B Loughborough
University

This item was submitted to Loughborough University as an MPhil thesis by
the author and is made available in the Institutional Repository
(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

@creative
ommon

COMMONS D EE D

Attribution-NonCommercial-NoDerivs 2.5
You are free:
& to copy, distribute, display, and perform the wark

Under the following conditions:

Attribution. ¥ou rmust attribute the wark in the manner specified by
the author or licensor,

MWoncommercial. vYou may not use this work for commercial purposes,

Mo Derivative Works, vou may not alter, transform, or build upon
this work,

& For any reuse or distribution, vou must make clear to others the license terms of
this work,

® Any of these conditions can be waived if you get permission from the copyright
holder,

Your fair use and other rights are in no way affected by the above.

This is a hurman-readable summary of the Legal Code (the full license).

Disclaimer BN

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY
LIBRARY

i\ .
AUTHOR/FILING TITLE

——— i e 0 e e e S S ——— 4

1 o —— S -

| ACCESSION/COPY NO.
L Owol2g 4% ¥
~VOL. NO. cLass MaRk

TN |LoAn cofy

0401294781

IR

Loughborough University of Technology .
Department of Electronic and Electrical Engineering
Loughborough LE11 3TU '

STATISTICAL REPRESENTATION
OF A HYBRID PHOTOVOLTAIC- WIND SYSTEM
FOR CONTROLLER DESIGN

by

Joachim Baumgaertner

~ Supervisor: Dr. David Infield
Director of Research: Prof. I. Smith
Date: | 29.07.1995

Submitted in partial fulfillment of the requirements for the award of A Master of Philosophy
of the Loughborough University of Technology.
Copyright by J. Baumgaertner, 1995

"’% Loughborough
’ ¥ !v-\‘ ™ rrarqlw
by

ACC LT E T T —
O"co \q %7 $

Content ‘ I
CONTENT

1. INTRODUCTION 1-1
2. ENERGY SOURCES | 21
2.1 WIND ENERGY 2-1
2.1.1 Wind Speed Power Spectrum - Empirical Results 2-1
2.1.2 Tutbulence: The Micrometeorological Spectrum 2-2
2.1.3 The Macrometeorological Range 2-16
22 SOLAR ENERGY 2-18
22.1 Geometrical Aspects 2-18
2.2.2 Average Daily Solar Energy 2-22
2.2.3 Optimum Surface Orientation 2-26
2.2.4 Short- term Global Irradiance 2-27
2.3 BATTERY 2-37
2.3.1 Storage Technology 2-37
2.3.2 Lead- acid Battery 2-38
24 DIESEL GENERATOR 2-46
24.1 Fuel Consumption and Efficiency 2-46
2.4.2 Lifetime Considerations 2-47
3 POWER SUPPLY MODELLING 31
31 WIND TURBINE ‘ 3-1
32 THE PHOTOVOLTAIC ARRAY 3-2
3.2.1 The Equivalent Circuit - 32
3.2.2 PV Power Supply 3-4
3.2.3 Temperature Dependency 3-7
3.2.4 Photo Current and Efficiency 3-7
33 COMBINED RENEWABLE POWER 3-8
4, STATISTICAL SYSTEM MODELLING 4-1
41 DISTRIBUTIONS 4-2
4.1.1 Wind Speed Distribution 4-3
4.1.2 Wind Turbine Power Distribution 4-5
4.1.3 PV Array Power distribution 4-13

Content

Content 1I
4,14 Combined Power Distribution 4-20
42 TIME SERIES 4-25
42.1 A General Time Series Algorithm 4-25
422 Case Study 4-26
4.3 FIRST PASSAGE TIME 4-38
43.1 Time Series Approach 4-38
4.3.2 Markov Chain Approach _ 4-46
4.3.3 Time Series versus Markov Chain Approach - A Comparison 4-56
5. SUMMARY 51
6. APPENDIX I: STATISTICS 6-1
6.1 PROBABILITY DISTRIBUTION FUNCTIONS 6-1
6.1.1 Continuous Distribution 6-1
6.1.2 Discrete Distribution 6-2
6.2 FUNCTIONS OF RANDOM VARIABLES 6-3
63 CONDITIONAL DISTRIBUTIONS 6-4
64 THE AUTOCORRELATION FUNCTION 6-5
6.5 NORMAL DISTRIBUTION AND NORMAL PROCESS 6-6
6.5.1 Normal Distribution 6-6
6.5.2 Normal Process 6-7
6.6 RANDOM NUMBERS 6-8
6.6.1 Uniform Deviates 6-8
6.6.2 Transformation Method and Normal Deviates 6-9
6.6.3 Deviates of Discrete Distributions 6-10
7. APPENDIX H: PROGRAMME DOCUMENTATION 7-1
7.1 FUNCTIONAL SPECIFICATION 7-1
7.1.1 Getting Started 7-1
7.1.2° Programme Description 7-1
7.1.3 Bugs and Errors 7-10
72 TECHNICAL DESIGN 7-11
7.2.1 The File Structure 7-12
7.2.2 The Programme Structure 7-14

Content

Content oI
73 CLASS REFERENCE 7-18
7.4 GLOBAL FUNCTIONS 7-83
7.5 LISTINGS 7-92
7.5.1 Header Files 7-92
7.5.2 Source Files 7-134
8. REFERENCES 81

Content

1. Introduction ' 1-1

1. Introduction

This paper considers an autonomous, terrestrial energy supply plant applying renewable
energy sources. It presents a mathematical model whose purpose is to gain an in-depth
understanding of the impact of fluctuations of the wind speed and the intensity of the sun on
the power supply of such an energy system. Results could then be used to design a controller

that operates the system. The system with its four core elements is depicted in Fig, 1.1.

Fig. 1.1: Hybrid Energy System

They are a wind turbine, a photovoltaic array, a battery and a diesel engine. The controller
receives data from these components and manages them. The electric energy generated by

the system is provided for the user.

Combined Wind- PV- Diesel- systems do mainly compete with Diesel stand-alone systems,

Wind- Diesel- systems and the connection to the mains. These island systems are typically

Introduction

1. Introduction : 1-2

designed for a rated power of up to several 10 kW. They are supposed to operate on remote

sites where a connection to the mains is not given.

(1) Diesel Stand- alone systems are the most common systems for decentral energy
supply. Eventhough they are the cheapest option - as far as the investment costs are
concerned - they might not be the best. And this is for three reasons. First, a diesel
uses an energy source with a limited range. Second, the combustion of crude oil
products causes ecological problems. Third, in remote areas the price for fossil fuels
might be significantly higher than in urban areas, thus leading to a steep increase of
the actual cost of a KWh. Moreover, in remote areas the required regular service
might either not be asserted or costly.

(2) Wind- Diesel- systems are one option to cut down on the fossil fuel consumption.
Since the renewable energy supply (i.e. wind speed) fluctuates considerably, a diesel
generator is necessary to ensure high reliability. As high wind speeds and high solar
insolation are often complementary, it is supposed that the photovoltaic array may fill
in the gap when the wind turbine does not produce enough energy and vice versa,
thus justifying the additional investment of the photovoltaic array.

3) Comnection to the national grid, which is fed by conventional power plants. This
option has to be ruled out for many a site such as islands far away from the
mainland. Where possible at all however, the investment of the connection is likely
to be fairly expensive as the costs for it increase with decreasing population density.

Moreover, centrally fed mains with a large area extension are susceptible to faults.

Fig. 1.2 shows the system in more detail, It consists of a wind turbine and a photovoltaic
array as the renewable energy sources, a battery as an energy storage unit and a fossil fuel
generator (diesel engine) for backup in order to guarantee a power supply at all times. The
battery is supposed to fill in short- term gaps in the energy supply by the renewable sources,
thus smoothing the power supply function and reducing the number of diesel starts.
Depending on the load that has to be supplied, the load might be directly connected to the
DC- Bus or via a DCJAC- converter.

Introduction

1. Introduction 1-3

Fossil =
foel | . -
% generator o~
& z | AC-Load
8 [Y N
(lla;tger
Battery . Dis et
charger
¥ DC- Load
Photo- =
- voltaic = MPT .
anay

Fig. 1.2: Autonomous Wind- PV- System

Since both wind speed and solar intensity do vary considerably, the power supplied by the
renewable energy sources will vary too. Thefefore, the general problem in the performance
of renewable energy systems is the matching of energy production and load. As far as the
energy producing components, the PV array, the wind generator, the diesel and the battery,
are concerned, it is assumed that standard components are used, thus restricting the controller
to the interaction within the ensemble. The controller will therefore be in charge of the
charging and discharging of the battery, the start- stop- policy for the fossil fuel generator,
the maximum power traéking for the Photovoltaic array and its positioning, It is furthermore
conceivable to switch on additional loads if there is a surplus energy in order to reduce the
amount of dumped energy. These additional loads could produce storable goods as drinking
or hot water. To assist the controller in its management data will be fed in from ail
components in regular time intervals. Hence, it will be informed of the current wind speed,

current intensity of the sun, state of charge of the battery and the load demand.

Introduction

1. Introduction | _ - 1-4

The purpose of this paper is to provide a mathematical model that reflects this scenano and
is able to support the controller in its decision making. The focus of this model is the
mathematical formulation of the stochastic processes "wind. speed” and “solar intensity”,
They can be transformed by applying simple models for the wind turbine and the
photbvoltaic array into the stochastic processes “wind turbine pou}er" and “solar power”.
These algorithms allow to calculate time series, resuiting in a short term prediction of the
power supply, delivering data that can be used by the controller to decide on the best policy
in order to minimize the operational costs of the system. The point that should be stressed

here is that this model is a short term model which allows to plan ahead over time periods -

of the order of up to one hour by using hourly data from various sensors. This is supposed
to enable the controller to operate the system in an efficient way. For the best sizing of the
components, however, it is necessary to consider meteorological data of the site in question

over a longer period.

Physical aspects of the energy sources which the model is based on are discussed in chapter
2, followed by the discussion of the energy converters (i.e. wind turbine, photovoltaic array,
battery and diesel) in chapter 3. The statistical methods are then taken further in chapter 4.
It will focus on the probability distribution of the power supplied by the renewable energy
sources, followed by a section on the generation of synthetic time series of the power supply,
including both renewable energy sources and the battery. The last section of this chapter
discusses first passage time problems. The first passage time is the expected time when the
power surpasses a certain passage level for the first time. This is useful for instance in the
event that the renewable energy sources do not provide enough energy to meet the demand.
If it is expected that this will be the case for a longer time period it might be worth
switching on the diesel. If not, the power might as well be supplied by the battery in order
to avoid switching the diesel on and off too often. Here, the first passage time provides
useful information. Chapter 5, eventually, gives a summary by restating the main points.

The algorithms presented in this paper have been coded in C++ for a Windows 3.1
environment using the Borland C++ 3.1 compiler and the Borland Object Windows C++ 1.0

library. The relevant graphs in this paper have been created using Word Perfect Presentation

Introduction

1. Introduction 1-5

to which a data interface is provided by the program. The mostly interactive program is
described in the Appendix II, where a complete class reference and a description of global

functions are given.

Introduction

2. Energy Sources 2-1

2. Energy Sources

2.1 Wind Energy

2.1.1 Wind Speed Power Spectrum - Empirical Results

e 3

The spectral density function of the horizontal wind speed is largely dependant on the
location where the speed was monitored. The characteristics of different sites, however,
reveal distinctive similarities. A generic spectrum {[19]) is shown in Fig. 2.1.

b Sw(v)

t ; ; r z - : ' : —v/Hz
10® 107 10° 10° 10* 10%® 102 10 10° 10! v

, — o — . bt /5
108§ 107 10%; 10° 3 104 10° 107 \‘5 10t 10° 10?
1 year 4days lday 1 min

Fig. 2.1: Generic Wind Speed Spectrum

(1) Micrometeorological range
The peak in the high frequency range is caused by fluctuations called atmospheric
turbulence. The energy of the fluctuations is centered around a period of around 1
minute. They can be approximated by the Ornstein- Uhlenbeck process ([25]), a
stochastic model process. The micrometeorological range will be discussed in more
detail detail in 2.1.2.

(2) Spectral gap 7
A striking phenomenon of a typical wind speed spectrum is a spectral gap between time
periods of 10 minutes and 2 hours ([19]).

(3) Macrometeorological range

Wind Energy Wind Speed Power Spectrum

2. Energy Sources 2-2

Large- scale movements of air masses account for three peaks on the
macrometeorological side of the spectrum. The relative maximum at a diurnal time
period is due to different temperature gradients at day and night. This effect is likely to
be more distinctive at coastal sites as the air temperature on shore decreases more
rapidly during night time than off shore. Depressions and anti- cyclones usually occur
with periods of about four days which explains the second maximum of the spectrum.
Again the pattern here is that the peak will be more distinctive in oceanic climates
rather than continental. The peak at the one- year period in contrast is likely to vary
with the degree of latitude. It will vanish at sites in close proximity to the equator.

Some aspects of the macrometeorological range will be discussed in more detail in
chapter 2.1.3

The peak in the micrometeorological range allows a short term prediction of the wind speed.
Here, “short term” indicates time periods that fall into the spectral gap, i.e. between 10
minutes and one hour. Within this short term model a constant average hourly wind speed
and standard deviation are assumed. These macrometeorological, hourly data can be derived
from measured data. So far, what is said here, only applies to the wind speed distribution.
In chapter 2.2.4 it will be shown, however, that the solar power spectrum too, can be
seperated into a short term and a long term range. Hence, it will follow the same pattern: For
short term considerations a statistical model will be used, whereas hourly values for the
beam intensity are taken from a data feeder. Usually, the data feeder will hold current data.
For optimization purposes, however, it could as well hold historical data taken from a
specific site over a week or a month.

2.1.2 Turbulence: The Micrometeorological Range

2.1.2.1 Definitions

Turbulence includes all fluctuations with frequencies higher than the quasi- steady mean

wind speed variation. If we assume the mean wind speed to be constant over a sufficiently

Wind Energy Micrometeorological Range

2. Energy Sources 2-3

short time period, v(t) = v, the wind speed of the fluctuation will be defined by ([19], 2.15)

V{(t) = V(t) 4]
(2.1)

the difference between the instantaneous wind speed v(t) and the mean wind speed v. The
variance of the turbulence will then be

= -2 d
Var(V) _j;(v WAf(vdv 22

where f,(v) is the probability density function with respect to the wind speed v. The index v
signals that V is the random variable. It is worth noting that the argument of the variance
operator in (2.2) is capital V. Throughout this paper random variables will be referred to by
capital letters, their realizations by small ones'. Given n realizations of the instantenous

speed, v; (j=1..n), the empirical variance of the turbulence can be estimated from

ot = 1 3 v, - P?
v n-1,5::(f " 2.3)

The turbulence intensity is defined as the quotient ([19], 2.17)

a‘l’
Iv=__'—
1 4

(2.4)

2.1.2.2 Turbulence and the Ornstein- Uhlenbeck Process

Wind fluctuations over a restricted time interval can be represented by the Ormnstein-
Uhlenbeck process, which also describe;s the velocity of free particles in Brownian motion.
The random variable related to the velocity will be called V. In order to condense and

simplify the formulas involved let us introduce the normalizations of the time axis,

IRefer to chapter 6 for further discussion of random variables and distribution
functions.

Wind Energy Micrometeorological Range

2. Energy Sources 2-4

r =Bt
{2.5)
with the time constant §,, and the normalization of v,
E() = ny -v
_ o 2.6)

with the deviation 6. Both parameters t and £ are thus dimensionless and their significance
will prove to be self- explanatory after the following remarks. The random variable that
stands for the normalized process will be E. It is beyond the scope of this paper to elaborate
on the physical details of the Omstein- Uhlenbeck process. The O.U. - process is a
continuous time Markov process whose probability density function @(£,t) has to satisfy the
Fokker- Planck equation, which has the form

aQ(E’T) = azg(g’f) +,.§_
—— OF [EQ(E:"')]

ar e @7

in the special case of the O.U. - process. The value g(&,t)d§ is the probability that, at time
1, the wind speed lies in the interval [£,£ +d£] subjected to an initial condition p(£,0) = h(§)
at time t = 0. A solution will be given later.

It may be noted that a discrete realization of an Ornstein- Uhlenbeck process is the Ehrenfest
model of diffusion ([14], p.343), which can be interpreted as a diffusion with a central force.
That is a random walk in which the probability of a step in one direction varies with the
position,

(i) Power Spectrum and Autocorrelation Function

The power spectrum of the Ornstein- Uhlenbeck process as a function of the angular
frequency w,

2

5. = o M
EE(O) mz + ﬁz (28)

Wind Energy Micrometeorological Range

2. Energy Sources 2-5

is Lorenzian with the corresponding autocorrelation function?

Ryi(r) = exp(-|r])

2.9)
Please bear in mind that t in (2.9) is normalized via (2.5). In the frame of the description of

wind turbulence it is sometimes referred to as Dryden spectrum. For the sake of simplicity
we will usually refer to the autocorrelation function (2.9) via the short hand r = Ree(t) orin
its unnormalized form r, = Ree(B,0).

(i) The Probability Density Function

The probability density function p(&,t) is the solution of the Fokker- Planck equation (2.7).
In this section we assume boundary conditions to satisfiy p(e,t) = p(-=,t) = (. These are
two physically sensible conditions to avoid infinite wind speeds. In the first step the special
initial condition p(£,0) = 8(§ - E,) is considered. In this case, 0(,7) = 0(§.7;8,), is the
probability density under the condition that a wind speed £, has been observed at time © =
0. The solution is ([20], eq.3.40) given by

i 1 (E - By
Er5E,) - . -———]
R s xp[2 1-p 2.10)

This is identical to the probability density function of a bivariate standard normal probability

density function with correlation coefficient r (compare with equation 6.23). In fact,
o(&,7;E,) can be thought of as a Gaussian curve whose peak wanders with t towards £ = 0
while becoming broader. Other methods of solving the Fokker- Planck equation are discussed
for example in [34]. Actually, (2.10) can be interpreted as Green's function of the given
boundary problem; Consequently, the probability density function for any initial condition
2(£,0) = h(E) can be obtained by convoluting Green’s function with the initial condition:

]

e(E,7) = <& 7;E) | ME)> = _L e(&,7; &) KE)dE, @.11)

ZRefer to chapter 6 for a discussion of the relationship between autocorrelation
function and power spectrum of a stochastic process.

Wind Energy ‘ Micrometeorological Range

2. Energy Sources 2-6

Equation (2.11} is actually generally valid: Green's function gives the solution of a boundary
vatue problem for the special initial condition h(§} = 8(£ - &). The system response for
another initial condition can then easily evaluated via the convolution integral. Hence,
Green's function depends on both the partial differential equation and the boundary values.
It is worth pointing out that are different types of Green functions, depending on the type of
differential equation and on the formulation of the boundary conditions, thus restricting the
generality of (2.11). In this paper, however, we only come across the type described above.

We might as well expand o(%,7;&,) as (using a generating formula in [26], p.252)

LS.
Gl(EsEoﬂ') = -I—E Jz_ ﬁ e e 2

(2.12)
\/i'n' =0 27

where H, is the Hermitian polynom ([26], p. 249). The dependencies revealed by this
formula are characteristic for diffusion processes: The time T appears as a linear term in the
exponent, a fact that makes clear that the process is irreversible, as it does not produce the
same values for negative times. In contrast, solutions of the well known wave equation,

where a second time derivative occurs, are invariant under time reversal.

(iii) Equilibrium Distribution
The equilibrium distribution,

e(E) = lime(E,r;E) = ——l——eXP(—%EZ)

o = 2.13)

is simply the standard normal distribution (equation 6.20). Bearing the normalization in mind
we conclude that the stationary process V is normally distributed with variance 02 and mean
wind speed v. If ®(x) denctes the Gaussian distribution function (equation 6.20) the
underlying disttibution function is simply Fg(£) = @©(E). Hence, the expected time fraction

7., When the wind speed £(7) exceeds a given value £, can be determined by

Ta = PE>E,) =0(-E,)
2.14)

Wind Energy Micrometeorological Range

2. Energy Sources 2-7

where p stands for “probability for”.

(iv) Level Crossing
The level crossing analysis of the O.U.- process gives an answer to the question of how
frequently a stochastic process crosses a given level. The situation is illustrated in Fig. 2.2

for the normalized process =.

A
£(t)

&0

Fig. 2.2 Level Crossing

We will for the moment set §, = 0, thus reducing the problem to a zero crossing problem,
The probability p,(t,) that the zero level will be crossed by the process Z in the time
interval © € [0,7,] at least once when only crossings from negative to positive values count
(dots in Fig. 2.2), is equal to

1 - 20 |
po(‘f) ZP(Z(T) < 0) » Z(1) E(r) (2.15)

Wind Energy Micrometeorological Range

2. Energy Sources 2-8

In (2.15) the random variable Z could as well be the product Z(7) = Z(0)E(t) as it is only
the change in sign of E from time 0 to t which is of interest here. We prefer thc- quotient
as in (2.15) since the necessary integration (compare with equations 6.12) is straightforward.
The factor Y2 in front of p, stems from the fact that only a half of the crossings are from a
state below to a state above £. The distribution function F,(z) of the quotient Z of two
normal processes is given by ([30], eq. 6.46) |

Z - r

Vi-r (2.16)

F(z) = 1 + larctan
2 T

with autocorrelation coefficient r (2.9) , thus resulting in a zero crossing probability (now

writing T instead of T,)

pr) = 5 FO) =~ arceos (r()
r

(2.17)
Extending the theory to any &, the crossing probability will be ([30], 11.119)
Ez
2e(7) = pyl(7) exv(*—z—-] (2.18)

Different approaches are presented in [30] (p. 345) and {25] (p. 346) reaching at the same
results.

(v) Linear Prediction
Linear prediction gives an estimate for a future value £(t + A) of the O.U. - process,

represented by the random variable Z, as a multiple of the instantaneous value £(t). The

estimator can be obtained by evaluating the Yule- Walker- equations ([30], eq. 13.6) and it _

is

E(r+1) = e Er)
. 2.19)
where £ denotes the estimator of €. This reflects the fact that the process drifts towards the

mean value at a rate proportional to the distance from the mean. Although it is a very simple

method of prediction it will not be used in this paper as it can not be applied to time series

Wind Energy Micrometeorological Range

2. Energy Sources | : 2-9

or first passage times.

(vi) First Passage Time Problem
Suppose we want to determine the expected time T, the O.U. - process needs to reach the
state §, from the initial state &, at T = 0. The situation, which is called a first passage time
problem, is illustrated in Fig. 2.3.

A

E®

&

&o

Fig. 2.3 First Passage Time Problem

Until further notice we will assume &, > £, Mathematically speaking we wish to calculate

the distribution function Fp,(t) of the random variable T, that stands for the time the process

crosses the line £, for the first time after having started at level £,. Fr,(T) can be expressed
by the conditional probability

Frir) = p(I; s 7) = p(§,8p7 |B(N<E, VEEDT))
(220
This problem can be solved in a very efficient way by examining the diffusion process in the

Wind Energy Micrometeorological Range

2. Energy Sources 2-10

half space. Here, one boundary condition will be p(§;, T) = 0, whereas the other remains in
the infinite space, p(-«,) = 0. Hence, the; boundary £, acts as an absorbing wall. Particles
reaching the §, - level for the first time will be removed and will not appear anymore in the
half space § < £,. Green's function of this boundary problem is given by

1| 1(5—50152] (1(5-(251—Eo)r)’]]
G,(E,EpT) =—-——-exp[———-——— ~exp| -=
T el (2 1-p 2 1-£)| e

5(¢ - &) % /

EO El / / 7 >
7
7

7 '3

Fig. 2.4 Diffusion in the Half Space

7

The solution can be interpreted as the diffusion of two fields, punctual symmetric to the
boundary £ = £, ,where they compensate each other. (This way of calculating the first
passage time has been applied to the Brownian process in [20] (p. 447)). This is illustrated
in Fig. 2.4. In the space § < El is the original field while the sub space £ > £, is occupied

Wind Energy Micrometeorological Range

2, Energy Sources 2-11

by the imaginary field. As in (2.11) the solution for the special initial condition p(£,0) =
8(E - §,) is 0(E,T) = Gy(E,E0,7). The number of particles left in the ensemble at time T can
consequently be obtained via integration

£
i E-Er) o B-@E-E)r)
ME,m) = [o(Er)dE = | L =8]_q)[1) |
l *j’: | [\/1 - i) @.22)

The distribution function in question, Fp,(t), will then of course be

Fn(”') =1 - N(anf)

(2.23)
Applying (2.21) we obtain the distribution function of T,
i -of B8] of o0t
N\viF iz) | 2.24)

which conveys the limits F;,(0) = 8¢ ¢1 (8 denotes the Kronecker symbol) and Fr(«) = 1,
as it has to be. The density function f;,(t) with respect to T will be attained via the time
derivative, and it is

2
Irfr) = 1 [(El ‘Eo)exp(; (Eﬂr—le)]
(1 1‘2)2 (2.25)
{1 GE- (25l Eo)r)’\ :
(251 Eo Elr)exp(2

The expected transition time {average mean time for the process to get from £, to £, for £,

> E,yis

EIT] - jo' t £ dt 226

Looking at f,(t) it is obvious that the expected time exists as the integral (2.26) converges.

Wind Energy Micrometeorological Range

2. Energy Sources 2-12

To simplify the numerical evaluation the substitution r(t) = exp(-B,t) helps to extract the

representation

1 _Ey2
ﬂn=;Llﬁf—ﬂﬂukwﬂwwflﬁiﬁL]+

V2 q- z)% 2 1-p
(2.27)
1 (E] —(ZEI-EG)I')Z]]
28, -E,- - dr
§ E] Eq EII')QXD(2 -2

The emergence of the small value € is necessary as the integral is an improper one. It
reminds one that the above proposed substitution is not permitted at the singularity r = 0.
The results for £, > £, are dual to the above results as the same Green function holds true.
The number of particles left in the ensemble is accordingly

&

NE,) = [oEr) dE = - | o(Esr) dE
l 'E{ -'[o (2.28)

In analogy to the first case we denote the random variable that stands for the transition time
with T,. Its distribution function is

Fofr) =2 — Fpfr)
‘ (2.29)
and therefore the expected value E[T,] = - E[T,]). It is actually not only formally necessary

to split up in two parts depending on the sign of (£, - £,). The physical background of this
is that diffusion processes are not time reversible. This finds its expression in the time
derivative of only first order in the Fokker- Planck equation. In the case of wind speeds the
very result was expected anyway. Suppose the wind speeds £, and £, are both positive. The
equations déveloped here now say that it takes longer (on average) to get from a smaller §
to a bigger one than in the opposite direction. Summarizing the results in a closed
representation we can note the expected average transition time from &, to &,

E1T] = sign(§, - E) FLT;]
(2.30)
by applying the well-known signum function.

Wind Energy Micrometeorological Range

2. Energy Sources 2-13

A different approach to the expected average transition time has been carried out in [32]
. wﬁere Markov chains were used to determine the expected value. The technique described
above is only applicable if the random variable is normal distributed, which is true in the
case of wind speed fluctuations. For other distributions this method seems not to be feasible.
The Markov- Chain- technique on the other hand is more general and adaptable to any type
of distribution. We benefit from this in chapter 4.3 where two calculation techniques are
presented, which are generally valid. As far as the wind specd distribution is concemed,
however, the evaluation of integral (2.27) promises to be more efficient than the Markov-
chain- algorithm. It can, however, not be extended to the wind turbine power. The analytical
approach is therefore not further pursued.

(vii) Two Sided Boundary Value Problem
Suppose we want to calculate the mean time t, = E[T,] the O.U.- process = will stay within

the boundaries §, < €, < £, starting at £, at T = 0. The random variable that represents the
time the process lasts within the band is denoted T,.

40

&,

VI

0 : T T

Fig. 2.5 Two Sided First Passage Time Problem

Wind Energy Micrometeorological Range

2, Energy Sources 2-14

The situation is shown in Fig. 2.5. Formally we can take the same way as before, assuming
now two boundary conditions, o(£,,t) = 0 and g(E,,t) = 0, and the initial condition o(£,0)
= §(§ - &,). Again, the problem will be solved by Green's function, G,(£,8,,7). The
expected transition time can then be computed by applying the same method as before.
Green's function G; however cannot be obtained as easily as in the case of a diffusion in the
half space. The two- boundary values problem results in a discrete eigenvalue spectrum and
Green's function is to be expected of the form

o .

E_El
Ez"El

2

GEE) = T 2
2 1 a=

sin{mr) sin(mrgzo—:éz—] exp{ -70 (£.£,7) | @31

This statement satisfies both boundary conditions and the initial condition which can be
easily verified by bearing the completeness of the sine- function

o~ . . N = ST -
2 Z} sin(zr {) sin(aw) = 8 -{) 2.32)

in the interval { € (0,1) (n integer) in mind. Obviously, this is not an efficient method of
calculating the expected time. The methods discussed in chapter 4.3, however, can be easily
adapted to this problem.

2.1.2.3 The Kaimal Spectrum

Empirical results show that the Kaimal spectrum ([25], eq. 16.15)

2
G0
S (@) = — 14
@) 1+ e’ (2.33)

with the coefficients

Wind Energy Micrometeorological Range

2. Energy Sources 2-15

¢ =a(
_fLY
@ ”(2«-)
b = 1.67
a = 0.164 2.34)
¢ =L _
0.041 v

is a better representation of wind turbulence than the Dryden Spectrum (2.8). Its

autocorrelation function

=1
Ryl = = ‘])' Spl@)cos(w Hde 235

can be obtained via Wiener- Chintchin transform (eq. 6.16), where the time axis is not
normalized. This equation is used in order to determine the constants o2 and $, in the

autocorrelation function of the O.U. - process, which is in the unnormalized form

R (D =e?' 0
(2.36)

It is worth pointing out that the Kaimal spectrum was empirically found. The above
developed theory however only holds for a Lorenzian spectrum with autocorrelation (2.35).
In order to use the results of the statistical theory based on the Lorenzian spectrum we
approximate its parameters o2 and P, as functions of the Kaimal parameter o2, and {. As the
autocorrelation function at t = O represents the power of the process, both autocorrelation
functions (2.36) and (2.35) have to return the same value at t = 0, thus leading to the

equation

(2.37) -

!
..ﬁ
E

"'—\

Wind Energy Micrometeorological Range

2. Energy Sources 2-16

The integrand in the second expression is not dependent on any parameters. This integral can
be solved analytically ([8], 1.1.3.4), thus leading to the surprising result

o = 1735 o},
(2.38)

To estimate the coefficient P, , the autocorrelation of the Kaimal spectrum is to be
calculated at another point ¢,

1
- -2 1n
B, /

ﬁ“zu} cos{w f) Jo
w z [}

& 1+ czob (2.39)

The integral has to be numerically calculated for a given t and ¢,. In [25), p. 347 it is

suggested to select t = 2s, as we are interested in short term fluctuations.

2.1.3 Macrometeorological Range
2.1.3.1 Mean Wind Speed Distribution

The horizontal hourly mean wind speed v is said to be Weibull- distributed with the
distribution function ([19], eq. 2.14}

T 1 {7V
9 =p(Vsy -1 exP[(?]] (2.40)

which can be adapted to a given wind site by varying the shape parameter k and the scale
parameter ¢. These parameters typically hover in the range of k € [1.7, 2.5] and ¢ € {1.15,
1.18] respectively.

2.1.3.2 Mean Wind Speed Profiles

The horizontal wind speed varies with height. If the mean wind speed v is monitored at
height Z the mean wind speed at height z can be concluded from the formula ([191, eq. 2.5)

Wind Energy Macrometeorological Range

2. Energy Sources 2-17

m(i) + 5752
) h

Wz) _ %
w(2) 3 2
m(z] 5752 04n
u
B =
6f

Here, h is the gradient height, f the Coriolis parameter, u, the friction velocity and z, the
roughness length. The Coriolis parameter depends on the location, It is f = 11.5E-5 s for the
UK. Values for z, are given in [19]. The friction velocity varies with surface roughness and
w1th overall wind speed. If the friction velocity u. is unknown the simpler form ([19], eq.
2.4)

(%)
vz __\4
w2 m[2) ' (2.42)
z
may be applied.

Wind Energy Macrometecrological Range

2. Energy Sources 2-18

2.2 Solar Energy

The intensity of the solar irradiation directiy outside the earth's atmosphere is almost constant
at around 1350 W™ .Bventhough this value varies up to + 3% due to eccentricities in the
earth’s orbit and fluctuating sunspots, it is stable enough to justify the name solar constant.
On the earth’s surface the peak solar intensity hovers around 1 kWm? on a horizontal
surface, provided the sun is at its apex on a sunny day. In case the latter conditions are not
fullfilled, the solar radiation experienced on a surface will not be as big. In general, it will
depend on the position of the sun and the clarity of the atmosphere. These geometrical
aspects will be covered in 2.2.1. The actual solar power on a tilted surface as a function of
the clearness of the sky and the geometry will be calculated in 2.2.2. Chapter 2.2.3 is
devoted to a brief discussion of the optimum surface orientation. It is worth noting that the
solar power evaluated in 2.2.2 is a value, averaged over a longer time period. These values
are. good to estimate the solar energy received over a whole year at a selected site. They are,
however, not suitable for on-line control schemes. Though, the introduced terminology and
techniques will form the starting-point for the discussion of the statistical characteristics of
short term fluctuations in chapter 2.2.4.

2.2.1 Geometrical Aspects
22.1.1 Determination of the sun' s position

The angle under which the sun is observed from a point on the earth’ s surface is affected by
the earth’s daily rotation, expressed by the solar hour angle, and the annual rotation of the
tilted earth, expressed by the declination angle and the observer’s latitude. The orientation of

the sun can then phrased in terms of the solar altitude and azimuth.

() The solar hour angle

The solar hour angle Q expresses the daily rotation of the earth, As the earth rotates 360°
within 24 hours, every hour adds another 15° to the solar hour angle. When the sun is in its
highest point in the sky, the solar hour angle is zero (“Solar noon”). Angles before noon

count negative, after noon positi\}é. It is worth bearing in mind that the solar angle is not

Solar Energy Geometrical Aspects

2. Energy Sources 2-19

identical with the local time. For a conversion from solar hour angle values to the local time
the longitude of the site in question and the local standard time have to be considered.

(ii) The declination angle

The declination angle & is the angular position of the sun at solar noon with respect to the
plane of the equator, and it varies because of the earth's tilt of 23.45° from -23.45° to
+23.45°, Hence, the declination angle depends on the day of the year, n € {1, 365], and it is
(%), eq. 3-8)

5 = 2345 (-"'—) sin{Zw&—”—]
180 365 (2.43)

on the northern hemisphere (in rad - not degrees). The declination angle reaches its peak at
summer solistice and drops to its negative peak at winter solistice. It is converse on the

southern hemisphere.

(iii} The latitude
If the sun is observed from a site other than the equator, the observer’s latitude 6 has to be
considered, as the sun's highest altitude decreases with 6. The resulting solar-noon altitude

angle is Qo = Yam - O + 6.

(iv) Solar altitude, azimuth and zenith angle

Solar Energy Geometrical Aspects

2. Energy Sources 2-20

Fig. 2.6 Solar Altitude, Azimuth and Zenith Angle

The oriehtation of the sun in the sky can be phrased in terms of the solar altitude ¢ and the
azimuth angle of the sun a. The altitude angle measures the angle between the line from the
observer to the sun and the line to the horizon (compare Fig. 2.6). The solar azimuth angle
gives the sun’s angular distance from due south. An orientation to the East (as in Fig. 2.6)
counts negative, West counts positive. Hence, azimuth angles from sunrise to solar noon are
negative, while angles from solar noon to sunset are positive. The azimuth angle is obtained
from ([9], eq. 3-4)

sine = sin@® sind + cos@ cosd cos{}

(2.44)
The altitude is calculated from ([9], eq. 3-5)
sing = -.<cosd sin{
coso (2.45)

Solar Energy Geometrical Aspects

2. Energy Sources 2-21

The complement of the solar altitude angle, the zenith angle, is defined as

0,=%-—0

(2.46)

2.2.1.2 Sunrise tmd sunset

As the solar altitude angle is restricted to values o € [-90°,90°] equation (2.45) is only valid
for solar hour angles in the interval Q € {Q,, Q.] where Qg denotes the sunrise angle and
Q,, the sunset angle. Substituting o = = 90° into (2.45) leads to the sunrise angle Qg = Q,
and sunset angle Q, = - Q, for horizontal surfaces, where

| Q, = arccos(-tané tand)

2.47)
. For a tilted surface, however, equation (2.45) does not hold true.
Fig. 2.7 Tilted Surface
Solar Energy Geometrical Aspects

_;

2. Energy Sources 2-22

Suppose we have an array that is inclined to the horizontal by an angle P (compare
Fig. 2.7). The angle between the projection of the normal of the plane on the horizental and
South is o, the azimuth angle as introduced above, so that ¢ = ¢ is due-South, ¢ > ¢ an
orientation towards the West and &« < { an orientation towards the East. In contrast to the
horizontal surface, the magnitudes of the solar angle for sunrise and sunset are not equal.
They can be caleulated by evaluating ([12], 2.2.15)

Q, = —min{ﬂ_, , arccos[—ab+ sign(a)sin (@) sin(B)y a* - b* +1] }

a% +sin? (@) sin*(B)

Q, = minj Q, arccos(_ab ﬂgn(a)sm(a)sm(gwa ~-b*+1]} (2.48)

2 +sin® (@) sin® (B)

with the abbreviations

056 cosP + sin@ coser sinf
tand (sin@ cosf - cos@ cosa sinf) (2.49)

a
b

In case the surface faces due south (P = 0), the magnitudes of sunset and sunrise angle will
be the same. Substituting § = € into (2.48) leads to a sunset angle

Q, - min{ 2, , arccos(-tan(@ -B) ms)} (2.50)

2.2.2 Average Daily Solar Energy

Empirical solar radiation data is mostly data for horizontal surfaces. That is, the monthly
average daily total radiation on a horizontal surface, H, is measured. If H, denctes the
monthly average daily total radiation directly outside the earth’s atmosphere (i.e. the
insolation that would be experienced without the earth’s atnosphere), the clarity index K can
be defined by

Solar Energy Average Daily Solar Energy

2. Energy Sources 2-23

k-

H, 2.51)

which is the quotient of H and H,. This coefficient is based on measured data depending on
the location and the month. The sunlight received by a horizontal surface can be divided into
two parts. First, the direct beam radiation, which strikes the surface from one angle only -
directly from the sun. Second, the diffuse light, which is the proportion of light that is
absorbed or scattered by air molecules, water vapor dust while passing the earth’s
atmosphere. Diffuse light approaches the horizontal surface from almost any angle. Hence,
the monthly average daily total radiation on a horizontal surface can be written as a
superposition of Hy, the direct or beam radiation, and H,, the diffuse radiation:

H=H, + H,

(2.52)
Light which approaches a tilted surface may as well be light reflected upon the ground (other

than the array surface). The conversion of the monthly average daily energy on a horizontal
surface, H, can be converted to the monthly average daily energy on a tilted surface, Hy in
two steps. This is in so far important as only values for the horizontal surface are available.
(1) Estimating the diffuse light

Given an observed value of H, the diffuse radiation term in (2.52) can be separated by a
specific correlation function. For latitudes 0 between 43°N and 54°N the transformation
([29], eq.3) '

1.557 - 1.84K , 035 s K < 0.75
K, =10.177 L, K> 075

(2.53)
1.0 - 0249K ,0 = K<035
is supposed to‘be accurate, where
H
K, = 4 _
/4 (2.54)

is called diffusion index in analogy to the clarity index defined in (2.51). For other latitudes
similar formulas have been developed (for instance [17]). Having calculated the diffusion

Solar Energy Average Daily Solar Energy

2. Energy Sources 2-24

term H,, the beam radiation H, can be worked out from (2.52).

(i) Radiation on a tilted surface
The total hourly radiation on a titled surface is (the index T connotes “tilted”)

Hy=Hy,+ H, + H,

_ (2.55)
It differs from (2.52) only in the additional term H,, representing the reflected light. In the

following we express these terms as functions of H, the hourly total radiation on a horizontal

surface, and the introduced geometrical magnitudes.

Fig. 2.8 Radiation on a Tilted Surface

We will first deal with the direct radiation term. The normal component @, of the
intensitiy @, of the incoming light beam (compare with Fig. 2.8) on a tilted surface can be
obtained from ([12], eq. 2.2.9, 2.2.10)

Solar Energy Average Daily Solar Energy

2. Energy Sources 2-25

cosT .,
cosD, (2.56)

®,r, = P,c0s8, =D,

with

cos®, = sind sin(@-B) + cosd cos(8-B) cosQk

2.57)
Here, ®,, is the normal component on the horizontal surface. Equation (2.56) is a good

approximation unless large differences between ¥ and 9, have to be considered. Otherwise
the Bidescu- formula ([2], eq. 10) should be used, Let R, denote the ratio of the average
daily beam radiation on a tilted surface to that on a horizontal surface,

Hyr

Rb =
H, (2.58)

With the different solar hour angles for sunrise and sunset, (2.48) and (2.47), the ratio R, for
any tilted surface with slope angle B and azimuth angle « is obtained from ([12], eq. 2.2.14)

a(Q Q) + b (sin(Q,)-sin(,) - ¢ (cos({,) —cos(£2))

R, =
i 2{cos® cosd sinQ}, + O sind sind)
a2 = sind (cosP sind — cosa sinf cosf) 2.59)
b = cosd(cosd cosp + sind sinfB cosar) :
¢ = cosd sinf sina

In the preferrable situtation that the solar array is facing due south (¢ = 0} R, can be

evaluated from the simpler representation (with ', as in (2.50))

cos (@ -B)cosd sin}, + Q, sin(8-B)sind

R, =
b cosd cosd sinQ, + Q, sind sind (2.60)

As far as the diffuse radiation on a tilted surface is concemed, an isotropic distribution of the
diffuse radiation over the hemisphere is assumed. The diffusion term can be attained from
({12}, eq. 3.23)

g,-g,d +2cOSB) : e

Solar Energy . Average Daily Solar Energy

A \

2. Energy Sources 2-26

which takes into account that the tilted slope sees only a portion of the hemisphere. H, is the
diffusion term of the horizontal surface. o
The last term in (2.55) is the reflected light portion. The energy of the reflected light is
dependant on the ground's abilitiy to reflect, a property which may be represented by the
albedo factor @. The albedo usually ranges from 0.1 (asphalt paved roads) up to 0.9 (snow).
Given the albedo, the diffusion term can be calculated from |

B =@+ &) (l '2‘3053 (2.62)

Substituting equations (2.59), (2.61) and (2.62) into (2.55) results in the monthly daily total
radiation on a tilted surface:

H.= HR. + H (1 + cosB) + o(H, + H) (1 - cosf)
T 4 T3 b DT 2.63)

Finally, the ratio of monthly average daily total radiation on a tilted surface to that on a
horizontal surface can be defined as

H,

1 + cos
R=?—(1—Kd)kb+K4[S B

Y., of1 - cosB)
) 9(2) 2.64)

At the end of this section it is worth pointing out that the calculus presented here applies to
monthly averages. It is assumed that clouds are uniformly distributed over the sky. Drifting

clouds are not considered in this technique.

22.3 Optimum Surface Orientation

Apparently, the maximum amount of direct-beam insolation is experienced by a surface
whose normal is parrallel to the incoming light. In order to achieve this optimum orientation
it must be possible to rotate the surface around two axes, namely the tilt and the azimuth
angle, which requires two motors. Usually, the additional energy obtained by a two- motor
option is marginal and does not pay off. Hence, the second best option is to fix the surface,

so that it faces due south and keep the slope angle flexible. In case that there is no

Solar Energy Optimum Surface Orientation

| A

2. Energy Sources 2-27

* possibility to move the array at all, the surface would obtain the optimum amount of direct-
beam solar radiation over a year, if the tilt angle was equal to the site’s latitude, Tilting tlie
surface up, on the other hand, causes the diffuse light portion.to decrease. The annmal
optimum surface at sites with humid climates is therefore about 10% - 25% less than the
latitude ([9]). The last statement is backed by an experimental investigation ([23]), in which
a tilt angel of 30° is suggested for a location at 48° north. |

2.2.4 Short- term Global Irradiance
22.4.1 Probability Density Function

Similar to the wind, the solar insolation is a stochastic process that reveals a distinctive
short- term irradiance process, a phenomenon we might call turbulence by borrowing the
word from the analysis of the wind. The short- term (5 minutes time average values) solar
irradiance has been modelled in a paper by A. Skartveit ([40]). We will cite from this paper
throughout this section unless otherwise specified. The objective is a probability density
function with the same functionality as in the case of wind turbulence, now for the intra-
hour radiation. Again the pattern hete is that we have a stochastic model of the radiation for
a time period of an hour.

For the purpose of the short- term solar irradiance model the average root squared deviation

o = | oK)+ (KK)
« 2 (2.65)

will be defined. The coefficient K| is the clearneass index as defined in (2.51} at the hour
with index j. The average root squared deviation is hence a weight function that takes into
account the changes of the clearness index from the precedent hour to-the hour in question
and further on to the subsequent hour. Within the 5 minutes developmental sample the (i.e.
for 5 minutes time average values) observed distribution of the intrahour standard deviation
g, is Weibull- distributed with the density function

p(s) = ay(@s)’ " exp(-(as)7)
(2.66)
corresponding distribution function

Solar Energy ' Short- term Global Irradiance

2. Energy Sources . 2-28

F(s) =1 - exp(-(as)7)

(2.67)
and the coefficients
@ =T(1+1)
B ¢
s=2k
o (2.68)

o* = 0.87K%(1-K) + 0.396/K
Y = 0.88 + 42(o*)?

Here, I'(x) is the well known gamma function. The coefficient ¢, must be estimated by
chosing a random number {, which is supposed to be evenly distributed between 0 and 1,
instead of F(s). Then solve (2.67) for s,

5=~V ma-
@ (2.69)

and eventually determine o, with (2.68). Given the hourly mean clearness index X (capital
K) and the standard deviation ©,, the distribution of short term k- values (lower case k) is

phrased in terms of a scaled clearness index x,

g .
Kooy — Ko ‘ (2.70)

X =
and standard deviation o,,

Y kg~ kg em
The minimum and maximum values of k are given by the empirical formulas

ky, = max{0 , (K-0.03)exp(-1105") - 0.09 }
ko = (K-15)exp(-90y’) + 15 @.72)

The probability density function of the scaled index x is now described by a linear

Solar Energy Short- term Global Irradiance

2. Energy Sources 2-29

combination of two Beta- distributions’. To clarify the following formalism we state the
definition of the incomplete Beta- function ([41], def. 58:3:1)

.
B(a,B,x) =fﬁ-1(1—t)ﬂ-1 dt ,0<x<1
0

(2.73)
and its normalized form ([41], def. 58:1:1)
B(a,B,x) -
¥{ oy = ’ B ’ = B s 91
(a,8,x) Blap) («,B) (a,8,1) 278

B(«,f) is called Beta- function. Applying this notation the probability density function of the
scaled index x is

£(0 = wGer? (-0 + (1-m Gx*7 (1-027
(2.75)

with the coefficients

a = max{l s (1 —KJ)(%)’ —xj}

1 -
b, - max{l , _;2—'9{9(1 -x) -0’ } < @76
j . .

C} = (B(ap bj))-l

and
= x, - T .
Lo 2.77)
with

*A random variable X is said to be beta- distributed with the parameters o and B if the
corresponding probability distribution function is F(x) = I(a,,x).

Solar Energy Short- term Global Irradiance

2. Energy Sources 2-30

K = K(0.0l + 0.98exp(-6003'3))

x, = (K-1){0.01 + 0.98exp(-1107)) + 1

o: = 0.014 (2.78)
o7 = 0.006

Here, K is the hourly average clearness index normalized as in (2.70). The probability
distribution function of the process X will then be written as

F(x) = wXa,b,x) + 1-w) I(3,,h,x)

(2.79)
and consequently the distribution function of the short term k- values (clearness index) as*
k -
F (k) = F, [___k."ﬂ__)
Kax = kg (2.80)

At the end of this section, let us throw the main points into relief: Within a reasonable time
interval, the clearness index k is a stochastic process whose distribution function is described
by F,(k) (2.80), which is a function of the hourly mean clearness index K and the standard
deviation g, . In practice, the latter parameter can be estimated from previous observations
(eq. (2.68)).

2.2.4.2 Conditional Probability

The objective of this subsection is to develop a technique to calculate the conditional
distribution function F (x(t)} X(0)} = x,) of X(t) subject to the condition X(0) = x,. We will
often use the abbreviation G,(x) = F(x(t)}X(0) = x,). For the purpose of this section we
assume an autocorrelation coefficient in the form

r, = r(f = exp(-B,5H)
(2.81)
for the scaled clearness index x. At time t = O the conditional distribution function should

“Refer to chapter 6.2, for discussion of functions of random variables

Solar Energy Short- term Global Irradiance

2. Energy Sources 2-31

yield F(x(0) | X(0) = x;) = s(x - X,) 3 and its probability density function £ (x(0) | X(0) = Xo)
= 8(xX - x,) since the probability to observe the process X(t) at time t = 0 in x, is equal to 1.
One way to work out the conditional probability would be to construct the joint probability
density function f(x(t), x(0)) of the stochastic processes X(t) and X(0) from the given
marginal distributions F,(x(t)) and F(x(0)) and the autocorrelation coefficient. A technique
to construct the joint probability density function from the marginal distributions is presented
in [18]. Given the joint probability density function, the conditional probability density could
be concluded from equation (6.14). In [18], the joint density function is known, which is not
the case here. Hence, the problem is being solved in a different manner. First, the (non-
conditional) distribution function F{x} (2.79) will be approximated by a superposition of
normal distributions with their peaks shifted along the x- axis. The expansion has the form

<?
P - = F,
" (%) q}; u, v (x) = F(x) (2.82)

(2.83)

In (2.82), u, are coefficients which will be subsequently determined. The generating
functions v (x) are normal distributions (definition equation (6.19)) along x with their means
centered at x = 0.5 and equidistantly distributed. The standard variation coefficients ¢, will
be chosen as

aq=i[max{l,f;(—q—-—)}+1] |
74 Q+1 (2.84)

with a single coefficient €. The standard variation of each of the normal distributions will
thus be smaller if Q is larger or - in other words - if more functions are taken into account

and hence the distance between two peaks becomes smaller. The division by @ in (2.84) is

% s(x - x,) denotes the unit step function with the step at x = x,.

Solar Energy Short- term Global Irradiance

2. Energy Sources 2-32

not imperative but intended to ensure that € lies in the same order of magnitude irrespective
of Q. The term in brackets in equation (2.84) is a number between 1 and 2 and has the
following effect: Whenever the density function f,(x) is small (or the increments in F,(x)) the
variance of the normal distribution with its peak at this point will be smaller and vice versa.
This correction term permits a more sensitive adaption in low- probability regions. The
limitation of the correction term to values in the interval [1,2] seems to be appropriate to the
range of f,(x). In order to optimize the approximation a least square problem is introduced
with the merit function |

V(")—El qZ;(q q(Mﬂ)) F"(]iﬁl)]z (2.85)

as a function of the coefficients u,. Here, we assume that M trial points are taken into

account. It is worth pointing out that the generating functions v (x) do not form an
orthogonal or complete function system. Therefore the choice of Q, M and € has to be
carefully considered. As F (x) is a superposition of two incomplete Beta- functions its
derivative f,(x) may have up to 2 relative maxima over x € [0,1]. Hence, Q must be greater
than 2, better 8 or 12. Numerical results have shown that Q > 12 is not beneficial. For a

condensed representation we note the abbreviation

m _ _ 9

M+1 +1
@ g = P —< (2.86)
q

To find the minimum of (2.85) its gradient with respect to u, is to be set equals 0.
Rearranging this condition yields

M Qo m
o « f=1...0
2 X e ,;, M+1) = 7 2.87)

This is a system of linear equations, and we can arrange it into the matrix representation

Au=4d

(2.88)
with a symmetric coefficient matrix A and a right hand vector d. The elements of A and d

Solar Energy Short- term Global Irradiance

2. Energy Sources 2-33

arc
M
F
,,Z:x g M+1) id
M (2.89)
A”-;\:: gy O .

Hence, solving (2.88) for u minimizes the merit function V {2.85) with respect to the

coefficients u, for a fixed standard deviation parameter €. The whole algorithm that considers

€ as well is then as follow;

1. Set initial € = 0.4
2. Calculate u from (2.88) and the merit function V (2.85)
3. Repeat step 2 for different values of € until a minimum of V along the € -

axis has been found. The line search for ¢ is carried out in two steps: First, a
bracket will be searched for, in which the minimum lies in. Second, a golden
section search® ({15]) follows to determine the minimum with a higher
accuracy. High accuracy on the other hand is counterproductive to the
computing time. Note that for each €, ¥2MQ evaluations of ®(x) are required.
We will therefore quit the algorithm as soon as a V - value has been found
which is below a specific value (e.g. 0.003). In case Q was selected as 5 and
V at the initial point € = 0.4 is above 0.1, Q will be set to 8 and the
algorithm restarted. Otherwise the algorithm will be aborted if the minimum
of V has been determined to lay in an interval along the e- axis which is
smaller than 0.02 .
4, Function values of F,{x) can then be worked out from £ (x) (eq. (2.82)).

The quality of the approximation can be checked by calculating the difference between the
object function F (x) ((2.79)) and its approximation (2.82),

A(x) = F(x) - Ffx)
(2.90)

¢ Golden section search is after the Fibonacci routine the most efficient routine to find a
minimum of a function of one variable, when an initial bracketing of the minimum is given.

