

This item was submitted to Loughborough University as an MPhil thesis by
the author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY

AUTHOR/FILING TITLE

: _________ ~a~~-~1}-'=-~.:r::~-r:.~--~:. ____________ _
i
1 --Acc"es-sicitiico"Pv-N"o~---------- ------------------
,

0'{-'0 I 2..9 ~(~ ----------------- ---------------------------------
VOL. NO. CLASS MARK

Loughborough University of Technology
Department of Electronic and Electrical Engineering

Loughborough LEll 3TU

STATISTICAL REPRESENTATION
OF A HYBRID PHOTOVOLTAIC· WIND SYSTEM

FOR CONTROLLER DESIGN

by

Joachim Baumgaertner

Supervisor: Dr. David Infield
Prof. I. Smith
29.07.1995

Director of Research:
Date:

Submitted in partial fulfillment of the requirements for the award of A Master of Philosophy
of the Loughborough University of Technology.
Copyright by J. Baumgaertner, 1995

Content

CONTENT

1. INTRODUCTION

2. ENERGY SOURCES

2.1 WIND ENERGY

2.1.1 Wind Speed Power Spectrum - Empirical Results
2.1.2 Turbulence: The Micrometeorological Spectrum
2.1.3 The Macrometeorological Range

2.2 SOLAR ENERGY

2.2.1 Geometrical Aspects
2.2.2 Average Daily Solar Energy
2.2.3 Optimum Surface Orientation
2.2.4 Short- term Global Irradiance

2.3 BATfERY

2.3.1 Storage Technology
2.3.2 Lead- acid Battery

2.4 DmsEL GENERATOR

2.4.1 Fuel Consumption and Efficiency
2.4.2 Lifetime Considerations

3. POWER SUPPLY MODELLING

3.1 WIND TURBINE

3.2 THE PHOTOVOLTAIC ARRAY

3.2.1 The Equivalent Circuit
3.2.2 PV Power Supply
3.2.3 Temperature Dependency
3.2.4 Photo Current and Efficiency

3.3 CoMBINED RENEWAIILE POWER

4. STATISTICAL SYSTEM MODELLING

4.1 DISTRIBUTIONS

4.1.1 Wind Speed Distribution
4.1.2 Wind Turbine Power Distribution
4.1.3 PV Array Power distribution

Content

I

1-1

2-1

2-1

2-1
2-2

2-16

2-18

2-18
2-22
2-26
2-27

2-37

2-37
2-38

2-46

2-46
2-47

3-1

3-1

3-2

3-2
3-4
3-7
3-7

3-8

4-1

4-2

4-3
4-5

4-13

Content

4.1.4 Combined Power Distribution

4.2 TIME SERIES

4.2.1 A General Time Series Algorithm
4.2.2 Case Study

4.3 FIRsT PASSAGE TIME

4.3.1 Time Series Approach
4.3.2 Markov Chain Approach
4.3.3 Time Series versus Markov Chain Approach - A Comparison

5. SUMMARY

6. APPENDIX 1: STATISTICS

6.1 PROBABILITY DISTRIBUTION FuNCTIONS

6.1.1 Continuous Distribution
6.1.2 Discrete Distribution

6.2 FuNCTIONS OF RANDoM VARIABLES

6.3 CONDITIONAL DISTRIBUTIONS

6.4 THE AUTOCORRELATION FuNCTION

6.5 NORMAL DISTRIBUTION AND NORMAL PROCESS

6.5.1 Normal Distribution
6.5.2 Normal Process

6.6 RANDoM NUMBERS

6.6.1 Uniform Deviates
6.6.2 Transformation Method and Normal Deviates
6.6.3 Deviates of Discrete Distributions

7. APPENDIX ll: PROGRAMME DOCUMENTATION

7.1 FuNCTIONAL SPECIFICATION

7.1.1 Getting Started
7.1.2 Programme Description
7.1.3 Bugs and Errors

7.2 TECHNICAL DESIGN

7 .2.1 The File Structure
7.2.2 The Programme Structure

Content

II

4-20

4-25

4-25
4-26

4-38

4-38
4-46
4-56

5-1

6-1

6-1

6-1
6-2

6-3

6-4

6-5

6-6

6-6
6-7

6-8

6-8
6-9

6-10

7-1

7-1

7-1
7-1

7-10

7-11

7-12
7-14

Content m

7.3 CLAss REFERENCE 7-18

7.4 GLOBAL FuNCTIONS 7-83

7.5 LISTINGS 7-92

7.5.1 Header Files 7-92
7.5.2 Source Files 7-134

8. REFERENCES 8-1

Content

1. Introduction 1-1

1 . Introduction

This paper considers an autonomous, terrestrial energy supply plant applying renewable

energy sources. It presents a mathematical model whose purpose is to gain an in-depth

understanding of the impact of .fluctuations of the wind speed and the intensity of the sun on

the power supply of such an energy system. Results could then be used to design a controller

that operates the system. The system with its four core elements is depicted in Fig. 1.1.

t t t t

Fig. 1.1: Hybrid Energy System

They are a wind turbine, a photovoltaic array, a battery and a diesel engine. The controller

receives data from these components and manages them. The electric energy generated by

the system is provided for the user.

Combined Wind- PV- Diesel- systems do mainly compete with Diesel stand-alone systems,

Wind- Diesel- systems and the connection to the mains. These island systems are typically

Introduction

1. Introduction 1-2

designed for a rated power of up to several 10 kW. They are supposed to operate on remote

sites where a connection to the mains is not given.

(1) Diesel Stand- alone systems are the most common systems for decentral energy

supply. Eventhough they are the cheapest option - as far as the investment costs are

concerned - they might not be the best. And this is for three reasons. First, a diesel

uses an energy source with a limited range. Second, the combustion of crude oil

products causes ecological problems. Third, in remote areas the price for fossil fuels

might be significantly higher than in urban areas, thus leading to a steep increase of

the actual cost of a KWh. Moreover, in remote areas the required regular service

might either not be asserted or costly.

(2) Wind· Diesel- systems are one option to cut down on the fossil fuel consumption.

Since the renewable energy supply (i.e. wind speed) fluctuates considerably, a diesel

generator is necessary to ensure high reliability. As high wind speeds and high solar

insolation are often complementary, it is supposed that the photovoltaic array may fill

in the gap when the wind turbine does not produce enough energy and vice versa,

thus justifying the additional investment of the photovoltaic array.

(3) Connection to the national grid, which is fed by conventional power plants. This

option has to be ruled out for many a site such as islands far away from the

mainland. Where possible at all however, the investment of the connection is likely

to be fairly expensive as the costs for it increase with decreasing population density.

Moreover, centrally fed mains with a large area extension are susceptible to faults.

Fig. 1.2 shows the system in more detail. It consists of a wind turbine and a photovoltaic

array as the renewable energy sources, a battery as an energy storage unit and a fossil fuel

generator (diesel engine) for backup in order to guarantee a power supply at all times. The

battery is supposed to fill in short- term gaps in the energy supply by the renewable sources,

thus smoothing the power supply function and reducing the number of diesel starts.

Depending on the load that has to be supplied, the load might be directly connected to the

DC- Bus or via a DGAC- converter.

Introduction

1. Introduction 1-3

W"md ~ gml23lor

Fosm

~ j
fuel

genemlor

~
AC-

'
Battery Olarger
block Di5-

Load

dwger

' DC- Load
a

l'hOID-
voltaic MYr
llllllY DC-Bus

t

Fig. 1.2: Autonomous Wind- PV- System

Since both wind speed and solar intensity do vary considerably, the power supplied by the

renewable energy sources will vary too. Therefore, the general problem in the performance

of renewable energy systems is the matching of energy production and load. As far as the

energy producing components, the PV array, the wind generator, the diesel and the battery,

are concerned, it is assumed that standard components are used, thus resi:ricting the controller

to the interaction within the ensemble. The controller will therefore be in charge of the

charging and discharging of the battery, the start- stop- policy for the fossil fuel generator,

the maximum power tracking for the Photovoltaic array and its positioning. It is furthermore

conceivable to switch on additional loads if there is a surplus energy in order to reduce the

amount of dumped energy. These additional loads could produce storable goods as drinking

or hot water. To assist the controller in its management data will be fed in from all

components in regular time intervals. Hence, it will be informed of the current wind speed,

clm:ent intensity of the sun, state of charge of the battery and the load demand.

Introduction

1. Introduction 1-4

The purpose of this paper is to provide a mathematical model that reflects this scenario and

is able to support the controller in its decision making. The focus of this model is the

mathematical formulation of the stochastic processes "wind speed" and "solar intensity".

They can be transformed by applying simple models for the wind turbine and the

photovoltaic array into the stochastic processes "wind turbine power" and "solar power".

These algorithms allow to calculate time series, resulting in a short term prediction of the

power supply, delivering data that can be used by the controller to decide on the best policy

in order to minimize the operational costs of the system. The point that should be stressed

here is that this model is a short term model which allows to plan ahead over time periods

of the order of up to one hour by using hourly data from various sensors. This is supposed

to enable the controller to operate the system in an efficient way. For the best sizing of the

components, however, it is necessary to consider meteorological data of the site in question

over a longer period.

Physical aspects of the energy sources which the model is based on are discussed in chapter

2, followed by the discussion of the energy converters (i.e. wind turbine, photovoltaic array,

battery and diesel) in chapter 3. The statistical methods are then taken further in chapter 4.

It will focus on the probability distribution of the power supplied by the renewable energy

sources, followed by a section on the generation of synthetic time series of the power supply,

including both renewable energy sources and the battery. The last section of this chapter

discusses first passage time problems. The fust passage time is the expected time when the

power surpasses a certain passage level for the frrst time. This is useful for instance in the

event that the renewable energy sources do not provide enough energy to meet the demand.

If it is expected that this will be the case for a longer time period it might be worth

switching on the diesel. If not, the power might as well be supplied by the battery in order

to avoid switching the diesel on and off too often. Here, the fust passage time provides

useful information. Chapter 5, eventually, gives a summary by restating the main points.

The algorithms presented in this paper have been coded in C++ for a Windows 3.1

environment using the Borland C++ 3.1 compiler and the Borland Object Windows C++ 1.0

library. The relevant graphs in this paper have been created using Word Perfect Presentation

Introduction

1. Introduction 1-5

to which a data interface is provided by the program. The mostly interactive program is

described in the Appendix ll, where a complete class reference and a description of global

functions are given.

Introduction

2. Energy Sources 2-1

2. Energy Sources

2.1 Wind Energy

2.1.1 Wind Speed Power Spectrum - Empirical Results

The spectral density function of the horizontal wind speed is largely dependant on the

location where the speed was monitored. The characteristics of different sites, however,

reveal distinctive similarities. A generic spectrum ([19]) is shown in Fig. 2.1.

10-8 w-1 w-6 w-s 10-4 10"3 w-2 w-1 100 101 v/Hz

108 107 106 i 10S''1 104 103 102 ',1 101 100 w-1
t/s

' ' ' 1 year 4days 1 day 1 min

Fig. 2.1: Generic Wind Speed Spectrum

(1) Micrometeorological range

The peak in the high frequency range is caused by fluctuations called atmospheric

turbulence. The energy of the fluctuations is centered around a period of around 1

minute. They can be approximated by the Ornstein- Uhlenbeck process ([25]), a

stochastic model process. The micrometeorological range will be discussed in more

detail detail in 2.1.2.

(2) Spectral gap

A striking phenomenon of a typical wind speed spectrum is a spectral gap between time

periods of 10 minutes and 2 hours ([19]).

(3) Macrometeorological range

Wind Energy Wind Speed Power Spectrum

2. Energy Sources 2-2

Large- scale movements of air masses account for three peaks on the

macrometeorological side of the spectrum. The relative maximum at a diurnal time

period is due to different temperature gradients at day and night. This effect is likely to

be more distinctive at coastal sites as the air temperature on shore decreases more

rapidly during night time than off shore. Depressions and anti- cyclones usually occur

with periods of about four days which explains the second maximum of the spectrum.

Again the pattern here is that the peak will be more distinctive in oceanic climates

rather than continental. The peak at the one- year period in contrast is likely to vary

with the degree of latitude. It will vanish at sites in close proximity to the equator.

Some aspects of the macrometeorological range will be discussed in more detail in

chapter 2.1.3

The peak in the micrometeorological range allows a short term prediction of the wind speed.

Here, "short term" indicates time periods that fall into the spectral gap, i.e. between 10

minutes and one hour. Within this short term model a constant average hourly wind speed

and standard deviation are assumed. These macrometeorological, hourly data can be derived

from measured data. So far, what is said here, only applies to the wind speed distribution.

In chapter 2.2.4 it will be shown, however, that the solar power spectrum too, can be

seperated into a short term and a long term range. Hence, it will follow the same pattern: For

short term considerations a statistical model will be used, whereas hourly values for the

beam intensity are taken from a data feeder. Usually, the data feeder will hold current data.

For optimization purposes, however, it could as well hold historical data taken from a

specific site over a week or a month.

2.1.2 Turbulence: The Micrometeorological Range

2.1.2.1 Definitions

Turbulence includes all fluctuations with frequencies higher than the quasi- steady mean

wind speed variation. If we assume the mean wind speed to be constant over a sufficiently

Wind Energy Micrometeorological Range

2. Energy Sources 2-3

short time period, v(t) = v, the wind speed of the fluctuation will be defmed by ([19], 2.15)

vp) = v(t) - v
(2.1)

the difference between the instantaneous wind speed v(t) and the mean wind speed v. The

variance of the turbulence will then be

..
Var(Ji) = J (v-W f.(v)dv

_., (2.2)

where fv(v) is the probability density function with respect to the wind speed v. The index v

signals that V is the random variable. It is worth noting that the argument of the variance

operator in (2.2) is capital V. Throughout this paper random variables will be referred to by

capital letters, their realizations by small ones1
• Given n realizations of the instantenous

speed, v1 (j=l..n), the empirical variance of the turbulence can be estimated from

(,z =
y

(2.3)

The turbulence intensity is defmed as the quotient ([19], 2.17)

I = Uy
y -

V (2.4)

2.1.2.2 Turbulence and the Ornstein· Uhlenbeck Process

Wind fluctuations over a restricted time interval can be represented by the Omstein­

Uhlenbeck process, which also describes the velocity of free particles in Brownian motion.

The random variable related to the velocity will be called V. In order to condense and

simplify the formulas involved let us introduce the norrnalizations of the time axis,

1Refer to chapter 6 for further discussion of random variables and distribution
functions.

Wind Energy Micrometeorological Range

2. Energy Sources 2-4

'r'=fJt
(2.5)

with the time constant P .. and the normalization of v,

~(l) = Y(t) - y
(7 (2.6)

with the deviation a. Both parameters 't" and ~ are thus dimensionless and their significance

will prove to be self- explanatory after the following remarks. The random variable that

stands for the normalized process will be :?:. It is beyond the scope of this paper to elaborate

on the physical details of the Ornstein- Uhlenbeck process. The O.U. - process is a

continuous time Markov process whose probability density function e (~, 't") has to satisfy the

Fokker- Planck equation, which has the form

(2.7)

in the special case of the O.U.- process. The value Q(~,'t")d~ is the probability that, at time

't", the wind speed lies in the interval [~.~+d~] subjected to an initial condition Q(~,O) = h(~)

at time " = 0. A solution will be given later.

It may be noted that a discrete realization of an Ornstein- Uhlenbeck process is the Ehrenfest

model of diffusion ([14], p.343), which can be interpreted as a diffusion with a central force.

That is a random walk in which the probability of a step in one direction varies with the

position.

(i) Power Spectrum and Autocorrelation Function

The power spectrum of the Ornstein- Uhlenbeck process as a function of the angular

frequency c.>,

(2.8)

Wind Energy Micrometeorological Range

2. Energy Sources 2-5

is Lorenzian with the corresponding autocorrelation function2

(2.9)
Please bear in mind that t in (2.9) is normalized via (2.5). In the frame of the description of

wind turbulence it is sometimes referred to as Dryden spectrum. For the sake of simplicity

we will usually refer to the autocorrelation function (2.9) via the short hand r = R~~(t) or in

its unnormalized form r. = R~~<P.t).

(n) The Probability Density Function

The probability density function Q(~,t) is the solution of the Fokker- Planck equation (2.7).

In this section we assume boundary conditions to satisfiy Q(oo;r) = Q(-oo,t) = 0. These are

two physically sensible conditions to avoid infinite wind speeds. In the first step the special

initial condition Q(~,O) = li(~ - ~0) is considered. In this case, Q(~,t) = Q(~,t;~0), is the

probability density under the condition that a wind speed ~0 has been observed at time t =

0. The solution is ([20], eq.3.40) given by

(2.10)

This is identical to the probability density function of a bivariate standard normal probability

density function with correlation coefficient r (compare with equation 6.23). In fact,

Q(~,t;~0) can be thought of as a Gaussian curve whose peak wanders with t towards ~ = 0

while becoming broader. Other methods of solving the Fokker- Planck equation are discussed

for example in [34]. Actually, (2.10) can be interpreted as Green's function of the given

boundary problem. Consequently, the probability density function for any initial condition

Q(~,O) = h(~) can be obtained by convoluting Green's function with the initial condition:

..
Q(~,'T) = <Q(t,Tito) I h{t)> = J Q(t,'Tito) h{to)dto (2.11)

2Refer to chapter 6 for a discussion of the relationship between autocorrelation
function and power spectrum of a stochastic process.

Wind Energy Micrometeorological Range

2. Energy Sources 2-6

Equation (2.11) is actually generally valid: Green's function gives the solution of a boundary

value problem for the special initial condition h(~) = o(~ - ~ 0). The system response for

another initial condition can then easily evaluated via the convolution integral. Hence,

Green's function depends on both the partial differential equation and the· boundary values.

It is worth pointing out that are different types of Green functions, depending on the type of

differential equation and on the formulation of the boundary conditions, thus restricting the

generality of (2.11). In this paper, however, we only come across the type described above.

We might as well expand (((~;r;~0) as (using a generating formula in [26], p.252)

(2.12)

where H, is the Herrnitian polynom ([26], p. 24'1). The dependencies revealed by this

formula are characteristic for diffusion processes: The time ' appears as a linear term in the

exponent, a fact that makes clear that the process is irreversible, as it does not produce the

same values for negative times. In contrast, solutions of the well known wave equation,

where a second time derivative occurs, are invariant under time reversal.

(fu") Equilibrium Distribution

The equilibrium distribution,

(2.13)

is simply the standard normal distribution (equation 6.20). Bearing the normalization in mind

we conclude that the stationary process V is normally distributed with variance o 2 and mean

wind speed v. If ~(x) denotes the Gaussian distribution function (equation 6.20) the

underlying distribution function is simply Ft(O = ~(~). Hence, the expected time fraction

• .. when the wind speed ~(<)exceeds a given value~ .. can be determined by

T a = p(8 > ~._..) = ell(-~ ...)
(2.14)

Wind Energy Micrometeorological Range

2. Energy Sources 2-7

where p stands for "probability for".

(iv) Level Crossing

The level crossing analysis of the O.U.- process gives an answer to the question of how

frequently a stochastic process crosses a given level. The situation is illustrated in Fig. 2.2

for the normalized process E.

~(t)

0 T

Fig. 2.2 Level Crossing

We will for the moment set ~. = 0, thus reducing the problem to a zero crossing problem.

The probability p0(t 0) that the zero level will be crossed by the process E in the time

interval t E [0, t 0] at least once when only crossings from negative to positive values count

(dots in Fig. 2.2), is equal to

1 Po('T) = -p(Z('T) < 0)
2

Wind Energy

, Z('f') = E(O)
E('f') (2.15)

Micrometeorological Range

2. Energy Sources 2-8

In (2.15) the random variable Z could as well be the product Z(t) = E(O)E(t) as it is only

the change in sign of E from time 0 to t which is of interest here. We prefer the quotient

as in (2.15) since the necessary integration (compare with equations 6.12) is straightforward.

The factor Vz in front of p0 sterns from the fact that only a half of the crossings are from a

state below to a state above ~r The distribution function F.(z) of the quotient Z of two

normal processes is given by ([30], eq. 6.46)

Fjz) 1 1 z- r
= - + -arctan ~=~

2 '1r Jt-r (2.16)

with autocorrelation coefficient r (2.9) , thus resulting in a zero crossing probability (now

writing t instead of t 0)

1 1 p0('T) = -F{O) = -arccos(r(T))
2 2'1r (2.17)

Extending the theory to any ~. the crossing probability will be ([30], 11.119)

(2.18)

Different approaches are presented in [30] (p. 345) and [25] (p. 346) reaching at the same

results.

(v) Linear Prediction

Linear prediction gives an estimate for a future value ~ (t + A.) of the 0. U. - process,

represented by the random variable E, as a multiple of the instantaneous value ~(t). The

estimator can be obtained by evaluating the Yule- Walker- equations ([30], eq. 13.6) and it

is

(2.19)

where ~ denotes the estimator of ~. This reflects the fact that the process drifts towards the

mean value at a rate proportional to the distance from the mean. Although it is a very simple

method of prediction it will not be used in this paper as it can not be applied to time series

Wind Energy Micrometeorological Range

2. Energy Sources 2-9

or first passage times.

(vi} First Passage Time Problem

Suppose we want to detetmine the expected time 't1 the O.U. -process needs to reach the

state ~ 1 from the initial state ~0 at 't" = 0. The situation, which is called a fust passage time

problem, is illustrated in Fig. 2.3.

~(t)

0 T

Fig. 2.3 First Passage Time Problem

Until further notice we will assume ~ 1 > ~ 0• Mathematically speaking we wish to calculate

the distribution function Fn('t") of the random variable T1 that stands for the time the process

crosses the line ~I for the first time after having started at level eo. Fn('t) can be expressed

by the conditional probability

. (2.20)
This problem can be solved in a very efficient way by examining the diffusion process in the

Wind Energy Micrometeorological Range

2. Energy Sources 2-10

half space. Here, one boundary condition will be Q (e ~> t) = 0, whereas the other remains in

the infmite space, Q(-oo, t) = 0. Hence, the boundary e1 acts as an absorbing wall. Particles

reaching the e 1 c level for the first time will be removed and will not appear anymore in the

half space e < e1• Green's function of this boundary problem is given by

S(~- ~o)

~0

Fig. 2.4 Diffusion in the Half Space

The solution can be interpreted as the diffusion of two fields, punctual symmetric to the

boundary ~ = ~ 1 , where they compensate each other. (Tills way of calculating the first

passage time has been applied to the Brownian process in [20] (p. 447)). Tills is illustrated

in Fig. 2.4. In the space ~ < ~ 1 is the original field while the sub space ~ > ~ 1 is occupied

Wind Energy Micrometeorological Range

2. Energy Sources 2-11

by the imaginary field. As in (2.11) the solution for the special initial condition Q(~,O) =

o(~- eo> is Q(e,t) = o2ce.eo.t). The number of particles left in the ensemble at time 't' can

consequently be obtained via integration

(2.22)

The distribution function in question, Fn(t), will then of course be

(2.23)
Applying (2.21) we obtain the distribution function of Th

(2.24)

which conveys the limits FTI(O) = I> e. e1 (5 denotes the Kronecker symbol) and Fn(oo) = 1,

as it has to be. The density function f11(t) with respect to t will be attained via the time

derivative, and it is

(2.25)

The expected transition time (average mean time for the prOCeSS tO get from eo tO ~I for ~I

>eo is

..
E[T] = J 1 ff,.t) dt

0 (2.26)

Looking at fr('t') it is obvious that the exP<:cted time exists as the integral (2.26) converges.

Wind Energy Micrometeorological Range

2. Energy Sources 2-12

To simplify the numerical evaluation the substitution r(t) = exp(-~vt) helps to extract the

representation

(2.27)

The emergence of the small value e is necessary as the integral is an improper one. It

reminds one that the above proposed substitution is not permitted at the singularity r = 0.

The results for ~ 0 > ~ 1 are dual to the above results as the same Green function holds true.

The number of particles left in the ensemble is accordingly

.. ~.

N(~I•") = I 1!(~,-r) ~ = - I 1!(~,-r) ~
~. -oo

(2.28)

In analogy to the first case we denote the random variable that stands for the transition time

with T 2• Its distribution function is

F-rJ..-r) = 2 - Fxf..-r)
(2.29)

and therefore the expected value E[T2] = - E[T1]. It is actually not only formally necessary

to split up in two parts depending on the sign of(~ 1 - ~ 0). The physical background of this

is that diffusion processes are not time reversible. This· fmds its expression in the time

derivative of only first order in the Fokker- Planck equation. In the case of wind speeds the

very result was expected anyway. Suppose the wind speeds ~0 and ~ 1 are both positive. The

equations developed here now say that it takes longer (on average) to get from a smaller ~

to a bigger one than in the opposite direction. Summarizing the results in a closed

representation we can note the expected average transition time from ~0 to ~ 1

(2.30)
by applying the well-known signum function.

Wind Energy Micrometeorological Range

2. Energy Sources 2-13

A different approach to the expected i!Verage transition time has been carried out in [32]

where Markov chains were used to determine the expected value. The technique described

above is only applicable if the random variable is normal distributed, which is true in the

case of wind speed fluctuations. For other distributions this method seems not to be feasible.

The Markov- Chain- technique on the other hand is more general and adaptable to any type

of distribution. We benefit from this in chapter 4.3 where two calculation techniques are

presented, which are generally valid. As far as the wind speed distribution is concerned,

however, the evaluation of integral (2.27) promises to be more efficient than the Markov­

chain- algorithm. It can, however, not be extended to the wind turbine power. The analytical

approach is therefore not further pursued.

(vil) Two Sided Boundary Value Problem

Suppose we want to calculate the mean time -rb = E[Tb] the O.U.- process E will stay within

the boundaries ~ 1 < ~0 < ~2 starting at ~0 at -r = 0. The random variable that represents the

time the process lasts within the band is denoted Tb.

0 T

Fig. 2.5 Two Sided First Passage Time Problem

Wind Energy Microrneteorological Range

2. Energy Sources 2-14

The situation is shown in Fig. 2.5. Formally we can take the same way as before, assuming

now two boundary conditions, Q(~h-r) = 0 and Q(~2,-r) = 0, and the initial condition Q(~,O)
3 ll(~ - ~0). Again, the problem will be solved by Green's function, G3(~.~0, -r). The

expected transition time can then be computed by applying the same method as before.

Green's function G3 however cannot be obtained as easily as in the case of a diffusion in the

half space. The two- boundary values problem results in a discrete eigenvalue spectrum and

Green's function is to be expected of the form

(2.31)

This statement satisfies both boundary conditions and the initial condition which can be

easily verified by bearing the completeness of the sine- function

..
2 E sin(mr C) sin(mr C') = 8(C - C')

D•i (2.32)

in the interval C E (0,1) (n integer) in mind. Obviously, this is not an efficient method of

calculating the expected time. The methods discussed in chapter 4.3, however, can be easily

adapted to this problem.

2.1.2.3 The Kaimal Spectrum

Empirical results show that the Kaimal spectrum ([25], eq. 16.15)

(2.33)

with the coefficients

Wind Energy Micrometeorological Range

2. Energy Sources

'i = aC

'i = a(2~ r
b = 1.67
a = 0.164
C = L

0.041 y

2-15

(2.34)

is a better representation of wind turbulence than the Dryden Spectrum (2.8). Its

autocorrelation function

"
Rx}.t) = .!.. I Sx}.Cil)COS(Cilt}dCil

'ff' 0 (2.35)

can be obtained via Wiener- Chintchin transform (eq. 6.16), where the time axis is not

normalized. This equation is used in order to determine the constants a; and P. in the

autocorrelation function of the O.U. - process, which is in the unnormalized form

R..(t) = u~ e -fl,t ,t>O
(2.36)

It is worth pointing out that the Kaimal spectrum was empirically found. The above

developed theory however only holds for a Lorenzian spectrum with autocorrelation (2.35).

In order to use the results of the statistical theory based on the Lorenzian spectrum we

approximate its parameters a; and P. as functions of the Kaimal parameter a~ and C. As the

autocorrelation function at t = 0 represents the power of the process, both autocorrelation

functions (2.36) and (2.35) have to return the same value at t = 0, thus leading to the

equation

(2.37).

Wind Energy Micrometeorological Range

2. Energy Sources 2-16

The integrand in the second expression is not dependent on any parameters. This integral can

be solved analytically ([8], 1.1.3.4), thus leading to the surprising result

(2.38)

To estimate the coefficient ~v , the autocorrelation of the Kaimal spectrum is to be

calculated at another point t,

(2.39)

The integral 'has to be numerically calculated for a given t and ~· In [25], p. 347 it is

suggested to select t = 2s, as we are interested in short term fluctuations.

2.1.3 Matrometeorologital Range

2.1.3.1 Mean Wind Speed Distribution

The horizontal hourly mean wind speed v is said to be Weibull- distributed with the

distribution function ([19], eq. 2.14)

F(V) = P< vs V> = 1 - exp[-(;r] (2.4())

which can be adapted to a given wind site by varying the shape parameter k and the scale

parameter c. These parameters typically hover in the range of k E [1.7, 2.5] and c E [1.15,

1.18] respectively.

2.1.3.2 Mean Wind Speed Profiles

The horizontal wind speed varies with height. If the mean wind speed v is monitored at

height z the mean wind speed at height z can be concluded from the formula ([19], eq. 2.5)

Wind Energy Macrometeorological Range

2. Energy Sources

m(-;:) + 5.75-hz
V{z) = "

V<z> () In ~ + 5.75!

u.
h=-

6f

2-17

(2.41)

Here, h is the gradient height, f the Coriolis parameter, u, the friction velocity and Zo the

roughness length. The Coriolis parameter depends on the location. It is f = 11.5E-5 s·1 for the

UK. Values for z0 are given in [19]. The friction velocity varies with surlace roughness and

with overall wind speed. If the friction velocity u. is unknown the simpler form ([19], eq.

2.4)

(2.42)

may be applied.

Wind Energy Macrometeorological Range

--- ---------------------------

2. Energy Sources 2-18

2.2 Solar Energy

The intensity of the solar irradiation directly outside the earth's atmosphere is almost constant

at around 1350 wm-2
• Eventhough this value varies up to ± 3% due to eccentricities in the

earth's orbit and fluctuating sunspots, it is stable enough to justify the name solar constant.

On the earth's surface the peak solar intensity hovers around 1 kwm-2 on a horizontal

surface, provided the sun is at its apex on a sunny day. In case the latter conditions are not

fullfilled, the solar radiation experienced on a surface will not be as big. In general, it will

depend on the position of the sun and the clarity of the atmosphere. These geometrical

aspects will be covered in 2.2.1. The actual solar power on a tilted surface as a function of

the clearness of the sky and the geometry will be calculated in 2.2.2. Chapter 2.2.3 is

devoted to a brief discussion of the optimum surface orientation. It is worth noting that the

solar power evaluated in 2.2.2 is a value, averaged over a longer time period. These values

are. good to estimate the solar energy received over a whole year at a selected site. They are,

however, not suitable for on-line control schemes. Though, the introduced terminology and

techniques will form the starting-point for the discussion of the statistical characteristics of

short term fluctuations in chapter 2.2.4.

2.2.1 Geometrical Aspects

2.2.1.1 Detennination of the sun' s position

The angle under which the sun is observed from a point on the earth' s surface is affected by

the earth's daily rotation, expressed by the solar hour angle, and the annual rotation of the

tilted earth, expressed by the declination angle and the observer's latitude. The orientation of

the sun can then phrased in_ terms of the solar altitude and azimuth.

(i) The solar hour angle

The solar hour angle n expresses the daily rotation of the earth. As the earth rotates 360°

within 24 hours, every hour adds another 15° to the solar hour angle. When the sun is in its

highest point in the sky, the solar hour angle is zero ("Solar noon"). Angles before noon

count negative, after noon positive. It is worth bearing in mind that the solar angle is not

Solar Energy Geometrical Aspects

2. Energy Sources 2-19

identical with the local time. For a conversion from solar hour angle values to the local time

the longitude of the site in question and the local standard time have to be considered.

(ii) The declination angle

The declination angle o is the angular position of the sun at solar noon with respect to the

plane of the equator, and it varies because of the earth's tilt of 23.45• from -23.45• to

+23.45•. Hence, the declination angle depends on the day of the year, n € [1, 365], and it is

([9], eq. 3-8)

8 = 23.45 (~) sin[2'll'
284

+ n]
180 365 (2.43)

on the northern hemisphere (in rad - not degrees). The declination angle reaches its peak at

summer solistice and drops to its negative peak at winter solistice. It is converse on the

southern hemisphere.

(ili') The latitude

If the sun is observed from a site other than the equator, the observer's latitude 6 has to be

considered, as the sun's highest altitude decreases with e. The resulting solar-noon altitude

angle is Oa = Vz1t - 6 + o.

(iv) Solar altitude, azimuth and zenith angle

Solar Energy Geometrical Aspects

2. Energy Sources 2-20

E

N

Fig. 2.6 Solar Altitude, Azimuth and Zenith Angle

The orientation of the sun in the sky can be phrased in terms of the solar altitude a and the

azimuth angle of the sun a. The altitude angle measures tlie angle between the line from the

observer to the sun and the line to the horizon (compare Fig. 2.6). The solar azimuth angle

gives the sun's angular distance from due south. An orientation to the East (as in Fig. 2.6)

counts negative, West counts positive. Hence, azimuth angles from sunrise to solar noon are

negative, while angles from solar noon to sunset are positive. The azimuth angle is obtained

from ([9], eq. 3-4)

sinu = sin8 sinll + cos8 cosll cosO

The altitude is calculated from ([9], eq. 3-5)

sina =
cosll sinO

cosu

Solar Energy

(2.44)

(2.45)

Geometrical Aspects

2. Energy Sources 2-21

The complement of the solar altitude angle, the zenith angle, is defmed as

11='~~"-q
z 2 . (2.46)

2.2.1.2 Sunrise and sunset

As the solar altitude angle is restricted to values a E [-90°,90°] equation (2.45) is only valid

for solar hour angles in the interval C E [C"' C,J where C, denotes the sunrise angle and

C,. the sunset angle. Substituting a = ± 90° into (2.45) leads to the sunrise angle Csr.h = c.
and sunset angle Css.h = - C, for horizontal surfaces, where

ns = arccos(-tanll tan8)

(2.47)
. For a tilted surface, however, equation (2.45) does not hold true.

<J>bT ·

Fig. 2. 7 Tilted Surface

Solar Energy Geometrical Aspects

2. Energy Sources 2-22

Suppose we have an array that is inclined to the horizontal by an angle ~ (compare

Fig. 2. 7). The angle between the projection of the normal of the plane on the horizontal and

South is a, the azimuth angle as introduced above, so that a = () is due South, a > () an

orientation towards the West and a < () an orientation towards the East. In contrast to the

horizontal surface, the magnitudes of the solar angle for sunrise and sunset are not equal.

They can be calculated by evaluating ([12], 2.2.15)

with the abbreviations

a = tC>s8 tC>s(J + sin8 tC>sa sin(J
b = tan8 (sin 8 tC>S/3 - tC>S 8 tC>Sa sin/3)

)}
)} (2.48)

(2.49)

In case the surfate faces due south(~ = 0), the magnitudes of sunset and sunrise angle will

be the same. Substituting ~ = () into (2.48) leads to a sunset angle

(2.5())

2.2.2 Average Daily SC>lar Energy

Empirical solar radiation data is mostly data for horizontal surfates. That is, the monthly

average daily total radiation on a horizontal surface, H, is measured. If Ho denotes the

monthly average daily total radiation directly outside the earth's atmosphere (i.e. the

insolation that would be experienced without the earth's atmosphere), the clarity index K can

be defmed by

Solar Energy Average Daily Solar Energy

2. Energy Sources

K·= H
a;,

2-23

(2.51)

which is the quotient of H and lfo. This coefficient is based on measured data depending on

the location and the month. The sunlight received by a horizontal surface can be divided into

two parts. First, the direct beam radiation, which strikes the surface from one angle only -

directly from the sun. Second, the diffuse light, which is the proportion of light that is

absorbed or scattered by air molecules, water vapor dust while passing the earth's

atmosphere. Diffuse light approaches the horizontal surface from almost any angle. Hence,

the monthly average daily total radiation on a horizontal surface can be written as a

superposition of Hb, the direct or beam radiation, and Hd, the diffuse radiation:

(2.52)
Light which approaches a tilted surface may as well be light reflected upon the ground (other

than the array surface). The conversion of the monthly average daily energy on a horizontal

surface, H, can be converted to the monthly average daily energy on a tilted surface, HT in

two steps. This is in so far important as only values for the horizontal surface are available.

(1) Estimating the diffuse light

Given an observed value of H, the diffuse radiation term in (2.52) can be separated by a

specific correlation function. For latitudes 6 between 43°N and 54•N the transformation

([29], eq.3)

1
1.557 - 1.84K, 0.35 :s K :s 0.75

Kd = 0.177 , K > 0.75

1.0 - 0.249K , 0 :S K < 0.35
(2.53)

is supposed to be accurate, where

(2.54)

is called diffusion index in analogy to the clarity index defined in (2.51). For other latitudes

similar formulas have been developed (for instance [17]). Having calculated the diffusion

Solar Energy Average Daily Solar Energy

2. Energy Sources 2-24

term Hd, the beam radiation H., can be worked out from (2.52).

(ii} Radiation on a tilted surface

The total hourly radiation on a titled surface is (the index T connotes "tilted")

(2.55)
It differs from (2.52) only in the additional term H, representing the reflected light. In the

following we express these terms as fimctions of H, the hourly total radiation on a horizontal

surface, and the introduced. geometrical magnitudes.

Fig. 2.8 Radiation on a Tilted Surface

We will first deal with the direct radiation term. The normal component ci>bT.., of the

intensitiy cl>b of the incoming light beam (compare with Fig. 2.8) on a tilted surface can be

obtained from ([12], eq. 2.2.9, 2.2.10)

Solar Energy Average Daily Solar Energy

2. Energy Sources 2-25

(2.56)

with

cos it T = sin8 sin(8 -,8) + cos8 cos(B -/J) cosO

(2.57)
Here, <I>bo is the normal component on the horizontal surface. Equation (2.56) is a good

approximation unless large differences between ~ T and ~ z have to be considered. Otherwise

the Badescu- formula ([2], eq. 10) should be used. Let Rt. denote the ratio of the average

daily beam radiation on a tilted surface to that on a horizontal surface,

(2.58)

With the different solar hour angles for sunrise and sunset, (2.48) and (2.47), the ratio Rb for

any tilted surface with slope angle P and azimuth angle a is obtained from ([12], eq. 2.2.14)

R _ a (0..,. -0..,.) + b (sin(O ..) -sin(O.,.) - c (cos(O.,.) -cos(O..,))
b - 2(cos8 cos8 sinO, + O,sin8 sin8)
a = sin8 (cosfJ sin8 - cos« sin/J cos8)
b = cos8(cos8 cosfJ + sin8 sinfJ cos«)

(2.59)

c = cos8 sinfJ sin«

In the preferrable situtation that the solar array is facing due south (a = 0) Rt. can be

evaluated from the simpler representation (with 0', as in (2.50))

cos(B -/J)cos8 sinO, + 0, sin(8-fJ)sin8
Rb = --'---'--:----:----:---:::---=:"-----:--:-:'-::---­

cos8 cos8 sinO. + 0, sin8 sin8 (2.60)

As far as the diffuse radiation on a tilted surface is concerned, an isotropic distribution of the

diffuse radiation over the hemisphere is assumed. The diffusion term can be attained from

([12], eq. 3.23)

H = H (1 + cos/3)
dT d 2 (2.61)

Solar Energy Average Daily Solar Energy

2. Energy Sources 2-26

which takes into account that the tihed slope sees only a portion of the hemisphere. Hd is the

diffusion tenn of the horizontal surface.

The last tenn in (2.55) is the reflected light portion. The energy of the reflected light is

dependant on the ground's abilitiy to reflect, a property which may be represented by the

albedo factor Q. The albedo usually ranges from 0.1 (asphalt paved roads) up to 0.9 (snow).

Given the albedo, the diffusion tenn can be calculated from

(2.62)

Substituting equations (2.59), (2.61) and (2.62) into (2.55) results in the monthly daily total

radiation on a tilted surface:

JL =H. R + H (1 + cosfJ) + !!(H. + 8 , (1 - cosfJ)
T bb d 2 b dl 2 (2.63)

Finally, the ratio of monthly average daily total radiation on a tilted surface to that on a

horizontal surface can be defmed as

(2.64)

At the end of this section it is worth pointing out that the calculus presented here applies to

monthly averages. It is assumed that clouds are uniformly distributed over the sky. Drifting

clouds are not considered in this technique.

2.2.3 Optimum Surface Orientation

Apparently, the maximum amount of direct-beam insolation is experienced by a surface

whose nonnal is parrallel. to the incoming light. In order to achieve this optimum orientation

it must be possible to rotate the surface around two axes, namely the tilt and the azimuth

angle, which requires two motors. Usually, the additional energy obtained by a twO- motor

option is marginal and d6es not pay off. Hence, the second best option is to fix the surface,

so that it faces due south and keep the slope angle flexible. In case that there is no

Solar Energy Optimum Surface Orientation

2. Energy Sources 2-27

· possibility to move the array at all, the surface would obtain the optimum amount of direct­

beam solar radiation over a year, if the tilt angle was equal to the site's latitude. Tilting the

surface up, on the other hand, causes the diffuse light portion. to decrease. The annual

optimum surface at sites with humid climates is therefore about 10% - 25% less than the

latitude ([9]). The last statement is backed by an experimental investigation ([23]), in which

a tilt angel of 30° is suggested for a location at 48° north.

2.2.4 Short- term Global Irradiance

2.2.4.1 Probability Density Function

Similar to the wind, the solar insolation is a stochastic process that reveals a distinctive

short- term irradiance process, a phenomenon we might call turbulence by borrowing the

word from the analysis of the wind. The short- term (5 minutes time average values) solar

irradiance has been modelled in a paper by A. Skartveit ([40]). We will cite from this paper

throughout this section unless otherwise specified. The objective is a probability density

function with the same functionality as in the case of wind turbulence, now for the intra­

hour radiation. Again the pattern here is that we have a stochastic model of the radiation for

a time period of an hour.

For the purpose of the short- term solar irradiance model the average root squared deviation

(~-~-l)l + (~-~+l)l
2 (2.65)

will be defmed. The coefficient~ is the clearneass index as defmed in (2.51) at the hour

with index j. The average root squared deviation is hence a weight function that takes into

account the changes of the clearness index from the precedent hour to the hour in question

and further on to the subsequent hour. Within the 5 minutes developmental sample the (i.e.

for 5 minutes time average values) observed distribution of the intrahour standard deviation

ak is Weibull- distributed with the density function

p(s) = a y(a s)T-l exp(-(a s)T)
(2.66)

corresponding distribution function

Solar Energy Short- term Global Irradiance

2. Energy Sources

~s) = 1 - exp(-(as)T)

and the coefficients

1 a= f(1+-)
y

a• = 0.87 XZ(l-.K) + 0.39ii{.K
y = 0.88 + 42(a•)2

2-28

(2.67)

(2.68)

Here, f(x) is the well known gamma function. The coefficient ak must be estimated by

chosing a random number C, which is supposed to be evenly distributed between 0 and 1,

instead of F(s). Then solve (2.67) for s,

s = .! './'-..-:In"< 1'-"C">
a (2.69)

and eventually determine at with (2.68). Given the hourly mean clearness index K (capital

K) and the standard deviation ab the distribution of short term k- values (lower case k) is

phrased in terms of a scaled clearness index x,

k-~

.¥ = A;.... - A;..u.

and standard deviation a.,

(2.70)

(2.71)

The minimum and maximum values of k are given by the empirical formulas

~ = max{O , (K -0.03)exp(-lla1.4> - 0.09 }

A;....= (K-l.S)exp{-9ai3) + 1.5 (2.72)

The probability density function of the scaled index x is now described by a linear

Solar Energy Short- term Global Irradiance

2. Energy Sources 2-29

combination of two Beta- distributions3• To clarify the following formalism we state the

definition of the incomplete Beta- function ([41], def. 58:3:1)

:<

B(a,{l,x) =I 1'""1(1-1)1'"1 dt
0

, O<x<1

and its normalized form ([41], def. 58:1:1)

Ii(a fl x) = B(a ,{J ,x)
' ' B(a ,{J)

, B(a ,fJ) = B(a,{J ,1)

(2.73)

(2.74)

B(a,p) is called Beta- function. Applying this notation the probability density function of the

scaled index x is

t:,(x) = w£;t"~"1 (1-x),._1 + (1-w) c;x"'-1 (1-x)JJ,-1

(2.75)

with the coefficients

(2.76)

and

W=

(2.77)

with

3 A random variable X is said to be beta- distributed with the parameters a and P if the
corresponding probability distribution function is F(x) = I(a,p,x).

Solar Energy Short- term Global Irradiance

2. Energy Sources

'"1 = :K(0.01 + 0.98exp(-60a!3
))

'"2 = (K -1)(0.01 + 0.98exp(-HaD) + 1

a~ = 0.014

ai = 0.006

2-30

(2.78)

Here, K is the hourly average clearness index normalized as in (2.70). The probability

distribution function of the process X will then be written as

(2.79)
and consequently the distribution function of the short term k- values (clearness index) as4

(2.80)

At the end of this section, let us throw the main points into relief: Within a reasonable time

interval, the clearness index k is a stochastic process whose distribution function is described

by Ft<k) (2.80), which is a function of the hourly mean clearness index K and the standard

deviation at . In practice, the latter parameter can be estimated from previous observations

(eq. (2.68)).

2.2.4.2 Conditional Probability

The objective of this subsection is to develop a technique to calculate the conditional

distribution function F.(x(t): X(O) = Xo) of X(t) subject to the condition X(O) = x,. We will

often use the abbreviation G.(x) = F.(x(t)IX(O) = :xo). For the purpose of this section we

assume an autocorrelation coefficient in the form

(2.81)
for the scaled clearness index x. At time t = 0 the conditional distribution function should

4Refer to chapter 6.2, for discussion of functions of random variables

Solar Energy Short- term Global Irradiance

2. Energy Sources 2-31

yield F.(x(O): X(O) = x.) = s(x - x.) 5 and its probability density function f.(x(O) : X(O) = X.)

= ~ (x - x.) since the probability to observe the process X(t) at time t = 0 in x. is equal to 1.

One way to work out the conditional probability would be to construct the joint probability

density function f.(x(t), x(O)) of the stochastic processes X(t) and X(O) from the given

marginal distributions F.(x(t)) and F.(x(O)) and the autocorrelation coefficient. A technique

to construct the joint probability density function from the marginal distributions is presented

in [18]. Given the joint probability density function, the conditional probability density could

be concluded from equation (6.14). In [18], the joint density function is known, which is not

the case here. Hence, the problem is being solved in a different manner. First, the (non­

conditional) distribution function F.(x) (2.79) will be approximated by a superposition of

normal distributions with their peaks shifted along the x- axis. The expansion has the form

(!

Fz(x) = :E u, v ,(x) = Fz(x)
g=l

with the generating functions

(2.82)

(2.83)

In (2.82), uq are coefficients which will be subsequently determined. The generating

functions vq(x) are normal distributions (definition equation (6.19)) along x with their means

centered at x = 0.5 and equidistantly distributed. The standard variation coefficients u q will

be chosen as

(2.84)

with a single coefficient c. The standard variation of each of the normal distributions will

thus be smaller if Q is larger or - in other words - if more functions are taken into account

and hence the distance between two peaks becomes smaller. The division by Q in (2.84) is

5 s(x - X.) denotes the unit step function with the step at x = X.·

Solar Energy Short- term Global Irradiance

2. Energy Sources 2-32

not imperative but intended to ensure that e lies in the same order of magnitude irrespective

of Q. The term in brackets in equation (2.84) is a number between I and 2 and has the

following effect: Whenever the density fimction f,(x) is small (or the increments in F.(x)) the

variance of the normal distribution with its peak at this point will be smaller and vice versa.

This correction term permits a more sensitive adaption in low- probability regions. The

limitation of the correction term to values in the interval [1,2] seems to be appropriate to the

range of f,(x). In order to optimize the approximation a least square problem is introduced

with the merit fimction

V(uv) = E [E (uv vv(m)) - Fz(m)]z m·l v·l M+I M+I (2.85)

as a fimction of the coefficients uq. Here, we assume that M trial points are taken into

account. It is worth pointing out that the generating fimctions v q(x) do not form an

orthogonal or complete fimction system. Therefore the choice of Q, M and e has to be

carefully considered. As F,(x) is a superposition of two incomplete Beta- fimctions its

derivative f,(x) may have up to 2 relative maxima over x E [0,1]. Hence, Q must be greater

than 2, better 8 or 12. Numerical results have shown that Q > 12 is not beneficial. For a

condensed representation we note the abbreviation

(2.86)

To find the minimum of (2.85) its gradient with respect to uq is to be set equals 0.

Rearranging this condition yields

j=I ... Q
(2.87)

This is a system of linear equations, and we can arrange it into the matrix representation

Au=d

(2.88)
with a symmetric coefficient matrix A and a right hand vector d. The elements of A and d

Solar Energy Short- term Global Irradiance

2. Energy Sources 2-33

are

M

~=E Fz(m) amJ
M+l m•l

M

Aq= E
m-1

(2.89)

Hence, solving (2.88) for u minimizes the merit function V (2.85) with respect to the

coefficients uq for a fixed standard deviation parameter E. The whole algorithm that considers

e as well is then as follow:

1. Set initial E = 0.4

2. Calculate u from (2.88) and the merit function V (2.85)

3. Repeat step 2 for different values of e until a minimum of V along the e -

axis has been found. The line search for e is carried out in two steps: First, a

bracket will be searched for, in which the minimum lies in. Second. a golden

section search6 ([15]) follows to determine the minimum with a higher

accuracy. High accuracy on the other hand is counterproductive to the

computing time. Note that for each e, V:zMQ evaluations of <l>(x) are required.

We will therefore quit the algorithm as soon as a V - value has been found

which is below a specific value (e.g. 0.003). In case Q was selected as 5 and

V at the initial point E = 0.4 is above 0.1, Q will be set to 8 and the

algorithm restarted. Otherwise the algorithm will be aborted if the minimum

of V has been determined to lay in an interval along the e- axis which is

smaller than 0.02 .

4. Function values of F,(x) can then be worked out from F,(x) (eq. (2.82)).

The quality of the approximation can be checked by calculating the difference berween the

object function F,(x) ((2.79)) and its approximation (2.82),

4(x) = F)x) - F)x)
(2.90)

6 Golden section search is after the Fibonacci routine the most efficient routine to fmd a
minimum of a function of one variable, when an initial bracketing of the minimum is given.

Solar Energy Short- term Global Irradiance

2. Energy Sources 2-34

In Fig. 2.9 A (x) has been calculated for typical values for k.Ko and o t· Here, the number of

coefficients is set to Q = 8, with the number of trials, M, as parameter. For M = Q the trial

points coincide with the peaks of the Gaussian functions. The figure of merit in this case was

V= 2.4E-30. Increasing the number of trials to 16 does not improve the performance. It is

actually quite the reverse. Hence, it is recommended to set Q = M.

In Fig. 2.10, Q and M have been simultaneously changed so that Q =M. Obviously, Q = 6

is not sufficient as the maximum difference A is 0.159 for the chosen parameters of k,Ko

and or

Parameter: K,. = 1.3, k = 0.7, "• = 0.35, N = 50
0

'
04

-- Q=6,M=8
--- Q=8,M=16

0.4 0.6
Normalized Clearness Index x

Fig. 2.9 Quality of the Approximation

Solar Energy Short- term Global Irradiance

2. Energy Sources 2-35

Parameter. K, = 1.3, k = 0.7, u, = 0.35, N =51
0.1,....--------------------,

0.4 0,8
Normalized Clearness Index x

Fig. 2.10 Quality of the Approximation

For Q = 12, a maximum difference l:i of 0.001 has been observed. Larger Q- values will

further improve the approximation. The associated calculation time, however, will increase

as well, thus forcing to strike a balance between expenditure and accuracy. As the

probability function is an empirical function, Q = 12 seems to be a good choice and will be

used in all calculations carried out in this paper unless otherwise explicitly stated.

Having determined uq and e the distribution function can now be worked out from (2.82). As

the conditional distribution of a normal distributed random variable is known (with density

function as in 6.23), the conditional distribution function of X as the superposition of normal

distributions can be easily concluded. It is

Q [x-(-q +(xo--q)r)]
F.,(xjX(O)=xo> = L uq<P Q+l Q+l

q·l u Jt -.r q

(2.91)

which is the superposition of weighted, conditional normal distributions with autocorrelation

coefficient r, (2.81). Equation (2.91) satisfies the stated initial conditions and it goes over

Solar Energy Short- term Global Irradiance

2. Energy Sources 2-36

into (2.82) for t - oo when r - 0.

So far, statistical models for the short term behaviour of both wind speed and clearness index

have been presented. We will continue this discussion in chapter 4.1, where the short term

statistical models will be unified and extended to the total power supplied by the renewable

energy sources. In order to include the power in the statistical theory, models for the wind

generator and the photvoltaic array are needed. They will be the focus of the discussion in

the following chapter 3.

Solar Energy Short- term Global Irradiance

2. Energy Sources 2-37

2.3 Battery

2.3.1 Storage Technolgies

A storage unit in a hybrid wind- pv- system is used to deposit any surplus in the energy

supplied by the renewable energy sources. In times, when the energy demand exceeds the

available renewable energy, it is supposed to deliver the stored energy in order to avoid

starting the fossil fuel generator. This could be for a short period of seconds as well as for

a period of days. Out of all possible technologies the one should be selected, that fullfills the

following criteria best:

High charging- and recharging efficiency as well as a high storage efficiency

Speed at which the storage system can be brought into in order to absorb or deliver

energy.

High lifetime expectancy

High reliability

Low cost

Low ecologically harmful emission during both production and operation. Possibility of

recycling after reaching the lifetime limit.

Small size

In the following a brief outline of different storage technologies will be given and the above

criteria will be addressed.

Mechanical storage systems reveal a high energy conversion efficiency. A drawback is their

large size.

Chemical storage systems, in general, have a lower efficiency for energy conversion. The

most prominent example for this category is the hydrogen production ([31]). Hydrogen is

versatile in its application and an environment friendly storage medium. The costs, however;

are considerably (- 1000 ECU/kW).

Electrical storage systems, for instance _in form of an electrolyte capacitor, are only suitable

for the storage of energy for a few seconds.

Battery Storage Technologies

2. Energy Sources 2-38

Electrochemical storage systems (batteries) are systems where the chemical energy is

translated into electric energy, which is produced when the chemicals in the system react

with one another. Rechargeable systems allow the reverse process as well. Lead- Acid is the

most commonly used battery type in PV applications due to its competitive price. NiCd

batteries tend to have a higher energy density and may last longer in very cold areas. They

are, however, more expensive [21].

For this paper a lead- acid battery has been chosen as energy storage system, which seems

to be a good compromise between cost and life expectancy. Compare discussion in [21] and

[7].

2.3.2 Lead- acid battery

2.3.2.1 Chemical Reaction

The energy stored in a battery is a chemical energy that is translated into electrical energy.

The latter one is produced when the chemicals in the battery react with one another.

