

IMPROVING INTRUSION DETECTION

SYSTEMS USING DATA MINING

TECHNIQUES

By

Abdulrazaq Almutairi

A Doctoral Thesis submitted in partial fulfilment of the requirements for the

award of Doctor of Philosophy of

Loughborough University

9th February 2016

Improving Intrusion Detection Systems using Data Mining Techniques – Abdulrazaq Almutairi –Feb 2016

ABSTRACT
Recent surveys and studies have shown that cyber-attacks have caused a

lot of damage to organisations, governments, and individuals around the world.

Although developments are constantly occurring in the computer security field,

cyber-attacks still cause damage as they are developed and evolved by

hackers. This research looked at some industrial challenges in the intrusion

detection area. The research identified two main challenges; the first one is that

signature-based intrusion detection systems such as SNORT lack the capability of

detecting attacks with new signatures without human intervention. The other

challenge is related to multi-stage attack detection, it has been found that

signature-based is not efficient in this area. The novelty in this research is

presented through developing methodologies tackling the mentioned challenges.

The first challenge was handled by developing a multi-layer classification

methodology. The first layer is based on decision tree, while the second layer is a

hybrid module that uses two data mining techniques; neural network, and fuzzy

logic. The second layer will try to detect new attacks in case the first one fails to

detect. This system detects attacks with new signatures, and then updates the

SNORT signature holder automatically, without any human intervention. The

obtained results have shown that a high detection rate has been obtained with

attacks having new signatures. However, it has been found that the false positive

rate needs to be lowered. The second challenge was approached by evaluating IP

information using fuzzy logic. This approach looks at the identity of participants

in the traffic, rather than the sequence and contents of the traffic. The results have

shown that this approach can help in predicting attacks at very early stages in

some scenarios. However, it has been found that combining this approach with a

different approach that looks at the sequence and contents of the traffic, such as

event- correlation, will achieve a better performance than each approach

individually.

KEYWORDS
Intrusion detection; Multi-Stage attacks; IP Check; Data mining; Fuzzy Logic;
Neural Network; Naïve base; Decision tree; SNORT

ACKNOWLEDGEMENTS

 First I would like to thank God who has been a source of blessing and
making this project come through.

I would like this opportunity to thank my supervisors, Prof. David Parish
and Dr. James Flint who have been very patient with me and have been
relentlessly guiding me with their expert guidance.

I would also like to thank all of my colleagues in High Speed Network
group for their support, help and for sharing their knowledge, Dr. Francisco
Aparicio-Navarro, Dr. Konstantinos Kyriakopoulos and Gines Escudero-Andreu.

I would also like to thank family especially my wife Dr. Shaimaa
Almutairi and friends who have helped with number of tasks in the PHd. I would
also like to extend my gratitude to my sister – Huda, for whom I wish that she will
wake up from coma and read this thesis. And I would like to thank my parents for
their consistent support, without them I would not be where I am today.

Finally I would also thank my country Kuwait. And I would like to thank
Prime Minister of the State of Kuwait Sheikh Jaber Mubarak Al-Hamad Al-
Sabah, And Sheikh Mohammad Abdullah Al-Mubarak Al-Sabah, and Sheikh
Khaled Mohammad al-Khaled Al-Sabah.

https://en.wikipedia.org/wiki/Jaber_Al-Mubarak_Al-Hamad_Al-Sabah
https://en.wikipedia.org/wiki/Jaber_Al-Mubarak_Al-Hamad_Al-Sabah

CONTENTS
CHAPTER 1 .. 1

INTRODUCTION .. 1

1.1 BACKGROUND.. 1

1.2 MOTIVATIONS OF THE RESEARCH ... 5

1.3 RESEARCH AIM AND OBJECTIVES ... 6

1.4 THESIS ORIGINAL CONTRIBUTION ... 7

1.5 RESEARCH METHODOLOGY ... 7

1.6 THESIS OUTLINE .. 8

CHAPTER 2 .. 10

LITERATURE REVIEW .. 10

2.1 INTRODUCTION AND BACKGROUND ... 10

2.2 CLASSIFICATION OF HONEYPOTS ... 12

2.2.1 Low-Interaction Honeypots ... 12

2.2.2 High-Interaction Honeypots .. 14

2.3 PURPOSE OF HONEYPOT ... 15

2.3.1 Research Honeypot .. 15

2.3.2 Production Honeypots ... 15

2.4 MONITORING METHODS OF HONEYPOTS ... 17

2.5 MONITORING METHODS OF LOW-INTERACTION HONEYPOTS 17

2.5.1 Mwcollect (Malware Collection Tool) 17

2.5.2 Honeyd ... 18

2.6 MONITORING METHODS OF HIGH-INTERACTION HONEYPOTS 18

2.6.1 Sebek .. 18

2.6.2 Honeynets ... 20

2.6.3 Argos .. 22

2.7 ADVANTAGES AND DISADVANTAGES OF HONEYPOTS 23

2.8 INTRUSION DETECTION SYSTEMS .. 24

2.8.1 Overview .. 24

2.8.2 Detection methodologies .. 26

2.8.3 Limitations of Intrusion Detection Systems 27

2.8.4 IDS Tools ... 28

2.8.5 Evaluation Metrics of IDSs .. 29

2.8.6 Offline Evaluation .. 30

2.8.7 Online Evaluation .. 34

2.9 DATA MINING .. 36

2.9.1 Overview .. 36

2.9.2 Data mining limitations ... 37

2.9.3 Genetic algorithms ... 37

2.9.4 Artificial Neural Network .. 38

2.9.5 Naive Bayes .. 39

2.9.6 Decision Tree ... 40

2.9.7 K Means ... 42

2.9.8 Related Research Works to the first contribution 44

2.9.9 Related Research Works to the Second Contribution 45

2.9.10 Weka data mining tool ... 47

2.10 FEATURE SELECTION .. 47

2.11 DISCUSSION ... 49

2.12 SUMMARY .. 51

CHAPTER 3 .. 53

MULTI-LAYER CLASSIFICATION SYSTEM ... 53

3.1 INTRODUCTION .. 53

3.2 CLASSIFICATION APPROACH .. 55

3.3 DATA SET – KDD’99 ... 57

3.3.1 Overview .. 57

1.3.2 Features of the Data Set .. 58

3.4 CLASSIFIER MODULE ... 59

3.4.1 Overview .. 59

3.4.2 Naïve Bayes .. 59

3.4.3 Decision Tree ... 60

3.4.4 Experiment Environment ... 61

3.4.5 All-Classes Based Model Creation Strategy 62

3.4.6 Two-Classes Based Model Creation Strategy 65

3.4.7 Chosen Model .. 67

3.5 REASONING MODULE... 67

3.5.1 Overview .. 67

3.5.2 Neural Network .. 69

3.5.3 Fuzzy Logic .. 70

3.5.4 Experiment Environment ... 70

3.5.5 Experiment Results .. 74

3.6 CONCLUSION ... 74

CHAPTER 4 .. 76

MULTI STAGE ATTACKS .. 76

4.1 INTRODUCTION .. 76

4.2 ANALYSIS APPROACH .. 78

4.3 SCENARIO A .. 78

4.3.1 Trace file .. 78

4.3.2 IP Involved in the Scenario .. 79

4.3.3 Stages of the attack .. 82

4.3.4 Summary of the Scenario ... 85

4.3.5 Analysis Outcome: ... 86

4.4 SCENARIO B ... 87

4.4.1 Social Engineering ... 87

4.4.2 Operation Shady Rat Attack .. 87

4.4.3 Analysis Outcome .. 90

4.5 SCENARIO C ... 91

4.5.1 CRLF Injection .. 91

4.5.2 Scenario C.1 ... 91

4.5.3 Scenario C.2 ... 93

4.5.4 Analysis Outcome .. 94

4.6 SCENARIO D .. 94

4.6.1 Vulnerable FTP Service ... 94

4.6.2 Scenario Description ... 94

4.6.3 Analysis Outcome .. 97

4.7 CONCLUSION ... 97

CHAPTER 5 .. 99

MULTI STAGE ATTACKS PREDICTION ... 99

5.1 INTRODUCTION .. 99

5.2 AN OVERVIEW OF THE PROPOSED SOLUTION 100

5.3 NETWORK SNIFFING MODULE ... 101

5.3.1 Choosing a sniffing tool ... 101

5.4 IP INFORMATION FINDER MODULE .. 105

5.4.1 IP geographic Location ... 105

5.4.2 IP Block List ... 107

5.4.3 IP Rating .. 109

5.4.4 Implementation .. 109

5.5 THE REASONING MODULE .. 111

5.5.1 Data Mining Technique Selection .. 111

5.5.2 Pre-processing the inputs .. 112

5.5.3 Fuzzy logic ... 113

5.5.4 Implementation .. 116

5.5.5 Using Message Broker ... 118

5.6 SUMMARY .. 121

CHAPTER 6 .. 123

EVALUATION ... 123

6.1 INTRODUCTION .. 123

6.2 LOGISTICS EVALUATION .. 124

6.2.1 Distributed Management ... 124

6.2.2 Ease of Configuration ... 125

6.2.3 Ease of Policy Management .. 126

6.2.4 Outsource Solutions ... 126

6.2.5 Platform Requirements .. 127

6.2.6 Conclusion ... 127

6.3 DESIGN METRICS ... 128

6.3.1 Adjustable sensitivity ... 128

6.3.2 Data storage .. 129

6.3.3 Multi sensor support .. 129

6.3.4 Firewall Interaction ... 129

6.3.5 Incident logging and notifications 129

6.3.6 Packet Loss .. 130

6.3.7 System throughput .. 130

6.3.8 Conclusion ... 130

6.4 PERFORMANCE EVALUATION ... 131

6.4.1 Testing Data ... 131

6.4.2 First Phase ... 132

6.4.3 The Second Phase .. 134

6.5 CONCLUSION ... 136

CHAPTER 7 .. 138

CONCLUSIONS AND FUTURE WORK .. 138

7.1 OVERVIEW ... 138

7.2 AUTOMATIC CREATION FOR SNORT RULES 139

7.3 MULTI-STAGE ATTACK PREDICTION ... 141

7.4 FUTURE WORK .. 145

7.5 PUBLICATIONS RELATED TO THIS THESIS .. 146

REFERENCES .. 147

APPENDIX A: PROJECT PLAN ... 164

A.1 PROJECT MANAGEMENT METHODOLOGY ... 164

A.2 PROJECT SCHEDULE .. 164

A.3 RESOURCE PLAN .. 167

A.3 COMMUNICATIONS PLAN ... 168

A.4 RISK PLAN ... 168

APPENDIX B: NEURAL NETWORK TRAINING CODE 171

APPENDIX C: FUZZY RULES GENERATION CODE 172

APPENDIX D: HYBRID MODULE CODE ... 174

APPENDIX E: NETWORK SNIFFING MODULE CODE 179

APPENDIX F: IP INFORMATION FINDER MODULE 180

APPENDIX G: THE REASONING MODULE CODE 181

APPENDIX H: THE NETWORK SNIFFING MODULE CODE

WITH A MESSAGE BROKER .. 183

APPENDIX I: THE IP INFORMATION MODULE CODE WITH A

MESSAGE BROKER ... 185

APPENDIX J: THE TEST SCRIPT FOR MULTI-STAGE

PREDICTION ... 187

LIST OF TABLES
TABLE 2.1: CLASSIFICATION OF HONEYPOTS .. 16

TABLE 2.2: ADVANTAGES AND DISADVANTAGES OF IDS METHODOLOGIES (LIAO ET

AL. 2012) .. 27

TABLE 2.3: ATTACK TYPES IN EVALUATION DATA SET (SOURCE: (LIPPMANN ET AL.

2000)) ... 33

TABLE 2.4: TAXONOMY OF MACE EXPLOITS (SOURCE: (SOMMERS ET AL., 2005)) 35

TABLE 2.5: TRIDENT TOOLS DEVELOPED FOR NIDS PERFORMANCE EVALUATION

(SOURCE: (SOMMERS ET AL. 2006)) .. 35

TABLE 2.6: ADVANTAGES AND DISADVANTAGES OF DATA MINING TECHNIQUES 44

TABLE 3.1: RESULTS FOR NAÏVE BAYES AND DECISION TREE USING AN ALL-

CLASSES MODEL CREATION STRATEGY ... 62

TABLE 3.2: ACCURACY / CLASS FOR NAÏVE BAYES AND DECISION TREE USING

ALL-CLASSES MODEL CREATION STRATEGY ... 64

TABLE 3.3: RESULTS FOR NAÏVE BAYES AND DECISION TREE USING TWO-CLASSES

MODEL CREATION STRATEGY .. 65

TABLE 3.4: ACCURACY / CLASS FOR NAÏVE BAYES AND DECISION TREE TWO-

CLASSES MODEL CREATION STRATEGY .. 66

TABLE 3.5: RESULTS OF THE HYBRID MODEL USING NEURAL NETWORK AND FUZZY

LOGIC ... 74

TABLE 4.1: IP ADDRESSES PARTICIPATED IN THE FIRST SCENARIO AS SOURC 80

TABLE 4.2: IP ADDRESSES PARTICIPATED IN THE FIRST SCENARIO AS DESTINATIONS

 ... 81

TABLE 4.3: DNS QUERY .. 82

TABLE 4.4: DNS RESPONSE .. 82

TABLE 4.5: FAILURE TO ESTABLISH A CONNECTION ... 83

TABLE 4.6: FAILURE TO ESTABLISH A CONNECTION ... 83

TABLE 4.7: COMMUNICATION BETWEEN THE COMPROMISED AND TARGETED HOST 84

TABLE 4.8: BOT NET COMMANDS USED BETWEEN THE COMPROMISED AND

TARGETED HOSTS .. 85

TABLE 5.1: A COMPARATIVE OVERVIEW OVER DIFFERENT SNIFFING TOOLS 103

TABLE 5.2: API REQUEST FOR FINDING IP GEOGRAPHIC LOCATION (NEUTRINO API,

2013) .. 106

TABLE 5.3: API RESPONSE FOR FINDING IP GEOGRAPHIC LOCATION (NEUTRINO

API, 2013) .. 107

TABLE 5.4: API REQUEST FOR FINDING IP GEOGRAPHIC LOCATION (NEUTRINO API,

2013) .. 108

TABLE 5.5: API RESPONSE FOR FINDING IP GEOGRAPHIC LOCATION (NEUTRINO

API, 2013) .. 108

TABLE 5.6: API REQUEST FOR FINDING IP RATING (NEUTRINO API, 2013) 109

TABLE 5.7: API RESPONSE FOR FINDING IP RATING (NEUTRINO API, 2013) 109

TABLE 5.8: THE REASONING MODULE INPUTS ... 112

TABLE 5.9: PRE-PROCESSING THE REASONING MODULE INPUTS 112

TABLE 5.10: IF THEN RULES USED IN THE REASONING MODULE 115

TABLE 6.1: LOGISTIC METRICS ... 128

TABLE 6.2: TEST ENVIRONMENT FOR MEASURING SYSTEM THROUGHPUT` 130

TABLE 6.3: DESIGN METRICS .. 131

TABLE 6.4: DIFFERENT CLASSES IN THE IP TEST LIST .. 132

TABLE 6.5: THE CONFUSION METRICS ... 134

TABLE 6.6: THE CONFUSION METRICS AFTER USING THE FRAUD LAB WEB SERVICE TO

DETECT ANONYMOUS PROXY .. 134

TABLE 6.7: IP PARTICIPATED IN THE SQL ATTACK SCENARIO 135

TABLE 6.8: IP PARTICIPATED IN THE UDP SCAN SCENARIO 135

TABLE 6.9: IP PARTICIPATED IN THE CROSS SITE FORGERY SCENARIO 136

TABLE 6.10: IP PARTICIPATED IN DICTIONARY ATTACK AGAINST FTP SERVER 136

LIST OF FIGURES
FIGURE 1.1: DISTRIBUTION OF COSTS FOR EXTERNAL CONSEQUENCES OF TARGETED

CYBER-ATTACKS REPORTED BY STATISTIA (2015) .. 2

FIGURE 1.2: DISTRIBUTION OF COSTS FOR EXTERNAL CONSEQUENCES OF TARGETED

CYBER-ATTACKS REPORTED BY PONEMON INSTITUTE (2014) 3

FIGURE 2.1: CONTROL PANEL FOR SPECTER TOOL SHOWING SERVICES THAT MAY BE

EMULATED (SOURCE: (NETSEC, 2012)) ... 13

FIGURE 2.2: HTTP SERVICE EMULATION SETUP USING KFSENSOR (SOURCE:

(KFSENSOR, 2012)) .. 14

FIGURE 2.3: INSTANCE OF MODIFIED SYS_READ SYSTEM CALL AFTER LOADING OF

SEBEK ... 19

FIGURE 2.4: SEBEK BASED APPROACH IN HONEYPOT MONITORING IN CONTEXT OF

HTTP (SOURCE: (JIANG AND WANG, 2007)) .. 20

FIGURE 2.5: HONEYWALL ARCHITECTURE (SOURCE: (PROJECT, 2012)).................. 21

FIGURE 2.6: HIGH-LEVEL OVERVIEW OF ARGOS (SOURCE: (PORTOKALIDIS ET AL.,

2006)) ... 23

FIGURE 2.7: CONCEPTUAL VIEW OF DARPA EVALUATION TEST BED THAT CREATE

1000’S OF VIRTUAL HOSTS AND 100’S OF USERS TO SIMULATE A SMALL AIR

FORCE BASE SEPARATED BY ROUTER FROM THE INTERNET (SOURCE:

(LIPPMANN ET AL., 2000)) .. 31

FIGURE 3.1: HIGH LEVEL VIEW OF RESEARCH PROCESS ... 55

FIGURE 3.2: ATTRIBUTES SELECTED UPON USING CFS EVALUATOR AND DEPTH FIRST

SEARCH ... 59

FIGURE 3.3: VARIANCE OF PREDICTED VS. EXPECTED CLASSES USING THE NAÏVE

BAYES ALL-CLASSES MODEL CREATION STRATEGY .. 63

FIGURE 3.4: VARIANCE OF PREDICTED VS. EXPECTED CLASSES USING DECISION

TREE ALL- CLASSES MODEL CREATION STRATEGY .. 63

FIGURE 3.5: VARIANCE OF PREDICTED VS. EXPECTED CLASSES USING NAÏVE BAYES

TWO-CLASSES MODEL CREATION STRATEGY ... 65

FIGURE 3.6: VARIANCE OF PREDICTED VS. EXPECTED CLASSES USING DECISION

TREE TWO-CLASSES MODEL CREATION STRATEGY .. 66

FIGURE 3.7: HYBRID MODEL OVERVIEW .. 68

FIGURE 3.8: FUZZY LOGIC COMPONENTS .. 70

FIGURE 3.9: MEMBERSHIP FUNCTION FOR THE SELECTED FEATURE (NOT INCLUDING

THE ‘SERVICE’ FEATURE) .. 73

FIGURE 3.10: MEMBERSHIP FUNCTION FOR THE OUTPUT... 73

FIGURE 4.1: STAGES OF SCENARIO A ... 86

FIGURE 4.2: EXAMPLE OF HTML COMMENTS USED EMBEDDED IN HTML TO BE

USED BY MALWARE .. 89

FIGURE 4.3: STAGES OF SCENARIO B... 90

FIGURE 4.4: CRLF INJECTION ON A PHP SCRIPT .. 92

FIGURE 4.5: STAGES OF SCENARIO C.1.. 93

FIGURE 4.6: USING NMAP TOOL TO FIND AN OPEN PORT (PENTRATION TESTING LAB,

2012) .. 95

FIGURE 4.7: USING THE METASPLOIT TOOL TO FIND A VALID FTP LOGIN

(PENTRATION TESTING LAB, 2012) .. 96

FIGURE 4.8: STAGES OF SCENARIO D .. 97

FIGURE 5.1: AN OVERVIEW OF THE PROPOSED SOLUTION TO DETECT MULTI-STAGE

ATTACKS ... 101

FIGURE 5.2: THE OUTPUT OF THE TCPDUMP COMMAND 104

FIGURE 5.3: THE FLOW CHART OF THE NETWORK SNIFFING MODULE 104

FIGURE 5.4: BLACK-LISTED COUNTRIES SELECTION .. 106

FIGURE 5.5: THE FLOW CHART OF THE IP INFO FINDER MODULE 110

FIGURE 5.6: A FUZZY LOGIC ELEMENTS .. 113

FIGURE 5.7: THE MEMBERSHIP FUNCTION SELECTED FOR THE INPUTS HAVING

BOOLEAN VALUES .. 114

FIGURE 5.8: THE SELECTED MEMBERSHIP FUNCTION FOR IP REPUTATION 114

FIGURE 5.9: THE SELECTED MEMBERSHIP FUNCTION FOR THE OUTPUT 116

FIGURE 5.10: THE FLOW CHART OF THE REASONING MODULE 117

FIGURE 5.11: THE MODIFIED VERSION OF THE PROPOSED SOLUTION AFTER ADDING A

MESSAGE BROKER ... 118

FIGURE 5.12: NETWORK SNIFFING MODULE WHEN USING MESSAGE BROKER 119

FIGURE 5.13: THE FLOW CHART OF THE IP INFORMATION MODULE WHEN USING

MESSAGE BROKERS ... 120

FIGURE 6.1: DISTRIBUTED MANAGEMENT ARCHITECTURE 125

GLOSSARY OF TERMS
 AD: Anomaly-based Detection.

