaptation and easy development to suit the nature of the problem. 

4.2.3. Test Network 
The second solution is to use a test network. This is a relatively expensive 

solution and is not as flexible as a simulation. A test network is advantageous though in 

that simulations, however good, are always going to be simplifications to some degree or 

another. A test network will present 'real' data, inclusive of any quirks that might exist. 

Both solutions allow full control over network events and full access to the 

complete data set. 

39 



Chapter 4 - Data Sources 

All three of the methods of obtaining data mentioned above were used. The data 

from BT's SMDS network was used primarily for the author's own benefit in 

understanding the nature of Data Exceptions, how they can occur and what they might 

look like and also in verifying work done using the simulation. The data from SMDS 

was not used further due to the limitations described earlier. 

4.3 SMDS Data 
SMDS data has been collected and stored by the High Speed Networks group at 

Loughborough over the past five years. The data is taken from twenty one-way paths 

across SMDS encompassing five ingress/egress points. For a more complete description 

of how this data is obtained please see chapter 2, 'Performance Monitoring at 

Loughborough' . 

4.4 Simulation - NS 
NS [NS], a free network simulator developed in the US at Berkeley University of 

California, was used to simulate a network. NS was chosen due to the readiness of its 

availability (it can be freely downloaded from the internet) and the level of support in the 

form of a comprehensive web site including tutorials, help pages, documentation and a 

mailing list. Of the other network simulation packages considered BONES [BONES] 

was in the throes of becoming obsolete, OPNET [OPNET] was an expensive alternative 

(although probably easier to use) and CNET [CNET] didn't appear to have the required 

level of development and support. 

The network consisted of 8 peripheral nodes, a core of 4 nodes and 3 nodes 

attached at each point on the periphery (3 to each ofthe peripheral nodes) from which the 

various agents sent and received data. Each peripheral node had attached one node that 

was used to send telnet style traffic, one node to send ftp style traffic and one node to 

send monitor traffic. A peripheral node is shown in figure 4.4-1 and the overall topology 

in figure 4.4-2. 

40 



Chapter 4 - Data Sources 

FTP Source 

Monitor 

Figure 4.4-1 A peripheral uode 

The topology needed to contain sufficient inherent complexity to give rise to 

interesting Data Exceptions. This desire for complexity had to be tempered however with 

the practical considerations ofimplementing the simulation (running time, storage space). 

This structure seemed to allow reasonable flexibility for simulating network events whilst 

still being manageable. 

Figure 4.4-2 The NS Topology 

Telnet sources were linked with a traffic sink at each of the different peripheral 

nodes, meaning that at anyone peripheral node there were seven telnet sources (one for 

each of the remaining nodest These were then set off at random. Similarly, ftp sources 

I The seven telnet sources and the seven ftp sources are represented by just one node each on the diagram. 

41 



Chapter 4 - Data Sources 

were established at each peripheral node to send to all the other peripheral nodes. Again, 

the traffic from the ftp sources was sent at random. Although both the ftp and the te1net 

sources generated traffic at a random rate, the probability of a source sending traffic at 

anyone time was altered so that the it was higher during the working hours of the day. 

This gives the 'Time of Day Variation' effect discussed in earlier chapters. The ftp and 

te1net sources were chosen to load up the network as they offered contrasting traffic 

profiles and were relatively simple to implement. 

The monitor agents transmitted a fixed size packet to each of the other monitor 

nodes at constant intervals. The latencies experienced by these packets were then 

recorded and later used for analysis. 

The simulation was run over a 336 second period where each second represented 

an hour in real time (24 second days). The simulations are therefore representative of a 

two week period. On each simulation run (at least) one network event was introduced. 

The network events that were simulated were: links going down, nodes going down, links 

simulating faulty behaviour, traffic re-routes, links being introduced and the introduction 

of other erroneous traffic sources. An example of the TCL scripts that were used to 

specify these network scenarios can be found in Appendix A. 

4.4.1. NAM (Network Animator) 

The output from NS is flexible and can be specified. Standard functions exist for 

the generation of text files that are in a fonnat that can be passed on to NAM (Network 

AniMator) (this file is called out.nam). This allows a complete viewing of the entire 

simulation. The NAM files were used mostly in the design phase as they provided a 

good overview of what was going on and could be accessed and understood instantly. 

r·, 321.878·s 6·d 20·p ,ek·, 40·e 5·j 1263144·,5·x (35.2 20.8 4962 ...... • null) 
+·,321.878 ·s 20·d 6·p tcp·' 1000·e 5·j 1263624·,5·x (20.8 35.2 4973 ....... null) 
• ., 321.878·s 20·d 6·p ,cp" 1000·c 5·j 1263624·,5·x (20.8 35.2 4973 ....... null) 
h·, 321.878·s 20·d 6·p tcp" 1000·e 5·j 1263624·,5·x (20.8 35.2 ·1 ...... • null) 
• ., 321.878·s 10·d 32·p ,cp" 1000·e 5·j 1263301·, 5·x (20.7 32.2 6281 .. • .... null) 
h·, 321.878·s 10·d 32·p ,cp" 1000·cS·j 1263301·,5·x (20.7 32.2 ·1 ...... • null) 
r·, 321.878·s ll·d 10·p ebr·e333·o3·j 1263489·,3·x (33.1130.11 6416 ...... • null) 
+·,321.878·s 10·d 30·p ebr·, 333·c 3·j 1263489·,3·x (J3.11 30.13 6416 ...... • null) 
• ., 321.878·s 10·d 30·p ebr·, 333·c 3·j 1263489 ., 3 ·x (J3.13 30.11 6416 ...... · null) 

Figure 4.4-3 'out.nam', text output from the NS simulation 

42 



Chapter 4 - Data Sources 

The output shown in Figure 4.4-3 is formatted especially to be read by NAM so 

that it can be animated. Below, in Figure 4.4-4, is a screen shot of just such an 

animation. 

Figure 4.4-4 Screen shot from N AM 

4.4.2. Test.out 
A file called 'Test.out' was produced that simply represented the output of every 

action that occurred and the time at which it occurred (see figure 4.4-5). These files 

contained all the information allowing specific analysis but required further processing 

before that analysis could be easily achieved (The test.out files were around 1 GB in size). 

+ 335.999555 1 2 ,ek 40 ------- 5 23.13 35.10 5397 1387120 
- 335.999555 12 ,ek 40 ------- 5 23.13 35.10 5397 1387120 
- 335.99975935 11 tcp 1000 ------- 535.13 32.13 4840 1387092 
r 335.999776 5 0 ebr 333------- 315.733.1 66911387102 
+ 335.999776 0 1 ebr 333------- 3 15.733.166911387102 
- 335.99977601 ebr 333------- 3 15.733.166911387102 
r 335.999885824 ebr 333------- 312.3 24.0 6690 1387039 
r 335.9999432 10 tcp 1000 ------- 025.931.45420 1387071 
+ 335.99994310 31 tep 1000 ------- 025.931.454201387071 
- 335.999943 1031 tep 1000 ------- 0 25.9 31.4 5420 1387071 

Figure 4.4-5 'test.out', text output from the simulation 

43 



Chapter 4 - Data Sources 

The data that were used to monitor the network were the latencies of the monitor 

packets. These had to be filtered out from the 'test.out' file, this was done in the first 

instance by simply using the 'grep' program in UNIX and the results were put into a file 

called 'monitor.out'. Delay files were generated, one for each of the paths monitored, by 

further processing the delay data. Initially this was done using an A WK script posted on 

the NS users mailing list. Rewriting the script in 'c' gave the process a considerable 

speed up. The overall process is shown below. 

Simulation 
(NS) 

Tcl Script 

Filter 
(grep) 

Post Process 
(C program) 

,-----------L-,/ ~~ 
I Monitor. out ~ Delay files ~ 

Figure 4.4-6 Getting Delay Data from an NS simulatiou 

So for each simulation 56 delay files were produced, showing the one-way delay 

on different routes across the simulated network (The entire process is shown in figure 

4.4-6 above). Each delay file has just two fields, the transmit time (hours since the 

beginning ofthe simulation) and the delay. Below (figure 4.4-7) is a sample delay plot. 

44 



Chapter 4 - Data Sources 

0.12 

0.1 

0.08 

~ 

~ 0.06 
o 

0.04 -jLl!loIi.I=_ 

0.02 

'Clean' (4to6) 

o~ ____________________________________________ _ 

; i ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 8 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
Tlma 

Figure 4.4-7 A sample delay plot from NS 

4.5 Test Network 

4.5.1. Network Design 

I d,"y I 
-50 per. Mov. Avg. (delay) 

A test network was designed and built usmg equipment donated by Cisco 

Systems. The network consists of eight 2600 series routers and four Catalyst 1900 series 

switches (figure 4.5-2). In designing the network several key aspects were taken into 

consideration. As with the simulation there needed to be sufficient complexity inherent 

in the design to allow for a variety of network events. Whereas with the simulation the 

limiting factor was processing power and storage space, the test network was restricted 

only by the cost of the equipment. This included network components such as the routers 

and the switches and end stations used for monitoring the network and generating traffic 

to load the network. 

The Cisco 2600 routers have a network module slot and two WIC (Wide Area 

Interface Card) slots (see figure 4.5-1). This allows a number of different types of 

interfaces to be fitted to the router depending upon the requirements of the user. 

45 



Chapter 4 - Data Sources 

Figure 4.5-1 The rear of a Cisco 2611 router 

Both the Network module slot and one WIC slot were fitted with serial interfaces 

giving a total of six serial interfaces, four on the Network module slot and two on the 

WIC slot. These were in addition to the two Ethemet ports that came as standard. 

Figure 4.5-2 Routers and Switches 

The design chosen has two meshes, each with four routers (figure 4.5-3). The aim 

here was to include as much redundancy as possible giving more scope for Data 

Exceptions. Mesh A interconnects the routers using point to point links. The protocol 

used here is LAPB running over serial cables. These links have a capacity of just 

0.12Mb. This is ideal in that it makes the task of loading the network up to capacity far 

46 



Chapter 4 - Data Sources 

easier. It should be remembered that the purpose of this section of the work is to generate 

Data Exceptions. These do not have to be generated at high data rates. If the test 

network had high performance difficulties would have been encountered in trying to 

generate sufficient traffic to load up the network in a realistic manner. Mesh B, in 

addition to the four routers, makes use of four Ethemet switches. The switches are used 

to COmIect the routers together. The links on this network are Ethemet and have a 

capacity of 10Mb, which is stilI relatively Iow performance (in comparison to the SMDS 

core for instance) but is significantly better than Mesh A, providing a good contrast. The 

two meshes, A and B are inter-linked again using LAPB although this time with a 

capacity of 4Mb. 

. ......................................... . 

............................................. r:::=:::=;. ............................. I 
~ ............... . 

Figure 4.5-3 The test network design 

4.5.2. Traffic Generation 

Traffic was generated using six Linux based pes. Although there is software 

available to perform traffic generation nothing could be found that would easily emulate 

47 



Chapter 4 - Data Sources 

the varying load seen on wide area networks such as SMDS. Consequently a traffic 

generator was written that would fulfil the desired criteria. The important factors for the 

generator were that it should be able to vary its output in a random manner according to 

the time of day. The traffic generated did not need to emulate profiles observed over 

customer networks in terms of the micro detail such as traffic profile, 'burstiness', 

distribution or type; rather it needed to replicate the general volume of traffic, 

proportionally, as seen on commercial networks. 

Each traffic generator ran a number of sessions. A session described the traffic 

generated between itself and one other generator. A session contained the following 

attributes (figure 4.5-4). 

Name Schedule 

Traffic Level Start Time 

Day Length Server Port Number 

Quantity Server IP Address 

Day Number of days to run 

Transport Type Transmission Rate 

Figure 4.5-4 Table of sessiou attributes 

4.5.2.1 Schedule 

A day consists of 1440 minutes. The schedule is an array containing 1440 

elements and it determines whether or not the traffic generator will be active during each 

of these minutes. 

4.5.2.2 Traffic Level 

A day also consists of 24 hours. The Traffic Level is also an array and contains 

24 elements, it is used when calculating the schedule. Where the Traffic Level is high, 

the probability that activity will be scheduled during anyone of the minutes in that hour 

will also be high. 

48 



Chapter 4 - Data Sources 

4.5.2.3 Start Time 

The session can be configured to start at any time. This is governed by the system 

clock. 

4.5.2.4 Day Length 

A day need not be 24 hours! Virtual days can last from anything from one minute 

up to 24 hours. This allows results to be generated at a faster rate than real-time. 

4.5.2.5 Port Number & IP Address 

A server Port Number and IP Address have to be specified for the traffic to be 

sent to. If the transport type is set to UDP a server may not be running on this port 

number but the field must still be set. If the transport type is set to TCP then the port 

number must be set to the number that the server is listening on. 

4.5.2.6 Quantity 

This attribute sets the number of packets that will be sent each time the schedule 

activates the traffic generator. The packets will be of a random size, uniformly 

distributed between 100 and 1500 bytes. The Quantity should be changed depending on 

the day length. If the day length is set to 24 hours then the quantity of packets sent each 

time the traffic generator is called should be significantly larger than if the day length 

was set to 1 hour. Linear scaling is appropriate here. 

4.5.2.7 Day 

Each session starts at day O. This is then incremented at the end of each virtual 

day until it equals the 'Number of Days to Run' attribute. 

4.5.2.8 Transport Type 

This can be set to either UDP or TCP. UDP is generally preferable as there is no 

need to configure a server since a connection does not need to be established. Also the 

TCP protocol prevents any overloading of the network. 

4.5.2.9 Transmission Rate 

The transmission rate is controlled using an active wait. The traffic generators are 

connected to the network via 10Mb/s links. This means that the total amount of traffic 

49 



Chapter 4 - Data Sources 

produced by one traffic generator cannot exceed IOMb/s. In practice 8Mb/s is a more 

realistic figure for the link speed. The traffic generators have not been tested on faster 

links to see what transmission rates they are capable of but there has been no issue 

utilising the whole of the bandwidth available where required. 

4.5.3. Monitoring the Test Network 
Monitor stations had previously been developed at Loughborough for work on the 

SMDS network (see Chapter 2) and these were used to monitor the Test Network. Four 

monitoring stations were employed, this was the maximum number that could be 

supported without producing more timing cards. Timing synchronisation was achieved 

by configuring three of the monitor stations to draw their timing pulse from the fourth. 

As the network is entirely situated in one place the monitor stations can be placed 

adjacent to one another allowing the timing synchronisation issue to be localised. Where 

the network is more widely distributed timing synchronisation can be obtained using GPS 

(see chapters I & 2). The monitor stations, two on each mesh, monitor paths to each 

other giving twelve one-way test routes, each being tested with both 64byte and 1500byte 

packets. These results are stored in log files on the monitor stations. A control station is 

used to retrieve the log files, process them into a database and draw summaries from 

them as required. A picture of the monitor stations, together with the traffic generators is 

shown in figure 4.5-5. 

Network events were introduced to produce Data Exceptions. These included 

changing router configurations, changing routing priorities, unplugging cables, 

introducing extreme traffic levels. 

50 



Chapter 4 - Data Sources 

I" .' 

... " ... ' . 

~0 \ c;-~; ~ •.•. -~. 

r, I -

Figure 4.5-5 The Traffic Generators (left) and the Monitor Stations (right) 

The log files containing the raw information are stored on the monitor stations. A 

command language was previously developed to control the monitor stations and this 

allows the log files to be retrieved to a control station where they are processed into a 

database. Querying this database then gives the end to end delay. An example plot is 

given in figure 4.5-6. 

51 



Chapter 4 - Data Sources 

Test Network (clean 6t04) 

120000 

100000 

80000 

f 60000 Delay I 

40000 

20000 

Figure 4.5-6 Delay plot from the test network 

4.6 Summary 
In this chapter we have looked at the data sources available to this project. Delay 

data is necessary for training and testing exception detection methods. Three sources of 

data have been available to this project. Data from BT's SMDS network has been used to 

learn about the nature of Data Exceptions and validate data produced by a network 

simulation and a test network. NS was used to simulate a network and network events 

were incorporated into these simulations to give Data Exceptions. A test network was 

also constructed and then monitored using monitoring tools discussed in chapter 2. 

Network events were then introduced again to give Data Exceptions. 

In the next chapter we go on to look at two methods of detecting Data Exceptions. 

52 



Chapter 5 - Detecting and ClassifYing Data Exceptions 

I 

'j Chayter 5 - Detecting and clas~frtng Data 
: EXCeptt.ons 
! 

j ;; 

1 

53 



Chapter 5 - Detecting and ClassifYing Data Exceptions 

5. Detecting and Classifying Data Exceptions 

5.1 Introduction 
Two methods for detecting and classifying Data Exceptions are discussed in this 

chapter. The first, a rule-based approach, was a first attempt at solving the problem of 

Data Exception detection. It was implemented as part of the AIR system [Phi99]. The 

second approach is more refined and makes use of a two-phase process. The K-S statistic 

is used to initially detect the presence of a Data Exception in the data. A neural network 

is then used to classify the type of Data Exception that has occurred. 