Rechargeable batteries as the lead- acid battery allow the reverse process as well. In case of

the lead- acid battery the chemical reaction can be written as ([37])

Pb + Pb01 + H1S04 .., 2PbS04 + 2H10

The rate of the chemical reaction varies with

state of charge,

battery storage capacity,

rate of charge and discharge,

environmental temperature and

the age and the shelf life of the battery.

2.3.2.2 State of Charge

The electric charge, Q0(t), in a battery can be thought of as the sum of the available charge

Battery States of a Battery

2. Energy Sources 2-39

(lt{t) and the bound charge (lz{t). They all vary with the time. At the beginning, however,

the electric charge <MO) = Q1.~(t) + <6_~(t) = Qb coincides with the battery storage capacity

(i.e. the rated charge). The state of charge is defmed as

(2.92)

the quotient of the residual capacity Q1(t) and the battery storage capacity. The depth of

discharge, DOD, is then simply

DOD=1-SOC

(2.93)

...

Battery

'

Fig. 2.11 Battery as a Two-Pole Device

If the battery is viewed as a two- pole electrical device (Fig. 2.11) with output current Ib and

voltage Vb three states of the battery, dependant on the sign of lb, can be defined as follows:

Battery States of a Battery

2. Energy Sources 2-40

(1) 1t, < 0 : The battery will be charged.

(2) 1t, = 0 : The battery will be exposed to an internal discharge, idle discharge. A typical

value for self discharge is 0.1% per day ([42]).

(3) lt, > 0 : The battery will be discharged.

In Fig. 2.12 the SOC is sketched for the three phases as a function of time.

soc
Idle

Charge discharge Discharge
1 +-----~--r------+----~~--

0 t

Fig. 2.12 State of Charge

Knowing the state of charge of the battery is very important for the energy management as

it directly represents the energy that is available in the battery. As the battery charging or

discharging current is in most cases not constants and varies according to changes in solar

insolation and wind speed, a reliable state-of-charge determining on-line method is needed.

For the purpose of this paper it is assumed that the state of charge can be determined. An

on-line algorithm is described in [43] for instance.

2.3.2.3 Battery Modelling

The purpose of a battery model in this context is to provide a relationship between the state

of charge, current and voltage. Below follows the brief discussion of three battery models.

The frrst two, the Shepherd and the Salameh- Model, are electric models, the third is a

Battery States of a Battery

2. Energy Sources 2-41

storage model. The electric models can be described in terms of an electric circuit with

various elements. They permit us to calculate the voltage and the current. Given the electric

current the available charge can be concluded from the differential

(2.94)

where 1h is a charge/ discharge efficiency factor.

(i) The Shepherd Model

A simple electric model was devised by Shepherd ([38], [24]). The electric circuit is

illustrated in Fig. 2.13.

X

V0,d·~DOD !
• I

Fig. 2.13 Battery Equivalent Cin:uit: Shepherd M()del

It consists of a series of a resistance, Ro, a fixed voltage, V 0, and a charge dependant voltage,

g DOD. The diodes are for directional purposes only, with the index 'c' for 'charge' and 'd'

Battery States of a Battery

2. Energy Sources 2-42

for 'discharge'. The discharge voltage is ([24], eq. 6)

(2.95)
and the charge voltage accordingly with index 'c' instead. The equation does not take into

account the diodes which modify the model slightly at very low currents. The resistance Rb

is defmed as ([24], eq. 7)

(2.96)

Here, nt.f denotes a parameter describing the cell type, ~.d the internal resistance at full

charge and Q...d a capacity paramter. Again, the same formula applies for charging the

battery with index 'c'. In this form the model requires 5 parameters for each process,

charging and discharging. This model can be easily extended to accommodate temperature

dependancy by declaring parameters as functions of the temperature. Facinelli ([13], eq. 4a)

assumes a quadratic relationship, whereas Khouzam ([24], eq. 9) employs linear functions.

(ii) The Salameh Model

The Salameh Model · ([37]) is a further development of the Shepherd model, as it takes

internal discharge and overvoltage into account The electric circuit is shown in Fig. 2.14.

Battery States of a Battery

Fig. 2.14 Battery Equivalent Circuit: Salameh Model

Again, the diodes are strictly for directionar purposes and in this sense ideal. The battery

capacity is C,, the self discharge resistance ~· Devices with index 'o' stem from the

overvoltage circuit, whereas 'd' and 'c' denote 'discharge' and 'charge'. Although it seems to

be a linear circuit - apart from the diodes - it is not. All devices are non- linear. The state of

charge can therefore only be worked out in an iterative way.

(fu') The Manwell Model

This model ([27]) places the emphasis on the electric charge. It assumes that the electric

charge in a battery is either available or chemically bound. Charging and discharging causes

a transfer of charge from one to the other 'container', though the sum of both may decrease

with the time. According to the model the amount of available charge, Q1(t), and bound

charge, ~(t) at time t can be written as ([27], eq. 8,9)

Ic (kt - 1 + e -kt)

k

Q2(t) = Qz,oe-kt + Qo(l - c)(l - e-kt) - I(1-c)(kt-1 +e-kt)
k

. (2.97)

with Q1,0 and Q2.0 denoting the charges at the beginning of the calculations. The sum of both

Battery States of a Battery

2. Energy Sources 2-44

is denoted by Q0 = Q1•0 + C4o· The parameter k is a rate parameter. The width of the charge

containers is described by c. Assuming a constant voltage the maximum discharge current is

([27], eq. 22)

kQ, e -kt + ,.. kc(1-e -kt)
I _ 1,0 'I<"O
$lax -

1 - e -kt + c(kt - 1 + e -kt) (2.98)

The maximum charge current can be obtained from ([27], eq. 23)

(2.99)

Here, Q,.. is the maximum battery capacity.

The model in this form does not take into account any temperature effects. For moderate

temperatures, however, it procures accurate results. There are two major advantages of this

model: First, it requires only 3 parameters, Q.,.., k and c. In comparison, the Shepherd model

requires 10 parameters, the Salameh model draws data from curves in order to determine its

underlying non- linear elements. Second, the Manwell model is based on the electric charge,

a fact that simplifies the determination of the state of charge. In the electric models, the state

of charge has to be calculated by solving a differential equation. Hence, for the generation

of time series of the state of charge in the section on time series, the Manwell model is used.

2.3.2.4 Lifetime Considerations

Depending on theoretical assumptions different statements can be made about the lifetime of·

a battery, which is measured in the number of cycles, N. The simplest relationship is ([22])

N DOD ,. constant

(2.100)
as long as the battery is not overcharged or overdischarged. Other laws are similar and do in

fact converge into above relationship under certain conditions. It is recommended ([11]) to

operate the battery between 40% SOC and 80% - 90% SOC. In [39] we have found some

typical values concerning the lifetime:

60% DOD 2000 cycles

Battery States of a Battery

2. Energy Sources

30% DOD

10% DOD

4000 cycles

6000 cycles

2-45

Summarising, it can be said that the charger/ discharger of the battery should be aware of the

fact that an increased lifetime is only possible with a shallow depth of discharge.

Battery States of a Battery

2. Energy Sources 2-46

2.4 Diesel Generator

With regard to the objective of this study just two facets of the operation of the diesel are of

significance: Fuel consumption and life time, both of whom are covered in the following two

sections.

2.4.1 Fuel Consumption and Efficiency

Fig. 2.15 illustrates a typical course of the fuel consumption as a function of the output

power Prneoe~ ([28]) as well as the corresponding normalized efficiency TJ rn...i· Here, the power

axis is conveniently normalized to the rated power PDiesel.r and the fuel consumption F(PDie,.~

is normalized to the consumption at the rated power, F(P0~=~,r). The graph gives rise to a

linearization of the fuel consumption F(PDiesel),

(2.101)

with the dimension [volume/s]. Given the figures in [28] we have computed the linear

regression coefficients to be f0 = 0.15 and f = 0.81. This data may serve as long as no

specific data are given. Summarizing we can say that the diesel should always be operated

above a certain minimum load in order to maintain efficiency.

Diesel Fuel Consumption and Efficiency

2. Energy Sources

lt------------------~-~-~-?~-
... ..----­

~/

/
I

I
•

0 1

Fig. 2.15 Fuel Consumption and Efficiency

2.4.2 Lifetime Considerations

F(PDiesel)

7J(PDieseJ

pDiesel

2-47

Operating the diesel under light load causes the engine oil to foul, thus leading to an

increasing wear and consequently higher maintenance costs and shorter life span. A model

of a diesel engine bearing wear has been proposed ([10]). At this stage we can, however, not

envisage an efficient way of including these results into the theory presented here. For now

we will therefore just bear in mind that the recommended load ranges between 50% and 80%

for prolonged operation ([11]). This conclusion falls significantly short of the expectations

aroused by the heading as we are still not able to quantize the influence of the load or the

frequency of start/ stop- cycles on the lifetime or the maintenance factor of the diesel.

Diesel Lifetime Considerations

3. Power Supply Modelling 3-1

3. Power Supply

3.1 Wind Turbine

In 'the study presented here we assume that the operation of a wind turbine is described by

its power- speed curve. In absence of a specific characteristic a model curve as shown in

Fig. 3.1 will be used ([16]) :

0 V

Fig. 3.1 P-v- Characteristic of a Wind Turbine

0 V :S Vd

pr(v-vd r Vd :S V :S Vr
Pturb(v) ; vr-vd

(3.1)
?.. vr:Sv:S v.,

0 V 2:: V.,.

Wind Turbine

3. Power Supply Modelling 3-2

Here, P, is the rated power of the wind turbine, which is the power supplied by the turbine

at the rated wind speed vr The wind speeds vci and v .. are called cut-in and cut-out speed

respectively. They define the interval in which the wind generator is operated. If the turbine

was operating at a wind speed below v ci• the engine wear would be too big to operate in an

efficient way. On the other side, the turbine is stopped in case of a wind speed above v eo•

This is merely for economic reasons as an operation above Vco would require a more

expensive turbine. P 1mb is the power supplied by the turbine. The power that is actually

available is further reduced by an efficiency factor 1J .. :

p Wlml = ., " p Turb

(3.2)

3.2 The Photovoltaic Array

3.2.1 The Equivalent Circuit

An equivalent circuit of a single diode model of a solar cell (index j) is drawn in Fig. 3.2.

The current generated by the incoming light is lphJ and will be discussed in chapter 3.2.4.

The Photovoltaic Array The Equivalent Circuit

3. Power Supply Modelling 3-3

I I
I I

(--

~h \I R p
u.

J

('-r-

Fig. 3.2 Equivalent Circuit of a Solar Cell

~ and R. denote the parallel and the serial resistance. The diode is detennined by its quality

factor A (usually in the range of A E [1, 2]) and reverse saturation current luj· For an array

of N, serial and NP parallel solar cells the 1-U- characteristic is given by

[(
U+IR)] U+IR

I = Ip/1 - 10 exp Ur s - 1 - RP s
(3.3)

where UT symbolizes the thermal voltage

(3.4)

with elementary charge e and cell temperature Teen· The total series resistance R., photo

current lpb and reverse saturation current Iu can be calculated from the values of the single

cell via

The Photovoltaic Array The Equivalent Circuit

3. Power Supply Modelling

Ip~~ =I~

10 =lOA
~ R = R.,-

6 ..., N.
p

3-4

(3.5)

It is worth mentioning that ~ and R, influence the characteristic in a significant way.

Fig. 3.3 qualitatively sketches the impact of ~ and R,. The continuous curve represents the

ideal array with R, = 0 and ~ - oo , whereas the dotted curves depict the effect of the

impedances.

0 u.
J

Fig. 3.3 I-U- Characteristic of a Solar Cell

3.2.2 PV Power Supply

The power supplied by the photovoltaic array, P sob is P ,.1 = UI, where I and U have to satisfy

The Photovoltaic Array PV Power Supply

3. Power Supply Modelling 3-5

the characteristic (3.3). In order to fmd out the point (l,.p, Ump) for which the maximum

power P mp = I,.pUmp is supplied by the array, we will simplify the equivalent circuit by

omitting the parallel resistance Rp and we are then able to write the array voltage in the form

(3.6)

The current at the maximum power point can be assessed by setting the current derivation of

the power to zero and it is ([24], eq. 19)

(3.7)

Equation (3.7) has to be solved numerically for ~,.p. Ump can be determined by evaluating

(3.6). The maximum power will then be the product of both.

R, = O.OSO.AUr • 0.11731V, ~ • 4.lmA .. .--------------,

• • Pfloto anrant (.Al

Fig. 3.4: Power characteristics of a solar cell

R, = o.OSO.AU,. o.rrmv. ~ = 4SmA

/
/

The diagrams in Fig. 3.4 demonstrate the dependency of the maximum power point as a

function of the voltage (right hand side) and the photo current (left hand side). Having

assumed typical values R. = 0.05 Q, AUT = 0.0737 V and Io = 4.5 mA we have calculated

the maximum power point for given photo currents using the method described above. Some

