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ABSTRACT 

The thesis deals with the analysis of a microwave Frequency Selective Surface (FSS) 

on a conical dielectric radome illuminated by a feed hom located at the base. Two 

approaches have been adopted to solve this problem. The first approach is to calculate 
the element currents under the assumption that the surface is locally flat. Consequently, 

the element current at that locality can be determined by employing Floquet modal 
analysis. The local incidence has been modelled from the radiation pattern of the 

source or the aperture fields of the feed. Three types of feed model were used to 

account for the field illumination on the radome. The transmitted fields from the 

curved surface are obtained from the sum of the radiated fields due to the equivalent 
magnetic and electric current sources distributed in each local unit cell of the conical 
surface. This method treats the interaction of neighbouring FSS elements only. In the 

second approach the curvature is taken into account by dividing the each element into 

segments which conform to the curved surface. An integral formulation is used to 
take into account the interaction of all the elements. The current source in each FSS 

element from the formulation is solved using the method of moments (MOM) 
technique. A linear system of simultaneous equations is obtained from the MOM and 
has been solved using elimination method and an iterative method which employs 
conjugate gradients. The performance of both methods has been compared with regard 
to the speed of computations and the memory storage capability. New formulations 

using quasi static approximations have been derived to account for thin dielectric 
backing in the curved aperture FSS analysis. Computer models have been developed 
to predict the radiation performance of the curved (conical) FSS. Experiments were 
performed in an anechoic chamber where the FSS cone was mounted on a jig resting 
on a turntable. The measuring setup contained a sweep oscillator that supplied power 
to a transmitting feed placed at the base of the cone. Amplitude and phase values of the 
far field radiation pattern of the cone were measured with the aid of a vector network 
analyser. Cones with different dimensions and FSS element geometries were 
constructed and the measured transmission losses and radiation patterns compared 
with predictions. 
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WIE Magnetic Field Integral Equation 

CG Conjugate Gradient method 

iii 



TABLE OF CONTENTS 
Page 

ABSTRACT 
................................................................................................. i 

ACKNOWLEDGEMENTS 
............................................................................ 

TABLES OF UNITS AND DEFINITIONS 
..................................................... 

iii 
TABLE OF CONTENTS 

.............................................................................. iv 

CHAPTER 1.0 
INTRODUCTION .......................................................................................... 

References 
...................................................................................... 

CHAPTER 2.0 
MODAL ANALYSIS OF PLANAR APERTURE FSS 
2.1 Introduction 

............................................................................... 8 
2.2 Theory ........................................................................................ 10 
2.2.1 Infinite Array Configuration ................................................... 10 
2.2.2 Floquet modal representations of fields .............................. 11 
2.2.3 Integral Equation formulation ............................................... 13 
2.2.4 Method of Moments solution ................................................. 18 
2.3 Transmission and Reflection for Arbitrary Incidence ............ 20 
2.3.1 TE and TM incident components .......................................... 

20 
2.3.2 Transmission and Reflection coefficients .......................... 22 
2.4 Conclusions 

............................................................................... 24 
References ....................................................................................... 26 

CHAPTER 3.0 
Tangential Infinite Array (TIA) approximation ......................................... 27 

3.1 Introduction 
............................................................................... 27 

3.2 Geometry of the conical FSS .................................................... 28 
3.2.1 Relationship between the local and surface 
coordinates of the conical FSS ...................................................... 28 
3.2.2 Construction of the conical FSS from the planar 
surface .............................................................................................. 30 
3.3 Analysis of FSS and feed system ............................................ 33 
3.3.1 Feed to surface co-ordinate transformation ........................ 34 
3.3.2 Feed modelling ....................................................................... 36 
3.3.3 Surface currents from modal analysis ................................. 39 
3.3.4 Scattered fields using the radiation integral ........................ 41 

iv 



3.4 Experiments 
............................................................................... 47 

3.4.1 Construction and dimensions of conical FSS ..................... 47 
3.4.2 Experimental set-up ............................................................... 49 
3.5 Results and Discussions .......................................................... 54 
3.5.1 Predictions from a planar infinite array of slotted rings ..... 54 
3.5.2 Results from the Dielectric cone ........................................... 56 
3.5.3 Results using the FN feed model .......................................... 57 
3.5.4 Results using the SPS feed model ....................................... 57 
3.5.5 Results using the PB feed model .......................................... 58 
3.6 Conclusions 

............................................................................... 58 
References ................................. ...................................................... 71 

Chapter 4.0 
CURVED FINITE METALLIC FSS ................... .......................................... 72 

4.1 Introduction ............................................................................... 72 
4.2 Free standing finite FSS ........................................................... 73 
4.2.1 Integral Equation Formulation .............................................. 73 
4.2.2 Method of Moments solution ................................................. 76 
4.2.3 Elimination method ................................................................ 82 
4.2.4 Iterative CG method ............................................................... 82 
4.2.5 Radiated and scattered fields ............................................... 87 
4.3 Dielectric and ferrite coated metallic FSS dipole ................... 88 
4.3.1 Quasi-static equivalent of dielectric backed FSS ............... 89 
4.3.2 Quasi-static equivalent of ferrite backed FSS ..................... 92 
4.4 Results ....................................................................................... 97 
4.4.1 Transmission response ......................................................... 98 
4.4.2 Radiation patterns .................................................................. 102 
4.5 Conclusions 

............................................................................... 
104 

References ........................................................................................ 115 

CHAPTER 5.0 
CURVED FINITE APERTURE FSS ............................................................. 117 

5.1 Introduction 
............................................................................... 

117 
5.2 Free standing finite aperture FSS ............................................. 

118 
5.2.1 Aperture in screen formulation ............................................. 

118 
5.2.2 MOM using pulses testing and basis functions .................. 123 
5.2.3 Radiated fields ........................................................................ 126 
5.3 Magnetic charge and current: theory of static fields ............. 127 

V 



5.3.1 Magnetic charge in ferrite medium ....................................... 128 
5.3.2 Magnetic current in dielectric medium ................................. 132 
5.4 Dielectric and ferrite coated FSS slot ...................................... 

137 
5.4.1 Quasi static equivalent of dielectric coated slot ................. 140 
5.4.2 Quasi static equivalent of ferrite coated slot ....................... 143 
5.5 Results 

....................................................................................... 
149 

5.5.1 Transmission response ......................................................... 
150 

5.5.2 Radiation patterns .................................................................. 
153 

5.6 Comparing the tangential infinite array and finite current 
models .............................................................................................. 161 
5.6.1 Current and modal recipe for a planar array of dipoles ...... 161 
5.6.2 Transmission response ......................................................... 

163 
5.6.3 Radiation patterns .................................................................. 

164 
5.7 Conclusions 

............................................................................... 
170 

References 
....................................................................................... 

172 

CHAPTER 6.0 
CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK ................ 173 

References ............................................................................... ....... 177 

APPENDICES 
Appendix I 

Coefficients from the modal analysis ............................................ 
Appendix 2 

Feed to surface co-ordinate transformations ............................... 11, 
Appendix 3 

FN feed model ................................................................................. IV 
Appendix 4 

Aperture fields of a narrow flare circular conical corrugated 
hom .................................................................................................. VI 

Appendix 5 
Parallel Beam (PB) feed model ...................................................... 

VIII 
Appendix 6 

Scattered fields using Stratton and Chu's formulation ............... X 

vi 



CHAPTER 1.0 

INTRODUCTION 
Frequency Selective Surfaces (FSS) or Dichroic surfaces are usually periodic array of 
metallic elements or apertures that exhibit bandstop or bandpass properties [I] when 
excited by incident electromagnetic waves. These properties have been exploited as 
subreflectors in microwave reflector antennas[2] and optical laser systems [3]. There 
has also been an increasing interest in using them in radomes for aerospace applications 
[4,5]. In general, FSS have the advantage of increasing the frequency band capacity 
and lightening the weight of antenna systems, especially in satellite payloads, and 
reducing the radar cross section (RCS) of aerospace radomes [5]. The FSS 

performance depends mainly on the element and lattice geometry [6-8] but can be 

altered by a multi-layer structure [9]. Due to the periodic nature of the FSS, a large 

enough surface can be approximated as an infinite array so that Floquet's theorem with 
modal analysis [10] can be used to find the current of each element in the local unit 
cell. As a subreflector, gentle curvature has been used in previous studies by Mok and 

others [11,12]. They have adopted a locally infinite planar approach with modal 
analysis on the curved surface to approximate the currents induced by far field 
illumination of an antenna feed. Recently, Carloglanian [13] has assessed this approach 
for various curvatures of hyperboloid radome fitted with arrays of aperture FSS. It was 
found that the curvature of the FSS can alter the radiation performance of the array 

substantially. Therefore, it plays an important part in the overall design. When a 
radome is placed in front of an antenna, it diitorts the wave front of the incident 

electromagnetic radiation from the feed and degrades its radiation pattern. In general, 
the performance of a radome is usually judged by the transmission loss, radiation 
pattern and polarisation distortions and errors in boresight [14]. Only the first two 

aspects are investigated in this thesis but information about the others can be obtained. 

This thesis deals with the analysis of a conical dielectric radome enclosing a feed horn 

antenna located at the base of the cone. Unlike the previous example [13], the antenna 
feed here is illuminating the radome in the near field, so the non-planar incident field on the 
inner wall is more acute and mutual coupling with the radome is inevitable. This simple 
model simulates the performance of a streamlined radome [4] which is normally 
encountered in the nose of an aircraft and missile. A passband is required in such 
applications so aperture FSS elements with inductive properties are used in the conical 
array. Two methods have been used to tackle this problem, without considering 
complications of near field coupling. The first method is to calculate the element 
currents assuming that the surface is locally flat. Consequently, the element current at 
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that locality could be determined by employing modal analysis, which assumes a 
tangential infinite array (TIA) [ 15]. The computation time would depend mainly on the 

number of elements and associated current basis functions. 

In the second method the surface curvature is defined by dividing each element into 
linear segments which conform to the conical surface. An integral equation fonnulation 
is used to account for mutual coupling among the FSS elements on the entire surface. 
This has been called the finite current (FQ model [ 16] here because the interactions of 
all the FSS elements are treated in a finite geometrical sense. The performance of both 
approaches to the conical FSS, radome problem are compared with regard to the 
accuracy, speed of computations and memory storage capability. Computer models 
have been developed with a view to predict the radiation performance of the curved 
(conical) FSS. Cones with different dimensions and FSS element geometries were 
constructed and the measured transmission losses and radiation patterns have been 
compared with predictions. 

This thesis is organised in the following manner: 
The main objective in Chapter 2 is to derive certain equations and quantities for the 
analysis of the tangential infinite array (TIA) approximation of the conical FSS. Based 
on the infinite array assumption, aspects of the modal analysis are discussed with the 
view of calculating the magnetic currents of each local aperture FSS element. The 
tangential fields of the array are expressed as Floquet expansions [17] and solved using 
the boundary conditions in the aperture. As a result, a magnetic field integral equation 
(NffIE) is formed with the induced elemental currents represented by full domain basis 

functions and the associated unknown coefficients. Using a suitable method of solution, 
such as the method of moments (MOM) [ 18], this equation is reduced to a system of 
matrices and solved by an elimination method [19] to determine these current 
coefficients. Plane wave transmission and reflection coefficients are computed using 
the transmitted, reflected and incident fields. These allow the computer model to be 

verified with existing software for conducting elements using Babinet's principle. The 
subroutine for computing the current coefficients has also been modified to find the 
tangential fields in the centre unit cell. This is incorporated into the software for the 
curved FSS which uses the TIA approximation as discussed in the next chapter. 

In Chapter 3 the analysis of the conical FSS and feed system are derived taking into 

account the geometry of the curved surface and the non-planar illumination of the feed. 
The geometrical feature of the cone requires the relationship between certain co- 
ordinate systems which help to locate the position of each FSS element on the curved 
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surface. Due to the size of the cone,, the conical FSS is constructed from two planar 
surfaces laid symmetrically on this dielectric former. This is illuminated by a corrugated 
conical circular feed at the base pointing toward the tip and aligned along the axis. The 
incident near fields are modelled using three feed models. The first is called the far to 

near field (FN) feed model which is based on the far field pattern but weighted 
according to the distance from the centre of the feed to the FS S surface [I I]. The 

second uses a parallel beam (PB) from the feed aperture [16]. A more rigorous 
definition of the near field is to use a superposition of radiated fields from point 
sources (SPS) in the feed aperture. The local incidences using these feed models 
provide input data to the modal analysis subroutine, as described in Chapter 2, to 
compute the current coefficients and hence the tangential fields of a local unit cell 
tangential to the curved surface. These fields become the current sources for the 

radiated fields of each cell. The total transmitted field of the cone is computed using a 
summation of such far fields from all the unit cell distributed on the cone. Experiments 

were performed in an anechoic chamber where the FSS cone was mounted in a jig 

which rests on a turntable. The measuring setup contained a sweep oscillator that 

supplied power to a transmitting feed which illuminated the cone at its base. Amplitude 

and phase of the far field radiation pattern of the cone were measured with the aid of a 
vector network analyser. The prototype cone using slotted ring element geometries, 
was constructed and its performance was compared with predictions from the 

computer model. 

Work on finite FSS in the past tends to concentrate on small planar arrays of metallic 
elements [20]. Since the metallic element and aperture are complementary 

electromagnetic structures, the electric field integral equation (EFIE) formulation [211 
for the former is sinfflar in form to the WIE of the aperture. In order to understand 
the coupling of the FSS on a dielectric conical array, a quasi static EFIE was used for 

metallic elements in this thesis. The EFIE is firstly assessed to see if it is viable to use a 
quasi-static approximation for dielectric backing so that subsequent work can be 
developed on aperture elements using an integral equation approach. In order to model 
curved FSS of metallic elements supported by such substrate, the quasi-static approach 
has been used in Chapter 4. This was first formulated by Popovic [22] for modelling a 
thin dielectric coated antenna but is developed here for the conical FSS radome case 
with thin metallic elements. Since the main objective here is to investigate the 

performance of surface curvature on a finite FSS radome, the dielectric support is 

assumed to be much thinner than the operating wavelength in order to reduce the shift 
in resonant frequency and undesirable effects like surface waves [23]. This formulation 
is a modified version of the EFIE but coupled with dielectric/ferrite loading feature. In 
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contrast to Popovic's point matching MOM procedure, sub-domain basis pulse 
functions with Galerkin! ý testing is adopted to define the curvature of FSS elements 
into linear segments on the conical surface. Each pulse is weighted at the junction of 
the segments [24]. The latter MOM procedure has been shown to produce a complex 
symmetric matrix which can be exploited to reduce computer memory size and 
increase the speed of the solution for the original EFIE [25]. It also yields a system of 
matrices which can be solved by the elimination method [ 19] or the iterative conjugate 
gradients (CG) [26] method. Both mathematical methods were compared with regard 
to computation time and memory. The transmitted fields were calculated using the sum 
of radiated fields from the feed aperture and the electric current source on each linear 

segment. Since the FSS is now considered in a finite geometrical sense (which 

accounts for the coupling between all the array elements), it is called a finite current 
(FQ model. Due to the limitation in computer memory, a smaller FSS cone was 
modelled. Hence, a prototype was constructed from planar FSS, which consisted of 
two symmetrical lattices etched on a single sheet. Measurements are compared with 
predictions from the FC model. 

A tutorial review of solving general aperture problems have been presented by several 
authors [27] but there is no published work that takes into account the dielectric 

effects for a curved aperture screen geometry. Using a similar quasi-static concept for 

aperture structures, a novel formulation has been developed for slotted FSS supported 
by a thin curved dielectric radome. This is 

' 
discussed in Chapter 5, where a MFIE for a 

free standing aperture screen [27] was enhanced to include dielectric and ferrite 
loading features [16]. The general MFIE was originally derived using the equivalence 
principle for an aperture in a infinite conducting screen separated by semi-half spaces 
[28]. However, equations for static fields due to magnetic current sources in a dielectric 

medium and magnetic charge sources in a ferrite medium are not explicit enough in 

current literature to account for a quasi-static approximation of the MFIE. So, these 
equations were expanded here with the help of the complementary forms of Gauss! and 
Ampere! s laws for magnetic charge and current sources. These are fundamental to the 
derivation of a modified MFIE with both dielectric and ferrite loading effects. The 

resulting MFIE can be treated in the same manner as the EFIE in Chapter 4 using the 
MOM to define the curvature of elements on a conical surface. A small dielectric 

conical array of thin slotted dipoles was constructed and the radiation patterns were 
measured. The experimental results are compared with predictions from the present FC 

model using the novel WIE. The performance of this FC model is also compared with 
the TIA model with regard to computation time, memory and accuracy. General 
conclusions and suggestions for further work are presented in Chapter 6. 

4 



References 
[1] Chen, C. C. : 'Transmission through a conducting screen perforated with apertures', 
IEEE Trans., MTT-1 8,1970, pp. 627-632. 

[2] Lee, C. K. and Langley, R. J. :' Performance of a dual-band reflector antenna 
incorporating a frequency selective subreflector', Int. J. Electron., Vol. 61,1986, 
pp. 607-616. 

[31 Urlich, R., Bridges, J. J. and Pollack, M. A. Nariable mesh coupler for I. R. lasers', 
Appl. Opt., 1970, Vol. 9, pp. 2511-2516. 

[41 Pelton, E. L. and Munk, B. A. : 'A streamlined metallic radome, IEEE Trans., AN 
22,1974, pp. 799-803. 

[5] Ousbeck, J. 0. and Pettersson, L. : 'Frequency selective radomes, 3rd Int. Conf. on 
Electomag. in Aerosp. Appl. and 7th Europ. Electromag. Struct. Conf. 1993,. ppl 15- 
117. 

[6] Parker, E. A., Hamdy S. M. A. and Langley R. J. : 'Arrays of concentric rings as 
frequency selective surfaces', Electron. Lett., 198 1, Vol. 17, pp. 880-88 1. 

[7] Hamdy S. M. A. and Parker, E. A. Turrent distribution on the elements of a square 
loop frequency selective surfaces, Electron. Lett., 1982, Vol. 18, pp. 624-626. 

[8] Parker, E. A., Hamdy S. M. A. and Langley R. J. : 'Modes of resonance of the 
Jerusalem Cross in frequency selective surfaces, JEE Proc., Vol. 130,1983, pp. 203- 
208. 

[9] Vardaxoglou, J. C. and Parker, EA : 'Modal analysis of scattering from two layer 
frequency selective surfacee, Int. I Electron., Vol. 58, No. 5,1985, pp. 827-830. 

[10] Montgometry, J. P. : 'Scattering by an infinite periodic array of thin conductors on 
a dielectric sheet', EEEE Trans., AP-23,1975, pp. 70-75. 

[I I] Mok,. K., Allmn, M. A. M., Vardaxoglou, J. C. and Parker, E. A. : Curved and plane 
frequency selective surfaces: a study of two offset subreflectors'. Journ. Inst. of 
Electric. and Radio Eng., Vol. 58, No. 6,1988, pp. 284-290. 

5 



[12] Rahmat-Sanfii, Y. and Tulintseff, AN : 'Diffraction -analysis of frequency selective 
reflector antennas', IEEE Trans., AP41,1993, pp. 476487. 

[13] Caroglanian, A. and Webb, K. : Study of curved and planar frequency-selective 

surfaces with nonplanar illumination', IEEE Trans., AP-3 9,199 1, pp 211-217 

[14] Rudge A. W., Milne K., Olver, A. D. and Knight P. (Ed. ). : 'The handbook of 
antenna design', IEE Electromagnetic Wave Series: 16, Vol. 2, Peter Peregrinus Ltd., 
1983, Chapter 14, pp. 457-550 

[15] Clia, Y. W., Simpkin, R. and Vardaxoglou, J. C. : 'A study of a conical frequency 

selective surface!, 7th International Symposium on Antennas, JINA! 92, Nice, France, 
Nov. 1992, pp 321-324. 

[16] Chia, Y. W., Simpkin, R. and Vardaxoglou, J. C. : Scattering from conical 
frequency selective surface using a Finite Current model', 3rd Int. Conf. on 
Electromag. in Aerosp. Appl. and 7th Europ. Electromag. Struct. Conf 1993, pp. 119- 
122. 

[17] Arnitay, N., Galindo, V. and Wu, C. P. :' Theory and analysis of phased array 
antennas'. New York: Wiley-Interscience, 1972, pp. 37-74. 

[18] Harrington, R. F. : Matrix methods for field probleme, IEEE Proc., 1967, pp. 136- 
149. 

[ 19] Jennings, A. : Matrix computation for engineers and scientists, John Wiley & 
Sons, 1977, pp. 100-141. 

[20] Stylianou, A. S. : 'Scattering from finite and multilayer FSS using iterative schemes 
Loughborough Univ. Tech., Ph. D. thesis, 1992. 

[21] Balanis C. A. : 'Advanced engineering electromagnetics', John Wiley & Sons, Inc., 
1989,. pp. 696 

[22] Popovic, B. D., Dragovic, M. B. and Djordjevic, A-R. : Analysis and synthesis of 
wire antennas', Research Studies Press, 1982, pp. 100- 104. 

6 



[23] Luebbers, R. J. and Munk, B. A. :' Some effects of dielectric loading on periodic 
slot arrays, IEEE Trans., 1978, AP-26, pp. 536-542. 

[24] Glisson, A. W. and Wilton, D. R. : 'Simple and efficient numerical methods for 

problems of electromagnetic radiation and scattering from surfaces', IEEE Trans., 
19803P AP-28P pp. 593-603 

[25] Canning, FX : 'Direct solution of the EFIE with half the computation, IEEE 
Trans. 199 1, AP- 1, pp. 118-119 

[26] Hestenes, M. and Stiefel, E. : Methods of conjugate gradients for solving linear 

systemsý, I Res. Nat.. Bur. Stand, Vol. 49,1952, pp. 409436. 

[27] Butler, C. M., Rahmat-Samii and Y., Nfittra, R. : 'Electromagnetic penetration 
through apertures in conducting surfaces, IEEE Trans., 1978, AP-26, pp. 82-93. 

[28] Butler, C. M. and Umashankar, K. R. Mectromagnetic penetration through - an 
aperture in an infinite planar screen separating two half-spaces of different 

electromagnetic properties', Radio Science, 1976, Vol. 11, No. 7, pp. 611-619. 

7 



CHAPTER 2.0 

MODAL ANALYSIS OF PLANAR APERTURE FSS 

2.1 Introduction 
In this Chapter, the modal analysis for an infinite planar array of aperture FSS element 
in multi-dielectric substrates is presented. It forms the basis for calculating the induced 

magnetic currents in the aperture which is required for the source fields on the conical 
FSS. These radiating sources are taken to be the fields in each local unit cell on the 

curved surface. This is needed in the radiation pattern calculation of a conical FSS 
illuminated by a feed as discussed in Chapter 3. The main objective here is to derive 

certain equations and quantities required for the work in Chapter 3. The formulation of 
the modal analysis here is to facilitate the case when a feed is illuminating from inside 

the conical radome with the metallic FSS screen wrapped around the exterior of the 

curved surface. The dielectric layers facing the feed consist of the radome wall and the 
FSS substrates. In addition, there are four dielectric layers on the other side of the 
aperture screen to accommodate for an embedded FSS. This aperture array 
sandwiched in a total of seven dielectric layers is illustrated in Fig. 2.1. 

Modal analysis of rectangular apertures was first treated by Chen [1] for thin metallic 
screens with a single dielectric backing. Here the analysis is modified for a FSS screen 
sandwiched in multi-layer dielectrics. Arbitrary oriented. thin slotted elements have also 
been analysed recently by Singh [2] using a subdomain approach instead of the full 
domain functions. Only slotted ring and dipole FSS elements will be investigated here 
because these are used for the curved FSS analysis in later chapters. Results have 

shown that the FSS ring elements give low crosspolarisation and few current functions 

are required in the modal analysis [3]. The dipole element is simple to model and has 

also been used in the finite current model in Chapter 5 for comparison. More 

complicated element geometries like tripoles, crosses and squaree, have been studied by 

others [4,5,6] for metallic elements. Some aspects of theory in modal analysis are 
discussed in Sec. 2.2. This Section shows how the theory exploits the periodicity of the 
FSS and provides a vector formulation which includes coupling between the array 
element. The electromagnetic boundary conditions for the aperture and Floquet 

expansions of the fields were used to derive an integral equation with unknown 
induced aperture electric fields. The aperture field was expressed as magnetic currents 
for computation purposes. A suitable method of solution, like the Method of 
Moments(MOM) [7] was used to reduce the equation into a system of linear equations 
and solved by the elimination method which is availiable as a NAG routine [8]. In 
Sec. 2.3, the plane wave transmission and reflection coefficients are calculated using the 
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transmitted, reflected and incident fields. Conclusions to this chapter are given in 
Sec. 2.4. 
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Fig. 2.1 Transmitted and reflected fields in modal analysis. 
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2.2 Theory 

In an infinite array configuration, each FSS element is located in a unit cell which is 
distributed in a periodic fashion. The modal theory exploits the periodicity so that the 
fields can be expanded in terms of Floquet modes. When the array is excited by an 
incident field, current will be induced in each element. After enforcing the boundary 
conditions, an integral equation is obtained in terms of the unknown current in the 
element as shown in Eq. (2.37). The Method of Moments (MOM) can be used to 
reduce the integral equation into a system of linear equations. Here the current is 
expressed in terms of full domain basis functions which span the entire area of the 
element or domain. The unknown coefficients were solved conveniently using Crout's 
factorisation which is available as a NAG routine [8]. 

2.2.1 Infinite Array Configuration 
In practice, a large planar FSS array can be approximated as an infinite array. Consider 

an arbitrary FSS element in a unit cell area which is arranged periodically so as to form 

a infinite planar array as shown in Fig. 2.2. The array could also be sandwiched between 

several dielectric layers. These may represent the dielectric substrate'and radome 
covering often encountered in antenna systems. The skewed cell lattice is related to its 

next nearest neighbour by the vectors d, and d2 respectively in the x-y plane. 

They are expressed as, 

d, = d, (cos alx^ +sin ajy^) 

d =d x +sin aj ý (2.2) 22 
(cos a2 iA 

These lattice vectors are skewed by the angles a, and a2. The unit cell area is defined 
by: 

ýJdl Xd2l (2.3) 

The incident plane wave can be represented as a linear combination of a transverse 
electric (TE) polarisation and a transverse magnetic (TM) component. The TE wave 
has no component of the electric (E) field in the direction of propagation whereas the 
TM wave has no component of magnetic (H) field in the direction of propagation. 
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z 

Fig. 2.2 Incident plane wave on a FSS array. 