Solar Energy Short- term Global Irradiance

2. Energy Sources 2-34

In Fig. 2.9 A(x) has been calculated for typical values for kK, and o,. Here, the number of
coefficients is set to Q = 8, with the number of trials, M, as parameter. For M = Q the trial-
points coincide with the peaks of the Gaussian functions. The figure of merit in this case was
V = 2.4E-30. Increasing the number of trials to 16 does not improve the performance, It is

actually quite the reverse. Hence, it is recommended to set Q = M.

In Fig. 2.10, Q and M have been simultaneously changed so that Q = M. Obviously, Q = 6
is not sufficient as the maximum difference A is 0.159 for the chosen parameters of kK,

and o,.

Parameter: K, = 1.3, k=0.7,0, = 0.35,N =50

Q=8,M=8
——— Q=BM=18

0.04

Vg "~
/

AN

\
/ \ ~ \
/'\/ W

e

o
o
n

(=]
]

=4
[=]
n

Quality of approximated distribution

‘ /
0,04 L'l
-0.08 LA i e e S 2 D A e e e N ek A
Q 0.2 04 08 [X:] 1

Nomnalized Cleamess Index x

Fig. 2.9 Quality of the Approximation

Solar Energy Short- term Global Irradiance

2. Energy Sources 2-35

Parameter; K, = 1.3, k=0.7,0, = 035, N =51

0.1
8
5
£2
B
e~]
3
o
£
E o
=4
o
3
-]
=y
El

0,164 — Qz=M=6
c ——— Q=M=8 ™~

........... Q=M=12
— = Q=M=10
‘0-2 Mt tTI3 I rrrrIrT T rTrryrr eV Ty rrrrrrirtrTrrrrrTrrT e Trro
o] 08

Nonnalized Cbamess'Index X

Fig. 2.10 Quality of the Approximation

For Q = 12, a maximum difference A of 0.001 has been observed. Larger Q- values will
further improve the approximation, The associated calculation time, however, will increase
as well, thus forcing to strike a balance between expenditure and accuracy. As the
probability function is an empirical function, Q = 12 seems to be a good choice and will be
used in all calculations carried out in this paper unless otherwise explicitly stated.

Having determined u, and € the distribution function can now be worked out from (2.82). As
the conditional distribution of a normal distributed random variable is known (with density
function as in 6.23), the conditional distribution function of X as the superposition of normal

distributions can be easily concluded. It is

q X, q
2 X_(+())F)
ﬁ',(xlX(O) =) = u D Q+1 Q+1
q2=:l 7 o, =3 (2.91)

which is the superposition of weighted, conditional normal distributions with autocorrelation

coefficient r, (2.81). Equation (2.91) satisfies the stated initial conditions and it goes over

Solar Energy Short- term Global Irradiance

2. Energy Sources 2-36

into (2.82) for t - « whenr - 0.

So far, statistical models for the short term behaviour of both wind speed and clearness index
have been presented. We will continue this discussion in chapter 4.1, where the short term
statistical models will be unified and extended to the total power supplied by the renewable
energy sources. In order to include the power in the statistical theory, models for the wind
generator and the photvoltaic array are needed. They will be the focus of the discussion in
the following chapter 3.

Solar Energy Short- term Global Irradiance

2. Energy Sources 2-37

2.3 Battery
2.3.1 Storage Technolgies

A storage unit in a hybrid wind- pv- system is used to deposit any surplus in the energy

supplied by the renewable energy sources. In times, when the energy demand exceeds the

available renewable energy, it is supposed to deliver the stored energy in order to avoid

starting the fossil fuel generator. This could be for a short period of seconds as well as for

a period of days. Out of all possibie technologies the one should be selected, that fullfills tﬁe

following criteria best:

- High charging- and recharging efficiency as well as a high storage efficiency

- Speed at which the storage system can be brought into in order to absorb or deliver
energy.

- High lifetime expectancy

- High reliability

- Low cost _

- Low ecologically harmful emission during both production and operation. Possibility of
recycling after reachixig the lifetime limit.

- Small size

In the following a brief outline of different storage technologies will be given and the above

criteria will be addressed. 4

Mechanical storage systems reveal a high energy conversion efficiency. A drawback is their

large size.

Chemical storage systems, in general, have a lower efficiency for energy conversion. The
most prominent example for this category is the hydrogen production ([31]). Hydrogen is
versatile in its application and an environment friendly storage medium. The costs, however,
are considerably (~ 1000 ECU/kW).

Electrical storage systems, for instance in form of an electrolyte capacitor, are only suitable

for the storage of energy for a few seconds.

Battery Storage Technologies

2. Energy Sources | 2-38

Electrochemical storage systems (batteries) are systems where the chemical energy is
.u'anslated into electric energy, which is produced when the chemicals in the system react
with one another. Rechargeable systems allow the reverse process as well. Lead- Acid is the
most commonly used battery type in PV applications due to its competitive price. NiCd
batteries tend to have a higher energy density and may laét longer in very cold areas. They

are, however, more expensive [21].

For this paper a lead- acid battery has been chosen as energy storage system, which seems
to be a good compromise between cost and life expectancy. Compare discussion in [21] and

7}

2.3.2 Lead- acid battery
2.3.2.1 Chemical Reaction

The energy stored in a battery is a chemical energy that is translated into electrical energy.
The latter one is produced when the chemicals in the battery react with one another.
Rechargeable batteries as the lead- acid battery allow the reverse process as well. In case of
the lead- acid battery the chemical reaction can be written as ([37])
Pb + PbO, + H,SO, ~ 2PbSO, +2H,0 .
The rate of the chemical reaction varies with
- state of charge,
- battery storage capacity,
- rate of charge and discharge,
- environmental temperature and
- the age and the shelf life of the battery.

2.3.2.2 State of Charge

The electric charge, Q,(t), in a battery can be thought of as the sum of the available charge

Battery States of a Battery

2. Energy Sources . 2-39

Q,(t) and the bound charge Q.(t). They all vary with the time. At the beginning, however,
the electric charge Qu(0) = Q;o(t) + Q,,(t) = Q, coincides with the battery storage capacity
(i.e. the rated charge). The state of charge is defined as

&)
b (2.92)

SOC() =

the quotient of the residual capacity Q,(t) and the battery storage capacity. The depth of
discharge, DOD, is then simply

DoD =1 - SO0C

2.93)
L,
—0 >
Battery Us
\J
—0

Fig. 2.11 Battery as a Two-Pole Device

If the battery is viewed as a two- pole electrical device (Fig. 2.11) with output current I, and
voltage V, three states of the battery, dependant on the sign of I, can be defined as follows:

Battery States of a Battery

2. Energy Sources 2-40

(1) I, <0 : The battery will be charged.

(2) I, = 0 : The battery will be exposed to an internal discharge, idle discharge. A typical
value for self discharge is 0.1% per day ([42]).

(3) L, >0 : The battery will be discharged.

In Fig. 2.12 the SOC is sketched for the three phases as a function of time.

SOC 4

Idle
1 Charge discharge | Discharge

Fig. 2.12 State of Charge

Knowing the state of charge of the battery is very important for the energy management as
it directly represents the energy that is available in the battery. As the battery charging or
discharging current is in most cases not constants and varies according to changes in solar
insolation and wind speed, a reliable state-of-charge determining on-line method is needed.
For the purpose of this paper it is assumed that the state of charge can be determined. An
on-line algorithm is described in [43] for instance.

2.3.2.3 Battery Modelling

The purpose of a battery model in this context is to provide a relationship between the state
of charge, current and voltage. Below follows the brief discussion of three battery models.
The first two, the Shepherd and the Salameh- Model, are electric models, the third is a

Battery States of a Battery

2. Energy Sources 2-41

storage model. The electric models can be described in terms of an electric circuit with
various elements. They permit us to calculate the voltage and the current. Given the electric
current the available charge can be concluded from the differential

9Q _

— =9 I
ot b (2.94)

where 1, is a charge/ discharge efficiency factor.
(i) The Shepherd Model

A simple electric model was devised by Shepherd ([38], {24]). The electric circuit is
illustrated in Fig. 2.13.

N
L1
o
K
=

Fig. 2.13 Battery Equivalent Circuit: Shepherd Model

It consists of a series of a resistance, R,, a fixed voltage, V,, and a charge dependant voltage,

g DOD. The diodes are for directional purposes only, with the index ‘¢’ for ‘charge’ and ‘d’

Battery States of a Battery

2. Energy Sources 2-42

for ‘discharge’. The discharge voltage is ([24], eq. 6)

: (2.95)
and the charge yoltage accordingly with index ‘c’ instead. The equation does not take into

account the diodes which modify the model slightly at very low currents. The resistance R,
is defined as ([24], eq. 7) '

m, DOD
R, =Ry, | 1+ 0 .
_ X=d _ pop (2.96)
/)8

Here, my denotes a parameter describing the cell type, R4 the internal resistance at full
charge and Q,,,,d. a capacity paramter. Again, the same formula applies for charging the
battery with index ‘¢’. In this form the model requires 5 parameters for each process,
charging and discharging. This model can be easﬂy extended to accommodate temperature
dependancy by declaring parameters as functions of the temperature. Facinelli ([13], eq. 4a)
assumes a quadratic relationship, whereas Khouzam ([24], eq. 9) employs linear functions.

(i} The Salameh Model
The Salameh Model ([37]) is a further development of the Shepherd model, as it takes

internal discharge and overvoltage into account. The electric circuit is shown in Fig. 2.14.

Battery States of a Battery

2. Energy Sources 243

de | Rod :
T B s > o TR
— —9—o —»

' Roc
G| R, .

L B

@
Fig. 2.14 Battery Equivalent Circuit: Salameh Model

Again, the diodes are strictly for directional purposes and in this sense ideal. The battery
capacity is C,, the self discharge resistance R,. Devices with index ‘0’ stem from the
overvoltage circuit, whereas ‘d’ and ‘¢’ denote ‘discharge’ and ‘charge’. Although it seems to
be a linear circuit - apart from the diodes - it is not. All devices are non- linear. The state of

charge can therefore only be worked out in an iterative way.

(iil) The Manwell Model

This model ([27]) places the emphasis on the electric charge. It assumes that the electric
charge in a battery is either available or chemically bound. Charging and discharging causes
a transfer of charge from one to the other ‘container’, though the sum of both may decrease
with the time. According to the model the amount of available charge, Q,(t), and bound
charge, Q,(t) at time t can be written as ([27], eq. 8,9)

(Qoke - D (1) Fe(kt-1+e*)
k k

K1-0)(kt-1+e-ki) (2.97)
k

01(1‘) = 01,0 +

Q,(D = Qe—kt+ Gyl - (1 - e-kt) -

with Q,, and Q,, denoting the charges at the beginning of the calculations. The sum of both

Battery States of a Battery

2. Energy Sources 2-44

is denoted by Q, = Qo + Q,o. The parameter k is a rate parameter. The width of the-charge
containers is described by c. Assuming a constant voltage the maximum discharge current is
(£27], eq. 22)

kQe™ + Quke(l-e™)
Tyax =

T 1-eM s c(kt-1+e ™ | (2.98)

The maximum charge current can be obtained from ({27], eq. 23)

_ ~keQpu * kol,oe-m + Qpke(l-e™™)
1 -e® + c(kt-1+e7kY (2.99)

I

GINAX

Here, Q,,, is the maximum battery capacity.

The model in this form does not take into account any temperature effects. For moderate
temperatures, however, it procures accurate results. There are two major advantages of this
model: First, it requires only 3 parameters, Qu,,, k and c. In comparison, the Shepherd model
requires 10 parameters, the Salameh model draws data from curves in order to determine its
" underlying non- linear elements. Second, the Manwell model is based on the electric charge,
a fact that simplifies the determination of the state of charge. In the electric models, the state
of charge has to be calculated by solving a differential equation. Hence, for the generation

of time series of the state of charge in the section on time series, the Manwell model is used.

2.3.2.4 Lifetime Considerations

Depending on theoretical assumptions different statements can be made about the lifetime of -
a battery, which is measured in the number of cycles, N. The simplest relationship is ([22])

N DOD = constant

(2.100)
as long as the battery is not overcharged or overdischarged. Other laws are similar and do in

fact converge into above relationship under certain conditions. It is recommended ([11]) to
operate the battery between 40% SOC and 80% - 90% SOC. In [39] we have found some
typical values concerning the lifetime:

60% DOD 2000 cycles

Battery | States of a Battery

2. Energy Sources 2-45

30% DOD 4000 cycles

10% DOD 6000 cycles
Summarising, it can be said that the charger/ discharger of the battery should be aware of the
fact that an increased lifetime is only possible with a shallow depth of discharge.

Battery States of a Battery

2. Energy Sources 2-46

2.4 Diesel Generator

With regard to the objective of this study just two facets of the operation of the diesel are of

significance: Fuel consumption and life time, both of whom are covered in the following two

sections.

2.4.1 Fuel Consumption and Efficiency

Fig. 2.15 illustrates a typical course of the fuel consumption as a function of the output
power Ppy..., ([28]) as well as the corresponding normalized efficiency 1 p.i. Here, the power
axis is conveniently normalized to the rated power Pp,.,. and the fuel consumption F(Pp,..,)
is normalized to the consumption at the rated power, F(Pp,.,,). The graph gives rise to a
linearization of the fuel consumption F(Pp;..),

P,
F(Ppjas) = F(Ppysar,) (ft; +f M]

Diesel,r (2.101)

with the dimension [volume/s]. Given the figures in [28] we have computed the linear
regression coefficients to be f, = 0.15 and f = 0.81. This data may serve as long as no
specific data are given. Summarizing we can say that the diesel should .always be operated
above a certain minimum load in order to maintain efficiency.

Diesel Fuel Consumption and Efficiency

2. Energy Sources 2-47

A - F(PDiesel)
==e=== (Ppcser)

Y

o

Diesel

Fig. 2.15 Fuel Consumption and Efficiency

2.4.2 Lifetime Considerations

Operating the diesel under light load causes the engine oil to foul, thus leading to an
increasing wear and consequently higher maintenance costs and shorter life span. A model
of a diesel engine bearing wear has been proposed ([10]). At this stage we ¢an, however, not
envisage an efficient way of including these results into the theory presented here. For now
we will therefore just bear in mind that the recommended load ranges between 50% and 80%
for prolonged operation ([11]). This conclusion falls significantly short of the expectations
aroused by the heading as we are still not able to quantize the influence of the load or the

frequency of start/ stop- cycles on the lifetime or the maintenance factor of the diesel.

Diesel Lifetime Considerations

3. Power Supply Modelling ' 3-1

3. Power Supply

3.1 Wind Turbine

In‘the study presented here we assume that the operation of a wind turbine is described by
its power- speed curve. In absence of a specific characteristic a model curve as shown in
Fig. 3.1 will be used ([16]) :

Pyina(V)
P,
;
0 vci Vr veo v
Fig. 3.1 P-v- Characteristic of a Wind Turbine
(© V= v,
V-V
P d V.S vsv
P_.(v) = ’[V‘_"VdT ol i a1

P, V.S VE V¥, '
0 Vv,

Wind Turbine

3. Power Supply Modelling 32

Here, P, is the rated power of the wind turbine, which is the power supplied by the turbine
at the rated wind speed v. The wind speeds v and v,, are called cut-in and cut-out speed
respectively. They define the interval in which the wind generator is operated. If the turbine
was operating at a wind speed below v, the engine wear would be too big to operate in an
efficient way. On the other side, the turbine is stopped in case of a wind speed above v,
This is merely for economic reasons as an operation above v,, would require a more
expensive turbine. P, is the power supplied by the turbine. The power that is actually
available is further reduced by an efficiency factor n,:

Pya = My Py
(3.2)
3.2 The Photovoltaic Array
3.2.1 The Equivalent Circuit

An equivalent circuit of a single diode model of a solar cell (index j) is drawn in Fig. 3.2.

The current generated by the incoming light is I,,; and will be discussed in chapter 3.2.4.

The Photovoltaic Array The Equivalent Circuit

3. Power Supply Modelling 33

Fig. 3.2 Equivalent Circuit of a Solar Cell

R, and R, denote the parallel and the serial resistance. The diode is determined by its quality
factor A (usually in the range of A € [1, 2]) and reverse saturation current ;. For an array

- of Ny serial and N, parallel sclar cells the I-U- characteristic is given by

U+ms] 4] _ U+IR,

T Rp (33)

where Uy symbolizes the thermal voltage

AT,

U, =
T e (3.4)

with elementary charge e and cell temperature T, The total series resistance R,, photo
current I, and reverse saturation current I, can be calculated from the values of the single

cell via

The Photovoltaic Array The Equivalent Circuit

3. Power Supply Modelling 3-4

Ly = Ly,

436”& 3.5)

R-r2: :
YN,

It is worth mentioning that R, and R, influence the characteristic in a significant way.
Fig. 3.3 qualitatively sketches the impact of R, and R,. The continuous curve represents the

ideal array with R, = 0 and R, ~ =, whereas the dotted curves depict the effect of the
impedances.

Fig. 3.3 I-U- Characteristic of a Solar Cell

3.2.2 PV Power Supply

The power supplied by the photovoltaic array, P, is P, = UL, where I and U have to satisfy

The Photovoltaic Array PV Power Supply

3. Power Supply Modelling 35

the characteristic (3.3). In order to find out the point (I, Uy,) for which the maximum
power Py, = I U, is supplied by the array, we will simplify the equivalent circuit by
omitting the parallel resistance R, and we are then able to write the array voltage in the form

5

U=.4U,1n[fﬂ"“h5 - IR
I 3.6)

The current at the maximum power point can be assessed by setﬁng the current derivation of
the power to zero and it is {[24], eq. 19)
2I,,R, . I \ -1

mp

AU, Ly-IL,+L) 3.7

&ffm,,wexp[

Equation (3.7) has to be solved numerically for L. U,, can be determined by evaluating
(3.6). The maximum power will then be the product of both.

Ry = 0050, AUy = 00TV, , = 45mA Ry = 0.050, AU = 00737V, |, = 45mA
15 1 he A
— phesk
g, . W \
] £ / \
E
: Ty \
Eqs . \
c llllllll TTT TITTI I T T F g TP T I Ty T T Ty T sy TTITT 0'5 lll
0 + s ¢ 10 0 0,404 0208 o2 s 052
Photo currant [A} : Voltage [V]

Fig. 3.4: Power characteristics of a solar cell

The diagrams in Fig. 3.4 demonstrate the dependency of the maximum power point as a
function of the voltage (right hand side) and the photo current (left hand side). Having
assumed typical values R, = 0.05 Q, AU; = 0.0737 V and I; = 4.5 mA we have calculated

the maximum power point for given photo currents using the method described above. Some

The Photovoltaic Array PV Power Supply

3. Power Supply Modelling | 3-6

values are presented in Tab. 3.1

L, {A] | 0.0 1.25 1.875 2.5| 3.125 3.75 5.0
P, (W] l 0.0 0.25 0.375 0.5 I 0.625 0.7 0.9

Tab. 3.1: Photo current versus maximum power

The values in Tab. 3.1 give rise to the presumption of a linear relation between P, and L.
Not quite. The linear approximation is only legitimate for sufficiently small photo currents.
Towards larger values of I, the power curve will significantly flatten out as outlined in
Fig. 3.4. o
In practice, a maximum power tracker may be inserted between the photovoltaic array and
the load (i.e. the DC- bus) in order to ensure optimum operation. A maximum power
tracking facility is an adjustable ratic DC to DC transformer which basically contains a
parallel high frequency MOSFET switch. It provides a matching between the load and the
photovoltaic array such that the solar cell is operated in the maximum power point. In
general maximum power point trackers can be classified into step-down trackers ([36]) and
step-up trackers ([35]). The first one drives a high voltage load from a low voltage PV array
whereas the latter one operates vice versa.
It is, however, suggcstéd ([23] p.434) that an MPP tracker does not pay off in case it
requires additional hardware. Jantsch ({23]) reports a best fixed voltage system which yields
an annual energy output of 98.4% of an MPP operated system.
For the purpose of this paper we assume that a reasonably good power tracker (with
efficiency m,,,) is in charge. The power delivered by the solar cell will then be reduced to
P, = e Pmp

(3.8
In case no MPP tracker was used, the factor 1, would summarily cover the expected

The Photovoltaic Array PV Power Supply

3. Power Supply Modelling 3-7

losses, caused by the lack of an MPP tracker.

3.2.3 Temperature Dependency

Unlike the wind turbine the solar cell characteristics vary sensitively with the temperature.
In general, the cell efficiency will decrease upon increasing temperature. The influence of the
temperature can be included in equations (3.3) and (3.7) by applying ([24] eq. 16-18)

KD = I(T) (—}Texp |z || =400
LD =L(T) (' *a-T)) a=-51E4
UAT) = UXT)

r

(3.9)

where T, is a reference temperature (usually 25°C). If hourly mean temperature values
throughout the year are given, we will employ (3.9). Otherwise, the values at reference point
are used. However, calculations in this paper have been carried out without taking the

temperature dependency into account.

3.2.4 Photo Current and Efficiency

Only a fraction of the energy of the incoming light can be converted into electric energy for

several reasons: |

- Photons with an energy hv < E, (E, stands for the minimum band gap of the semi
conductor) will not be absorbed.

- The surplus energy of abscerbed photons will be thermalized, thus causing even a
further reduction of the efficiency as temperature rises.

- Not every generated electron contributes to a voltage ¢E,.

- Already absorbed electrons are likely to be recombined, especially if they are close
to surfaces.

- Even if the light beam and the array surface were perpendicular a reflexion would be
caused due to the different refraction indices of the air and the semi conductor.

For the purpose of this paper, however, we are content to introduce an efficiency factor {,;

The Photovoltaic Array Photo Current and Efficiency

3. Power Supply Modelling 3-8

that summarizes all the mentioned processes and assume a linear relationship

‘{nbzAcsdq).l.

(3.10)
between the photo current and the product of the intensitiy of the perpendicular light ¢, and

the active array area A (not to be confused with the diode factor A introduced previously).
For a silicon solar cell, for example, it is {,; = 0.28 AW ([9] p.73).

3.3 Combined Renewable Power

The renewable power supply consists of both the wind power (3.2) and the solar.power (3.8).
As far as the photovoltaic array is concermed, we assume a linear relationship between the
maximum output power and the photo current (chapter 3.2.2). Taking (3.10) into account, a

linear relationship between the solar power P, and the clearness index k (see chapter 2.2) ,

Py = B K

(3.11)
can be concluded. The maximum power will be supplied by the photvoltaic array if the

clearness index reaches its maximum. Suppose the maximum clearness index is K, This

coefficient can be used to normalize the solar power,

p,.=min{ ot ,1} =mm{i,1}
Eoor Ky K, (3.12)

for simplification of further calculations. The min- operator is used to ensure that the

normalized power is within the range p, € [0,1]. For a cleamness index k > K, the power
output will not increase as the system is in saturation, In the same manner, the wind turbine
power (3.1), (3.2) is normalized to the rated power,

Powi _ P

P = —
Y 9,P. P : (3.13)

The total renewable power, P, is P, = P,y + Py, Its maximum P, ,, is reached when the

wind turbine is operated in its rated power and the cleamess index is k = K,. Hence, the

Combined Renewable Power

3. Power Supply Modelling 3-9

maximum is Prey e = §50Ko + NP, Introducing the dimensionless parameter

1
c = ——
My L,

i K, (3.14)

+

an elegant normalized expression for the total renewable power is given by

P
res _ + (1 -
P Ao Op, (3.15)

Preg =

The nomalized parai:neters Ps» Py and Py, are dimensionless numbefs in the interval [0,1]. In
the next chapter we will resume the discussion from chapter 2 by extending the statistical
models to the normalized renewable power.

Combined Renewable Power

4. Statistical System Modelling 4-1

4. Statistical System Modelling

The previous chapter was concerned with the modelling of the electric power supplied by the
various components of the system. Assume for the moment that all comfonents are linked
together in one system. The output of the system, which is the total power, is obviously
depependant on a huge variety of paramefers, that can be categorised:
0] Fixed Parameters
Fixed parameters do not change their value during operation of the system. For
example, the choice of a wind turbine determines cut-in, cut-out and rated wind
speed. Once the wind turbine is chosen, they can not be altered.
(ii Random Input Parameters
Random input parameters are the wind speed, v, the clearness index, k, and the
external power demand, due to their very nature.
(i) Derived Random Parameters
Derived random parameters are parameters that depend on the random input
parameters. For instance, the mean wind speed.
(ivy Controller Dependant Parameters
These are parameters whose values are influenced by the controller. For instance, the
state of charge of the battery falls into this category as the controller determines
whether to charge or discharge the battery.
Please note that the parameter categories listed here are not mutually exclusive. The state of
charge, for example, is both a derived random and a controller dependant parameter. The
intention of the categorisation is much more to focus on the fact that, although concise
models for the power supply have been developed, the behaviour of many a parameter is all
but fixed. Due to the statistical nature of wind speed and cleamness index, the whole system
is a non- deterministic system, which can only be described employing statistical methods.
There are several reasons for deing this.
First, it Ieads to a better appreciation of the influence of both the random input parameters
and fixed parameters on the system.
Second, synthetic time series of the power output can be used for an off-line optimization of

some of the fixed parameters. For instance, the fractional power factor (i.e. the ratic

Statistical System Modelling

4. Statistical System Modelling 4-2

between rated wind and rated solar power) could be optimized off-line for given (typical)
wind and cleamess index data taken at the site in question. . |

Third, statistical methods can be used to predict the power supplied by the renewable energy
sources or the state of charge for given observations of the random input parameters and the
state of charge. Again, this might be interesting for a better understanding of what is going
on in the system. Though, there is anothei reason. As mentioned in the introduction (section
1), the main purpose of the controller in this hybrid system is to be in charge of the battery
(charging, dlschargmg or disconnecting) and the diesel (switch on and off). Statistical
methods could be used to design the controller, which is not covered in this paper. For
instance, various control policies could be compared off-line by generating time series. Later
in this chapter, a very crude battery control policy is applied to generate time series of the
state of charge. In this instance, the battery is being discharged (if possible) as soon as the
renewable energy sources can not meet the power demand and it is always charged at times
when there is a surplus. Other, more sophisticated policies can be easily implemented (or
incorporated in the programme) as the important tools are developed here. The controller
could, however, as well use statistical methods (e.g. first passage times) on-line and decide
depending on those values. Hence, the methods developed here can be used at design stage

as well as during operation.

This chapter is divided into three sections, of which the first is concerned with distribution
functions. The second section covers the generation of synthetic time series of the power
supplied by the renewable energy sources and the state of charge of the battery. The last
section takes a deeper look at first passage time problems.

4.1 Distributions

The purpose of this section is to introduce the probability distribution functions of some
stochastic processes that occur in the system. The first part is devoted to the wind speed. It
is ‘'only included because the mathematical functions involved are simple, thus helping to

appreciate the formalism and methods. The main emphasis however, is placed on the wind

Distributions

4. Statistical System Modelling 4-3

turbine power and the photovoltaic array power. The discussion on distributions closes with
the distribution of the joint renewable power, which is the sum of the power supplied by the

wind turbine and the photoveltaic array.

4.1.1 Wind Speed Distribution

Let us first recall the conditional probability density function f(v]v(0) = v;) of the wind
speed v from equation (2.10), here in unnormalized form,

i = - 2
f(v|v(0)=v) = 1 exv[“‘%[v (r+{% -9 r) \]

pediiry | e "
with the corresponding distribution function
Fv|v@) = vy o L (% - V) 5)
i “2)

Fig. 4.1 and Fig. 4.2 depict the probability density and the cormresponding distribution
function of the wind speed fluctuations for a mean wind speed of 16 m/s and three values
for the standard deviation ©,, where stationarity is assumed (Le. 1, = 0.0). For each graph 50
values have been calculated. Both pictures clearly display the influence of the standard
variation. Increasing the standard deviation has the effect of increasing the probability for

wind speed values that are further away from the mean.

Distributions Wind Speed Distribution

4, Statistical System Modelling 4-4

Parameter: vp,,, = 16m/5, N = 51

5E-01

4E-01
b
=
0

G EN
0
&

3 o
g
o

1E-01

OE+C0

12 13,8 152 188 184 20
Wind speed [my/s]

Fig. 4.1 Wind Speed Probability Density Function

Parammeter; Vo, = 16mfs, N = 51

1E+00
—— ov=08
——— ov=1.0
- oov=12
8EM
=
9
E BEO1
=}
w
[=4
2
3
£ 4E.071
R
a
2E-NM
°E+w.iiirl‘l“llj_:‘l|II|II[I1!III5I|!iIl(?IIIllill_llllITT'i_r
12 138 152 18,3 - 184
Wind speed [mys]

Fig. 4.2 Wind Speed Distribution Function

Distributions

Wind Speed Distribution

4. Statistical Systemn Modelling 4-5

4.1.2 Wind Turbine Power Distribution

If we consider the random variable to be the input of the wind turbine characteristic (3.1) the
distribution function of the normalized wind power p,, (eq. 3.13) can be expressed in terms
of F(vivy) (eq. (4.2)),

0 p,<0

‘ 3 '
Fofp %) =\ F v, 4P v~ ¥) | %)-F (v, %) +1 0=p, =1
1 P>1

4.3)

Here, the short hand F,.(p, i V(0) = vo) = F,.(p.i Vo) is used. Most conditional distribution
functions in this paper are referred to by this notation. The wind power probability density
function is attained by derivation:

0 P<0,p>1
f;,,(P,,' =17 (F,(lel{))—Fv(Vero)) é(p,-1)
A/ f(y +3V_IV) 0=<p =1
3 3 AVt yPw | Vo
| 3Py

4.4)

Since the wind turbine P(v) characteristic {eq. 3.1) is not differentiable at v=v,and v = v,
the distribution function F,(v) reveals discontinuities at p, = 0 and p,, = 1. This explains the
emergence of the Dirac- function in the probability density function. In order to avoid these -
computational problems connected with the Dirac ﬂuiction, the power scale will be

discretized,

a2 -1 ,2=1.N
N-1 \ 4.5

Pw,n =

where N power levels are allowed. As the power is now a discrete random variable, its
distribution function will be 2 stair function with the distinct values

"Refer to chapter 6.2, for a discussion of functions of random variables.

Distributions Wind Turbine Power Distribution

4. Statistical System Modelling ‘ 4-6

n-1
G (2% = I")w(ﬂl Vo)

(4.6)
The probability density function will now be replaced by a discrete probabilty function with

values

G, (1]%) =1

&m(a1%) = {Gp,(nlv;,) - G(a-1|%) B=2.N @.7)

The value g, (n}v,) is the probability that - at time t - a power output p,, € [Pya1 s Peal May
be observed under the condition that the wind speed was v(0) = v, at time t = 0. Summing
up all g, (n}v,) over n yields 1.

The discussion of the functions g,.(n|v,) and G,.(n}v,) is conducted in two parts. First, we
restrict ourselves to the stationary case. This is when the correlation coefficient r marches

towards 1. Hence, the initial value has no influence on the stationary distribution,

4.1.2.1 Stationary Distribution

Fig. 4.3 shows probability functions g,.(n}v,) for four different mean wind speeds as
functions of the normalized power with N = 51 (4.5). For the rated wind speed, cut-in speed,
cut-out speed and the standard variation o, typical values have been assumed. These constant
parameters are displayed above each diagram. In Fig. 4.3 the values for p, = 1 are omitted
because of their magnitude. The curve with v = 18mys for instance has a high probability for
maximum power 1 eventhough it is not explicitly displayed. A better representation is
therefore Fig. 4.4 where the corresponding distribution functions G,(n! v} are depicted. For
a mean wind speed that is well below the rated wind speed (v = 12mys in comparison to v,
= 16m/s) the shape of the prob;bility function of the wind turbine power is almost the same
as the one for the wind speed itself as the maximum power (p = 1) is very unilikely.
Increasing the wind speed increases the probability for maximum power which causes the
distribution function to jump to 1 at p = 1. Mathematically, this is due to the fact that the
probability function is not zero at p = 1. Physically, the reason for this is that a whole

Distributions ~ Wind Turbine Power Distribution

4, Statistical System Modelling

4-7

continuum of wind speed values do cause the same power,'thc maximum power (eq. 3.1).

0,08

e @
2 9

o
&

o
B

Stationary probability function
o o
8 e

o,

Parameter: v, = 16m/s, v; = 2.8m/s, v, = 24m/s, o, = Im/s

—
7\ . vmem=180ms
/ \ — - ymean=180m/s
[\
[
/ X =
VAN N
/ SN
o Normelized Power ° 1

Fig. 4.3 Wind Turbine Power: Stationary Distribution

Parameter: v, = 16m/s, v4 = 2.8m/s, v, = 24mfs, o, = 1m/s

o
o

— vmean=120m/s
——— vmean=14.0m/s

- vmean=16.0m/s
vmean=18.0my/s

o
[

o
S

Stationary Distribution Function

02

04 08
Normalized Power

Fig. 4.4 Wind Turbine Power: Stationary Distribution

Distributions

Wind Turbine Power Distribution

‘4, Statistical Systermn Modelling

4-8

In Fig. 4.5 the probability function is shown for different rated wind speeds. It makes clear
that the variation of the rated wind speed is on a par with the variation of the mean wind

speed. The set of curves is almost identical to the set in Fig. 4.3.

Stationary Probability Density

Parameter: v,,, = 16m/s, vy = 2.8m/s, v, = 24m/s, o, = /s

8602 — wr=14.0m/s ’~
——— w=180m/s l‘
76024 - w=180m/s g s
————— vr:=20.0m/s i ‘_
BE-02 ,'. ‘
i '
sE02 D C——
i X .
4E-02 £ s =
.l > " .
P . o
sE02 { S A Y
] 0 - /'.’
" .: \ P ~,
2E02 . . % o =
i :. \' / “'o
- (]
1E02 : Y ‘.,
AN 7N 2
|/ g+t * o / \.m
OE+00) —prmmapay]lﬁ.]xl‘\ll.rl"m L e e 3]
o 0,2 Q4 0.5 0.8 1
Normalized Power

Fig. 4.5 Wind Turbine Power: Stationary Distribution

Eventually, Fig. 4.6 shows the influence of the standard variation o,. For comparison, the

curve with o, = 1m/s is included in Fig. 4.5. As expected the probability curve becomes

flatter while increasing the standard variation. A significant aspect is the increased

" probability at zero power in the ¢, = 4m/s curve. This is forced by the cut-out wind speed

below which the turbine power is zero, eventhough the wind speed is not. Again, the values

at p = 1 are omitted for the sake of a reasonable scale.

Distributions

Wind Turbine Power Distribution

4. Statistical System Modelling 4-9

B =05, v, = 16m/s, v, = 16m/5, vy = 2.8m/s, v, = 24m/s, v, = 16m/s
0.08

— ov=4.0
——— ov=20m/s
007 ov=1.0m/s
_____ ov=0.5m's "
. /
3o 2
L 008 !
p]
Zou !
' o ll ot seree
003 Vi
] 7
S)
:é 002 ;:_. _.l- L JC .
(] — - 3 !
001 e W ——— ra
- “t -
- *
0 eyl .--"'.‘ d‘/
0 0.2 04 06 08 !
Normalized Power

Fig. 4.6 Wind Turbine Power: Stationary Distribution

Fig. 4.7 shows the corresponding distribution functions including the jumps at p = 1. Note

that the height of the jump at p = 1 is equal to the probability that the system delivers
maximum power.

Distributions ' Wind Turbine Power Distribution

4. Statistical System Modelling 4-10

Bu =035, v, = 16ms, Ve = 16m/s, vy = 2.8ms, v, = 24m/s, v, = 16m/s

Stationary Probebility Distribution

Fig. 4.7 Wind Turbine Power: Stationary Distribution

4.1.2.2 Conditional Distribution

Having examined the stationary case light is now shed on the conditional probability
distribution. Fig. 4.8 illustrates the impact of the time on the probability function. The initial
wind speed was chosen to be 12m/s, well below the mean wind speed. At time t = 0 the
wind speed is known. Hence, the probability for one particular power value is one. As time
goes by the range broadens and its peak moves towards the peak which corresponds to the
mean wind speed. In fact, the stationary solution for this particular setting is included in
Fig. 4.3. The graphical representation of g,,(n}v,) in Fig. 4.8 emphasizes the fact that the
power scale is discretized. It is worth pointing out that the time scale is not necessarily a
typical one. Throughout the paper the time always appears in the product Bt in the
autocorrelation function. By chosing a different B the time scale will vary accordingly. For
the calculations of the probability distributions an arbitrary value B,, = 0.5s" is assumed.
Different values, however, do not affect the results.

Distributions Wind Turbine Power Distribution

4, Statistical System Modelling 4-11

B.= 0.5, v, = 16m/s, Ve = 16m/s, vy = 2.8/, v, = 24m/s, o, = 1m/s, v, = 12m/s

B t=0.0s
t=0.1a
t=0.23
| W t=0ss

d
d

08 -/

[+X.] -/

AN AN AN AN
NI ERNE AN BN

d
]
vd
L~
e
"

Conditionat Probability Function

o TIT T VAT T T T T TR I s 73T ITTFT T T AT T TT P TR TT I TFITIT U IR T
.8

Nomalized Power

Fig. 4.8 Wind Turbine Power: Conditional Distribution

In Fig. 4.9 the probability function is shown for a set of initial wind speeds at one particular
time t = 0.2s. For cross reference, the curve with initial wind speed v(0) = 12m/s is also
included in Fig. 4.8. Bearing in mind that both the rated wind speed and the mean wind
speed are 16m/s it is clear why the curve with initial wind speed v(0) = 18m/s is virtually

zero anywhere except at maximum power p = 1.

Distributions Wind Turbine Power Distribution

4. Statistical System Modelling | . 4-12

B =105,V = 16Im/8, Voouy = lﬁgnls. vy = 28m/f5, v, = 24m/s, ¢, = Imfs, t = 0.2s
B vio=120
v{0)=14.0mys
W0)=16rmya
M vio)=18.0ms

e

ANEERNE AN BN

d
1
L~

e
L7
d
d

L
L]
s+
e

Conditional Probability Function

o

0.2 o8 1

04 o8
Normalized Power

Fig. 4.9 Wind Turbine Power: Conditional Distribution

The corresponding distribution functions G,,(n|v,) are depicted in Fig. 4.10.

Ba =035, v, = 16m/8, Voo = 16m/s, v, = 2.8m/s, v, = 24m0/5, 0, = Im/s, t = 0.2

H vio)=120mys
v{0)=14.0mys
v({0)=168.0m/s
14 W vo)=180mys

1

0.8+

L~

o
k.
1

ANEANEEAN

Conditlonal Distribution

AN

0 0.2 0.4 08 0.8 1
Normalized Power

Fig. 4.10 Wind Turbine Power: Conditional Distribution

Distributions Wind Turbine Power Distribution

4, Statistical System Modelling 4-13

Fig. 4.11 displays curves with different mean wﬁxd speeds for an initial wind speed v, =
12m/s at time t = 0.5s, This is the same setting as in Fig. 4.3. That means that the curves in
Fig. 4.11 move to Fig. 4.3 for t ~ «, The interpretation is simple. Under higher mean wind
speeds the system moves more quickly to higher power values than under lower mean wind
speeds. |

B = 035, v, = 16m/s, v, = 12m/s, vy = 2.8m/s, v, = 24m/s, 0, = 1my/s, t = 05s
012

ymean=120my/s
———vmean=14.0my's
N vmean=18.0rys

————— vmean=18.0rys

e
S

o
8

g

Conditional Probability Funiction
(=]
8

0,02

0 [[Tt] H]] o '
o 02 0.4 8 08 1
Normalized Power

Fig. 4.11 Wind Turbine Power: Conditional Distribution

4.1.3 PV Array Power Distribution
4.1.3.1 Stationary Distribution

In analogy to chapter 4.1.2 the normalized solar power scale (3.12) will be discretized by

n-1
Pon = n=1..N
e N-1 4.8)

With the normalizations (4.8) and (2.70) and assuming the linear relationship (3.12), the

Distributions PV Array Distribution

4. Statistical System Modelling 4-14

stationary distribution function F,,(n) can be phrased in terms of the distribution function
F,(x) (eq. 2.79),

-1
&ﬁ"km

G (n) =F
l T~ Fom 9

Similar to (4.7), a stationary probability function can be obtained from

G,(1) n=1
£l = G, () - G,(n-1) n>1 | (4.10)

The stationary probability function g.(n) is shown in Fig. 4.12 for 3 different clearness
indexes and a constant standard variation o,. Again, the power is divided up into N = 51
values. The maximum (normalized) clearness index K, = 1.3 is assumed. Fig. 4.12 reveals
that the probability function has in general two maxima due to the superposition of 2 beta-
distributions. A higher cleamess index moves both maxima towards maximum power. At the
same time the peak of the low power maximum decreases in favor of the high power

maximum.

Distributions PV Array Distribution

4, Statistical System Modelling 4-15

Parameter; K, = 1.3, 0, = 0.35,N = 51
0.07

——— k=0.T7 ot
. k=1.0 .*:
5
’g 0.05 -:-
3 -
9 AN
_g .
3 At
%003 V4 \ Y - \
§ oo / N 4 \ \
ﬁ ot ‘T.“"'o l :: \
9] / / .-““ \\ “"'. / s \
001 “ 7. v K
: s WL ANRE \
0 -

r']ilIli[‘Iilﬁiil]lrlllillrllir[rsTrTrrrrirT 1T TTeTd
0.2

o ; 1
Normalized Powar

Fig, 4.12 PV Array Power: Stationary Distribution

This becomes even clearer in Fig. 4.13, where the corresponding distribution functions G,(n)
are drawn. This is an interesting result. Obviously, the system has two preferential points,
neither of whom is the average. Hence, it is expected that the solar power sometimes may

change rather abruptly by jumping from one to the other peak. In fact, this can be seen in
the discussion of time series in chapter'4.2.

Distributions PV Array Distribution

4. Statistical System Modeiling 4-16

Parameter: K, = 13,0, = 0.35,N = 51

1
——— k=08 e
———— ::0.7 /
........... 1.0 /
" o]
8 08 l j
2 3
: /g
i /7 s
Sos e 2
§ "/ :s
b= /’ .Q.
00'4 // < Ad
I'.“
g / ..0"'"".'
[3
% I/ “‘l'.
&oz 7 5
/7
/ ‘o"‘
/ ot
0 II‘Irel.l."i.l..l':lllIIIII[IIIIIITtIIIlI’IIIl'I]IIlIIT_r!
0 02 0.4 0.8 [+ X 1
Nomatlzed Power

Fig. 4.13 PV Array Power: Stationary Distribution

In the graph depicting the distribution functions, the curves with higher clearness index are
below the ones with a smaller k. Remember that any distribution function F(x) returns the
probability that the system is in a state less than or equal x.

The impact of the standard variation o, is illustrated in Fig. 4.14 and Fig. 4.15. In the event

of a small standard deviation o, the probability function is very much centered having one

peak only. Larger values cause the two peaks that are mentioned earlier to seperate and drift

apart towards minimum and maximum power respectively.

Distributions PV Array Distribution

4, Statistical System Modelling

4-17

Parameter: K, = 1.3, k=0.7, N =50

0.08

0074 e

— ok=0.15
——— gk=0.25
ov=0,35
ove(.45

o
3

o
o
&

o
8

Stationary Probability Function
o o
3 g

0.01

0.4 X
Normalized Power

06

08

Fig. 4.14 PV Array Power: Stationary Distribution

Parameter: K, =13, k=07, N=50

1
— ok=0.15 e
——— ok=025 7 S
- ok=0.35 V4 ~ K
----- 0k=0.45 y) ~ /
g 08 4 = 7
§ / /s 57
LL .5 /
%08 AR -
= ' Y
= "/..l"' "’
Q . % i 5 o » o ¥
= -1
-é’ ot e Ve
04 . e
3 <&
(=] /‘, .‘.‘
g / \“. /
Hoz n s v
/‘/ ‘Q."‘ /
A “.“‘." //
0l I L v 1 rrrrrrryryrrrrryryrrrrrrrtrrrrrrrrrror
o 02

N'ormalized Powér

Fig. 4.15 PV Array Power: Stationary Distribution

The matching distribution functions in Fig. 4.15 disclose yet another pecularity. The power

Distributions

PV Array Distribution

4. Statistical System Modelling 4-18

at which the distribution function is 0.5 is independent of the standard deviation. This power
point is only a function of k and K,. Hence, o, has an impact on the weighting and not on

the average.
Parameter; k = 0.29, o, = 0.08, N = 51
0,14 — towoe
——= K=1.0
o2 .: P (v 1 <]
0. 1
c 4 \
£ 008 S A
3 foy
[¢] .08 . g = ‘
E ' 2 -: /\’\
.% 0.4 : T '. ‘F
@ Iy :
0.02 :.' '.: ‘\
o .

" os Y 1

o 0.2 04
Nomalized Power

Fig. 4.16 PV Array Power: Stationary Distribution

In Fig. 4.16 curves are drawn with the maximum clearness index K, as parameter. This
parameter was introduced in (3.12) to normalize the power scale. It specifies the clearness
index above which the maximum power is attained. In general, a larger K, permits higher
power values and broadens the shape of the probability function. It has, however, no effect

on the qualitative course of the curve.

4.1.3.2 Conditional Distribution

In analogy to the previous section the discrete, conditional distribution function Gp,(nl ko) of
the solar power can be phrased in terms of the approximating conditional distribution
function F,(x) (eq. 2.91):

Distributions PV Array Distribution

4. Statistical System Modelling 4-19

n-1
Ky Hum | K

G = T Ton h @

Similar to (4.10) the discrete, conditional probability function can be obtained from

) G {1 k) =1
gla| k) = { & alk) - Coln-1k) >1 (4.12)

Please note that the hat on g, signals that the normal distribution expansion (2.82) is
applied. For large time values t — <, Gm represents the unconditional distribution function

as the autocorrelation coefficient r, touches zero.

Parameter: K, = 1.3,k = 0.7, 0, = 0.35, k(0) = 0.1, 8, = 0.5, N = 51

i t=00s
t=0.058
t=0.28
;| M =508
vy
g L L1
'-g 0.8 i7d /
& % //
o6l >
Ry %
s | Y i
& g4t L
2 | L
2 // d
o2
5
[&]
0 TTTT AT T T T T FI TV ET VR AT T T FT T T T TV ES TRV LR T T T R8T
0 020408 0.40818 081224 0,81633

Normalized Power

Fig. 4.17 PV Array Power: Conditional Distribution

In Fig. 4.17 an initial clearness index k(0) = 0.1 is assumed. The diagram shows the
conditional probability function at 4 different times. Again, at time t = 0 the probability to
observe the power value that corresponds to k(0) is 1. Later, the main bulk of the probability

Distributions PV Array Distribution

4, Statistical System Modelling

4-20

function moves on to higher power values.

Another interesting feature is the variation of the initial value k(0) as displayed in Fig. 4.18.
It is no accident that the three curves have the same shape. It can be concluded from the

conditional distribution function (2.91) that

Ffx|x) = Ff(x;-x)rex|n)

4.13)

Hence, any variation of the initial clearness index can be translated into a shift along the

clearness index axis. It finds its manifestation in Fig. 4.18.

Parameter; K, = 1.3,k =0.7,0,=0.35,t =025, 8, = 0.5, N = 51, t=0.2s

02

w— k{0)=0.1

——— ki0)=04
........... k{0)=0.8

%ms n ,'" -: ‘::

g)

3 ’ ‘ < 2

E 0.1 ¥ ‘- S

g 1 P

< oy

g ! :

'% 005 P “ .‘. ¥

3 .

LI R | LI I At N B B B A DA B B U Bt S B
2] \ 04 0.8

Normalized Power

Fig. 4.18 PV Array Power: Conditional Distribution

4.1.4 Combined Power Distribution

Given the conditional probability functions for the wind turbine power (eq. (4.7)) and the
solar power (eq. (4.12)), the total renewable power p., (eq. 3.15) can be obtained via

Distributions

Combined Power Distribution

4. Statistical System Modelling 4-21

convolution® if the stochastic processes of the wind speed and the clearness index are thought
to be independent. Precedent to that let us denote the probability functions of ({p,) and (1 -
{pas

b, (1) —-—grp{%m] , b fm) = gp,(—f—m,) , m=1..N

1-{ 4.14)

before we can write the discrete probability function gm(n:\}o,ko) subject to the initial
conditions v(0) = v, for the wind speed and k(0) = k, for the clearness index,

- -
Sl Al Vos ko) = Y B, 0)) Bpsn-p) , m=1. N
=1 (4.15)

The calculation of the convolution can be considerably speeded up by using the distribution
functions rather than the probability functions. Hence, we define

0 i<l
. i .
H. () = G"(I-CIVO) 1<sisN @.16)
1 PN
and
0 <1
H () = (“;p,(-é- |1q,) 1.51'5N @17
1 PN
leading to
b)) = B) - B j-1)
B} = Hpl) - Byulf-1) (4.18)

¥Refer to chapter 6.2 for more details

Distributions Combined Power Distribution

4, Statistical System Modelling : 4-22

Now, the H,, and H,, values can be stored in vectors prior to the calculation of the
convolution sum (4.15).

The stationary probability function is depicted in Fig. 4.19 with the fractional power factor
{ as paramter. In case of { = 0.0 only the wind turbine is used and the corresponding curve
coincides with the v = 16m/s - curve in Fig. 4.3. On the other hand { = 1.0 signifies that the
wind turbine is switched off with the resulting curve being the one in Fig. 4.19. The remnant

two curves clearly mark the transition from one extreme to the other.

Parameter; v, = 16m/s, ¢, = 1.0m/s, k = 0.7, ¢, = 0.35, N = 51
0.08

zota=0.0
——— Zota=0.33 ' N
007+ e Zata=0.87 ! \
_____ zeta=1.0 I ‘\

o
8

o
a

o
2

o
(5]

Stationary Probability Functlon
o
£

o
[
=

=
1y

L L0020 AL I o A0 B B 2
o8

Di\ LR .l°:2\|IITTIII°:4I y
Normalized Power

Fig. 4.19 PV Array Power: Conditional Distribution

As far as the conditional distribution is concerned, two scenarios are displayed for one
specific time with { as parameter. First, in Fig. 4.20 a sudden wind speed slump (initial wind
speed v, = 8m/s in relation to a mean wind speed v = 16mys) is assumed. It is no surprise
that a higher proportion of solar energy (greater {) causes the probability function at time t
= (.1s to have its peak at higher power values than in the wind turbine - only case.

The second scenario, as shown in Fig. 4.21, assumes a clearness index slump (initial
clearness index k, = 0.1 and mean 'value k =0.7). |

Both scenarios demonstrate that a hybrid energy system is able to offset or at least restrain

Distributions Combined Power Distribution

4. Statistical System Modelling

4-23

the effect of fluctuations, thus stabilizing the system. This discussion is continued in the

chapter on time series where the same parameter settings will be encountered.

Viusa = 16m0/5, 0, = 1.0m/s, k = 0.7, 0, = 0.35, v(0) = 8rmys, k(0) = 0.7, t = 1.0

G.14

Conditional Probability Function

0,02

—-—— zata=0.25
3\
/ AN S
2 2
& :“‘ EAN
. 3 \
y L
NHARRON
{ :/ $ \ \,
I‘I‘II IlIIIIIIlTIIT :::::: \\ |||||| L
: s 8 08 1
Notmmalized Power

Fig. 4.20 Joint Renewable Power: Wind Speed Slump

Distributions

Combined Power Distribution

4. Statistical System Modelling 4-24

Voean = 16m/5, o, = 1.0m/s, k = 0.7, o, = 0.35, v(0) = 16m/s, k(0) = 0.1, t = 1.0s

o.18 zota=1.0 _ .
——— zeta=0.7%
0144 e Zeta=0.5 -I‘.
_____ 2atam0,25 ‘ ‘
5 - -
5 012 —
3 -t
3
:. R
?Q ;: X ! l.
8 0.08 /-- ~ 5 2 "' t
8 E 3 . :
B 008 i \F - ‘
§ 004 ;:_'\ -'-,/ L3
/ \ : 5 \
[4 . \.

0 _ 02 04 X}
Normalized Power

‘08 R

Fig. 4.21 Joint Renewable Power: Clearness Index Slump

Distributions Combined Power Distribution

4. Statistical System Modelling 4-25

4.2 Time Series
4.2.1 A General Time Series Algorithm

The purpose of this section is to present an algorithm to calculate synthetic time series of

any stochastic process. It is applied te the processes discussed above in the following part.

Before defining the algorithm the framework has to be set out. First, let Fe(E, At | «,)
denote the conditional distribution function with respect to the random variable £ at time At
subject to the initial value w,. Here, £ and @ are vectors. In the framework of this paper
they usually have one component, which corresponds either to the wind speed or the
clearness index. Only in the case of the joint renewable power both components are needed.
A function E(£) = & translates a given £ into an initial vector. It is assumed that the inverse
function E(w) exists. Often, it is not the random variable £ that is the desired magnitude.
Therefore, a function ¢ = -F (Ej is assumed that maps the vector £ to a scalar variable ¢.
Finally, a random number generator® is assumed that produces the random realizations, £.
This random number generator is a functional of the underlying conditional distribution
function F(E, At | w), where At is the desired time step and w, the set of initial values.

Hence, it can be written as

£ = Q[ﬂ(&»ml"}o)]
4.19)

Given this preliminary, the algorithm to generate time series with values §; and a time step

At between any two values can now be formulated.

(lj Denote the set of initial values as w,. Calculate the first value of the time series from
¥, = F[EY(w@,)]-

2) Setj=1

(3) Initialize the random number generator with the current time. Link it to the
underlying conditional distribution function. Set all initial values and the time step.