The Photovoltaic Array PV Power Supply

3. Power Supply Modelling 3-6

values are presented in Tab 3 1

~ 0.0 1.25 1.875 2.5 3.125 3.75 5.0
~~~--0-.0-+---0-.2-5+--0-.3-7-5+----0.-5+--0-.6-2-5+-----0.7~---0-.9~1 

~=dl 

Tab. 3.1: Photo torrent versus maximum power 

The values in Tab. 3.1 give rise to the presumption of a linear relation between P mp and Irh· 
Not quite. The linear approximation is only legitimate for sufficiently small photo currents. 

Towards larger values of J;,h the power curve will significantly flatten out as outlined in 

Fig. 3.4. 

In practice, a maximum power tracker may be inserted between the photovoltaic array and 

the load (i.e. the DC- bus) in order to ensure optimum operation. A maximum power 

tracking facility is an adjustable ratio DC to DC transformer which basically contains a 

parallel high frequency MOSFET switch. It provides a matching between the load and the 

photovoltaic array such that the solar cell is operated in the maximum power point. In 

general maximum power point trackers can be classified into step-down trackers ([36]) and 

step-up trackers ([35]). The first one drives a high voltage load from a low voltage PV array 

whereas the latter one operates vice versa. 

It is, however, suggested ([23] p.434) that an MPP tracker does not pay off in case it 

requires additional hardware. Jantsch ([23]) reports a best fixed voltage system which yields 

an annual energy output of 98.4% of an MPP operated system. 

For the purpose of this paper we assume that a reasonably good power tracker (with 

efficiency T) mpt) is in charge. The power delivered by the solar cell will then be reduced to 

(3.8) 
In case no MPP tracker was used, the factor T) mr• would summarily cover the expetted 

The Photovoltaic Array PV Power Supply 



3. Power Supply Modelling 3-7 

losses, caused by the lack of an MPP tracker. 

3.2.3 Temperature Dependency 

Unlike the wind turbine the solar cell characteristics vary sensitively with the temperature. 

In general, the cell efficiency will decrease upon increasing temperature. The influence of the 

temperature can be included in equations (3.3) and (3.7) by applying ([24] eq. 16-18) 

b = 4400 

a= S.1E-4 
(3.9) 

where T, is a reference temperature (usually 25° C). If hourly mean temperature values 

throughout the year are given, we will employ (3.9). Otherwise, the values at reference point 

are used. However, calculations in this paper have been carried out without taking the 

temperature dependency into account. 

3.2.4 Photo Current and Effitiency 

Only a fraction of the energy of the incoming light can be converted into electric energy for 

several reasons: 

Photons with an energy hv < E, (E, stands for the minimum band gap of the semi 

conductor) will not be absorbed. 

The surplus energy of absorbed photons will be thermalized, thus causing even a 

further reduction of the efficiency as temperature rises. 

Not every generated electron contributes to a voltage eE,. 

Already absorbed electrons are likely to be recombined, especially if they are close 

to surfaces. 

Even if the light beam and the array surface were perpendicular a reflexion would be 

caused due to the different refraction indices of the air and the semi conductor. 

For the purpose of this paper, however, we are content to introduce an efficiency factor C,.1 

The Photovoltaic Array Photo Current and Efficiency 



3. Power Supply Modelling 3-8 

that summarizes all the mentioned processes and assume a linear relationship 

(3.10) 
between the photo current and the product of the intensitiy of the perpendicular light <I>~ and 

the active array area A (not to be confused with the diode factor A introduced previously). 

For a silicon solar cell, for example, it is ( 501 "' 0.28 A W"1 ([9] p.73). 

3.3 Combined Renewable Power 

The renewable power supply consists of both the wind power (3.2) and the solar power (3.8). 

As far as the photovoltaic array is concerned, we assume a linear relationship between the 

maximum output power and the photo current (chapter 3.2.2). Taking (3.10) into account, a 

linear relationship between the solar power P ..,1 and the clearness index k (see chapter 2.2) , 

P so1 = e...,/ k 
(3.11) 

can be concluded. The maximum power will be supplied by the photvoltaic array if the 

clearness index reaches its maximum. Suppose the maximum clearness index is ~- This 

coefficient can be used to normalize the solar power, 

(3.12) 

for simplification of further calculations. The min- operator is used to ensure that the 

normalized power is within the range p, E [0,1]. For a clearness index k > ~the power 

output will not increase as the system is in saturation. In the same mauner, the wind turbine 

power (3.1), (3.2) is normalized to the rated power, 

(3.13) 

The total renewable power, P ,.., is P,.. = P wind + P ,.1• Its maximum P =.mu is reached when the 

wind turbine is operated in its rated power and the clearness index is k = K0• Hence, the 

Combined Renewable Power 



3. Power Supply Modelling 

maximum is P reo.max = ~ .. 1K0 + 11..P, .Introducing the dimensionless parameter 

'=--=-1~­
flw P, 1 + 

{so~ KO 

an elegant normalized expression for the total renewable power is given by 

Prw~ = pp rw~ = { Ps + (1 - {) P .. --

3-9 

(3.14) 

(3.15) 

The normalized parameters p., Pw and p..., are dimensionless numbers in the interval [0,1]. In 

the next chapter we will resume the discussion from chapter 2 by extending the statistical 

models to the normalized renewable power. 

Combined Renewable Power 



4. Statistical System Modelling 4-1 

4. Statistical System Modelling 

The previous chapter was concerned with the modelling of the electric power supplied by the 

various components of the system. Assume for the moment that all components are linked 

together in one system. The output of the system, which is the total power, is obviously 

depependant on a huge variety of parameters, that can be categorised: 

(i) FIXed Parameters 

Fixed parameters do not change their value during operation of the system. For 

example, the choice of a wind turbine determines cut·in, cut-out and rated wind 

speed. Once the wind turbine is chosen, they can not be altered. 

(ii) Rand~m Input Parameters 

Random input parameters are the wind speed, v, the clearness index, k, and the 

external power demand, due to their very nature. 

(ill) Derived Rand~m ~ara:ID.eters 

Derived random parameters are parameters that depend on the random input 

parameters. For instance, the mean wind speed. 

(iv) · C~ntroller Dependant Parameters 

These are parameters whose values are influenced by the controller. For instance, the 

state of charge of the battery falls into this category as the controller determines 

whether to charge or discharge the battery. 

Please note that the parameter categories listed here are not mutually exclusive. The state of 

charge, for example, is both a derived random and a controller dependant parameter. The 

intention of the categorisation is much more to focus on the fact that, although concise 

models for the power supply have been developed, the behaviour of many a parameter is all 

but fixed. Due to the statistical nature of wind speed and clearness index, the whole system 

is a non- deterministic system, which can only be described employing statistical methods. 

There are several reasons for doing this. 

First, it leads to a better appreciation of the influence of both the random input parameters 

and fJXed parameters on the system. 

Second, synthetic time series of the power output can be used for an off-line optimization of 

some of the fixed parameters. For instance, the fractional power factor (i.e. the ratio 

Statistical System Modelling 



4. Statistical System Modelling 4-2 

between rated wind and rated solar power) could be optimized off-line for given (typical) 

wind and clearness index data taken at the site in question. 

Third, statistical methods can be used to predict the power supplied by the renewable energy 

sources or the state of charge for given observations of the random input parameters and the 

state of charge. Again, this might be interesting for a better understanding of what is going 

on in the system. Though, there is another reason. As mentioned in the introduction (section 

1), the main purpose of the controller in this hybrid system is to be in charge of the battery 
' 

(charging, discharging or disconnecting) and the diesel (switch on and off). Statistical 

methods could be used to design the controller, which is not covered in this paper. For 

instance, various control policies could be compared off-line by generating time series. Later 

in this chapter, a very crude battery control policy is applied to generate time series of the 

state of charge. In this instance, the battery is being discharged (if possible) as soon as the 

renewable energy sources can not meet the power demand and it is always charged at times 

when there is a surplus. Other, more sophisticated policies can be easily implemented (or 

incorporated in the programme) as the important tools are developed here. The controller 

could, however, as well use statistical methods (e.g. first passage times) on-line and decide 

depending on those values. Hence, the methods developed here can be used at design stage 

as well as during operation. 

This chapter is divided into three sections, of which the fust is concerned with distribution 

functions. The second section covers the generation of synthetic time series of the power 

supplied by the renewable energy sources and the state of charge of the battery. The last 

section takes a deeper look at first passage time probletns. 

4.1 Distributions 

The purpose of this section is to introduce the probability distribution functions of some 

stochastic processes that occur in the system. The fust part is devoted to the wind speed. It 

is ·only included because the mathematical functions involved are simple, thus helping to 

appreciate the formalism and methods. The main emphasis however, is placed on the wind 

Distributions 



4. Statistical System Modelling 4-3 

turbine power and the photovoltaic array power. The discussion on distributions closes with 

the distribution of the joint renewable power, which is the sum of the power supplied by the 

wind turbine and the photovoltaic array. 

4.1.1 Wind Speed Distributi(m 

Let us first recall the conditional probability density function f.(v: v(O) = v0) of the wind 

speed v from equation (2.10), here in unnormalized form, 

with the corresJ>onding distribution function 

Y - ( Y + ( Yo - Y) rv) 

uvJt -r! 

(4.1) 

) (4.2) 

Fig. 4.1 and Fig. 4.2 depict the probability density and the corresponding distribution 

function of the wind speed fluctuations for a mean wind speed of 16 m/s and three values 

for the standard deviation c., where stationarity is assumed (I.e. r. = 0.0). For each graph 50 

values have been calculated. Both pictures clearly display the influence of the standard 

variation. Increasing the standard deviation has the effect of increasing the probability for 

wind speed values that are further away from the mean. 

Distributions Wind Speed Distribution 



4. Statistical System Modelling 

Parameter: v_ = 16m/s, N = 51 
SE-01 -,--'---------7<o-----,-----,=::7"1 

-- av=0.8 

15,2 16,8 
Wind speed [m/s) 

Fig. 4.1 Wind Speed Probability Density Function 

Parameter: v_ = 16m/s, N = 51 

OV=1.0 
............ 0¥=1.2 

1E+oo~===-~~=no.aAT ________ g __ ~~~~~ ...... ~ .. ~.~----, 
--- av=1.0 ,.• 
··········· av=1.2 

BE~1+=========~-------~~~-----~ 
5 , .. ·: 

'§ 6E.01-t------------~--,£------------j 
~ 

~ 
:@ 4E.Of +------------:oir------------J 

~ .;{ 
2E.01-t---------:7J'-------------j 

...... ~il 
OE+OO~~~~~~~>Trn>TTrrn.orrrnTTrnrnTTrn.-M 

12 13,6 15,2' 16,8 

Wind speed [m/s) 

Fig. 4.2 Wind Speed Distribution Function 

18,4 

4-4 

Distributions Wind Speed Distribution 



4. Statistical System Modelling 4-5 

4.1.2 Wind Turbine Power Distribution 

If we consider the random variable to be the input of the wind turbine characteristic (3.1) the 

distribution function of the normalized wind power Pw (eq. 3.13) can be expressed in terms 

of F.(v: v0)
7 (eq. (4.2)), 

0 p,..<O 

~,.(P,.I Yo) = F,( vd+3~( yr- Yd) I ro)-F.(v.., I JO) +1 O:Sp,..:S 1 (4.3) 
1 p,..>1 

Here, the short hand Fpw(Pw I V(O) = V0) = Fpw(Pw I v0) is used. Most conditional distribution 

functions in this paper are referred to by this notation. The wind power probability density 

function is attained by derivation: 

0 p,..<O,p,..>1 

F.(vdl JO) 8(p ... ) 
+ (F,( v.., I JO) -F.( vrl v0)) 8(p,.. -1) 

v-vd ( 3,-;;- ) 
+ ~ f.vd+yP,IVo 

3'.g 
(4.4) 

Since the wind turbine P(v) characteristic (eq. 3.1) is not differentiable at v = v, and v = vco, 

the distribution function Fpw(v) reveals discontinuities at Pw = 0 and Pw = 1. This explains the 

emergence of the Dirac- function in the probability density function. In order to avoid these -

computational problems connected with the Dirac function, the power scale will be 

discretized, 

D- 1 
Pw,D = N _ 1 

,n=1 ... N 
(4.5) 

where N power levels are allowed. As the power is now a discrete random variable, its 

distribution function will be a stair function with the distinct values 

7Refer to chapter 6.2, for a discussion of functions of random variables. 

Distributions Wind Turbine Power Distribution 



4. Statistical System Modelling 4-6 

(4.6) 

The probability density function will now be replaced by a discrete probabilty function with 

values 

n=1 

n=2 ... N (4.7) 

The value gp.,(n: v0) is the probability that - at time t - a power output Pw E [pw,..1 , Pw..l may 

be observed under the condition that the wind speed was v(O) = v0 at time t = 0. Summing 

up all gwp(n: v0) over n yields 1. 

The discussion of the functions gpw(n: v0) and Gp.,(n: v0) is conducted in two parts. First, we 

restrict ourselves to the stationary case. This is when the correlation coefficient r marches 

towards 1. Hence, the initial value has no influence on the stationary distribution. 

4.1.2.1 Stationary Distribution 

Fig. 4.3 shows probability functions gp.,(n: v0) for four different mean wind speeds as 

functions of.the normalized power with N =51 (4.5). For the rated wind speed, cut-in speed, 

cut-out speed and the standard variation Ov typical values have been assumed. These constant 

parameters are displayed above each diagram. In Fig. 4.3 the values for p, = 1 are omitted 

because of their magnitude. The curve with v = 18m/s for instance has a high probability for 

maximum power 1 eventhough it is not explicitly displayed. A better representation is 

therefore Fig. 4.4 where the corresponding distribution functions Gp.,(n: v0) are depicted. For 

a mean wind speed that is well below the rated wind speed (v = 12m/s in comparison to v, 
' 

= 16m/s) the shape of the probability function of the wind turbine power is almost the same 

as the one for the wind speed itself as the maximum power (p = 1) is very unlikely. 

Increasing the wind speed increases the probability for maximum power which causes the 

distribution function to jump to 1 at p = 1. Mathematically, this is due to the fact that the 

probability function is not zero at p = 1. Physically, the reason for this is that a whole 

Distributions Wind Turbine Power Distribution 



4. Statistical System Modelling 4-7 

continuum of wind speed values do cause the same power, the maximum power (eq. 3.1). 

Parameter: v, = 16m/s, v• = 2.8m/s, vw = 24m/s, u. = lm/s 
~oo,----------------------------.-----=~~~~ -- vmean•12.0m/a 

vmea1=-14.0m/s 
o.or+-----------4~\-------------1 vmean=16.QmJs 

0,4 0,6 

Normalized Power 

-·-·-· vm4B1=18.0m/s 

Fig. 4.3 Wind Turbine Power: Stationary Distribution 

Parameter: v, = 16m/s, v• = 2.8m/s, vw = 24m/s, u. = lm/s 

-- vmean=12.0m/a 
--- vmean=14.0m/s 
··········· _vmean= 16.0m/a 
-·-·- vmean=1&0m/s 

c: o.s-t---------------'-----J'------------1'--------i 
~ . 

~ 
I 

/ 
a o.e+---------------l-----------4--------------1 

.~-= m ... •'" 

~ o.•+-------1--------.f---------<". "----1 

·I 
I 

·~ 11 .... ····· 
(ii o.o-t---------J'-------~------------=.,..,._------i 

0 ' 
0 0.2 

I ollolol 

..... .. 
.. .. .. 

0,4 0.6 0,8 

Normalized Power 
-

Fig. 4.4 Wind Turbine Power: Stationary Distribution 

Distributions Wind Turbine Power Distribution 



4. Statistical System Modelling 4-8 

In Fig. 4.5 the probability function is shown for different rated wind speeds. It makes clear 

that the variation of the rated wind speed is on a par with the variation of the mean wind 

speed. The set of curves is almost identical to the set in Fig. 4.3. 

Parameter: v_ = 16m/s, v. = 28m/s, v~ = 24m/s, u, = lm/s 
SE-02 

vr=-14.0m/s 
--- vr=18.Dm/s 
··········· vr=18.0m/l 
-·-·- vr=20.0m/s 

I 
1E-02 . 

.' 
~ 

'' 
OE+OO 

0 0,2 

,.. . . ' I . 
I \ . 

! 
I \ 

~··· ........ 
I 
; 
! 
I 
I 

;_ 

•• .. 

.... .. ............ 
:"\ . 

\ 
. . . . . • . . . /-. 

'. . /. ... . \./ . . 
..... · .,.." -0,4 0.6 
Normalized Power 

'· ..... . . 
o.a 

Fig. 4.5 Wind Turbine Power: Stationary Distribution 

.,..-· 

·· ....... . ·· . -

Eventually, Fig. 4.6 shows the influence of the standard variation a.,. For comparison, the 

curve with a. = lrnfs is included in Fig. 4.5. As expected the probability curve becomes 

flatter while increasing the standard variation. A significant aspect is the increased 

· probability at zero power in the a. = 4rn/s curve. This is forced by the cut-out wind speed 

below which the turbine power is zero, eventhough the wind speed is not. Again, the values 

at p = 1 are omitted for the sake of a reasonable scale. 

Distributions Wind Turbine Power Distribution 



4. Statistical System Modelling 

p. = 05, v, = 16m/s, v_ = 16m/s, vd = 2.8m/s, V m = 24m/s, v, = 16m/s 

0,08 -- OV=4.0 

--- av=2.0m/s 
0,07 av=1.0rn/s f---------------11 

-·-·- av=o.snvs i 
5 
~~ . 
~ I ,..o.os+------------------.......,;_-1 
• I i 0.04+-----------------j'"". --1 
0.. I ••''" <\•'' !:'0.03-f--'---------------:; .. -r-----1 
! ... • .. 
~ ~ 
l!o.o•+---------------7~±=:=-l 
1ii 

0,4 0,6 
Normalized Power 

Fig. 4.6 Wind Turbine Power: Stationary Distribution 

4-9 

Fig. 4.7 shows the corresponding distribution functions including the jumps at p = 1. Note 

that the height of the jump at p = 1 is equal to the probability that the system delivers 

maximum power. 

Distributions Wind Turbine Power Distribution 



4. Statistical System Modelling 

~. = 0.5, v, = 16m/s, v_a = 16m/s, v0 = 2.8m/s, v., = 24m/s, v, = 16m/s 

av•4.0nVs f--------------~111 
:;: ov=2.0rTy's 

OV=-1.1Jrr¥8 
0V=0.5rTV8 

Normalized Power 

Fig. 4.7 Wind Turbine Power: Smponary Distribution 

4.1.2.2 Conditional Distribution 

4-10 

Having examined the stationary case light is now shed on the conditional probability 

distribution. Fig. 4.8 illustrates the impact of the time on the probability function. The initial 

wind speed was chosen to be 12m/s, well below the mean wind speed. At time t = 0 the 

wind speed is known. Hence, the probability for one particular power value is one. As time 

goes by the range broadens and its peak moves towards the peak which corresponds to the 

mean wind speed. In fact, the stationary solution for this particular setting is included in 

Fig. 4.3. The graphical representation of gpw(n l v0) in Fig. 4.8 emphasizes the fact that the 

power scale is discretized. It is worth pointing out that the time scale is not necessarily a 

typical one. Throughout the paper the time always appears in the product Pt in the 

autocorrelation function. By chosing a different J3 the time scale will vary accordingly. For 

the calculations of the probability distributions an arbitrary value 13w = 0.5s'1 is assumed. 

Different values, however, do not affect the results. 

Distributions Wind Turbine Power Distribution 



4. Statistical System Modelling 

{J. = 0.5, v, = 16m/s, v_ = 16m/s, vd = 2.8m/s, v., = 24m/s. "• = lm/s. v0 = 12m/s 

1=0.08 f-------, 
t:o::0.1a f----­
t"'0.28 
t:~~:O.Ss 

Normalized Power 

Fig. 4.8 Wind Turbine Power: Conditional Distribution 

4-11 

In Fig. 4.9 the probability fimction is shown for a set of initial wind speeds at one particular 

time t = 0.2s. For cross reference, the curve with initial wind speed v(O) = 12m/s is also 

included in Fig. 4.8. Bearing in mind that both the rated wind speed and the mean wind 

speed are 16m/s it is clear why the curve with initial wind speed v(O) = 18m/s is virtually 

zero anywhere except at maximum power p = 1. 

Distributions Wind Turbine Power Distribution 



4. Statistical System Modelling 4-12 

{J. = 0.5, V,= 16m/s, V_.= 16m/s, Vd = 2.8m/s, Vro = 24m/s, <Tv = lm/S, t = 0.2s 

Normalized Power 

Fig. 4.9 Wind Turbine Power: Conditional Distribution 

The corresponding distribution functions Gpw(n I v0) are depicted in Fig. 4.10. 

{J. = 0.5, v, = 16m/s, v_ = 16m/s, v. = 2.8m/s, vro = 24m/s, "• = lm/s, t = 0.2s 

Normalized Power 

Fig. 4.10 Wind Turbine Power: Conditional Distribution 

Distributions Wind Turbine Power Distribution 



4. Statistical System Modelling 4-13 

Fig. 4.11 displays curves with different mean wind speeds for an initial wind speed v0 = 

12m/s at time t = 0.5s, This is the same setting as in Fig. 4.3. That means that the curves in 

Fig. 4.11 move to Fig. 4.3 for t ~ oo, The interpretation is simple. Under higher mean wind 

speeds the system moves more quickly to higher power values than under lower mean wind 

speeds. 

{3.. = OS, v, = 16m/s, v0 = 12m/s, v. = 28m/s, v., = 24m/s, "• = lm/s. t = O.Ss 
0,12 

!\., 
vrnem=-12.0rrv's 

--- vrnem=14.0rnfs 
........... vme«'t=16.0fTV'8 

·- wnecn 1 e.onys 

I ".·· ... 
I i\}--, 

_L -~ \ \ . cl •• ~\ 

I 
. '- : 

i\ \ \ 
\ 

I \ 
I f i \ '· ~ \ 

I I f I \ ..... \ 

0 
0 

),1: I 
1 .. ·~./-

~ · .. '· ....... '· ' .... '· .. ' ' ' ' 
0,2 

.. 
0,4 0,6 

Normalized Power 

. . 

Fig. 4.11 Wind Turbine Power: Conditional Distribution 

4.1.3 PV Array Power Distribution 

4.1.3.1 Stationary Distribution 

In analogy to chapter 4.1.2 the normalized solar power scale (3.12) will be discretized by 

n-1 
Ps,n = N- 1 ' n=1 ... N 

(4.8) 

With the normalizations (4.8) and (2.70) and assuming the linear relationship (3.12), the 

Distributions PV Array Distribution 



4. Statistical System Modelling 4-14 

stationary distribution function Fps(n) can be phrased in terms of the distribution function 

F,(x) (eq. 2.79), 

(4.9) 

Similar to (4.7), a stationary probability function can be obtained from 

{ 

Gpo-(1) n=1 
g. 11) = 
p.( Gps(n) - Gps(n-1) n> 1 (4.10) 

The stationary probability function g"'(n) is shown in Fig. 4.12 for 3 different clearness 

indexes and a constant standard variation crk. Again, the power is divided up into N = 51 

values. The maximum (normalized) clearness index Ko = 1.3 is assumed. Fig. 4.12 reveals 

that the probability function has in general two maxima due to the superposition of 2 beta­

distributions. A higher clearness index moves both maxima towards maximum power. At the 

same time the peak of the low power maximum decreases in favor of the high power 

maximum. 

Distributions PV Array Distribution 



4. Statistical System Modelling 

Parameter: K, = 1.3, u, = 0.3S, N =SI 
0,07 - k=0.6 

--- k=0.7 _, ... 
o.oe-f-···_ .... _ ... _ . .:_k=:_:1;:.0J---------------f."--\ 

OA o,e 
Normalized Power 

Fig. 4.12 PV Array Power: Stationary Distribution 

4-15 

This becomes even clearer in Fig. 4.13, where the corresponding distribution functions G"'(n) 

are drawn. This is an interesting result. Obviously, the system has two preferential points, 

neither of whom is the average. Hence, it is expected that the solar power sometimes may 

change rather abruptly by jumping from one to the other peak. In fact, this can be seen in 

the discussion of time series in chapter'4.2. 

Distributions PV Array Distribution 



4. Statistical System Modelling 4-16 

Parameter: K, = 1.3,"" = 0.35, N =51 

-- k""'o.e 
--- k""'0.7 
··········· k•1.0 

0,2 o,4 o.e o.s 
Noonallzed Power 

Fig. 4.13 PV Array Power: Stationary Distribution 

In the graph depicting the distribution functions, the curves with higher clearness index are 

below the ones with a smaller k. Remember that any distribution function F(x) returns the 

probability that the system is in a state less than or equal x. 

The impact of the standard variation at is illustrated in Fig. 4.14 and Fig. 4.15. In the event 

of a small standard deviation a k the probability function is very much centered having one 

peak only. Larger values cause the two peaks that are mentioned earlier to seperate and drift 

apart towards minimum and maximum power respectively. 

Distributions PV Array Distribution 



4. Statistical System Modelling 

0,08 

0,07 

6 
~0.00 

& 
>.0,05 

Parameter: Ko = 1.3, k = 0.7, N =50 

oka0.15 
--- ak=0.25 
........... 0V'"'0.35 
-·-·- ov-=0.45 

!' 
""" /\ 

"' i ,., I "'\ ...... . · . ..c 0,04 

£ 
~0,03 

.Q 

~O.o2 

I ' 
li 
I 

. 
' , ..... ,..-, 
. 

...... /'f', / X 
._, 
~-~ 

l'j. ..._/ \/ . , ·. 
': J · .. . .1\ ''· .. ~·. .·· .. 

. ·· // /' ... ..· ~ ' .... ............ ••• ••• ,.tl .. --·-·-·' 
0,01 

0 
0 0.2 0.4 0,6 

Normalized Power 

Fig. 4.14 PV Array Power: Stationary Distribution 

0 

Parameter: Ko = 1.3, k = 0.7, N =50 

0,4 o.s 
Normalized Power 

Fig. 4.15 PV Array Power: Stationary Distribution 

0,8 

4-17 

,,., 

. 

. 
... 

The matching distribution functions in Fig. 4.15 disclose yet another pecularity. The power 

Distributions PV Array Distribution 



4. Statistical System Modelling 4-18 

at which the distribution function is 0.5 is independent of the standard deviation. This power 

point is only a function of k and Ko. Hence, Ot has an impact on the weighting and not on 

the average. 

Parameter: k = 0.29, "• = 0.08, N = 51 
0.1-4.,...----------------,--===..,."""'"""~-•"' 

--- I<D=1.0 

0.12 

~ g 0,1 
::J u. 

~0.06 
~ .c e 0- 0,08 

~ 
.Q 0,04 
Gl 
0 

0,02 

0 

... . 

0 0,2 

. . . 

\ 

0.4 0.8 
Normalized Power 

Fig. 4.16 PV Array Power: Stationary Distribution 

............ 1<0=1.3 

0.8 

In Fig. 4.16 curves are drawn with the maximum clearness index Ko as parameter. This 

parameter was introduced in (3.12) to nonnalize the power scale. It specifies the clearness 

index above which the maximum power is attained. In general, a larger Ko permits higher 

power values and broadens the shape of the probability function. It has, however, no effect 

on the qualitative course of the curve. 

4.1.3.2 Conditional Distribution 

In analogy to the previous section the discrete, conditional distribution function Gps(n: ko) of 

the solar power can be phraSed in tenns of the approximating conditional distribution 

function F,(x) (eq. 2.91): 

Distributions PV Array Distribution 



4. Statistical System Modelling 4-19 

(4.11) 

Similar to (4.10) the discrete, conditional probability function can be obtained from 

l G;JIIAQ> n=l 
J;JniAQ) = • • 

G;JniAQ> - G;Jn-IIAQ> n>I (4.12) 

Please note that the hat on gps.n signals that the normal distribution expansion (2.82) is 

applied. For large time values t ~ oo , Gps.n represents the unconditional distribution function 

as the autocorrelation coefficient r, touches zero. 

Parameter: Ko = 1.3, k = 0.7, "• = 0.35, k(O) = 0.1, 13, = 0.5, N = 51 

0 0,00<08 0.410818 0,61224 

Normalized Power 
0,81633 

Fig. 4.17 PV Array Power: Conditional Distribution 

In Fig. 4.17 an initial clearness index k(O) = 0.1 is assumed. The diagram shows the 

conditional probability function at 4 different times. Again, at time t = 0 the probability to 

observe the power value that corresponds to k(O) is 1. Later, the main bulk of the probability 

Distributions PV Array Distribution 



4. Statistical System Modelling 4-20 

function moves on to higher power values. 

Another interesting feature is the variation of the initial value k(O) as displayed in Fig. 4.18. 

It is no accident that the three curves have the same shape. It can be concluded from the 

conditional distribution function (2.91) that 

(4.13) 

Hence, any variation of the initial clearness index can be translated into a shift along the 

clearness index axis. It fmds its manifestation in Fig. 4.18. 

Parameter: X. = 1.3, k = 0.7, "• = 0.35, t = 0.2s, B, = 0.5, N =51, t=0.2s 
0,2 

, 

I 
0 

0 

A .: .. . . . . 
i \ . 

! \ 
\ . 
\ . . ; 

I \ 

~,\ 
0,2 

\ . ·v-\ . x 
0,4 0.6 
Normalized Power 

k(0)=0.1 
--- k(0)=0.4 
··········· k(O)=e.e 

. 

. . . ·,· . 
. . . ·. . ' 

0,8 

Fig. 4.18 PV Array Power: Conditional Distnbution 

4.1.4 Combined Power Distribution 

Given the conditional probability functions for the wind turbine power (eq. (4.7)) and the 

solar power (eq. (4.12)), the total renewable power p,.,. (eq. 3.15) can be obtained via 

Distributions · Combined Power Distribution 



4. Statistical System Modelling 4-21 

convolution8 if the stochastic processes of the wind speed and the clearness index are thought 

to be independent. Precedent to that let us denote the probability functions of ( ( p,) and ( 1 -

(p,), 

' (4.14) 

before we can write the discrete probability function g~'=(n: v0.ko) subject to the initial 

conditions v(O) = v0 for the wind speed and k(O) = lG, for the clearness index, 

N 

gheD(DI JQ.AQ) = L hpwl.J) hp( D-J) 
J-1 ' n=1 "" N 

(4.15) 

The calculation of the convolution can be considerably speeded up by using the distribution 

functions rather than the probability functions. Hence, we defme 

0 i<1 

~Jl) = G~_LIVo) 1SiSN 
1-C 

1 i>N 

and 

0 i<1 

Hpo{I) = {;psu l..to) 1SiSN 

1 i>N 

leading to 

hp/..1) = Hp/..1) - Hp/../-1) 

hpwl.J) = ~.JJ) - ~,/.}-1) 

8Refer to chapter 6.2 for more details 

Distributions 

(4.16) 

(4.17) 

(4.18) 

Combined Power Distribution 



4. Statistical System Modelling 4-22 

Now, the Hps and fipw values can be stored in vectors prior to the calculation of the 

convolution sum (4.15). 

The stationary probability function is depicted in Fig. 4.19 with the fractional power factor 

' as paramter. In case of ' ~ 0.0 only the wind turbine is used and the corresponding curve 

coincides with the v = 16rnfs - curve in Fig. 4.3. On the other hand ( = 1.0 signifies that the 

wind turbine is switched off with the resulting curve being the one in Fig. 4.19. The remnant 

two curves clearly mark the transition from one extreme to the other. 

0.06 

0,07 

§ 
:;:: 0,06 
<> 
" .! >-0,05 

;!;! 
:0 
~0,04 

£ 
iij-O.OO 
.§ 
so.02 
C/) 

0,01 

0 

Parameter: v_ = 16m/s, a, = l.Om/s. k = 0.7. "< = 0.35, N =51 

zeta=O.O 
--- zeta=0.33 
·········· zeta=0.67 
-·-·- zeta=1.0 

.. --/ 
~-

-' 
/ . •' 

0 0,2 

,...., 

I j ,' : \ ...... I . . 
..... I A· l: . .. . . . 

J if . 
~. : ,: ..... .,/ /Y 

•• 

... . 
'· /'•j/.J . .. . ' ,· .. . 
~~ .. 

0,4 0,8 
Normalized Power 

0,8 

~ 
\ :. ,. 

\ 

Fig. 4.19 PV Array Power: Conditional Distn"bution 

As far as the conditional distribution is concerned, two scenarios are displayed for one 

specific time with ( as parameter. First, in Fig. 4.20 a sudden wind speed slump (initial wind 

speed v0 = Srnfs in relation to a mean wind speed v = 16rnfs) is assumed. It is no surprise 

that a higher proportion of solar energy (greater 0 causes the probability function at time t 

= O.ls to have its peak at higher power values than in the.wind turbine- only case. 

The second scenario, as shown in Fig. 4.21, assumes a clearness index slump (initial 

clearness index. ko = 0.1 and mean value k = 0. 7). 

Both scenarios demonstrate that a hybrid energy system is able to offset or at least restrain 

Distributions Combined Power Distribution 



4. Statistical System Modelling 4-23 

the effect of fluctuations, thus stabilizing the system. Titis discussion is continued in the 

chapter on time series where the same parameter settings will be encountered. 

v_ = 16m/s, "• = l.Om/s, k = 0.7, "• = 0.35, v(O) = 8m/s, k(O) = 0.7, t = l.Os 
0,14 

0.12 

~ c: 0.1 
~ ... 
. t: :s 0,05 

1l e a.. 0,08 

~ 
~ "0' 0,04 

8 
0,02 

0 
0 

zeta=-0.0 
--- zeta•0.25 
........... 
-----

zeta=O.S 
zeta•0.75 

£-..,i' -\ .. 
I ,, /\\ 

I l ~·1·, 
i i ~ \ 
• . 

\ \ ! . . \ 

if!\ ~\ 
. . 

J ......... '· 
j /.:.' ~ 

. . 
/_~./ 

0.2 o,4 o.e 
Nonnallzed Power 

"'*'' . ., .. .. ., 
0,8 

Fig. 4.20 Joint Renewable Power: Wind Speed Slump 

Distributions Combined Power Distribution 



4. Statistical System Modelling 

v,... = 16m/s, a, = l.Om/s. k = 0.7, a,= 0.35, v(O) = 16m/s, k(O) = 0.1. t = l.Os 
O,lS -- zeta=1.0 

--- zeta=0.75 
o.14 zeta-o.s 

-·-·- Zeta-9.25 

0,2 0,4 0,6 
Normalized Power 

0.8 

Fig. 4.21 Joint Renewable Power: Clearness Index Slump 

4-24 

Distributions Combined Power Distribution 



4. Statistical System Modelling 4-25 

4.2 Time Series 

4.2.1 A General Time Series Algorithm 

The purpose of this section is to present an algorithm to calculate synthetic time series of 

any stochastic process. It is applied to the processes discussed above in the following part. 

Before defining the algorithm the framework has to be set out. First, let F~(L At : <.v 0) 

denote the conditional distribution function with respect to the random variable ~ at time At 

subject to the initial value <.v 0• Here, ~ and <.v are vectors. In the framework of this paper 

they usually have one component, which corresponds either to the wind speed or the 

clearness index. Only in the case of the joint renewable power both components are needed. 

A function E(~) = <.v translates a given~ into an initial vector. It is assumed that the inverse 

function E"1
( <.v) exists. Often, it is not the random variable ~ that is the desired magnitude. 

Therefore, a function 1j1 = -'1'(~) is assumed that maps the vector ~ to a scalar variable lj1. 

Finally, a random number generator9 is assumed that produces the random realizations, ~-

1bis random number generator is a functional of the underlying conditional distribution 

function F( ~, At : <V0), where At is the desired time step and <.v0 the set of initial values. 

Hence, it can be written as 

(4.19) 

Given this preliminary, the algorithm to generate time series with values lj1i and a time step 

At between any two values can now be formulated. 

(1) Denote the set of initial values as <.v 0• Calculate the first value of the time series from 

Wo = 'I'[ E·l(<.vo)J. 

(2) Set j = 1 

(3) Initialize the random number generator with the current time. Link it to the 

underlying conditional distribution function. Set all initial values and the time step. 

( 4) Determine the next random vector ~ i = e [F ~ ( ~, At : <.v i·1)] 

9Refer to chapter 6.6 for a discussion of random number generators. 

Time Series General Time Series Algorithm 



4. Statistical System Modelling 4-26 

(5) Calculate set of initial values for next call: w1 = 3( ~1) 
(6) Calculate next output value 1jr1 = 'P(~1) 
(7) Update j = j + 1 

(8) If enough values have been calculated go back to step (3) to generate next value. 

Otherwise continue at (9). 

(9) End of algorithm. 

Each value is generated successively in step (4) by taking the last set of realizations, ~. as 

initial values of the conditional distribution that governs the random number generator in the 

following call. Hence, each time the generator is being called the underlying distribution 

function might be different. At first glance, this algorithm might appear to be a bit nebulous. 

It will, however, gain substance in the following section. The reason for the general approach 

is that it allows an elegant implementation, independent of a specific distribution function10 

or requirements. 

4.2.2 Case Study 

4.2.2.1 Wind Speed Time Series 

In case of wind speed time series the vectors have only one component, the wind speed, ~ 

= w = v which coincides with the desired output magnitude, 'P ( ~) = ~. The underlying, 

conditional distribution function (4.2) is the well- known normal distribution11• Time series 

have been calculated for two parameter settings, the same as for the distribution functions in 

Fig. 4.1. In Fig. 4.22 three series are shown that have been generated using the same 

parameters. Fig. 423 shows three series based on the same parameters as in Fig. 4.22, except 

the standard variation being twice the previous value. The graphs clearly speak for 

themselves. 

10Refer to chapter 7 for more details on the implementation of random generators and 
time series calculators (class TimeSeries). 

11 Algorithms to retrieve normal deviates are described in chapter 6.6.2. 

Time Series Case Study 



4. Statistical System Modelling 4-27 

Parameter: vm•u = 16m/s. u, = l.Om/s, v(O) = 8.0m/s "' . 

•+---------------------------------------------~ 

o+mmnrrrrmmmnrrrrmmmnrrrrrrrrmnrrrrrrrrmmmnrrrrmmmmmnrrrrmmmnrrnn 
0 1,0101 2,0202 3,o::300 4,0404 5,0505 6,0606 7,0707 8,0008 9,CXJ09 

Time [s] 

Fig. 4.22 Wind Speed Time Series 

Parameter: vmou = 16m/s, u, = 2.0m/s, v(O) = 8.0m/s 
~~--------------------------------------------. 

•+---------------------------------------~ 

o+mnmnmmnmrrmrrrnmnmnmnm~mrrmnnmmrrrnmrnmnmnmmrr~ 
0 1.0101 2,03)2 3,0300 4,0404 5.0505 6.00::0 7,0707 8,0808 9,C009 

Time [s] 

Fig. 4.23 Wind Speed Time Series 

Time Series Case Study 



4. Statistical System Modelling 4-28 

4.2.2.2 Wind Turbine Power Time Series 

Again, the underlying stochastic process is the wind speed. Therefore the same random 

generator can be used as before in the case of wind speed time series. The difference is the 

output function'!'(~) which is now the wind turbine P-v- characteristic (3.1), normalized by 

(3.13). The diagrams in Fig. 4.25, Fig. 4.24 and Fig. 4.26 show normalized power time series 

for different mean wind speeds. 

In Fig. 4.24 the mean wind speed (v = 14m/s) is below the rated wind speed (v, = 16m/s) 

and the power slowly picks up. Concluding from the diagram it takes around Ss to pass the 

power level p = 0.6 for the first time. 

Parameter: vm_ = 14m/s, "• = 2.0m/s, v(O) = 8.0m/s 
1,-------------------------------------~ 

O~mrrmrrmmmmmmmmmm~mrrmrrmrrmmmmmmmmmmmmmmrrrl 
0 1,0101 2,03)2 3.0003 4,0404 5,0505 8,0600 7,0707 8.0808 9,09CQ 

Time (s) 

Fig, 4.24 Wind Turbine Power Time Series 

Time Series Case Study 



4. Statistical System Modelling 4-29 

Parameter: v.,a = 16m/s, u, = 2.0m/s, v(O) = 8.0m/s 
·~--------------,---------------------~~-~,--~ 

o+mmmrrrrrrmmmnrrmmmmmmmmrrrrmmmmrrrrmmmmrrrrmmmmmmrrrrmm~ 
0 1,0101 2,02)2 3,0303 4,0404 5,0505 6,0606 7,0707 8,0606 9,0909 

Time [s) 

Fig. 4.25 Wind Turbine Power Time Series 

o+rrmmrrrrmmmmmmmmmmrrmmmrrrrrrmmmrrrrmmmmmmmmmmrrrrrrmmm~ 
0 1.0101 2,02:>2 3,0003 4,0404 5,0505 6,0606 7,0707 8,0808 9,0909 

Time (s) 

Fig. 4.26 Wind Turbine Power Time Series 

Time Series Case Study 



4. Statistical System Modelling 4-30 

In Fig. 4.25 and Fig. 4.26 the power will pick up a lot faster due to higher mean wind 

speeds of 16m/s and 18m/s respectively. A guess for the first passage time based on the 

graphs is 2s and 3s. Obviously, these are only very crude estimations of the first passage 

time and methods to calculate it are actually the center of discussion in the next chapter. We 

will, however, get back to these graphs in order to relate the results to single time series. 

4.2.2.3 PV Array P<fwer Time Series 

The conditional distribution function to be applied to photovoltaic power time series is 

Gps(nl ko) from equation (4.11). The discrete power level n E [1, N] can be identified with n 

= t whereas the initial condition is ko = <V0• As a result of this the functions 8 and 'P are 

set to be 

-( v n-1 .:. D) = ""'0 --
N-1 

-- n-1 
'l'(n) N-1 

(4.20) 

taking into account the normalization of the solar power (3.12) and the discretization (4.8). 

The time series values, produced from 'P(n), represent the normalized, discrete power. The 

random number generator used is described in chapter 6.6.3. 

In Fig. 4.27 three time series have been recorded for a clearness index k = 0.2~ and a 

standard deviation Ut = 0.08. Once it has picked up the power stays within the range of the 

peak of the stationary probability function (as depicted in Fig. 4.16) which has only one peak 

for this particular parameter setting. 

In contrast, Fig. 4.28 displays 3 time series with clearness index k = 0.7, standard deviation 

Ut= 0.35 and otherwise identical parameters. The data in Fig. 4.12 is consistent with two 

peaks in the distribution. 

The three time series in Fig. 4.2~ correspond to the probability functions in Fig. 4.16 whose 

peaks match closely to the values of the time series. 

Time Series Case Study 



4. Statistical System Modelling 4-31 

Parameter: /3, =20, k = 0.29, "• = 0.08, k(O) = 0.1, N = 50, Ko = 1.3 
0,0 

o~~~~~~~~~~~~~~~~~~~nrl o 1.0101 2.03l2 3,0303 4,0404 s.050!5 e,oeoe 7,0707 e,0808 g,OQOQ 

Time [s] 

Fig. 4.27 PV Array Power Time Series 

Parameter: p, =2.0, Ko = 1.3, k = 0.7, "• = 0.35, k(O) = 0.1, N =50 

o 1.0101 2.0202 3.0003 4.0404 s.osos e.oeoe 7,0707 e.oaoe ;,ogog 

Time [s] 

Fig. 4.28 PV Array Power Time Series 

Time Series Case Study 



4. Statistical System Modelling 

Parameter: {J, =2.0, k = 0.29.17• = 0.08. k(O) = 0.1, N =50 
'~~~~-~~-~.~.6~------------------------or----, 

--- K0=-1.0 
K0•1.3 

0.2-l/-c:"--------------------------------------j 
; 

Fig. 4.29 PV Array Power Time Series 

4.2.2.4 Joint Renewable Power Time Series 

4-32 

In case of joint renewable power time series the vectors ~ and cv hold two components. The 

first is identical to the wind power case, the second to the solar power case. The two 

underlying stochastic processes are treated completely separate throughout, including two 

random number generators. They are only brought together in the output function 'I'(~) 

which coincides with the normalized expression for the total renewable power (3.15). The 

following diagrams, Fig. 4.30 and Fig. 4.31, take up the scenarios from last chapter, namely 

Fig. 4.20 and Fig. 4.21. They illustrate - what was already predicted then - that a 

combination of two renewable energy sources stabilizes the system and smoothens the 

output. 

Time Series Case Study 



4. Statistical System Modelling 

Parameter: v._ = 16m/s, k = 0.7, u• = 0.35, k(O) = 0.7, v(O) = 8m/s 
1 . 

o+mmrrrrmmrrmmmrrmrrrrmmrrmmmrrmmrrrnmmrrm~rrmmrrmmmrrmmmm 
a 1,0101 2.0202 3.0303 -4.0404 5.0505 e.oeoe 7,0707 a.oeos G,CQJQ 

Time (s) 

Fig. 4.30 Wind Speed Slump 

Parameter: v,... = 16m/s, k = 0.7, u, = 0.35, k(O) = 0.1, v(O) "' 16m/s 
1,-------~~----~~--~----~~~~--,----. 

,• .·· : 

o.•+f--J-------------------------------,=====:=1 
zeta•1.0 
zeta•0.75 
zeta-0.5 
zeta•0.25 

o+mrrrnmmrrmmmmmmmmmmmmmrrmmrrmmrrmmmmm~mmmrrmmmrr~ 
a 1.0101 2.0202 3,0303 4,0404 s.osos e.oooe 7,0707 8,0808 Q,ogog 

Time (s] 

Fig. 4.31 Clearness Index Slump 

Time Series 

, __ 

4-33 

Case Study 



4. Statistical System Modelling 4-34 

4.2.2.5 State of Charge Time Series 

In case of time series tracking the state of charge of the battery, the joint renewable time 

series generator is being used. Given the joint renewable power at each time step, the state 

of charge can be calculated. Using the Manwell battery model, the state of charge can be 

determined as follow: 

(i) Prior to the initialisation of the time series generator the amount of available charge 

at the beginning, Q10 , and the amount of bound charge at the beginning, ~ , have 

to be specified. 

(ii) In order to simplify calculations it has been assumed that the power demand, P .. (the 

power to be delivered), is constant throughout the time series generation. 

(iii) Assume the time series algorithm generates a value that represents the joint 

renewable power, P,.. . Compare P,... with the power demand P ... 

H (P,.. > P .. ) go to step (iv). Charging the battery. 

If (P .... = P .. ) continue with next time step. 

If (P,.. < P..) go to step (v). Discharging the battery. 

(iv) Charging the battery: 

First, calculate the maximum (negative) charge current, Ic:.max , according to equation 

(2.99). Second, calculate the actual charge current, I. , from 

I = _P..!.-~--p~a:.. 
c V (4.21) 

Here, V is the constant voltage with which the battery is charge. Now set I. = :r.,_ 
if I. < I..- . In this case a surplus energy of AP = P,... - P 4 - v:r.,_ cannot be used 

to charge the battery and has to be dumped. With the given value of I. = I calculated 

Q1 and ~ with the help of equation (2.97). 

( v) Discharging the battery: 

First calculate the (positive) maximum discharge current using equation (2.98). The 

demanded current is 

Time Series Case Study 



4. Statistical System Modelling 4-35 

(4.22) 

Set Id = Id.max if ~ > Id.max. In this case the power delivered by both the renewable · 

energy sources and the battery is not enough to meet the power demand P ... The 

power deficit AP = P,... - P,. - V ~ has to be covered by the diesel engine. As in 

(iv) calculate Q1 and ~ from equation (2.97), the state of charge from equation 

(2.92) and continue by fetching the next time series value. 

Fig. 4.32, Fig. 4.33 and Fig. 4.34 illustrate the course of the state of charge for various 

scenarios. For all calculations the following values for the battery parameters have been 

assumed: k = 0.5s·1
, c = 1.0, Q.... = 193.6Ah, V = ll.SV. The rated (maximum) joint 

renewable power has been ~ed to be P......,.. = 7kW (compare discussion in section 3.3. 

In Fig. 4.32 and Fig. 4.33 the assumed power demand is P .. = SkW. Please note that both 

scenarios, wind speed slump and clearness index slump, correspond to the already examined 

cases in section 4.1.4 (on distributions) and in section 4.2.2.4 (on joint renewable power time 

series). The wind speed slump causes the battery to be discharged in order to meet the power 

demand. With increasing wind speed, however, the battery can be re-charged again after 

some time. For (=()(wind turbine only) the battery is going to be discharged deeper than 

for { > 0 (joint wind turbine and photovoltaic array). 

The underlying scenario in Fig. 4.34 is identical to Fig. 4.33 except that the power demand 

is only P"' = 3.5kW. Here, the depth of discharge caused by the wind speed slump is only 

marginal and the battery can be charge after a very short period. 

Time Series Case Study 



-------·. -------;"111111 
\_ 

4. Statistical System Modelling 4-36 

Parameter: v_ = 16m/s, k = 0.7,uk = 0.35, k(O) = 0.7, v(O) = Sm/s 
0,7 

~--·· ... L ·· .... 
-~·-.............. / ' - ... ""'-...... ··........ . .. ·· ··· .......... · 

....... ·· ....... ·•···· .. 
......_,__ ,_ / --

~--' ,, 
'"- ..... 

o ..... 

.. 
iO,eoo2 
() 

.. 
~o ..... 

o ..... 
. 

z•O.O 
--- z-0.25 
........... z•0.75 

o,eoe 
0 o,oot 

Time [1000s] 

Fig. 4.32 State of Charge: Wind Speed Slump 

Parameter: v_ = 16m/s. k = 0.7, "• = 0.35, k(O) = 0.1, v(O) = 16m/s 
0,7015 

Z=-0.75 I ./' --- z-0.25 ,. 
0,70108333 /" 

/ 
/ 

/ ,. 
,. ,. , ____ .,., 

..--" ,. 
~ 

<!"'_.., 
'-../ '- -...... / 

fr=oeoT 
0 0,70025 

j 
0,0<>063333 

O,eQQ41MT 

··- 0 0.001 
Time [1000s] 

Fig. 4.33 State of Charge: Clearness Index Slump 

Time Series Case Study 



4. Statistical System Modelling 

Parameter. v_d = 16m/s, k = 0.7, "• = 0.35, k(O) = 0. 7, v(O) = 8m/s 
0,703 

0,7022 

.. 
~0,7014 

tj 

.. 
1ii 0,700& 
lii 

0 ..... 

o.­

z-0.75 I 
--- z•0.2!5 

/ 

,.-' 
,./ 

~ --
o 

Time [1000s] 

Fig. 4.34 State of Charge: Wind Speed Slump 

Time Series 

__ .... 

/ 
/ 

/ 

/ 
/ 

.... -- ---/ 

0,01 

4-37 

Case Study 



4. Statistical System Modelling 4-38 

4.3 First Passage Time 

The first passage time problem was already solved for the wind speed in chapter 2.1.2.2. 

This was an analytical solution and it was pointed out that the same way is not viable for 

more difficult stochastic processes. The coverage of probability distributions and time series 

gives way to two further algorithms which are the focus of this chapter. Their differences 

and similarities are highlighted in section 4.3.3. 

4.3.1 Time Series Approach 

As mentioned above the first passage time is the expected time Trp that elapses until a 

stochastic process reaches a passage level for the first time subject to an initial observation. 

In general, the first passage time is a function of the passage level Xp , the initial value x. 

and the underlying conditional distribution function F(x,tlx.). The idea behind a time series 

approach to the first passage time problem is to follow up a time series and record the time 

when the passage level is hit for the first time. For the simplicity of the calculations involved 

it is assumed that the initial value is always less than or equal to the passage level. The 

algorithm to calculate the first passage time is as follows: 

( 1) Specify the initial value x., the passage level Xp and the time step at that is inherent 

in the time series. 

(2) Initialize the random number generator with the appropriate probability distribution. 

(3) Set n = 0 (n being the counter of time series taken into account) 

(4) SetT= 0 (T being the sum of first passage times from the individual time series.) 

(5) Set t = () (t being the time scale in one time series) and reset the time series 

calculator. 

(6) Set j = () (j being the counter of the number of generated time series values) 

(7) Generate next time series value x. Set j = j + 1. 

(8) If (x > Xp) go to (12) 

(9) The process has not yet passed the specified passage level: Update timet= t+dt. 

(1 ()) If (j > 10()()) exit the procedure with error message. This is just a safety measure in 

order to prevent a possible deadlock. The number !()()() is merely a suggestion which 

seems to be realistic. In the program this limit can be interactively specified by the 

First Passage Time Time Series Approach 



4. Statistical System Modelling 4-39 

user. 

(11) Repeat steps from (7). 

(12) The process has passed the specified passage level: Add T = T + t and update n =.n 

+1. 

(13) If (n < NT) start with new time series from step (5). NT is the number of time series 

taken into account. Obviously, a large NT stabilizes the result but causes the 

calculation time to increase. Numerical results (section 4.3.1.1) suggest that numbers 

between 10 and 20 already procure reasonably good results. 

(14) The first passge time is the average, T rp = T I NT. 

This algorithm is illustrated and discussed in several examples in the following sub- sections. 

4.3.1.1 Tune Series Approach: Wmd Speed 

Applying the algorithm described above the first passage time has been calculated for the 

same parameter setting as in the time series in Fig. 4.22 and Fig. 4.23. It is displayed for an 

initial value of v(O) = Sm/s as a function of the wind speed passage level vP in Fig. 4.32. 

Hence, it shows the expected time it takes to encounter a wind speed vP or greater for the 

first time subject to an initial observation of v(O). Not surprisingly, the first passage time is 

shorter if the standard variation is smaller. In Fig. 4.35 the first passage time is plotted as a 

function of the initial wind speed assuming a passage level vP = v = 16rnfs. In both diagrams 

the number of time series taken into account, N., was set to 20. 

First Passage Time Time Series Approach 



4. Statistical System Modelling 

~5~--+r~~~--~~~----------------------~ 

"' E 
~·+-~~----,_~~r-~~~~~~-+r---------~ 
1l. 
1·+---------~----~--~~~~~--~~t-----4 
'!!! 
~·+---------------------------~~~~~~~4 

O+,rnOTTOMOOTrMMOTrMOOTTrrMTrrMrMTrrMOTTrrrM 
8 8,8 9.8 10.4 11.2 12 12,8 13.8 14.4 15,2 16 

Initial Wind Speed [m/s) 

Fig. 4.35 Time Series Method - Wind Speed 

• 
5 

0 

v_ = 16m/s, v(O) = 8.0m/s. Ny = 20, N =51. P. = 0.5 

av=1.cmts I 
--- av=2.cmts ( 

AI i tJ I 'I 
/.J 

_._ L/" 

1\j}JV 

,-d"-4(;1 
,_~' ..,..--

8 8,8 9.6 10.4 11.2 12 12.8 13,8 14,4 15.2 16 
Wind Speed Passage Level [ITI's) 

Fig. 4.36 Time Series Method - Wind Speed 

4-40 

First Passage Time Time Series Approach 



4. Statistical System Modelling 4-41 

Fig. 4.37 depicts fust passage times over the wind speed passage level for different values 

of Nr For N, = 5 the variations are fairly significant, though even there the trend is distinct. 

The curves get smoother for greater values of N,. The improvement stemming from an 

increase in N, = 10 to 20, however, seems not to be worth twice the computing time. 

v_,. = 16m/s, v(O) = 12.0m/s, N = SO, P. = 0.5, "• = lm/s 
·~=-~~~~----------~---------------. --- Nt=S 

--- Nl=10 
........... Ntz20 

·~====~-------------------------+~ 

16 

Wind Speed Passage Level [m/s] 

· Fig. 4.37 InOuence of Number of Time Series 

4.3.1.2 Time Series Approach: Wind Turbine Power 

Results for the wind turbine power are illustrated in Fig. 4.38 and Fig. 4.39. They correspond 

to the time series displayed in Fig. 4.24, Fig. 4.25 and Fig. 4.26. Fig. 4.38 depicts the first 

passage time as a function of the specified passage level of the normalized wind turbine 

power, whereas Fig. 4.39 captures the first passage time as a function of the initial wind 

speed, assuming a constant power passage level Pp = 0.8. Both diagrams clearly demonstrate 

that the flrst passage time rises immensly in the event of low mean wind speeds. 

First Passage Time Time Series Approach 



-----------------------------------------------------------------

4. Statistical System Modelling 

v(O) = 8.0m/s, NT = 20, N = 50, P. = 05, er,= lm/s, v, = !6.0m/s 
10 

vmean •14n\t'a 
--- 'tm8al1=16rnla 

14 ... ....... o,mean=18m/8 

12 

I 

f\J 
V 

AA 

4 ~ 
2 ~---''-~J'-::.=.: ... ··· 
~ -- ................... . .. 

"':':'·~-~ ............. 
0 

0,061135 0,21192 0.3621'1 0,5135 0,86429 
Wind Turbine Power Passage Level 

Fig. 4.38 Time Series Method - Wind Turbine Power 

14 
v_u = 16m/s, p, = 0.8, NT = 20, N = 50,(J. = 05 

vmean=14nl's 
--- vmean=16rn's 

vmean=1Brn's 

j'J A A 1\ I~ '11 

12 

V VV V \J \~ ll 
V 

\I lN 
11\ 

V 

\/\ -
2 

,_,._..... ~ ...... /'-v' \ ····· ......... -.. ·····. .. -v'--"' .. ········ ............ ··· ............... -:::.-:-- .... ,~ 
• ................. ":':": 

0 

• 9,4395 10,879 12.319 
Initial Wind Speed [rr;'s] 

Fig. 4.39 Time Series Method - Wind Turbine Power 

13.758 

4-42 

First Passage Time Time Series Approach 



4. Statistical System Modelling 4-43 

4.3.1.3 Time Series Approach: PV Array Power 

The first passage time as a function of the passage level of the photovoltaic array power is 

illustrated in Fig. 4.40 and Fig. 4.41. Here, Fig. 4.40 corresponds to time series diagram Fig. 

4.28, while Fig. 4.41 corresponds to Fig. 4.27. Note that the first passage time is the 

expected average time. It does not give any clue towards the variance. For instance, looking 

at the time series realizations Fig. 4.27 a large variance of the first passage time is expected 

which is due to the two peaks in the underlying distribution function. The first passage time 

algorithm, however, only yields the average time. 

k=0.7, Ut = 0.35, Ny = 20, N = 10, {J, = 2.0, Ko = 1.3, k(O) = 0.1 
3 

J 

I 
/ 

o.s 

0 
0.076923 

L 
_,/ 

___..,.-
0,31795 0,55697 

PV Array Power Passage Level 

Fig. 4.40 Time Series Method - PV Array Power 

First Passage Time 

. 
0,8 

Time Series Approach 



4. Statistical System Modelling 

k=0.29, u, = 0.08, NT = 20. N = 10. {J, = 2.0, K, = 1.3, k(O) = 0.1 

0, 18482 0,29231 
PV Arr"'f Power Passage Level 

Fig. 4.41 Time Series Method - PV Array Power 

4.3.1.4 Time Series Approach: Joint Renewable Power 

4-44 

0,4 

The first passage time as a function of the passage level of the joint renewable power is 

depicted in Fig. 4.42 and Fig. 4.43. Fig. 4.42 simulates a slump in the wind speed with an 

initial wind speed of v(O) = 8m/s. This scenario is identical to 4.30. Greater I;' - values, 

signifying a higher proportion of solar energy, reduce the ftrst passage time considerably. For 

I;' = 0.75 the impact of the wind speed slump is almost insignificant. Fig. 4.43 on the other 

hand simulates a solar energy slump, corresponding to 4.31. In relation to Fig. 4.42 solar 

energy and wind energy are just swapped. The qualitative results are the sante. 

First Passage Time Time Series Approach 



4. Statistical System Modelling 

k = 0.7, u• = 0.35, v-= 16m/s.P. = O.S,p, = 2.0, Ko = 1.3, k(O) = 0.7, v(O) = 8m/s 
2~==~~=m~=~o.~z.r----------------------------~ 

E 
" ~ 
" 

zeta=O.S 
........... zeta=0.75 

I' // 
e // 
u: ........ 
o.s-j---~~------==,...__:c_ ________ :ooo/, ------- ······· 

-

.......... tfll ttlttflll lllltttltttlt I I I otfltflofl ' 

..,.,.._ ..... 
-""" tll f 1 I I I 1

1111 

o-t------r-----.------.----~ 
0,18047 0,34023 0,5 

Joint Renewable Power Passage Level 

Fig. 4.42 First Passage Time: Wind Speed Slump 

k = 0.7, u• = 0.35, v_= 16m/s, J3. = 0.5, p, = 2.0, Ko = 1.3, k(O) = 0.1, v(O) = 16m/s 
12,-=--==~;-.-----------~---~--, zeta=0.75 

--- zeta=0.5 

o-t------r-----.------.----~ 
0,:00769 0,50385 0,7 

Joint Renewable Power Passage Level 

Fig. 4.43 First Passage Time - Clearness Index Slump 

4-45 

First Passage Time Time Series Approach 



4. Statistical System Modelling 4-46 

4.3.2 Markov Chain Approach 

In this section a technique is presented to work out the expected first passage time of a 

stochastic process using Markov chains, as mentioned in the first discussion of the first 

passage time problem in chapter 2.1.2.2. A Markov chain ([20]) is a discrete-value, discrete­

time Markov process. A Markov process on the other hand is a stochastic process for which 

the conditional probability density function at any time and for any given number k of 

previous observations, depends only on the most recent observation: 

(4.23) 
Hence, the evolution of the process can be phrased in terms of the so-called transition 

probability 

(4.24) 
This is the probability that the process X changes from value m to n within the time interval 

U-Ij]. If p1(k) denotes the probability p(X1 = n) all probabilities can be put into a vector 

(4.25) 

with N components (for N possible values of X). The progress of the process can then be 

expressed in matrix representation 

P{J) = G(J) PU-1) 
(4.26) 

where GG) is the transition matrix with elements g,..(j) as defmed above. The algorithm 

whose description follows has been inspired by an algorithm proposed by Paynter ([32]), 

which has been further developed in the frame of this paper. 

The algorithm exploits the same idea that stood behind the analytical approach in 2.1.2.2. 

Assume the output of the stochastic process to be representable by a whole number in the 

closed interval [1, N]. Hence, there are only N different states to observe. Assume further 

that q is the passage level in question, where q is too a ·whole number, q E [1, N]. Back in 

chapter 2.1.2.2 a system was thought of being filled with particles. Particles that reach level 

First Passage Time Markov Chain Approach 



--·····---

4. Statistical System Modelling 4-47 

q were taken out of the ensemble. In this context, the same can be achieved by introducing 

an {N+l x N+1)- matrix G with the elements (n,m E [1,N+l]) 

0 { m>q, n~N+1 
m:Sq, n=N+1 

g/HD = 1 m>q, n=N+1 (4.27) 

PJHD otherwise 

where Pom is the corresponding transition probability. Hence, the transition matrix looks like 

Pu Pu - Ptv 0 - 0 

G= 
(4.28) PN1 PJVZ - PJVv 0 - 0 

0 0 - 0 1 - 1 

Below the passage level, G of ( 4.28) is identical to the transition matrix of the stochastic 

process in question. Only difference: Once a particle has passed q, the transition probability 