2.2.2 Floquet modal representations of fields 
The tangential fields in the infinite array can be expressed in terms of Floquet modes 
[91 which are given by: 

Vý 
q 

(X, Y, 9-, 
) = Vfpq (x, y) e -jyPqz (2.4) 

where the Floquet numbers p, q=0, ±J, ±2 

and Vfp� (x, y) = yfpq (ii; )=e -jZ'lp q-': 1 (2.5) 

The time variation e -j" has been assumed. The position of the fields is located at, 



Ft =XXA +YYA (2.6) 

ktpq =kt +pkl +qk2 (2.7) 

kt = k,, cos Osin 01 + k,, sin Osin Oý (2.8) 

where 

2; r (2.9) 
A 

The polar angles 0 and 0 are defined as shown Fig. 2.2. 

-2z ý (2.10) 
Az xd2 

2; r . E2 
AZ xd, 

The propagation constant is given by: 

2 (2.12) kk 7pq ý 
VF 

- tpq 
ý-tpq 

where 

k= ko V-c-r (valid only in the dielectric, otherwise k= ko) (2.13) 

2 
'.: ý -- For propagating waves, k. ktpq. ktpq and ypq is real and positive ( or zero). 

For evanescent waves, k2 ': ý'Etpq * 
ktpq and ypq is negative and imaginary. 

The orthogonality condition for the Floquet modes is given by, 

j 
Vfpq (Ft )V*p, 

q' 
(j; 

t 
) At =A 05pp'45qq' 

unit cell 
area 

(2.14) 

/ 
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I if a =, 6 
6a, 6 =0 

elsewhere 
(Knonecker delta) 

The asterisk * indicates complex conjugation. 

The tangential fields in the array can be expressed in terms of both TM and TE vector 
Floquet modes which are denoted by the subscript I and 2 respectively.. The TM vector 

mode is given by: 

Z2,,, (x, y, z) = V,, (x, y, z)kl,, 

where 7C]pq = 
ktpq 

ITtpqj 

and the TE mode is given: 

'22pq(X, Y, Z) ý Vpq(X, Y, Z)ý72pq 

where k2pq ýi Xklpq 

The TM and TE modal admittances are defined as, 

k 
171pq ý'- 17 

Ypq 

and 

172pq ý' 
Ypq 

q respectively. k 

where 

.6 and p are the permittivity and permeability of the medium. 

2.2.3 Integral Equation formulation 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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The following modal analysis is formulated for an aperture FSS with three dielectric 
layers on the illumination side. This is to facilitate the case when a feed is illuminating 
from inside the conical radome with the FSS screen wrapped around exterior of the 

curved surface. These three layers represent the radome and the FSS substrates. In 

addition, four dielectric layers are used at the rear of the aperture screen to 
accommodate the cases where FSS is embedded within the radome. This aperture 
array, sandwiched in a total of seven dielectric layers, is illustrated in Fig. 2.1 

The tangential electromagnetic field in each respective medium can be expressed as 
TM and TE Floquet modes as follows: 

For z.:! ýzo , 

Ej(x, y, z)=£t'(x, y, z)+IR,;, e 
j7', "rz (2.22) pq Vfpq (X, Y) Ä'tnpq 

mpq 

e 
j7PPrz 

(2.23) i17 Y, z) (x, y, z) - 
lifmlprq R,; 

pq Vfpq (X, Y) ^x x7 
mpq 

mpq 

For za -:! ý'z -:! ý'Za+b (where a=0,1,2,3,4,5,6) 

Lüta 
-jrp 

mpq X, Y, z) =, E(Ta e Pqz +RianpqejyPqz (2.24) 
mpq 

mpq 
) 

Vfpq(X, Y)k 

Ha( a Ta -jYpýz a "qZ 
XIY, Z) = 117; ýpq mp e -Rý ejrP- Z t 

mpq 
q pq 

) 
Vfpq(X, Y). 'Xkmpq (2.25) 

For z2ýz7 

-T T Eý (x, y, z) = Vlr e-jy'l"'z Impq Vfpq(XY)k mpq 
mpq 

(2.26) 

T -jypqýz Hi (x, y, z) = lig'p` TeZ (2.27) 
,q mpq Vfpq (X, Y) AX X7mpq 

mpq 
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where T and R denote the field amplitudes for the forward and the backward waves 

respectively. 

The incident field for z.: 0 is given by, 

air Et'(x, y, z) =D .. ooe -Jro6 z V/00 (x, y) kmoo 
m 

(2.28) 

(2.29) fit' (X y Z) - i&""ob�, ooe-j70jz 1-7 99 -1 0 Vfoo (X, Y) Ax Ä7M00 
m 

where b,,, Oo denotes the incident field amplitude in free space. 

The MFIE is obtained by applying the following boundary conditions. 
(1) The tangential fields electric and magnetic fields are continuous at all the 
dielectric/dielectric and dielectric/air interface. 

(2) The tangential electric field must be zero on the conducting portion of the screen 
but the electric and magnetic fields must be continuous across the aperture regions. 

The field amplitudes at z =z3 must be expressed in terms of the unknown electric 
fields using the mode orthogonality condition in Eq. (2.14). Therefore, Eq. (2.24) 

becomes, 

tt= Týp. e qz-' +R ej? Pqz3 f Et3 (x y, z3 ). Ä7mpq yfpq y') dr, -jr 
mpq p 

(X 3 
X A' (2.30) 

The prime indicates that the electric field is located in the aperture area A' of the unit 

cell area A, such that Ft eA'. 

Similarly, 

-4-4 4 -j"W3 4 JYýJJ T; 
pqe +4pqe (2.31) 
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The continuity of the electric field from (2) ensures that the electric fields are the same 
in the aperture on both sides, therefore equating (2.30) and (2.3 1) yields, 

E3 =E4 =E (2.32) 

Since the magnetic field is also continuous across the aperture portions at z =zj, then 

ý13(X, Y, Z) ýfj; (2.33) itp, 34 
(X', Y, Z3) 

Using boundary condition (1), the electric and magnetic fields from Eq. (2.26) and 
Eq. (2.27) are solved at z =z7. This is to find the relationship between field amplitudes 
in medium 7 and air. This relationship is required for subsequent boundaries, so that 
the process is repeated by solving for z =z6, z =z. 5 until z =z4. It can be shown that, 

-4 H; X, Y, Z3) =., >2. Ücr34(m, p, q)j4q Vf P� 
(x, y) z^ x k�p, (2.34) 

mp, q 

4 
where the coefficient cTj shows the relationships between the media at the rear of the 

screen. Details of the derivation of this coefficient can be found in Appendix I 

Applying the same reasoning for the fields from z =z2 to z =zO =0 with the 

boundary condition (1) and then using the boundary condition (2) at z =z3 gives the 
following, 

f, 3(X, YPZ3) -j? t =, Etý. 
002e OOz3b x kmoo 

MOOV, 23 
(m, 0,0) V/00 (x, y)Z 

m 

-jy, 
3Pqz', 

ÜU, 
23 (m, p, q) - ýÜ Z +Ir? mpq 

2e Vfpq (X, Y) AX Ä7mpq (2.35) 

mpq 

where the coefficients U123 (m, p, q) and V123 (m, p, q) shows the relationship between 

the media on the illumination side (Appendix 1). 

Equating the magnetic fields, using Eqs. (2.33), (2.34) and (2.35), gives the required 
NME as, 
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17ýnloo2e-jyo3oz3bmOOV123(nl, olo) VOO(X, Y)Z^ Xkn, 00 
m 

4 -jy 
3 

U (M, P, q)j7,4� +lý -rýmpq2e Pqz'U, 23(m, p, q) zýÜ( 
3 pq mpq 

) 
Vfpq (X 

9 Y) ^X Ä7mpq 

mpq 

(2.37) 

In order to solve Eq. (2.37), the aperture electric field can be expressed in terms of 
equivalent magnetic current R. The relationship is given by, 

ff =^x 
1 MX J YZ3) Z ljf (X 
PY9Z3) 

=; >£(X', y') = Z- XQ(X', y') (2.38) 

where 

r 1) 
=A _ýL IR (x 

I. Y mxx m (2.39) 

The variable z3 indicates that the aperture electric field or magnetic current is valid 
only in the plane where the planar FSS is located. This has been neglected in the 
following equations for simplicity. 

Substituting Eq. (2.38) into Eq. (2.30) yields, 

f R(X kmpq Vý (x', y')dr, ' pq 
AA 

=fR(Xvy 
(-Zxk,,,,, )Vpq(XPY')drt' 

AA 

Substituting Eq. (2.40) into Eq. (2.37) gives, 

3 
00 2e-jroo-, b�, OOV, 23 

(m, 0Z liýM , 0) vfoo (X, Y) ̂x iý7M00 
m 

(2.40) 

17 



3 

CF4 
433 -jypqzf 

3 m, p, q) 17inpq ., pq - Im-pq 2e U123 (m, p, q) 
nipq 

+ tr 
) 

Vpq (Xt 

�p t (x', y')z xk- dr' (2.41) x kmpq ) vfpq q 

2.2.4 Method of Moments solution 
A suitable method that is frequently used to solve integral equations is the method of 
moments (MOM). The MOM uses testing and basis functions to convert the integral 

equation to a linear system of equations. The unknown magnetic current induced in the 

aperture FSS can be expanded in terms of an infinite series of basis functions. These 

are defined only on the non-conducting part of the unit cell A'which is given by : 

n=N 
R(X, Y) = lcnhn(x, y) rt EA' (2.42) 

n=l 

c,, is the complex amplitude of the tith basis function. ' 

In practice, only a finite set of basis functions is required to approximate the actual 
current induced. The total number of functions is denoted by N. 

Substituting Eq. (2.42) into Eq. (2.41) and taking the inner product with a testing 

ffinction hs(x, y) yields a linear system of equations which can be expressed in the 

following matrix form, 

[A, ] =[B,,, ][C,, ] (2.43) 

where 

[A, ] is a column vector of dimension N. 

A, =, EýY4002e-j? z (2.44) oo'jb. OOV, 23 (m, 0,0))(h, (ktoo). x kmoo 
m 
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and 

[B,, ] is a square matrix of dimensions NxN, given by: 

l(a4( Bsn =3 ni, p, q) 4 2e-j? 'qzjUl23(m, p, q) 
mpq 

l7inpq * l4pq - Iýntpq 

4 zz (2.45) 
s tpq)-ýxkmpq)(-hn(ktpq)-ýxknzpq) 

A 

where 

f f), * (xt fis (ztpq) 
ýý 

ýfis (X 
2y Vfpq Y'» 

=Jfi 
jk r 

s 
(rt)e tPq* I'dr, ' 

A* 
(2.46) 

The above expression can be regarded as the Fourier transform of the testing function. 
The basis function can be easily integrated in closed form. Notice that the testing 
function in the inner product is same as the basis function. This is a special case, called 
the Galerkin! s method. 

The unknown current amplitude coefficients in the column matrix [Cn] of dimension N 

can be solved by matrix inversion as follows: 

[Cn] =[Bsn]-'[A, ] (2.47) 

where [B,, ] -1 denotes the inverse of [B,, ] 

This matrix inversion however, is solved here using the elimination method. This is 

availiable as Crout's factorisation in the NAG library [8]. Further descriptions of this 
method are given in Sec. 4.2.3 where this method has been compared with the iterative 

method in terms of computational speed and memory for a large matrix system. 
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In theory, an infinite set of Floquet modes are required to solve the integral equations. 
In practice however, a finite number is used. Experimental validation is normally a 

reliable way to check the accuracy. 

2.3 Transmission and Reflection for Arbitrary Incidence 
Plane wave transmission, and reflection coefficients are often used as a measure to 
quantify the transmitted and reflected field from a planar FSS. These are computed 
along a ray path which is in the direction of the boresight from an illuminating feed. 
The planar FSS is positioned in the far field of the transmitting feed so that the 
incidence produces a near planar wave front on the surface. Similarly, the receiving 
feed is aligned along the boresight direction in the far field of the FSS in order to 

measure the transmission or reflection coefficients. The predicted transmission and 
reflection coefficients are computed by normalising the transmitted or reflected field 

with respect to the incident field. These were used to verify the computer subroutines 
for calculating the current coefficients, before implementing the computer model for 

curved FSS. For the curved FSS analysis, however, the transmitted fields are 
computed from the sum of contributions of radiated fields from field sources of each 
local unit cell on the curved surface as discussed in Chapter 3. The transmission 

coefficient is also calculated in the similar manner as discussed above except that the 
field in this case is not planar. 

In order to use the modal analysis, it is required to resolve the incident fields into the 
tangential TE and TM components with amplitudes bloo and b200 in the direction of 
kloo and k200. Ludwig's third definition [10] is used here to find the reference 
direction of the electric field vector with respect to its copolar and crosspolar 
component. 

2.3.1 TE and TM incident components 
Assume a plane wave is propagating in the direction F as shown in Fig. 2.2. 

F =sin Ocos ýx^ +sin Osin 0^+ cos Oý (2.48) y 

Its total electric incident field is f" given as: 

R=Ei +Eyý +E,, Z^ (2.49) 

The subscripts and superscripts for R have been neglected for simplicity. 
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Using Ludwig's third definition on the E, gives: 

-A (2.50) 

-A E. icross =0 (2.51) 

E. F =O (2.52) 

Where, 

A2 o(I _COS 0) ico = -(I -COS 0) sin Ocos ýx- +I -sin y sin Osin OZ^ (2-53) 11^- 

2 o(I _COS 0) i+ -COS 
Y-(I-coso)sin0cos0^-sin0coso^ (2.54) 

cross yz 

Solving the above equations yields the components of R as: 

sinocoso(cosO-I)EY (2.55) 
Cos 0- Cos 

2 O(COS 0- 1) 

Ey =cosO-cos 
2 O(COS 0_ 1) (2.56) 

E, =-sin Osin 0 (2.57) 

Eq. (2.52) is also the result of the divergence equation ýfl =0 which gives: 

4sin Ocos oEx +sin Osin ýEy) 

Cos 0 
(2.58) 

E can be resolved into the other orthogonal directions in the modal analysis given by, 

=blookloo +b kz (2.59) 200 200 +Ez- 

By solving Eq. (2.49) and Eq. (2.59), the amplitudes can be found: - 
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bloo = E,, cos 0+ Ey sin 0 (2.60) 

b2oo = Ey cos 0-E,, sin 0 (2.61) 

I 
The amplitudes bloo and b200 will be used in the modal analysis for the incident fields. 

Notice, that for pure TE incidence, i. e. 0= 0', E, = ^, then y 

bloo =0 and b2oo =I 

And for pure TM incidence, i. e. 0= 90', R= cos Oý -sin Oi, then 

bloo =Cos 0 and b2oo =0 

2.3.2 Transmission and Reflection coefficients 
The transmission coefficient is defined as the'ratio, of the complex amplitudes of the 
transmitted and incident waves with zero order propagating Floquet modes. 

The expression_ for the transmitted field is derived from Eq. (2-26) for the zero order 
mode as: 

E -T T -jyZz 
t' (x, y, z) = Ef. looe Voo(X, Y)kmoo 

moo 

765 4- 10)6 0)3 0)4 o)j E V/00 (x, y) k,,, Oo 
moo 

TA T^ 
=E. 'x +Eýy (2.62) 

The coefficient m"" shows the relationship between the interfaces on the rear of the a 
FSS screen (Appendix 1). 

The total transmitted field is given by: 

22 



ET T- T- T- 
=E�', x +E; y +E, ' z (2.63) 

where the z component is derived from Eq. (2.59) is written as: 

T T +sin Osin OEý 
III-ZT - 

ýsin 
Ocos OEx 

(2.64) 
Cos 0 

Therefore, the complex transmission coefficient for the copolar component is given by: 

Co üi. Ico 
(2.65) 

The transmission coefficient for the crosspolar components can be calculated by 
A replacing the Ludwig! s vector " in the numerator by i ..... ICO 

In the same way, the reflection coefficient is defined by the ratio of the complex 
amplitudes of the reflected and incident waves with zero order propagating Floquet 

modes. 

It can be shown that the reflected field for the zero order mode from Eq. (2.22) is: 

ET(x, y, z) 
ftooýZ 

,::: ý, Rmooe Voo(X, Y)kmoo 
moo 

= 5fl. Go -b. OOFO) Voo (x, y) kmoo 
moo 

E R^ 
=, xE; y (2.66) 

The coefficients Go and FO represents the relationship between the interfaces on the 
front of the FSS screen (Appendix 1). 
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The total reflected field is given by: 

, 
üR R^ R- R- 

= E,, x + E; y+ E�' z (2.67) 

where the z component is derived from Eq. (2.59) can be written as: 

ýsin Ocos gf +sin Osin gR 
EZR _ Cos 0-y 

(2.68) 

Therefore, the complex reflection coefficient for the copolar component is given by: 

-R I' 
ko E Jo 

I: CO 
(2.69) 

Representative predictions of the transmission and reflection coefficients for a slotted 
ring planar array can be found in Fig. 2.3. These have been verified with known results 
for arrays of metallic rings [I I] using Babinet's principle. The predictions show that 
the transmission coefficents predicted a passband with resonance at about 14 Gliz. 
This is also confirmed by the reflection coefficients. The preliminary predictions of the 
plane wave transmission coefficients can be used as a guide for locating the pass band 

of the curved FSS. 

2.4 Conclusions 
In this Chapter, modal analysis has been used to solve for the infinite planar array of 
aperture FSS elements. The formulation of the modal analysis facilitates the case when 
a feed is illuminating from inside the conical radome with the metallic FSS screen 
wrapped around the exterior of the curved surface. The inner layers facing the feed 
take into account the radome and the FSS substrates. In addition, four dielectric layers 

on the other side of the aperture screen can accommodate the cases where the FSS is 

embedded within the radome. This Chapter has derived certain equations and 
quantities required for the curved FSS analysis in Chapter 3. A computer model was 
developed to compute the current, reflection and transmission coefficients for this 
work. The predicted transmission and reflection coefficients for a slotted ring'Planar 
FSS are used as a guide to the likely resonance of the passband location for the conical 
FSS. The software was written in FORTRAN 77 and run on a SUN SPARC 2 
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workstation. The computer subroutine for calculating the current coefficients will be 
implemented in the software for curved FSS analysis in the next chapter. 
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CHAPTER 3.0 

TANGENTIAL INFINITE ARRAY (TIA) APPROXIMATION 

3.1 Introduction 
This Chapter involves a theoretical and experimental assessment of a symmetrical 
conical frequency selective surface (FSS), which could, for example, represent a 
radome housing antennas or other radiating structures [1]. Dielectric radomes have 
been readily employed in aircraft applications, especially in the nose. For a single layer 
dielectric, either a thin or multiple half-wavelength thick layer is often required. The 
half-wavelength criteria is to avoid reflections and so minimise the attenuation of the 
electromagnetic energy through the dielectric material. 

The choice of the curvature in this study has been partly dictated by the ease of 
producing a conical FSS by wrapping a flat FSS around a pre-formed (dielectric) cone. 
The computational requirements and numerical complexities together with the 
intricacies in the feeding (excitation) mechanisms can sometimes be a restricting factor 
in the understanding as well as the design of curved array structures. Owing to the lack 

of available analyses in existing literature on conical FSS and for the reasons given 
above, an approximate approach to the scattering from the curved surface has been 

adopted [2]. It is assumed that each element on the surface is part of an infinite array 
arranged tangentially at that locality. The surface currents are obtained from the modal 
analysis using the tangential infinite array (TIA). The same principle has been applied 
to FSS with gentle curvatures, for example, representing subreflectors for multiband 
antenna systems, [3,4]. The transmitted far fields from the conical FSS have been 

calculated from an integration over the surface using both electric and magnetic 
currents which in turn have been calculated using a plane wave modal formulation. 

A rigorous formulation of the geometry of the curved surface is presented in Sec. 3.2. 
In Sec. 3.3. the analysis of the FSS and feed system is discussed in detail. The feed 
illumination in the near field is modelled using three types of feed model. The surface 
currents obtained from the modal analysis are used in the surface radiation integral to 
find the radiated field from the cone. Sec. 3.4 describes the experimental set-up and 
construction of the conical FSS. In Sec. 3.5. the predictions are compared with 
measurements performed on a conical FSS prototype having elements of ring 
apertures. The effect of each feed model on the radiation patterns is discussed. A 
general conclusion to this Chapter is given in Sec. 3.6. 
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3.2 Geometry of the conical FSS 
This section defines certain co-ordinate systems for the conical FSS that forms the 
basis for further analysis of the FSS and feed system in Sec. 3.3. The relationship 
between the local and surface co-ordinate system of the conical FSS is required in 

order to use a tangential infinite array (TIA) approximation locally with the modal 
analysis. Since the conical FSS is produced by wrapping a flat FSS around the cone, 
the position of each FSS element on the conical surface are determined from a planar 
surface using simple transformation of geometry. 

3.2.1 Relationship between the local and surface coordinates of the 

conical FSS 
Although the conical geometry is well defined in terms of the standard conic section 
equations, here the analytical steps utilised and adapted to the conical FSS prototype 
as used in the measurements are described. Fig. 3.1 shows the FSS cone and array 

geometries. Using the surface co-ordinates, (x,, y,, z, ), the conical surface is 

described by 

x2 +YS2 =(Zs +Zh)2 Ian 2 a, (3.1) 

where Ian ac = 
rC 

. ac, zh and rc are the half-angle, height and base radius of the 
Zh 

cone respectively. The parametric equation of the cone is given by 

=x + (3.2) 7s SXS YSYS ZSZS 

where 
x, =u cos 0, tan ac 

y, =u sin 0, tan a,, 

and 
Zs : '-- U- Zh 

u is in the range 0: 5 u: 5 zh. 

u is an arbitrary constant. 0, = tan S -, 
( LXS-) 

(3.3) 

(3.4) 

(3.5) 
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Fig. 3.1. Geometry of the conical FSS- 
The inset shows the array elements. 
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In order to evaluate the surface currents, the FSS element positions, in terms of the 
local (primed) co-ordinates, are needed. The local normal is found from the following 

expression 

I ýr-s xb FS 
a bos 

, =cosa, (cos0sls +sin Osýs -tan ^S) Z= bys 
x f5ys 

acz (3.6) 

ol, '00S 

The y'co-ordinate was chosen to follow the rotation of a vector tangential to the 

cone! s cross section, namely 

Irl tIrs 

y 
'VS 0 

-=-sinO ^ +cos (S. 7) 
u tan ac 

ýxs osh 

and 

^? 
=^1 

^1 

xy xz = -sin ac cosO -ý -sin ac sin Oy^s -cos acz^, (3.8) Vs-"-s 

The above co-ordinate expressions will be used in the surface current calculations in 
the Sec. 3.3.3 

3.2.2 Construction of the conical FSS from the planar surface 
The construction of the conical FSS (Sec. 3.4) is based on covering a conical former 
with two flexible sectors, top and bottom halves. The array elements have been etched 
from these sectors whilst planar. In order to identify the location of the elements and 
subsequently their positions on the curved surface, the sector's geometry has been used 
in the analysis. 

Fig. 3.2a shows the lattice and co-ordinate axis of the planar sector which is spanned 
by the following vector 

A 
rl ýXlxl +yjyj (3.9) 
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yl 

Fig. 3.2a Lattice geometry of planar sector. 
Shaded portion shows begining of FSS area. 

Fig. 3.2b Local unit cell showing 
the array element geometry. 
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(III) (11) (1) 

Fig. 3.3 Cross section of the conical FSS showing 
the feed, probe and local position P. 

E) is the scan angle. 
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where 

x, =mD]cosa'+nD2cosa'+I, (3.10) 120 cos(ý2- 

Y, = mDI sin a, + n'D2 sin aý t to sin(gý) 2 

f 61-ao 
a] =2 (3.12) 

a2' =aO +a] (3.13) 

and 8'= 
SC 

W, n' are the location indices and to is the distance between the tip of the sector and 
the actual tip of the cone. The (xl, yl) co-ordinate system is transformed into the 

surface co-ordinate system using the following set of equations 

ýX- -2 9 -1 (ýj +Y2 1 xS II sin a, cos lan (fi 
I X, 

) 

Y =J-2 42S 1 (3.16) 1 in ac sin (y, x yl tan (P 
f X, 

'[2 
2, 

and ZS = XI -ty] COS ac -zh (3.17) 

3.3 Analysis of FSS and feed system 
The description of the analysis of the scattering from the FSS cone can be divided into 
three parts: 

(I) The illumination on the inner side of the cone according to the radiation of the feed. 
(II) The determination of the total fields on the surface of the cone. 
(III) The transformation of the equivalent currents of the conical surface to obtain the 
overall radiation patterns. 

In step I the excitation on each aperture is found using an appropriate feed model. In 

step II the surface currents are computed from a modal (Floqu-ef s) analysis [2,6], 

assuming an infinite array of apertures, shown in Fig. 3.2b, which is tangential to the 
local point P. Fig. 3.3 shows a cross section of the surface, depicting the three steps, 
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and the position of the feed and receiving probe in relation to it. Part III deals With the 
integration of the equivalent currents, achieved using the Stratton and Chu formulation 
[6]. Throughout these steps a number of transformations take place, starting from the 
feed co-ordinates to the local co-ordinates. It is imperative to allow the normal vector 
to vary according to the curvature whilst choosing a suitable local lattice geometry 
orientation in relation to the tangential co-ordinate components. This choice stems 
from the difficulty in defining a periodic array on a curved surface. However, by 

careful examination of neighbouring array elements on the surface a local lattice can be 
found, and is simple to compute. 

3.3.1 Feed to surface co-ordinate transformation 
In a radome and feed system, the feed is sometimes required to scan across the radome 
surface. Therefore, the feed could be'directed away the tip of the cone. In the 

computer model here, the feed is allowed to tilt in either the yf -zf or xf -zf planes as 
illustrated in Fig. 3.4a and Fig. 3.4b. These two cases would also facilitate situations 
where orthogonal polarisations are required in the incidence. The mode of incidence is 
defined according to electric(E) field vector polarisation with respect to the two halves 

of the FSS cone. 

(i) TE incidence is for the E field vector orthogonal to the line dividing cutting the left 

and right halves of the FS Scone. 

(i) TM incidence is for the E field vector parallel to the dividing line. 

For tilting of the feed in the yf -zf and xf -zf planes, details of -the co-ordinate 
transformations are found in Appendix 2. 
The feed can be made to move along the cone axis (zs axis), say, 

dZO A, 

by translating ZS 
zs to z' co-ordinate such that s 

z'=z -d (3.18) 

This provides addition flexibility for adjusting'the feed according to the size of the FSS 
cone. In this study, the work is devoted to the case where the feed is located at the 
base of the cone and looldng towards its tip. 
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Fig. 3.4a Conical FS S tilted in the plane of yf - zf. 