 Anonymous Proxy: It is a server that acts as a middleman between a

machine and the internet. It is used to hide a user’s identity when

communicating with the internet.

 Bot: is a program that is designed to carry out a number of tasks and

normally waits for orders to be executed from a master computer.

 Botnet: a group of machines that are infected by a bot controlled by the

same master.

 CFS: correlation-based feature selection.

 Confusion matrix: representation of actual and predicted results for a

classification. In this context, it is used to measure the performance of a

classification system.

 CPU: Computer Processing Unit.

 CRLF: Carriage Return Line Feed.

 Cross Site scripting: it is a vulnerability that allows attackers to inject

client side code to a web page accessed by other users.

 DDOS attacks: is a distributed denial of service. It is a denial of service

that is carried out in a planned manner by multiple attackers targeting one

victim.

 Denial of Service: a denial of service is defined as an attempt by attackers

to affect a machine in a way that it will not deliver a service for users

having permissions of access. Affected machines become irresponsive in

this case.

 DNS: Domain Name System.

 DNSBL: Domain Name System Block Lists.

 False negative: In this context, false negative refers to alert not raised by a

system while it is supposed to be raised. In this case, the system thinks it is

a normal traffic while it is an attack.

 False positive: In this context, false positive refers to alert raised by a

system while it is not supposed to be raised. In this case, the system thinks

it is an attack while it is normal traffic.

 FCBF: Fast Correlation Based Filter.

 Firewall: It is a software or hardware system designed to check incoming

traffic from outside the network (e.g. the Internet), and then decides either

to pass the traffic or stop it based on the firewall settings (e.g. block

unauthorized access).

 Flood attacks: can be defined as any kind of attack that is carried out to

target a system by overwhelming the system resources. It can be achieved

by flooding the system with a large number of requests or responses.

 FTTP: File Transfer Protocol.

 GR: gain ratio.

 Honeypot: Bandy (2015) defined it as a tool used to protect networks

from unauthorized access, it does not contain data or applications that are

critical to an organization but it has some data that hacker have an interest

in. In other word, it is a computer in a network configured to interact with

hackers in order to get some details about their attacks.

 HTTP: Hyper Text Transfer Protocol.

 ICMP: Internet Control Messaging Protocol.

 IG: information gain.

 Intrusion Detection Systems: An Intrusion Detection System is a

software or hardware system that monitors incoming and outgoing

network traffic and raises an alert when detecting malicious activities in

the traffic. More details about intrusion detection systems are included in

chapter two.

 Intrusion Prevention System: it is an Intrusion Detection System but

able to take an action when detecting malicious traffic.

 ISP: Internet Service Provider.

 KDD: Knowledge Discovery and Data.

 LAMP: it is a development framework that includes Linux as an operating

system, APACHE as a web server, MYSQL as a database, and PHP as a

programming language.

 LARIAT: Lincoln Adaptable Real-time Information Assurance Testbed.

 MACE: Malicious Traffic Composition Environment.

 MLP: Multi-Level Perceptron.

 Multi stage attack: It is an attack that occurs through multiple steps

without violating any rules. More details about this type of attacks are

discussed in chapter four.

 NMAP: Network Mapper.

 NNTP: Network News Transfer Protocol.

 PCAP: Packet Capture.

 RAM: Random Access Memory.

 SD: Signature-based Detection.

 SNORT: is a signature based intrusion detection system.

 SPA: Stateful Protocol Analysis.

 SPAMS: this expression is used when referring to sending a large amount

of unrequested emails.

 Threats: the possibility of exploiting a vulnerability to carry out an attack

targeting the system having the vulnerabilities.

 Trace file: a file that contains activities belonging to a user or software. In

this context, trace file contains network activities (outgoing and incoming

packets).

 True negative: In this context, true negative refers to the correct

behaviour of a system when there is no attack. The system does not raise

any alert in this case.

 True positive: In this context, true positive refers to the correct behaviour

of a system when there is an attack. The system raises any alert in this

case.

 URL: Uniform Resource Locator

 Virus: a program that is developed with a malicious purpose to affect a

system in a harmful way.

 Vulnerabilities: A vulnerability can be defined as a weakness in a system

design, implementation, or configuration that can be exploited by an

attacker resulting in security breach, overcoming the system’s security

policy, or leading to compromising a machine.

 Worms: a worm is malicious software that can spread itself across

networks without the need of any human intervention through emails and

file sharing etc.

 XSF: Cross Site Forgery.

 XSS: Cross Site Scripting.

 Zombie army: is a machine connected to the Internet configured to

forward malicious traffic (including spam or viruses) to other machines on

the Internet, without any permission from the machine owner.

 Zombies: A machine infected with a malicious program and set to be a

part of a botnet.

 NIDS: Network Based Intrusion Detection System.

 HIDS: Host Based Intrusion Detection Systems.

 1

CHAPTER 1

 INTRODUCTION

1.1 Background

There is no doubt that the Internet plays an important role in different aspects

of life these days. For example, it has been found that social networking such as

Facebook, Twitter, and Linked-in have a remarkable impact in bringing people from

different parts of the world together (Muila, 2010). Although it has changed the

world, it has raised the possibility that malicious users gain illegal access to

organizations to steal confidential information they are interested in or destroy it by

injecting applications called malware. Those applications are created to give

malicious users the ability to control organizations’ computers remotely. Malicious

users get an illegal access to those organizations by exploiting weaknesses and

vulnerabilities in organizations’ networks or web applications. The impact of attacks

can lead to delaying delivering services in some organizations causing financial

damages. A survey made by Statistia (2015) provides information on the distribution

of costs for external consequences of targeted cyber-attacks on companies in global

markets in 2014. Figure 1.1 shows the results obtained in that survey, it was found

that 38 percent of participants pointed to business disruption as the most expensive

consequence of a cyber-attack on their business.

 2

Figure 1.1: Distribution of costs for external consequences of targeted

cyber-attacks reported by Statistia (2015)

Williams (2014) reported that cyber-attacks were estimated to cost the global

economy around $445 billion annually. She also reported that those attacks affected

more than 800 million people in 2013. An annual study conducted by the Ponemon

institute (2014) in seven countries including the United States, United Kingdom,

Germany, Australia, Japan, France and the Russian Federation. The study involves a

total benchmark sample of 257 organizations. Figure 1.2 presents the estimated

average cost of cyber attacks for each country, it has been found that the US sample

achieved the highest total average cost at $12.7 million while the Russian Federation

sample got the lowest total average cost at $3.3 million. The figure also that the cost

of cyber attacks went up in six countries during the past year compared to 2013 (apart

of the Russian Federation), the highest increase was found in the United Kingdom

(22.7%) while the lowest increase was found in Japan (2.7%). The study also reported

that all industries are targeted by cyber-attacks, but with different levels. The study

pointed out that organisation providing energy and financial services experience

higher cyber-attack costs than organizations providing services in media, life sciences

and healthcare.

 3

Figure 1.2: Distribution of costs for external consequences of targeted

cyber-attacks reported by Ponemon institute (2014)

 An example of those attacks is a cyber-attack targeted the Dutch

government’s main website for most of 10th February 2015, it was reported by

Reuters (2015) about that incident the following:

“Cyber attackers crippled the Dutch government's main websites for most of

Tuesday and back-up plans proved ineffective, exposing the vulnerability of critical

infrastructure at a time of heightened concern about online security. The outage

affected most of the central government's major websites, which provide

information to the public and the media”

Another example of those attacks was against the online payment site PayPal

in 2010. Rawlings (2013) reported that after WikiLeaks had issued a lot of classified

material, PayPal decided to block WikiLeaks’ accounts in a way that stop anti-secrecy

site from receiving online donations. That action pushed the anonymous group to

launch an attack against PayPal, the aim of their efforts was to make the access to the

 4

website impossible affecting all integrations between many of websites and paypal.

The cost of this attack was estimated to be £3.5 million.

The impact of such attacks has made the internet security not only a matter

related to businesses and organizations but extended to include national pushing

governments to play an important role in that area (Statistia, 2015).

Detecting malicious activities occurring in a computers or networks can be

achieved using IDS which is considered a security management system that monitor

network traffic and raise an alert when capturing malicious activities. IDS have been

widely employed in many organizations to detect attacks. The increase of their usage

is down to availability of IDS as free of charge, and open source. In addition, there is

a wide community of exports (Muila, 2010). Although the wide spread and usage of

IDS over the world, there are many challenges that make detecting some attacks

difficult. One of the main challenges is the ability to provide protection against new

attacks. Cyber attacks can get more costly for an organization if not detected quickly

(Ponemon, 2014).That challenge was described by SANS (2001) as following:

“The IDS technology is still reactive rather than proactive. The IDS

technology works on attack signatures. Attack signatures are attack patterns of

previous attacks. The signature database needs to be updated whenever a different

kind of attack is detected and the fix for the same is available. The frequency of

signature update varies from vendor to vendor.”

Another challenge is minimizing human intervention. Werlinger (2008)

reported that IDS require a lot of human resources in the monitoring and analysis

phases to investigate captured attacks and tune the system in order to reduce number

of false alarms. Therefore, managing to minimize human intervention will lead to

minimizing the operational cost of using IDS inside an organization.

 One of IDS tools that is commonly used and has many researchers conducted

to improve it is SNORT It is an example of signature based IDS. Many researches

were conducted to evaluate the performance of this tool. There are also many efforts

made by researchers to improve SNORT detection capabilities using data mining

techniques such as genetic algorithm, and decision tree. In this research, a multi-layer

system based on data mining techniques is proposed to update automatically the

SNORT’s (an open source network intrusion prevention system) signature holder

 5

without the need of any human intervention. In addition, part of the solution proposed

in this research also work in conjunction with SNORT to detect multi stage attacks

that SNORT has limited capabilities to detect them.

1.2 Motivations of the research

The industrial challenges for improving intrusion detection systems are the

motivation of this research project. As mentioned in the background section,

minimizing the human intervention is one of those challenges. Although intrusion

detection systems manage to reduce the time spent in capturing suspicious activities,

other actions have been found dependant on human interventions. One of those

actions is controlling the sensitivity to reduce the false positive rate. In addition,

human intervention is required to update some intrusion detection systems with new

rules to detect new attacks. Such actions are very time consuming, automating some

of those actions will speed up the process of identifying intrusions and consequently

will lead to a drop in the cost of attack response cycle (Hawrylkiw, 2002).

Detecting or predicting multi stage attacks is another challenge that is worth

considering. Multistage attacks can evolve dramatically these days, causing much loss

and damage to organisations. These attacks occur through multiple steps, each step

looking legal and not violating any rules for some intrusion detection systems.

Different solutions have been introduced to detect multi-stage attacks, some of those

being event correlation-based. Event-correlation based solutions try to match network

events with certain attack patterns. When a stream of network events matches a

certain pattern, attacks can be stopped before progressing to the next stages. Many

researchers claim the effectiveness of that approach in detecting multi-stage attacks

However, this approach requires having up-to-date multi-stage attack patterns

(sequences), which is not easy to achieve in a very short time, as discovering new

complex attacks normally takes some time. The Shady Rat Operation attack is a good

example of that; it started in 2006 and was only discovered in 2011 (Tal Global,

2011).

This thesis describes a solution that contributes in overcoming the mentioned

challenges. The proposed solution has handled the first challenge by creating an

intelligent system integrated with SNORT, this system uses data mining techniques to

 6

detect new attacks not captured by SNORT then updates SNORT with the signature

of those attacks automatically. The other challenge has been handled in this research

by creating a system that follows IP information evaluation approach. This approach

looks at the identity of the network traffic source rather than the sequence. In other

words, it asks this question “who is communicating with us?” Rather than “what is

being done in our environment?” The attackers usually try to hide their identities by

using anonymous proxies. In addition, their traffic in many scenarios involves

communications with IPs having bad reputation. Therefore, evaluating IP information

(e.g. is the IP an anonymous proxy) can help in predicting potential attacks before

their occurrence.

1.3 Research Aim and objectives

This research work aims to improve intrusion detection by proposing a new

approach that will work in conjunction with SNORT; this approach will handle some

of SNORT shortcomings. One of those shortcomings is the ability to detect recent

attacks, the solution will be built in to detect those attacks then update SNORT with

signatures of those attacks. Another shortcoming the proposed system will handle is

its deficiency in detecting some multi stage attack scenarios; the other solution will

not interact with SNORT. The proposed solution uses several data mining techniques

in handling those shortcomings. In order to achieve the aim (using the approach), the

following objectives would be met:

- Conducting a literature survey about intrusion detection systems by looking

at different IDS tools and researches carried out using data mining

techniques to improve them.

- Finding suitable data set for training and evaluation as the solution will use

some machine learning algorithms.

- Building a classifier (first layer) based on machine learning algorithm that

will be considered as the first defence line against new attacks.

- Building a reasoning module that will act as a second layer of classification

module for traffic that the first layer will fail to classify.

- Analysing four different multi stage attack scenarios to understand multi

stage attack behaviour.

 7

- Building a solution that predicts multi stage attacks based on the analysis

carried out on multi stage attack scenarios.

- Measuring the effectiveness of the system that detects multi stage attacks

using metrics based approach.

1.4 Thesis original contribution

The contributions made in the thesis are as follows:

1. A methodology has been proposed that aims to improve the SNORT

performance by automating adding the signature of recent attacks. The

methodology involves two layers. The first layer is decision tree based

while the second layers is a hybrid module that uses a neural network and

the fuzzy logic. Using three different data mining techniques over the two

layers reduces the chance of passing new attacks without detection.

2. A methodology has been introduced to predict/detect multi stage attacks

based on evaluating IP information using fuzzy log. The methodology

involves using of three modules; network sniffing, IP information finder,

and the reasoning module.

3. A validation approach has been used to evaluate the approach used to

detect multi stage attacks. The validation approach is a modified version

of a metrics-based approach introduced in a validation study.

1.5 Research Methodology

The research methodology followed in this research is a combination between

qualitative and iterative experimental approach. The qualitative approach has been

used to understand some concepts and systems behaviour while the iterative

experimental approach is used when building the systems. In the iterative

experimental approach, the system is initial implemented then tested. Based on the

obtained results, the system implementation is modified until reaching to a point

where obtained results are acceptable.

 8

1.6 Thesis Outline

 Chapter 2: The second chapter in this thesis provides a literature review. It

provides a discussion various types of honeypots, the discussion includes

detailing monitoring methods used by Honeypots. In addition, it enumerates

advantages and shortcomings of Honeypots/Honeynet. The chapter also goes

through IDS giving a quick overview then going through different intrusion

detection methodologies, available IDS tools in the market detailing their cons

and pros, and talking about limitations of IDS. This part of the thesis also

walks through different data mining techniques and how they are employed in

improving intrusion detection systems by some researchers and result obtained

by that employment. Moreover, the chapter looks at feature selection

algorithms showing how it can play a vital role in IDS.

 Chapter 3: The third chapter in this research proposes a system that can be

used to improve SNORT. The proposed system uses data mining techniques to

detect malicious packets that SNORT is not able to capture then automatically

updates SNORT signatures holder with a new one. The chapter provides a

brief background overview over data mining techniques used in the proposed

system (Decision tree, Naïve Base, Neural Network, Fuzzy logic). The chapter

goes through the data set used for training and evaluation (KDD99) and which

features from the data are selected in the proposed system. In addition, it

shows how each module is trained and evaluated. This part of the thesis

provides the evaluation results obtained from the proposed system in a form a

confusion matrix showing how well the system is capable of performing its

job.

 Chapter 4: This chapter goes through four different multi-stage attack

scenarios. The aim of this chapter is to understand the behaviour of multi-

stage attacks and try to find a clue to predicting or detecting such kinds of

attacks. In each scenario, the network traffic will be analysed highlighting all

steps that have occurred and not been considered by many security systems.

The outcome from analysing each scenario will be in the form of rules that

will be used in building a solution that will predict multi-stage attacks before

they have an impact and damage organisations.

 9

 Chapter 5: This chapter presents the proposed solution to detect multi stage

attacks. It goes through the architecture of the solution detailing the interaction

between different modules. In addition to this, it goes through each module

individually showing different options for implementation and reasoning why

one of them is preferred over others. The chapter includes some pieces of the

codes that show the logic in each module.

 Chapter 6: This chapter presents the evaluation for the solution proposed in

chapter 5. The evaluation process involves following a metrics based approach

then comparing the proposed solution with solutions proposed by other

researchers. The metrics based approach evaluates the system from different

perspectives; it includes logistics metrics, design metrics, and performance

metrics.