for returning is zero and it will end up in state (N+ 1). After applying (4.26) over and over 

all particles will eventually be in state (N+ 1), P(N+ 1) = 1. 

Assume now an initial state u, u<q. The initial probability vector P(O) has therefore the 

components Pi= li1., where li is the Kronecker symbol, 

#j 

i=j (4.29) 

The probability that at time k the system is in one of the states above the passage level is 

simply 

11'•1 

C(k) = L P/k) 
J·v•I (4.30) 

C(O) is zero as it is assumed that u < q. The next value, C(l) is the probability that the 

passage level has been passed after the first time step. As a result, the associated first 

passage time- after one time step- is Trp(l) = 1 * At* C(l). After the second time step the 

volume above q will have increased by AC = [C(2)- C(l}], which can be interpreted as the 

First Passage Time Markov Chain Approach 



4. Statistical System Modelling 4-48 

probability for passing q during the second time step. The resulting passage time is 

T41(2) =At [2(1-C(l))AC'J + T.oJl) 
(4.31) 

The term (1 - C(1)) in (4.31) is the probability that the system has not passed q within the 

first time step. This makes both events ('passing q in time step 1' and 'passing q in time step 

2') exclusive so that the probabilities can be added up, leading to ( 4.31). This can be 

continued until C(k) is 1 or very close to 1. This technique can be put into a more general 

algorithm: 

(1) Specify N, the number of discrete levels of the underlying stochastic process. 

(2) Specify q, the passage level, q E [1,N]. Calculate the transition matrix G of the 

enlarged system (4.28) given a time step At. 

(3) Specify u, the initial value, u < q. 

(4) Specify N;, the maximum number of iterations permitted and 5, the stop criterion, 5 

< 1.0 

(5) Set counter j = 1 

( 6) Set initial probability vector P(O) with components pi = 5 ju· 

(7) Initialize coefficients C(O) = 0.0, ET(O) = 0.0, y = 1.0 

(8) Matrix multiplication PG)= G * P(j-1) 

(9) Calculate CG) from ( 4.30). 

(10) Calculate AC = C(j)- CG-1) 

(11) Calculate ETG) = j * y * AC + ETG-1) 

ETG) is the normalized first passage time that accumulates the results of the 

preceding time steps. Multiplied by the time step At is the real first passage time. It 

is denoted ET to make clear this is the fmmula for the expected time T, the first 

passage time. 

(12) Increment j = j + 1 

(13) If (1.0- C(j) < o) go to step (16). Otherwise, stop criterion not met. Continue with 

step (14). 

(14) 1f G >Nu return with an error message. The maximum number of iterations has been 

reached. This is just to make sure that a deadlock can not occur. 

(15) 1f (j ;; Nu repeat iteration from step (8). 

First Passage Time Markov Chain Approach 



- --- - ----- --------

4. Statistical System Modelling 4-4!} 

(15) If G s: NJ repeat iteration from step (8). 

(16) The ftrst passage time T 1p is T 1p = ET G) * d t. 

This algorithm can be seen as a template for any stochastic process. What is left to specify 

from case to case is the initial value, the passage level and the underlying distribution. And 

this is actually the main difficulty associated with this algorithm as it requires to calculate 

the transition matrix. This is discussed in detail in the following sections on the particular 

stochastic processes, i.e. wind speed, wind power and solar power. 

4.3.2.1 Markov Chain Approach: Wind Speed 

In order to apply the above algorithm to the wind speed, the wind speed scale has to be 

discretized. Assume that M classes ~ (i = l...M) along the wind speed axis are deftned by 

the wind speed intervals <; E [v;.I> vJ. As the normal distribution is used to describe the 
-

wind speed fluctuations, the extreme values v0 and vM are ±00• For the values in between the 

relationship 

. [ D-1 ] -v., = uv u 2...::M"::-"_
2
:- - 1 + V , n=l-.M-1 ' u = 4.753 

(4.32) 

is proposed. Here, CJ v is the standard deviation and v the average wind speed. The factor u 

= 4.753 was chosen so that ~(v1) = 1(}_.;. The choice is however, an arbitrary one. For the 

reverse direction, calculating a discrete level n from a given speed v, the formula 

D = min {il V1~ V} 
l=l...M 

(4.33) 

can be applied. It says that n is the minimum index for which v1 ;, v. Recalling the wind 

speed distribution function (4.2) allows to calculate the probability that the wind speed is -

at time t - within class number i subject to the condition v(O) = v0• It is 

(4.34) 

First Passage Time Markov Chain Approach 



4. Statistical System Modelling 4-50 

class m to class n, where both classes are a whole range of wind speeds rather than just one 

value as the initial value in (4.34). Therefore, p.(v0) has to be integrated over all v0 values in 

class m and divided by the probability that it is in class m in the frrst place, that is 

(4.35) 

( 4.35) can not be analytically integrated, thus requiring a large amount of computing time. 

Instead, the following transition probability is suggested: 

I uz ((2(.a~1) _ 1) _ (2(m_-1) _ 1) f 
g, ={J exp M1 M1 ) 

lUll m 2 (1-r) I (4.36) 

The coefficients Pm can be obtained from the normalization condition 

(4.37) 

The transition probability gnm as in ( 4.36) has the same characteristic as the probability 

density function (4.1), namely the exp(-x2) functionality. In fact, (4.36) can be obtained from 

(4.1) by substituting 

r=o u(Z(.a-1) -1) + v 
v M-1 (4.38) 

for v and v0 and replacing the factor in front of the exp by Pm· The process is stationary 

when the correlation coefficient is zero and the transition probability simply becomes a 

probability for class n irrespective of m. 

Given the transition probability gnm ( 4.36) and the conversions from wind speed to discrete 

numbers and vice versa, (4.32) and (4.33), the first passage time of wind speed fluctuations 

can be calculated by following the above Markov chain algorithm. Results for a mean wind 

First Passage Time Markov Chain Approach 



--·----------

4. Statistical System Modelling 4-51 

can be calculated by following the above Markov chain algorithm. Results for a mean wind 

speed of 16m/s are shown in Fig. 4.44 and Fig. 4.45, where M= 20 classes were taken into 

account. 11 Fig. 4.44, where an initial wind speed of 12m/s was assumed, two curves for 

different standard variations are drawn as functions of the passage level of the wind speed. 

Fig. 4.45 depicts the first passage time as a function of the initial wind speed assuming a 

passage level of 16.0 mjs. 

In Fig. 4.46 the Markov Chain and the Time Series approach are compared by applying them 

to the same parameter setting. Although the methods are very different the results are not 

inconsistent. 

3.5 

3 

:E2.S .. 

v_ = 16m/s, v(O) = 12.0m/s, M = 20, N = 10, P. = 05 

av-1.0m's j 
--- uv-2.0m's / 

I 
// ~ 2 .. 

m m 1.s 
0.. 

/r--/ 
]l 
IL1 

0.5 

V7 0 
12 

L;/' 
--~ 

13.333 14.667 

Wind Speed Passage Level [mts) 

Fig. 4.44 Markov Chain Method - Wind Speed 

First Passage Time 

16 

Markov Chain Approach 



4. Statistical System Modelling 

•+----.----r----.---.----.---~----r----r---4 
12 13.333 14,667 16 

ln~lal Wind Speed [m/S] 

Fig. 4.45 Markov Chain Method: Wmd Speed 

v_"' 16m/s, v."' 16.0m/s, M= 20. N"' 10, Jl. "'05 
·~===~n~.~~~=.=.-,,------------------------------, 

- - - MlrkO\IO'Iain 

.. 
~·+-----------------------------------~~~ ,_ .. 
0> 

~2+------------------------,~--------~------~ 
i!! 
u:: 

12 13,333 14,6e7 

Wind Speed Passage Level [m/s) 

Fig. 4.46 Time Series versus Markov Chain Approach 

10 

4-52 

First Passage Time Markov Chain Approach 



4. Statistical System Modelling 4-53 

The discussion of comparison is continued at the end of this chapter. But before that the 

stochastic processes of the wind power and the solar power are subjected to the Markov 

Chain approach. Unlike the wind speed these processes have already been discretized in 

chapter 4.1, thus making life a lot easier. 

4.3.2.2 Markov Chain Approach: Wind Turbine Power 

The power scale in the conditional distribution of the wind turbine power is already 

discretized in (4.5). The initial value, v0, in (4.6) however is not. In order to use it for the 

Markov chain algorithm, v0 in (4.6) has to be derived from a given initial power level m. As 

the power- wind- characteristic (3.1) is not a strictly monotonic function the wind speed can 

not always be concluded from a power value. If the power is zero valid wind speed values 

are v < v ci and v > v ,.; if it is 1 valid wind speed values are between v, and v eo• In order to 

circumvent this problem the following mapping between wind speed values v and discrete 

power levels m is assumed: 

m=l 

v(m) = 
(4.39) 

That means, if m= 1 (power is zero) the wind speed is assumed to be v,; unless the mean 

wind speed vis less. In case of m= M, which corresponds to maximum power p = 1, the 

formula returns a wind speed equal to the mean wind speed, though not below the rated 

wind speed v, or above cut- out speed v, •. The result can directly be inserted in (4.7), thus 

leading to the desired transition probability g .... Results are illustrated in Fig. 4.47 and 

Fig. 4.48 for a variety of mean wind speed values. Qualitatively, the results match Fig. 4.38 

and Fig. 4.39 where the first passage time is calculated using the time series algorithm. 

First Passage Time Markov Chain Approach 



4. Statistical System Modelling 

v(O} = 8.0m/s, M = 20. N = 10, p. = 05 

~ 1+-------------------------------~~~----~ 
., 
§ / 
>- o.8+---------------------------=t'<-....,-~---,-"-! t .. +--------------------:7''-7=-.,-,.....;~·,;.;-:_ ... _ .. _ ... _ .. _ .. _ .. _ ... _ .. _··_··---i 
11. 

e 
~~·+---------~~~~~----------------------_, 

0~---.----.---.---~----.----.----.---.-----i 
0,1 0,33333 0,56667 

Wind Turbine Power Passage Level 

Fig. 4.47 Markov Chain Method - Wind Turbine Power 

1,4 

1.2 

:E, ., 
E 
I= 0,8 ., 
m as o.e 

11. 

]1 
LL. 0.4 

p,. = 0.8, M = 20, N = 10, P. = 0.5 

~ 
'll"''lE!!Il0=14nYS 

--- vmean=16nYa 
........... vmean=18nVs 

~ 
............ ~ ··. --'• .... 

' 
·· .... .... .......... ...... __ 

................. :--- .... _ .. ~ 

··... -.. ............... ~ 
········~·~=---

0.8 

0.2 

0 
0.1 

·.~, 

0.33333 0.58667 0,8 
lnHial Wind Turbine Power 

Fig. 4.48 Markov Chain Method - Wind Turbine Power 

4-54 

First passage times calculated via the Markov chain algorithm are, however, significantly 

First Passage Time Markov Chain Approach 



4. Statistical System Modelling 4-55 

shorter. This is illustrated in a direct comparison in Fig. 4.49. Here, identical initial 

conditions apply to both curves. Obviously, the transition matrix G allows the process to 

advance quicker than expected. Why is this discrepency? Ftrst, the time series approach 

tracks the wind speed, not the wind turbine power. As mentioned above, wind speed values 

can be uniquely translated into power values, but not the other way round. Second, the 

Markov chain method uses a discrete wind turbine power distribution, whereas the time 

series approach applies the continuous wind speed distribution - two different distribution 

types and two different underlying stochastic processes. The comparison of both algorithms 

is continued in section 4.3.3. 

v(O) = 14.0m/s, v_ = 16m/s, M = 20, N = 10, fJ. = 05 
0,0 

lime Series l 
--- ~ov O'lain ~ 

A / 
0,7 

0,0 

.. eo.s 
;:: .. lf0,4 
:a 
a. 0,3 

~ 
0,2 

0,1 

/"... 

/'_ 

0 
o.eul6s 

/ V 

/ 
/ 

"V ------ -
/ 

/ 
O,e405e 0,87028 

Wind Turbine Power Passage Level 

Fig. 4.49 First Passage Time - Wind Turbine Power 

4.3.2.3 Markov Chain Approach: PV Array Power 

., .... .---

0,7 

The fluctuations of the photovoltaic power is governed by the conditional distribution ( 4.12), 

which can be used in the Markov chain algorithm without further alterations as the mapping 

between the clearness index k and the normalized power is linear. Fig. 4.50 illustrates a 

First Passage Time Markov Chain Approach 



4. Statistical System Modelling 4-56 

comparison between time series approach and Markov chain approach by using identical 

initial conditions. For the distribution of the PV power M = 20 discretization were taken into 

account. Fig. 4.50 shows a good agreement between both algorithms. Unlike in the case of 

the wind power both algorithms do employ the same distribution formula. 

k=0.29, Ut= 0.08, M= 20, N = 5, {J, = 20, Ko = 1.3 
••• ~n:p(O)=O.O I 

--- TlrroSeries:k(O)=O.O 

1.4 

/ 
// 

/, ~· .. 
g»o.e 

s 
Q, 00 

/, / 
~· 
u:: 

0,4 

02 

"/-0 
0 

// ./ 
~'" _,........ 

~-' 
0.2 

PV Array Power Passage level 

Fig. 4.50 Time Series versus Markov Chain Approach 

4.3.3 Time Series versus Markov Chains - A Comparison 

// 
/ 

/ 

/ 

0,4 

The time series algorithm monitors the meteorological data, wind speed and clearness index, 

as it goes along and translates them into power values. To use this algorithm these 

parameters need to be given. The Markov Chain algorithm on the other hand, does not need 

meteorological data as it is tracking the power. Hence, if wind speed or clearness index are 

not monitored only the Markov chain algorithm can be used to estimate the first passage 

time. However, in the case of the wind turbine ambiguities occur as both minimum and 

maximum power could be caused by a wide range of wind speed values, causing the Markov 

First Passage Time Time Series vs Markov Chains 



4. Statistical System Modelling 4-57 

chain algorithm to be less accurate than the time series approach. For the stochastic 

processes 'wind speed' and 'PV array power' both algorithms procure similar results. 

For the values used in the examples the time series algorithm proved, in general, to be faster 

than the Markov chain algorithm - with the exception of PV array calculations. The Markov 

chain algorithm initially calculates the whole transition matrix G. It is not being recalculated 

throughout the algorithm. Only matrix multiplications on G are carried out once G is 

established. The time series algorithm has to return to the conditional distribution each time 

a random number is generated. As a result of this the Markov chain algorithm is advantegous 

whenever the evaluation of the conditional distribution function is time consuming, as it is 

in the case of the PV array power. 

Finally, both algorithms calculate the first passage time successively by moving along the 

time axis. In contrast, the analytical method requires the evaluation of an integral or 

differential equation. It follows from this observation that the time series method is also 

based on the assumption of a Markov process. Hence, ooth methods assume the same 

physical processes. The difference is a mathematical one. Whereas the "Markov chain" 

method uses theoretical transition probabilities, the time series method uses a random number 

generator. 

First Passage Time Time Series vs Markov Chains 



5. Summary 5-1 

5. Summary 

This paper centers on an autonomous energy supply plant that consists of a wind turbine, a 

photovoltaic array, a battery unit and a fossil fuel engine. The purpose was to develop and 

examine statistical models that describe the system and the influence of various parameters, 

such as the wind speed and the light intensity, on it. 

This has been achieved in three steps. First, the energy sources involved have been discussed 

in chapter 2. It has been shown that the short term wind speed turbulence can be described 

by the Omstein- Uhlenbeck process. Likewise, the short term fluctuations of the solar 

clearness index can be expressed in terms of mathematical functions. The third energy source 

is the battery unit, which may be charged in the event of a surplus energy or discharged if 

necessary. Three models for a lead- acid battery have been discussed: Two electric models 

and one based on the electric charges. For the purpose of this paper the latter one has been 

selected. Finally, a brief section has been devoted to the fossil fuel engine. 

In the second step the power supply by this system has been modelled. For the wind turbine 

a simple power- wind speed characteristic has been used. As far as the photovoltaic array is 

concerned it has been shown that it is reasonable to assume a linear relationship between the 

clearness index and the power supplied by the array. 

Eventually, in the third step the results of the frrst two steps have been used to extract 

distribution functions which describe the stochastic processes "Wind Turbine Power•, 

"Photovoltaic Array Power", "Combined Renewable Power" and the "State of Charge" of the 

battery. 

The distribution functions have been used to generate synthetic time series and calculate frrst 

passage time values. Having written a programme it has been possible to calculate and 

illustrate the distribution functions, time series and first passage time values for a variety of 

parameters and scenarios. By this way it has been demonstrated that the usage of both wind 

turbine and photovoltaic array do stabilize the power supply function if there is either a wind 

speed slump or a clearness index slump. Moreover, the programme has permitted the 

comparison of two different algorithms to calculate the first passage time. The graphical 

presentation of distribution functions, time series and first passage time functions has helped 

to gain a deeper understanding of the stochastic processes involved in the system. In the 

Summary 



5. Summary 5-2 

introduction to the statistical system modelling it has been pointed out that the algorithms 

developed here can be used to design a controller that operates the system more efficiently. 

It has been stated that the time series algorithms can be used for both off-line optimization 

of some of the ftxed parameters (such as the ratio between rated wind and photovoltaic array 

power) and on- line operation. 

Finally, it is the author's pleasure to thank Dr. David Infteld for many discussions, ideas, 

references and fruitful suggestions and J onathan Cauldwell for his support. 

Summary 



6. Appendix I: Statistics 6-1 

6. Appendix 1: Statistics 

TIUs appendix introduces the terminology and outlines some of the statistical methods used 

in this paper. These are in particular the concepts of the distribution functions and the 

autocorrelation function of a stochastic process. 

6.1 Probability Distribution Functions 

6.1.1 Continuous Distribution 

A random variable is a transformation that maps the outcome of a random experiment to a 

real number. This real number is often referred to as a realization of X. The distribution 

function F(x) of a random variable X is the (theoretical) probability that the actual realization 

of the experiment will be less or equal the value x. Hence it can be written as 

F(x) = p(X S x) 

(6.1) 

From (6.1) it can be concluded that F(x) is monotonic and it is F( -oo) = 0 and F( oo) = 1. Its 

first derivative, 

J{x) = oF(x) 
ox (6.2) 

is called the probability density function. In case the probability density function is known, 

the corresponding distribution function can be evaluated via the integral 

z 

F(x) = J J{~) d~ 
-oo (6.3) 

The same principles apply to two- dimensional distributions: Two random variables X and 

Y constitute the joint distribution function 

z .r 
F(x,y) = p(Xs x, Ysy) = J J J{~,7J)d7Jd~ 

(6.4) 

Probability Distribution Functions Continuous Distribution 



6. Appendix 1: Statistics 6-2 

with the joint probability density function f{x,y). In case the two random variables X and Y 

are statistically independent, the joint distribution function will just be the product of the two 

one- dimensional distribution functions Fx{x) and Fy{y), F{x,y) = Fx(x)Fy(y). 

6.1.2 Discrete Distribution 

Often, the number of possible realizations of a random experiment is finite, as for example 

in the case of a dice. In this case the theoretical probability for one particular realization x1 

with index i will be written as Pi· In this instance the distribution function has the shape of 

a stair function, 

.. 
F(x) = E p1 s(x-x1) 

/•-QO (6.5) 

where s(x - xJ stands for the unit step function 

s(x-x;,) = {

0 ,x<x;, 

l,x=::x;, (6.6) 

The corresponding probability density function will then be a series of weighted delta 

functions: 

.. 
Jtx) = E p1 8(x-x1) 

l==-co (6.7) 

For both numerical and graphical reasons the occurence of the delta function is often 

inconvenient. In this paper we have mostly calculated the probabilities p1 , depicted them in 

various graphics over the i - axis and called the p(i) relationship probability function in 

contrast to the proper probability density function. From a given distribution function F(x) 

the single event probabilities p1 can be calculated via the relation Pi = F(xJ - F(X;.1), which 

makes it very easy to switch from distribution to probability function and vice versa. As a 

result the distribution function F(x) too has only a finite number of values and can therefore 

be written as 

Probability Distribution Functions Discrete Distribution 



6. Appendix I: Statistics 

A 

'LPJ = 1 
./=1 

, i=l ... A 

where A denotes the number of discrete levels. 

6.2 Functions of Random Variables 

6-3 

(6.8) 

Assume a random variable X with distribution function F(x) and corresponding density 

function f(x), whose realizations are channelled through a system with an input- output 

characteristic function H(x). The output can be described by a random variable Y with 

distribution function G(y). For the sake of simplicity we will only mention two special cases. 

First, it is assumed that H(x) is strictly monotonic in the interval x e [a,b). H(x) is constant 

in the interval [b,c] and zero below a and above b, continuous at both a and b. At first 

glance, these restrictions seem to be purely arbitrary. They reflect, however, exactly the 

course of the characteristic of the wind turbine (3.1 ). The distribution function of the output 

will then be 

G(y) • {~x(yj). F(c) - F(b) 

, y< H(a) 

, H(a) S y SH(b) 

, y>H(b) 
(6.9) 

where x(y) denotes the inverse function of H(x) in the interval [a,b). In the second special 

case we assume a linear transform H(x) = cxx + ~. Here, the distribution function is simply 

G(y) = F( y~p ) 
(6.10) 

with the corresponding probability density function 

g(y) = _l_f( .LP...) 
lal a (6.11) 

Such a linear transform of a random variable is the input- output characteristic of the 

Functions of Random Variables 



6. Appendix I: Statistics 6-4 

photovoltaic array (see chapter 2.2.4 ). 
l 

Now consider a functiort Z = g{X,Y) of two random variables X and Y. The random 

variables can be described by the joint probability density function f(x,y ). Here, we will be 

noting the density function fz{z) of the new random variable Z for three special cases, all of 

which occur in this paper. 

.. 
Sum: Z = X+ Y F(z) = J Jtx,z-x)dx 

Product: Z = XY 

X Quotient: Z = - y 

..... .. 
F{z) = Jr(x, z)_!_dx 

..... x lxl 
.. 

F{z) = J xJtzx,x)dx 
..... 

(6.12) 

The expression for the sum can be considerably simplified if statistical independence of X 

and Y is presumed. By this way the density function of Z can be concluded without 

knowledge of the joint probability density, just by evaluating the convolution integral 

.. 
fz(z) = J f,.(x).t;.(z-x)dx 

..... (6.13) 

where f.(x) and fy(y) are the density functions corresponding to X and Y. With the help of 

this relationship we were able to formulate a distribution of the sum of both wind and solar 

power in chapter 4.1.4. 

6.3 Conditional Distributions 

A conditional distribution in the context of this paper is a distribution of a random variable 

subject to a specific condition. Often this condition is an observation of the underlying 

stochastic process at another time. A conditional distribution function is written in the form 

F(y : X =x), which signifies the distribution of the random variable Y under the condition 

that another random variable X maps onto its realization x. Given the joint probability 

Conditional Distributions 



- -------------------------

6. Appendix I: Statistics 6-5 

distribution function fxy(x,y) of two random variables X and Y and the probability density 

function of Y, fy(y) the conditional probability density function f,(x : Y=y) can be calculated 

from 

~(xlY=y) 
= f.ry(x,y) 

f,.{Y) 

6.4 The Autocorrelation Function 

(6.14) 

A stochastic process is a time dependant process which can be described by a probability 

distribution function F(x) and the autocorrelation function R .. (r ). The latter is a measure for 

the correlation between the realizations of the random variable at time zero and time -r. An 

autocorrelation function value of zero signifies that the realization at time -r is not in any 

way dependant on the value of the realization at time zero. Assuming the stochastic process 

to be stationary (the statistical characteristics such as mean value and variance are time 

independent) and ergodic12 the autocorrelation function can be worked out from 

T 

R.u(T) = lim....!... J x(t) x(t+T)dt 
T-+"' 2T -T (6.15) 

with x(t) being a realization of the process over the time t. H x(t) represents an energy 

variable the autocorrelation function R.,(O) at -r = ()can be interpreted as the average process 

power. This characteristic brings about the Wiener- Chintchin transform from the 

autocorrelation function R.,(-r) to the corresponding power spectrum S .. ( <.v ), which is 

formally on a par with the Fourier transform, 

12 Assume a stochastic process as an output of an experiment. The output is s;(t) as a 
function of time. The experiment is repeated N times (i=l...N). Now, the values of s;(tJ (N 
values) can be put together in a sample k. A stochastic process is called ergodic if the 
statistical values of any sample coincide with the ones of any time function. It is worth 
noting that it can not be proved that a stochastic process is ergodic or not. It is more a 
conceptual idea. Ergodicity is, however, usually assumed as it enables to evaluate the 
autocorrelation in the time domain without knowing the joint probability distribution. 

Autocorrelation Function 



6. Appendix I: Statistics 6-6 

.. 
.... 

(6.16) 

The double index n is there to remind one of the random variable X that stands behind the 

stochastic process. 

For the description of time discrete processes the same concepts apply. Only the results have 

to be adjusted accordingly. Given a series of observations xi (i EN) taken at in constant time 

intervals T, the autocorrelation coefficients 

(6.17) 

converges towards the proper autocorrelation function R.x(iT), presumed stationarity and 

ergodicity. In full analogy to the Fourier transform (6.16) in the time continuous case, here 

the discrete Fourier transform will yield the power spectrum: 

.. 
S..,.(6>) ; L Rke-4k~T 

k-­
z,. 
T 

Rk ; _I_ J S.rz(6l)elk~Td6l 
2'11' 0 

(6.18) 

The inverse transform, however, is not part of the discrete Fourier transform as the power 

spectrum has not been discreteized. 

6.5 Normal Distribution and Normal Process 

6.5.1 Normal Distribution 

The so called standard normal distribution or Gaussian distribution is a distribution defmed 

by the probability density function 

Normal Distribution Normal Distribution 



6. Appendix I: Statistics 6-7 

J{x) = 1 exp(-!<x-a)l) 
.p;;iu 2 ul (6.19) 

Its mean value is a, its standard variation a. For the special case of a = 0, a = 1 the 

distribution is called standard normal or Gaussian distribution and the corresponding 

distribution function is defmed by ([1], def. 26.2.2) 

z 

~(x) = -
1
- J exp(-!~) d~ .p:;; .... 2 (6.20) 

The distribution function of a normal distribution is then 

(x-a) F( x) = ~ ---;;-
(6.21) 

The probability density function of two- dimensional or bivariate normal distribution for two 

identical distributed random variables X and Y with zero mean, standard variation a and 

correlation coefficient r is given by 

r_ (x,.n = 1 xp[ 1 (r+r-2rxy )] 
zy 2-rrulb-rl 2(1-rl) ql (6.22) 

where the correlation coefficient is defmed via the covariance vxy , r = vxy I a2• 

6.5.2 Normal Process 

A stochastic process X(t) is called normal if the random variables X(t1), X(t:J ... belong to a 

multi- dimensional normal distribution. The probability density of X(t) under the condition 

of a given observation Xo at timet= 0 can be calculated via (6.14) and (6.22) and it is 

(6.23) 

Normal Distribution Normal Process 



6. Appendix I: Statistics 6-8 

The corresponding distribution function can be expressed in terms of the Gaussian 

distribution (6.12), 

F{xl-'0) = «fl( x-AflT ) 

b-cr (6.24) 

Hence, its mean value is the product rxo and time dependant if r is a function of t. 

6.6 Random Numbers 

This section discusses random number generators that are able to retrieve numbers drawn 

from a given distribution. In fact, they are algorithms that return a number each time they 

are called upon. As they all have a period after which they will repeat the same sequence of 

numbers, the numbers are called pseudo random. Thanks to long periods the numbers appear 

however to be random. The Kolmogorov- Smirnov- test ([33], p.623) may be applied to 

check whether the empirical distribution of a stochastic process matches a theoretical 

distribution function. Its measure is the maximum value of the absolute difference between 

the theoretical distribution function and the empirical distribution function of a given sample 

of numbers. The Kolmogorov- Smirnov test is, however strictly not applicable to check the 

performance of a random number generator. The following sections discuss random 

generators for several distribution functions. For more details on their implementation and 

typical results of the corresponding ~olmogorov- Smirnov- tests refer to section 7.1.2.2. 

6.6.1 Uniform Deviates 

A uniform deviate is a random number drawn from a uniform distribution. It is assumed to 

return numbers that are evenly distributed over the open interval ((),1). Throughout this 

chapter we will denote a uniform deviate with ii € (0,1). In the following chapters it will be 

discussed how a uniform deviate can be used in order to generate random numbers drawn 

from a normal distribution (chapter 6.2) or any discrete distribution (chapter 6.6.3). They are 

necessary to produce synthetic time series of the wind speed and clearness index fluctuations. 

Random Numbers Uniform Deviates 



6. Appendix I: Statistics 6-9 

6.6.2 Transformation Method and Normal Deviates 

Assume random numbers are to be generated, drawn from a distribution that can be 

described by its probability density function f(x) or the corresponding distribution function 

F(x). Given a uniform deviate u (uniformly distributed in (0,1) a random number y of some 

arbitrary distribution F(x) can be generated via the inverse function of F(x), 

(6.25) 
This method is, however, not always feasible and depends on whether F"1(x) can be evaluated 

or not. 

A normal deviate is a random number y, drawn from a normal distribution with mean x,.., 

and standard deviation o2
• If x.,.., = 0 and a = 1, the numbers may be called standard 

normal deviates. They will be denoted with y,. The corresponding distribution function is the 

standard normal distribution (defmed in equation (6.20). There are many methods to generate 

standard normal deviates using uniform deviates u (0 < u < 1), two of which will be 

discussed briefly. The first method applies (6.25) directly. For the inverse of F(x) an 

approximation has been used ([1], eq. 26.2.22). Thanks to the symmetry of the normal 

distribution, 

~(x) = 1- ~(-x) 

(6.26) 
the random number y, may be worked out from the relationship 

Ys = F-l(u) = 1 + btt + bztl 

-r1 (1 - u) 

t , t = ~m( ;2 ) , O< us ~ 
1 , -<u<1 
2 

(6.27) 

with the coefficients llo = 2.30753, a1 = 0.27061, b1 = 0.99229 and b2 = 0.04481. The second 

method is the Box-Muller ([33], p.289f) method. Given two uniform deviates ui> Uz E (0,1) 

and applying the transfer methods for two variables, it can be shown the the two parameters 

Y1 and Yz, 

Random Numbers Transformation Method 



6. Appendix I: Statistics 

Yt = J-2Inxcos(21T..I2) 
Jl = J-21nxsin(21T..I2) 

6-10 

(6.28) 

are both independently distributed according to the standard normal distribution <I>(x). Both 

methods require one uniform deviate for each normal deviate. The Box-Muller method, 

however, requires less computing time. It was therefore the one that has been implemented 

in the project. Having determined a standard normal deviate y., it can be easily transferred 

to a normal deviate y by computing 

(6.29) 

6.6.3 Deviates of Discrete Distributions 

As shown above, discrete distributions can be described by the distribution coefficents Fi 

(6.8). Given a uniform deviate u E (0,1) a random number y of the discrete distribution can 

be obtained via 

(6.30) 

This means that y returns the i for which Fi :<: u and Fi•t ,; u is. Hence, this is in fact the 

transformation method for discrete distributions. 

Random Numbers Discrete Distributions 



7. Appendix II: Programme Documentation 7-1 

7. Appendix 11: Programme Documentation 

7.1 Functional Specification 

7.1.1 Getting Started 

A programme has been written that carries out all the calculations described in this paper. It 

runs on a Windows 3.1 environment. The executable file is called owrenw.exe. In order to 

run it successfully the dynamically linked library bwcc.dll has to be accessible during run­

time. To make sure that Windows is able to fmd it, it has to be in one of the following 

directories: 

In the same directory as owrenew.exe, 

In the Windows system directory 

In a directory that is included in the environment variable PATH. 

The file owrenew.dlg contains user preferences and chosen parameters of the last session. It 

should reside in the same directory as owrenew.exe. It is not necessary to run the 

programme, but will be automatically created upon exiting the programme to Windows. 

After starting the programme a new window will appear on the screen, which is the main 

window of the application. Its main features are a menu bar to select further actions and a 

white board for graphical display. It is best to click with the mouse on the top right hand 

corner button to maximise the main window. The programme can be exited via Alt-D-X or 

by double clicking the top left hand corner. The programme has a Windows icon associated 

with it that can be included by using the Windows Setup utility. 

7.1.2 Programme Description 

In this section all menu options are described along with the dialog windows they will cause 

to open. There are 5 main items on the menu bar: 

Distributions: For all calculations of probability distribution functions. 

Applications: For random number generators, time series and the first passage time 

problems. 

Options: Setting up usere preferences and parameters. 

Functional Specification Programme Description 



7. Appendix II: Programme Documentation 

Export: Exporting data to Word Perfect Presentation. 

Help: The on-line help feature is not implemented. 

7 .1.2.1 Distributions 

(i) Wind Speed Distribution 

7-2 

The dialog window "Wind Speed Distribution" prepares for the calculations of the stationary 

probability density function of short term wind speed fluctuations as described in section 

4.1.1. It permits to select either the calculation of the probability density function or the 

corresponding distribution function. Moreover, it asks for four parameters to be specified: 

Mean wind speed: This is the mean wind speed v (equation 4.1) in m/s. 

Minimum wind speed: This is only for display purposes. The frrst value to be 

calculated will be v = minimum wind speed. 

Maximum wind speed: This is the last value to be calculated. 

Number of evaluations: Number of points to be calculated within the open interval 

[minimum wind speed, maximum wind speed]. 

Other parameters such as the wind speed standard deviation should be specified in the 

Settings dialog window (see below). Once all parameters are set, press the OK button of the 

"Wind Speed Distribution" window. The dialog window disappears and a new Calculations 

dialog window appears on the screen. Press OK to start calculations. The progress of the 

calculations can be monitored by looking at the Calculations window where the elapsed time 

and some other bits of information are depicted. Press OK (or ENTER) once the calculations 

are finished in order to continue. The calculated points are now shown in a graph in the 

main window. 

(ii) Wind Power Distribution 

The dialog window "Wind Power Distribution" prepares for the calculation of distribution 

functions of the wind turbine power (section 4.1.2). It allows to choose between probability 

density function and distribution function as well as between stationary and conditional 

distribution. Parameters to be specified prior to continuation are: 

Functional Specification Programme Description 



7. Appendix IT: Programme Documentation 7-3 

Mean wind speed: Same as in (i) 

Steps on power axis: This is the number of discrete levels along the power scale. 

See equation (4.5) in section 4.1.2. 

Time tau [s]: The time t for which the distribution function is to be calculated. It 

appears in the autocorrelation coefficient r. in equations (4.1) and (4.2). It is only to 

be specified if the conditional function is chosen. 

Initial wind speed: The initial wind speed v0 in equations (4.3) and (4.4) in the case 

of a conditional distribution. This field is grey and cannot be selectec if the stationary 

distribution is selected. 

Again, other parameters may be specified in the Settings window. Once having pressed the 

OK button the procedure is identical to (i). 

(ili) Solar Power Distribution 

This is the dialog window for the calculations descn'bed in section 4.1.3. Again, it gives the 

option to choose between probability density function and distribution function. Furthermore, 

the user has to select one of the following options: 

Analytical Distribution: This denotes the distribution function ( 4.9) using the Beta­

function and not the approximation via Gaussian functions. It is for stationary 

distributions only. 

Approximation: This is now the distribution function ( 4.11) employing the 

approximation, though only for stationar distributions. 

Conditional Distribution: This is the conditional distribution (4.11), (4.12) for which 

an initial clearness index k has to be specified. 

Quality of Approximation: Having selected this option the difference between the 

analytical solution and its approximation is calcualted (equation 2.90). 

Parameters can be entered too: 

Average hourly clearness index k: See discussion in section 2.2.4.1. 

Standard deviation ak: See discussion in section 2.2.4.1. 

Steps on power axis: See above (ii). 

Time tau [s]: See above (ii). 

Initial clearness index k: This field can only be entered if the conditional 

Functional Specification Prograrrune Description 



7. Appendix II: Programme Documentation 7-4 

distribution is to be calculated. 

Number of trial points: This is variable M in equation (2.85), an optimization 

variable - not necessary if stationary distribution is to be calculated. For reasonable 

values refer to discussion in section 2.2.4.2. 

Number of coefficients: This is variable Q in equation (2.85) and is not necessary 

for stationary distributions. Again, for reasonable values refer to section 2.2.4.2. 

Furthermore, the user can tick the Bypass option. If a distribution is to be calculated that is 

based on the approximating formula, various optimisation parameters have to be determined 

prior to evaluating the distn'bution formula (2.82). The calculated optimisation parameters are . 

stored in a file <solar.dat>. In case the same input parameters hold true the next time the 

approximation is used, the optimisation parameters are read from the file rather than 

repeating the same calculation - though only the Bypass • option is selected. In order to save 

time make sure the option is always selected. In case the input parameters don not match 

with the parameters on the file the optimisation calculation will be carried out anyway. 

(iv) Joint Renewable Distn'bution 

Here is the dialog box for the calculation of combined power distributions as outliued in 

section 4.1.4. The layout of the window is very similar to the other distribution dialog 

windows giving the user the option to select between the joint density function (stationary) 

and the joint conditional distribution as defmed by equation (4.15). The only additional 

parameter is the fractional power factor ( (equation (3.15)). 

7.1.2.2 Applications 

(i) Random Numbers 

This dialog box and the corresponding calculations have been implemented in order to check 

the quality of random numbers generating algorithms as discussed in section 6.6. The user 

can choose one distribution type and enter relevant distribution parameters. Upon pressing 

the OK button, the programme will generate N (as specified in the input field Number of 

trials) random numbers and calculate the sample's mean value and variance. Moreover, it 

Functional Specification Programme Description 



7. Appendix II: Programme Documentation 7-5 

will carry out a Kolmogorov- Smirnov test and print out the test result. The number of 

classes necessary for the test can be inserted in the input field Number of classes. For more 

details on the implementation of the Kolmogorov- Smirnov test and the significance of the 

test result see [33], page 623ff. Tests can be repeated by pressing the Retry button. 

Uniform distribution: In order to generate uniform deviates the random number 

generator of the C- standard library is used, whose period length is guaranteed to be 

232 
. ([5], rand{)). The expected theoretical mean value of a distribution which is 

uniformly distributed in [0,1] is 0.5, its variance is 1/12 = 0.08333. A typical result 

is mean 0.5163 and variance 0.08501 with N = 100 trials. As mentioned in section 6 

the uniform deviates are used to generate other random numbers, such as normal 

deviates. 

Normal distribution: The generator of random numbers taken from a standard 

normal distribution with zero mean and variance 1 is implemented using the Box­

Muller method (see section 6.6.2). A typical result (for N = 100) is mean 0.04730 

and variance 1.04078. Normal deviates are used in all time series calculations that 

include the wind speed distribution. 

Beta distn'bution: This random number generator is implemented by employing the 

rejection method for continuous distributions (compare [33], p.290). It is, however, 

never used for time series calculations. It is here more for development purposes and 

is now obsolete. 

Binomial distribution: Binomial deviates are generated using the rejection method 

as introduced in section 6.6.3. Although the binomial distribution is not required in 

the time series calculations of this paper it has been implemented here to confirm the 

rejection method using a well known discrete distribution. The binomial distribution 

depends on two parameters, n and p. Here, n is the number of trials and p the 

probability that an event occurs. The theoretical mean is np, its variance np(l-p ). As 

the binomial distribution is a discrete distribution, the Komogorov- Smirnov test is 

not applicable. Though, test results of the mean value and the variance suggest that 

the implemented method is reliable. It is used for all time series calculations 

involving discrete distributions. 

Functional Specification Programme Description 



7. Appendix IT: Programme Docwnentation 7-6 

(ii) Time Series 

The dialog window "Time Series" prepares for the generation of time series as discussed in 

section 4.2. The window is divided into three parts. First, the user can select one of the 

following time series: 

Wind Speed: Wind speed time series as outlined in section 4.2.2.1. 

Wind Power: Wind turbine power time series as outlined in section 4.2.2.2. 

Solar Power: Photovoltaic array power time series as outlined in section 4.2.2.3. 

Combined Renewable: Joint renewable power time series as outlined in section 

4.2.2.4. 

Battery: State of Charge: State of charge time series as outlined in section 4.2.2.5. 

Power Deficit: Here, the programme generates a time series of the joint renewable 

power and tracks the state of charge of the battery. It then compares the power 

supplied by the renewable energies and the battery with the power demand. If the 

power demand is greater, hence if there is a power deficit it will go into the power 

deficit time series. If there is no deficit, the time series value will be zero. A power 

surplus is not recorded. 

Second, the user has to enter initial values (dependend on the chosen type of time series): 

Initial wind speed [m/s]: Field only visible if selected time series use the wind. 

Initial clearness index k(O): Field only visible for calculations including the PV 

array. 

Available charge QlO: Field only visible for calculations which need the battery. 

Bound charge Q20: Field only visible for calculations which need the battery. 

Third, there are two input fields that are applicable to all time series calculations: 

Time step [s]: This is the implied time interval between two time series values and 

corresponds to at in section 4.2.1. 

Number of points: Nwnber of time series values to be generated in one calculation. 

(iii) First Passage Time Problems 

The dialog window "First Passage Time Problems" refers to the calculations in section 4.3. 

First, the user selects the underlying, physical process: Wind speed, wind turbine power, 

solar power or joint renewable power. Second, he selects the method to be used, which is 

Functional Specification Programme Description 



7. Appendix II: Programme Documentation 7-7 

either Time Series Approach (see section 4.3.1) or Markov Chain Approach (see section 

4.3.2). Third, he can select a calculation technique: 

Calculate one passage time value only: For a given initial value and a chosen 

passage level the programme computes the first passage time. 

Passage time as function of initial value: For a given, fixed passage level the 

programme computes a series of frrst passage times. The first value to be calculated 

assumes the value entered into one of the initial value fields as initial value. The last 

value to be calculated assumes the initial value to be identical to the passage level. 

The total number of values to be calculated is specified in the input field Number of 

values. 

Passage time as function of passage level: For a given, fixed initial value (or a set 

of initial values in the case of joint renewable power) the programme computes a 

series of first passage times. The first value to be calculated assumes the passage 

level to be identical to the- initial value. The last value to be calculated assumes the 

passage level to be the value entered into one of the passage level input fields. Again, 

the total number of values to be calculated is specified in the input field Number of 

values. 

Fourth, there are some additional input fields, which may not be visible, depending on the 

selection of the process, the method and the calculation technique. 

Underlying time step: Only applicable if time series approach is selected. It has the 

same significance as in the Time series dialog window above. 

Initial wind speed: Initial wind speed in [ mjs ]. 

Initial clearness index: Initial clearness index k(O). 

Initial power: Initial, normalised power E [0,1]. 

Wind speed level: Passage level for the wind speed in [m/s]. 

Clearness index level: Passage level for the clearness index k. 

Power level: Passage level of the normalised power E [0, 1]. 

7.1.2.3 Options 

(i) Settings 

Functional Specification Programme Description 



7. Appendix II: Programme Documentation 7-8 

In the "Settings" dialog window the user can enter parameters of physical relevance. Values 

entered here are used by the calculations unless altered in another dialog window. However, 

if a parameter of the Settings window is altered in another dialog box, it will be updated in 

the Settins window as well, so that there is never an ambiguity which value might be used 

in calculations as it is always the value last seen be the user. 

Cut-in wind speed: See section 3.1. 

Cut-out wind speed: See section 3.1. 

Rated wind speed: See section 3.1. 

Mean wind speed: See section 2.1. 

Wind standard deviation: See equation (2.3). 

Auto correlation coefficient Pw: Wind speed autocorrelation coefficient Pv (see 

equation (2.9) and discussion below it). 

Max clearness index KO: This is parameter Ko in equation (3.14). 

Hourly clearness index k: This is the hourly average clearness index k as introduced 

in section 2.2.4.1. 

Standard variation a k: Standard variation of the hourly clearness index k, as 

defmed in equation (2.65). 

Auto correlation coefficient Ps: Autocorrelation coefficient P. of the normalised 

clearness index x, as defined in equation (2.81). 

Fractional power factor zeta: Definition in equation (3.14). 

Battery: Factor k: All battery parameters refer to the Manwell model in section 

2.3.2.3 part (iii). 

Battery: Factor c: see factor k above. 

Battery: Qmax [Ab]: This is the battery capacity Q, as discussed in section 2.3.2.2. 

Please note that the value to be entered should be in Ampere hours. 

Battery: Voltage [V]: This is the (constant) battery voltage. See discussion of 

Manwell model in section 2.3.2.3 part (iii). 

Nominal Renewable Power [W]: The combined (non normalised), maximum 

renewable power in Watt, as defmed in equation (3.15). Hence, this is the total 

installed power. This parameter is only used for state of charge time series. 

Power Demand [W]: This is the power demand P"" as in section 4.2.2.5. 

Functional Specification Programme Description 



7. Appendix II: Programme Documentation 

(ii) Maths 

In the "Maths" dialog box the user can specify some mathematical parameters: 

Solar Power: Approximation of Distribution 

Number of coefficients: See discussion of Solar Power Distribution window. 

Number of trial points: See discussion of Solar Power Distribution window. 

First Passage Time Problem 

7-9 

Number of time series: Number of time series taken into account while calculating 

the first passage time using the time series approach. Refer to discussion in section 

4.3.1. 

Max number of iterations: (Time series approach) See discussion of time series 

approach algorithm in section 4.3.1, point (10). 

Max number of iterations: (Markov chain approach) See discussion of Markov 

chain approach algorithm in section 4.3.2, point (14). 

Stopping criterion: Stopping criterion in Markov chain approach to first passage 

times. See discussion of algorithm in section 4.3.2, point (13). 

Number of grid points: Tills parameter is a software development parameter and is 

now without any significance. 

Process Discretization 

Number of classes: For discrete distributions that are discretised along the power 

axis. Refer to equations ( 4.5) or ( 4.8). 

(ill) Directories 

In the "Directories" window the user can specify the location of dialog or user flies. 

Solar Data: The optimisation parameters for the approximation of the PV array 

power distribution are stored in the me with the name specified here. Please refer to 

the discussion on the bypass option in the Solar Power Distribution window. 

Dialog Data: This is a software development field which is now not used at all. 

(iv) Display 

In the "Display" dialog window the user is given a variety of options for display purposes. 

Auto display of graphics: If this option is ticked, the graph of the last calculation 

Functional Specification Programme Description 



7. Appendix II: Programme Documentation 7-10 

will be automatically rebuilt after the display of other dialog windows. If the option 

is switched off, the graph is shown right after the calculation but is not being shown 

once another dialog box has been opened. 

Accumulate data series: If this option is switched on, up to 4 data series are 

accumulated and shown in the graph at the same time (in different colours). If the 

option is switched off only one data series is shown in the graph. 

Ask for legend text: If this option is switched on, the programme asks the user for 

a legend text to be associated with a curve. The legend text does not appear on the 

screen. It is, however, exported to Word Perfect Presentation. See discussion on the 

dialog window Export Data. 

(v) Export Data 

The "Export Data" dialog window prepares for the export of the data of the most recently 

calculated data series to a f!le. If the option "accumulate data series" is switched on the data 

of all curves in the latest accumulation are exported. The format of this export f!le is data 

compatible with import requirements for Word Perfect Presentation diagrams. Hence, data 

calculated here can be exported to diagrams in Word Perfect Presentation. All diagrams in 

this paper have been produced using this technique. 

New file: Save data to a new f!le. If flle already exists, its content will be 

overwritten. 

Attach data to file: Append data of last curve to the end of the specified file. 

File name: Name of the file the data should be sent to. If no pathname is specified, 

the current working directory is assumed. 

7 .1.2.4 Help 

The on-line help is not implemented. 

7.1.3 Bugs and Errors 

Functional Specification Bugs and Errors 



7. Appendix II: Programme Documentation 7-11 

The programme is designed in way so that it is unlikely to crash. Every input field (i.e. 

fields into which the user can type) are thoroughly checked. Messages do appear if the 

format is wrong. For instance if the user types a word where a number is expected. 

Moreover, messages do warn the user if the programme thinks some input parameters are out 

ofrange. For instance, if the user enters 1.2 into a normalized parameter field that expects 

only numbers between 0 and 1, or if the cut-in wind speed is greater than the cut-out wind 

speed. In these instances the user can choose to abort the intended action or to ignore it. It 

is strongly recommended that the user never ignores the warning as this may result in severe 

errors. Remember that warnings are given for a reason. The option to ignore is implemented 

for software development purposes only. 

Most internal errors should be captured before a crash and an error message is printed out on 

the screen while the programme is suspended. Although these errors are not damaging, they 

are not intended to occur. As at print time no situation is known of where such an error 

occurred. 

It may happen that after some time that the headline in the graphs is displayed in a small 

font rather than a big font. This is due to the limited number of font resources in Windows. 

The problem has been recognised but not fixed. It has, however, no impact on anything else. 

If a user cannot live without the big font, he is advised to quit Windows and start Windows 

again. Other bugs are not known. 

7.2 Technical Design 

In this section the design of the programme is discussed. It is written in C++, using the 

Borland C++ 3.1 compiler for Windows. It uses the standard C/C++ library, Borland Class 

library and the Object Windows C++ library. Readers who are not familiar with C++, object 

oriented progranuning and Object Windows C++ may fmd this section difficult to 

understand. Object Windows C++ ([3], [4]) is a class library that is used for all windows in 

the programme. The next paragraph gives an overview of the files that make up the source 

code. It is followed by a discussion of the main programme and an outline of the 

implementation philosophy. Although the number of classes and functions may seem at first 

Technical Design 



7. Appendix IT: Programme Documentation 7-12 

glance hard to swallow, the concept is simple and the structure logical. After the introduction 

into the programme idea section 7.3 gives a complete class reference, discussing all classes 

and their public and protected members. Section 7.4 describes all global functions. From 

there it should be no problem to undeerstand the source code. 

7 .2.1 The File Structure 

7 .2.1.1 Header Files 

Header files in C/C++ (extension .h) are there to defme classes and constants, declare global 

functions and data types and defme macros. Every class, structure, function or data type is 

defined in a header file. A listing of all header files is printed in section 7.5 of this paper. 

The header files can be grouped as follows: 

(i) General Purpose C- Functions 

These header files defme constants and functions that can be considered as an extension of 

the standard C- library. 

<boolwin.h> Defmition of Boolean constants 1RUE, FALSE, YES, NO, OK and some 

mathematical constants. 

<cstring.h> 

<error.h> 

Defmition of functions on C- strings. 

Defmition of an error handler. 

(ii) Mathematical functions and classes 

These header files defme mathematical functions and objects. They are not project specific. 

Among the classes are an implementation of a vector class, matrix class and a class that 

represents functions of one variable. 

<diffcalc.h> Defmition of the Class objfunc which is the implementation of a function of 

one variable. 

<mathfuuc.h> Declaration of mathematical functions. 

<vectors.h> Defmition of the classes VECI'OR and MATRIX. 

Technical Design The File Structure 



7. Appendix ll: Programme Documentation 7-13 

(in) Windows 

These header files defme all objects that are inherited from Object Windows C++ classes. 

Hence, the prefix 'ow'. These objects are usually windows or dialog boxes used in the 

project 

<owcalc.h> Defmition of all window objects on which calculations are carried out. 

<owdialg.h> Defmition of all dialog windows. 

<owlappLh> Defmition of general purpose dialog windows or input fields in dialog 

boxes. 

<owparam.h> Defmition of the structure Param. This structure acts as in interface 

between dialog windows and calculation related classes. Definition of class 

Graph which acts as an interface between calculations and the graphic 

window TGraph. 

<owplot.h> Defmition of graphic related classes. 

<owrenew.h> Defmition of the graphic window, TRenewPlot, the main· window, 

TMainWindow, and the main application, TRenewApp. 

<owres.h> 

<owstat.h> 

Defmition of all constants used for the windows resources. 

Defmition of abstract calculation windows classes. 

(iv) Project Objects 

These header fJ.les defme all mathematical objects that are directly project related. 

<distrib.h> Defmition of classes in the context of distribution functions: E.g. the 

implementation of a discrete distribution or a continuous distribution. 

<joint.h> Defmition of the class ProbJointPower, the implementation of the joint 

renewable power distribution. 

<passage.h> Defmition of first passage time problem related classes. 

<random.h> Defmition of random number generator related classes. 

<series.h> Defmition of time series related classes. 

<solar.h> Defmition of classes that deal with the photovoltaic array and the 

distribution of the PV array power. 