"if 

Fig. 3.4b Conical FSS tilted in the plane of xf - zf. 
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3.3.2 Feed modelling 
In order to model the feed in terms of the surface co-ordinates a three dimensional 
transformation is required (Appendix 2). In addition, a further transformation takes 
place between the local primed co-ordinate system (Eqs 3.6,3.7 and 3.8) and the one 
required for the modal (Floquet's expansion) analysis, say (x, y, z), of the currents 
(infinite array calculations, step (11)). The latter is important since it accounts for the 
lattice orientations on the curved surface. With regard to the modal analysis both the 
incident fields and wave vectors need to be written in terms of (xj, z). The incident 

electric field can be expressed as 
Ex' X^ + Eyý + Eý, Z^ 

[X-- 
=[ 

cos(al a, ) 
where ^ Y- -sin(al-al) 

y 

and tan a, '= -, x'-D] 

sin(all- al)][-i I" 
cos(ai'- ai ALYP ' 

(3.19) 

(3.20) 

(3.21) 

The incident wave vector angles (0,0) are computed from the following projections: 

Cos 0= Fp z^ (3.22) 

and tan 0Y -rp (3.23) 
x -rp 

where Fp is the distance between the feed origin and the surface. 
The unit normal is identical to both primed and unprimed co-ordinate systems. The 

components of the incident fields in Eq. (3.19) are calculated by transforming the 
incident fields from the feed co-ordinate system (xf 

, yf , zf ) into the one required by 

the modal analysis, (X, y, z). The b, (TM) and b2 (TE) components of Bi are 
subsequently calculated and used in the Floquet's field expansion. This enables both 

electric and magnetic surface currents to be found. It can be shown from Eq. 2.60 and 
Eq. 2.61 that the incident plane wave can be decomposed into b, and b2 components 
where: 
b, = E,, cos 0 +Ey' sin 0 

b2 = Ey' cos 0 -E., ' sin 0 

(3.24) 

(3.25) 
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A circular conical corrugated horn has been used as a feed because it gives a 
symmetric beam and low cross polarisation. The near field feed illumination is 

modelled in three different ways here because of their relative advantages in 

computation time, memory and accuracy. The first is based on a far field pattern of the 
feed to approximate the near fields and it will be denoted as FN. This approximation 
produces a local plane wave incident field at each element on the cone which is a 
prerequisite in using the modal analysis method for an infinite planar array. The 

amplitude of the illuminating field was modelled as a Gaussian distribution fitted to the 

measured far field pattern of the feed. Details of the FN feed model can be found in 
Appendix 3. 

The second uses a parallel beam (PB) approximation emanating from the feed aperture. 
The parallel rays are compensated by a phase term due to the ray path differences at 
the curved surface. It can be shown that the incident field is given by: 

Eý1- -jk,, zf f, a 
-e (3.26) 

The parallel rays depend on the aperture fields of the corrugated conical feed which is 

given in Appendix 4. Derivation of the PB feed model is described in Appendix 5. With 

regard to the local incidence, Eq. (3.22) and Eq. (3.23) apply to both FN and PB feed 

models. In the latter, the parallel beam is constructed by replacing Fp with a vector 

normal to the feed aperture. 

A more rigorous evaluation approximates the near fields of the horn using a 
superposition of point sources (SPS) from its aperture fields. Since the feed has a 
circular aperture the aperture fields were divided into small patches in a polar grid co- 
ordinate system, as shown in Fig. 3.5. Assuming that the aperture fields do not vary 

within each patch, the electric field at a point due to a source at the mnth patch can 
be written in the following fonn as 

-jwpoe 
-jkolP ...... 

I 
Amsn, [j aps _ 

(jmasns -60 yma X^ m +f &, 
n, rmn, rmn, ps rmn, 

4 ýo 

1 

(3.27) 

where the mý, nsth electric and magnetic current sources are, 
J -a a and Ma -zf xE a respectively (3-28) ýp, zf x Hmn, 

mp, mp, 
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A is the patch area and fla and fla are the feed's electric and magnetic aperture fields 

respectively [7], expressed in terms of the feed co-ordinate system. Details of the 
derivations of Eq. (3.27) for a point source can be found in Appendix 6. The 

summation of all these contributions establishes the local field at each FSS element. 

For the SPS case, the incident wave vector angles, now denoted as 
(0,.,,, 0.,, ), 

are 

computed from the following projections: 
COS Omp, ý'im: p, *ýf (3.29) 

A- 

Y 'rmp, 
and tan Omp, 

7- 
(3.30) 

x rMP, 

Unlike the FN or the PB feed modelling, the SPS model produces a more realistic inner 

cone illumination at the expense of memory storage and computation time. 

1) 

P 

f 

Fig. 3.5 Polar position of point sources in the feed 
aperture for SPS model. 
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3.3.3 Surface currents from modal analysis 
An advantage of using the modal analysis is that it enables the calculation of both 

electric and magnetic surface currents. With regard to the scattered field computation 
(Sec. 3.3.4) these cur-rents now represent the source excitation. Both sources are 
computed over each entire unit cell using a summation over the Floquet modes (Pq). 
Here use has been made of an array of apertures having multiple dielectric 
superstrates and substrates. Locally the electric current source j and magnetic source 
R can be expressed in terms of magnetic and electric fields respectively. For the 
element located at point P (Fig. 3.3), 

ip 

=z xflp and (3.31) 

=-Z Xrp (3.32) lqp 
where 

, pq Vpq Kmpq (3.33) AX, Y, Z) lÜm A 
mpq 

F1 (x, y, z) = Jq4 q34 (m, p, q) fm (3.34) 
pq VPq ZX Kmpq 

mpq 
The subscript that denotes the Pth element has been ignored here for clarity. 

The above Floquet expansions have been discussed in Sec. 2.2.3. Vpq is the Floquet 

mode and the modal index m denotes either the TE or TM modes. 

Y7 is the modal admittance and the coefficient o involves components from the 
dielectric media. The subscript 3 and superscript 4 denotes the interface at the FSS 
plane sandwich by the 3rd dielectric layer in front and Ah layer behind as shown in 
Fig. 2.1 for a general case. Here Eq. (3.33) and Eq. (3.34) are expressions for the fields 
when the FSS screen is wrapped on the exterior of the cone i. e. no dielectric layers 
denoted by 4,5,6 and 7 in Fig. 2.1 (Please refer to Sec. 3.4.1 for further descriptions of 
the construction of the experimental FSS). By enforcing the boundary conditions on 
the unit cell and expanding the electric field as a set of basis functions in the aperture, 
their coefficients are found using the Galerkin! s procedure. It can be shown that E .. pq 
is derived as follows. 
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k 

, 
Empq 

= ff 
.9 

(x, y, z) ýp dxdy. k,,, 
pq Vfpq 

aperture 

f 
-Rvfpn dxdv. ixk., q 

f 

aperture 

n=N 
ha V/p,, dxdv. ýx kmpq ff Icn 
n 

aperture n =1 

n=N 

X^ 
* dxdY-, Pnipq ff 

-, 
ECn(k X+hnyMfpq 

aperture n =1 

n=N 
Ecn (9n 

xxý * gnyY)- (Pmpqxx * PmpqyY) 
n=l 

n =N n=N 
='-, ECngnxPmpqx 

-,, 
ECngnyPmpqy 

n=l n=l 
where 

gnx ý ff kx * dxdy Vfpq 

aperture 

gny ý 
ff hny vf* dxdy 

Pq 
aperture 

and Pmpq = P,, PqxX +p.. PUY =ZX Kmpq 

n=N 
ICAla 

n=l 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

M is the magnetic current flowing in a slotted FSS element. For a ring slot it is 

assumed to flow around the ring circumference but remains constant across its 

thickness with a tangential to its circumference. hn is the tAh basis function defined 

over the circumference with N denoting the total number of basis functions required. 

In order to use these field expansions in a radiation integral as current sources, they 
must be expressed in a suitable co-ordinate system for computation. Expressing 
Eq. (3.33) and Eq. (3.34) in the x-y co-ordinates yields, 
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x (3.40) A 
Vfpq R(XI Y, Z) ý E(fxpq ý+ L"ypqy 

mpq 

x Y) Vpq (3.41) 
'NXIYIZ) ýI(fl ýIý 

xpq 
+f 

ypq 
mpq 

where 
&pq ý, ýIpqlClpqx +L4"2pqK2pqx (3.42) 

L"ypq ýf'JpqKlpqy *, k2pqlc2pqy (3.43) 

and 

flxpq = j74a34(lp, q)klpqplpqx + 274a34(2, p, q), E2pqp2pq,, (3.44) 

flypq = 174U34(l, p, q)fllpqP]pq 4(2, p, q), p2pqP2pqy (3.45) 
y* q4U3 

such that (3.46) Kmpq = Kmpqxx + KmpqyY 

Therefore, Eq. (3.42) to Eq. (3.45) can be calculated and hence the electric and 
magnetic fields in Eq. (3.33) and Eq. (3.34). The inclusion of the Floquet expression in 

the radiation integral enables the currents to be integrated over each unit cell, as 
described in the following section. 

3.3.4 Scattered fields using the radiation integral 
With the element fields determined, the far field pattern of the feed in the presence of 
the FSS cone was calculated by superimposing the radiated fields from the equivalent 
electric and magnetic current distributions in each unit cell of the ring slot. The far field 

pattern due to the Pth unit cell was determined using the following vector radiation 
integral [7]: 

-j wu,, e -jk,, Rp 
jk,, Rp Rp R Rp 

pp4; r Rp 
ff 

(jp 
-(jp. P+ 

'60 Ae *Ftdf 
unit 

FTro 
ýIp 

cell 

(3.47) 
Rp and jp are the equivalent magnetic and electric currents respectively (from 

Eq. (3.31) and Eq. (3.32)) 
, and are valid over the entire unit cell. The integration in 

Eq. (3.47) will be transformed into the local (unprimed) variables used in the Floquet 

expansions. 
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Rp is the vector joining the centre of the local cell to the far field point Q (in feed co- 

ordinates) given by: 

Rp =Rpxi +R ý +Rpzý (3.48) Xf Pyyf Zf 

rt is the position vector in the unit cell given by: 

rt = xx +yy^ ( in the local coordinates of the modal analysis) or (3.49) 

Ft =x'X^'+y' ^'( in local prime coordinates) (3.50) y 

For convenience, Eq. (3.50) will be expressed in feed co-ordinates. The relationship 
between the local primed and surface coordinates in Eq. (3.50) can be found in Eq. (3.7) 

and Eq. (3.8). The surface coordinates are further converted to feed coordinates using 
the transformation (Appendix 2). 

Thus, expressing the tangential local prime co-ordinates in feed co-ordinates yields: 
AI X=Al^ +Ajf +A3^ and Xf Zf 

y ̂'=Bl^ +B2ý +B3F Xf Yf Zf 

(3.51) 

(3.52) 

where A,, and B,, are coefficients derived from the transformation of feed to local 

primed coordinates. 

In order to compute the Fourier transform in the integral, the term within the 

exponential should be expressed in modal coordinates (x, y). Therefore, 

Ft. Rp = Lx'x'+Ly'y' (using Eq. (3.47) to Eq. (3.52)) (3.53) 

where 

LX'=A, Rpx +A2Rpy +A3Rp, (3.54) 

L '=BRpýc +B (3.55) Y 2Rpy +B3Rpz 

Eq. (3.53) is expressed in (x, y) using the relationship given in Eq. (3.61). Thus, 

Fl. Rp = L,, x + Lyy (3.56) 
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where 

L., = L, 'cos Ob + LY'sin Ob (3.57) 

L=L 'cos ob - L�'sin Oý (3.58) yy 

The relationship between the local coordinates and the modal coordinates can be 
illustrated in Fig. 3.6a. Assume that the Floquet expansion of FSS element C is 

required. IN is the next element closest to C, it is located in the infinite array as, 

DI =Fc -FA (3.59) 

where FA and FC are the position vectors of A and C with respect to the origin of the 

feed coordinates given by Fig. 3.3 as F,. 

f '-] 
(ý'. f), so, a, =tan ýx'. Dj) 

(3.60) 

From Fig. 3.6a, it can be shown that, 

Ob = al'-al 

(A 

a/ varies with curvature with changes in xt, yA') across the conical surface but a, is 

fixed by the lattice geometry. 

Hence, the relationship between the local primed coordinates and the modal 
coordinates is given by the following transformation from Fig. 3.6a, 

^=^t 

xx cos ob + ^'sin ob y 

yy cos ob - X^'sin ob 

(3.62) 

(3.63) 

Since the sources can be expressed in Floquet modes over the entire unit cell, they can 
be written in a similar form to Eq. (3.40) and Eq. (3.41) as: 

Z(jxpqx (3.64) ý +jypqA Vfpq 
mpq 

x (3.65) ICf xpq 
ý+ IýfypqYA) V'pq 

mpq 
the subscript P has been neglected here for clarity. 
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, %I ) 

x, 
Fig. 3.6a Local unit cell showing 

lattice array geometry. 

y 

c1 

x 

Fig-3-6b Skewed co-ordinate system 
for the Fourier transform. 
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It can be shown from Eq. (3.40) and Eq. (3.41) that, 

Jxpq ý -Hypq 

jypq ýflxpq and 

Rxpq ý, ýypq 

Rypq ý -&pq 

(3.66) 

(3.67) 

(3.68) 

(3.69) 

The radiation integral form in Eq. (3.47) is essentially the Fourier transform of the 

current sources. For example the Fourier transform of the electric current source can 
be written as: 

ff eikft*hPdxdy (3.70) 

cell unt 

=j -+i 

where, Jx =, Ejxpq ff 
e 

ja,, x ej6Pqydxdv (3.72) 

pq unitcell 

jy ýfjypq 
jjeja PqxejpPqydxdy (3.73) 

pq unit cell 

and apq =k,, L., -ktpqx (3.74) 

J6pq =kLy -ktpv (3.75) 

The above Fourier transforms also apply to the magnetic current source term. 

In general, for triangular lattices the integration must be computed in terms of skewed 

axes (xk, ysk) and converted using the determinant of the Jacobian. 

So, expressing modal co-ordinates (x, y) in terms of skewed co-ordinates (xsk, ysk) as 
shown in Fig. 3.6b gives, 

OZ- V& 
X= Ysk COS CIT * Xsk COS CT 

y =ysk sin af 2 +xsk sin, I 

(3.76) 

(3.77) 
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where af and af are angles of the skewed lines with respect to (X, y) of the local 12 
infinite tangent plane. It can be shown that the Jacobian determinant A is given by, 

! n- - ! n- . , vx 167Y 

4OXsk 'OYsk k 
419y 

ox 

jsin(aS2ý 

t6Xsk L6Ysk 

cl, 
=sin ao (3.78) 

Considering the X-component from Eq. (3.72) in the skewed co-ordinates yields, 

jl'Zpq jflpqYl ff e xe A dxk dyk (3.79) 
pq unit cell 

=, flpq sin aoDID2 
sin Xpq D112 sin Ypq D212 

(3.80) 

pq 
Xpq D112 Ypq D212 

where 
sk A Xpq ý apq Cos a] *, 8pq sin a, - (3.81) 

ypq = apq COS a2sk +, 6pq sjn a2sk (3.82) 

DI and D2 are the distances between the FSS element in the centre of the unit cell and 
its neighbouring elements in the local tangential infinite array as shown in Fig. 3.6b. 

Similar expressions can also be derived for the y component of the electric current 
source and x-y components of the magnetic current source. 
The total radiated field is the sum of the contributions from all elements, 

i- N 

Q =lflpkRp) 
p 

(3.83) 

With regard to the SPS feed modelling the contribution from all the point sources at P, 

denoted by E- P ý,,, is summed up as follows: 

RQ =xz-RMPn, (RP) 
P mp, 

(3.84) 
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The predictions using the above formulation were compared against measured 
radiation patterns of a prototype conical frequency selective surface of ring apertures. 

3.4 Experiments 
The following section describes the construction of the conical FSS and the set-up 
used in the experiments. Amplitude and phase were measured initially to locate the 
phase centre of the transmitting feed so that radiation patterns could be measured 
accurately. 

3.4.1 Construction and dimensions of conical FSS 
Since a manufacturing facility is not available at LUT (Antennas and Microwave 

group) for printing an array of elements onto a curved surface, a pre-etched array was 

attached onto a rigid conical former. The FSS layer consisted of an array of ring 

apertures printed on a 0.037 mm. thick polyester substrate with a relative permittivity 

er= 3. It was etched onto two identical halves (semi-sector shaped as shown in Fig. 

3.2a) and subsequently mounted on the top and bottom outer surfaces of the dielectric 

conical former. The former consisted of aI mm. thick glass-reinforced plastic wall of 

relative permittivity 3.5 and loss tangent 0.015. This construction introduces a 
discontinuity in the array geometry which results from the non-conformability of the 
lattice at the joints between top and bottom halves. It does result, however, in two 

planes of symmetry being maintained on the cone surface. 

A triangular lattice of ring slot elements was used for the sector array, Fig. 3.2b. The 
lattice and element parameters were as follows: DI = D2 = 6.8 mm, ao = 600, al = 

-3009 RI = 2.4 mm and W=0.35 mm. The array was designed to produce a passband 
frequency near 15 GHz. The initial design was based on the results of a modal analysis 

of an infinite planar FSS illuminated at an angle of incidence of 450 and was taken as a 

guide to the likely passband of the FSS cone. The cone height (zh) was 554 mm and 

inner base radius (rc) was I 10 mm. In total there were 3,794 elements on the cone. A 

photograph of the actual conical FSS can be seen in Fig. 3.7. 
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Fig. 3.7 Curved FSS on a conical 
dielectric radome. 
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3.4.2 Experimental set-up 
The inner surface of the conical FSS was illuminated by a conical corrugated feed horn 

with a circular aperture of diameter 96 mm and a semi-flare angle of 5.9620, whose 
phase centre was measured to be about 2 cm, from the aperture plane. The feed was 
designed to operate over the band 12-18 GHz. The FSS cone and feed horn were 
mounted on an azimuth turntable which provided the necessary angular scan for far 
field radiation pattern measurements. A fixed pyramidal horn antenna was used as a 
receive antenna at a distance RO = 1.59 m from the origin. 

The experimental set-up for both amplitude and phase measurements is illustrated in 
Fig. 3.8. Experiments were performed in an anechoic chamber as shown in Fig-3.9. The 
FSS cone was mounted on a jig rested on a turn-table that contained the source which 
was controlled by the HP 8757A scalar network analyser. The elevation plane of the 
FSS is defined as the plane rotated about the phase centre of the feed. The azimuthal 
angle is defined as the plane rotated about the axis of the transmitting feed. The 

transmitted wave was received by a stationary pyramidal horn (reference) which in turn 

was connected to a IHP8411A harmonic converter. Phase measurements required a 
reference signal obtained from the source, prior to attentuation, through a directional 

coupler which channelled part of the source signal to the receiver by a long waveguide. 
The waveguide was more than 1.59 metres which was also the distance between the 
transmit and receive horns in the measurements. A coaxial rotary joint has been used to 
facilitate the rotation of the source while keeping the reference receive hom in a fixed 

position. 

The received microwave signal and reference input were mixed and down converted 
(using a local oscillator) by the BP841 IA module and subsequently processed by the 
BP8410B vector network analyser. The response was viewed using a linear magnitude 
and phase display. A plot can be obtained now using an X-Y plotter. In the latter part 
of the experiments for the other conical FSS, discussed in Chapters 4 and 5, the set-up 
was improved by computer controlled software. An ADC card was installed in a PC to 
convert the analogue signal from the vector network analyser and the potentiometer 
(measures the angles of rotation) into digital data for storage purposes. In addition, a 
GPIB interface card in the PC allows computer control of the sweep oscillator (power 
source) so that amplitude and phase can be measured at each angle with a frequency 
scan as well. This enables more rapid measurements taken over a wider frequency 
range in contrast to the spot frequency scan without the computer control. 
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In order to measure the radiation pattern of the radome and feed system, the phase 
centre of the feed is required. The phase centre can be located when the phase pattern 
is almost constant at least between the angles defining the main lobe of the amplitude 

pattern. This is measured by recording the phase pattern for various rotation points 
along the axis of the transmitting horn. Fig. 3.10 shows the amplitude and phase 
patterns of the feed at 15 GHz about the phase centre. The phase centre of the hom at 
15 GHz is about 2 cm behind the feed aperture with the receiving feed 1.59 m away. 

Although the conical corrugated horn is supposed to give low cross polarisation, it was 

necessary here to place a polariser grid at the feed aperture to reduce the peak cross 

polar levels. The amplitude and phase patterns were measured from 12 to 18 GHz. 

Crosspolar levels at these frequencies were recorded well below 40 dB. 
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3.5 Results and Discussions 
In this section, the predictions using the TIA with the three feed models (FN, PB and 
SPS) for a conical array of ring slots will be compared with measured results. The feed 

aperture is pointing towards the tip of the cone with the its axis along the axis of the 

cone as shown in Fig. 3.8. The electric field orientation is orthogonal to the line 
dividing the two halves (top and bottom) of the cone and the far field power levels 

were normalised with respect to the peak power level of the feed alone. This 

normalisation was performed in both the predicted and measured results and allows the 
transn-dssion loss of the FSS cone to be determined. Far field patterns of the FSS cone 
illuminated by the corrugated feed hom were measured over the angular range of 
±600 Since the TIA approximation requires current modes of the slotted ring in an 
infinite array in order to compute the currents, these are estimated using predictions 
from the known current mode recipe of a planar infinite array of ring elements as 

shown in the following section. 

3.5.1 Predictions from a planar infinite array of slotted rings 
In order to predict the radiation patterns of the conical FSS in the TIA approach, it is 

required to characterise the modal currents of each local element with the modal 
analysis applied to an infinite planar FSS. Due to the severe curvature of the cone, 
large incident angles will be encountered. In order to estimate the passband of the 

conical FSS caused by varying incident angles, initial predictions were obtained for 00, 
450 and 750 of incidence as representatives of the range of incidences encountered in 

the cone. The predicted transmission response at 450 for TE plane wave incidence 

using the slotted rings is shown in Fig. 3.1 1. The predicted passband is approximately 
14 GHz. 

The current is expanded as follows, 

n, =N, n, =N, 
ICn. k, at + ZCn, hn, a (3.85) 

n, =1 n, =1 
where M is the magnetic current flowing in a ring. For a ring slot the current is 

assumed to flow around the ring circumference but remains constant across its 

thickness with a tangential to its circumference. a is the angle measured from the x 

axis 

where a=-sinaxi+cosaý y (3.86) 
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The basis functions defined over the circumference are: 

hn, = vfNa Cos nc a nc =I and 2 (3.87) 

h,, = 
J. sin nsa ns =I and 2 (3.88) 

and N,, is a constant normalising factor given by, 

Na =2-=2, (A'is the aperture area of the ring), (3.89) 
; rW(W +24. n) A 

following the mode recipe given in [8]. 

Ri,, is the inner radius of the ring. 

121 Floquet modes was sufficient to expand the tangential fields [8]. The above 
current and Floquet modes are used in the predictions for the subsequent conical FSS 
described in the following section. It should be noted'that the lattice and element 
geometry will inevitably deforin once the planar FSS is wrapped around the cone. This 
deformations have not been taken into account in the TIA computer model. 

3.5.2 Results from the Dielectric cone 
Dielectric radomes have been readily employed in aircraft applications, especially in the 
the nose (the front of the aircraft) to protect the antenna. For a single layer dielectric, 

either a thin or multiple half-wavelength thick is often required. The half-wavelength 

criteria is to avoid reflections and so minimise the attenuation of the electromagnetic 
energy through the dielectric material. Here, the dielectric radome is only 1.0 mm. 
thick which is not a half-wavelength in the operating frequency band (from 12 to 18 
GHz), so a mismatch with fi7ee space can occur. Therefore, transmission loss can be 

expected in this frequency band for the conical dielectric radome (without the FSS) as 
shown in Fig. 3.12. At 15 GHz, the transmission boresight loss of the dielectric cone 
without the FSS layer fitted is abou(4-, 4 dB. With the inclusion of the slotted array, a 
well defined narrow passband is formed, centre at 15 GHz, with a loss about -2.5dB. 
Thus, it is apparent that the FSS layer is acting as a matching layer with the inductive 
properties of its slots. The residual losses of -2.5 dB with the FSS fitted arise 
principally from the mismatch with free space. The loss could potentially be improved 
if a half wavelength thickness is used. Further study is required to investigate the effect 
of the thickness on the FSS in a conical structure. For a planar FSS case, Callaghan et 
al [9] have already discussed the tuning of the FSS using various thickness of 
dielectric. However, the objective of the present study is mainly to investigate and 
model the effects of curved FSS in the near field region of an antenna. The presence of 
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the dielectric radome also distorts the feed pattern as shown in Fig. 3.13. The main lobe 

of the copolar feed pattern in the H-plane appears to be 'chopped off' with high side 
lobe levels rising rapidly at ±200 to ±300 scan. This could be due to the high incident 

angles encountered by the rays on the inner surface, which in turn would cause internal 

reflections inside the cone. The next few Sections will discuss the predictions of the 
three feed models using the TIA appromimation for the conical FSS and dielectric 

radome and will compare them with the measurements. I 

3.5.3 Results using the FN feed model 
Fig. 3.14 shows measured and predicted boresight loss of the FSS cone from the FN 
feed model over the frequency range 13-17 GHz. There is a clearly defined passband in 
both the measured and predicted plots. The FN model predicts a band centre 0.5 GHZ 
lower than measured. Discrepancy is encountered in the loss with 0.37 dB at 14.5 GHz 

compared to measured value of -2.5 dB at 15 GHz. The predicted radiation patterns 
give good agreements with the measured patterns in the H-plane up to angles of ±200. 
Results for the normalised copolar patterns at 14,15 and 16 GHz are shown in 

Fig. 3.15 to 3.17. When the frequency moves away from the band centre at 15 GHz 
i. e. 14 and 16 GHz, the measured plots show a rapid rise in side lobe levels at larger 

scan angles beyond ±200. The rapid oscillation of the side lobe levels in this region is 

thought to be due to constructive and destructive interference between the transn-dtted 

and reflected fields at the inner cone wall. There is poorer agreement in the E plane 
copolar pattern as shown in Fig. 3.18 at 15 GHz. However, the prediction is quite 
reasonable in the 40" plane as shown in Fig. 3.19. 

As expected, the crosspolar performance induced by the conical FSS is expected to be 

poor because of the steep angle of the cone. Levels up to -15 dB have been recorded. 
The high crosspolarisation is partly due to the wide ranging incident angles and field 

vector orientation local to the surface. The latter stems from the lattice formation on 
the curved surface. The FN feed model reproduces the crosspolar pattern quite well 
(Fig. 3.20). 

3.6.4 Results using the SPS feed model 
The SPS is a superposition of radiated fields from point sources in the feed aperture, as 
described in Sec. 3.3.2. Since the modal analysis routine requires plane wave 
incidences, the far fields of each point source have been used. Each point is located in a 
patch of each polar sector. It was found that a minimum of 5 radial and 17 azimuthal 
divisions are required, giving a total of 85 point sources to fit the desired measured 
pattern. This implies that for each FSS element the modal routine is called 85 times to 
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compute its current sources for each incidence. This has profound implications on the 

storage of computer memory for the Floquet modal expansions and runtime. 
Therefore, only the dominant Floquet mode i. e. p=q--O was used. The predicted far 
field feed pattern is compared with the measured one as shown in Fig. 3.21. 