 Chapter 7: This chapter presents the conclusion and future work. It provides a

critical review of the work done and pointing to areas than require some

enhancement to achieve better results.

 10

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction and Background

 Information security is becoming a primary concern in this age of

information. The classical method of security that was more or less

defensive is now being scaled to more aggressive defence format. Intrusion

detection is a process of monitoring networks and machine within the

network for unauthorised usage and or activity. Meijerink and Spellen

(2006) define Intrusion Detection Systems (IDSs) as a system for detection

of unwanted manipulation to system. This manipulation may be in form of

attack by an attacker or simply by use of malicious script that changes the

fingerprint of the system under attack (Kuwatly et al., 2004). Typically, an

IDS is required for detection of all malicious traffic that cannot be detected

by generally deployed tools such as firewall. IDSs are categorised into host-

based (HIDS) – where data on individual computer system is examined and

network-based (NIDS) – where analysis of data packets that transit over the

network is carried out. According to Meijerink and Spellen (2006), various

types of network attacks include data driven attacks on applications and

 11

network attack on services and host attacks include unauthorised logins,

setup of malware, access to files and changing of privileges.

Unlike common IDSs, honeypot technology tends to provide the

attacker with important resources that are needed for a successful attack.

Honeypot or honeynet based decoy system is implemented for the purpose

of intrusion detection and protection. A honeypot is difficult to define as

there are number of interpretations that have been understood from the

literature which include domains of attack prevention, attack detection, data

collection in context of security. It is distinctive as it is technology and not a

solution or procedure / process to resolve a particular security issues. A

honeypot is a trap set to detect, deflect or in some cases counteract the

attempts of unauthorised usage of production systems. It appears to be part

of a network but remains isolated and protected. Its value lies in being

probed, attacked and compromised (Spitzner, 2003). Hence, honeypots has

no production value and they should not work with any legitimate traffic or

events. According to (Mokube and Adams, 2007), the purpose of honeypot

or monitored honeynet networks include the following:

1. They form a defensive distraction system in order to direct an attacker
towards machines containing no valuable information;

2. They serve the purpose of a early warning system that can inform about
exploitation trends; and

3. They become a data collection store that can be used to examine the

methods and processes of exploitation of a honeypot.

The interaction with honeypots is expected from attackers; hence the

value of honeypot lies in unauthorised interaction conducted by abusers of

the vulnerable honeypot.

Another term that is used regularly with honeypots is Honeynet that

means a network that is formed of one or more honeypots (Gupta et al.,

2012). Honeypots are classified based on level of interaction and purpose.

Further details regarding the same are discussed in Section 2.

 12

This chapter has been organised as follows: In Section 2, we discuss

various types of honeypots. Section 3 goes through purpose of Honeypot

followed by three sections (4, 5, and 6) where details regarding monitoring

methods used by Honeypots are discussed in detail. Section 7 enumerates

advantages and shortcomings of Honeypots / Honeynet. Section 8 discusses

IDS giving a quick overview then going through different intrusion

detection methodologies and finally talking about limitations of IDS. In

section 9, data mining is briefly explained then some of techniques used in

data mining are critically discussed. Section 10 talk about feature selection

algorithm and how it can play a vital role in IDS. Section 11 provides a

discussion about the chapter. Finally, Section 12 gives a summary of this

chapter.

2.2 Classification of Honeypots

2.2.1 Low-Interaction Honeypots
A low-interaction honeypot simulates only limited services that

cannot be exploited enough to gain total control of the honeypot (Sharma

and Sran, 2011). The low level honeypot provides emulating services and

operating system to the attacker, which makes it easier to deploy, and

maintain. Example of emulated services include FTP service, listening on

port 21 (Telnet), login to FTP server etc. The emulated services mitigate

risk by containing the attacker’s activity. The interaction between this type

of honeypot and production system is very limited. These type of honeypots

can be compared to passive IDS as network traffic is not modified in any

way and they do not interact with the attacker thus mitigating the risk

associated with this category of honeypots (Mokube and Adams, 2007).

Generally, low-interaction honeypots are used to analyse spammers and can

also be used for providing countermeasures against worms.

 A well-known example of a commercial low interaction honeypot

is Honeyd (Provos, 2003). Honeyd (Provos, 2003) is a daemon that can

 13

used to simulate a large network on a single network host. It is a framework

for creating virtual honeypots using unused IP addresses of a network,

which simulates various operating systems and services. Other low-

interaction honeypot include Specter (Netsec, 2012) and KFSensor

(KFSensor, 2012). Specter can monitor a total of 14 TCP ports and of these

14 monitored ports, 7 ports are called traps, and the other 7 are called

services. Traps are port listeners: when the attacker makes a connection, the

attempt is terminated, and then logged. Services are more advanced where

there is interaction with the attacker, emulating the application (Netsec,

2012). The level of emulation depends on each service. For example, the

HTTP service emulates a simple Web server with default static Web pages.

Figure 2.1, shows the control panel for low-interaction honeypot tool –

Specter and KFSensor simulates system services at the application layer

(Kuwatly et al., 2004). Reference (KFSensor, 2012) explains the methods in

which KFSensor can be used to setup new firewall rules. Figure 2.2, shows

the HTTP service emulation within low interaction honeypot tool –

KFSensor.

Figure 2.1: Control panel for specter tool showing services that may be

emulated (Source: (Netsec, 2012))

 14

Figure 2.2: HTTP service emulation setup using KFSensor

(Source: (KFSensor, 2012))

2.2.2 High-Interaction Honeypots
 High interaction honeypots are complex solutions, which include

deploying of a real operating systems and applications (Saini et al., 2011).

As it involves real operating system, the level of risk is increased by many

folds, but it is a trade-off in order to capture extensive amounts of

information by allowing the attackers to interact with real systems (Singh

and Joshi, 2011). This facilitates capturing / logging of full extent of

attacker’s behaviour that can be analysed at later stage. According to (Singh

and Joshi, 2011), as the attacker has more resources to exploit at his

disposal, a high interaction honeypot should be regularly monitored to

ensure that it does not become a security issue.

Example of high interaction honeypots include Honeynets (Project,

2012), Sebek (Huang et al., 2009), Argos (Portokalidis et al., 2006). Argos

offer a full operating system to the attacker and when the attackers tries to

 15

do something malicious the honeypot will shut down and makes dumps of

memory and disk to get information about what the attacker was trying to do

(Meijerink and Spellen, 2006). A greater detail regarding the high

interaction monitoring methods is discussed in Section 6.

2.3 Purpose of Honeypot

2.3.1 Research Honeypot
 A research honeypot is used to gain the information about the

attacker’s community and does not add any direct value to the organisation

(Sadasivam et al., 2005). The purpose of research honeypots is to gather

intelligence regarding general threats that an organisation may face and

hence allow organisation to protect itself in a better form against those

analysed threats. The primary function is to study the method how attacker

attacks, understand their objectives and behaviour (Saini et al., 2011). These

type of honeypots are like high-interaction honeypots that are complex to

deploy and difficult to maintain. They are generally used within research

and commercial community in addition to military and defence

organisations. According to (Mokube and Adams, 2007), they add

tremendous value to research providing a platform to study cyber threats

and attacks. They may also be suitable for aiding in development of analysis

and forensic skills. (Spitzner, 2000) provides the instance where honeypot

was used as a forensic analysis for domain name system (DNS) attack.

2.3.2 Production Honeypots
 Production honeypots are used within the environment of a

organisation to protect the information assets of the organisation and help in

mitigation of risk (Sadasivam et al., 2005). Unlike research honeypots, they

have direct values as they provide security to organisation’s production

resources. As they do not require a large amount of functionality, they are

not too complex to deploy or maintain and consequently, they are unable to

 16

provide a large amount of information regarding the attackers. Their

primary function is to mirror the production network of the organisation and

invite attackers to interact with them, so that vulnerabilities of the network

can be exposed. They are considered to add value to detection of attacks

rather than prevention of attacks. One the examples of production honeypot

is Nepenthes (Baecher et al., 2006).

Classification

of Honeypot

Categories of

Honeypot
Examples Brief Description

Level of

Interaction

Low

Interaction

Honeypot

HoneyD,

Specter,

KFSensor,

MWCollect

A low-interaction honeypot

simulates only limited services that

cannot be exploited enough to gain

total control of the honeypot.

High

Interaction

Honeypot

Honeynet,

Sebek,

Argos

High interaction honeypots are

complex solutions, which include

deploying of real operating systems

and applications.

Purpose of

Honeypot

Research

Honeypot
Honeynets

A research honeypot is used to gain

the information about the attacker’s

community and does not add any

direct value to the organisation.

Production

Honeypot
Nepenthes

Production honeypots are used

within the environment of an

organisation to protect the

information assets of the

organisation and help in mitigation

of risk.

Table 2.1: Classification of honeypots

 17

2.4 Monitoring Methods of Honeypots

 Honeypot monitoring is a very important component of any

honeypot deployment. There are two methods that used for monitoring of

honeypots viz. external method (network-based) and internal method (host-

based). In the network-based method, all packets that are sent to or received

from the monitored honeypot are captured and traffic sniffing tools such as

TCPDUMP (TCPDUMP, 2012) and Ethereal (Ethereal, 2012). In the host-

based method, specialised sensors are deployed within the honeypot in order

to monitor and record system events.

It should be noted that both approaches have their strengths and

weakness. For instance, the network-based approach though being

transparent and invisible to the attacker can sniff packets by being deployed

outside the honeypot but it cannot capture internal system events on a

vulnerable honeypot. Furthermore, it may be ineffective or perform at lower

effectiveness, if the network data traffic is encrypted. On the other hand, the

host-based method, if detected by the attacker can be tampered with, thus

leaving it ineffective.

Data capture modules in high interaction honeypots deals with

collection and recording of all the activities of Honeypot. It deceives the

intruder by capturing all activity within honeypot without attacker knowing

about any monitoring i.e. with introduction of decoy systems.

2.5 Monitoring Methods of Low-Interaction

Honeypots

2.5.1 Mwcollect (Malware Collection Tool)
 Mwcollect (Swanson, 2008) is a low-interaction honeypot. This

honeypot is installed on top of the operating system. The Mwcollect daemon

is responsible to open well-known ports often used for purpose of attacking

 18

by malware. Simulation of vulnerabilities of the open ports lures attackers

who would then exploit these ports and send their malware shell codes to

the Mwcollect daemon. The daemon is responsible for interpreting the shell

code, parsing the exploited packets and take necessary action to download

the malware which is then added to the repository for further analysis.

Additional, shell codes can be written to extend the functionality offered by

Mwcollect.

2.5.2 Honeyd
 Honeyd (Provos, 2003) has been developed by the University of

Michigan and is a daemon that can used to simulate a large network on a

single network host. It is a framework for creating virtual honeypots using

unused IP addresses of a network, which simulates various operating

systems and services. Honeyd uses arpd tool to route all illegitimate traffic

to an unused IP address and presumes the every connection made to this

unused IP address is a candidate for an attack. The virtual hosts

communicate with the attacker. According to (Provos, 2003), Honeyd is

simulated at stack level, hence tool such as nmap cannot get fingerprint of

the honeypot server. The creation of virtual hosts in a configuration file

allows analyst to open TCP and UDP ports, bind scripts to those ports (if

required) and bind IP address to a port. The facility to create customised

scripts and binding them to ports to handle connections is very useful

functionality for virtual hosts.

2.6 Monitoring Methods of High-Interaction

Honeypots

2.6.1 Sebek
 Sebek is a high interaction honeypot system that works as follows

for the purpose of monitoring:

 19

• Sebek installs as a loadable hidden kernel module that would capture all

host activities. As a result of installation, Sebek, replaces a number of

sensitive system calls in the original operating system. For instance, in

the latest Sebek development for Linux 11 system calls have been

replaced viz: sys_open, sys_read, sys_readv, sys_pread64, sys_write,

sys_writev, sys_pwrite64, sys_fork, sys_vfork, sys_clone,

sys_socketcall (Jiang and Wang, 2007). The hashtable for system calls is

updated / hijacked by Sebek with its own system handlers as shown in

Figure 2.3.

Figure 2.3: Instance of modified sys_read system call after

loading of Sebek

• Upon successful replacement of system calls by Sebek, it would

intercept any subsequent invocations of above mentioned system calls

and capture the arguments as well as any context information such as

PID. After capturing, Sebek invokes system call handlers and execute

the system call together with passed arguments in order to complete

requested service call.

• All collected information about invoked replaced system calls would be

sent to remote Sebek server so that it can analysed in real time or saved

for later analysis.

Figure 2.4, shows the Sebek based approach to honeypot monitoring.

For the purpose of monitoring the malicious activity in the honeypot, the

internal sensors like Sebek need to be transparent and tamper-resistant.

However, as mentioned before, it case of comprise, attacker may introduce

anomalies such as (Jiang and Wang, 2007):

• modification of replaced system call table,

 20

• inconsistency in statistics transmitted by honeypot,

• Unsebek (Corey, 2003) of a honeypot system.

Figure 2.4: Sebek based approach in honeypot monitoring in

context of HTTP (Source: (Jiang and Wang, 2007))

2.6.2 Honeynets
 Honeynet is a high interaction honeypot developed by The

Honeynet Project (Project, 2012) in order to capture information on the

network. The primary purpose of the honeynet is to gather information on

security issues. It acts as a gateway called Honeywall, by collecting data

from and to the honeypots on the network.

 21

Figure 2.5: Honeywall architecture (Source: (Project, 2012))

 Figure 2.5, shows the honeywall gateway that forms the main part

of the Honeynet and work by capturing all the traffic entering or leaving the

honeypot network. It separates the honeypots victims from rest of the

network. According to (Meijerink and Spellen, 2006), it can be configured

as layer 2 or layer 3 routing gateway, however layer 2 configuration is

preferred as in bridge mode it is difficult to be detected by the attackers as

the gateway would not have any IP address associated with itself. A highly

controlled network where every packet entering or leaving is monitored,

captured, and analysed consists of data control, data capture and data

collection.

• Data Control: In a scenario where a honeypot deployed within honeynet

is compromised, honeynet have to contain all the activities and ensure

that production systems are not harmed in anyway. It should be ensured

that all traffic can flow in and out of honeynet without attackers

detecting control activities (Meijerink and Spellen, 2006).

• Data Capture: This part captures all activities within the honeynet and

the data entering and leaving the honeynet without attacker knowing that

they are being monitored. All the activities of the attacker are logged

 22

and the captured data is analysed to understand vulnerabilities and

motives of the attacker.

• Data Collection: All captured data is forwarded to a centralised data

collection point. This facilitates captured data to be collected, analysed

and archived at one location.

2.6.3 Argos
 Argos (Portokalidis et al., 2006)is a high interaction honeypot that

is based on Qemu (Bellard, 2005). Qemu is a fast machine emulator for

various CPUs including x86, PowerPC, ARM and Sparc and on hosts

including x86, PowerPC, ARM, Sparc, Alpha and MIPS (Bellard, 2005).

Argos is known for fingerprinting zero-day attacks for instance worms and

other malware without a requirement for any user input (Portokalidis et al.,

2006).

As seen in Figure 2.6, all the incoming network traffic is logged into

the network trace database and concurrently sent to an unmodified

application running on top of the operating that is based on Qemu fast

emulator. The emulator uses dynamic taint analysis to check a vulnerability

that is being exploited in order to change control flow of the application.

This is achieved by tagging all the data originating from unsafe source as

tainted, track this tainted data during execution and prevent usage of tainted

data in addition to its identification. All locations where the tainted data is

copied i.e. memory or registers are also tagged as tainted locations. Argos

can raise an alarm whenever instructions such as call, ret, jmp, longjmp etc.

are invoked. Upon alarm, Argos starts by dumping all tainted blocks as well

as information indicating all addresses that triggered violations into a log

file. This step is known as signature creation process. In addition, extra

information such as executable name, open files, used sockets, network

ports etc. are also gathered as part of forensics. Argos creates the signatures

based on the collected inputs and sequence of bytes known as flow signature

that could be submitted to IDS. In addition to creation of signatures, Argos

 23

has Sweetbait – a system that correlates collected signatures that have been

collected at various sites to create the final signature for a malware.

Figure 2.6: High-Level overview of Argos (Source: (Portokalidis

et al., 2006))

2.7 Advantages and Disadvantages of Honeypots

 Upon understanding about background and detection of honeypots,

following distinct advantages have been realised as compared to other

security systems (Project, 2012):

• Small Data Sets: Honeypots are always interested in the traffic that

arrived to them rather than the traffic overload that is generally observed

in production systems, where it is difficult and complex task to

differentiate between legitimate and illegitimate packets. Overall, it

collects small data sets of high value.

• Catch new attacks, false negatives: As honeypots capture everything

arriving to them, they are capable of catching new tactics and attack

methods which may previously be considered false negatives.

 24

• Work in encrypted or IPv6 environments: Honeypots have been tested to

work with encrypted traffic as well as have scaled to IPv6 environments.

• Minimal Resources: As only limited data is captured, a high-end set of

resources is not required in case of honeypots. It is a simple concept that

requires minimal resources.

Some of the disadvantages associated with honeypots as compared

to other security system / approaches are as follows (Project, 2012):

• Limited field of View (Microscope): It is inherent to honeypots that the

only activity or data captured by them is when the attacker directly

interacts with them. Attacks happening on the other parts of honeypot

network is unknown to a particular honeypot.

• Risk (mainly high-interaction honeypots): Though unlikely in low-

interaction honeypots but in case high interaction honeypots, as the

deployment of a real operating systems and applications is committed, in

scenarios of compromise, parts of production network may be attacked

that could be a major concern for an organisation.

2.8 Intrusion Detection Systems

2.8.1 Overview
Intrusion is described as an attack or attempt to sidestep security

mechanisms of computer or networks, or compromising the confidentiality,

integrity, or availability (CIA) (Bace and Mell, 2001). Weber (1998)

categorized attacks into 5 classes: Denial-of-Service (DoS), Probing attacks,

User to Root (U2R) attacks, Remote to Local (R2L) attacks, and Data

attacks. In the first class, computing resources are overwhelmed by

attackers in order to handle legitimate users’ requests (Labib, Vemuri,

2008). Probing is described by Paliwal and Gupta (2012) saying:

 25

 "an attack in which the hacker scans a machine or a networking

device in order to determine weaknesses or vulnerabilities that may later

be exploited so as to compromise the system"

 U2R attack is defined as an attempt by hackers exploiting

weaknesses in the system in order to obtain root user privileges. R2L attack

is an attempt from a remote machine to get unauthorized local access. In the

last class, malicious code is injected in data looking normal that passes

firewalls to attack and destroy systems.