5.2 Rule-based Approach 
A rule-based solution has two significant advantages. Firstly, it is the simplest 

solution and secondly it is a predictable solution and easy to trace. If a rule set can be 

found that accurately defines Data Exceptions then it would be the obvious solution and 

presumably the fastest one. There is no sense in devising a complicated process such as a 

neural approach or a statistical approach when it will not better a simpler, readily 

available process such as a rule set [Tar98]. A rule-based system also scores highly in 

that it is predictable. Given a set of inputs the output can be calculated and understood. 

This can be a requirement of 'mission critical' software solutions and is advantageous in 

tracking any errors that may occur. 

A rule-based solution was devised that attempts to describe the different Data 

Exceptions accurately, in such a way that rules can be put in place to test for the different 

exception types. The rules make use of a 'feature set'. A feature set contains various 

features, or statistical properties that describe the data (such as the mean or the standard 

deviation). Features are calculated for new data and a feature set is held over from 

previous data to provide a benchmark for comparisons. These features are combined to 

give 'indicators'. Indicators are, in essence, higher level features that can be tested 

directly against thresholds to check for exceptions. Indicators can be features themselves, 

a combination of current features or a combination of current and historical features. The 

rules return an exception type or no exception if none are found. 

54 



Chapter 5 - Detecting and ClassifYing Data Exceptions 

As Hood notes [Hoo97], the use of thresholds to test for faults is quite common 

both in practice [Mad94][WaI91] and in research [Den93][GoI95] for detecting unusual 

network behaviour. These are generally used to test whether some variable (often stored 

in the MIB) has drifted significantly out of bounds. 

Data 

Current State 
Feature Table 

Feature Tables 
Indicators 

Exception 
Report 

Figure 5.2-1 Exception Report Generation 

A complete list of the features and their derivations is given below in figure 5.2-2. 

Each ofthese features is calculated over a day. 

Feature Derivation Description 

Mean (,u) 
L, di 

The mean will be the sum 

of all the delay 
,u = --

n 
measurements, divided by 

the total number of delay 

measurements. 

55 



Chapter 5 - Detecting and ClassifYing Data Exceptions 

Standard Deviation (from 
L(d'-Il) 

2 The standard deviation is 

the mean) (0) 0 
derived by summing the 

-

n 
squares of the differences 

between each value and the 

mean value. 

Median (M) 
M d where 

The median is the (n+ 1I2)th 
= .. , value ifthe values are put in 

2 

d, :::; d, + , Vi 
rank order. 

Maximum (max) max = de where The maximum from the set 

de :?: d, Vi of delay data. 

Second (sec) sec - de where max The second highest value 

> de"? d; Vi from the set of delay data. 

Minimum (min) min = de The minimum from the set 

where de ::; d, of delay data 

Vi 

Change in delay (Cd) 
Cd, = Id, - d, + ,I A second set of values can 

be derived, that being the 

change in delay (over time) 

at each point 

Mean Change in delay 
LCd, 

As for mean delay 

(CIl) CIl = 

n 

Standard Deviation of 
L(Cd,-CIl) 

2 As for standard deviation of 

Change in delay (from the 
CO = 

delay 

mean) (CO) n 

56 



Chapter 5 - Detecting and Classifying Data Exceptions 

Median Change in delay 
CM Cd = 

(MC) ,+1 

2 

where 

Cd, '5, Cd, + I Vi 

Maximum Change in delay Cmax = Cd, 

(Cmax) where Cdc ~ Cd, 

Vi 

Minimum Change in delay Cmin = Cdc 

(Cmin) where Cdc '5, Cd, 

Vi 

Total Change in delay (C Ctot = d j - dn 

tot) 

Figure 5.2-2 Table of Features 

These indicators are then calculated: 

Indicator Derivation 

Peak (P) P = max-sec 

Spike Ratio (SR) SR - P / (sec - min) 

57 

As for median delay 

The maximum from the 

Change in delay set (Cd;) 

The minimum from the 

Change in delay set (Cd;) 

The Total Change in delay 

is the difference between 

the average delay at the 

start of the day and the 

average delay at the end of 

the day 

Description 

The difference between the 

maximum and the second 

highest delay value 

The ratio ofthe difference 

between the maximum and 

the second highest delay 

value against the difference 

between the minimum and 



Chapter 5 - Detecting and ClassifYing Data Exceptions 

the second highest delay 

value 

SO Change (SOC) SOC = SOc - SOo The difference between the 

current standard deviation 

and the observed standard 

deviation 

SO Ratio (SOR) SOR = SDc / SOo The ratio of the current 

standard deviation against 

the observed standard 

deviation 

Maximum Change Max2Max = Maxc- The difference between the 

(Max2Max) Maxo current maximum and the 

observed maximum 

Minimum Change Min2Min - Mine- The difference between the 

(Min2Min) Millo current minimum and the 

observed minimum 

Figure 5.2-3 Table ofIndicators 

These indicators are then compared against thresholds which, if exceeded, flag up 

exceptions. These thresholds can be set differently depending on the source of the data 

being examined. The values to date have been based on experience and 'rule of thumb' 

rather than using any optimisation technique although this would be a useful area to 

explore further. 

The changes in maximum and minimum and the total change in delay are all used 

to detect step changes. Total change in delay is measured over the last day and is the 

simplest of the three measures to relate to a step change. The total change in delay is not 

sufficient on its own to detect step changes. One potential scenario is where there are 

two step changes within the day period. The total change from the beginning of the day 

to the end of the day may be negligible but two step changes would have in fact taken 

place. The changes in maximum and minimum are used to pick this up. In the case of a 

decrease in delay followed by and increase the minimum delay for the day decreases. 

58 



Chapter 5 - Detecting and Classifoing Data Exceptions 

This is a good measure in that it doesn't suffer much variation, the minimum delay is a 

fairly consistent value relative to step changes. The maximum however is a lot less stable 

and therefore less useful in detecting step changes. 

The spike ratio and the peak value are used for detecting spikes. On some routes, 

high delay variation can make it difficult to detect spikes. The idea here is that the 

increased delay from the spike should be, relatively and numerically significantly higher 

than other observed delay values. 

The changes in time of day variation are detected using the change in standard 

deviation value and the ratio between the current standard deviation and the observed 

standard deviation. This is not a wholly satisfactory measure, as it takes no account of 

when the periods of high delay take place during the day, a key feature of time of day 

variation. However as a temporary feature it does indicate when the time of day variation 

shifts significantly. 

The entire rule set that was implemented in Java as part of the AIR system and is 

given below in extracts from the function. The key objects are the two feature sets, one 

that is the currently stored information (curr) and the other being the information that has 

just been taken from the test (test). These contain all the features mentioned in the above 

table. The thresholds are stored in a TestParameters object called limit. The six 

indicators are declared at the start as float variables. Other variables of note are type 

which refers to the type of exception that has been detected, weekend which is a Boolean 

value indicating whether the test feature set is taken from a weekend and holiday which 

carries over the value of the standard deviation from the last weekend date. 

if ( currmaximumDelay -- 0) { 
if (testmaximumDelay! - 0) { 

) ) 
eke { 

exception +- "Testing Started\n"; 
test.standardDeviation - OJ 
holiday - test.standardDeviation; 
type - "start"; 

if (lastDelay -- 0 &&test.nuximumDelay -- 0) { 
exception +- "No Data"; 
test.standardDeviation - curr.standardDeviation; / / StandardDeviation won't be updated 
type - "loss"; 

if (!t)pe~quals(·start·)) { 
if (test.minimumDelay -- 0 && test.nuximumDelay!- 0) { 

59 



Chapter 5 - Detecting and Classifying Data Exceptions 

} 

exception +- "No Delay Data available for three hour period\n~; 
test,standardDeviation - curr.standardDeviatioDj /1 StandardDeviation won't be updated 
type - "loss"; 

In this first code excerpt (above) the function looks for missing data (loss) and for 

the possibility that the monitoring has just started. This is done primarily using the 

maximum and minimum values. Where the maximum value for a feature set is zero, no 

delay data can have been received for that day. Where the minimum value for a feature 

set is zero there has been at least a three hour period where no delay data has been 

received. These scenarios are unusual, certainly for a commercial network, but must still 

be catered for. 

if (!IJll".equah("loss") && Jtwe.equah("start") ) { 
if (min2min > !imit.stepMax) { 

} 
e~e { 

} 

exception +- "Decrease in average delay of .. + min2min + .. micsecs\n"; 
type - "step"; 
magnitude - (int)min2nUn; 
test.standardDeviation - curr.standardDeviation; / / StandardDeviation won't be updated 

if (test.totalCllangelnDelay <-(limit"tepMax)} { 
exception +- "Decrease in average delayof It + (-1 .. test.tota1ClungeInDela~ + It micsecs\n"; 
test.standardOeviation _ curr.standardDeviation; / / StandardDeviation won't be updated 
magnitude - (int)(-l 'test.totalo,angelnDelaJl; 
type - "step"; 

• (min2min <-!imit"tepMax) { 

above) 

exception +_ "Increase in average delay of It + (-1 .. min2min) + .. micsecs\n"j 
type - "step"; 
magnitude - (int)(-! 'min2min); 
test.standardDeviation - curr.standardDeviatioD; / / StandardDeviation won't be updated 

if ( tesuotalCllangeInDelay > (limit"tepMax) ) { 
if «(lastDelay- test.n=imumCllangelnDelaJl -- delay.;et(6] &&min2min >-!imit"tepMax) { 

} 
e~e { 

if (tesuotalCllangelnDelay > !imit.peakMax) { 
exception +- "Increase in average delay likely to be a spike \n"; 
IJll" - "spike"; 
magnitude - (Utt)peak; 

} 
e~e { 

exception +- "Increase in average delay likely to be a step change \n"; 
type - "Step"; 
magnitude - (int)test.totalCllangeInDela)l 
test.standardDeviation - curr.standardOeviation; / / StandardOeviacion won't be updated 
test.minimumDelay - 0; / / mininnunDelaywill be set to the ne}(l day's minimum (see above) 

exception +- "Increase in average delay of " + tesuotalOungelnDelay + " micsecs\n"; 
type - "step"; 
magnitude - (int)test.totalCllangelnDelay; 
test.standardDeviation - CUlT.standardOeviation; / / StandardOeviacion won't be updated 
test.minimumDelay - 0; / / minimumDelaywill be set to the next day's minimum (see 

60 



Chapter 5 - Detecting and ClassifYing Data Exceptions 

Given that there is no exception of type 'loss' or type 'start' this next section 

(above) looks for the possibility of a step change. As was mentioned earlier, the primary 

features and indicators used in this process are the change in minimum, maximum and 

total change. One difficult scenario is where the last delay point of the day increases 

abnormally. It is difficult to judge whether or not the increase will be sustained (i.e. a 

step change) or whether the delay will decrease quickly again (i.e. a spike). The 

judgement is made here on how large an increase has occurred as spikes, on the whole, 

tend to be larger increases than step changes. This is by no means a certainty and is used 

to give a 'best guess' given the available data. 

This next section (below) then tests for the presence of a spike, given that 

exceptions of type 'step', 'loss' and 'start' have not already been detected. The spike 

ratio describes the scale of the spike in proportion to the standard deviation. This is then 

used along with the peak value (effectively the size of the spike) to determine whether an 

exception of type 'spike' has occurred. 

if (!t)pe.equals("start") && !twe.equals("loss") &&(!t}pe.equals("step") && !(tesuotalCllangelnDelay >1irnit.peakM!x)) )( 
if «spilieRario >1irnit.spilieRatioMax) &&(peak >!imit.peakM!x)) { 

exception +_ "Spike of to + peak + to microseconds\n"; 
t)pe - "spilie"; 

The final section taken from the detectException function contains the rules for 

detecting changes in Time of Day Delay Variation. There are two categories of Time of 

Day Delay Variation. One deals with a change during the working days of the week, the 

second category flags up a change in the Time of Day Delay Variation on subsequent 

weekend days. This would compare the first day of the weekend with the last day of the 

previous weekend and then the next day ofthe current weekend. 

if 0weekend) { 
if (!twe.equals("step") && 

!t)pe.equals(OOloss") && 
!t)pe.equals("spilie") && 
!t)pe.equals("start·?) { 

if (SDRatio > lirnit.todVarDecrease && SDCllange > lirnit.todVarLirnit) { 
if 0wTodVarEx) { 

exception +- "Decrease in ToO variation of" + SDOunge +" micsecs\n"; 
curr.standardDeviation - rest.standardDeviation; 
todVarEx - true; . 

61 



Chapter 5 - Detecting and Classifying Data Exceptions 

} 
} 
ehe { 

check - true; 
} 
!}Pe - ~tod"; 

} 
if (SDR.cio <limiuodVarlncrease &&SDCl.mge >limit.todVarLimit) { 

exception +- "Increase in ToD variation of· + SDOunge + " micsecs\n"j 
curr.standardDeviacion - test.standardDeviation; 
todVarEx - true; 
tjpe - "tod"; 

} 

if (ltjpe.equals("step") && 
!tjpe.equals("loss"} && 
Itjpe.equals("spike"} && 
!tjpe.equals("stan"}) { 

if (SDR.cio > limit.todVarDecrease && SDo,ange > lirnit.todVarLimit) { 
if OtodVarEx} { 

exception +- "Decrease in ToDvariation of" + SDOlange +" micsecs\n"; 
} 
ehe { 

check - true; 
} 
type - "wtod"; 

} 
if (SDR.tio <lirnit.todVarlncrease && SDCl.mge > limit.todVarLimit) ( 

if OtodVarEx) { 
exception +_ "Increase in ToD variation of" + SDClunge + .. micsecs\n"; 

} 
ehe { 

check - true; 
} 
tjpe - "wtod"; 

} 
if (check) { 

todVarEx - false; 
check - false; 

Figure 5.2-5 shows the 'Exception Database Viewer' developed at Loughborough 

University displaying exceptions detected using rules based on the above. The AIR 

system was a significantly wider project (see Chapter 2 and also [Phi99]) which 

incorporated some of the early research work conducted for this thesis. 

62 



Chapter 5 - Detecting and ClassifYing Data Exceptions 

Figure 5.2-5 The Exception Database Viewer 

The rule-based approach, as has been mentioned, was implemented as part of the 

AIR system and installed at BT labs Martlesham. Although the rule-based solution 

perfonned adequately as a rudimentary exception detection method it was limited as to 

what it could detect and also unadaptable. The rule-base catered for a specific set of 

tightly defined Data Exceptions, should new Data Exceptions be encountered or network 

characteristics change a new rule-base would have to be constructed. An alternative 

approach was deemed necessary that would be more adaptable and more accurate. 

5.3 KS Test/Neural Approach 
The second approach uses two methods, the K-S (Kolmogorov-Srnimov) Statistic 

and a neural network. The K-S statistic is used to identify changes in the network delay 

data. This stage however, does not in any way characterise what change has occurred. 

63 



Chapter 5 - Detecting and ClassifYing Data Exceptions 

These changes are presented to the neural network which is used to classify the changes 

into one (or more or none) of seven Data Exception types. 

The K-S statistic has been chosen as it is the best known of several distribution­

free procedures which compare two sample CDFs (Cumulative Distribution Functions) in 

order to test for general differences between two distributions [Nea88][Ste70]. The K-S 

statistic is more generally used to assess the probability that a sample comes from a 

normally distributed data set. Although more powerful than other goodness-of-fit tests 

such as the chi-squared [MasS1], the Shapiro-Wilk's test has been shown to be more 

powerful still [Sba68]. With regard to testing for general differences between any two 

distributions however, the K-S statistic is both easy to calculate and powerful. As there is 

no assurance that the delay distribution will be in any way standard, our choice of test is 

restricted to distribution-free techniques. More powerful distribution-free tests exist if 

only one aspect of the distribution is of interest (for instance the mean), but the K-S 

statistic is particularly appropriate when testing for general differences [Nea88]. The K­

S test compares two samples CDFs using the maximum vertical distance between them as 

a test statistic. A normalised example of this is shown in Figure 5.3-\. Any kind of 

substantial difference between the two distributions should show up as a significantly 

large difference between the sample CDFs. Such differences may be in location, spread 

or may be more general differences in the shape of the distributions. 

64 



Chapter 5 - Detecting and Classifying Data Exceptions 

KS Statistic 

Value 

Figure 5.3-1 The K-S Statistic 

The K-S statistic is calculated as follows: 

Delay distributions are taken from 24 hours worth of data before and after some 

point in time and the K-S test is then applied to determine any differences. Delay 

increases during the working hours of the day, when load is high, but this increase is not 

exceptional. If distributions were chosen using a time period other than complete days 

this change during the working part of the day would be picked up on by the K-S test. By 

comparing data taken from two entire days this issue is circumvented. This issue is also 

relevant when considering the impact of weekends. Delays on a Monday are higher than 

of those on a Sunday but this is not considered to be exceptional. Using the current 

approach the K-S test does flag the beginning and end of weekends as significant. The 

second phase of the system, the trained neural network, will then categorise this change. 