The results for the boresight loss of the FSS cone are shown in Fig. 3.22. There is a 
well defined predicted passband, resonating at 15 GHz as measured. The maximum 
loss, however, is -0.633 dB compared to the measured value at -2.5 dB. There is 

general agreement in predicted radiation patterns in the H-plane up to ±200. Some 

normalised patterns are shown in Fig. 3.23 to Fig. 3.25 for frequencies near the band 

centre. Poorer agreement is encountered in the E-plane copolar patterns as shown in 
Fig. 3.26. The copolar pattern at 15 GHz is predicted quite well at the 400 plane 
(Fig. 3.27). And there is also general agreement in the crosspolar pattern except for 
higher peaks at ±100 scan angle at Fig. 3.28. 

3.5.5 Results using the PB feed model 
The PB feed model is a parallel beam emanating from the feed aperture. This is 

compensated by the phase difference in the ray path from the aperture to the FSS 

surface. Although there are 3794 slotted rings on the cone, only 882 are illuminated by 
the PB feed model. This is because the feed aperture diameter is only 96 mm. and is 
located at 554 mm away from the tip of the cone with a base diameter of 220 mm. In 

order to calculate the boresight loss of the FSS, the predicted radiated field of the FSS 

using the PB feed model is normalised with respect to the SPS predictions of the feed 

alone. The results is shown in Fig. 3.29. A well defined passband is predicted with a 
resonant frequency at 14.5 GHz a shift of 0.5 GHz from the measured value at 15 
GHz. Discrepancy in the loss is encountered with a maximum predicted value of 
+0.48 dB compared to -2.5 dB measured. Generally, there is agreement with the 
measured normalised copolar patterns only up to ±10() scan in the H-plane (Fig. 3.30 
to Fig. 3.32). Poor agreements were encountered in the E- plane and 40" plane as 
shown in Fig. 3.33 and Fig. 3.34 at 15 GHz. The crosspolar patterns at 400 plane is not 
reproduced very well (Fig. 3.35). However, the predicted peak crosspolar levels agree 
well with those measured. 

3.6 Conclusions 
An analysis based on a tangential infinite array approximation has been presented for 

predicting the far field radiation pattern of a conical frequency selective surface 
illuminated by a corrugated feed horn. The location of the passband was predicted 
fairly well by all three feeding models used, with some discrepancies in their boresight 
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losses. The SPS feed model could locate the measured resonant frequency better than 
the other two feed models. Although there are differences in the transnfission boresight 
loss, only the SPS feed model predicted a loss 

. at the resonant frequency, as 
expected in an antenna and radome system. With regard to the radiation patterns, the 

agreement obtained between the predicted and measured values is fairly good for SPS 

and FN feeding models especially at the passband centre. Nevertheless, there are 
descrepancies in the main lobe of the E-plane copolar pattern. At wide scan angles 
however the computer model did not accurately predict the fine structure of the side 
lobes. These may be due to inaccuracies of currents in the slotted elements and/or 
multiple reflections due to the internal wall of the cone and mutual coupling between 

the feed and FSS. In the present model only the source fields on the exterior of wall of 
the cone is calculated. One possible way of improving this model is to include the 

source fields on the interior wall of the cone as well. 

The SPS model called up the modal analysis routine some 85 times - 
for each point 

on the cone compared to only once per point for the FN model. This has an effect on 
the computer memory requirements as well as the run time. The poorer performance of 
the PB model is due to the larger conical FSS surface relative to the size of the feed 

aperture. This is because here there are 3794 elements but only 882 near the tip of the 

cone are illuminated. As compared to the other feed models the parallel beam depends 

on the size of the feed aperture which restricts the number of element illuminated. 

Better results have been obtained by Simpkin [11] for a larger rectangular feed relative 
to the FSS. It will be shown later that the PB feed model can produce fairly accurate 
predicted patterns in the finite current (FC) model for a smaller cone. This is 
demonstrated in Chapter 4. and 5. where the accuracy of the scattering from a curved 
FSS structure is assessed more fully. This was done by considering a finite size surface 
whose currents are solved using an integral equation formulation which takes into 

account the coupling of all the FSS elements. 
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Conical FSS (slotted ring elements) using TIA model. 
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CHAPTER 4.0 

FINITE CURVED METALLIC FSS 

4.1 Introduction 
This Chapter deals with the rigorous analysis of finite curved FSS consisting of 
metallic elements. The FSS is a conical array which is illuminated by the near field of a 
circular corrugated conical feed (Fig. 4.1). The problem is tackled using the electric 
field integral equation (EFIE) formulation for the thin cylindrical metallic structures by 

applying the method of moments (MOM) technique. Historically, the EFIE has often 
been used in electromagnetic scattering problems of aircraft and wire antennae [I]. 
Earlier literature on FSS has used the EFIE formulation for the two dimensional planar 
case using infinite array assumptions [2]. Recent research has dealt with finite but small 
planar arrays [3]. To the knowledge of the author, there is no published literature and 
data on the study of a conical FSS with dielectric substrate in a finite sense, that takes 
into consideration the coupling between all the FSS elements. A quasi static EFIE 
formulation with MOM is proposed here to account for all the interactions of elements 
on a small conical FSS. The near fields of the feed can be modelled as a non-planar 
illumination as before in the TIA model of Chapter 3. Only the SPS and PB feed 

models have been used in the computer model. For FSS applications, the elements are 
often thin compared to the wavelength, therefore they have been approximated here as 
cylindrical dipoles of small radius. 

The proposed ERE is derived from the original formulation for a free standing case. 
Section 4.2 describes how the original EFIE formulation is used after the boundary 

condition is enforced on a metallic conductor in free space. The curved FSS metallic 
elements are segmented and conformed according to their position on the cone. The 

equation is then weighted using the MOM technique [4] and solved by both elimination 
and iterative methods [5]. In practice, the FSS is supported by a dielectric substrate. If 

the curved FSS elements are backed by a dielectric in a finite sense, the boundary 

problem can become cumbersome. Although it is theoretically possible to take this into 

account by modelling cubes [6] or surface shaped basis functions [7], the memory 
storage involved would normally exceed available computing resources. Therefore, a 

quasi-static approach [8] has been used to account for the dielectric which is discussed 
in Section 4.3. The formulation is also availiable for a ferrite coating. The influence of 
this coating on a metallic structure is analogous to an aperture structure with dielectric 

coating and is discussed in Chapter 5. 
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Computer models were developed to predict the radiation performance of a small 
cone with metallic FSS dipole elements. The predictions and measurements are 
discussed in Sec. 4.4. 

4.2 Free standing finite FSS 
This section describes the analysis of a free standing curved FSS using the EFIE with 
the method of moments (MOM) technique. The scattering problem for metallic 
conductors can be solved by using the electric field integral equation (EFIE) which is 

obtained after enforcing the boundary conditions on the conducting FSS elements. The 
EFIE can be reduced to a linear system of equations using the MOM. This can be 

solved using the elimination method [5] or the iterative method with conjugate 
gradients [5]. In Sec. 4.2.3 and Sec. 4.2.4, both methods have been assessed and 
compared for computational time and accuracy of results. 

4.2.1 Integral Equation Formulation 
Each conducting element on the cone can be approximated by thin cylindrical segments 
connected at junction points to form a certain element geometry. It is assumed that the 
radius and segments are small compared to the wavelength and the wire length. 
Therefore, the electric currents are constrained to flow along the axis of each segment 
with no azimuthal components. The geometry of a 'curved' dipole is segmented as 
shown in Fig. 4.2. 

For a free standing metallic conductor, the boundary condition is given by, 

s+E .ý s =o (4.1) 

where J denotes the surface tangential vector. For a thin wire, S^ becomes a one 
dimensional linear vector lying along the axis of the conductor. The incident field Ri 

excites the conductor to produce the scattered field, Ps. 

where -E' = jo)A + V70 (4.2) 

The vector potential is, A =L'- f I(s)s^g(R)ds (4.3) 
41r 

segment 
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Fig. 4.1 Prototype of conical FSS 
1ý - 

onetallic dipole elements) 
in the measurements. 
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segments 

x 

Fig. 4.2 Arbift-ary oriented segments of two FSS dipoles. 
(For simplicity, each dipole here consists of two segments. ) 
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and the scalar potential is, 0= -I 
f q(s)g(R)ds (4.4) 

4; rc,, segment 

where I(s) and q(s) are the electric current and charge per unit length on the conductor 
respectively. 

The free space Green! s function is given by, 

X -jk,, R e -jk-R fe 
g(R) : --, --do -- (4.5) 

2; r RR 

The 0 variation in the cross-sectional area of the conductor segment is assumed to be 

constant because only a one dimensional current along the axis s is considered. 
and from the equation of continuity one has: 

q(s) = -1 X 
(4.6) 

jco ds 

Substituting Eq. (4.1) into Eq. (4.2) gives the EFIE as: 

Ep 
i. S^ =j 0A. S^ + ý'(P. ss (4.7) 

4.2.2 Method of Moments solution 
The method of moments (MOM) was first used by Harrington [4] to analyse 
electromagnetic problems in the 1960's. Since then it has become a popular technique 
because of the accuracy and versatility in analysing arbitrary electromagnetic 
structures. It is a numerical technique that is frequently used to solve linear integro- 
differential operator equations. A typical equation is the EFIE, where the excitation 
from an incident field produces a current I which needs to be determined. The 

unknown I can be expressed as a set of basis functions over a certain domain. The 
domain is the area or length where the current flows. This has been represented by 
linear sub-domains or segments of each dipole which conformed to the curvature of 
the cone. The electromagnetic coupling between segments is represented as a linear 

system of coefficients in the form of a linear square matrix. The solution to this system 
has been obtained using elimination method and iterative method. 

The EFIE in Eq. (4.7) is first weighted or tested using pulses as the basis functions. If 

the basis function of the unknown current is of the sarne type as the testing functions, 
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the MOM reduces to what is known as the Gaterkin's method. This has the advantage 
in the EFIE case where it produces a complex symmetric matrix. Consequently, the 
memory storage required is about half of that in the non-symmetric case. In this study, 
pulse basis functions are used for representing the unknown current and 
weighting/testing functions. The current pulses are located across the junction of each 
segment [9] as shown in Fig. 4.3a. Due to the derivative dependence on the current, 
the charge pulse functions are shifted by half a segment length (Fig. 4.3b). 

The pulse function is defined as: 

(s) =S- for s- M* n' Y2 <S<S 
+Y2 

=0 otherivise 

I 
(4.8) 

Since these segments are located on the cone which is three dimensional in nature, 
their positions can be defined by a vector 7n (n=J, 2,.., N) which spans from a global 

origin in a Cartesian co-ordinate system to the termination of each segment, as shown 
in Fig. 4.2. (N is the total number of position vectors to each end of a segment). The 

unit vector at the centre of each segment along the axis is, 

rn+l -rn 
s 
n+Y2 

1: 
n+1 -In: 

l (4.9) 

The incident field R' in Eq. (4.7) is weighted (tested) by the pulse p,., (s), thus 

s m+Y2 Sý 
f P. ' (s),, ds = P. sids -f PM f 

SM 
-Y2 s m-Y2 

s 
M+Y2 

-fP. sids 
SM 

=, üi. ( SM-SM-l- Sm+I-Sm-, 
M+ý / 

SM-ý12 +2s 
2) 

=, üi. i _F 
( 

m+ý12 
(4.10) 
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segments of a dipole 

Fig. 4.3a Current pulses at the junctions of segments. 

charge pulses 

Fig. 4.3b Charge pulses on segments of a dipole. 
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Similarly, for the vector potential term in Eq. (4.7): 

S 
m+Y2 

fjaA. p,,, (s) ds =j odl. -7 (4.11) 
mm 

SM 
-Y2 

(7 

+Y2 -Y2 

) 

Notice that centre of the pulse for the current term in the vector potential is located at 

rn. 

The scalar potential term in Eq. (4.7) is weighted as follows, 

sIss 
m +Y2 M+12 M+l 2 

f7a). p. ds f 
-s. sas= s (4.12) f (s), lp S 

2) 
ss 

ds 
S 

M+Y2) -Y2 
m -Y2 m -Y2 m -Y2 

As shown in Eq. (4.12), the derivative nature of the scalar potential has shifted the 

centre of the weighted charge pulse to m +Y2 and m -Y2' 
Thus the EFIE in Eq. (4.7) becomes, 

2i. -7 =j cal i /)+ 
2)(4.13) mm M+ M-ý2 mS 

(7 

+ý12 -Y2 

) 

ý21 -7S +ý12 M-ý12 

Since the current flows across the junctions of segments, the current pulse basis 
function is located across the rAh junction. Substituting Eq. (4.8) into the vector 
potential term in Eq. (4.3) gives, 

A =E-In(s) 4 
(n+I M) r(m) 

n+Y2, 
nsnnsn -Y "' Y 

I 

-Y 
I (4.14) 

;r 2 2 2 

where 

sn 

n Jg(Rmn)ds (4.15a) 
Sn-Y2 

s 
n +Y2 

= 

n+l 2 

M) 
n 

g(Rmn)ds (4.15b) 

Sn 
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This integral can be evaluated numerically or analytically. An analytical approximation 
given by Harrington has been chosen for convenience and simplicity. He has 

approximated similar terms like V by expanding the exponential in the Greeds function 

g in Eq. (4.5) as a Maclaurin series so that each term in the series can be integrated 

analytically. Only a finite number of the terms are required to give an accuracy of 1% 
[4]. 

q(s) = -1 X- -1 AI 
= -1 

[- 1,1,1 

jo) ds = joi Av jct) S"I-S, sn - Sn -1 

The above difference in the current pulse will shift the charge pulse by half a pulse 
width. Therefore, for every current pulse at the nth junction there a negative charge 

pulse centred at n -, 
V2 

and a positive charge pulse at n+ /I Y2' 

Substituting Eq. (4.16) into Eq. (4.12) for one of the scalar potential terms gives, 

4s 
,, y - 

If 

g(R s 
m 

! 2r 
2)d 2) 4; rc,, jo), & M "Y2 

ým 
+ Y2) n +1 

+Y2) 
n 

In LE n-I (4.17) 
jw4; re,, (sn+l 

-sn) (sn 
-sn-1) 

Sin-dlarly, the other scalar potential tenn in Eq. (4.12) is obtained as, 

)n+l ým _y 2 -Y2 2)n 
m Irco 

- In 
(snoLl 

n n-I 
4S 

-Y2) jco4 - Sn) (Sn 
-Sn-1) 

(4.18) 

Substituting Eqs. (4.14), (4-. 17) and (4.18) into the weighted EFIE in Eq. (4.13) gives, 
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Ri. F 
(m 

+Y2 - 
7m 

-Y2 

jo)po n+ (M)n +Y2 - s V(M)n 
-Y2 

Sn nn +Y2 4; r -Y2 

+ Y2) n+l +n In n 
Y2) 

n 
jco4; re,, (sn+1 -sn) (sn -sn-1) 

)n +1 ýtn 
2)n M-Y2 

n 
-Y2 

n-I n jw4; r. 6', (S,, 
+]-S, 

) (sn 
-sn-1) 

Eq. (4.19) can be expressed in matrix form as, 
[Yml ý[Amn][Inl 

where 

i -i - m +Y2 m Y2 
) 

YM =Ri. F 
M+Y2 -Fm-Y2) 

-1 k02 gn+k2 V(tn)n 
+Y2 Amn 

jco4; reo 

( 
M)n 

-Y2 
sn 

-Y2 0nsn +Y2 

(4.19) 

(4.20) 

(4.21) 

?n +Y2 m -Y2 

n+l 
+ 

)n 
2)n 

+1 )n 
+Y2)n Y2 

n-I 
-Y2 

n 
Y2 

n_jj (4.22) (sn+l (sn 
+1 - SO (sn 

- sn -1) -sn) 
(sn 

-8n-1) 
i 

[In] and [Yn] are column matrices of the unknown current and excitation due to the 
incident fields respectively. m and n=1,2 ...... IT, where N is the total number of current 

pulses. Note that k,, = 
2; r 
A 
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is a square matrix that includes the coupling between the FS S segments with the 
leading diagonal consisting of self coupling terms. 

4.2.3 Elimination method 
The matrices equation in Eq. (4.20) can be solved by the elimination method like 
Crout's factorisation with partial pivoting [7]. Each variable in the matrix is eliminated 
one at a time so that one ends up with a triangular matrix of coefficients. These 

coefficients are substituted back into the triangular matrix to obtain the solution. This 
is readily available in the NAG library Mark 13 version in the subroutine F04ADF [ 10]. 
Since the Galerkins' method gives a complex symmetric matrix for the EFIE, others 
like Canning [I I] have solved it by exploiting the symmetry with half the storage and 
computation time. Nevertheless, the Crout's factorisation routine was used because it 

was available during the development of the computer model. Sometimes, however, 

the elimination method can suffer from slow speed of computation and inaccuracy due 

to ill-conditioning problems. Therefore, another altemative is to use the iterative 

method, which will be discussed in the next section. 

4.2.4 Iterative CG method 
Recent studies have suggested that iterative methods have certain advantages over the 
elimination methods in three cases [12]. The former method can exploit storage 
reduction in the system of matrix if its elements are sparse or redundant. This kind of 
systems arises in differential formulations in electromagnetics. Iterative methods are 
preferred if the computation of the iterative algorithm is faster than the elimination 
method. In some cases iterative algorithms are superior to MOM solutions due to in 
built convergence tests and monitoring of the error. The idea behind the iterative 
solution is to minimise the error function after each iteration. The error function 
depends on the difference between the left and right hand side of the equation. 

One of the more popular iterative algorithms used in solving electromagnetic problems 
is the conjugate gradient (CG) method. This method was first developed independently 
by M. Hestenes and E. Steifel for the solution of a matrix equation [13]. The novelty 
of this method is that the iteration converges to a solution in a finite number of steps 
and to a smallest minimum to the error function. But this method is slower compared 
to the conventional elimination method for small matrix equations. 

For the integro-differential equation like the EFIE, the CG method coupled with the 
Fast Fourier Transform (FFT) has been quite successful in solving for planar FSS 
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(infinite and finite types) [3], and dielectric cylinders [14], solid 3-D metallic structures 
[15]. The speed of the FFT stems from being able to use multiplication in the spectra 
domain in place of discrete convolution in the space domain. The matrix derived from 

the EFIE in a regular geometry, as described above, has terms which are arranged in a 
cyclic convolution manner, so that the FFT can be combined with the CG method to 

speed up the computations. However, this is not true for multiple and arbitrarily 
oriented structures such as those in a conical FSS. 

An alternative solution for such a problem is to apply the CG method directly to the 

system of matrices without using the FFT. A suitable matrix has been derived from the 
integral equation using MOM as in Eq. (4.20). This form of CG method has been used 
in the present analysis for a conical FSS. The CG performance has been compared with 
the elimination method with respect to computational speed and memory. No data is 

available in this subject of finite and curved FSS. 

Details of the derivation for the CG algorithm can be obtained from [13]. However, 
only the version proposed by Sarkar [16] is used here because a certain amount of 
memory can be saved. A summary is presented here to show the order of each step of 
the algorithm. 

To apply the CG algorithm for the weighted integral equation in Eq. (4.20), it must be 

rewritten with a residual column matrix [R],,, introduced on the left hand side of the 

equation as shown here. 

[R]o = [A][I]o - [Y] (4.23) 

The subscripts used in Eq. (4.20) have been neglected in Eq. (4.23) for convenience. 
The subscript of the matrix denotes the number of iteration, so 0 is the start of the 
algorithm. 

Starting with an initial estimate [1]0 
, new estimates [I],, 11121--of the solution [I] 

are calculated after each iteration. Successive estimates give a closer solution to 

equation Eq. (4.23) than the previous one. At each iteration, the residual [R]nj is 

computed so that the nonn 
11 [Rlnill is used as a measure of the accuracy of the 

estimate If there is no rounding off error, one will reach an estimate [I]mat 

83 



which [R],,, is close to zero. Computation error can arise in the calculation of these 

matrices (as shown in the following summary) because of numerical accuracies of the 

computer or mathematical routine. Such round-off errors would not allow the 

algorithm to converge. The CG algorithm derives its name from the fact that the search 

vectors [P]O, [P],,.. are mutually conjugate i. e. [P],,, vector is orthogonal with respect 

to [A] A. On its own [A] could be a non-singular asymmetric matrix. Therefore, it 

can also be multiplied by A* to form a new operator to ensure a symmetric and 

positive definite matrix. So that the CG can be universally applied to the solution of 
linear equations. 

The CG algorithm can be summarised as follows: 

An initial guess is required for the current coefficients in Eq. (4.23) and usually they 

are set at zeroes, so that the column matrix becomes [1]0 =[O]. 

The order of operation is as shown: 

1. [P]o = -b-, [A]*. ([A][I]o 
-[Y]) 

112 

3. [1], 
,;. +1 + 

4. [R], 
ý+, =[R], 

5. bn, 

+1112 

-b,.; [A]*[R], 

7. Go to step 1. until the error criteria e> 

II[R],, 

i 

ý 

111Y111 
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where the subscript ni is the number of iteration and the norm is defined as 
jjbI12 

=(b, b) =b. b * 

b-I =I [A]*[R]o 

Because of the nature of the derivation obtained from Sarkar [16] the initial coefficient 
b-1 start at iteration number -1, which precedes 0. 

[A]* is the conjugate transpose square matrix of [A] 
. 

The algorithm shown here will reduce the error norm 

II[R],, 

i 

11 

or root mean square 111Y111 

(RMS) error after each iteration. The loop of operation will terminate after a certain 
finite number of iterations with an error criteria e defined by the user. This is a 
minimum criterion that determines the accuracy of the iterative CG solution. 

Both the elimination and CG method lead to the same answer for an error criterion or 
accuracy e of 0.1% for a 1760xl760 matrix size. The convergence rates for this 
impedance matrix around the resonant frequencies for a free standing conical FSS are 
shown in Fig 4.4. The size of the matrix depends on the feed model. In this case the 
SPS feed model is chosen. It is observed that the convergence rate at 13.5 GHz slows 
down after about 100 iterations before finally converging after 620 steps. But at 14 
GHz, the matrix converges rapidly from the 100th step onwards terminating at 246 
steps. 

It appears from the results shown in Fig. 4.5 that the computational time for the CG 
method varies with frequency. It changes from 47 steps (L 13 hours) at 18 GHz to 629 
steps (6.41hours) at 13.5 GHz, the resonant frequency. This is in contrast to the 
elimination method, for which the computation time remains constant at about 5.5 
hours. Therefore, it is evident that the CG method is superior in speed of computation 
across the frequency band of the conical FSS except for the resonant frequency. 
However, it did not converge at all when the quasi-static approximation for the EFIE 
was used (Sec. 4.3.1). This is caused by possible round off errors in the computation of 
the coupling terms in the impedance matrix. Therefore, the elimination method was 
adopted in the computer model because it is computationally more stable. 

86 



It was also found that when the RAM, which was used to store the impedance matrix, 

was exceeded by 20%, the CG would slow down considerably. In the SUN 

workstation, when the storage of the matrix exceeds the RAM, the hard disk is 

accessed to compensate for the extra memory. Thus, it would appear that the speed of 
the CG and elimination method is machine dependent. In practice, the RAM is often 
restricted by the technology of computer hardware. In the present case, the maximum 
amount of RAM allowed in the SUN SPARC II is 126 Megabytes although there is 

only 96 Megabytes available in the current workstation. For the small cone FSS that is 

analysed in this work, a minimum of 97 Megabytes is required. In most practical FSS, 

the demands are for a much greater memory storage. Thus the elimination method is 

preferred if the impedance matrix memory storage is much larger than the RAM. 

For a NXY matrix, the memory storage can be reduced by a factor of about N times 
if every matrix element is computed after each iteration. However, the computing time 

was found to be excessive in the present case because of excessive computations for 

each matrix element. 

4.2.6 Radiated and scattered fields 
The radiated fields from the FSS cone can be computed from the surface radiation 
integral with the surface electric and magnetic current sources enclosed by a closed 
surface around the cone and feed system. The electric current source on each metallic 
dipole can be calculated from the solution of the EFIE formulation. The radiated fields 
from both current sources in the aperture regions of a free standing curved FSS is 

calculated using the radiated field from the feed aperture. However, for a dielectric 
FSS, it is an intractable problem to determine these current sources in the dielectric 

region. Therefore it has been approximated by fields radiated from the feed aperture as 
well. Thus, the total field radiated from the cone is the sum of the scattered fields from 

the cone and radiated fields from the feed aperture. 

For the conducting segments with n=1,2.. M (W is the total number of current pulses), 
the scattered field at a distance r 

,, 
from the centre of each current pulse to the receive 

feed is given by: 

-jk. r. 

n) 
-j o), u,, e f eik n ds 

4; r rn 
segment 

Fn In 

I 
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-jk 1-- 
w#O e= (4.24) -(1 

JF 
4; r Fn 

[in 

, n-r n] 

where 

-=f in eik -, "t ds In 

segment 

n n+ 
jk,, Ft. F. + jk F In si e ol*r In in 

2e 
ds n ds f2n 

+Y2 
Y2 

Ass -Sn (4.25) =. In Sn 
-Y2 

(Sn 
-Sn-Y2) + In ý, ýY2 

(n 
+Y2 

Therefore, the total scattered field from the FSS cone is the sum of all the current 

pulses given by, 

n=N' 
-E scat 9scat 
c, 
' 
, 

(4.26) 
ne ll:: ýd n 

n=l 

The total radiated field from the FSS cone is, 

Sca Rtotal Rfeed + Bconet (4.27) 

where Efeed is the field radiated from the feed aperture. 

4.3 Dielectric and ferrite coated metallic FSS dipole 
Since the width of the FSS element structures is usually thin, an arbitrary geometry can 
be formed by interconnecting thin metallic segments. This thin segment supported by a 
thin dielectric substrate can be modelled approximately as a cylindrical metallic 
segment with dielectric coating. The width of a flat dipole segment can be 

approximated by the diameter of the cylindrical segment and the thickness of the 

substrate is equivalent to the thickness of the cylindrical coating. This approximation 
considers the dielectric acting as a continuous load on the conductor. The analysis was 
first derived by Popovic [8] for a dielectric and ferrite coated antenna but it has been 

applied here for dielectric and ferrite coated metallic elements in a finite conical FSS. 
The quasi static approximation for a dielectric coated antenna, requires the thickness of 
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the coating should be less than twice the radius of the dipole. The permittivity and 
permeability of the coating should be less than 10 and is assumed to be homogeneous. 
One advantage of this method is that memory storage and the computing time is 

virtually the same as for the free standing case. This is based on a quasi-static 
approximation of electric and magnetic fields in the transverse plane of the segment 
axis. 