(4) Determine the next random vector &; = p[Fe(€, At | w;,)]

*Refer to chapter 6.6 for a discussion of random number generators.

Time Series General Time Series Algorithm

4. Statistical System Modelling 4-26

(5) Calculate set of initial values for next call: w; = E(&))

6) Calculzite next output value ¥, = ¥(§)

() Updatej=j+1

(8) If enough values have been calculated go back to step (3) to generate next value.
Otherwise continue at (9).

{9} End of algorithm.

Each value is generated successively in step (4) by taking the last set of realizations, &, as

initial values of the conditional distribution that governs the random number generator in the

following call. Hence, each time the generator is being called the underlying distribution

function might be different. At first glance, this algorithm might appear to be a bit nebulous.

It will, however, gain substance in the following section. The reason for the general approach

is that it allows an elegant implementation, independent of a specific distribution function'®

or requirements.

4.2.2 Case Study
4.2.2.1 Wind Speed Time Series

In case of wind 'speed time series the vectors have only one component, the wind speed, &
=) = v which coincides with the desired ;)utput magnitude, (&) = £. The underlying,
conditional distribution function (4.2) is the well- known normal distribution!!. Time series
have been calculated for two parameter settings, the same as for the distribution functions in
Fig. 4.1. In Fig. 4.22 three series are shown that have been generated using the same
parameters. Fig. 4.23 shows three series based on the same parameters as in Fig. 4.22, except

the standard variation being twice the previous value. The graphs clearly speak for
themselves.

YRefer to chapter 7 for more details on the implementation of random generators and
time series calculators (class TimeSeries).

"Algorithms to retrieve normal deviates are described in chapter 6.6.2.

Time Series Case Study

4. Statistical System Modelling 4-27
Parameter: v, = 16my/s, o, = L0m/s, v{0) = 8.0m/s
x '
15
w
E
-§1D
Q.
)
o
[=
=
5
o LR LA R R R AR AN N RN RN RN NN NN R AR RN RN A LA N RN AR A A R N R A A N]
0 10101 20202 30303 40404 50505 60608 7,077 5,0509

Time [s)

Fig. 4.22 Wind Speed Time Series

Parameter: v, = 16my/s, o, = 2.0m/s, v(0) = 8.0m/s

25

£

[« N

w

=

=
5
O - T T T T T T T T T e T T T T T T T T T R T T T T
"] 10100 20202 30303 40404 50505 B0608 TOM7 80808

Time [s]

Fig. 4.23 Wind Speed Time Series

Time Series Case Study

4. Statistical System Modelling 4-28

4.2.2.2 Wind Turbine Power Time Series

Again, the underlying stochastic process is the wind speed. Therefore the same random
generator can be used as before in the case of wind speed time series. The difference is the
output function ¥ (&) which is now the wind turbine P-v- characteristic (3.1), normalized by
(3.13). The diagrams in Fig. 4.25, Fig. 4.24 and Fig. 4.26 show normalized power time series
for different mean wind speeds.

In Fig, 4.24 the mean wind speed (v = 14my/s) is below the rated wind speed (v, = 16my/s)
and the power slowly picks up. Concluding from the diagram it takes around 8s to pass the
power level p = 0.6 for the first time.

Parameter: vg,,, = 14m/s, o, = 2.0m/s, v{() = 8.0m/s
1 <

A :

08 :

v i

> P f A |

AT Y N AR

08 AETAR i l'{"-"-.\"'-' o
: Y, ¥ |

/‘\3 It/

Normalized Power
s

02 .~ f
Ay

-'/\.f

0
0 10101 20202 30303 40404 50505 80608 70707 80808 $.0909

Tima [s]

Fig, 4.24 Wind Turbine Power Time Series

Time Series Case Study

4, Statistical System Modelling

4-29

Parameter; v, = 16m/s, 0, = 2.0m/5, v(0) = 8.0m/s

1

T ; S
! ” A

- T N

o8 BMAMHEER P
: MRS)
80 ¥ '
@ &
S { .
£ o4 e
s I .
z

T T T T T T T T T T T e T T T T T T T S T T T T T s T T T T T TSI T T T oy rT
14 0404 0508 70 0809

0101 20202 30003 4,
Time {s]

Fig. 4.25 Wind Turbine Power Time Series

Parameter: Vpe, = 18m/s, 0, = 2.0m/s, v(0) = 8.0m/s

1

w / m e

0.8

[~
>

Normalized Powaer
° .
F-9

02

0

0 10101 20202 30303 40404 50505 80608 7.0707 80808 §.0%9
Time [s}

Fig, 4.26 Wind Turbine Power Time Series

Time Series

Case Study

4, Statistical System Modelling 4-30

In Fig. 4.25 and Fig. 4.26 the power will pick up a lot faster due to higher mean wind
speeds of 16mfs and 18m/s respectively. A guess for the first 'passage time based on the
graphs is 2s and 3s. Obviously, these are only very crude estimations of the first passage
time and methods to calculate it are actually the center of discussion in the next chapter. We

will, however, get back to these graphs in order to relate the results to single time series.

4.2.2.3 PV Array Power Time Series

The conditional distribution function to be applied to photovoltaic power time series is
f}ps(n} k,) from equation (4.11). The discrete power level n € [1, N] can be identified with n
= £, whereas the initial condition is k, = w,. As a result of this the functions E and P are

set to be

s5(m = k. 21
=) =& Ny |
¥ () - ;:; (4.20)

taking into account the normalization of the solar power (3.12) and the discretization (4.8).
The time series values, produced from ¥(n), represent the normalized, discrete power. The
random number generator used is described in chapter 6.6.3.

In Fig. 4.27 three time series have been recorded for a clearness index k = 0.29 and a
standard deviation o, = 0.08. Once it has picked up the power stays within the range of the
peak of the stationary probability function (as depicted in Fig. 4.16) which has only one peak
for this particular parameter Setting.

In contrast, Fig. 4.28 displays 3 time series with clearness index k = 0.7, standard deviation
oy = 0.35 and otherwise identical parameters. The data in Fig. 4.12 is consistent with two
peaks in the distribution.

The three time series in Fig. 4.29 correspond to the probability functions in Fig. 4.16 whose
peaks match closely to the values of the time serjes.

Time Series ' Case Study

.4, Statistical System Modelling 4-31

Parameter: B, =2.0, k = 0.29, g, = 0.08, k(0) = 0.1, N = 50, K, = 1.3

=)

o
Y

Normalized Power
o
@

bod
]

0.1

O T O TP T T T T
: 3 50508 8, 7 80808 0.0000

[s] 1.0101 72.0232 30003 40404 1
Tirma [s]

Fig. 4.27 PV Array Power Time Series

1

08

o
o

Normalized Power
[+)
ry

0.2-

0 IR R AN AR AN R R AL AR AL LN N A AR A AL R R AN AR R R AR RN NN
0 10101 20202 30303 40404 50508 S0806 70707 AH0808 90009
Time [s]

Fig. 4.28 PV Array Power Time Series

Time Serzes Case Study

4. Statistical System Modelling 4-32

Parameter: 8,=2.0,k =0.29 ¢, = 0.08, k(0) = 0.1, N = 50

KO=Q.6
——— KD=1.0
........... KO=13

VAV LY J\V\\

t

o
o

Normalized Power

i \/ I\~
AV * I3 4 A\
04 b S ol Ay o g ey Y
A | S N e —— D T B X N - i
f i i 2f WY e o Vi
02 F <
F
o IRBRRRARERE] LA AR AR RN RN R RS LR AR A EAR AR AN N R AL IR NN R A RRAREE]
0 10101 20202 230303 40404 S0S05 680808 70707 8

Time {s]

Fig. 4.29 PV Array Power Time Series

4.2.2.4 Joint Renewable Power Time Series

In case of joint renewable power time series the vectors £ and w hold two components, The
first is identical to the wind power case, the second to the solar power case. The two
underlying stochastic processes are treated completely separate throughout, including two
random number generators. They are only brought together in the output function ¥(E)
which coincides with the normalized expression for the total renewable power (3.15). The
following diagrams, Fig. 4.30 and Fig. 4.31, take up the scenarios from last chapter, namely
Fig. 420 and Fig. 4.21. They illustrate - what was already predicted then - that a

combination of two renewable energy sources stabilizes the system and smoothens the

output,

Time Series Case Study

4. Statistical System Modelling

4-33

1

Parameter: v, = 16m/s, k = 0.7, oy, = 0.35,k(0) = 0.7, ¥(0) = 8m/s

Normalized Power

Zeta=0.0
— - zotam(.25

- ZetamQ5
Zota=0.75

YT TS T T T T
1,010t 202 0008

Time [s}

Fig. 4.30 Wind Speed Slump

1

TTTTT

7.0707

LEERRTANASIRRRRRRERRRARY
90,0009

8,0808

Parameter: Vo, = 16mys, k = 0.7, oy = 035, k(0) = 0.1, v(0) = 16m/s

08—

o
]

Normalized Power
2
—— — — ey
.: .l".zu.. .
L ;
: u '...‘ L
-y

02

Zeta=1.0
——— zetamQ,75
e Zatmm0S
----- zeta=0.25
0 LN R LR AR R AR AR RN SRR N R R R R RN 2 N A RN S R NN R AR TR IR A AR AR RERANARRRRE]
Q 10101 20202 30303 40404 50505 60006 70707 80808

Time {s]

Fig. 4.31 Clearness Index Slump

Time Series

Case Study

4. Statistical System Modelling 4-34

4.2.2.5 State of Charge Time Series

In case of time series tracking the state of charge of the battery, the joint renewable time

series generator is being used. Given the joint renewable power at each time step, the state

of charge can be calculated. Using the Manwell battery model, the state of charge can be

determined as follow:

@

(i)

(i)

(iv)

v

Prior to the initialisation of the time series generator the amount of available charge

at the beginning, Q,, , and the amount of bound charge at the beginning, Q,, , have

to be specified.

In order to simplify calculations it has been assumed that the power demand, P, (the
power to be delivered), is constant throughout the time series generation.

Assume the time series algorithm generates a value that represents the joint
renewable power, P, . Compare P, with the power demand P,,.

I (P, > P,) go to step (iv). Charging the battery.

If (P, = P,,) continue with next time step.

If (P, < P,) go to step (v). Discharging the battery.

Charging the battery:

First, calculate the maximum (pegative) charge current, I__,, , according to equation
(2.99). Second, calculate the actual charge current, I , from

P_-P
L= ra ‘a
14 4.21)

Here, V is the constant voltage with which the battery is charge. Now set L = I,
if L < L 1x - In this case a surplus energy of AP = P, - P, - VI, cannot be used
to charge the battery and has to be dumped. With the given value of I, = I calculated
Q; and Q, with the help of equation (2.97).

Discharging the battery:

First calculate the (positive) maximum discharge current using equation (2.98). The

demanded current is

Time Series Case Study

. . \ .

4. Statistical System Modelling 4-35
I, = er - ‘Pex
I v (4.22)

Set Iy = Ijmae if Iy > Iyn,,. In this case the power delivered by both the renewable -
energy sources and the battery is not enough to meet the power demand P, . The

power deficit AP = P - P, - V I ., has to be covered by the diesel engine. As in

(iv) calculate Q, and Q, from equation (2.97), the state of charge from equation

(2.92) and continue by fetching the next time series value.

Fig. 4.32, Fig. 4.33 and Fig. 4.34 illustrate the course of the state of charge for various
scenarios. For all calculations the following values for the battery parameters have been
assumed: k = 0.5s7, ¢ = 1.0, Qu. = 193.6Ah, V = 11.5V. The rated (maximum) joint
renewable power has been assumed to be P .., = 7kW (compare discussion in section 3.3.
In Fig. 4.32 and Fig. 4.33 the assumed power demand is P, = SkW. Please note that both
scenarios, wind speed slump and clearness index shump, comrespond to the already examined
cases in section 4.1.4 (on distributions) and in section 4.2.2.4 (on joint renewable power time
series). The wind speed slump causes the battery to be discharged in order to meet the power
demand. With increasing wind speed, however, the battery can be re-charged again after
some time. For { = 0 (wind turbine only) the battery is going to be discharged deeper than
for { > 0 (joint wind turbine and photovoltaic array).

The underlying scenaric in Fig. 4.34 is identical to Fig. 4.33 except that the power demand
is only P,; = 3.5kW. Here, the depth of discharge caused by the wind speed slump is only
marginal and the battery can be charge after a very short period.

Time Series Case Study

4, Statistical System Modelling 4-36

Parameter: vg,,, = 16m/s, k = 0.7, o, = 0.35, k(0) = 0.7, w0) = 8m/s
07 1

0,6000

;

State of Charge
o

0,0084

—_— =00
—_—— (.25 |
........... zwQ.75 |

oim TE P IT I T O TIT T T T T T T T I T I R e T TTTT T T TEOITITTIT AT PRI TE T I ST T T 13T
0,001

Time [1000s] |

Fig. 4.32 State of Charge: Wind Speed Slump

Parameter: Vo, = 16m/5, k = 0.7, o, = 035, k(0) = 0.1, v(0) = 16m/s

Q7015 7-075 // ‘
——— z=0.25 // ‘
0,70108333 .4
-
P e
//'
Q. 70000007 r
//
/""'—-...——/
0,70025 ,L/

State of Charge

0.66083353 w

0,00041057

olm T T T T T R T T T e T O T I L T T o T T T L T T T T T I LA T T T Iy

6,001
Time [1000s]

Fig. 4.33 State of Charge: Clearness Index Slump

Time Series Case Study

4, Statistical System Modelling 4-37
Parameter: v, = 16m/s, k = 0.7, o, = 0.35, k(0) = 0.7, W(0) = 3m/s
079 z=0.75
—— zu023
o.7022
P
//
%0?014 /,"/
5 P
S -~
1 07008 /// /
& P
//
olm \‘Tﬁ_-__;
o'm TTTTTUTITIYT A I T AT A T Ty VA TR e AR R R FTET T T T VR g TR T T TR T IA T T IR TR T IT TP R TPy O T AT ST T ITTTETTITvoT
0,01
Time [1000s]
Fig. 4.34 State of Charge: Wind Speed Slump
Case Study

Time Series

4. Statistical System Modelling 4-38

4.3 First Passage Time

The first passage time problem was already solved for the wind speed in chapter 2.1.2.2.
This was an analytical solution and it was pointed out that the same way is not viable for
more difficult stochastic processes. The coverage of probability distributions and time series
gives way to two further algorithms which are the focus of this chapter. Their differences
and similarities are highlightéd in section 4.3.3.

4.3.1 Time Series Approach

As mentioned above the first passage time is the expected time T, that elapses until a

stochastic process reaches a passage level for the first time subject to an initial observation.

In general, the first passage time is a function of the passage level x;, , the initial value x,

and the underlying conditional distribution function F(x,t}x,). The idea behind a time series

approach to the first passage time probiem is to follow up a time series and record the time

when the passage level is hit for the first time. For the simplicity of the calculations involved

it is assumed that the initial value is always less than or equal to the passage level. The

algorithm to calculate the first passage time is as follows:

(1) Specify the initial value x,, the passage level x, and the time step At that is inherent
in the time series.

(2) Initialize the random number generator with the appropriate probability distribution,

(3) Setn = 0 (n being the counter of time series taken into account)

4) Set T = O (T being the sum of first passage times from the individual time series.)

(5) Sett = 0 (t being the time scale in one time series) and reset the time series
calculator.

(6} Set j = 0 (j being the counter of the number of generated time series values)

(M Generate next time series value x. Set j = j+1.

®) Ix>x)gote(12)

(9) The process has not yet passed the specified passage level: Update time t = t+At.

(10) If § > 1000} exit the procedure with error message. This is just a safety measure in
order to prevent a possible deadlock. The number 1000 is merely a suggestion which

seems to be realistic. In the program this limit can be interactively specified by the

First Passage Time Time Series Approach

4. Statistical System Modelling 4-39

user,

(11) Repeat steps from (7).

(12) The process has passed the specified passage level: Add T =T +t and update n =n
+ 1.

(13) If (n < Ny) start with new time series from step (5). Ny is the number of time series
taken into account. Obviously, a large N; stabilizes the result but causes the
calculation time to increase. Numerical results (section 4.3.1.1) suggest that numbers
between 10 and 20 already procure reasonably good results.

(14) The first passge time is the average, Tg, = T [Nr.

This algorithm is illustrated and discussed in several examples in the following sub- sections.

4.3.1.1 Time Series Approach: Wind Speed

Applying the algorithm described above the first passage time has been calculated for the
same parameter setting as in the time seties in Fig. 4.22 and Fig. 4.23. It is displayed for an
initial value of v(0) = 8m/s as a function of the wind speed passage level v, in Fig. 4.32.
Hence, it shows the expected time it takes to encounter a wind speed v, or greater for fhe
first time subject to an initial observation of v(0), Not surprisingly, the first passage time is
shorter if the standard variation is smaller. In Fig. 4.35 the first passage time is plotted as a
function of the initial wind speed assuming a passage level v, = v = 16m/s. In both diagrams

the number of time series taken into account, N,, was set to 20.

First Passage Time Time Series Approach

4. Statistical System Modelling

4-40

Vi = 16m/5, v, = 16.0m/s, Ny = 20, N = 51, 8, = 0.5

A T oezomn
ol A A

N Yiin

ALY

E \v’i Y ‘\ :'A‘v'”‘\ NY VA\IA

& Y DV A \ \/\

%3 - ~f \q ;\l\bfﬁ/" ll“ -

g 2 ll’\\ I \ A

<

7
"-—.
7

3
?

[=]

rrrrrryrrrrrrrrre s yrT rIrri T Ty e R 1 Ty T rrrriTTrrT e
88 86 104 N2 12 128 138 144 152 18
Initial Wind Speed {m/s]

Fig. 4.35 Time Series Method - Wind Speed

Vanw = 16m0/5, V(0) = 8.0m/s, Ny = 20, N = 51, 8, = 05
8

—— gy=1,0mV/8
——— gv=2.0m/s //
s
] Vi
("]
—4 A
] v
2 N /v
- S
g /
a
E 2 — A J/\I,
i /7
A
1 ==
/[
c‘I_I7I TT Tt FPTT Trryvrrrrrrreyr1r1r7Trrrrert L L L] TT 1T 117 T
8 as 98 104 112 12 128 128 14,4 152 16

Wind Speed Passage Lavel [rm/s]

Fig. 4.36 Time Series Method - Wind Speed

First Passage Time

Time Series Approach

4. Statistical System Modelling 4-41

Fig. 4.37 depicts first passage times over the wind speed passage level for different values
of N.. For N, = 5 the variations are fairly significant, though even theré the trend is distinct.
The curves get smoother for greater values of N, The improvement stemming from an
increase in N, = 10 to 20, however, seems not to be worth twice the computing time.

Voo = 16m/5, V(0) = 12.0m/s, N = 50, 8, = 05, 0, = 1m/s
8

Nt=§

——— Nt=10
5
=,
®
E
=
[
ga
.
[+
B2
ol
1

0 rryvirrrrryyrrryrryrryvrrrrrysrryrrrrryryrrrirrrrrrrrrrt

12 18
Wind Spead Passage Level [mys]

" Fig. 4.37 Influence of Number of Time Series

4.3.1.2 Time Series Approach: Wind Turbine Power

Results for the wind turbine power are illustrated in Fig. 4;38 and Fig. 4.39. They correspond
to the time series displayed in Fig. 4.24, Fig. 4.25 and Fig. 4.26. Fig. 4.38 depicts the first
passage time as a function of the specified passage level of the normalized wind turbine
power, whereas Fig. 4.39 captures the first passage time as a function of the initial wind
speed, assuming a constant power passage level p, = 0.8. Both diagrams clearly demonstrate

that the first passage time rises immensly in the event of low mean wind speeds.

First Passage Time ~ Time Series Approach

4, Statistical System Modelling

4-42

(0) = 8.0m/s, Ny = 20, N = 50, 8, = 05, ¢, = Im/s, v, = 16.0m/s

18
— vmean=14my/s
—_——— vmaan=10rvs ‘
14 -~ wmaan=13m/s
. /
g10
g /\l
o
§ 8
5 j\/\/
B V—Y
s '/\/
4 .
,_/\/ /'-’-/-’ 3
N, -
2 A > —-—"“,\.\J
_(-—-""‘"“.'.—.-.......---—---'
—_—.__—..f_'.'-—?'ﬂ:‘ S asuren®
Y to
0lllIII'IT'II|||.|||'|1|'||||[['[T.'_'_|Ilr“lll[[‘=IIII[
0061135 0.21192 0382 0.5135

Wind Turbine Powaer Passage Level

Fig. 4.38 Time Series Method - Wind Turbine Power

e = 165, P, = 0.8, Np = 20, N = 50,8, = 0.5

4

1 —— vmean=14rys
——— Vmean=18ms

I R | P vmean=18mys

-
o

\AAA A

M
AANRVNIY

First Passage Time [s]

»
b

ARG
.

~ y
NN
’\/-_\/\
"~ e -
2 vaet T, artd, SUCLTY P — o
o‘rllillill]‘rl|||ll|i|‘?ll]llir(lrllllTTlIIIIII“I
10,879 12318 - 137%8

Initia! Wind Speed [mys]

Fig. 4.39 Time Series Method - Wind Turbine Power

First Passage Time

Time Series Approach

4. Statistical System Modelling

4-43

4.3.1.3 Time Series Approach: PV Array Power

The first passage time as a function of the passage level of the photovoltaic array power is

illustrated in Fig. 4.40 and Fig. 4.41. Here, Fig. 4.40 corresponds to time series diagram Fig.
4.28, while Fig. 4.41 corresponds to Fig. 4.27. Note that the first passage time is the

expected average time. It does not give any clue towards the variance. For instance, looking

at the time series realizations Fig. 4.27 a large variance of the first passage time is expected

which is due to the two peaks in the underlying distribution function. The first passage time

algorithm, however, only yields the average time.

k=0.7, 0, = 0.35, N; = 20, N = 10, 8, = 2.0, K, = 1.3, k(0) = 0.1

/

/

/

/

25

Z ,

bl

E

-

)

%H.s

o

B

) /__——/
i —/

0 T T 1 T T I
0.076523 0,31795 0.558a7
PV Array Power Passage Leve!

Fig. 4.40 Time Series Method - PV Array Power

[+X:]

First Passage Time

Time Series Approach

4, Statistical System Modelling 4-44

k=029, o, = 0.08 N; =20,N =10, 8, = 2.0,K, = 1.3, k(0) = 0.1

O
[
£
’....
(]
=]
g
a.
B
[T
) /__/
o T 1] T 1 T T 1
0,078923 0,18482 0,20231 04
PV Array Power Passage Leval

Fig, 4.41 Time Series Method - PV Array Power

4.3.1.4 Time Series Approach: Joint Renewable Power

The first passage time as a function of the passage level of the joint renewable power is
depicted in Fig. 4.42 and Fig. 4.43. Fig. 4.42 simulates a slump in the wind speed with an
initial wind speed of v(0) = 8m/s. This scenario is identical to 4.30. Greater { - values,
signifying a higher proportion of solar energy, reduce the first passage time considerably. For
4 - 0.75 the impact of the wind speed slump is almost insignificant, Fig. 4.43 on the other
hand simulates a solar energy slump, corresponding to 4.31. In relation to Fig, 4.42 solar

energy and wind energy are just swapped. The qualitative results are the same.

First Passage Time Time Series Approach

4. Statistical System Modelling 4-45

k = 0.7, 0 = 035, Vppe= 16mis, B, = 05, 8, = 2.0, K, = 13, k(0) = 0.7, v(0) = Say/s
2

— 2012 =0,25
——— rata=05
ceeeen 70ta=0.75 /
15
X
E
£ P
® z
o1 'l
] g
& -~
7 -
o, 4,
[e
s w— st
"—_‘.lﬁu\I"""'"'"H.ulnlu-""".‘ '
ll..ll'.'..‘
T I !
034023 08

Joint Renewable Power Passage Level

Fig. 4.42 First Passage Time: Wind Speed Slump

k= 0.7, 0 = 035, Vona™ 16105, B = 05, 8, = 2.0, Ky = 1.3, k(0) = 0.1, v(0) = 16my/s
1.2

zata=0.75
——— zota=0.5

o
[3

o
@

o
Py

First Passage Time [s]

02

-
0.50385

. 07
Joint Renewabls Power Passage Level

Fig. 4.43 First Passage Time - Clearness Index Slump

First Passage Time Time Series Approach

4. Statistical System Modelling 4-46

4.3.2 Markov Chain Approach

In this section a technique is presented to work out the expected first passage time of a
stochastic process using Markov chains, as mentioned in the first discussion of the first |
passage time problem in chapter 2.1.2.2. A Markov chain ([20]) is a discrete-value, discrete-
time Markov process. A Markov process on the other hand is a stochastic process for which
the conditional probability density function at any time and for any given mumber k of
previous observations, depends only on the most recent observation:

£ IX(8) <2, X(8) =y v , X(£) =) = L(X1X(5) =) 5 476> o >4,

(4.23)
Hence, the evolution of the process can be phrased in terms of the so-called transition

probability

8al) = P(X, = 0! X, = m)

(4.24)
This is the probability that the process X changes from value m to n within the time interval

[i-14]. If p;(k) denotes the probability p(X; = n) all probabilities can be put into a vector

PG = [- PAT
4.25)

with N components (for N possible values of X). The progress of the process can then be

expressed in matrix representation

P = GO PU-1)
(4.26)
where G(j) is the transition matrix with elements g..(j) as defined above. The algorithm

whose description follows has been inspired by an algorithm proposed by Paynter ([32]),
which has been further developed in the frame of this péper.,

The algorithm exploits the same idea that stood behind the analytical approach in 2.1.2.2.
Assume the output of the stochastic process to be representable by a whole number in the
closed interval [1, NJ}. Hence, there are only N different states to observe. Assume further
that g is the passage level in question, where q is too a whole number, q € [1, N1 Back in
chapter 2.1.2.2 a system was thought of being filled with particles. Particles that reach level

First Passage Time Markov Chain Approach

4, Statistical System ModeHing 4-47

q were taken out of the ensemble. In this context, the same can be achieved by introducing
an (N+1 x N+1) - matrix G with the elements (n,m € [1,N+1])
m>q, a#N+1
m=gq, n=N+1
Em T 11 m>q, a=N+1 (4.27)
Pnn Otherwise

where p,, is the corresponding transition probability. Hence, the transition matrix looks like
Pu Py —~ Py 0 -0

Pyi Pz — Pyg 0 — 0 (4.28)
|0 0 - 0 1 -1

Below the passage level, G of (4.28) is identical to the transition matrix of the stochastic
process in question. Only difference: Once a particle has passed g, the transition probability
for returning is zero and it will end up in state (N+1). After applying (4.26) over and over
all particles will eventually be in state (N+1), P(N+1) = 1,

Assume now an initial state u, u<q. The initial probability vector P(0) has therefore the
components p; = §;,, where § is the Kronecker symbol,

5. - 0 tj
77 11 i=j - (4.29)

The probability that at time k the system is in one of the states above the passage level is

simply
N+l
C(k) = p(K) |
,;, 4 (4.30)

C(0) is zero as it is assumed that u < q. The next value, C(1) is the probability that the
passage level has been passed after the first time step. As a result, the associated first
passage time - after one time step - is Tp,(1) = 1 * At * C(1). After the second time step the
volume above q will have increased by AC = [C(2) - C(1)], which can be interpreted as the

First Passage Time Markov Chain Approach

4. Statistical System Modelling | 4-48

probability for passing q during the second time step. The resulting passage time is

Tp(2) = At[2(1-C(1))AC] + Ty(1)

. 4.31)
The term (1 - C{1)) in (4.31) is the probability that the system has not passed q within the

first time step. This makes both events (‘passing ¢ in time step 1’ and ‘passing q in time step

2") exclusive so that the probabilities can be adde& up, leading to (4.31). This can be

continued until C(k) is 1 or very close to 1. This technique can be put into a more general

algorithm;: _

(1) Specify N, the number of discrete levels of the underlying stochastic process.

(2) Specify q, the passage level, q € [I,N]. Calculate the transition matrix G of the
enlarged system (4.28) given a time step At.

(3) Specify u, the initial value, u < q.

(4 Specify N;, the maximum number of iterations permitted and 0, the stop criterion, &
< 1.0

o)) Set counterj = 1

6) Set initial probability vector P(Q) with components P = O

(7) Initialize coefficients C(0) = 0.0, ET(0) = 0.0, y = 1.0

(8) Matrix multiplication P(j) = G * P(j-1)

(9) Calculate C(j) from (4.30).

(10) Calculate AC = C(j) - CG-1)

(11) Calculate ET() =j * ¥ * AC + ET(-1)
ET(j) is the normalized first passage time that accumulates the results of the
preceding time steps. Multiplied by the time step At is the real first passage time. It
is denoted ET to make clear this is the formula for the expected time T, the first
passage time.

(12) Incrementj=j +1 ‘

(13) If (1.0 - C(j) < &) go to step (16). Otherwise, stop criterion not met. Continue with
step (14).

(14) If (j > N)) return with an error message. The maximum number of iterations has been
reached. This is just to make sure that a deadlock can not occur.

(15) If § < N)) repeat iteration from step (8). '

First Passage Time Markov Chain Approach

4. Statistical System Modelling 4-49

(15) If (§ < N) repeat iteration from step (8).

(16) The first passage time T, is T, = ET() * At.

This algorithm can be seen as a template for any stochastic process. What is left to specify
from case to case is the initial value, the passage level and the underlying distribution. And
this is actually the main difficulty associated with this algorithm as it requires to calculate
the transition matrix. This is discussed in detail in the following sections on the particular

stochastic processes, i.e. wind speed, wind power and solar power.

4.3.2.1 Markov Chain Appreoach: Wind Speed

In order to apply the above algorithm to the wind speed, the wind speed scale has to be
discretized. Assume that M classes C; (i = 1...M) along the wind speed axis are defined by
the wind speed intervals C; € [v;,, vj]. As the normal distribution is used to describe the

wind speed fluctuations, the extreme values v, and v are +«. For the values in between the

relationship

- 1] +v ,ao=1.M-1 ,u=4753
4.32)

is proposed. Here, 0, is the standard deviation and v the average wind speed. The factor u
= 4,753 was chosen so that ®(v,) = 10, The choice is however, an arbitrary one. For the
reverse direction, calculating a discrete level n from a given speed v, the formula
@ = min {i|v=v}

- (4.33)
can be applied. It says that n is the minimum index for which v; > v. Recalling the wind
speed distribution function (4.2) allows to calculate the probability that the wind speed is -
at time t - within class number i subject to the condition v(0) = v,. It is

Pa(%) = FAv,I%) - F(v,,|w)
(4.34)

First Passage Time Markov Chain Approach

4. Statistical System Modelling | 4-50

class m to class n, where both classes are a whole range of wind speeds rather than just one
value as the initial value in (4.34). Therefore, p,(v,) has to be integrated over all v, values in

class m and divided by the probability that it is in class m in the first place, that is

[paw)dv,
gm - Vi1
- - : 4.
cp{ Vm—V] _ @[Vm_l-V] | (4.35)
07 a"

(4.35) can not be analytically integrated, thus requiring a large amount of computing time.
Instead, the following transition probability is suggested:

))]

£ =B P 2 (1-r%)

(4.36)

The coefficients B, can be obtained from the normalization condition

Lo o

4.37)

The transition probability g, as in (4.36) has the same characteristic as the probability
density function (4.1), namely the exp(-x?) functionality. In fact, (4.36) can be obtained from
(4.1) by substituting

y-_—.aru(m)_—l)+;’

(4.38)

for v and v, and replacing the factor in front of the exp by B,. The process is stationary
when the correlation coefficient is zero and the transition probability simply becomes a
probability for class n irrespective of m.

Given the transition probability g, (4.36) and the conversions from wind speed to discrete
numbers and vice versa, (4.32) and (4.33), the first passage time of wind speed fluctuations
can be calculated 'by folidwing the above Markov chain algorithm. Results for a mean wind

First Passage Time Markov Chain Approach

4. Statistical System Modelling 4-51

can be calculated by following the above Markov chain algorithm. Results for a mean wind
speed of 16m/s are shown in Fig. 4.44 and Fig. 4.45, where M = 20 classes were taken into
account. In Fig. 4.44, where an initial wind speed of 12m/s was assumed, two curves for
different standard variations are drawn as functions of the passage level of the wind speed.
Fig. 4.45 depicts the first passage time as a function of the initial wind speed assuming a
passage level of 16.0 my/s.

In Fig. 4.46 the Markov Chain and the Time Series approach are compared by applying them
to the same parameter setting. Although the methods are very different the results are not

inconsistent.

Voer = 16m/s, v(0) = 12.0m/s, M =20, N = 10,8, = 0.5
a5

— ov=1.0mVs

- gv=2,0mys /
3

b

© 7]
: /
'.._
5 / /
§1.5 /f—_
- /
T —t.
7
05 =
7
y

w4
=

L=}

T T ¥

1333 14,667 16
Wind Speed Passage Level [imy/s]

-
]

Fig. 4.44 Markov Chain Method - Wind Speed

First Passage Time - Markov Chain Approach

4, Statistical System Modelling

4-52

Vaen = 16005, v, = 16.0m/s, M = 20, N = 10, 8, = 0.5
35

—— ov=t0m=
——— ov=20nVs

I
I
/

o ~ .
8, ~
:, ~~
Ty
gns S
m h—
: \
[T |

T T ™ T
12 12,333 14,687 -

Initlal Wind Speed [m/s]

Fig. 4.45 Markov Chain Method: Wind Speed

Vipern = 160/5, ¥, = 160m/s, M =20, N = 10, 8, = 0.5

—~——— TimeSeties
——— MarkovChain

First Passage Time [s]
N
\
~N
N\

12 1333 14007 18
Wind Speod Passage Level {m/s)

Fig. 4.46 Time Series versus Markov Chain Approach

First Passage Time

Markov Chain Approach

s

4, Statistical System Modelling 4-53

The diécussion of comparison is continued at the end of this chapter. But before that the
stochastic processes of the wind power and the solar power are subjected to the Markov
Chain approach. Unlike the wind speed these processes have already been discretized in
chapter 4.1, thus making life a lot easier.

43.2.2 Markov Chain Approach: Wind Turbine Power

The power scale in the conditional distribution of the wind turbine power is aiready
discretized in (4.5). The initial value, v,, in {(4.6) however is not. In order to use it for the
Markov chain algorithm, v, in (4.6) has to be derived from a given initial power level m. As
the power - wind- characteristic (3.1) is not 2 strictly monotonic function the wind speed can
not always be concluded from a power value. If the power is zero valid wind speed values
are v < vy and v > v,,; if it is 1 valid wind speed values are between v, and v,,. In order to
citcumvent this problem the following mapping between wind speed values v and discrete

power levels m is assumed:

min {v,, v} m=1
_ oy mea . -
v(im) = 1 Vg ¥ (V-7 m m=2..M-1 .39
| max{v,,min{v,v,} } m=M

That means, if m = 1 (power is zero) the wind speed is assumed to be v,; unless the mean
wind speed v is less. In case of m = M, which corresponds to maximum power p = 1, the
formula retuins a wind speed equal to the mean wind speed, though not below the rated
wind speed v, or above cut- out speed v,,. The result can directly be inserted in (4.7), thus
leading to the desired transition probability g, Results are illustrated in Fig. 4.47 and
Fig. 4.48 for a variety of mean wind speed values. Qualitatively, the results match Fig. 4.38
and Fig. 4.39 where the first passage time is calculated using the time series algorithm,

First Passage Time Markov Chain Approach

4. Statistical System Modelling

4-54

14

v(0) = 8.0m/s, M = 20,N = 10,8, = 05

vmean=14Tys
—w— VmMean=18&mys
~ vmean=1Bmyg

-

o
o

First Passage Time [s]
(=]
-

o
>

0.2
o T 1 1 L L 1 1 1
o1 036333 056867 0.8
Wind Turbine Power Passage Level
Fig. 4.47 Markov Chain Method - Wind Turbine Power
p, =08 M=20,N=10,8,=05
14 —— Vmean=14mys
~——— vmean=16mys
‘2 \ - wmean=18nys

_,/

o
[

First Passage Time [s]
o
>

o
-

N

\"
R
........ ~ \
....... e ":-..\
=
i

b T T T

03330 0,56667 08
initial Wind Turbine Power

Fig. 4.48 Markov Chain Method - Wind Turbine Power

First passage times calculated via the Markov chain algorithm are, however, significantly

First Passage Time

Markov Chain Approach

4. Statistical System Modelling _ | 4-55

shorter. This is illustrated in a direct comparison in Fig. 4.49. Here, identical initial
conditions apply to both curves. Obviously, the transition matrix G allows the process to
advance quicker than expected. Why is this discrepency? First, the time series approach
tracks the wind speed, not the wind turbine power. As mentioned above, wind speed values
can be uniquely translated into power values, but not the other way round. Second, the
Markov chain method uses a discrete wind turbine power distribution, whereas the time
series approach applies the continuous wind speed distribution - two different distribution
types and two different underlying stochastic processes. The comparison of both algorithms

is continued in section 4.3.3.

v(0) = 14.0m/s, v,,,, = 16m/s, M = 20,N = 10, 8, = 0.5

Time Series
o= Markov Chain

08

e
S

N
<>
J

First Passage Time [s]
[=]
F

-
€
\\

:

o

[
«
~

0,1

0,1085 il 0,84050 0,67028 o7
Wind Turbina Power Passage Level

Fig. 4.49 First Passage Time - Wind Turbine Power

4.3.2.3 Markov Chain Approach: PV Array Power

The fluctuations of the photovoltaic power is governed by the conditional distribution (4.12),
which can be used in the Markov chain algorithm without further alterations as the mapping
between the cleamess index k and the normalized power is linear. Fig. 4.50 illustrates a

First Passage Time Markov Chain Approach

4, Statistical System Modelling 4-56

comparison between time series approach and Markov chain approach by using identical
initial conditions. For the distribution of the PV power M = 20 discretization were taken into |
account. Fig. 4.50 shows a good agreement between both algorithms, Unlike in the case of
the wind power both algorithms do employ the same distribution formula.

k=029, 0, = 0.08, M = 20,N = 5,8, = 2.0,K, = 1.3

T ——— MarkovChain:p({0)=0.0
——— TimeSerieak(0)=0.0

1.4 //

1.2 //
g ! /‘/
E
® 08 R4 /
% // /
" 7
“ o /

o 0:2 04
PV Array Power Passage Level

Fig. 4.50 Time Series versus Markov Chain Approach

4.3.3 Time Series versus Markov Chains - A Comparison

The time series algorithm monitors the meteorological data, wind speed and cleamess index,
as it goes along and translates them into power values. To use this algorithm these
parameters need to be given. The Markov Chain algorithm on the other hand, does not need
meteorological data as it is tracking the power, Hence, if wind speed or clearness index are
not monitored only the Markov chain algorithm can be used to estimate the first passage
time. However, in the case of the wind turbine ambiguities occur as both minimum and

maximum power could be caused by a wide range of wind speed values, causing the Markov

First Passage Time ' Time Series vs Markov Chains

4, Statistical System Modelling 4.57

chain algorithm to be less accurate than the time series approach. For the stochastic
processes ‘wind speed’ and ‘PV array power’ both algorithms procure similar results.

For the values used in the examples the time series algorithm proved, in general, to be faster
than the Markov chain algorithm - with the exception of PV array calculations. The Markov
chain algorithm initially calculates the whole transition matrix G. It is not being recalculated
throughout the algorithm. Only matrix multiplications on G are carried oﬁt once G is
established. The time series algorithm has to return to the conditional distribution each time
a random number is generated. As a result of this the Markov chain algorithm is advantegous
whenever the evaluation of the conditional distribution function is time consuming, as it is
in the case of the PV an'ay.power.

Finally, both algorithms calculate the first passage time successively by moving along the
time axis. In contrast, the analytical method requires the evaluation of an integral or
differential equation. It follows from this observation that the time series method is also
based on the assumption of a Markov process. Hence, both methods assume the same
physical processes. The difference is a mathematical one. Whereas the "Markov chain”
method uses theoretical transition probabilities, the time series method uses a random number

generator,

First Passage Time Time Series vs Markov Chains

e

5. Summary 5-1

5. Summary

This paper centers on an autonomous energy supply plant that consists of a wind turbine, a
photovoltaic array, a battery unit and a fossil fuel engine. The purpose was to develop and
examine statistical models that describe the system and the influence of various parameters,
such as the wind speed and the light intensity, on it. _

This has been achieved in three steps. First, the energy sources involved have been discussed
in chapter 2. It has been shown that the short term wind speed turbulence can be described
by the Omstein- Uhlenbeck process. Likewise, the short term fluctuations of the solar
clearness index can be expressed in terms of mathematical functions. The third energy source
is the battery unit, which may be charged in the event of a surplus energy or discharged if
necessary. Three models for a lead- acid battery have been discussed: Two electric models
and one based on the electric charges. For the purpose of this paper the latter one has been
selected. Finally, a brief section has been devoted to the fossil fuel engine.

In the second step the power supply by this system has been modelled. For the wind turbine
a simple power- wind speed characteristic has been used. As far as the photovoltaic array is
concerned it has been shown that it is reasonable to assume a linear relationship between the
cleamness index and the power supplied by the array.

Eventually, in the third step the results of the first two steps have been used to extract
distribution functions which describe the stochastic processes “Wind Turbine Power”,
"Photovoltaic Array Power", "Combined Renewable Power” and the “State of Charge” of the
battery.

The distribution functions have been used to generate synthetic time series and calculate first
passage time values. Having written a programme it has been possible to calculate and
illustrate the distribution functions, time series and first passage time values for a variety of
parameters and scenarios. By this way it has been demonstrated that the nsage of both wind
turbine and photovoltaic array do stabilize the power supply function if there is either a wind

speed slump or a clearness index slump. Moreover, the programme has permitted the
comparison of two different algorithms to calculate the first passage time. The graphical
presentation of distribution functions, time series and first passage time functions has helped

to gain a deeper understanding of the stochastic processes involved in the system. In the

Summary

5. Summary ' 5-2

introduction to the statistical system modelling it has been pointed out that the algorithms
developed here can be used to design a controller tliat operates the system more efficiently.
It has been stated that the time series algorithms can be used for both off-line optimization
of some of the fixed parameters (such as the ratio between rated wind and photovoltaic array

power) and on- line operation.

Finally, it is the author’s pleasure to thank Dr. David Infield for many discussions, ideas,
references and fruitful suggestions and Jonathan Cauldwell for his support.

6. Appendix I. Statistics 6-1

6. Appendix I: Statistics

This appendix introduces the terminology and outlines some of the statistical methods used

in this paper. These are in particular the concepts of the distribution functions and the
autocorrelation function of a stochastic process.

6.1 Probability Distribution Functions

6.1.1 Continuous Distribution

A random variable is a transformation that maps the outcome of a random experiment to a
real number. This real number is often referred to as a realization of X. The distribution
function F(x) of a random variable X is the (theoretical) probability that the actual realization

of the experiment will be less or equal the value x. Hence it can be written as

F(x) = p(X < x)

6.1)
From (6.1) it can be concluded that F(x) is monotonic and it is F(-«) = 0 and F(«) = 1. Its

first derivative,

i = 0.
ox 62)

is called the probability density function. In case the probability density function is known,
the corresponding distribution function can be evaluated via the integral

F(x) = { fRE) dE (63)

The same principles apply to two- dimensional distributions: Two random variables X and
Y constitute the joint distribution function

Ir y
F(x,y) = p(X<x,Y<y) = £ j’ AE,m)ydndE 64

Probability Distribution Functions Continuous Distribution

6. Appendix I: Statistics 6-2

with the joint probability density function f(x,y). In case the two random variables X and Y
are statistically independent, the joint distribution function will just be the product of the two
one- dimensional distribution functions Fy{x) and Fy(y), F(x,y) = Fx(X)Fy(y).

6.1.2 Discrete Distribution

Often, the number of possible realizations of a random experiment is finite, as for example
in the case of a dice. In this case the theoretical probability for one particular realization x;
with index i will be written as p;. In this instance the distribution function has the shape of
a stair function, |

Flx) = :-Z-; Py s(x-x) 6.5)

where s(x - x;) stands for the unit step function

0 ,x<y

s(x-x) = {1 xzx ©6)

The corresponding probability density function will then be a series of weighted delta
functions:

fix) = :Z; P 9(x-x) 67
For both numerical and graphical reasons the occurence of the delta function is often
inconvenient. In this paper we have mostly calculated the probabilities p; , depicted them in
various graphics over the i - axis and called the p(i) relationship probability function in
contrast to the proper probability density function. From a given distribution function F(x)
the single event probabilities p; can be calculated via the relation p; = F(x;)) - F(x;,), which
makes it very easy to switch from distribution to probability function and vice versa. As a
result the distribution function F(x) too has only a finite number of values and can therefore

be written as

Probability Distribution Functions Discrete Distribution

6. Appendix I: Statistics 6-3

i A
F=Yp Y p=1 ,i=l.A
1 A 6.8)

where A denotes the number of discrete levels.

6.2 Functions of Random Variables

Assume a random variable X with distribution function F(x) and corresponding density
function f(x), whose realizations are channelled through a system with an input- output
characteristic function H(x). The output can be described by a random variable Y with
distribution function G(y). For the sake of simplicity we will only mention two special cases.
First, it is assumed that H(x) is strictly monotonic in the interval x € [a,b). H(xX) is constant
in the interval [b,c] and zero below a and above b, continuous at both a and b. At first
glance, these restrictions seem to be purely arbitrary. They reflect, however, exactly the
course of the characteristic of the wind turbine (3.1). The distribution function of the output
will then be

0 , ¥y < H(a)
G(y) ={ Rx(p) + F(c) - F(b) , Ha) S y SH(b) 69)
1 , ¥ >H(b) '

where x(y) denotes the inverse function of H(x) in the interval [a,b). In the second special

case we assume a linear transform H(x) = ax + B. Here, the distribution function is simply

6 = F(2)

(6.10)
~ with the cotresponding probability density function
_ 1 B)
= f
£ = Ta] (a 6.10)

Such a linear transform of a random variable is the input- output characteristic of the

Functions of Random Variables

6. Appendix I: Statistics 6-4

photovoltaic array (see chapter 2.2.4).

Now consider a ﬁmction\‘ Z = g(X,Y) of two random variables X and Y. The random
variables can be described' by the joint probability density function f(x,y). Here, we will be
noting the density ﬁmctio_h f2(z) of the new random variable Z for three special cases, all of
which occur in this paper.

Sum: Z=X+Y F(2) = f fix,z-x)dx

Product: Z = XY KF(z) = ff(x,f)-l—dx

)] 6.12)

-0

Quotient: Z = X
Y

KFz) = fxt(zx,x)dx

The expression for the sum can be considerably simplified if statistical independence of X
and Y is presumed. By this way the density function of Z can be concluded without
knowledge of the joint probability density, just by evaluating the convolution integral

£A2) = __{ (D) f(z-x)dx (6.13)

where f,(x) and f(y) are the density functions corresponding to X and Y. With the help of
this relationship we were able to formulate 2 distribution of the sum of both wind and solar
power in chapter 4.1.4.

6.3 Conditional Distributions

A conditional distribution in the context of this paper is a distribution of a random variable
subject to a specific condition. Often this condition is an observation of the underlying
stochastic process at another time. A conditional distribution function is written in the form
F(y | X=x), which signifies the distribution of the random variable Y under the condition

that another random variable X maps onto its realization x. Given the joint probability

Conditional Distributions

6. Appendix I: Statistics 6-5

distribution function f(x,y) of two random variables X and Y and the probability density
function of Y, £,(y) the conditional probability density function f,(x | Y=y) can be calculated
from

f(x,5)

fix|¥=y) = X220
X ¥=p £ (6.14)

6.4 The Autocorrelation Function

A stochastic process is a time dependant process which can be described by a probability
distribution function F(x} and the autocorrelation function R, (7). The latter is a measure for
the correlation between the realizations of the random variable at time zero and time T. An
autocorrelation function value of zero signifies that the realization at time © is not in any
way dependant on the value of the realization at time zero. Assuming the stochastic process
to be stationary (the statistical characteristics such as mean value and variance are time

independent) and ergodic!? the autocorrelation function can be worked out from

R(r) = lim -1

r
— | x(§) x(t+7)dt
T 2T__";

(6.15)

with x(t) being a realization of the process over the time t. If x(f) represents an energy
variable the autocorrelation function R (0} at T = 0 can be interpreted as the average process
power. This characteristic brings about the Wiener- Chintchin transform from the
autocorrelation function R, {t) to the corresponding power spectrum S,(), which is
formally on a par with the Fourier transform,

ZAssume a stochastic process as an output of an experiment. The output is s(t) as a
function of time. The experiment is repeated N times (i=1...N). Now, the values of s(t,) (N
values) can be put together in a sample k. A stochastic process is called ergedic if the
statistical values of any sample coincide with the ones of any time function. It is worth
noting that it can not be proved that a stochastic process is ergodic or not. It is mote a
conceptual idea. Ergodicity is, however, usually assumed as it enables to evaluate the
autocorrelation in the time domain without knowing the joint probability distribution.

Autocorrelation Function

6. Appendix I: Statistics 6-6

S (@) = f R_(r)elordr

R_(7) = 2—111—_— f S (w)elerdr 6.16)

The double index xx is there to remind one of the random variable X that stands behind the
stochastic process. |
For the description of time discrete processes the same concepts apply. Only the results have
to be adjusted accordingly. Given a series of observations x; (i € N) taken at in constant time
intervals T, the autocorrelation coefficients
oy

Ry=im NX s 6.17)
converges towards the proper autocorrelation function R, (jT), presumed stationarity and
ergodicity. In full analogy to the Fourier transform (6.16) in the time continuous case, here
the discrete Fourier transform will yield the power spectrum:

S (@) = ¥ Re-kor
k—-eoz_w
T {6.18)
T
R =S koT g
k= 3 f Sal@e

The inverse transform, however, is not part of the discrete Fourier transform as the power
spectrum has not been discreteized.

6.5 Normal Distribution and Normal Process
6.5.1 Normal Distribution

The so called standard normal distribution or Gaussian distribution is a distribution defined
by the probability density function

Normal Distribution Normal Distribution

6. Appendix I: Statistics 6-7

flx) = 1 exp(—}__(_‘r__‘ﬂ)z_]

Lo 2 & (6.19)

Its mean value is a, its standard variation . For the special case of a = 0, ¢ = 1 the
distribution is called standard normal or Gaussian distribution and the corresponding
distribution function is defined by ([1}, def. 26.2.2)

(0 - == | exv(—%i’) dE 620

v %
The distribution function of a normal distribution is then
== __x—a)
) (o (6.21)

The probability density function of two- dimensional or bivariate normal distribution for two
identical distributed random variables X and Y with zero mean, standard variation o and

correlation coefficient t is given by

£ (x5, = xt+yt-2rxy)]

1 1
exp| -
2r?tf1-1~ [2(1-r%) (o’ (6.22)

where the correlation coefficient is defined via the covariance Viy s T =V, [02

6.5.2 Normal Process

A stochastic process X(t) is called normal if the random variables X(t,), X(t,) ... belong to a
multi- dimensional normal distribution. The probability density of X(t) under the condition
of a given observation x, at time t = 0 can be calculated via (6.14) and (6.22) and it is

1 1 (x-x1)?)
Rxix) = exp) -~ —————
% Vimo [2 1-2 J

(6.23)

Normal Distribution Normal Process

6. Appendix I: Statistics 6-8

The comresponding distribution function ¢an be expressed in terms of the Gaussian
distribution (6.12),

X-xr
Flx|xn) = @[]
V1-o

6.24)

Hence, its mean value is the product rx, and time dependant if r is a function of t.

6.6 Random Numbers

This section discusses random number generators that are able to retrieve numbers drawn
from a given distribution. In fact, they are algorithms that return a number each time they
are called upon. As they all have a period after which they will repeat the same sequence of
numbers, the numbers are called pseudo random. Thanks to long periods the numbers appear
however to be random. The Kolmogorov- Smirnov- test ([33], p.623) may be applied to
check whether the empirical distribution of a stochastic process matches a theoretical
distribution function. Its measure is the maximum value of the absolute difference between
the theoretical distribution function and the empirical distribution function of a given sample
of numbers. The Kolmogorov- Smirnov test is, however strictly not applicable to check the
performance of a random number generator. The following sections discuss random
generators for several distribution functions. For more details on their implementation and

typical results of the corresponding Kolmogorov- Smirnov- tests refer to section 7.1.2.2.

6.6.1 Uniform Deviates

A uniform deviate is a random number drawn from a uniform distribution, It is assumed to
return numbers that are evenly distributed over the open interval (0,1). Throughout this
chapter we will denote a uniform deviate with 1 € (0,1). In the following chapters it will be
discussed how a uniform deviate can be used in order to generate random numbers drawn
from a normal distribution (chapter 6.2) or any discrete distribution (chapter 6.6.3). They are

necessary to produce synthetic time series of the wind speed and cleamess index fluctuations.

Random Numbers Uniform Deviates

6. Appendix I: Statistics 6-9

6.6.2 Transformation Method and Normal Deviates

Assume random numbers are to be generated, drawn from a distribution that can be
described by its probability density function f(x) or the corresponding distribution function
F(x). Given a uniform deviate u (uniformly distributed in (0,1) 2 random number y of some
arbitrary distribution F(x) can be generated via the inverse function of F(x),

y(u) = Fl(u)
(6.25)
This method is, however, not always feasible and depends on whether F'(x) can be evaluated

or not.