According to SANS Institute (2001), the intrusion detection process

is involved in observing and analysing user and system activity, reviewing

both system configurations and vulnerabilities, evaluating the stability of

critical system and data file, reporting abnormal activities, and carrying out

system audit. This process is carried out by a software application or

hardware system. There are three components for intrusion detection

systems; Network Intrusion Detection system, Network Node Intrusion

detection system, and Host Intrusion Detection System. The first

component (NIDS) is in charge of scanning traffic from and to all machines

over the network (Bradley, 2014). The second component (NNIDS) is

responsible for examining and analysing traffic directed from the network to

a specific host (SANS, 2001). The last component (HIDS) checks incoming

and outgoing packets from a host only and notifies users or administrator of

suspicious activities (Bradley, 2014).

There is a common mistake that intrusion detection and prevention

systems are considered as alternatives for a firewall. Although they are used

in the context of network security, they are totally different. Both are used in

conjunction to improve a network security. Hassan (2011) explained this

difference in a very simple form saying:

 "We can think a firewall as security personnel at the gate and an

IDS device is a security camera after the gate"

 26

A firewall is used to prevent intrusion between networks by

restricting the access between them but it is not used to report or find attacks

or threats inside networks. On the other hand, IDS is responsible for finding

and reporting unwanted entries to the system.

2.8.2 Detection methodologies
Intrusion detection methodologies are categorized into three types;

signature based detection (SD), Anomaly-based detection (AD), and stateful

protocol analysis (SPA). The first methodology (SD) defines a pattern that

matches a particular attack. This methodology is very effective to find

known attacks or threats. However, it is not easy to keep patterns up to date.

In addition to this, this methodology is not effective in detecting unknown

threats or attacks (Liao et al. 2012). On the other hand, the second type

(AD) is very effective in finding new vulnerabilities. AD works on the basis

of defining the network behaviour (profile). Then, the defined profile is

compared with monitored events and activities to detect significant attacks.

The main disadvantage of this methodology is its high dependency on

profile definition, not well-defined profiles can lead to weak accuracy in

detecting attacks or threats (Jyothsna et al. 2011). The third category (SPA)

works similarly to AD but with generic profiles defined by vendors. Those

preloaded profiles are related to specific protocols. Therefore, the system

will be able to find unexpected sequences of commands like issuing a

command repeatedly (Scarfone and Mell, 2007). However, it will not be

able to cease attacks behaving as benign protocol (Liao et al. 2012). The

table 2.2 summarizes advantages and disadvantages of each methodology.

By looking at pros and cons of the IDS methodologies mentioned

above, we will find that providing more effective detection for attacks or

threats can be achieved by using hybrid methodologies. For example, using

SD and AD together will provide a system that can detect both known

unknown attacks (Liao et al. 2012)

 27

Signature based

detection

Anomaly-based

detection

Stateful protocol

analysis

Advantages

Efficient in finding

known attacks or

threats

Effective in

discovering new

vulnerabilities

The system will be

preloaded with

generic profiles

created by vendors.

Disadvantages

Difficulties in keeping

patterns up to date.

Not effective in

detecting new

vulnerabilities

Its effectiveness

is highly

dependent on

profile

definition.

Cannot detect

attacks behaving as

benign protocol

Table 2.2: Advantages and disadvantages of IDS methodologies (Liao et

al. 2012)

2.8.3 Limitations of Intrusion Detection Systems
 IDS play an important role in finding possible attacks or threats and

have a significant positive impact in security infrastructure. However, it is

not an answer to all issues related to security as there are some limitations.

One of those limitations is inability to trace and analyze all traffic on highly

loaded or busy networks (SANS Institute, 2001). Therefore, the system may

not be able to provide an instantaneous report for attacks or threats in such

scenarios. It is also reported on the same paper (SANS, 2001) that IDS does

not help if there is weakness in a network protocol, or in the absence of

strong identification and authentication mechanism.

Another limitation addressed by Rebecca and Mell (2001) is lacking

the capability of conducting investigation in the absence of human

interaction. They also mentioned that it is not effective in dealing with

 28

switched networks. A study conducted by Excamilla and Terry in 1998

reported a number of issues with IDS. One of those issues is that some IDS

do not provide verification for the checksum field in the IP header. This

shortcoming gives hackers a chance to manipulate this field. As a result, the

system will record different information than what it should receive.

Moreover, it was found that IDSs are not cheap solutions as it consumes

different types of resources during both setup and monitoring phases. In

addition, it demands high level of technical and organizational expertise. In

spite of the requirements of a lot of resources and expertise, it is not simple

to trace the improvement in security processes (Werlinger et al. 2008). A

common complaint reported is that IDS can generate enormous number of

alerts while the majority of those alerts are false positive (Ho, et al. 2012).

2.8.4 IDS Tools
SNORT tool is a widely used source network intrusion prevention

and detection system built by Source fire. It is an example of signature

based IDS. Numerous researchers have evaluated the performance of this

tool. One example of such a study carried out by Rani and Singh (2014)

concluded that SNORT managed to find 12 signatures one of them is ICMP

PING attack having the max numbers of alerts reported by SNORT.

Another study (Salah et al. 2011) carried out to evaluate the performance of

SNORT when using Windows 7 and Windows 2008 server, reported the

following:

"Setting the scheduling priority to favour either kernel processing

or user applications has little or no impact on SNORT’s performance

under both normal and malicious traffic."

 Although they obtained good results with SNORT, they reported

that its performance is affected by heavy network traffic and this is one of

IDS limitations mentioned above. Although SNORT is very popular over

other products, easy to deploy, has a wide community support, and can run

on most operating systems, other tools have some advantages over SNORT

 29

that need to be considering when selecting an IDS/IPS. One of those tools is

Suricata which can run multi threads while SNORT can run a single thread,

supporting multi-thread gives Suricata the advantage of using more than one

CPU. Kachal and Shevade (2012) said about this advantage:

"Suricata has the advantage that it can grow to accommodate

increased network traffic without requiring multiple instances. SNORT is

lightweight and fast but limited in its ability to scale beyond 200-300 Mbps

network bandwidth per instance"

Despite of having this advantage over SNORT, the multi-thread

architecture consumes more memory and CPU usage as reported by Albin

(2011) in his comparative analysis of SNORT and Suricata.

BRO is another IDS tool that is worth to be looked at. Mehra (2012)

enumerated some advantages of BRO over SNORT in her brief study and

comparison of SNORT and BRO. One of those advantages she mentioned is

the ability of Bro to operate effectively on high-speed networks while

SNORT does not work perfectly on high-speed networks. In addition to this

advantage, it was reported in that study that the Bro signatures are more

sophisticated than the signatures used in SNORT. On the other hand, it was

found that BRO is difficult to deploy compared to SNORT. Moreover, BRO

can run only in UNIX environment while SNORT can run in most popular

operating systems.

2.8.5 Evaluation Metrics of IDSs
According to (Lazarevic et al., 2003, Zanero and Savaresi, 2004),

anomaly detection rate and false alarm rate are the best measures that can be

used for evaluation of IDSs. Clearly, the detection rate is equivalent to

efficiency and the false alarm rate refers to effectiveness of IDSs. The

anomaly detection rate is the ratio of number of detected intrusions to the

total number of intrusions that were introduced into the network traffic as

show in the equation below (Ertoz et al., 2004).

 30

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐴𝐴𝐴𝐴𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Where

True Positive: Malicious traffic correctly classified by IDS.

False Negative: Malicious traffic incorrectly classified by IDS.

All Alarms: True positives plus false negatives.

It is clear from the equation that as the value of efficiency

approaches 1 (more capable of detecting illegitimate traffic), IDS becomes

more efficient. While, false alarm rate refers to the false-positive rate of

IDSs i.e. number of legitimate network traffic that have been analysed by

IDS as intrusions as shown in the equation below (Ertoz et al., 2004).

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐴𝐴𝐴𝐴𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Where

True Positive: Malicious traffic correctly classified by IDS.

False Positive: Normal traffic incorrectly classified as malicious.

All Positives: True positives plus false positives.

This effectively refers to all anomalies that have not been detected

by the IDS. In addition to, efficiency and effectiveness, (Sommers et al.

2004), further added two metrics viz. central processing unit (CPU)

utilisation and packet loss. These measures are useful with regard to

evaluation of IDS in terms of handling traffic load.

2.8.6 Offline Evaluation
According to (Lippmann et al., 2000, Mahoney and Chan, 2003),

another method of evaluating IDSs is the method where datasets of network

traffic that includes attacks is used for evaluation without requirement to

create the network topology. It is the use of tools such as TCPDUMP that

 31

are used for such evaluation. The common datasets available for the purpose

of evaluation of IDSs include the data set created by Defense Advanced

Research Projects Agency (DARPA) in 1998 and 1999 known as 1998

DARPA set and 1999 DARPA set.

DARPA sets are simulations of network traffic that include attacks

thus offering blind evaluation material for researchers (Mahoney and Chan,

2003). According to (Lippmann et al., 2000), these data sets have been

captured at border of network on external router interface, hence are not

filtered or subjected to any intrusion detection techniques.

Figure 2.7 shows the conceptual view of DARPA evaluation test

bed. The 1998 DARPA set includes 7 weeks of labelled data and 2 weeks

of unlabelled data where approximately 300 instances of 38 different attacks

exist. The 1999 DARPA has approximately 5 million connections over 5

weeks out of which 3 weeks include attack vectors. Table 2.3 shows

categories of various attacks within DARPA set (Lippmann et al., 2000).

Figure 2.7: Conceptual view of DARPA evaluation test bed that

create 1000’s of virtual hosts and 100’s of users to simulate a small Air

Force base separated by router from the Internet (Source: (Lippmann

et al., 2000))

 32

The advantage of DARPA sets is that it enables fast trial runs for

evaluation of IDS. Furthermore, these trial runs are also identical as the data

set used for evaluation of IDSs is same. From researcher’s perspective, it

saves them important resources and time as they are not required to collect

data sets as these DARPA sets are free to use. However, some of the

shortcomings of using these data sets have been highlighted in (Nikolova

and Jecheva, 2011, McHugh, 2000, Mell et al., 2003) as follows:

1. Network topology used for collection of these data sets is too simple.

2. The target systems are small in number.

3. Low background traffic.

 33

 Solaris SunOS Linux Cisco Router

Denial of
Service

Apache2

Back

Mailbomb

Neptune

Ping of death

Process table

Smurf

Syslogd

Udp-storm

Apache2

Back

Land

Mailbomb

Neptune

Ping of death

Process table

Smurf

Udp-storm

Apache2

Back

Mailbomb

Neptune

Ping of death

Process table

Smurf

Teardrop

Udp-storm

Remote to
Local

Dictionary

ftp-write

guest

http-tunnel

phf

xlock

xsnoop

Dictionary

ftp-write

guest

phf

xlock

xsnoop

Dictionary

ftp-write

guest

imap

named

phf

sendmail

xlock

xsnoop

Snmp-get

User to Root

At

Eject

Ffbconfig

Fdformat

Ps

Loadmodule
Perl

Xterm

Surveillance /
Probing

Ip sweep

Mscan

Nmap

Saint

Satan

Ipsweep

Mscan

Nmap

Saint

satan

Ipsweep

Mscan

Nmap

Saint

Satan

Ipsweep

Mscan

Nmap

Saint

Satan

Table 2.3: Attack types in evaluation data set (Source:

(Lippmann et al. 2000))

 34

2.8.7 Online Evaluation
Upon considering the shortcomings presented by (McHugh, 2000) in

context of offline evaluation of IDSs, it has become important to generate

data sets that include realistic network traffic as well as attack vectors.

Another tool form Lincoln Labs called as Lincoln Adaptable Real-time

Information Assurance Testbed (LARIAT) is capable of generating realistic

background traffic as well as generate real network attacks (Rossey et al.,

2002, Allen, 2007). It has been created in order to answer the shortcomings

of DARPA sets, where objective has been to support real-time evaluation

and a test bed that is configurable as well as easily deployable. LARIAT

simulates both internal and external network traffic making it possible for

IDS evaluation in both network environments. Another two tools namely

Harpoon and Malicious Traffic Composition Environment (MACE)

developed by (Sommers et al., 2004) are similar to LARIAT. Harpoon is

used for generating flow-level network traffic based on real network packet

traces while MACE is performance benchmarking and malicious traffic

generating tool (Sommers et al., 2005, Sommers et al., 2006). Table 2.4

shows taxonomy of MACE exploits (Sommers et al., 2005).. According to

(Lo et al., 2010, Sommers et al., 2006), a new release of tool that combines

Harpoon, MACE and best features of DARPA set called Trident has number

of additional features that are useful for evaluation of IDSs. Table 2.5 shows

the list of Trident tools for NIDS performance evaluation (Sommers et al.

2006).

 35

Host Based

Network Based
Application Level Transport Level

Worms Backdoors DoS Fragmentation
Other

DoS

Welchia

Nimda

CodeRed2

Blaster

Dameware

Sasser

Mydoom

Sdbot
winnuke

Rose

Teardrop1

Teardrop2

Bonk

Nestea

Oshare

Synflood

Pod

Land

jolt

Smurf Fraggle

Table 2.4: Taxonomy of MACE exploits (Source: (Sommers et al.,

2005))

Name Description

Attack-replay A flow replay tool that allows two-way replay of a packet trace.

Autom-gen A script that stores service descriptions and generates service-
specific automata for Harpoon.

Exec-grom A traffic grooming algorithm that uses trust heuristics to separate
benign traffic from suspicious traffic.

Payload-gen A tool that reads a groomed packet trace and outputs packet pools
that corresponds to automata states.

Payload-sanitize A tool that sanitizes inconsistencies in protocol headers that are
introduced due to interleaving.

Split-darpa A script to separate malicious DARPA traffic from benign based
on labels.

Harpoon plugin A traffic generation plugin for Harpoon that executes the service
description automata to produce application payload traffic.

Table 2.5: Trident tools developed for NIDS performance

evaluation (Source: (Sommers et al. 2006))

(Gadelrab et al., 2007) and (Saber et al., 2011) have presented

framework for defining test scenarios. (Saber et al., 2011) has argued in the

paper that current classification of attacks do not cover of requirements of

evaluating IDSs. They have provided framework for covering all

characteristics of attacks in order to have complete evaluation.

 36

2.9 Data Mining

2.9.1 Overview
Data mining is defined as the process aiming to find useful

information from large data sets (Tan, Steinbach, Kumar, 2006). Grossman

(1997) defined data mining in a more descriptive definition saying:

"Concerned with uncovering patterns, associations, changes,

anomalies, and statistically significant structures and events in data"

 Based on those definitions, we can consider data mining as an

analytical tool that helps users to look at data from different angles in order

to categorize them.

Data mining is used in many different applications. One of those

applications is intrusion detection. Reddy and Rajulu (2011) reported that

data mining can have a great contribution in helping IDS to focus on

malicious activities and real attack by removing normal activities from

alarm data. They also added that it can play an important role in identifying

bad sensor signatures or false alarm generators

Gabra, Baha-Eldin, and Korshi (2014) reported that they managed to

reduce number of irrelevant alerts by 99.9% when they used of one of data

mining based method for classifications. Another research that aimed to

enhance IDS alarm quality by using a new data mining technique concluded

that using this technique reduced the alarm load by 82% (Al-Mamory,

Zhang, 2008). The idea of this technique is to produce clusters and

categorize alarms, then each cluster abstracted as a generalized alarm. The

generalized alarms linked to root causes are transformed to filters in order to

decrease alarms load in the future. Different data mining techniques will be

discussed in more detail in next sections.

http://link.springer.com/search?facet-author=%22Safaa+O.+Al-Mamory%22
http://link.springer.com/search?facet-author=%22Hongli+Zhang%22

 37

2.9.2 Data mining limitations
Despite of the promising results mentioned above, Phung (2000)

reported that building an effective solution using data mining faces some

obstacles. One of those obstacles is the massive increase in the amount and

complexity of data to be analysed, this issue makes data mining quite

expensive in terms of computation. Data mining in this case may consume a

lot of CPU and memory resources that are expensive or not available. Phung

also added that carrying out analysis on network traffic using a sample of

the data and not all of them for the purpose of generating profiles may cause

false conclusions.

2.9.3 Genetic algorithms
Genetic algorithm is considered as machine learning method based

on the principles of evolutionary computation (Reddy, 2011). Genetic

algorithm has been used in many different applications with promising

result. In the context of intrusion detection, Kumar and Guyal (2004) said:

"They incorporate the concept of Darwin’s theory and natural

selection to generate a set of rules that can be applied on a testing set to

classify intrusions".

Mujahid and Mathew (2014) discussed the advantages of genetic

algorithm in their research about this technique. One of those advantages is

its capability to find a solution for any optimization problem. In addition,

they reported that it is capable of handling multiple solution search spaces.

Many researchers applied genetic algorithms in intrusion detection

research area with very high success rate. One of the researches in the area

of network anomaly detection used both multi-agent and genetic algorithm

(Crosbie, Spafford, 1995). Another research that combines two techniques;

genetic algorithm and fuzzy data mining was conducted by Bridges and

Vaughn (2000). A hybrid algorithm developed by Castro and Zubin (2002)

to achieve the optimization of intrusion detection by using both of support

 38

vector machines and genetic algorithm. Genetic algorithms were used by

Goyal and Kumar to identify and classify different types of attack

connections, they succeeded in lowering false positive rate to 0.2%. Another

genetic algorithm model, that achieved a low false rat, was developed by

Chittur (2001).

Although genetic algorithm achieved promising results in the

research area of intrusion detection, Majeed and Kumar (2014) addressed

some limitations in their survey about genetic algorithm in intrusion

detection systems. One of those limitations is the complexity to propose a

problem space. They also added that selecting the optimal parameters for

genetic algorithm is not a simple process. In addition, it was mentioned in

this survey that systems based on genetic algorithms are not easy to

configure. Moreover, that survey reported that it is required to have a local

searching technique in conjunction with genetic algorithm for effective

functioning.

2.9.4 Artificial Neural Network
It is a computational model based on the principles of

animal's central nervous systems. This model has the capabilities of machine

learning as well as pattern recognition. Anthony (2014) described it as a

system that adapts its structure in the learning phase; this adoption is based

on external or internal information flowing through the system. There are

two types of neural network algorithms; supervised and unsupervised

training algorithms. The first algorithm learns expected output for a specific

input. The most common used architecture of type is Multi-Level

Perceptron (MLP). This architecture is widely used in solving pattern

recognition problems. On the other hand, unsupervised training algorithms

can learn without the need to specify expected output. One of most popular

unsupervised algorithms exploited in solving classification problems is Self-

Organizing Maps (SOM).