4.3.1 Quasi-static equivalent of dielectric backed FSS 
The flat metallic dipole segment of the FSS supported by dielectric substrate is 

modelled here as a cylindrical dipole segment with dielectric coating. The width of the 
flat dipole is assumed to be the same size of the diameter of the cylindrical dipole. The 
thickness of the substrate is approximated by the thickness of the coating. Consider a 
metallic dipole segment of radius a coated with a layer of dielectric with permitivitty 6 
where the outer radius is p== b as shown in Fig. 4.6. Let the electric current flowing in 

the segment be L The dipole segment is assumed to be a perfect metallic conductor 
with infinite conductivity. The dipole segment with a cylindrical coating is 

approximated as inner and outer cylindrical layers of polarisation charges at o=a and b 

respectively with a current I flowing along the segment axis in the inner radius. 

For te static case, the metallic segment with a cylindrical coating is assumed to be 
infinitely long. The inner cylinder of radius a and outer radius b enclose a line source in 
the axis with charge per unit length q and length L. According to Gauss's law [ 17] the 
total outward flux of the electric displacement D over any enclosed surface in a 
dielectric medium is equal to the total free charge Q enclosed in the surface 

Thus, jAhdS 
=Q '(4.28) 

cylindrical 
surface 

For the cylindrical surface, Eq. (4.28) becomes 

D ^. A 2; r ,, n pL =qL 

This implies that D=q (4.29) 
'0 2; rp 

The subscriptp denotes the radial component of the flux D. 

The electric field intensity, 
. 
9p, is given by, 

Dp 
ý q, , EP, o = Epfi =-n =n (4.30) 

6 2; rpe 
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Fig. 4.6 Metallic dipole segment with dielectric and ferrite 
coatings represented by electric charge and 
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,0 
is given by, But the polarisation charge vector P 

'0 
(4.31) P= Dp -. 6,, Ep 

Substituting Eq. (4.29) and Eq. (4.30) into Eq. (4.3 1) gives, 

q-qq (4.32) 
2 zp 2 irp c 2; rp( er 

Therefore, at the inner radius, p=a, the polarised charge vector is Pa, 

iý =q1-'n (4.33) 
2m( er 

And, at the outer radius, p=b, 

P=q (4.34) n 2; rb r) 

The polarised charge per unit length q,, at p=a is, 

;rI, 

q -h -! - 1-n. (-n^)ado 
a 

Pa-( ^)dS,, f 
2= 

cylindrical 
Cr 

circumference 

= --q(I (4.35) - 

(Note that the integral over the surface S is reduced to a line integral over the 

circumference Sc because of the charge density q. ) 

Since the dielectric encloses a line charge per unit length of q at p=a, the total charge 
density qa at p=a is the sum of q and polarised. charge density q,,, - 

q',, =q +q,, =q -q(l 
1 ( -1 dI) 

er er er 7 Co ds 
(4.36) 
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Similarly, for the polarised charge density qb at the outer radius p=b, the nonnal 

vector A is pointing outwards. So 

jp "r qI,. n)dS,, f-In (n^)bdo qb bi-O 2; zb , yli,, d ,, I 
", "Ce 

=(I -1q -1 d, 
(4.37) 

ler 

) 

6r ico ds) 

The radial polarisation current density is, - (4.38) jp OPP 

Note that the volume polarisation charges in the coating do not exist because the 

coating is homogeneous. 

4.3.2 Quasi-static equivalent of ferrite backed FSS 
The flat dipole segment of the FSS with ferrite substrate is also modelled in a similar 
way to the dielectric coated segment in the previous section. This is now represented 
by a cylindrical dipole segment with ferrite coating. It is assumed that the metallic 
segment and coating is a infinitely long quasi-static structure. Therefore, in a ferrite 

coating of thickness (b -a), the magnetic field intensity R would circulate around the 

segment of radius a with current L Ampere! s law states that the circulation of the 
magnetic field intensity around any closed path is equal to the free current flowing 
through the surface bounded by the path 1. 

Using the Ampere! s law, 

jFI. jI- =1 (4.39) 
cylindrical 
circumference 

Therefore, for the cyfindrical metaffic segment, 

(4.40) 
2; rp 

Eq. (4.40) implies that the magnetisation vector is also circulating around the 

cylindrical surface with the centre at the segment axis. 
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The 0 component of the magnetisation vector Mý is given by: 

MO =(P,, -I)HO 

Substituting Eq. (4.40) into Eq. (4.41) yields, 

MO = (, U,. - 1) 1 
2; rp 

There is also a radial magnetisation current density of 

(4.41) 

(4.42) 

in the coating. 
t6s 

The magnetisation current density at p=a is given by, 
- 

=MO, A x(-h) =mos- Ja 
,0 

(4.43) 

From Eq. (4.42) and Eq. (4.43) it is evident that the surface magnetisation current Ia at 

p=a is, 

Ia ý (Pr (4.44) 

However, the total current at p =a is the sum of the magnetisation current Ia and the 

conducting current L Therefore, the total current I,, is given by: 

I'a ýPr, (4.45) 

At the outer surface, the normal vector n- is pointing away from the surface. Therefore, 

the surface magnetisation current density will flow in the reverse direction and is given 
byij 

A 

ns ib ýMOOXý ý-MOý (4.46) 

So the surface magnetisation current at p==b from Eq. (4.42) and Eq. (4.46) is, 
Ib ý'-(Pr -1), (4.47) 

In general, for dielectric and ferrite coatings, the quasi-static approximation can be 

represented by the currents Ia and Ib and charge densities q'a and qb on the two 

cylindrical surfaces respectively. The total electric field is computed along the segment 
axis. Here the electric field due to the radial polarisation and magnetisation currents is 

zero because the radial currents only exist in the coatings. When the electric field due 

to this coated segment is computed along the axis of any other segment, the field due 
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to the radial currents can be neglected, because these radial currents are uniforn-Ay 
distributed in all directions in a small area. Thus, the fields due to the metallic segment 
and the coating are the contributions from a cylindrical layer of charge density q,, and 

current I'a at p=a, and another layer at qb and Ib atp=b as shown in Fig. 4.6. 

The EFIE in Eq. (4.7) for a free standing FSS with cylindrical radius a can be rewritten 
as : 

jo)po 1 -1 XI 
S 

f Igg(k)ds + g(Ra)ds (4.48) 
4; r 4; r, 60 

f 
jcO d 

segment segment 

( 

Substituting Eqs. (4.36), (4.37), (4.45) and (4.47) into the EFIE in Eq. (4.48) yields, 

Ej =J 
w1jo j P, IS9 (R,, ) ds -j(, u,, - 1) Igg (Rb) ds 
4; r 

- segment segment 

I (-I X) 
ýl 

X 
4; rc,, 

f 
T- -jw Is ) 

iýg(k)ds +fI-6 V79 b)ds 
oj ds) 

_segment 
r segment( 

(4.49) 
R,, and Rb are the distances from the inner and outer radius to the point of 

observation P as shown in Fig. 4.7. 

If the metallic segment is coated by dielectric alone, pr =1, the current component in 

Eq. (4.49) is not dependent on the permeability of a ferrite. 
It has been shown in Eq. (4.22) that the impedance matrix elements for a free standing 
FSS are given by: 

2 
k02(, )n 

_, 
s +k 02 V(M) 

n+ý12 
s A, 

nn jo)4; Tgo 

(n2n 

-ýI2 nn +ý12 m+ý12 m 7Y2 

n +1 )n )n+l 
2)n 

ým 
+ Y2)n 

m +Y2 
n-I 

-Y2 
n 

ým 
-Y2 

n-I (4.22) (sn 
+1 - SO (sn 

- Sn -1) 
(sn+1 

-sn) 
(sn 

-sn-1) 
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metallic dipole 

dielectric 

Fig. 4.7 Geometry of the conical FSS and the model 
of a dielectrically loaded metallic segment. 
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Therefore, if Eq. (4-48) is compared with Eq. (4.49), it is evident that only a simple 
modification in the impedance matrix is required to account for the dielectric loading, 

so the new impedance square matrix [A. j for the dielectric coating becomes, 

, 4. )n +k2a V/(M)n 
+ý12 - 

+ý2 
-1 

j(k02 
aV A, = -ýI2 

s0s/- 
(F 

+ý12 n jw4; Tco n2n -ýI2 nn2m2 m-Y2) 

)n+l a ým )n )n +1 a ým 
2)n 

(-'Ym+Y2 
n 

+Y2 
n-I 

aýM-Y2-n 
--Y2 n-I 

Cr 
(sn+l 

-sn) 
(sn 

- Sn (sn+l 
-sn) 

(sn 
-sn-1) 

2)n+l 2)n _y 
n+l b ým 

+y b ýM b ým 
2)n 2 + Y2) 

2- 
Y2 

n n-I n n-I 
(Sn+l 

-Sn) 
(sn 

- Sn 
FSn 

+1 - Sn) (Sn 
-Sn-1) 

(4.51) 

Where, 2)n+l g(R 
)dsP 

(4.52) 'p4m +Y2 
n m+y2, n+Y2 

Sn 

)n Sn 
gR dsP (4.53) P4M +Y2 

nf m+y2, n-y2 
Sn 

-1 

2)n 
+1 

Sn *1 

and P=f g(R 
_y 

sP (4.54) -Y2 
nm2 2)d Sn 2"' +Y2 

)n 
R 

_y 
sP (4.55) 

2 _y 2 
PýM-Y2 

n-I 
fm2, 

n 2 

)d 

Sn 
-I 

denotes the radius a and b. 

The scattered far field from each current pulse across the junction of the segments is 
computed in the same manner as the free-standing case as described in Sec. 4.2.5. But 
now the current has been modified by the dielectric effect. This is because at far fields, 
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F is large, so the value of they/ term in Eq. (4.5 1) at p=a and b is numerically the n 
same. Therefore, the scalar potential terms in Eq. (4.51) will cancel each other. 
Effectively, Amn is dependent on the vector potential which varies with current I only. 
The total radiated field from the FSS cone is the sum of the scattered fields from each 
current pulse that has been modified by the dielectric coating, and the radiated field 
from the feed alone as shown in Eq. (4.27). A computer model was developed using the 

quasi-static EFIE to predict the far field radiation patterns of a dielectric FSS radome 
enclosing a feed. This has been called the finite current (FC) model here because the 
interactions of all the FSS elements are treated in a finite geometrical sense. The 

predictions were compared against the experimental results from a prototype cone as 
discussed in the next section. 

4.4 Results 
In this section, the experimental results are used to validate the predictions obtained 
from the computer model using the quasi static approximation of the EFIE. The 

geometry of the cone and feed system is the same as Fig. 3.8 in Chapter 3. Fig. 4.1 

shows the actual FSS cone covering the corrugated conical feed in the experiment. At 
this stage of the experiment, an ADC (Analogue to Digital Conversion) card was 
installed in the computer to automate the set-up as described as described in Sec. 3.5.2 
[18]. This is to convert the analogue signal from the vector network analyser into 
digital data for storage purposes. The amplitude and phase were measured in the set- 
up as previously discussed in Chapter 3. But the ADC software enables both 

measurements at each angle with a frequency scan as well so that the radiation patterns 
can be taken over a wider frequency range compared to the spot frequency 
measurements made on the large FSS cone in the earlier work. 

The orientation of the FSS elements in relation to the feed electric field is shown in 
Fig. 4.7. A conical FSS was constructed from a planar configuration with two identical 
half sectors representing the top and bottom parts of the surface on the same sheet. 
This is then wrapped around with the metallic dipoles on the exterior and glued on one 
side to ensure symmetry in the cone. Each sector had the array already printed on a 
0.1 mm thick dielectric substrate with er=3 . The length of each flat metallic dipole is 
10.0mm, the width 0.5 mm and the element spacing is 12mm arranged in a square 
lattice. Therefore this is modelled as cylindrical dipole of the same length with radius 
a--0.25 mm and a coating of O. Imm (b-a). The cone is just over 30 cm long with a 
base diameter of 12.6 cm. The feed aperture has a diameter of 9.6 cm. The number of 
elements failing within the area of illumination in the SPS and PB feed model are 352 
and 234 respectively. Each dipole is divided into 6 segments. Therefore, the total 
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number of matrix elements in the MOM is 1760X1760 for SPS and 1170XI 170 for PB 
feed models. 

In Sec. 4.4.1. the measured transmission response of an array of metallic dipoles backed 
by the conical dielectric substrate surface will be compared with the predictions using 
the FC computer model for the dielectric loaded EFIE formulation. Predictions with 
modal analysis for a planar infinite array will also be used to check the validity of the 
dielectric loading. In Sec. 4.4.2 the results of the radiation patterns will be discussed. 
The SPS and PB feed models have been used to compute the fields radiated from the 
feed aperture. 

4.4.1 Transmission response 
The predicted transmitted response of the conical FSS is obtained from the total 
radiated field from the FSS normalised with respect to the radiated field from the feed 
(Eq. (4.27)) at boresight. The transmitted response was estimated using the modal 
analysis for an infinite array of the same lattice and element geometry, at TE and TM 
incidence at 45 degrees. TE is defined as the electric field polarised along the dipole 
axis and TM with magnetic field orthogonal to it as shown in Fig. 4.8a and Fig. 4.8b. 
respectively. The dielectric cladding for each cylindrical dipole in the conical array FSS 
is assumed to be the same thickness as the substrate of the planar array. Fig. 4.9 shows 
a comparion of the measured results with the predicted transmission responses from 
the SPS and PB feed model and the modal analysis. Both feed models predicted a 
reflection band centre at 13 GHz with the SPS predicting a sharper null up to -19.0 
dB. The measured band centre, however, is located at 12.4 GHz a shift of about 0.6 
GHz from the predictions with a null of about -12.0 dB. For the planar array, the TE 
incidence has predicted the band centre at 12.6 GHz which is closer to the measured 
value whHst TM incidence gives 13.6 GHz. It also predicts a sharper null about -35 dB, 
because the planar array is supposed to be infinite. Therefore, it appears that the 
curved FSS (FC model) gives an average band centre location between the TE and TM 
incidences of the infinite planar FSS. A slight kink is observed in the measured 
response at 12.9 GHz which was predicted by the SPS at 13.6 GHz although the 
effect is more acute. The quasi-static EFIE was also checked for a free standing 
conical array using the SPS feed model. Fig. 4.10 shows how the predicted band centre 
is shifted by about I GHz from about 14 GHz to 13 GHz of the dielectric case. The 
predicted transmission response is also shallower and broader than the dielectric case. 
This confirmed that the quasi static approximation can be used to load the EFIE in 
order to shift the resonant frequency. 
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Predictions from the FC model using the-SPS feed modelling has been assessed for 

various thickness of the dielectric. Fig. 4.11 shows a shift in resonant frequency from 

13.0 GHz, 12.8 GHz to 12.6- GHz as the thickness increases from 0.1 mm, 0.1 5MM to 

0.2 mm. The resonance also tends to get shallower as the thickness increases. It 

appears from the observations, that an equivalent thickness of 0.15 mm. gives the best 

predicted transmission response although there is still a discrepancy of 0.4 GHZ in the 
frequency shift. This could possibly be due to the dielectric regions in the unit cell on 
the curved surface which have not been taken into consideration. The quasi-static 

I model only accounts for loading from the thickness of the dielectric substrate. 
L --- 

0 

-5 

m -10 

CL) -15 3: 0 
-20 

-25 CD 
- 30 

-35 

-An 

Comt)arinsz Dredictions from FC model with modal analvsis. 
lull I 

--- ---- ..... . ...... 

..... ..... 

. .... ........... 

measured 
SPS predict. 
PB predict. 
TE predict. 
TM predict. 

Iý 12 13 14 15 16 17 18 
Frequency, GHz 

Fig. 4.9 Passband response of the conical FSS. 
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4.4.2 Radiation patterns 
The following discussion is devoted to the radiation patterns in the transmission band 
because of their importance in radome designs. The measured reflection band is in the 

range from about 12.2 to 12.6 GHz as shown in Fig. 4.1 1. The FC model is used to 
I predict the far field radiation pattern for a conical array of metallic dipole elements. 

4.4.2.1 H-plane 
The H-plane copolar patterns in the transmission band at 12,15 and 17 GHz can be 

found in Fig-4-12a to Fig. 4.14a with SPS predictions and Fig. 4.12b to Fig. 4.14b with 
PB predictions. It can be seen below the reflection band at 12 GHz, when the FSS is 

transmitting, the main lobe of the measured feed pattern lobe has been distorted. The 
SPS and PB predictions also show this distortion and the rise in the sidelobes at ±300 

scan. 

Above the reflection band at 15 and 17 GHz, there is very little distortion in the main 
lobe of the feed pattern although the sidelobe levels tend to increase in the presence of 
the conical FSS. It seems to indicate that the effect of scattering within the metallic 
FSS has been reduced when the frequency is above the resonance region. This is 

confirmed by both SPS and PB predictions. There is slight discrepancy in the boresight 
losses about 1.5 dB in the predictions at 15 GHz. The cross polar levels in the H-plane 

of the conical FSS in the transmission band are very low, about 40 dB which is 

confirmed by both feed models. 

Although the models are not able to locate the measured band centre at 12.4 GHz of 
the FSS, the resonant pattern can be compared with the predicted copolar patterns at 
1 13 GHz (the band centre for the SPS and PB feed models) as illustrated in Fig. 4.15a 

and 4.15b. The measured results seem to suggest that the fields are scattered to the 
side walls at about ±120 scan, giving a small null at the boresight. It would appear that 
the electromagnetic energy at the boresight is diverted to the side walls at the resonant 
frequency. The PB shows better agreement on boresight with side lobes higher than 
the measurements. 

4.4.2.2 E-plane 
The E-plane copolar patterns in the transmission band at 12,15 and 17 GHz are shown 
in Fig. 4.16a to Fig. 4.18a with SPS predictions and Fig. 4.16b to Fig. 4.18b with PB 

predictions. At 12 GHz, the main lobe of the measured feed pattern has been made 
reduced by the presence of the conical FSS. The SPS also predicted a narrower 
pattern but higher side lobes at ±25' scan. The nulls are predicted quite accurately at 
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±20'. The PB model predictions are poorer with a narrower main lobe, and the first 

pair of nulls are located at ± 180. 

At 15 and 17 Gliz, a minor 'shoulder' distortion appears in the main lobe of the feed 

pattern at ±150 with the inclusion of the conical FSS. On the whole, there is lesser 

scattenng within the metallic FSS when the frequency is above the resonance region. 
Broadly speaking, there is fairly good agreement with both SPS and PB predictions. 
The cross polar levels in the E-plane of the conical FSS in the transmission band are 
very low, about 40 dB which is confirmed by both feed models. 

The measured copolar pattern at 12.4 Gliz, the reflected band centre of the FSS, is 

compared with the predicted patterns at 13 GHz, the band centre for the SPS and PB 
feed models, as illustrated in Fig. 4.19a and Fig. 4.19b. The measured results seems to 

show that the fields are scattered to the side walls at about ±100 scan, giving a small 
null at the boresight with more energy diverted to the right side. This could be due to 
the slight misalignment of the feed with respect to the axis of the conical FSS. The PB 

model seems to show a better prediction compared to the SPS model. 

4.4.2.3 450 plane 
The'450 copolar patterns show similar trends to the H-plane at the frequency band as 
mentioned above. Representative copolar results at 17 GHz are compared with the 
SPS feed model in Fig. 4.20a and with the PB model in Fig. 4.20b respectively. It is 

expected that the measured crosspolar levels in the transmission band are higher. Peak 

crosspolar levels of up to -26 dB at ±120 were measured. The SPS predicts slightly 
higher sidelobe levels generally as compared to the PB model (Fig. 4.21a and 
Fig. *4.21b). 

Thus, ftom this above discussions, the predictions from the computer model gave 
generally good agreements with measured patterns in the transmission band. Both the 
SPS and PB feed models using the quasi static EFIE approximation gave comparable 
predictions in the radiation patterns for the principal and 450 planes. The FSS and feed 
interaction at the transmission band is less acute as compared with those in the 
reflection band, judging from the copolar patterns. The quasi-static EFIE could 
account for the shift in resonant frequency which is due to the presence of the 
substrate. The predicted shift however is less than the measured value because only the 
thickness of the dielectric substrate is taken into account in the quasi static 
approximation. The dielectric region in the unit cell area has been neglected in this 
simple model. 
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4.5 Conclusions 
A quasi-static formulation of the ERE using MOM has been used to account for the 

coupling between all the metallic FSS elements on a small cone. Two mathematical 
techniques were used to solve the matrix system from the MOM method of solution. 
For a free standing conical FSS, it was discovered that the iterative CG method is 
faster than the conventional elimination method if the computer RAM is sufficient to 

cope with the size of the impedance matrix. Moreover, the computation of the CG 

algorithm is more rapid for frequencies away from the resonant frequency, but the 

e lin-dnation method maintains constant computation time across the frequency band. 
The speed of computation for both methods is also machine dependent. For a practical 
conical FSS, however, it is required to model the dielectric backing using a quasi static 
approximation. Due to computer round-off errors in the calculation of coupling 
element in the matrix, the CG method did not converge. Thus the elimination method 
was adopted in this case. 

The quasi-static approximation with the EFIE formulation has been applied in the 

computer model and solved for a conical FSS with metallic dipole elements using 
MOM. The FC computer model is able to predict the radiation patterns in the 
transmission band of the conical FSS which encloses a corrugated conical feed. Both 
PB and SPS feed models give comparable predictions, but the reflection band centre is 
higher than the measured. This could be due to the size of the dielectric region in the 

unit cell area which is considerably larger than the thickness. It has been shown that by 
increasing the theoretical thickness, an equivalent frequency shift is produced in the 

predictions. 
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Conical FSS (metallic dipole elements) using FC model. 
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Conical FSS (metallic dipole elements) using FC model. 
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Conical FSS (metallic dipole elements) using FC model. 0 
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Conical FSS (metallic dipole elements) using FC model. 
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Conical FSS (metallic dipole elements) using FC model. -20 ...... 

-25 

-30 

-35 

- SPS predicted 
-4b- FSS measured 

- 40 L"i-LAJ IA- I- - 111 11 . -1 
11 Ml.. 1 I 

60 -4-0 -20 0 20 40 so 
Scan angle, degrees Fig. 4.21 a 45 degrees plane crosspolar pattern at 17 GHz 

using the SPS food model. 

-20 

-25 

-30 

a 
& 

-35 

p13 prodlcted 
1 

FSS macournd 

1 

-40 
L-J- II Ak II Ib -I. 11 11.1 11 MU 

. 
111 

60 -40 -20 0 20 40-- 80 
Scan angle, degrees 

Fig. 4.21 b 45 degrees plans croompolor pattern at 17 GHz 
using the PB food model. 

114 



References 

[1] Moore, J. and Pizer, R. (Ed. ) : 'Moment methods in electromagnetics', Research 
Studies Press, John Wiley & sons, 1984. 

[2] Montgometry, J. P. *: 'Scattering by an infinite periodic array of thin conductors on a 
dielectric sheet', IEEE Trans., AP-23, pp. 70-75. 

[3] Stylianou, A. S. : 'Scattering from finite and multilayer FSS using iterative schemes 
Loughborough Univ. Tech., Ph. D. thesis, 1992. 

[4] Harrington, R. F. : Matrix methods for field problems, IEEE Proc., 1967, pp. 136- 

149. 

[5] Jennings, A. : Matrix Computation for engineers and scientists', John Wiley & sons 
1977. 

[6] Casey, J. P. and Bansal, & : 'Dielectrically loaded wire antennae, IEE Proc. K 1988, 

135, pp. 103-110. 

[7] Sarkar, T. K., Rao, S. M. and Djordjevic, A. R. : 'Electromagnetic scattering and 
radiation from finite microstrip structures!, IEEE Trans., 1990, AP-38, pp. 1568-1574. 

[8] Popovic, B. D., Dragovic, M. B. and Djordjevic, A. R. : Analysis and synthesis of 

wire antenna!, Research Studies Press, 1982, pp. 100- 104. 

[9] Glisson, AX and Wilton, D. R. : 'Simple and efficient numerical methods for 

problems of electromagnetic radiation and scattering from surfaces', IEEE Trans., 

1980, AP-28, pp. 593-603 

[I 0]'Subroutine F04ADF',, Numerical Algorithm Group, NAG, Mk. 13. 

[11] Canning, FX Mirect solution of the EFIE with half the computatioe, IEEE 

Trans. j 99 1, AP- 1, pp. 118-119 

[12] Sarkar, T. P. (Ed. ) : 'Application of conjugate gradient method to electromagnetics 

and signal analysis, Elsevier Science Pub. Co. 1991, pp. 255-256 

115 



[13] Hestenes, M. and Stiefel, E. :' Methods of conjugate gradients for solving linear 

systerns', J. Res. Nat.. Bur. Stand, Vol. 49, pp. 409436,1952. 

[14] Su, C. C. Xalculation of electromagnetic scattering from a dielectric cylinder 

using the conjugate gradient method and FFT', IEEE Trans., 1987, AP-3 5, pp. 1418- 

1425. 

[15] Catedra, M. F., Gago, E. and Nuno, L. : 'A numerical scheme to obtain the RCS of 
three dimensional bodies of resonant size using the conjugate gradient method and the 
FFTI, IEEE Trans., 1989, AP-37, pp. 1418-1425. 

[16] Sarkar, T. K. and Rao, S. M. : The application of the conjugate gradient method to 

the solution of electromagnetic scattering from arbitrarily oriented wire antennae, 
IEEE Trans., 1984, AP-32, pp. 398403. 

[17] Cheng, D. K. Nield and wave electromagnetics', Addison-Wesley Pub. Co., 1983, 

pp. 78. 

[18] Yuen, K. M. : 'Interface of a microwave measure receiver to a microcomputer', 
BSc. Report, Elec. Dept., Lough. Univ. of Tech. 1993. 

116 



CHAPTER 5.0 

FINITE CURVED APERTURE FSS 

5.1 Introduction 
This Chapter deals with the analysis of a finite conical FSS with arbitrarily oriented 
slotted elements illuminated by the near field of a feed horn. An alternative method is 
to use the tangential infinite array (TIA) approach in Chapter 3 but the internal 

reflections in the cone are neglected in that model. These effects however could be a 
serious problem if the feed is very close to the FSS. Therefore, it is important to take 
into account the mutual coupling between all the FSS elements using a finite approach. 
The classical problem of the penetration of time harmonic electromagnetic fields 

through an aperture in a planar conducting screen has been a on going research for 

many years and only in the case of diff-raction by a circular aperture are analytical 
results available [1]. Booker was the first to extend Babinet's principle of optics in 

vector electromagnetic fields to work out the properties of slot antennas from existing 
knowledge of strip and wire antennas [2]. A tutorial review has been presented by 

Butler and others [3] on analysing various types of aperture but dielectric backings are 
not included. Butler has also derived a magnetic field integral equation (NME) 
formulation for an aperture in an infinite screen separating two half spaces of different 

electromagnetic properties [4]. Recently Singh [5] has used this WIE and Floquet 
field expansions to include the effects of multiple layers of dielectric substrate for an 
infinite planar array of arbitrarily oriented slots. 