This means that the neural process could filter out exceptions flagged due to the decrease 

in delay at weekends. 

65 



Chapter 5 - Detecting and Classifying Data Exceptions 

The implementation computes the K-S statistic every hour, using the previous 24 

hours of delay data, and the following 24 hours of data. When a Data Exception occurs 

the K-S statistic may remain significant for several hourly points. In such cases the 

maximum point is taken to be the time that the exception occurred. Where two 

exceptions occur at similar or even identical times these would be passed to the neural 

classifier as one detected change, but there is scope within the neural process to 

categorise the change as being the product of two or more exception types. In Figures 

5.3-2, 5.3-3 & 5.3-4, the K-S test is plotted on the same graph as delay (these are raw 

delay values). The scale on the primary y-axis refers to delay while the scale on the 

secondary y-axis refers to the K-S test (which will always return a value between 0 and 

1). The x -axis is the number of hours from the beginning ofthe simulation. 

0.18 

0.16 

0.14 

0.12 

:a 
:s 0.1 

! 
~ 0.08 

& 
0.06 

0.04 

0.02 

Delay Graph with KS Statistic (1) 
route 4to10 

Figure 5.3-2 The K-S Test applied to delay data (1). 

4 

3.' 

3 

2.' 

2 

1.' 

" Cl) 

~ 
2" 

0.' '" 
0 

In Figure 5.3-2 the highest two peaks have been caused by the step changes 

present but the K-S values are also high at the beginning and end of each weekend. In 

Figure 5.3-3 the K-S values are again high at the beginning and end of each weekend, 

there is also a peak marking the point where the time of day variation increases. 

66 



Chapter 5 - Detecting and Classifying Data Exceptions 

0,25 

0.2 

i 0.15 

1 
f 0.1 

Delay Graph with KS StatlsUc (2) 
route 6to8 

0.051'-' .............. Loi_IA.oIIIII'""'"~ 

0.05 

0.045 

0.04 

0.035 

i 0.03 

10.025 
~ 
o! 0.02 

0.015 

0.01 

0.005 

0 

Figure 5.3-3 The K-S Test applied to delay data (2). 

Delay Graph with KS statisUc (3) 
route 5to6 

'/"~'V 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ; g g $ ~ $ ~ ~ ~ ~ ~ ~ ~ ~ ~ m 2 ~ ~ ~ ~ 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ _ ~ ~ ~ N N ~ N N N N N N N N M M M 

Time (hours) 

Figure 5.3-4 The K-S Test applied to delay data (3). 

• 
3.5 

3 

2.5 

2 I Delay I 
-+-KS 

1.5 

0.5 

2 

I.. 

1.' 

1.' 

1.2 

I Delay I 
-+-KS 

0.' 

0.' '" '" < 
0.' ~ 

<= 

" 0.2 

0 

In Figure 5.3-4, the route shown is less heavily loaded. There are five relatively 

minor peaks in the K -S values. Three of these peaks relate to the beginning and end of 

67 



Chapter 5 - Detecting and Classifying Data Exceptions 

weekends, one refers to the spike and one is erroneous. Erroneous events flagged up by 

the K -S statistic are filtered out by the neural process. 

Note that the nature of the test means that this approach cannot be adapted to 

work in real time, although with modification, the approach could be made to work on 

shorter time windows. The motivation behind the work stems from the desire to 

automate the exception detection process, which is currently done by a human operator 

offline in order to investigate the impact of recent changes to the network. Real time 

event detection is geared towards alerting operators to immediate faults. While delay 

information could be used in this way there are other more readably accessible 

performance metrics, often held by network nodes in Mills, that can be used to identify 

faults. For real-time detection methods some preliminary approaches are being examined 

that borrow techniques from industrial statistics such as process charts [McGOO]. These 

however cannot identify the range of Data Exceptions detected by the approach proposed 

in this Thesis as the time window is shorter. For example, a meaningful Time of Day 

Delay Variation exception is only identifiable after a 24 hour period. 

5.4 Neural Network 
A neural network was selected as a means of classifying the changes in 

performance detected by the K-S test. A means of classifying the change in performance 

is desirable as it provides a means for changes, that is Data Exceptions, to be grouped 

together (see section 3.4). A neural network was selected as a method of classifying the 

Data Exceptions. Neural networks are particularly appropriate where some relationship 

exists between the input and output (in this case between the data representing the Data 

Exception and the classification of the Data Exception) that cannot be expressed as 

function or as a set of rules [Tar98]. 

The neural network is trained using a standard back propagation algorithm (for a 

description of this see [Fau94]). The network is fed by an input vector that includes 

representations of the time-of-day and day-of-week that the exception occurred; the route 

on which the exception occurred; and the delays either side of the time that the exception 

occurred. The inputs are scaled so that, on the whole, they are in the range -1 to 1. In 

every case some kind of transformation takes place. Input features whose values have no 

68 



Chapter 5 - Detecting and Classifying Data Exceptions 

relative meaning compared to one another are represented as binary vectors in order to 

ensure that no one input is given significance over another by virtue of an arbitrarily 

assigned value. For instance, one egress point is of no greater or lesser significance than 

another egress point. If the egress points had been represented using one input, relative 

value would have been attributed which would be misleading. 

The time-of-day needs to be represented in such a way that 23:59 is next 

to and not the furthest possible point away from 00:00. To achieve this a Sine function is 

used. Considering time of day in hours the transformation is: 

. . (t .i ._me'---_1_2) tIme = sm tr-
12 

The day of the week, the ingress point and the egress point are all 

represented as vector inputs. Therefore the day of the week is represented by seven 

inputs where one input will be I (the day the exception actually occurred) and the others 

-1. 

The delays are represented by 96 inputs, allowing 48 for each day. The 

50th and 95th percentile values are taken from each hour of the day and these are then 

scaled so that generally they fall within the range 1 and -1. The scaling has been set so 

that it is possible for large delay values to transform to values greater than 1. This is so 

that the delays on the whole do not all scale to similar values but that reasonable spread is 

attained. If the maximum observed delay (on any test, on any route) were to be 

represented as 1, the vast majority of delays would fall in a very narrow band. 

From the above we have 8 inputs to represent the ingress point, 8 for the 

egress point, 7 for the day of the week, 1 for the time of day, 96 for the delay values and 

1 input for the K-S value itself. The total length of the input vector is therefore 121. 

These inputs are fed into a hidden layer containing 150 nodes and then into an output 

vector of length 7, representing the seven classes of exception (Figure 5.4-1). The 

choices made here are somewhat arbitrary and could be the subject of further work to 

determine which representation of the data, and number of hidden units will give the 

greatest accuracy in classification. 

69 



Chapter 5 - Detecting and Classifying Data Exceptions 

121 inputs 7 outputs 

I bias 150 hidden units 
I bias 

Figure 5.4-1 The neural network 

The activation function used at each node is given below. 

2 
f(x} = 1 

l+exp(-x} 

which has the derivative (necessary for backpropagation of the error) 

f'(x} =W+ f(x)][l- f(x}] 

Weights are initialised at random. 

The output vector represents the class of Data Exception. It might be identified as 

none, one or more ofthe following classes: 

• The beginning of a weekend 
• the end of a weekend 
• a step change up 
• a step change down 
• an increase in time-of-day delay variation 
• a decrease in time-of-day delay variation 
• a spike 

Each component of the output vector is rounded to either 1 or -1 to indicate 

whether or not the Data Exception falls under that classification. 

70 



Chapter 5 - Detecting and ClassifYing Data Exceptions 

5.5 Summary 
In this chapter two approaches to detecting Data Exceptions have been discussed 

and described. The first, a rule-based solution, was implemented as part of the AIR 

system. While a rule-based solution is advantageous in that it is simple, executes quickly 

and is predictable it was thought to be inflexible when adapting to new circumstances and 

was sufficiently inaccurate to necessitate an alternative approach. 

The second approach made use of the K-S statistic to determine when a change in 

network performance, that is a Data Exception, had occurred. These changes were then 

presented to a neural network, which was used to classify them into Exception Types. 

In the following chapter the results are presented from testing the K-S/Neural 

approach with the available data sources. The test schedule is discussed, delay graphs are 

given showing the corresponding K-S values and the classification accuracy is given. 

71 



Chapter 6 - The K-SINeura/ Approach Results 

chapter 6 - The K-s/NeuraI Approach - RlsuIts 

72 



Chapter 6 - The K-SlNeural Approach Results 

6. The K-S/Neural Approach Results 

6.1 Introduction 
The K-S/Neural approach was applied to data taken from both the simulation and 

the test network. Network Events were introduced in the manner described in Chapter 4. 

The K-S Test was applied to the resultant delay data and these Data Exceptions were 

categorised manually using label, a purpose-built program. The list of categorised Data 

Exceptions was split into two files, one for training the neural network and one for testing 

the neural network. The training and testing phases were carried out and the results 

evaluated. This chapter describes this process in more detail and presents the results. 

6.2 Simulated Data 
Delay data was generated using the NS simulation package as described in 

Chapter 4. The simulation was run 24 times, each run lasting fourteen virtual days. At 

least one network event was introduced into each run of the simulation. The figure below 

(Figure 6.2-1) is given for ease ofreference. 

9 

Figure 6.2-1 The NS simulation topology 

The simulation runs were chosen so that all the different types of Data Exception 

would occur, at different types and on different routes. On the simulation only a limited 

73 



Chapter 6 - The K-SINeural Approach Results 

number of events could be introduced. Links could be taken down or introduced, traffic 

could be re-routed and links could be made to drop packets intermittently. At least one of 

these events was introduced, sometimes in quick succession to cause Data Exceptions of 

type Spike. The simulation runs are summarised below. 

I) Core Change I 2) Core Change 2 3) Routing Change 

4) Link 1 to 2 Down 5) Node 0 Down 6) Link 2 to 3 Down 

7) Link 0 to 4 Down 8) Link 6 to 7 Down 9) Link 9 to 10 Down 

10) Link 10 to II Down 11) Link 2 to 10 Down 12) Core fails intermittently 

13) Traffic increase 14) New link 4 to 1 15) Core Re-route 1 

16) Core Re-route 2 17) Spike 1 18) Spike 2 

19) Spike 3 20) Spike 4 21) Spike 5 

22) New link 0 to 2 23) New link 3 to 1 24) Link 2 to 11 down 

These represent the entire set of changes that could be made. The network events 

have not been applied exhaustively, more links could have been taken down for instance, 

but further changes would not introduce any additional types of Data Exceptions. The 

following sections detail the 24 simulation runs, describing the network events that were 

introduced. 

6.2.1. Core Change 1 
At time 120 a link was introduced between nodes 1 and 3. At time 122 the links 

between nodes I and 2 and between 0 and 3 were brought down. This caused Data 

Exceptions of several types. 

74 



Chapter 6 - The K-S/Neural Approach Results 

0.12 

0.1 

0.06 

0.02 

Delay with KS Statistic 
route 4t06 

3 

2.5 

2 

1.5 I Delay I 
-+-KS 

0.5 

o~~~~~~~~~o 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ M ; ~ m ~ ~ ~ ~ 8 ~ ~ ~ ~ ~ g m ~ ~ ~ ~ ~ ~ ~ p ~ ~ ~ ~ $ $ ~ ~ ~ ~ _ _ _ _ _ _ ~ _ _ _ N N N N N N N N N N N ~ M M ~ 

Time (hours) 

Figure 6.2-2 Delay/KS graph route 4t06 

This first graph (figure 6.2-2) shows a change in Time of Day Delay Variation. 

This is indicated by a peak in the K-S test (at time 122). The K-S test also has a peak 

representing the end of the first weekend. The K-S test is also significant at the 

beginning of the second weekend (time 168) and once during the second week (time 

281). The last of these values does not represent any network event. This would be 

labelled as 'not an exception' so that the neural network can be trained to filter out such 

anomalies. 

The route shown in figure 6.2-2, between node 4 and 6, is one of the least affected 

as the monitoring traffic between the two nodes (4 and 6) traverses the same links before 

and after the changes introduced at times 120 and 122. However the traffic load on this 

route is lightened by the re-routing that the changes cause. 

The changes in performance on other directly effected routes were more dramatic. 

Figure 6.2-3 shows the impact the alterations had on the route between nodes 6 and I!. 

As the traffic now has to take a longer route to reach its destination there is a step change 

in delay. Also as there is now only one link (1 to 3) connecting the two halves of the 

75 



Chapter 6 - The K-SINeural Approach Results 

network and this link has a capacity of2Mb/s as opposed to 5Mb/s ofthe other core links, 

it is consequently very heavily loaded. 

Delay with KS Statistic 

0.2 3 

0.18 

2.5 
0.16 

0.14 
2 

0.12 

I 
{ 0.1 1.5 I Delay I ___ KS 

0.08 

0.06 

0.02 

Figure 6.2-3 De\ay/KS Graph route 6to11 

6.2.2. Core Change 2 
At time 120 the routes from 1 to 3 and from 0 to 2 were activated. At time 122 

the links between 1 and 2 and between 0 and 3 were taken down. This event was similar 

to the one above except that the introduction of two new links avoided the extreme 

congestion seen in the previous section. Figure 6.2-4 below gives a comparison on the 

route from node 6 to node 11. 

76 



Chapter 6 - The K-SINeural Approach Results 

Delay with KS Statistic 

0.3 3 

0.25 2.5 

0.2 2 

1.5 I Delay I ___ KS 

0.1 

0.5 

Time (hours) 

Figure 6.2-4 De\ay/KS Graph route 6to11 

6.2.3. Routing change 
At time 138 the routing is changed by assigning a 'cost' value to the links from 4 

to 5, from 5 and 6 and from 6 to 7 of 1 - reduced from a previous value of 5. The 'cost' 

value is returned to 5 on these links at time 200. The effects of this change can be seen in 

the graph below which plots the monitored delay data from node 5 to node 7. The 

costing of the routes was implemented asymmetrically. That is to say that the route from 

7 to 5 does not exhibit the same characteristics. The step changes in figure 6.2-5 reflect 

the increased latency attached to the different route. 

77 



Chapter 6 - The K-SlNeural Approach Results 

Delay with KS Statistic 

0.1 3 

0.09 

2.5 
0.06 

0.07 
2 

I 
>. 0.05 

~ O.04.JW--..... 
1.5 I Delay I ____ KS 

Figure 6.2-5 De\ay/KS Graph route 5t07 

6.2.4. Link Down 1 to 2 

The link between nodes 1 and 2 was taken down at time 170. Although this 

reduced the number of links supporting traffic between the two halves of the network 

down to 1 (the link between nodes 0 and 3), the capacity of that remaining link meant that 

the congestion was not as high as that experienced in the 'Change Core 1'. In figure 6.2-

6 we see the effects on the route from node 11 to node 7. There is a large step change at 

the time of the event and also a noticeable difference in the Time of Day Delay Variation 

for the subsequent week. 

78 



Chapter 6 - The K-SlNeural Approach Results 

Delay with KS Statistic 

0.16 3 

0.14 
2.5 

0.12 

2 
0.1 

I 
:0.. 0.08 

~ 
1.5 I Delay I ___ KS 

0.06 

0.02 

o 0 
8 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ N ~ ~ ~ ~ ~ ~ ~ ~ a ~ ~ ~ ~ g m $ ~ ~ ~ ~ ~ ~ ~ 
~ ~ ~ ~ ~ ~ ~ ~ ~ _ _ _ _ _ _ _ _ _ _ _ N N N N N N N N N N N ~ ~ M ~ 

Tlmelhours) 

Figure 6.2-6 DelaylKS Graph route 11 to7 

6.2.5. Links down from node 0 

At time 300 all the links attached to node 0 were taken down. Those links are 0 to 

1,0 to 3, 0 to 4 and 0 to 5. This caused step changes and changes in Time of Day Delay 

Variation on various routes. 

6.2.6. Link down 2 to 3 

At time 133 the link from node 2 to node 3 was taken down. This resulted in step 

changes and Time of Day Delay Variation changes on certain routes. 

6.2.7. Link down 0 to 4 

At time 200 the link from node 0 to node 4 was taken down. 

6.2.8. Link down 6 to 7 
At time 260 the link from node 6 to node 7 was taken down. 

6.2.9. Link down 9 to 10 

At time 82 the link from node 9 to node 10 was taken down. 

79 



Chapter 6 - The K-SINeural Approach Results 

6.2.10. Down 10to 11 
At time 124 the link between node 10 and node 11 was taken down. This caused 

step changes on the routes between nodes 10 and 11. 

6.2.11. Down 2 to 10 
At time 10 the link between node 2 and node 10 was taken down. This link was 

reinstated at time 78 and then taken down again at time 254. This gave multiple step 

changes as can be seen in figure 6.2-7. 