 39

The concept of neural network, adaptive learning, attracted many

researchers to work in the area of using neural network in intrusion

detection. Some tests using neural network were made by Lippmann and

Cunningham (2000) at MIT Lincoln Laboratory. Multi-Level Perceptron

(one of neural network structures) is used to find host attacks, and attacks

that try to get root-privilege on a server by looking at specific keywords

linked to attacks on network traffic. By applying that approach, they

managed to reduce false alarms by two orders of magnitude. They also

reported that they managed to raise the detection rate to around 80 % with

the DARPA data base. This approach is able to catch old as well as new

attacks not contained in the training data sets. Another research that

exploited MLP was conducted Ghosh and Schwartzbard (2000). They

reported that when they had applied MLP to anomaly detection, they obtain

good result, 77% of attacks were detected and 3% of alarms were

categorized as false alarms. On the other side, they obtained high false rate

when they applied MLP on misuse detection. Girardin employed SOM to

carry out clustering of network traffic and detect attacks. His approach

managed to catch IP spoofing, FTP password guessing, and network

scanning. Kukiełka and Kotulski (2009) concluded in their research about

adaptation of the neural network-based IDS to new attacks detection that

neural networks in their experiments succeeded to classify the network

traffic similar to the traffic presented in the learning stage. On the other

hand, it did not manage with a good accuracy to classify new attacks and

new normal traffic that are different than the traffic existed during the

training phase.

2.9.5 Naive Bayes
This technique is considered as a simple probalistic classifier based

on Bayesian probability model. Its simplicity comes from that it estimates

the class probabilities by assuming that features or attributes are

 40

conditionally independent (Tan et al. 2005). Panda and Parta (2007)

described naive bayes classifier saying:

 "The naïve Bayes classifier operates on a strong independence

assumption. This means that the probability of one attribute does not

affect the probability of the other"

 Amor et al. (2004) mentioned in their research (Naive Bayes vs.

Decision Trees in intrusion detection systems) that the main advantage of

this technique is its simple structure. This simplicity helps in constructing

the mode incrementally. As a result, it will be easy to be updated. On the

other side, its performance is very poor with some datasets that have a

strong dependency between features due to the strong independence relation

assumption that is not always true in the real world (Ji, Yu, Zhang, 2011).

Panda and Patra (2007) carried out some tests in network intrusion

detection exploiting naive bayes classifier. They reported that testing the

system they developed using 10% KDDCup’99 data set achieved 95%

detection rate. In addition, the model was built in very short time (1.98 sec).

However, they noticed that it generates false positives with a higher rate

compared to propagation neural network. Another experiment aiming to

improve intrusion detection by employing naive bayes was run by Taruna

and Hiranwal (2013). They reported that the system they proposed managed

to increase the balance detection rates for 4 attack classes; DoS, U2R, R2L,

and probe. They also reported that the system also generates false positive at

acceptable level. Sagane and Dhande obtained similar results when they

followed a similar approach (2014).

2.9.6 Decision Tree
Decision tree Classifier is known as a simple and popular technique

employed in solving classification problems. It is defined as (Prediction

Works, 2011):

 41

"A predictive modelling technique from the fields of machine

learning and statistics that builds a simple tree-like structure to model the

underlying pattern of data"

 Markey (2011) enumerated advantages of decision tree over other

classification techniques, one of the main advantages is that it generates a

set of rules which are transparent, easy to understand, and easily employed

into real-time technologies as Intrusion Detection systems. However,

Rokach and Mimon (2014) pointed out that this technique works only with

target attributes having discrete values. They also said:

 “The greedy characteristic of decision trees leads to another

disadvantage that should be pointed out. This is its over–sensitivity to the

training set, to irrelevant attributes and to noise".

Bouzida and Cuppens (2008) compared the results obtained when

testing intrusion detection based on decision tree with the results obtained

when using neural network. They concluded that employing decision tree in

intrusion detection are more effective in detecting new attacks compared to

neural network. Jain and Upendra (2012) proposed a model based on an

enhanced version of C4.5 decision tree in order to detect attacks. They

tested the proposed model on 10% of KDD data set and found that it catches

attack with 96.9% accuracy. Another experiment employing C4.5 decision

tree algorithm carried out by Bidgoli, Analoui, Rezvani, and Shahhoseini

(2008) showed that the proposed system managed to detect probe attack

with 100% accuracy, it was also able to detect DOS attacks with accuracy

tending to 100%. On the other hand, the system detects U2R and R2L with

low accuracy. Abbes, Bouhoula, and Rusinowitch (2004) used protocol

analysis approach based on decision tree to solve the false negative issue

occurring in pattern matching processes. Kailashiya and Jain (2012)

developed a model based on decision tree in conjunction with stratified

weighted sampling. They tested their proposed system using KDD cup

dataset and found that they obtained a good accuracy rate at 93.85% and

 42

error rate at 3.92%. Makkithaya, Reddy, and Acharya (2008) proposed a

fragmentation based c-fuzzy decision tree model. Their goal in their

research was improving the performance by selecting more suitable data

set and decreasing the number features. They reported that the results they

obtained proved that the model could be used to build an effective intrusion

detection system.

2.9.7 K Means
K Means is a clustering technique that partitions data objects into K

clusters dependant on their feature values. Tan et al. (2006) explained K

Means saying:

"k-means defines a prototype in terms of a centroid, which is

usually the mean of a group of points, and is typically applied to objects in

a continuous n-dimensional space".

This clustering technique is very simple to understand and to be

employed in implementing solutions that solve clustering problems (Vora,

Oza, 2013). However, Derban and Moldovan (2006) reported some

disadvantages that may represent obstacles in obtaining optimal solutions to

when using K Means clustering technique. One of those disadvantages is

that the algorithm is not capable of specifying the number of clusters (K),

this means that there is a need to set this number of by users. This also

means that users need to carryout experiments with different number of

clusters to obtain the best results. Another shortcoming mentioned by

Derban and Moldovan is that there is a high dependency on initial centroids

in partitioning data objects.

Singh (2010) conducted a research on intrusion detection using K

Mean algorithm. The approach proposed in that research was tested with

1998 DARPA audit data, the best result was obtained when setting number

of clusters (K) to 2 with a detection rate tends to 96% and low false positive

rate. Wei at el. (2011) developed an enhanced version of K Means

 43

algorithm that solves some issues in K Means algorithm. They described

this algorism saying:

"In the improved k-means algorithm clustering guiding function is

introduced. It can help the algorithm determine clustering in direction of

the high point density"

 It was found that testing the developed model with KDD 99

increased the detection rate by 2.94%, it also reduced the false positive rate

by .76% compared to the K Means algorithm.

Table 2.6 summarizes advantages and disadvantages of data mining

techniques mentioned in this chapter.

 44

Technique Advantages Disadvantages

Genetic Algorithm

- Finding a solution for any

optimization problem.

- Handling multiple solution

search spaces.

- Complexity to propose

a problem space.

- Complexity to select

the optimal parameters

- The need to have local

searching technique

for effective

functioning

Artificial Neural Network

- Adapts its structure during

training without the need to

program it.

- Not accurate results

with test data as with

training data

Naive Bayes Classifier

- Very simple structure.

- Easy to update.

- Not effective when

there are high

dependency between

features.

Decision tree
- Easy to understand

- Easy to implement

- Works effectively only

with attributes having

discrete values.

- Very sensitive to

training sets, irrelevant

features and noise.

K Mean

- Very Easy to understand.

- Very simple to implement

in solving clustering

problems.

- Number of clusters is

not automatically

calculated.

- High dependency on

initial centroids.

Table 2.6: Advantages and disadvantages of data mining techniques

2.9.8 Related Research Works to the first contribution
One of the most well-known works in context of using data mining for

intrusion detection is by Axelsson (1999), the model created uses the

maximised posterior probabilities as parameters, provided by Bayesian

algorithm. As a result the false alarm rate that is usually shown by IDSs is

 45

reduced. In our research the aim has been to create new signatures based on

reasoning of outlier instances. In other words, our research is complementing

research work by provision of a reasoning module.

Another research study conducted by Abraham (2001) uses real-time

network intrusion detection systems for detection of misuse. It employs

association rules; characteristic rules and Meta rules to provide results, with

regard to deviation from normal network activity.

Lee and Stoflo (2000) outlined a data-mining framework for constructing

intrusion detection models. The key idea is to first apply data mining

programs, to audit data to compute frequent patterns, extract features, and

then use classification algorithms to compute detection models.

Chang (2007) used the method of back propagation by sample query and

attribute for intrusion detection, to identify and analyse features of training

data. The main contribution of that research paper has been a reduction in

processing time and storage of data instances.

Perhaps the closest research that has been conducted is by Barbara (2003),

where a training system was built to classify unknown and false alarm

instances. Furthermore, Barbara (2003) used and analysed the unknown

instance by following its audit trail, in order to provide a concrete result,

informing if the data instance was outlier. Our research is going a step

further by creating a rule signature whereby an IDS rules holder can be

updated automatically.

2.9.9 Related Research Works to the Second Contribution
A number of researches conducted in the multi stage attacks detection

area. One of those researches was conducted by Alserhani et al. (2010). The

proposed correlation framework in that research combines two engines;

online and offline, and two mechanisms; high quality knowledge-based and

statistical-based correlation. The online tools receive alerts from IDS then it

recognizes multistage attacks using defined rules provided by the offline

 46

engine. The proposed framework achieved 92% multi stage detection rate

and 21.8% false positive rate during their lab experiments for 35 multi stage

attack scenarios. This approach reduces the computation expenses by

analysing only alerts received by IDS. However, this massive dependence

on alerts received by IDS may lead to missing capturing attacks in case of

not receiving alerts. Another research that follows event correlation

approach was carried out by Spadaro (2011). In that research, false alerts

were reduced by combining both signature and anomaly based IDS to

remove redundant events. In addition, some classifiers were trained with

different attack categories to carry out an early classification for the logged

security events. Moreover, meta data is combined with event data to reduce

false positive rate.

Other efforts made by Templeton (2010), they proposed a system that

follows Attack scenario construction approach. This approach is based on

associating two security incidents, it tries to find consequences of one

incident and prerequisites of the incident that may occur later. The strength

point of this approach is the ability to construct new attacks created by a

mixture of known attacks can be detected. On the other hand, attacks cannot

be tracked without finding causes and effects of attacks. Moreover, it

requires large consumption of computer resources.

Another research was carried out by Ourston et al. (2012). The research

is based on using Hidden Markov Models (HMM). The idea of using HMM

is to determine the most likely attack type corresponding to a sequence of

alerts received by IDS. This study found that HMM approach achieved

greater classification accuracy compared to other approached. However,

they reported that the obtained accuracy was associated with the expense of

additional computations.

The proposed methodology in this thesis has an advantage over those

solutions by not being dependant on receiving alerts from IDS the

mentioned solutions above. It also does not require a complex computation

 47

and memory resources compared to them. In addition, the mentioned

solution requires an update with sequences of new attacks while the

proposed system focused on the source of the attack not the attack logic.

However, this may represent an issue if an attack comes from an IP address

not classified yet as suspicious. Moreover, the throughput of the proposed

methodology is relatively low compared to other solutions due to using web

services that consumes sometime to get IP information.

2.9.10 Weka data mining tool
It is a widely used software tool in machine learning written in Java

and built at the University of Waikato, New Zealand. It includes a large

number of machine learning and data mining algorithms. This tool has

become very popular in the academic and industrial fields. This can be run

on different platforms as it is written in Java programming language. In

addition, it is free as it is under General Public License (GNU). Moreover, it

has a graphical user interface which makes it easy to use. Despite of those

advantages, Weka cannot handle datasets larger than a few megabytes, it

issues an out of memory error (Naudts, 2004).

Many researches and studies were conducted to evaluate the

performance of different algorithms using Weka data mining tools. One of

those studies, which was carried out by Wahbeh et al. (2013), gives a

comparative analysis between data Mining Tools over some classification

methods. They reported the following:

"According to study the functionality built into to Weka and

available through add-ons makes the software highly robust for a variety

of users"

2.10 Feature selection

Feature selection is defined as the process of obtaining a subset of

related attributes or features to be used in constructing a model. In other

 48

words, it removes inappropriate, irrelevant or redundant data; this behavior

can play an important role in improving learning accurateness, and

recovering result unambiguousness (Kamepalli and Mothukuri, 2014). One

of widely used feature reduction algorithms is correlation-based feature

selection where subsets of features are assessed on the basis of the

hypothesis stated by Hall (1999):

"Good feature subsets contain features highly correlated with the

classification, yet uncorrelated to each other"

Hall also claimed the following in his research about CFS for

machine learning:

"Feature selection for classification tasks in machine learning can

be accomplished on the basis of correlation between features, and that

such a feature selection procedure can be beneficial to common machine

learning algorithms" There are also other widely used feature selection

reduction algorithms such as information gain (IG), gain ratio (GR) and Fast

Correlation Based Filter (FCBF). Although feature selection techniques

have a positive impact as mentioned earlier, Batal (2014) pointed out that

some features that are looked at as irrelevant may be useful when

associating them with others.

 Chou (2007) proposed a CFS algorithm to select a subset of most

relevant features. The result was retrieving six data sets from UCI databases

and an intrusion detection benchmark data set, and DARPA KDD99. Those

data sets are then used to train and test C4.5 and naive bayes algorithms.

They reported that the proposed approach achieved the highest averaged

accuracies compared to CFS and FCBF. Chae and Choi (2014) developed a

feature selection method based on attribute ratio that uses attribute average

of total and each class data. The results of experiments conducted in that

research showed that there is that between accuracy and attribute ratio value.

They reported that the highest accuracy (99.794%) was achieved when 22

features were used.

 49

2.11 Discussion

So far, several papers have been published to address the security

threats (Meijerink and Spellen, 2006, Singh and Joshi, 2011). But none of

these solutions, neither antivirus nor firewalls, can totally prevent these

attacks. Therefore, the design of an Intrusion Detection System (IDS) that is

facilitated by honeypots that is expected to detect and mitigate threats and

attacks on production networks has become a priority for researchers. Such

system would not only allow production networks to protect themselves

from security threats but would also autonomously create evidence for

forensics analysis in case of attack.

The honeypots analysed have the capability to record and monitor

network activity (legitimate or illegitimate). Though the logs are mere

collection of the network activity and require forensic / network data analyst

to analyse the logged data. Honeyd and Mwcollect (low-interaction

honeypots) have ability using configuration files to emulate vulnerabilities

associated with certain open ports. Honeynet and Argos do not emulate

vulnerabilities and are real operating systems with real services where

methods include data control, data capture and data collection in case of

Honeywall and signature creation of tainted malware based on various

inputs.

Literature for honeypots and intrusion detection systems as isolated

subject has been focus of many research works. However, researchers have

not invested effort into facilitation of IDS using honeypots to secure

production networks. Much progress has been made within IDS for purpose

of detecting known attack vectors. However, little has been made in the area

specifically related to use of high interaction systems for autonomously

updating IDSs. Honeypots or monitored honeynet networks can be used for

the purpose of (Mokube and Adams, 2007):

1. Defensive distraction system in order to direct an attacker towards

machines containing no valuable information;

 50

2. An early warning system that can inform about exploitation trends to

IDS; and

3. A data collection store that can be used to examine the methods and

processes of exploitation of a honeypot in order to create forensic

reports, when required.

Issues with IDS in terms of quality include metrics of effectiveness,

adaptability and extensibility (Nazer and Selvakumar, 2012). An IDS can be

effective, if it has high intrusion detection i.e. large rate of true positives

(ability to realise that the certain network activity is actually an attack) as

well as if it has low rate of false positives (ability to realise that a given

network activity is not an attack and considered normal network activity).

Generally, this is achieved by creation of rules by the expert based on

domain knowledge and / or analysis of logged network data making it a very

complex process (Kayacik et al., 2012). An IDS can be adaptable, if it can

detect variations in previously known exploits and update the rules

seamlessly in order to prevent intrusion. The literature has indicated various

intrusion detection methods but none has been found to be adaptable where

unknown attacks that are “child of” known attacks can be realised

autonomously (Amro et al., 2012). An IDS can be extensible, if it allows

integration of additional modules or updating / customisation of existing

modules by the administrator. According to (Nazer and Selvakumar, 2012),

customisation in current IDS is difficult as expert rules and statistical

measures as environment specific.

It has been realised that in addition to issues listed above, the gap

between collection of network data and creation of rule / signature is not

only large in terms of temporal terms (i.e. the time it takes to create a new

signature that would be informed to IDS) but also in terms of automated

intelligent data analysis tools that could upon analysis create signatures with

high true positive and low false positive rates. Honeypots are not solutions

for intrusion detection and hence they do not have production value. The

only value that is offered by them is that they help with data collection and

 51

provide initial set of data so that intelligent rules can be created that can

prevent intrusions on network or organisational assets. The topic honeypot

has been discussed in this chapter, as it was possible solution of data

collection. The objective was to use actual live data for the purpose of

research study however, due to filtering (possibly offered by an Internet

Service Provider (ISP)), the amount of attacks on vulnerable resource was

minimal and the most that was received on resource was DNS queries that

were unimportant. Hence, the methodology was altered to use KDD data as

opposed to data collected from honeypot.

2.12 Summary

Currently, the research is focused on study of various high

interaction honeypot tools as well as capabilities of data capturing tools. The

focus is now shifting towards creation of an autonomous data analysis tool

that would be based on data mining techniques and would take input of raw

data collected as a result of hybrid of host-based and network-based

monitoring tools. In this chapter, the researcher has provided a concise

overview on honeypots and their uses. The chapter also discussed various

classifications and categories of the honeypots namely research, production,

low-interaction and high interaction honeypots. A detailed description of

detection methods used in high interaction honeypot systems viz. Sebek,

Honeynet and Argos as well as preparation of low-interaction honeypot

system using configuration files has been discussed. Although, honeypots

have been active area of research for a decade, but they are gaining

popularity due to degree of analysis tools and capturing and detection

techniques that are becoming invaluable in the world of cybercrime and

network forensics.

 This chapter has also discussed IDS including the difference

between a firewall and IDS, intrusion detection methodologies, and

intrusion detection limitations. It also gives a quick look over IDS tools

 52

highlighting advantages and disadvantages of each tool. In addition, this

chapter has gone through data mining, some techniques used in data mining,

and how those techniques employed in intrusion detection by different

researchers to improve the performance of IDS. This part of the thesis has

also provided an overview about feature selection and how it can have a

great contribution in helping learning machine algorithms exploited to

improve the performance of IDS.

 53

CHAPTER 3

MULTI-LAYER CLASSIFICATION

SYSTEM

3.1 Introduction

In the context of information technology, intrusion can be defined as a

series of attempts in order to compromise security of a network-based

resource (Liao, 2013). Network-based systems or resources require constant

monitoring in order to ensure that malicious activity can be contained (Kang,

Fuller, Hanover, 2005). An Intrusion Detection System (IDS) is responsible

for monitoring network traffic and based on a set of rules raising alerts for

information security officers, when malicious traffic is detected (Kang,

Fuller, Hanover, 2005).

Although IDSs are successful in terms of preventing attacks on network

resources, they are not adaptable in cases where new attacks are made, i.e.

they need human intervention for investigating new attacks (Borah,

Chakraborty, 2011) (Roesh, 1999). Furthermore, an IDS could become a

bottleneck, where it is employed on a busy network. IDS requires time for

 54

processing network data, before it can be released to a production network

(Roesh, 1999).