To the knowledge of the author, there is no published work on finite and curved 
aperture FSS with dielectric substrate. A novel NVIE has been derived here to account 
for the dielectric loading of thin slotted dipole elements on a conical FSS. This 
formulation is based on the original MFIE for an aperture lying in an infinite planar 
conducting metallic screen in free space. In Sec. 5.2. a MFIE separating two half spaces 
is formulated in terms of an equivalent magnetic current source which replaces the 
a: perture using the equivalence principle [4]. The MFEE is used for a free standing 
conical FSS later. The curvature of each slotted dipole FSS element on the cone is 
treated as linear segments which behave like planar apertures. The diff-raction effects at 
the edges of the cone has been neglected. Using MOM, the MFIE is reduced to a linear 
system of equations to find the magnetic current coefficients. These are solved using 
the elimination method (Further descriptions can be found in Sec. 4.2.3). In the novel 
NffIE formulation, the dielectric/ferrite substrate for a FSS slotted dipole is modelled 
. as a thin coating on a cylindrical slot. It uses a quasi-static approximation, similar to 
the approach adopted in Sec. 4.3. This new formulation makes use of symmetrical or 
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V 
dual form in the Maxwell's equations for the static fields. Here the theory of duality is 

discussed and equations for the magnetic charge in ferrite medium and magnetic 

current in dielectric medium have been expanded explicitly (Sec. 5.3). These are often 

neglected in current literature because of the fictitious nature of the magnetic charge 

and current source. In Sec. 5.4 these equations are used to form the novel MFIE for a 

quasi-static approximation of the dielectric and ferrite loading. Computer models have 

been developed for a conical FSS with slotted dipole elements. SPS and PB feed 

models (Please refer to Sec. 3.3.2 for further descriptions) have been used to calculate 
the near field illumination from a corrugated conical feed located at the base of the 

cone. This finite approach is called the finite current (FC) model because it considers 
the interaction of all the FSS elements in a finite geometrical sense. In Sec. 5.5 the 

predictions obtained from the FC. model will be compared with the experimental results 
from a conical prototype. The performance from the FC model will also be compared 

with the tangential infinite array (TIA) model (Sec. 5.6). 

5.2 Free standing finite aperture FSS 

'This 
section describes the analysis of an aperture lying in a planar infinite metallic 

screen separating two half spaces. The analysis is easily reduced to an aperture in free 

space. In Sec. 5.2.1, the WIE is obtained after the boundary conditions are enforced in 

the aperture regions. Subsequently, in Sec. 5.2.2, the MOM technique is then applied to 
the MFIE, similar to Chapter 4, to obtain a linear system of equations. These was 
solved using elimination method [Sec. 4.2.3] to find the magnetic current source. The 
MOM extends the MFIE formulation for a single aperture to a general curved FSS 

structure by dividing the curved slot into segments of aperture so that it would 
I conform to the curvature of the FSS. The assumption here is that locally at each 
segment the metallic portions surrounding the aperture is behaving like an infinite 

planar screen in ftee space. The radiation from the FSS cone is computed using the 
total contribution of scattered fields from the magnetic current sources. 

5.2.1 Aperture in screen formulation 
Consider an aperture lying in an infinite Planar metallic conducting screen which is a 
perfect conductor. The following formulation was derived originally for an aperture of 
an infinite length but finite width. But here it has been extended to an aperture of finite 
length [4]. The length of the aperture is I in the y axis and width d in the x axis 
4 
separating two half spaces with parameters (, a,, c,, )on the left and (pb, eb) on the 

right as shown in Fig. 5. I. The incident fields in the respective medium are 
(Flai, pa) 
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and 
(Rý' 

, 
Rý' ). In order to find the MFIE, it is important to find the fields on both sides 

of the screen. Therefore, this problem is divided to an equivalent left half-space as 
shown in Fig. 5.2 and 5.3 and an equivalent right half space in Fig. 5.4 and 5.5. The 
total fields on each side will be enforced using the boundary conditions for the 
continuity of fields across the aperture. The objective is to find the aperture field across 

the width of the slot given by E,, p. Fig. 5.1 to Fig. 5.3 show a systematic procedure to 

derive the total magnetic field on the left hand side (LHS). From Fig. 5.1, the screen is 

short-circuited as shown in Fig. 5.2 so that it will be continuous with a LHS equivalent 

magnetic current if in the region formerly occupied by the aperture where: 

A if -Z (5.1) 

This problem is further reduced as shown in Fig. 5.3 using the image theory (method of 
images) [6] to obtain the total magnetic current on LHS. Thus the equivalent magnetic 

current is doubled, 21f across the former aperture and is pointing in they direction. 

The total magnetic field on the LHS is given by: 

fl", =fsc +jqscat z' .0 (5.2) aa 

where the subscript denotes the medium a. 

flaf is the short-circuit magnetic field due to the incident field which is obtained using 
the image theory where: 
TJSC 
-cAa =2Ha' (5.3) 

Fla.. is the scattered fields from the magnetic current source 21f where, 

f cat jwF (5.4) las =4a+ 7410a) 

The vector potential P,, is given by: 

pa =c'f 21f g(R)ds (5.5) 
4 7r aperture 

where s here denotes the direction of the magnetic current flow. For convenience, this 
notation is used later for an arbitrarily oriented slotted segment of a FSS dipole. 
Sec. 5.2.2. In the Fig. 5.1 to Fig. 5.5, s is represented byy axis. 
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The scalar potential 0,, is: 

'Pa =1f 
T7(2 if ) 

ga (R) ds (5.6) 
41rlia 

aperture 

The Green' s function on side a is given by: 

e -jk. R 
(5.7) 

R 

2; r 
where ka = k, and k,, (er, is the relative permitivitty of medium a). 

R =IF -F'I where F and F' are the positions of the observation and source with 

respect to an origin. In this case, the origin lies on the planar screen as shown in 
Fig. 5.1 to Fig. 5.5. Later, this is extended to a general FSS structure in free space by 

choosing a global origin. 

Similarly, the equivalence principle can be applied to the right hand side (RHS). Since 

the vector normal is now pointing in the opposite direction, the direction of the 

magnetic current is now reversed. This is given by: 

Ii E,, p =-If (5.8) 

Using the image theory, the right half equivalence current is now -2If . The 

equivalence problem for the RHS. can be summarised according to the sequence of 
Fig. 5.1, Fig. 5.4 and Fig. 5.5. Therefore, the total magnetic field on side b is given by: 

f-lb ý flbsc + flbscat Z -ýO (5.9) 

where flbsc =2flý' (5.10) 

-H scat +'ý7( jý (i 
O)pb Pb 

Notice that the expression of Eq. (5.1 1) is positive compared to the negative value of 

, H"at in Eq. (5.4). This is due to the magnetic current source in Eq. (5.8) which is 
a 

pointing in the opposite direction. 
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Enforcing the continuity of the total magnetic field across the aperture area A' in 
Eq. (5.4) and Eq. (5.1 1) yields, 

Ra xz = flb Xz 

':: 
[Ff Iflaltan 

b 
]tan 

I 

l scat _flscat] =[jo)p 'f7i rc (5.14) ab tan a+ 
Oa + jOlPb +ý Pb Ilan 

2 fla' -2 flb' ] 
ti 

= 
[i CoPa + ý'<Pa +i coPb + ý'<Pb 

tt 
(5.15) 

an 2n 

Let the medium be the same on both half-space denoted by medium a. If the 

illurnination is only on side a only, flý'(r) =0. So Eq. (5.15) becomes the MFIE given 
I by: 

[Rai lan j o)Pa + ý'(Pa ] 
tan 

in A' 
1 

and Eq. (5.9) becomes, 

[Rb]tan =[jcoPb +T70b] 
tan 

in A' (5.17) 

Since, the-medium is the same on both sides then Eq. (5.17) becomes, 

flb I 
tan 

j wpý, + bp" ]. in A' 
tz 

i in A' Pbltan iff"Itan 

5.2.2 MOM using pulses testing and basis functions 
The MFIE in Eq. (5.16) is of the same form to the EFIE in Eq. (4.7). The slot has been 
4ýý 
replaced by an equivalent linear magnetic current source. If the magnetic current 
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source elements are distributed on a conical surface with respect to a global co- 
ordinate system as illustrated in Sec. 4.2.2, then the MFIE can be written as : 

H -1 A-A-A 
, 
',. sj o)F,,,. s+ V(P,,. s (5.20) 

Note that s^ is a free vector lying along the segment axis therefore, the dot product in 

Eq. (5.2 1) gives the tangential field along this axis. 

In general, for a free standing medium, let p,, = po, e,, = co and H-. i = H- i. So that 

Eq. (5.20) can be rewritten as, 

F, i. S- = 0), P. S- + ý, O. S- (5.21) 

which is sinfilar to the EFIE given by Eq. (4.7) as shown below: 

R'. S^ =j oA. S^ + ýO. S^ 

ýI 
If the MOM is applied on the EFIE as previously discussed in Sec. 4.2.2, it can be 

shown that Eq. (4.7) as shown above would yield Eq. (4.19) after using Galerkin's pulse 
testing and current basis functions. Eq. (4.19) is repeated here for convenience: 

, üi. -7 +Y2 

=J 
0410 

V(M) nn +ý12 
S- 

]. (F 
_F In 

n-ý12Sn-ý12 
+ V(M)n 

n/ 4 ir 

1 

+ý2 m+ý12 m-ý12) 

n+l 
2)n I 

ým 
+ Y2)n 

m +Y2 
n-I 

jco4; r. 6, (sn+l 
-sn) 

(sn 
-sn-1) 

)n+l 
2)n 1 M-Y2 n 

ým 
-Y2 

n jo)4, -sn) (sn -sn-1) (sn 
+1 

This process is repeated here for Eq. (5.21) to produce Eq. (5.22) for the curved FSS. If 
there are m pulse testing functions and n pulse current basis functions, then using 
MOM on Eq. (5.2 1), one should arrive at the following expression, 
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Ri. f -T - M+Y2 m Y2 

-00 )n n+Y2 W 21f, V(n sS 
In 

-Y2 n -Y2 
+ VI(M)n n *Y2 M+Y2 M-Y2 4; r 

2)n 
)n+l ýM+y 

2 I M+Y2 
n n-I 

jc in 
-sn) 

(sn 
- Sn (sn 

+1 

Y2 )n+l 
2)n 1 

-21fn n -Y2 n-I 
jw4; rp,, (sn 

+1 - SO (sn -Snw) 
(5.22) 

Notice that the above expression is of the same form as Eq. (4.19) for the EFIE. 

Eq. (5.22) is expressed as linear matrix system as, 

[Ym I ý'Pmnl[Ifn] 

Y. MI mm 

-2 k2V( n +k 2 Amn 0 M)n Sn 0 jo)4; rpo 

J( 

-Y2 -Y2 

(5.23) 

(5.24) 

V(M) 
n +ý12 , 
n n+ý2 m+ý12 

n+l 
+ 

)n )n+l 
2)n 

, 
+Y2)n 

Y2 

n-I 
-Y2 

n 

ým 
-Y2 

n ='- , (5.25) 
-sn) 

(sn. 
-sn-1) 

(sn+l 
-sn) 

(sn 
-sn-1) 

[Ifn] and [Ym] are column matrices of the unknown magnetic current and excitation 

due to the incident fields respectively. [Ifn] represents the Wh magnetic current pulse 

source which has been weighted on If after the MOM segmentation scheme. m and 

n=1,2 ...... N', where N is the total number of current pulses. [A.,, ] is a square matrix 

that accounts for the couplings between the segments. 
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5.2.3 Radiated fields 
The radiated fields from the FSS cone can be computed from the radiation integral 

with the linear magnetic current sources distributed on the conical surface of the FSS. 
In this case the source is represented by magnetic current pulse. The electric current 
source is neglected because of the infinite ground plane assumptions at each local 

segment. Thus, the electric field radiated from the cone is calculated from 

superposition of the scattered fields from each magnetic current pulse. 

The scattered field at a distance F. from the centre of each magnetic current pulse to 

the receiving feed is given by: 

'Escal 
-jo), U" e 

[Fco 
.1 (r 

ýo fre jk Al "n ds n) ý ý-Jiý n Xrn 
41r 

-Fn segment 01 

-jk o), u,, (5.26) 'n Xln 
4; r -Fn 

[F; 

o 

'60 

where n=1,2.. IT (IT is the total number of current pulses), 

From Eq. (5.5) and Eq. (5.8), it can be shown that total magnetic current source at each 
junction of the segment is R' = -2 therefore n 

jkof f ]an e nds n 
segment 

f 
-21fn eikopt*rnds 

segment 

nn 
-2 Ifn 91e jký t" ds r+ 

-2 IfnS ei ko'ot -r,, ds fn 
-Y2 n2 

n -Y2 n2 

-2Ifn 
(Sn 

-S -21fn^ -S,, 
) 

Sn 
-Y2 n -Y2 

)sn 

+Y2 

(S 

n 4Y2 
(5.27) 
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Jhe total radiated field from the slotted FSS cone is the contribution from all the 

magnetic current pulses and is given by: 

n =N' 
-E scat V,, gscat(r 
c=., zn 

n=l 

(5.28) 

5.3 Magnetic charge and current: theory of static fields 
In order to account for the dielectric substrate backing of the slotted FSS on a curved 
surface, a quasi-static approximation approach analogous to Popovic [7] is used. In 
Sec. 4.3. this quasi-static approximation has been used in the EFIE formulation to 

account for the effect of a thin dielectric and ferrite coating on a cylindrical wire. This 

method assumes that the substrate coating should be thin enough. According to 
Popovic, the thickness should be less than twice the wire radius. He had used the 

concept of static electric charge and current with the help of Gauss' and Ampere's law 

to derive the quasi-static version for the EFIE. It has been shown that the inner and 
outer cylindrical layers of quasi-static electric charges and currents are equivalent to 
the electric currents and charges flowing in both the wire and dielectric/ferrite coatings 
as illustrated in Fig. 4.5. In this section, a similar quasi-static approach has also been 

also developed to account for such loading on a thin slot. In the proposed model, the 

slot with dielectric and ferrite coating is modelled as cylindrical layers of magnetic 
charge and current. Although, magnetic charge and current are merely formalisms, they 
have been incorporated in the traditional Maxwell's equations for symmetry and duality 
[8]. The symmetrical equations of the static fields, complementary version of the 
Ampere! s law for magnetic current and Gauss's law for magnetic charge are derived 

explicitly here. These laws are fundamental to the development of the quasi-static 
approximation of the WEE. 

The theoretical basis for the new formulation are based on the following assumptions: 
(i) Isolated magnetic charge and magnetic current exist. 
(ii)The static electric flux/field due to the fictitious magnetic charge is non-divergent. 
(iii)The static magnetic flux/field due to the fictitious magnetic current is non-rotational 
and conservative. 

The above assumptions have often been used in Maxwell's equation to assume a more 
symmetrical form. But this is not Often explicit enough in current literature to be 

applied for static fields in the ferrite and dielectric medium. Therefore, the following 
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Sections will attempt to derive and expand on the dual equations here so that they 

could be used in the quasi-static approximation of the slot later. 

The derivation of the static magnetic fields due to magnetic charge source in the ferrite 

medium is expanded in Sec. 5.3. L Initially, existing equations for the electric field due 

to electric charge will be derived for a dielectric medium with the help of Gauss' law. 

These equations will be compared with the derivations for the complementary 
magnetic field that originates from the magnetic charge source in order to show 

explicitly the duality. In Sec. 5.3.2, the expanded derivations of the static electric fields 
due to magnetic current source in the dielectric medium will be discussed. Existing 

equations for the magnetic field from electric current source in a ferrite medium will be 
derived with the help of Ampere's law. These equations are then compared with the 
derivations for the complementary electric fields due to the magnetic current source 
and the complementary Ampere's law. The duality is exploited in a slot to produce a 
novel formulation of NME for dielectric and ferrite loading. This is discussed later in 
Sec. 5.4. 

5.3.1 Magnetic charge in ferrite medium 
In order to derive the equations for the static magnetic field which is due to the 
magnetic charge source in a ferrite medium, existing equations for electric field from 
the electric charge source in a dielectric medium will be derived first. Then the 
complementary equations for magnetic charge will be expanded and compared with 
equations from electric charge source in Table 5.1. 

The study of static electric field is known as electrostatics. The two fundamental 

postulates for electrostatics using the static electric field intensity R of an electric 
charge source in free space of permittivity c,, are given by: 

(5.29) 
60 

(5.30) 

where q is the electric charge volume density in free space. 
1ý . Eq. (5.30) implies that the static electric field is non-rotational which can be shown to 
be conservative using Stokes'theorem. 
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When a dielectric body with permittivity E. is placed in an external field it will be 

polarised. This will give rise to a polarisation electric charge volume density qp . So 

Eq. (5.29) becomes 

ýr 1 (q +qp) 
. 60 

(5.31) 

But --qp = ý15 (P is the polarisation vector) (5.32) 

If the dielectric medium is linear and isotropic such that the polarisation. is directly 

proportional to the electric field intensity then, 

F) =cop +p 

or, D =cE 

where D is the electric flux density or electric displacement. 

Substituting Eq. (5.32) into Eq. (5.3 1) and using Eq. (5.33), yields: 

VD 

(5.33) 

(5.34) 

(5.35) 

Applying the divergence law (here JT7. D dV fA US) on Eq. (5.35) yields, 
Vd Sd 

JAMS 
Sd 

(5.36) 

where, Q is the total electric charge in a volume Vd of dielectric medium enclosed in a 
f 

close surface Sd such that Qfq dV. 
Vd 
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Eq. (5.36) is an expression of Gauss's law which states that the total outward flux of 
the electric displacement over any closed surface is equal to the total free electric 
charge enclosed in the surface. 

Equations for the static magnetic fields due to the magnetic charge will be derived here 
in parallel. This is to show the duality with the static electric fields from the electric 
charge. Note that the present derivations are to lay down explicitly the equations of 
the field for the magnetic charge in a ferrite medium which is normally not discussed in 

current literature. To extend the theory of static magnetic fields of magnetic charges, it 

is assumed that the static magnetic field FIf due to the magnetic charge is 

conservative. Thus FIf in free space of permeability p,, are given by the following 

two fundamental postulates, 

qf 
(5.37) 

Po 

VxHf =0 (5.38) 

where qf is the magnetic charge density in free space. 

The subscriptf denotes the magnetic charge source. Eq. (5.38) implies that H-f is non- 

rotational which can be shown to be conservative using Stokes' theorem. 

The electric polarisation in a dielectric medium has been taken into account by the 

presence of volume electric charge density qp as shown in Eq. (5.3 1) from Eq. (5.29). 

Applying a similar concept to the magnetic charge in ferrite medium, an equivalent 
polarisation in the ferrite medium would also require the presence of volume magnetic 
charge density qfp under the influence of magnetic field. So that for a ferrite case with 

permittivity p, Eq. (5.37) becomes 

=-L(qf +qfp) 
Po 

(5.39) 

where qfp is the polarisation magnetic charge density similar in behaviour to a 

corresponding polansed electric charge density qP. 
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But -qfp =V Pf ( Pf is the polarisation magnetic vector) (5.40) 

If the ferrite medium is also linear and isotropic such that the polarisation is directly 

proportional to the magnetic field intensity, then 

Rf =P"Flf +pf 

Or, Bf =pgf 

ývhere Bf is the magnetic flux due to the magnetic charge. 

Substituting Eq. (5.40) into Eq. (5.39) and using Eq. (5.41) yields 

VBf =qf 

(5.41) 

(5.42) 

(5.43) 

I Applying the divergence law (here f ý' i3 dV hZ) on Eq. (5.43) yields, 
Vd Sd 

hdS Qf (5.44) 

where, Qf is the total magnetic charge in a volume Vd of ferrite medium enclosed in a 

close surface Sd such that Qf f qf dV. 
Vd 

Eq'. (5.44) states that for a ferrite medium, the total outward flux of the magnetic flux 
or displacement over any closed surface is equal to the total free magnetic charge 
enclosed in the surface. This is a complementary version of the Gauss's law for electric 
charge source in a dielectric medium . This implies that the magnetic fields due to 
magnetic charge in a ferrite medium behaves Eke the electric fields of electric charge in 
the dielectric medium. Thus the fundamental postulates for the magnetic charge in a 
ferrite medium are given by Eq. (5.38) and Eq. (5.43) which is similar in form to 
Eq. (5.30) and Eq. (5.35) for a electric charge in a dielectric medium. 
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Table 5.1 below shows a summary of the comparison between the complementary 

equations. 

Electric field due to electric charge. Magnetic field due to magnetic charge. 

in free space) (5.29) f 'V. f1f = 
! 

-- (in free space) (5.3 7) 
. 60 PO 

'f7XR 
=j (5.30) V7xHf =0 (5.38) 

(q + qP) (in dielectric) T7FIf (qf +qfp) (in ferrite) 
60 PO 

(5.31) (5.39) 

--qp = VP (5.32) -qfp =V I-If (5.40) 

r) =cop +P =. -P Bf =, uoHf +Pf =IiHf 
(5.33) & (5.34) (5.41 )& (5.42) 

'ýZ. D=q (5.35) V. Bf = qf (5.43) 

f An-dS =Q (5.36) J Bf 
. 
AdS = Qf (5.44) 

Sd d 

(Gauss! s law) 

[L 

( C C( Complementary Gauss' law) 

Table 5.1. 

5.3.2 Magnetic current in dielectric medium 
Existing equations for static magnetic field from the electric charge source in a ferrite 

medium will be derived here. This will be followed by the derivations of the static 
electric field from the magnetic current source in a dielectric medium in order to show 
the duality with the electric current. A summary of the complementary equations are 
shown in Table 5.2 to compare the duality.. 

The study for static magnetic field from electric current source in ferrite medium is 
known as magnetostatics. The two fundamental postulates for the magnetostatics due 
to electric current source in free space of permeability po are given by: 

V. B =O (5.45) 
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VxB =P,, J (5.46) 

where B is the magnetic flux density due to the electric current density J. 
Eq. (5.45) implies that the magnetic flux is non-divergent. 
Taking the divergence of Eq. (5.46) and using Eq. (5.45) yields, 

17j =O (5.47) 

which is consistent with the continuity equation when there is no time variation. 
7 The continuity equation with time variation is given by: 

9q 
(5.48) 

The time t variation of the electric charge density q is shown on the right hand side of 
the equation. 

Taking the volume integral of Eq. (5.45) and applying the Stokes' theorem, gives 

JAMS =0 (5.49) 
closed 
surface 

Eq. (5.49) is an expression for the law of conservation of magnetic flux. 

The effect of magnetisation R in a ferrite medium can be taken account by 

incorporating an equivalent volume electric current density . 
7m into Eq. (5.46). 

I 
Therefore, 

VxB 
=J +im (5.50) 

Po 

it is known that jm, =f7XR 

t, 
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B 
and H =- -M (5.52) 

Po 

where H is the magnetic field intensity. 

Substituting Eq. (5.5 1) into Eq. (5.50) and using Eq. (5.52), yields 
ý'Xfi =j (5.53) 

Eq. (5.45) and Eq. (5.53) are the two fundamental postulates of magnetostatics for 

magnetic flux/field of a electric charge in a ferrite medium. 

Let -R = PFI 

and substituting Eq. (5.54) into Eq. (5.52) yields, 

,f =(ur -, )F, 

where relative permeability a,, 
PO 

(5.54) 

(5.55) 

The magnetisation vector Al is also equivalent to the volume current density J-,,, and 

surface current density ims 

where Jn, xn^ (5.56) 

Taking the surface integral and using the Stokes' theorem, Eq. (5.53) becomes: 

fR. dT =1 
C 

(5.57) 

where I is the electric current given by I n-dS ( n^ is normal to surface's). 
closed 
surface 

Eq. (5.57) is a expression of the Ampere! s law which states that the circulation of the 

magnetic field intensity around any closed path C is equal to the free electric current 
flowing through the surface bounded by the path. 
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To extend a similar argument to the magnetic current source the electric flux density 

Df due to the magnetic current J is also assumed to be non-divergent. Therefore, f 
the two fundamental postulates of the static electric flux due to magnetic current in 
free space are given by: 

lZDf =O (5.58) 

VxDf =-. 6,, Jf (5.59) 

where Df is the electric flux density or electric displacement due to the magnetic 

current density . 
7f The subscript f denotes the magnetic current source. Eq. (5.58) 

implies that the electric flux is non-divergent. 

Taking the divergence of Eq. (5.59) yields, 

7. Jf = (5.60) 

which is consistent with the equation of continuity Eq. (5.61) where there is no time 

variation magnetic charge density. Thus, the steady. magnetic current due to the 

magnetic charge is non-divergent. 

The continuity equation for the magnetic charge is given by: 

jf 40qf 
a 

(5.61) 

where qf is the free magnetic charge density. 

Taking the volume integral of Eq. (5.58) and applying the Stokes' theorem, gives 

ff)f. hdS =0 
closed 
surface 

(5.62) 

Eq. (5.62) is a statement of the law of conservation of electric flux due to the magnetic 
current. This is because no work is done by the electric flux as it circulates in the close 
surface. 
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The effect of magnetisation M has been applied in a ferrite medium as discussed 
before. But, here a similar effect is also produced in the dielectric medium for a volume 

magnetic current density J 
,,. 

This is called N here for convenience. N in the 

dielectric medium is equivalent to a volume magnetic current density J, '. Therefore, 
for a dielectric medium Eq. (5.59) becomes, 

_CO 
= Jf + Jn (5.63) 

Let Jn -VxN (5.64) 

Df 
and -E, f (5.65) 

co 

where Ef is the electric field due to the magnetic current. 
Substituting Eq. (5.64) into Eq. (5.63) and using Eq. (5.65), yields 

. 
YxEf =-Jf (5.66) 

Eq. (5.58) and Eq. (5.66) are the two fundamental Postulates for static electric flux/field 
due to the magnetic current in a dielectric medium. 

If Df = cEf (5.67) 

and substituting Eq. (5.67) into Eq. (5.65) yields, 

IV Pf (5.68) 
ilý . 

The magnetisation vector FV is also equivalent to the volume current density J,, and 
surface current density J,,. 

where J,, xh 
The nonnal vector h is pointing away ftom the surface. 