Delay with KS Statistic 

0.14 3 

0.12 
2.5 

Of 

2 

1.5 I Delay I 
...... KS 

! 0,08 

~ 
! 0.06 

0.04 

0.02 
0.5 

Time (hours) 

Figure 6.2-7 Delay/KS Graph route 4tol0 

6.2.12. Faulty Core 

At time 55 the core links, between node 0 and node 1, node 0 and node 3, node 1 

and node 2 and node 2 and node 3 were caused to fail intennittently. At time 95 the link 

between node 1 and node 3 was brought up. The failure rate was 33%. At time 100 the 

core links were returned to their nonnal state. Figure 6.2-8 shows the kind of effect the 

faulty links had. 

80 



Chapter 6 - The K-SINeural Approach Results 

Delay with KS Statlsltc 

0.35 3 

0.3 
2.5 

0.25 

2 

X 0.2 

i 
1.5 I Delay I 

-+-KS 

Time (hours) 

Figure 6.2-8 Delay/KS Graph route 9t04 

6.2.13. Increase 5 to 6 
At time 168 the traffic sources on the link between node 5 and node 6 start to 

transmit at a higher rate. This had no impact on the delay data. Presumably the link was 

under-utilised and could bear the extra traffic load. 

6.2.14. New link 4 to 1 
At time 75.9 a new link is introduced between node 4 and node 1. This causes a 

step change down on certain links to and from node 4. It also causes a reduction in Time 

of Day Delay Variation on some routes where the load has been decreased. 

In figure 6.2-9 (below), the step change reflects the shorter route now available. 

The lightening of the load on other links is shown in figure 6.2-10. In figure 6.2-10, the 

K-S statistic does not show the seeming change in Time of Day Variation. The occasions 

where this is the case are very rare. 

81 



<"'l 

-- -- r 0000 0 0000 00 "ti 
o 3 ~ g g 9 ~ 0 2 ~ ~ g p ~ ~ ~ 

126 1.~ ~ 
10.5 10.7 I 

U 1D ~ 
~ ., ~ 

= = ~ 
~ ~ ~ 
~ ~ ~ 
66.4 66.4 ~ 

~ - ~ 
64.9 64.8 ~ 

~ ~ ~ ., ~ 

iQ" 103 <iQ' 103 6 
~ 113 E; 113 ~ 
tI> 122 tI) 122 ~ 
a- a- " N 131 N 131 ~ 

~ 140 c ~ 140 C ~ 
=- ~ 150 !!. "0 ... 149 !!. tt 
~ 3" 159 ~ !!. 3' 159 ~ 
- oD ::e ~ CD ::E 

00 t.) ~ 168 - ~ -;: 168 ;::; 
N ~ ~ 177 ~ ~ i 177 ;; 

~ - ~ ~ - 1~ 00 
~ en C') 196 (J) 
Io(J Er ., Er 
;1 205 ~ ~ 205 ~ 
~ ill • ~ 214 • 
., 224 Q 

g 233 s.. 
;- 242 :. 

~ 251 S" 
~ 261 ~ 

27. 
27. 

288 

:1 ~ W7 316 316 

325 325 
~ 3M 

o P . N ~ W 0 P . N ~ W 
~ ~ ~ ~ ~ ~ _D lill _D lill 



Chapter 6 - The K-S/Neural Approach Results 

6.2.15. Core Re-route 1 
The links between node 0 and node I were given an increased cost at time 100. 

The cost on this link was returned to normal at time 200. Also at time 200 the cost on the 

links between node 2 and node 3 was increased. This causes step changes on certain 

links that traverse the core (nodes 0, 1, 2 & 3) and changes in time of day variation in 

others. 

0.14 

0.12 

0.1 

i 0.08 

" ~ • Q 0.06 

0.04 

0,02 

Delay with KS Statistic 

3 

2.5 

2 

15 I Delay I . ___ KS 

0.5 

Figure 6.2-11 Delay/KS Graph route 6108 

In figure 6.2-11 (above) the two changes cause step changes as the test packets 

are sent over different links. In figure 6.2-12 (below) there are no step changes present 

but the time of day variation in delay changes as traffic is routed away from this link. 

This change is marked by a line corresponding to the peak in the K -S Statistic. 

83 



Chapter 6 - The K-SINeural Approach Results 

0.14 

0.12 

0.1 

i 0.08 

.!l 

~ 
c 0.06 

0.02 

Delay with KS Statistic 

3 

2.5 

2 

5 I Delay I 
1. .........K$ 

0.5 

oL-__ ~~ __ ~~:J-=~::~l-__ )f~ ____ ~~~~~~ ____ .Jo 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ! 

Time (hours) 

Figure 6.2-12 Delay/KS Graph route 7t05 

6.2.16. Core Re-route 2 

At time 100 the cost of the link between node 0 and node 3 was increased thereby 

routing traffic away from this link. At time 200 the cost of the link between node 0 and 

node 3 was restored to its normal value but the cost of the link between node I and node 

2 was increased. Step changes and time of day variation in delay changes were seen 

similar to those above. 

6.2.17. Spike 1 

At time 115 the links between node 5 and node 6 were made faulty until time 125. 

This caused a spike in the delay on these links as shown in figure 6.2-13. 

84 



Chapter 6 - The K-SINeural Approach Results 

Oelay with KS Statistic 

0.05 

0,045 0.' 

0.04 

0.035 0.7 

0.03 0.6 

I 
>0 0.025 

~ 
0.5 I De!ay I 

-+-KS 

0.02 0.4 

0.3 A en 
< 

0.2 ~ 
" 

0.1 

Figure 6.2-13 De\ay/KS Graph route 5t06 

6.2.18. Spike 2 

At time 165 a fault was introduced on all links connected to node O. This caused 

step changes and spikes on several routes passing through node O. 

6.2.19. Spike 3 

At time 260 the links between node 0 and node 1 and between node 1 and node 2 

are taken down. At time 264 these links are restored. This caused a large step change up 

followed quickly by a step change down. This is classified as a spike. 

6.2.20. Spike 4 
At time 205 the links between node 1 and node 2 and between node 2 and node 3 

are taken down. At time 213 these links are restored. The effects are similar to those 

described for spike 3. 

85 



Chapter 6 - The K-SINeural Approach Results 

6.2.21. Spike 5 
At time 245 a fault is introduce to the links between node 0 and node 3 and 

between node 2 and node 3. This resulted in some small spikes and step changes on 

various routes. 

6.2.22. New link between 0 and 2 

At time 95 a new links was introduced between node 0 and node 2. This caused 

step changes on several routes as shown in figure 6.2-14. 

0.09 

0.08 

0.07 

0.06 

i 0.05 
"-
! 
~ 0.04 

0.03 

0.02 

0.01 

6.2.23. 

Delay with KS Statistic 

Figure 6.2-14 Delay/KS Graph route 1lto4 

New link between 3 and 1 

0.9 

0.' 

0.7 

0.' 

0.5 I Delay I 
_KS 

0.4 

0.3 '" (/) 

< 
0.2 ~ 

'" 
0.1 

0 

i:l 

A new link is introduced at time 5 between node 3 and node 1. This link is taken 

down again at time 87 and then re-established at time 260. The effects are minimal 

although there are changes in time of day variation on certain routes that would 

incorporate this link. 

6.2.24. Link down then up 2 to 11 

At time 82 the link from node 2 to node 11 is taken down. The link is restored at 

time 216. This causes step changes on all routes from or to node 11 (figure 6.2-15). 

86 



Chapter 6 - The K-S/Neura/ Approach Results 

Delay with KS Statistic 

0.1 

0.09 

0.08 

0.07 

0.06 

I 
>. 0.05 

~ 
0.04 -fiU1IIIIoJ:u.J&JJLI 

0.03 

0.02 

0.01 

3 

2.5 

2 

1.5 I Delay I ___ KS 

@ 
:;: 
E 

0.5 CD 

o 0 
~ ~ ~ ~ ~ ~ ~ w ~ ~ ~ a ~ N ~ ~ ~ $ ~ ~ ~ ~ ~ ~ M ~ ~ ~ g $ ~ ~ ~ 8 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ _ _ _ ~ _ _ M ~ ~ N N N N N N N N M M M M 

Tlmelhours) 

Figure 6.2-15 Delay/KS Graph route I1toS 

6.3 Data from the Test Network 
Delay data was generated using the test network as described in Chapter 4. The 

network was used to generate 21 sets of data, each lasting fourteen virtual days. Each 

data set contained at least one monitored event. Figure 6.3-1 is given for ease of 

reference. 

RD 0 D 

Figure 6.3-1 Test Network Layout 

87 



Chapter 6 - The K-SlNeural Approach Results 

The test network could be altered in a number of different ways. The routers 

could be configured enabling the test network to have a very large number of possible 

configurations. Many of these had no perceptible impact on the network performance as 

monitored by delay. Events that gave clear Data Exceptions were disabling interfaces on 

the routers, restarting a router, changing the bandwidth on a link, reconfiguring the 

routing and changing the queue length on a certain link. 

The table below summarises the events that were introduced. 

I) Berlin interface disabled 2) Increase in Athens traffic 3) Berlin Ethemet down 

4) Berlin Serial down/up 5) Clean (no events) 6) Edinburgh Bandwidth I 

7) Edinburgh Bandwidth 2 8) Edinburgh Queue change 9) Edinburgh Ethemet down/up 

10) Edinburgh Serial down 11) Edinburgh Serial up 12) 3 serial links taken down 

13) London reload 14) Madrid Ethemet down 15) Madrid Ethemet up 

16) Network 11 down + routing 17) Network 11 down 18) Paris Serial up 

19) Routing change 20) Rome serial up 21) Rome serial up 2 

The following sections detail the 21 data sets, describing the network events that 

were introduced. 

6.3.1. Berlin Serial interface disabled 

At time, the Serial interface connecting Berlin to Helsinki was enabled (it had 

previously been disabled). This caused Step Changes and Time of Day Variation in 

Delay Changes. These can be seen in Figure 6.3-2 below. 

88 



Chapter 6 - The K-S/Neural Approach Results 

Delay with KS statistic 480 

140000 

120000 

,.. 80000 .,. 
• ~ 
~ 60000 

40000 

20000 

0 
0 

~ ~ ~ E ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
TIme (houl1l) 

_ Figure_~-2 Delay/KS Graph route Helsinki to Berlin (small packets) 

6.3.2. Increased Athens Traffic 

3 

2.5 

2 

1.51 Delay I ___ KS 

~ 
~ 
~ 

0.5 CD 

Additional traffic sources were introduced from the Athens traffic generator for 

the last three virtual days. The traffic level was increased for the last of these three days. 

This caused an increase in Time of Day Variation in Delay. This can be seen in figure 

6.3-3. 

89 



Chapter 6 - The K-SINeural Approach Results 

Delay with KS Statistic 612 

180000 

160000 

140000 

120000 

~ 100000 

> 

~ 80000 

60000 

40000 

20000 

0 

Figure 6.3-3 Delay/KS Graph route Madrid to London (large packets) 

6.3.3. Berlin Ethernet Port down 

3 

2.5 

2 

1.51 Delay I ___ KS 

@ 

~ 
<= 

0.5 (1) 

The Ethemet port connecting the Berlin router to network 11 was taken down and 

then brought back up again. This caused Step Changes and Time of Day Variation in 

Delay changes on various routes as below (figure 6.3-4). 

90 



Chapter 6 - The K-SINeural Approach Results 

Delay with KS Statistic 460 

140000 3 

120000 
2.5 

100000 

2 

! 
60000 

1.5 I Delay I ~ -+-KS 
~ 60000 

40000 '" en 
< 
!!. 

20000 
0.5 

<= 
(1) 

0 0 

Time (hours) 

Figure 6.3-4 Delay/KS Graph route Helsinki to Madrid (small packets) 

6.3.4. Berlin Serial Port down and up 

The Serial Port on the Berlin router connecting to Helsinki was taken down and 

then restored again. This introduced Step Changes and changes in Time of Day Variation 

in Delay. 

6.3.5. Clean (no events) 

No events were introduced. Only weekend exceptions were evident. 

6.3.6. Edinburgh bandwidth 2Mb to 4Mb 

The bandwidth on the serial link connecting Edinburgh to London was increased 

from 2 Megabits per second to 4 Megabits per second. This gave rise to Step Changes 

and changes in Time of Day Variation in Delay. 

6.3.7. Edinburgh bandwidth 4Mb to 2Mb 
The bandwidth on the serial link connecting Edinburgh to London was reduced 

from 4 Megabits per second to 2 Megabits per second. This gave rise to Step Changes 

and changes in Time of Day Variation in Delay. 

91 



Chapter 6 - The K-SINeural Approach Results 

6.3.8. Edinburgh Queue length reduced 

The Queue length on the Serial interface connecting Edinburgh to London was 

reduced to six packets and then brought back to it's default length of seventy-five 

packets. This caused some minor Time of Day Delay Variation Changes. 

6.3.9. Edinburgh Ethernet Port down and up 

The Ethemet Port connecting the Edinburgh router to network 11 was disabled 

and then re-enabled hours later. This caused spike exceptions as shown in figure 6.3-5 

below. 

Delay with KS Statistic 140 

250000 , 

2.5 
200000 

2 

'50000 

" ~ 
~ 
~ 

1,51 Delay I ___ KS 

'00000 

Figure 6.3-5 Delay/KS Graph route London to Helsinki (small packets) 

6.3.10. Edinburgh Serial Port down 

The Serial Port on the Edinburgh router connecting Edinburgh to London was 

taken down at time 61. This caused several Step Changes and changes in Time of Day 

Delay Variation. 

92 



Chapter 6 - The K-SINeural Approach Results 

6.3.11. Edinburgh Serial Port up 

The Serial Port on the Edinburgh router connecting Edinburgh to London was 

brought up at time 191. This caused several Step Changes and changes in Time of Day 

Delay Variation. 

6.3.12. Three Serial links taken down 

The serial links from Edinburgh to London, from Berlin to Helsinki and from 

Madrid to Paris were all taken down for two short periods. This resulted in spikes on 

several routes. See Figure 6.3-6 below. 

Delay with KS Statistic 840 

350000 3 

300000 
2.5 

250000 

2 

~ 200000 

i 5 I Delay! 1. ___ KS 

Q 150000 

100000 

0.5 

o 

Figure 6.3-6 Delay/I\:S Graph route Berlin to Helsinki (small packets) 

6.3.13. London Reload 

The London router was restarted. This caused a small spike in delay. 

6.3.14. Madrid Ethernet Port down 

At time 126 the Ethemet port that connects Madrid to the 11 network is brought 

down. This causes step changes on links to and from the Madrid test station and 

significantly increased Time of Day Delay Variation. These are shown in Figure 6.3-7. 

93 



Chapter 6 - The K-SlNeural Approach Results 

Delay with KS Statistic 642 

450000 3 

400000 

2.5 

350000 

300000 2 

1.5 1 Delay] 
-+-KS 

150000 

100000 

0.5 

50000 

Figure 6.3-7 Delay/KS Graph route Madrid to Helsinki (large packets) 

6.3.15. Madrid Ethernet Port up 

The Ethemet port that connects Madrid to the 11 network is brought up. This 

causes step changes on links to and from the Madrid test station and significantly 

decreased Time of Day Delay Variation. 

6.3.16. Network 11 down and routing changes 

At time 93 the 11 Network was taken down for a short period. At time 252 the 

routing protocol was switched from IGRP to RIP. These events caused spikes and Step 

Changes respectively where Time of Day Delay Variation changes sometimes 

accompanied the step changes. 

6.3.17. Network 11 down 

The 11 Network was taken down for a short period. This caused some spike 

exceptions. 

94 



Chapter 6 - The K-SlNeural Approach Results 

6.3.18. ParisSOup 
The Serial Port connecting Paris to Madrid was brought up causing Time of Day 

Delay Variation Changes. 

6.3.19. Routing Change 
The routing protocol was changed from RIP to IGRP at time 307. This caused 

several Step Changes and Time of Day Delay Variation Changes. 

6.3.20. Rome Serial Port up 
The serial port connecting Rome to Athens was brought up causing a change in 

Time of Day Delay Variation. 

6.3.21. Rome Serial Port up 2 
The serial port connecting Rome to Athens was brought up causing a change in 

Time of Day Delay Variation. 

6.4 Generating the training files 
A c program used to implement the K-S test is first applied to the delay data and 

corresponding .ks files are generated for each delay file. These values are plotted on the 

graphs shown above. Another program, written in Java, is then used to aid the data 

labelling process. A neural network requires training data. The several thousand 

exceptions generated by the network events described above required labelling to provide 

a training set and also a test set of data for the neural network. The Java program, label, 

is shown below in figure 6.4-1. It searches for significant K-S values in the data, presents 

these to the operator who must then classify the Data Exception and move to the next 

one. The output files contain information about the route, the day, the type and the time 

for each exception. 