One possible solution for addressing the above problem is to create a

system that is based on Machine Learning. This signature-based system will

use existing IDS, such as SNORT, for comparing packet signatures to rules

defined by SNORT, and the packets found to be malicious are subjected to

being passed to an intelligent model that has been trained to detect malicious

content (Roesh, 1999) (Kim, Lee, Kim, 2014). Hence, SNORT will act as a

first level of filter reducing the amount of traffic for further investigation

using the intelligent model. Overall, this reduces the load on SNORT, hence

providing a reduction in analysis at the SNORT level, and further reducing

human intervention, as the intelligent trained model is responsible for

deciding if a certain set of packets are malicious or otherwise. If a set of

packets are found to be malicious, an automated signature will be created

that will update the set of rules used by SNORT.

The novelty is offered by integration of the training model for detecting

misuse in the incoming network data packets with a reasoning model that is

applied on outliers (uncategorised data packets) (Kim, Lee, Kim, 2014). The

result of the reasoning model is in the form of a rule that can then be used by

an IDS, on a production level system, to filter automatically malicious data

packets of the type just identified.

The aim of this chapter is to provide a comparative study of classification

of algorithms for the purpose of creating a training model used for misuse

detection. In this comparative study we present results in terms of a

confusion matrix and metrics such as true-positive, false-positive, true-

negatives and false-negatives. Also presented are comparisons between

expected and predicted classes of KDD’99 (KDD’99, 1999) intrusion

detection data by a random split of 66% for creation of the training model,

and 34% for testing of the training model for misuse detection.

 55

Section 2 gives an overview of the proposed methodology and Section 3

provides a description of the KDD’99 intrusion detection data set, discussing

metrics used for attribute selection in the KDD’99 intrusion detection data

set. Section 4 discusses the classifier module, providing a brief background

with regard to classifier algorithms, namely Naïve Bayes and Decision Tree,

then goes through the experiments results. Section 5 discusses the reasoning

module and the experiments that have been conducted, and then discusses

the results obtained. Section 6 provides a conclusion to this chapter.

3.2 Classification Approach

Figure 3.1: High Level View of Research Process

 56

The research process consists of the following elements (see Figure 3.1):

• Intrusion Detection System: SNORT will be used in this solution as a

signature based IDS. In addition to its main functionality as an IDS, it

will be used as a network sniffing tool that feeds the training model

with the live traffic.

• Rule Holder: This contains all signatures used by SNORT to capture

attacks matching the stored signatures.

• Data Set and Categorisation: The first step in the research process is to

find a reliable high quality network traffic data set, where each packet

has been labelled so that the training model is created, and as a result

the classification can be used reliably.

• Feature Selection: The network packets in the data set are then passed

through an attribute evaluator, in order to extract a set of features that

can be used effectively to detect intrusions. Non-essential features are

known to be not only a bottleneck in terms of cost of computation, but

are also factors that contribute towards increased error rates (Wei,

Wang, 2011).

• Classifier Module: This module is responsible for building a classifier

using Decision Tree and Naïve Bayes that can compute a model using

the most discriminating features in an instance of a data packet, in

order to describe a class (concept). This is done by training a

classifier, using a pruned set of features, where the objective is that

the model created is more generic than the rules (as compared to

SNORT) and hence, it outperforms this in accuracy and effectiveness,

when compared to general rule-based signature matching systems.

• Training Model: This model is the outcome of the classifier module.

The results of each classification algorithm will be compared to each

other then one of them will be selected to be used as the training

 57

model. This model will classify the traffic to either known or

unknown classes. The traffic will be passed to the reasoning module

in case if it is unknown for further investigation.

• Reasoning Mechanism: The purpose of this mechanism is to provide

another stage for classifying the network traffic, if the first stage fails

to classify it. The reasoning mechanism is based on a hybrid model

built using neural network (MLP) and fuzzy logic. The outcome of

this module will be in a form of a signature that will be added to the

rule base.

3.3 Data Set – KDD’99

3.3.1 Overview

The data set used in this chapter is the KDD’99 intrusion detection data

set. This data set is based on a 1998 DARPA initiative and has been used by

researchers for evaluation of various intrusion detection methodologies in the

past. The data are collected as a result of a setup of a fictitious military

network with a number of target machines running various services. A

sniffer has been used to record all network data using raw TCP/IP dumps

(KDD'99, 1999).

The data set consists of 41 discrete and continuous attributes and has 22

attack classes and 1 normal class, where each instance in the data set has

been categorised as one class.

The attacks are further divided into 4 categories:

• Denial of Service Attack Category (DoS) where a target host is

compromised by the request of service from a multitude of machines.

(e.g. syn flood)

• User to Root Attack Category (U2R) where an attacker attempts to get

unauthorised access to root level of a target system. (e.g. buffer

overflow attacks)

 58

• Remote to User Attack Category (R2L) where a hacker tries to take

control of a remote machine by exploiting vulnerabilities of the

system. (e.g. guessing password)

• Probing Attack Category (probe) where an attacker scans the

machines (generally on a network) in order to collect useful

information (for instance, services running) about those machines.

(e.g. port scanning)

1.3.2 Features of the Data Set
For selection of important attributes in the network data set, Correlation-

based Feature Selection (CFS) was employed. A search algorithm, as well as

a classifier function, is used by CFS to evaluate the importance of each

feature and provide a subset of features (Hall, 1999). The heuristic that is

used by CFS describes important features that are highly correlated to the

class; however they are uncorrelated from each other (Hall, 2009). In a data-

mining context, this approach is based on information gain that measures the

importance of each attribute for predicting class, based on the calculated

entropy of that attribute. An attribute with entropy value approaching 0 will

have information gain approaching 1 (Davis, Clark, 2011).

𝐻𝐻[𝐷𝐷] = − ∑ 𝑃𝑃�𝑐𝑐𝑗𝑗� log2 𝑃𝑃(𝑐𝑐𝑗𝑗)|𝐶𝐶|
𝑗𝑗=1 (1)

Where C is the desired class

Information gain by removal of an attribute can be computed as a difference

of entropy before removal to entropy after removal of that attribute (Davis,

Clark, 2011).

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝐷𝐷,𝐴𝐴𝑖𝑖) = 𝐻𝐻[𝐷𝐷] − 𝐻𝐻𝐴𝐴𝑖𝑖[𝐷𝐷] (2)

 59

Figure 3.2: Attributes selected upon using CFS evaluator and

depth first search

3.4 Classifier Module

3.4.1 Overview
For misuse detection, we have used two classifiers, namely Naïve Bayes

and Decision Tree, for creation of a training model. This section provides a

brief description of each technique. For a more detailed background, the

reader can study Bhargava (2013) or Rawat and Jain, (2013).

3.4.2 Naïve Bayes
Bayesian reasoning is applied to decision-making that deals with

probabilistic inference, i.e. the knowledge about previous events is used to

 60

predict future events (Altwaijry, 2013). In a Naïve Bayes classifier the

availability or unavailability of a certain attribute is not related to availability

or unavailability of another attribute. Naïve Bayes provides an advantage

when making decisions based on small amounts of training data, to compute

mean and variance of the attributes in order to compute its class. Bayes

theorem provides a method of calculating the posterior probability, P(c|x),

from P(c), P(x), and P(x|c). A Naive Bayes classifier assumes that the effect

of the value of a predictor (x) on a given class (c) is independent of the

values of other predictors (Rawat, Jain, 2013). This offers conditional

independence. Bayes algorithm is explained by the following:

 (3)

)(*)|(...*)|(*)|()|(21 cPcxPcxPcxPXcP n= (4)

• is the posterior probability of class given attribute.

• is the prior probability of class.

• is the likelihood which is the probability of attribute given

class.

• is the prior probability of attribute.

3.4.3 Decision Tree
A decision tree classifies a data set through a sequence of decisions,

where a decision on a current node facilitates a decision to be made on the

following nodes (Bhargava, 2013). This forms an n-array tree structure,

where a decision is made by traversing from a root node to a leaf node,

where the leaf node represents a class. Nodes are formed of attributes or

features from the data set. C 4.5 is one of the most common algorithms to

create a decision tree. Ruggieri (2002) described how C4.5 constructs a tree

as follow:

 61

“The algorithm constructs a decision tree starting from a training set T

S, which is a set of cases, or tuples in the database terminology. Each case

specifies value for a collection of attributes and for a class. Each attribute

may have either discrete or continuous values. Moreover, the special value

unknown is allowed, to denote unspecified values. The class may have only

discrete values.”

J48 (Bhargava, 2013) – is an open source implementation of the C4.5

algorithm for decision trees, available through Weka (Hall, 2009). J48 offers

handling of a variety of input data types, for instance nominal, textual and

numeric, and is high in performance. The algorithm operates as follows:

• The algorithm operates over set of instances used for training, C.

• If all instances in C are in class P

o Then create a node P and end.

o Else select attribute F and create division node.

• Partition the instance C into subset of values (V1..n) for attribute F.

• Apply the algorithm recursively to each of the subsets of instance C.

3.4.4 Experiment Environment
For this chapter, 10% of the whole KDD’99 intrusion detection data set

was used for training; this small subset was selected randomly and represents

the complete KDD data set. This data set represents a concise version of the

whole data. This data set contained approximately half a million classified

instances of network data packets (KDD'99, 1999). For the purpose of

testing the effectiveness of thes model created, 34% of this data set, which

approximates to 168,000 of known classified instances, was used. A training

model has been created after considering two model creation strategies:

1. All-Classes: In this case, a training model has been created by

considering all the classes described in the KDD intrusion detection

data set.

 62

2. Two-Classes: In this case, a training model has been created by

categorising the KDD data set into only two different classes, namely

normal and malicious.

3.4.5 All-Classes Based Model Creation Strategy
Table 3.1 shows the results of instances, classified correctly and

incorrectly, upon use of Naïve Bayes and Decision Tree (J48) algorithms, for

creation of a training model using an all-classes model creation strategy. It is

noted that results of correctly classified instances, by employing Decision

Tree, are slightly better than Naïve Bayes (Bhargava, 2013) (Altwaijry,

2013).

Instances Classified Naïve Bayes Decision Tree

Correctly
91.82% (154228) 99.95% (167890)

Incorrectly
8.18% (13739) 0.04% (77)

Table 3.1: Results for Naïve Bayes and Decision Tree Using an

All-Classes Model Creation Strategy

Figure 3.3 and Figure 3.4 show the comparison between predicted

and expected classes using Naïve Bayes and Decision Tree classifiers

respectively. It is clear from the graphs that in Decision Tree predicted

classes are the same as the expected classes, which is observed using a 45

degree gradient. While in the case of the Naïve Bayes approach, a large

amount of variance is caused by conflict between predicted and expected

classes. It is further observed that Normal class packets have a large amount

of jitter that is a result of incorrect prediction, using the Naïve Bayes training

model.

 63

Figure 3.3: Variance of predicted vs. expected classes using the

Naïve Bayes all-classes model creation strategy

Figure 3.4: Variance of predicted vs. expected classes using

Decision Tree all- classes model creation strategy

Table 3.2 shows the consolidated comparative results per class for

each classifier for metrics True-Positive (TP) and False-Positive (FP). It is

observed that, although Naïve Bayes has a high TP, it is skewed by results of

 64

FP. On the other hand, the Decision Tree generates almost a high consistent

TP and a consistently low FP.

Class
True-Positive False-Positive

Naïve Bayes Decision
Tree Naïve Bayes Decision

Tree
Normal 0.617 0.999 0 0
Buffer

Overflow 0.462 0.615 0.001 0

Load Module 0.4 0.2 0.001 0

Perl 0 0 0 0

Neptune 0.999 1 0.001 0

Smurf 0.998 1 0 0

Guess Passwd 0.952 1 0.025 0

Pod 0.987 1 0 0

Teardrop 0.988 0.997 0 0

Portsweep 0.111 0.979 0.01 0

IPsweep 0.97 0.993 0.007 0

Land 0.75 1 0 0

FTP Write 0 0.5 0.002 0

Back 0.984 0.996 0 0

IMAP 1 0.4 0 0

Satan 0.894 0.986 0.002 0

PHF 1 0 0.011 0

NMap 0.457 0.988 0.001 0

Multihop 0 0 0.006 0

Warezmaster 0.75 1 0.002 0

Warezclient 0.107 0.979 0 0

Spy 0 0 0 0

Rootkit 0.667 0 0.012 0

Table 3.2: Accuracy / Class for Naïve Bayes And Decision Tree

Using All-Classes Model Creation Strategy

The results also show that a high FP rate has been observed in classes

corresponding to probing, and in remote to local attack categories. This

 65

indicates the attacks were mainly in categories where the attacker is scanning

the machine to understand more about vulnerabilities of network resources,

and furthermore that these could be initiated from remote locations, where a

local machine could have been compromised.

3.4.6 Two-Classes Based Model Creation Strategy
Table 3.3 shows the results of instances classified correctly and

incorrectly upon use of the Naïve Bayes and Decision Tree (J48) algorithms

for creation of a training model using a two-classes model creation strategy.

It is observed that using training models created by use of Decision Tree is

better than Naïve Bayes.

It is further observed that in contrast to the all-classes-based model

creation strategy, Naïve Bayes has performed better in correctly classifying

the instances in the two-classes-based model creation strategy, as the results

are improved from 91.82% to 98.44%.

Instances Classified Naïve Bayes Decision Tree
Correctly 98.44% (165349) 99.96% (167898)

Incorrectly 1.56% (2618) 0.04% (69)

Table 3.3: Results for Naïve Bayes And Decision Tree Using

Two-Classes Model Creation Strategy

Figure 3.5: Variance of predicted vs. expected classes using

Naïve Bayes two-classes model creation strategy

 66

Furthermore, it is observed in figure 3.5 that the number of incorrectly

classified instances has decreased, as shown in the cluster on the top-left and

bottom-right quadrant of the graph. This can be attributed to a reduction in

granularity of classes, associated with data making the model for prediction

of instances more accurate.

Figure 3.6: Variance of predicted vs. expected classes using

Decision Tree two-classes model creation strategy

It is observed that Decision Tree has performed consistently, even with a

change of model creation strategy. There has been a nominal increase in

correctly classification of instances, and figure 3.6 shows the number of

incorrectly classified instances decreased, as seen in the top-left and bottom-

right quadrant of the graph.

Class True-Positive False-Positive
Naïve Bayes Decision

Tree
Naïve
Bayes

Decision
Tree

Normal 0.989 0.999 0.017 0
Malicious 0.983 1 0.011 0.001

Table 3.4: Accuracy / Class for Naïve Bayes and Decision Tree

two-classes Model Creation Strategy

 67

Table 3.4 presents the combined comparative results per class for each

classifier for metrics TP and FP for the two-classes-based model creation

strategy. It is observed that Decision Tree has consistently a high true-

positive rate and consequently a low false-positive rate.

3.4.7 Chosen Model
Overall, it has been observed in the context of the all-classes and two-

classes-based model creation strategies that the Decision Tree algorithm is

more effective in prediction of classes for data instances. Furthermore, the

true-positive rate of the Decision Tree algorithm is higher in the two-classes-

based model creation strategy, making this two-classes-based strategy a

better choice for the model. However, it should be noted that the objective of

our model is to provide prediction of data instances with high granularity of

categorised class, so that categorised instances can be subjected to further

critique using reasoning mechanisms. Because of the aforementioned

requirement, we have selected the all-classes-based training model creation

strategy for prediction of classes for data instances. In other words, the all-

classes-based strategy for creating a model is giving more information in

context of classes without loss of correctly and incorrectly classified

instances.

3.5 Reasoning Module

3.5.1 Overview
The proposed reasoning mechanism in this chapter classifies the network

traffic into normal (1) or attack (0). In the other word, the mechanism is

based on a hybrid model consists of two modules; the first one is based on

neural network while the second one is based on fuzzy logic. Figure 3.7

gives an overview of the proposed hybrid model in this chapter. The hybrid

model will classify network traffic as normal if both modules classify it as

 68

normal while it will classify it as attack if either of the modules classifies the

traffic as attack.

Neural network has the advantage of the ability to work with not

complete and precise data. This merit can be employed in IDS context for

detecting attacks patterns presented during the training phase but modified

by an attacker in order to pass through the system (Kukiełka, Kotulski,

2010). The flexibility of fuzzy logic can be employed in case of uncertain

problem of intrusion detection and allows much greater complexity for IDS

(Shanmugam, 2009).

Figure 3.7: Hybrid Model Overview

The benefit of using the hybrid approach is increasing the intrusion

detection rate, some of attacks may not be detected by one of the modules

but the other one may be able to detect them. In other words, one module

will overcome some of other module shortcomings in detecting malicious

traffic. However, there is a chance of increasing the false-positive rate for

malicious traffic.

 69

3.5.2 Neural Network
As described in the previous chapter, artificial neural network is a

computational model inspired by the principles of an animal's central

nervous systems. This model has the capabilities of machine learning, as well

as pattern recognition. It has been described as a system that adapts its

structure in the learning phase; this adoption is based on external or internal

information flowing through the system (Anthony, Bartlett, 2009). The most

commonly used architecture of supervised neural networks is Multi-Level

Perceptron (MLP). That architecture contains a number of layers (one input

layer, a number of hidden layers, and one output layer), each layer contains a

number of processing units called neurons. Each neuron is connected with a

weight to a neuron in the following layer. MLP uses the back propagation

algorithm in the training process. In that algorithm, the input data is passed to

the neural network. Then, the output of the network is compared to the

desired output to compute the error. That error is used to adjust the weights,

in order to get closer to the desired output. The error calculation and weight

changes are explained by the following (Anthony, Bartlett, 2009):

 𝑒𝑒𝑗𝑗(𝑛𝑛) = 𝑑𝑑𝑗𝑗(𝑛𝑛) − 𝑦𝑦𝑗𝑗(𝑛𝑛) (5)

 𝜀𝜀(𝑛𝑛) = 1
2
∑ 𝑒𝑒𝑗𝑗2𝑗𝑗 (𝑛𝑛) (6)

 ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑛𝑛) = −𝜇𝜇 𝜕𝜕𝜕𝜕(𝑛𝑛)
𝜕𝜕𝑣𝑣𝑗𝑗(𝑛𝑛) 𝑦𝑦𝑖𝑖(𝑛𝑛) (7)

Where,

𝑒𝑒𝑗𝑗 is the calculated error for neuron j.

n is the index of training data.

𝑑𝑑𝑗𝑗 is the desired value.

𝑦𝑦𝑗𝑗 is the produced value by neuron j.

𝜀𝜀 is the error of entire output.

 70

𝑤𝑤𝑗𝑗𝑗𝑗 is the weight of the connection between neuron i in a layer and neuron

j in the following layer.

𝜇𝜇is the learning rate (a value between 0.2 and 0.8).