A normal deviate is a random number y, drawn from a normal distribution with mean x,,,
and standard deviation o® If x,,., = 0 and g = 1, the numbers may be called standard
normal deviates. They will be denoted with y,. The corresponding distribution function is the
standard normal distribution (defined in equation (6.20). There are many methods to generate
standard normal deviates using uniform deviates u (0 < u < 1), two of which will be
discussed briefly. The first method applies (6.25) directly. For the inverse of F(x) an
approximation has been used ([1], eq. 26.2.22). Thanks to the symmetry of the normal
distribution,

O(x) =1 - P(-x)

(6.26)
the random number y, may be worked out from the relationship
+ 3,1 ;
1+a;;t+lbt2—t’t= m(';_z]’oqs%
= -1 |~ 1 2)
e = £7(8) | ; (6.27)
-FI(1 - w) , —2-<u<1

with the coefficients a, = 2.30753, a, = 0.27061, b, = 0.99229 and b, = 0.04481. The second
methed is the Box-Muller ([33], p.289f) method. Given two uniform deviates u,, u, € (0,1)
and applying the transfer methods for two variables, it can be shown the the two parameters

Y, and y,,

Random Numbers Transformation Method

6. Appendix I: Statistics 6-10

% =y -2Inxcos (27 x)
% =V 2Inxsin(27x) (6.28)

are both independently distributed according to the standard normal distribution ®(x). Both
methods require one uniform deviate for each normal deviate. The Box-Muller method,
however, requires less computing time. It was therefore the one that has been implemented
in the project. Having determined a standard normal deviate y,, it can be easily transferred
to a normal deviate y by computing '

F=O0Fs ¥ Xopeay
(6.29)

6.6.3 Deviates of Discrete Distributions

As shown above, discrete distributions can be described by the distribution coefficents F;
{6.8). Given a uniform deviate u € (0,1) a random number y of the discrete distribution can
be obtained via

y={i| (Fzu, E su)
: (6.30)

This means that y returns the i for which F;, > u and F,,; < u is. Hence, this is in fact the
transformation method for discrete distributions.

Random Numbers Discrete Distributions

7. Appendix II: Programme Documentation 7-1

7. Appendix II: Programme Documentation

7.1 Functional Specification
7.1.1 Getting Started

A programme has been written that carries out all the calculations described in this paper. It
runs on a Windows 3.1 environment. The executable file is called owrenw.exe. In order to
run it successfully the dynamically linked library bwec.dll has to be accessible during run-
time, To make sure that Windows is able to find it, it has to be in one of the following
directories:

- In the same directory as owrenew.exe,

- In the Windows system directory

- In a directory that is included in the environment variable PATH.

The file owrenew.dlg contains user preferences and chosen parameters of the last session, It
should reside in the same directory as owremew.exe. It is not necessary to run the
programme, but will be automatically created upon exiting the programme to Windows.
After starting the programme a new window will appear on the screen, which is the main
window of the application. Its main features are a mem bar to select further actions and a
white board for graphical display. 1t is best to click with the mouse on the top right hand
corner button to maximise the main window. The programme can be exited via Alt-D-X or
by double clicking the top left hand corner. The programme has a Windows icon associated
with it that can be included by using the Windows Setup utility.

7.1.2 Programme Description

In this section all menu options are described along with the dialog windows they will cause

to open. There are 5 main items on the menu bar:

- Distributions: For all calculations of probability distribution functions.

- Applications: For random number generators, time series and the first passage time
problems,

- Options: Setting up usere preferences and parameters.

Functional Specification Programme Description

7. Appendix II: Programme Documentation 7-2

- Export. Exporting data to Word Perfect Presentation.
- Help: The on-line help feature is not implemented.

7.1.2.1 Distributions

() Wind Speed Distribution

The dialog window " Wind Speed Distribution” prepares for the calculations of the stationary

probability density function of short term wind speed fluctuations as described in section

4.1.1, Tt permits to select either the calculation of the probability density function or the

corresponding distribution function. Moreover, it asks for four parameters to be specified:

- Mean wind speed: This is the mean wind speed v (equation 4.1) in m/s.

- Minimum wind speed: This is only for display purposes. The first value to be
calculated will be v = minimum wind speed.

- Maximum wind speed: This is the last value to be calculated.

- Number of evaluations: Number of points to be calculated within the open interval
[minimum wind speed, maximum wind speed).

Other parameters such as the wind speed standard deviation should be specified in the

Settings dialog window (see below). Once all parameters are set, press the OK button of the

"Wind Speed Distribution” window. The dialog window disappears and a new Calculations

dialog window appears on the screen. Press OK to start calculations. The progress of the

calculations can be monitored by looking at the Calculations window where the elapsed time

~ and some other bits of information are depicted. Press OK (or ENTER) once the calculations

are finished in order to continue. The calculated points are now shown in a graph in the

main window.

(ii) Wind Power Distribution

The dialog window “Wind Power Distribution” prepares for the calculation of distribution
functions of the wind turbine power (section 4.1.2), It altows to choose between probability
density function and distribution function as well as between stationary and conditional

distribution. Parameters to be specified prior to continuation are:

Functional Specification Programme Desctiption

~l1

. Appendix II: Programme Documentation 73

- Mean wind speed: Same as in (i)

- Steps on power axis: This is the number of discrete levels along the power scale.
See equation (4.5) in section 4.1.2.

- Time tau [s]: The time t for which the distribution function is to be calculated. It
appears in the autocorrelation coefficient r, in equations (4.1} and (4.2). It is only to
be specified if the conditional function is chosen.

- Initial wind speed: The initial wind speed v, in equations (4.3) and (4.4) in the case
of a conditional distribution. This field is grey and cannot be selectec if the stationary
distribution is selected.

Again, other parameters may be specified in the Settings window. Once having pressed the

OK button the procedure is identical to (i).

(iii) Solar Power Disfribution

This is the dialog window for the calculations described in section 4.1.3. Again, it gives the

option to choose between probability density function and distribution function. Furthermore,

the user has to select one of the following options:

- Analytical Distribution: This denotes the distribution function (4.9) using the Beta-
function and not the approximation via Gaussian functions. It is for stationary
distributions only.

- Approximation: This is now the distribution function (4.11) employing the
approximation,“ though onljr for stationar distributions.

- * Conditional Distribution: This is the conditional distribution (4.11), (4.12) for which
an initial clearness index k has to be specified. '

- Quality of Approximation: Having selected this option the difference between the
analytical solution and its approximation is calcnalted (equation 2.90).

Parameters can be entered too:

- Average hourly clearness index k: See discussion in section 2.2.4.1.

- Standard deviation o, See discussion in section 2.2.4.1,

- Steps on power axis: See above (ii).

- Time tau [s]: See above (ii).

- Initial clearness index k: This field can only be entered if the conditional

Functional Specification Programme Description

7. Appendix II: Programme Documentation 7-4

distribution is to be calculated.

- Numl';er of trial points: This is variable M in equation (2.85), an optimization
variable - not necessary if stationary distribution is to be calculated. For reasonable
values refer to discussion in section 2.2.4.2.

- Number of coefficients: This is variable Q in equation (2.85) and is not necessary
for stationary distributions. Again, for reasonable values refer to section 2.2.4.2.

Furthermore, the user can tick the Bypass option. If a distributioﬁ is to be calculated that is

based on the approximating formula, various optimisation parameters have to be determined

prior to evaluating the distribution formula (2.82). The calculated optimisation parameters are -
stored in a file <solar.dat>. In case the same input parameters hold true the next time the
approximation is used, the optimisation parameters are read from the file rather than
repeating the same calculation - though only the Bypass - option is selected. In order to save
time make sure the option is always selected. In case the input parameters don not match

with the parameters on the file the optimisation calculation will be carried out anyway.

(iv) Joint Renewable Distribution

Here is the dialog box for the calculation of combined power distributions as outlined in
section 4.1.4. The layout of the window is very similar to the other distribution dialog
windows giving the user the option to select between the joint density function (stationary)
and the joint conditional distribution as defined by equation (4.15). The only additional

parameter is the fractional power factor { (equation (3.15)).

7.1.2.2 Applications

() Random Numbers

This dialog box and the corresponding calculations have been implemented in order to check
the quality of random numbers gcneratiilg algorithms as discussed in section 6.6. The user
can choose one distribution type and enter relevant distribution parameters. Upon pressing
the OK button, the programme will generate N (as specified in the input field Number of

trials) random numbers and calculate the sample’s mean value and variance. Moreover, it

Functional Specification Programme Description

7. Appendix II: Programme Documentation 75

will carry out a Kolmogorov- Smirnov test and print out the test result. The number of

classes necessary for the test can be inserted in the input field Number of classes. For more

details on the implementation of the Kolmogorov- Smirnov test and the significance of the
test result see [33], page 623ff, Tests can be repeated by pressing the Retry button.

- Uniform distribution: In order to generate uniform deviates the random number
generator of the C- standard library is used, whose period length is guaranteed to be
2%2 ([5], rand()). The expected theoretical mean value of a distribution which is
uniformly distributed in [0,1] is 0.5, its variance is 1/12 = 0.08333. A typical result
is mean 0.5163 and variance 0.08501 with N = 100 trials. As mentioned in section 6
the uniform deviates are used to generate other random numbers, such as normal
deviates.

- Normal distribution: The generator of random numbers taken from a standard
normal distribution with zero mean and variance 1 is implemented using the Box-
Muller method (see section 6.6.2). A typical result {for N = 100) is mean 0.04730
and variance 1.04078. Normal deviates are used in all time series calculations that
include the wind speed distribution.

- Beta distribution: This random number generator is implemented by employing the
rejection method fdr contimious distributions (compare [33], p.290). It is, however,
never used for time series calculations. It is here more for development purposes and
is now obsolete.

- Binomial distribution: Binomial deviates are generated using the rejection method
as introduced in section 6.6.3. Although the binomial distribution is not required in
the time series calculations of this paper it has been implemented here to confirm the
rejection method using a well known discrete distribution. The binomial distribution
depends on two parameters, n and p. Here, n is the number of trials and p the
probability that an event occurs. The theoretical mean is np, its variance np(1-p). As
the binomial distribution is a discrete distribution, the Komogorov- Smirnov test is
not applicable. Though, test results of the mean value and the variance suggest that
the implemented method is reliable. It is used for all time series calculations

involving discrete distributions.

Functional Specification Programme Description

7. Appendix II: Programme Documentation 7-6

(i) Time Series

The dialog window “Time Series” prepares for the generation of time series as discussed in
section 4.2. The window is divided into three parts. First, the user can select one of the
following time series:

- Wind Speed: Wind speed time series as outlined in section 4.2.2.1.

- Wind Power: Wind turbine power time series as outlined in section 4.2.2.2.

Solar Power: Photovoltaic array power time series as outlined in section 4.2.2.3.

Combined Renewable: Joint renewable power time series as outlined in section
4224,

Battery: State of Charge: State of charge time series as outlined in section 4.2.2.5.

Power Deficit: Here, the programme generates a time series of the joint renewable
power and tracks the state of charge of the battery. It then compares the power
supplied by the renewable energies and the battery with the power demand. If the
power demand is greater, hence if there is a power deficit it will go into the power
deficit time series. If there is no deficit, the time series value will be zero. A power
surplus is not recorded.

Second, the user has to enter initial values (dependend on the chosen type of time series):

- Initial wind speed [m/s]: Field only visible if selected time series use the wind.
Initial clearness index k(0): Field only visible for calculations including the PV
array.

Available charge Q10: Field only visible for calculations which need the battery.

- Bound charge Q20: Field only visible for calculations which need the battery.
Third, there are two input fields that are applicable to all time series calculations:

- Time step [s]: This is the implied time interval between two time series values and
corresponds to At in section 4.2.1.

- Number of points: Number of time series values to be generated in one calculation.

(iii) First Passage Time Problems
The dialog window "First Passage Time Problems” refers to the calculations in section 4.3.
First, the user selects the underlying, physical process: Wind speed, wind turbine power,

solar power or joint renewable power. Second, he selects the method to be used, which is

Functional Specification Programme Description

7. Appendix II: Programme Documentation 7-7

either Time Series Approach (see section 4.3.1) or Markov Chain Approach (see section
4.3.2). Third, he can select a calculation technique:

Calculate one passage time value only: For a given initial value and a chosen
passage level the programme computes the first passage time.

Passage time as function of initial value: For a given, fixed passage level the
programme computes a series of first passagé times. The first value to be calculated
assumes the value entered into one of the initial value fields as initial value. The last
value to be calculated assumes the initial value to be identical to the passage level.
The total number of values to be calculated is specified in the input field Number of
values.

Passage time as function of passage level: For a given, fixed initial value (or a set
of initial values in the case of joint renewable power) the programme computes a
series of first passage times. The first value to be calculated assumes the passage
level to be identical to the initial value. The last value to be calculated assumes the
passage level to be the value entered into one of the passage level input fields. Again,
the total number of values to be calculated is specified in the input field Number of
values.

Fourth, there are some additional input fields, which may not be visible, depending on the
selection of the process, the method and the calculation technique.

Underlying time step: Only applicable if time series approach is selected. It has the
same significance as in the Time series dialog window above.

Initial wind speed: Initial wind speed in [m/s].

Initial clearness index: Initial clearness index k(0). -

Initial power: Initial, normalised power € [0,1].

Wind speed level: Passage level for the wind speed in [my/s].

Clearness index level: Passage level for the clearness index k.

Power level: Passage level of the normalised power € [0, 1].

7.1.2.3 Options

(i) Settings

Functional Specification Programme Description

7. Appendix II: Programme Documentation 7-8

In the "Settings” dialog window the user can enter parameters of physical relevance. Values

entered here are used by the calculations unless altered in another dialog window. However,

if a parameter of the Settings window is altered in another dialog box, it will be updated in
the Settins window as well, so that there is never an ambiguity which value might be used

in calculations as it is always the value last seen be the user.

Cut-in wind speed: See section 3.1.

Cut-out wind speed: See section 3.1.

Rated wind speed: See section 3.1.

Mean wind speed: See section 2.1.

Wind standard deviation: See equation (2.3).

Auto correlation coefficient Pw: Wind speed autocorrelation coefficient B, (see
equation (2.9) and discussion below it). |
Max clearness index K0: This is parameter K, in equation (3.14).

Hourly clearness index k: This is the hourly average clearness index k as introduced
in section 2.2.4.1.

Standard variation ok: Standard variation of the hourly clearness index k, as
defined in equation (2.65).

Auto correlation coefficient s: Autocorrelation coefficient B, of the normalised
clearness index x, as defined in equation (2.81).

Fractional power factor zeta: Definition in equation (3.14).

Battery: Factor k: All battery parameters refer to the Manwell model in section
2.3.2.3 part (iii).

Battery: Factor c: see factor k above,

Battery: Qmax [Ah]: This is the battery capacity Q, as discussed in section 2.3.2.2.
Please note that the value to be entered should be in Ampére hours.

Battery: Voltage [V]: This is the (constant) battery voltage. See discussion of
Manwell model in section 2,3.2.3 part (iif).

Nominal Renewable Power [W]: The combined (non normalised), maximum
renewable power in Watt, as defined in equation (3.15). Hence, this is the total
installed power. This parameter is only used for state of charge time series.

Power Demand [W]: This is the power demand P,, as in section 4225,

Functional Specification Programme Description

7. Appendix II: Programme Documentation 7-9

(ii) Maths

In the “Maths” dialog box the user caﬁ specify some mathematical parameters:
Solar Power: Approximation of Distribution

- Number of coefficients: See discussion of Solar Power Distribution window,
- Number of trial points: See discussion of Solar Power Distribution window.
First Passage Time Problem

Number of time series: Number of time series taken into account while calculating

the first passage time using the time series approach. Refer to discussion in section

4.3.1.

- Max number of iterations: (Time series approach) See discussion of time series
approach algorithm in section 4.3.1, point (10).

- Max number of iterations: (Markov chain approach) See discussion of Markov
chain approach algorithm in section 4.3.2, point (14).

- Stopping criterion: Stopping criterion in Markov chain approach to first passage
times. See discussion of algorithm in section 4.3.2, point (13).

- Number of grid points: This parameter is a software development parameter and is
now without any significance.

Process Discretization

- Number of classes: For discrete distributions that are discretised along the power

axis. Refer to equations (4.5) or (4.8).)

(iii) Directories

In the “Directories” window the user can specify the location of dialog or user files.

- Solar Data: The optimisation parameters for the approximation of the PV array
power distribution are stored in the file with the name specified here. Please refer to
the discussion on the bypass option in the Solar Power Distribution window.

- Dialog Data: This is a software development field which is now not used at allL

(iv) Display
In the "Display” dialog window the user is given a variety of options for display purposes.
- Auto display of graphics: If this option is ticked, the graph of the last calculation

Functional Specification Programme Description

7. Appendix II: Programme Documentation) 7-10

will be automatically rebuilt after the display of other dialog windows. If the option
is switched off, the graph is shown right‘after the calculation but is not being shown
once another dialog box has been opened.

Accumulate data series: If this option is switched on, up to 4 data series are
accumulated and shown in the graph at the same time (in different colours). If the
option is switcﬁed off only one data series is shown in the graph.

Ask for legend text: If this option is switched on, the programme asks the user for
a legend text to be associated with a curve. The legend text does not appear on the
screen. It is, however, exported to Word Perfect Presentation. See discussion on the
dialog window Export Data.

(v) Export Data
The "Export Data” dialog window prepares for the export of the data of the most recently

calculated data series to a file. If the option "accumulate data series” is switched on the data

of all curves in the latest accumulation are exported. The format of this export file is data

compatible with import requirements for Word Perfect Presentation diagrams. Hence, data
calculated here can be exported to diagrams in Word Perfect Presentation. All diagrams in
this paper have been produced using this technique.

New file: Save data to a new file. If file already exists, its content will be
overwritten. :

Attach data to file: Append data of last curve to the end of the specified file.

File name: Name of the file the data should be sent to. If no pathname is specified,

the current working directory is assumed.

7.1.2.4 Help

The on-line help is not implemented.

7.1.3 Bugs and Errors

Functional Specification Bugs and Errors

7. Appendix II: Programme Documentation 7-11

The programme is designed in way so that it is unlikely to crash. Every input field (i.e.
fields into which the user can type) are thoroughly checked. Messages do appear if the
format is wrong. For instance if the user types a word where a number is expected.
Moreover, messages do warmn the user if the programme thinks some input parameters are out
of range. For instance, if the user enters 1.2 into a normalized parameter field that expects
only numbers between 0 and 1, or if the cut-in wind speed is greater than the cut-out wind
speed. In these instances the user can choose to abort the intended action or to ignore it. It
is strongly recommended that the user never ignores the warning as this may result in severe
errors. Remember that warnings are given for a reason. The option to ignore is implemented
for software development purposes only.

Most internal errors should be captured before a crash and an error message is printed out on
the screen while the programme is suspended. Although these errors are not damaging, they
are not intended to occur. As at print time no situation is known of where such an error
occurred.

It may happen that after some time that the headline in the graphs is displayed in a small
font rather than a big font. This is due to the limited number of font resources in Windows.
The problem has been recognised but not fixed. It has, however, no impact on anything else.
If a user cannot live without the big font, he is advised to quit Windows and start Windows

again, Other bugs are not known.

7.2 Technical Design

In this séction the design of the programme is discussed. It is written in C++, using the
Borland C++ 3.1 compiler for Windows. It uses the standard C/C++ library, Borland Class
library and the Object Windows C++ library. Readers who are not familiar with C++, object
oriented programming and Object Windows C++ may find this section difficult to
understand. Object Windows C++ ([3], [4]) is a class library that is used for all windows in
the programme. The next paragraph gives an overview of the files that make up the source
code. It is followed by a discussion of the main programme and an outline of the

implementation philosophy. Although the number of classes and functions may seem at first

Technical Design

7. Appendix II: Programme Documentation 7-12

glance hard to swallow, the concept is simple and the structure logical. After the introduction
into the programme idea section 7.3 gives a complete class reference, discussing all classes
and their public and protected members. Section 7.4 describes all global functions. From
there it should be no problem to undeerstand the source code.

7.2.1 The File Structure
7.2.1.1 Header Files

Header files in C/C++ (extension .h) are there to define classes and constants, declare global
functions and data types and define macros. Every class, structure, function or data type is
defined in a header file. A listing of all header files is printed in section 7.5 of this paper.
The header files can be grouped as follows:

(i) General Purpose C- Functions

These header files define constants and functions that can be considered as an extension of

the standard C- library.

<boolwin.h> Definition of Boolean constants TRUE, FALSE, YES, NO, OK and some
mathematical constants.

<cstring.h> Dcfinitior; of functions on C- strings.

<error.h> Definition of an error handler.

(i) Mathematical functions and classes

These header files define mathematical functions and objects. They are not project specific.

Among the classes are an implementation of a vector class, matrix class and a class that

represents functions of one variable.

<diffcale.h> Definition of the class objfunc which is the implementation of a function of
one variable.

<mathfunc.h> Declaration of mathematical functions.

<vectors.h> Definition of the classes VECTOR and MATRIX.

Technical Design The File Structure

7. Appendix II: Programme Documentation 7-13

(ii)) Windows

These header files define all objects that are inherited from Object Windows C++ classes.

Hence, the prefix ‘ow’. These objects are usually windows or dialog boxes used in the

project.
<owcalc.h>
<owdialg.h>
<owlappl.h>

<owparam.h>

<owplot.h>

<owrenew.h>

<owres.h>

<owstat.h>

Definition of all window objects on which calculations are carried out.
Definition of all dialog windows.

Definition of general purpose dialog windowé or input fields in dialog
boxes.

Definition of the structure Param. This structure acts as in interface
between dialog windows and calculation related classes. Definition of class.
Graph which acts as an interface between calculations and the graphic
window TGraph.

Definition of graphic related classes.

Definition of the graphic window, TRenewPlot, the main window,
TMainWindow, and the main application, TRenewApp.

Definition of all constants used for the windows resources.

Definition of abstract calculation windows classes.

(iv) Project Objects

These header files define all mathematical objects that are directly project related.

<distrib.h>
<joint.h>
<passage.h>
<random.h>
<series.h>

<solar.h>

<wind.h>

Definition of classes in the context of distribution functions: E.g. the
implementation of a discrete distribution or a continuous distribution.
Definition of the class ProbJointPower, the implementation of the joint
renewable power distribution.

Definition of first passage time problem related classes.

Definition of random number generator related classes.

Definition of time series related classes.

Definition of classes that deal with the photovoltaic array and the
distribution of the PV array power.

Definition of wind and wind power related classes.

Technical Design The File Structure

7. Appendix II: Programme Documentation 7-14

7.2.12 Source Files

Source files (extension *.cpp) contain the code for the functions (or class member functions)
defined in the header files. There is usually a mapping between header files and source files.
E.g. the code for functions defined in wind.h can be found in wind.cpp. There are just two
exceptions to this rule. First, there is no source file boolwin.cpp as the header boolwin.h does
not define any functions. Second, the functions contained in the source file linalg.cpp are
defined in the header file mathfunc.h. A listing of the source file owrenew.cpp is included in
section 7.5.2. The listing of other source files is not included in this paper in order to avoid
overloading. The complete source éode, though, is shipped together with the executable file.

Readers interested in the complete source code are referred to the disk.

7.2.1.3 Resource File

Another important file is the resource file owres.c which contains data for the layout of the‘
dialog windows, such as coordinates and other attributes. The resource file owres.rc¢ has been
created using Borland Resource Workshop ([6]). Some of the resources, such as input fields
or dialog windows are given uinque identity numbers. These constants are defined in the

header file owres.h which is included by the resource file and other source files.

72.1.4 Other Files

The file owrenew.def is to be included in the project file. It contains text that serves as
information but is otherwise not important. The library file bwcec.lib is included in the project
file owrenew.prj as well, This is the library that renders the dialog windows the ‘Borland’
look rather than the ‘Microsoft’ look. As mentioned earlier the file bwce.dll should be
accessible at runtime for the same reason. The programme does not work without. Finally,
the project file owrenew.prj contains all files to be compiled and linked. It is a software

development tool.

7.2.2 The Programme Structure

Technical Design The Programme Structure

7. Appendix II: Programme Documentation 7-15

The main routine of the programme is located in owrenéw. cpp right at the end (see listing in
section 7.5.2). It is a typical Object Windows C++ routine. Readers who are not familiar
with Object Windows C++ should first read the programming handbook (3]).

In the main routine two classes are initialised, param and GraphData. Their significance is
mentioned later. Then, an instance of the class TRenewApp is created, which is inherited
from the Object Windows C++ class TApplication. The ﬁpplication is run. Upon exit of the
application the objects param and GraphData are deleted. Now what exaclty happens in
TRenewApp?

Basically, it initialises the main window, class TMainWindow (inherited from Object
Windows C++ class TWindow), which is the window that is visible on the screen and
contains the menu bar. Now, the programme works in the main window and waits for
commands, such as a selection of one of the menus. Generally, every window is actually
represented by a class. All events that happen in a window (such as the selection of a menu
item or if the user presses a button) are handled in the corresponding class. Hence, actions
in the main window are handled in TMainWindow. Have a look at the definition of
TMainWindow in the header file owrenew.h. For instance, there is a function CMWindSpeed
{) = [CM_FIRST + cmWindSpeed]. This function is carried out as soon as the event
‘emWindSpeed' occurs. This particular event occurs as soon as the menu item ‘Wind Speed
Distribution’ in ‘Distributions’ is selected. The function CMWindSpeed (see listing of
owrenew.cpp in section 7.5.2) opens the dialog window "Wind speed dialog’, which is
represented by the class TSpeedDialog, which is inherited from the Object Windows C++
class TDialog. 1t is defined in the header file owdialg.h. Now execution is transferred to the
instantiation of TSpeedDialog. Here, the user can enter some parameters. If he presses the
Cancel button the programme goes back to the main window. Otherwise it transfers
execution to the next window, TWindSpeedObject, defined in header file owcalc.h. This is
the calculation window. If the user presses the OK button the calculations are carried out by
calling the member function workQutValues(). If the user selects OK after the termination of
the calculations execution goes back one window to TSpeedDialog and from there to the
main window TMainWindow. All the other menu items are handled in a similar way.

On top of the main window lays a graphic window, TRenewPlot, which is inherited from
TPlot and the Object Windows C++ class TWindow. Every time the éxecution returns from

Technical Design The Programme Structure

7. Appendix II: Programme Documentation 7-16

the calculation window to the main window, the graphical window checks whether it has to
draw a graph. TRenewPlot is defined in owrenew.h as well. It receives the data for the
curves (i.e. the data of the last calculations) via the variable GraphData (definition in header
owparam.h). The data calculated in TWindSpeedObject for instance are stored in GraphData
and can be picked up by the graphic window TRerewPlot when it has to draw itself.

There is another interface variable worth mentioning. It is param, which is of type Param as
defined in owparam.h. Every time a dialog window is initiated the default data for its input
fields or radic buttons are taken from param. In fact, in the case of the dialog class
TSpeedDialog, the appropriate data from param are loaded into an instance of a class
TTransSpeedDlg (defined in owdialg.h) via its member function setParameter(). Then data
are transferred to the dialog TSpeedDialog and appear on the screen. The user is now given
the opportunity to overwrite the parameters in the input fields. If he chooses ‘OK’ at the end,
the buffer TTransSpeedDlg is updated with the new data. So, if he opens the same dialog
again, the input fields are now filled with the new data. Otherwise, if he chooses ‘Cancel’ the
buffer is not being updated, which is indeed the functionality of a cancellation.

All actions are implemented in a similar way. Look at Fig. 7.1. Every dialog window that
appears upon selection of a menu item in the main window is directly inherited from the
base class TDialog. E.g. TSettingsDialog is the class corresponding to the settings dialog
window. Every dialog class is given a parameter buffer class as described above. E.g. the
buffer that corresponds to TSettingsDialog is TTransSettingsDlg. All calculations are carried
out on the calculation window which is itself a dialog window. If a calculation is to be
carried out that produces only one value, hence a graphical display is not possible, the class
to be used is directlﬁr inherited from TStatusWindow. E.g. the class TPassageTime, when only
one first passage time value at a time is to be calculated. If a whole curve is to be computed,
the class to be used is inherited from TMultiValObject. E.g. TWindSpeedObject. In all classes
with postfix ‘Object’ calculations are carried out. That means that their member functions
initialise the mathematical objects. There are no mathematics involved in classes with
postfixes Dialog’, Dlg’ or "Window'.

This paragraph was intended to give an overview of the principles of the programme. All
classes and their member functions as well as all global functions are listed and discussed in

the following sections ordered by header files. Especially the class reference is - together

Technical Design The Programme Structure

7. Appendix II: Programme Documentation 7-17

with the source code - a very thorough documentation of the programme.

TDoubleInput
TEdit

1

TlntegerInput

1l

ainWindow
s R -y R g
TWindowsGbj TMultiValObject | PassageTimeObject |
TPassageTimeObject | TTimeSeriesObject |
TDhaks JoiMDistﬁbuﬁonObjectl
TRandomObject |
\m TDistributionObject I
)

. | TWindspeedObject |

3
4
:

TTsDialog

2
i

3
g
&

TiointDialog

larDialog

2| |8 8] | &
“555

Fig. 7.1: Class Structure of Windows Objects

Technical Design The Programme Structure

7. Appendix II: Programme Documentation

7-18

7.3 Class Reference

In this section a complete class reference is given. The first part consists of a list of all
classes togcther' with a short description and the header file it is defined in. In the second

part the classes are discussed in more detail discussing all constructors, protected and public

data elements, member functions and operators.

CLASSES - OVERVIEW

axis Implementation of a coordinate axis <owplot.h>

BetaKgSTest Kolmogorov- Smimov test for Beta-
distribution <random.h>

betaRand Random number generator for beta-
distribution <random.h>

_ ContCondSolApprox Conditional distribution of the PV array
power <solar.h>

ContCondWindPower Conditional distribution of the wind
: : turbine power <wind.h>
ContinuousDistribution Continuous distribution <distrib.h>
ContSolAppQual Quality of approximation <solar.h>

ContSolApprox Distribution of the PV array power
using approximation <solar.h>

ContSolApproxX Conditional distribution of the
normalised clearness index x <solar.h>

ContSolExact Analytical solution of the PV array
power distribution ‘ <solar.h>

ContSolExactX Analytical solution of the distribution of
the normalised clearness index x. <solar.h>
ContWindPower Distribution of the wind turbine power <wind.h>

DiscretDistribution Implementation of a discrete
distribution <distrib.h>

discretRand Generation of random numbers of any
discrete distribution <random.h>

DiscretRandomizer Random number generator for discrete
distributions <distrib.h>

DiscretWindSpeed Discrete distribution of wind speed
fluctuations <wind.h>

DiscSolApprox PV array power as a discrete
distribution <solar.h>

DiscretWindPower Discrete distribution of wind turbine
power fluctuations <wind.h>

Class Reference

Qverview

7. Appendix II: Programme Documentation 7-19
Graph Interface between graphic window and _

calculations <pwparan.h>
JointPassageTimes Object function for first passage times

of joint renewable power fluctuations <passage.h>
JointPowerTimeSeries - Joint renewable power time series <series.h>
KgSTest Abstract class of a Kolmogorov-

Smimov test <random.h>
MATRIX _ Implementation of a matrix with real

elements . _ <vectors.h>
MCPassageTime First passage time using the Markov

chain apporach <passage.h>
MCWindSpeedPassageTime

First passage time of wind speed

fluctuations using the Markov chain

approach <passage.h>
MCWindPowerPassageTime _

First passage time of wind turbine

power fluctuations using the Markov

chain approach <passage.h>
MCSolarPowerPassageTime

First passage time of PV array power

fluctvations using the Markov chain

approach <passage.h>
MCJointPowerPassageTime

First passage time of joint renewable

power fluctuations using the Markov

chain approach <passage.h>
MeritSol Object to optimise the approximation

. used for the distribution of the PV array

power. <solar.h>
msgObjfunc Function of one variable <distrib.h>
NormKgSTest Kolmogorov- Smirnov test for normal

distribution _ <random.h>
normRand Generation of normal deviates <random.h>
objfunc Function of one vatiable <diffcalc.h>
owObjfunc Implementation of a function of one

variable <diffcalc.h>
paitvec Double vector that stores x- and y-

values : <diffcale.h>
Param Structure that holds parameters for

dialog windows <owparam.h>
PassageTime First Passage Time Object <passage.h>
PassageTimes First passage time problems in case

more than one value is to be

calculated. <passage.h>
PassageTimesObject Calculation of first passage times <owcalc.h>

Class Reference

QOverview

7. Appendix II: Programme Documentation 7-20
PowerDeficitTimeSeries Time series of the power deficit <series.h>

ProbCondSolApprox Conditional distribution of the PV array
power as statfunc object <solar.h>

ProbCondWindPower Conditional distribution - representing

the wind turbine power - as statfunc
object <wind.h>

ProbJointPower Joint renewable power probability
function <joint.h>

ProbSolAppQual Quality of approximation as statfunc
object <solar.h>

ProbSolApprox Solar distribution (using the
approximation) as statfunc object <solar.h>

ProbSolExact Analytical solar distribution as statfunc
object <solar.h>

ProbWindPower Stationary distribution - representing the
wind turbine power - as statfunc object <wind.h>

rejectRand Generation of random numbers of any
distribution <random.h>

SolarPowerPassageTimes

Object function for first passage times
of PV array power fluctuations <passage.h>
SolarPowerTimeSeries Solar power time series <series.h>

SolarRandomizer Random number generator for the
distribution of the PV array power <solar.h>

SolConstants Store for clearness index distribution
parameters. <solar.h>
Speed Wind speed fluctuations <wind.h>

SpeedDens Probability density function of wind
- speed fluctuations <wind.h>

SpeedDist _ Distribution function of wind speed
fluctuations <wind.h>

StateQfChargeTimeSeries

State of charge time series <series.h>
statfunc : Implementation of a statistical function <distrib.h>
TDirDialog Dialog window ‘Directories’ <owdialg.h>
TDisplayDialog Dialog window 'Display Options’ <owdialg.h>

TDistributionObject Calculation of wind power and PV array
' distributions <owcalc.h>
TDoubleInput Input field for a real number <owlappLh>
TDoublelnputl Input field for a real number <owlappLh>
TExportDialog Dialog window Export’ <owdialg.h>

TFpDialog Dialog window First Passage Time
Problems’ <owdialg.h>
TGraph General purpose graphic window <owplot.h>
TimeSeries Time Series <series.h>
TimeSeriesOne Time series with only one initial value <series.h>

Class Reference

Overview

7. Appendix H: Programme Documentation 7-21
TIntegerInput Input field for an integer number <owlappLh>
TIntegerInputl Input field for an integer number <owlappl.h>
TJointDialog Dialog window ‘Joint Renewabie _

Distribution’ <owdialg.h> .
TlointDistributionObject Calculation of the joint renewable

power distribution <owecalc.h>
TMainWindow Implementation of the main window <owrenew.h>
TMathsDialog Dialog window ‘Mathematical Options’ <owdialg.h>
TMultiValObject Calculation window for the computation

of more than one value <owstat.h>
TPassageTimeObject Calculation of first passage time <owcalc.h>
TPlot Graphical representation of functions <owploth>
TRenewApp ‘ Main application <owrenew.h>
TRenewPlot Graphic window of project <owrenw.h>
TSJointPassageTime First passage time of joint renewable

power fluctuations using the time series

approach <passage.h>
TSPassageTime First passage time by time series

approach <passage.h>
TSSolarPowerPassageTime

First passage time of PV array power

fluctuations using the time series

approach <passage h>
TStatusWindow Calculation window <owstat.h>
TSWindSpeedPassageTime

First passage time for wind speed

fluctuations using the time series

approach <passage.h>
TSWindPowerPassageTime

First passage time of wind turbine

power fluctuations using the time series

approach <passage.h>
TRandDialog Dialog window ‘Random Numbers’ <owdialg.h>
TRandomObject Random number generator calculations <owcalc.h>
TSettingsDialog Dialog window 'Settings’ <owdialg.h>
TSolarDialog Dialog window ‘Solar Power

Distribution’ . <owdialg.h>
TSpeedDialog Dialog window 'Wind Speed

Distribution’ <owdialg.h>
TTimeSeriesObject Calculation of time series <owcalc.h>
TTransDirDig Parameter transfer buffer for

TDirDialog <owdialg.h>
TTransDisplayDlg Parameter transfer buffer for

TDisplayDialog ' <owdialg.h>
TTransExportDlg Parameter transfer buffer for

TExportDialog <owdialg.h>

Class Reference

Overview

7. Appendix II: Programme Documentation 7-22
TTransFpDlg Parameter transfer buffer for
TFpDialog ‘ <owdialg.h>
TTransJointDlg Parameter transfer buffer for
TJointDialog <owdialg.h>
TTransMathsDig Parameter transfer buffer for
TMathsDialog <owdialg.h>
TTransRandDlg Parameter transfer buffer for
TRandDialog <owdialg.h>
TTransSettingsDlg Parameter transfer buffer for
TSettingsDialog <owdialg.h>
TTransSolarDlg Parameter transfer buffer for
TSolarDialog <owdialg.h>
TTransSpeedDlg Parameter transfer buffer for
TTransSpeedDlg <owdialg.h>
TTransTsDlg Parameter transfer buffer for
TTsDialog <owdialg.h>
TTransWindDlg Parameter transfer buffer for
TWindDialog <owdialg.h>
TTsDialog Dialog window ‘Time Series’ <owdialg.h>
TYoMessage Message window <owlappl.h>
TYolnput Dialog window with cone input field <owlappl.h>
TWindDialog Dialog window ‘'Wind Power
Distribution’ <owdialg.h>
TWindSpeedObject Calculation of the wind speed
distribution <owcalc.h>
UniKgSTest Kolmogorov- Smirnov test for uniform
distribution <random.h>
uniRand Generation of uniform deviates <random.h>
uniRejectRand Random number genetator <random.h>
VECTOR_ Vector with real elements <vectors.h>
WindPowerPassageTimes
Object function for first passage times
. of wind turbine power fluctuations <passage.h>
WindSpeedPassageTimes
Object function for first passage times
of wind speed fluctuations <passage.h>
WindSpeedTimeSeries Wind speed time series <series.h>
WindPowerTimeSeries Wind power time series <series.h>

Class Reference

QOverview

7. Appendix II: Programme Documentation 7-23
CLASSES - REFERENCE

axis | <owplot.h>

Implementation of a coordinate axis within the diagram in the class TPlor.

Constructors:

axis (HDC aDC, RECT* aCurRect); Imtlahsmg with window context aDC (see Object
Windows C++ manual) and implied rectangular that
represents the diagram.

Data elements:
curRect RECT* curRect; Rectangular that represents the diagram
Member functions:
setAxis void setAxis (int dir, int just, int coord, double mini, double maxi,
const char* alpha, double ax, int n, int axlog, int axgrid, double
dist, int mode);
Determination of the attributes of an axis:
dir Direction: HORIZ_DIR (horizontal), VERT_DIR
{vertical}
just Text justification: LEFT_TEXT (left justification),
RIGHT_TEXT (right jusstification), BOTTOM_TEXT
(text below axis), TOP_TEXT (text above axis).
coord axis coordinate (relative to the rectangular)
mini start value of the axis
maxi end value
text axis text
axle Distance between to marks (only for linea axis)
num For linear axis: Numbering only every num- th mark.’
For logarithmic axis: num = 1: Numbering of the 10-
marks, num = 2: Numbering at 2 and 10; num = 3: at
2,5,10; num = 4: at 2,3,5,10.
axlog LIN (linear), LOG (logarithmic)
axgrid Draw a grid (YES or NO)
grid Grid distance (for linear axis only)
mode Presentation mode for the marks: IN_AXLE (axle
points inwards), OUT_AXLE (axle points outwards),
CENTER_AXLE {axle sit on the middle of the axis).
drawAxis void drawAxis (); draw axis with specified attributes

Class Reference BetaK gSTest

7. Appendix II: Programme Documentation 7-24

BetaKgSTest <random.h>

Kolmogorov- Smirnov test for Beta- distribution, derived from KgS7est.

Constructors:;

BetaKgSTest (int n, int r, double a, double b);
Construct test object for n classes, r trial points and distribution
parameters a and b,

Member functions:
theoretProb double theoretProb {double x); - see KgSTest::theoretProb.
initialize void intiialize ();

initiatise randomizer with betaRand object.

betaRand ' <random.h>

Implementation of a random number generator for beta- distributed numbers. It is derived
from uniRejectRand.

Constructors: '

betaRand {double alpha, double beta); Constructor with distribution parameters
alpha and beta.

ContCondSolApprox <solar.h>

Conditional distribution of the PV array power, derived from ContSolApprox. Only difference
to the base class is setUp, where ContSolApprox::setCorrelation is called automatically.

Constructors:
ContCondSolApprox (); Default constructor

Member functions:

setUp : int setUp (TStatusWindow*, Param*);
‘ see discussion above.

ContCondWindPower <wind.h>

Conditional distribution of the wind turbine power. This class is derived from
ContWindPower, Only difference is that ContWindPower::setCorrelation is called within

Class Reference ‘ ContCondWindPower

7. Appendix II: Programme Documentation 725

ContCondWindPower::setUp so that ContWindPower::F always returns the conditional
distribution function if called from ContCondWindPower.

Coustructors:
ContCondWindPower {); call constructor of base class

Member functions:

setUp int SetUp (TStatusWindow*, Param*);
see discussion above.

ContinuousDistribution <distrib.h>

Abstract class that represents a continuous distribution. Again, this is a conditional
distribution, subjected to the initial value initVal.

Constructors:
ContinuousDistribution (); Default Constructor

Data elements:
initVal protected: double initVal;
implied initial value.

Member functions:
setUp virtual int setUp (TStatusWindow*, Param*) = 0;

Parameter setting function. Abstract function that must be
overwritten in derived functions.

setInitVal virtual void setInitVal (double x);
set initial value initVal.

F virtual double F (double x) = 0;
Probability distribution function F(x). Abstract function that must
be overwritten in derived functions.

ContSolAppQual <solar.h>

Quality of approximation, derived from class ContinuousDistribution,

Constructors:
ContSolAppQual (); Default Constructor

Member functions:

Class Reference ContSolA ppQual

7. Appendix II: Programme Documentation 7-26

F
setUp

ContSolApprox

virtual double F (double x);
int setUp (TStatusWindow*, Param*);

Equation (2.90)

<solar.h>

Distribution of the PV array power (using the approximation), derived from class

ContinuousDistribution.

Constructors:
ContSolApprox ();

Data elements:
protected:

sol

sc

Member functions;

F

setUp

setCorrelation

setInitVal

ContSolApproxX

Default constructor

MeritSol* sol;
SolConstants sc;

pointer to the optimisation class
store of the distribution parameters

double F (double p); Equation (4.11), though with normalised
p instead of integer n.

int setUp (TStatusWindow*, Param*);

Setting up the parameters. It is here that the optimisation is carried
out by searching for the minimum of the merit function provided
by sol. A golden search is carried out using
objfunc::goldenSection. The calculations are implemented as
described in 2.2.4.2,

void setCorrelation (double time, double beta);

Unless setCorrelation is called the stationary distribution is being
calculated. ,

void setInitVal (double initK);

Initialising the distribution with an average hourly cleamness index
k(0).

<solar.h>

Conditional distribution of the normalised cleamess index x, derived from ContSolApprox.

Constructors:

ContSolApproxX ();

Member functions:

F

Default Constructor

double F (double x); Equation (2.91)

Class Reference

ContSolExact

7. Appendix II: Programme Documentation 7-27

ContSolExact <solar.h>

Analytical solution of the PV array power distribution, derived from class
ContinuousDistribution.

Constructors:
ContSolExact (); Default constructor

Data elements:
protected:

solC SolConstants colC; Store of distribution parameters

Member functions:

protected:

Fx double Fx (double x); Equation (2.79)
public:

F double F (double p); Equation (4.9}
setUp int setUp (TStatusWindow*, Param*);

ContSolExactX <solar.h>

Analytical solution of the distribution of the normalised cleamess index x, derived from
ContSolExact.

Constructors:

ContSolExact (); Default Constructor

Member functions:

F double F (double x); Equation (2.79)

ContWindPower - <wind.h>

Distribution of the wind turbine power. This class is derived from ContinuousDistribution.

Constructors:
ContWindPower (); Default constructor

Data elements:

protected:

r double r; autocorrelation function r = exp(-ft)
Member functions:

F double F (double p); Eqguation (4.3)

setUp int setUp (TStatusWindow*, Param*);

Class Reference | ContWindPower

7. Appendix II: Programme Documentation 7-28

Parameter setting. Return OK if no error occurred.
setCorrelation void setCorrelation (double time, double beta);
Define autocorrelation fanction r = exp (- beta * time)

DiscretDistribution <distrib.h>

Abstract class of a discrete distribution. It actually is a conditional distribution with initial
value (or call it conditional value) m.

Constructors:
DiscretDistribution (int n); Initialisation for n classes.

Member functions:

setUp _ virtual int setUp (TStatusWindow*, Param*) = (;
Initialisation with parameters. Abstract function has to be
overwritten in derived classes. Returns OK if no error occurred.
Otherwise ERROR.

gnm virtual double gnm (int n, int m) = 0;
returns the transition probability g, (probability for system to
change from state m to state n in one step). Abstract class that has
to be overwritten in derived classes.

Gn virtual double Gn (int n);
returns the probability that the system is in a state n or smaller
provided the initial value is m. (m can be set by function setM)
Le. the distribution function. The defanlt return value is 1. If
another value is desired, Gn has to be overwritten.

setM * virtual void setM (int m);
Set the initial value m

getN - virtual void getN (double p) = 0;
returns the class if the probability distribution value p is given,
provided m is the initial value. In a way this is the inverse
function to Gn. It is an abstract function and has to be overwritten
in derived classes.

getClasses - int getClasses ();
returns the number of classes

discretRand <random.h>

discretRand is immediately derived from uniRand. This class is designed for the case where

Class Reference discretRand

7. Appendix II: Programme Documentation 7-29

the probability distribution is of a discrete type and the probabilities p; (j=1...N) for the N
possible events j are given in 2 vector px.

Constructor:
discretRand (VECTORY x); Initialization with vector x as described above.

Member functions:

update void update (void* xx);
Change distribution parameters (i.e. the probability vector px) even
after initialisation. It is: px = (VECTORY*) xx;

DiscretRandomizer <distrib.h>

Abstract class of a random number generator for discrete distributions, derived from class
uniRand.

Constructors: '

DiscretRandomizer (); Default Constructor

Data elements: _

distribution protected: DiscretDistribution* distribution;

Derived classes do have to install the desired distribution here.
This is the distribution that govemns the random number generator.

Member functions:
setUp - virtual int setUp (TStatusWindow?*, Param*) = 0;
Setting up parameters. Return OK if ok, otherwise ERROR.

setM ' void setM (int m);
set initial value m in distribution. See class DiscretDistribution.

getRandomNumber double getRandomNumber ();
generates and returns next random number.

DiscretWindSpeed _ <wind.h>

Discrete distribution of wind speed fluctuations as used in first passage time problems using
the Markov chain approach. The class is derived from DiscretDistribution.

Constructors:
DiscretWindSpeed (int n); calls constructor of base class

Member functions:
gnm double gnm (int n, int m);

Class Reference DiscretWindSpeed

7. Appendix II: Programme Documentation 7-30

transition probability. See DiscretDistribution::gnm
getN int getN (double v); see DiscretDistribution::getN
setUp int setUp (TStatusWindow?*, Param*);

Parameter setting. Return OK if no error occurred.

DiscSolApprox <solar.h>

Implementation of adiscrete distribution that represents the PV array power. It is a class
derived from DiscretDistribution.

Constructors:

DiscSolApprox (int n); - Construct the class with n discretisation levels.

Member functions:

setUp int setUp (TStatusWindow?*, Param*);

gnm double gnm (int n, int m); see DiscretDistribution:gnm

Gn double GN (int n); see DiscretDistribution::Gn

setM void setM (int m); overwrites DiscretDistribution::setM
getN int getN (double x); see DiscretDistribution::getN -
DiscretWindPower ' <wind.h>

Discrete distribution of wind turbine power fluctuations as used in first passage time
problems using the Markov chain approach. The class is derived from DiscretDistribution.

Constructors:
DiscretWindPower (int n); calls constructor of base class

Member functions:

gnm double gnm (int n, int m);

: transition probability. See DiscretDistribution::gnm
Gn double Gn (int m); see DiscretDistribution::Gn
getN int getN (double v); see DiscretDistribution: :getN
setUp int setUp (TStatusWindow*, Param*);

Parameter setting. Return OK if no error occurred.

Graph <owparam.h>

Interface between graphic window and calculations. Calculation objects store values here.
They can be picked up by the graphic window, which is an instance of class TRenewPlot. It
can store the function values of up to four curves.

Constructors:

Class Reference Graph

7. Appendix II: Programme Documentation 7-31

Graph (); Default constructor for 4 curves

Data elements:

X VECTOR x; . X - values

y VECTOR y[4]; y - values (up to 4 curves)

legend char legend [4][20]; Legend text for the export to Word

Perfect Presentation

scale double scale; " Scaling factor for display purposes.

curveNo int curveNo; Number of sets of curve data currently
' stored. curveNo < 4.

min double min; Minimum value on x - axis

max double max; Maximum value on x - axis

headline char headline[40]; Headline of graph

subline char subline{50]; Text below headline

axtext char axtext[40]; Text below x- axis

Member functions:

setHeadline void setHeadline (char* text); define headline

setSubline void setSubline (char* text); define line below headline

setAxtext void setAxtext (char* text); define text belowe x- axis

JointPassageTimes <passage.h>

Object function for first passage times of joint renewable power fluctuations, derived from
PassageTimes.

Constructors:

WindSpeedPassageTimes { int select);
Constructor: If select = 0 the data element passageTime is
initialised with an instance of TSJointPowerPassageTime.
Otherwise with MCJointPowerPassageTime.

Member functions:
SetUp int SetUp (TStatusWindow*, Param*);
individual set-up of initial values and passage levels.

JointPowerTimeSeries <series.h>

Implementation of joint renewable power time series, derived from TimeSeries.

Constructors:

JointPowerTimeSeries (); Default constructor. Initialises a
SolarPowerTimeSeries and a WindPowerTimeSeries
object for the two underlying processes.

Class Reference JointPowerTimeSeries

7. Appendix H: Programme Documentation 7-32

Member functions:
protected:
getRandomNumber

public:

update

getOutput
setUserInit
getInitRandomVal

setUp
eval

KgSTest

double getRandomNumber ();
returns next random number from the implied random number
generator.

void update ();

double getOutput ();

void setUserInit (void*);
double getInitRandomVal ();
overwrites TimeSeriesOne::getlnitRandomVal.

int setUp (TStatusWindow*, Param*);

Parameter setting

double eval (double);

return next time series value. the argument is not used.

see TimeSeries::update
see TimeSeries::getOutput
see TimeSeries::setUserlnit

<random.h>

Abstract class of a Kolmogorov- Smimov test.

Constructors:
KgSTest (int n);

Data elements:
protected:
size

k
mean
var

25 23

randomizer

Member functions:
protected:
initialize

theoretProb

Construct a test with n trial points.

double size; “number of trials. This is of type ‘double’
for data conversion reasons.

int k; number of classes.

double mean; mean valiue of sample

double var; variance ov sample

VECTOR x,y,1; Vectors holding the resuits.(r holding the
generated numbers. x and y holding the

theoretical distribution.)

random number generator to be used in

the test.

uniRand* randomizer;

virtual void initialize ();

Per default this function does nothing, In derived classes, however,
this is the place to initialise the random number generator
randomizer.

virtual double theoretProb (double x) = @

This function has to be overwritten by derived classes. It has to
return the theoretical probability for values smaller than or equals

Class Reference

KgSTest

7. Appendix II: Programme Documentation 7-33

X.
maxDistance double maxDistance ();
This function calculates the maximum distance between a
o generated point and the theoretical distribution function.
doValues void doValues ();
generate the random numbers and pack them into vector r.
calcCumDist void calcCumDist ();
‘ internal function for the Kolmogorov- Smimov test.
public:
doTest double doTest (); _
Carries out the Kolmogorov- Smirnov test and retums the test
result. (See [33]).
getMean double getMean (); Return the mean value of the sample
getVar double getVar (}; Retum the variance of the sample
MATRIX_ <vectors.h>
typedef MATRIX _<int> IMATRIX;
typedef MATRIX_<double> MATRIX;
Constructors;
MATRIX_ (int n); initialises an n x n - matrix,
MATRIX_ (MATRIX_ A); initialises a copie of matrix A.

MATRIX_ (int m, int n);

Data members:
col

ow

Member functions:

col_to_vec
create
diag_to_vec
maxval

minval

initialises an m x n - matrix.

int col; Number of columns -

int row; Number of rows

void col_to_vec (int i, VECTOR_<T>& v),

move values of the i-th column to vector v.

void create (int m, int n);

Allocation of memory on the heap for an m x n- matrix.

void diag_to_vec (VECTOR& v);

move diagonal elements to vector v.

T maxval (int& i, int& j);

returns the maximum value of the matrix. Indices see minval().
T minval (int& i, int& j);

returns the minimum value of the matrix. Its indices are updated
and passed by reference.

Class Reference

MATRIX_

7. Appendix I: Programme Documentation 7-34

vec_to_col

print

build

Operators:

<<
>>

MCPassageTime

void vec_to_cot (int i, VECTOR_<T>& v);
moves i-th column vector to vector v.

void print {(ostreamé& op);
Standard output to screen.
void build (istreamé& ip);
Standard input via istream.