95 



Chapter 6 - The K-SINeural Approach Results 

Figure 6.4-1 The label program 

An example of the training files (.tr) which are the output of the label program is 

given below in figure 6.4-2. The first field is the time, the second field represents the 

date as a (1,7) binary matrix, the third and fourth fields represent the ingress and egress 

points respectively and the fifth field represents the type of exception as a (1,10) binary 

matrix. This final field includes more types of exceptions than we currently classify. 

This is to give scope for new types of exceptions. 

48.0 (0 0 1 0 000) 5 8 (0 1 0 0 0 0 0 000) 
171.0 (1 000000) 5 8 (1 0 0 0 0 00000) 
217.0 (0 0 1 0 0 0 0) 58(0 1 0 0 0 0 0 0 0 0) 
299.0 (0 0 0 0 0 1 0) 58 (0 0 1 0 1 0 0 0 0 0) 

Figure 6.4-2 Output from a training file 

The training files are then collected together, mixed randomly and split into 

different sets; one set for training and one set for evaluation. The file that is actually 

presented to the neural network is of the format shown below in figure 6.4-3. 

211.000000 (0 1 0 0 0 0 0) 5 4 (0 1 0 0 0 0 0) down4toO 0.489583 
211.000000 (0 100000) 107 (0 1 0 0 0 0 0) newlink4to1 0.376227 

56.000000 (0 0 1 00 0 0) 8 9 (0 1 00 0 0 0) up2toO 0266667 
55.000000 (0 0 1 0 0 0 0) 9 7 (0 1 0 0 0 0 0) down4toO 0.536603 

290.000000 (000001 0) 7 8 (0000000) down2to10 0.258333 
209.000000 (0 1 0 00 0 0) 8 4 (0 1 00000) d_u_2to11 0.259195 
100.000000 (00 0 0 1 00) 6 7 (0 0 0 0 0 11) faultj<:ore 0.195833 

75.000000 (0 0 0 1 0 0 0) 8 7 (0 0 0 0 0 0 0) up2toO 0.238227 
100.000000 (0000100) 107 (0 0 0 0 0 11) faultj<:ore 0.308029 

128.000000 (0 0 00010) 76 (0 0 0 0 0 0 0) up3to1 0.325000 

Figure 6.4-3 Output from the exceptions file 

96 



Chapter 6 - The K-SINeural Approach Results 

The format here is as for the training files except that the exception type field has 

been reduced to a (1,7) binary matrix, removing unused classifications and also the 

directory name and the K-S value have been appended in fields 6 and 7. The directory 

name is necessary as the neural network uses the delay values as well as the information 

contained in the exceptions file. The program containing the neural algorithm retrieves 

the delay values based on the information from the exceptions file. 

The above process is described in figure 6.4-4 below. 

I 0 E 
& SU R - DV D S 

3 U HSD U 
& SU R 

Figure 6.4-4 From Delay files to Exception files 

6.5 Results - Simulation 
The K-S Test has proved to be very effective in detecting the presence of a Data 

Exception. Using the simulation previously described, 210 days of delay measurements 

were generated per route, containing on average a Data Exception every 5 days per route. 

The distribution oflabelled Data Exception types is given in figure 6.5-1. 

Of the simulated events, the K-S Test correctly identified over 99.5% as Data 

Exceptions. Of the changes signalled by the K-S Test, around 70% were correctly 

identified as Data Exceptions with around 30% being false positive identifications. 

Although it may seem that the K-S Test is labelling a lot of changes incorrectly as Data 

Exceptions, these figures are entirely satisfactory. The K-S test is only the first phase of 

the detection process and the first priority is that Data Exceptions should not be missed at 

this point. As such, it is preferable at this first stage to over identify rather than to miss 

Data Exceptions. The second phase, the neural network, is then able to conduct further 

filtering to reduce the number of misclassified exceptions. 

97 



Chapter 6 - The K-SINeura/ Approach Results 

Exception Type Training Set Test Set 

Weekend Begin 229 28 

Weekend End 231 31 

Step Change Up 40 23 

Step Change Down 35 32 

ToDVarUp 42 34 

ToDVarDown 32 19 

Spike 29 15 

Figure 6.5-1 Exception Types 

Mean Square Error Classification 

Training Data Set 0.006 98.94% 

Validation Data Set 0.108 80.09% 

Figure 6.5-2 Classification Error 

Using the previously described parameters for the neural network, the mean 

square error of the output vector after 2000 epochs was 0.006; this gives a classification 

accuracy of98.94% (see figure 6.5-2). Using this trained network on the validation set of 

Data Exceptions, the mean squared error was 0.1 08 giving a classification rate of 

80.09%. The chart below (Figure 6.5-3) breaks up the classification statistics. For each 

Data Exception type the percentage of correct identifications and the percentage of 

correct rejections are shown. 

98 



Chapter 6 - The K-S/Neural Approach Results 

60 

J 
& 60 

1 
40 

20 

o 
Weekend Begin Weekend End Step Up 

Classification Accuracy 

Step Down 

Exception Type 

ToO Up ToO Down 

Figure 6.5-3 Data Exception Classification (Simulation) 

Spike 

As can be seen the results are encouraging. The neural network correctly 

classified each exception type over 90% of the time in every case with the exception of 

Step Down exceptions which were correctly classified with only a degree of accuracy of 

81.25%. The neural network is not generating large numbers of false alarms with fewer 

than 7% of false positives for any given Data Exception type. 

6.6 Results - Test Network 
The K-S Test was again a very effective means of detecting that a change had 

occurred. An interesting difference to the results generated from the simulation is that 

the K-S Test was rarely significant (less than 1% of Data Exceptions) where no event had 

occurred. It's hard to know why the K-S Test should work better when applied to the test 

network in a real world scenario but it would appear that the delay distributions are more 

stable than those created by the simulation. It maybe that delay values generated by the 

simulation could have been subject to changes that were inherent characteristics of the 

simulation. An example of this is where the absolute time for the simulation crosses the 

100 hour barrier. Previously this caused a loss of accuracy in the delay measurements as 

the simulation only worked to a certain number of significant figures and subsequent 

99 



Chapter 6 - The K-SINeural Approach Results 

values were rounded down. This problem was corrected by editing the simulation code 

and recompiling the simulation (an advantage of using an open source simulation). 

However, similar issues may exist that were not identified or corrected. 

Exception Type Training Set Test Set 

Weekend Begin 231 29 

Weekend End 231 30 

Step Change Up 33 12 

Step Change Down 31 24 

ToDVarUp 50 22 

ToDVarDown 53 49 

Spike 39 31 

Figure 6.6-1 Exception Types 

Training Data Set 

Validation Data Set 

Mean Square Error 

0.005 

0.184 

Figure 6.6-2 Classification Error 

Classification 

99.36% 

72.58% 

The parameters described previously were used to train the neural network with 

an additional input to allow for the two different packet sizes used for monitoring the test 

network. The number of each Data Exception types that were used is given in figure 6.6-

1. The mean square error of the output vector after 2000 epochs was 0.005; this gives a 

classification accuracy of 99.36% (see figure 6.6-2). Using this trained network on the 

validation set of Data Exceptions, the mean squared error was 0.184 giving a 

classification rate of 72.58%. The chart below (Figure 6.6-3) breaks up the classification 

100 



Chapter 6 - The K-SINeural Approach Results 

statistics. For each Data Exception type the percentage of correct identifications and the 

percentage of correct rejections are shown. 

100 

80 

40 

20 

o 
Weekend Begin Weekend End Step Up 

Classification Accuracy 

Step Down 

Exception Type 

ToO Up ToO Down 

Figure 6.6-3 Data Exception Classification (Test Network) 

Spike 

As with the simulation results the neural network had most trouble identifying 

Data Exceptions of type Step Down but again the results are a positive indication of how 

a neural network could be used to classify Data Exception types. 

6.7 Summary 
In this chapter the K -S/neural approach has been tested and evaluated using two 

data sources, a simulation and a test network. 

The underlying objective is to present a network operator with key information. 

The combination of the K-S test and a neural network is reliably identifying that an event 

of some kind has occurred and this is a significant step forward, potentially saving an 

analyst valuable time. The subsequent classification of the Data Exceptions into types 

will be useful in grouping related Data Exceptions together and perhaps even 

automatically diagnosing the type of event that has occurred. In the next chapter final 

conclusions are drawn and possible further work is discussed. 

101 



Chapter 7 - Conclusions and Discussion 

chapter 7 - condustons and Dtscusston 

102 



Chapter 7 - Conclusions and Discussion 

7. Conclusions and Discussion 
Given the speed in which communications networks, and particularly the Internet, 

have become an integral part of every day life, it is perhaps unsurprising that network 

management tools and techniques have been unable to keep pace with development. The 

Intemet is being used in ways that far outstrip the perceived objectives at its inception. 

People use the Internet to communicate with one another, to find information, to buy and 

sell, to advertise, to share tools and ideas, with the number of services available 

increasing at a startling rate. Ten years ago public awareness of the Internet was limited 

to a small percentage of people with specialised interests, now it is a global phenomenon 

and ten years from now it may well be the leading means of communication, the most 

prominent provider of entertainment and the foremost facilitator of trade and commerce. 

This explosion has had to be matched by technology that is able to support the 

many and varied services for which the Internet is now used. This has meant 

communications companies investing in infrastructure so that high bandwidth, high speed 

connections are available to businesses and home users alike. Much research has been 

geared towards providing protocols, coding algorithms and technologies that either 

increase the available bandwidth or decrease the need for it. The driving motivation has 

been to establish network technology that can meet the requirements, both present and 

predicted, of the Internet age. 

While advances in network management have been made and research is being 

conducted into these areas, the relentless pursuit of high performance networks has so 

dominated that there are now significant gaps in management areas such as network 

security and network performance monitoring. While work is being done to redress this 

situation it will take a change in the priorities of communications companies before these 

gaps will be closed up. In the current climate such a change of priorities is unlikely. The 

emphasis will remain on expanding network services until such a time as most of the 

likely avenues for Internet use have been explored and exploited and this could be some 

time away. 

103 



Chapter 7 - Conclusions and Discussion 

While management issues are of secondary importance to network providers at 

present that is not to say that they are neglected altogether. As companies increasingly 

use the Internet for business the need for networks to be reliable and well managed 

grows. Network performance data is needed to better understand the behaviour of the 

monitored network as well as to detect faults and identify 'hot-spots' allowing network 

operators to manage networks in an informed manner. 

This thesis has investigated means of detecting Data Exceptions in delay data. 

Data Exceptions are a useful concept for abstracting, summarising and presenting 

network performance information and for potentially identifying network events. 

Common Data Exceptions that relate to delay measurements are Step Changes, changes 

in the Time of Day Delay Variation and Spikes. They reflect some real change in the 

network. Several Data Exceptions may result from a single network event reflecting the 

several tests that may be conducted on that network. 

This thesis has presented two methods of detecting Data Exceptions. The first 

approach utilised a rule base that compared summary statistics from the most recent 

measurements with those of previous measurements. Rules were then applied that tested 

for the presence of the various types of Data Exceptions. Although the rule base was 

integrated as part of the AIR system and had moderate success in detecting Data 

Exceptions there are weaknesses in this approach. Firstly, while the rules could cater for 

the most common Data Exception scenarios, unusual cases could case the rule base to fail 

to classify the Data Exceptions accurately. Secondly, the rule base required 

parameterisation for a specific network before being applied to data from that network. 

A second approach made use of a combined method using the K-S Test and a 

trained neural network as a means of detecting and classifying delay Data Exceptions. 

The K-S test identifies that a change in network performance has taken place. The neural 

network is then used to classify the changes as specific types of Data Exception. 

The K-S Test has proved to be a very effective means of detecting the presence of 

Data Exceptions in the data. Although the nature of the test necessitates a non real time 

approach in order to detect the presence of Time of Day Delay Variation changes, this is 

acceptable for the purpose. Where nearer to real time information is required and Time 

104 



Chapter 7 - Conclusions and Discussion 

of Day Delay Variation changes are less significant the approach can be modified to work 

in closer to real time. The K-S Test requires no parameterisation or training and can 

consequently be applied to arbitrary data sets and accurately detect changes in that data 

set. The use of the K-S Test for the purpose of detecting changes in network monitoring 

infonnation is both novel and powerful. Data Exceptions were reliably detected with 

virtually no false alarms. This is an important criteria since network operators may lose 

confidence in a system that either misses events or repeatedly raises reports where no 

event has taken place. 

The neural process has been shown to be an effective means of classifying Data 

Exception types. Although the neural network currently needs training it is hoped that in 

future a neural network could be trained to detect the generic types of Data Exceptions in 

any data source. This would then make the entire process completely generic, allowing 

for it to be applied to unfamiliar networks without any training. 

For a neural solution to identify Data Exception types in arbitrary data sources the 

neural network may need training data from a variety of sources. At present only the data 

sources mentioned in this thesis, that is the simulation, the test network and the 

commercial network are available for use. Additional sources may come from further 

simulation or from other measurement projects. Artificial data could also be generated 

and this may prove to be particularly useful remembering that the aim here is to aid the 

neural network training process to leam generic Data Exception types. 

Further possible development of the work includes extending the idea of Data 

Exception Collections. Data Exceptions can be collected together according to factors 

such as type, time and route to give a complete picture of a network event. It must be 

remembered that a Data Exception refers to data on a single path. A network event may 

impact the perceived perfonnance as measured by several monitoring agents leading to 

several Data Exceptions. A means ofreliably correlating Data Exceptions so that all the 

relevant infonnation regarding a particular network event is reported together would be 

beneficial. Further, once such correlation is achieved, Data Collections may be used to 

give infonnation regarding probable causes and locations of network events. For this to 

be attained, some additional research is necessary to link Data Exception Collections to 

105 



Chapter 7 - Conclusions and Discussion 

network events. Other infonuation, such as the topology of the network, may also be 

necessary to establish details such as the location of the event. 

Specific further plans include implementation of the method described in this 

thesis, or a modified version of it, at BT Network Operations Centre, WalsaIl. An alarm 

station that is currently deployed at Walsall could be updated to incorporate a rapid Data 

Exception feedback facility implemented using the K-S Test. In this scenario the K-S 

Test Statistic would be calculated more frequently and would compare data from a 

shorter time period such as an hour. In this deployment no provision would be made for 

detecting changes in Time of Day Delay Variation, instead the system would concentrate 

on giving infonuation pertaining to step changes and spikes, reporting such events within 

an hour of the time the event occurred. 

Another related area which may provide interesting research is methods of 

gaining meaningful one-way delay measurements. All the measurement schemes 

presented in this thesis achieve time synchronisation by using either the same clock to 

record the transmit and receive times or alternatively by using GPS synchronised clocks. 

At present these seem to be the only viable possibilities where a degree of accuracy is 

required within one hundred microseconds. However, as these delays are often averaged 

and summarised it may be that a lower degree of accuracy could be tolerated in order to 

achieve greater flexibility in tenus of use and deployment. Relying on GPS can be 

cumbersome as the GPS antenna need to be positioned so that they are in view of GPS 

satellites (e.g. by a window). This is not always convenient. Alternative means of timing 

synchronisation include the use of NTP (Network Time Protocol). If timing 

synchronisation could be achieved to a sufficient degree using an NTP based monitoring 

station then these stations would be far easier to install and far more cost effective to 

deploy. If monitoring stations could be developed along these lines then an increase in 

the number of monitoring stations a network operator would be willing to utilise is likely 

as the cost to the network operator is significantly less. A means of analysing the data, 

such as the work presented in this thesis, would then become even more pertinent. 

106 



References 

References 

Alm99a 

Alm99b 

Bas98 

CheOO 

Cla96 

Cla93 

Cla97 

AlInes G et aI, "A One-way Packet Loss Metric for IPPM", RFC 

2680, September 1999 

Almes G et ai, "A One-way Delay Metric for IPPM", RFC 2679, 

September 1999 

Bashir 0, "Management and processing of network performance 

information", Loughborough University PhD Thesis, 1998 

Chen TM, "Network Traffic Measurements and Experiments", 

Guest Editorial IEEE Communications Magazine, Vol. 38, No. 5, 

page 120, May 2000 

Claffy KC, '''But some data is worse than others ': Measurement of 

the Global Internet", National Laboratory for Applied Network 

Research (NLANR), August 1996 (available from 

http://www.caida.orgloutreachlPapers/telegeog96.html) 

CIaffy KC et aI, "Measurement Considerations for Assessing 

Unidirectional Latencies", in:Intemetworking, Research and 

Experience, Vol. 4, No. 3, pp 121-132, January 1993 

Claffy KC, Monk T, "What's Next for Internet Data Analysis? 