<wind.h> Defmition of wind and wind power related classes. 

Technical Design The File Structure 



,--------------------------------------------------- ---

7. Appendix II: Programme Documentation 7-14 

7 .2.1.2 Source Files 

Source files (extension *.cpp) contain the code for the functions (or class member functions) 

defmed in the header files. There is usually a mapping between header files and source files. 

E.g. the code for functions defined in wind.h can be found in wind.cpp. There are just two 

exceptions to this rule. First, there is no source .ftle boolwin. cpp as the header boolwin. h does 

not defme any functions. Second, the functions contained in the source ftle linalg.cpp are 

defined in the header flle mathfunc.h. A listing of the source file owrenew.cpp is included in 

section 7 .5.2. The listing of other source mes is not included in this paper in order to avoid 

overloading. The complete source code, though, is shipped together with the executable me. 

Readers interested in the complete source code are referred to the disk. 

7 .2.1.3 Resource File 

Another important flle is the resource flle owres.c which contains data for the layout of the 

dialog windows, such as coordinates and other attributes. The resource me owres.rc has been 

created using Borland Resource Workshop ([6]). Some of the resources, such as input fields 

or dialog windows are given uinque identity numbers. These constants are defined in the 

header flle owres.h which is included by the resource flle and other source flies. 

7 .2.1.4 Other Files 

The ftle owrenew.def is to be included in the project flle. It contains text that serves as 

information l:iut is otherwise not important. The library me bwcc.lib is included in the project 

file owrenew.prj as well. This is the library that renders the dialog windows the 'Borland' 

look rather than the 'Microsoft' look. As mentioned earlier the file bwcc.dll should be 

accessible at runtime for the same reason. The programme does not work without. Finally, 

the project file owrenew.prj contains all flies to be compiled and linked. It is a software 

development tool. 

7 .2.2 The Programme Structure 

Technical Design The Programme Structure 



7. Appendix IT: Programme Documentation 7-15 

The main routine of the programme is located in owrenew.cpp right at the end (see listing in 

section 7.5.2). It is a typical Object Windows C++ routine. Readers who are not familiar 

with Object Windows C++ should first read the programming handbook ([3]). 

In the main routine two classes are initialised, param and GraphData. Their significance is 

mentioned later. Then, an instance of the class TRenewApp is created, which is inherited 

from the Object Windows C++ class TApplication. The application is run. Upon exit of the 

application the objects param and GraphData are deleted. Now what exaclty happens in 

TRenewApp? 

Basically, it initialises the main window, class TMainWindow (inherited from Object 

Windows C++ class TWindow), which is the window that is visible on the screen and 

contains the menu bar. Now, the programme works in the main window and waits for 

commands, such as a selection of one of the menus. Generally, every window is actually 

represented by a class. All events that happen in a window (such as the selection of a menu 

item or if the user presses a button) are handled in the corresponding class. Hence, actions 

in the main window are handled in TMainWindow. Have a look at the defmition of 

TMainWindow in the header me owrenew.h. For instance, there is a function CMWindSpeed 

( ) = [CM_FIRST + cmWindSpeed]. This function is carried out as soon as the event 

'cmWmdSpeed' occurs. This particular event occurs as soon as the menu item 'Wind Speed 

Distribution' in 'Distributions' is selected. The function CMWindSpeed (see listing of 

owrenew.cpp in section 7.5.2) opens the dialog window 'Wind speed dialog', which is 

represented by the class TSpeedDialog, which is inherited from the Object Windows C++ 

class TDialog. It is defined in the header file owdialg.h. Now execution is transferred to the 

instantiation of TSpeedDialog. Here, the user can enter some parameters. If he presses the 

Cancel button the programme goes back to the main window. Otherwise it transfers 

execution to the next window, TWindSpeedObject, defmed in header me owcalc.h. This is 

the calculation window. If the user presses the OK button the calculations are carried out by 

calling the member function workOutValues(). If the user selects OK after the termination of 

the calculations execution goes back one window to TSpeedDialog and from there to the 

main window TMainWindow. All the other menu items are handled in a similar way. 

On top of the main window lays a graphic window, TRenewPlot, which is inherited from 

TP/ot and the Object Windows C++ class TWindow. Every time the execution returns from 

Technical Design The Programme Structure 



7. Appendix II: Programme Documentation 7-16 

the calculation window to the main window, the graphical window checks whether it has to 

draw a graph. TRenewPlot is defmed in owrenew.h as well. It receives the data for the 

curves (i.e. the data of the last calculations) via the variable GraphData (definition in header 

owparam.h). The data calculated in TWindSpeedObject for instance are stored in GraphData 

and can be picked up by the graphic window TRenewPlot when it has to draw itself. 

There is another interface variable worth mentioning. It is param, which is of type Param as 

defined in owparam.h. Every time a dialog window is initiated the default data for its input 

fields or radio buttons are taken from param. In fact, in the case of the dialog class 

TSpeedDialog, the appropriate data from param are loaded into an instance of a class 

ITransSpeedDlg (defmed in owdialg.h) via its member fimction setParameter(). Then data 

are transferred to the dialog TSpeedDialog and appear on the screen. The user is now given 

the opportunity to overwrite the parameters in the input fields. If he chooses 'OK' at the end, 

the buffer ITransSpeedDlg is updated with the new data. So, if he opens the same dialog 

again, the input fields are now filled with the new data. Otherwise, if he chooses 'Cancel' the 

buffer is not being updated, which is indeed the functionality of a cancellation. 

All actions are implemented in a similar way. Look at Fig. 7.1. Every dialog window that 

appears upon selection of a menu item in the main window is directly inherited from the 

base class TDialog. E.g. TSettingsDialog is the class corresponding to the settings dialog 

window. Every dialog class is given a parameter buffer class as described above. E.g. the 

buffer that corresponds to TSettingsDialog is ITransSettingsDlg. All calculations are carried 

out on the calculation window which is itself a dialog window. If a calculation is to be 

carried out that produces only one value, hence a graphical display is not possible, the class 

to be nsed is directly inherited from TStatusWindow. E.g. the class TPassage1ime, when only 

one frrst passage time value at a time is to be calculated. If a whole curve is to be computed, 

the class to be used is inherited from TMultiValObject. E.g. TWindSpeedObject. In all classes 

with postfix 'Object' calculations are carried out. That means that their member functions 

initialise the mathematical objects. There are no mathematics involved in classes with 

postfixes 'Dialog', 'Dig' or 'Window'. 

This paragraph was intended to give an overview of the principles of the programme. All 

classes and their member functions as well as all global fimctions are listed and discussed in 

the following sections ordered by header files. Especially the class reference is - together 

Technical Design The Programme Structure 



7. Appendix II: Programme Documentation 7-17 

with the source code - a very thorough documentation of the programme. 

~1MainWindow j 

lr-:: /lWin=:-dow.,...-----,1 "'1 TGraph 

~ ITstatusWm' dow I - r:=-:-=-::-:---, . . TMultiVaiObject 

TPassageTuneObject 

:Join1Distribntion0bject 
TRandomObject 

1Distribution0bject 

TW'mdSpeedObjea 

Fig. 7.1: Class Structure of Windows Objects 

Technical Design The Programme Structure 



7. Appendix ll: Programme Documentation 7-18 

7.3 Class Reference 

In this section a complete class reference is given. The first part consists of a list of all 

classes together with a short description and the header me it is defmed in. In the second 

part the classes are discussed in more detail discussing all constructors, protected and public 

data elements, member functions and operators. 

CLASSES - OVERVffiW 

axis 
BetaKgSTest 

betaRand 

. ContCondSolApprox 

ContCondWindPower 

ContinuousDistribution 
ContSolAppQual 
ContSolApprox 

ContSolApproxX 

ContSolExact 

ContSolExactX 

ContWindPower 
DiscretDistribution 

discretRand 

DiscretRandomizer 

DiscretWindSpeed 

DiscSolApprox 

DiscretWindPower 

Class Reference 

Implementation of a coordinate axis 
Kolmogorov- Smirnov test for Beta­
distribution 
Random number generator for beta­
distribution 
Conditional distribution of the PV array 
power 
Conditional distribution of the wind 
turbine power 
Continuous distribution 
Quality of approximation 
Distribution of the PV array power 
using approximation 
Conditional distribution of the 
normalised clearness index x 
Analytical solution of the PV array 
power distribution 
Analytical solution of the distribution of 
the normalised clearness index x. 

. Distribution of the wind turbine power 
Implementation of a discrete 
distribution 
Generation of random numbers of any 
discrete distribution 
Random number generator for discrete 
distributions 
Discrete distribution of wind speed 
fluctuations 
PV array power as a discrete 
distribution 
Discrete distribution of wind turbine 
power fluctuations 

<owplot.h> 

<random.h> 

<random.h> 

<solar.h> 

<wind.h> 
<distrib.h> 

<solar.h> 

<solar.h> 

<solar.h> 

<solar.h> 

<solar.h> 
<wind.h> 

<distrib.h> 

<random.h> 

:<distrib.h> 

<wind.h> 

<solar.h> 

<wind.h> 

Overview 



7. Appendix II: Programme Documentation 

Graph 

JointPassageTimes 

JointPowerTimeSeries 
KgSTest 

MATRIX_ 

MCPassageTime 

Interface between graphic window and 
calculations 
Object function for first passage times 
of joint renewable power fluctuations 
Joint renewable power time series 
Abstract class of a Kolmogorov­
Smimov test 
Implementation of a matrix with real 
elements 
First passage time using the Markov 
chain apporach 

MCWindSpeedPassageTime 
First passage time of wind speed 
fluctuations using the Markov chain 
approach 

MCWindPowerPassageTime 
First passage time of wind turbine 
power fluctuations using the Markov 
chain approach 

MCSolarPowerPassageTune 
First passage time of PV array power 
fluctuations using the Markov chain 
approach 

MCJointPowerPassageTime 

MeritSol 

rnsgObjfunc 
NormKgSTest 

normRand 
objfunc 
owObjfunc 

pairvec 

Param 

Passage Time 
Passage Times 

PassageTimesObject 

Class Reference 

First passage time of joint renewable 
power fluctuations using the Markov 
chain approach 
Object to optimise the approximation 
used for the distribution of the PV array 
power. 
Function of one variable 
Kolmogorov- Smirnov test for normal 
distribution 
Generation of normal deviates 
Function of one variable 
Implementation of a function of one 
variable 
Double vector that stores x- and y­
values 
Structure that holds parameters for 
dialog windows 
First Passage Time Object 
First passage time problems in case 
more than one value is to be 
calculated. 
Calculation of first passage times 

7-19 

<owparam.h> 

<passage.h> 
<series.h> 

<random.h> 

<vectors.h> 

<passage.h> 

<passage.h> 

<passage.h> 

<passage.h> 

<passage.h> 

<solar.h> 
<distrib.h> 

<random.h> 
<random.h> 
<diffcalc.h> 

<diffcalc.h> 

<diffcalc.h> 

<owparam.h> 
<passage.h> 

<passage.h> 
<owcalc.h> 

Overview 



7. Appendix IT: Programme Documentation 

PowerDeficitTimeSeries 
ProbCondSolApprox 

ProbCondWindPower 

ProbJointPower 

ProbSo!AppQual 

ProbSo!Approx 

ProbSo!Exact 

ProbWindPower 

rejectRand 

SolarPowerPassageTimes 

SolarPowerTimeSeries 
SolarRatldomizer 

Sol Constants 

Speed 
SpeedDens 

SpeedDist 

Time series of the power deficit 
Conditional distribution of the PV array 
power as statfunc object 
Conditional distnoution - representing 
the wind turbine power - as statfunc 
object 
Joint renewable power probability 
function 
Quality of approximation as statfunc 
object 
Solar distribution (using the 
approximation) as statfunc object 
Analytical solar distn"bution as statfunc 
object 
Stationary distribution - representing the 
wind turbine power - as statfunc object 
Generation of random numbers of any 
distribution 

Object function for first passage times 
of PV array power fluctuations 
Solar power time series 
Random number generator for the 
distribution of the PV array power 
Store for clearness index distribution 
parameters. 
Wind speed fluctuations 
Probability density function of wind 
speed fluctuations 
Distribution function of wind speed 
fluctuations 

StateOfChargeTimeSeries 

statfunc 
TDirDialog 
TDisplayDialog 
TDistributionObject 

TDoublelnput 
TDoublelnputl 
TExportDialog 
TFpDialog 

TGraph 
TimeSeries 
TimeSeriesOne 

Class Reference 

State of charge time series 
Implementation of a statistical function 
Dialog window 'Directories' 
Dialog window 'Display Options' 
Calculation of wind power and PV array 
distributions 
Input field for a real number 
Input field for a real number 
Dialog window 'Export' 
Dialog window 'First Passage Time 
Problems' 
General purpose graphic window 
Time Series 
Time series with only one initial value 

7-20 

<series.h> 

<solar.h> 

<wind.h> 

<joint.h> 

<solar.h> 

<solar.h> 

<solar.h> 

<wind.h> 

<random.h> 

<passage.h> 
<series.h> 

<solar.h> 

<solar.h> 
<wind.h> 

<wind.h> 

<wind.h> 

<series.h> 
<distrib.h> 

<owdialg.h> 
<owdialg.h> 

<owcalc.h> 
<owlappl.h> 
<owlappl.h> 
<owdialg.h> 

<owdialg.h> 
<owplot.h> 
<series.h> 
<series.h> 

Overview 



7. Appendix II: Programme Documentation 

Tintegerinput 
Tintegerinputi 
TJointDialog 

Input field for an integer number 
Input field for an integer number 
Dialog window 'Joint Renewable 
Distribution' 

TJointDistributionObject Calculation of the joint renewable 

TMainWmdow 
TMathsDialog 
TMultiV alObject 

TPassageTimeObject 
TP!ot 
TRenewApp 
TRenewPlot 
TSJointPassageTime 

TSPassageTime 

power distribution 
Implementation of the main window 
Dialog window 'Mathematical Options' 
Calculation window for the computation 
of more than one value 
Calculation of first passage time 
Graphical representation of functions 
Main application 
Graphic window of project 
First passage time of joint renewable 
power fluctuations using the time series 
approach 
First passage time by time series 
approach 

TSSolarPowerPassage111Ile 
First passage time of PV array power 
fluctuations using the time series 
approach 

TStatus Window Calculation window 
TSWindSpeedPassageTime 

First passage time for wind speed 
fluctuations using the time series 
approach 

TSWindPowerPassageTime 

TRandDialog 
TRandomObject 
TSettingsDialog 
TSolarDialog 

TSpeedDialog 

TTimeSeriesObject 
TTransDirDlg 

TTransDisplayDlg 

TTransExportDlg 

Class Reference 

First passage time of wind turbine 
power fluctuations using the time series 
approach 
Dialog window 'Random Numbers' 
Random number generator calculations 
Dialog window 'Settings' 
Dialog window 'Solar Power 
Distribution' 
Dialog window 'Wind Speed 
Distribution' 
Calculation of time series 
Parameter transfer buffer for 
TDirDialog 
Parameter transfer buffer for 
TDisplayDialog 
Parameter transfer buffer for 
TExponDialog 

7-21 

<owlapplh> 
<owlapplh> 

<owdialg.h> 

<owcalc.h> 
<owrenew.h> 
<owdialg.h> 

<owstat.h> 
<owcalc.h> 
<owplot.h> 

<owrenew.h> 
<owrenw.h> 

<passage.h> 

<passage.h> 

<passage.h> 
<owstat.h> 

<passage.h> 

<passage.h> 
<owdialg.h> 
<owcalc.h> 

<owdialg.h> 

<owdialg.h> 

<owdialg.h> 
<owcalc.h> 

<owdialg.h> 

<owdialg.h> 

<owdialg.h> 

Overview 



7. Appendix ll: Programme Documentation 7-22 

TTransFpDlg Parameter transfer buffer for 
TFpDialog <owdialg.h> 

TTransJointDlg Parameter transfer buffer for 
TJointDialog <owdialg.h> 

TTransMathsDlg Parameter transfer buffer for 
TMathsDialog <owdialg.h> 

TTransRandDlg Parameter transfer buffer for 
TRandDialog <owdialg.h> 

TTransSettingsDlg Parameter transfer buffer for 
TSettingsDialog <owdialg.h> 

TiransSolarDlg Parameter transfer buffer for 
TSolarDialog <owdialg.h> 

TTransSpeedDlg Parameter transfer buffer for 
TTransSpeedDlg <owdialg.h> 

TTransTsDlg Parameter transfer buffer for 
TTsDialog <owdialg.h> 

TTransWindDlg Parameter transfer buffer for 
TWindDialog <owdialg.h> 

TisDialog Dialog window 'Time Series' <owdialg.h> 
TYoMessage Message window <owlappl.h> 
TYoinput Dialog window with one input field <owlappl.h> 
TWindDialog Dialog window 'Wind Power 

Distribution' <owdialg.h> 
TWindSpeedObject Calculation of the wind speed 

distribution <owcalc.h> 
UniKgSTest Kolmogorov- Srnirnov test for uniform 

distribution <random.h> 
uniRand Generation of uniform deviates <random.h> 
uniRejectRand Random number generator <random.h> 
VECTOR_ Vector with real elements <vectors.h> 
WindPowerPassageTimes 

Object function for frrst passage times 
of wind turbine power fluctuations 

WindSPeedPassageTimes 
<passage.h> 

Object function for frrst passage times 
of wind speed fluctuations <passage.h> 

WindSpeedTimeSeries Wind speed time series <series.h> 
WindPowerTimeSeries Wind power time series <series.h> 

Class Reference Overview 



7. Appendix II: Programme Documentation 7-23 

CLASSES-REFERENCE 

axis <owplot.h> 

Implementation of a coordinate axis within the diagram in the class TP/ot. 

Constructors: 
axis (HDC aDC, RECf* aCurRect); Initialising with window context aDC (see Object 

Windows C++ manual) and implied rectangular that 
represents the diagram. 

Data elements: 
curRect 

Member functions: 
set Axis 

draw Axis 

Class Reference 

RECT* curRect; Rectangular that represents the diagram 

void setAxis (int dir, int just, int coord, double mini, double maxi, 
const char* alpha, double ax, int n, int axlog, int axgrid, double 
dist, int mode); 
Determination of the attributes of an axis: 
dir Direction: HORIZ_DIR (horizontal), VERT_DIR 

just 

coord 
mini 
maxi 
text 
axle 
num 

axlog 
axgrid 
grid 
mode 

(vertical) 
Text justification: LEFT_TEXT (left justification), 
RIGHT_ TEXT (right jusstification), BOTTOM_ TEXT 
(text below axis), TOP _TEXT (text above axis). 
axis coordinate (relative to the rectangular) 
start value of the axis 
end value 
axis text 
Distance between to marks (only for linea axis) 
For linear axis: Numbering only every num- th mark. 
For logarithmic axis: num = 1: Numbering of the 10-
marks. num = 2: Numbering at 2 and 10; num = 3: at 
2,5,10; num = 4: at 2,3,5,10. 
LIN (linear), LOG (logarithmic) 
Draw a grid (YES or NO) 
Grid distance (for linear axis only) 
Presentation mode for the marks: IN_AXLE (axle 
points inwards), OUT_AXLE (axle points outwards), 
CENTER_AXLE (axle sit on the middle of the axis). 

void draw Axis ( ); draw axis with specified attributes 

BetaKgSTest 



7. Appendix II: Programme Documentation 7-24 

BetaKgSTest <random.h> 

Kolmogorov- Smirnov test for Beta- distribution, derived from KgSTest. 

Constructors: 
BetaKgSTest ( int n, int r, double a, double b ); 

Member functions: 
theoretProb 
initialize 

betaRand 

Construct test object for n classes, r trial points and distribution 
parameters a and b, · 

double theoretProb (double x); see KgSTest::theoretProb. 
void intiialize ( ); 
initialise randomizer with betaRand object 

<random.h> 

Implementation of a random number generator for beta- distributed numbers. It is derived 
from uniRejectRand. 

Constructors: 
betaRand (double alpha, double beta); Constructor with distribution parameters 

alpha and beta. 

ContCondSoL\pprox <solar.h> 

Conditional distribution of the PV array power, derived from ContSolApprox. Only difference 
to the base class is setUp, where ContSolApprox: :setCorrelation is called automatically. 

Constructors: 
ContCondSolApprox ( ); Default constructor 

Member functions: 
setUp 

ContCondWindPower 

int setUp (TStatusWindow*, Param*); 
see discussion above. 

<wind.h> 

Conditional distribution of the wind turbine power. This class is derived from 
ContWindPower. Only difference is that ContWindPower::setCorrelation is called within 

Class Reference ContCondWindPower 



7. Appendix II: Programme Documentation 7-25 

ContCondWindPower::setUp so that ContWindPower::F always returns the conditional 
distribution function if called from ContCondWindPower. 

Constructors: 
ContCondWindPower ( ); 

Member functions: 
setUp 

ContinuousDistribution 

call constructor of base class 

int setUp (TStatusWindow*, Param*); 
see discussion above. 

<distrib.h> 

Abstract class that represents a continuous distribution. Again, this is a conditional 
distribution, subjected to the initial .value initVal. 

Constructors: 
ContinuousDistribution ( ); Default Constmctor 

Data elements: 
initVal 

Member functions: 
setUp 

setlnitVal 

F 

ContSo!AppQual 

protected: double initVal; 
implied initial value. 

virtual int setUp (TStatusWmdow*, Param*) = 0; 
Parameter setting function. Abstract function that must be 
overwritten in derived functions. 

virtual void setlnitVal (double x); 
set initial value initVal. 

virtual double F (double x) = 0; 
Probability distribution function F(x). Abstract function that must 
be overwritten in derived functions. 

<solar.h> 

Quality of approximation, derived from class ContinuousDistribution. 

Constructors: 
ContSolAppQual ( ); Default Constructor 

Member functions: 

Class Reference ContSo!AppQual 



7. Appendix II: Programme Documentation 7-26 

F 
setUp 

ContSolApprox 

virtual double F ( double x ); Equation (2.90) 
iti.t setUp (TStatusWiti.dow*, Param*); 

<solar.h> 

Distribution of the PV array power (usiti.g the approximation), derived from class 
ContinuousDistribution. 

Constructors: 
ContSo!Approx ( ); 

Data elements: 
protected: 
sol 
se 

Member functions: 
F 

setUp 

setCorrelation 

setlnitVal 

ContSolApproxX 

Default constructor 

MeritSol* sol; 
Sol Constants se; 

poiti.ter to the optimisation class 
store of the distribution parameters 

double F (double p); Equation (4.11), though with nonnalised 
p iti.stead of iti.teger n. 

iti.t setUp (TStatusWiti.dow*, Param*); 
Settiti.g up the parameters. It is here that the optimisation is carried 
out by searchiti.g for the minimum of the merit function provided 
by sol. A golden search is carried out using 
objfunc::goldenSection. The calculations are implemented as 
described iti. 2.2.4.2. 
void setCorrelation (double time, double beta); 
Unless setCorrelation is called the stationary distribution is beiti.g 
calculated. 
void setlnitVal (double initK); 
Initialisiti.g the distribution with an average hourly clearness iti.dex 
k(O). 

<solar.h> 

Conditional distribution of the normalised clearness iti.dex x, derived from ContSolApprox. 

Constructors: 
ContSo!ApproxX ( ); Default Constructor 

Member functions: 
F double F (double x); Equation (2.91) 

Oass Reference ContSolExact 



7. Appendix II: Programme Documentation 7-27 

ContSoiExact <solar.h> 

Analytical solution of the PV array power distribution, derived from class 
ContinuousDistribution. 

Constructors: 
ContSolExact ( ); 

Data elements: 
protected: 
sole 

Member functions: 
protected: 
Fx 
public: 
F 
setUp 

ContSoiExactX 

Default constructor 

SolConstants colC; Store of distribution parameters 

double Fx (double x); Equation (2.79) 

double F (double p); Equation (4.9) 
int setUp (TStatusWindow*, Param*); 

<solar.h> 

Analytical solution of the distribution of the normalised clearness index x, derived from 
ContSolExact. 

Constructors: 
ContSolExact ( ); Default Constructor 

Member functions: 
F double F (double x); Equation (2.79) 

ContWindPower <wind.h> 

Distribution of the wind turbine power. This class is derived from ContinuousDistribution. 

Constructors: 
ContWindPower ( ); 

Data elements: 
protected: 
r 

Member functions: 
F 
setUp 

Class Reference 

Default constructor 

doubler; autocorrelation function r = exp(-Pt) 

double F (double p); Equation (4.3) 
int setUp (TStatusWmdow*, Param*); 

Cont WindPower 



7. Appendix II: Programme Documentation 7-28 

setCorrelation 

DiscretDistribution 

Parameter setting. Return OK if no error occurred. 
void setCorrelation (double time, double beta); 
Defme autocorrelation function r = exp (-beta* time) 

<distrib.h> 

Abstract class of a discrete distribution. It actually is a conditional distribution with initial 
value (or call it conditional value) m. 

Constructors: 
DiscretDistribution ( int n }; Initialisation for n classes. 

Member functions: 
setUp 

gnm 

Gn 

setM 

getN 

getOasses 

discretRand 

virtual int setUp (TStatusWindow*, Param*} = 0; 
Initialisation with parameters. Abstract function has to be 
overwritten in derived classes. Returns OK if no error occurred. 
Otherwise ERROR. 

virtual double gnm (int n, int m} = 0; 
returns the transition probability gnm (probability for system to 
change from state m to state n in one step). Abstract class that has 
to be overwritten in derived classes. 

virtual double Gn (int n); 
returns the probability that the system is in a state n or smaller 
provided the initial value is m. (m can be set by function setM) 
I.e. the distribution function. The default return value is 1. If 
another value is desired, Gn has to be overwritten. 

virtual void setM (int m); 
Set the initial value m 

virtual void getN (double p) = 0; 
returns the class if the probability distribution value p is given, 
provided m is the initial value. In a way this is the inverse 
function to Gn. It is an abstract function and has to be overwritten 
in derived classes. 

int getOasses ( ); 
returns the number of classes 

<random.h> 

discretRand is immediately derived from uniRand. This class is designed for the case where 

Oass Reference discretRand 



7. Appendix II: Programme Documentation 7-29 

the probability distribution is of a discrete type and the probabilities P.; (j=l...N) for the N 
possible events j are given in a vector px. 

Constructor: 
discretRand (VECfOR* x); Initialization with vector x as described above. 

Member functions: 
update 

DiscretRandomizer 

void update (void* xx); 
Change distribution parameters (i.e. the. probability vector px) even 
after initialisation. It is: px = (VECfOR*) xx; 

<distrib.h> 

Abstract class of a random number generator for discrete distributions, derived from class 
uniRand. 

Constructors: 
DiscretRandomizer ( ); Default Constructor 

Data elements: 
distribution 

Member functions: 
setUp 

setM 

getRandomNumber 

DiscretWindSpeed 

protected: DiscretDistribution* distribution; 
Derived classes do have to install the desired distribution here. 
11ris is the distribution that governs the random number generator. 

virtual int setUp (TStatusWindow*, Param*) = 0; 
Setting up parameters. Return OK if ok, otherwise ERROR. 

void setM (int m); 
set initial value m in distribution. See class DiscretDistribution. 

double getRandomNumber ( ); 
generates and returns next random number. 

<wind.h> 

Discrete distribution of wind speed fluctuations as used in first passage time problems using 
the Markov chain approach. The class is derived from DiscretDistribution. 

Constructors: 
DiscretWindSpeed (int n); calls constructor of base class 

Member functions: 
gnm double gnm (int n, int m); 

Class Reference DiscretWindSpeed 



7. Appendix 11: Progranune Documentation 

getN 
setUp 

DiscSoiApprox 

transition probability. See DiscretDistribution: :gnm 
int getN (double v); see DiscretDistribution: :getN 
int setUp (TStatusWindow*, Param*); 
Parameter setting. Return OK if no error occurred. 

7-30 

<solar.h> 

Implementation of adiscrete distribution that represents the PV array power. It is a class 
derived from DiscretDistribution. 

Constructors: 
DiscSolApprox (int n); · Construct the class with n discretisation levels. 

Member functions: 
setUp 
gnm 
Gn 
setM 
getN 

DiscretWindPower 

int setUp (TStatusWindow*, Param*); 
double gnm (int n, int m); see DiscretDistribution:gnm 
double GN (int n); see DiscretDistribution::Gn 
void setM (int m); overwrites DiscretDistribution: :setM 
int getN (double x); see DiscretDistribution::getN · 

<wind.h> 

Discrete distribution of wind turbine power fluctuations as used in frrst passage time 
problems using the Markov chain approach. The class is derived from DiscretDistribution. 

Constructors: 
DiscretWmdPower (int n); calls constructor of base class 

Member functions: 
gnm 

Gn 
getN 
setUp 

Graph 

double gnm (int n, int m); 
transition probability. See DiscretDistribution::gnm 
double Gn (int m); see DiscretDistribution: :Gn 
int getN (double v); see DiscretDistribution::getN 
int setUp (TStatusWindow*, Param*); 
Parameter setting. Return OK if no error occurred. 

<owparam.h> 

Interface between graphic window and calculations. Calculation objects store values here. 
They can be picked up by the graphic window, which is an instance of class TRenewPlot. It 
can store the function values of up to four curves. 

Constructors: 

Class Reference Graph 



7. Appendix IT: Programme Documentation 7-31 

Graph ( ); 

Data elements: 
X 

y 
legend 

scale 
curveNo 

rnin 
max 
headline 
sub line 
axtext 

Member functions: 
setHeadline 
setSubline 
setAxtext 

JointPassageTimes 

Default constructor for 4 curves 

VECI'ORx; 
VECI'OR y[4]; 
char legend [4][20]; 

double scale; 
int curveNo; 

double min; 
double max; 
char headline[40]; 
char subline[SO]; 
char axtext[40]; 

x- values 
y - values (up to 4 curves) 
Legend text for the export to Word 
Perfect Presentation 
Scaling factor for display purposes. 
Number of sets of curve data currently 
stored. curveNo < 4. 
Minimum value on x - axis 
Maximum value on x - axis 
Headline of graph 
Text below headline 
Text below x- axis 

void setHeadline (char* text); 
void setSubline (char* text); 
void setAxtext (char* text); 

defme headline 
define line below headline 
defme text belowe x- axis 

<passage.h> 

Object function for frrst passage times of joint renewable power fluctuations, derived from 
PassageTimes. 

Constructors: 
WindSpeedPassageTimes ( int select ); 

Member functions: 
SetUp 

JointPowerTimeSeries 

Constructor: If select = 0 the data element passageTime is 
initialised with an instance of TSJointPowerPassageTime. 
Otherwise with MCJointPowerPassageTime. 

int SetUp (TStatusWindow*, Pararn*); 
individual set-up of initial values and passage levels. 

<series.h> 

Implementation of joint renewable power time series, derived from TimeSeries. 

Constructors: 
J ointPowerTimeSeries ( ); 

Oass Reference 

Default constructor. Initialises a 
SolarPowerTimeSeries and a WindPowerTimeSeries 
object for the two underlying processes. 

JointPowerTimeSeries 



7. Appendix IT: Programme Documentation 7-32 

Member functions: 
protected: 
getRandomNumber 

public: 
update 
get Output 
setUserinit 
getinitRandom Val 

setUp 

eval 

KgSTest 

double getRandomNumber ( ); 
returns next random number from the implied random number 
generator. 

void update ( ); 
double getOutput ( ); 
void setUserinit (void*); 
double getinitRandom Val ( ); 

see TimeSeries::update 
see TimeSeries: :getOutput 
see TimeSeries::setUserlnit 

overwrites TimeSeriesOne: :getlnitRant!JJm V al. 
int setUp (TStatusWindow*, Param*); 
Parameter setting 
double eval (double); 
return next time series value. the argument is not used. 

<random.h> 

Abstract class of a Kolmogorov- Smirnov test. 

Constructors: 
KgSTest (int n); 

Data elements: 
protected: 
size 

k 
mean 
var 
x,y,r 

randomizer 

Member functions: 
protected: 
initialize 

theoretProb 

Oass Reference 

Construct a test with n trial points. 

double size; 

intk; 
double mean; 
double var; 
VECTOR x,y,r; 

uniRand* randomizer; 

virtual void initialize ( ); 

number of trials. This is of type 'double' 
for data conversion reasons. 
number of classes. 
mean value of sample 
variance ov sample 
Vectors holding the results.(r holding the 
generated numbers. x and y holding the 
theoretical distribution.) 
random number generator to be used in 
the test. 

Per default this function does nothing. In derived classes, however, 
this is the place to initialise the random number generator 
randomizer. 
virtual double theoretProb (double x) = 0; 
This function has to be overwritten by derived classes. It has to 
return the theoretical probability for values smaller than or equals 

KgSTest 



7. Appendix II: Programme Documentation 7-33 

maxDistance 

do Values 

calcCumDist 

public: 
do Test 

getMean 
getVar 

MATRIX_ 

x. 
double maxDistance ( ); 
This function calculates the maximum distance between a 
generated point and the theoretical distribution function. 
void do Values ( ); 
generate the random numbers and pack them into vector r. 
void calcCumDist ( ); 
internal function for the Kolmogorov- Smirnov test. 

double doTest ( ); 
Carries out the Kolmogorov- Smirnov test and returns the test 
result (See [33]). 
double getMean ( ); 
double getVar ( ); 

Return the mean value of the sample 
Return the variance of the sample 

<vectors.h> 

typedef MATRIX_ <int> 
typedef MATRIX_ <double> 

!MATRIX; 
MATRIX; 

Constructors: 

MATRIX_ (int n); 
MATRIX_ (MATRIX_ A); 
MATRIX_ (int m, int n); 

initialises an n x n - matrix. 
initialises a copie of matrix A. 
initialises an m x n- matrix. 

Data members: 

col 

row 

Member functions: 

col_to_vec 

create 

diag_to_vec 

maxval 

minval 

Class Reference 

int col; 

int row; 

Number of columns 

Number of rows 

void col_to_vec (int i, VECTOR_ <T>& v); 
move values of the i-th column to vector v. 

void create (int m, int n); 
Allocation of memory on the heap for an m x n- matrix. 

void diag_to_vec (VECTOR& v); 
move diagonal elements to vector v. 

T maxval (int& i, int& j); 
returns the maximum value of the matrix. Indices see minval(). 

T minval (int& i, int& j); 
returns the minimum value of the matrix. Its indices are updated 
and passed by reference. 

MATRIX_ 



7. Appendix II: Programme Documentation 7-34 

vec_to_col 

print 

build 

Operators: 

() 

+, +=, -, -= 

* 

I 

= 
<< 
>> 

MCPassageTime 

void vec_to_col (int i, VECTOR_ <T>& v); 
moves i-th coluinn vector to vector v. 

void print (ostream& op); 
Standard output to screen. 

void build (istream& ip ); 
Standard input via istream. 

A(int i) 
A(int i, int j) 

Access to element A;; 
Access to element ~· 

Matrix addition: A + B , A - B (A, B Matrices) 

Multiply with number: 
Matrix multiplication: 

B = A * a, B = a * A, A*= a 
C=A*B 

Multiply by vector: v = A * u, v = uT * A 

Division by number a: A= B I a; A 1= a; 

A= B; 

operator (ostream& op, MATRIX& A); 
operator (istream& ip, MATRIX& A); 

<passage.h> 

Abstract class that calculates the f'rrst passage time using the Markov chain approach. It is 
derived from PassageTime. 

Constructors: 
MCPassageTime ( ); 

Data elements: 
protected: 
classes 

distribution 

Member functions: 
protected: 

Class Reference 

Default constructor 

int classes; 
Number of discretisation levels 
DiscretDistribution * distribution; 
Underlying discrete distribution that is used int the calculations. 

MCPassageTime 



7. Appendix II: Programme Documentation 7-35 

discretize 

public: 
Eval 

SetUp 

setlnitLevel 

int discretize ( double x ); 
Given an initial level x (depending on the selection this could be 
a wind speed, clearness index or normalised power value) this 
function returns the class number the argument is in. It calls 
distribution->getN (x). 

double Eval (double x); 
returns the first passage time (with non discretised passage level x) 
using the Markov chain approach. 
virtual int SetUp (TStatusWindow*, Pararn*); 
Parameter setting for Markov chain approach 
void setlnitLevel (void*); 
Assumes the argument to be double* and copies it into 
PassageTime: :initLevel. 

MCWindSpeedPassageTime <passage.h> 

Object that calculates the ftrst passage time of wind speed fluctuations using the Markov 
chain approach. It is derived from FPPassageTime. 

Constructors: 
MCWindSpeedPassageTirne ( ); Default constructor 

Member functions: 
SetUp int SetUp (TStatusWindow*, Pararn*); 

Setting the parameters and initialising distribution with an instance 
of DiscretWindSpeed. 

MCWindPowerPassageTime <passage.h> 

Object that calculates the ftrst passage time of wind turbine pwoer fluctuations using the 
Markov chain approach. It is derived from FPPassageTime. 

Constructors: 
MCWindPowerPassageTirne ( ); Default constructor 

Member functions: 
SetUp 

Class Reference 

int SetUp (TStatusWindow*, Pararn*); 
Setting the parameters and initialising distribution with an instance 
of DiscretWindPower. 

MCSolarPowerPassageTirne 



7. Appendix IT: Programme Documentation 7-36 

MCSolarPowerPassageTime <passage.h> 

Object that calculates the first passage time of PV arra power fluctuations using the Markov 
chain approach. It is derived from FPPassage1ime. 

Constructors: 
MCSolarPowerPassageTime ( ); Default constructor 

Member functions: 
SetUp int SetUp (TStatusWindow*, Pararn*); 

Setting the parameters and initialising distribution with an instance 
of DiscSolApprox. 

MCJointPowerPassageTime <passage.h> 

Object that calculates the first passage time of joint renewable pwoer fluctuations using the 
Markov chain approach. It is derived from FPPassage1ime. 

Constructors: 
MCJointPowerPassageTime ( ); Default constructor 

Member functions: 
SetUp 

Merit Sol 

int SetUp (TStatusWindow*, Pararn*); 
Setting the parameters. 

<solar.h> 

Object to optimise the approximation used for the distribution of the PV array power. It is 
derived form msgObjfimc. 

Constructors: 
MeritSol (SolConstants*, Pararn*); 

Data elements: 
psc 
initialx 
u 
sigma 
lambda 
Fxm 

QPlusOne 

MPlusOne 

Class Reference 

SolConstants* psc; 
double initialx; 
VECTOR u;_ 
VECTOR sigma; 
VECTOR lambda; 
VECTORFxm; 

double QPlusOne; 

double MPlusOne; 

pointer to the distribution parameter store 
initial normalised clearness index x0• 

Coefficient vector. See equation (2.82). 
See equation (2.84). 
This is sigma I epsilon (see (2.84)) 
Vector with distribution function values. 
Right hand side of (2.87). 
Number of generating functions used + 1 
(see equation 2.87) 
Number of trial points + 1 

MeritSol 



7. Appendix II: Programme Documentation 7-37 

Member functions: 
Eval 

fx 
Fx 
Fp 

FxApprox 
FpApprox 

setUp 

Operators: 

double Eval (double x); 
Calculates the merit function, equation (2.85). 
double fx (double x); Equation (2.75) 
double Fx (double x); Equation (2.79) 
double Fp (double p); Distribution function in power values p. 

Compare equation (4.9) 
double FxApprox (double x); Equation (2.82) 
double FpApprox (double p); 
as F Approx but with power value p as argument. It is internally 
converted into a normalised clearness index x before calling 
FxApprox. 
int setUp ( ); Parameter initialisation 

The stream operators are used to save optimisation data to a flle and retrieve it next time in 
order to save computing time. 
friend ostream& operator « (ostream& outstr, MeritSol* v); 
friend istream& operator » (istream& instr, MeritSol* v); 

msgObjfunc <distrib.h> 

Abstract class, derived from objfunc. It is an extension in that it can monitor the elapsed 
calculation time and then present messages. 

Constructors: 
msgObjfunc ( ); 

Member functions: 
enableTimeMsg 

enable V alueMsg 

setHandle 

eval 

Eval 

Class Reference 

Default constructor 

void enableTimeMsg ( ); 
permit time messages being sent to the message queue, specified 
by the handle set in setHandle. 

void enableValueMsg ( ); 
permit messages of the value of the calculation sent to the 
message queue. 

void setHandle ( ); 
set Windows handle. I.e. Handle of appropriate dialog window. 

double eval (double); 
Function from base class objfunc, here overwritten. 

double Eval (double) = 0; 
Evaluation of object function. This abstract function has to be 

rnsgObjfunc 



7. Appendix ll Programme Documentation 7-38 

overwritten in derived classes. 

NonnKgSTest <random.h> 

Kolmogorov- Smimov test for normal distribution, derived from KgSTest. 

Constructors: 
NormKgSTest ( n ); 

Member functions: 
theoretProb 
initialize 

nonnRand 

Construct test object for n trial points. 

double theoretProb (double x); see KgSTest::theoretProb. 
void intiialize ( ); 
initialise randomizer with normRand object. 

<random.h> 

normRand is derived from uniRand. It implements a random number generator, producing a 
series of numbers that are normal distributed with mean mean and standard deviation sigma. 
It implements the Box- Muller method (C.Press: Numerical recipes, 1992, p.289) drawing the 
uniform deviates from uniRand. 

Constructors: 
normRand ( ); Initialization for standard normal deviates (i.e zero mean and unit 

standard variation.) 
normRand (double mean, double sigma); Initialization with mean and sigma. 

Member functions: 
getRandomNumber 

update 

objfunc 

virtual double getRandomNumber ( ); 
returns the next random number. It overwrites the 
getRandomNumber function of uniRand. 
void update (void* x); 
the first double value in x is interpreted as the mean value, the 
second as the variance. This gives the opportunity to change the 
parameters even after initialisation. 

<diffcalc.h> 

Abstract class, which provides operations on functions of one variable. 

Data members: 

x,y 

Class Reference 

VECfORx, y; x- and y- values (y- values are the 
function values) 

objfunc 



7. Appendix II: Programme Documentation 7-39 

Member functions: 

eval 

bracketRoot 

goldenSection 

compEquiV al 

owObjfunc 

virtual double eval (double x) = 0; 

Evaluation of the object function at x. This function has to be 
provided by derived classes as this is an abstract function. 

BOOL bracketRoot (double xO, double step, double &a, double 
&b, int maxit, int mode); 

Starting in xO with a step width a, the algorithm searches for a 
bracket { a,b} in which a root of the object function is contained. 
For mode: 
mode = DETECf_EQUI: The algorithm determines the search 
direction. The step width does not change. 

mode = DETECf_DYNA: The step width will be increased 
dynamically from step to step. 

mode = DOWN_EQUI: Algorithm searches only towards smaller 
values than xO. Equidistant step width. 

mode= DOWN_DYNA: Dynamic step width 
mode = UP _EQUI: Search towards greater values than xO. 
mode = UP _DYNA: Dynamic step width. 
The function returns ERROR if maximum number of function 
evaluations, maxit, is reached. Otherwise OK. 

double goldenSection (double ax, double bx, double ex, double fb, 
double tol, double& xmin); 
For the bracket of the minimum { ax, bx, ex } the function 
determines the minimum, xmin, and returns the value at xmin. The 
tolerance is tol. fb is the function value at bx. The algorithm uses 
the golden section search. 

void compEquiVal (double xmin, double xmax, int n); 
Function computes n equidistant function values in the open 
interval [xmin, xmax]. The results are stored in x and y 
respectively. 

<diffcalc.h> 

This class is derived from objfunc and extended by an info facility. This is useful if the 
underlying object function is evaluated N times and N is known before. 

Member functions: 

Class Reference owObjfunc 



7. Appendix II: Programme Documentation 7-40 

getPercentage 

prepForEquiVal 

compEquiVal 

pairvec 

Constructors: 

pairvec (int n); 
pairvec ( ); 

Data members: 

size 

x,y 

Member functions: 

create 

move 

move_down 

swap 

Operators: 

<< 
>> 

Param 

double getPercentage ( ); 
returns the percentage of the number of evaluations carried out in 
relation to the total number N. 

void prepForEquiVal (double xmin, double xmax, int N); 
Preparation of the series of N evaluations on the interval [xmin, 
xmax]. 

void compEquiVal ( ); 
Evaluation of the object function. Subsequent calls cause the 
function to be evaluated at different x- values - as stated in 
prepForEquiVal ( ). The y - values are stored in vector y in 
objfunc. 

initialises the class with n (x,y) - pairs 
initialises the cla8s with size = 0. 

int size; Dimension of x and y 

VECFORx, y; x- und y- values as vectors 

void create (int n); 
Allocation of memory on the heap 

<diffcalc.h> 

void move (int i, int j); moves i-th element to j-th place 

void move_down ( ); moves all components one place down 

void swap (int i, int j); Swap i-th and j-th elements. 

operator« (ostream& op, pairvec& v); 
operator » (istream& ip, parivec& v); 

<owparam.h> 

Structure that holds parameters for all dialog windows. It serves as an interface between 
dialog windows and calculation objects as both access it. 

Class Reference Par am 



7. Appendix ll: Programme Documentation 

struct Param { 
double tau; 
int eval; 
int type; 
int distSelect; 

11 time 
11 number of function evaluations 
11 = 0 (distribution) , = 1 (density) 
11 chosen distribution selection: 
11 = 0 Wind turbine power 
11 1 Conditional wind turbine power 
11 2 Exact Solar 
11 3 Approximated solar 
11 4 Approximated solar, conditional 
11 5 : Quality of approximation 
11 filter of inspection windows 

7-41 

int 
int 

filter; 
classes; 11 number of discretisation levels in a discrete 

11 distribution 

11 Wind parameters: 
double wiVci; 
double wiVco; 
double wiVr; 

11 cut- in speed 
11 cout- out speed 
11 rated wind speed 
I I mean wind speed double wiV!nean; 

double wivmin; 
double wivmax; 
double wiSigma; 
double wiBeta; 
double wiinitV; 

11 minimum wind speed for wind speed distribution 
11 maximum wind speed for wind speed distribution 
11 variance of wind speed fluctuations 

11 Solar parameters: 
double solK; 
double solSigmaK; 
double solKO; 
double solinitK; 
double solBeta; 

11 wind autocorrelation coefficient 
11 initial wind speed 

11 average hourly clearness index k 
11 standard deviation of solar irradiation 
11 absolute maximum possible clearness index 
11 initial average hourly clearness index 
11 solar autocorrelation coefficient bsol 

int solTrial; 
int solCoeff; 
int solBypass; 

11 number of trial points in normal approximation 
11 number of coefficients in normal approximation 
11 bypass of major calculations by retrieving 
11 old data 

11 Combined renewables parameters: 
double comZeta; 11 fractional power factor zeta 
double cominitP; 11 Initial p value (normalised. power) 

dialog: 
11 Parameter alpha for beta- distribution 
11 Parameter beta for beta- distribution 
11 Parameter p for binomial distribution 

11 Random numbers 
double ranA; 
double ranB; 
double ranP; 
double ranU; 
int ranClass; 
int ranTrial; 

11 Parameter u for normal distribution (not used!!) 
11 Number of classes for Kolmogorov- Smirnov test 
11 Number of trials in Kolmogorov- Smirnoc test 

int ranSelect; /1 Last selection (i.e. distribution type) 

/1 Time series parameters: 
double tsTimeStep; //Duration of•a single time step 
int tsPoints; // Length of a time series 
int tsSelect; // Last selection (type of time series) 

11 First passage time parameters: 
int fpTsTrial; 11 Number of time series taken into account 
int fpTsMaxit; 11 Max iterations in Time series mode 
double fpMcStopCrit;l/ Stopping criterion in Markov chain mode 
int fpMcMaxit; // Max iterations in Markov chain mode 
int fpMcGrid; // Markov chain mode: Grid Number Q 
double fpPassV; // Passage level: Wind speed v 
double fpPassK; I I Clearness index k 
double fpPassP; // Power level p 
int fpNoVal; // Number of values to be calculated in 

Class Reference Param 



7. Appendix ll: Programme Documentation 7-42 

11 function-as-mode 
int fpSelectProcess; 11 Flags· 
int fpSelectMethod; // Markov chain- or time series approach 
int fpSelectCalc 1 !I Calculation technique selected. 
/1 Battery parameters 
double batKr // Battery parameter k 
double bate; // Battery parameter c 
double batOMax; // Battery capacity 
double batV; 11 Voltage 
double batQ10; // Initial available charge 010 
double bat020; // Initial bound charge, 010 + 020 <= 1.0 
11 Denormalized system 
double sysPDemand; // Power demand 
double sysPRen; // Installed maximum renewable power 

}1 

11 Display options 
int disAuto; // automatic re-drawing of graphics 
int disAccu; // accumulate data series when possible 
int disOldEval; // last eval 
int disOldType; // last window type 
double disOldVmin; // last minimum speed 
double disOldVInax; // last maximum speed 
int disFirstCurve; // = 1 if first curve, otherwise 0 
int disLegend; // = 1 if legend desired, otherwise 0 

Passage Time <passage.h> 

This is an abstract class that represents a first passage time calculator. It is derived from 
msgObjfunc. For a given passage level and initial value the first passage time is calculated 
in the function Eval, which has to be provided in derived classes. 

Constructors: 
PassageTime ( ); 

Data elements: 
protected: 
passLevel 

initLevel 

timeStep 

Member functions: 
protected: 
SetUp 

public: 
setUp 

setPassLevel 

setinitLevel 

Class Reference 

Default Constructor 

double passLevel; passage level (speed, clearness index or 
power) 

double initLevel; initial value (speed, clearness index or 
power, depending on selection) 

double timeStep; time step (for time series approach only) 

virtual int SetUp (TStatusWindow*, Param*) = 0; 
Derived classes have to provide their own SetUp functions. 

int setUp (TStatusWindow*, Pararn*); 
Setup function that calls SetUp. 
void setPassLevel (double newLevel); 
Sets the passage level to newLevel. 
virtual void setlnitLevel (void* initSet) = 0; 

Passage Time 



7. Appendix II: Programme Documentation 7-43 

PassageTimes 

Sets initial level. As there could be not only one but two values 
that defme the initial state (wind speed and clearness index in the 
case of joint renewable power) the new initial state, initSet is a 
void*. It has to be defined in derived classes. 

<passage.h> 

Abstract class that is able to calculate more than one first passage time value in one set. 
Hence, it is derived from owObjfunc and has a Passage1ime* object as data element. 

Constructors: 
PassageTimes ( ); 

Data elements: 
protected: 
selectCalc 
noVal 
passageTime 

public: 
minVal 

maxVal 

Member functions: 
protected: 
SetUp 

public: 
setUp 

eval 

PassageTimesObject 

Default constructor 

int selectCalc; 
int noVal; 

see setUp. 
see setUp. 

PassageTime* passageTime Implied passage time 
object 

double minVal; 

double maxVal; 

mmmlUm value I start value (either 
initial value or passage level depending 
on the selection) 
maximum value I end value (either initial 
value or passage leve depending on the 
selection) 

virtual int SetUp (TStatusWindow*, Param*) = 0; 
has to be overwritten by derived classes 

int setUp (TStatusWindow*, Param* param); 
Parameter setup. selectCalc is initialised with param->fpSelectCalc 
(see Param::fpSelectCalc) and noVa! with param->fpNoVal. 
double eval (double); 
returns the first passage time as a function of either the initial 
value or the passage level depending on the selection, selectCalc. 

<owcalc.h> 

Calculation window on which calculations of first passage times are carried out, derived 
from TMultiValObject. This class is to be used if the first passage time is to be calculated as 
a function of the initial value or the passage level and more than one value has to be 

Class Reference PassageTimesObject 



7. Appendix II: Programme Documentation 7-44 

detennined. All necessary fimctions are privately overwritten. See TMultiValObject. 

Constructors: 
PassageTimesObject (PTWindowsObject AParent, LPSTR A Title); 

PowerDeficitTimeSeries <series.h> 

Implementation of time series of the power deficit that may occur if the joint renewable 
power and the power delivered by the battery is not sufficient to meet the power demand. 
The class is immediately derived from StateOfChargeTzmeSeries. The power difference can 
be picked up in the field StateOfChargeTimeSeries::deltaP. 

Constructors: 
PowerDeficitTimeSeries ( ); Default constructor calls base class constructor 

Member functions: 
eval 

ProbCondSoL\pprox 

double eval (double); 
returns next time series value. Argument is not used. 

<solar.h> 

Conditional distribution of the PV array power (using the approximation) embedded in a 
statfunc object. This is necessary to ensure that it can be easily used by dialog window 
classes. Moreover, the fimction statfunc::eval can calculate both the distribution fimction and 
the probability fimction. 

Constructors: 
ProbCondSo!Approx ( ); Constructor initialises statfunc: :distribution with a 

ContCondSolApprox object. 

ProbCondWindPower <wind.h> 

Conditional distribution - representing the wind turbine power - embedded in a statfunc 
object. This is necessary to ensure that it can be easily used by dialog window classes. 
Moreover, the fimction statfunc::eval can calculate both the distribution fimction and the 
probability function. 

Constructors: 
ProbCondWindPower ( ); 

Oass Reference 

Constructor initialises statfunc::distribution with a 
ContCondWindPower object. 

ProbJointPower 



7. Appendix II: Programme Documentation 7-45 

ProbJointPower <joint.h> 

Implementation of the probability function of the joint renewable power, derived from 
owObjfunc. 

Constructors: 
ProbJointPower (int n); Construction for n different power levels. 

Member functions: 
eval 

setUp 

ProbSoiAppQual 

double eval (double p ); 
return probability for normalised power level p 

int setUp (TStatusWindow*, Param*); 
Setting up the parameters. 

<solar.h> 

Quality of approximation embedded in a statfunc object. This is necessary to ensure that it 
can be easily used by dialog window classes. Moreover, the function statfunc::eval can 
calculate both the distribution function and the probability function. 

Constructors: 
ProbSolAppQual ( ); 

ProbSolApprox 

Constructor initialises statfunc::distribution with both a 
ContSolApprox and a ContSo/Exact object. 

<solar.h> 

Distribution of the PV array power (using the approximation) embedded in a statfunc object. 
This is necessary to ensure that it can be easily used by dialog window classes. Moreover, 
the function statfunc::eval can calculate both the distribution function and the probability 

·function. 

Constructors: 
ProbSolApprox ( ); 

ProbSoiExact 

Constructor initialises statfunc::distribution with a ContSolApprox 
object. 

<solar.h> 

Analytical solution of the distribution of the PV array power embedded in a statfunc object. 
This is necessary to ensure that it can be easily used by dialog window classes. Moreover, 
the function statfunc::eval can calculate both the distribution function and the probability 
function. 

Class Reference ProbSo!Exact 



7. Appendix II: Programme Documentation 7-46 

Constructors: 
ProbSolExact ( ); 

ProbWindPower 

Constructor initialises statfunc: :distribution with a ContSolExact 
object. 

<wind.h> 

Stationary distribution - representing the wind turbine power - embedded in a statfunc object. 
This is necessary to ensure that it can be easily used by dialog window classes. Moreover, 
the function statfunc::eval can calculate both the distnbution function and the probability 
function. 

Constructors: 
ProbWindPower ( ); 

rejectRand 

Constructor initialises statfunc: :distribution with a ContWindPower 
object. 

<random.h> 

rejectRand is immediately derived from uniRand. It is a virtual base class for a random 
number generator applying the 'rejection method' (W. Press: Numerical recipes, 1992, p.290). 
Derived classes have to specify the comparison function, the original density function and 
the inverse distribution function. 

Constructor: 
rejectRand ( ); 

Member functions: 
compFunc 

origFunc 

invlnteg 

getRandomNumber 

Class Reference 

Default constructor 

virtual double compfunc (double) = 0; 
Comparison function. Has to be defined in derived classes. 

virtual double origFunc (double) = 0; 
Original underlying probability density function. Has to be defined 
in derived classes. It is assumed that it takes only arguments in the 
interval [0,1]. 

virtual double invlnteg (double) = 0; 
Inverse function of the normalized integral of the comparison 
function, returning only numbers in the interval [0,1]. Has to be 
defined in derived classes. 

virtual double getRandomNumber ( ); 
returns the next random number. 

SolarPowerPassageTimes 



7. Appendix II: Programme Documentation 7-47 

SolarPowerPassageTimes <passage.h> 

Object function for frrst passage times of PV array power fluctuations, derived from 
PassageTimes. 

Constructors: 
WindSpeedPassageTimes ( int select ); 

Member functions: 
SetUp 

SolarPowerTimeSeries 

Constructor: If select = 0 the data element passageTime is 
initialised with an instance of TSSolarPowerPassageTime. 
Otherwise with MCSolarPowerPassageTime. 

int SetUp (TStatusWmdow*, Param*); 
individual set-up of initial values and passage levels. 

<series.h> 

Implementation of PV array power time series, derived from TimeSeriesOne. 

Constructors: 
SolarPowerTimeSeries ( ); Default constructor. Initialises a SolarRandcmizer 

object as internal random number generator. 
/ 

Member functions: 
protected: 
getRandomNumber 

public: 
get Output 
update 

getinitRandom Val 

setUp 

SolarRandomizer 

double getRandomNumber ( ); 
returns next random number from the implied random number 
generator. 

double getOutput ( ); 
void update ( ); 

see TimeSeries::getOutput 
see 

Time Series: :update 
double getlnitRandom Val ( ); 
overwrites TimeSeriesOne: :getlnitRandom V al. 
int setUp (TStatusWmdow*, Param*); 
Parameter setting 

<solar.h> 

Random number generator for the distribution of the PV array power, derived from 
DiscretRandcmizer. 

Constructors: 
SolarRandomizer ( ); Default Constructor 

Class Reference SolarRandomizer 



7. Appendix II: Programme Documentation 7-48 

Member functions: 
setUp 

SolConstants 

int setUp (TStatusWindow*, Param*); 

<solar.h> 

Store for clearness index distribution parameters. Compare section 2.2.4.1 

Constructors: 
So!Constants ( ); 

Data elements: 
w 
deltaKKO 
kminKO 
deltaK 
kmin 
correl 
a,b 

Member functions: 
setUp 

xTok 

kTox 

Speed 

Default constructor 

double w; equation (2. 77) 
double deltaKKO; 
double kminKO; 
double deltaK; 
double kmin; 
double correl; 
VECTOR a,b; 

(k,... - U I K., (see section 2.2.4.1) 
k..u./ !{., (see section 2.2.4.1) 

int setUp (Param*); 

(k,.,.- u 
k..u. 
correlation coefficient P ,. 
equation (2.76) 

The function takes the relevant parameters off the Param structure 
and calculates the values of the data elements above. 
void xTok (double x, double* k); 
Inverse functionality to equation (2. 70). 
void kTox (double k, double* x); 
See equation (2. 70). 

<wind.h> 

·Abstract class that represents the distribution of wind speed fluctuations. The class is derived 
from owObjfunc. 

Constructors: 
Speed ( ); 

Data elements: 
protected: 
vmean 
vsigma 

Member functions: 
eval 
setUp 

Class Reference 

Default constructor 

double vmean; 
double vsigma; 

mean wind speed 
wind speed standard variation 

double eval (double v) = 0; 
int setUp (Param *); 

see objfunc: :eval 
Parameter setting 

Speed 