A{int 1) Access to eiement Ay
Afint i, int j) Access to element Ay,
Matrix addition: A +B,A-B (A, B Matrices)

Multiply with number: B=A* g, B=a *A A *= ¢
Matrix multiplication: C=A*B
Multiply by vector: v=A*pv=u'*A

Division by number a: A=B/a; A /=¢;

A=B;

operator (ostreamé& op, MATRIX& A);
operator (istream& ip, MATRIX& A);

<passage.h>

Abstract class that calculates the first passage time using the Markov chain approach. It is
derived from PassageTime.

Constractors:
MCPassageTime ();

Data elements:
protected:
classes
distribution

Member functions:
protected:

Default constructor

int classes;

Number of discretisation levels

DiscretDistribution* distribution;

Underlying discrete distribution that is used int the calculations.

Class Reference

MCPassageTime

7. Appendix II: Programme Documentation 7-35

discretize int discretize (double x);
Given an initial level x (depending on the selection this could be
a wind speed, clearness index or normalised power value) this
function returns the class number the argument is in. It calls
distribution->getN (x).

public:

Eval double Eval (double x);
returns the first passage time (with non discretised passage level x)
using the Markov chain approach.

SetUp virtual int SetUp (TStatusWindow*, Param*);
Parameter setting for Markov chain approach

setInitLevel void setInitlevel (void*),
Assumes the argument to be double* and copies it into
PassageTime::initLevel.

MCWindSpeedPassageTime <passage.h>

Object that calculates the first passage time of wind speed fluctuations using the Markov
chain approach. It is derived from FPPassageTime.

Constructors:
MCWindSpeedPassageTime (); Default constructor

Member functions:

SetUp int SetUp (TStatusWindow*, Param*);
Setting the parameters and initialising distribution with an instance
of DiscretWindSpeed.

MCWindPoiverPassageTime <passage.h>

Object that calculates the first passage time of wind turbine pwoer fluctuations using the
Markov chain approach. It is derived from FPPassageTime.

Constructors:
MCWindPowerPassageTime (); Default constructor

Member functions:

SetUp int SetUp (TStatusWindow™*, Param*};
Setting the parameters and initialising distribution with an instance
of DiscretWindPower,

Class Reference MCSolarPowerPassageTime

7. Appendix H: Programme Documentation 7-36

MCSolarPowerPassageTime ~ <passage.h>

Object that calculates the first passage time of PV arra power fluctuations using the Markov
chain approach. It is derived from FPPassageTime.

Constructors:

MCSolarPowerPassageTime (); Default constructor

Member functions:

SetUp int SetUp (TStatusWindow*, Param*);
Setting the parameters and initialising distribution with an instance
of DiscSolApprox.

MCJointPowerPassageTime <passage.h>

Object that calculates the first passage time of joint renewable pwoer fluctuations using the
Markov chain approach. It is derived from FPPassageTime.

Constructors:
MClJointPowerPassageTime (); Default constructor

Member functions:

SetUp int SetUp (TStatusWindow*, Param*);
Setting the parameters.

MeritSol : <solar.h>

Object to optimise the-approximation used for the distribution of the PV array power. It is
derived form msgObjfunc.

Constructors:
MeritSol (SolConstants*, Param*);

Data elements:

psc i SolConstants* psc; pointer to the distribution parameter store

initialx double initialx; initial normalised clearness index x,.

u VECTOR u; Coefficient vector. See equation (2.82).

sigma VECTOR sigma; See equation (2.84).

lambda VECTOR lambda; This is sigma / epsilon (see (2.84))

Fxm VECTOR Fxm; Vector with distribution function values.
Right hand side of (2.87).

QPlusOne double QPlusOne; Number of generating functions used + 1
(see equation 2.87)

MPlusOne double MPlusOne; Number of trial points + 1

Class Reference , MeritSol

7. Appendix II: Programme Documentation 7-37

Member functions:

Eval double Eval (double x);
Calculates the merit function, equation (2.85).
fx double fx (double x); Equation (2.75)
Fx double Fx (double x); Equation (2.79)
Fp double Fp (double p),; Distribution function in power values p.
Compare equation (4.9)
FxApprox double FxApprox {double x); Equation (2.82)
FpApprox double FpApprox (double p);

as F Approx but with power value p as argument. It is internaily
converted into a nommalised clearness index x before calling
FxApprox.

setUp _ int setUp (); Parameter initialisation

Operators:

The stream operators are used to save optimisation data to a file and retrieve it next time in
order to save computing time.

friend ostream& operator << (ostream& outstr, MeritSol* v);

friend istreamé& operator >> (istream& instr, MeritSol* v},

msgObjfunc <distrib.h>

Abstract class, derived from objfunc. It is an extension in that it can monitor the elapsed
calculation time and then present messages.

Constructors:

msgObjfunc (); Default constructor

Member functions:

enableTimeMsg void enableTimeMsg ();
permit time messages being sent to the message queue, specified
by the handle set in setHandle.

enableValneMsg void enableValueMsg ();

permit messages of the value of the calculation sent to the
message queue.

setHandle void setHandle ();
set Windows handle. I.e. Handle of appropriate dialog window.

eval double eval (double);
Function from base class objfunc, here overwritten.

Eval double Eval (double) = 0;
Evaluation of object function. This abstract function has to be

Class Reference msgObjfunc

7. Appendix I Programme Documentation 7-38

overwritten in derived classes,

NormKgSTest <random.h>

Kolmogorov- Smirnov test for normal distribution, derived from KgSTest.

Constructors:
NormKgSTest (n); Construct test object for n trial points,

Member functions: '
theoretProb double theoretProb (double x); see KgSTest::theoretProb.
initialize void intiialize ();

initialise randomizer with normRand object.

normRand ‘ : <random.h>

normRand is derived from uniRand. It implements a random number generator, producing a
series of numbers that are normal distributed with mean mean and standard deviation sigma.
It implements the Box- Muller method (C.Press: Numerical recipes, 1992, p.289) drawing the
uniform deviates from uniRand.

Constructors:

normRand (); Initialization for standard normal deviates (i.e zero mean and unit
standard variation.)

normRand (double mean, double sigma); Initialization with mean and sigma.

Member functions:

getRandomNumber virtual double getRandomNumber ();
returns the next random number. It overwrites the
getRandomNumber function of uniRand.

update void update (void* x);

. the first double value in x is interpreted as the mean value, the

second as the variance. This gives the opportunity to change the
parameters even after initialisation.

objfunc <diffcalc.h>

Abstract class, which provides operations on functions of one variable.

Data members:

X, ¥ VECTOR x, y; x- and y- values (y- values are the
function values)

Class Reference objfunc

7. Appendix I: Programme Documentation 7-39

Member fanctions:
eval virtual double eval (double x) = 0;

Evaluation of the object function at x. This function has to be
provided by derived classes as this is an abstract function.

bracketRoot BOOL bracketRoot (double x0, double step, double &a, double
&b, int maxit, int mode);

Starting in x0 with a step width a, the algorithm searches for a
bracket {a,b} in which a root of the object function is contained.
For mode:

mode = DETECT_EQUI: The algorithm determines the search
direction. The step width does not change.

mode = DETECT_DYNA: The step width will be increased
dynamically from step to step.

mode = DOWN_EQUT: Algorithm searches only towards smaller
values than x0. Equidistant step width.

mode = DOWN_DYNA: Dynamic step width

mode = UP_EQUI: Search towards greater values than x0.

mode = UP_DYNA: Dynamic step width.

The function returns ERROR if maximum number of function
evaluations, maxit, is reached. Otherwise OK.

goldenSection double goldenSection {(double ax, double bx, double cx, double fb,
double tol, double& xmin);
For the bracket of the minimum { ax, bx, cx } the function
determines the minimum, xmin, and returns the value at xmin. The
tolerance is tol. fb is the function value at bx. The algorithm uses
the golden section search.

compEquiVal void compEquiVal (double xmin, double xmax, int n);
Function computes n equidistant function values in the open
interval [xmin, xmax]. The results are stored in x and y
respectively.

owObjfunc : <diffcalc.h>

This class is derived from objfunc and extended by an info facility. This is useful if the
underlying object function is evaluated N times and N is known beforc.

Member functions:

Class Reference owObjfunc

7. Appendix II: Programme Documentation 7-40

getPercentage double getPercentage {);
' returns the percentage of the number of evaluations carried out in

relation to the total number N. '

prepForEquiVal void prepForEquiVal (double xmm, double xmax, int N);
Preparation of the series of N evaluations on the interval [xmin,
xmax].

compEquiVal void compEquiVal (); _
Evaluation of the object function. Subsequent calls cause the
function to be evaluated at different x- values - as stated in
prepForEquiVal (). The y - values are stored in vector y in
objfunc.

pairvec <diffcalc.h>

Constructors:

pairvec (int n);
pairvec ()%
Data members:
size

X,y

Member functions:

create

move
move_down

swap

Operators:

<<
>>

Param

initialises the class with n (x,y) - pairs
initialises the class with size = Q.

int size; Dimension of x and y

VECTOR x, v, x- und y- values as vectors

void create (int n);

Allocation of memory on the heap

void move (int i, int j); moves i-th element to j-th place
void move_down (); moves all components one place down

void swap (int i, int j); Swap i-th and j-th elements.

operator << (ostream& op, pairvec& v);, |
operator >> (istream& ip, parivec& v);

<owparam.h>

Structure that holds pérameters for all dialog windows. It serves as an interface between
dialog windows and calculation objects as both access it.

Class Reference

Param

7. Appendix H: Programme Documentation 7-41

struct Param {

double tau; // time

int eval; // number of function evaluations

int type: // = 0 (distribution) , = 1 (density)

int distSelect; // chosen distribution selection:

C // = 0 : Wind turbine powsr .

/7 1 : Conditional wind turbine power
// 2 : Exact Solar
// 3 : Approximated solar
/7 4 : Approximated solar, conditional
// 5 : Quality of approximation

int filter; // filter of inspection windows

int classes; // number of discretisation levels in a discrete

// distribution

// Wind parameters:

double wivei; // eut- in speed
double wivco; // cout- out speed
double wivr; // rated wind speed
double wiVmean; // mean wind speed
double wiVmin; // minimum wind speed for wind speed distribution
double wiVmax; // maximum wind speed for wind speed distribution
double wiSigma; // variance of wind speed fluctuations
double wiBeta; // wind autocorrelation coefficient
double wiInitv; // initial wind speed
// Solar parameters:
doublea solK; // average hourly clearness index k
double sclsSigmak; // standard deviation of sclar irradiation
double soclK0; // absolute maximum possible clearness index
double solInitkK; // initial average hourly clearnegs index
double solBeta; // seolar autocorrelation coefficient bhsol
int s0lTrial; // number of trial points in normal approximation
int solCoeff; // number of coefficients in normal approximation
int solBypass; //{ bypass of major calculations by retrisving
// old data
// Combined renewables parameters:
double comZeta; // fractional powsr factor zeta
double comInitp; // Initial p value {normalised, power)
// Random numbers dialog: .
double rana; // Parameter alpha for beta- distribution
double ranB; // Parameter beta for beta- distribution
double ran?; // Parameter p for binomial distribution
double ranU; // Parameter u for normal distribution (not usedl!!)
int ranClass; // Number of classes for Kolmogorcov- Smirnov test
int ranTrial; // Number of trials in Kolmogorov- Smirnoc test
int ranSelect; // Last selection (i.a. distribution type)

// Time series parameters:
double tsTimeStep; // Duration of ‘a single time step

int tsPointa; // Length of a time series

int tsSelect; // Last selection (type of time series)

// First passage time parameters:

int fpTsTrial; // Number of time series taken into account
int fpTsMaxit; // Max iterations in Time series mode
double fpMcStopCrit;// Stopping criterion in Markov chain mode
int fpMcMaxIt; // Max iterations in Markov chain mode

int fpMeGrid; // Markov chain mode: Grid Number Q

double fpPassV; // Passage level: Wind speed v

double fpPassk; .- [/ Clearness index k

double fpPassP; /! Power level p

int fphioval; // Number of walues to be calculated in

Class Reference Param

7. Appendix II: Programme Documentation 7-42

int fpSelectProcess;
int fpSalectMathod;
int fpSelectCalc;

// function-as-mecde

// Flags

// Markov chain - or time series approach
// Calculation technigue selected.

// Battery paramaters

double batkK;
double batC;
double batQMax;
double bhatVv;
doublae batQll:
double batQ20;

// Battery parametar k

// Battery parameter c

// Battery capacity

// Voltage

// Initial available charge Q10

// Initial bound charge, Ql0 + Q20 <= 1.0

// Denormalized system

double sysPDemand;

double sysPRen;

// Display options

int disAuto;
int disAccu;

int disOldEval;
int dis0ldType;
double disOldvming
double disOldVmax;

// Power demand
// Installed nmaximum renewable power

// automatic re-drawing of graphics

// accumulate data seriea when possible
// last eval '

// last window type

// last minimum speed

// last maximum speed

int disFirstCurve; // = 1 if first curve, otherwise 0

int disLegend;

PassageTime

// = 1 if legend desired, otherwise 0

<passage.h>

This is an abstract class that represents a first passage time calculator, It is derived from
msgObjfunc. For a given passage level and initial value the first passage time is calculated
in the function Eval, which has to be provided in derived classes.

Constructors:
PassageTime ();

Data elements:
protected:
passLevel

mitLevel

timeStep

Member functions:
protected:

SetUp

public:
setUp

setPassLevel

setInitLevel

Default Constructor

P

passage level (speed, clearness index or
power)

initial value (speed, clearness index or
power, depending on selection)

time step (for time series approach only)

double passLevel;
double initLevel;

double timeStep;

virtual int SetUp (TStatusWindow*, Param*) = O;
Derived classes have to provide their own SetUp functions.

int setUp (TStatusWindow*, Param*};
Setup function that calls SetUp.

void setPassLevel (double newLevel);

Sets the passage level to newLevel,

virtual void setImitLevel (void* initSet) = 0;

Class Reference

PassageTime

7. Appendix II: Programme Documentation 7-43

Sets initial level. As there could be not only one but two values
that define the initial state (wind speed and cleamess index in the
case of joint renewable power) the new initial state, initSet is a
void*. It has to be defined in derived classes.

PassageTimes <passage.h>

Abstract class that is able to calculate more than one first passage time value in one set.
Hence, it is derived from owObjfunc and has a PassageTime* object as data element.

Constructors:

PassageTimes (); Default constructor

Data elements:

protected:

selectCalc int selectCalc; see setUp.

noVal int noVal; see setUp.

passageTime PassageTime* passageTime Implied passage time

object

public: _

minVal double minVal, minimum value / start value (either
initial value or passage level depending
on the selection)

maxVal double maxVal; maximum value / end value (either initial
value or passage leve depending on the
selection)

Member functions: .

protected: .

SetUp virtual int SetUp (TStatusWindow*, Param*) = Q;

has to be overwritten by derived classes
public: .
setUp int setUp (TStatnsWindow*, Param* param);

Parameter setup. selectCalc is initialised with param->fpSelectCalc
(see Param::fpSelectCalc) and noVal with param->fpNoVal.
eval double eval (double);

returns the first passage time as a function of either the initial
value or the passage level depending on the selection, selectCalc.

PassageTimesObject <owcalc.h>

Calculation window on which calculations of first passage times are carried out, derived
from TMultiValObject. This class is to be used if the first passage time is to be calculated as
a function of the initial value or the passage level and more than one value has to be

Class Reference PassageTimesObject

7. Appendix II: Programme Documentation 7-44

determined. All necessary functions are privately overwritten. See TMultiValObject.

Constructors:
Passage TimesObject (PTWindowsObject AParent, LPSTR ATitle);

PowerDeficitTimeSeries <series.h>

Implementation of time series of the power deficit that may occur if the joint renewable
power and the power delivered by the battery is not sufficient to meet the power demand.
The class is immediately derived from StateOfChargeTimeSeries. The power difference can
be picked up in the field StateQfChargeTimeSeries::deltaP.

Constructors:
PowerDeficitTimeSeries {); _ Default constructor calls base class constructor

Member functions:
eval double eval (double);
returns next time series value. Argument is not used.

ProbCondSolApprox <solarh>

Conditional distribution of the PV array power (using the approximation) embedded in a
statfunc object. This is necessary to ensure that it can be easily used by dialog window

classes. Moreover, the function statfunc::eval can calculate both the distribution function and
the probability function.

-

Constructors:

ProbCondSolApprox (); Constructor initialises statfunc::distribution with a
ContCondSolApprox object.

ProbCondWindPower <wind.h>

Conditional distribution - representing the wind turbine power - embedded in a statfunc
object. This is necessary to ensure that it can be easily used by dialog window classes.
Moreover, the function statfunc::eval can calculate both the distribution function and the
probability function.

Constructors:
ProbCondWindPower (); Constructor initialises statfunc::distribution with a
ContCondWindPower object.

Class Reference ProbJointPower

7. Appendix II: Programme Documentation 7-45

ProbJointPower <joint.h>

Implementation of the probability function of the joint renewable power, derived from
owObijfunc.

Constructors:
ProbJointPower (int n); Construction for n different power levels.

Member functions:
eval double eval (double p);
return probability for normalised power level p
setUp int setUp (TStatusWindow*, Param*);
Setting up the parameters.
ProbSolAppQual | <solar.h>

Quality of approximation embedded in a sratfunc object. This is necessary to ensure that it
can be easily used by dialog window classes. Moreover, the function stagfunc::eval can
calculate both the distribution function and the probability function.

Constructors:
ProbSolAppQual (); Constructor initialises statfunc::distribution with both a
ContSolApprox and a ContSolExact object.

ProbSolApprox <solar.h>

Distribution of the PV array power (using the approximation) embedded in a statfunc object.
This is necessary to ensure that it can be easily used by dialog window classes. Moreover,
the function statfunc::eval can calculate both the distribution function and the probability
- function,

Constructors:

ProbSolApprox (); Constructor initialises statfunc::distribution with a ContSolApprox
object. '

ProbSolExact <solar.h>

Analytical solution of the distribution of the PV array power embedded in a statfunc object.
This is necessary to ensure that it can be easily used by dialog window classes. Moreover,

the function statfunc::eval can calculate both the distribution function and the probability
function.

Class Reference ProbSolExact

7. Appendix II: Programme Documentation 7-46

Constructors:

ProbSolExact (); Constructor initialises statfunc::distribution with a ContSolExact
object. ' '

ProbWindPower <wind.h>

Stationary distribution - representing the wind turbine power - embedded in a statfunc object.
This is necessary to ensure that it can be easily used by dialog window classes. Moreover,
the function statfunc::eval can calculate both the distribution function and the probability
function.

Constructors: ~

ProbWindPower (); Constructor initialises statfunc::distribution with a ContWindPower
object.

rejectRand <random.h>

rejectRand is immediately derived from uniRand. It is a virtual base class for a random
number generator applying the rejection method’ (W. Press: Numerical recipes, 1992, p.290).
Derived classes have to specify the comparison function, the original density function and
the inverse distribution function.

Constructor:
rejectRand (); Default constructor

Member functions:
compFunc virtual double compfunc (double) = 0;
' Comparison function. Has to be defined in derived classes.

origFunc virtual double origFunc (double) = 0;
. Original underlying probability density function. Has to be defined
in derived classes. It is assumed that it takes only arguments in the
interval [0,1].

invinteg virtual double invinteg (double) = 0;
Inverse function of the normalized integral of the comparison
function, returning only numbers in the interval [0,1]. Has to be
defined in derived classes.

getRandomNumber virtual double getRandomNumber (),
returns the next random number.

Class Reference SolarPowerPassageTimes

7. Appendix II: Programme Documentation ' 7-47

SolarPowerPassageTimes <passage.h>

Object function for first passage times of PV armray power fluctuations, derived from
PassageTimes. o

Constructors:

WindSpeedPassageTimes (int select); _
Constructor: If select = 0 the data element passageTime is
initialised with an instance of TSSolarPowerPassageTime.
Otherwise with MCSolarPowerPassageTime.

Member functions:
SetUp int SetUp (TStatusWindow*, Param*);
: individual set-up of initial values and passage levels.

SolarPowerTimeSeries o <series.h>

Implementation of PY array power time series, derived from TimeSeriesOne.

Constructors:
SolarPowerTimeSeries (); Default constructor. Initialises a SolarRandomizer
Y object as internal random number generator.

Member functions:
protected:
getRandomNumber double getRandomNumber ();
returns next random number from the implied random number

generator.
public:
getOutput double getOutput (); see TimeSeries::getOutput
update void update (); see
TimeSeries: :update
getInitRandomVal double getInitRandomVal ();
overwrites TimeSeriesOne::getInitRandomVal.
setUp int setUp (TStatusWindow™*, Param*),
: Parameter setting :
SolarRandomizer <solar.h>

Random number generator for the distribution of the PV array power, derived from
DiscretRandomizer.

Constructors:
SolarRandomizer (); Default Constructor

Class Reference SolarRandomizer

7. Appendix II: Programme Documentation 7-48

Member functions:
setUp int setUp (TStatusWindow*, Param*);

SolConstants | o <solar.h>

Store for clearness index distribution parameters. Compare section 2.2.4.1

Constructors:
SolConstants (); Default constructor

Data elements:

W double w; equation (2.77)

deltaKK0Q double deltaKK0; (k. - knw) / K, (see section 2.2.4.1)
kminK0 double kminKO0; ko / K, (see section 2.2.4.1)

deltaK double deltakK; (Kox = ko)

kmin double kmin; Koo

correl double correl; correlation coefficient J3,.

ab VECTOR a,b; equation (2.76)

Member functions:

setUp int setUp (Param*);
The function takes the relevant parameters off the Param structure
and calculates the values of the data elements above.

- XTok void xTok (double x, double* k);
Inverse functionality to equation (2.70).
kTox void kTox (double k, double* x);

See equation (2.70).

Speed <wind.h>

‘Abstract class that represents the distribution of wind speed ﬂuctuatlons The class is derived
from owObjfunc.

Constructors:

Speed (); . Default constructor

Data elements:

protected:

vmean double vimean; mean wind speed

vsigma double vsigma; wind speed standard variation

Member funétions: .
eval double eval (double v) = 0; see objfunc::eval
setUp int setUp (Param*), Parameter setting

Class Reference Speed

7. Appendix [I: Programme Documentation 7-49

SpeedDens <wind.h>

Probability density function of wind speed fluctuations, It is derived from Speed.

Constructors:

SpeedDens (); Default constructor

Member functions:

eval double eval {double v); Equation (4.2), but stationary only
SpeedDist <wind.h>

Distribution function of wind speed fluctuations. It is derived from Speed.

Constructors:

SpeedDist (); Default constructor

Member functions: '

eval double eval (double v); Equation (4.1), but stationary only
StateOfChargeTimeSeries <series.h>

Implementation of time series of the state of charge of the battery, derived from TimeSeries.

Constructors:

StateQOfChargeTimeSeries (); Default constructor. Initialises a
JointPowerTimeSeries object for the underlying
process.

Data elements:

protected:

deltaP double deltaP; difference between delivered and

demanded power,

Member functions:

protected:
update void update (); see TimeSeries::update
getOutput double getOutput {); see TimeSeries::getOutput
public:
setUserInit void setUserInit (void*); see TimeSeries::setUserlnit
setUp int setUp (TStatusWindow?*, Param*);

Parameter setting
eval double eval (double);

return next time series value. the argument is not used.

Class Reference StateOfCharge TimeSeries

7. Appendix H: Programme Documentation 7-50

statfime <distrib.h>

Abstract class of a statistical function, derived from owObjfunc. It can be either a distribution -
or a probability density function.

Constructors:

statfunc (); Default Constructor

Data elements:

type protected: int type;
type is either 1 (distribution function) or O (probability density
function).

distribution protected: ContinuousDistribution* distribution;
Pointer to the implied distribution. Has to be set up in derived
classes.

Member functions:

eval double eval (double);

returns either the distribution or the probability dens:ty

setUp virtual int setUp (TStatusWindow?*, Param*);
Parameter setting

setType void setType (int aType);
specify function type. See data elemetn #ype for more details.

TDirDialog <owdialg.h>

Implementation of the ‘Directories’ dialog window, derived from TDialog of the Object
Windows C++ library.

Constructors:
TDirDialog (PTWindowsObject AParent, LPSTR ATitle);

TDisplayDialog ‘ <owdialg.h>

Implementation of the ‘Display Options’ dialog window, derived from TDialog of the Object
Windows C++ library.

Constructors:
TDisplayDialog (PTWindowsObject AParent, LPSTR ATltle),

Class Reference TDisplayDialog

7. Appendix II: Programme Documentation 7-51

TDistributionObject <owcalch>

Calculation window on which calculations of both wind power and PV array power
distributions are carried out, derived from TMultiValObject. All necessary functions are
privately overwritten. See TMultiValObject.

Constructors: _
TDistributionObject (PTWindowsObject AParent, LPSTR ATitle);

TDoubleInput - <owlappl.h>

Implementation of an input field in a dialog window that expects a real number. If the input
is not valid a message window pops up and the dialog window cannot be closed.
TDoubleInput is derived from the Object Windows C++ class TEdit.

Constructors:
TDoubleInput (PTWindowsObject AParent, int Resourceld);

Data elements:
X ~ double x; Input value as a number and not text.

Member functions:

Transfer virtual WORD Transfer (void* DataPtr, WORD TransferFlag);
Transfer and conversion from data element x to the string in the
input field.

CanClose virtual BOOL CanClose ();

tries to convert string from input field to a double. If successful it
returns OK. Otherwise ERROR. :

TDoubleInputl <owlapplh>

This class is derived from TDoubleInput. In addition it checks whether the value x lies in an
interval [minVal, maxVal]. If not a message aMessage pops up.

Constructors:

TDoubleInputl (PTWindowsObject AParent, int Resourceld, const double aMinVal, const
double aMaxVal, const char* aMessage);

Member functions:
CanClose virtual BOOL CanClose ();
see TDoublelnput

Class Reference TExportDialog

7. Appendix II: Programme Documentation _ 7-52

TExportDialog <owdialg.h>

Implementation of the ‘Export’ dialog wmdow derived from TDialog of the Object Windows
C++ library.

Constructors:
TExportDialog (PTWindowsObject AParent, LPSTR ATitle);

TFpDialog <owdialg.h>

Implementation of the ‘First Passage Time Problems’ dialog window, derived from TDiglog
of the Object Windows C++ library.

Constructors: .
TFpDialog (PTWindowsObject AParent, LPSTR ATitle);

Member functions:
virtual void WMInitDialog (RTMessage) = [WM_FIRST+WM_INITDIALOGI;
" Function is carried out upon initialisation of the window.

virtual void HandleOpOMsg (RTMessage) = [WM_FIRST + idFpOp0];
Fanction is called upon selection of ‘Wind Speed’ option in the
dialog window. If this option is selected input fields are made
visible or invisible as appropriate. The id- constant is defined in
owres.h.

virtual void HandleOp1Msg (RTMessage) = {WM_FIRST + idFpOpl];
Function is called upon selection of ‘Wind Power’ option in the
dialog window. See HandleOpOMsg above.

virtual void HandleOp2Msg (RTMessage) = [WM_FIRST + idFpOp2];
Function is called upon selection of ‘Solar Power option in the
dialog window. See HandleOpOMsg above.

virtual void HandleOp3Msg (RTMessage) = [WM_FIRST + idFpOp3];
Function is called upon selection of ‘Combined Renewable’ option
in the dialog window. See HandleOpOMsg above.

virtual void HandleOp4Msg (RTMessage) = [WM_FIRST + idFpOp4];
Function is called upon selection of Time Series Approach’ option
in the dialog window. See HandleOpOMsg above.

vm'ual void HandleOp5Msg (RTMessage) = [WM_FIRST + idFpOp5];
Function is called upon selection of ‘Markov Chain Approach’
option in the dialog window. See HandleOpOMsg above.

virtual void HandleOp6Msg (RTMessage) = [WM_FIRST + idFpOp6];
Function is called upon selection of ‘Calculate one value only’
option in the dialog window. See HandleOpOMsg above.

vn'tual void HandleOp7Msg (RTMessage) = [WM_FIRST + idFpOp7];
Function is called upon selection of ‘as function of initial value’
option in the dialog window. See HandleOpOMsg above.

Class Reference TFpDialog

7. Appendix II: Programme Documentation

7-53

virtual void HandleOp8Msg (RTMessage) = [WM_FIRST + idFpOp8];
' Function is called upon selection of ‘as function of passage level’
option in the dialog window. See HandleOpOMsg above.

TGraph

<owplot.h>

General purpose graphic window, derived from the Object Windows C++ class TWindow. It

provides graphic resources such as a font, a pen and a brush. It offers functions to draw
lines, write text or numbers.

Constructors:

TGraph (PWindowsObject AParent, LPSTR ATitle, PTModule AModule = NULL);

Data elements: (protected)

logFont LOGFONT logFont; Font: Attributes
TheFont HFONT TheFont; Font: Resource (handle)
oldFont HFONT oldFont; Font: old resource (in order to go back to
old font)
logPen LOGPEN logPen; Pen: Attributes
ThePen HPEN ThePen; Pen: Resource handle
oldPen HPEN oldPen; Pen: old resource handle
logBrush LOGBRUSH logBrush; Brush: Attributes
TheBrush HBRUSH TheBrush; Brush: Resource handle
oldBrush HBRUSH oldBrush; Brush: old resource handle
backGround COLORREF backGround; Background color
DC HDC DC; Screen context. See [3] and [4] for
further details.
Member functions:
clearScreen void clearScreen (); clear the screen
setTextHeight void setTextHeight (int n); set text height -
setPenSize void setPenSize (int n); set pen width
setPenStyle void setPenStyle (int n); set style of pen
. setPenColor void setPenColor (COLORREEF c¢); set color of pen
setBrushStyle void setBrushStyle (int n); set style of brush
setBrushColor void setBrushColor (COLORREF c); set brush color
setBrushHatch void setBrushHatch (int n); - set pattern of brush
setColor void setColor (COLORREEF c¢); set color of current
resource
open virtual void open (); open and initialise window
close virtual void close (); close window and delete all resources
Line void Line (int x1, int y1, int x2, int y2);

Class Reference TGraph

7. Appendix II: Programme Documentation 7-54

DoubleQut

IntegerOut

TextOut

TimeSeries

draw line from (x1,y1) to (x2,y2)

void DoubleOut (double number, int dec, int x, int y);

print out number starting at coordinate (X,y) with dec decimal
points.

void IntegerOut (int number, int x, int y);
print out number starting at coordinate (x,y).

void TextOut (char* text, int x, int y);
print out text string text, starting at point (x,y).

<series.h>

Abstract class of a time series object, derived from owObjfunc.

Constructors:
TimeSeries (};

Member functions:

protected:
update

getOutput

public:
setUp

setUserlnit

TimeSeriesOne

Default Constructor

virtual void update () = 0;

Has to be defined in derived classes. It takes the output of the
time series generator and channels it back to the initial values.
This is the function &(£) in the time series algorithm point (5),
section 4.2.1.

virtual double getOutput () = 0;

Has to be defined in derived classes. It returns the desired output
variable. This is the function ¥(Z) in the time series algonthm
point (6) in section 4.2.1.

virtual int setUp (TStatusWindow*, Param*) = {;

Has to be defined in derived classes.

virtual void setUserInit (void* v) = 0;

Has to be defined in derived classes. It sets initial value(s) as
specified in v. It could be an initial wind speed, initial clearness
index or both.

<geries.h>

Time series object, derived from TimeSeries. Though, it allows only one initial value, either
wind speed or clearness index, but not both.

Constructors:

Class Reference

TimeSeriesOne

7. Appendix II: Programme Documentation 7-55

TimeSeriesOne ();
Data elements:
protected:
initUserVal
randomVal

outVal

Member functions:
protected:
getInitRandomVal
getRandomNumber

public:
eval

setUserInit

TIntegerInput

Default constructor

double initUserVal; initial value as specified by the user

double randomVal, current value of the underlying stochastic
process

double outVal; output value

virtual double getInitRandomVal (};

refurns initial value of underlying stochastic process

virtual double getRandomNumber () = 0;

Has to be defined in derived classes. It has to return the next
random number.

double eval {double);

returns the next time series value. The argument is not used,
though necessary as this object is derived from owObjfunc.

void setUserlnit (void*);

see TimeSeries::setUserInit.

<owlappl.h>

Implementation of an input field in a dialog window that expects an integer number. If the
input is not valid a message window pops up and the dialog window cannot be closed.
TIntegerInput is derived from the Object Windows C++ class TEdit.

Constructors:

TIntegerInput (PTWindowsObject AParent, int Resourceld);

- Data elements:
n

Member functions:
Transfer

CanClose

int m; Input value as a number and not text.

virtual WORD Transfer (void* DataPtr, WORD TransferFlag);
Transfer and conversion from data element n to the string in the
input field.

virtual BOOL CanClose (};

tries to convert string from input field to an integer. If successful
it returns OK. Otherwise ERROR.

Class Reference

TintegerInputl

7. Appendix II: Programme Documentation 7-56

TIntegerInputl <owlappl.h>

This class is derived from TIntegerinput. In addition it checks whether the value x lies in an
interval [minVal, maxVal]. If not a message aMessage pops up.

Constructors:

TIntegerlnput] (PTWindowsObject AParent, int Resourceld, const int aMinVal, const int
aMaxVal, const char* aMessage);

Member functions:

CanClose virtual BOOL CanClose ();
see TDoublelnput

TJointDialog <owdialg.h>

Implementation of the ‘Joint Renewable Distribution’ dialog window, derived from TDialog
of the Object Windows C++ library.

Constructors:
TJointDialog (PTWindowsObject AParent, LPSTR ATitle);

Member functions:

virtual void WMInitDialog (RTMessage) = [WM_FIRST+WM_INITDIALOG];
Function is cartied out vpon imtialisation of the window.

virtual void HandleCondMsg (RTMessage) = [WM_FIRST + idOpCond};
Function is called upon selection of Joint Conditional Function’
option in the dialog window. If this option is selected input fields
are made visible or invisible as appropriate. The id- constant is

: defined in owres.h.

virtual void HandleProbMsg (RTMessage) = [WM_FIRST + idOpProbDens];
Function is called upon selection of ‘Joint Density Function’ option
in the dialog window. See HandleCondMsg above.

TJointDistributionObject <owcalc.h>

Calculation window on which calculations of joint renewable power distributions are carried
out, derived from TMultiValObject. All necessary functions are privately overwritten. See
TMuliValObject.

Constructors:
TJointDistributionObject (PTWindowsObject AParent, LPSTR ATitle);

Class Reference TMainWindow

7. Appendix II: Programme Documentation

7-57

TMainWindow

<owrenew.h>

Implementation of the main window with the menu bar. It is derived from the Ob]ect
Windows C++ class TWindow.

Constructors:

TMainWindow (PTWindowsObject AParent, LPSTR ATitle);

Data elements:
TTransSettingsDlg
TTransDirDlg
TTransExportDlg
TTransDisplayDilg
TTransSpeedDlg

TTransWindDig
TTransSolarDlg
TTransJointDlg
TTransRandDlg
TTransMathsDlg
TTransTsDlg
TTransFpDlg

PTRenewPlot

Member functions:

CanClose

TransSettingsDlg; Buffer for “Settings” window

TransDirDlg; Buffer for “Directories” window

TransExportDlg; Buffer for “Export” window

TransDisplayDlg; Buffer for “Display” window

TransSpeedDig; Buffer for “"Wind Speed Distributions”
window

TransWindDlg; Buffer for “Wind Power Distribution”
window

TransSolarDlg; Buffer for "Solar Power Distribution”
window

TransJointDlg; Buffer for “Joint- Renewable Power
Distribution” window

TransRandDlg; Buffer for “Random number” dialog
window

TransMathsDlg; Buffer for “Maths” window

TransTsDlg; Buffer for "Time Series” window

TransFpDig; Buffer for "First Passage Time Problems"
window

testplot; Graphic window that sits on top of the
main window.

virtual BOOL CanClose ();

Pops up a message window and asks whether the user really wants
to quit, If 'Yes' the function returns YES. Otherwise NO.

virtual void CMWindSpeed (RTMessage) = [CM_FIRST + cmWindSpeed];

Function is called upon. selection of “Wind speed distribution”
menu item. It opens the appropriate dialog by initialising an
instance of class TSpeedDialog.

virtual void CMSettings (RTMessage) = [CM_FIRST + cmSettings];

Function is called upon selection of “Settings” menu item. It opens
the appropriate dialog by initialising an instance of class

TSettingsDialog.

virtual void CMMaths (RTMessage) = [CM_ FIRST + cmMaths];
Function is called upon selection of “Maths” menu item. It opens
the appropriate dialog by initialising an instance of class

Class Reference

TMainWindow

7. Appendix II: Programme Documentation 7-58

TMathsDialog.

virtual void CMWindPower (RTMessage) = [CM_FIRST + cmedPower],
Function is called upon selection of “Wind Power Distribution”
menu item. It opens the appropriate dialog by initialising an
instance of class TWindDialog.

virtual void CMSolar (RTMessage) = [CM_FIRST + cmSolar];
Function is called upon selection of “Solar Power Distribution”
menu item. It opens the appropriate dialog by initialising an
instance of class TSelarDialog.

virtual void CMRenewable (RTMessage) = [CM_FIRST + cmRenewable];
Function is called upon selection of “Joint Renewable
Distribution” menu item. It opens the appropriate dialog by
initialising an instance of class TJointDialog.

virtual void CMExport (RTMessage) = [CM_FIRST + cmExport];
Function is called upon selection of “Export” menu item. It opens
the appropriate dialog by initialising an instance of class
TExportDialog. |

virtual void CMDisplay (RTMessage) = [CM_FIRST + cmDisplay];

: Function is called upon selection of “Display Options” menu item.

It opens the appropriate dialog by initialising an instance of class
TDisplayDialog.

virtual void CMHelp (RTMessage) = [CM_FIRST + cmHelp];
Function is called upon selection of “Help” menu item. It pops up
a message that this feature is not implemented.

virtual void CMDir (RTMessage) = [CM_FIRST + ¢cmDirectories];
Function is called upon selection of “Directories” menu item. It
opens the appropriate dialog by initialising an instance of class
TDirDialog.

virtual void CMRandom (R'I‘Message) = [CM_FIRST + cmRandom];
Function is called upon selection of “Random Numbers” menu
item, It opens the appropriate dialog by initialising an instance of
class TRandomDialog.

virtual void CMTimeSeries (RTMessage) = [CM_FIRST + cmTimeSeries];
Function is called upon selection of “Time Series” menu item. It
opens the appropriate dialog by initialising an instance of class
TTsDialog.

virtnal void CMFpt (RTMessage) = [CM_FIRST + cmFirstPassage];
Function is called upon selection of "First Passage Time
Problems” menu item. It opens the appropriate dialog by
initialising an instance of class TFpDialog.

Operators:
Save dialog window data to a file and retrieving them in the next session by using the
stream operators. They affect all data stored in the buffers with prefix ‘Trans’.

friend ostreamé& operator << (ostream&, RTMainWindow);

Class Reference TMainWindow

7. Appendix II: Programme Documentation 7-59

friend istreamé& operator >> (istream&, RTMainWindow});

TMathsDialog o <owdialg.h>

Implementation of the ‘Mathematical Options’ dialog window, derived from TDialog of the
Object Windows C++ library.

Constructors:
TMathsDialog (PTWindowsObject AParent, LPSTR ATitle);

TMultiValObject <owstat.h>

This class is derived from TStatusWindow. It is designed for the case that more than one
value is to be calculated.

Constructors: .

TMultiValObject (PTWindowsObject AParent, LPSTR ATitle, int eval);
initialise the class with eval being the number of function
evaluations to be carried out.

Member functions:

protected:

workOutBasic virtual int workOutBasic () = 0;
The function TStatusWindow::workOut has been split up here into
two parts: First, calculations that have to be carried out prior to
the evaluation of the first function value. This goes in here.

workOutValues virtual int workOutValues () = 0;
This is the second part, where all values are calculated. The split
is necessary as after workQOutBasic the parameters are checked. In
case they are pointless (return value of workOutBasic not OK) a
message window will inform the user. Otherwise the programme
continues with the calculation of the function values in
workQutValues.

areParametersOK virtual int areParametersOK () = 0;

: This function is only called if the accumulation of curves.in the
diagram is desired. Here is the function to check that the current
curve is compatible with the last calculations.

setOldParameter virtual void setOldParameter () = 0;
This function is to be called after areParameterOK and is used by
the next calculations for the same reason as stated in

. areParametersOK.,

workQut int workQut (); :
overwrites TStatusWindow::workOut by splitting up into
workQOutBasic and workOutValues.

Class Reference TMultiValObject

7. Appendix II: Programme Documentation 7-60

calcValues void calcValues (owObjfunc* func, double xmin, double xmax);
The function carries out eval function evaluations on the object
function func in the x- interval [xmin, xmax]. The number of
evaluations is already specified in the constructor.

public:

calc static void calc (owObjfunc* func, double xmin, double xmax, int
N, TStatusWindow* window);
Static member function that carries out N function evaluations on
func by using the status window window.

TPassageTimeObject <owcalc.h>

Calculation window on which the calculation of the first passage time is carried out provided
only one value is required at the time, derived from TStatusWindow. If a whole curve of first
passage time values (e.g. as a function of hte initial value) is required use class
PassageTimesObject. All necessary functions are privately overwritten. See T'StatusWindow.

Constructors:
TPassageTimeObject (PTWindowsObject AParent, LPSTR ATitle);

Member functions:

workOut protected: int workOut ();
carry out the random number generator test.
writeRept protected: void writeRepl (};

write reply to parent StatusWindow into textline.

TPlot <owplot.h>

Graphical representation of functions. TPlot draws a complete coordinate system, with axes,
grid lines, text and curves. It is derived from TGraph.

Constructors:
TPlot (PTWindowsCbject AParent, LPSTR ATtitle, PTModule AModule = NULL);

Member functions:

public:
plot virtual void plot (); do nothing! This function has to be
overwritten by derived classes.

draw : virtual void draw (); draw the whole diagram by calling ploz.

Paint virtual void Paint (HDC PaintDC, PAINTSTRUCT _FAR& P);
overwrites Paint from TWindow. See Object Windows C++ guide
for more details. .

setHeadLine void setHeadLine (const char*); set headline

setSubLine void setHeadLine (const char*); set line below headline

plotFactor void plotFactor (double x};

Class Reference TPlot

7. Appendix II: Programme Docurhentation 7-61

protected:
Text functions:
piotHeadLine
plotSubLine

write scaling factor on top of y- axis. This is basically the data
element scale in Graph.

void plotHeadLine(); plot headline
void plotSubLine (); plot line below headline

Coordinates and Positioning

drawMargin
- xcoord
.ycoord

setCoordinates

setAutoCoord

setAutoAxAtr

setViewport

void drawMargin (); draw rectangular {circumference of the

diagram})

int xcoord (double x); return coordinate on the screen for x-
value

int ycoord (double y); return coordinate on the screen fro y-
value

void setCoordinates (double xmin, double xmax, double ymin,
double ymax);

specifies the valid diagram coordinates.

double setAutoCoord {double xmin, double xmax, VECTOR*
yval, int n=0},

automatic determination of the coordinates dependent on the given
start and finish value on the x- axis and the vector with the
corresponding y- values, yval. If y- values of more than one
curves are to be taken into account n is to be set > (. Function
returns the calculated scaling factor for the y- axis. This factor
should be printed out using plotFactor function.

void setAutoAxAttr {(double& xaxle, double& yaxle, int& xnum,
int& ynum, double& xgrind, double& ygrid);

automatic determination of attributes of an axis given the input
parameters. See class axis for significance of the parameters.

void setViewport (int xmin, int xmax, int ymin, int ymax);
Specifiaction of location of diagram in the window

Axes, curves and the coordinate system:

drawUpperX
drawLowerH
drawRightY |
drawleftY

drawLinCoord

void drawUpperX (double mini, double maxi, double axle, int
num, int log, const char* text, int axle_mode);

draw upper x- axis with parameters as in axis::setAxis.

void drawLowerX (double mini, double maxi, double axle, int
num, int log, int dist, const char* text, int axle_mode);

draw lower x- axis with parameters as in axis::setAxis.

void drawRightY (double mini, double maxi, double axle, int num,
int log, const char* text, int axle_mode);

draw right hand y- axis with parameters as in axis::setAxis.

void drawleftY (double mini, double maxi, double axle, int num,
int Iog, int dist, const char* text, int axle_mode);

draw left y- axis with parameters as in axis::setAxis.

void drawLinCoord (double xaxle, int xnum, int xaxgrid, double
xgrid, const char* xtext, double yaxle, int ynum, int yaxgrid,

Class Reference

TPlot

7. Appendix H: Programme Documentation 7-62

double ygrid, const char* ytext),
Draw a linear coordinate system. Parameters as in axis::setAxis,
Please note that setCoordinates has to be called prior to this
function.

drawAutoLinCoord void drawAutoLinCoord (double xmin, double xmax, VECTOR*
yval, const char* xtext, const char* ytext, int xaxgrid, int yaxgrid,
double scale int n = Q);
Draw a linear coordinate system using drawLinCoord. Though,
before call setAutoCoord. _

drawCurve void drawCurve (VECTOR& x, VECTOR& y, DRA_MODE

' draw_mode};

Draw a curve with its x- and y- values in the diagram. draw_mode
is one. of the following options:
PIXEL Do not connect two points
POLYGON Do connect subsequent points by a line
STEP Draw function as a staircase function
DIRAC Draw function as a Dirac function

TRenewApp <owrenew.h>

Main application, derived from Object Windows C++ class TApplication.

Constructors:

TRenewApp (LPSTR AName, HINSTANCE hinstance, HINSTANCE hPrevinstance, LPSTR
IpCmdLine, int nCmdShow);

Member functions:

InitMainWindow virtual void InitMainWindow ();
overwrites TApplication::InitMainWindow and intialises an
instance of TMainWindow.

TRenewPlot <owrenw.h>

Implementation of the graphic window that draws the diagrams. It is directly derived from
TPlot. It is extended by the clear - flag. See data element below.

Constructors:
TRenewPlot (PTWindowObject AParent, LPSTR ATitle, PTModule AModule = NULL);

Data elements:

clear int clear; If clear is set to NO, the window draws the implied
diagram. Otherwise the next call to Paint causes the
window to be cleared.

Class Reference TRenewPlot

7. Appendix II: Programme Documentation 7-63

Member functions:
Paint

plot

TSJointPassageTime

virtual void Paint (HDC PaintDC, PAINTSTRUC _FAR&
PaintInfo);

calls TPlot::Paint if clear is YES. Otherwise it calls TPlot::draw.
void plot ();

overwrites TPlot::plot. It draws the whole diagram given the curve
data in GraphData which is an instance of class Graph.

<passage.h>

Object that calculates the first passage time of joint renewable power fluctuations using the
time series approach. It is derived from 7SPassageTime.

Constructors:
TSPassageTime (});

Member functions:

SetUp

TSPassageTime

Constructor that initialises a JointPowerTimeSeries object in place
of timeSeries data element.

int SetUp (TStatusWindow*, Param*);
Setting up the appropriate parameters.

<passage.h>

Object that calculates the first passage time using the time series approach. It is directly
derived from PassageTime.

Constructors:
TSPassageTime ();

Data elements:
protected:
timeSeries

Member functions:
protected:
SetUp

public:
Eval

setInitLevel

Default Constructor -

TimeSeries* timeSeries;
Time series object to be used in the first passage time calculations.

virtual int SetUp (TStatusWindow*, Param*);
see PassageTime::setUp.

double Eval {double x);

returns the first passage time where x is the passage level. It uses
the time series timeSeries. Hence, derived classes need to initialise
the time series they require,

void setinitlLevel (void*);

Class Reference

TSPassageTime

7. Appendix H: Programme Documentation 7-64

overwrites PassageTime::setInitLevel for time series approach
objects. It calls TimeSeries::setUserInit

TSSolarPowerPassageTime <passége.h>

Object that calculates the first passage time of PV array power fluctuations using the time
series approach. It is derived from TSPassageTime.

Constructors:
TSPassageTime (); Constructor that initialises a SolarPowerTimeSeries object in place
of timeSeries data element.

Member functions:

SetUp int SetUp (TStatusWindow*, Param*);
Setting up the appropriate parameters.

TStatusWindow <owstat.h>

Window that pops up just before starting a calculation. Upon pressing the OK button the
calculations are carried out. The status of the calculations can be observed by looking at the
status lines in the window. It is derived from TDialog.

Constractors:
TStatusWindow (PTWindowsObject AParent, LPSTR ATitle);

Data elements: '

temp static double temp;
This is a static data element. Calculation objects can write values
in it that can be picked up by TStatusWindow. .

Member functions:

protected: :
giveWamning int giveWarning (char* message);
opens a window issuing a warning with text message. The user is
given three options: OK, Ignore or Abort. Depending on his -
selection the return value is IDOK, IDIGNORE or IDABORT.
writeRepl virtual void writeRepl (); print out the first status
line.
writeRep2 virtual void writeRep2 (); print out the second status
line.
workQOut virtual int workOut (). = 0;

Abstract function that must be overwritten in derived classes. It
carries out all the calculations. It returns OK if no error occurred.

Class Reference TStatusWindow

7. Appendix II: Programme Documentation 7-65

virtual void WMInitDialog (RTMessage) = [WM_FIRST+WM_INITDIALOGI;
Initialisation of the dialog window

virtual void Ok (RTMessage) = [ID_FIRST + IDOK];
Function that is called upon the selection of the OK button. It calls
workOut to carry out the calculations.

virtual void Retry (RTMessage) = {ID_FIRST + IDRETRY];
Function that is called upon the selection of the Retry button. It is
almost identical with Ok. Only that the Retry button can not
always be selected. _

virtual void TimeMsg (RTMessage) = [WM_USER+WM_MSGOBIJFUNC];
Function called upon a time message that is invoked in an instance
of the class msgObjfunc. Calculations should be carried out in this
class, as it enables them to send time messages. TStatusWindow
receives the time message and write then the elapsed time (since
starting the calcualtions) to the status line.

public:
writeTime void writeTime ();
write the time elapsed to the satus line
isEnoughTime int isEnoughTime ();
in order to avoid writing to the screen too often this function can
be asked prior to writing to the screen whether enough time has
been elapsed since last writing. If so, it returns YES. Otherwise
NO.
writeStatus] void writeStatus! (char* text);
write fext to first status line.
writeStatus2 void writeStatus2 (char* text);
write fext to second status line in the dialog window.
TSWindSpeedPassageTime <passage.h>

Object that calculates the first passage time of wind speed fluctuations using the time series
approach. It is derived from TSPassageTime.

Constructors:
TSWindSpeedPassageTime (); Constructor that initialises a WindSpeedTimeSeries
: object in place of timeSeries data element.

Member functions:
SetUp - int SetUp (TStatusWindow*, Param*);
Setting up the appropriate parameters.

TSWindPowerPassageTime ' <passage.h>

Object that calculates the first passage time of wind turbine power fluctuations using the

Class Reference TSWindPowerPassageTime

7. Appendix II: Programme Documentation 7-66

time series approach. It is derived from TSPassageTime.

Constructors:
TSPassageTime (); Constructor that initialises a WindPowerTimeSeries object in place
of timeSeries data element.

Member functions:

SetUp int SetUp (TStatusWindow*, Param*};
Setting up the appropriate parameters, .

TRandDialog . <owdialg.h>

Implementation of the 'Random Numbers' dialog window, derived from TDialog of the
Object Windows C++ library.

Constructors:
TRandDialog (PTWindowsQObject AParent, LPSTR ATltle)

Member functions:

virtual void WMInitDialog (RTMessage) = [WM_FIRST+WM_INITDIALOGI; -
Function is carried out upon initialisation of the window.

virtual void HandleUniMsg (RTMessage) = [WM_FIRST + idOpRandOp0];
Function is called upon selection of "Uniform distribution’ option
in the dialog window. If this option is selected input fields are
made visible or invisible as appropnate The id- constant is
defined in owres.h.

virtual void HandleNormMsg (RTMessage) = (WM_FIRST + idOpRandOpl];
Function is called upon selection of ‘Normal distribution’ option in
the dialog window. See HandleUniMsg above.

virtual void HandleBetaMsg (RTMessage) = {WM_FIRST + idOpRandOp2]; ,
Function is called upon selection of ‘Beta- distribution’ option in
the dialog window. See HandleUniMsg above,

virtual void HandleBiMsg (RTMessage) = [WM_FIRST + idOpRandOp2];
Function is called upon selection of ‘Binomial distribution’ option
in the dialog window. See HandleUniMsg above,

TRandomObject .' <owcalc.h>

Calculation window on which the random number generators are tested, derived from
TStatusWindow. All necessary functions are privately overwritten. See TStarusWindow.

Constructors: ,
TRandomObject (PTWindowsObject AParent, LPSTR ATitle);

Member functions:

Class Reference ‘TRandomObject

7. Appendix II: Programme Documentation 7-67

workOut protected: int workOut ();
carry out the random number generator test.

writeRep1 - protected: void writeRepl ();
. write reply to parent StatusWindow into textline.

TSettingsDialog <owdialg.h>

Implementation of the ‘Settings’ dialog window, derived from TDialog of the Object
Windows C++ library.

Constructors:
TSettingsDialog (PTWindowsObject AParent, LPSTR ATitle);

TSolarDialog : <owdialg.h>

Implementation of the ‘Solar Power Distribution’ dialog window, derived from TDialog of the
Object Windows C++ library.