Status and Challenges Facing the Community", Proceedings of the 

IEEE, Vol. 85, No. 10, pp 1563-1571, October 1997 

107 



References 

Cnet 

Com99 

DijOO 

Den93 

Fau94 

Flo94 

Gol95 

"Cnet Simulator", http://www.cs.uwa.edu.auipls/cneti 

Corner EC, "Computer Networks and Internets", Prentice-Hall, 

1999 

van Dijk P, "0657420 Interim Report", The University ofWaikato, 

2000 

Deng RH, Lazar AA, Wang W, "A Probabilistic Approach to 

Fault Diagnosis in Linear Lightwave Networks ", IEEE Journal on 

Selected Areas in Communications, Vol. 11, No. 9, pp 1438-1448, 

December 1993 

Fausett LV, "Fundamentals of Neural Networks: architectures, 

algorithms and applications", Prentice-Hall, 1994 

Floyd S, "The Synchronisation of Periodic Routing Messages", 

IEEE/ACM Transactions on Networking, Vol. 2, No.2, pp 122-

136, April 1994 

Goldszmidt G, Yemini Y, "Distributed Management by 

Delegation", Proceedings of the 15th International Conference on 

Distributed Computing Systems, pp 333-340, June 1995 

108 



References 

HanOO 

Hel92 

Hoo97 

IntTR 

Jac89 

Jai91 

Job91 

Kal98 

Hansen T, "Active Measurement Data Analysis Techniques", 

International Conference on Communications in Computing (CIC), 

page 105, June 2000 

Held G, "Network Management", Jolm Wiley & Sons Inc., 1992 

Hood CS et aI, "Beyond Thresholds: An alternative Method for 

Extracting Information from Network Measurements", IEEE 

Global Telecommunications Conference, Vol. 1, pp 487-491, 

October 1997 

www.lnternetTrajJicReport.com.Andover.net 

Jacobson V, "traceroute", fip:llfip.ee.1bl.gov/traceroute.tar.Z, 1989 

Jain R, "The Art of Computer Systems Performance Analysis: 

Techniques for Experimental Design, Measurement, Simulation 

and Modelling", Jolm Wiley & Sons Inc., 1991 

Jobson JD, "Applied Multivariate Data Analysis", Springer-VerJag, 

1991 

Kalidindi S, "Participants guide to Surveyor daily summary 

reports", Advanced Network and Services, November 1998 

(Available at http://telesto.advanced.org) 

109 



References 

Lel94 

Mad94 

MasS1 

MatOO 

Mat96 

McGOO 

Nea88 

Leland WE, "On the Self-Similar Nature of Ethernet Traffic 

(Extended Version)", IEEE/ACM Transactions on networking, 

Vo!. 2, No. 1, pp 1-14, February 1994 

Madruga EL, Tarouco LMR, "Fault Management tools for a 

Cooperative and Decentralized Network Operations 

Environment", IEEE Journal on Selected Areas in 

Communications, Vo!. 12, No. 6, pp 1121-1130, August 1994 

Massey FJ, "The Kolmogorov-Smirnov test for goodness of fit", 

Journal ofthe American Statistical Association, Vo!. 46, pp 68-78, 

1951 

Matthews W Cottrell L, "The PingER Project: Active Internet 

Performance Monitoring for the HENP community", IEEE 

Communications Magazine, Vo!. 38, No. 5, pp 130-137, May 2000 

Mathis M et aI, "Diagnosing Internet Congestion with a Transport 

Layer Performance Tool", Proc. INET, June 1996 

McGregor T et aI, "The NLANR Network Analysis Infrastructure", 

IEEE Communications Magazine, Vo!. 38, No. 5, pp 122-128, 

May 2000 

Neave HR Worthington PL, "Distribution-Free Tests", Unwin 

Hyman, 1988 

110 



References 

NS The NS Simulator, http://www-mash.cs.berkeley.edulns/ 

Oftel UK Government Office of Telecommunications web site, 

http://www.oftel.gov.uk 

Opnet 

Pag99 

Pax98a 

Pax98b 

Pax98c 

Pax96 

Opnet (Optimum Network Performance Modeller), 

http://www.opnet.com/ 

Pagonis A, "An efficient visualisation mechanism for 

communication network monitoring information ", Loughborough 

University PhD Thesis, 1998 

Paxson V, "Frameworkfor IP Performance Metrics", RFC 2330, 

May 1998 

Paxson V, "Creating a Scalable Architecture for Internet 

Measurement", Proc. INET, July 1998 

Paxson V, "An Architecture for Large-Scale Internet 

Measurement", IEEE Communications Magazine, Vol. 36, No. 8, 

pp 48-54, August 1998 

Paxson V, "Towards a Framework for Defining Internet 

Performance Metrics", Proc. \NET, June 1996 

111 



References 

Phi96 

Phi95 

Phi99 

PhiSanOO 

Sid89 

Sha68 

Ste70 

Phillips IW et ai, "On the Monitoring and Measurement of Quality 

of Service ofSuperJanet", 13th UK Teletraffic Symposium lEE, pp 

16/1-1619, March 1996 

Phillips IW et ai, "SMDS Network Performance Measurement", 

lEE Colloquium on "Practical Experience with SMDS", PP7.1-7.4, 

October 1995 

Phillips IW et aI, "Generic Performance Management of 

Multiservice Networks", Integrated Network Management 

IEEE/IFIP, pp 943-944, May 1999 

Phillips lW, Sandford JM et aI, "Processing Network Delay 

Measurements into Network Events", NOMS 2000 IEEE/IFIP 

Networks Operation and Management Symposium, pp 955-956, 

Apri12000 

Siddiqui MR, "Performance Measurement Methodology for 

Integrated Services Networks", Loughborough University PhD 

Thesis, 1989 

Shapiro SS, Wilk MB, Chen HJ, HA comparative study of various 

tests of normality", Journal of the American Statistical 

Association, Vol. 63, pp 1343-1372, 1968. 

Stephens MA, "Use of Kolmogorov-Smirnov, Cramer-Von Mises 

and Related Statistics without Extensive Tables", Journal of the 

112 



References 

Ste74 

Ste94 

Tan96 

Tar98 

Uij97 

Uij98 

Wal91 

Royal Statistical Society Series B, Vol. 32, No. 1, pp 115-122, 

1970 

Stephens MA, "EDF Statistics for Goodness of Fit and Some 

Comparisons ", Journal of the American Statistical Association, 

Vol. 69, No. 347 Theory and Methods section, September 1974 

Stevens WR, "TCPIIP Illustrated Volume1 - The Protocols", 

Addison-Wesley, 1994 

Tanenbaum AS, "Computer Networks", Prentice-Hall, 1996 

Tarassenko L, "A Guide to Neural Computing Applications", 

Arnold, 1998 

Uijterwaal H et ai, "Internet Delay Measurements using Test 

Traffic", RlPE-158.ps, June 1997 (available from 

http://www.ripe.netlripe/docs/azdocument.html) 

Uijterwaal H et ai, "Internet Delay Measurements using Test 

Traffic: First results", 1998 (available from 

http://www.ripe.netlripe/docs/azdocument.html) 

Waldbusseer S, "Remote network monitoring management 

information base", RFC 1271, Nov 1991 

113 



Appendix A 

Appendix A - tcl script for NS 
set ns [new Simulator] 
$ns use·scheduler Heap 
$ns trace-all [open test.out w] 
$ns rtproto DV 

$ns color 1 Blue 
$ns color 2 Red 
$ns color 3 Yellow 
$ns color 4 Green 
$ns color 5 Brown 

set mg [new RNG] 

set numberOfDays 14 
set SamplingRate 0.05 

proc finish () { 
global ns 
$ns flush-trace 
exec grep 333 test.out > monitor.out 
exit 0 

proe remainder { numl num2 } { 
while { $nurn 1 >= $num2 } { 

set numl [expr $numl - $nurn2]; 

return $numl; 

proe attach-expoo-traffic {node sink size burst idle rate} { 
set ns (Simulator instance] 
set source [new AgentlCBRlUDP] 
$os attach-agent $node $source( 
set traffic [new Traffic/Expoo J 
$traffic set packet-size $size 
$traffic set burst-time $bUTSt 
$traffic set idle-time Sidle 
$traffic set rate $rate 
$source attach-traffic $traffic 
$ns connect $source $sink 
return $source 

proc attach-telnet-traffic { node sink interval} { 
set ns [Simulator instance] 
set tcp [new AgentITCP] 
$ns attach-agent $node $tcp 
set tcpsink [new AgentlTCPSink] 
$ns attach-agent $sink $tcpsink 
$ns connect $tcp $tcpsink 
set telnet [new ApplicationtreInet] 
$telnet set interval $interval 
$telnet attach-agent $tep 
return $telnet 

proc attach-ftp-traffic { node sink} { 
set ns [Simulator instance] 
set tcp [new AgentITCP] 
$ns attach-agent $node $tep 
set tcpsink [new AgentITCPSink] 
Sns attach-agent $sink Stcpsink 
$ns connect $tcp $tcpsink 
set ftp [new ApplicationlFTP] 
$ftpattach-agent$tcp 
$tep set fid_ 5 

114 

The ns object outputs the network events 
as a trace file called test.out. 

rng is a random number generator used 
later. 

The variables numberOfDays and 
Sampling Rate define the length of the 
simulation and the test packet transmission 
rate respectively. 

finish is called when the simulation is 
completed. The file test.out is parsed for 
lines containing the numerical sequence 
333. This is the size of the test packets 
and it significantly reduces the amount of 
processing required later on. 

remainder returns the remainder from 
num1 divided by num2. 

attach-expoo-traffic, attach-telnet-traffic, 
attach-ftp-traffic and attach-monitor­
traffic all create a traffic source and attach 
it to a node. 



Appendix A 

return $ftp 

proc attach-monitor { from to interval size} { 
set os [Simulator instance] 
set monitor [new AgentlCBR] 
$os attach-agent $from $monitor 
set sink [new Agent/Null] 
$os attach-agent $to $sink 
$monitor set interval $interval 
$monitor set packetSlze _ $size 
$monitor set fid _ 3 
$ns connect $monitor $sink 
return $monitor 

for {setiO} {$i<36} {incri} { 
set nISi) [$ns node 1 

# Set up the network core 
# -----------------------

$ns duplex-link $n(O) $n(1) 5Mb 3.5ms SFQ 
$ns duplex-link $n(2) $n(3) 5Mb 6.Sms SFQ 
$ns duplex-link $n(O) $n(3) 5Mb S.lms SFQ 
$ns duplex-link $n(l) $n(2) 5Mb 7.4ms SFQ 

$ns duplex-link $n(l) $n(3) 2Mb l1.4ms SFQ 
$ns duplex-link $n(O) $n(2) 2Mb 12.9ms SFQ 

$ns rtmodel-at 0.1 down $n(O) $n(2) 
$ns rtmodel-at 0.1 down $n(l) $n(3) 

# Set up the perimeter 
# --------------------

$ns duplex-link $n(O) $n(4) 6Mb 4.5ms SFQ 
$ns duplex-link $n(O) $n(5) 6Mb Sms SFQ 
$ns duplex-link $n(4) $n(5) 4Mb 11.7ms SFQ 
$ns duplex-link $n(5) $n(6) 4Mb 12.2ms SFQ 
$ns duplex-link $n(l) $n(6) 6Mb 5.Sms SFQ 
$ns duplex-link $n(l) $n(7) 6Mb 5.4ms SFQ 
$ns duplex-link $n(6) $n(7) 4Mb 7.lms SFQ 
$ns duplex-link $n(3) $n(8) 6Mb 3.2ms SFQ 
$ns duplex-link $n(3) $n(9) 6Mb 9.1 ms SFQ 
$ns duplex-link $n(S) $n(9) 4Mb S.3ms SFQ 
$ns duplex-link $n(9) $n(lO) 4Mb 14.1ms SFQ 
$ns duplex-link $n(2) $n(lO) 6Mb 3.9ms SFQ 
$ns duplex-link $n(2) $n(l1) 6Mb 6.6ms SFQ 
$ns duplex-link $n(IO) $n(ll) 4Mb 5.3ms SFQ 

# Some routing priorities 
# -------------------

$ns cost $n(4) $n(5) 5 
$ns cost $n(5) $n(4) 5 
$ns cost $n(6) $n(5) 5 
$ns cost $n(5) $n(6) 5 
$ns cost $n(7) $n(6) 5 
$ns cost $n(6) $n(7) 5 
$ns cost $n(9) $n(8) 5 
$ns cost $n(S) $n(9) 5 
$ns cost $n(9) $n(IO) 5 
$ns cost $n(1 0) $n(9) 5 
$ns cost $n(l1) $n(lO) 5 
$ns cost $n(lO) $n(ll) 5 

$ns cost $n(O) $n( 4) 3 
$ns cost $n(4) $n(O) 3 

115 

The nodes are created using a single for 
loop_ Links are then set up between the 
nodes. The links include latency and 
throughput values. Links are created 
between node 0 and node 2 and between 
node 1 and node 3. These are then taken 
down immediately. This is so that they can 
be introduced at a later point. 

Routing priorities are given here. The 
default value (cost) of a link is 1. Routes 
are calculated based on the total cost of 
the route. 



Appendix A 

$ns cost $n(O) $n(5) 3 
$ns cost $n(5) $n(O) 3 
$ns co,t $n(l) $n(6) 3 
$ns cost $n(6) $n(l) 3 
$n, cost $n(l) $n(7) 3 
$nscost $n(7) $n(l) 3 
$n, co,t $n(3) $n(S) 3 
$n, co,t $n(S) $n(3) 3 
$n, co,t $n(3) $n(9) 3 
$n, co,t $n(9) $n(3) 3 
$nsco't $n(2) $n(lO) 3 
$n, co,t $n(lO) $n(2) 3 
$n, co,t $n(2) $n(ll) 3 
$n, co,t $n(ll) $n(2) 3 

# Set up periphery 
# ----------------

# First some traffic related variables 
set scale 10 
set scale2 0.5 
set scale3 0.5 
set scale4 4 

set tr(4) 0.05 
set tr(5) 0.3 
,et tr(6) 0.2 
set tr(7) 0.1 
set tr(S) 0.1 
set tr(9) 0.3 
set tr(10) O.OS 
set tr(ll) 0.3 

set fr(O) 1 
set fr(l) 4 
set fr(2)3 
set fr(3) 2 
set fr(4) 2 
set fr(5) 4 
set fr(6) 1.5 
set fr(7) 4 

set mg [new RNG] 
$mg seed 0 

# What follows are a list of the nodes on the periphery 
# traffic source(s attached to the nodes and the patterns 
# of traffic output connected to them 

# From node 4 

$n, duplex-link $n(4) $n(12) 2Mb lOm' SFQ 
$n, duplex-link $n(4) $n(13) 6Mb lOm' SFQ 
$n, duplex-link $n(4) $n(14) 6Mb lOm, SPQ 

# Monitor traffic 
# sent every 0.2 seconds, probing different paths in the network 

Traffic levels are scaled according to the 
day of the week (lower at weekends) and 
according to the route. scale, trO and frO 
are combined to calculate the traffic level 
for a particular link. tr defines the level of 
telnet traffic, fr defines the level of ftp 
traffic. 

The traffic sources are then created and 
started. This is done at each node 
although the code for only one node is 
shown here (node 4). 

set source(12,l) [attach-monitor $0(12) $0(15) $SamplingRate 333] 
,et ,ource(12,2) [attach-monitor $n(12) $n(IS) $SamplingRate 333] 
set ,ource(12.3) [attach-monitor $n(12) $n(21) $SamplingRate 333] 
set ,ource(12,4) [attach-monitor $n(12) $n(24) $SamplingRate 333] 
set source(12.5) [attach-monitor $n(12) $n(27) $SamplingRate 333] 
set ,ource(12.6) [attach-monitor $n(12) $n(30) $SamplingRate 333] 
set source(12,7) [attach-monitor $n(12) $n(33) $SamplingRate 333] 

$ns at 1.43 "$source(12,l) start" 
$ns at 1.44 "$source(12,2) start" 
$ns at 1.45 "$source(12,3) start" 
$ns at 1.46 "$source(12,4) start" 

116 



Appendix A 

$ns at 1.47 "$source(12,5) start" 
$os at 1.48 "$source(12,6) start" 
$os at 1.49 "$source(12,7) start" 

# Telnet traffic, loading up the network trying to follow daily patterns 

set source(13,I) [attach-telnet-traffic $n(13) $n(16) 0.5J 
set source(13,2) [attach-telnet-traffic $n(13) $n(19) 0.5J 
set source(13,3) [attach-telnet-traffic $n(13) $n(22) O.5J 
set source(13,4) [attach-telnet-traffic $n(13) $n(25) 0.5J 
set source(13,5) [attach-telnet-traffic $n(13) $n(28) O.5J 
set source(13,6) [attach-telnet-traffic $n(13) $n(31) O.5J 
setsource(13,7) [attach-telnet-traffic $n(13) $n(34) O.5J 

set source(14,1) [attach-ftp-traffic $n(14) $n(17)J 
set source(14,2) [attach-ftp-traffic $n(14) $n(20)J 
set source(14,3) [attach-ftp-traffic $n(14) $n(23)J 
set source(14,4) [attach-ftp-traffic $n(14) $n(26)J 
set source(14,5) [attach-ftp-traffic $n(14) $n(29)J 
set source(14,6) [attach-ftp-traffic $n(14) $n(32)J 
set source(14,7) [attach-ftp-traffic $n(14) $n(35)J 

# set the telnet traffic sources off 

for {set day O} {$day < $numberOfDays} finer day} { 
for (sel i O} ($i < 8} (incr i} ( 

for (selj I} ($j < 8} (incr j} ( 
set i2 [expr $i * 3 + 13] 

set i3 [expr $i + 41 
selj2 [expr $j + 3J 
if($i<$j} ( 

selj2[expr$j+4J 
} 
if($day-O} ( 

The telnet and ftp sources are set off at 
random times. These loops calculate the 
start and finish times for the telnet and ftp 
sessions. They make use of the random 
number generator (rng) and of the scale, 
frO and trO variables. 