3.5.3 Fuzzy Logic
Fuzzy logic is a computational approach based on human language rules.

The fuzzy systems translate the defined rules to a mathematical equivalent

(Rajasekaran, Pai, 2003). Those systems, as shown in figure 3.8, consist of

fuzzifier, interference engine, rules base, and defuzzifier. Fuzzy systems

work as follows (Rajasekaran, Pai, 2003):

• The fuzzifier converts the crisp inputs to fuzzy set by using specified

membership functions for each input.

• Based on the defined rules, the interference engine produces a fuzzy

output.

• The fuzzy output is converted to a crisp value using the membership

Functions defined for defuzzification.

Figure 3.8: Fuzzy logic Components

3.5.4 Experiment Environment

The architecture used in the neural network module is MLP. This

architecture has three layers. The first layer contains 10 neurons; the hidden

 71

layer contains 8 neurons, with one neuron in the output layers. The neural

network module was trained using 10% of the whole KDD’99 intrusion

detection data set. It has been trained by setting the max mean square error to

.01, and max number of epochs to 3000. All weights are initially randomly

set. See Appendix B for the neural network training code. The code is based

on using a neural network PHP library written by Akerboom (2007)

The training data was pre-processed as follows, before starting the

training process:

1. Feature labelling: Label non-numeric attributes with numeric values.

Some features are not represented by a numeric value (e.g. service),

while it is required to deal with a numeric value in the neural

network. For example, each service has been given a number; 1 for

telnet, 2 for ftp_data.

2. Features normalisation: It has been found that each feature has a

different range. Thus, all attributes have been normalised in a way

that has made each attribute have the same range (between 0 and 1).

This step helps in making the selected attributes comparable.

3. Remove redundant data: Removing redundant or repeated data from

the training data set prevents the training algorithm to be biased in

the direction of more frequent records, and ignoring less frequent

records. The number of the training data set after removing the

duplicates is 142,000.

The rules of the fuzzy module were created using 10%` of the whole

KDD’99 intrusion detection data set as follows (See Appendix C for the

fuzzy rules generation code):

1. All selected features, apart from ‘service’ (as it is a discrete value not

continuous), have been normalised in a way that has made each attribute

 72

have the same range (between 0 and 1). This step helps in simplifying the

rules generation process.

2. We selected three values V1, V2, V3, where:

V1= 0.043, V2= 0.375, V3 =0.75

3. During the iteration through the training data, each selected feature (apart

from ‘service’) was translated from a numeric value to a description as

follows:

0 ≤ attribute value < V1 → Very Low (VL)

V1 ≤ attribute value < V2 → Low (L)

V2 ≤ attribute value < V3 → High (H)

V3 ≤ attribute value ≤ 1 → Very High (VH)

The output is described as either normal or attack. The rule was then

created in the following form:

If (feature1 is feature1_desc AND feature2 is feature2_desc AND

….feature10 is feature10_desc) Then output is output_desc

4. The created rule in the previous step would not be added to the rule base,

if it was previously added, to avoid having duplicate rules. The total

number of rules added to the rule base is 1343. Different values had been

tried for V1, V2, V3, but the value selected above gave the best results in

terms of false-positive and detection rates. The last step in implementing

the fuzzy module was the membership functions selection for both inputs

(selected feature) and output. Figure 3.9 shows the membership functions

for all inputs, apart from the ‘service’ feature, which was handled by a

singleton membership function for each value, as it is a discrete attribute.

The output has two membership functions as shown in figure 3.10.

 73

Figure 3.9: Membership function for the selected feature (not including

the ‘service’ feature)

Figure 3.10: Membership function for the output

5. The results of evaluation obtained from the hybrid model, after getting

the neural network training done, and completing the rules generation

and membership functions selection for the fuzzy module, are shown in

table 5. The evaluation process was carried out using 10% of the whole

KDD’99 intrusion detection data set; this data set is different from the

data set presented in the neural network training and rules generation

stage.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

VL

L

H

VH

0 0.2 0.4 0.6 0.8 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

attack

normal

 74

3.5.5 Experiment Results
Table 3.5 shows that the hybrid model achieved a higher detection

rate for malicious traffic than either the neural network or fuzzy logic

modules, each one individually. On the other hand, the false-positive rate of

the hybrid model is higher than both the neural network and fuzzy logic,

each one individually. See Appendix D for the hybrid system code. The

fuzzy module implementation is based on a PHP library developed by

Jarzęcki (2011).

Class

True-Positive False-Positive

Neural

Network

Fuzzy

Logic

Hybrid

Model

Neural

Network

Fuzzy

Logic

Hybrid

Model

Normal 0.971 0.978 .952 0.029 .022 .048

Malicious 0.966 .9995 .9997 0.034 0.0005 .0003

Table 3.5: Results of the hybrid model using Neural Network

and fuzzy Logic

3.6 Conclusion

SNORT monitors network traffic and uses content searching and

matching to detect attacks. One of the problems with using SNORT is the

fact that it is not adaptable for detecting new attacks. In addition, it generates

false alarms at a high rate.

Our experiments can be used to conclude that data mining can be

implemented as an added portion to a pre-existing IDS. When implemented

properly, data mining can improve the classification process, resulting in a

 75

lowered number of false-positive alerts. The first stage of the proposed

model built using the Decision Tree approach is able to classify most data

correctly, has a better accuracy rate, detection rate and lower false-positive

rate. In this chapter, we have compared two different training model creation

strategies, using Naïve Bayes and Decision Tree algorithms. It is concluded

that the all-classes-based training model creation using Decision Tree is the

most effective, as it not only provides a better true-positive rate, but also a

high level in granularity for classification of data instances, and this has high

precedence over a slightly better training model created using the two-classes

model creation strategy.

The second stage of the proposed model (reasoning mechanism) was built

using a hybrid approach. The hybrid approach in this chapter used both

neural network and fuzzy logic. The benefit of using the hybrid approach is

in increasing the intrusion detection rate; some of the attacks may not be

detected by one of the modules, but the other one may be able to detect them.

The results obtained by that approach achieved a higher detection rate than

both the neural network and fuzzy logic, each one individually. However, it

has a higher false-positive rate.

 76

CHAPTER 4

MULTI STAGE ATTACKS

4.1 Introduction

Multi-stage attacks can evolve dramatically these days, causing much

loss and damage to organisations. These attacks occur through multiple

steps, each step looking legal and not violating any rules. Therefore,

Clark (2010) described multi-stage attacks in his research as the most

challenging set of attacks to investigate and deter. He also described

multi-stage attacks as follows:

 “Multi-stage attacks within a single jurisdiction may permit the

imposition of rules that facilitate technical solutions to attributions. We

suggest that such technical solutions form a ripe area for research. But

solutions to preventing the attacks of most concern, multi-stage multi-

jurisdictional ones, will require not only technical methods, but

legal/policy solutions as well. Better attribution techniques will neither

solve nor prevent such exploitations.

 77

Redesigning the network to accomplish robust attribution would not

solve the most serious network-based cyberattacks and cyber

exploitations being experienced today, which are multi-stage and

multi-jurisdictional.”

There is evidence of Clark’s argument, when using the proposed

solution in the previous chapter. The solution achieved a high level of

detection rate. However, it has been found that the proposed solution

works well with single-stage attacks and is not efficient when dealing

with multi-stage attacks. That solution is signature-based (attributes

techniques), which is not useful in the case of multi-stage attacks. It has

also been found that different solutions have been introduced to stop

attacks and protect organisations. However, some of those solutions

ignore some communications in the network and find difficulties in

differentiating between legitimate and illegal traffic, as they do not

violate any rules.

Those attacks occur through multiple phases to get access to an

organisation. Most of those attacks involve three phases. In the first

phase, attackers try to analyse available information about the target, to

find vulnerabilities and weaknesses that can be exploited. In the second

phase, attackers exploit the weaknesses found in the first phase to inject

malware into, or to gain access to the system. In addition, they try to get

more details and conduct a deep analysis about the system to find data or

resources in which they have an interest. In the final phase after gaining

access, attackers destroy the system or steal valuable information

(GCHQ and Cert-UK, 2015).

This chapter goes through four different multi-stage attack scenarios.

The aim of this chapter is to understand the behaviour of multi-stage

attacks and try to find a clue to predicting or detecting such kinds of

attacks. In each scenario, the network traffic will be analysed

highlighting all steps that have occurred and not been considered by

 78

many security systems. The first scenario is about communication with a

bad DNS server and how that has been employed by an attacker to

register machines to its bot army. The second scenario discusses the

Shady Rat attack, which is a good example showing how social

engineering can be employed to target an organisation. The third

scenario shows how header splitting can be employed by an attacker to

target a network connected to a web host running a web application. The

last scenario discussed how a vulnerable FTP service could be exploited

to perform multi-stage attacks. The outcome from analysing each

scenario will be in the form of rules that will be used in building a

solution that will predict multi-stage attacks before they have an impact

and damage organisations.

4.2 Analysis Approach

 The following information will be looked at for each scenario:

IPs and URLs involved in conversations.

Operating Systems

Summary of conversations.

 Based on the information extracted from the trace files and

summary of conversations of traffic, the behaviour of the attacker will be

modelled and some rules can be extracted to predict similar scenarios.

Those rules will be used later in a proposed framework to detect such

attacks.

4.3 Scenario A

4.3.1 Trace file
The communication that occurred during this scenario has been

captured in a pcap file (TP Group, 2015). This file will be analysed using

Wireshark to get all the information required for analysing this scenario.

 79

4.3.2 IP Involved in the Scenario
By looking at tables 4.1 and 4.2 which contain the IP participating in

the communication, it has been found that there are 268 packets and

10.129.211.13 participated in this scenario with a rate of 52.99% as a source

IP address, while it participated with a rate of 47.01% as a destination IP

address. In other words, 10.129.211.13 participated in all conversations

during this scenario. It has been found that there are some signs that the

identified IP address was compromised during this attack. One of those

signs is receiving the same ICMP message in a relatively short time from

different IP addresses, which indicates that there was some sort of scan

occurring through it.

 80

Table 4.1: IP addresses participated in the first scenario as sourc

Source IP Addresses Count Percent
10.129.211.13 142 52.99%
216.234.235.165 6 2.24%
61.189.243.240 5 1.87%
10.129.102.9 4 1.49%
10.129.102.8 4 1.49%
10.129.102.7 4 1.49%
10.129.102.6 4 1.49%
10.129.102.5 4 1.49%
10.129.102.4 4 1.49%
10.129.102.3 4 1.49%
10.129.102.22 4 1.49%
10.129.102.21 4 1.49%
10.129.102.20 4 1.49%
10.129.102.2 4 1.49%
10.129.102.19 4 1.49%
10.129.102.18 4 1.49%
10.129.102.17 4 1.49%
10.129.102.16 4 1.49%
10.129.102.15 4 1.49%
10.129.102.14 4 1.49%
10.129.102.13 4 1.49%
10.129.102.12 4 1.49%
10.129.102.11 4 1.49%
10.129.102.10 4 1.49%
10.129.102.1 4 1.49%
10.129.102.0 4 1.49%
10.129.56.6 3 1.12%
205.188.226.248 2 0.75%
10.129.102.31 2 0.75%
10.129.102.30 2 0.75%
10.129.102.29 2 0.75%
10.129.102.28 2 0.75%
10.129.102.27 2 0.75%
10.129.102.26 2 0.75%
10.129.102.25 2 0.75%
10.129.102.24 2 0.75%
10.129.102.23 2 0.75%

 81

Destination IP
Addresses Count Percentage

 10.129.211.13 126 47.01% 10.129.102.31 2 0.75%

61.189.243.240 7 2.61% 10.129.102.30 2 0.75%

216.234.235.165 3 1.12% 10.129.102.3 2 0.75%

10.129.56.6 3 1.12% 10.129.102.29 2 0.75%

10.25.102.9 2 0.75% 10.129.102.28 2 0.75%

10.25.102.8 2 0.75% 10.129.102.27 2 0.75%

10.25.102.7 2 0.75% 10.129.102.26 2 0.75%

10.25.102.6 2 0.75% 10.129.102.25 2 0.75%

10.25.102.5 2 0.75% 10.129.102.24 2 0.75%

10.25.102.4 2 0.75% 10.129.102.23 2 0.75%

10.25.102.31 2 0.75% 10.129.102.22 2 0.75%

10.25.102.30 2 0.75% 10.129.102.21 2 0.75%

10.25.102.3 2 0.75% 10.129.102.20 2 0.75%

10.25.102.29 2 0.75% 10.129.102.2 2 0.75%

10.25.102.28 2 0.75% 10.129.102.19 2 0.75%

10.25.102.27 2 0.75% 10.129.102.18 2 0.75%

10.25.102.26 2 0.75% 10.129.102.17 2 0.75%

10.25.102.25 2 0.75% 10.129.102.16 2 0.75%

10.25.102.24 2 0.75% 10.129.102.15 2 0.75%

10.25.102.23 2 0.75% 10.129.102.14 2 0.75%

10.25.102.22 2 0.75% 10.129.102.13 2 0.75%

10.25.102.21 2 0.75% 10.129.102.12 2 0.75%

10.25.102.20 2 0.75% 10.129.102.11 2 0.75%

10.25.102.2 2 0.75% 10.129.102.10 2 0.75%

10.25.102.19 2 0.75% 10.129.102.1 2 0.75%

10.25.102.18 2 0.75% 10.129.102.0 2 0.75%

10.25.102.17 2 0.75% 205.188.226.248 1 0.37%

10.25.102.16 2 0.75% 10.25.102.0 2 0.75%

10.25.102.15 2 0.75% 10.129.102.9 2 0.75%

10.25.102.14 2 0.75% 10.129.102.8 2 0.75%

10.25.102.13 2 0.75% 10.129.102.7 2 0.75%

10.25.102.12 2 0.75% 10.129.102.6 2 0.75%

10.25.102.11 2 0.75% 10.129.102.5 2 0.75%

10.25.102.10 2 0.75% 10.129.102.4 2 0.75%

10.25.102.1 2 0.75%

Table 4.2: IP addresses participated in the first scenario as destinations

 82

4.3.3 Stages of the attack
It has been found in the trace file that the first packet indicates that

the IP identified earlier (10.129.211.13) carried out a DNS query to a

domain name (bbjj.househot.com) as shown in Table 4.3. This operation

looks absolutely normal and does not give any indication of a problem.

Although the communication seems legitimate, it has been found with

deeper analysis that the DNS server that was queried is one on the DNS

blacklist.

No. Time Source Destination Protocol length Info

1 0 10.129.211.13 10.129.56.6 DNS 77

Standard query
0x0006 A

bbjj.househot.co
m

Table 4.3: DNS Query

10.129.211.13 then received a reply (DNS response). The DNS

response received gives another indication of irregular behaviour as it

contains eleven IP addresses as shown in Table 4.4 while a normal DNS

response contains 5 IP addresses.

No. Time Source Destination Protocol Length Info

2 0.237997 10.129.56.6 10.129.211.13 DNS 399

Standard query
response 0x0006
CNAME
ypgw.wallloan.com
A 216.234.235.165
A 151.198.6.55 A
216.234.247.191 A
68.112.229.228 A
61.189.243.240 A
218.12.94.58 A
61.145.119.63 A
202.98.223.87 A
218.249.83.118 A
68.186.110.158 A
221.208.154.214

Table 4.4: DNS Response

The compromised host then tries to establish a connection with

some of the IP addresses returned in the DNS response. Those IPs

 83

responded by ICMP messages, as shown in table 4.5, to say that the

destination is unreachable.

No. Time Source Destination Protocol length info

3 0.239858 10.129.211.13 216.234.235.165 TCP 62

1047->18067
[SYN] Seq=0
Win=64240

Len=0
MSS=1460

SACK_PERM=1

4 0.240407 216.234.235.165 10.129.211.13 ICMP 70

Destination
unreachable

(Port
unreachable)

Table 4.5: Failure to Establish a Connection

It has been found that the compromised host sent another DNS

query targeting the canonical name (ypgw.wallloan.com) found in the

DNS response on the second packet. A DNS response is then returned

containing eleven IP addresses. The compromised host tried then to

establish a connection with one of the IP addresses returned and it

succeeded to establish a connection with 61.189.243.240 as shown in

table 4.6.

No. Time Source Destination Protocol length info

11 337.7635 10.129.211.13 61.189.243.240 TCP 62

1048->18067
[SYN] Seq=0
Win=64240

Len=0
MSS=1460

SACK_PERM=1

12 338.1601 61.189.243.240 10.129.211.13 TCP 62

18067->1048
[SYN, ACK]
Seq=0 Ack=1
Win=65535

Len=0
MSS=1460

SACK_PERM=1

13 338.1603 10.129.211.13 61.189.243.240 TCP 54

1048->18067
[ACK] Seq=1

Ack=1
Win=64240

Len=0

Table 4.6: Failure to Establish a Connection

 84

The compromised host then started to send packets to the targeted

host as shown in Table 4.7. By looking at the contents of the

conversations between the compromised and targeted hosts, it turned

out that it contains commands used by botnet as shown in table 4.8.

No. Time Source Destination Protocol length info

14 338.1604 10.129.211.13 61.189.243.240 TCP 67

1048->18067
[PSH, ACK]
Seq=1 Ack=1
Win=64240

Len=13

15 338.7196 61.189.243.240 10.129.211.13 TCP 60

18067->1048
[ACK] Seq=1

Ack=14
Win=65522

Len=0

16 338.7196 10.129.211.13 61.189.243.240 TCP 71

1048->18067
[PSH, ACK]

Seq=14 Ack=1
Win=64240

Len=17

17 339.1223 61.189.243.240 10.129.211.13 TCP 77

18067->1048
[PSH, ACK]

Seq=1 Ack=31
Win=65505

Len=23

18 339.1224 10.129.211.13 61.189.243.240 TCP 75

1048->18067
[PSH, ACK]

Seq=31 Ack=24
Win=64217

Len=21

19 339.6067 61.189.243.240 10.129.211.13 TCP 110

18067->1048
[PSH, ACK]

Seq=24 Ack=52
Win=65484

Len=56

20 339.6068 10.129.211.13 61.189.243.240 TCP 72

1048->18067
[PSH, ACK]

Seq=52 Ack=80
Win=64161

Len=18

21 340.0053 61.189.243.240 10.129.211.13 TCP 257

18067->1048
[PSH, ACK]

Seq=80 Ack=70
Win=65466

Len=203

Table 4.7: Communication between the compromised and

targeted host

 85

Packet

No.
Command

14 USeR l l l l

15

16 NiCK p8-00196671

17 :a7 001 p8-00196671 :

18 USeRHOST p8-00196671

19 :a7 302 p8-00196671 :p8-00196671=+l@010.129.211.13

20 JOiN #p8 ihodc9hi

21

:a7 332 p8-00196671 #p8 :!Q

gfcagihehehadkcpcpgigpgngfhegphhgocogbgpgmcogdgpgncphihihigmgpgm

hh hegggjgigbhihihihicphdgpgdglhddjgbcogkhagh :a7 333 p8-00196671 #p8

a 1134159047 :a7 366 p8-00196671 #p8 :

Table 4.8: Bot net commands used between the compromised

and targeted hosts

4.3.4 Summary of the Scenario
This scenario gives an example of how attackers can register

machines to its bot army. Figure 4.1 gives an overview of the sequence of

the attack. The figure shows that the attacker used the compromised host to

contact a bad DNS server. The DNS server returned an unusual DNS

response containing 11 IP addresses, while a normal response normally does

not return more than five IP addresses. The attacker used the compromised

host to scan IP addresses returned in the DNS query response and tried to

establish communication with them. After a successful 3-handshake with

one of the IP addresses returned in the response, the attacker sent packets

that contain commands used by the botnet.