Constructors:
TSolarDialog (PTWindowsObject AParent, LPSTR ATitle);

Member functions:

virtual void WMInitDialog (RTMessage) = [WM_FIRST+WM_INITDIALOG];
Function is carried out upon initialisation of the window.

virtual void HandleAnalytMsg (RTMessage) = [WM_FIRST + idOpAnalyt];
Function is called upon selection of “Analytical Function’ option in
the dialog window. If this option is selected input fields are made
visible or invisible as appropriate. The id- constant is defined in
owres.h.

virtual void HandleApproxMsg (RTMessage) = [WM_FIRST + idOpApprox];
Function is called upon selection of ‘Approximation’ option. in the
dialog window. See HandleAnalytMsg above.

virtual v01d HandleCondMsg (RTMessage) = [WM_FIRST + idOpCond];
Function is called upon selection of ‘Conditional Distribution’
option in the dialog window. See HandleAnalytMsg above.

virtual v01d HandleQualMsg (RTMessage) [WM_FIRST + idOpQuall;
Function is called upon selection of ‘Quality of Approximation’
option in the dialog window. See HandleAnalytMsg above.

TSpeedDialog <owdialg.h>

Implementation of the "Wind Speed Distribution’ dialog window, derived from TDialog of the
Object Windows C++ library.

Class Reference TSpeedDialog

7. Appendix II: Programme Documentation 7-68

Constructors:
TSpeedDialog (PTWindowsObject AParent, LPSTR ATitle);

TTimeSeriesObject . <owcalc.h>

Calculation window on which calculations of time series are carried out, derived from
TMultiValObject. All necessary functions are privately overwritten. See TMultiValObject.

Constructors:
TTimeSeriesObject (PTWindowsObject AParent, LPSTR ATitle);

TTransDirDlg <owdialg.h>

Parameter transfer buffer for TDirDialog. All input paramters in the dialog window appear
here as data elements.

Constructors:
- TTransDirDlg (); Default Constructor
Data elements:
solFile char solFile[50]; file name of file for solar data
digFile char digFile[50]; file name of dialog file (not used in the
programmel)
Operators:
friend ostreamé& operator << (ostreamd&, TTransDirDig&);
friend istreamé& operator >> (istream&, TTransDirDlg&); ‘
TTransDisplayDlg ' <owdialg.h>

Parameter transfer buffer for TDisplayDialog. All input paramters in the dialog window
appear here as data elements.

Constructors:
TTransDisplayDlg (); Default Constructor

Data elements:

opAuto WORD opAuto; Flag: Automatic display of graphs
opAccu WORD opAccu; Flag: Accumulating data series
opLegend WORD opLegend,; Flag: Ask for legend text

Member functions: .
setParameter void setParameter ();

Class Reference TTransDisplayDlg

7. Appendix II: Programme Documentation 7-69

Transfer above data elements to the corresponding fields in the
global variable param.

Operators:

friend ostream& operator << {ostream&, TTransDisplayDlgé&);
friend istream& operator >> (istream&, TTransDisplayDlg&);

TTransExportDlg <owdialg.h>

Parameter transfer buffer for TExportDialog. All input paramters in the d1alog window
appear here as data elements.

Constructors:
TTransExportDlg (); Default Constructor

Data elements:

opNew WORD opNew; Flag: Export data to new file
opAttach WORD opAttach; Flag: Attach data to existing file
expFile char expFile[50]; Name of export file

Member functions:
setParameter - void setParameter ();

Transfer above data elements to the corresponding fields in the
global variable param.

Operators:

friend ostreamé& operator << (ostream&, TTransExportDlg&);
friend istrearn& operator >> (istream&, TTransExportDlg&);

TTransFpDlg <owdialg.h>

Parameter transfer buffer for TFpDialog. All mput paramters in the dlalog window appear
here as data elements.

Constructors:

TTransFpDlg (); Default Constructor

Data elements:

fpOp0 WORD fpOp0; Flag: Wind Speed

fpOpl WORD fpOpl; Flag: Wind turbine power time series
fpOp2 WORD fpOp2; Flag: PV array power time series
fpOp3 WORD fpOp3; Flag: Joint renewable power time series
fpOp4 WORD fpOp4; Flag: Time Series Approach

fpOp5 WORD fpOp5; Flag: Markov Chain Approach

Class Reference TTransFpDlg

7. Appendix II: Programme Documentation

7-70

fpOp6
fpOp7

fpOp8

initV
initK

initP
passV
passK
passP
timeStep
noVal

Member functions:

setParameter

Operators:

WORD fpOpé;
WORD fpOp7,;

WORD fpOp8;

double initV;
double initK;

double initP;
double passV;
double passK;
double passP;
double timeStep;
int noVal;

void setParameter ();

Flag: Calculate one value only

Flag: Calculate first passage time as a
function of the initial value

Flag: Calculate first passage time as a
function of the passage level

Initial wind speed

Initial average hourly clearness index
k(0)

Initial, normalised power

wind speed passage level

clearness index passage level

power passage level

time step for time series approach only
number of values to be calculated if
more than one value is required

Ttssfer above data elements to the corresponding fields in the

global variable param.

friend ostream& operator << (ostream&, TTransFpDig&);
friend istream& operator >> (istream&, TTransFpDlg&);

TTransJointDlg

<owdialg.h>

Parameter transfer buffer for TJointDialog. All input paramters in the dialog window appear

here as data elements.

Constructors:

TTransJointDlg ();

Data elements:
opJointDens
opJeintCond
vmean)
initialv
clearness
initialK

tau
eval
zeta

Default Constructor

WORD oplJointDens;
WORD opJointCond;

double vmean,;
double initialv;
double cleamess;
double initialK;

double tau;
int eval,
double zeta;

Flag: Joint density function (stationary)
Flag: Joint conditional density function
Average wind speed

Initial wind speed

Average hourly clearness index k

Initial average hourly cleamness index
k(0)

Time tau (for conditional distribution)
Number of evaluations

Fractional power factor {

Class Reference

TTransJointDlg

7. Appendix II: Programme Documentation 7-1

Member functions:

setParameter void setParameter ();
Transfer above data elements to the comresponding fields in the
global variable param.

Operators:

friend ostream& operator << (ostreamé&, TTransJointDlg&);
friend istream& operator >> (istream&, TTransJointDlg&);

TTransMathsDIg <owdialg.h>

Parameter transfer buffer for TMathsDialog. All input paramters in the dialog window appear
here as data elements.

Constructors:
TTransMathsDlg (); Default Constructor

Data elements:

solTrial int solTrial; number of trial points in optimisation of
approximated distribution function of PV
array power.

solCoeff int solCoeff; number of coefficients in approximated
distribution function of PV array power.

fpTsTrial int fpTsTrial; Number of time series taken into account

in first passage time calculations using
the time series approach.
fpTsMaxIt int fpTsMaxIt; Maximum number of iterations in the
~ time setries approach algorithm for first
passage times

fpMcStopCrit double fpMcStopCrit; Stopping criterion in the Markov chain
approach algorithm.

fpMcMaxIt int fpMcMaxlt; Maximum number of iterations in the
Markov chain approach algorithm.

fpMcGrid int fpMcGrid; Not in use.

classes int classes; Number of discrete levels in a discrete
distribution.

Member functions:
setParameter void setParameter ();

Transfer above data elements to the corresponding fields in the
global variable param.

Operators:
friend ostream& operator << (ostreamé&, TTransMathsDlg&);
friend istream& operator >> (istream&, TTransMathsDlg&);

Class Reference TTransMathsDlg

7. Appendix II: Programme Documentation 7-72

TTransRandDilg - <owdialg.h>

Parameter transfer buffer for TRandDialog. All input paramters in the dialog window appear
here as data elements.

Constructors:
TTransRandDlg (); Default Constructor

Data elements:

. ranOp0 WORD ranOp0; Flag: Uniform distribution
ranOpl WORD ranOpl; Flag: Normal distribution
ranOp2 WORD ranOp2; Flag: Beta- distribution
ranQOp3 WORD ranOp3; Flag: Binomial distribution
ranA double ranA,; Parameter & for Beta- distribution
ranB double ranB; Parameter B fro Beta- distribution
ranClass int ranClass; Number of classes for Kolmogorov-
Smimov test
ranTrial int ranTrial; Number of random numbers to be

generated per set.

Member functions:

setParameter void setParameter ();
Transfer above data elements to the corresponding fields in the
global variable param.

Operators:

friend ostreamd& operator << {(ostream&, TTransRandDlg&);
friend istream& operator >> (istreamé&, TTransRandDlg&);

TTransSettingsDlg _ <owdialg.h>

Parameter transfer buffer for TSettingsDialog. All input paramters in the dialog window
appear here as data elements. '

Constructors:
TTransSettingsDlg (); Default Constructor

Data elements:

wiVci double wiVci; cut-in wind speed

wiVco double wiVco; cut-out wind speed

wivr double wiVr; rated wind speed

wiVmean double wiVmean; mean wind speed

wiSigma double wiSigma; wind standard deviation o,

wiBeta double wiBeta; autocorrelation coefficient of wind

Class Reference , TTransSettingsDig

7. Appendix II: Programme Documentation

7-73

solK0
solSigmakK

solBeta

comZeta

batK

batC

batQMax
batvy

sysPRen

sysPDemand

Member functions:
setParameter

Operators:

friend ostreamé& operator

double solKO0;

double solSigmakK;

double solBeta; '

double comZeta;
double batK;
double batC;
double batQMax;
double batV;
double sysPRen;

double sysPDemand;

void setParameter ();

turbulence B,

max hourly clearnéss index K.

standard deviation of the average hourly
clearness index, o,.

autocorrelation coefficient of the hourly
clearness index, B,

Fractional power factor {

Battery factor k

Battery factor ¢

Battery Capacity

Battery voltage

Installed renewable power

Power demand

Transfer above data elements to the corresponding fields in the

global variable param.

<< (ostream&, TTransSettingsDlg&);

friend istream& operator >> (istream&, TTransSettingsDlg&);

TTransSelarDlg

<owdialg.h>

Parameter transfer buffer for TSolarDialog. All input paramters in the dialog window appear

here as data elements.

Constructors:
TTransSolarDig ();

Data elements:
opProb

opDist
opAnalyt
OpApprox
opCond

opQual
opBypass
clearness
initialK

trial

coeff

Default Constructor

WORD opProb;
WORD opDist;
WORD opAnaiyt;
WORD opApprox;
WORD opCond,
WORD opQual;
WORD opBypass;
double cleamess;
double initialK;

int trial;

int coeff;

Flag: probability density function
Flag: distribution function
Flag: Analytical function

.Flag: Approximation

Flag: conditional process

Flag: Quality of approximation

Flag: Bypass selected.

Average hourly clearness index

Initial average hourly cleamness index
k()

Number of trial points (for
approximation only)

Number of coefficients in approximation

Class Reference

TTransSolarDlg

7. Appendix II: Programme Documentation 7-74

of distribution function.

Member functions:

setParameter void setParameter ();
Transfer above data elements to the corresponding fields in the
global variable param.

Operators:

friend ostream& operator << (ostream&, TTransSolarDig&);
friend istream& operator >> (istream&, TTransSolarDig&);

TTransSpeedDlg : <owdialg.h>

Parameter transfer buffer for TSpeedDialog. All input paramters in the dialog window appear
here as data elements.

Constructors:
TTransSpeedDlg (); Default Constructor

Data elements:

opProb WORD opProb; Flag: Probability density function
opDist WORD opDist; Flag: Distribution function

vimean double vmean; mean wind speed

vmin double vmin; Speed at which to start calcnlations
vimax double vmax; Speed at which to finish calculations
eval int eval; Number of evaluations required

Member functions:

setParameter void setParameter ();
Transfer above data elements to the corresponding fields in the
global variable param.

Operaiors:

friend ostreamé& operator << (ostreamé&, TTransSpeedDlg&);
friend istreamé& operator >> (istream&, TTransSpeedDlg&);

TTransTsDlg <owdialg.h>

Parameter transfer buffer for TTsDialog. All input paramters in the dialog window appear
here as data elements.

Constructors:
TTransTsDlg (); Default Constructor

Class Reference TIransTsDIg

7. Appendix II: Programme Documentation

7-75

Data elements:
tsOp0

tsOpl

tsOp2

tsOp3

tsOpd

tsOp5
tsTimeStep

tsPoints
initV
initK

initQ10
initQ20

Member functions:
setParameter

Operators:

WORD tsOp0;
WORD tsOpl;
WORD tsOp2;
WORD tsOp3;
WORD tsOp4;
WORD tsOp5;
double tsTimeStep;

int tsPoints;
double initV;
double initK;

double initQ10;
double initQ20;

void setParameter ();

Flag: Wind speed time series

Flag: wind turbine power time series
Flag: PV array power time series

Flag: Joint renewable power time series
Flag: State of charge time series

Flag: Power deficit time series

Time step At that is implicit in the time
series :

Number of points to be calculated

Initial wind speed

Initial average hourly clearness index
k(0)

Initial available charge Q,,

Intiial bound charge Q,,

Ttssfer above data elements to the corresponding fields in the

global variable param.

friend ostreamé& operator << (ostream&, TTransTsDIgé&);
friend istreamé& operator >> (istream&, TTransTsDlg&);

TTransWindDlg

<owdialg.h>

Parameter transfer buffer for TWindDialog. All input paramters in the dialog window appear

here as data elements.

Constructors:
TTransWindDlg ();

Data elements:
opProb

opDist
opStationary
opCond

vmean

eval

tau

initialv

Member functions:
setParameter

Default Constructor

WORD opProb;
WORD opDist;
WORD opStationary;
WORD opCond;
double vmean;

int eval;

double tau;

double initialv;

void setParameter ();

Flag: probability density function
Flag: distribution function

Flag: stationary process

Flag: conditional process

mean wind speed

number of evaluations required
time tau

initial wind speed

Class Reference

TTransWindDlg

L

7. Appendix II: Programme Documentation 7-76

Transfer above data elements to the corresponding fields m the
global variable param.

Operators:
friend ostream& operator << (ostream&, ‘I’Transzleg&),
friend istream& operator >> (istream&, TTransWindDlg&),

TTsDialog : <owdialg.h>
Implementation of the ‘Time Series’ dialog window, derived from TDialog of the Object
Windows C++ library.

Constructors:

TTsDialog (PTWindowsObject AParent, LPSTR ATitle);

Member functions:

virtual void WMInitDialog (RTMessage) = [WM_FIRST+WM_INITDIALOG];
Function is carried out upon initialisation of the window.

virtual void HandleOpOMsg (RTMessage) = {[WM_FIRST + idTsOp0];
Function is called upon selection of ‘Wind Speed’ option in the
dialog window. If this option is selected input fields are made
visible or invisible as appropriate. The id- constant is defined in
owres.h.

virtual void HandleOp1Msg (RTMessage) = [WM_FIRST + idTsOpl];
Function is called upon selection of "Wind Power option in the
dialog window. See HandleOpOMsg above.

virtual void HandleOp2Msg (RTMessage) = [WM_FIRST + idTsOp2];
Function is called upon selection of ‘Solar Power’ option in the
dialog window. See HandleOpOMsg above.

virtual void HandleOp3Msg (RTMessage} = [WM_FIRST + idTsOp3];
Function is called upon selection of ‘Combined Renewable’ option
in the dialog window. See HandleOpOMsg above.

virtual void HandleOp4Msg (RTMessage) = [WM_FIRST + idTsOp4]; _
Function is called upon selection of ‘Battery: State of Charge’
option in the dialog window. See HandleOpOMsg above.

virtual void HandleOp5SMsg (RTMessage) = _FIRST + idTsOp5];
Function is called upon selection of Power Deficit’ option in the
dialog window. See HandleOpOMsg above.

TYoMessage <owlappl.h>

Implementation of a méssage window with title ATitle, and four different actions that can be
taken. See member functions. TYoMessage is derived from TDialog. Which event functions
may be called depends on the resource ID the class was constructed with. E.g. it might be a

Class Reference TYoMessage

7. Appendix II: Programme Documentation ' 7-77

window with only a Yes and No button. In this instance the function CMIgnore could not be
called as there is no Ignore button.

Constructors:
TYoMessage (PTWindowsObject AParent, LPSTR ATitle, char* a Message);

Member functions:
virtual void WMInitDialog (RTMessage) = {WM_FIRST+WM_INITDIALOG];
virtual void CMYes (RTMessage) = [ID_FIRST + IDYES];

Function called upon event ‘CMYes'
virtual void CMNo (RTMessage) = [ID_FIRST + IDNOJ;

Function called upon event 'CMN¢'
virtual void CMIgnore (RTMessage) = {ID_FIRST + IDIGNORE];

Function called upon event ‘CMIgnore’ (Ignore - button)
virtual void CMAbort (RTMessage) = [ID_FIRST + IDABORT];

Function calles upon event "'CMAbort’ (Abort - button)

TYoInput <owlappl.h>

Implementation of a dialog window with one input field. It is derived from TDialog.

Constructors:
TYolnput (PTWindowsObject AParent, LPSTR ATitle, char* title, char* input);

Data elements: '
textBuffer char textBuffer{80]; Implied input string

Member functions:

virtual void WMInitDialog (RTMessage} = [WM_FIRST+WM_INITDIALOG];
Initialisation of the window.,

TWindDialog ' <owdialg.h>

Implementation of the ‘Wind Power Distribution’ dialog window, derived from TDzalog of
the Object Windows C++ library.

Constructors:
TWindDialog (PTWindowsObject AParent, LPSTR ATitle);

Member functions:
virtnal void WMInitDialog (RTMessage) = [WM_FIRST+WM_INITDIALOGI;
Function is carried out upon imitialisation of the window.
virtual void HandleCondMsg (RTMessage) = [WM_FIRST + idOpCond];
Function is called upon selection of 'Conditional distribution’

Class Reference TWindDialog

7. Appendix II: Programme Documentation 7-78

option in the dialog window. If this option is selected the input
fields for time tau and initial wind speed have to be made visible.
The constant idOpCond is defined in owres.h.
virtual void HandleStatMsg (RTMessage) = [WM_FIRST + idOpStationary];

Function is called upon selection of ‘Stationary distribution’ option
in the dialog window. It makes the input fields for the time tau
and the initial wind speed invisible. Compare with
HandleCondMsg

TWindSpeedObject <owcalc.h>

Calculation window on which calcnlations of wind speed distributions are carried out,
derived from TMultiValObject. All necessary functions are privately overwritten. See
TMultiValObject.

Constructors:
TWindSpeedObject (PTWindowsObject AParent, LPSTR ATitle);

UniKgSTest <random.h>

Kolmogorov- Smirnov test for uniform distribution, derived from KgS7es:.

Constructors:

UniKgSTest (n); Construct test object for n trial points.

Member functions:

theoretProb double theoretProb (double x); see KgSTest::theoretProb.
initialize void intiialize ();

initialise randomizer with uniRand object.

uniRand : <random.h>

Random number generator. The numbers are drawn from a uniform distribution using the
standard C - library function rand(). Before generating number for the first time the member
function initialize () should be called.

Constructor:
uniRand {) Default constructor

Member functions:
initialize void initialize ();
initializes the generator with the current time.

Class Reference umiRand

7. Appendix II: Programme Documentation 7-79

getRandomNumber virtual double getRandomNumber ();
returns the next random number.

uniRejectRand <random.h>

Implementation of a random number generator using the rejection mehtod with a uniform
distribution as comparison function for distributions with non zero values in the interval
[0,1]. It is immediately derived from rejectRand.

Constructors:

uniRejectRand (); Default constructor with umit ceiling,

uniRejectRand (double max); Constructor with ceiling max.

VECTOR_ <vectors.h>

Implementation of a vector with real number as elements. The class implements a huge
variety of functions on vectors and operations.

typedef VECTOR_<int> IVECTOR,
typedef VECTOR_<double> VECTOR;
typedef VECTOR _<float> FYECTOR,;

Constructors:
VECTOR_ (VECTOR_& v); Copy constructor.
VECTOR_ (int n); Construction of an n- dimensional vector.
Data members:
dim int dim; Dimension of the vector
Member functions:
add void add (T x);
add an element, x, to the vector and increment its dimension by 1.
build void build (istreamé& ip);
Standard input vid input stream ip
copy VECTOR_<T> copy (int n);

refums a vector containing the first n components of *this.

create void create (int n);
allocates memory for n components.

del void del (int n);
deletes element numbe 'n from the vector and decrements the
dimension by 1.

move_down T move_down ();

Class Reference VECOTR_

7. Appendix II: Programme Documentation 7-80

move_up

mul
print

search

set

swap

Operators:
@

A=, ., =

<<
>

moves down all components by 1. Return element that is no
longer in the vector.

T move_up ();
moves up all components by 1. Return element thath is no longer
in the vector,

friend MATRIX_ mul (VECTOR_& u, VECTOR_& v);
Vecor ultipliction A = u v*

void print (ostream& op);
Standard output on the stream.

int search (T x); _

Search for element x in the vector. Return the index of the first
element. If x is not element of the vector, return 0, otherwise its
index.

void set (T x);

Set all components on x.

void swap (int i, int j);

Swap the i-th and j-th element.

v(int i); Access to elemnt i (indices from 1 ...dim)

v+uVv+av-u,v-au,v, Vectors; a real number)
Note.. Addition or subtraction of a real number means all
components are affected in the same way.

multply by number: u=sao*vu=v*qg,v*=g
multiply each component: u=v*w

Divide by number ¢: u=v/d;u/= q;

v=u
Assignment. Works even if dimensions of both vectors befor
assignment are not the same

{u ==v) TRUE, if all components in u and v are identical.

(u!=v) TRUE, if at least two components of u and v are
different.

(un <=v) TRUE, if ail components of u are less than the
components of v.

(u>=v) TRUE, if all components of u are greater than the
components of v,

operator << (ostream& op, VECTOR _<T>&v);
operator >> (istream& ip, VECTOR_<T>& v);

Class Reference

7. Appendix II: Programme Documentation 7-81

WindPowerPassageTimes ' <passage.h>

Object function for first passage times of wind turbine pwoer fluctuations, derived from
PassageTimes.

Constructors:

WindSpeedPassageTimes (int select);
Constructor; If select = 0 the data element passageTime is
initialised with an instance of TSWindPowerPassageTime.
Otherwise with MCWindPowerPassageTime.

Member functions:

SetUp int SetUp (TStatusWindow*, Param*);
individual set-up of initial values and passage levels.

WindPowerTimeSeries <series.h>

Implementation of wind turbine power time series, derived from class WindSpeedTimeSeries.

Constructors:
WindPowerTimeSeries {); calls the constructors of the base class.

Member functions:

getWindPower static double getWindPower (double v, double vci, double vco,
double vr);
return the wind turbine power for a given wind speed, v, cut-in
wind speed vci, cut-out wind speed, vco, and a rated wind speed,
vr. It uses equation (3.1).

getV static double getV (double p, double vci, double vr);
Inverse function to getWindPower. It returns the wind speed for a
given power p, cut-in wind speed vei and rated wind speed, vr. It
uses the invertible part of (3.1) only.

getOutput double getOutput (); see TimeSeries::getOutput
setUp - int setUp (TStatusWindow*, Param¥*);
WindSpeedPassageTimes <passage.h>

Object function for first passage times of wind speed fluctuations, derived from
PassageTimes.

Constructors:

Class Reference WindSpeedPassageTimes

7. Appendix II: Programme Documentation 7-82

WindSpeedPassageTimes { int select);

Constructor: If ele t = 0 the data element pa ageTi e is
initialised with an instance of TSWindSpeedPassageTime.
Otherwise with MCWindSpeedPassageTime.

Member functions:

SetUp int SetUp (TStatusWindow*, Param*);
individual set-up of initial values and passage levels.

WindSpeedTimeSeries <series.h>

Implementation of wind speed time series, derived from TimeSeriesOne.

Constructors:

WindSpeedTimeSeries (); Default constructor. Initialises uniRand object as
internal random number generator.

Data elements:

protected:
r double r; autocorrelation coefficient
sigma double sigma; wind speed standard deviation

Member functions:
protected:
getRandomNumber double getRandomNumber ();
returns next random number from the implied random number

generator.
getOutput double getOutput (); see TimeSeries::getOutput
public:
setUp int setUp (TStatusWindow™*, Param*),
Parameter setting
update _ void update (); see TimeSeries::update
setCorrelation void setCorrelation (double r); set correlation coefficient

Class Reference WindSpeedTimeSeries

7. Appendix II: Programme Documentation

7-83

7.4 Global Functions

This section discusses all global functions. They are listed in alphabetical order within the
source files they are in.

<cstring.cpp> String Functions
catDayName <cstring.h>
Function: Concatenate full day name
Syntax: void catDayName (char* buffer, int day);
Purpose: Upon day the function concatenate the full day name ("Monday”, ...) day = 0
points to “Sunday”
catDb} <cstring.h>
Function: Concatenate double number into string
Syntax: void catDbl (char* buffer, double x);
void catDbl (char* buffer, double x, int width);
Remark: see copyDbl ();
catDMY <cstring.h>
Function: Concatenate day, month and year ’
Syntax: void catDMY (char* buffer, int dd, int mm, int yy);
Remark: see catDMY ();
catEco <cstring.h>
Function: Concatenate double number in economics format
Syntax: void catEco (char* buffer, double x); '
void catEco (char* buffer, double x, int width);
Remark: see copyEco ();)
catField <cstring.h>
Function: Concatenate a field to a string
Syntax: void catField (char* buffer, char* field, int width, int margin = RIGHT);
Remark: see copyField
Global Functions cstring.cpp

7. Appendix II: Programme Documentation 7-84

catHMS <cstring.h>
Function: Concatenate hour, minute, second
Syntax: void catHMS (char* buffer, int hh, int mm, int ss);.
Remark: see catHMS ();
catIng <cstring.h>
Function: Concatenate integer number into string
Syntax: void catInt (char* buffer, int x);
void catInt (char* buffer, int x, int width);
Remark: see copylnt ();
copyDbl <cstring.h>
Function: Convert a double number into a string
Syntax: void copyDbl (char* buffer, double x);
void copyDbl (char* buffer, double x, double width);
Purpose: x will be converted into a string.-In the second version, buffer will have the
length width. :
copyDMY <cstring.h>
Function: Convert day, month and year into a string
Syntax: void copyDMY (char* buffer, int dd, int mm, int yy = -1);
Purpose: Format of buffer will be: 12.07.84 or 12.07.1984 (if yy > 0) or 12.07. (if yy <
0). dd is the day, mm the month (1 .. 12) and yy the year.
copyEco <cstring.h>
Function: Convert a double number into economics format
Syntax: void copyEco (char* buffer, double x);
void copyEco (char* buffer, double x, int width);
Purpose: x will be converted into an economics format like 2.356,75. In the second
version, buffer will have the length width.
copyField <cstring.h>
Function: Copy a field into a string
Syntax: void copyField (char* buffer, char* field, int width, int margin = RIGHT);
Purpose: Copy field into buffer in a field of width bytes. The alignment will be either to

the right margin (margin = RIGHT) or to the left (margin = LEFT)

Global Functions cstring.cpp

7. Appendix II: Programme Documentation 7-85

copyHex <cstring.h>

Function: Copy hexadecimal umber into a string
Syntax: void copyHex (char* buffer, unsigned short x);

Purpose: x will be converted into a string of the form 0x0A1E

copyHMS <cstring h>

Function: ~ Convert hour, minute and second into a string
Syntax: void copyHMS (char* buffer, int hh, int mm, int ss = 60);

Purpose: Format of buffer will be: 07:12:42 (if ss < 60) or 07:12 (if ss == 60). hh is the
hour, mm the minute and ss the seconds.

copyInt <cstring.h>

Function: Convert an integer into a string
Syntax: void copyInt (char* buffer, int x);
void copyInt (char* buffer, int x, int width);

Purpose: x will be converted into a string. In the second version, buffer will have the
length width.

decodeString <¢string.h>

Function: Decoding a string from a file
Syntax: void decodeString (char* aString),

Purpose: Removing special characters for ‘New Line’, ‘Space’ and 'NULL".

getDbl <cstring.h>

Function: Convert a string into a double
Syntax: BOOL getDbl (char* buffer, double& x};

Purpose: The function returns the converted x as output.
Return: ERROR if a format error occurred, otherwise OK

getInt <cstring.h>

Function: Convert a string into an integer
Syntax: BOOL getlnt (char* buffer, int& x);

Purpose: The function returns the converted x as output.
Return: ERROR if a format error occurred, otherwise OK

Global Functions cstring.cpp

7. Appendix II: Programme Documentation 7-86

getMonthAndYear <cstring.h>

Function: Copy month and year into a string
Syntax: void getMonthAndYear (char* buffer, int month int year);

Purpose: Copy int buffer "January 1994” depending on month and year.

getString ' <cstring h>

Function: Get a string from a stream
Syntax: void getString (istreamé& instr, char* aString);

Purpose: Copy next string of instr into aString (until ‘Space’ of 'New Line’) Special
characters for ‘New Line’ and ‘Space’ will be removed in aString. So not the
NULL- character (char NULLSTRING). If *aStrmg == NULLSTRING the
actual string in the stream was NULL:

place <cstring h>

Function: Insertion of a string into another
Syntax: void place (char* buffer, char* text, int row, int col);
void place (char* buffer, double x, int row, int col, int width);

Purpose: Insertion of text into buffer in row number row, starting at column number col.
The routine will fill in \n’ and ’ * where necessary. The second version places a
double number in a field of length width.

replace <cstring.h>

Function: replace a character in a string by another
Syntax: void replace (char* buffer, char a, char b);

Purpose: Bytes in buffer that are equal to @ will be replaced by b.

splitDMY <cstring.h>

Function: Conversion of a string into day, month and year
Syntax: void splitDMY (char* buffer, int& day, int& month, int& year);

Purpose: Given buffer as input, the routine return day, month and year as output

strToLower <cstring.h>

Function: Convert string into lower case
Syntax: void strToLower (char* string),

Global Functions cstring.cpp

7. Appendix II: Programme Documentation 7-87

strToUpper <cstring.h>

Function: Convert string into upper case

Syntax: void strToUpper (char* string),

<linalg.cpp> Linear Algebra

comp_inv <mathfunc.h>

Function: calculates the inverse matrix

Syntax: BOOL comp_inv (MATRIX& A);

Return: ERROR, if A singular; otherwise OK.

det <mathfunc.h>

Function: calculate the determinant of a matrix A

Syntax: double det (MATRIX& A);

Remark: Algorithm by [33], p. 49

linegsol <mathfunc.h>

Function: Solve the linear matrix equation Ax = b

Syntax: BOOL, linegsol (MATRIX& A, VECTOR& x, VECTOR& b);

Retumn: ERROR, if equation cannot be solved. Otherwise OK.

luback <mathfunc.h>

Function: Back substitution

Syntax: BOOL ludecomp (MATRIX& A, IVECTOR& index, double* dj;

Purpose: Successive calculation of the coefficients in the linear system. This function is
used in linegsol.

Return: ERROR, if matrix singular,

Remark: Algorithm by [33], p.47

ludecomp <mathfunc.h>

Function: L-U- decomposition of a matrix

Syntax: BOOL (MATRIX& A, IVECTOR& index, double* d);

Purpose: The given matrix A is replaced by its LU- decomposition. index is an output

vector that record the row permutation effected by the partial pivoting. d is an
output as +1 depending on whether the number of row interchanges was even or

Global Functions linalg.cpp

7. Appendix II: Programme Documentation 7-88

odd. The routine is used in combination with luback to solve linear equations.
Return: ~ ERROR, if matrix singular.
Remark: Algorithm see [33], p.46

<mathfunc.cpp> Mathematical Functions

beta <mathfunc.h>

Function: evaluates the first derivative of the unnormalized, incomplete Beta- funchon
Syntax: double beta (double &, double B, double x);

Purpose: beta (&, x) = x*'(1-x)P!
Remark: Algorithm by [33], p. 226ff.

Beta | <mathfunc.h>

Function: evaluates the Beta- function
Syntax: double Beta (double x, double y);
double Beta (double «, double B, double x);

Purpose: The first version calculates the Beta- function, B(a,B). The second calculates
the normalized, incomplete Beta- function I(a,B x)
Remark: Algorithm by {33), p. 226ff.

bino <mathfunc.h>

Function: calculates the binomial coefficient ()
Syntax: double bino (double n, double k);

Bnp _ - <mathfunc.h>

Function;: calculates the distribution function of the binomial distribution B(n,p) at point k
Syntax: double Bnp (double n, double p, double k),

Purpose: Brp(n,p%) = T p' (1-p)* (= 0.K)
Remark: Algorithm by [33], p. 229

cot <mathfonc. h>

Function: berechnet cot(x)
Syntax: double cot(double x);

Global Functions mathfunc.cpp

7. Appendix II: Programme Documentation 7-89

cube <mathfunc.h>
Function: cubic function x*
Syntax: double cube (double x);
erf <mathfunc.h>
Function: calculates the error function erf(x}
Syntax: double erf (double x);
Remark: Algorithm by [33], p. 220
erfe <mathfunc.h>
Function: calculates the complementary error function erfc(x)
Syntax: double erfc (double x);
Remark: Algorithm by [33], p. 220
Fact <mathfunc.h>
Function: calculate the faculty n!
Syntax: double fact (double n);
Remark: Algorithm by [33], p. 215
Gamma <mathfunc.h>
Function: calculate the Gamma function I'(x)
Syntax: double Gamma (double x}; '
double Gamma (double a, double x);
Purpose: The first version calcualtes the Gamma function I'(x). The second calculates the
normalised, incomplete Gamma function ¢ (a,x) = y(e x) / I'(a).
Remark: Algorithm by [33], p. 213ff
isinterval <mathfunc.h>
Function: Interval test
Syntax: int isinterval (double x, double a, double b); -
int isinterval (int x, int a, int b);
Return: YES, if x € [a, b]; else NO
Ingamma <mathfunc.h>
Function: calculates the logarithm of the gamma function In(I'(x))
Syntax: double Ingamma (double x);
Purpose: This function is incorporated in the function Gamma to calculate the gamma

Global Functions mathfunc.cpp

7. Appendix H: Programme Documentation 7-90

function,

Remark: Algorithm by [33], p.214

phi <mathfunc.h>

Function: calculates the first derivative of the normal distribution, 38 [$((x-a)/02)} with
mean a and standard variation o

Syntax: double phi (double x, double a, double var);
double phi (double x, double a, double o2, double x(0), double r);

Purpose: The first version calculates the function as stated above. The second version is
the density function f{X(t) | X(0) = x(0)) of a conditional normal distribution
with correlation coefficient r. (Equation 4.1)

PHI <mathfunc.h>

Function: Calculate the normal distribution

Syntax: double PHI (double x);
double PRI (double x, double a, double var);
double PHI (double x, double a, double o2, double x(0), double r);

Purpose: PHI (x) calculates the standard normal distribution. PHI (x, a, var) calculates the
normal distribution with mean a and variance var. PHI (x,a,02,x(0),r) calculates
the distribution function F(x | X(0) = x(0)) of a conditional distribution with
correlation coefficient r. (Equation 4.2).

Remark: The function uses the functin Gamma (compare discussion of relationship
between error function and I' - function in [33], p.220)

SIGN <mathfunc.h>

Function: Signum- Function -

Syntax: SIGN(x)

Return: -lorl

sqr <mathfunc h>

Function: Square function x*

Syntax: T sqgr (T x);

SWAP <mathfunc.h>

Function: Swap two arguments

Syntax: void SWAP (double& a,double& b);

void SWAP (int& a, int& b);

Global Functions mathfunc.cpp

7. Appendix II: Programme Documentation 7-91

exportData <plot.h>

Function: Data export to Word Perfect Presentation
Syntax: .= BOOL exportData { VECTOR& data, char* fileName, int mode);

Purpose: The components of vector data are written to file fileName, Depending on mode
data are appended to the file (mode = ATTACH) or existing data in the file are
“overwritten with the new data (mode = NEW). If the file does not exist the

mode NEW is assumed.

Return; Retumn value is ERROR if specified file could not be opened. Otherwise OK.

Global Functions owplot.cpp

7. Appendix II: Programme Description

7-92

7.5 Listings
7.5.1 Header Files

7.5.1.1 <boolwin.h>

/*****************i*i*****i***t*******t**********#*********************i***/

/*** Module: BOOLWIN.H Y
/*** *t*/
/*** consists of basic type declarations and constants *xn/

/*ﬁit***i***i**ti**iﬁ********t****i****************tit*ﬁ***iiiit**ii*t*i**i/

#ifndef BOOLWIN HEADER
#define BOOLWIN_HEADER

$include <windows.h>

Jorr Dafinitions of constanta dedkdd ki dd e ks rk devdrd g o o de ook o s e de ke e ey e ok ok
fdefine YES 1
$dafine NO 0
$define TRUB 1
#define FALSE 0
$define OK 1

$define LEFT 102
$define RIGHT 103

J/**ex Dafinitions of conaotants etk rtetrirddtranhtrdrthbhe bRt rhtdrhrtrthrrdn/

#define EPS l.0e=5

#define EPS G 1.00=7
tdefine FPMIN 1.0e=30
fdefine FPMAX 1.0a+30
tdefine ITMAX 100
#define JMAX 20
#define TINY 1.0e~20
#ondif

/*%* End of BOOLWIN.H *#amaakr kR ak ke aak A X xRk Ak Ak kA A bRk hwnk ke Ak nhadren /

7.5.1.2 <cstring.h>

/******************************i************ﬁ*******t***********************/

k] *kwf
/**% Module: CSTRING.H krk f
AL *hx [/

/**************t********i******************************t*****************t**/

$ifndef CSTRING_HEADER
#define CSTRING HEADER

$ifndef BOOLWIN HEADER
#include <hoolwin.h>
$endif

#include <iostream.h>

/*** Global definitions **************;************t*****t***********i**i***/
$define MAXSTRING 90
f§define MAXTEXT 200
{dafine normString 40

Header Files cstring.h

7. Appendix II: Programme Description 7-93

$define EMPTYSTRING 'i* // Character No. 178

$define SPACE t¥r t/ Character No. 157

#define NULLSTRING ’J’ // Character No. 185

#define NEW_LINE ‘m’ // Character No. 220

{define NEWPAGE '#’ // Character No. 215

/*** I/o functiong ﬁt*********il*************tt***********t**********i***/
void printstring {ostreamk outstr, char* aString }i

void printsStringPlus (ostream& outstr, char* astring y:

void decodeString {(char* aString)V

void getstring (istream& instr, char* aString ¥

/*** Lower cage- Upper casse routinas *¥kkkrrkhdhrdirhritdkhrkhbbrdhhrhrtihrr/
void stxToUpper (char* huffer):

void strToLower {char* buffer)

j*** Cat - routineg ********i******ii*****t*****tt*********t**i*************/
void catPield (char*, char*, int, int margin = RIGE?T Yi

void catHex {char* buffer, unsigned short V;

void catint {char* buffer, int HH

void catInt {char* huffer, int, int)3

void catDbl {char* buffer, double ¥

void catDbl {char* buffer, double, int)3

void catEco {char* buffer, double }Y:

void catEco {char* buffer, double, int ¥

void catDMY {char* buffer, int dd, int mm, int yy = -1);

vold catEMs (char* buffer, int hh, int mm, int ss = 60);

/*** Copy routineg i***i*******t************it***********************i****t*/
void copyFiaeld (char*, char*, int, int margin = RIGHT):

void copyHex {char* buffer, unsigned short);

void copyInt {char* buffer, int Y;

void copyInt {¢har* buffer, int, int ¥

void copyDbl {(char* buffer, double ¥:

void copyDbl {(char* buffer, double, int):

void copyEco {(char* buffer, double ¥;

void copyEco {char* buffer, double, int ¥3

void copyDMY (char* buffer, int dd, int mm, int yy = -1};

void copyHEMS (char* buffer, int hh, int mm, int as = 60);

JR*% Place TOULINGS *#d kAt kd ket A ARk AN AT AR N RN AR TRk kAN N R kA ek rsr]
void place (char* buffer, char* text, int, int)3

void place (char* buffer, double,int,int,int)3

/*%% Conversion routinesg **dkdkhkddhkirkhkerhdhihhethhhhhdrtbhkirddrathrhhhrrsr/
void | splitDMY {char* buffer, intk, intk, ints&):

BOOL getInt {char* buffer, ints& ¥

BOOL getDbl {char* buffer, doublex Ys -

/*** Replacement routine **********i*******i********************************/
void replace {char* buffer, char a, char b ¥;

/*** calendar routines ****ii****i***i*i*i******i****i*t****t*i*************l
void catDayName {char* buffer, int day)i

veid getMonthAndYear {char* buffer, int month, int year ¥;

#endif

I*** end aof cstring.h *********t**t************;****************************/

7.5.1.3 <diffcale.h>

/*i*i******t***************t**t*************it*******ii**************t**i*t*/

/*** Module: DIFFCALC.H B
TAddd xaw/
/*** consigts of type and c¢lass definitions to differential and *xk /)
/*** integral calculus of functions of one variable k[

/******t*t**********i********t****t****************i********t***t***********/

#ifndef DIFFCALC_HEADER
#define DIFFCALC_HEADER

$ifndef VECTORS_HEADER
#include <vectors.h>

Header Files diffcalc.l_x

7. Appendix II: Programme Description 7-94

tendif

$ifndef BOOLWIN HEADER
$include <boolwin.h>
$endif

/*** Type declarations **t*****t***}*t*******#**t**t***t***********t**t*****/
typedef enum {

DETECT EQUI,// determine search direction. Search at equidistant
points.

DETECT DYMA,// Search with dynnmxcally increasing step width

DOWN_EQUI, // search along points smaller than x0

DOWN™| _DYNA,

UP_EQUI, // search along points bigger than x0

UP DYNA,
} BRACKET_MODE;

typedef enum {

POL_INT, // polynomial approximation interpolation
RAT__INT, // rational function approximation interpolation
SPLINE // spline interpolation

} POL_MODE;

typedef enum {
LIN,
LOG
} REP_MODE; // representation mode: linear/ log.

/*** structura to atore function vvaluasg ********t**i******************i*****/
class pairveec {

public : -
VECTOR x; // x- values
VECTOR ¥ // y- valunes
int size; // number of values
pairvec {) {8izex=0; }
pairvaec {int n) {size=n;x.creata(n);y.creata(n);}
“pairvec (Y { }
void create {int mn}) {s;ze-n,x.create(n),y.create(n);}
void move down (void) {x.move_down();y.move_\ down(); }
void swap {int i, int j) {x.swap(;,;),y.swnp(l Jyz}
void move (int i, int j) {x(i)=x(i) ; ¥(i)=y(3); }
};

inline ostream& operator << {[ostream& outsatr, pairveck v)
{ return outstr << v.size << * ' << V. x << 7 ! << v.y; }

inline istream& operator >> (istreams instr, pairvecs: w)
{ return instr >> v.size >> v.x >> v.y; }

/**********!******************ﬂ*******?******************#******************/

[/*** Abhstract class of an ob]ect FUNCLION A4 AR ettt A AR ANARRAR AN NI RRARRN AR RT® [
/*w***********************************t***t********************************t/

¢lasa objfunc {

public
VECTOR X3 // 2= values
VECTOR y: // y- values

virtual double eval {(doublse} = 0; // abatract function N
Jx** Minimization and roots FhkRRARAA AR RR AR RN Rk hk kAR A L LRk Nhhhddk [
BOOL bracketMin {double&, double&, double&, doubles,
doublek, double&, int)
double goldenSection (double, double, double, double ,
doublse ,double&);
/*** Determination of more than ona function value **tkktxrkkktthksrhdrrhhnhrsr/
void compEquivVal (double, double, int Vi
};

e Object function with facilitiesas for Turbo Vision Objects **swikexxtkrttr/
class owCbhbjfunc ¢ public objfunc {

int k;
int num;
double d;

Header Files diffcalc h

7. Appendix II: Programme Description 7-95

double xmin;
public :
double getPercentage ()
void prepForEquival (double, douhle, int)
void compEquival (¥
}i

$endif

/*** End of diffcalc.h WAL LS A A A L e L Ty

LR T Y

7.5.1.4 <distrib.h>

/********t************i***t*****************i****t********t*****************/

Frrn whn/
/*** Module: DISTRIBR.H whnf
[rxx : . *xn)]
/*** Typa Declarations for objects concerning distributions. xhxf

,************t************************************t***t******ti****i****t***l

$ifndef DISTRIB_HEADER
#define DISTRIB_EEADER

$ifndef DIFFCALC HEADER
#include <diffcalc.h>
fendif

#ifndef RANDOM_HEADER
#include <randem.h>
fondif

#ifndef OWPARAM HEADER
#include <owparam.h>

#endif

#define WM_MSGOBJFUNC 0x00
#define DENSITY P 0x0000
#define DENSITY X 0x0004

f#define DISTRIBUTION 0x0001

class TStatusWindow; // forward declaration

/*t**********'A‘**l'*****t**t***t***********i***t****i*****i***t*******#*******/

/*** Abstract class of a discrete distribution et At A AL LL LI L RN
/*******#**************ti*******t*ﬁt**********i********t**************ti****/

class DiscretDistribution {

protected :
int c¢lasses;
int initM;

publie : .
DiscretDistribution ({ int n)
virtual “DiscretDistributien {) { }
virtual int setUp (TStatusWindow*, Parem*) = 0;
virtual double gnm { int, int y = 0;
virtual double Gn ({ int m) { return 1; }
virtual void setM (intm) { initM = m; }
virtual int getN (double)
int getClasses () { return classes;

¥:

/************i*****t***t*****t*********t********t**t************************/

/*+* Abstract class of a randomizer for discrete distributions *xexrsxrwwrrx/
/*********t*************t**********************1’****************************/

: clagses (n) {

-
e

n
.
’

- 0;
}

class DiscretRandomizer : public nniRand ¢
protected :

DiscretDistribution* distribution;
public :

Header Files distrib.h

7. Appendix II: Programme Description 7-96

DiscretRandomizer () : uniRand () { ; }

virtual "DiscretRandomizer (};

virtual int setUp { TStatusWindow*, Param*)
void setM { int)
double getRandomNumber)

-O;

LT 1)

-}

/***********************t********t***********************t***************i*t/

/**+% Ahstract class of a continuocus distribution AR AR L L L L e LYY
/**t*i*****t******!*******i*!*t**t***tt****t**********i***********ti*t*i**i*l

c¢lass ContinuousDistribution {
protected :
double initVal;
public :
ContinucusDistribution () { ; }
virtual “ContinucusDistribution () { ; }
virtual int setUp { TStatusWindow*, Param* }

- 0;
virtual void setInitval (double x) { initval = x; }
virtual double F (douhle) = 03
b
/**************i*******i**************t******i*****t*********t**************/
/***x almss statfunc R I P22 IS AL S L Ly

/*t*************************ﬁ*******ﬁi*********ﬁ*************t*******t******/

¢lass statfunc : public owCbjfune {
double lastp:
doubla lastResult;

protected :

int type; // = 1 : distribution , = 0 : density

ContinuousDistribution* distribution;
public :

statfunc (| H

virtual “statfunc (¥s

double eval {double);

virtual int setUp (TStatusWindow*, Param+*);

void setType (int aType } { type = aType; }
}i
/*********************t**t******************i*************i*******i******i**{
/**% class msqgCbjfunc ERhEIREARIAEI IR AAI RN A LA]/

f***********************t*********************ﬁ*****t*******i**************t/

class msgCbjfune : public cbjfune { “
int permitTime;
int permitvalue;
HWND handle;

publiec 3 .
msgObijfunc { ¢ permitTime (0), permitValue (Q) { ; }
void enableTimeMsg | }

void enableValueMsg {

void setHandle {BEWND aHandle

virtual double eval (double);

virtual double Eval {(double) = 0;
};

#endif

)

) { pernitTime =1 ;

) { permitValue =1 ; }
) { handle = aHandla; }

fe*% End of distrib.h #eswrdkrkrrdthrhkrdrbhhrhhkrhhhhthhhhdhhhhhhrrthrhhrhrn/f

7.5.1.5 <error.h>

AR LI s LI R S i it laa ot i sttt dd ittty Y
/*** MODUL : ERROR.H *an/
[hwn . dek f
Shddhkkhhdhhhhhhhhhhddhhdhkhhkrhhdrhhrhhhddrhhhhddthrhd ek hadhhhwddrrrhhkrdit/

Header Files error.h

7. Appendix II: Programme Description : 7-97

#ifndef BRROR_HEADER
#define ERROR_HEADER

/t** DaclaratioHB of qlobnl functiong ***************tt*i#i*******ﬁ*********,
void error_message (const char far* message, conat char far* modul);

fendif

J**% End Of ERROR..H AR hhkadkdhdhhkrr e tdh kRt kbR AR AR RN R ARk AR AR R AR R AN ek nn [

7.5.1.6 <joint.h>

/***#*ﬁt****ti**************i**t****[

o axn/
/*** Module: JOINT.H *kenf
Yokl . L LY
/*** Header for joint power related chjects *hk [/

/******i**********t****i***************************************t******t*****/

#ifndet JOINT_ HEADER
#define JOINT HEADER

$ifndef DISTRIB HEADER
$include <distrib.h>
$ondif

$ifndef WIND_HEADER -
#include <wind.h>
f#endif

#ifndef SOLAR HEADER
#includa <solar.h>
#endif

/*******t**t**t***t***i**ﬁ***ii***********t*****#ﬁ*************ti******t****/

/*** class ProbJointPower *kxf
/************ﬁ*********************************ﬁ****************************/

class ProbJointPower : public owChjfunc {
ContCondWindPower* windPower;
ContCondSolApprox* solarPower;
int num;
VECTOR Gpw;
VECTOR Gps;
double gpw (int);
deuble gps (int);

public
ProbJointPovwer { int n HH
virtual “PrebJointPower (bH
double eval { double Vi
int satUp { TStatusWindow,Param=*);
fondif

ke k Joi *t********i**************ﬁ*******i**********************
End of joint.h
7.5.1.7 <mathfunc.h>

VAR R L g e e e L L L ey e I T TE R L Ly
/**%* Modgala: MATEFUNC.H Tk]
Jrkn *hk]

/*** conaists of definitions and prototypes for mathematical functiona #+**/
/*************t*****************i**/

Header Files mathfunc.h

7. Appendix II: Programme Description

7-98

#ifndef MATHFUNC_HEADER
#define MATHFUNC_HEADER

$ifndef VECTORS HEADER

$include <vectors.h>

fondif

$ifndef BOOLWIN HEADER

$include <boolwin.h>

fondif

/***t***************************i*ﬁ***********************i*i****t*******i**{

/*+* Utility functions Y
/*********************************ﬁ***'*************************************/

void
void
BOOL
BOOL

SWAP
SWAP

(doubla &a, double &b);
(int &a, int &b):

isinterval (double x, double a, double b);
isinterval (int x ¢ int a , int b);

/*t******t******w***ﬂ*i*******t*********************t***************i****ﬁ**/

/*** Double precigion library i*******i**********************************ﬁ**/
/**t*****tt****************ﬁt*********#****************************ﬁ****i**#/

J*** Mathematical FUNCLIONS *HrAradrk ket kTR AXR AR N ERRRANAANRRERANRRERRAN]/

double Beta (double alpha, double x); // Beta function
double Bata (double, doubhle, double y; // Incomplete Beta function
double beta (double, double, double y; // First derivative

double bino {double,double); // Binominal coefficient
double Bnp (double n,double p,double k};

Cumulative Bin. distribution

doublae cube {double x);

double erf (doubls); // exrf(x)
double exrfe (double); // erfc(x)
double fact (double); // factorial
double Gamma {double); /{ gamma function
double Gamma (double, doukle ¥; // Incomplete gamma function
double max {double, double};

double min {double, doubla);

double phi {double, double, double);

double phi (double, double, double, double, double); // cond. phi(x)
double PHI (double); // PBI(x)
double PHI (double, double, double); // phi(x)
double PHI {double, double, double, double, double)}; // cond. Phi(x)
double “probka {(double); // Rolmogorov- Smirnov probability functiom
double SIGN (double x);

doubla sqr {(double x);

/*** Linear algabra *******ﬁ******‘***************************#*************/
BOOL comp inv (MATRIX&); // Inverse
double det (MATRIXE&); //determinant
BOOL linegsol (MATRIX, VECTOR&, VECTOR }; //Linear equation solver
BOOL ludecomp (MATRIXE, IVECTORE, double*); / /LU~ decomposition
void luback (MATRIX&, IVECTOR&, double+*}; / /Backsubatitution
fendif

/%*% End Of MATHFUNC.CDP **krrabkddrtthk kAt kAR kAR AR AR ARk XA A Rk kb Rk hkwhren/

7.5.1.8 <owcalc.h>

/*********************t***!