7. Appendix II: Programme Documentation 7-49 

SpeedDens <wind.h> 

Probability density function of wind speed fluctuations. It is derived from Speed. 

Constructors: 
SpeedDens ( ); 

Member functions: 
eval 

SpeedDist 

Default constructor 

double eval (double v); Equation (4.2), but stationary only 

<wind.h> 

Distribution function of wind speed fluctuations. It is derived from Speed. 

Constructors: 
SpeedDist ( ); 

Member functions: 
eval 

Default constructor 

double eval (double v); Equation (4.1), but stationary only 

StateOfChargeTimeSeries <series.h> 

Implementation of time series of the state of charge of the battery, derived from 1imeSeries. 

Constructors: 
StateOfChargeTIIIleSeries ( ); Default constructor. Initialises a 

JointPowerTimeSeries object for the underlying 
process. 

Data elements: 
protected: 
deltaP 

Member functions: 
protected: 
update 
getOutput 
public: 
setUserlnit 
setUp 

eval 

Oass Reference 

double deltaP; 

void update ( ); 
double getOutput ( ); 

difference between delivered and 
demanded power. 

see TimeSeries::update 
see TimeSeries: :getOutput 

void setUserlnit (void*); see TimeSeries: :setUserlnit 
int setUp (TStatusWindow*, Param*); 
Parameter setting 
double eval (double); 
return next time series value. the argument is not used. 

StateOfChargeTimeSeries 



7. Appendix II: Programme Documentation 7-50 

statfunc <distrib.h> 

Abstract class of a statistical function, derived from owObjfunc. It can be either a distribution 
or a probability density function. 

Constructors: 
statfunc ( ); 

Data elements: 
type 

distribution 

Member functions: 
eval 

setUp 

setType 

TDirDialog 

Default Constructor 

protected: int type; 
type is either 1 (distribution function) or 0 (probability density 
function). 

protected: ContinuousDistribution * distribution; 
Pointer to the implied distribution. Has to be set up in derived 
classes. 

double eval (double); 
returns either the distribution or the probability density. 

virtual int setUp (TStatusWindow*, Param*); 
Parameter setting 

void setType (int aType); 
specify function type. See data elemetn type for more details. 

<owdialg.h> 

Implementation of the 'Directories' dialog window, derived from TDialog of the Object 
Windows C++ library. 

Constructors: 
TDirDialog (PTWmdowsObject AParent, LPSTR A Title); 

TDisplayDialog <owdialg.h> 

Implementation of the 'Display Options' dialog window, derived from TDialog of the Object 
Windows C++ library. 

Constructors: 
TDisplayDialog (PTWindowsObject AParent, LPSTR A Title); 

Oass Reference TDisplayDialog 



7. Appendix II: Programme Documentation 7-51 

TDistributionObject <owcalc.h> 

Calculation window on which calculations of both wind power and PV array power 
distributions are carried out, derived from TMultiValObject. All necessary functions are 
privately overwritten. See TMultiValObjecL 

Constructors: 
TDistributionObject (P1Windows0bject AParent, LPSTR A Title); 

TDoublelnput <owlappl.h> 

Implementation of an input field in a dialog window that expects a real number. If the input 
is not valid a message window pops up and the dialog window cannot be closed. 
TDoublelnput is derived from the Object Wmdows C++ class TEdit. 

Constructors: 
TDoubleinput (P1Windows0bject AParent, int Resourceld); 

Data elements: 
X 

Member functions: 
Transfer 

Canaose 

TDoublelnputl 

double x; Input value as a number and not text 

virtual WORD Transfer (void* DataPtr, WORD TransferF!ag); 
Transfer and conversion from data element x to the string in the 
input field. 
virtual BOOL CanQose ( ); 
tries to convert string from input field to a double. If successful it 
returns OK. Otherwise ERROR 

<owlappl.h> 

This class is derived from TDoublelnput. In addition it checks whether the value x lies in an 
interval [minVal, maxVal]. If not a message aMessage pops up. 

Constructors: 
TDoublelnputl (PTWindowsObject AParent, int Resourceld, const double aMinVal, const 
double aMaxVal, const char* aMessage); 

Member functions: 
Can Close 

Oass Reference 

virtual BOOL CanQose ( ); 
see TDoublelnput 

TExportDialog 



7. Appendix II: Programme Documentation 7-52 

TExportDialog <owdialg.h> 

Implementation of the 'Export' dialog window, derived from TDialog of the Object Windows 
C++ library. 

Constructors: 
TExportDialog (PTWindowsObject AParent, LPSTR A Title); 

TFpDialog <owdialg.h> 

Implementation of the 'First Passage Time Problems' dialog window, derived from TDialog 
of the Object Windows C++ library. 

Constructors: 
TFpDialog (PTWindowsObject AParent, LPSTR A Title); 

Member functions: 
virtual void WMinitDialog (RTMessage) = [WM_FIRST+WM_INITDIALOG]; 

- Function is carried out upon initialisation of the window. 
virtual void HandleOpOMsg (RTMessage) = [WM_FIRST + idFpOpO]; 

Function is called upon selection of 'Wind Speed' option in the 
dialog window. If this option is selected input fields are made 
visible or invisible as appropriate. The id- constant is defmed in 
owres.h. 

virtual void HandleOplMsg (RTMessage) = [WM_FIRST + idFpOpl]; 
Function is called upon selection of 'Wind Power option in the 
dialog window. See HandleOpOMsg above. 

virtual void Handle0p2Msg (RTMessage) = [WM_FIRST + idFpOp2]; 
Function is called upon selection of 'Solar Power option in the 
dialog window. See HandleOpOMsg above. 

virtual void Handle0p3Msg (RTMessage) = [WM_FIRST + idFpOp3]; 
Function is called upon selection of 'Combined Renewable' option 
in the dialog window. See HandleOpOMsg above. 

virtual void Handle0p4Msg (RTMessage) = [WM_FIRST + idFpOp4]; 
Function is called upon selection of Time Series Approach' option 
in the dialog window. See HandleOpOMsg above. 

virtual void Handle0p5Msg (RTMessage) = [WM_FIRST + idFp0p5]; 
Function is called upon selection of 'Markov Chain Approach' 
option in the dialog window. See HandleOpOMsg above. 

virtual void Handle0p6Msg (RTMessage) = [WM_FIRST + idFp0p6]; 
Function is called upon selection of 'Calculate one value only' 
option in the dialog window. See HandleOpOMsg above. 

virtual void Handle0p7Msg (RTMessage) = [WM_FIRST + idFp0p7]; 

Class Reference 

Function is called upon selection of 'as function of initial value' 
option in the dialog window. See HandleOpOMsg above. 

TFpDialog 



7. Appendix II: Programme Documentation 7-53 

virtual void Handle0p8Msg (RTMessage) = [WM_FIRST + idFp0p8]; 
· Function is called upon selection of 'as function of passage level' 

option in the dialog window. See HandleOpOMsg above. 

TGrapb <owplot.h> 

General purpose graphic window, derived from the Object Windows C++ class TWindow. It 
provides graphic resources such as a font, a pen and a brush. It offers functions to draw 
lines, write text or numbers. 

Constructors: 
TGraph (PWindowsObject AParent, LPSTR A Title, PTModule AModule =NULL); 

Data elements: (protected) 
logFont LOGFONT logFont; Font: Attributes 
TheFont HFONT TheFont; Font: Resource (handle) 
oldFont HFONT oldFont; Font: old resource (in order to go back to 

old font) 
logPen 
The Pen 
oldPen 

logBrush 
The Brush 
oldBrush 

backGround 
DC 

Member functions: 
clearScreen 
setTextHeight 
setPenSize 
setPenStyle 
setPenColor 
setBrushStyle 
setBrushColor 
setBrushHatch 
setColor 

open 
close 

Line 

Class Reference 

LOGPEN logPen; 
HPEN ThePen; 
HPEN oldPen; 

Pen: Attributes 
Pen: Resource handle 
Pen: old resource handle 

LOGBRUSH logBrush; Brush: Attributes 
HBRUSH TheBrush; Brush: Resource handle 
HBRUSH oldBrush; Brush: old resource handle 

COLORREF backGround; Background color 
HDC DC; Screen context. See [3] and [4] for 

further details. 

void clearScreen ( ); 
void setTextHeight (int n); 
void setPenSize (int n); 
void setPenStyle (int n); 
void setPenColor (COLORREF c); 
void setBrushStyle (int n); 
void setBrushColor (COLORREF c); 
void setBrushHatch (int n); 

clear the screen 
set text height 
set pen width 
set style of pen 
set color of pen 
set style of brush 
set brush color 
set pattern of brush 

void setColor (COLORREF c); set color of current 
resource 

open and initialise window virtual void open ( ); 
virtual void close ( ); close window and delete all resources 

void Line (int xl, int yl, int x2, int y2); 

TGraph 



7. Appendix II: Programme Documentation 7-54 

DoubleOut 

lntegerOut 

TextOut 

Time Series 

draw line from (xl,yl) to (x2,y2) 

void DoubleOut (double number, int dec, int x, int y); 
print out number starting at coordinate (x,y) with dec decimal 
points. 

void lntegerOut (int number, int x, int y); 
print out number starting at coordinate (x,y). 

void TextOut (char* text, int x, int y); 
print out text string text, starting at point (x,y). 

<series.h> 

Abstract class of a time series object, derived from owObjfunc. 

Constructors: 
TimeSeries ( ); 

Member functions: 
protected: 
update 

get Output 

public: 
setUp 

setUserlnit 

TimeSeriesOne 

Default Constructor 

virtual void update ( ) = 0; 
Has to be defmed in derived classes. It takes the output of the 
time series generator and channels it back to the initial values. 
This is the function 3(~) in the time series algorithm point (5), 
section 4.2.1. 
virtual double getOutput ( ) = 0; 
Has to be defined in derived classes. It returns the desired output 
variable. This is the function 'P ( ~) in the time series algorithm 
point (6) in section 4.2.1. 

virtual int setUp (TStatusWmdow*, Param*) = 0; 
Has to be defined in derived classes. 
virtual void setUserlnit (void* v) = 0; 
Has to be defmed in derived classes. It sets initial value(s) as 
specified in v. It could be an initial wind speed, initial clearness 
index or both. 

<series.h> 

Time series object, derived from 1imeSeries. Though, it allows only one initial value, either 
wind speed or clearness index, but not both. 

Constructors: 

Class Reference TimeSeriesOne 



7. Appendix II: Programme Documentation 7-55 

TimeSeriesOne ( ); 

Data elements: 
protected: 
initUser V al 
randomVal 

outVal 

Member functions: 
protected: 
getinitRandom Val 

getRandomNumber 

public: 
eval 

setUserlnit 

Tintegerlnput 

Default constructor 

double initUserVal; 
double randomVal; 

initial value as specified by the user 
current value of the underlying stochastic 
process 

double outVal; output value 

virtual double getinitRandom Val ( ); 
returns initial value of underlying stochastic process 
virtual double getRandomNumber ( ) = 0; 
Has to be defmed in derived classes. It has to return the next 
random number. 

double eval (double); 
returns the next time series value. The argument is not used, 
though necessary as this object is derived from owObjfunc. 
void setUserinit (void*); 
see TimeSeries::setUserlnit. 

<owlappLh> 

Implementation of an input field in a dialog window that expects an integer number. If the 
input is not valid a message window pops up and the dialog window cannot be closed. 
Tlntegerlnput is derived from the Object Wmdows C++ class TEdit. 

Constructors: 
Tlntegerlnput (PTWindowsObject AParent, int Resourceid); 

Data elements: 
n 

Member functions: 
Transfer 

Can Close 

Class Reference 

int n; Input value as a number and not text. 

virtual WORD Transfer (void* DataPtr, WORD TransferFlag); 
Transfer and conversion from data element n to the string in the 
input field. 
virtual BOOL CanClose ( ); 
tries to convert string from input field to an integer. If successful 
it returns OK. Otherwise ERROR 

Tinteger Input! 



7. Appendix II: Programme Documentation 7-56 

Tlntegerlnputl <owlappl.h> 

This class is derived from Tlntegerlnput. In addition it checks whether the value x lies in an 
interval [minVal, maxVal]. If not a message aMessage pops up. 

Constructors: 
Tintegerlnputi (PTWindowsObject AParent, int Resourceld, const int aMin V a!, const int 
aMax V a!, const char* aMessage ); 

Member functions: 
Can Close 

TJointDialog 

virtual BOOL CanCiose ( ); 
see TDoublelnput 

<owdialg.h> 

Implementation of the 'Joint Renewable Distribution' dialog window, derived from TDialog 
of the Object Windows C++ library. 

Constructors: 
TJointDialog (PTWindowsObject AParent, LPSTR A Title); 

Member functions: 
virtual void WMinitDialog (RTMessage) = [WM_FIRST+WM_INITDIALOG]; 

Function is carried out upon initialisation of the window. 
virtual void HandleCondMsg (RTMessage) = [WM_FIRST + idOpCond]; 

Function is called upon selection of 'Joint Conditional Function' 
option in the dialog window. If this option is selected input fields 
are made visible or invisible as appropriate. The id- constant is 
defmed in owres.h. 

virtual void HandleProbMsg (RTMessage) = [WM_FIRST + idOpProbDens]; 
Function is called upon selection of'Joint Density Function' option 
in the dialog window. See HandleCondMsg above. 

TJointDistributionObject <owcalc.h> 

Calculation window on which calculations of joint renewable power distributions are carried 
out, derived from TMultiValObject. All necessary functions are privately overwritten. See 
TMultiValObject. 

Constructors: 
TJointDistributionObject (PTWindowsObject AParent, LPSTR A Title); 

Class Reference TMainWindow 



7. Appendix II: Programme Documentation 7-57 

TMainWindow <owrenew.h> 

Implementation of the main window with the menu bar. It is derived from the Object 
Windows C++ class TWindow. 

Constructors: 
TMainWindow (P1Windows0bject AParent, LPSTR A Title); 

Data elements: 
TTransSettingsD!g 
TTransDirDlg 
TTransExportD!g 
TTransDisplayDlg 
TTransSpeedDlg 

TTransWmdD!g 

TTransSolarD!g 

TTransJointDlg 

TTransRandDig 

TTransMathsD!g 
TTransTsDlg 
TTransFpDlg 

PTRenewPlot 

Member functions: 
Can Close 

TransSettingsD!g; 
TransDirD!g; 
TransExportDlg; 
TransDisplayDlg; 
TransSpeedDlg; 

TransWindDlg; 

TransSolarDlg; 

TransJointDlg; 

TransRandDig; 

TransMathsDlg; 
TransTsD!g; 
TransFpD!g; 

testplot; 

Buffer for "Settings" window 
Buffer for "Directories" window 
Buffer for "Export" window 
Buffer for "Display" window 
Buffer for "Wind Speed Distributions" 
window 
Buffer for "Wind Power Distribution" 
window 
Buffer for "Solar Power Distribution" 
window 
Buffer for "Joint· Renewable Power 
Distribution" window 
Buffer for "Random number" dialog 
window 
Buffer for "Maths" window 
Buffer for "Time Series" window 
Buffer for "First Passage Time Problems" 
window 
Graphic window that sits on top of the 
main window. 

virtual BOOL CanCiose ( ); 
Pops up a message window and asks whether the user really wants 
to quit. If 'Yes the function returns YES. Otherwise NO. 

virtual void CMWindSpeed (RTMessage) = [CM_FIRST + cmWindSpeed]; 
Function is called upon. selection of "Wind speed distribution" 
menu item. It opens the appropriate dialog by initialising an 
instance of class TSpeedDialog. 

virtual void CMSettings (RTMessage) = [CM_FIRST + cmSettings]; 
Function is called upon selection of "Settings" menu item. It opens 
the appropriate dialog by initialising an instance of class 
TSettingsDialog. _ 

virtual void CMMaths (RTMessage) = [CM_FIRST + cmMaths]; 

Class Reference 

Function is called upon selection of "Maths" menu item. It opens 
the appropriate dialog by initialising an instance of class 

TMainWindow 



7. Appendix II: Programme Documentation 7-58 

TMathsDialog. 
virtual void CMWindPower (RTMessage) = [CM_FIRST + cmWindPower]; 

Function is called upon selection of "Wind Power Distribution" 
menu item. It opens the appropriate dialog by initialising an 
instance of class TWindDialog. 

virtual void CMSolar (RTMessage) = [CM_FIRST + cmSolar]; 
Function is called upon selection of "Solar Power Distribution" 
menu item. It opens the appropriate dialog by initialising an 
instance of class TSolarDialog. 

virtual void CMRenewable (RTMessage) = [CM_FIRST + cmRenewable]; 
Function is called upon selection of "I oint Renewable 
Distribution" menu item. It opens the appropriate dialog by 
initialising an instance of class TJointDialog. 

virtual void CMExport (RTMessage) = [CM_FIRST + cmExport]; 
Function is called upon selection of "Export" menu item. It opens 
the appropriate dialog by initialising an instance of class 
TExportDialog. 

virtual void CMDisplay (RTMessage) = [CM_FIRST + cmDisplay]; 
Function is called upon selection of "Display Options" menu item. 
It opens the appropriate dialog by initialising an instance of class 
TDisplayDialog. 

virtual void CMHelp (RTMessage) = [CM_FIRST + cmHelp]; 
Function is called upon selection of "Help" menu item. It pops up 
a message that this feature is not implemented. 

virtual void CMDir (RTMessage) = [CM_FIRST + cmDirectories]; 
Function is called upon selection of "Directories" menu item. It 
opens the appropriate dialog by initialising an instance of class 
TDirDialog. 

virtual void CMRandom (RTMessage) = [CM_FIRST + cmRandom]; 
Function is called upon selection of "Random Numbers" menu 
item. It opens the appropriate dialog by initialising an instance of 
class TRandomDialog. 

virtual void CMTimeSeries (RTMessage) = [CM_FIRST + cmT'rmeSeries]; 
- Function is called upon selection of "Time Series" menu item. It 

opens the appropriate dialog by initialising an instance of class 
TTsDialog. 

virtual void CMFpt (RTMessage) = [CM_FIRST + cmFirstPassage]; 

Operators: 

Function is called upon selection of "First Passage Time 
Problems" menu item. It opens the appropriate dialog by 
initialising an instance of class TFpDialog. 

Save dialog window data to a file and retrieving them in the next session by using the 
stream operators. They affect all data stored in the buffers With prefix 'Trans'. 

friend ostrearn& operator« (ostrearn&, RTMainWindow); 

Class Reference TMainWindow 



7. Appendix 11: Programme Documentation 7-59 

friend istream& operator>> (istream&, RTMainWindow); 

TMathsDialog <owdialg.h> 

Implementation of the 'Mathematical Options' dialog window, derived from TDialog of the 
Object Windows C++ library. 

Constructors: 
TMathsDialog (PTWindowsObject AParent, LPSTR A Title); 

TMultiVaiObject <owstat.h> 

This class is derived from TStatusWindow. It is designed for the case that more than one 
value is to be calculated. 

Constructors: 
TMultiValObject (PTWmdowsObject AParent, LPSTR A Title, int eval); 

Member functions: 
protected: 
workOutBasic 

workOut Values 

areParametersOK 

setO!dParameter 

workOut 

Class Reference 

initialise the class with eval being the number of function 
evaluations to be carried out. 

virtual int workOutBasic ( ) = 0; 
The function TStatus Window: :workOut has been split up here into 
two parts: First, calculations that have to be carried out prior to 
the evaluation of the first function value. This goes in here. 
virtual int workOut Values ( ) = 0; 
This is the second part, where all values are calculated. The split 
is necessary as after workOutBasic the parameters are checked. In 
case they are pointless (return value of workOutBasic not OK) a 
message window will inform the user. Otherwise the programme 
continues with the calculation of the function values in 
workOutValues. 
virtual int areParametersOK ( ) = 0; 
This function is only called if the accumulation of curves_ in the 
diagram is desired. Here is the function to check that the current 
curve is compatible with the last calculations. 
virtual void setOldParameter ( ) = 0; 
This function is to be called after areParameterOK and is used by 
the next calculations for the same reason as stated in 
areParametersOK. 
int workOut ( ); 
overwrites TStatusWindow: :workOut by splitting up into 
workOutBasic and workOutValues. 

TMultiValObject 



7. Appendix Il: Programme Documentation 7-60 

calcValues 

public: 
calc 

TPassageTimeObject 

void calcValues (owObjfunc* func, double xmin, double xmax); 
The function carries out eval function evaluations on the object 
function June in the x- interval [xmin, xmax]. The number of 
evaluations is already specified in the constructor. 

static void calc (owObjfunc* func, double xmin, double xmax, int 
N, TStatusWmdow* window); 
Static member function that carries out N function evaluations on 
June by using the status window window. 

<owcalc.h> 

Calculation window on which the calculation of the first passage time is carried out provided 
only one value is required at the time, derived from TStatusWindow. If a whole curve of first 
passage time values (e.g. as a function of hte initial value) is required use class 
PassageTimesObject. All necessary functions are privately overwritten. See TStatusWindow. 

Constructors: 
TPassageTimeObject (PTWmdowsObject AParent, LPSTR A Title); 

Member functions: 
workOut 

writeRepl 

TPlot 

protected: int workOut ( ); 
carry out the random number generator test. 
protected: void writeRepl ( ); 
write reply to parent Status Window into textline. 

<owploth> 

Graphical representation of functions. TPlot draws a complete coordinate system, with axes, 
grid lines, text and curves. It is derived from TGraph. 

Constructors: 
TPlot (PTWindowsObject AParent, LPSTR ATtitle, PTModule AModule =NULL); 

Member functions: 
public: 
plot 

draw 
Paint 

setHeadLine 
setSubLine 
plotFactor 

Class Reference 

virtual void plot ( ); do nothing! This function has to be 
overwritten by derived classes. 

virtual void draw ( ); draw the whole diagram by calling plot. 
virtual void Paint (HDC PaintDC, PAINTSTRUCT _FAR& P); 
overwrites Paint from TWindow. See Object Windows C++ guide 
for more details. 
void setHeadLine ( const char*); 
void setHeadLine ( const char*); 
void plotFactor (double x); 

set headline 
set line below headline 

TPlot 



7. Appendix II: Programme Documentation 7-61 

protected: 
Text functions: 
plotHeadLine 
plotSubLine 

write scaling factor on top of y- axis. Tills is basically the data 
element scale in Graph. 

void plotHeadLine( ); 
void plotSubLine ( ); 

plot headline 
plot line below headline 

Coordinates and Positioning 
drawMargin void drawMargin ( ); draw rectangular (circumference of the 

diagram) 
xcoord 

.ycoord 

setCoordinates 

setAutoCoord 

setAutoAxAttr 

setViewport 

int xcoord (double x); return coordinate on the screen for x-
value 

int ycoord (double y); return coordinate on the screen fro y-
value 

void setCoordinates (double xmin, double xmax, double ymin, 
double yrnax); 
specifies the valid diagram coordinates. 
double setAutoCoord (double xmin, double xmax, VECI'OR* 
yval, int n=O); 
automatic determination of the coordinates dependent on the given 
start and finish value on the x- axis and the vector with the 
corresponding y- values, yval. If y- values of more than one 
curves are to be taken into account n is to be set > 0. Function 
returns the calculated scaling factor for the y- axis. This factor 
should be printed out using plotFactor function. 
void setAutoAxAttr (double& xaxle, double& yaxle, int& xnum, 
int& ynurn, double& xgrind, double& ygrid); 
automatic determination of attributes of an axis given the input 
parameters. See class axis for significance of the parameters. 
void setViewport (int xmin, int xmax, int ymin, int ymax); 
Specifiaction of location of diagram in the window 

Axes, curves 
drawUpperX 

and the coordinate system: 

draw Lower~ 

drawRightY 

drawLeftY 

drawLinCoord 

Class Reference 

void drawUpperX (double mini, double maxi, double axle, int 
num, int log, const char* text, int axle_mode); 
draw upper x- axis with parameters as in axis: :setAxis. 
void drawLowerX (double mini, double maxi, double axle, int 
num, int log, int dist, const char* text, int axle_mode);. 
draw lower x- axis with parameters as in axis: :setAxis. 
void drawRightY (double mini, double maxi, double axle, int num, 
int log, const char* text, int axle_mode); 
draw right hand y- axis with parameters as in axis: :setAxis. 
void drawLeftY (double mini, double maxi, double axle, int nurn, 
int log, int dist, const char* text, int axle_mode); 
draw left y- axis with parameters as in axis::setAxis. 
void drawLinCoord (double xaxle, int xnurn, int xaxgrid, double 
xgrid, const char* xtext, double yaxle, int ynum, int yaxgrid, 

TPlot 



7. Appendix II: Programme Documentation 7-62 

draw AutoLinCoord 

draw Curve 

TRenewApp 

double ygrid, const char* ytext); 
Draw a linear coordinate system. Parameters as in axis: :setAxis. 
Please note that setCoordinates has to be called prior to this 
function. 
void drawAutoLinCoord (double xmin, double xmax, VECI'OR* 
yval, const char* xte:xt, const char* ytext, int xaxgrid, int yaxgrid, 
double scale int n = 0); 
Draw a linear coordinate system using drawLinCoord. Though, 
before call setAutoCoord. 
void drawCurve (VECI'OR& x, VECI'OR& y, DRA_MODE 
draw _mode); 
Draw a curve with its x- and y- values in the diagram. draw_mode 
is one. of the following options: 
PIXEL Do not connect two points 
POLYGON Do connect subsequent points by a line 
STEP Draw function as a staircase function 
DIRAC Draw function as a Dirac function 

<owrenew.h> 

Main application, derived from Object Windows C++ class TApplication. 

Constructors: 
TRenewApp (LPSTR AName, HINSTANCE hlnstance, HINSTANCE hPrevJnstance, LPSTR 
lpCmdLine, int nCmdShow); 

Member functions: 
InitMain Window 

TRenewPlot 

virtual void InitMainWmdow ( ); 
overwrites TApplication: :lnitMain Window and intialises an 
instance of TMainWindow. 

<owrenw.h> 

Implementation of the graphic window that draws the diagrams. It is directly derived from 
TPlot. It is extended by the clear- flag. See data element below. 

Constructors: 
TRenewPlot (PTWindowObject AParent, LPSTR A Title, PTModule AModule =NULL); 

Data elements: 
clear 

Oass Reference 

int clear; If clear is set to NO, the window draws the implied 
diagram. Otherwise the next call to Paint causes the 
window to be cleared. 

TRenewPlot 



7. Appendix ll: Progranune Documentation 7-63 

Member functions: 
Paint 

plot 

TSJointPassageTime 

virtual void Paint (HOC PaintDC, PAINTSTRUC _FAR&" 
Paintlnfo); 
calls TPlot: :Paint if clear is YES. Otherwise it calls TPlot: :draw. 
void plot ( ); 
overwrites TPlot::plot. It draws the whole diagram given the curve 
data in GraphData which is an instance of class Graph. 

<passage.h> 

Object that calculates the first passage time of joint renewable power fluctuations using the 
time series approach. It is derived from TSPassageTime. 

Constructors: 
TSPassageTli!le ( ); 

Member functions: 
SetUp 

TSPassageTime 

Constructor that initialises a JointPowerTimeSeries object in place 
of timeSeries data element. 

int SetUp (TStatusWindow*, Param*); 
Setting up the appropriate parameters. 

<passage .h.> 

Object that calculates the first passage time nsing the time series approach. It is directly 
derived from PassageTime. 

Constructors: 
TSPassageTime ( ); 

Data elements: 
protected: 
timeSeries 

Member functions: 
protected: 
SetUp 

public: 
Eval 

setinitLevel 

Class Reference 

Default Constructor 

TimeSeries* timeSeries; 
Time series object to be nsed in the ftrst passage time calculations. 

virtual int SetUp (TStatusWindow*, Param*); 
see PassageTime::setUp. 

double Eval (double x); 
returns the first passage time where x is the passage level. It uses 
the time series timeSeries. Hence, derived classes need to initialise 
the time series they require. 
void setinitLevel (void*); 

TSPassageTime 



7. Appendix II: Programme Documentation 7-64 

overwrites PassageTime::setlnitLevel for time series approach 
objects. It calls TimeSeries::setUserlnit 

TSSolarPowerPassageTime <passage.h> 

Object that calculates the frrst passage time of PV array power fluctuations using the time 
series approach. It is derived from TSPassageTime. · 

Constructors: 
TSPassageTime ( ); 

Member functions: 
SetUp 

TStatusWindow 

Constructor that initialises a SolarPowerTimeSeries object in place 
of timeSeries data element. 

int SetUp (TStatusWindow*, Param*); 
Setting up the appropriate parameters. 

<owstat.h> 

Window that pops up just before starting a calculation. Upon pressing the OK button the 
calculations are carried out. The statns of the calculations can be observed by looking at the 
status lines in the window. It is derived from TDialog. 

Constructors: 
TStatusWindow (PTWindowsObject AParent, LPSTR ATitle); 

Data elements: 
temp 

Member functions: 
protected: 
give Warning 

writeRepl 

writeRep2 

workOut 

Class Reference 

static double temp; 
This is a static data element Calculation objects can write values 
in it that can be picked up by TStatusWindow . . 

int giveWarning (char* message); 
opens a window issuing a warning with text message. The user is 
given tlrree options: OK, Ignore or Abort. Depending on his · 
selection the return value is IDOK, ID IGNORE or IDABORT. 
virtual void writeRep 1 ( ); print out the first status 

line. 
virtual void writeRep2 ( ); print out the second status 

line. 
virtual int workOut ( ). = 0; 
Abstract function that must be overwritten in derived classes. It 
carries out all the calculations. It returns OK if no error occurred. 

TStatus Window 



7. Appendix II: Programme Documentation 7-65 

virtual void WMinitDialog (RTMessage) = [WM_FIRST+WM_INITDIALOG]; 
Initialisation of the dialog windoW 

virtual void Ok (RTMessage) = [ID_FIRST + lOOK]; 
Function that is called upon the selection of the OK button. It calls 
workOut to carry out the calculations. 

virtual void Retry (RTMessage) = [ID_FIRST + IDRETRY]; 
Function that is called upon the selection of the Retry button. It is 
almost identical with Ok. Only that the Retry button can not 
always be selected. 

virtual void TimeMsg (RTMessage) o [WM_USER+WM_MSGOBJFUNC]; 

public: 
write Time 

isEnoughTime 

writeStatus 1 

writeStatus2 

Function called upon a time message that is invoked in an instance 
of the class msgObjfunc. Calculations should be carried out in this 
class, as it enables them to send time messages. TStatusWindow 
receives the time message and write then the elapsed time (since 
starting the calcualtions) to the status line. 

void writeTime ( ); 
write the time elapsed to the satus line 
int isEnoughTime ( ); 
in order to avoid writing to the screen too often this function can 
be asked prior to writing to the screen whether enough time has 
been elapsed since last writing. If so, it returns YES. Otherwise 
NO. 
void writeStatusl (char* text); 
write text to frrst status line. 
void writeStatus2 (char* text); 
write text to second status line in the dialog window. 

TSWindSpeedPassageTime <passage.h> 

Object that calculates the frrst passage time of wind speed fluctuations using the time series 
approach. It is derived from TSPassageTime. 

Constructors: 
TSWindSpeedPassageTime ( ); Constructor that initialises a WindSpeedTimeSeries 

object in place of timeSeries data element. 

Member functions: 
SetUp int SetUp (TStatusWindow*, Param*); 

Setting up the appropriate parameters. 

TSWindPowerPassageTime <passage .h.> 

Object that calculates the frrst passage time of wind turbine power fluctuations using the 

Class Reference TSWindPowerPassageTime 



7. Appendix ll: Programme Documentation 7-66 

time series approach. It is derived from TSPassage1ime. 

Constructors: 
TSPassageTime ( ); 

Member functions: 
SetUp 

TRandDialog 

Constructor that initialises a WindPower1imeSeries object in place 
of timeSeries data element. 

int SetUp (TStatusWindow*, Param*); 
Setting up the appropriate parameters. 

<owdialg.h> 

Implementation of the 'Random Numbers' dialog window, derived from TDialog of the 
Object Windows C++ library. , 

Constructors: 
TRandDialog (PTWindowsObject AParent, LPSTR A Title); 

Member functions: 
virtual void WMinitDialog (RTMessage) = [WM_FIRST+WM_INITDIALOG]; 

Function is carried out upon initialisation of the window. 
virtual void HandleUniMsg (RTMessage) = [WM_FIRST + idOpRandOpO]; 

Function is called upon selection of 'Uniform distribution' option 
in the dialog window. If this option is selected input fields are 
made visible or invisible as appropriate. The id- constant is 
defined in owres.h. 

virtual void HandleNormMsg (RTMessage) = [WM_FIRST + idOpRandOpl]; 
Function is called upon selection of 'Normal distribution' option in 
the dialog window. See HandleUniMsg above. 

virtual void HandleBetaMsg (RTMessage) = [WM_FIRST + idOpRand0p2]; 
Function is called upon selection of 'Beta- distribution' option in 
the dialog window. See HandleUniMsg above. 

virtual void HandleBiMsg (RTMessage) = [WM_FIRST + idOpRand0p2]; 

TRandomObject 

Function is called upon selection of 'Binomial distribution' option 
in the dialog window. See HandleUniMsg above. 

<owcalc.h> 

Calculation window on which the random number generators are tested, derived from 
TStatus Window. All necessary functions are privately overwritten. See TStatus Window. 

Constructors: 
TRandomObject (PTWindowsObject AParent, LPSTR A Title); 

Member functions: 

Class /eference TRandomObject 



7. Appendix II: Programme Documentation 7-67 

workOut 

writeRepl 

TSettingsDialog 

protected: int workOut ( ); 
carry out the random number generator test. 
protected: void writeRepl ( ); 
write reply to parent Status Window into textline. 

<owdialg.h> 

Implementation of the 'Settings' dialog window, derived from TDialog of the Object 
Windows C++ library. 

Constructors: 
TSettingsDialog (PTWindowsObject AParent, LPSTR A Title); 

TSolarDialog <owdialg.h> 

Implementation of the 'Solar Power Distribution' dialog window, derived from TDialog of the 
Object Windows C++ library. 

Constructors: 
TSolarDialog (PTWindowsObject AParent, LPSTR A Title); 

Member functions: 
virtual void WMinitDialog (RTMessage) = [WM_FIRST+WM_INITDIALOG]; 

Function is carried out upon initialisation of the window. 
virtual void HandleAnalytMsg (RTMessage) = [WM_FIRST + idOpAnalyt]; 

Function is called upon selection of' Analytical Function' option in 
the dialog window. If this option is selected input fields are made 
visible or invisible as appropriate. The id- constant is defmed in 
owres.h. 

virtual void HandleApproxMsg (RTMessage) = [WM_FIRST + idOpApprox]; 
Function is called upon selection of 'Approximation' option in the 
dialog window. See HandleAnalytMsg above. 

virtual void HandleCondMsg (RTMessage) = [WM_FIRST + idOpCond]; 
Function is called upon selection of 'Conditional Distribution' 
option in the_dialog window. See HandleAnalytMsg above. 

virtual void HandleQualMsg (RTMessage) = [WM_FIRST + idOpQual]; 

TSpeedDialog 

Function is called upon selection of 'Quality of Approximation' 
option in the dialog window. See HandleAnalytMsg above. 

<owdialg.h> 

Implementation of the 'Wind Speed Distribution' dialog window, derived from TDialog of the 
Object Windows C++ library. 

Oass Reference TSpeedDialog 



7. Appendix II: Programme Documentation 7-68 

Constructors: 
TSpeedDialog (PTWindowsObject APareilt, LPSTR A Title); 

TTimeSeriesObject <owcalc.h> 

Calculation window on which calculations of time series are carried out, derived from 
TMultiValObjeci. All necessary functions are privately overwritten. See TMultiValObject. 

Constructors: 
TTimeSeriesObject (PTWindowsObject AParent, LPSTR A Title); 

TTransDirDig <owdialg.h> 

Parameter transfer buffer for TDirDialog. All input paramters in the dialog window appear 
here as data elements. 

Constructors: 
TTransDirDlg ( ); 

Data elements: 
solFile 
dlgFile 

Operators: 

Default Constructor 

char so!File[50]; 
char dlgFile[50]; 

me name of file for solar data 
me name of dialog me (not used in the 
programme!) 

friend ostream& operator« (ostream&, TTransDirDig&); 
friend istream& operator » (istream&, TTransDirDig&); 

TTransDisplayDig <owdialg.h> 

Parameter transfer buffer for TDisplayDialog. All input paramters in the dialog window 
appear here as data elements. 

Constructors: 
TTransDisplayDig ( ); Default Constructor 

Data elements: 
opAuto 
opAccu 
opLegend 

Member functions: 
setParameter 

Class Reference 

WORD opAuto; 
WORD opAccu; 
WORD opLegend; 

void setParameter ( ); 

Flag: Automatic display of graphs 
Flag: Accumulating data series 
Flag: Ask for legend text 

TTransDisplayDig 



7. Appendix II: Programme Documentation 7-69 

Operators: 

Transfer above data elements to the corresponding fields in the 
global variable param. 

friend ostream& operator« (ostream&, TiransDisplayDlg&); 
friend istream& operator » (istream&, TTransDisplayDlg&); 

TTransExportDig <owdialg.h> 

Parameter transfer buffer for TExportDialog. All input paramters in the dialog window 
appear here as data elements. 

Constructors: 
TTransExportDlg ( ); 

Data elements: 
opNew 
opAttach 
expFile 

Member functions: 
setParameter · 

Operators: 

Default Constructor 

WORD opNew; 
WORD opAttach; 
char expFile[50]; 

void setParameter ( ); 

Flag: Export data to new file 
Flag: Attach data to existing file 
Name of export file 

Transfer above data elements to the corresponding fields in the 
global variable param. 

friend ostream& operator « (ostream&, TiransExportDlg&); 
friend istream& operator » (istream&, TiransExportDlg&); 

TTransFpDig <owdialg.h> 

Parameter transfer buffer for TFpDialog. All input paramters in the dialog window appear 
here as data elements. 

Constructors: 
TTransFpDlg ( ); 

Data elements: 
fpOpO 
fpOpl 
fp0p2 
fp0p3 
fp0p4 
fp0p5 

Class Reference 

Default Constructor 

WORD fpOpO; 
WORD fpOpl; 
WORD fp0p2; 
WORD fp0p3; 
WORD fp0p4; 
WORD fp0p5; 

Flag: Wind Speed 
Flag: Wind turbine power time series 
Flag: PV array power time series 
Flag: Joint renewable power time series 
Flag: Time Series Approach 
Flag: Markov Chain Approach 

TTransFpD!g 



7. Appendix II: Programme Documentation 7-70 

fp0p6 
fp0p7 

fp0p8 

initV 
initK 

initP 
pass V 
passK 
passP 
time Step 
noVa! 

Member functions: 
setParameter 

Operators: 

WORD fp0p6; 
WORD fp0p7; 

WORD fp0p8; 

double initV; 
double initK; 

double initP; 
double passV; 
double passK; 
double passP; 
double timeStep; 
int noVa!; 

void setParameter ( ); 

Flag: Calculate one value only 
Flag: Calculate frrst passage time as a 
function of the initial value 
Flag: Calculate first passage time as a 
function of the passage level 
Initial wind speed 
Initial average hourly clearness index 
k(O) 
Initial, normalised power 
wind speed passage level 
clearness index passage level 
power passage level 
time step for time series approach only 
number of values to be calculated if 
more than one value is required 

nssfer above data elements to the corresponding fields in the 
global variable param. 

friend ostream& operator « (ostream&, TiransFpD!g&); 
friend istream& operator » (istream&, TiransFpDlg&); 

TTransJointDlg <owdialg.h> 

Parameter transfer buffer for TJointDialog. All input paramters in the dialog window appear 
here as data elements. 

Constructors: 
TiransJointD!g ( ); 

Data elements: 
opJointDens 
opJointCond 
vmean 
initialv 
clearness 
initialK 

tau 
eval 
zeta 

Class Reference 

Default Constructor 

WORD opJointDens; 
WORD opJointCond; 
double vmean; 
double initialv; 
double clearness; 
double initia!K; 

double tau; 
int eval; 
double zeta; 

Flag: Joint density function (stationary) 
Flag: Joint conditional density function 
Average wind speed 
Initial wind speed 
Average hourly clearness index k 
Initial average hourly clearness index 
k(O) 
Time tau (for conditional distribution) 
Number of evaluations 
Fractional power factor ( 

TiransJointDlg 



7. Appendix II: Programme Documentation 7-71 

Member functions: 
setParameter 

Operators: 

void setParameter ( ); 
Transfer above data elements to the corresponding fields in the 
global variable param. 

friend ostream& operator« (ostream&, TTransJointDlg&); 
friend istream& operator » (istream&, TTransJointDlg&); 

T}'ransMathsDig <owdialg.h> 

Parameter transfer buffer for TMathsDialog. All input paramters in the dialog window appear 
here as data elements. 

Constructors: 
TTransMathsDlg ( ); 

Data elements: 
sol Trial 

solCoeff 

fpTsTrial 

fpTsMaxlt 

fpMcStopCrit 

fpMcMaxlt 

fpMcGrid 
classes 

Member functions: 
setParameter 

Operators: 

Default Constructor 

int solTrial; 

int solCoeff; 

int fpTsTrial; 

int fpTsMaxlt; 

double fpMcStopCrit; 

int fpMcMaxit; 

int fpMcGrid; 
int classes; 

void setParameter ( ); 

number of trial points in optimisation of 
approximated distribution function of PV 
array power. 
number of coefficients in approximated 
distribution function of PV array power. 
Number of time series taken into account 
in first passage time calculations using 
the time series approach. 
Maximum number of iterations in the 
time series approach algorithm for first 
passage times 
Stopping criterion in the Markov chain 
approach algorithm. 
Maximum number of iterations in the 
Markov chain approach algorithm. 
Not in use. 
Number of discrete levels in a discrete 
distribution. 

Transfer above data elements to the corresponding fields in the 
global variable param. 

friend ostream& operator<< (ostream&, TTransMathsDig&); 
friend istream& operator » (istream&, TTransMathsDig&); 

Class Reference TTransMathsDlg 



7. Appendix IT: Programme Documentation 7-72 

TTransRandDig · <owdialg.h> 

Parameter transfer buffer for TRandDialog. All input paramters in the dialog window appear 
here as data elements. 

Constructors: 
TTransRandDig ( ); 

Data elements: 
. ranOpO 

ranOpl 
ran0p2 
ran0p3 
ranA 
ranB 
ran Class 

ran Trial 

Member functions: 
setParameter 

Operators: 

Default Constructor 

WORD ranOpO; 
WORD ranOpl; 
WORD ran0p2; 
WORD ran0p3; 
double ranA; 
double ranB; 
int ranCiass; 

int ranTrial; 

void setParameter ( ) ; 

Flag: Uniform distribution 
Flag: Normal distribution 
Flag: Beta- distribution 
Flag: Binomial distribution 
Parameter a for Beta- distribution 
Parameter ~ fro Beta- distribution 
Number of classes for Kolmogorov­
Smirnov test 
Number of random numbers to be 
generated per set. 

Transfer above data elements to the corresponding fields in the 
global variable param. 

friend ostream& operator« (ostream&, TTransRandDig&); 
friend istream& operator » (istream&, TTransRandDig&); · 

TTransSettingsDig <owdialg.h> 

Parameter transfer buffer for TSettingsDialog. All input paramters in the dialog window 
appear here as data elements. · 

Constructors: 
TTransSettingsDig ( ); Default Constructor 

Data elements: 
wiVci 
wiVco 
wiVr 
wiVmean 
wiSigma 
wiBeta 

Class Reference 

double wiVci; 
double wiVco; 
double wiVr; 
double wiVmean; 
double wiSigma; 
double wiBeta; 

cut-in wind speed 
cut-out wind speed 
rated wind speed 
mean wind speed 
wind standard deviation a k 

autocorrelation coefficient of wind 

TTransSettingsDig 



7. Appendix II: Programme Documentation 7-73 

so !KO 
solSigrnaK 

so!Beta 

comZeta 
batK 
bate 
batQMax 

. batV 
sysPRen 
sysPDemand 

Member functions: 
setPararneter 

Operators: 

double solKO; 
double solSigrnaK; . 

double so!Beta; 

double comZeta; 
double batK; 
double batC; 
double batQMax; 
double bat V; 
double sysPRen; 
double sysPDemand; 

void setPararneter ( ); 

turbulence P. 
max hourly clearness index K,. 
standard deviation of the average hourly 
clearness index, ok. 
autocorrelation coefficient of the hourly 
clearness index, P, 
Fractional power factor C 
Battery factor k 
Battery factor c 
Battery Capacity 
Battery voltage 
Installed renewable power 
Power demand 

Transfer above data elements to the corresponding fields in the 
global variable param. 

friend ostrearn& operator « ( ostrearn&, TiransSettingsDlg&); 
friend istrearn& operator » (istrearn&, TfransSettingsD!g&); 

TTransSolarDig <owdialg.h> 

Parameter transfer buffer for TSolarDialog. All input pararnters in the dialog window appear 
here as data elements. 

Constructors: 
TTransSolarD!g ( ); 

Data elements: 
opProb 
opDist 
opAnalyt 
opApprox 
opCond 
opQual 
opBypass 
clearness 
initialK 

trial 

coeff 

Class Reference 

Default Constructor 

WORD opProb; 
WORD opDist; 
WORD opAnalyt; 
WORD opApprox; 
WORD opCond; 
WORD opQual; 
WORD opBypass; 
double clearness; 
double initialK; 

int trial; 

int coeff; 

Flag: probability density function 
Flag: distribution function 
Flag: Analytical function 

. Flag: Approximation 
Flag: conditional process 
Flag: Quality of approximation 
Flag: Bypass selected. 
Average hourly clearness index 
Initial average hourly clearness index 
k(O) 
Number of trial points (for 
approximation only) 
Number of coefficients in approximation 

TTransSolarDlg 



7. Appendix II: Programme Documentation 7-74 

Member functions: 
setParameter 

Operators: 

of distribution function. 

void setParameter ( ); 
Transfer above data elements to the corresponding fields in the 
global variable param. 

friend ostream& operator« (ostream&, TTransSolarDlg&); 
friend istream& operator » (istream&, TTransSolarDlg&); 

TTransSpeedDig <owdialg.h> 

Parameter transfer buffer for TSpeedDialog. All input paramters in the dialog window appear 
here as data elements. 

Constructors: 
TTransSpeedDlg ( ); 

Data elements: 
opProb 
opDist 
vmean 
vmin 
vmax 
eval 

Member functions: 
setParameter 

Operators: 

Default Constructor 

WORD opProb; 
WORD opDist; 
double vmean; 
double vmin; 
double vmax; 
int eval; 

void setParameter ( ); 

Flag: Probability density function 
Flag: Distribution function 
mean wind speed 
Speed at which to start calculations 
Speed at which to finish calculations 
Number of evaluations required 

Transfer above data elements to the corresponding fields in the 
global variable param. 

friend ostream& operator« (ostream&, TTransSpeedDlg&); 
friend istream& operator » (istream&, TTransSpeedDlg&); 

TiransTsDlg <owdialg.h> 

Parameter transfer buffer for 1TsDialog. All input paramters in the dialog window appear 
here as data elements. 

Constructors: 
TTransTsDlg ( ); Default Constructor 

Class Reference TTransTsDlg 



7. Appendix II: Programme Documentation 7-75 

Data elements: 
tsOpO 
tsOpl 
ts0p2 
ts0p3 
ts0p4 
ts0p5 
tsTimeStep 

tsPoints 
initV 
initK 

initQlO 
initQ20 

Member functions: 
setParameter 

Operators: 

WORD tsOpO; 
WORD tsOpl; 
WORD ts0p2; 
WORD ts0p3; 
WORD ts0p4; 
WORD ts0p5; 
double tsTimeStep; 

int tsPoints; 
double initV; 
double initK; 

double initQlO; 
double initQ20; 

void setParameter ( ) ; 

Flag: Wind speed time series 
Flag: wind turbine power time series 
Flag: PV array power time series 
Flag: Joint renewable power time series 
Flag: State of charge time series 
Flag: Power deficit time series 
Time step At that is implicit in the time 
series 
Number of points to be calculated 
Initial wind speed 
Initial average hourly clearness index 
k(O) 
Initial available charge Q10 

Intiial bound charge Q20 

Ttssfer above data elements to the corresponding fields in the 
global variable param. 

friend ostrearn& operator « (ostrearn&, TTransTsDlg&); 
friend istrearn& operator » (istrearn&, TTransTsDlg&); 

TTransWindDig <owdialg.h> 

Parameter transfer buffer for TWindDialog. All input pararnters in the dialog window appear 
here as data elements. 

Constructors: 
TTransWindDlg ( ); 

Data elements: 
opProb 
opDist 
opStationary 
opCond 
vmean 
eval 
tau 
initialv 

Member functions: 
setPararneter 

Class Reference 

Default Constructor 

WORD opProb; 
WORD opDist; 
WORD opStationary; 
WORD opCond; 
double vmean; 
int eval; 
double tau; 
double initialv; 

void setPararneter ( ); 

Flag: probability density function 
Flag: distribution function 
Flag: stationary process 
Flag: conditional process 
mean wind speed 
number of evaluations required 
time tau 
initial wind speed 

TTrans WindDlg 



7. Appendix II: Programme Documentation 7-76 

Transfer above data elements to the corresponding fields in the 
global variable param. · 

Operators: 
friend ostream& operator« (ostream&, TTransWindDlg&); 
friend istream& operator » (istream&, TTransWmdDlg&); 

TTsDialog <owdialg.h> 

Implementation of the 'Time Series' dialog window, derived from TDialog of the Object 
Windows C++ library. 

Constructors: 
TTsDialog (PTWindowsObject AParent, LPSTR A Title); 

Member functions: 
virtual void WMinitDialog (RTMessage) = [WM_FIRST+WM_INITDIALOG]; 

Function is carried out upon initialisation of the window. 
virtual void HandleOpOMsg (RTMessage) = [WM_FIRST + idTsOpO]; 

Function is called upon selection of 'Wind Speed' option in the 
dialog window. If this option is selected input fields are made 
visible or invisible as appropriate. The id- constant is defmed in 
owres.h. 

virtual void HandleOplMsg (RTMessage) = [WM_FIRST + idTsOpl]; 
Function is called upon selection of 'Wind Power' option in the 
dialog window. See HandleOpOMsg above. 

virtual void Handle0p2Msg (RTMessage) = [WM_FIRST + idTs0p2]; 
Function is called upon selection of 'Solar Power' option in the 
dialog window. See HandleOpOMsg above. 

virtual void Handle0p3Msg (RTMessage) = [WM_FIRST + idTs0p3]; 
Function is called upon selection of 'Combined Renewable' option 
in the dialog window. See HandleOpOMsg above. 

virtual void Handle0p4Msg (RTMessage) = [WM_FIRST + idTsOp4]; 
Function is called· upon selection of 'Battery: State of Charge' 
option in the dialog window. See HandleOpOMsg above. 

virtual void Handle0p5Msg (RTMessage) = [WM_FIRST + idTs0p5]; 

TYoMessage 

Function is called upon selection of 'Power Deficit' option in the 
dialog window. See HandleOpOMsg above. 

<owlappl.h> 

Implementation of a message window with title A Tttle, and four different actions that can be 
taken. See member functions. TYoMessage is derived from TDialog. Which event functions 
may be called depends on the resource ID the class was constructed with. E.g. it might be a 

Class Reference TYoMessage 



7. Appendix II: Programme Documentation 7-77 

window with only a Yes and No button. In this instance the function CMignore could not be 
called as there is no Ignore button. 

Constructors: 
TYoMessage (PTWindowsObject AParent, LPSTR A Title, char* a Message); 

Member functions: 
virtual void WMinitDialog (RTMessage) = [WM_FIRST+WM_INITDIALOG]; 
virtual void CMYes (RTMessage) = [ID_FIRST + IDYES]~ 

Function called upon event 'CMY es' 
virtual void CMNo (RTMessage) = [ID_FIRST + IDNO]; 

Function called upon event 'CMNo' 
virtual void CMignore (RTMessage) = [ID_FIRST + IDIGNORE]; 

Function called upon event 'CMignore' (Ignore - button) 
virtual void CMAbort (RTMessage) = [ID_FIRST + IDABORT]; 

Function calles upon event 'CMAbort' (Abort - button) 

TYoinput <owlappl.h> 

Implementation of a dialog window with one input field. It is derived from TDialog. 

Constructors: 
TYoinput (PTWindowsObject AParent, LPSTR ATitle, char* title, char* input); 

Data elements: 
textBuffer 

Member functions: 

char textBuffer[80]; Implied input string 

virtual void WMinitDialog (RTMessage) = (WM_FIRST+WM_INITDIALOG]; 
Initialisation of the window. 

TWindDialog <owdialg.h> 

Implementation of the 'Wind Power Distribution' dialog window, derived from TDialog of 
the Object Windows C++ library. 

Constructors: 
TWindDialog (PTWindowsObject AParent, LPSTR A Title); 

Member functions: 
virtual void WMinitDialog (RTMessage) = [WM_FIRST+WM_INITDIALOG]; 

Function is carried out upon initialisation of the window. 
virtual void HandleCondMsg (RTMessage) = [WM_FIRST + idOpCond]; 

Function is called upon selection of 'Conditional distribution' 

Class Reference TWindDialog 



7. Appendix ll: Programme Documentation 7-78 

option in the dialog window. If this option is selected the input 
fields for time tau and initial wind speed have to be made visible. 
The constant idOpCond is defmed in owres.h. 

virtual void HandleStatMsg (RTMessage) = [WM_FIRST + idOpStationary]; 

TWindSpeedObject 

Function is called upon selection of 'Stationary distribution' option 
in the dialog window. It makes the input fields for the time tau 
and the initial wind speed invisible. Compare with 
HandleCondMsg 

<owcalc.h> 

Calculation window on which calculations of wind speed distributions are carried out, 
derived from TMultiValObject. All necessary functions are privately overwritten. See 
TMultiValObject. 

Constructors: 
TWindSpeedObject (PTWindowsObject AParent, LPSTR A Title); 

UniKgSTest <random.h> 

Kolmogorov- Smirnov test for uniform distribution, derived from KgSTest. 

Constructors: 
UniKgSTest ( n ); Construct test object for n trial points. 

Member functions: 
theoretProb 
initialize 

double theoretProb (double x); see KgSTest::theoretProb. 
void intiialize ( ); 
initialise randomizer with uniRand object. 

uniRand <random.h> 

Random number generator. The numbers are drawn from a uniform distribution using the 
standard C - library function rand(). Before generating number for the first time the member 
function initialize ( ) should be called. 

Constructor: 
uniRand ( ) 

Member functions: 
initialize 

Class Reference 

Default constructor 

void initialize ( ); 
initializes the generator with the current time. 

uniRand 



7. Appendix II: Programme Documentation 

getRandomNumber 

uniRejectRand 

virtual double getRandomNumber ( ); 
returns the next random number. 

7-79 

<random.h> 

Implementation of a random number generator using the rejection mehtod with a uniform 
distribution as comparison function for distributions with non zero values in the interval 
[0,1]. It is immediately derived from rejectRand. 

Constructors: 
uniRejectRand ( ); 
uniRejectRand (double max); 

VECTOR_ 

Default constructor with unit ceiling. 
Constructor with ceiling max. 

<vectors.h> 

Implementation of a vector with real number as elements. The class implements a huge 
variety of functions on vectors and operations. 

typedef VECTOR_ <int> !VECTOR; 
typedef VECTOR_ <double> VECTOR; 
typedef VECTOR_ <float> FVECTOR; 

Constructors: 
VECTOR_ (VECTOR_& v); 
VECTOR_ (int n); 

Data members: 
dim int dim; 

Copy constructor. 
Construction of an n- dimensional vector. 

Dimension of the vector 

Member functions: 
add void add (T x); 

add an element, x, to the vector and increment its dimension by 1. 

build 

copy 

create 

del 

move_down 

Class Reference 

void build (istream& ip ); 
Standard input vid input stream ip 

VECTOR_ <T> copy (int n); 
returns a vector containing the frrst n components of *this. 

void create (int n); 
allocates memory for n components. 

void del (int n); 
deletes element numbe · n from the vector and decrements the 
dimension by 1. 

T move_down ( ); 

VECOTR_ 



7. Appendix II: Programme Documentation 7-80 

move_up 

mu! 

print 

search 

set 

swap 

Operators: 

() 

+, +=, -, -= 

* 

I 

= 

== 

!= 

<,<= 

>,>= 

<< 
>> 

Oass Reference 

moves down all components by 1. Return element that is no 
longer in the vector. 

T move_ up ( ); 
moves up all components by 1. Return element thath is no longer 
in the vector. 

friend MATRIX_ mu! (VECTOR_& u, VECTOR_& v); 
Vecor ultipliction A = u vT 

void print (ostream& op); 
Standard output on the stream. 

int search (T x); 
Search for element x in the vector. Return the index of the first 
element. If x is not element of the vector, return 0, otherwise its 
index. 

void set (T x); 
Set all components on x. 

void swap (int i, int j); 
Swap the i-th and j-th element. 

v(int i); Access to elemnt i (indices from 1 ... dim) 

v + u, v + a, v-u, v- a (u, v, Vectors; a real number) 
Note.: Addition or subtraction of a real number means all 
components are affected in the same way. 

multply by number: u = a * v, u = v * a, v *= a 
multiply each component: U = V * W 

Divide by number a: u =vI a; u I= a; 

v=u 
Assignment. Works even if dimensions of both vectors befor 
assignment are not the same 

(u == v) 
(u != v) 

(u <= v) 

(u >= v) 

TRUE, if all components in u and v are identical. 
TRUE, if at least two components of u and v are 
different. 
TRUE, if all components of u are less than the 
components of v. 
TRUE, if all components of u are greater than the 
components of v. 

operator« (ostream& op, VECTOR_ <T>&v); 
operator » (istream& ip, VECTOR_ <T>& v); 

VECOTR_ 



7. Appendix II: Programme Documentation 7-81 

WindPowerPassageTimes <passage.h> 

Object function for first passage times of wind turbine pwoer fluctuations, derived from 
Passage Times. 

Constructors: 
WindSpeedPassageTimes ( int select ); 

Member functions: 
SetUp 

WindPowerTimeSeries 

Constructor: If select = 0 the data element passage1ime is 
initialised with an instance of TSWindPowerPassageTime. 
Otherwise with MCWindPowerPassage1ime. 

int SetUp (TStatusWindow*, Param*); 
individual set-up of initial values and passage levels. 

<series.h> 

Implementation of wind turbine power time series, derived from class WindSpeed1imeSeries. 

Constructors: 
WindPowerTimeSeries ( ); calls the constructors of the base class. 

Member functions: 
getWmdPower 

get V 

getOutput 
setUp 

static double getWindPower (double v, double vci, double vco, 
double vr); 
return the wind turbine power for a given wind speed, v, cut-in 
wind speed vci, cut-out wind speed, vco, and a rated wind speed, 
vr. It uses equation (3.1). 

static double get V (double p, double vci, double vr); 
Inverse function to getWindPower. It returns the wind speed for a 
given powpr p, cut-in wind speed vci and rated wind speed, vr. It 
uses the invertible part of (3.1) only. 

double getOutput ( ); see TimeSeries: :getOutput 
int setUp (TStatusWindow*, Param*); 

WindSpeedPassageTimes <passage.h> 

Object function for first passage times of wind speed fluctuations, derived from 
Passage Times. 

Constructors: 

Class Reference WindSpeedPassageTimes 



7. Appendix ll: Programme Documentation 7-82 

WindSpeedPassageTimes ( int select ); 

Member functions: 
SetUp 

WindSpeedTimeSeries 

Constructor: If ele t = 0 the data element pa ageTi e is 
initialised with an instance of TSWindSpeedPassageTime. 
Otherwise with MCWindSpeedPassageTime. 

int SetUp (TStatusWindow*, Param*); 
individual set-up of initial values and passage levels. 

<series.h> 

Implementation of wind speed time series, derived from TimeSeriesOne. 

Constructors: 
WindSpeedTimeSeries ( ); Default constructor. Initialises uniRand object as 

internal random number generator. 

Data elements: 
protected: 
r 
sigma 

Member functions: 
protected: 
getRandomNumber 

get Output 
public: 
setUp 

update 
setCorrelation 

Class Reference 

doubler; 
double sigma; 

autocorrelation coefficient 
wind speed standard deviation 

double getRandomNumber ( ); 
returns next random number from the implied random number 
generator. 
double getOutput ( ); see TimeSeries: :getOutput 

int setUp (TStatusWindow*, Param*); 
Parameter setting 
void update ( ); 
void setCorrelation (double r); 

see TimeSeries::update 
set correlation coefficient 

WindSpeedTimeSeries 



7. Appendix II: Programme Documentation 7-83 

7.4 Global Functions 

This section discusses all global functions. They are listed in alphabetical order within the 

source files they are in. 

<cstring;cpp> String Functions 

catDayName <cstring.h> 

Function: 
Syntax: 

Purpose: 

catDbl 

Function: 
Syntax: 

Remark: 

catDMY 

Function: 
Syntax: 
Remark: 

catEco 

Function: 
Syntax: 

Remark: 

catField 

Function: 
Syntax: 
Remark: 

Concatenate full day name 
void catDayName (char* buffer, int day); 

Upon day the function concatenate the full day name ("Monday", ... ) .day = 0 
points to "Sunday" 

Concatenate double number into string 
void catDbl (char* buffer, double x); 
void catDbl (char* buffer, double x, int width); 
see copyDbl ( ); 

Concatenate day, month and year 
void catDMY (char* buffer, int dd, int mm, int yy); 
see catDMY ( ); 

Concatenate double number in economics format 
void catEco (char* buffer, double x); 
void catEco (char* buffer, double x, int width); 
see copyEco ( ); · 

Concatenate a field to a string 

<cstring.h> 

<cstring.h> 

<cstring.h> 

<cstring.h> 

void catField (char* buffer, char* field, int width, int margin = RIGHT); 