(5.69) 

136 



Taking the surface integral with the help of Stokes'theorem, Eq. (5.66) becomes: 

j (5,70) 

c 

where If is the magnetic current given by If if. n^dS. 
closed 
surface 

Eq. (5.70) is a expression of a complementary version of the Ampere! s law which states 
that the circulation of the electric field intensity around any closed path C is equal to 

the free magnetic current flowing through the surface bounded by the path. Table 5.2 

compares the equations of the magnetic field due to electric current source with the 
electric field due to magnetic current source. The complementary equations derived 

here are summarised in Table 5.1 and Table 5.2. These will be used in the novel 
formulation of the WIE for the slot in the next Section. 

5.4 Dielectric and ferrite coated FSS slot 
The FSS slot supported by a thin dielectric/ferrite substrate can be modelled as a 
cylindrical dipole slot with the corresponding coatings. This approximation considers 
the coating acting as a continuous loading on the slot. It will be shown later that the 
the the dielectric and ferrite coated cylindrical slot is equivalent to the inner and outer 
cylindrical layers of magnetic currents and charges as illustrated in Fig. 5.6. A novel 
expression is formulated using the WIE from Eq. (5.21) and the complementary 
equations from Sec. 5.3. This modified MFIE can be easily extended to a curved FSS 

using the MOM as previously illustrated in Sec. 5.2.2. 

The quasi-static equations for a dielectric coated cylindrical slot will be discussed in 
Sec. 5.4. L It is shown that these equations are complementary to those for a ferrite 

coated metallic dipole element (Sec. 4.3.2). The quasi-static approximation for a 
dielectric and ferrite coated wire antenna was first formulated by Popovic [7]. In 
Sec. 5.4.2. the quasi-static equations for a ferrite coated cylindrical slot will be 
discussed. Similarly, they are complementary to those for a dielectric coated metallic 
dipole element (Sec. 4.3.1). The modified MIFIE for both coatings will be shown in 
Eq. (5.90). This is in contrast to Popovic's EFIE in Eq. (4.49) as shown in Table 5.3 
here to compare the duality of both integral equations. 
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Magnetic field due to electric current. Electric field due to magnetic current. 
V7B =0 (5.45) V7Df =0 (5.58) 

VxB =P,, J in free space) V7xDf =-, c,, Jf (in free space) 
(5.46) (5.59) 

=0 (5.47) 
. jf =0 V7 (5.60) 

hdS =0 (5.49) ff)f. ndS =0 (5.62) 
closed closed 
surface surface 

'ý7X 

J +jM 
Vx Df 

--J +Jn f PO -160 
(in ferrite medium) (5.50) (in dielectric medium) (5.63) 

=f7X Iq (5.51) (5.64) 

B ff = (5.52) 
Df 

-Ef =--+N (5.65) 
PO . 60 

ýIxfj =. 7 (5.53) X Bf 
= -jf (5.66) 

=IR (5.54) 69f (5.67) 

=(Pr (5.55) =(C, -j)flf r (5.68) 

ims =R xn (5.56) ins xn (5.69) 

fFj. dI-=I (5.57) f Ef A' =-if (5.70) 
C C 
Ampere's law Complementary Am perds law 

table 5.2 
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Types of integral equation, Comp lementary fonns of the integral equation 
EFIE (free standing) 

fj =Jwpo 
dI I-' (R JI! g(Ra)ds+ ý9' 

a)ds I 4; re,, I ds 4; r 
segment segment 

ds 

(4.4 8) 

Popovic! s EFIE 

ipjýg(Ra)ds 
- 

J(p, 
-I)Iýg(Rb)ds] 4; r segment segment 

I f1 -1 W) ýg, (R,, ) ds 
( 

4; re,, im ds 
t C, ,, .. e _ g n 

-1 X ýg7 (Pb)ds 
( 

jco ds 4; rco 
- segment 

(4.49) 
MHE (free standing) 

fli=j=o J21f! g(R, )ds+-±- 2d7f ) ýg'(Ra)ds 
( 

4; r segment 4 rpo segment 
io) dS J 

(5.89) 
(Eq. 5.21 is rewritten here as Eq. 5.89) 

New MFIE 

icoco 
er 21f sAg(Ra)ds- j(cr-J)21fsg(Rb)ds] 

[ 

4; r 
segment segment 

2dIf f g(k)ds 4; rpo 
segment 

.6 ds 

ý21dlf fI-Y-) 
g(Pb)ds 

( 

4; rpo pr )ýjw dsý 
_ segment 

(5.90) 
Table 5.3 
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The duality of both EFIE and MFIE can be seen in the interchange of variables as 

shown in Table 5.4. 

Popovic's EFIE New WIE 

E Hi 

Nf 

/jo Sco 
Pr er 

Table 5.4 
The details of the derivation of the new MFIE will be shown in the following sections. 

5.4.1 Quasi static equivalent of dielectric coated slot 
A segment of thin slot of width 2a with dielectric substrate thickness (b-a) is modelled 
here as inner and outer cylindrical layers of magnetic currents with magnetic charge in 

the inner layer. This slotted segment can be consider to be similar to a cylindrical 
slotted segment of radius a coated with a layer of dielectric with permittivity c where 
the outer radius is p= b as shown in Fig. 5.6. Note that the WIE in a free standing 

case shows that the magnetic current flowing in the slotted segment is 21f (Eq. 5.89). 

This cylindrical segment is assumed to behave like a quasi-static infinitely long 

cylindrical structure. Thus for a dielectric coating of thickness (b-a), the electric field 

intensity Ef would circulate around the cylindrical segment of radius a with current 

21f according to the complementary Ampere! s law in Eq. (5.70) in Table 5.2. 

Therefore, -2 If Efý = 2; rp 
(5.71) 

According to Eq. (5.68), the complementary magnetisation vector R should be flowing 
in the same direction of the electric field intensity. Therefore, Eq. (5.7 1) implies that FV 

is also circulating around the cylindrical surface with the centre at the slotted segment 

axis. So the 0 component is given by Ný from Eq. (5.68) as: 

No =(. er -1)Efo (5.72) 

Substituting Eq. (5.72) into Eq. (5.71) yields, 
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cylGArical magnetic 
charge and current 
layers 

Fig. 5.6 Slotted segment with dielectric and ferrite coatings 
represented by magnetic charge and current 
layers. 
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2If 
2; rp 

(5.73) 

-OwO 
There is also a radial magnetisation magnetic current density of - in the coating. A- 
The normal vector -n^ is pointing inwards from the inner surface p= a as shown in 

Fig. 5.6. Therefore, from Eq. (5.69), the complementary magnetisation current density 

is given by, 

-NOO x (-n) = -Noý (5.74) 

From Eq. (5.73) and Eq. (5.74), it is evident that the surface magnetisation current Ina 

at p=a is, 

Ina =(e,, -1)21f (5.75) 

However, the total current at p=a is the sum of the magnetisation current Ina and the 

conducting current 21f. Therefore, the total current I'na is given by: 

I'na =. C,, 21f (5.76) 

At the outer surface p=b , the normal vector n^ is pointing away from the surface. So 
the surface magnetisation current density should flow in the reverse direction and is 
given by, 

Jnb = -NýO x n^. = Noi (5.77) 

Thus the surface magnetisation current at p==b from Eq. (5.73) and Eq. (5.77) is, 

Ib ý -(, cr -1)21f (5.78) 

Thus, the dielectric coated cylindrical slotted dipole segment is equivalent to the inner 

and outer cylindrical layers of magnetic currents F and Inb with magnetised charge na 
density 2qf in the inner layer. The effect of the radial current density is negligible 
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because of the thin coating. Note that the charge is not dependent on the permittivity 
as shown in the MFIE in Eq. (5.89). The charge per unit length is given by 

qf = -1 . 
dIf 

jw ds 

5.4.2 Quasi static equivalent of ferrite coated slot 
The segment of a slot width 2a with ferrite substrate thickness (b-a) is modelled here 

as a cylindrical dipole segment of radius a with ferrite coating of the same thickness. 

The cylindrical magnetic charge density of the segment is 2qf at p=a. The factor of 2 

in the charge comes from the derivation of the magnetic current 21f in the free 

standing NME as shown in Eq. (5.89) The cylindrical coated dipole segment can be 

approximated as inner cylindrical layer of magnetic charge and magnetic current at p 
=a with outer cylindrical layer of magnetic charge at p=b. This cylindrical segment is 
assumed to behave Eke a quasi-static infinitely long cylindrical structure. 

According to the complementary Gauss's law the total outward flux of the magnetic 
displacement Bf over any enclosed surface in the ferrite medium is equal to the total 

free magnetic charge Qf enclosed in the surface. Therefore, using Eq. (5.44) for a 

cylindrical structure gives, 

Bfp = 
2qf 

(5.79) 
2; rp 

The subscript p denotes the radial component of the flux B-fp, 

From Eq. (5.42), the magnetic field intensity, Hf , is given by, 

Bfý 2qf -, Hf 
A 

-n (5.80) 
'OR 

=pn=2 
zpp 

From Eq. (5.41) the polarisation charge vector, Pf is given by, 

Pf = Bf - li,, Hp 

Substituting Eq. (5.79) and Eq. (5.80) into Eq. (5.81)yields, 

143 



2qf 
ý_ 

2qf Eo ý 
2qf (I ,n 

rn_n= -Tr 
) 

f 2; r, 2; rp p 2; rp 
(5.82) 

Therefore, ftom Eq. (5.82) at the inner radius, p=a, the polarised charge vector is, 

2qf (I Iý Pf" = 2; ra Tr 
)n 

(5.83) 

And at the outer radius, o=b, the polarised charge vector is, 

= 
2qf I- 15jb 
2zb -pr n (5.84) 

The ferrite surface charge density qp at p=a is, 

qf I Ffa 
- 
(-h) dSc 

1 
qf n-. (--h)ado =1 

12'M7 

cylindrical ;r Pr 
circumference 

= -2qf 
(I 

- ýr- (5.85) 

(Note that the integral over the surface S is reduced to a line integral over the 

circumference SC because of the charge density 2qf .) 

Since the ferrite encloses a line magnetic charge density of 2qf at p=a, the total 

magnetic charge density, qf,, , at p=a is the sum'of 2qf and ferrite surface charge 

density qfa. 

1- 1 Iq 2dIf ) 
q'f =2qf +qf,, =2qf -2qf 

f (5.86) Tr Pr Pr ds 

Similarly, for the surface magnetic charge density qjb at P=b the outer radius, the 

normal vector, n-, is pointing outwards, so, 
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=I 
2qf (I- Iýý 

qjb JPjb. n^dS, n. nbdo 27ib r cylindrical 
Tr 

circumference 

=(I - 
1- 2qf 

dIf 
(5.87) 

rs Pr Tco d 

The radial polarisation magnetic current density in the coating is, 

ifp fp (5.88) 

Therefore, for the ferrite coated slot dipole segment, the effect is equivalent to the 

magnetic charge density q' and magnetic current 21-f at the inner cylindrical surface fa 

and qjb on the outer cylindrical surface. The magnetic current is not changed since the 

quasi-static approximation is not dependent on the permittivity in the original MFIE in 
Eq. (5.89). The effect of the radial current density is negligible. 

In general, for both dielectric and ferrite coatings, the quasi-static approximation can 
be represented by the magnetic currents and Inb and magnetic charge densities 

q' and qp on the two cylindrical surfaces. The magnetic field of the NTIE is fa 

computed along the segment axis. Here the magnetic field due to the radial poMsation 

and magnetisation currents is zero because the radial currents only exist in the coating. 
When the magnetic field due to this coated segment is computed along the axis of any 

other segment, the field due to the radial currents can be neglected, because these 

radial currents are uniformly distributed in all directions in a small area. Thus, the fields 

due to the slot segment and the coating are the contributions from inner cylindrical 

layer of magnetic charge density q'fa and magnetic current I'na at p=a, and outer 

layer at qjb and Inb atp= b as shown in Fig. 5.6 

From Eq. (5.21), the WIE in free space for a slotted dipole segment of radius a can 
be rewritten as: 

g 
C, 0f 21f s^g(R,, )ds +If 

2dIf 
7ý7 S H, =JO) ' (Ra)d (5.89) 4; r segment 

4; ruo segment(jo) 
ds 
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Substituting Eq. (5.76), Eq. (5.78), Eq. (5.86) and Eq. (5.87) into Eq. (5.89) yields, 

J 0)-'o 
Sg -1)21f ^ (4)ds 

4; r 
f qr21f ^ (R,, )ds f (cr Sg 

segment segment 

2dIf 2dIf 'f7g(R s + g(Ra)ds +j I-- b)d 
j 

p, jw ds p 
)(ja) ds 

egment segment( r 

(5.90) 

Ra and Rb are the distances from the inner and outer radius to the point of 

observation as shown in Fig. 5.7. 

Eq. (5.90) is the novel expression of the NUIE for modelling thin slot with dielectric 

and ferrite substrate using the concept of magnetic charge and current. This expression 
is compared with Popovic's EFIE in Eq. (4.19) as shown in Table 5.3 to show the 
duality. The complementary nature of both integral equations is illustrated by a simple 
interchange of variables as shown in Table 5.4. 

Since the slotted FSS used in the experiment is supported by dielectric substrate, only 
the dielectric loaded version of Eq. (5.90) is used in the model. Therefore, without the 
fenite material, u,. = 1. Substituting this into Eq. (5.90) confirms that the magnetic 

current component in the new WIE is independent of the permeability of the ferrite. 

The new impedance square matrix for the new NWIE with dielectric coating becomes, 

C, -2 .t r(k 
2a W(M)n +k 2a kM)n+y2 ý 

+y Y2 
2 n jo)4; ru, 0 n- 

Sn cnsnmm -Y2 2 +Y2 -Y2 

k02 b V(M)n g +k 02b V(M) n +ý21 ý -(, c, - 1) 
nnnn/ -ýI2 -ýI2 +ý2 m+ý12 m -ýI2 

2)n*l 2)n 
aým+y aý lln aa 

2 2 M+l 2)n 2 n+ 
; '2'n-I 

nn (sn+l 
-sn) 

(sn 
-sn-A (sn+l 

-sn) 
(sn 

-sn-A 

(5.91) 
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Fig. 5.7 Geometry of the conical FSS and the model 
of a dielectrically loaded slotted segment. 
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Fig-5.8 Prototype of conical FSS 
(slotted dipole elements) 

III the measurements. 
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The superscript on the top left hand side of V denotes the radius of the dipole 

segment. (Please refer to Eqs. (4.52), (4.63), (4.54) and (4.55) in Chap. 4 for further 

details of the above variables. ) 

The scattered far fields from each current pulse is computed in the same manner as in 

the free standing case in Eq. (5.26), with the exception of the dielectric loading effect 
on the current pulse ( For further descriptions please also refer to pp. 96-97). The total 

radiated fields from the slotted FSS with dielectric backing is also given by the same 

expression in Eq. (5.28). 

The above equation can be easily incorporated into the computer model of the former 

metallic FSS by virtual of the duality with the slotted FSS. A new computer model of 
the slotted FSS was developed with a view of predicting the radiation patterns and 
boresight losses. This has been named the finite current model (FC) because it could 
account for all the couplings of the FSS elements. The predictions were compared with 
the experimental results of a conical prototype as discussed in the next section. 

5.5 Results 
in this Section, the experimental results are obtained using a conical slotted FSS 

supported by dielectric substrate. These are compared with the predictions obtained 
from the computer model using the quasi static approximation of the WIE as 
discussed in the Sec. 5.4. The geometry of the cone and feed system is the same as 
Fig. 3.3 in Chap. 3. Fig. 5.8 shows the actual FSS cone enclosing the corrugated conical 
feed which is positioned at the base of the cone. The automated set-up as described in 
Sec. 4.4 has been used. . 

A corrugated feed whose aperture plane is located at 0 has been used to illuminate the 
inner area of the cone. The orientation of the FSS elements in relation to the feed 

magnetic field is shown in Fig. 5.7. A conical FSS consists of two identical half sectors 

on the zf -xf plane, representing the top and bottom parts of the surface. Both 

sectors were initially printed on same sheet of dielectric substrate with Cr=3 and 
thickness 0.071mm (b-a). This was wrapped into a conical shape and glued on one 
side. The length of each dipole slot is 8.9mm, the width 0.3 mm. (a--O. 15 mm) and the 
element spacing is 12mm arranged in a square lattice in each sector when it was planar. 
In the FC model, the diameter of a cylindrical slot is the same as the width of a flat 
dipole FSS element. The cone is just over 30 cm long with a base diameter of 12.6 cm, 
Th e feed aperture has a diameter of 9.6 cm. The number of elements falling within the 
area of illumination in the theoretical feed model is 354 for the SPS and 236 for the PB 
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feed model Each slot is divided into 6 segments. The total number of matrix elements 
in the MOM were 1770X1770 for SPS and 1180XI 180 for PB. 

In Sec. 5.5.1 the measured and predicted transmission response for both a free standing 
and dielectric FSS cone will be discussed and compared using the computer model 
with the new NEIE formulation. Predictions with modal analysis, from an infinite 
planar array with the same element and lattice geometry, have been used to compare 
with the the results from the FC model. In Sec. 5.5.2 the predicted radiation patterns, 
using the novel NWIE with quasi static approximation will be validated. The SPS and 
PB feed models (For descriptions of feed models please see Sec. 3.3.2) have been used 
to calculate the fields radiated from the feed aperture which is illuminating the conical 
FSS. 

6.5.1 Transmission response 
This Section is devoted to the boresight losses in the transmission response of the FSS. 
Initially, the boresight losses from the modal analysis from a planar array will be 
compared with the FC model for free standing case as shown in Fig. 5.9. Then the new 
WIE is assessed for the quasi-approximation of the dielectric coating in Fig. 5.10 to 
compare with amount of frequency shift in the modal analysis. Finally the SPS and PB 
feed model will be compared in Fig. 5.1 1. 

The predicted transmission response from the modal analysis for an infinite array of the 
same lattice and element geometry, at TE and TM incident at 450 is shown in Fig. 5.9. 
For definition of the incidence state please refer to Fig. 4.8ab in Sec. 4.4.1 (The slot 
dipole is however rotated by 90' and is lying on the x axis in Fig. 4.8a and Fig. 4.8b). 
The results are compared with the predictions using the FC model for a free standing 
slotted cone. Fig. 5.9 shows that the SPS predicted pass band centre for a free standing 
case is about 16 GHz compared to measured value at 13.3 GHz for the slotted FSS 
dielectric cone. This shows that the conventional WIE is not sufficient to predict the 
results for the slotted FSS with dielectric backing. The planar free standing infinite FSS 

gives a pass band centre at about 15.3 GHz for TE incidence and 14 GHz for TM case. 

If the dielectric layer of 0.071 mm thick is included, the predicted bandwidth of the 
infinite array at TE 450 incidence, is reduced and band centre is shifted by about 0.7 
GHz, from 15.3 GHz to 14.6 GHz (Fig. 5.10). Very little shift in frequency is observed 
for TM case. The resonant frequency is expected to decrease because of the dielectric 
substrate. This shift is even greater for the SPS predictions using the novel Nff IE for 
the FSS cone (Fig. 5.10). The reduction in bandwidth is also predicted. The predicted 
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pass band centre is now shifted by 2.8 GHz, from 16 GHz (free standing case) to about 
13.2 GHz for the dielectric case. Although the predicted loss is about -1.53 dB, about 
6.37 dB higher than the measured loss, the profile of the transmitted response agrees 

very well. The location of the passband is clearly reproduced by the predictions except 
for distinct ripples in the measured results. The discrepancies could be due the mutual 

coupling between the feed and radome which have not been taken into account. Such 

coupling is expected to enhance because the cone is relatively small and close to the 
feed aperture. 

The predictions using the PB feed model for the dielectric FSS cone shows that the 
i Hz, maximum theoretical transmission loss is about -1.09 dB at 13.2 G about the same 

value as the SPS feed model. As shown in Fig. 5.1 I, the PB also predicts the profile of 
the transmission loss although the SPS predictions is slightly better near the pass band 

centre at 13.2 GHz- 

a. SPS predict. forfree standing FSS cone. 

Free standing infinite planar array: 
b. TE 45 deg. predict. f rom modal anal sis. 
c. TM 45 deg. predict. from modal anar; sis. 

0 

-10 

a» -20 

-30 

-40 L-- 
12 

- rneazured 

I 
_____ ____ 

- 

: z: 
13 14 15 16 17 18 

Frequency, GHz' 
Fig. 5.9 Passband response of a slotted conical array. 
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a. TE45 deg. predict. for free stand. planar FSS. 
b. TE 45 de . predict. for dielectric back. planar FSS. measured 
c. SIPS prNict. for free stand. FSS cone. a S b: 
d. SPS predict. for dielectric FSS cone, C. d. 

01 .. IIII el IIII. IIII TL 
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Frequency, GHz 
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5.5.2 Radiation patterns 
5.5.2.1 E -plane 
Representative normalised copolar patterns at 13.0 GHz and 13.2 GHz which are near 
the pass band centre is shown in Fig. 5.12a, and Fig. 5.13a. It is observed that the main 
lobe and the immediate side lobes are quite dominant in the radiation patterns. As the 
frequency departs from the passband centre, secondary side lobe levels at ±400 to 
±600 scan would increase rapidly. This could be due to multiple reflections inside the 

radome and interactions between the feed and FSS since the electromagnetic wave is 

trapped inside the radome at non-resonant frequencies. 

The measured main lobe and the location of the first pair of nulls have been predicted 
quite accurately by the SPS feed model. At 13.0 GHz and 13.2 GHz, the predicted side 
lobes are broader. The predictions seems to show a more symmetrical pattern 
compared to the measured. This could possibly be due to discontinuity at the seam 
between the top and bottom halves of the FSS array which is formed when the two 
halves are glued together at one side. This long but thin gap in the cone could have 
leaked some unwanted electromagnetic radiation when the FSS was excited by the 
feed. 

The measured crosspolar levels at the boresight was very low, nearly 40.0 dB 

although side lobe levels were as high as -15.0 dB at -50' The SPS predictions are 
well below these value. When the feed was tilted by 0.5' from the tip of the cone in the 

zf -xf in the model, higher cross polar peaks up to -30.0 dB is predicted. It is very 
difficult to ensure that the feed axis is aligned along the axis of the cone in the 

measurements, therefore tilting of feed and slight rotation of the polarised H fields of 
the feed are inevitable. This misalignment may explain why the measured crosspolar 
level is higher than expected. 

The PB predicts narrower main lobe and higher sidelobe levels as compared to the 
measurements in the E-plane. The copolar patterns at 13.2 GHZ can be found in 
Fig. 5.14a. The predicted nulls are also higher than the measured. As compared to the 
SPS feed model, the latter gives better predictions. 

]Fig. 5.15a shows effect on the feed pattern at 13.2 GHZ (the pass band centre 
frequency) when the conical FSS was covering the feed. Notice how the main lobe and 
side lobes of the feed pattern has been made narrower by the FSS. There was a loss of 
about -7.9 dB. This could be the result of mismatch in the dielectric substrate and 
coupling between the FSS and feed. The mismatch could potentially be improved if the 
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dielectric layer is of half wavelength thickness as in the case of pure dielectric radome 
[9]. 

5.5.2.2 H-plane 
Fig. 5.12b and Fig. 5.13b show the corresponding normalised copolar patterns at the H- 

plane. Since the magnetic field is polarised along the same plane as the slot axis 
(Fig. 5.7), the main lobe in the copolar patterns in this plane can be expected to be 
broader than the E-plane. The immediate and secondary side lobe levels are also higher 

than those in the E-plane. The SPS predicted the main lobe very well, especially at 
13.2 GHz. However, the first side lobe levels are lower than the measured ones. The 
first pair of nulls is predicted very well at ±20'. The measured cross-polar levels at the 
boresight was slightly higher than the E-plane but side lobe levels were generally 
lower. The SPS feed model however, predicts side lobes levels below -40 dB. This 

could be due to the misalignment of the feed as discussed in Sec. 5.5.2.1. 

The PB predictions show narrower main lobe and lower side lobe levels as compared 
to the measurements in the H-plane. Copolar patterns at 13.2 GHz can be found in 
Fig. 5.14b. The first pair of sidelobes and nulls are not predicted very well as compared 
to the SPS model. 

Fig. 5.15b shows how the conical FSS has affected the feed pattern in the H-plane at 
13.2 GHz. Notice now the main lobe of the feed pattern has been flatten, leaving a 
plateau shape up to ±100 scan azimuth. Side lobe levels also tends to be higher and 
oscillates very rapidly in this plane. This could be due to mutual coupling between the 
feed and FSS in the H-plane. 

5.5.2.3 450 plane 
The normalised copolar patterns at 450 plane across this frequency band seem to show 
the same trend as the principal plane except that the size of the main lobe averages 
between the E and H plane. This can be expected since 450 is diagonally divided 
between the E and H-planes. Fig. 5.16a and Fig. 5.16b show the copolar and crosspolar 
patterns at 13.2 GHz compared with the SPS predictions. It is observed that the profile 
of the predicted copolar pattern agrees moderately with the measured with the 
exception of deeper null and slightly narrower main lobe. The crosspolar levels are also 
reproduced except for the more rapid oscillations in the measured levels. The 
predictions from the PB model also gives moderate predictions as shown in Fig. S. 17a 
and Fig. 5.17b. 
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5.6 Comparing the tangential infinite array and finite current models 
In this Section, the predictions from the tangential infinite array (TIA) approach are 
compared with finite current (FQ model using the small conical array of slotted 
dipoles as discussed previously. Predictions from the TIA and FC models using the 
three feed models are compared with the measurements. The FN feed model is not 
suitable here because the feed is located too close to the radome wall. The predicted 
illumination is expected to be poor because of the inherent far field assumptions. 
Therefore, this has not been included in the FC model. 

The objective here is to test and compare the TIA with the FC model when the internal 

multiple reflections are expected to be higher especially when the cone is small. The 
TIA assumes that locally, each FSS element is small relative to the size of the cone so 
that local interactions of these elements can be approximated by a tangential infinite 

affay. Therefore, the curvature of FSS element is neglected because of the planar 
assumptions. This is in contrast to the FC model which accounts for the curvature of 

each FSS element on the conical surface and mutual coupling of all the elements. 

6.6.1 Current and modal recipe for a planar array of dipoles 
In order to predict the radiation patterns of a conical slotted FSS using the TIA 

approach, it is required to characterise the current basis functions of each slot in the 
modal analysis of an infinite planar FSS. 

The current expansion for slotted ring element has been previously described in 
Sec. 3.6.1. Using similar convention, the current is expanded in the form of, 

n,, =N, n, =N, A+ JjCn, V 1: Cn, 
n, =] n, =] 

(5.92) 

where here ff is the magnetic current flowing along the length of the slot, L The slot 

is lying along the v axis, where -L <v< 
L. 