/*** Module: OWCALC.H Y]

/ti********t********t****i*i*******ii*****************************t***t***/

/*********************t*i**t********************i*************i*********t*/

/*** Object Windows C++: Calculations in the Windows inherited from wkxf
/*** either TStatusWindow or TMulivalObject *xk [
/*********************************t*********i******i******t***************/

7/

Header Files

owcalc.h

7. Appendix II: Programme Description 7-99

#ifndef OWCALC_HEADER
fdefine OWCALC HEADER

$ifndef OWSTAT HEADER
tinclude <cwstat.h>
tondif

¢ifndef WIND HEADER
tinclude <wind.h>
$endif

$ifndef SOLAR HEADER
#include <sclar.h>
tendif

$ifndef JOINT HEADER
¢include <joint.h>
#endif

$ifndef RANDOM_HEADER
#include <random.h>
#endif

#ifndef SERIES_ HEADER
¢include <geriss.h>
#endif

#ifndef PASSAGE_ HEADER
#include <passage.h>
fendif
Vh A TW;ndSpeedobject AT EXERARARRRTAIIEARRKAF AT AA SR bR bbb AT TR bbbk b drhhd)/
_CLASSDEF (TWlndSpeedObject)
Class TWindSpeadObject : public TMultivalObject {
private :
SpeedDens* f£;
SpeaedDist* F;

int werkOutBasic {);

int workOutValues { };

int areParameterOR { };

wvoid setOldParameter (};
public :

TWindSpeedObject (PTWindowsObject AParent, LPSTR ATitle);
virtual “TWindsSpeedoObject ();

bi :
Al 1l TDlStrlbutlonObject a2 d 22 S A TS LR RS A2 A2 S S RIS SR T I LT

_CLASSDEF (TDistributionObjiect)
class TDistributionObject : public TMultivValObject {

privats @
statfunc* distribution;
int workOutBasic {);
int workOutValues {);
int areParameterxOK { };
void setOldParameter { };
public :

ThistributionObject (PTWindowsObject AParent, LPSTR ATitle);
virtual TTDistributionObject (}; ;

b

[xx% TJ01ntblstr1but10nobject AR AERR AR NI ENR AR AR AR ARG R RN RN S kbbb ki
_CLASSDEF (T301ntD13tr1butxonobject)

class TJointDistributioncbject ; public TMultivValobject {

private :
ProbJointPower* jointPower;

int workOutBasic {);

int workOCutValues {);

int areParameterOR ();

void setOldParameter {);
public :

TJOLntblstrlbutlonObject (PTWindowsOb:act AParent, LPSTR ATitle);
virtual “TJointDistributionObject ();

Header Files owcalc.h

7. Appendix II; Programme Description 7-100

}o
r
J*%% DTRANAOMODJOCE ** Mk Ak wk kA Ak kAR TR TR IR RN AR R AN R RN RANNNE R AR RN R RNk]

CLASSDEF (TRandomObject)
Tlass TRandomObject : public TStatusWindow {

RKgSTest* kgSTest;

double test;
protected :

int workout {);

void writeRepl ();
public :

TRandomObject {PTWindowsCbject AParent, LPSTR ATitle);

virtual “TRandomObdact ();
};

/*%* TTimeSeriesObject *Ax kA xmrdter AN AAARER AR AR R RARREARI AR AR AR RN IRE]/

_CLASSDEF (TTimeSeriesObject)
Class TTimeSeriesObject : public TMultivalobiect {
private :

TimeSeries* timeSeries;

int workCutBasic {);

int workCutValues (Y

int arsParameterOK ();

void setOldParameter (};
public ¢

TT;neSerlesobject {PTWindowsObject AParent, LPSTR ATitle);
virtual “TTimeSeriesObject (};

}i

/*** TPagsageTimeObject SRR L L T Y L T P o L L L ¥y

_CLASSDEF (TPassageTLmeobject)
Class TPassageT;meObJact : public TstatusWindow {

PassageTime* passageTime;

double time;
protected :

int workout ();

void writeRepl ();
public ¢

TPassageTimeObject (PTWindowsObject AParent, LPSTR ATitle);

virtual “TPassageTimeObject (3}
};

/*** PaSSAGETIimesObIoct * ¥tk ik ik w kA A R AR R AR IR AR AR RN RN AN ARk *)

_CLASSDEF (Passaqulmesohject)
Class PassagaTimesObject : public TMultivalobijeet {

private
PassageTimes* passageTimes;
int workOutBasic t);
int workOutValues {)
int areParameterOXK ();
void setOldParameter ();
public :

Passaquzmesobject (PTWlndOWBO ject AParent, LPSTR ATitle}:
virtual "PassageTimesObject ();

}:
$endif

xRk (22 222 A2 X2 X222 a2 XAt X222 3 X a2 2 2 22Xt X2 2 2 X2 0 X R 22 XX
end of owcalc.h
7.5.1.9 <owdialg.h>

,t*****tt*******i******ﬁ***t*****i*********************i******************/

/x** Module: OWDIALG.H xk f

/****#t*****t***************i*********t*****************************i*****/

Header Files owdialg.h

7. Appendix II: Programme Description

7-101

/***********i********i*ti******t***t**i*ﬂ*i*********t****i*****i**i******t/

/*** Header for <owdialg.cpp> defines the dialog windows
/*** this programme, All dialog windows relate to Object

ALl

Jrx%x

[rE® class
VAR clase
[rhw

/*** claas
fren class
Jrax

[ren class
FAL A class
Jrex

/*** class
[Rrrx classg
[rht

/x** class
[class
AL

P class
/x** clasa
FAL Al

/*** clasa
5*** class
%k

/*** class
5*** class
LE 2

/*** class
5*** clase
* ik

/*=** clagss

frx* class
[rEn

/x** clasa
frx% class
YAl

/*** class
Jh*x® olags
VA 2al

TTransSettingsDly
TSettingsDialog

TTransSpeedDlg
TSpeedDialog

TTransDirDlg
TDirDialog

TTransWindbdlyg
TWindDialog

TTranakBxportDlg
TExporthialog

TTranaDisglayDlg
TDisplayDialog

TTransSolarDlg
TSolarbialeqg

TTransJointDlg
TJointDialog

TTransRandDlyg
TRandDialog

TTransMathsDlg
TMathsDialog

TTransTablg
TTsDialog

TTransFpDlg
TFpDialog

Settings Dialoeg:

Wind spesd Dialog:
Directories Dialog:
Wind Power Dialog:

Bxport Data Dialeg:

Display Options:

Solar Power Dialog:

Joint Reneswables:

Random Numbers:

Maths

Time series:

Firat passage time:

cbjects for
Windows C++

Data
Window

Data
Window

Data
Window

" Data

Window

Data
Window

Data
Window

Data
Window

Data
Window

Data
Window

Data
Window

Data
Window

Data
Window

k[
LI L ¥
*hk]
*ii/
LL LY
ki /
L1 ¥
Xk /
it ¥
LA LN
*hk)
*kk f
***/
*xw f
***/
wukf
ik f
*kk [/
*hk)
*hk S
t[
wkk/f
*kk f
*xn f
*uk f
***/
**a/
edn S
*hk)
***/
***/
***/
***/
*hk [
ki [/
LEL NS
ek f
***/
Le LY
khwnf

/************t*ti************ii******************i*******************ii***f

$ifndef OWDIALG_HEADER
#define OWDIALG HEADER “

tifndet OWRES_HEADER
#include "owres.h"

$endif

$ifndef OWLAPPL_ HEADER
#include "owlappl.h”

fendif

#include <owl.h>
¢include <dialcg.h>
#include <iogtream.h>
tinclude <edit.h>
#include <string.h>
$include <radiobut.h>

FAZ A Settings Window hdhhrhkdhkhkh ket hhthhhhbdhhhhdrtahtrrhdrhhhrintr/
_CLASSDEF (TSettingsDialog)
class TSettingsDialog : public TDialog {

public :

TSettingsDialog {PTWindowsCbject AParent, LPSTR ATitla};

}i

class TTransSettingsDlg {

public :

TTransSettingsDlg (});

double wivei;

// cut-in wind speed

Beader Files

owdialg.h

7. Appendix II: Programme Description 7-102

double wiVeco; // eut-out wind speed

double wivr; // rated wind speed

double wiVmean; // mean wind speed

double wiSigma; // standard variation of wind turbulence
double wiBeta; // autocorrelation coefficient (wind)
double s0lK0; // maximum clearness. index

double solK:; // average hourly clearness index

double solsSigmaK;// standard deviation of clearnesa index
double solBeta; // autocorrealtion coefficient (solar)
double comZeta; // fractiocnal power factor

double batk; // Battery parameters

double batcC;)

doubla batQMax;

double batv;

double sysPRen; // Nominal renewable enexrgy

double sysPDemand; // Power Demand

void setParameter (};

friend ostreamk operxator << (ostream&, TTransSettingsDlgsk):

friend istreamk operator >> (istreamk, TTransSettingsDlgs);
}:

J*** Wind Speed Dialog S tdkaadk ikt kA RARAAXRERRAREERLRRRI AN R LR LR RARTS [
_CLASSDEF (TSpeedDialog)
class TSpsadDialeog : public TDialeg {
public :
TSpeedDialog {PTWindowsObject AParant, LPSTR ATitle};
HH

class TTransSpeedDlg {
public : -
TTransSpeadDlg ();
WORD opProb; // Flag: probability daensity function
WORD opDist; // Plag: Distribution function
double vmean; // mean wind speed

double vmin; // minimum wind speed (for graph)
double vmax; // maximum wind speed (for graph)
int eval; // number of function evaluations

veid setParameter ();

friend ostream& cperator << (ostream&, TTransSpeedDlgs);

friend istream& operator >> (istream&, TTransSpeedDlgé&);
¥;

/*** Diractories Dinlog AEEAENA RN R AN R AR R AR LR bR ARk hhhhhhahhhrhbrnf
_CLASSDEF (TDirlialog)
class TDirDialog : public TDialog {
public 3
TDirDialog (EFTWindowsObject AParent, LPSTR ATitle);
¥i

class TTransDirDlg {

public @

TTransDirblg {)

char solFile[50]; // file name for solar data

char dlgFile[50}; // f£ile name for dialog data
friend cstream& cperator << (ostreamé&, TTransDirDlgs);
friend istream& operator >> (istream&, TTransDirDlg&);
| T A |

J/*** Wind Power Dialog LEAE A AL AR LSRRl Ad R Attt LN
CLASSDEF (TWindDialog)
Class TWindDialog : public Thialog {
PTStatic textTau;
PTStatic textInitialv;
PTDoubleInputl inTau;
PTDoublelnputl inlnitialv;
PTRadicButton radioCond;

char bufTau{30];
char bufInitialvi3o}];
public : .

TWindDialog (PTWindowsObject AParent, LPSTR ATitle};
virtual veid WMInitDialog {RTMessage) = [WM_FIRST+WM_INITDIALCG];

Header Files owdialg.h

7. Appendix II; Programme Description 7-103

virtual void HandleCondMsg (RTMessage) = [ID FIRST + 1d0pCond],
virtual void HandleStatMsg (RTMessage) = {ID FIRST + idopStationary}:
}i

class TTransWindDlg {
public :
TTransWindDlg {):
WORD opProb;
WORD opbist;

// Flag: probability density function

/
WORD opStationary; /

/

/

/

/
/ Flag: distribution function
/ Tlag: staticnary process
WORD opCond; // Flag: Comnditional function
double vmean; /
int eval; /
double tau; /
double initialv: /7
void setParametar {);
friend ostream& operator << {ostreamk, TTransWindDlgs});
friend istream& operator >> {istresam&, TTransWindDlgi);

};

/*** Export Dlalog ***i***t***t**t****t******t***t****#********t**#*******/
CLASSDE¥ (TExportDialog)

class TExportDialeg : public TDialeg {

public :
TExportDialoqg (PTWindowsCbject AParent, LPSTR ATitle);

};

c¢lass TTransExportDlg {
public :
TTransExportDlg {);
WORD opNew; // Flag: new file
WORD opAttach; // Plag: attach to existing file
char expFile[50]; // Pile name: Bxport file
void setParameter ();
friend ostream& operator << (ogtraam&, TTransExportDlg&);
friend istream& operator >> (istreamé, TTransExportDlgs);
}:

/e%* Display Dimlog *anasidttdaanxdanttddthhithrndertdanrasterhererktethrne/
_CLASSDEF (TDlSplayD;alog)

Class ThisplayDialog : public TDialog {

public :

TDisplayDialog (PTWindowsObject AParent, LPSTR ATitle):
¥i

class TTransDisplayDlg {

mean wind speed
nunmber of evaluations
time tau

initial wind speed

public :
TTransDisplayDlg ():
WORD opAuto; // Flag: Auto display of graphics
WORD opAccu; // Flag: Accumulating data series

WORD opLegend;

void setParameter {);

friend ostream§ cperator << (ostreamk, TTransDisplayDigk);

friend istream& operator >> (istream&, TTransDisplayDlgk):;
}i

/*** SOlar Dlalog *****************i**t***********************************/
CLASSDEF (TSolarDialog)
ctlass TSolarbialog : public TDialog {
PTDoubleInputl inTau;
PTDoubleInput inInitialk;
PTIntegerInputl inTrial;
PTIntegerInputl inCoeff;

PTCheckBox checkBypass;
PTsStatic textTau;
PTStatic textInitialk;
PTstatic textTrial;
PTStatic textCoeff;

PTRadioButton radicAnalyt:;
PTRadicButton radiocApprox;
PTRadioButton radioCond;
PTRadioButton radioQual;

Header Files owdialg.h

7. Appendix II: Programme Description

7-104

char
char
char
char
void en
void di
void en

bufTau[30];
bufInitialk([30};
bufTrial[30];
bufCoeff[30];

ableApprox (};
sablelApprox ();
ableCond { }:

()i

void disableCond
protected 1:

virtual
virtual
virtual
virtual
virtual
public :

void WMInitDialog {RTMessage)
void HandleAnalytMsg (RTMessage)

void HandleCondMsg (RTMes=sage)

= [WM_FIRST + WM_INITDIALOG];
= [ID_ _FIRST + idOpAnalyt I
void HandleApproxMsg (RTMess&ge) = [ID PIRST + idOpApprox 1:
= {ID FIRST + idopCond 1:
= [ID_FIRST + idOpQual 13

void HandleQualMsg (RTMessage)

TSolarDialog (PTWindowsObject AParent, LPSTR ATitle):

};

class TTr

public @
TTranss
WORD
WORD
WORD
WORD
WORD
WORD
WORD
doubla
double
int
double
double
int
int
wvoid
friend
friend

};

ansSolarDlg {
olarDlg {);
opProb; 7/
opDist; /7
opAnalyt: /7
opApprox; //
opCond; 4
opQual; //
opBypass; i
clearness; /7
aigmakK; /7
eval; /7
tau; 74
initialK; //
trial; /7
coeff; /!

setParameter ();
ogtreank operator
istream& operator

Flag: probability density function
Flag: Distribution function

Falg: Analytical soclution

Flag: Approximation ‘

Flag: Conditional function

Flag: Quality

Flag:s Bypass

Clearness index

Standard variation of clearmesa index
number of function evaluations

time tau

intitial clearness index

number of trial points

number of coefficients in approximation

<< (ostreamk, TTranaSolarDlgk);
>> (istream&, TTranasolarDlgk);

/*** Joint Renewabla Dialog *¥*dsxhnwhdhdihhrrhatrrtdthhhtsbthrtnshhhnrdrn/
CLASSDEF (TJointDialog)
class TJo:ntDzalog : public TDialog {

PTDoubleInputl inTau;

PThoubleInputl inInitinlk; -
PTDoublelnputl inInitialwv;

PTStatic textTan;

PTStatic textInitialk;

PTStatic textInitialv;

char bufTau[30];

char bufInitialv([30];

char bufInitialk[30];

PTRadioButton radioCond;

void enableCond {):

void disableCond {);
protected :

virtual veid WMInitDialog (RTHessage) = [WM FIRST + WM_INITDIALOG];

virtual void HandleCondMsg (RTMessage) = [ID_FIRST + idOpCond 1:

virtual veid HandleProbMsg (RTMessaga) = [ID FIRST + idOpProbDens];

public :

TJointDialog (PTWindowsObject AParent, LPSTR ATitle);

}s

class TTransJointDlg {

public :

TTransJointDlg ();

WORD
WORD
double
deuble
double
deuble

opJointDens;
opJointCond;
vmean;
initialv;
clearness;
sigmak;

Header Files

owdialg.h -

7. Appendix H: Programme Description 7-105

double initialK;

double tau;

int eval;

double zeta;

void setParameter (};

friend ocstream& operator << (ostreamk, TTransJointDlgk);

friend istreamk operator >> {istream&, TTransJointDlgs&};
}:

/*** Random Numbers Dinlog HARRERAERERARER IR A AR RRRT AR kAR RN T Rk h ko hhhn /
_CLASSDEF (TRandDialog)
class TRandDialog : public TDialog {

PTStatic ranTextBeta;
PTStatic ranTextA;
PTStatic ranTextB;
PTStatic ranTextBi;
PTStatic ranTextP;
PTStatic ranTextClass;

PTDoublelInputI ranInputd;
PTDoublelInputl ranInputB;
PTDoubleInputI ranInputP;
PTIntegerInputl ranInputClass;
PTRadioButton ranRediol;
PTRadioButton ranRadio2;
PTRadioButton ranRadio3;

char bufA[30];

char bufB[30];

char bufP[30];

char bufclaes([30];

vold HideBeta ({);

void UnHideBata (); -

void HideBi {):

void UnBideBi {):

void HideClass ();

void UnHideClassa();
public :

TRandDialog (PTWindowaObject AParent, LPSTR ATitle);
virtual void WMInitDialog (RTMessaga) = [WM_FIRST + WM_INITDIALOG];
virtual void HandleUniMsg (RTMessage) = [ID FIRST + idRanOp0];
virtual void HandleNormMag (RTMessaga) = [ID:FIRST + idRanOpl];
virtual void HandleBetaMsg (RTMessage) = [ID FIRST + idRanOp2};

- +

virtual void HandleBiMsg (RTMessage) {ID_FIRST + idRanOp3];
}i:
class TTransRandDlg {
public :
TTransRandDlg {);
WORD ranOp0; // Flag: Uniform distribution
WORD ranOpl; // Flag: Normal distribution
WORD ranOp2; // Flag: Beta distribution
WORD ranOp3; // Flag: Binomial distribution
double rani; // Input parameter: alpha
double ranB; // Input parameter: beta
double ranP; // Input parameter: p(binomial distr.)
int ranClass; // Bumber of ¢lasses in c<¢hi¥ test
int ranTrial; // NMumber of trials in chi¥ test

void satParameter {);

friend ostream& operator << (ocatream&, TTransRandDlg&);

friend istream& operator >> (istreami&, TTransRandDlgs);
¥i

Jrx* Matha Dialog ekt dddnaatred e ar kh kAR R RN RRRRR R AR R AR R AR R SRR ARk T TR/
_CLASSDEF (TMathsDialogq)
class TMathsDialog : public TDialog {
public
TMathsDialog (PTWindowsObject AParent, LPSTR ATitle);
}; :

clase TTransMathsDlg {

public 3
TTransMathsDlg {);
int s80lTrial:

Header Files owdialg.h

7. Appendix II: Programme Description

7-106

int
int
int
doubla
int
int
int
void
friend
friend

};

/*** Time Series Dialoeg

CLASSDEF
class TTs

PTStatic

PTstati
PTStati
PTstati

polCoeff:

fpTaTrial;

fpTeMaxlIt;

fpMcStopCrit;

fpMcMaxit;

fpMeGrid;

classes;

setParamater {):

ostreami operator << (ostream&, TTransMathsDlg&);
istreamié operator »>> (istream&, TTransMathsDlg&);

******************i*ﬁ****************t*********/
(TTaDialog)

Dialog : public TDialog {

taTextInitv;

< tsTextInitK;

] tsTextInitQlo;

c tsTextInitQ20;

PThoubleaInputl
PTDoubleInputl
PTDoublelnputl

taInputInitv;
tsInputInitX;
tsInputInitQlo

-y we

PTDoubleInputl taInputInitQ2o

PTRadicButton ts0pl;
PTRadioButton +tsOpl:
PTRadioButton +t80p2;
PTRadicButton ts0p3;
PTRadicButton tsOp4;
PTRadioButton taOp3;
char bufInitVv({30];
char bufInitK[30];
char bufInitQl0[30];
char bufInitQ20(30];
void HideV {);
void UnHidev ();
void HideR ();
void UnHideK {):
void HideQ {);
void UnHideQ ();
public :
TTsDialeg (PTWindowsObject AParent, LPSTR ATitle);

virtual void WMInitDialog (RTMessage) = [WM_FIRST + WM INITDIALOCG];
virtual void HandleCpOMsg (RTHessage) = [ID FIRST + idTsopl];
virtual void HandleOplMsg (RTMessage) = [ID FIRST + idTsOpll;
virtual void HandleCp2M=sg {RTMessage) = [ID FIRST + idTsop2]:;
virtual void HandleOp3Mag (RTMessage) = {ID FIRST + idTsop3];
virtual void HandleCp4Msg (RTMessaga) = [ID FIRST + idTaOp4]:
virtual void HandleCpSMsg (RTMessage) = [ID_FIRST + idTsOp5];
}i
class TTranaTsDlg {
public 3
TTransTsDlg ();
WORD tsOp0; // Flag: Wind speed time series
WORD +ts0pl; // Flag: Wind power time series
WORD ts=0p2; // Flag: Solar power time series
WORD ts0p3; // Flag: Combined power time series
WORD taOp4d; // Flag: State of charge
WORD ts30p5; // Flag: Power Deficit
double tsaTimeStep;
int tePoints;
double initv;
double initK;
double initQl10;
doubla initQ20;
void setParameter ();

friend ostream& coperator

friend

}:

istream& operator

<< {ostream&, TTransTsDlgk);
>> (istream&, TTransTsDlg&);

/*** Flrst Pasaage Tlme Problems ************i****************************I

_CLASSDEF (TFpD

ialog)

Header Files

owdialg.h

7. Appendix II: Programme Description 7-107
¢lasa TFpDialeg : public TDialog {

PTRadioButton fpOp0;

PTRadioButton fpoOpl;

" PTRadioButton £pOp2;
PTRadicButton fpoOp3;
PTRadioButton fpop4;
PTRadicButton £pOp5;
PTRadioButton fpops;
PTRadioButton £fpOp7;
PTRadioButton fpOps;

PTStatic IfpTextV0;
PTStatic fpTextX0;
PTStatic fpTextP0;
PTsStatic fpTextPassaV;
PTStatic fpTextPassK;
PTStatic fpTextPassP;
PTStatic fpTextNoVal;

PTDoubleInputl fpInputVy;
PTDoublelInput fpInputky;
PTDoubleInputl £pInputPl;
PTDoubleInputl ILpInputPassV;
PTDoublelnput fpinputPassk;
PTDoubleInputl fpInputPassP;
PTIntegerInputl fpInputNoVal;

chax butvo[30];
char bufr0[30];
char bufPO[30]);
char bufPasaV[30];
char bufPassK{30];
char bufPassP[30];
char - bufNoval{30];
void BideVO0 ({)}
void . UnHideV0 ();
void HideX0 ();
void UnHideK0 {);
void BidePO {);
void UnHideP0 {);
void RidePassV ¢)
void UnHidePassV ():
void HEidePassK {);
void UnBidePassK ();
void HidePassP {);
void UnBidePassP ();
void HideNoval ():
void UnHideNoVal { }; *
public :

TFpDialog (PTWindowsObject AParent, LPSTR ATitle);

virtual void WMInitDialog (RTMessage} = [WM_FIRST + WM_INITDIALOG];
virtual void HandleOpCMsg (RTMessage) = [ID FIRST + idFpOp0];
virtual veid HandleOplMag (RTMessage) = [ID FIRST + idFpOpl];
virtual void HandleOp2Msg (RTMessage) = [ID_FIRST + idFp0p2];
virtual void HandleOp3Msg (RTMessage) = [ID FIRST + idFpOp3];
virtual void HandleOp4Msg (RTMessage) = [ID FIRST + idFpOp4];
virtual void HandleOpSMsg (RTMessage) = [ID FIRST + idFpOpS];
virtual void HandleOpéMsg {(RTMessage) = [ID _¥FIRST + idFpOpél;
virtual veid HandleOp7Msg (RTMessage)} = [ID FIRST + idFpOp7];
virtual void HandleOp8Msg (RTMessage} = [ID FIRST + idFpOp8};
¥ ' -
class TTransFpDlg {
public
TTransFpDlg ()
WORD fpopo; // Plag: Process: Wind speed
WORD fpopl; // Plag: Processa: Wind Power
WORD fpOp2; // Flag: Process: Solar Power
WORD fpOp3; // Flag: Process: Combined Power
WORD £poOp4; // Flag: Methed: Time series approach
WORD £popSs; // Flag: Mehtod: Markov chain approach
WORD fpopé; // Flag: Calculation: only one value
WORD £pOp7; // Flagt as function of initial values
WORD fpops; // Flags as function of passage levals
double initv; // Initial values
Header Files

owdialg.h

7. Appendix II: Programme Description 7-108

double initK;

double initP;

double passV; // Passage levels

double passkK;

double pass?P;

double timeStep;

int noVal;

void setParameter (};

friend ostreamk operator << (ostream&, TTranaFpDlgg);

friend istreamk operator >> (istream&, TTransFpDlg&);
¥;

#endif

/*** and of owdialg.h RerrhevAeAw kR erEERR AL AR R RRRRE RN R RN r e R R AR TR R A RRhehk]
7.5.1.10 <owlappLh>

P L L L T L L R L R e P e Y
/*** MODUL : OWLAPPL.H LAY

VAL L] wwk f
SRR RN E R RN AR R RRERR KRR RA R RN TR AR RR AR R RN AN AR A h Rk h kR dkdn]

#ifndef OWLAPPL_HEADER
#define OWLAPPL_ HEADER

#include <windows.h>

$include <owl.h> -
#include <edit.h>

#include <bhutton.h>

J*%% CONStANLS ¥ F A AR R RNk ARkt d AR R AR R AR LR AR AR R A RAF RN AR R AR AN TR AR AR RN AN K/
#define idowlApplText 100

/*** Double Input *hkkhhhkrkhhrhthrbhkrr bbbt hhrhthbdhrhthrrttardhhris/f
_CLASSDEF (TDoubleInput)
class TDoubleInput : public TEdit {
BOOL validlInput {);
public @
double x;
TDoubleInput (PTWindowsObject AParent, int Resourceld);
virtual WORD Transfer (void* DataPtr, WORD TransferFlag);
virtual BOOL CanClose {);
¥i

/*** Double Input in a 5peeific interval *hdtkkikkAat Akt rhrhhih b hhrhhhdns f
CLASSDEF (TDoubleInputI)
class TDoublaefnputl : public TDoubleInput {
double minval;
double maxVal;
char message[S0];
public :
TDoubleInputl (PTWindowsObject AParent, int Resourceld,
const double aMinval, const double aMaxVal, const char* aMagsage);
virtual BOOL CanClose {);

}:

/rx® Intagary INPUL A ReR ket ks And R dkn kAR b e A AR XA LLXRRRRRRRAFANRRIA AR KR AT N]
_CLASSDEF (TIntegerInput)
class TIntegerInput : public TEdit {
BOOL wvalidInput { });
public :
int n;
TIntegerInput (PTWindowsCbject AParent, int Resourceld);
virtual WORD Transfer (void* DataPtr, WORD TransferFlag);
virtual BOOL CanClose ();

}:

/*** Integer Input in & specific interval **sxkwxtwdetkihaberdhtrbbhtnhtsts/

Header Files owlappl.h

7. Appendix II: Programme Description 7-109

_CLASSDEF (TIntegerInputI) |
class TIntegerInputl : public TIntegerInput {

int minval:

int ‘maxvVal;

char message[50];
public :

TIntegerInputI (PTWindowsObject AParent, int Resourceld,
const int aMinVal, conat int aMaxVal, const char* aMessaage);
virtual BOOL CanClose {): '

¥

/**+* Message Dialog A AR e e R R i A L i e T T P Y
_CLASSDEF (TYoMessage)
class TYoMaessage : public TDialog {

PTStatic statText;
char buffer[80];
publiec :

TYcMessage (FPIWindowsObject AParent, LPSTR ATitle,char*);
virtual void WMInitDialog (RTMessage) = [WM_PIRST+WM INITDIALOG]:

virtual void CMYes (RTMessage) = [ID FIRST + IDYES];
virtual void CMNo {RTHessage) = [ID FIRST + IDNO};
virtual void CMIgnore (RTMessage) = [ID FIRST + IDIGNORE];
virtual void CMAbort {RTMessage) = [ID PFIRST + IDABORT];

};

/*** Inputnialoq **t*******************#*t*i****************ﬁ**************/

_CLASSDEF (TYoInput)
class TYolnput : public TDialog {

PTEdit inputlLine;
PTStatic statText;
public 3

TYoInput (PTWindowsObject AParent, LPSTR ATitle,
char* title,char* input);
char textBuffer[30]; :
virtual void WMInitDialog (RTMessage} = [WM_FIRST+WM_INITDIALOG];
};

$endif

/*** End of OWLAPPL,.H **kkathdddd it hd ke kAR AR Rk Ak AR RN R R Rk A A kRN RN RN RI AR AN/

7.5.1.11 <owparam.h>

/***t********************i**************t*********************************/

/*** Module: OWPARAM.H rx f

/****t************************************t******t**i**i******ti**********/

/**t*********ﬁ***t**************/

/*** Header for <owparam.h> defines the parametsr structures that *kwx
/*** gerve as interfaces between windows cbjecta and mathematical *hk/f
[x** objects. *hk]
[rhx } khk /
/*** struct Param Parameter *hk/
/*** class Graph Graphic related data wwesk /

/****************************i*t**'***************************************/

$ifndef OWPARAH_HEADER
#define OWPARAM HEADER

#ifndef DIPFCALC HEADER
#include <diffcalc.h>
#endif

#include <string.h>

/*%E PArameter MEAAA AR AR KRR AI R AR R R R R R R TRk Rk IR R AR RN Rk R R AR RN AR R RN R]

Header Files owparam.h

7. Appendix II: Programme Description 7-110
struct Param {
double tau; // time
int eval; // number of function evaluations
int type; // = 0 (distribution) , = 1 (density)
int distSelect; // chosen distribution selection:
// = 0 : Wind turbine power
// 1 : Conditional wind turbine power
/7 2 : Exact Solar
/7 3 : Approximated solar
// 4 : Approximated solar, conditional
/7 5 3 Quality of approximation
int filter; // filter of inspection windows
int clasaes;
// wind parsmeters:
double wivei; // cut in speed
doubla wiVco; // cout out speed
double wiVr; // Tated speed
double wiVmean; // mean speed
double wivmin; // minimum wind speed
double wiVmax; // maximum wind speed
double wisSigma; // variance of wind speed fluctuations
double wiBeta; // wind autocorrelation coefficient
double wiInitVv; // initial v
// Solar parameters:
double =0lK; // average hourly clearness index
double solsSigmaKx; // standard deviation of solar irradiation
double BOlKO; // absolute maximum possible clearness index
doubls solInitK; // initial k
double solBeta; // solar autocorrelation coefficient bsol
int s80lTrial; // number of trial points in normal approximation
int solCoeff; // number of coefficients in normal approximation
int solBypass; // bypass of major calculations by retrieving old data
// Combined renewables parameters:
double comZeta; // fractional power factor
double comlnitP; // Initial p value
// Random numbers dialog:
double rani; // Parameter alpha for beta=- distribution
double ranB; // Paramater beta for beta- distribution
double ranP; // Parameter p for binomial distribution
double ranU; // Parameter u for normal distribution
int ranClass; // Wumber of classes for Chif test
int ranTrial; // Bumber of trials in cChi¥f test
int ranSelect; // Last selection

// Time series parameters:
taTimeStep; // Duration of a single time step
tsPoints; // Length of a time series

double
int
int

tsSalact;

// Pirast passage time paraneters:

int

fpTaTrial; // Number of time series taken into account

int fpTsMaxIlt; // Max jterations in Time series mode
double fpMcsStopCrit;// Stopping criterion in Markev chain mode
int fpMcMaxIt; // Max iterations in Markov chain mode
int fpMcGrid: // Markov chain mode: Grid Number ¢
double fpPassvV; // Passage level: Wind speed v
double fpPassK; // Clearness index k
double fpPassaP; l/ Power level p
int fpNoval; // Number of values to be calculated in
// function-as-mode
int fpSelectProcess; // Flags
int fpSelectMethod;
int fpSelectCale;
// Battery parameters
double batkK;
double batcC:
double batQMax;
double batV; // Voltage
Header Files owparam.h

7. Appendix II: Programme Description 7-111

dcouble batQl0;

double hatQ20; // Ql0 + Q20 <= 1,0

// Denormalized system

double sysPDemand;

double sysPRen;

// Display options

int dishuto; // automatic re-drawing of graphics
int disAccu; // accumulate data series when possible
int diaoldBval; // last eval

int di=s0ldType; // last window type

double dig0ldVmin; // last minimum speed

double disoldVmax; // last maximum speed

int digPirstCurve; // = 1 if first curve, otherwise 0

int disLegend; // =1 if legend desired, otherwise 0
};
/**************************i**********t**i***ﬁt*******t*ttt****i******i**ﬁ**/
/*** olass Graph Y,

[RuthknRRnrt kb hR Rt Rtk hhrr R erdtahtadhbhhhddbhhbbhtbdddbrhhrhhthbdhrrhertdisn/
VAL A Graphic related data ** v r A ke rrer sk AR AAr AR b bR bdhhhnrrtrrrhhhhrhrxhdnes /

class Graph {

public :
VECTOR x; // %X - values
VECTOR y{41; // ¥ = values
char legendf4]1[20]; // Legend for curvea
double scale; // scaling factor
int option;
int curveNo; // number of curves in same graph
double min; // minimum on x~- axis
double max; // maximum on x- axis
char headline[40]:
char subline [50];
char axtext [40];

Graph ()} t cuxrveNo(4) { ; }

void setHeadline (char* text) { strnepy (headline,text,39); }
void setSubline (char* text) { strncpy (subline ,text,4%); }
void setAxtext {char* text) { strncpy (axtext ,text,39); }
HH
#endif

/%** ono of OWDATANM.h *r AR e tkd ek hrt AAR KA AR RARRC R ARk IR RR Rk d AR TR RN]
7.5.1.12 <owplot.h>

JrRERERdhk bk hdh ekt k kAN AR R AR Rk Ak A R R Rk Ak AR Rk kAR ek kb kv ke ke kn /
/*** MODUL : OWPLOT.H . xwn)
[k Yk /
FAAA A AR R R Al s Rt e XTI s e a ot et s sl ittt s il et ins sy

$ifndef OWPLOT_ HEADER
#define OWPLOT_ HEADER

$ifndef VECTORS_HEADER
f#include <vectors.h>
fendif

$§ifndef DIFFCALC HEADER
$#include <diffcale.h>
#endif

#include <fatream.h>
#include <windows.h>
tinclude <owl.h>

Header Files owplot.h

e

7. Appendix II: Programme Description 7-112
/*i* Constants ***************************t************t********************/
tdefine TOP 100

tdefine BOTTOM 101

#define NEW 200

#define ATTACH 201

$define LIN "o

tdefine LOG 1

$define PIXEL V]

fdefine POLYGON 1

fdaefine STEP 2

fdefine DIRAC 3

$define IN AXLE 0

$define OUT AXLE 1
$detine CENTER AXLE 2

tdefine TO HORIZONTAL 0
§define TO_VERTICAL 1

typedef unsigned int DRA_MODE;
typedef unsigned int AXLE MODE,

class axis;

/*** class TGraph ***t*********t*********************t********t***t*******/
_CLASSDEF (TGraph)
€lass TCraph : public TWindow {
protected :
LOGFONT logFont; // Font
HFONT TheFont;
HFONT oldFont;

LOGPEN logPen; // Pen
HPEN ThePen;
HPEN oldPen;

LOGBRUSH logBrush; // Brush

HERUSH TheBrush;

BBRUSH oldBrush;

CCOLORREF backGround; // Background Color

HDC DC;
public :
TGraph (PTWindowsObject AParent, LPSTR ATitle, PTModule AModule = NULL);

void ¢learscreen |
void setTextHeight (int n }: -
void setPensSize (int n);
void setPenstyle (int n): o,
void setPenColor {COLORREF c¢olor); £
void setBrushstyle (int n);
void getBrushColor [COLORREF color);
veoid setBrushHatch (int n };
void setColor {COLORREF color);
virtual void open : {)3
virtual void close {)i
void Line {int x1, int yl, int x2, int y2]
void DoubleOut (double number, int dec, int x, int y);
void IntegercCut {int number, int x, int y }:
void TextOut * (char* text, int x, int ¥y 3

};

Jr*%x clags TPlot *rkkkkkhhhhhhrdhkhthhhtbhhhtabhhhhPrahhkhkbbhrrhrnerhhnrhasr/
_CLASSDEF (TPlot)

class TPlot : public TGraph {
char headLine[50];
char subLine[60];

int curveNo; // curve number
double xguotlin, yquotlin, xquotleg, yquotlog;
int xlog, ylog;

double x min,x max,y mln,y max;
axis* xbottom;

axis* xtop;

axis* yleft;

Header Files owplot.h

7. Appendix 1I: Programme Description 7-113

axis* yright;
RECT maxRect;
protected :
RECT curRect;
public :
TElot (PTWindowaObject AParent, LPSTR ATitlae, PTModule AModule = NULL);:.
“TPlot {)
virtual wveid plot () { ; }
virtual wvoid draw ();
virtual veid Paint (EDC PaintDC, PAINTSTRUCT _FAR& PaintInfo);

void setHeadline (const charw);
void setSubLine (const char*),
void plotFactor (double factor);
protected 1t

void plotHeadLine {);
void plotsublLine (};
wvoid drawMargin ();
int xcoord {double x);
int yeoord (double x):
void . petCoordinates (double xmini,double xmaxi,double ymini,

double ymaxi);
double setAutoCoord {double xmini, double xmaxi, VECTOR* yval, int n=0);
void setAutoAxAttr {double&,doubled, int&, intk,doubles,doublek);
void setViewport (int,int,int,int);
void drawUpperX {(double mini,double maxi,doubla axle,int num,

int leog, const char* text,int axle _mode} ;
void drawRlghty (double mini,double maxi,double axle.int num,

int 1og, const char* text,int axle mode};
void drawLowerX {double nini,double naxz,double axle,int num,

int log, int grid, double diast,const char* text,int axle mode);
void drawLeftY (double mini,double maxi,double axle,int num,
int log, int grid, double dist,conat chaxr* text,int axle mode);

wvolid drawLinCoord (double xaxle,int xnum,int xgrid,double xgridd;st,

conat char* xtext,double yaxle,int ynum,int ygrid,double
ygrlddlst, const char* ytext):
void drawLinCoord (int, const char*, int, const char+);
double drawAutoLinCoord (double xmini, double xmaxi, VECTOR* yval,
const char* xtext, conat char* ytext, int Xaxqrid, int yaxgrid,
doubles scale, int n=0);

void drawCurve (VECTOR&,VECTOR&, DRA_MODE draw_mode);
I
class axis { // Structure for description of an axis
int direction;// horizontal or vertical
int textiust: // text justification
int axle mode;
int centercord:;// central coordinate
int grid; /¢ Grid ?
double min; // Minimuam
double max; // Maximum
char text[50]; // Axis text
double axle; // Distance between axles
int num; // draw numbers every num-th axle
double grlddzst' // grid distance for linear representation
int linlog; // linear or logarithmic representation
void logarith {int, int, conat char*);
public:
RECT* curRect;
HDC DC;

axis (HDC aDC, RECT* aCurRect) { DC = aDC; curRect = aCurRect;}
void setAxis (int dir, int just, int cord, double mini, double maxi,
const char*
alpha,double ax,int n,int axlog,int axgrid,

double dist, int
mode);

}:

Jr** Punction prototypes #*¥*rkkddhdkrdhdarhdhrrhdrnekhhherrboktrhdhahhbhhhdrsnrs/
BOOL exportData {VECTORE, char*, int, char*, doubla);

void drawAxis (void);

$endif

Header Files owplot.h

7. Appendix II: Programme Description 7-114

Jrxr End of OWPLOT.H * otk h bk h bk rk kA kb ARk AR AR AN R AAARRARRNER AR ARARREAAR]

7.5.1.13 <owrenew.h>

/*t************i*********iti*********i********ﬁ***t#********i***i***t*****/

/**% Module: OWRENEW.H ey

f**t***********************t********************ﬁ***t*********************/

f*t*******************t******t*****************t*********i*****t**t*t*****/

FEL S Header of the main programme whx /S
Jrnk ***/
/#*** Dafinitions and declarations of: wxkf
Vi class TRenewPlot {plot window) nxw/
frex ¢lass TMainWindow . Y
Vaddd ¢lass TRenewApp (application xxx/

/*********i********i***i**********i**************************i*******i***i/

$ifndef OWRENEW_HEADER
$define OWRENEW_HEADER

$ifndef OWRES HEADER
#include "owres.h”
tandif

$ifndef OWPLOT_HEADER
#include "owplot.h*
#endif

#ifndef OWLAPPL_HEADER
#include *"owlappl.h”
#endif

#ifndef OWDIALG HEADER
#include <owdialg.h>
fendif

#include <owl.h>

#include <dialog.h>

#include <iostream.h>
#include <edit.h>

#include <string.h>

#include <radiobut,.h> -

Jxx* Graphics Window kkRATI ATk kb khhrhtbthrrhrhhbhhhthtrhhhhrrbbdhrbbkhkrrs/
_CLASSDEF (TRenewPlot)
class TRenewPlot : public TPlot {
int delta;
int start;
int end;
HBRUSH brushPen,cBrushPen;
public
int clear;
TRenewPlot (PTWindowsObject AParent, LPSTR ATitle, PTMedule AModule = NULL);
virtual wvoid Paint (HDC PaintDC, PAINTSTRUCT _FAR& PaintInfo);
void plot. 'H
};

[rrk Main Window *thkddakdhhddhkhdrhhhhhhhhdbdrdrhhtthhhbeibbrrhrtrbththhdhhirnf
_CLASSDEF (TMainWindow)
class TMainWindow : public TWindow {

void calc (owCbjfunc*, double, double);

public @

TTransSettingsDlg TransSettingaDlg;
TTransDirDlg TransDirbDlg;
TTransExportDlg TransExportDlg;
TTransDisplayDlg TransDisplayDlg;
TTransSpeedbDly TransSpeedDlyg;
TTransWindDlg TransWindDlg;
TTransSolarDlg TransSolarDlyg;

Header Files owrenew.h

7. Appendix II: Programme Description

7-115

TTransJointDlg TransJointDlg;
TTransRandDlg TransRandDlg;
TTransMathsDlg TransMathaDlg;
TTranaTsDlg TranaTsDlqg;
TTransFpDlg TranaFpDlg;
PTRenewFlot testplot;
T™ainWindow (PTWindowsObject
virtual “TMainWindow ();

virtual BOOL CanClosa (

virtual void CMWindSpeed (RTMessage) =
virtual void CMsSettings (RTMessage) =
virtual void CMMaths (RTMessage) =
virtual void CMWindPower (RTMessaga) =
virtual void CMSolar (RTMessage) =
wvirtual void CMRenewable (RTMessaga) =
virtual void CMExport {RTMessage) =
virtual void CMDisplay {RTMessaga) =
virtual void CMHelp {RTMessage) =
virtual void CMDir {RTMessage) =
wirtual void CMRandom {RTMesBage) =
virtual void CMTimeSeries{RTMessage) =
virtual void CMFpt {RTMessage) =
virtual void GetWindowClass (WNDCLASSS

AParent, LPSTR ATitle);

[CM_FIRST
[CM PIRST

{CM_FIRST

{CM_FIRST
[CM_FIRST
[CM_FIRST
[CM_FIRST
[CM_FIRST
{CM_FIRST
[CM_FIRST
[CM PIRST
(CM_FIRST
[CM_FIRST
WndClass),

¥

"trEb bbb

}i
cemWindSpeed];
cmSettings);
cmMaths];
cuWindPowery;
cmSolar];
cnRenewable];
cmExport];
cmDisplayl];
cuHelp];
cmDirectories]:
caRandon] §
cmTineSeries];
cmFirstPaasage};

friend castream& operator << (ostreami,
friend istream& operator >> (istreams,
}:

/*** Application ********************ii*ii*********i**t*********i*********,
_CLASSDEF (TRenewApp)
Class TRenewApp : public TApplication {
int choice; -
public:
TRenewhpp { LPFSTR AName, HINSTANCE hInstance, HINSTANCE hPrevInstancae,
LPSTR lpCmdLine, int nCmdShow)

: TAppchation(AName, hinstance, hPravinstance, lpCmdLine, nCmdshow),
choice (0)

RTMainWindow) ;
RTMainWindow);

{};
virtual void InitMainWindow();

}i
tendif

/*** ane 0f owrenew.h **a*rtkhhkktdkbdrhkkrhhhrdbihbhhrh ek hhhhkhbbbrrrrin/
7.5.1.14 <owres.h>

/*******************************i*t*******************t***********Q*i*****/

/*** Module: OWRES.H *knf

/*********t**********t**#*******t*/

§ifndef OWRES HEADER

Jred Constants TR:rhdht Atk rR AR b dtdthh kA RRRREN R T L AR AR AN AR A R AA AR RN AR NS/

$define cmWindSpeed 500
#define cmSolar 501
#define cmRenewable 502
#define cmSettings 503
#define cmMaths 504
#define cmExport 505
#define cmWindPower 506
#define cmHelp 507
#define cmDirectoriss 510
f#define cmRandom 512
#define cmTimeSeries 513
$define cmFirstPassage 514
$define cmDisplay 515

/%% IDw CONBLANES AR AR AR R AR R N AN A ANk AR R AR R AR AR RN R R AR R AR R AR AR R AR AR AR]

Header Files owres.h

7. Appendix II: Programme Description 7-116

// Parameter

#define idEval 100
#define idTau 101
$define idTextTau 102
#define idStatusText 103
#define idTimeText 104
#define idReportText 105
#define idClasses 106
/! Dialogse

§define idOpProbDens 110
$define idOpbist 111
#define idopaAnalyt 112
$define idOpApprox 113
#define idopCond 114
#define idOpOmal 115

#define idopStationary 116

// Wird parameter

#define idwWivei 120.
fdefine idWiveco 121
#define idwivr 122
$define idwWiSigma 123
#define idWiVmsan 124
f#define idWiBeta 125
$define idWivmin 126
#define idWivmax 127
t#define idwiTextInitv 128
tdefine idwiInitv 129
// Solar parameter -
#define idSolR 140
$define idsSolsSigmax 141
$define idSelKo 142
§define idSclBeta 1443
tdafine idSolInitR 145
#define idSolTrial 146
#define idSolcoeff 147

$define idSolBypass 148
#define idSolTextInitkK 149
#define idSolTextTrial 150
fdefine idSclTextCoeff 151

// Combined Renewables
#define idComZeta 160
#define idCom?P 161

// Export Dialog
f$define idExpAttach 170

#define idExpNew 171
#define idExpFile 172
// Directories dialog
#define idDlgFile 180
jdefine idSolrile 181
// Rendom Numbers Dialog
#define idRanOp0 1990
#define idRanopl 191
#define idRanOp2 192
#define idRanOp3 193
jdefine idRanTextA 194
$define idRanTextB 195
tdefine idRanTextP 196

f#define idRanTextBeta 197
#define jdRanTextBi i98
$define idRanInputdA 199
#define idRanInputB 200
f$define idRanInputP 201
#define idRanTextClass 202
fdafine idRanTrial 203
f{define idRanXInputClass 205

Header Files owres.h

7. Appendix H: Programme Description 7-117

// Time Series
#define idTsTimeStep 210

#define idTasPoints 211
#define idTsOpo 212
#define idTa0pl 213
#define idTsOp2 214
#define idTsOp3 215
#define idTsop4 216
#dafine iadTaOp5s 217

// FPirst passags times

#define idFpTsTrials 220
#define idFpTsMaxIt 221
#define idFpMcStopCrit 222
#define jdFpMcMaxIt 223

#define idFpMcGrid 224
idefine idFpNoVal 228
#define idFpopo 230
§define idFpoOpl 231
#define idFpop2 232
$dofine idFpop3 233
#define idFpop4 234
$define idFpoOp5 235
#define idFpopé 236
#define idFpOp? 237
$define idFpops 238
#define idFpTextV0 240
fdefine idPpTextko 241
#define idFpTextP0 242

$define idPpInputvo 243
#define idFpInputKo 244
#define idFpInputP0 245

#define idFpTextPassV 246
#define idFpTextPassk 247
#define idFpTextPasspP 248

$define idPpInputPassV 249
#define idFpInputPassk 250
#define idFpInputPassP 251
f#define idPpTextNovVal 252

// Display

fdefine idDiaClear 260
f#define idDisAccu 261
tdefine idDisLegend 262
// Battery

#define idBatkK 270
#define idBatC 271
#define idBatQMax 272
fdefine idBatv 273
#define idBatQlo 274
#define idBatQ20 275

$define idBatTextQlo 276
#define idBatText20 277

// System

#define idSysPDemand 280 .
fdefine idSysPRen 281
fendif

/*** and of owres.h ERAAANEENERAN AL AR LI RN A RN XA R AR AR IR R A A AN AR AR RN TRk kR [

7.5.1.15 <owstat.h>

/***t*‘************i‘i*********ﬁ************************I‘***********i*******/

/*** Module: OWSTAT.H xak/

Header Files owstat.h

e

7. Appendix II: Programme Description 7-118

/************t***i****t*****i**i**ﬁ**********i****************************/

’t****t************i***********t************t*i*********i*t***t****i*i****[

/*** Object Windowe C++: Calculations in the Status Window Environment **+/ -
/*i***t*l*t**i*****t**ii********************ii***t**i*t*.************!****/

$ifndef OWSTAT_ EEADER
#define OWSTAT_ HEADER

$ifndef DISTR_HEADER
#include <distrib.h>
$endif

#include <owl.h>
tincluds <dialog.h>
$include <edit.h>
¢includae <button.h>

/ii* 31ﬂ55 Tstatuawindow ***t**t*tiit**********t*****t**i***************i*/
_CLASSDEF (TStntusW1ndow)
class TstatusWindow : public TDialog {
private :

PTStatic statusTextl;

PTStatic atatusTextl;

PTStatic timeText;

PTButton okButton;

PTButton cancelButton;

PTButton retryButton;

double lastTime;

doubla astartTime;

int mode; -

void startTimer ();

double time {);
protected :

int giveWarning (char* 1

virtual void writeRepl (Vi

virtual void writeRep2 (Yy {:}

virtual int workout {) = 0;

virtonal void WMInitDialog (RTMessage) = [WM FIRST+WM INITDIALOG];

wvirtual void Ok (RTMessage) = [ID_FIRST+IDOK];

virtual void Retry (RTMessage) = [ID_FIRST+IDRETRY];

virtual void TimeMsq {(RTMessaga } = [WM USER+WH _MSGOBJFUNC];
public

void writeTime (}i

int isEnoughTime (y:

gtatic double tenmp;

void writeStatusl (char* }3

void writeStatus2 (char* }:

TStatusWindow (PTWindowsObject AParent, LPSTR ATitle);
virtual "“TsStatusWindew (}:
¥:

/*** class TMultLValObject ***********************************t***********/
_CLASSDEF (THMultivValCbject)
class TMultivalObject t public TStatusWindow {
int eval;
int isAccuDesired { }H
protected :

virtual int workOutBasic {) = 0p

virtual int workOutvValues {) = 03

virtual int areParametsrOK () = 03

virtual void setOldParameter () = 0

int workout { y:

void calcValues (owObjfunc*,double,doubla);
public :

TMultivalObject (PTWindowsChbject AParent, LPSTR ATitle,int);

virtual “TMultivalobject (} { ; }

static void calc {owObjfune*,double,double,int,TstatusWindow*);
}:

tendif

Header Files owstat.h

7. Appendix II: Programme Description 7-119

/*%% ond of owstat. . *rkkkahh ik hhhdkkdhhhhr AR R Ak Rk hhkddhkhr bk kb rhhrns f
7.5.1.16 <passage.h>

/****!*********t*************************t**f******t***t*********it**i*****t/

[Hrw wkk/
/*** Module: PASSAGE.H Y
FALL rxxf
/*** Baader for first passage time problems in the renewable sherqgy ek f
/**» project owrsnew.prij wakf

/Q***i******t****t******t*****i*i****i*********************ﬁﬁ***************/

$ifrdef PASSAGE_HEADER
$dafine PASSAGE_HEADER

#ifndef SERIES HEADER
#include <series.h>
#endif

#ifndef VECTORS HEADER
#include <vectors.h>
fondif

#ifndef OWPARAM HEADER
#include <owparam.h>
fendif

class DiscretDistribution; // forward declaration

/*t******i****it*******tt**t*******t*******************i*t*******t**i*******[

/*** Abstract class of a first passags time problem ***awardkdbrrkhrbhahitns/
/**************************i***i**************ﬁ***i*************************,

class PassageTime t public msgObjfunc {

protected 3
double passlevel; // passage level (power / speed)
double initLevel; // initial level (power / spaed)
double timeStep:; // time step

virtual int SetUp {TstatusWindow*, Param#*} = 0;
public :
PagsageTime (jH
virtual “PasaageTime (|
int setUp {TStatusWindow*, Param*)}:
-void setPasslevel (double newLevel } { passlevel=newlLavel; }
virtual void saetInitLevel (void+) = 03

}-
r
/************t**i**i****ﬁ**t**i**t**i*************************w*************/

/*** Abstract class for first passage time - time saries approach **s*axwki*/
/*******************************t********************************ﬁ****i*****l

c¢lags TsSPassageTime : public PassageTime {

private @)
int repFactor; // number of time series taken into account
int . maxIt: // maximum number of iterations

protected :
TimeSeriea* timeSeries;

virtual int SetUp {(TStatusWindow*, Param*);
public 3

TSPagaageTine { ¥:

virtual “TSPassageTime ():

double Eval (double)i

void satInitlLevel { void*)3
¥
/*****ﬁ*****i*************************t****************t****************t***/
/*** Wind speed passage time - time geries approach wxxAAw]