$os at 0.0 "$source($i2,$j) start" 

$tr($j2»/$scale ]" 

} 
set thisDay [remainder $day 7]; 
if ($lhisDay > I} ( 

$os at [expr $day*24 + 8.0] "$source($i2,$j) set interval_ [expr ($tr($i3) + 

# These next lines are for changing the traffic rate 
# if ($i -I && $j2 -6 &&$day>6} ( 
# $os at [expr $day*24 + 8.1] "$source($i2,$j) set interval_ 0.001" 
# puts "telnet from $i to $j2 set to interval 0.001" 
# 

$tr($ j2 ))/$scale2 J" 

$tr($j2)Y$scale2 ]"} 

$ns at [expr $day*24 + 17.0] "$source($i2,$j) set interval_ [expr ($tr($i3) + 

if {Si = 1 && $j2 = 6} {puts "telnet from $i to $j2 set to interval [expr ($tr($i3) + 

# set the ftp traffic sources off randomly 

for {set day O} {Sday < SnumberOfDays} liner day} { 
for (selkO} ($k<8} (incrk} ( 

set k2 [expr 3*$k + 14] 
for (seti I} ($i<24} (incri} ( 

for {setj I} ($j<8} (incrj} ( 
set rate2 [expr int«$fr($k) + $fr($j»)/$scale3)J 
set test [$rng integer $rate2] 
set thisDay [remainder $day 7]; 
if ($i>7 && $i < 18 &&$thisDay> I} ( 

set ratel [expr int«$fr($k) + $fr($j»/$scale4)J 

117 



Appendix A 

# This next line is for changing the traffic rate 
# 

} 

if {$k~~ I && $j ~ 2 && $day>6} {setratel I} 

if{$ratel~O) {setratell} 
set test [$mg integer $rate 1] 

if{Stest~O} { 

#Sns rtmodel Exponential {55 0.2 0.1 lOO} Sn(3) Sn(2) 
#Sns rtmodel-at 120 up $n(O) Sn(2) 
#Sns rtmodel-at 120 up $n(l) $n(3) 
#Sns rtmodel-at 24 down Sn(9) Sn(O) 
#Sns rtmodel-at 35 up $n(9) Sn(O) 
#$ns rtmodel-at 60 up $n(l) Sn(6) 
#$ns rtmodel-at 300 down Sn(O) $n(5) 
#Sns rtmodel-at 260 down Sn(6) $n(7) 
#$n, at 168 "$ns cost Sn(4) Sn(5) I" 
$ns at 100 "Sns cost $n(O) Sn(l)2" 
$ns at 100 "Sns cost $n(l) $n(O) 2" 
$ns at 200 "$ns cost $n(O) Sn(l) I" 
$ns at 200 "$ns cost $n(l) Sn(O) I" 
Sns at 200 "$ns cost $n(2) $n(3) 2" 
$ns at 200 "$ns cost $n(3) $n(2) 2" 
$ns at [expr $numberOfDays*24] "finish" 
$nsrun 

set stop($k2,$j,$i) [$mg exponential] 
set start($k2,$j,Si) [expr Sday'24 + [$mg uniform Si [expr $i + I]]] 
set stop(Sk2,Sj,$i) [expr Sstop($k2,$j,$i) + $start($k2,Sj,Si)] 
$ns at $start($k2,$j,$i) "$source($k2,$j) start" 
$ns at $stop(Sk2,$j,Si) "Ssource($k2,$j) stop" 

118 

Routing priorities are given here. The 
default value (cost) of a link is 1. Routes 
are calculated based on the total cost of 
the route. 



AppendixB 

Appendix B - PostProAII 
# include <ltdio.h> 
# include <ruing.h> 
# include <Stdlih.h> 
# include <math.h> 

PostProAII takes the file monitor.out 
generated by the simulation and creates 
delay files for the different routes that are 
monitored across the network. 

void process _ data(char fname[50D; 

int main(void) 
{ 

chat fname[50]- {"monitor.out"); 

process _ data(fname); 
retum(O); 

void process _ data(char fname[]) 
{ 

FILE ·WiIe; 
FILE '~outfile; 
char outname[30]j 
char temp[150]; 
float starttime[JO]; 
int pid[JO~ 

char action[5]; 
char time[20]; 
char node 1[5]; 
char node -2[5]; 
char src[IO~ 
char size[7]; 
chat flow id[10]; 
chat node 1 address[lOb 
chatnode-2-address[IOb 
chatse~no[lo~ 
int packet_id; 

int source; 
int dest; 
int se,clt; 

int ref-O; 

float duration; 

The file monitor.out is interpreted a line at 
a time. The file is read using fgets and 
then parsed using strtok. 

for (source -4;sowce <12;source++} { 
for (dest - 4; dest < 12; dest++) { 

if (source!- dest){ 
Wile - fopen(fname,"r"); 
sprintf( outname," %dto%d.dly" ,source,dest}; 
outfile .. fopen(outname,"w"}; 

se .. source .. 3; 
clt -dest"3; 

printf("Doing file %s\n",outname)j 
while(feof(WiIe) - -0) 
{ 

fgets(temp,150,infile); 
if(strlen(temp) > 10) { 

strcpj\action,trtok(temp; \n")); 
if(strcmp(action, Or") -- 0 11 strcmp(action; +") -- 0 11 strcmp(action,"-") -- 0) { 

strcpj\time,trtok(NUIL," \n ")); 
strcpj\node _1'trtok(NUIL," \n")); 
strcpj\node_2~trtok(NUIL," \n")); 
strcpj\src,trtok(NUIL," \n")); 
strcpj\sae,trtok(NUIL,· \n")); 
strcpj\flow_ id,trtok(NUIL," \n")); 
strcrnflow_ id,tnok(NUIL," \n")); 

119 



AppendixB 

re£); *f 

} 
} 

} 

} 
fclose(infile); 
fclose(outfile); 

int getref(int packet )d, int pid[lO] 
{ 

intx-Oj 
int finished - 1; 
int result - -1; 

while(x <lO &&finished --1) 
{ 

} 
X++j 

} 
rerum result; 

result - X; 

finished - 0; 

strcpy(node _1_ address~tnok(NUlL," \n")); 
strcpy(node_ 2 _ address~trtok(NUlL," \nO)); 
strcpy(se'L no,smok(NUlL," \n")); 
packet_id - ato~stnok(NUlL," \n")); 

if(atoi(size) -- III && (int)atof(node_2_address) -- dt && 

if(getref(packet_id,pid) --.1) { 
starnime[re£] - atof(tirne); 
pid[ re£] - packet_id; 
if(ref -- 29){ref - O;} ehe {ref++;} 

if(strcmp(action,"r") -- 0 &&atoi(node_ 2) -- dt) { 

120 

duration - atof(time). starttime[getref(packet_id,pid)1 
fprintf( outfile,"%f %f\n" ~tarttirne[getref(packet_ id,pid) l,duration); 
f *printf("%f %f %d\n" ~tarttirne[getref(packet_ id,pid)1duration, 

pid[gecref(packet _ id,pid)] - 0; 

Packets are logged in an array that 
contains start times. When they reach their 
final destination the delay is calculated and 
then written to a file. This file takes the 
format "<src>to<dest>.dly" 

getref is a function that searches the array 
of packets that have been sent for a 
packet_id. The array is continually 
overwritten as packet information is not 
needed once the delay is calculated. 



Appendix C 

Appendix C - K-S implementation 
The K-S implementation varied slightly for the two main data sources. The 

implementation given here was used to calculate the K-S statistic for the data generated 

by the Cisco Test Network. 

# include <stdio.h> 
# include <string.h> 

typedef struct { 
float delay; 
int distribution; 
float cdfl; 
float cdf2; 

} tableEntry; 

typedef struct { 
float delay; 
float time; 

} fileEntry, 

int readData(char filename[ 40]. fileEntry store[7000D; 
int createTable(int tiIre, fileEnuystore[70001 tableEnuytable[lOOOl int dist, int startingPoint); 
void sortTable(tableEnt1}'table[lOOO], int length}; 

int main(voKl} { 
fileEntry store[7000]; 
tableEntrytable[IOOOl; 
int lengthl; 
int length2j 
intlength; 
int storel.ength; 
int time; 
char filename[40] - "4toI0.dly'·; 
charoutname[40] - "4tolO,ks-j 
int Xj 

float diff; 
float K-S - 0; 
intcdfl - Dj 
intcdf2 - Dj 
FILE 'oudile; 
int egress; 
int ingress; 
int node[ 4]; 
int size; 

node[O]-I; 
node[I]- 4; 
node[2]- 6; 
node[3] - 8; 

for (ingress - 0; ingress <4; ingress++) { 
for (egress - 0; egress <4, egress++) { 

if (ingress 1- egress) { 
for (size - 0; size <3; size +-2) { 

sprintf(fileoame. "%d%d%dtest.d1y", node[ingressl node[egress1 size); 
sprintf(outname, "%d%d%dtest.ks", node[ingress], node[egress], size); 
printf("Doing %5 .... ",outname); 
outfile - fopen(outname, IOW;; 
storeLength - readData(fi1ename, store}; 
for(time -30; time <312; time +-I} { 

121 

ks - 0; 
cdfl - 0; 
cdf2 - OJ 



Appendix C 

return 0; 
} 

int readData(char filenarne[ 401 fileEntry store(7000] { 
FILE 'infile; 
intx-D; 

infile - fopen(filenarne,"r"); 
while(feof(infile)--O &&x <7000) { 

} 

lengthl .. createTable(time, store, table, 1, O}; 
length2 - createTable(time+24, store, table, 2, lengthl); 
length -Iengthl + length2; 
sortTable(table,lengtb); 
for(x - 0; x <length; x++) { 

} 

if(table[x].distribution -- I) { 
cdfl++; 

} 
e~e { 

cdf2++; 
} 
table[xl.cdfl - (fIoat)cdfl/lengthl; 
table[xl.cdf2 - (fIoat)cdf2/length2; 
cliff - table[xj.cdfl. table[xj.cdf2; 
if (diff <0) { 

diff* .. ·lj 

} 
if (table[xl.delay!- table[x.lj.delay&& diff >ks) { 

ks - dilf; 

fprintf(outfile. "%d %£\n", time, ks); 

printf("done\n"); 
fclose(outfile); 

fscanf(infile, "%f%f", &Store[x].time, &store[xl.delaJ3; 
X++j 

} 
whiIe(store[x.l].time <- 0) { 

X--j 

} 
fclose(infile); 

return X; 

int createTable(int time, fileEntrystore[70001, tableEntrytable[IOOO1, int dis~ int startingPoint) { 
intx -Dj 
int y .. startingPoint; 

whiIe(store[x].time <tirne-24) { 
X++j 

} 
whiIe(store[xl.time <time) { 

table[y].delay - store[x].delay; 
"ble[y].d~tribu!ion - dis!; 
X++j 

Y++j 

return y- startingPoint; 

void sortTable(tableEntrytable[lOOO1, in! length) { 
tableEntryexchange; 
int x. y; 

for(x - 0; x <length; x++) { 

122 



Appendix C 

fo«y - x; y <length; y++){ 
if(table[x].dehy >table[y].deh0 { 

exchange - table[x]; 
table[xJ- table[y]; 
table[yJ - exchange; 

123 



AppendixD 

Appendix 0 - Neural Network Code Implementation 

/* This is the implementation of neural net algorithm which takes 
.tt •. d1yand .ks files from f eefhsn4/ eljmsltdScriptsftestNetwork ... 
ltestRuns/14daytests and then classifies the exceptions highlighted by 
the K-S test. The.tt are training data (pre-classified data). 

1his is version3 which changes the input vector so that the delays 
are put in the same place in the vector according to the hour 
of the day. This version also reduces the nwnber of output 
classes to 7. We no longer consider either ramps or troughs 
in this version. 

Of 

# include ~dio.h > 
# include <>tdlib.h> 
# include <Jnath,h> 
# include <string.h> 

twedef stmet { 
float >[122]; 
int t[7]; 
float mdNum; 

} trainingPair; 

float getDelay(float dela}{l001 int centi1e. int count); 
float f(float x); 
float f2(float x); 
trainingPair copy(trainingPair tph 
void writeWeigh'VectorV(chatfilename[301 float v(122II50]. in, x, in'~; 
void writeWeigh,VectorW(chat filename[30]. float w[151I7J. in, x, in'~; 

int main(void) { 

trainingPair 'P[20001 
int Doe -7; 
int nei - 121; 
int nohu - 150; 
float )( noe]; 
float y)n[noe]; 
float z[nohu + 1]; 
float z in[ nohu + 1]; 
float vf Doi + 1 I nohu]; 
float w[ nohu + 1 I Doe 1 
float ~rror[ noe}; 
float zerror[ nohu + 1 h 
float zerror in[ nohu +1]; 
float clv[ 00[+ 11 nohu]; 
float dw[nohu+lInoc]; 

float delaj{100~ 

trainingPair dununy1P; 

int ingress; 
int egress; 

FILE "'tr; 
FILE *d1y, 
FILE *outfile; 

chatfname1[201 
chat fname2[I00~ 
char director)!30]; 

float time, un; 
int n, count, temp1, temp2, ~ j, k; 

/* training Pairs*/ 
/* nwnber of classes */ 
/* nwnber of inputs */ 
/* nwnberof hidden units */ 
/* Output vector */ 

/* input to unit y */ 
/* Hidden La~r */ 
/* input to hidden layer wllt */ 
/* weights applied to x */ 
/* weights applied to z */ 
/* error in output y*/ 
/* error in output from z */ 

/* correction matrix for v */ 
/* correction matrix for w */ 

124 



Appendix D 

int cimeThreshold; 
charchj 
float r; 
float leamingRate - 0.005; 
int epoch; 
float mc;error; 
int exceptions; 

Initialise weights (set to small random 
numbers). 

int index; 

/* Initialise weight vectors */ 

srand(2); 

/*weight vector v */ 
foru -O;j <nohu;j++){ 

} 

for (i - 0; i <- n04 i++) { 

) 

r - (float)randQfRAND _MAl{. 0.5; 
v(iIi] - r, 

/* weight vector w */ 
for (k - 0; k <noc; k++) { 

for G - O;j <- nohu; j ++) { 

) 

r - (float)r:mdQfRAND _MAl{. 0.5; 
wUIk] - r, 

f* Read in training Pairs *f 

exceptions - 0; 
strcpy(fnamel. "Exceptions2.txt")j 
if((tr - fopen(foarnel, Or")) __ 0) { 

Read in the training pairs (,tr files) 

} 
ehe ( 

printf("Problem opening file Exceptions2.txt\n")j 
e,ot(I); 

print£(ttOpened Exceptions2.txt\n")j 

while(!feof(tr)) { 
tp(exceptions].x(O]- I; f* set bUs *f 
/*>t* Express time as a munber between -1 and 1 ***/ 
fscanf(tr, "%f", 8a:ime); 
tp{exceptions].x(I]- (float)((div((int)time,24).rem. 12) f 12.0 + (time· (int)time)); 
tp{exceptions].x(I]- (float)(sin(tp{exceptions].x(ll*M]I)); 

/*** Read the dayef the week and conven to 1 or-1 ***/ 
fscanf(tr, " (%f", &tp{exceptions].x(2); 
tp[exceptions].x(2]- (tp[exceptions].x(2] -- O)?I ,tp[exceptions].x(2]; 
for(count - 3; count <8; count++) { 

fscanf(tr, "%f", &tp{exceptions]J<[count}; 
tp[exceptionsJ.x[count] - (tp[exceptioru].x[count] -- O)? -1: tp[exceptionsJ,x[count]j 

} 
fscanf(tr, " %Q", &tp{exceptions ].x(8}; 
tp{exceptions].x(8]- (tp{exceptions].x(8]-- O)?·I 'tp{exceptions].x(8]; 

j"''It*Read the target values and convert to 1 or-1 ***/ 
fscanf(tr, " %d %d (%d", &ingress, &egress, &tp{exceptions].t[OD; 
for(count - 0; count «noc-2)j count++) { 

fscanf(tr, "%d", &tp{exceptions].t[count+I}; 
tp{exceptions].t[count+l] - (tp[ex.ceptionsJ,t[cOlUlt+l] -- O)?1: tp[exceptions].t[count+l]; 