In addition, v can be rotated according to 22 

angle y as shown in Fig. 5.18. This is to facilitate different orientations of the slot with 
respect to the incident field. Here, y--900 when the planar lattice was wrapped on the 
conical surface. It is assumed that current remains constant across the width, W. 
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The basis functions defined along the slot axis v are: 

(2nc 
-1); rv 

where nc =I and 2. (5.93) 
ifin, 

4NK COS L 

sin 
2n,; rv where n, = l, '2 and 3. (5.94) 

L 

and Na is a constant normalising factor given by, 

2 2- 
WL =AF (A' is the aperture area of the slot), (5.95) 

A minimum of 169 Floquet modes and 5 current modes have been used to expand the 

tangential fields. 

5.6.2. Transmission response 
The transmission response of the boresight loss from the predictions of the TIA and 
FC models are compared with the measured values as shown in Fig. 5.19. The TIA 

model gives a well defined passband using the three types of feed model, although the 

predicted passband centre is slightly lower at 13 GHz compared to the measured value 
at about 13.2 GHz- Whereas the FC model has accurately predicted the measured 
resonant frequency for both the SPS and PB feed models. There is also better 

agreement in the FC predicted profile with the measurements as compared to the TIA 

model. However, discrepancies are encountered in the minimum boresight losses of 
both models. The FC model gives a PB prediction of -1.09 dB and SPS of -1.53 dB as 
compared to the measured value about -8 dB. The TIA model gives lower value, with 
the SPS prediction at -14.5 dB, PB at -18.39 dB and FN at -21.2 dB. The difference 
between measured and FC model is about +6.0 dB for the PB and +6.5 dB for the SPS 

model. Whereas in the TIA model the descrepancies range from -6.5 dB for the SPS, - 
10.39 dB for the PB to -13.2 dB for the FN feed model. It is interesting to note that 
the FC model predictions are higher than the measured values but the TIA model 
predictions are lower. A possible explanation is that the internal multiple reflections 
inside the small cone which is modelled in the FC model must have contribute to the 
higher currents in the FSS elements so that the radiated field is higher. This would lead 
6ý a lower boresight loss. But the TIA model only calculates the current from a 
tangential infinite array approximation which has assumed local interaction of 
neighbouring elements. Therefore, it has ignored the strong couplings from the other 
elements when the cone is small. 
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On the whole, the FC model proves to be more accurate than the TIA model in 

predicting the passband although there are discrepancies in the boresight losses. 

Bearing in mind that the TIA model is actually meant for cases where the FSS element 
is smaller relative to the size of the cone, so that locally the FSS array can be 

approximated with a tangential infinite array. Previous results from the larger cone 

using the array of slotted rings (Chapter 3) show that the TIA model is fairly accurate 
in predicting the transmission response and radiation patterns using the SPS and FN 

feed models. The internal reflection is probably less serious there because the cone is 

relatively larger than the feed aperture and also the feed is located fiirther away from 

the radome wall. 

5.6.3 Radiation patterns 
The predicted normalised radiation patterns from the TIA model are compared with 
predictions from the FC models using the SPS and PB feed models. These predictions 
are also compared with the measurements. For the FN feed modelling, only the 

predictions from the TIA model are available. The radiation patterns at 13.2 GHz near 
the pass band centre are used here. 

5.6.3.1 The SPS feed model 
At 13.2 GHz, the predicted copolar pattern in the principal planes can be seen in 
Fig. 5.20a and Fig. 5.20b. In the E-plane, the predicted main lobes of the FC and TIA 

model agree fairly well with the measured values up to ±150 scan. The FC model 
predicts the first null better but the TIA model gives deeper nulls than the measured 
values. Asymmetry in the measured main lobe produces a shallower null and broader 

main lobe near +150. These could be due to the discontinuity on one side of the conical 
FSS (Please see Sec. 5.5.2.1 for further descriptions). The first pair of FC predicted 
side lobes are broader and the peaks are higher, about -7 dB at ±200, as compared to 
the measured values at -8 dB. The TIA, however, predicts lower peaks in this pair of 
side lobes down to - 16 dB.. The positions of these peaks are located by both FC and 
TIA models. In the H-plane, it is found that the FC model gives very good agreement 
in the main lobe but poorer predictions are encountered in the TIA model. 

The 450 copolar and crosspolar patterns are shown in Fig. 5.21 a and Fig. 5.12b. For the 
FC model, there is moderate agreement in the main lobe and side lobe profile with the 

measurements. The TLA, model predictions are poor giving a narrower main lobe and 
lower side lobe levels. The FC model gives good agreements in the crosspolar levels. 
But the TIA gives poorer predictions with higher peaks in the crosspolar at ± 150. 
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5.6.3.2 The PB feed model 
The E-plane copolar patterns at 13.2 GHz using the PB feed model with the TIA and 
FC models are shown in Fig. 5.22a. There is agreement in the main lobe of the FC 

model with the measured patterns up to ±12'. But the predicted first pair of side 
lobes are higher and broader. Nevertheless, the position of the measured peak side lobe 

is predicted at ±200. The TIA model gives a much broader pattern overall which does 

not agree with the measurements. There is also better agreement in the predicted main 
lobe of the FC model with the measured in the H-plane. (Fig. 5.22b). Although the rapid 

oscillations in the measured side lobe levels is not predicted. In comparison, the TIA 

model fails even to reproduce the main lobe. Similar predictions were also encountered 
in the 450 plane with very poor agreement with measurements in the TIA model. The 

FC model however could predict the general profile of the pattern. Thus, it seems to 

show that the approximate nature of both the TIA model and the PB feed model would 

add to the inaccuracies in the predicted patterns. The accuracy of the FC predictions 
depends mainly on the feed modelling since it could account for all the interaction of 
the FSS elements and hence the internal multiple reflections. 

5.6.3.3 The FN feed model 
There were very poor predictions in the radiation patterns of the TIA model using the 
FN feed modelling. The reason is mainly because the feed is very close to the inner 

wall of the small conical FSS so that the approximate far field divergent illumination of 
the FN feed model would not apply at this distance. 

Therefore, from the above discussions, it shows the importance of considering the 
internal multiple reflections within a small conical radome and modelling the near field 

feed illumination accurately if the feed is very close to the FSS. The simple 

approximation of a local tangential infinite array is not sufficient to model the currents 

of the FSS element because it only assumes local interaction of the neighbouring 

elements. This does not apply here when the element is large relative to the size of the 

radome and the surface curvature is not taken into account. In this case the cone is 

small relative to the feed aperture and feed is also very close to the wall of the cone. It 

was shown that the PB predictions is even better than the FN feed model when the 
TIA approach was used. This is in contrast to the larger radome of slotted rings when 
the feed is further away from the FSS. For this case, the FN feed modelling was far 

superior to the PB. But the SPS is still the best feed model for predicting the near field 
illumination especially when this fields is required in the proximity of the feed. Using 

this as a bench mark, it is found that the computation time for the FC and TIA model is 

about the same with 354 FSS slots on the small cone. Both models took about 5.5 
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hours to compute. The former model has the advantage of using a general integral 

equation formulation that does not compute the current for every planar incidence in 

order to model the non-planar near fields. But it is limited by large computer memory 

storage for the impedance matrix. Nevertheless, the FC radiation patterns and pass 
band location agree better with the measurements when compared to the TIA model. 
Thus, the FC model can provide a viable solution if the patterns are required at the 

passband centre. Nevertheless, mutual coupling with feed and the FSS is still a major 
concern especially if the cone is small relative to the feed aperture and the feed is very 
close to the FSS. 

II 
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5.7 Conclusions 
A novel formulation of the WIE has been developed to analyse the conical slotted 
FSS with thin dielectric. Using the duality to electric charge and current, equations for 

static fields of fictitious magnetic charge in ferrite medium and and magnetic current in 

dielectric medium were derived and expanded here. These equations has been 

exploited in a quasi static approximation of the MFIE. Computer models have been 
developed using the SPS and PB feed models to predict the radiation patterns and 
transmission response of a slotted FSS cone. A circular corrugated conical horn is 

positioned at the base of the cone to provide the near field illumination. The SPS gives 
good agreement in the radiation pattern especially in the main lobe of the H plane at 
resonant frequency. There are generally better agreements between the predicted and 
the measured radiation patterns near the pass band centre for the SPS model as 
compared to the PB. Some discrepancy is observed in the predicted maximum 
boresight loss but the profile of the predicted transmission response agrees well with 
measured values. This discrepancy is probably due to close coupling between the feed 

and the FSS. When the conical FSS was covering the feed, there was substantial 
boresight losses and the measured main lobe and side lobes of the feed pattern became 

narrower. This could be due to mismatch in the dielectric substrate and coupling 
between the FSS and feed. The mismatch could potentially be improved if the 
dielectric layer is of half wavelength thickness as in the case of pure dielectric radome 
[9]. 

The predictions ftom the FC model was compared with the TIA model. It was shown 
the importance of considering the coupling of all the FSS elements especially when the 
radome is small relative to feed aperture and also when the feed is illuminating the 

radome wall in proximity. In this case, it would appear that the internal multiple 
reflections strongly affect the radiation patterns. The TIA model is not accurate 
enough to predict the fields in a small radome. It is also crucial to model the near field 

using a more rigorous feed model Eke the SPS feed model. Using this feed model, the 

computation time between the FC and TIA model is about the same if there are 354 
FSS slots on a small cone. The main limitation of the FC model) however, is the 

computer memory requirement to store the large matrix but this is readily compensated 
by better accuracy. It has also the advantage of handling arbitrary and different FSS 

elements on the same cone. The TIA model however requires the same elements on the 
entire surface. Moreover, the FC model is not restricted by periodic lattice geometry. 
These features would enhance the capability for solving a general and wider FSS 

problem compared to the TIA model. 
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Thus, the FC model can provide a viable solution if the radiation patterns are required 
at the passband centre. Nevertheless, mutual coupling with feed and the FSS is still a 
major concern especially if the cone is small relative to the feed aperture and the feed is 

very close to the FSS. The FC model can be further improved to include the coupling 
of the feed and FSS if the integral equation formulation incorporates weighting of each 
point source in the feed aperture as well. This would lead to a slight increase of the 
impedance matrix size which is proportional to the number of points in the feed 

aperture used for the SPS feed modelling. 
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CHAPTER 6.0 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 
Two methods have been used to predict the far field radiation from a conical FSS 

radome illuminated by a corrugated feed horn. The near field illumination has also been 

assessed using three types of feed model although mutual coupling between the feed 

and the FSS radome has not been considered. The first feed model is based on a far 
field pattern of the feed horn to approximate the near fields and it is denoted as FN. 
This approximation produces a local plane wave incident field at each element on the 
cone which is a prerequisite for using the modal analysis for an infinite planar array. 
The amplitude of the illun-dnating field is modelled as a Gaussian distribution fitted to 
the measured far field pattern of the feed. The second one uses a parallel beam (PB) 

approximation emanating from the feed aperture. The parallel rays are compensated by 

a phase term due to the ray path difference from the feed aperture to the curved 
surface. A more rigorous evaluation approximates the near fields of a horn using a 
superposition of point sources (SPS) from the feed aperture fields. 

The first method for analysing the conical FSS is based on a tangential infinite array 
(TIA) approximation which has assumed the surface is locally flat so that the FSS 

element current could be calculated using the modal analysis. The location of the 
passband was predicted by all the three feed models, with some discrepancies in their 
boresight losses. The SPS is the'best feed model for locating the passband centre. 
Although there are differences in the boresight loss at the band centre, only the SPS 
predicts a loss, as expected in an antenna/radome system. The other feed models give a 
slight gain. Generally, there is agreement in the radiation patterns between the 
predicted and measured values for SPS and FN feed models. However, at wider scan 
angles, the computer model did not accurately predict the rapid oscillations of the side 
lobes. Such behaviour can be attributed to multiple reflections within the internal wall 
of the cone and mutual coupling between the feed and FSS which have not been taken 
into account in the formulation. The SPS model calls up the modal analysis routine 85 
times more for each point on the cone compared to only once per point for the FN 
model to compute the local fields. This has a profound effect on the computer memory 
requirements as well as the run time. In the present model only the source fields on the 
exterior wall of the cone is calculated. One possible way of improving this model is to 
include the source fields on the interior wall of the cone as well [I]. 

The accuracy of the scattering from a curved FSS structure was assessed more fully in 

the second method. Here, the finite size and the curvature of the FSS currents are 
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tackled using an integral equation formulation which takes into the coupling of all the 
FSS elements. This has been called a finite current (FC) model here because the 
interaction of all the FSS elements is treated in a finite geometrical sense. Initially, 

metallic dipole elements have been used to check the validity of applying the quasi- 
static approximation in the EFIE formulation for a small conical FSS. This formulation 
is weighted using the pulse Galerkin! s MOM technique to yield a linear system of 
equations which can be written in matrix form. A small FSS cone is used here because 

of limitation in computer memory demanded by the impedance matrix. Since the feed is 

now closer to the radome wall, only the SPS and PB feed models are used to model 
the illuminations because of their inherent near field assumptions. Both conjugate 
gradients (CG) and elimination methods are used to solve the matrices for the 

unknown current coefficients. For the standard EFIE (without dielectric 

approximation), it was found that the iterative CG method is faster than the 

conventional elimination method for frequencies away from the resonant frequency if 

the computer RAM is sufficient to cope with the storage of the impedance matrix. This 
is in contrast to the constant computation time taken by the latter method. However, 

when the RAM memory is exceeded substantially and the hard disk is assessed, the 

elimination method is faster. Therefore, the computational speed of both methods is 

also machine dependent. For a practical FSS the memory requirement will normally 
exceed the RAM so the elimination method is preferred. When the quasi-static 
approximation was incorporated in the EFIE formulation, the CG algorithm did not 
converge. This could be due to possible round off errors in the computation of the 

quasi-static approximation. Hence, the elimination method was adopted here. 

The computer model based on this quasi-static EFIE is able to predict the radiation 
patterns in the transmission band of the conical FSS radome. Both PB and SPS feed 
models give comparable predictions. The predicted reflection band centre frequency is 
higher than the measured value because the loading effect is also affected by the area in 
the dielectric portions of the unit cell which is comparatively larger than the FSS 
element dimensions. The quasi-static approximation here only considers the loading 
effect of the dielectric thickness around the equivalent cylindrical metallic dipole 
element. When the dielectric thickness was increased, the resonant frequency and 
reflection null is shifted closer to the measured values. This quasi-static model, 
however, is more suitable for the slotted conical FSS case. Although, the actual unit 
cell of the aperture is now occupied by both the dielectric and metallic screen, it is the 
slot that is exerting a dominant influence. Thus the narrow slotted region which is 
supported by the thin dielectric layer can be considered to be equivalent to a cylindrical 
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slotted dipole with dielectric coating. This quasi-static approximation has been used in 

a modified version of the MFIE. 

A novel formulation of the MFIE has been derived to analyse the slotted dipole FSS 

elements on thin dielectric conical radome. The equations of the static' fields of a 
fictitious magnetic charge in ferrite medium and magnetic current in dielectric medium 
have been successfully applied in a new quasi-static approximation of the Nff IE. The 

approximation is based on a set of complementary equations from the duality of the 

electric to the magnetic charge and current. Basically it is assumed that isolated 

magnetic charge and current source exist so that the static magnetic fields can be non- 
rotational and electric field non-divergent. The slotted flat dipole FSS element VAth 
dielectric substrate is modelled as a cylindrical slot with dielectric coating. The MFIE 
has been incorporated in the FC model to account for coupling of a array of slotted 
FSS element. Predictions from this model has been verified for a slot with dielectric 

substrate using experimental results. There is generally better agreement between the 

predicted and the measured radiation patterns, in a narrow scan angle, near the pass 
band centre for the SPS model as compared to the PB. Some discrepancy is observed 
in the predicted absolute transmission loss but the frequency profile agrees well with 
measured values. The differences in the losses and patterns are due to near field 

coupling because of the feed proxin-dty to the FSS. One way of verifying the new 
MFIE is to compare the predictions with the measurements of the FSS in the far field 

of the feed to avoid mutual feed and FSS coupling effect. This could form part of a 
study for future work to assess the quasi-static approximation of the WIE. 

Results from the FC and TIA models shows that it is important to consider the 
coupling of all the FSS elements especially when the radome is small and feed is 
illuminating it in proximity. The TIA model is not sufficient to model the fields'in a 
small radome because it has neglected interaction of all the FSS elements which causes 
internal multiple reflection. For such a small cone, it is also important to use a accurate 
feed model like SPS to compute the near field illuminations. Using this feed model to 
calculate the incidences, the computation time between the FC and TIA model is quite 
similar because fewer elements are used. This is mainly because the integral 
formulation in the FC model does not require repeated computations of current for 

each planar incidences in order to model the non-planar near fields. The main limitation 

stems from the computer memory requirement to store the large matrix but this is 

readily compensated by the accuracy. The FC model also has the advantage of 
analysing arbitrary FSS structures. Moreover, the FSS elements can be positioned 
anywhere without imposing any periodicity in the lattice. These features would 
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enhance its capability for solving a general and wider FSS problem compared to the 
TIA model. Thus, the FC model can provide a viable solution although the coupling 

with the feed has been neglected. 

The FC model can be further improved to include the coupling of the feed and FSS if 
the integral equation formulation incorporates weighting of each point source in the 
feed aperture as well. This would lead to a slight increase of the impedance matrix size 
which is proportional to the number of points in the feed aperture used for the SPS 
feed modelling. In order to extend the FC model to FSS with thicker dielectric 

support, mixed integral equations can be coupled to relate the FSS and dielectric 

portions. This is then solved using the MOM with surface or volume basis functions 
[2,3]. The main problem in the approach, however, is to constrain the size of the 
MOM matrix for computer computation. This could potentially be overcome using a 
sparse matrix which would reduce the memory and computation time if the weaker 
coupling elements can be identified and ignored. 

An alternative method is to employ the Lorentz reciprocity theorem with can account 
for mutual coupling of electromagnetic structures. The near field interactions between 
the feed and a purely dielectric radome, have been studied by others [4] using the 
reaction between two structures. This reaction concept is based on Lorentz theorem 
[5]. The presence of the FSS would require the Lorentz formulation to include the 
reaction of a third structure in the derivation. 

Although the conical radorne is fitted with a single layer of FSS, the transn-tission loss 

could be improved if it is replaced multi-layer FSS. The presence of cascaded planar 
FSS has been known to give a broader bandwidth and sharper roll-off [6]. The 
deterioration in radiation patterns could be altered and improved if the elements are 
located in a quasi-periodic lattice. Recently, this has also been exploited for frequency 

scanning purposes [7]. This is achieved by progressive phase shifting through 

elemental position and size on the curved surface in order to focus the feed pattern to 

a desired shape. Basically it is acting as an artificial lens antenna [8]. Therefore, the 

radiation patterns could be tuned according to the arbitrary dimension, element and 
position of the FSS geometry. 
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Appendix 1 

Coefficients from the modal analysis 
For interfaces at the rear of the screen, a=3,4,5,6 (media notation), 

+1 z ' Za 
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_pa+](M, p, q)ejl 

pq a 

o-aa+](ni, p, q) =- 11+1 + -jyPq Za 

+pa+](ni, p, q)ejyaPq" z eq 
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For the interfaces on the illumination side, the coefficients are given: 

V]23(ni, p, q) =v, (m, p, q)v2(m, p, q)v3(m, p, q) (AIA) 

U, 23(m, p, q) =uj(m, pq)v2(mp, q)v3(m, p, q) +u2(m, p, q)v3(m, p, q) 

+v3(m, p, q) 

For a=1,2,3 (media notation), 
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Appendix 2 

Feed to surface co-ordinate transformations 
Two sets of co-ordinate transfonnations are required if the feed is allowed to tilt in the 
yy -zf and xf -zf planes. 

Case(I) 

If the feed is tilted in the yy -zf plane with 0,, as shown in Fig. 3.4a, then the following 

feed to surface co-ordinate transformation would apply. 

XS 00 

Xf 

YS 0 -cos 00 - sin 00 (A2.1) Yf 

ZS 
-0 

sin 00 -Cos 00 
-Lzf 

and 

A 
Xf XS 

A 

Yf =0 -cos 0,, sin 0,, (A2.2) YS 
0 -sin Oo 

-Zf L -COS 0O. Mki 

Case(II) 
If the feed is tilted in the xf -zf plane with 0,, as shown in Fig. 3.4b, then the following 
feed to surface co-ordinate transformation would apply. 

XS 0 
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A ZS -sin 00 

0 Xf 
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Appendix 3 

FN feed model 
The incident fields of the FN feed model can be obtained from Gaussian fittings to the 
measured copolar and crosspolar feed patterns. These are scaled in the inverse square 
sense as the field amplitude varies with distance. 
The incident fields are firstly expressed in feed co-ordinates as follows: 

Ef -+ Eyf ^+E., f F 
., 

Xf Yf Zf (A3.1) 

The Cartesian components of the fields can be extracted with the help of the Ludwig's 
third definition vectors[ I] using the following equations. 

Ei. ii, 0 = Acoe -jkjp d� 
(A3.2) 

rp 

fli. 1, = A,,,,,, e -jkj, d,, 
(A3.3) cross rp 

Ri. pp =b (A3.4) 

A 

where ico and icros, are the Ludwies vectors given in Chapter 2. as Eq. (2.52) and 

Eq. (2.54). But the polar angles in the vectors here should be in terms of 
(Of 

, ýf ) of 

the feed co-ordinates. do is the intersection of the zf axis with the cone fi7om the origin 

of the feed axis and Fp is the distance between the feed origin and the surface as shown 
in Fig3.3. 

The copolar pattern is derived from: 

Of 

Aco e 
T" ; W'ol 

(A3.5) 

where a,, and a, are arbitrary constants chosen to fit the desired illumination. 
Similarly, the crosspolar pattern can be offset from the boresight according to the peak 

crosspolar levels at angle Op. And it is derived from: 
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4a 
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where c is-the desired peak crosspolar level and a is a normalisation constant. It is 

also assumed that the crosspolar is maximum in the diagonal planes i. e. 45 degrees. 

Reference 
[1] Ludwig, A. C.: 'The definition of cross polarisation!, IEEE Trans., AP-21,1973, 

pp. 116-119. 
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Appendix 4 

Aperture fields of a narrow flare circular conical corrugated hom 
Details of the derivation of the aperture fields in a circular corrugated waveguide can 
be found in [1]. The aperture fields in a narrow flare conical corrugated horn can 
approximated by the fields in a cylindrical waveguide provided that the semi-flare angle 
does not exceed 150. The cylindrical components of fields in the hybrid HE, I mode are 
given by in the feed co-ordinates as: 

A 
Epf ýýIwo [ (A 

+ ý) Jo (kpf 
+ 

("d J2 (kpf 
cos of 

2k 

E Of =j 
Ak,, IA +ý)Jjkpf) -(d -ý)J2(kpf)] sin of (A4.2) 
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(kpf)+(]-ýA)J2(kpf)]sinof (A4.3) 

f 2k 
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Ak 0[ ýA +])JO(kpf (A4.4) 
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(I 

-m J2 (kpf )] 
cos of 

pf and ýf denote the radial and phi component of the feed aperture. E and H are the 

electric and magnetic fields. 

ExPressing the fields in xf and yf feed co-ordinates yields, 

Ea = _j 
Ak,, [ (A + ý) J,, (kpf )+ (A 

- ý) J2 (kpf ) 
cos 2 ýf Xf 

2k 
(A4.5) 
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Hya, = -jyo 
A0[ ýA +I)JO(kpf) -(I -ýA)J2(kpf)cos2ýf (A4.8) ýýov 
A 

J,, and J, are Bessel functions of order 0 and 1. 

k is the transverse wavenumber given by k= 
UO 

such that JO (UO) =0- pa is the 
Pa 

inner radius of the feed aperture and A is determined by the power carried by the 
hybrid mode. 
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222; r where 8 VZ 
- k2 and k,, A is the wavelength. k,, 0 

YO = 
FZ70- 

where co and pois the permitivitty and the permeability of free space 

respectively. 

The hybrid mode is balanced (produces a symmetrical pattern) i. e. HEI I when the slot 
depth near the aperture is a quarter wavelength long. For the HE, I mode, A=I. 

Reference 
[1] PIB Clar7icoats and A. D. Olver.: 'Corrugated horns for microwave antennas', 
IEEE Electromagnetic Wave Series: 18, Peter Peregrinus, 1984, pp. 36 and pp. 160- 

162. 
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Appendix 5 

Parallel Beam (PB) feed model 
The PB feed model assumes that the antenna is in the proximity of the FSS so that its 

near fields can be approximated as a beam of parallel rays illuminating the surface. The 

rays depend on the aperture fields in the feed therefore the area of illumination is 

actully a projection of the feed aperture. If the conical FSS has a larger base diameter 

than the feed aperture, the area illuminated would be smaller than those by the FN and 
SPS feed model. Hence, fewer FSS elements are excited compared to the other two 
feed models. 

The PB analysis is derived from its fields in the spectral domain i. e. Fourier transfrom. 

If the radiated electric field W(xf, yf, zf) is expressed in terms of its Fourier 

transform ET(U, V), then 

00 00 
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2z 
where X is the wavelength. A 

If the beam is paraHeL then Of = 0, so j6 = ko. So, (A5.1) becomes, 
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, yf , 0) is the aperture fields of the feed. 

Therefore, the electric field illuminated on the FSS is obtained from the product of the 

aperture fields and the parallel phase path difference( -jk,, zf 
) from the aperture to the 

surface. 
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Since the radiated electric field is planar, its magnetic fields can be calculated using the 
free space impedance as follows: 

x (Xf Yf, -'f) =F (xf, yf zf) 6' ý, Ri To f 
(A5.7) 

Note that 91(xf, yf, --f) lies in the xf and yf plane because it depends on the 

aperture field. 
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Appendix 6 

Scattered fields using Stratton and Chu's formulation 
The radiated fields at a observation point P from finite electric current j and magnetic 

current J.. sources bounded by surface S is given by the Stratton and Chu [1]. The 

expressions of the fields are rewritten here as follows: 
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and 
r is the distance between the current sources and P along vector P as shown in 

Fig. A6.1 such that r =IR -Pl. 
Y' is position of the current sources and R- is position of point observation with 
respect to a arbitrary global origin. 

In order to derive the superposition of point source (SPS) feed model, the feed 
aperture is discretised into small patches where the patch area of the each current 
sources is reduced to a point. Let the area of the dual current sources be located at the 
origin in free space (FigA6.1). If this area is shrunk to a small patch, so that 
distribution of the currents is constant across the patch area, S', then (A6.1) becomes: 
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The currents! terms are allowed to be extracted from the double integral because the 
currents is approximated as a point source. The same argument applies to the magnetic 
fields expression (A6.2). 

In the far field, however, the electric fields for a general current sources is 
approximated as: 

, 
ü(,: ) = 

-jwpo CjkoR 

4; r RR eik oF'*'ýdS (A6.7) 

where the higher order terms in (A6.2), (A6.3) and (A6.4) are removed. 
The radiated electric far fields for a point source is also given by (A6.6) except that 
higher order terms are removed. Thus, 
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Fig. A6.1 Arbitrary field point P from 
current sources. 
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