see copyField 

Global Functions cstring.cpp 



7. Appendix II: Programme Documentation 7-84 

catHMS 

Function: 
Syntax: 
Remark: 

ea tint 

Function: 
Syntax: 

Remark: 

copy Db I 

Function: 
Syntax: 

Purpose: 

copyDMY 

Function: 
Syntax: 

Purpose: 

copyEco 

Function: 
Syntax: 

Purpose: 

copy Field 

Function: 
Syntax: 

Purpose: 

Concatenate hour, minute, second 
void catHMS (char* buffer, int hh, int mm, int ss); . 
see catHMS ( ); 

Concatenate integer number into string 
void catint (char* buffer, int x); 
void catint (char* buffer, int x, int width); 
see copyint ( ); 

Convert a double number into a string 
void copyDbl (char* buffer, double x); 
void copyDbl (char* buffer, double x, double width); 

<cstring.h> 

<cstring.h> 

<cstring.h> 

x will be converted into a string.· In the second version, buffer will have the 
length width. 

<cstring.h> 

Convert day, month and year into a string 
void copyDMY (char* buffer, int dd, int mm, int yy = -1); 

Format of buffer will be: 12.07.84 or 12.07.1984 (if yy > 0) or 12.07. (if yy < 
0). dd is the day, mm the month (1 .• 12) and yy the year. 

Convert a double number into economics format 
void copyEco (char* buffer, double x); 
void copyEco (char* buffer, double x, int width); 

<cstring.h> 

x will be converted into an economics format like 2.356,75. In the second 
version, buffer will have the length width. 

<cstring.h> 

Copy a field into a string 
void copyField (char* buffer, char* field, int width, int margin = RIGHT); 

Copy field into buffer in a field of width bytes. The- aligument will be either to 
the right margin (margin = RIGHT) or to the left (margin = LEFT) 

Global Functions cstring.cpp 



7. Appendix ll: Programme Documentation 7-85 

copy Hex 

FWlction: 
Syntax: 

Purpose: 

copy HMS 

FWlction: 
Syntax: 

Purpose: 

copylnt 

FWlction: 
Syntax: 

Purpose: 

<cstring.h> 

Copy hexadecimal umber into a string 
void copyHex (char* buffer, Wlsigned short x); 

x will be converted into a string of the form OxOAIE 

<cstring.h> 

Convert hour, minute and second into a string 
void copy HMS (char* buffer, int hh, int mm, int ss = 60); 

Format of buffer will be: 07:12:42 (if ss< 60) or 07:12 (if ss == 60). hh is the 
hour, mm the minute and ss the seconds. 

Convert an integer into a string 
void copylnt (char* buffer, int x); 
void copylnt (char* buffer, int x, int width); 

<cstring.h> 

x will be converted into a string. In the second version, buffer will have the 
length width. 

decode String <cstring.h> 

FWlction: 
Syntax: 

Purpose: 

getDbl 

FWlction: 
Syntax: 

Purpose: 
Return: 

getlnt 

FWlction: 
Syntax: 

Purpose: 
Return: 

Decoding a string from a file 
void decodeString (char* aString); 

Removing special characters for 'New Line', 'Space' and 'NULL'. 

Convert a string into a double 
BOOL getDbl (char* buffer, double& x); 

The function returns the convened x as output. 
ERROR if a format error occurred, otherwise OK 

Convert a string into an integer 
BOOL getlnt (char* buffer, int& x); 

The function returns the converted x as output. 
ERROR if a format error occurred, otherwise OK 

Global FWlctions 

<cstring.h> 

<cstring.h> 

cstring.cpp 



7. Appendix II: Programme Documentation 7-86 

ge~onthAuodllear <cstring.h> 

Function: 
Syntax: 

Purpose: 

getString 

Function: 
Syntax: 

Purpose: 

place 

Function: 
Syntax: 

Purpose: 

replace 

Function: 
Syntax: 

Purpose: 

splitDMY 

Function: 
Syntax: 

Purpose: 

Copy month and year into a string 
void getMonthAndYear (char* buffer, int month, int year); 

Copy int buffer "January 1994" depending on month and year. 

<cstring.h> 

Get a string from a stream 
void getString (istream& instr, char* aString); 

Copy next string of instr into aString (until 'Space' of 'New Line') Special 
characters for 'New Line' and 'Space' will be removed in aString. So not the 
NULL- character (char NULLSTRING). If *aString == NULLSTRING the 
actual string in the stream was NULL: 

<cstring.h> 

Insertion of a string into another 
void place (char* buffer, char* text, int row, int col); 
void place (char* buffer, double x, int row, int col, int width); 

Insertion of text into buffer in row number row, starting at column number col. 
The routine will fill in '\n' and ' ' where necessary. The second version places a 
double number in a field of length width. 

replace a character in a string by another 
void replace (char* buffer, char a, char b); 

Bytes in buffer that are equal to a will be replaced by b. 

Conversion of a string into day, month and year 
void splitDMY (char* buffer, int& day, int& month, int& year); 

<cstring.h> 

<cstring.h> 

Given buffer as input, the routine return day, month and year as output 

strToLower <cstring.h> 

Function: 
Syntax: 

Convert string into lower case 
void strToLower (char* string); 

Global Functions cstring.cpp 



7. Appendix II: Programme Documentation 7-87 

strToUpper <cstring.h> 

Function: 
Syntax: 

Convert string into upper case 
void strToUpper (char* string); 

<linalg.cpp> Linear Algebra 

comp_inv 

Function: 
Syntax: 
Return: 

det 

Function: 
Syntax: 
Remark: 

lineqsol 

Function: 
Syntax: 
Return: 

luback 

Function: 
Syntax: 

Purpose: 

Return: 
Remark: 

ludecomp 

Function: 
Syntax: 

Purpose: 

calculates the inverse matrix 
BOOL comp_inv (MATRIX& A); 
ERROR, if A singular; otherwise OK. 

calculate the detenninant of a matrix A 
double det (MATRIX& A); 
Algorithm by [33], p. 49 

Solve the linear matrix equation Ax = b 
BOOL lineqsol (MATRIX& A, VECTOR& x, VECTOR& b); 
ERROR, if equation cannot be solved. Otherwise OK. 

Back substitution 

<mathfunc.h> 

<rnathfunc.h> 

<mathfunc.h> 

<rnathfunc.h> 

BOOL ludecomp (MATRIX& A, IVECTOR& index, double* d); 

Successive calculation of the coefficients in the linear system. This function is 
used in lineqsol. 
ERROR, if matrix singular. 
Algorithm by [33], p.47 

L-U- decomposition of a matrix 
BOOL (MATRIX& A, IVECTOR& index, double* d); 

<mathfunc.h> 

The given matrix A is replaced by its LU- decomposition. index is an output 
vector that record the row permutation effected by the partial pivoting. d is an 
output as ± 1 depending on whether the number of row interchanges was even or 

Global Functions linalg.cpp 



7. Appendix ll: Programme Documentation 7-88 

Return: · 
Remark: 

odd. The routine is used in combination with luback to solve linear equations. 
ERROR, if matrix singular. 
Algorithm see [33], p.46 

<mathfunc.cpp> Mathematical Functions 

beta 

Function: 
Syntax: 

Purpose: 
Remark: 

Beta 

Function: 
Syntax: 

Purpose: 

Remark: 

bino 

Function: 
Syntax: 

Bnp 

Function: 
Syntax: 

Purpose: 
Remark: 

cot 

Function: 
Syntax: 

<mathfunc.h> 

evaluates the first derivative of the uunormalized, incomplete Beta- function 
double beta (double a, double ~, double x); 

beta (a,~,x) = x•·'(l-x)P·• 
Algorithm by [33], p. 226ff. 

evaluates the Beta- function 
double Beta (double x, double y); 
double Beta (double a, double ~, double x); 

<mathfunc.h> 

The first version calculates the Beta- function, B( a,~). The second calculates 
the normalized, incomplete Beta- function I(a,~,x) 
Algorithm by [33], p. 226ff. 

calculates the binomial coefficient m 
double bino (double n, double k); 

<mathfunc.h> 

<mathfunc.h> 

calculates the distribution function of the binomial distribution B(n,p) at point k 
double Bnp (double n, double p, double k); 

Bnp(n,p,k) = L<j) pi (1-p)•-J G= o .. k) 
Algorithm by [33], p. 229 

berechnet cot(x) 
double cot( double x); 

<mathfunc.h> 

Global Functions mathfunc.cpp 



7. Appendix II: Programme Documentation 7-89 

cube 

Function: 
Syntax: 

erf 

Function: 
Syntax: 
Remark: 

erfc 

Function: 
Syntax: 
Remark: 

fact 

Function: 
Syntax: 
Remark: 

Gamma 

Function: 
Syntax: 

Purpose: 

Remark: 

isinterval 

Function: 
Syntax: 

Return: 

In gamma 

Function: 
Syntax: 

Purpose: 

cubic function x3 

double cube (double x); 

calculates the error function erf(x) 
double erf (double x); 
Algorithm by [33], p. 220 

calculates the complementary error function erfc(x) 
double erfc (double x); 
Algorithm by [33], p. 220 

calculate the faculty nl 
double fact (double n); 
Algorithm by [33], p. 215 

calculate the Gamma function r(x) 
double Gamma (double x); 
double Gamma (double a, double x); 

<mathfunc.h> 

<mathfunc.h> 

<mathfunc.h> 

<mathfunc.h> 

<mathfunc.h> 

The first version calcualtes the Gamma function r(x). The second calculates the 
normalised, incomplete Gamma function '?(a,x) = y(a,x) I r(a). 
Algorithm by [33], p. 213ff 

Interval test 
int isinterval (double x, double a, double b); 
int isinterval (int x, int a, int b); 
YES, if x E [a, b]; else NO 

calculates the logarithm of the gamma function ln(r(x)) 
double lngamma (double x); 

<mathfunc.h> 

<mathfunc.h> 

This function is incorporated in the function Gamma to calculate the gamma 

Global Functions mathfunc.cpp 



7. Appendix II: Programme Documentation 7-90 

Remark: 

phi 

Function: 

Syntax: 

Purpose: 

Pm 

Function: 
Syntax: 

Purpose: 

Remark: 

SIGN 

Function: 
Syntax: 
Return: 

sqr 

Function: 
Syntax: 

SWAP 

Function: 
Syntax: 

function. 
Algorithm by [33], p.214 

<mathfunc.h> 

calculates the first derivative of the normal distribution, 8,[<!>( (x-a)/a2 )] with 
mean a and standard variation a 
double phi (double x, double a, double var); 
double phi (double x, double a, double a2 , double x(O), doubler); 

The first version calculates the function as stated above. The second version is 
the density function f(X(t) I X(O) = x(O)) of a conditional normal distribution 
with correlation coefficient r. (Equation 4.1) 

Calculate the normal distribution 
double PHI (double x); 
double Pm (double x, double a, double var); 

<mathfunc.h> 

double Pm (double x, double a, double a2, double x(O), double r); 

Pm (x) calculates the standard normal distribution. Pm (x, a, var) calculates the 
normal distribution with mean a and variance var. Pm (x,a,a2,x(O),r) calculates 
the distribution function F(x I X(O) = x(O)) of a conditional distribution with 
correlation coefficient r. (Equation 4.2). 
The function uses the functin Gamma (compare discussion of relationship 
between error function and r - function in [33], p.220) 

Signum- Function 
SIGN(x) 
-1 or 1 

Square function x2 

T sqr (T x); 

Swap two arguments 
void SWAP (double& a,double& b); 
void SWAP (int& a, int& b); 

<mathfunc.h> 

<mathfunc.h> 

<mathfunc.h> 

Global Functions mathfunc.cpp 



7. Appendix II: Programme Documentation 7-91 

exportData <plot.h> 

Function: 
Syntax: 

Purpose: 

Return: 

Data export to Word Perfect Presentation 
BOOL exportData ( VECfOR& data, char* fileName, int mode); 

The components of vector data are written to filefileName. Depending on mode 
data are appended to the me (mode= ATIACH) or existing data in the file are 

· overwritten with the new data (mode = NEW). If the file does not exist the 
mode NEW is assumed. 
Return value is ERROR if specified me could not be opened. Otherwise OK. 

Global Functions owplot.cpp 



7. Appendix II: Programme Description 

7.5 Listings 

7.5.1 Header Files 

7.5.1.1 <boolwin.h> 

I************************************************************************** I 
/*** Modu1e: BOOLWIN.H ***/ 
,... ***/ 
I*** consists of basic type declarations and constants ***/ 
I************************************************************************** I 

tifndef BOOLWIN HEADER 
tdefina BOOLWIN:HEADER 

tincluda <windows.h> 

/*** Definitions of constants **********************************************/ 
tdafine YES 1 
tdefine NO 0 
tdefine TRUE 1 
tdefine FALSE 0 
tdefine OK 1 

ldefine LEFT 102 
tdefine RIGHT 103 

I*** Definitions 
ldefine EPS 
tdefine EPS G 
tdefina FPMIN 
tdefine FPMAX 
ldefine ITMAX 
tdefine JMAX 
tdefina TINY 

tendif 

of constants 
1.0e-5 
1.0e-7 
1.0a-30 
1.0e+30 
100 
20 
l.Oe-20 

**********************************************/ 

/*** End of BOOLWIN.B ******************************************************/ 

7.5.1.2 <cstring.h> 

I*************************************************************************** I 
I*** ***I 
I*** Module: CSTRING.B ***I 
I*** ***I 
I*************************************************************************** I 

tifndef CSTRING HEADER 
tdefine CSTRING:HEADER 

lifndef BOOLWIN HEADER 
tinclude <boolwTn.h> 
tendif 

tinclude <iostream.h> 

I*** Global definitions ****************************************************I 
tdefine MAXSTRING 90 
tdefine MAXTEXT 200 
tdefine normStrinq 40 

7-92 

Header Files cstring.h 



7. Appendix II: Programme Description 

ldefine EMPTYSTRING 
#define SPACE 
#define NULLSTRING 
ldefine NEW LINE 
ldefine NEWPAGE 

11 Character No. 178 
/1 Character No. 157 
11 Character No. 185 
11 Character No. 220 
1/ Character No. 215 

I*** 
void 
void 
void 
void , ... 
void 
void , ... 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
I*** 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void , ... 
void 
void 
I*** 
void 
BOOL 
BOOL , ... 
void 
I*** 
void 
void 

I/0 functions ******************************************************/ 
printstrinc;:r ( ostream& outstr 1 char• aString ) ; 
printStrinqPlus (ostream& outatr, char• aString ); 
decodeStrinq (char* aStrinq ) ; 
getStrinq (istream& instr, char* aStrinq ) ; 
Lower case- Upper case routines ***************************************/ 

strToUpper (char* buffer ) ; 
strToLower (char* buffer ) ; 

Cat - routines ********************************************************/ 
catField (char*, char*, int, int margin • RIGHT ) ; 
catBex (char* buffer, unsigned short ) ; 
catint (char* buffer, int ); 
catint (char* buffer, int, int ); 
catDbl (char* buffer, double ); 
catDbl (char* buffer, double, int ) ; 
catEco (char• buffer, double ); 
catEco {char* buffer, double, int ); 
catOMY (char* buffer, int dd, int mm, int yy • -1); 
catBMS (char* buffer, int hh, int mm, int ss • 60); 

Copy routines *********************************************************I 
copyField (char*, char*, int, int mar~in a ~GBT ); 
copyBex (char* buffer, unsigned short ); 
copyint (char* buffer, int ) ; 
copyint (char* buffer, int, int ) ; 
copyDbl (char* buffer, double ) ; 
copyDbl (char* buffer, double, int ); 
copyEco (char• buffer, double ); 
copyEco (char* buffer, double, int ); 
copyOMY (char* buffer, int dd, int mm, int yy • -1); 
copyBMS (char* buffer, int bh, int mm, int ss • 60); 

Place routines ********************************************************I 
place (char* buffer, char* text, int, int ); 
place (char* buffer, double,int,int,int ); 

Conversion routines ***************************************************I 
splitDMY (char* buffer, int&, int&, int& ); 
getint (char* buffer, int& ) ; 
qetDbl (char* buffer, double& ); 

Replacement routine ***************************************************I 
replace (char* buffer, char a, char b ); 

Calendar routines *****************************************************I 
catoayNam.e (char* buffer, int day ) ; 
getMonthAndYear (char* buffer, int month, int year ); 

lendif 

I*** end of cstr;ng.h ******************************************************I 

7.5.1.3 <diffcalc.h> 

I*************************************************************************** I 
I*** Module! DIPFCALC.B ***I 
I*** ***I 
I*** consists of type and class definitions to differential and ***I 
I*** integral calculus of functions of one variable ***I 
I*************************************************************************** I 

lifndef DIFFCALC HEADER 
tdefine DIFFCALC:HEADER 

tifndef VECTORS HEADER 
finclude <vectors.h> 

7-93 

Header Files dlffcalc.h 



7. Appendix II: Programme Description 

tendif 

tifndef BOOLWIN HEADER 
tinclude <boolwin.h> 
tendif 

I*** Type declarations *****************************************************/ 
typedef enum { 

7-94 

points. 
DETECT_EQUI,// determine search direction. Search at equidistant 

DETECT DYNA,// Search with dynamically increasing step width 
DOWN EQUI, // search alonq points smaller than xo 
DOWN-DYNA, 
UP EQUI, I/ search alonq points biqqer than xO 
UP-DYNA, 

} BRACKET_MOOE; -

typedef enum { 
POL INT, 
RAT-INT, 
SPLINE 

} POL_MODE; 

typedef enum { 
LIN, 
LOG 

11 polynomial approximation interpolation 
11 rational function approximation interpolation 
11 spline interpolation 

} REP_MODI!; /I representation mode: line~/ loq. 

I*** structure to 
class pairvec { 
public : 

store function values ************************************/ 

}; 

VECTOR 
VECTOR 
int 
pairvec 
pairvec 
-pairvec 
void create 
void move down 
void swap­
void move 

x; // x- values 
y; 11 y- values 
size; //number of values 
( ) {size•O; } 
(int n) {size-n;x.create(n);y.create(n);} 
( ) { ; } 
(int n) {size•n;x.create(n);y.create(n);} 
(void) {x.move down()lf•move down(); } 
(int i, int j) {x.swap(1,j);y7swap(i,j);} 
(int i, int j) {x(i)•x(j) ; y(i)•y(j); } 

inline ostream& operator << (ostream& outstr, pairvec& v) 
{ return outstr << v.size << ' ' << v.x << ' ' << v.y~ } 

inline istream& operator >> (istream& instr, pairvec& v) 
{ return instr >> v.size >> v.x >> v.y~ } 

!••···································~·····································! /*** Abstract class of an object function **********************************/ , ........................................................................... , 
class objfunc { 
public s 

VECTOR 
VECTOR 

x• 
' y; 

/I x- values 
11 y- values 

virtual double eval (double) • o; 11 abstract function . 
I*** Minimization and roots ************************************************/ 

BOOL braoketMin (double&, double&, double&, double&, 
double&, double&, int ); 

double goldenSection (double, double, double, double , 
double ,double&); 

I*** Determination of more than one function value *************************I 
void compEqui Val (double, double, int ) ; 

}; 

I*** Object function with facilities for Turbo Vision Objects **************I 
class OWObjfunc : public objfunc { 

int k; 
int num; 
double d; 

Header Files diffcalc.h 



7. Appendix II: Programme Description 

double 
public : 

double 
void 
void 

}; 

tendif 

xm.in; 

getpercentage 
prepForEquiVal 
compEquiVal 

( 
(double, 
( 

double, 
) . . ' ~nt); 

) ; 

I*** End of diffcalc.h *****************************************************/ 

7.5.1.4 <distrib.b> 

I*************************************************************************** I 
I*** ***/ 
/*** Module: DISTRIB.H ***/ 
/*** ***/ 
/*** Type Declarations for objects concerning distributions. ***/ 
I*************************************************************************** I 

tifndef DISTRIB HEADER 
tdefine DISTRIB:BEADER 

tifndef DIFFCALC HEADER 
tinclude <diffcaic.h> 
tendif 

tifndef RANDOM HEADER 
linclude <randOm.h> 
tendif 

tifndef OWPARAM HEADER 
linclude <owparia.h> 
tendif 

tdefine WM MSGOBJFUNC 
tdefine DENSITY P 
tdefine DENSITY-X 
tdefine DISTRIBUTION 

class TStatuswindow; 

oxoo 
OxOOOO 
Ox0004 
OxOOOl 

11 forward declaration 

I*************************************************************************** I 
/*** Abstract class of a discrete distribution ******************/ , .•••••........•••••......•...•••.•.......•••......•.••...•.•••••.......•.•. , 
class DiscretDistribution { 
protected t 

int classes~ 
int initM~ 

public : 

}; 

DiscretDistribution ( int n ) ; classes (n) { } 
virtual -DiscretDistribution ( ) { ; } 
virtual int setUp ( TStatusWindow•, Par~• • 0~ 
virtual double qnm ( int, int • o; 
virtual double Gn ( int n ) { return 1~ } 
virtual void setM ( int m ) { initM • m: } 
virtual int qetN ( double ) • O; 
int qetClasses ( ) { return classes~ } 

, •.•....••••........•••.••.•.........•...•...•••••........•.••.....••....... , 
/*** Abstract class of a randomizer for discrete distributions *************/ 
I**********************************************•················~··········· I 

class DiscretRandomizer z public uniRand { 
protected : 

DiecretDistribution• distribution; 
public : 

7-95 

Header Files distrib.h 



7. Appendix II: Programme Description 

DiscretRandomizer ( ) : uniRand ( ) { ; } 
virtual -oiscretRandomizer ( )t 
virtual int setUp ( TStatuswindow•, Par«m* ) • Ot 

) ; void setM ( int 
double qetRandomNumber ( ) ; 

}; 

I*************************************************************************** I 
/*** Abstract class of a continuous distribution ******************/ 
I*************************************************************************** I 

class ContinuousDistribution { 
protected : 

double initVal; 
public : 

ContinuousDistribution ( ) { ; } 
virtual -continuousDistribution ( ) { ; } 
virtual int setUp ( TStatusWindow*, Param* 
virtual void setinitval ( double x 
virtual double F ( double 

} ; 

) - 0; 
) { initVal • x; } 
) - 0; 

I*************************************************************************** I 
I*** class statfunc *************************/ 
I*************************************************************************** I 

class statfunc : public oWObjfunc { 
double lastp; 
double lastResult; 

protected : 
int type; // - l : distribution 
ContinuousDistribution* distributiont • - 0 density 

public : 
) ; 
) : 

statfunc 
virtual 
double 
virtual int 
void 

-statfunc 
eval 
setUp 

(double ); 

set Type 
(TStatusWindow*, Param*); 
( int aType ) { type • aType; } 

}; 

I*************************************************************************** I 
I*** class msgObjfunc *************************/ 
I*************************************************************************** I 

class msqObjfunc : public 
int permitTime; 

objfunc { 

int permitValue; 
BWND handle; 

public : 

}; 

msqObjfunc ( ) 
void enableTimeMsq ( ) 
void enableValueMsq ( ) 
void setBandle (HWND aBandle) 
virtual double eval (double); 
virtual double Eval (double) = 0; 

tendif 

permitTime (0), permitValue (0) { ; } 
{ permitTime = l } 
{ permitValue = 1 ; } 
{ handle • aBandle; } 

I*** End of distrib.h ******************************************************/ 

7.5.1.5 <error.h> 

I*************************************************************************** I 
I*** MOOUL : ERROR.B ***I 
I*** . ***I 
I*************************************************************************** I 

7-96 

Header Files error.h 



7. Appendix II: Programme Description 

tifndef ERROR HEADER 
ldefine ERROR=HEADER 

/*** Declarations of global functions **************************************/ 
void error_messaqe (const char far* message, const char far* modul): 

tendif 

/*** End of ERROR.H ********************************************************/ 

7.5.1.6 <joint.b> 

/***************************************************************************/ 
/*** •••I 
/*** Module: JOINT.B ***/ 
/*** •••I 
/*** Header for joint power related objects ***/ 
I*************************************************************************** I 

tifndef JOINT HEADER 
tdefine JOINT=HEADER 

tifndef DISTRIB HEADER 
linclude <distr!h.h> 
tendif 

tifndef WIND HEADER 
tinclude <wind.h> 
lendif 

lifndaf SOLAR HEADER 
tinclude <solir.h> 
lendif 

/***************************************************************************/ 
I*** class ProbJointpower ***/ 
I*************************************************************************** I 

class ProbJointPower 
ContcondWindPower• 
ContCondSolApprox* 
int num; 
VECTOR Gpw; 
VECTOR Gps; 
double gpw (int); 
double gps (int); 

public t 

ProbJointPower 

t public owobjfunc { 
wind.Power; 
solarPower; 

int n 
virtual -ProbJointpower 
double eval 

) ; 
); 

double ) ; 
TStatusWindow•,Par~• ); int setUp 

lendif 

I*** End of joint.h ********************************************************/ 

7.5.1.7 <matbfunc.b> 

I************************************************************************** I 
I*** Modulez MATHFUNC.B . ***I 
I*** •••! 
I*** consists of definitions and prototypes for mathematical functions -~**/ 
I************************************************************************** I 

7-97 

Header Files mathfUlic.h 



7. Appendix 11: Programme Description 

tifndef MATHFUNC HEADER 
tdefina MATHFUNC:HEADER 

tifndef VECTORS HEADER 
linclude <vectora.h> 
tendif 

tifndef BOOLWIN HEADER 
tinclude <boolwTn.h> 
tendif 

I*************************************************************************** I 
I*** Utility functions •••/ 
I*************************************************************************** I 
void SWAP (double &a, double &b); 
void SWAP (int &a, int &b); 
BOOL isinterval (double x, double a, double b); 
BOOL isinterval ( int X , int a , int b) ; 

I*************************************************************************** I 
I*** Double precision library **********************************************/ 
I*************************************************************************** I 

I*** Mathematical 
double Beta 
double Beta 
double beta 
double bino 
double Bnp 

functions ************************************************I 
(double alpha, double x ) ; 11 Beta function 
(double, double, double )I 11 Incomplete Beta function 
(double, double, double ); // First derivative 
(double,double); // Binaminal coefficient 
(double n,double p,double k); 

Cumulative 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 

distribution Bin. 
cube 
erf 
erfc 
fact 
Gamma 
Gamma 
max 
m in 
phi 
phi 
PHI 
PHI 
PHI 

·probks 
SIGN 
sqr 

(double x); 
(double); 
(double); 
(double); 
(double); 
(double, double 
(double, double); 

) ; 

(double, double); 
(double, double, double); 

11 erf(x) 
11 erfc(x) 

11 factorial 
11 gamma function 

11 Incomplete gamma function 

(double, double, double, double, double); // cond. phi(x) 
(double); // PHI(X) 
(double, double, double); // phi(x) 
(double, double, double, double, double); // cond. Phi(x) 
(double); // Kolmoqorov- Smirnov probability function 
(double x); 
(double x); 

I*** Linear algebra ********************************************************/ 
BOOL comp inv (MATRIX&); /I Inverse 
double det - (MATRIX&) ; 11 determinant 
BOOL lineqsol (MATRIX, VECTOR&, VECTOR )I //Linear equation solver 
BOOL ludecomp (MATRIX&, IVBCTOR&, double*); //LU- decomposition 
void luback (MATRIX&, IVECTOR&, double*); //Backsubstitution 

tendif 

I*** End of MATHFUNC.CPP **************************************************/ 

7.5.1.8 <owcalc.h> 

I************************************************************************* I 
I*** Module: OWCALC.S ***/ 
I************************************************************************* I 

I************************************************************************* I 
I*** Object Windows C++: Calculations in the Windows inherited from **~I 
I*** either TStatuaWindow or TMuliValObject ***/ 
1*************************************************************************1 

7-98 

11 

Header Files owcalc.h 



7. Appendix II: Programme Description 

tifndef OWCALC HEADER 
ldefine OWCALC=HEADER 

tifndef OWSTAT HEADER 
tinclude <owstit.h> 
tendif 

tifndef WIND HEADER 
linclude <wind.h> 
tendif 

tifndef SOLAR HEADER 
linclude <solir.h> 
tendif 

tifndef JOINT HEADER 
linclude <joittt.h> 
tendif 

tifndef RANDOM HEADER 
tinclude <randOm.h> 
tendif 

lifndef SERIES HEADER 
tinclude <seri&s.h> 
tendif 

tifndef PASSAGE HEADER 
tinclude <paosaqe.h> 
tendif 

/*** TWindSpeedObject ****************************************************/ 
CLASSDEF (TWindSpeedObject) 

class TWindSpeedObject : public TMultiValObject { 
private : 

SpeedDens* f; 
SpeedDist• F; 
int workOUtBasic ) ; 
int workOutValues ); 
int areParameterOK ) ; 
void setOldParameter ); 

public : 

}; 

TWindSpeedObject (PTWindowsObject AParent, LPSTR ATitle); 
virtual -TWindSpeedObject ( ); 

I*** TDistributionObject *************************************************/ 
CLASSDEF (TDistributionobject) 

class TDistributionObjeot I public TMultiValObject { 
private :1 

statfunc* 
int 

distribution; 
workOutBasic 
workOUtValues 
areParameterOK 
setOldPar~eter 

) ; 
) ; 
) ; 
) ; 

int 
int 
void 

public : 

}; 

TDistributionObjact (PTWindowoObject AParent, LPSTR ATitle); 
virtual -TDistributionObject ( ); 

I*** TJointDistributionObject *********************************************/ 
CLASSOEP (TJointDistributionObject) 

Class TJointDistributionObject : public TMultiValObject { 
private :r 

ProbJointPower* jointPower; 
int workOutBasic ) ; 
int workOUtValues ) ; 
int areParam.eterOK ) J 
void setOldParam.eter )~ 

public : 
TJointDistributionObject (PTWindowsObject AParent, LPSTR ATitle); 
virtual -TJointDistributionObject ( ); 

7-99 

Header Files owcalc.h 



7. Appendix II: Programme Description 

I*** TRandomobject ********************************************************/ 

CLASSDEF (TRandomObject) 
class TRandomObject : public TStatusWindow { 

KgSTest• kgSTest; 
double test; 

protected : 
int workout ( ) ; 
void writeRepl ( ); 

public : 
TRandomObject (PTWindowsObject AParent, LPSTR ATitle); 
virtual -TRandomObject ( ); 

}; 

/*** TTimeSeriesObject ****************************************************/ 

CLASSDEF (TTimeSeriesObject) 
class TTimeSeriesObject : public TMultiValObject { 
privata z 

TimeSeries* 
int 
int 
int 
void 

public : 

tim.eSeries; 
workOutBasic 
workOUtValues 
a.reParameterOK 
setOldParameter 

) ; 
) ; 
) ; 
) ; 

TTimeSeriesObjeet (PTWindowsObject AParent, LPSTR ATitle); 
virtual -TTimeSeriesObject ( ); 

}; 

I*** TPassageTimeObject ................................................. , 
CLASSDEF (TPassageTimeObject) 

Class TPassageTimeObject : public TStatusWindow { 
PassageTime• passaqeTfme; 
double time; 

protected : 
int workOUt ( ) ; 
void writeRepl ( ); 

public : 

}; 

TPassaqeTim.eObject (PTWindowsObject AParent, LPSTR ATitle); 
virtual -TPassageTimeObject ( ); 

/*** PassaqeTimesObject ***************************************************/ 

CLASSDEF (PassageTimesObject) 
class PassageTimesObject : public TMultiValObject { 
private : 

PassaqeTimes* passaqeTimes; 
int workOutBasic ); 
int workOutValues ) ; 
int areParam.eterOK ) ; 
void setOldParam.eter ); 

public : 

} ; 

PassageTimesObject (PTWindowsObject AParent, LPSTR ATitle); 
virtual -passaqeTimesObject ( ); 

tendif 

I*** end of owcalc.h *****************************************************/ 

7.5.1.9 <owdialg.h> 

/*************************************************************************/ 
/*** Module: OWDIALG.B ***/ 
I************************************************************************* I 

7-100 

Header Files owdialg.h 



7. Appendix II: Programme Description 

I************************************************************************* I 
/~** Header for <owdialq.cpp> defines the dialoq windows objects for ***/ 
I*** this programme. All dialoq windows relate to Object Windows C++ ***/ 
,... ***/ 
,... ***/ 
I*** class TTransSettingsDlq Settings Dialoq: Data ***/ 
I*** class TSettinqsDialoq Window ***/ 
/*** ***/ 
I*** cl~es TTr~neSpeedDlq Wind speed Dialoq: Data ***I 
/*** class TSpeedDialoq Window ***/ 
,... ***/ 
/*** class TTransDirDlq Directories Oialog: Data ***/ 
I*** class TDirDialog Window ***/ 
I*** ***/ I*** class TTransWindDlq Wind Power Dialog: Data ***/ 
I*** class TWindDialog Window ***/ 
I*** ***I 
I*** claee TTraneExportDlq Export Data Dialoq: Dat~ ***I 
I*** class TExportOialoq Window ***I 
I*** ***I 
I*** class TTransDis~layOlg Display Options: Data ***I 
I*** class TDisplayDl.alog Window ***I 
I*** ***I 
I*** class TTransSolarDlg Solar Power Dialog: Data ***I 
I*** class TSolarDialoq Window ***I ,... . .. , 
I*** class TTransJointDlq Joint Renewables: Data ***I 
I*** class TJointDialog Window ***I 
I••* ***I 
I*** class TTransRandDlg Random Numbers: Data ***I 
/*** class TRandDialog Window ***I 
I*** ***I 
I*** class TTransMathsDlq Maths Data ***I 
I*** class TMathsDialog Window ***I 
I*** ***I 
I*** class TTransTsDlg Time series: Data ***I 
/*** class TTsDialog Window ***I 
,... ***I 
I*** class TTransFpDlg First passaqe time: Data ***/ 
I*** class TFpDialog Window ***I 
,... ***I 
I***********************************************************************~* I 

tifndef OWDIALG HEADER 
#define OWDIALG=HEADER 

tifndef OWRES HEADER 
tinclude "owris.h" 
tendif 

tifndef OWLAPPL HEADER 
linclude "owlapPl.h" 
tendif 

linclude <owl.h> 
#include <dialoq.h> 
tinclude <iostream.h> 
#include <edit.h> 
linclude <strinq.h> 
tinclude <radiobut.h> 

I*** Settings Window *****************************************************I 
CLASSDEF (TSettinqsDialoq) 

class TSettinqsDi~loq 1 public TDialoq { 
public : 

TSettinqsDialoq (PTWindowsObject AParent, LPSTR ATitle); 
} ; 

class TTransSettingsDlg { 
public : 

TTransSettinqsDlq ( ); 
double wiVci; 11 cut-in wind speed 

7-101 

Header Files owdialg.h 



7. Appendix II: Programme Description 

double wiVco; 11 
double wiVr; /1 
double wiV'm.ean; I I 
double wiSigma; 11 
double wiBeta; 11 
double solKO; 11 
double solK; 11 
double solSigmaK;II 
double solBeta; 11 
double comZeta; 11 
double batK; 11 
double bate; 
double batQMax; 
double batv; 
double sysPRen; 
double sysPDem.and; 

cut-out wind speed 
rated wind speed 
mean wind speed 
standard variation of wind turbulence 
autocorrelation coefficient (wind) 
maximum clearne~s index 
average hourly clearness index 
standard deviation of clearness index 
autocorrealtion coefficient (solar) 
fractional power factor 
Battery parameters 

11 Nominal renewable energy 
I I Power Demand 

void 
friend 
friend 

setparam.eter ( ) ; 
ostre~& operator 
istream.& operator 

<< (ostream,, TTranssettinqsDlq,); 
>> (istream&, TTransSettingsOlg&); 

I*** Wind Speed Dialog ***************************************************/ 
CLASSDEF (TSpeedDialoq) 

class TSpeadDialoq I public TDialoq { 
public 1 

TSpeedDialoq (PTWindowsObject AParant, LPSTR ATitla); 
}; 

class TTransSpaedDlq { 
public 1 

TTransSpaedDlq ( ); 

}) 

WORD opProb; 11 Flaq1 probability density function 
WORD opDist; 11 Flaq1 Distribution function 
double vm.ean; /I mean wind speed 
double vmin; 11 minimum wind speed (for qraph) 
double vmax; I I maximum wind speed (for qraph) 
int ev~l; // number of function evaluations 
void setparametar ( ) ; 
friend ostreAm& operator<< (ostresm&, TTransspeedDlq&); 
friend istream' operator >> (istream,, TTransspeadDlq,); 

I*** Directories Dialog **************************************************/ 
CLASSDEF (TDirDialoq) 

class TDirDialoq : public TDialoq { 
public : 

TDirDialoq (PTWindowsobject AParent, LPSTR ATitle)) 
}; 

class TTransDirDlq { 
public 1 

}; 

TTransDirDlq ( ); 
char solFile[SOJ; 11 file name for solar data 
char dlqFile[SOJ; 11 file name for dialog data 
friend ostream& operator<< (ostream&, TTransDirDlq&); 
friend istream& operator>> (istream&, TTransOirDlq&); 

I*** Wind Power Oialoq ***************************************************/ 
CLASSDEF (TWindDialoq) 

class TWindDialoq I public TDialoq { 
PTStatic textTau; 
PTStatic textinitialv; 
PTDoubleinputi inTau; 
PTDoubleinputi ininitialv; 
PT~adioButton radioCond; 
char bufTau[30J; 
char bufinitialv[30)) 

public : 
TWindDialoq (PTWindowsobject AParent, LPSTR ATitle); 
virtual void WMinitDialoq (RTMessage) • (WM_FIRST+WM_INITDIALOG); 

7-102 

Header Files owdialg.h 



7. Appendix II: Programme Description 7-103 

virtual void BandleCondMsq (RTMessaqe) • (ID PIRST + idOpCond); 
virtual void BandleStatMsq (RTMeasaqe) • (ID:PIRST + idOpStationary); 

}; 

class TTransWindDlq { 
public : 

}; 

TTransWindDlq ( ); 
WORD opProb; // Plaq: probability density function 
WORD opDist; // Plaq: distribution function 
WORD opStationary1 // Plaqt stationary process 
WORD opCond; // Plaq: Conditional function 
double vm.ean; I I mean wind speed 
int eval; // number of evaluations 
double tau; /1 time tau 
double initialv; // initial wind speed 
void setParameter ) ; 
friend ostream& operator<< (ostream&, TTransWindOlg&}; 
friend istream& operator >> (istream&, TTransWindDlq&); 

t~•• Export Dialoq *******************************************************/ 
CLASSDEP (TExportDialoq) 

class TExportDialoq 1 public TDialoq { 
public 1 

TExportDialoq (PTWindowsObject AParent, LPSTR ATitle); 
}; 

class TTrans!xportDlq { 
public : 

}; 

TTransExportDlq ( ); 
WORD opNew; // Plaq1 new file 
WORD opAttach; // Plaq: attach to existing file 
char expPile(50); /1 Pile name: Export file 
void setParam.eter ) ; 
friend ostream& operator<< (ostream&, TTransExportDlg&); 
friend istream& operator >> (istream&, TTransExportDlg&); 

I*** Display Dialog ******************************************************/ 
CLASSDEP (TDisplayDialoq) 

class TDisplayDialoq 1 public TDialoq { 
public : 

TDisplayDialoq (PTWindowsobject AParent, LPSTR ATitle); 
} ; 

class TTransDisplayDlq { 
public : 

}; 

TTransDisplayDlq ( ); 
WORD opAuto; I I Plaq: Auto display of graphics 
WORD opAccu; // Flaq: Accumulatinq data series 
WORD opLeqend; 
void setparameter ( ); 
friend oetream& operator<< (ostre«m&, TTransDisplayOlq&); 
friend istream& operator >> (istream&, TTransOisplayDlq&); 

I*** Solar oialog ********************************************************/ 
CLASSDEP (TSolarDialoq) 

class TSolarDialoq : public TDialoq { 
PTDoubleinputi inTau; 
PTDoubleinputi ininitialk; 
PTinteqerinputi inTrial; 
PTinteqerinputi incoeff; 
PTCheckBox checkBypass; 
PTStatic textTau; 
PTStatic textinitialk; 
PTStatic textTrial~ 
PTStatic textcoeff; 
PTRadioButton radioAnalyt; 
PTRadioButton radioApprox; 
PTRadioButton radiocond; 
PTRadioButton radioQual; 

Header Files owdialg.h 



7. Appendix 11: Programme Description 

char bufTau[30]; 
char bufinitialk[30]; 
char bufTrial[30]; 
char bufCoeff[30]; 
void enableApprox ( ) ; 

.void disableAPprox ( ); 
void enablecond ( ); 
void disableCond ( ) ; 

protected t 
virtual void 
virtual void 
virtual void 
virtual void 
virtual void 

public : 

WMinitDialoq 
HandleAnalytMsq 
HandleApproxMsq 
HandleCond.Maq 
HandleQualMsq 

(RTMessaqe) 
(RTMessage) • 
(RTMessaqe) • 
( RTMeuaqe) 
(RTMesaaqe) ~ 

[WM I!'IRST 
[ID-l'IRST 
[ID-l'IRST 
[ID-FIRST 
[ID-l'IRST 

TSolarDialoq (PTWindowaObject AParent, LPSTR ATitle); 
}; 

class TTransSolarDlq { 
public r 

TTransSolarDlq ( ); 

+ WM INITDIALOG]; 
+ idOpAnalyt ll 
+ idOPApprox ]; 
+ idOPCond ]; 
+ idOPQual ll 

WORD opProb; // l'laq: probability density function 
WORD opDist; 11 Flag: Distribution function 
WORD opAnalyt; // l'alqr Analytical solution 
WORD opAPprox; // l'laqr Approximation 
WORD opCond; // Flag: Conditional function 
WORD opQual; 11 !'laq: Quality 
WORD opBypasa; 11 Flag: Bypass 
double clearness; // Clearness index 
double siqmaK; // Standard variation of clearness index 
int eval; I I number of function evaluations 
double tau; 11 time tau 
double initialK; // intitial clearness index 
int trial; I I number of trial points 
int coeff; // number of coefficients in approximation 
void setParameter ( ); 
friend ostream& operator<< (ostream&, TTransSolarDlg&); 
friend !stream& operator>> (istream&, TTransSolarDlg&); 

}; 

I*** Joint Renewable Dialog **********************************************/ 
CLASSDEI' (TJointDialoq) 

Class TJointoialog ; public TDialoq { 
PTDoubleinputi inTau; 
PTDoubleinputi ininitialk; 
PTDoubleinputi ininitialv; 
PTStatic textTau; 
PTStatic textinitialk; 
PTStatic textinitialv; 
char bufTau[30]; 
char bufinitialv[30]; 
char bufinitialk[30]; 
PTRadioButton radiocond; 
void enableCond ( ) ; 
void disableCond ( ); 

protected ; 
virtual void 
virtual void 
virtual void 

public : 

WMinitDialoq 
llandleCond.Msq 
HandleProbMsq 

(RTMessaqe) • 
(RTMeasaqe) = 
(RTMessaqe) • 

[WM FIRST 
[ID-FIRST 
[ID:FIRST 

TJointDialoq (PTWindowsobject AParent, LPSTR ATitle); 
}; 

class TTransJointDlg { 
public : 

TTransJointDlq ( ) 
WORD opJointDens 
WORD opJointCond 
double vmean; 
double initialv; 
double clearness; 
double sigmaK; 

+ WM INITDIALOG] 
+ idOpCond ] 
+ idOpProbDens ] 

7-104 

Header Files owdialg.h 



7. Appendix II: Programme Description 

double 
double 
int 
double 
void 
friend 
friend 

initiallq 
tau; 
eval; 
zeta; 
setparameter ( ) ; 
ostream& operator 
!stream& operator 

<< (ostream&, TTransJointDlq&); 
>>(!stream&, TTransJointDlq&); 

I*** Random Numbers Dialoq ***********************************************/ 
CLASSDEF (TRandDialog) 

class TRandDialog : public TDialog { 
PTStatic ranTextBeta; 
PTStatic ranTextA; 
PTStatic ranTextB; 
PTStatic ranTextsi; 
PTStatic ranTextP; 
PTStatic ranTextClass; 
PTDoubleinputi raninputA; 
PTDoubleinputi raninputB; 
PTDoubleinputi raninputp; 
PTinteqerinputi raninputClass; 
PTRadioButton ranRadiol; 
PTRadioButton ranRadio2; 
PTRadioButton ranRadio3; 
char bufA[30); 
char bufB ( 30); 
char bufP[30); 
char bufClass[30); 
void HideBeta ( ) ; 
void UnBideBeta ( ) ; 
void HidaBi ( ) ; 
void UnHideBi ( ) ; 
void HideClass ( ) ; 
void UnHideclass ( ) ; 

public 1 
TRandDialog (PTWindowsObject AParent, LPSTR ATitle); 
virtual void WMinitDialog (RTMessaga) a [WM FIRST+ WM INITDIALOG); 
virtual void HandleUniMsq (RTMessage) • [ID-FIRST + idRanOpO); 
virtual void HandleNormMsg (RTMassaga) • [ID-FIRST + idRanOpl); 
virtual void HandleBetaMsg (RTMessage) • [ID-FIRST + idRanOp2); 
virtual void HandleBiMsg (RTMessage) • (ID=FIRST + idRanOp3); 

}; 

class TTransRandDlg { 
public : 

}; 

TTransRandDlg ( ); 
WORD ranOpO; // Flag: Uniform distribution 
WORD ranOpl; // Flag: Normal distribution 
WORD ranep2; // Flag: Beta distribution 
WORD ranOp3; // Flag: Binomial distribution 
double ranA; /I Input parameter: alpha 
double ranB; I I Input parameter: beta 
double ranP; // rnput par~etert p(binomial distr.) 
int ranclass~ // Number of classes in chi~ test 
int ranTrial; // Number of trials in chi[ test 
void setParameter ( ); 
friend ostre~& operator<< (ostre~&, TTransRandDlg&); 
friend istre~& operator>> (istream&, TTransRandDlg&); 

I*** Maths Dialoq *******************************************************/ 
CLASSDEF (TMathsDialog) 

class TMathsDialog : public TDialog { 
public t 

TMathsDialoq (PTWindowsObject AParent, LPSTR ATitle); 
}; 

class TTransMathsDlg { 
public 1 

TTransMathsDlg ( ); 
int solTrial; 

7-105 

Header Files owdialg.h 



7. Appendix II: Programme Description 

}; 

int 
int 
int 
double 
int 
int 
int 
void 
friend 
friend 

solCoeff; 
fpTsTrial; 
fpTsMaxit; 
fpMcStopCrit; 
fpMcMaxit; 
fpMcGrid; 
classes; 
setPar9eter ( ) ; 
oatream& operator 
!stream& operator 

<< (ostream&, TTraneMathsDlg&); 
>> (istream&, TTransMathsDlg&); 

I*** Time Series Dialoq ***********************************************/ 
CLASSDEF (TTsDialog) 

class TTeDialog : public TDialog { 
PTStatic tsTextinitV; 
PTStatic tsTextinitK; 
PTStatic tsTextinitQlO; 
PTStatic tsTextinitQ20; 
PTDoubleinputi tsinputinitV; 
PTDoubleinputi tsinputinitK; 
PTDoubleinputi tsinputinitQlO; 
PTDoubleinputi tsinputinitQ20; 
PTRadioButton tsOpO; 
PTRadioButton tsOpl; 
PTRadioButton tsOp2; 
PTRadioButton tsOp3; 
PTRadioButton tsOp4; 
PTRadioButton tsOpS; 
char bufinitV[30]; 
char bufinitK[30]; 
char bufinitQlO[JO]; 
char bufinitQ20[30]; 
void HideV ( ) ; 
void UnHidaV ( ) ; 
void HideK ( ) ; 
void UnHideK ( ) ; 
void HideQ ( ) ; 
void UnBideQ ( ) ; 

public : 
TTsDialog iPTWindowsobject AParent, LPSTR ATitla); 
virtual vo d WMinitDialog (RTMessaga) • [WM FIRST+ WM INITDIALOG]; 
virtual void HandleOpOMeg (RTMessage) • [ID-FIRST + idTeOpO]; 
virtual void HandleOplMsg (RTMessage) • [ID-FIRST + idTsOpl]; 
virtual void HandleOp2Msg (RTMessage) • [ID-FIRST + idTsOp2]; 
virtual void HandleOp3Msg (RTMessaga) • [ID-FIRST + idTsOp3]; 
virtual void HandleOp4Msg (RTMeesage) • [ID-FIRST + idTsOp4]; 
virtual void HandleOpSMsg (RTMessage) = [ID-FIRST + idTsOp5]; 

}; -
class TTransTsDlg { 
public : 

TTransTsDlg ( ); 
WORD tsOpO; 
WORD tsOpl; 
WORD ts0p2; 
WORD ts0p3; 
WORD ts0p4; 
WORD tsOpS; 
double tsTimeStep; 
int tsPoints; 
double initV; 
double initK; 
double initQlO; 
double initQ20; 

11 Flag: 
11 Flag: 
11 Flag: 
11 Flag: 
I I Flag: 
11 Flag: 

Wind speed time series 
Wind power time series 
Solar power time series 
Combined power time series 
State of charge 
Power Deficit 

}; 

void setParameter ( ); 
friend ostream& operator 
friend istream& operator 

<< (ostre~&, TTransTsDlq&); 
>> (istream&, TTransTsDlg&); 

/*** First Passage Time Problems *****************************************/ 
_CLASSDEF (TFpDialog) 

7-106 

Header Files owdialg.h 



7. Appendix II: Programme Description 

class TFpDialog 1 
PTRadioButton 
PTRadioButton 

· PTRadioButton 
PTRadioButton 
PTRadioButton 
PTRadioButton 
PTRadioButton 
PTRadioButton 
PTRadioButton 
PTStatic 
PTStatic 
PTStatic 
PTStatic 
P'l'Static 
PTStatic 
PTStatic 
PTDoubleinputi 
PTDoubleinput 
PTDoubleinputi 
PTDoubleinputi 
PTDoubleinput 
PTDoubleinputi 
PTinte<Jerinputi 
char 
char 
char 
char 
char 
char 
char 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 
void 

public : 

public TDialog { 
fpOpO; 
fpOpl; 
fpOp2; 
fp0p3; 
fpOp4; 
fpOp5; 
fp0p6; 
fp0p7; 
fp0p8; 
fpTextVO; 
fpTextKO;. 
fpTextPO; 
fp'l'extpassVt 
fpTextPassK; 
fpTextPassP; 
fpTextNoVal; 
fpinputVO; 
fpinputKO; 
fpinputpO; 
fpinputpassv; 
fpinputPassR; 
fpinputpassP; 
fpinputNoVal; 
bufV0(301; 
bu£11:0[301; 
bufP0(301; 
bufPassV[ 301; 
bufPassK[301; 
bufPassP(301; 
bu£NoVal[301; 
BideVO ( ) ; 
UnBideVO ( ); 
HideKO ( ) ; 
UnBideKO ( ) ; 
BidePO ( ) ; 
UnBidePO ( ) ; 
BidePassV ( ); 
OnBidePassV ( ); 
BidePassK ( ); 
unBidePassK ( ); 
BidePassP ( ); 
UnBidePassP ( ); 
BideNoVal ( ); 
UnBideNoVal ( ); 

TFpDialog !PTWindowsobject 
virtual vo1d WMinitDialoq 
virtual void BandleOpOMsg 
virtual void BandleOplMsg 
virtual void Bandle0p2Msg 
virtual void BandleOp3Msg 
virtual void Bandle0p4Msg 
virtual void BandleOp5Msg 
virtual void BandleOp6Msg 
virtual void BandleOp7Msg 
virtual void BandleOpSMsg 

AParent, LPSTR ATitle); 
(RTMessage) [WM FIRST + 
(RTMessaga) • [ID-FIRST + 
(RTMassage) = [ID-FIRST + 
(RTMessage) = [ID-FIRST + 
(RTMessage) • (ID-FIRST + 
(RTMessage) = [ID-FIRST + 
(RTMessage) • [ID-FIRST + 
(RTMessage) • (ID-FIRST + 
(RTMessage) • [ID-FIRST + 
(RTMessage) • [ID:FIRST + 

}; 

11 Flag: Process: Wind speed 
/1 Plaq: Process: Wind Power 
/1 Flaq: Process: Solar Power 

WM INITDIALOG] ; 
idFp0p01; 
idFpOpl]; 
idFpOp2]; 
idFpOp3]; 
idFpOp4]; 
idFp0p5]; 
idFpOp6 1; 
idFp0p7]; 
idFpOp8]; 

class TTransFpDlg { 
public 1 

TTransFpDlg ( ); 
WORD fpOpO; 
WORD fpOpl; 
WORD fpOp2; 
WORD fpOp3; 
WORD fp0p4; 
WORD fpOp5; 
WORD fpOp6; 
WORD fp0p7; 
WORD fp0p8; 
double initV; 

/1 Flag: Process: Combined Power 

Header Files 

/1 Flag: Method: Time series approach 
11 Flag: Mehtod: Markov chain approach 
/1 Flag: Calculation: only one value 
/1 Flags as ~unction of initial values 
/1 Flag: as function of passage levels 
11 Initial values 

7-107 

owdialg.h 



7. Appendix II: Programme Description 

}; 

double 
double 
double 
double 
double 
double 
int 
void 
friend 
friend 

tendif 

initK; 
initP; 
passV; // Passaqe levels 
passK; 
passP; 
timestep; 
noVal; 
satParameter ( ); 
ostre~& operator << (ostre~&, TTransFpDlq&); 
istream& operator >> ( istream.&, 'rTra.naFpDlq&); 

I*** end of owdialg.h ****************************************************/ 

7 .5.1.10 <owlapplh> 

7-108 

I*************************************************************************** I 
I*** MODOL : OWLAPPL.H ***/ 
I*** ***I 
I*************************************************************************** I 

tifndaf OWLAPPL HEADER 
tdefine OWLAPPL:HEADER 

tinclude <windows.h> 
tincluda <owl.h> 
tinclude <edit.h> 
tinclude <button.h> 

I*** Constants ***********************************************************/ 
ldefine idOWlApplText lOO 

I*** Double Input ********************************************************/ 
CLASSDEF (TDoublainput) 

class TDoubleinput : public TEdit { 
BOOL validinput ( ); 

public 1 

}; 

double x: 
TDoubleinput 
virtual WORD 
virtual BOOL 

(PTWindowsObject AParent, int 
Transfer (void* Data.Ptr, WORD 
CanClosa ( ) ; 

Resourceid); 
TransferFlaq); 

I*** Double Input in a specific interval *********************************/ 
CLASSDEF (TDoubleinputi) 

class TDoubleinputi : public TDoubleinput { 
double minVal; 
double maxVal; 
char messaqe[SO]; 

public : 

}; 

TOoubleinputi (PTWindowsObject AParent, int Resourceid, 
const double aMinVal, const double aMaxVal, const char* aMessage); 

virtual BOOL CanClose ( ); 

I••• Integer Input *******************************************************/ 
CLASSDEF (Tinteqerinput) 

class Tinteqerinput 1 public TEdit { 
BOOL validinput ( ); 

public : 
int n; 

}; 

Tintegerinput (PTWindowsObject AParent, int Resourceid); 
virtual WORD Transfer (void* DataPtr, WORD Transferrlag); 
virtual BOOL CanClose ( )I 

I*** Integer Input in a specific interval ********************************/ 

Header Files owlappl.h 



7. Appendix II: Programme Description 

CLASSDEF (Tinteqerinputi) 
class Tinteqerinputi : public Tinteqerinput { 

int minVal: 
int ·maxVal: 
char messaqe(SO]; 

public 1 

}1 

Tintegerinputi {PTWindowsObject AParent, int Resourceid, 
const int aMinVal, const int aMaxVal, const char* aMessaqe); 

virtual BOOL CanClose ( )1 

I••• Message Dialoq ******************************************************/ 
CLASSDEF (TYoMessaqe) 

class TYoMessaqe 1 public TDialoq { 
PTStatic statText; 
char buffer[80]1 

public : 
TYoMessaqe (PTWindowsObject AParent, LPSTR ATitla,char*); 
virtual void WMinitDialoq (RTMessaqe) • [WM_FIRST+WM_INITDIALOG]1 
virtual void CMYes (RTMessaqe) • [ID FIRST+ IDYES]1 
virtual void CMNo (RTMessaqe) [ID=FIRST + IDN0]1 
virtual void CMiqnore (RTMessaqe) • [ID_FIRST + IDIGNORE]1 
virtual void CMAbort (RTMessaqe) [ID_FIRST + IDABORT ]1 

}1 

I*** InputDialoq **********************************************************/ 
CLASSDEF (TYoinput) 

class TYoinput : public TDialoq { 
PTEdit inputLine; 
PTStatic statText1 

public : 
TYoinput (PTWindowsObject AParent, LPSTR ATitle, 

char* title,char* input); 
char textBuffer[80]1 
virtual void WMinitDialoq (RTMessaqe) • [WM_FIRST+WM_INITDIALOG]1 

}1 

tendif 

7-109 

/*** End of OWLAPPL.B ******************************************************/ 

7.5.1.11 <owparam.h> 

I************************************************************************* I 
/*** Module: OWPARAM.B ***/ 
I************************************************************************* I 

I************************************************************************* I 
I*** Header for <owpar~.h> defines the parameter structures that ***/ 
I*** serve as interfaces between windows objects and mathematical ***I 
I*** objects. ***I 
I*** ***I 
I*** struct Param. Parameter ***I 
I*** class Graph Graphic related data ***I 
I************************************************************************* I 

tifndef OWPARAM HEADER 
tdefine OWPARAM=HEADER 

tifndef DIFFCALC HEADER 
tinclude <diffcaic.h> 
tendif 

tinclude <strinq.b> 

I*** Parameter ***********************************************************/ 

Header Files owparam.h 



7. Appendix II: Programme Description 

etruct Param { 
double tau~ 
int eval~ 
int type~ 
int distSelect; 

int filter; 
int classes; 

11 Wind parameters• 
double wiVci; 
double wiVco; 
double wivr; 
double wiVm.ean; 
double wiVmin; 
double wiVm.ax; 
double wiSigm.a; 
double wiBeta; 
double wirnitV; 

I I Solar parameters 1 
double aolK; 
double solSigm.aK; 
double solKO; 
double solinitK; 
double solBeta; 

11 time 
/1 number of function evaluations 
11 - 0 (distribution) , - 1 (density) 
/1 chosen distribution selection: 
/1 • 0 : Wind turbine power. 
/1 1 : Conditional wind turbine power 
11 2 1 Exact Solar 
11 3 1 Approximated solar 
/1 4 1 Approximated solar, conditional 
11 5 1 Quality of approximAtion 
11 filter of inspection windows 

11 cut in speed 
11 cout out speed 
11 rated speed 
I I mean speed 
I I minimum wind speed 
I I maximum wind speed 
11 variance of wind speed fluctuations 
/1 wind autocorrelation coefficient 
I I initial v 

11 averaqe hourly clearness index 
/1 standard deviation of solar irradiation 
11 absolute maximum possible clearness index 
11 initial k 
11 solar autocorrelation coefficient bsol 
/1 number of tria1 points in normal approximation 
/1 number of coefficients in normal approximation 

7-110 

int solTrial; 
int solCoeff; 
int solBypass; 11 bypass of major calculations by retrievinq old data 

11 Combined renewablee parameters• 
double comzeta; // fractional power factor 
double comrnitp; 11 rnitial p value 

11 Random numbers 
double ran.A; 
double ranB; 
double ra.nP; 
double ro.nu; 

dialoq: 

int ranClass; 
int ranTrial; 
int ranSelect; 

11 Parameter alpha for beta- distribution 
/1 Par~ter beta for beta- distribution 
/1 Parameter p for binomial distribution 
/1 Parameter u for normal distribution 
/I Number of classes for Chin test 
11 Number of trials in Chi~ test 
/1 Last selection 

I I Time series parameters: 
double tsTimeStep; // Duration of a sinqle time step 
int tsPoints; // Lenqth of a time series 
int tsSelect; 

11 First passage time parameterss 
int fpTsTrial1 //Number of time series taken into account 
int fpTsMaxit; // Max iterations in Time series mode 
double fpMcStopCrit;// Stoppinq criterion in Markov chain mode 
int fpMcMaxit; // Max iterations in Markov chain mode 
int fpMcGrid; 11 Markov chain mode: Grid Number Q 
double fpPassv; 11 Passaqe level: Wind speed v 
double fpPassK; // Clearness index k 
double fpPassP; 11 Power level p 
int fpNoVal; // Number of values to be calculated in 

/1 function-as-mode 
int fpSelectprocess; // Flaqs 
int fpSelectMethod; 
int fpSelectCalc; 
11 Battery parameters 
double batK; 
double bate; 
double batQMax; 
double batv; 11 Voltaqe 

Header Files owparam.h 



7. Appendix II: Programme Description 

double batQlO; 
double batQ20; 11 QlO + Q20 <• 1.0 
11 Denormalized system 
double sysPOemand; 
double sysPRen; 
11 Display options 
int disAuto; // automatic ra-drawinq ot qraphics 
int disAccu; // accumulate data series when possible 
int disOldEval; 11 last eval 
int disOldType; 11 last window type 
double disOldVmin; 11 last minimum speed 
double disOldVmax; I I last maximum speed 
int disrirstcurve; // • 1 if first curve, otherwise 0 
int disLeqend; // ~ 1 if leqend desired, otherwise o 

7-111 

/***************************************************************************/ 
/*** class Graph ***/ 
I*************************************************************************** I 

I*** Graphic related d~ta **************************************************/ 

class Graph { 
public 1 

VECTOR 
VECTOR 
char 
double 

x; 11 
y[41; 11 
leqend[4][201; 
scale; 11 
option; int 

int 
double 
double 
char 
char 
char 

curveNo; // 
min; 
max; 
headline [ 4 0 1 ; 
subline [50 1; 
axtext [ 401; 

x - values 
y - values 

11 Leqend for curves 
acalinq factor 

num.ber of curves in same qraph 
I I m1.zu.mum. on x- axis 
I I maximum on x- axis 

Graph 

void 
void 
void 

) 1 curveNo(4) { ; } 

}; 

lendif 

setHeadline 
setSub1ine 
setAxtext 

(char* text) { strncpy (headline,text,39); } 
(char* text) { strncpy (subline ,text,49); } 
(char* text) { strncpy (axtext ,text,39); } 

I*** ene of owparam.h ****************************************************I 

7.5.1.12 <owplot.b> 

1***************************************************************************1 
I*** MODUL : OWPLOT.B ***I 
I*** ***I 
1***************************************************************************1 

tifndef OWPLOT HEADER 
tdefine OWPLOT:BBADER 

tifndef VECTORS HEADER 
linclude <vectoFs.h> 
tendif 

tifndef DIFFCALC HEADER 
linclude <diffcaic.h> 
lendif 

tinclude <fstream.h> 
tinclude <windows.h> 
tinclude <owl.h> 

Header Files owplot.h 



7. Appendix II: Programme Description 7-112 

I*** Constants 
#define TOP 
#define BOTTOM 
#define NEW 
#define ATTACH 

*************************************************************/ 

#define LIN 
tdafina LOG 

lOO 
101 
200 
201 

0 
1 

#define PIXEL 0 
#define POLYGON 1 
#define STEP 2 
#define DIRAC 3 

#define IN AXLE 0 
#define OuT AXLE 1 
#define CENTER_AXLE 2 

#define TO HORIZONTAL 0 
#define TO~RTICAL 1 

typadef unsigned int ORA MODE1 
typedef unsiqned int AXLE_MODE1 

class axis; 

/*** class TGraph ********************************************************/ 
CLASSDEF (TGraph) 

class TGraph : public TWindow { 
protected 

LOG FONT 
HFONT 
HFONT 
LOGPEN 
HPEN 
HPEN 
LOGBROSH 
HBROSH 
HBROSH 
COLORREF 
HOC 

public : 

loqFont; 
Theront; 
oldFont; 
loqPen; 
ThePan; 
old.Pen; 
logBrush; 
TheBrush; 
oldBrush1 
backGround; 
DCJ 

11 Font 

11 Pen 

11 Brush 

11 Backqround Color 

TGraph 
void 

(PTWindowsObject AParent, LPSTR ATitle, PTModule AModule • NULL); 

void 
void 
void 
void 
void 
void 
void 
void 
virtual 
virtual 
void 
void 
void 
void 

elearScreen ( ); 
setTextHeiqht (int n )1 
setPenSize (int n ); 
satPenstyla (int n )1 
setPenColor (COLORREF color)1 
setBrushstyle (int n )1 
setBrushColor (COLORREF color)1 
setBrushaatch (int n ); 
setColor (COLORREF color)1 

void open ( ) ; 
void close ( ) ; 
Line (int xl, int yl, int x2, int y2 
OoubleOut (double number, int dec, int x, int 
InteqerOUt (int number, int x, int y 
Textout (char* text, int x, int .y 

) 1 
Y)1 

) 1 
) 1 

I*** class TPlot *********************************F**********************/ 
CLASSDEF (TPlot) 

class TPlot 1 public TGraph { 
char headLine[50]1 
char subLine[60)1 
int curveNo~ // curve number 
double xquotlin, yquotlin, xquotloq, yquotloqJ 
int xloq, yloq1 
double x min,x max,y min,y maxJ 
axis* x:E'ottom"i - . --
axis* xtop 1 
axis* yleftJ 

Header Files owplot.h 



7. Appendix II: Programme Description 

axis* 
RECT 

protected 
RECT 

public : 
TPlot 
-TPlot 
virtua~ 
virtual 
virtual 
void 
void 
void 

protected 
void 
void 
void 
int 
int 
void 

yriqht~ 
maxRec:t; 

' curRect; 

(PTWindowsObject AParent, LPSTR ATitle, PTModule AModula • NULL);. 
( ) ; 

' 

void plot ( ) { ; } 
void draw ( ) ; 
void Paint (BDC PaintDC, PAINTSTRUCT _FAR& Paintinfo); 
satSeadLine (const char*); 
setSubLine (const char*); 
plotFactor (double factor); 

plotl!aadLine 
plotSubLine 
drawMarqin 
xcoord 
ycoord 
aetCoordinates 

) ; 
) ; 
) ; 
(double x); 
(double x); 
(double xmini,double xmaxi,double ymini, 

double ymaxi); 

7-113 

double 
void 
void 
void 

setAutoCoord 
setAutoAxAttr 
setViewport 
drawUpperX 

(double xm.ini, double xmAXi, VECTOR* yval, int n•O) ~ 
(doubla&,double&,int&,int&,double&,double&); 
(int,int,int,int)~ 

void 

void 

drawRiqhtY 

(double mini,doubla maxi,double axla,int num, 
int loq, const char• text,int axle mode): 

(double mini,double maxi,double axle,int"num, 
int log, const char* text,int axle mode); 

drawLowerX (double mini,double maxi,double axle,int-num, 
int log, int qrid, double dist,conat char* text,int axle mode); 

drawLeftY (double mini,double maxi,double axle,int nU., void 

void 
int loq, int qrid, double dist,const char* taxt,int axle mode); 

drawLinCoord (double xaxle,int xnum,int xqrid,double xqriddist,­
const char* xtext,double yaxle,int ynum,int ygrid,double 

yqriddist, const char* ytext); 
void drawLinCoord (int, conat char*, int, const char*); 
double drawAutoLincoord (double xmini, double xmaxi, VECTOR* yval, 

const char* xtext, const char• ytext, int xaxqrid, int yaxqrid, 
double scale, int n•O); 

void draWCurve (VECTOR&,VECTOR&, ORA MODE draw_mode); 
}; -

{ // Structure for description of an axis 
direction;// horizontal or vertical 
textjust; // text justification 

class axis 
int 
int 
int 
int 
int 
double 
double 
char 
double 
int 
double 
int 
void 

public: 

axle mode; 
centircord;// central coordinate 
qrid; 11 Grid ? 
min; // Mintmum 
max; I I Maximum 
text(50]; //Axis text 
axle; // Distance between axles 
num.; I I draw numbers every num.-th axle 
griddist; // grid distance for linear representation 
linloq; // linear or logarithmic representation 
logarith (int, int, const char*)J 

RECT* curRect; 
HOC DC; 
axis (BDC 

void 
aDC, RECT* aCurRect) { DC • aDC; curRect g aCurRect;} 
eetAxis (int dir, int just, int cord, double mini, double 

const char* 
maxi, 