) 
fscanf(tr, "%d)", &tp{exceptions].t[noe.I}; 
tp{ exceptions ].t[ noe·l] - (tp{ exceptions].t[ noe·l] -- O)? ·1 ,tp{ exceptions].t[ 6]; 
tp{exceptions].t[O]- (tp{exceptions].t[O]-- O)?I, tp{exceptions].t[O]; 
fscanf(tr, "%s ", &direct01J?j 
fscanf(tr, "%f\n", &tp[exceptions].:x[121D; ;* K-S statistic */ 

I*"'* turn the ingress and egress points into inputs ***/ 
for (count - 9; count <17; count++) { 

125 



AppendixD 

ingress, egress); 

) 
fclose(tr); 

tp[exceptlons].x[count] - (count - 4 -- ingress) ? 1 : -1; 
) 
for (count - 17; count <25; cooot++) { 

tp[exceptions].x[count] - (count - 4 -- egress) ? 1 : -1; 

/* Now fetch the delay values either side of the target time. 
These need to be swrunarised into a limited number of 
inputs. */ 

sprintf(fname2. "I ee/hsn4/ e1jrml tclScriptsl testNetworkl testRunsl 14dayTestsl %s/%dto%d.dly" • directory, 

if «dly - fopen(fn=e2, "r")) -- 0) { 
printf("Error opening file %s\n", fname2); 
e,ot(I); 

/* Centile values are calculated over a time period of one hour */ 
timeThreshold - I; 
count - 0; 
while(!feof(dlJl &&tm"Threshold <49) { 

fscanf(dly, "%f %f\n", &tm, &dela)(count]; 
if (tm > (time • 24) &&tm <- (time +25)) { 

) 
fclose(dlJl; 
exceptions ++j 

count++; 
if (tm >-timeThreshold + (time .24)) { 

index - (int)div(tm, 24).rem; 
index++; 
index *-2; 
if (tm <time) { 

index +- 23; 
) 
e~e { 

index +-71; 
) 
tp[exceptions].x{index] - getDelay(delay, 50, count - 1); 
tp[exceptions].x[index + I] - getDelay(delay, 95, count· I); 
time Threshold ++i 
count - 0; 

/* Having got the input vector we are now ready to proceed with the training/use of the neural 
network*/ 

outfile - fopen("error.oo", "w")j 
for (epoch -1; epoch <2000; epoch++) { 

for (count - 0; count <exceptions; count++) { 
tp(countJ.mdNum - r.mdO; 

} 
for (temp1 - 0; temp1 <exceptions; temp1++) { 

} 

for (temp2 -rempl +1;temp2 <exceptions;temp2++){ 
if (tp(templJ.mdNum >tp(temp2].mdNwn) { 

dummylP - copy(tp(templ]; 
tp[templ]- copy(tp(temp2]; 
tp[temp2] - copy(dummylP); 

printf("epoch - %d\n", epoch); 
mserror - 0; 
for (n - 0; n <exceptions; n++) { 

/* Compute hidden layer input */ 
for G - 1; j <- nohu; j++) { 

z_in[j]-v[OIj-I]; 
for (i -1; i <- n01;i++) { 

z _ in[j] +- tp[n].x[i]"v[ilj-Il 

} 

126 

The exceptions (or training 
pairs) are sorted into a 
random order at the start of 
each epoch, which aids the 
learning process. 

Feedforward: The values are 
passed forward to the hidden 
layer that then applies the 
activation function. 



AppendixD 

/* Compute hidden layer output */ 
z(0) -I; 
for G - 1; j <- nohu; j++) ( 

z[j) - f(z)n(j]; 

/* Having calculated the outputs of the hidden units we can now calculate the output vector */ 

for (k - 0; k <noe; k++) ( 
y)n(k) - w[OIkJ; 
for G - 1; j <- nom.; j++) ( 

y)n[k) +- z[j)"'{iIkJ; 

/* compute the output */ 
for [k - 0; k <noe; k++) ( 

y[k) - f(y)n[k]; 

,,,,, The errors in the output are now calculated (training anl" */ 

for (k - 0; k <noe; k++) ( 
l"rrOllk) - (tp{n].t[k). y[k]*f2(y_in[k]; 
mserror +- (tp[o].t[k). y[k] * (tp[n).t[k). y[k]; 

for (k - 0; k <noe; k++) ( 
forG -I;j <-nohu;j++) ( 

dwUIk) -learningRate *l"rrot[k) * zU); 
} 
dw[OIk) -learningRate *)"rrot[k); 

for G -I; j <- nohu; j++) ( 
zerror_ in(j) - 0; 
for (k - 0; k <noe; k++) ( 

zerror _ in(j) +-)"rrot[k) • wUIk); 
} 
zerroJ(j) - zerror_in(jJ*f2(z_in(j]; 

for G -I; j <- nohu; j++) { 
for (i -1; i <- Dei; i++) { 

Once the outputs have been 
calculated they can then be 
compared to the target results 
to give an error value. 

Backpropagation: The weight 
corrections are calculated 
using the error information 
term. These are then applied 
below. 

dv[iJj.IJ -learningRate * zerroJ(j) * tp[nJ.xli); 
} 
dv[OJj-I) -learningRate * zerroJ(j); 

} 

j* Now that the updates have been calculated they can be perfonned on the weight matrices ",. / 

} 

for G - O;j <- nohu; j ++) { 
for (k - 0; k <noe; k++) { 

wUlkJ +- dwUIkJ; 

for (i - 0; i <- 004 i++) { 
for G - 0; j <-nobu; j++) ( 

v[iJj] +- dv[ilj); 

mserror - mserror / (exceptions ... noel; 
fprintf(outfile;%d %I\n", epoch, mserror); 

writeWeightVectorW(~W.txt·. w, nohu+l, Doe); 
writeWeightVectorVrV.txt", v, noi+l, nohu); 
fclose(outfile); 

127 



AppendixD 

float getDela){float delaj{IOO], nU centile, int coum) { 
int ref, a. b; 
float temp; 

for (a - Oj a <count; H+) { 
for (b - a+l; b <count; b++) { 

if (delaj{a] >delaJ{bD { 
temp - delaj{ a 1 
delaj{ a] - delaJ{b 1 
delaJ{b] - temp; 

rei - (int)(count' centile / lOO) - I; 

if (count > 0) 
return (delaj{ref]/0.05) - I; 

return-I; 

float I(float x) { 

return (float)2/(1 + exp(.x)) . I; 

floatf2(float x) { 

These functions, f and f2 are the activation function 
and it's derivative. getDelay is used to get the delay 
information that will be used to train the neural 
network and copy is used to copy trainingPairs 
during the random sorting process. 

return (float)((1 + l(x))'(I-I(x)))/2; 

tniningPan cop){trainingPan tp) { 

trainingPair nn; 
int count; 

for (count -Ojcount <122;count++} { 
nn.x[count] - tp.x(countl; 

) 
for (count - Oj count <7; count++) ( 

nn.t[count] - tp.t[countl; 
) 
rtn.mdNum - tp.mdNwn; 

return rtn; 

void writeWeightVectorV(charfilename[lO]. float w[1221150]. int x, int II { 
int a, hi 
FILE 'outfile; 

autfile - fopen(filename, "w"); 
lor (a - 0; a <X; a++) { 

lor (b - 0; b <)I b++) { 
fprintf(outfile, "%f ", w[aIb]; 

) 
Iprintf(outfile. "\n"); 

fclose(outfile}; 

void writeWeightVeaorW(char lilename[lO]. float w[151JJ], ll1t x, ll1t II { 
int a, bi 
FILE 'outfile; 

outfile - lopen(lilename. "WO); 
for (a - 0; a <x; H+) { 

lor (b - 0; b <y; b++) { 
Iprintf(outfile. "%1". w[aIhD; 

128 

The two functions writeWeightVectorW 
and writeWeightVectorV are used to write 
the two weight matrices to file. These are 
the trained matrices that can then be used 
for classification purposes. 



Appendix D 

fprintf(outfile, "\n"); 

fclose(outfile); 

129 



AppendixE 

Appendix E - Investigation into the Distribution of SMDS Delay 
Data 

Work done at Loughborough prior to the installation of the Walsall test system 

topology involved using IP ICMP echo request and reply messages (known as 'Ping') to 

characterise the SMDS network delay profile. The results showed the effect of loading 

on delay. During the working week the delay distribution differed significantly from that 

observed at weekends, heavier tails signifying that more packets were expenencmg 

longer delay. [PHI9S] 

An early implementation of the Walsall test architecture gave a more unexpected 

result. The observed delay distribution appeared to be dual peaked. In fact, these dual 

peaks corresponded to a planned change on the network and so the observed distribution 

contained data from the network in two different states. By plotting the delay distribution 

at different points in time, the shift from one network state to another was highly visible, 

which in itself, was a useful result. [PHI96] 

With Data Exception detection in mind, we consider the delay distribution. To 

deploy certain statistical methods it is often necessary to assume that the data is normally 

distributed. In practice no real data set will be normal as the data will always be discrete 

and bounded but a good approximation to the normal distribution is sufficient to maintain 

a practical level of accuracy. If the sample size is relatively large a weaker normal 

goodness of fit can be tolerated although care should be taken if there is significant 

departure from the normal distribution. Consequently it was thought to be beneficial to 

investigate the delay data from SMDS with respect to normality and furthermore, to 

design and implement software for conducting such an investigation and any similar 

investigations that might be deemed beneficial, in the future. 

Various procedures exist for examining the closeness of a sample to the normal 

distribution. The most commonly discussed of these (although not necessarily the most 

powerful) is the Kolmogorov-Smirnov (K-S) test. Essentially the K-S test compares the 

empirical distribution function (EDF) with a theoretical distribution function (in this case 

the normal). 

130 



AppendixE 

In addition to analytical techniques, such as the K -S test, there also exist graphical 

techniques for assessing normality. The quantile-quantile plot (Q-Q plot) compares the 

observed quantiles (Q(P» to the theoretical quantiles (Q*(P ». The Q-Q plot will be a 

straight line if the data are normally distributed. 

The software developed by the author implements both the K-S test and the Q-Q 

plot. The procedures are described below but for a more comprehensive explanation, 

refer to Jobson [JOB91]. 

The K-S Test for Normality 

To calculate the K-S statistic, first the standardized order statistics Zj are 

computed. 

Zi = (Xi - X) / s 
Then the corresponding theoretical cumulative probabilities are determined 

(generally by tables) and denoted by Fj. The K-S test statistic, D, is given by 

D = max(1 i / n - Fi I) 

The Q-Q Plot 

The Q-Q plot, plots the observed quantiles, Q(P), against the theoretical quantiles 

Q*(P) where 

Q(p) = X, 

To calculate Q*(P), first calculate p where 

p = (i - 0.5) / n 

then Z(p) where Z(P) is the standardized order statistic from which Q*(P) can be 

derived using tables. 

Normal Test Application 

The software reads in a file of values and then assesses for normality using the 

described methods. There are no restrictions on the file although the software will take 

no account of numbers beyond the first 250 (The tests lose significance for large 

samples). The data is sorted and then read into fields in two records, one for the K-S test 

13l 



AppendixE 

and one for the Q-Q plot. The other fields in these records are calculated from this data 

(see above). Where the normal density function is required, tables are used (from file) 

with linear interpolation. 

Change ParaMeters 

Draw 0 - Q plot 

Draw Distribution 

Exit 

Fig E.1 The K-S statistic is outputted to the screen with a text message commeutiug on its 
significance. 

For the SMDS delay data, a plug in procedure has been added to sub sample 

according to parameters such as the time of day and the centile fastest packets (such as 

the 95% fastest or 5% slowest). This can be removed for the general case or perhaps 

modified to cater for other cases that might require sub sampling in a similar way. 

132 



AppendixE 

Upper Centile 

Lower Centile 

Start Date 

End Date 

Assess 

Fig E.2 These parameters can be modified to allow tests on sub samples from the delay data. 

The software outputs the K-S (or D) statistic and gives a text interpretation of the 

significance of this statistic. The user has options to view the Q-Q plot or the delay 

distribution. The Q-Q plot is drawn as described above, with the least squares estimate of 

the linear relationship superimposed to give a better indication of how close the plot is to 

being linear and hence the data to being normal. The delay distribution, it is emphasized, 

is a rough guide to the shape of the density function and shouldn't be used independently 

to assess normality. It is intended to supplement the K-S test and the Q-Q plot by giving 

further clues as to where problems with the sample might lie. 

133 



AppendixE 

Fig E.3 The Q-Q plot. The data should lie in an approximately straight line for normal distribution 

Fig E.4 The delay distribution. This is as a rough guide only, and shouldn't be used independently 
for analysis. 

134 



AppendixE 

Results 
The software was used to investigate the delay distribution of SMDS test packets. 

Data samples were taken from each test route, both for small (64 bytes) and large (1500 

bytes) test packets transmitted over a three week period from 5 January 1998 to 25 

January 1998. It should be noted that during this period there were instances of 

exceptional data that might effect the results. Results that were subject to exceptional 

data are shown in the tables in Italics. 

As was expected, there is a poor correlation between the SMDS delay data and 

the normal distribution. Even allowing for the large amounts of data available for 

sampling, it would be unwise to compose tests requiring the normality assumption for the 

delay data. The distributions tended to be skewed to the right with heavy tails and 

occasional outliers. Improvements could be made by considering only the 95% fastest 

test packets and by restricting the sampling to times of the day with similar load (i.e. over 

night). Although this might be of some use it severely restricts the scope for tests 

requiring the normality assumption. 

Test I 
Small / bafge Packets. Percentile 100% Call packets) . 

Time (of day) 0 to 24 (hours) 

Dates from 5 to 25 . (ofJan 1998) 

Bristol. 
:::,,!',::: 

2.117 2.429 1.518 1.238 

2.536 1.905 1.555 

2.065 2.61 1.402 

2.582 3.604 2.791 

1.886 1.5 0.6711 

135 



Appendix E 

Comments on Distribution. 

There is highly significant evidence to suggest that the data are not nonnally 

distributed. 

The distribution plot showed that the delay distribution is skewed to the right. 

Test 11 
SmaH-! Large Packets. Percentile _----'l~O""O""'%'----_ 

Time (of daY),---,O,,--_to 24 

Dates from,_--,5,,--_ to 25 

Binningham Bristol Edinburgh .. London Manchester 

Binningham 1.242 1.654 1.527 1.058 

•• 

Bristol 1.492 2.464 2.066 1.292 

Edinburgh 2.042 1.774 2.221 0.919 

London 2.86 2.477 3.461 2.712 

Manchester 1.216 1.215 1.471 1.25 ... 

Comments on Distribution. 

There is highly significant evidence to suggest that the data are not nonnally 

distributed. 

The distribution plot showed that the delay distribution is skewed to the right. 

The results for large packets closely mirror those for small packets. This was 

found to be consistent throughout the testing. 

Test III 
Small ! Large Packets. Percentile 95% fastest . 

Time (of day) ° to 24 

136 



AppendixE 

Dates from_~5!....-__ to 25 

Birmingham Bristol Edinburgh London Manchester 
".'j, >" . ,,' ., 

1 1, ....... 1."[ 
Birmingham'!! 2.066 2.732 1.627 1.203 

Bri~:ol 2.795 3.289 1.971 1.679 

Edinburgh 2.944 2.733 2.701 1.704 

London 3.617 3.216 3.7/3 2.686 

Manchester , 
2.532 2.175 3.\12 2.523 

Comments on Distribution. 

There is highly significant evidence to suggest that the data are not normally 

distributed. 

The distributions were varied. 

Test IV 
Small / ba!'ge-Packets. Percentile 5% slowest 

Time (of day) 0 to 6 

Dates from 5 to 25 

-
Birmingham Bristol Edinburgh London Manchester 

.. . '" . 

Birmingham 1.649 2.195 2.333 1.298 

Bristol 1.909 2.264 2.448 1.562 

Edinburgh 2.576 2.456 3.442 1.75 

London 1.654 1.402 2.105 1.011 

Manchester 1.061 1.275 2.005 1.357 

137 



Appendix E 

Comments on Distribution. 

There is highly significant evidence to suggest that the data are not nonnaIIy 

distributed. 

The distribution plot showed that the delay distribution has a very long and heavy 

tail. 

7.1.1. TestV 
Small / barge Packets. Percentile 95% fastest 

Time (of day) 0 to 6 

Dates from 5 to 25 

, . Binningham Bristol Edinburgh London Manchester 
," ,' .. 

Binningham 0.6516 0.5544 0.4424 1.289 

Bristol 0.8289 3.029 0.9215 0.9657 
. 

Edinburgh .. 0.6375 1.211 0.9/31 0.8099 

London 0.6238 1.421 1.467 1.05 

Manchester 0.9471 1.067 0.9993 1.596 

Comments on Distribution. 

There is some evidence to suggest that the data are not nonnaIIy distributed. 

Distribution plots varied. 

138 



j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 