,****i******ﬁ**********i***********i**t****************i********************/

Header Files . passage.h

7. Appendix II: Programme Description 7-120

class TSWindSpeedPassageTime : public TSPasaageTlme {
public i

TSWindspeedPasasagaTime |

int SetUp (TStatusWindowr, Paramw»
¥

/*****t**iﬁ*******i***************************************ﬁ*****************/

/*** Wind power passage time = time series approach LR Y]
/************i**ti**it******'*t**i***!****.*********************************/

)i
ik

class TSWindPowerPassageTime : public TSPassageTime {

public @

TSWindPowerPassageTime b

int SetUp (TStatusWindow*, Param*);
};
/*#i****ii**********i*********************i**********t******i********i****t*/
/*** Solar power passage time - time series approach bAL ALY

/**tt*iti**********************!**i**it*********!i************i**t********ﬁ*/

class TSSolarPowerPassageTime : public TSPassageTime {

public 3

TSSolarPowar?assagaTlme (y:

int setUp (TStatusWindow*, Param* };
Y
/***i*********************t****t***i*i*i******t**i*********i**i*i*******t***/
/*** Joint renewable passage time - time geries approach A ALY

/************i*******i****t*************i**i**t*****t*********i*************/

class TSJointPowerPassageTims : public TSPassageTime (

public :
TSJointPowerPassageTine | ¥
int SetUp { TStatusWindow*, Param*);
i

/*********i*****i***ﬁ*****************tt**t************i********************,

/*** Abgtract class for Markov chain approach RN
/***t**********i***********t**i*******,

class MCPassageTime : public PassageTime {

private :

MATRIX G; // Transition matrix

VECTOR P; // Proebability vector “

double stopCrit; // stopping criterion

int maxIt; // maximum number of iteratiocns

int discPassLevel; // discretized passage level

int discInitleval; // discretized initial level

void updateG {)i
protected @

int classes; // number of discretization levels

Discrethistribution* distributicn;

int discretize { double y;
public

MCPassageTime (yi

doukle Eval { double |

virtual int SetUp © { TstatusWindow*, Param* };

void setInitLevel (void»);
};
/**t*****************t***************t*************************t*****i******/
/*** glass MCWindSpeedPassageTime dhkxkkf

/**i********t************ﬁ*****it*t**i****i***************************tt****/

class MCWindSpeedPassageTime : public MCPassageTime {

public :
MCWindSpeedPassagaeTime () : MCPassageTime {) { ; }
int SetUp (TStatusWindow*, Param*);

¥ :

/ﬁi*************ﬂ**********************************i************************,

Header Files passage.h

7. Appendix II: Programme Description _ 7-121

/*** class MCWindPowerPassageTime *rnnk]
/*******Q********************i****ti************ﬁ***********************i***/

clasa MCWindPowerPassageTime : public MCPassageTime {

public :

MCWindPowsrPassageTime {) ¢ MCPassageTime () { ; }

int SetUp { TStatusWindow*, Param+* };
}: '
/*i*iiﬁ*i*i*t****t******i******t***************t*****************i*t***i**t*/
/*** class MCSolarPowerPassageTime ey

/*tti*****tt*************t***********t*t*t****ttt***t************i***i*****t/

class MCSolarPowerPagsageTime : public MCPassageTime {

public @

MCSolarPowerPassageTime |) ¢ MCPapsageTime () { ; }

int SetUp (TStatusWindow*, Param* }):
}:
/*******i*ii**********t***!t****iiit**********i*i**i*******i*****tiit*****t*,
/*** class MCJointPowerPassageTime WALl LN

/**i****ﬁ**t**ttt*t******************i****i*****tt**tt*************t*#t*****!

class MCJointPowerPassageTime : public MCPassageTime (

public
MCJointPowerPassageTime {) * MCPassageTime {() { ; }
int SetUp { TStatneWindow*, Param* };

¥:

/**t*i***********t*****************ii**********ﬁ***t*t****************t**t**/

/*** Abgtract clasa of a firat passage time problem *eawssssktrhardansttrsin/

/**» allowing to vary either the passage level or initial value. wkw/
/****t*w!**********t****t*it*iii***iii*****it*****t************i*******t***t/

class PaspageTimes : public owCbjfunec {
protected :

int selectCalc;
int noval; // number of values along the x~ axis
PassageTime* passageTime;
virtual int SetUp (TStatusWindow*, Param*) = {;
public 1

double minvVal;
double maxvVal:;

PassageTimes ():

virtual “PassageTimes (Y3

int setUp { TStatusWindow*, Param*);

double eval { double):
}:

// Wind speed
class WindSpeedPassageTimes : public PassageTimes {

public :
WindSpeedPassageTimes { int y:
int SetUp (TStatusWindow*, Param*);
}i

// Wind power
class WindPowerPassageTimes : public PassageTimes {

public
WindPowerFPassageTimes (int):
int SetUp (TStatusWindow*, Param*);
¥

// Solar power
class SolarPowerPassageTimes : public PassageTimes {

public 13
SolarPowerPassageTimes (int ¥i
int SetUp {TStatusWindow*, Paramt*};
}i

// Joint renewable power
¢class JointPowerPassageTimes : public PassageTimes {

Header Files passage.i

7. Appendix II: Programme Description 7-122

public 1
JointPowsrPassageTimes (int);
int SetUp (TStatusWindow*, Param*);
}i
$endif

J*** End of passage.h Ak RAR b ARA N RIS R AN h kb kb thhhhkrhhhthhbhhhhhrdhhnd/

7.5.1.17 <random.h>

/********t*****tt*****i***************t***t**t*****t*t**t****************t*t/
/*** Module: RANDOM.H *xw/
ALl . *hk [
/*** Definition of types and classes for random numbers *nk f

/*!*i***************t*********************************t*i**********t*****!**/

#ifndef RANDOM_HEADER
#define RANDOM HEADER

$ifndef VECTORS HEADER
tinclude <vectors.h>
fendif

$ifndaf MATHFUNC HEADER
$include <mathfunc.h>
#endif

JH%% CONBLANLR Fresththhhbat s b hRddh ke wa A AR R * R bR AC N AR AR RRR RO AR R R A A A S/
$define NTAB 32

Jr**® Uniform deviaton *eatkakihddekdhdhd A d ekt ArerhehhAhert btk ANhes /
class uniRand {

public :
uniRand (Yy {1}
virtual TuniRand (Yy {: }
void initialize ('H
virtual double getRandomNumber ();:
virtual void update ({ void* } { ; }

}:

/*** GauBSLQn dev1atas N(d' var).**************t****t***i********i****t****,
class normRand : public uniRand {
double mean;
double sigma;
int isets
double gset;
public i
normRand {
normRand ’ {double m, double s
virtual “normRand {
virtual double getRandomMNumber (
void update (
};

YA LA Rejection-method ARk kkhhkRrhhhkhkrhtrhthrrtrrrdrhhkbhthrbrhrthrhhirinr/
class rejectRand : public uniRand {

public :
rejectRand { y:
virtual double getRandomNumber (¥
protacted :
virtual double compFunc {double) = 0;
virtual double origFunc (double) = ¢;
virtual double invInteg (double) = 0
}i
/*** Rejection method using a uniform distribution as comparison function */
/**+ for distributions with non zerc values in the interval [0,1] */

class uniRejectRand : public rejectRand {

Header Files random.h

7. Appendix II: Programme Description 7-123

private :
double ceiling;
public
uniRejectRand { } { ceiling = 1; }
uniRejectRand (double max) { ceiling = max; }
protected : Lo
virtual double compFunc (double) { return 1l; }
virtual double invInteq (double y) { return y: }

};

/*** Bata distribution EhRk ARk RhRAhRE bRk hk kAR h RN R A RN AR AR IRk Rk
class betaRand : public uniRejectRand { ’
private s
double alpha,beta,fact;
protected

virtual double origFunc (double IH

virtual double compFunc {double '
public @

betaRand { b H

betaRand {double a, double b);

}:
/*** Discrete distributions using the rejection method **ssrwxkissksrntrxrn/

class diascretRand : public uniRand {
private :

VECTOR* px;

double ceiling;

double getRandomNumber ():
public i

discretRand (VECTOR*); -

void update { void*);

}:

/******t**********t*it*******t****t***t***t**t******t********t****n********/
[ran Rolmogorov -~ Smirnov test whkhkhketb kbbb hrhthhrthrrhrhbhirththdhbhhir/
f****i**************t**i**************t******************************t*****/

/*** Abst:nct clasg for KGS test **t*i‘t***ttt********t********'t*i*t*****t**/
¢lass KgSTest {
protected

double size;

int k; .

double mean;

double var;

VECTOR X, Y,x%;

uniRand* randomizer;

virtuwal void initialize { Yy {3}
virtual double theoretProb (double x) = 0;
void doValues { y;
double maxDistance ()
void calecCumbDist | }:
public :
double doTest {)
double getMean { }H
double getVar { }H
KgSTest (int n);
“KgSTest { }i:
}; :

/*** Kolmogorov- Smirnov Test for uniform distribution #*ssreraxsrdarrtrsrsrrsn/
claas UniRKgSTest : public KgSTest {

publie :

UniKgsSTest (int n) : Kgs8Test (n) { : }

double theoretProb (double x) { return (x); }

void initiaslize () { randomizer = new uniRand (); }
bi

/*** Kolmogorov- Smirnov Test for normal distribution *kskestthditrdtrtrrthr/
clasas NormKgSTest : public KgSTest { .
public :

NormRgSTest (int n) : KgSTest (n) { ; }

Header Files ' random.h

7. Appendix II: Programme Description 7-124

double theoretPrch (double x) { rsturn {PEL (x)); }
void initialize { } { randemizer = new normRand {); }
}i:

/*** Rolmogorov- Smirnov Test for beta- distribution **sarsxtridniknkdinrnn/
class BetaKgSTest : public KgSTest {

double alpha, beta;

double classes;
public 3

BetaKgSTest {int n, int r, double a, double b);

double thecretProb (double x);

void initialize (} { randomizer = new hetaRand {alpha,beta); }
}i

$endif

f*** End of RANDOM.H A A hh et mdddddrhdr et At ke kb kA AR AR R A AN R AR R RN R R hk [

7.5.1.18 <series.h>

/*****************i*****i******t**********t*****ﬁ***********t**t************/

frre Ty
/*** Module: SERIES.H Y
[rxe Y
/*** Beader for time aeries objects within the renewable energy hw/
/*** project cwrenew.prj *hwf

/t**t***t*t*tt*i***t*********t**t*****t*********i***t**t***t*******t***i**t*/

#ifndef SERIES HEADER
#define SERIES HEADER

#ifndef VECTORS_HEADER
#include <vectors.h>
#endif

#ifndef DISTRIB HEADER
#include <diatrib.h>
#endif

#ifndef DIFFCALC HEADER
#include <diffcalc.h>
“ $ondif

#ifndef RANDCM HEADER
#include <random.h>
f#endif

$ifndef OWPARAM_HEADER
#include <owparam.h>
fendif

$ifrdef SOLAR HEADER
t#include <solar.h>
$endif

Je%tx Ahmstract class of a time series Rhdkdkhkhhkhhbhbrhkhrhhnkdhhhbkihddhhhdd/
/********t**********t******tt***i***i*****ﬁ****t*********tt***********t*****/

class TimeSeries : public owObjfunc {

|
/**ﬁt*************#*i*****i********t***t******l‘******i******************i***/ ‘
protected : ‘

virtual void update { } = 0;

virtual double getOutput { }y = 03
public :

TimeSeriea { Y {: }

virtual “Timeseries {) {3}

virtual int satUp { TStatusWindow*, Param*) = §;

virtual void setUserInit { veoid* y = 0;

Header Files series.h

7. Appendix II: Programme Description 7-125

class TimeSeriesOne : public TimeSeries {
protected .

double initUserval;
doubla randomvVal:
double cutVal;
virtual double getInLtRandomVal { } { return initUserval; }
virtual double getRandomNumber () = 0;
public :
TimeSeriesOne {);
“TimeSeriesOne { y:
doubla eval { double ¥
void =~ setUserlInit { void*)i
}i

/**************ﬁ*******t*******************ﬁ**t***********i****************ﬁ/

/*** Clagas of wind speed time series *#*tisrrrdkrdbkitbadhbhhbrrhbbirkanrehrad/
Fad i st RS st a P et a st st dl i a i il s Ittt ittty

class WindSpeedTimeSeries : public TimeSeriesOne {
double vmean; // mean wind speed
double eoffsigma; // effective standard variation
uniRand* randomizer;

protected :

double I // autocorrelation coefficient

double aiqma, // standard variation

double getRandomNumber ({) { return (randemizer->getRandomMNumber()); }

double getOutput {)} { return randomVal; }
public :

int setUp { TStatusWindow*, Param*);
void update { I
void setCorrelation (double }:
WindSpeedTimeSeries { Y3

{ i

“WindSpeedTimeSeries

}o
r
/*************l**********l‘*********i****t*******************i*********t*****/
/*%* Wind power time series Y

/**t********t*****************/

class WindPowerTimeSeries : public WindSpeedTimeSeries {
private :
double vci,veo,vr;
public 1@
WindPowerTimeSeriesa y;
static double getWindPower (double V,double Vei, double Veo, doubls Vr);

static double getV (double p,double Vci, doubla Vr);

double getOutput { ¥:

int setUp (TstatusWindow*, Param* };
¥:
f*******i*****Q***t********i***i**************i******i**************i*******/
/*** Solar power time series *kkkf

!*******‘l’*********i**t*******t**********t*i***t******i‘******i***************,

class SolarPowerTimeSeries : public TimeSeriesOne {
double NMinusOne;
double KO;
SolarRandomizer* randemizer;
double getRandomMNumber (} { return (random1zar->getRandomNHmber()}, }
public :
SolarPowerTimeSeries (
“SolarPowerTimeSeries {
int setUp { TStatusWindow*, Param*
double getOutput {
double getInitRandomVal (
void uapdate (

i Ve Nt S N Vet
e me Wy my W me

.
}i

/***********************************ﬁ***************************************l
/*** Joint power time series Y

/**i***i**l
L4

Header Files series.h

7. Appendix H: Programme Description 7-126

clasa JointPowerTimeSeries : public TimeSeries ¢
SclarPowerTimeSeries* solarPowerTimeSeries;
WindPowerTimeSeries* windPowerTimeSeries;

double zeta; // fractional power factor
publiec :

JointPowarTimeSeriaes { Vi

“JointPowerTimeSeries (g

void update { 1:

double getCutput { ¥

double aval (doublse Vi

int setUp { TStatusWindow®, Param*);

veid setUserInit (void+):
}i
/*********i*****************t******************i*ﬁ******i**t********ii******/
/***t Stata of charge time series rxxk f

/************i***********t***t********t*******************1*t*********tit***/

class StateOfChargeTimeSeries : public TimeSeries {
double batK,batC,batQMax,batV,batQl0,batQ20;
double sysPRen,sysPDemand:
double I,PNeed;
double ql,q2;
double kt;
void calcICharge {
vold calcIDiacharge {
protacted :
JointPowerTimeseries* jointPowerTimeSeries;
double deltaP;
void update {
double getCutput {
public @
StateOfChargeTimeSeries (
“stateOfChargeTimeSeries (
(
(
(

LT Y

s

e Yt
- e

|
):
double eval doubla '
int setUp TStatusWindow*, Param*);
void asetUserInit voidw V:
}i:
/**it*i**i*f***********i***************i******t*************i***************/
/*** Power Deficit Time Seriaa Ak)

/***t**ti*t************t!tﬁ***t************i**i*t**t't**********t***********/

class PowerDeficitTimeSeries : public StateOfChargeTimeSeries {

doubla getOutput { Yi
public :

PowerDeficitTimeSeries | jH

double eval { doublae FH
}:
fendif

/#*%* End of series.h #atst ittt ddaddt bt N A AR AT SRR e Rk Ak A bR h A AR kR hk Rk hh]

7.5.1.19 <solar.h>

/***#**i**************tt***i**t*i*****************************i*************/

Jrrn ke f
/*** Module: SOLAR.H Y
[rkex runy
/*** Header for solar related cbjectsa *hkf

/*****tt*t********************i***/

$ifndef SOLAR_HEADER
#define SOLAR HEADER

tifndef DISTRIB_HEADER

Header Files solar.h

7. Appendix II: Programme Description 7-127

$include <distrib.h>
tendif

/***********iﬁ**********tt****t************t************ttt*****************/

/*** Solar Power Constants deden f
/t*********tt***t*********************ﬁ********i****ﬂ*****i*****i**ii*****tﬁ/

class SolConstants {
public 1
SolConstants ();
“SelConstanta(} { ; }
double w,deltakro, kmanO deltaK,kmin,correl;
VECTCR a,b;
int setUp (Param*):
void xTok (double, double*);
void kTox (double, double*);

}o
r
f*********t***t**i****************i*****t*************t***********ﬁ*********/
/*** The exact distribution (with beta functionsa) ‘ *kxf

/**tt*******/

class ContSolExact : public ContinuousDistribution {
protected :
SclConstants solC;

double Fx (double):

public :
ContSolBxact {):
“ContSolExact { y { ¢}
double F { double):
int setUp { TstatusWindow*, Param*);

};

class ContSclExactX ; public ContSolExact {

pablic :
ContSolBxactX {)i
“ContSolExactX (Yy {:)}
double F (double HH

¥

clasa ProbSolExact : public statfunc {

public :
ProbSolExact ():

}:

-

/i********it********i************i*t****************************t***********/

/*** Object class for solar powsr with least square method #***dsxksaxdhirsin/
/***************i****************************'*********t********************/

class MeritSol : public megObjfunc {

double alpha - (int j, int k);

double fp (double p- y; // density function in p = j /(N-1)
double merit };: 7/ figqure of merit

int solCoaff; .

int solTrial;

double solX;
doubls solsigmak;

MATRIX AA; // Coefficient matrix A

MATRIX Alpha; // Coefficient matrix

VECTOR d; // Coefficients ¢of left side of normal equations

VECTOR C; // Coefficients of prob dens function
public 1

Maritsol (SolConstants*,Param*);

"MeritsSol(y {:}

SolConstants* psc;

double initialsx; // initial clearnesa index on x- scale

VECTOR u; // Coeff. vector of generating functions

VECTOR sigma; // Standard deviation vector

VECTOR lambda; // Standard daeviation vector / epsilon

VECTOR Fxm: // vector with distribution function values

double QPlusOne; // number of generating functions used +1

double MPlusOne; // number of trial points + 1

Header Files solar.h

7. Appendix II: Programme Description 7-128

virtual double Eval { double x);

double £x { double x }; //_density function in x
double Fx (double x }); // distribution function in x
double Fp { double p)3 // distribution function in p
double FpApprox {(double p); // approx. diat function in p
double PXAPProx - { double x); // approx. dist. function in x
int setUp { };

friend ostreami operator << {ostreamk outstr, MeritsSol* v);
friend istream& operator >> (iatream& inatr , MeritSol* v);

}-
+
,*****************t***t-A'*t*ti****tt*******i**************ti*************ti**/
/*** RApproximated Distribution Ty

/i*i*****ﬁ*tt******i************ﬁ****i*tt********t**t***********************/

// Approximation of the solar diatribution
class ContSolApprox : public ContinucusDistribution {
protected :
MeritSolr* sol;
SolConatants sc;
public 3
ContSclApprox {
“ContSolApprox {
double F { double
int setUp { TStatusWindow*, Param*
void setCorrelation (double time, double beta
void satinitval { double initK

N Ns W me wr wE

class ContSolApproxX : public ContSolApprox {
public

ContSolApproxX

“ContSolApproxX (

double F { double
}:

clasa ProbSolApprox : public statfunc {
public :

ProbSolapprox ();
}:

// Conditional distribution
class ContCondSolApprox : public ContSolApprox {

e

et S St
-
-
[

public : -
ContCondSolApprox { } : ContSolRpprox {) { ; }
int setlUp { TStatusWindow*, Param*):

Y

class ProbCondSolApprox : bpublic statfune {

public :
ProbCondSclApprox ();

}; ‘ ‘ |

// Qualityfunction

class ContSolAppQual : public ContinucusDistribution {
ContSolExact* exact;
ContSolApprox* approx;

public :
ContSolAppQual { Vi
“ContSolAppQual {);
virtual double P { double Y
int satUp { TStatusWindow*, Param*);
}i
class ProbSclAppQual : public statfunc {
public
ProbSclippQual ();
}:
/*****i**********t*****************;’l“********t******i********************i**/
/*** Discrete Distribution *hw S

Header Files . solar.h

7. Appendix II: Programme Description 7-129

/t****I‘*******t*'hi't*i**t*******i*********************t************t*********/

class DiscSolApprox : public DiscretDiatribution {
private 1
ContSolApprox* solApprox'
double KO
double NMinuaOne,
public ¢
DiscSolApprox
virtual ~“DiscSolApprox
int setUp

int n

TStatusWindow#*, Param*

Nt et ettt St kt” et Vgt
P T K TR LTy

double gnm int, int

doublae Gn int

void satM int

int getN double
¥i
/*****i**********t*t*ﬁ**t**t***i‘*i‘************i*ﬁ****ﬁ********it******I*****/
/*** Discrete Randomizer *hwf

/*****t**********t*i’******i********ii***i*******ﬁ***#****i****!*i*******i***/

clases SolarRandomizer : public DiscretRandcomizer {

public
SolarRandomizer ()
int setUp (TStatusWindow*, Param* });
}:
#endif

Jr%* BEnd of Bolar.h *hrsradkkihahhthbrithrhhhhdthbbhhhnrhhrddhrhhrhrhtrrhtdrnd/

7.5.1.20 <vectors.h>

/******t****************t**********t*******l’********************************/

/%** Module: VECTORS.H rxwf
VAL L ek [/
/*** consists of class definitions for vectors and arrays. *ex/

/**t***t**********t***t***i**i******ﬁ**t******i*i****t*t***t*i*******i***t**l

#ifndef VECTORS HEADER
#define VECTORS_HEADER

#include <iostream.h>
tinclude <complex.h>

/**% Thg general class of a linear chain #w¥*kkiwhdkikrdtthhhherrrberkhktdbbnds/
tenplate <class T> class CHAIN_ {
protected:
: T p;
int size;
public: .
CHAIN (int mn);
CHAIN (void);
CHAIN_ (CHAIN & c);
CHAIN () {if” (size) delete p;}
int minchainindex (void);
int maxchainindex (void);

}
template <class T> class MATRIX_ ;

/*** The class of vectors ********************t***************#*************/
template <class T> class VECTOR_ : public CHAIN <T> {

public
int dim; // Dimension
VECTOR__ (void) : CHAIN <7> () {din = 0 s}
VECTOR_ {int n) t CEAIN <T> (n) { dim = n : }
VECTOR_ (VECTOR & V) : CHAIN <T> ((CHAIN_<T>§)v) { dim = v.size; }
TS operator {) (int i | H

Header Files vectors.h

7. Appendix II: Programme Description

7-130

VECTOR_& operator = (VECTCR & H
friend ostreams operator << {cstream& outstr, VECTOR & v);
friend istreamé& operator >> {istream& instr , VECTOR & v);
friend int operator == (VECTOR & u ¢+ VECTOR & v);
friend int operator i= (VECTOR & u ¢ VECTCR & Vv);
frisnd int operator < (VECTOR & u , VECTOR & v);
friend int operator <= (VECTOR & u » VECTOR_& v };
friend int oparator >= (VECTOR & u ; VECTOR & v);
friend int operater > (VECTOR & u ¢ VECTOR & v };
friend VECTOR_& operator <<=(VECTOR & u ; int k);
friend VECTOR_ operator << (VECTOR & u ; int k);:
friend MATRIX_<T> mul (VECTOR & u + VECTOR & v);
void create (int dim);
void add (T x y:
void del {int n):
void set (T x y:
void print {ostrean&);
void build {(istreams);
int search (T x):
T move_down {void y:
T move_up {void):
void swap {int,int);
VECTOR_<T> copy {int n);
void heapSort {);
};
typedef VECTOR <int> IVECTOR;
typedaf VECTOR_<double> DVECTOR;
class VECTOR t public DVECTOR {
public s
VECTOR (} 3+ VECTOR <double> { } { ; }
VECTOR (int n) * VECTOR_<double> (n) { ; }
VECTOR (VECTOR& v) 3 VECTOR <double> (v} { ; }
VECTORE& operator = (VECTOR&)3
friend VECTOR operater + (VECTOR& u, VECTOR& v);
friend VECTOR operator + (VECTOR& u, double v);
friend VECTORS cperator += (VECTOR& u, VECTORE v);
friend VECTORS& operator += (VECTORE u, double v);
friend VECTOR operator - (VECTORS u, VECTOR& v);
friend VECTOR coperator - (VECTOR& u, double v);
friend VECTORS operator -= (VECTOR& u, VECTOR& v);
friend VECTORE operator -= (VECTOR. u, double v);
friend VECTOR operator * (VECTORE u, double v);
friend VECTOR& operator *= (VECTORE u, double v });
friend VECTOR operator * (double u, VECTORE v };
friend VECTCR cperator * (VECTOR& u, VECTORE v);
friend VECTOR operator / (VECTOR& A, double x };
friend VECTOR& operator /= (VECTCR& A, doublae x };
friend VECTOR operator / (VECTORE u, VECTOR&E v)}
friend ostreams cperator << (ostreamk , VECTORE v };
friend istreams operator >> {(istreamk , VECTOR& v };
VECTOR absval ()3
double abs {)
double norm ():
double mean { '
double var {double)i
double minval { y:
int minindex { y;
double maxval { y:
int maxindex { };:
static VECTOR ¢ross {VECTOR &u, VECTOR &v);
static double scalar {VECTOR &u, VECTOR &v);

}i

/%%% Tha class of arrays * A *rrrdmedad bkt h b hdd A AR AR e AR R RA AR AR R AR RSNk [
template <¢lass T> class MATRIX : public CHAIN <T> {

public :
int row; // %Zeile
int col; // Spalte
MATRIX_ (void) ¢ CHAIN <T> () { row = 0; col = 0O; }
MATRIX_ (int m, int n) ¢ CHAIN <T> (m * n) { row = m; col = n; }
Header Files vectors.h

7. Appendix II: Programme Description 7-131

MATRIX_ (int n) t CBEAIN <T> (n * n) { row = col = nj
MATRIX_ (MATRIX_& R) ¢ CHAIN <T> ((CHAIN <T>&}A) .

{ row = A.row; col = A.col; }
VECTOR_<T> operator () (int i '
TS operator () (int i s int j
MATRIX & operator = (MATRIX &

friend ostreamé operator << (ostreams outstr, MATRIX & A
friend istreams operator >> (istream& instr , MATRIX_ & A

)i
)i
H
;i
r
void create {int n : int n);
void vec_%to_col (int i ¢ VECTOR <T>&k v);
void col to_wvec (int i s+ VECTOR <T>& v);
void diag_to_vec (VECTOR <T>& v);
T minval {(ints& i s ints i);
T maxval (int& i s ints i)
void print (ostreans):
void build (istream&)Y
}:
typedef MATRIX <int> IMATRIX;

typedef MATRIX <double> DMATRIX;
class MATRIX : public DMATRIX {

public :
MATRIX {) 3 MATRIX <double> () £:}
MATRIX (int m, int n) ¢ MATRIX <double> {(m,n) { ; }
MATRIX ({int n) 1 MATRIX <double> {n) {: 3
MATRIX (MATRIX& A) 1 MATRIX <double> (A) {:}
MATRIXE operator = (MATRIXS BT
friend MATRIX operator + (MATRIX& A, MATRIX& B);
friend MATRIXS operator += (MATRIX& A, MATRIX& B);
frisnd MATRIX - operator - (MATRIX& A, MATRIX& B };
friend MATRIXS operator == (MATRIX& A, MATRIX& B);
friend MATRIX operator * (MATRIX& A, double x };
friend MATRIX operator * (double x, MATRIX& A);
friend MATRIXS opsrator *= (MATRIX& A, double ¥;
friend MATRIX operatoxr * (MATRIX& A, MATRIX& B);
frisnd VECTOR operator * (MATRIX& A, VECTORG v);
friend VECTOR operator * (VECTOR& v, MATRIX& A);
friend MATRIX operator / (MATRIX& A, double x);
friend MATRIXS operator /= (MATRIX& A, double x);
friend ostreamé operator << (ostreamk , MATRIXEL A);
friend iatream& operator >> (istreamk , MATRIXK A);
void identity { Vi .
double trace { HH
MATRIX transp (1

HH

$endif

[+%* End Of VECTORS.H **atddkabht bk Ardh AR ke kR A AR AN AR R R LA AR KA R AN R R R AN/

7.5.12% <wind.h>

f******i*t******************iii*i**************t*************i**************,

[e . . RI2 Y
/*** Module: WIND.H Ty
frrx . 1Y
/*#* Header for wind related cbjects Ty

/*******t**i**************************************#*************************/

#ifndef WIND HEADER
$define WIND_EEADER

#ifndef DIFFCALC HEADER
$include <diffcalc.h>
fendif

$ifndef DISTRIB HEADER
#include <distrib.h>

Header Files wind.h

7. Appendix II: Programme Description 7-132

#endif

$ifndef MATHFUNC HEADER
$include <mathfunc.h>
#endis

class WindSpeedTimeSeries; // Forward declaration

/t**!**#************iiil*i**********t********i************i****ii**t*****t**,

Jxx%x Copntinuous Wind Speed Distribution *htttdahhsaxrrArrrakhhrrr R rhrahetbes/
FAZ R T IR Al AR R Ty A R R Al e e e A R I eI T Ty Ly

class Speed : public owObjfunc {
protected :
double vmean
double vsigma;
public :
Speed () { ; }
virtual double aval (double)} = 0;
int setUp (Param*);
¥i

class SpeedDist : public Speed {

public :
SpeedDist {)

;2
double eval fdénble v) { return (PEI(v,vmean,vsigma)};}
}:

clasg SpeedDens : public Speed {
public:
SpeedDens { } { ; }
double eval {double v) { return (phi(v,vmean,vsigma));}
}i
f***t**t*ﬁ***********t************i*i*t*i*******t*i*****t*************'*****I

/*** Digcrate Wind Speed Distribution #*waradstdahrdhdhhnekdtehrtdrerrntrnns/
AT I A I s eI L e L ey e R e e R e L R 2 L

¢lass DiscretWindSpeed : public DiscretDistribution {

private @
double uAlpha; // alpha quantile
doubls vmean; // mean wind speed
double sigma; // standard variation

double r;
VECTOR points;
VECTOR beta;

// correlation

double rawP (int , int JH

publiec 1
DizcretWindSpeed (int n) : DiscretDistribution (n) { ; }
double gnm { int, int)3

int getN (double |H
int setUp (TStatusWindow*, Param*);
b

/************************i**************t**********i*********i************t*/

/*** Continucusz Wind turbine power distribution *#wsssrsairrrrrrrrsdisiakdur/
/********************i***********i*t***tt*i******t**************************,

class ContWindPower : public Contimucusbistribution {

private @
double fvveo,veci,veo, vy, vinean, sigmav;
double TW (double);
protected :
doubla r 3 // autocorrelation ccefficient
publie
ContWindPower (¥
virtual “ContWindPowsr | Yy {: 1}
double F {double }i
int setUp (TStatuaWindow*, Param*):
void setCorrelation (double time, double bata);
yi

Header Files , wind.h

7. Appendix II: Programme Description 7-133

/*t*****t****i**t***tt**********************t******t********i**t************/

/*** Continuous Conditional Wind turbine power distribution #**txxrsxtersnssw/
/********************t*ii**ttﬂ***t*************i**i*****ti******i***********l

class ContCondWindPower : public ContWindPower {
public 1
ContCondWindPower () : ContWindPower () { ; }
int setUp (TStatusWindow*, Param*);

}:

/'t*t************#********************i*ﬁ***********************************/

/*** Wind turbine power probability distributions *w¥saadssrkdrtraesdddhtkrns/
/********************************ﬁ****ﬁ*************************************,

class ProbWindPower : public statfunc (
public
ProbWindPower {)i

}i

class ProbCondWindPower : public statfunc {
public :

ProbCondWindPower ();
};

/***i************t*******************************t**************i**t********/

/*** Digcrete Wind Power ARXRHEERRRERARRIR®]
/**ii***************ﬁ*******i****t**i**********i*********i******************/

clags DiscretWindPower i1 public DiscretDistribution {
private :
double vei,veo,vr,vmean;
ContWindPower* windPower;
WindspeedTimeSeries* timeSeries;
double getPower (int n);

public
DiscretWindPower (int n);
“DiscretWindPower ()y:

double gnm { int, int

double Gn { int

int getN (double

int setUp (TStatusWindow*, Param#*

¥:
tendif

e s T Tt
LR TR TR Y

frk%t Bnd of wind.h #aesatd b b n kb hdhdhbhh Akt A r e rh ke kA AR AR RS Rk Rk ke bk ek /

Header Files wind.h

7. Appendix II: Programme Description

7-134

7.5.2 Source Files

7.5.2.1 <owrenew.cpp>

/t****t**t**************************/

/*** Renewable Energy Resources for Windows *hk [/
/*********i***ﬁ**************************t***t*i*ii*i*****‘l*********tt***i/

$ifndef OWRENEW HEADER
#include "owrenew.h"
fendif

$ifndef OWPLOT_HEADER
#include “cwplot.h®
$endif

#ifndef OWCALC HEADER
#include <owcalc.h>
fendif

$ifndef OWLAPPL_HEADER
#include <owlappl.h>
fendif

#ifndef OWPARAM HEADER
$include <owparam.h>
fendif

#ifndaf CSTRING HEADER
#include <ecstring.h>
#endif

#include <owl.h>
tinclude <button.h>
tinclude <edit.h>
#include <groupbox.h>
#include <radiocbut.h>
#include <fstream.h>

#define dlgFile "owrenew.dlg"

/**t Module global Prototypea ***********i’********************************/
void NoFeatureMessage (HWND);

/**x Global varjables *rakkdkkdtdtrdhwrrkdhhhbrhdhbridbhhdrarerntertbrhdrrsst/
Param¥ param; // Parameter

PTRenewhApp App;

Graph¥* GraphData; // Graphic Data Interface

/***********#*i*********************it**tt***i*****t**********************/

/*** class TRenewPlot *xk/
/***/

TRenewPlot :: TRenewPlot (PTWindowsObject AParent, LPSTR ATitls, PTModule AMcdule)

t TPlot (AParent, ATitle, AModule)
{
delta = (curRect.right = curRect.left);
start = curRect.left ;
end = sgtart + delta;
clear = YES:

b

void TRenewPlot :: Paint (BDC d¢, PAINTSTRUCT _FARL v) {
if (clear == YES)
TPlot :: Paint (de, v);
else {
if (! param->disiuto}
clear = YES;

Source Files OWTEnew.Cpp

7. Appendix II: Programme Description 7-135

draw ()
}
void TRenewPlit 1t plot ()} ¢ // Display GraphData in a graph
int
setHeadLine (GraphData->headlina);
setSubLine (GraphData=->subline);

clearsereen {);

plotHeadLine ()

plotsubLine ();

drawMargin {);

GraphData->acale = drawAutolLinCoord (GraphData->m1n,GraphData->max,
GraphData->y, GraphData->axtext,” ",
YES,YES,GraphData->scale,GraphData->curveNo};

for (1=0 1<-GraphData«>curveNo i++) {

drawCurve {GraphData->x,GraphData->y{i],GraphData->cption};
switch (i)} {
case 0 3
setPenColor (RGB(255,0,0})});
break;
case 1 :
setPenColor (RGB(0,255,0));
break;
case 2 @
setPenColor (RGB(0,0,255));
break;
casa 3 1
default :
setPenColor (RGB(0,0,0));
break;
) }
setPenColor (RGB(0,0,0));
¥
/*ti*****i***********ﬁ******************t**t******ii**i*******************/
/*** Main Platform *ww/
,*********ii***i*******tﬁ***t**t****t*t***i****t*t*i*******i**************/
Jr*% class TMainWindow e mtrad ad et e A AR R AR RN RRER AR AR R AN R AR R A NN]

TMainWindow :: TMainWindow {PTWindowsCbject AParent, LPSTR ATitle)
H TWlndow(AParent, ATitle)

Attr.Style |= WS_MAXIMIZE | WS_VISIBLE;

AssignMenu (*COMMANDS"):

testplot = new TRenewPlot (th;s,NULL),
}

TMainWindow :: “TMainWindow () ¢{
delete testplot;

}

void TMainWindow 3: GetWindowClass (WNDCLASS& WndClass) {
TWindow :: GetWindowClass (WndClass);
WndClass.hbrBackground = (HBRUSH} COLOR_APPWORKSPACE+1;

-}
BOOL TMainWindow t: CanClosa ()

BOCL retval;
if (GetModule()->ExecDialog{new TYcMeasage{this, "Question",
*Do you want to quit to Windows?")) == IDYES){
fatream op;
op.open {dlgFila, ics :: out);
if (op)
op << *this;
op.close ();
retval = True;

}

else

Source Files owrenew.cpp

7. Appendix II: Programme Description 7-136

retval = False;
return retval:

}

void TMainWindow :: CMWindSpeed (RTMessage)
int retval=GetModule()}->ExecDialog (new TSpeedDialog({this,"SpeedDialog®}});
if (retval == IDOK)} {
testplot->cpen {);
teatplot~>clearScresn {();
testplot->close (};
TransSpeedDlg.setParameter ();
TransSettingsDlg.wiVmean = TransSpeeleg.vmean'
if (GetModule()->ExecDialog(new TW1ndSpeedObject(thia,“Statuszndow“))
== IDOK)
testplot->clear = NO;
}
}

void TMainWindow 11 CMSettings (RTMessage} {
if (GetModule()->ExecDialog (new TSettingsDialog (this, "Settings"))== IDOK) {
TransSettingsDlg.setParameter (};
TransSpeedDlg.vmean = TransSettingsDlg.wiVmean;

TransWindDlg.vmean = TransSettingsDlg.wiVmean;
TransSolarDlg.clearness = TransSettingsDlg.solK;
TransSclarDlg,.sigmak = TransSettingsDlg.soclSigmaK;
TransJointDlg.vmean = TransSettingsDlg.wiVmean;
TransJointDlg.sigmak = TransSettingsDlg.solSigmaK;
TransJointDlg.clearneas = TransSettingsDlg.solK;

b

}

void TMainWindow :: CMMaths (RTMessaga) {
if (GetModule()=>ExecDialog (new TMathsDialog (this, "Maths™})== IDOK) {
TransMathsDlg.setParanater ();
TransSclarDlg.coeff = TransMathaDlg.solCoeff:
TransSolarDlg.trial = TransMathsDlg.solTrial;
}
}

void TMainWindow :: CMDir (RTMessage} {
GatModule()~>ExecDialog (new TDirDialog (thia,"Directories"));
}

void TMainWindow t: CMDisplay (RTMessage) {
if (GetModule{)->ExecDialog (new TDisplayDialog (this,"Display"))== IDOK) °
TransDiaplayDlg.setParameter ();
}

void TMainWindow :3 CMRandom {(RTMessaga) {
if (GetModule()->ExecDialog {(new TRandDialog (this, "RandomNumbers"))==IDOK){
TransRandDlg.satParameter (};:
GetModule()->ExecDialog(new TRandomObject(this,"statusWindow"));
} .
}

void TMainWindow :: CMTimeSeries (RTMessage} {

if (GetModule()->ExecDialog (new TTsDialog (thls,“TlmeSerzes) }==IDOK) {
TranaTaDlg.setParameter ();
TransSettingsDlg.setParameter ({);
TransMathsDlg.setParameter (}:
param->golBypass = 1;
testplot=>open { };
testplot->clearScreen ();
testplot->close ();
if {GetModule()->ExecDlalog{new TTimeSeriesObject(this,"StatusWindow”))

== IDOR) {

int i,3:

char bufter(BO];

double x = (GraphData->y[0])(1};

for (i=0;i<=GraphData->curveNo;i++) {
for (3=1;j<=GraphData->x.dim;j++) {
if ((GraphData->y{i])(3j) != x)

Source Files OWTENew.cpp

7. Appendix II: Programme Description 7-137

break;
}

if (i>GraphData->curveNo && j > GraphData->x.dim) {
strepy (buffer,”All data have same value: *);
catDbl (buffer, x);
GetModule()=>ExecDialog(new TYoMessage(this,"Warning®,
butfer)};
raturn;
Y
else
testplot->clear = NO;

void TMainWindow :: CMFpt (RTMesaage) {
if (GetModule()->Exec¢Dialog (new TFpDialog (this,"PirstPassageTime"))==IDOK) {
TransSettingsDlg.setParameter (|);
TransMathsDlg.setParameter ();
TranasFpDlg.setParameter (};
param->gsolBypase = 1;
if (param~->fpSelectCalc==0)} // compute one valus only
GetModule()->ExecDialog{new TPassageTimeObject(this,“StatusWindow"));
alse { // compute more values
testplot->ocpen (};
testplot->clearScresn {);
tsﬂtplot->close ():
if (GetModule()->ExecDialog(new PassaanimesOb;ect(thls,'Statnstndow"))
== IDOK)
testplot->clear = NO;
}
}
}

void TMainWindow :: CMWindPower (RTMessage)} {
if (GetModule()->ExecDialeg (new TWindDialog (this, "WindPower®")) == IDOK) {
testplot->open ();
testplot->clearsScreen {);
testplot->c¢lose ();
TransSettingsDlg,.wiVmean = TransWindDlg.vmean;
TransSettingaDlg.asetParameter ();
TransWindDlg.setParameter ()
if (GetModule()->ExecDialog(new TDistributionCbject{this,*StatusWindow"))
== TDOR
teatplotl>clear = NO;
}
}

void TMainWindow :: CMSolar (RTMessage) { ‘
if {GetModule(}->ExecDialog (new TSolarDialog (this, “"SolarPower®)) == IDOK) {

" TranaSettingaDlg.solK = TransSolarDlg.clearness;
TransSettingsDlg.solSigmaR = TransSolarDlg.sigmakK;
TransMathsDlg.solCoeff = TranaSolarDlg.coeff;
TransMathaDlg.solTrial = TransSolarDlg.trial;

TransSettingsDlqg.setParametexr ();
TransSolarDlg.setParameter (};
testplot->open ();
testplot->clearScresn ();
testplot->close (});

if (Getuodula{)->Ex;cDialog(new ThistributionObject({this, "StatusWindow"})
m= TDOK)

testplot->clear = NO;
}
}

void TMainWindow :: CMRenewable (RTMessage) {
if (GetModule()->ExecDialog {new TJointDialog (this, "RenewablaePower~)} == IDOK)

TransSettingsDlg.so0lK = TransJointDlg.clearness;
TransSettingsDlg.solSigmak = TransJointDlg.sigmaK;
TransSettingsDlg.wiVmean = TransJointDlg.vmean;

Source Files

OWIENEW.CPP

7. Appendix II: Programme Description 7-139

void TRenewApp::InitMainWindow()
{

TMainWindow* Main = new TMainWindow (NULL, Name);

MainWindow = Main;

fatrean ip;

ip.open (dlgPile, ios t: in);

if (ip)

ip >> *Main;
ip.close { }; :
Main->TransSettingsDlg.setParameter |

)-
Main->TranasSpeedDly.setParameter {);
Main->TransPisplayDlg.setParameter { };

}

FAZ AT I S R Rt T I L E L L A e ey e s el a L s ISty
/**% Main Programme #*d*stwkwddddhhhbdbhhrbdhrhnrhbdrbbrhenrrbrdbddrrrrdtrt/
JRudddedkhdedhdedhhdhkdhhdhhhidbhbhdhhehitbhbbbhbddhhbddtbhhhbrrbhdhtdddhtrhdds]

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR 1lpCmdLine, int nCmdShow)
{
TRenewApp RenewApp(“"Renewable Energy Short Term Prediction®,
hInstance, hPrevInstance, lpCmdLine, nCmdShow):
param = new Param ();
param->disFirstCurve = YES;
App = ELRenewApp;
GraphData = new Graph ();
RenewApp.Run();
dalete (param);
dalete (GraphData);
return RenewApp.Status: -

-}

/*** and of file *¥Akk kA RAhARAhAhk kR ANKAAR R RE ARkt R vk bbbt hdrrr ekt hrnin/

Source Files owIenew.cpp

7. Appendix II: Programme Description 7-138

TransSettingsDlg.comZeta = TransJointbhlg.zeta;
TransMathsDlg.setParameter {);
TransSettingasDlg.setParametar {);
TranaJointDlg.setParametar ();
param->s0lBypass = 1; // set solar bypass
testplot->open ();
testplot->clearScreen ();
testplot->close ();
if (GetModula{)->ExecDialog{new TJointDistributionObjaect{this,"StatuaWWindow"})
m= TDOK)
testplot->clear = NO;
}
}

void TMainWindow :: CMExport (RTMessags) {
int errno = OK;
if (GetModule(}->ExecDialeg (new TExportDialog (this, "Export")) == IDOK) {
if (TransExportDlg.opNew == YES)
errnc = gxportData (GraphData->x, TransExportDlg.expFile, NEW,"",
GraphData->scale);
if (exrno)
for (int i=0;i<=GraphData->curveNo;i++) {
if ((errno = sxportData (GraphData->y[i],TransExportDlg.expFile,
ATTACEH,GraphData->legend{i],GraphData->scale)) == ERROR)
break; :

}

}
if (lerrno)
GetModula()~->ExecDialog(new TYoMessage{this, "Measage",
*Could not open specified file"));

}
}

void TMainWindow :: CMEelp (RTMessage) {
GetModule{)->ExecDialog{new TYcMeasage(this,"Message",
"Feature not implemented”));
}

ostream& operator << {ostreamé outstr, RTMainWindow v) {
outstr << v.TransSpeedDlg << '\n’;
outstr << v.TransSettingsDlg << ’‘\n’; |
outstr << v.TransExportDlg << ’'\n’;

cutatr << v.TransDirDlg << ‘\n’; |
outstr << v.TransWindDlg << '\n'; |
outsty << v,.TransSolarDlg << ‘\p’; *“ |
outstr << v,.TransJointDlg << '\n'; |
outatr << v.TransRandDlg << -'\n‘; ‘
ocutstxr << v.TransMathsDlg << *'\n’; ’ .
outstr << v.TransTaDlg << '\n’;)
outsty << v.TranzFpDlg << '\n’;

outatr << v.TransDisplayDlg << *\n’;
return outstr;

}

istreamé operator >> (istream& instr, RTMainWindow v) {
instr >> v.TransSpeedDlyg
>> v.TransSettingsDlyg
>> v,TransExportblg
>> v.TranaDirDlg
>> v,TransWindDlg
>> v.TransSolarDlg
>> v.TransJointDlg
>> v.TransRandDlg
>> v,.TransMathsDlg
>> v.TransTsDlg
>> v,TransFpDlg
>> v.TransDisplayDlg;
return instr;

3

/t** Application Fhkkkokkhkhkkhkhhdhhhkhdddd *************i******ﬁ****t*******/

Source Files OWIenew.cpp

8. References - 8-1

8. References

f]
2]

[3]

4

[5]
[6]
(71

{8]
9]
[10]

{11}

[12]
[13]

[14]

[15]
[16]
[17]

Abramowitz, M.: Handbook of mathematical functions, New York, 1965

Badescu, V.: Calculation of direct solar radiation on tilted surfaces, Solar Energy
Vol. 48, No. 5, pp. 321 - 323, 1992

Borland: Object Windows C++ Programming Handbook, Boﬂand International, 1992
Borland: Object Windows C++ Reference Handbook, Borland International, 1992
Borland: Borland C++ 3.0 Reference Handbook, Borland International, 1992
Borland: Resource Workshop User Handbook, Borland Inteniational, 1992

Bower, Ward 1: Performance of battery charge controllers: An interim test report,
21*Photovoltaic specialists conference, 1990

Bronstein, II'ja Nikolaevi¢: Taschenbuch der Mathematik, Harri Deutsch, 1987
Buresh, Mathew: Photovoltaic Energy Systems, Mc Graw-Hill, New York, 1983

Chauhan, Ankush: Modelling of diesel engine bearing wear under steady state and
transient conditions, Rutherford Appleton Laboratory, paper ERU-92-002, 1992

Coleman, Clint: Hybrid power system operational test results: Wind/ PV/ Diesel
system documentation, Telecommunication Energy Conference, Vol. 2, pp. 1-7, 1989

Child, Duncan: MPhil thesis, Loughborough University of Technology, 1993

Facinelli, W. A.: Modeling and Simulation of Lead Acid Batteries for Photovoltaic
Systems, 18th Intersociety Energy Conference, 1983, Vol. 4, pp 1582-15388

Feller, W.: An introduction to probability theory and its applications, Vol.1, Wiley,
1957

Fletcher, R.: Practical methods of Optimization I, Chichester, 1980
Freris, L.L.: The control of wind turbines, Imperial College London

Gopinathan, K. K.: Solar sky radiation estimation techniques, Solar Energy Vol. 49,
pp. 9 - 11, 1992

References

8. References | 8-2

[18]

[19]

{20]

[21]

[22]

[23]

24]

[25]

[26]

[27}

£28]

[29]

{301

[31]

Gumbel, E.J.: Distribution & plusieurs variables dont les marges sont données, C.R.
Académie des Sciences Paris, Vol. 246, pp. 2717-2720, 1958; in: Emanuel Parzen:
Modern probability Theory and its applications, John Wiley and Sons, New York,
1992 '

Hassan, U.; Sykes, D.M.: Wind structure and statistics; in: Freris, L.L. (editor):
Wind Energy Conversion Systems, Prentice- Hall, 1990

Helstrom, Carl W.: Probability and Stochastic Processes for Engineers, Macmillan,
1991

Hill, Martin; Mc Carthy, Sean: PV Battery Handbook, University of Cork, Ireland,
1990

Horst, Emil W, ter; Blok, Kornelis, Turkenburg, Wim C.: Battery Modelling for
Photovoltaic Applications, Photovoltaic Solar Energy 8th EC Conference, 1988
Florence, pp. 1564-1568

Jantsch, M., Stoll, W., Schmid, J.: The effect of tilt angle and voltage conditions on
PV system performance. An experimental investigation, 10 th European Photovoltaic
Solar Energy Conference, Lisbon, Portugal, 1991

Khouzam, Kame Y.: Optimum matching of a photovoltaic array to a storage battery,
Photovoltaic Specialists Conference 1991 (22 nd) IEEE, Vol. 1, pp. 706-711, 1991

Lipman, N.H.; Infield, D.G.: Wind- diesel systems; in: Freris, L.L. (editor): Wind
Energy Conversion Systems, Prentice- Hall, 1990

Magnus, Wilhelm: Formulas and Theorems for the Speciali Punctions of
Mathematical Physics, Springer Verlag Berlin, 3rd ed., 1966

Manwell, James F.; Mv Gowan, Jon G.: Lead Acid Battery Storage Model for
Hybrid Energy Systems, Solar Energy, Vol. 50, No. 5, pp 399-405, 1993

Nayar, C. V.: Solar/ Wind/ Diesel Hybrid energy systems for remote areas, Energy
Conversion Engineering Conference IECEC, Vol. 4, pp. 2029-2034, 1989

Orgill, J.F.: Correlation equation for hourly diffuse radiation on a horizontal surface,
Solar Energy Vol. 19, pp. 357 - 359, 1977

Papoulis, Athanasios: Probability, Random Variables and Stochastic Processes,
McGraw-Hill, 1984

Paynter, R.J.H; Lipman, N.H.; Foster, J.E.: The potential of hydfogen and
electricity production from wind energy, Report, Rutherford Appleton Laboratory,
UK, 1991

References

8. References

8.3

[32]

[33]

[341

[35]

[37]

[38]

[39]

{41}

{42]

[43]

36}

[40) |

Paynter, R.J.H.: Predictive control of a wmd diesel generation set, Rutherford
Appleton Laboratory, 1994

Press, William H.: The Art of Scientific Computing, 2™ edition, Ca.mbridgp- |
University Press, 1992

Risken, H.; Vollmer, D.: Methods for solving Fokker- Planck equations with
applications; in: Frank Moss (editor): Noise in nonlinear dynamical systems, Vol. 1:-
Theory of continuous Fokker- Planck systems, Cambridge University Press

Salameh, Ziyad M.: Step-up maximum power point tracker for photovoltaic arrays,
Solar Energy, Vol. 44, No. 1, pp. §7-61, 1990

Salameh, Ziyad M.: Step-down maximum power point tracker for photovoltaic
systems, Solar Energy, Vol. 46, No. 5, pp. 279-282, 1991

Salameh, Ziyad M.: A mathematical model for lead- acid batteries, IEEE
Transactions on Energy Conversion, Vol. 7, No. 1, pp. 93-97, 1992

Shepherd, C. M.: Design of Primary and Secondary Cells .II. An Equation
Describing Battery Discharge, Joumal of the Electrochemical Society, Vol. 112, pp.
657-664, July 1965

Sheridan, Norman R.: Batteries for autonomous renewable energy systems, J oum.al
of Power Sources Vol. 35, pp. 371 - 375, 1991

Skartveit, A.: The probability and autocorrelation of short- term global and beam
irradiance, Solar Energy Vol. 49, No. 6, pp. 477 - 487, 1992

Spanier, J.; Oldham, K.B.: Atlas of functions, Springer- Verlag Berlin, 1987

Tsubota, Masaharu: Development of lead- acid batteries for photovoltaic power
systems, Journal of Power Sources Vol. 35, pp. 355 - 358, 1991

Weiss, R.; Appelbaum, J.: Battery State of Charge Determination in Photovoltaic
Systems, J. Electrochem. Soc, Vol. 129, No. 9, pp 1928-1933

References