alpha,double ax,int n,int axloq,int axqrid, 

mode); 
double dist, int 

void drawAxis (void); 
}; 

/*** Function prototypes ***************************************************/ 
BOOL exportData (VECTOR&, char*, int, char*, double); 

tendif 

Header Files owplot.h 



7. Appendix II: Programme Description 7-114 

/*** End of OWPLOT.H *******************************************************/ 

7.5.1.13 <owrenew.h> 

I•************************************************************************ I 
/*** Module: OWRENEW.H ***/ , ..........................................•.............................. , 
I************************************************************************* I 
/*** Header of the main prog-ramme ***I 
I*** ***/ 
/*** Definitions and declarations oft ***/ 
!••• class TRenewPlot (plot window) ***/ 
I*** class TMainWindow ***/ 
I*** class TRenewApp (application ***I 
/*************************************************************************/ 

lifndef OWRENEW HEADER 
ldefine OWREHEW:HEADER 

lifndef OWRES HEADER 
linclude "owr&s.h" 
lendif 

tifndef OWPLOT HEADER 
#include •owplOt.h" 
tendif 

lifndef OWLAPPL HEADER 
#include •owlapPl.h" 
tendif 

tifndef OWDIALG HEADER 
#include <owdiaiq.h> 
tendif 

tinclude <owl.h> 
tinclude <dialoq.h> 
tinclude <iostream.h> 
tinclude <edit.h> 
tinclude <string.h> 
tinclude <radiobut.h> 

I*** Graphics Window *****************************************************/ 
CLASSDEF (TRenewPlot) 

class TRenewPlot : public TPlot { 
int delta; 
int start; 
int end; 
HBRUSB brushPen,oBrushPen; 

public : 
int clear; 

TRenewPlot (PTWindowsObject AParent, LPSTR ATitle, PTModule AModule • NULL); 
virtual void Paint (HOC PaintDC, PAINTSTROCT _FAR& Paintinfo); 
void plot. ( ) ; 

}; 

/*** Main Window *********************************************************/ 
CLASSDEF (TMainWindow) 

Class TMainWindow z public TWindow { 
void cale (oWObjfunc*, double, double); 

public : 
TTransSettinqsDlq TransSettingsDlg; 
TTransDirDlg TransDirDlq; 
TTransExportDlq TransExportDlq; 
TTransDisplayDlq TransDisplayDlq; 
TTransSpeedDlq TransSpeedOlq; 
TTransWindDlq TransWindDlq; 
TTranssolarDlq TransSolarDlg; 

Header Files owrenew.h 



7. Appendix II: Programme Description 

TTransJointDlg TransJointDlq; 
TTransRandDlq TransRandDlq; 
TTransMathsDlq TransMathsOlq; 
TTransTsDlq TransTsDlg~ 
TTransFpDlq TransFpDlq; 
PTRenewPlot testplot; . 

}; 

TMainWindow (PTWindowsObject 
virtual -TMainWindow ( ); 
virtual BOOL CanClose ( 
virtual void CMWindSpeed (RTMessaqe) • 
virtual void CMSettinga (RTMesaaqe) • 
virtual void CMMaths (RTMessage) • 
virtual void CMWindPower (RTMessaqe) 
virtual void CMSolar ( RTMessaqe) • 
virtual void CMRanewable (RTMessage) • 
virtual void CMExport ( RTMessaqe) • 
virtual void CMDisplay ( RTMessaqe) • 
virtual void CMBelp (RTMessage) • 
virtual void CMDir (RTMessaqe) • 
virtual void CMRandom (RTMessaqe) ~ 
virtual void CMTimeseries(RTMessage) • 
virtual void CMFpt (RTMessaqe) • 
virtual void GetWindoWClass (WNOCLASS& 
friend ostream& operator << (ostream&, 
friend istream& operator >> (!stream&, 

AParent, LPSTR ATitle); 

) ; 
cmWindSpeed] ; 
cmSettinqs ] ; 
cmMaths]; 
cm.Wind.Power) ; 
cmSolar]; 
cmRenewable) ; 
cmExport]; 
cmoisplay]; 
cmBelp]; 
cmDirectories); 
cmRandom); 
cmTim.eSeries); 
cmFirstpassaqe); 

[CM I!'IRST + 
[CM-FIRST + 
[CM-FIRST + 
[CM-I!'IRST + 
[CM-I!'IRST + 
[CM-FIRST + 
[CM-FIRST + 
[ CM-I!'IRST + 
[CM-FIRST + 
[CM-FIRST + 
[CM-I!'I:RST + 
[CM-FIRST + 
[CM-FIRST + 
WndClass); 
RTMainWindow); 
RTMainWindow) ; 

/*** Application *********************************************************/ 
CLASSDEF (TRenewApp) 

class TRenewApp : public TApplication { 
int choice; 

public: 
TRenewApp(LPSTR AName, BINSTANCE hinstance, BINSTANCE hPrevinstance, 

LPSTR lpcmdLina, int ncmdshow) 
: TApplication(AN~e, hinstance, hPrevinstance, lpCmdLine, nCmdShow), 

choice (0) 
{ }; 

virtual void InitMainWindow(); 
}; 

tendif 

I*** ene of owrenew.h ****************************************************/ 

7 .5.1.14 <owres.h> 

I************************************************************************* I 
I*** Module: OWRES.B ***I 
I************************************************************************* I 

tifndef OWRES_HEADER 

I*** Constants ***********************************************************I 
tdefine cmWindSpeed 500 
tdefine cmSolar 501 
tdefine cmRenewable 502 
tdefine cmSettinqs 503 
tdefine cmMaths 504 
tdefine cmExport 505 
lde£ine cmWindPawer 506 
tdefine cmHelp 507 
tdefine cmDirectories 510 
tdefine cmRandom 512 
tdefine cmTimeseries 513 
tdefine cmFirstpassaqe 514 
tdefine cmDisplay 515 

7-115 

I*** ID- Constants *********************************************************I 

Header Files owres.h 



7. Appendix ll: Programme Description 7-116 

/I Parameter 
tdatine ic!Eval 100 
tdefine idTau 101 
tdefine idTextTau 102 
tdefine idStatusText 103 
tdefine idTimeText 104 
tdefine idReportText 105 
tdefine idClasses 106 

11 Dialoqs 
tdefine idOpProbDens 110 
ldefine idOpDist 111 
#define idOpAnalyt 112 
tdefine idOpApprox 113 
tdefine idOpCond 114 
tdefine idOpQual 115 
tdefine idOpStationary 116 

11 Wind parameter 
tdefine idWiVci 120· 
ldefine idWiVco 121 
tdefine idWiVr 122 
tdefine idWiSiqma 123 
tdefine idWiVmean 124 
#define idWiBeta 125 
tdefine idWiVmin 126 
#define idWiVmax 127 
tdafine idWiTextinitV 128 
tdefine idWiinitV 129 

I! Solar parameter 
tdefine idSolK 140 
#define idSolSiqmaK 141 
tdetine idSolKO 142 
tdefine idSolBeta 144 
tdefine idSolinitK 145 
tdefine idSolTrial 146 
tdefine idSolCoeff 147 
tdafine idSolBypass 148 
tdefine idSolTextinitK 149 
tdefine idSolTextTrial 150 
tdefine idSolTextCoeff 151 

I I Combined Renewables 
ldefine idComZeta 160 
#define idComP 161 

11 Export Dialog 
tdefine idExpAttach 170 
ldefine idExpNew 171 
ldefine idExpFile 172 

1/ Directories dialoq 
ldefine idDlqPile 180 
ldefine idSolFile 181 

/I Random Numbers Dialoq 
tdefine idRanOpO 190 
tdefine idRanOp1 191 
tdefine idRanOp2 192 
ldefine idRanOp3 193 
tdefine idRanTextA 194 
tdefine idRanTextB 195 
tdefine idRanTextP 196 
#define idRanTextBeta 197 
tdefine idRanTextBi 198 
ldefine idRaninputA 199 
ldefine idRaninputB 200 
ldefine idRaninputP 201 
tdefine idRanTextClass 202 
I define idRanTrial 203 
I define idRaninputClass 205 

Header Files owres.h 



7. Appendix II: Programme Description 

11 Time Series 
tdefine idTsTimeStep 210 
tdefine idTsPoints 211 
tdefine idTsOpO 212 
tdefine idTsOp1 213 
tdafina idTsOp2 214 
tdafine idTsOp3 215 
tdefine idTsOp4 216 
tdefine idTsOp5 217 

1/ First passage times 
tdefine idFpTsTrials 
tdefine idFpTsMaxit 
tdafine idFpMcStopCrit 
tdefine idFpMcMaxit 
tdefine idFpMcGrid 
tdefine idFpNoVal 
tdefine idFpOpO 
tdefine idFpOp1 
tdefine idFpOp2 
tdefine idFpOp3 
tdetine idFpOp4 
tdefine idFpOpS 
tdefine idFpOp6 
tdefine idFpOp7 
tdefine idFpOpS 
tdefine idFpTextVO 
tdefine idFpTextKO 
tdefine idFpTextPO 
tdefine idFpinputVO 
tdefine idFpinputKO 
tdefine idFpinputpO 
tdafine idFpTextPassv 
tdefine idFpTextPassK 
tdefine idFpTextpassP 
tdafine idFpinputPassV 
tdefine idFpinputpassK 
tdafine idFpinputpassP 
tdefine idFpTextNoVal 

11 Display 
tdefine idDisC1ear 
ldefine idDisAccu 
tdafine idDisLeqend 

1/ Battery 
tdefine idBatK 
tdafine idBatC 
tdefine idBatQMax 
tdefine idBatV 
tdafine idBatQ10 
tdefine idBatQ20 

tdefine idBatTextQ10 
tdefine idBatTextQ20 

11 System 
tdefine idSysPDemand 
tdefine idSysPRen 

tandif 

220 
221 
222 
223 
224 
228 

240 
241 
242 
243 
244 
245 

249 
250 
251 
252 

260 
261 
262 

270 
271 
272 
273 
274 
275 

276 
277 

280 
281 

230 
231 
232 
233 
234 
235 
236 
237 
238 

246 
247 
248 

/*** end of owres.h ******************************************************/ 

7.5.1.15 <owstat.h> 

/*****~*******************************************************************/ 
/*** Module: OWS~AT.H ***/ 

7-117 

Header Files owstat.h 



7. Appendix ll: Programme Description 

I************************************************************************* I , .................................•.........................•............. , 
I*** Object Windows C++z Calculations in the Status Window Environment ***/ · , ...............•......................................................... , 
tifndet OWSTAT HEADER 
tdafine OWSTAT:BEADER 

fifndef DISTR HEADER 
finclude <distrib,h> 
tendif 

tinclude <owl.h> 
tincluda <dialoq.h> 
tincluda <edit.h> 
tinclude <button.h> 

/*** class TStatusWindow **********•************************************••/ 
CLASSDEr (TStatusWindow) 

class TStatusWindow 1 public TDialoq { 
private : 

PTStatic 
PTStatic 
PTStatic 
PTButton 
PTButton 
PTButton 
double 
double 
int 
void 
double 

statusTextl; 
statusText2; 
tilneText; 
okButton; 
c:anc:elButton; 
retryButton) 
lastTime; 
startTime; 
mode; 
startTi.mer 
time 

( ) ; 
( ) ; 

protected 
int 
virtual 
virtual 
virtual 
virtual 
virtual 
virtual 
virtual 

void 
void 
int 
void 
void 
void 
void 

qivewarninq 
writeRepl 
writeRep2 
workOUt 
WMinitDialoq 
Ok 
Retry 
T:iJneHsq 

public 1 
void 
int 
static double 
void 

writeTim.e 
isEnoughT .im.e 
temp; 
writeStatusl 
writestatus2 void 

(char* 
( 
( 
( 
(RTHessaqe 
(RTMessage 
(RTMessage 
(RTHessaqe 

(char* 
(char* 

); 
) ; 
) { 
) 

) -
) ~ 
) ~ 

) -
) ; 
) ; 

; } 
0; 
[WH_riRST+WM_INITDIALOG]; 
[ID l'IRST+IDOK]; 
[ID-FIRST+IDRETRY); 
[WH:USER+WH_HSGOBJ?UNC); 

) ; 
) ; 

TStatusWindow (PTWindowsObject AParent, LPSTR ATitle); 
virtual -Tstatuswindow ( ); 

}; 

I*** class TMultiValObject ***********************************************/ 
CLASSDEr (THultiValObject) 

class TMultiValObject : public TStatusWindow { 
int eval; 
int isAccuDesired ( 

protected : 
virtual int 
virtual int 
virtual int 
virtual void 
int 
void 

public : 

workOUtBasic 
workOUtValues 
areParameterOK 
setOld.Parameter 
workout 
calcValuea 

) ; 

) - 0; 
) - 0; 
) - 0) 
) • 0; 

( . ) ; 
(oWObJfunc*,double,double); 

THultiValObject (PTWindowsObjeat AParent, LPSTR ATitle,int); 
virtual -THultiValObject ( ) { ; } 
static void calc (oWObjfunc*,double,double,int,TStatusWindoW*); 

}; 

tendif 

7-118 

Header Files owstat.h 



7. Appendix II: Programme Description 7-119 

I*** end of owstat.h *****************************************************/ 

7.5.1.16 <passage.h> 

I*************************************************************************** I ,... . .. , 
I*** Module• PASSAGE.& ***I ,... . .. , 
I*** Header for first passaqe time problems in the renewable energy ***/ 
I••• project owrenew.prj ***/ , ........................................................................... , 
tifndef PASSAGE HEADER 
tdetine PASSAG!:HEADER 

tifndef SERIES HEADER 
tinclude <seri&s.h> 
tendif 

tifndef VECTORS HEADER 
tinclude <vectors.h> 
tendif 

tifndef OWPARAM HEADER 
tinclude <owparim.h> 
tendif 

class DiseretDistribution; // forward declaration 

I*************************************************************************** I 
I*** Abstract class of a first passage time problem ************************I 
1***************************************************************************1 

class PassageTime 1 public msgObjfunc { 
protected s 

double passLevel; 
double initLevel; 
double timeStep; 
virtual int SetUp 

public : 
PassageTime 

11 
11 
11 

virtual -PassageTime 
int setUp 

pasaaqe level 
initial level 
time step 

(power I speed) 
(power I speed) 

(TStatusllindow•, Param.*) = o; 

( ) l 

.void setPassLevel 
virtual void setinitLevel 

( 
(TStatusWindow*, 
(double newLevel 
(void* 

) { 
Param.*); 

) { 
) -passLevel•newLevel; } 

0; 
}l 

I*************************************************************************** I 
I*** Abstract class for first passage time - time series approach **********I 
I*************************************************************************** I 

class TSPassaqeTime • public PassaqeTime { 
private 1 

int repFactor; 
int maxit; 

11 number of time series taken into account 
11 maximum number of iterations 

protected 1 

Timeseries• timeSeries; 
virtual int SetUp 

public • 
TSPassageTime 
virtual -TSPassageTime 
double Eval 
void setinitLevel 

} ; 

TStatusWindow*, Par~• ); 

double 
void* 

) ; 
) ; 
) ; 
) ; 

I*************************************************************************** I 
/*** Wind speed passage time - time series approach ******I 
I*************************************************************************** I 

Header Files passage.h 



7. Appendix II: Programme Description 

class TSWindSpeedPassaqeTime 1 public TSPassaqeTime { 
public 1 

TSWindSpeedPassaqeTime ( . ) 1 
int SetUp ( TStatusW1ndow•, Param• ); 

}I 

7-120 

, .................•......••..................•.............................. , 
I*** Wind power passage time - time series approach ******/ 
I*************************************************************************** I 

class TSWindPowerPassaqeTime t public TSPassageTime { 
public : 

TSWindPowerPassaqeTim.e ( . ) ; 
int SetUp ( TStatusW1ndow•, Param• ); 

}I 

I*************************************************************************** I 
I*** Solar power pasaaqe time - time series approach ******/ 
I*************************************************************************** I 

class TSSolarPowerPassaqeTime : public TSPassageTime { 
public t 

}I 

TSSolarPowerPassaqeTime ( ) ; 
int SetUp ( TStatusWindow*, Param* ) ; 

I*************************************************************************** I 
I*** Joint renewable passage time - time series approach ******/ 
I*************************************************************************** I 

class TSJointpowerPassaqeTime ; public TSPassaqeTime { 
public 1 

TSJointFowerPassaqe'l'ime ( . ) 1 
int SetUp ( TStatusW1ndow*, Par am.* ) ; 

}I 

I*************************************************************************** I 
I*** AbstrAct class for Markov chain cpproach ******/ 
I*************************************************************************** I 

class MCPassageT~e : public PassaqeTime { 
private : 

MATRIX G; // Transition matrix 
VECTOR P 1 /I Probability vector 
double stopCrit; // stopping criterion 
int maxit; // maximttm number of iterations 
int discPassLevel; // discretized passage level 
int discinitLevell // discretized initial level 
void updateG ( ) 1 

protected : 
int classes; // 
DiscretDistribution* 
int discretize 

public : 
MCPassaqeTim.e 
double Eval 
virtual int SetUp 

number of discretization 
distribution; 

( double 

levels 

) I 

void setinitLevel 

double 
TStatusWindow*, 
void* 

) I 
) I 

Param.~ ) ; 
) I 

}I 

I*************************************************************************** I 
/*** class MCWindSpeedPassaqeTime ******/ 
I*************************************************************************** I 

class MCWindSpeedPassaqeTime public MCPassaqeTime { 
public t 

MCWindSpeedPassaqe'l'ime ( ) 1 MCPassaqe'l'ime ( ) { 1 } 
int SetUp (TStatusWindow•, Param*); 

}I 

/***************************************************************************/ 

Header Files passage.h 



7. Appendix II: Programme Description 7-121 

/*** class MCWindPowerPassaqeTime ******/ 
I*************************************************************************** I 

class MCWindPowerPassageTime a public MCPaesaqeTime { 
public : 

MCWindPowerPassageTime 
int Settlp 

}; 

( ) : MCPassaqeTime ( ) { ; } 
( TStatusWindow•, Param• ); 

/***************************************************************************/ 
I*** class MCSolarPowerPassaqeTime ******/ 
I*************************************************************************** I 

class MCSolarPowerPassaqeTime a public MCPassaqeTime { 
public 1 

MCSolarPowe~PassaqeTi=e ( ) : MCPassaqeTime ( ) { } 
int SetUp ( TStatusWindow•, Param• ); 

}; 

I*************************************************************************** I 
I*** class MCJointpowerPassaqeTfme ******/ 
I*************************************************************************** I 

class MCJointpowerPassaqeTime : public MCPassaqaTima { 
public : 

MCJointpowerPassaqeTime ( ) : MCPassaqeTime ( ) { } 
int SetUp ( TStatusWindow*, Param* ); 

}; 

I*************************************************************************** I 
/*** Abstract class of a first passage time problem ************************/ 
I*** allowinq to vary either the paasaqe level or initial value. ***/ 
I*************************************************************************** I 

class PassaqeTimes : public owCbjfunc { 
protected : 

int selectCalc; 
int 
PassageTime• 
virtual int 

noVal; //number of values alonq the x- axis 
passaqeTime; 
Setup ( TStatuswindow•, Param• ) = 0; 

public : 

}; 

double minVal; 
double maxVal; 
PassaqeTimes 
virtual -PassaqeTimes 
int setUp 
double eval 

11 Wind speed 

) ; 
) ; 

TStatusWindow•, Param• ); 
double ) ; 

class WindSpeedPassaqeTimes : public PassageTimes { 
public : 

WindspeedPassaqeTimes ( int ); 
int SetUp ( TStatusWindow•, Param* ); 

}; 

11 Wind power 
class WindPowerPassageTimes : public PassageTimes { 
public : 

WindPowerPassageTimes (int ); 
int Setup (TStatusWindow•, Param*); 

}; 

11 Solar power 
class SolarPowerPassageTimes : public PassageTimas { 
public : 

SolarPowerPassaqeTimes (int ); 
int SetUp (TStatusWindow•, Param*); 

}; 

11 Joint renewable power 
class JointPowerPassaqeTimes : public PassaqeTimes { 

Header Files passage.h 



7. Appendix II: Programme Description 

public : 

}; 

JointPowerPassageTimes 
int Setup 

tendif 

(int ); 
(TStatusWindow•, Param*); 

7-122 

I*** End of passage.h ******************************************************/ 

7.5.1.17 <random.h> 

I*************************************************************************** I 
/*** Module: RANDOM.B ***/ 
I*** •••I 
/*** Definition of types and classes for random numbers ***/ 
/***************************************************************************/ 

tifndef RANDOM HEADER 
tdefine RANDOM:HEADER 

tifndef VECTORS HEADER 
linelude <vectors.h> 
tendif 

tifndef MATHFUNC HEADER 
tinclude <mathfunc.h> 
tendif 

I*** Constants ************************************************************/ 
tdefine NTAB 32 

/*** Uniform deviates 
class uniRand { 
public : 

*****************************************************/ 

}; 

uniRand 
virtual 
void 
virtual double 
virtual void 

-uniRand 
initialize 
qetRandomNumber 
update void* 

) { } 
) { ; } 
) ; 
) ; 
) { ; } 

I*** Gaussian deviates N(a, var) ~******************************************/ 
class normRand : public uniRand { 

double mean; 
double sigma; 
int iset; 
double gset; 

public : 
norm.Rand 
normRand 
virtual 
virtual double 
void 

}; 

-normRand 
qetR.andomNumber 
update 

( 
(double 
( 
( 
( void* 

m, double 
) ; 

B): 
) { ; } 
) ; 
) ; 

/*** Rejection method *****************************************************/ 
class rejectRand : public uniRand { 
public : 

rejectRand ( 
virtual double qetRandomNumber ( 

) ; 
) ; 

protected : 
virtual double 
virtual double 
virtual double 

}; 

compFunc 
oriqFunc 
invinteq 

(double) 0; 
(double) • o; 
(double) • 0; 

/*** Rejection method using a uniform distribution as comparison function */ 
I*** for distributions with non zero values in the interval [0,1] */ 
class uniRejectRand : public rejectRand { 

Header Files random.h 



7. Appendix II: Programme Description 

private : 
double ceiling~ 

public : 
uniRejectRAnd ( ) { ceilinq • l; } 
uniRejectRand (double max) { ceiling • max~ } 

protected z 
virtual double 
virtual double 

}l 

compFunc (double) { return l; } 
invinteq (double Y) { return Yl } 

I*** Beta distribution ****************************************************/ 
class betsRand : public uniRejectRand { · 
private : 

double alpha,beta,fact~ 
protected 

virtual double oriqFunc 
virtual double compFunc 

public : 
betsRand 
betaRand 

}l 

(double 
(double 

) l 
) l 

( ) l 
(double a, double b); 

/*** Discrete distributions using the rejection method ********************/ 

class discretRand : public uniRand { 
privata : 

VECTOR'" 
double 
double 

public : 

px; 
ceiling; 
qetRandomNumber ) l 

discretRand ( VECTOR'" )l 
void update ( void* ) ; 

}l 

I************************************************************************** I 
I*** Ko~ogorov - Smirnov test ********************************************/ 
I************************************************************************** I 

/*** Abstract class for KGS test ******************************************/ 
class KqSTest { 
protected : 

double size; 
int k; 
double mean; 
double var; 
VECTOR x,y,r; 
uniRand* randomizer; 
virtual void initialize 
virtua~ double theoretprob 
void deValues 
double maxDistance 
void calcCumDist 

public : 

}l 

double doTest 
double qetMean 
double qetVar 
KqSTest 
-KgSTest 

(int 
( 

( 
( 
( 

n); 
) l 

( 
(double 
( 
( 
( 

) l 
) l 
) l 

) { l } 
X) - 0; 

) l 
) l 
) l 

I*** Ko~oqorov- Smirnov Test for unifor.m distribution ********************I 
class UniKqSTest : public KqSTest { 
public : 

}l 

UniKqSTest 
double theoretprob 
void initialize 

(int n) 
(double x) 
( ) 

KqSTest (n) { l } 
{ return (x); } 
{ randomizer • new uniRand ( ) l } 

I*** Kolmoqorov- Smirnov Test for normal distribution *********************I 
class NormKqSTest : public KgSTest { 
public : 

NormKqSTest (int n) : KgSTest (n) { ; } 

7-123 

Header Files random.h 



7. Appendix ll: Programme Description 7-124 

double theoretprob (double x) { return !PH:I (x) ); } 
void initi5lize ( ) { r5ndom~zer • new normRand ( ); } 

}; 

I*** Ko1moqorov- Smirnov Test for beta- distribution **********************/ 
class Bet5KgSTest ' public KgSTest { 

double alpha, beta; 
double classes; 

public ' 

}; 

BetaKgSTest (int n, int r, double 5, double b); 
double theoretProb (double x); 
void initialize ( ) { randomizer • new betaRand (alpha,beta); } 

lendif 

/*** End of RANOOM.R ******************************************************/ 

7 .5.1.18 <series.b> 

I*************************************************************************** I 
I*** ***I 
/*** Modules SERIES.B ***/ 
,... ***/ 
I*** Header for time series objects within the renewable enerqy ***/ 
I*** project owrenew.prj ***/ 
I*************************************************************************** I 

tifndef SER:IES HEADER 
ldefine SERIES:HEADER 

lifndef VECTORS HEADER 
tinclude <vectors.h> 
lendif 

lifndef DISTRIB HEADER 
tinclude <distrrb.h> 
tendif 

lifndef DIFFCALC BBADER 
linclude <diffcaic.h> 
tendif 

lifndef RANDOM HEADER 
tinclude <randOm.h> 
lendif 

lifndef OWPARAM HEADER 
linclude <owpa.rim.h> 
tendif 

lifndef SOLAR HEADER 
tinclude <solar.h> 
tendif 

I*************************************************************************** I 
I*** Abstract class of a time series ***************************************/ 
I*************************************************************************** I 

class TimeSeries 
protected : 

virtual void 
virtual double 

public • 
TimeSeries 
virtual 
virtual int 
virtual void 

}; 

Header Files 

: public owobjfunc { 

update 
getOutput 

-Timeseries 
setUp 
setUserinit 

TStatusWindow•, Param* 
void* 

) - 0; 
) - 0; 

l { ; } 
l { ; } 
l 0; 
) ... 0; 

series.h 



7. Appendix Il: Programme Description 

class TimeSeriesOne 1 public TimeSeries { 
protected : 

double 
double 
double 
virtual double 
virtu5l double 

initUserVal; 
randomVal; 
outVal; 
qetinitRandomVal 
qetRandomNUlllber 

) { return initUserVal; } 
) - 0; 

public : 
TimeserieaOne 
-Timeseriesone 
double eval 

setUserinit void 
double 
void* 

) ; 
) ; 
) ; 
) ; 

7-125 

I*************************************************************************** I 
/*** Class of wind speed time series ***************************************/ 
/***************************************************************************/ 

class WindSpeedTimeSeries 1 public Timeseriesone { 
speed double vmean; // mean wind 

double effSiqma; // effective 
uniRand* randomizer; 

standard variation 

protected 1 
double r; // 
double siqma; /1 
double qatRandomNUlllber 
double qetOUtput 

public 

}; 

int setUp 
void update 
void setcorrelation 
WindSpeedTimeSeries 
-windSpeedTimeSeries 

autocorrelation coefficient 
standard variation 

( ) {return (randomizer->qetRandomNUlllber()); } 
( ) { return randomVal; } 

( 
( 

TStatusWindow*, Parsm* ); 

( double 
( 
( 

) ; 
) ; 
) ; 
) ; 

I*************************************************************************** I 
I*** Wind power time series ****/ 
I*************************************************************************** I 

class WindPowerTimeSeries s public WindSpeedTimeSeries { 
private : 

double vci,vco,vr; 
public 1 

}; 

WindPowerTimeSeries ( 
static double qetWindPower (double V,double Vci, 
static double qetV (double p,double Vci, 
double qetOUtput 
int setUp TStatusWindow•, Par~• 

) ; 
double 
double 
) ; 
) ; 

vco, double Vr); 
Vr); 

I*************************************************************************** I 
I*** Solar power time series ****I 
I*************************************************************************** I 

class SolarPowerTimeSeries : public TimeSeriesOne { 
double NMinusOne; 
double KO; 
SolarRandomizer* randomizer; 
double qetRandomNumber ( ) {return (randomizer->qetRandomNUlllber{)); } 

public • 
SolarPowerTimeSeries 
-solarPowerTimeSeries 

}; 

int setUp 
double qetOUtput 
double qetinitRandomVal 
void update 

) ; 
) ; 

TStatusWindow•, Par~• ); 
) ; 
) ; 
) ; 

I*************************************************************************** I 
/*** Joint power time series ****I 
I*************************************************************************** I 

Header Files series.h 



7. Appendix II: Programme Description 

class JointPowerTimeSeries : public TimeSeries { 
SolarPowerTimeSeries• aolarPowerTimeSeries, 
WindPowerTimeSeries* windPowerTimeSeries~ 
double zeta; // fractional 

public • 
JointpowarTimeSeries 
-JointPowerTimeSeries 
void update 

power factor 

double qetOUtput 
double eval 
int setUp 
void setUserinit 

}; 

double 
TStatusWindow*, 
void* 

) ; 
) ; 
) ; 
) ; 
) ; 

Param* ) ; 
) ; 

7-126 

I*************************************************************************** I 
I*** State of charge time series ****/ , ......................................•.................................... , 
class StateOfChargeTimeSeries : public TimeSeries { 

double batK,batC,batQMax,batV,batQlO,batQ20; 
double sysPRen,sysPDemand; 
double I,PNeed; 
double ql,q2; 
double kt; 
void calciCharqe 
void aalaiDiocharqe 

protected : 
JointPowerTimeSeries• jointpowerTimeSeries; 
double deltaP; 
void update 
double qetoutput 

public • 
StateOfCharqeTimeseries ( 
-stateOfCharqaTimeSeries( 
double eval ( 

); 
) ; 

) ; 
) ; 

) ; 
) ; 
) ; 

int setUp ( 
void setUserinit ( 

}; 

double 
TStatusWindow*, 
void* 

Pa.ram.* ) ; 
) ; 

I*************************************************************************** I 
/*** Power Deficit Time Series ****/ 
/***************************************************************************/ 

class PowerDeficitTimeSeries 
double qetOutput ( 

public • 
PowerDeficitTimeSeries 
double eval 

}; 

tendif 

: public StateOfCharqeTimeSeries { 
) ; 

double 
) ; 
) ; 

I*** End of series.h *******************************************************/ 

7 .5.1.19 <solar.h> 

I*************************************************************************** I 
I*** ***/ 
I*** Module: SOLAR.B ***/ 
I*** ***/ 
I*** Header for solar related objects ***/ 
I*********************************~***************************************** I 

lifndef SOLAR HEADER 
tdefine SOLAR:HEADER 

tifndef DISTRIB_B!AD!R 

Header Files solar.h 



7. Appendix II: Programme Description 

tincluda <distrib.h> 
tendif 

7-127 

I*************************************************************************** I 
I*** Solar Power Constants ***/ 
/***************************************************************************/ 

class SolConstants { 
public 1 

}; 

SolConstants ( ); 
-solConstants( ) { ; } 
double w,deltaKKO,kminKO,deltAK,kmin,correl; 
VECTOR a,b; 
int setUp (Par""'* 
void xTok (double, 
void kTox (double, 

) ; 
double*); 
double*); 

I*************************************************************************** I 
/*** The exact distribution (with beta functions) ***/ 
/***************************************************************************/ 

class ContsolExact t 
protected : 

public ContinuousDistribution 

Solconstants sole; 
double l'x 

public 1 
ContSolExaot 
-contSolExact 
double 1' 
int setUp 

}; 

( double 

( 
( 
( double 
( TStatusWindow*, Par am• 

class ContSolExactX 
public 1 

ContSolExactx 
-contSolExactX 
double 1' 

; public ContSolExact { 

double 
}; 

class ProbSolExact : public statfunc { 
public : 

ProbSolExact ( ); 
}; 

) ; 

) ; 
) { 
) ; 
) ; 

); 
) { 
) ; 

{ 

} 

} 

I*************************************************************************** I 
/*** Object class for solar power with least square method *****************/ 
I*************************************************************************** I 

class Meritsol 
double alpha 
double fp 

1 public msgObjfunc { 

double merit 
int solCoeff; 
int solTrial1 
double solR; 
double solSigmaK; 
MATRIX AA; 
MATRIX Alpha; 
VECTOR d; 
VECTOR C; 

public : 

( int j, int k); 
( double p - ) ; 
( ) ; 

1/ density function in p m j /(N-1) 
11 figure of merit 

11 Coefficient matrix A 
11 Coefficient matrix 
/I Coefficients of left 
11 Coefficients of prob 

side of normal equations 
dens function 

MeritSol (SolConstants*,Par~*); 
-MeritSol( l { ; } 
SolConstants* psc1 
double initialx; 
VECTOR u; 
VECTOR sigm.a; 
VECTOR lambda; 
VECTOR Fxm; 
double QPlusOne; 
double MPlusOne; 

Header Files 

1/ 
1/ 
1/ 
I/ 
11 
11 
1/ 

initial clearness index on x- scale 
Coeff. vector of generatinq functions 
Standard deviation vector 
Standard deviation vector I epsilon 
vector with distribution function values 
number of generating functions used +1 
number of trial points + 1 

solar.h 



7. Appendix II: Programme Description 

virtua1 double Eval double X ) ; 
double fx double X ) ; //.density function in x 
double Fx double x ) ; 11 distribution function in X 
double l!'p double p ) :. 11 distribution function in p 
double l!'pApprox double p ) ; 11 approx. dist function in p 
double l!'xApprox double x ) ; 11 approx. dist. 
int setUp ) ; 

friend ostream& operator<< (ostream& outstr, MeritSol* v); 
friend istre~& operator>> (istream& instr , MeritSol* v); 

}; 

function in x 

7-128 

I*************************************************************************** I 
I*** Approximated Distribution ***/ 
I*************************************************************************** I 

11 Approximation of the solar distribution 
class ContSolApprox 1 public ContinuousDistribution { 
protected : 

MeritSol* sol; 
SolConstAnts se; 

public 1 

ContSolApprox 
·contSolApprox 
double I!' 
int setUp 
void setcorrelation 
void setinitVal 

) ; 
) ; 

double ); 
TStatusWindow•, Param• ); 
double time, double beta); 
double ini tK ) ; 

}; 

class ContSolApproXX 1 public ContSolApprox { 
public 1 

ContSolApproXX 
·contSolApproXX 
double I!' double 

}; 

class ProbSolApprox public statfunc { 
public z 

ProbSolApprox ( ) ; 
}; 

11 Conditional distribution 
class ContCondSolApprox : public ContSolApprox { 
public z 

ContcondSolApprox ( ) : ContSolApprox ( ) { ; } 
int setUp ( TStatusWindow*, Param* ) ; 

}; 

class ProbCondSolApprox 1 public statfunc { 
public 1 

ProbCondSolApprox ( ); 
}; 

11 Qualityfunction 

) ; 
) { 
) ; 

class ContSolAppQual : public 
ContSo1Exact• exact; 
ContSo1Approx• approx; 

ContinuousOistribution { 

public 1 

}; 

ContSolAppQual 
·contSolAppQual 
virtual double I!' 
int setUp 

) ; 
) ; 

double ) ; 
TStatusWindow*, Param* ); 

class ProbSolAppQual 1 public statfunc { 
public 1 

ProbSolAppQual ( ); 
}; 

} 

I*************************************************************************** I 
/*** Discrete Distribution ***/ 

Header Files solar.h 



7. Appendix II: Programme Description 7-129 

I*************************************************************************** I 

class DiscSolApprox 1 public DiscretDistribution { 
private t 

ContSolApprox* 
double 
doubla 

public 1 

DiscSolApprox 

solApprox: 
KO; 
NMinusone; 

virtual -oiscSolApprox 

}; 

int setUp 
double qnm 
double Gn 
void setM 
int qetN 

int n 

TSt11tusWindow• 1 
int, int 
int 
int 
double 

) ; 
); 

Param.• ) ; 
); 
) ; 
) ; 
) ; 

I*************************************************************************** I 
/*** Discrete Randomizer ***/ 
/***************************************************************************/ 

class SolarRandomizer : public DiscretRandomizer { 
public 1 

SoluRandomizer ( ) ; 
int setUp ( TStatusWindow*, Par am* ) ; 

}; 

tendif 

/*** End of solar.h ********************************************************/ 

7 .5.1.20 <vectors.h> 

I*************************************************************************** I 
I*** Module: VECTORS.H ***I 
I*** ***I 
I*** consists of class definitions for vectors and arrays. •••I 
I*************************************************************************** I 

lifndef VECTORS HEADER 
tdefine VECTORS:BEADER 

tinclude <iostream.h> 
tinclude <complex.h> 

I*** The qeneral class of a linear chain ***********************************I 
templ11te <class T> cl11ss CHAIN_ { 
protected: 

T* p; 
int size; 

publici 

} 

CHAIN ( int n); 
CHAIN- (void); 
CHAIN- (CHAIN & c) ; 
-cHAIN () {if-(size) delete p;} 
int miDchainindex (void); 
int maxchainindex (void); 

template <class T> class MATRlX_ 

I*** The class of vectors **************************************************/ 
template <cl11ss T> class VECTOR_ I public CHAIN_<T> { 
public 1 

int 
VECTOR 
VECTOR­
VECTOR­
T& -

Header Files 

dilll; 11 
(void) 
(int n) 
(VECTOR_& 

Dimension 
: CHAIN_ <T> () 
: CIIAIN <T> (n) 

V) : CIIAIN-<T> ((CHAIN <T>&)v) 
operator Tl (int i -

{ dim 0 } 
{ dim n ; } 
{ dim -v.size; } 

) ; 

vectors.h 



7. Appendix II: Programme Description 

VECTOR & operator (VECTOR & 
friend- ostre~& 
friend istream& 
friend int 

operator << (ostreaiii:& outstr, VECTOR & 
VECTOR-& operator >> (istrelllll& instr , 

, VECTOR-& operator •• u 
friend int 

(VECTOR_& 
operator I• (VECTOR_& u 

friend int operator < (VECTOR & u 
friend int operator <• (VECTOR & u 
friend int operator >• (VECTOR-& u 
friend int 
friend VECTOR & 
friend VECTOR­
friend MATRIX-<T> 

operator 
opera. tor 
operator 
mul 

> (VECTOR_& u 
«•(VECTOR_& u 
<< (VECTOR & u 

(VECTOR-& u 
void - create ( int diiii ) ; 
void 
void 
void 

add (T X ); 
del (int n ) ; 
set (T X ) ; 

void 
void 

print (ostream&); 
build ( istrelllll& ) ; 

int 
T 
T 
void 

search (T X ) ; 
move_down (void ) ; 
mova_up (void ) ; 
swap (int,int ) ; 

VECTOR <T> 
void -

copy 
heap sort 

(int n ) ; 
( ) ; 

typedef VECTOR <int> 
typedef VECTOR:<double> 

IVECTOR; 
DVECTOR; 

public DVECTOR { 

~ int n 
(VECTOR& 

) I VECTOR <double> ( ) { 
) : VECTOR-<double> (n) { 

V) I VECTOR-<double> (V) { 
operator ; (VECTOR& 

VECTOR operator + (VECTOR& u, 
VECTOR operator + (VECTOR& u, 
VECTOR& operator +• (VECTOR& u, 
VECTOR& operator +• (VECTOR& u, 
VECTOR operator - (VECTOR& u, 
VECTOR operator - (VECTOR& u, 
VECTOR& operator -• (VECTOR& u, 
VECTOR& operator -• (VECTOR& u, 
VECTOR operator * (VECTOR& u, 
VECTOR& operator *• (VECTOR& u, 
VECTOR operator • {double u, 
VECTOR operator * (VECTOR& u, 
VECTOR operator I (VECTOR& A, 
VECTOR& operator I• (VECTOR& A, 
VECTOR operator I (VECTOR& u, 
ostre~& operator << (ostream& , 
istream& operator >> (istream& , 

absval ( 
abs ( 
norm ( 
mean ( 
var (double 
minval ( 
minindex ( 
maxval ( 
maxindex ( 

, VECTOR:& 
, VECTOR & 

VECTOR-& 
: VECTOR:& 
, VECTOR & 
, int -

• int 
• VECTOR_& 

} 
} 
} 

VECTOR& 
double 
VECTOR& 
double 
VECTOR& 
double 
VECTOR& 
double 
double 
double 
VECTOR& 
VECTOR& 
double 
double 
VECTOR& 
VECTOR& 
VECTOR& 

) ; 
) ; 
) ; 
) ; 
) ; 
) ; 
) ; 
) ; 
) ; 

) ; 
V ) 1 
V ) ; 
V ): 

V ) l 
V ); 
V ) ; 

VU 
V H 
V ): 
V ) ; 
V ): 

V ) ; 
X ) ; 
X ) ; 
V ) # 
V ) ; 
V ) ; 

class VECTOR I 

public 1 
VECTOR 
VECTOR 
VECTOR 
VECTOR& 
friend 
friend 
friend 
friend 
friend 
friend 
friend 
friend 
friend 
friend 
friend 
friend 
friend 
friend 
friend 
friend 
friend 
VECTOR 
double 
double 
double 
double 
double 
int 
double 
int 
static 
static 

VECTOR cross (VECTOR &u, VECTOR 
double scalar (VECTOR &u, VECTOR 

&v); 
&v); 

7-130 

) ; 
V ) ; 
V ) ; 
V ) ; 
V ) ; 
V ) ; 
V ) ; 
V ) ; 
V ) ; 
k ) ; 
k ) ; 
V ) ; 

/*** The class of arrays ***************************************************/ 
template <class T> class MATRIX 1 public CB~N <T> { 
public 1 - -

int row; // Zeile 
int col; 11 Spalte 
MATRIX (void ) 1 CHAIN <T> ( ) { row • 0; col • 0; } 
MATRIX: (int m, int n) CHAIN:<T> (m • n) { row • m; col • n; } 

Header Files vectors.h 



7. Appendix II: Programme Description 7-131 

MATIUX 
MATRix: 

(int n) 
(MATRIX_& A) 

: C~N <T> (n * n) { row • col • n-
1 CRAIN-<T> ((CHAIN <T>&)A) 

{ row-- A.row; coT - A.col; } 

}I 

VECTOR <T> 
T& -
MATIUX & 
friend- ostream& 
friend iatream& 
void 
void 
void 
void 
T 
T 
void 
void 

typedef MATRIX <int> 
typedef MATRIX:<double> 

operator () (int i ) 1 
operator() (int i int j )I 
operator • (MATRIX_& ) 1 
operator<< (ostream& outstr, MATRIX & A ); 
operator>> (istream& instr, MATRIX-& A ); 
create ( int m , int - n ) 1 
vec to col ( int i , VECTOR <T>& v ) 1 
col:to:vec ( int i , VECTOR:<T>& V ) 1 
diaq to vec (VECTOR <T>& V ) I 
minvil - ( int& - i , int& jj ) 1 
maxval ( int& i , int& ) 1 
print (oatream& ) 1 
build ( iatream& ) 1 

IMATRIXI 
DMATRIX1 

claao MATRIX : public DMATRIX { 
public ' MATRIX ( ) 1 MATRIX <double> ( ) { I } 

MATRIX (int m, int n) 1 HATRIX-<double> (m,n) { I } 
MATRIX (int n ) I HATRIX-<double> (n) { } 
MATRIX ( MATRIX& A ) I MATRIX-<double> (A) { I } 
MATRIX& operator • (MATRIX& ) I 
friend MATRIX operator + (MATRIX& A, MATIUX& B ) I 
friend MATRIX& operator +• (MATRIX& A, MATRIX& B ) I 
friend MATRIX . operator - (MATRIX& A, MATRIX!i B ) I 
friend MATRIX& operator -- (MATRIX& A, MATRIX& B )I 
friend MATRIX operator * (MATRIX& A, double X )I 
friend MATRIX operator * (double x, MATRIX& A )I 
friend MATRIX& operator ·- (MATRIX& A, double ) I 
friend MATRIX operator • (MATRIX& A, MATRIX& B ) I 
friend VECTOR operator * (MATRIX& A, VECTOR& V ) I 
friend VECTOR operator * (VECTOR& v, MATRIX& A ) I 
friend MATRIX operator I (MATRIX& A, double X )I 
friend MATRIX& operator I• (MATRIX& A, double X ) I 
friend ostream.& operator << (oatream& • MATRIX& A ) I 
friend iatream& operator >> (istream& • MATRIX& A ) I 
void identity ( )I 
double trace ( ) I 
MATRIX transp ( ) I 

}I 

tendif 

/*** End of VECTORS.B ******************************************************I 

7.5.1.21 <wind.b> 

I*************************************************************************** I 
I*** ***I 
I*** Module: WIND.B -***I 
I*** ***/ 
I*** Header for wind related objects ***/ 
I*************************************************************************** I 

tifndef WIND HEADER 
ldefine WIND:HEADER 

tifndef DIFFCALC HEADER 
finclude <diffcaic.h> 
fendif 

tifndef DISTRIB HEADER 
tinclude <distrib.h> 

} 

Header Files wind.h 



7. Appendix II: Programme Description 

tendif 

tifndef MATBFUNC HEADER 
tinclude <mathfunc.h> 
tendif 

class WindSpeedTimaseries; 11 Forward declaration 

7-132 

I*************************************************************************** I 
I*** Continuous Wind Speed Distribution ************************************/ 
I*************************************************************************** I 

class Speed 1 public oWObjfunc { 
protected : 

double vmean~ 
double vsiqma: 

public : 
Speed ( ) { 1 } 
virtual double eval (double) • o: 
int setUp (Par am•) : 

}I 

class SpeedDist 1 public Speed { 
public : 

}I 

SpeedDist ( 
double eval 

{ ) } 
(double v) {return (PBI(v,vmean,vsigma))l} 

class SpeedD&ns : public Speed { 
public: 

}I 

SpeedDens ( 
double eval 

{ I } . 
(double v) { return (ph1(v,vmean,vsiqma));} 

/***************************************************************************/ 
/*** Discrete Wind Speed Distribution **************************************/ , .................................................•......................... , 
class DiscretWindSpeed : public DiscretDistribution { 
private 1 

double uAlpha: 11 alpha quantile 
double vmean~ //mean wind speed 
double siqma: 11 standard variation 
double r: 11 correlation 
VECTOR points: 
VECTOR beta: 
double raw? int, int ); 

public : 
DiscretWindSpeed (int n) ' DiscretDistribution (n) { } 
double qnm ( int, int ); 
int qetN ( double ); 
int setUp ( TStatuswindow•, Param* ); 

}; 

I*************************************************************************** I 
I*** Continuous Wind turbine power distribution ****************************/ 
I*************************************************************************** I 

class ContWindPower 1 public ContinuouaDistribution { 
private 1 

double 
double 

protected 1 

double 
public : 

fvvco,vci,vco,vr,vmean,sigmav; 
FW (double) 1 

r ; 11 autocorrelation coefficient 

ContWindPower ); 
virtual -contWindPower ) { 1 } 
double F (double ) 1 
int setUp (TStatuswindow•, Par~• ); 
void setCorrelation (double time, double beta): 

}; 

Header Files wind.h 



7. Appendix II: Programme Description 7-133 

I*************************************************************************** I 
I*** Continuous Conditional_Wind turbine power distribution****************/ 
I*************************************************************************** I 

class ContCondWindPower 1 public ContWindPower { 
public • 

}; 

ContcondWindPower ( ) ' ContWindPower ( ) { ; } 
int setUp (TStatusWindow*, Param*); 

, ........................................................................... , 
I*** Wind turbine power probability distributions **************************/ 
I*************************************************************************** I 

class ProbWindPower 1 public statfunc { 
public • 

ProbWindPower ( )1 
}; 

class ProbCondWindPower public statfunc { 
public • 

ProbCondWindPower ( ); 
}; 

I*************************************************************************** I 
I*** Discrete Wind Power ******************/ 
I*************************************************************************** I 

class DiscretWindPower z public DiscretDistribution { 
private : 

double vci,vco,vr,vmean1 
ContWindPower* windPower; 
WindSpeedTimeSeries* timeSeries; 
double qetPower ( int n ); 

public • 
DiscretWindPower 
-oiscretWindPower ( 

int n ) ; 
) ; 

double qnm ( int, int ); 
double Gn ( int ) ; 
int qetN ( double ); 
int setUp ( TStatuswindow•, Param* ); 

}; 

fendif 

I*** End of wind.h *********************************************************/ 

Header Files wind.h 



7. Appendix II: Programme Description 

7 .5.2 Source Files 

7.5.2.1 <owrenew.cpp> 

I************************************************************************* I 
I*** Renewable Enerqy Resources for Windows ***/ 
I************************************************************************* I 

lifndef OWRENEW HEADER 
tinclude •owren&w.h• 
lendif 

tifndef OWPLOT HEADER 
linclude MowplOt.h" 
lendif 

tifndef OWCALC HEADER 
linelude <owcarc.h> 
lendif 

lifndef OWLAPPL HEADER 
linclude <owlappl.h> 
lendif 

lifndef OWPARAM HEADER 
linclude <owparim.h> 
tendif 

lifndef CSTRING HEADER 
#include <cstriUq.h> 
lendif 

tinclude <owl.h> 
tinclude <button.h> 
linelude <edit.h> 
tinelude <qroupbox.h> 
linclude <radiobut.h> 
linclude <fstre~.h> 

ldefine dlqFile •owrenew.dlq" 

I*** Module qlobal prototypes ********************************************/ 
void NoFeatureMessaqe (BWND); 

/*** Global variables ****************************************************/ 
Param.* param; I I Parameter 
PTRanewApp App; 
Graph* GraphData; 11 Graphic Data Interface 

I************************************************************************* I 
/*** class TRenewPlot ***/ 
I************************************************************************* I 

7-134 

TRenewPlot :: TRenawPlot (PTWindowsObjeet AParent, LPSTR ATitle, PTModule AModule) 
1 TPlot (AParent, ATitle, AModule ) 

{ 

} 

delta • (curRect.riqht- curRect.left); 
start a curRect.left ; 
end • start + delta; 
clear YES; 

void TRenewPlot 11 Paint (HOC de, PAINTSTRUCT _FAR& v) { 
if (clear •• YES) 

TPlot :: Paint (de, v); 
else { 

if (I param->disAuto) 
clear =- YES; 

Source Files owrenew.cpp 



7. Appendix II: Programme Description 

draw ( ) ; 
} 

} 

void TRenewPlot 11 plot ( ) { 11 Display GraphData in a graph 

} 

int i; 
setHeadLine (GraphData->headline); 
setSubLine (GraphData->subline ); 

elearscreen ( ); 
plotHeadLine ( ) ; 
plotSubLine ( ); 
drawMarqin ( ) ; 
GraphData->scale • drawAutoLinCoord (GraphData->min,GraphData->.max, 

GraphData->y, GraphData->axtext,• ", 
YES,YES,GraphData->scale,GraphData->eurveNo); 

for (i•O;i<•GraphData->curveNo;i++) { 

} 

draWCurve (GraphData->x,GraphData->y[i],GraphData->option); 
switch (i) { 

} 

case 0 : 
setpencolor (RGB(255,0,0)); 
break; 

case 1 : 
setpenColor (RGB(0,255,0)); 
break; 

case 2 : 
setPenColor (RGB(0,0,255)); 
break; 

case 3 : 
default 1 

setPenColor (RGB(O,O,O)); 
break; 

setPenColor (RGB(O,O,O)); 

I************************************************************************* I 
/*** Main Platform ***/ 
/*************************************************************************/ 

I*** class TMainWindow ***************************************************/ 

TMainWindow :: TMainWindow (PTWindowsObject 
: TWindow(AParant, ATitle) 

{ 

} 

Attr.Style I• WS MAXIMIZE I WS_VISIBLE; 
AssignMenu ("COMMANDS"); 
testplot • new TRenewPlot (this,NULL); 

TMainWindow 11 -TMainWindow ( ) { 
delete testplot; 

} 

AParent, LPSTR ATitle) 

void TMainWindow 1: GetWindoWClass (WNDCLASS& WndClass) { 
TWindow :: GetWindoWClass (WndClass); 
WndClass.hbrBackqround • (BBRUSB) COLOR_APPWORKSPACE+l; 

-} 

BOOL TMainWindow 11 CanClose ( ) 
{ 

BOOL retval; 
if (GetModule()->ExecDialog(new TYoMessage(this,"Question", 

} 

"Do you want to quit to Windows?")) •• IDYES){ 
£stream op; 
op.open (dlgrile, ios :: out}; 
if ( op) 

op << *this; 
op.close ( ); 
retval • True; 

else 

7-135 

Source Files owrenew.cpp 



7. Appendix TI: Programme Description 

} 

retval • False; 
return retval; 

void TMainWindow :: CMWindSpeed (RTMessaqe) { 

} 

int retva~•GetModula()->ExecDialoq (new TSpeedDialoq(this,•speedDia~oq")); 
if (retva~ •• IDOK) { 

} 

testp~ot->open ( ) ; 
testplot->clearscreen ( ); 
testp~ot->close ( ); 
TransSpeedDlq.satpsramater ( ); 
TransSettinqsOlq.wiVmean • TransSpeedDlq.vmeanJ 
if (GetModule()->ExecDialoq(naw TWindSpeedObjact(this,•statusWindow")) 

- IDOK) 
testplot->clear • NO; 

void TMainWindow :: CMSattinqs (RTMessaqa) { 

7-136 

if (GetModule()->BxecDialoq (new TSettinqsDialoq (this, •settinqs"))•• IDOK) { 
TransSettinqsDlq.setparameter ( ); 
TransSpeedDlq.vmean • TransSettingsDlq.wivmean; 
TransWindDlq.vmean • TransSettingsDlq.wivmean; 
TransSolarDlq.clearness • TransSettinqsDlq.solK; 
TransSolarOlq.aiq.maK • TransSettingsDlq.solSiq.maK; 
TransJointDlq.vmean • TransSettinqsDlq.wivmean; 
TransJointDlq.oigmaK • TranssettinqsDlq.solsigmaK; 
TransJointDlq.clearnass • TransSettinqsDlq.solK; 

} 
} 

void TMainWindow :: CMMaths (RTMessaqe) { 

} 

if (GetModule()->BxecDialoq (new TMathsDialoq (this, "Maths"))=• IDOK) { 
TransMathsDlq.setParameter ( ); 
TranssolarDlq.coeff • TransMathsDlq.solCoeff; 
TransSolarDlq.trial • TransMathsDlq.solTrial; 

} 

void TMainWindow :: CMDir (RTMessaqe) { 
GetModule()->ExecDialoq (new TDirDialoq (this,•Directories•))~ 

} 

void TMainWindow :: CMDisplay (RTMessaqe) { 

} 

if (GetModule()->Bxecoialoq (new TDisplayDialoq (this,•oisplay"))-- IDOK) 
TransDisplayOlq. setparameter (. ) ~ 

void TMainWindow :a CMRandom (RTMeesaqe) { 

} 

if (GetModule()->ExecDia~oq (new TRandDialoq (this,"RandomNumbers"))--IDOK){ 
TransRandDlq.satParameter ( ); 
GetModule()->ExecDialoq(new TRandomobject(this,•statusWindow")); 

} 

void TMainWindow :: CMT~eSeries (RTMessaqe) { 
if (GetModule()->ExecDialoq (new TTsDia~oq (this,"TimeSeries"))•=IDOK) { 

TransTsDlq.setparameter ( )~ · 
TransSettinqsDlq.setparameter ( )~ 
TransMathsDlq.setparameter ( ); 
para:m->solBypass • 1 ~ 
testplot->open ( ); 
testplot->clearScreen ( ); 
testplot->close ( ); 
if (GetModule()->ExecDialoq(new TTimeSeriesObject(this,•statusWindow•)) 

•• IDOK) { 
int i,j; 
char buffer[SO); 
double x • (GraphData->y[O))(l); 
for (i•O;i<•GraphOata->curveNo;i++) { 

for (j=l;j<=GraphData->x.dim;j++) { 
if ((GraphData->y[i))(j) I• x) 

Source Files owrenew.cpp 



7. Appendix II: Programme Description 7-137 

} 
} 

} 

break; 
} 

tf (i>GraphData->eurveNo && j > GraphData->x,dim) { 
strcpy (buffer,"All data have same value: •); 
catDb~ (buffer, x); 

} 

GetModule()->ExecDialoq(new TYoMessaqe(thia,•warninq•, 
buffer)); 
return; 

else 
testplot->clear • NO; 

void TMainWindow •• CM~pt (RTMesaage) { 

} 

if (G&tModule()->BxecDia~og (new T~Dialog (this,·~irstPaasageTime•))••IDOK) { 
TranaSattingsDlg.setParameter ( ); 

} 

Tra.nsMathsDlg. setParameter ( ) ; 
Trans~D~g.setparameter ( ); 
param->solBypasa • 1; 
if (param->fpSelectCalc••O) // compute one value only 

GetModule()->ExecDialog(new TPassageTimeObject(this,•statuaWindow•)); 
else { I I compute more values 

} 

testplot->opan ( ); 
testplot->c~earScreen ( ); 
testplot->close ( ); 
if (GatModula()->BxecDialoq(new PassageTimesObject(thia,•statusWindow")) 

•• IDOK) 
testplot->clear • NO; 

void TMainWindow :o CMWindPower (RTMessaqa) { 

} 

if (GetModule()->Bxecoia~og (new TWindDia~oq (this, •windPower")) -~ IDOK) { 
testplot->open ( ); 

} 

testplot->clearScreen ( ); 
testplot->close ( ); 
TransSettingsDlq.wivmea.n • TransWindDlq.vmean; 
TransSettinqsDlq, setparameter ( ) ; 
TransWindDlg.setParameter ( ); 
if (GetModule()->BxecDialoq(new TDistributionobject(this,•statusWindow•)) 

•• IDOK) 
testplot->clear • NO; 

void TMainWindow :o CMSolar (RTMeasaqe) { 

} 

if (GetModule()->ExecDialoq (new TSolarDialoq (this, •solarPowar")) •• IDOK) { 

} 

·TranaSettingsDlq.solK • TransSolarDlq.clearness; 
TransSettinqsOlq.solSiqmaK • TransSolarOlq.siqmaK; 
TransMathsDlq.solCoeff • TransSolarDlq.coeff~ 
TransM~thsDlq.solTrial • TransSolarDlq.trial~ 
TransSettinqsDlq.setPar~eter ( )~ 
TransSolarDlq.setpar~eter ( )~ 
testplot->open ( ) ; 
testplot->clearScreen ( ); 
testplot->close ( ) ; 
if (GetModule()->ExecDialoq(new TDistributionObject(this,•statusWindow")) 

•• IDOK) 
testplot->clear • NO; 

void TMainWindow :: CMRenewable (RTMessaqe) { 
if (GetModule()->ExecDialoq (new TJointDialoq (this, "RenewablePower")) •• IDOK) 

{ 
TransSettinqsDlq.solK 
TransSettinqsDlg.solSigmaK 
TransSettingsDlq.wivmean 

Source Files 

• TransJointDlq.clearness; 
• TransJointDlq.siq.maK; 
• TransJointDlq.vmean~ 

owrenew.cpp 



7. Appendix II: Programme Description 

void TRenewApp::InitMainWindow() 
{ 

} 

TMainWindow* Main • new TMainWindow (NULL, N~e); 
MainWindow • Main; 
fstream ip~ 
ip.open (dlqPila, ios :: in); 
if (ip) 

ip >> *Main; 
ip. close ( ) ; 
Main->TranssettinqoDlq.setParameter ); 
Main->TransSpeedDlq.setparameter ); 
Main->TransDisplayDlq.setpar~etar ); 

/*************************************************************************/ 
I*** Main Proqramme ******************************************************/ , .................................•....................................... , 
int PASCAL WinMain(HINSTANCE hinstance, HINSTANCE hPrevinstanca, 

LPSTR lpcmdLina, int ncmdShow) 
{ 

} 

TRenewApp RenewApp("Renewable Enerqy Short Term Prediction•, 
hinstance, hPrevinstance, lpCmdLine, nCmdShow); 

param. • new Param ( ) ; 
param.->disFirstcurve • YES; 
App • &RenewApp; 
GraphData • new Graph ( ); 
RenewApp.Run(); 
delate (param); 
delete (GraphData); 
return RenewApp.Statua; 

I*** end of file ********************************************************/ 

7-139 

Source Files owrenew.cpp 



7. Appendix II: Programme Description 

TransSettinqsDlg.comZeta • TransJointOlq.zeta; 
TransMathsDlq.setparameter ( ); 
TransSettinqsDlq.setParameter ( )I 
TransJointDlq.setParameter ( ); 
param->solBypass • 1; // set solar bypass 
testplot->open ( )I 
testplot->clearScreen ( ); 
testplot->close ( )I 

7-138 

if (GetModula()->ExecDialoq(new TJointDistributionObjact(this,•statusWindow")) 
•• IDOK) 

testplot->clear • NO; 
} 

} 

void TMainWindow :: CMExport (RTMessaqe) { 
int errno • OK; 
if (GetModule()->ExecDialoq (new TExportDialoq (this, "Export")) -- IDOK) { 

if (TransExportDlq.opNew •• YES) 
errno • exportOata (GraphOata->x, TransExportDlq.expPile, NEw,••, 

GraphData->scale); 
if (errno) { 

for (int i•O;i<=GraphData->curveNo;i++) { 
if ((errno • exportData (GraphData->y[i],TransExportDlq.expFile, 

ATTACH,GraphData->leqend[i),GraphData->scale)) =-ERROR) 
break; 

} 

lf (terrno) 
GetModule()->ExecDialoq(new TYoMessaqe(this,"Message•, 

•could not open specified file")); 
} 

} 

void TMainWindow :: CMHelp (RTMessaqe) { 
GetModule()->ExecDialog(new TYoMessage(this,"Meesaqe•, 

"Feature not implemented")); 
} 

ootrelllll& operator << (oatrelll!l& outstr, RTMainWindow V) { 
outstr << v.TransSpeedDlq << '\n'; 
outstr << v.TransSettingsOlq << '\n'; 
outstr << v.TransExportDlq << '\n'; 
outstr << v.TransDirDlq << '\n'; 
outstr << v.TransWindDlq << '\n'; 
outstr << v.TransSolarOlq << '\n'; 
outstr << v.TransJointDlq << '\n'; 
outstr << v.TransRandDlq << '\n'; 
outstr << v.TransMathsDlq << '\n'; 
outstr << v.TransTsDlq << , \n'; 
outstr << v. TranaFpDlq << '\n'; 
outstr << v.TransDisplayDlq << '\n' i 
return outstr; 

} 

istream& operator >> (istre~& instr, RTMainWindow v) { 
instr >> v.TransSpeedDlq 

>> v.TransSettinqsDlq 
>> v.TransExportDlq 
>> v.TransDirDlq 
>> v.TransWindDlq 
>> v.TranaSolarDlq 
>> v.TransJointDlq 
>> v.TransRandDlq 
>> v.TransMathsDlq 
>> v.TransTsDlq 
>> v.TransFpDlq 
>> v.TransDisplayDlq; 

return instr; 
} 

I*** Application *********************************************************/ 

Source Files owrenew.cpp 



8. References 8-1 

8. References 

[1] Abramowitz, M.: Handbook of mathematical functions, New York, 1965 

[2] Badescu, V.: Calculation of direct solar radiation on tilted surfaces, Solar Energy 
Vol. 48, No. 5, pp. 321 - 323, 1992 

[3] Borland: Object Windows C++ Programming Handbook, Borland International, 1992 

[4] Borland: Object Wmdows C++ Reference Handbook, Borland International, 1992 

[5] Borland: Borland C++ 3.0 Reference Handbook, Borland International, 1992 

[6] Borland: Resource Workshop User Handbook, Borland International, 1992 

[7] Bower, Ward L: Performance of battery charge controllers: An interim test report, 
21 "Photovoltaic specialists conference, 1990 

[8] Bronstein, D'ja NikolaeviC: Taschenbuch der Mathematik, Harri Deutsch, 1987 

[9] Buresh, Mathew: Photovoltaic Energy Systems, Me Graw-Hill, New York, 1983 

[10] Chauhan, Ankush: Modelling of diesel engine bearing wear under steady state and 
transient conditions, Rutherford Appleton Laboratory, paper ERU-92-002, 1992 

[11] Coleman, Clint: Hybrid power system operational test results: Wind/ PV/ Diesel 
system documentation, Telecommunication Energy Conference, Vol. 2, pp. 1-7, 1989 

[12] Child, Duncan: MPhil thesis, Loughborough University of Technology, 1993 

[13] Facinelli, W. A.: Modeling and Simulation of Lead Acid Batteries for Photovoltaic 
Systems, 18th Intersociety Energy Conference, 1983, Vol. 4, pp 1582-1588 

[14] Feller, W.: An introduction to probability theory and its applications, Vol.l, Wiley, 
1957 

[15] Fletcher, R.: Practical methods of Optimization I, Chichester, 1980 

[16] Freris, LL.: The control of wind turbines, Imperial College London 

[17] Gopinathan, K. K.: Solar sky radiation estimation techniques, Solar Energy Vol. 49, 
pp. 9 - 11, 1992 

References 



8. References 8-2 

[18] Gumbel, E.J.: Distribution a plusieurs variables dont les marges sont donnees, C.R 
Acadernie des Sciences Paris, Vol. 246, pp. 2717-2720, 1958; in: Emanuel Parzen: 
Modem probability Theory and its applications, John Wiley and Sons, New York, 
1992 

[19] Hassan, U.; Sykes, D.M.: Wind structure and statistics; in: Freris, L.L. (editor): 
Wind Energy Conversion Systems, Prentice- Hall, 1990 

[20] Helstrom, Car! W.: Probability and Stochastic Processes for Engineers, Macmillan, 
1991 

[21] Hill, Martin; Me Carthy, Sean: PV Battery Handbook, University of Cork, Ireland, 
1990 

[22] iiorst, Emil W. ter; Blok, Kornelis, Turkenburg, Wim C.: Battery Modelling for 
Photovoltaic Applications, Photovoltaic Solar Energy 8th EC Conference, 1988 
Florence, pp. 1564-1568 

[23] Jantsch, M., Stoll, W., Schmid, J.: The effect of tilt angle and voltage conditions on 
PV system performance. An experimental investigation. 10 th European Photovoltaic 
Solar Energy Conference, Lisbon. Portugal, 1991 

[24] Khouzam, Kame Y.: Optimum matching of a photovoltaic array to a storage battery, 
Photovoltaic Specialists Conference 1991 (22 nd) IEEE, Vol. 1, pp. 706-711, 1991 

[25] Lipman, N.H.; Infield, D.G.: Wind- diesel systems; in: Freris, L.L. (editor): Wind 
Energy Conversion Systems, Prentice- Hall, 1990 

[26] Magnus, Wilhelm: Formulas and Theorems for the Special Functions of 
Mathematical Physics, Springer Verlag Berlin, 3rd ed., 1966 

[27] Manwell, James F.; Mv Gowan, Jon G.: Lead Acid Battery Storage Model for 
Hybrid Energy Systems, Solar Energy, Vol. 50, No. 5, pp 399-405, 1993 

[28] Nayar, C. V.: Solar/ Wind/ Diesel Hybrid energy systems for remote areas, Energy 
Conversion Engineering Conference IECEC, Vol. 4, pp. 2029-2034, 1989 

[29] Orgill, J.F.: Correlation equation for hourly diffuse radiation on a horizontal surface, 
Solar Energy Vol. 19, pp. 357 - 359, 1977 

[30] Papoulis, Athanasios: Probability, Random Variables and Stochastic Processes, 
McGraw-Hill, 1984 

[31] Paynter, R.J.H; Lipman, N.H.; Foster, J.E.: The potential of hydrogen and 
electricity productio~ .from wind energy, Report, Rutherford Appleton Laboratory, 
UK., 1991 

References 



8. References 8-3 

[32] Paynter, R.J.H.: Predictive control of a wind diesel generation set, Rutherford 
Appleton Laboratory, 1994 

[33] Press, William H.: The Art of Scientific Computing, 2nd edition, Cambridge 
University Press, 1992 

[34] Risken, H.; Vollmer, D.: Methods for solving Fokker- Planck equations with 
applications; in: Frank Moss (editor): Noise in nonlinear dynamical systems, Vol. 1: · 
Theory of continuous Fokker- Planck systems, Cambridge University Press 

[35] Salameh, Ziyad M.: Step-up maximum power point tracker for photovoltaic arrays, 
Solar Energy, Vol. 44, No. 1, pp. 57-61, 1990 

[36] Salameh, Ziyad M.: Step-down maximum power point tracker for photovoltaic 
systems, Solar Energy, Vol. 46, No. 5, pp. 279-282, 1991 

[37] Sa1ameh, Ziyad M.: A mathematical model for lead- acid batteries, IEEE 
Transactions on Energy Conversion, Vol. 7, No. 1, pp. 93-97, 1992 

[38] Shepherd, C. M.: Design of Primary and Secondary Cells .11. An Equation 
Describing Battery Discharge, Journal of the Electrochernical Society, Vol. 112, pp. 
657-664, July 1965 

[39] Sheridan, Norman R.: Batteries for autonomous renewable energy systems, Journal 
of Power Sources Vol. 35, pp. 371- 375, 1991 

[40] Skartveit, A.: The probability and autocorrelation of short- term global and beam 
irradiance, Solar Energy Vol. 49, No. 6, pp. 477- 487, 1992 

[41] Spanier, J.; Oldham, K.B.: Atlas of functions, Springer- Verlag Berlin, 1987 

[42] Tsnbota, Masaharu: Development of lead- acid batteries for photovoltaic power 
systems, Journal of Power Sources Vol. 35, pp. 355 - 358, 1991 

[43] Weiss, R.; Appelbaum, J.: Battery State of Charge Determination in Photovoltaic 
Systems, J. Electrochem. Soc, Vol. 129, No. 9, pp 1928-1933 

References 



-------------