 86

4.3.5 Analysis Outcome:
Some steps in this scenario could be considered to predict the

occurrence of the attack. Detecting a DNS query with a bad DNS server can

trigger an alert of malicious traffic. In addition, an irregular DNS response

can indicate unusual behaviour. Moreover, sending packets containing

commands used by botnet gives a strong indication that the traffic is

malicious.

Figure 4.1: Stages of scenario A

 87

4.4 Scenario B

4.4.1 Social Engineering
This scenario shows how social engineering can play a role in

constructing a multi-stage attack. Social Engineering is defined by Chitrey

(2012) in his comprehensive study of social engineering-based attacks as

follow:

“Social Engineering is the art of exploiting the weakest link of

information security systems: the people who are using them. Social

Engineering is a method of gathering information and performing attacks

against Information and Information Systems.”

In other words, it is the art of abusing human behaviour in order to

violate security without victims realising that they have been manipulated

(SANS, 2007). Another comment added by Mitnick in an interview with the

BBC News Online (2002) shows the role of social engineering in

constructing attacks:

“What I found personally to be true was that it's easier to

manipulate people rather than technology. Most of the time organisations

overlook that human element.”

4.4.2 Operation Shady Rat Attack
One of the multi-stage attacks that is social engineering-based is

Operation Shady Rat. This attack was categorized by MacAfee (2011) as an

advanced persistent threat. In addition, they describe it as one of the largest

series of cyber-attacks ever. This attack started in 2006 and was reported in

2011 as hitting more than 72 large organisations, including twenty two

government organisations, thirteen defence contractors, ten technology and

electronic firms, eight policy influencers, and five 2008 Olympics related

organisations (Talglobal, 2011). The next section will show how this attack

can target an organisation.

 88

An Operation Shady Rat attack involves five steps. In the first step,

attackers select one or more organisations, then email individuals who work

at those organisations. The emails sent contain information that attracts

those individuals. Those emails also contain attached files that are relevant

to the email body. Those files appear to recipients as normal files such as

Word, Excel, or pdf files, but they are loaded with malicious code. For

example, employees in a marketing company have a high interest in getting

new contacts. Therefore, attackers may target this group by sending an

email attached with an Excel file containing a contacts list.

In the second stage, recipients download the attached files, then open

them. At the point of opening the file, the malware is installed on the

victim’s computer, thus compromising their computer.

 In the third stage, the installed malicious program tries to establish a

connection with a remote site specified in the code. The remote site URL

does not look suspicious and it looks like a link to an image or normal html

file, but the returned contents from that URL contains some information

used by the malicious code. That information cannot be seen as being

suspicious content, as it appears as a part of the html content. In addition,

that information may be encoded or encrypted, so it will be difficult to

analyse. For example, html comments can be used to embed the information

that malware uses inside the html content. The comments are visible to end

users, look absolutely legitimate, and cannot be seen as any kind of threat.

The html comments may contain an IP address of a remote server or a

command encoded in an encrypted or encoded format as shown in figure

4.2.

 89

Figure 4.2: Example of HTML comments used embedded in HTML to

be used by Malware

In the fourth stage, the installed malicious code establishes a connection

with the IP address obtained in the third stage. In the fifth stage, attackers at

the remote site establish a remote shell and run shell commands targeting

the compromised machine. Attackers at this point can upload or download

from the compromised side. Figure 4.3 shows the sequence of this scenario.

<!-- {5e1468jhsaa3q} -->

<!-- {8wfd2f7il2xfh} -->

<!-- {yaqwehd761mnb} -->

<!-- {yaqwehd761mnb} -->

<!-- {UGw^ddd,wddaa} -->

<!-- {z2x^4r2,aqwrd} -->

<!-- {saw^dwa,1jssa} -->

 90

Figure 4.3: Stages of scenario B

4.4.3 Analysis Outcome
All steps of this scenario look legitimate and not suspicious. The only

thing that can be checked, that may give an indication about suspicious

traffic between the malicious code and other servers, are the reputations of

the servers. There are some web services available and updated on a daily

 91

basis, that provide reputation and more information about servers involved

by passing URLs or IP addresses. Based on an evaluation obtained from

those web services, the system can raise an alert of potential attacks.

4.5 Scenario C

4.5.1 CRLF Injection
The CRLF (Carriage Return and Line Feed) injection, which is also

known as HTTP Response splitting, is an attack that can be easily

constructed. However, it is an extremely destructive web attack. Attackers

construct this kind of attack by exploiting vulnerable web applications that

may allow also other types of vulnerabilities, such as cross site scripting and

cross site forgery. The CRLF injection is carried out by injecting a very

significant sequence of characters into web requests. This sequence contains

two special characters representing EOL (End of line), which is used as a

marker for many protocols, including such as HTTP and NNTP. In web

applications, headers are split-based on the position of CRLF in requests.

Malicious users inject their own CRLF sequence into an HTTP request. In

the absence of filtering malicious inputs, malicious users will be able to

control the functionalities of a web application function. In the next section,

two examples of CRLF injection will be discussed showing how CRLF

injections can be employed by attackers to construct multi-stage attacks

(Hall, 2011).

4.5.2 Scenario C.1
This scenario is based on exploiting an insecure web application.

This insecure web application can give a chance for attackers to get access

to machines. The scenario shows how attackers exploit a vulnerable PHP

web application to make a CRLF injection. The first step in this attack is

carrying out a web vulnerability scan on a web server. This scan gives an

attacker information about PHP configurations and different URLs,

 92

including POST and GET parameters sent with them. The attacker then uses

that information to send an email to a victim containing a CRLF-

manipulated link. This link looks legitimate, but it contains parameters set to

values that makes a vulnerable web application open a different URL rather

than the specified URL in the code, as shown below:

Figure 4.4: CRLF Injection on a PHP script

The injected URL may point to a file that runs on the victim’s

machine to push a remote shell for the attacker. The attacker proceeds by

getting access to the web server, then downloads files or scans the network

to find information they are interested in, or find targets they want to

destroy. Figure 4.5 shows the different steps that occur during this attack.

Consider the PHP script below is saved as getfile.php:

<?php

$folder = $_GET[‘folder’];

$file = $_GET[‘file’];

passthru("http://www.sitea.com/api?folder=$folder&file=$file");
?>

If an attacker tries to send send an email containing a link similar to:
getfile.php?folder=visby&file=gotland%20HTTP/1.0%0D%0AHost%3A%20www.
siteb.com%0D%0AUser-Agent%3A%20Ulf/0.0%0D%0AReferer%3A%20http%3A%2F
%2Fwww.gnuheter.org%2F%0D%0ACookie%3A%20user%3Dulf%0D%0A%0D%0A
(should be on one line)
This HTTP query will be sent to www.site1.st:
GET /api?folder=visby&file=gotland HTTP/1.0
Host: www.siteb.com
User-Agent: Ulf/0.0
Referer: http://www.gnuheter.org/
Cookie: user=ulf

HTTP/1.0
Host: www.sitea.com
User-Agent: PHP/4.1.2

As you can see, the real headers from PHP are sent as well, but the web server ignores
them, as we send two CRLFs before them to indicate that the headers are over.

 93

Figure 4.5: Stages of scenario C.1

4.5.3 Scenario C.2
This scenario is similar to the above; the difference in this scenario

is that attackers injects html contents that will be displayed to the victim as

follows:

 94

http://www.site1.com/login.php?param1=%0d%0aContent-Type:

text/html%0d%0aHTTP/1.1200OK%0d%0aContent-Type:

text/html%0d%0a%0d%0a%3Chtml%3ELoginContent%3C/html%3E

When a victim receives an email that contains a manipulated link

similar to the one above, a login page will be displayed similar to the one

displayed on the original website. The victim may at this point enter their

login details that will be sent later to attackers, rather than the host server.

Attackers then use the login details to steal valuable information.

4.5.4 Analysis Outcome
This type of attack can be predicted or stopped at different points.

The first point is checking parameters sent with web requests coming to the

web server, whether it can cause CRLF injections or not. In addition to that,

outgoing requests from the web server can be checked to see whether they

go to trusted destinations or not.

4.6 Scenario D

4.6.1 Vulnerable FTP Service
File transfer protocol (FTP) is widely and commonly used by many

organisations, to transfer files over the internet, due to its simplicity.

However, there are some design decisions in that protocol that can be

exploited by a malicious user (Lindfors, Peuhkuri, 1999). The next section

gives an example of how an attacker can obtain unauthorised access through

a vulnerable FTP service.

4.6.2 Scenario Description
This scenario shows how a malicious user attempts to obtain

unauthorised access on an account on a local machine, which is part of a

corporate network holding a server connected to the internet. That server

runs a web service and a vulnerable FTP service. The first step the attacker

 95

carries out is performing a port scan on externally visible IP addresses,

using an Nmap security scanning tool. The aim of that scan is finding an

open port in the targeted network. Figure 4.6 shows how the Nmap tool is

used to find an open port.

Figure 4.6: Using Nmap tool to find an open port (Pentration Testing

Lab, 2012)

The attacker then tries to find a valid user name and password

through a tool, such as THC Hydara or metasploit. Figure 4.7 shows how

metasploit can be used to find a valid username and password for the

vulnerable FTP service.

 96

Figure 4.7: Using the metasploit tool to find a valid ftp login (Pentration

Testing Lab, 2012)

The attacker gets access to the FTP server, using the login obtained

in the previous step, then downloads or deletes files in that server. That

scenario occurred in a large Dutch hospital, the Groene Hart Ziekenhuis, as

reported by Spadaro (2013). It was found that the medical records of at least

50 patients were illegally accessed. Figure 4.8 shows the steps that attack

goes through.

 97

Figure 4.8: Stages of scenario D

4.6.3 Analysis Outcome
This attack can be predicted or stopped at the scanning point; a block

scan from unauthorised IP addresses is needed. It can also be stopped when

detecting upload/download from IP addresses with a low reputation.

4.7 Conclusion

In conclusion, it has been found that predicting or detecting multi-stage

attacks is difficult to achieve through signature based solutions. Four

different multi-stage attack scenarios have been analysed to understand the

behaviour of multi-stage attacks. In the first scenario, a DNS query to a

black-listed domain name gave a strong indication about malicious

behaviour. The second scenario shows the sequence of Shady Rat

Operation. The third scenario shows how attackers can exploit vulnerable

web applications to construct an attack based on CRLF injections that is

also known as header splitting. The last scenario shows how an attacker

exploited a vulnerable FTP service to attack the network connected to that

 98

service. It has been found that each stage in those scenarios looks like

normal traffic, and does not violate any rule. It has also found that

predicting those attacks may be achieved by carrying out a reputation check

of IP addresses found in incoming and outgoing traffic. The next chapter

will discuss the proposed solution to predict multi-stage attacks based on an

IP reputation check.

 99

CHAPTER 5

MULTI STAGE ATTACKS PREDICTION

5.1 Introduction

In the previous chapter, different multi-stage attack scenarios were

discussed and analysed. It was found that each step in those scenarios

tended to look innocent and was therefore difficult to capture as illegal

traffic. Different solutions have been introduced to detect multi-stage

attacks, some of those being event correlation-based. Event correlation-

based solutions try to match network events with certain attack patterns.

When a stream of network events matches a certain pattern, attacks can be

stopped before progressing to the next stages. Many researchers claim the

effectiveness of that approach in detecting multi- stage attacks. In a study by

Spadaro (2013), an investigation was conducted to find out the relation

between incidents and events that were monitored within today’s IT

infrastructures of large organisations. Another study was by Chen et al.

(2006), who built a module called active event correlation on top of the bro

network intrusion detection systems (NIDS).

 100

Although being effective, this approach requires having up-to-date

multi-stage attack patterns, which is not easy to achieve in a very short time,

as discovering new complex attacks normally takes some time. The Shady

Rat Operation attack is a good example of that; it started in 2006 but was

only discovered in 2011.Thus, it has been decided to follow a different

approach in this research, rather than network events correlation when

proposing a solution for predicting multi-stage attacks. The following

approach is based on evaluating the reputation of IP addresses participating

in network traffic. Based on the evaluation, it can be decided whether we

need to stop the traffic with evaluated IP addresses to block potential

attacks. This chapter goes through the proposed solution that follows the

latter approach; it consists of five sections. The first one gives an overview

of the proposed solution, showing the different modules and flow of data.

The second section discusses the first component in the solution, which is

the network sniffer. The third section explains how the second component

works to get information about IP addresses. The fourth section goes

through the last module that is fuzzy logic-based. The fifth section shows

how message brokers can be used to improve the performance of the

proposed solution. The last section concludes this chapter.

5.2 An overview of the proposed solution

As mentioned in the previous section, the proposed solution is based on

evaluating the reputation of IP addresses participating in the captured

network traffic. The solution consists mainly of three modules as shown in

figure 5.1. The first module (Network Sniffer) is responsible for monitoring

network traffic by reading incoming and outgoing traffic. This module

extracts IP addresses found in network packets; it reads then passes them to

the next module (IP info finder). The IP info finder is responsible for

finding information related to the IP addresses. The information obtained by

the second module includes IP geographic information and other

information that shows whether the IP addresses to be checked are

 101

malicious. The last module in the proposed solution is fuzzy logic-based;

fuzzy logic has been chosen rather than other data mining techniques, due to

its effectiveness in dealing with uncertainty problems. It receives

information obtained by the IP info finder to be processed through it. The

output of this module will be in the form of a probability of having

malicious network traffic. Based on the produced output from the fuzzy

logic module, action will be taken. The action can be in the form of an email

to administrators, or updating the firewall rules, to blocking communication

with the discovered malicious IP addresses.

Figure 5.1: An overview of the proposed solution to detect multi-

stage attacks

5.3 Network Sniffing Module

5.3.1 Choosing a sniffing tool
The network sniffing module is responsible for monitoring the network

traffic. In other words, it captures incoming and outgoing network traffic.

There are many available sniffing tools that can do this job, and these tools

can be either hardware or software. Three parameters have been considered

when choosing a sniffing tool for the solution proposed in this study. The

 102

first one is the portability; it is necessary to use a sniffing tool that works

with different operating systems (e.g. windows, UNIX). The second

parameter to be considered is the simplicity to integrate into the solution; it

will be difficult to integrate a sniffing tool into the solution, if it is a

command line or provides APIs. The third parameter is the simplicity in

obtaining information from the captured data.

Considering those parameters when looking at snoop, it was found that it

bundled on the Solaris operating system. However, there is a Linux and

Windows versions of this tool. Snoop is also a command line interface. The

main disadvantage of this tool is that it lacks the capability to reassemble IP

fragments, as reported by So-In (2006). In addition, this tool produces the

output in a text format and does not provide a graphical interface, that can

help in conducting further network traffic analysis.

Another tool looked at is Microsoft Network Monitor; it is bundled with

Microsoft Windows and it runs only on Windows NT Server 4.0,

Windows 2000 Server, or Windows Server 2003 and does not have a

distribution on any other operating system. It has a simple and friendly

graphical interface and cannot be used through a command line interface.

However, all functionalities provided through the graphical interface can be

used through Network Monitor API.

The last tool looked at is TCPDUMP; it is mainly bundled with Linux

but available for many operating systems such as Solaris and Mac Os X. It

is also available for Windows as Windump. This tool is a command line tool

and does not have a graphical interface. However, there is other software

developed to present the output of this tool in a graphical format, such as

wireshark.

Looking at table 5.1, that gives a comparative overview for the tools

mentioned above, and based on the three parameters mentioned earlier, it

was found that the TCPDUMP is the most suitable tool for monitoring

network traffic in the proposed solution.

 103

TCPDUMP will be used to read network traffic packet by packet,

then extract IP addresses from the captured infomation. This can be

achieved by using the following TCPDUMP command:

TCPDUMP -i <Network interface index> -c 1 –n

Three options have been used with the command; the first one (-i

<Network interface index>) to specify the index of the network interface

that will be monitored. The second one (-c 1) to specify the number of

packets to be captured, in this case we specified this as one. The last option

(-n) is used to show IP addresses of source and destination. The command

can be modified to run in different operating systems, such as Windows, by

modifying the call to the sniffing tool as follows:

pathtowindumpfolder/windump -i 2 -c 1 –n

Tool Portability
Simplicity to

integrate
Simplicity to obtain info

Snoop

Has distributions over

many operating

systems

 A command line

interface so it is

easy to integrate

Does not have a graphical

representation.

Microsoft

Network

Monitor

Runs only on

Windows

Provides an API to

simplify the

integration

Has a simple graphical

interface

TCPDUMP

Has distributions over

many operating

systems

A command line

interface so it is

easy to integrate

Can be used with software

such as wireshark to obtain a

graphical representation

Table 5.1: A comparative overview over different sniffing tools

 Figure 5.2 shows what the output of the command looks like. The

output shows that the source IP address is 192.168.0.2, while the destination

IP address is 216.58.210.5.

 104

Figure 5.2: The output of the TCPDUMP command

The network sniffing module has been implemented, using a php

script. The php script consists of an infinity loop. In each loop, the

TCPDUMP command described above is executed then its output is parsed

to extract IP addresses. The IP address is then passed to the next module (IP

info finder). Figure 5.3 shows the implementation of the network sniffing

module in PHP.

Figure 5.3: The flow chart of the network sniffing module

TCPDUMP: listening on \Device\NPF_{F99E0F0C-CD4F-4139-AEAB-1A6B340FBE25}

20:30:26.810488 IP 192.168.0.2.62350 > 216.58.210.5.443: UDP, length 24

 105

5.4 IP Information Finder Module

5.4.1 IP geographic Location
This module is responsible for finding information about IP

addresses passed by the first module. The information gathered about those

IP addresses will give a strong indication whether they can be source of

malicious traffic or not. One element of the information being gathered is

the IP geographic location. It was reported by Musthaler (2014) that 84% of

malicious traffic in a recent quarter originated from ten countries. She also

added that the attacker does not need to be in the country where the traffic

has originated. In other words, they run their packets through compromised

machines in those countries. Attackers direct traffic through open proxies in

order to increase their threats. The traffic will appear as coming from many

sources. That will give attackers the opportunity to overcome the problem of

blocked traffic from a certain country, by directing traffic through a

different country. It may be thought that the solution is to block traffic from

countries with a high percentage of malicious traffic but this is not practical,

as there may be legal traffic from these countries. Therefore, it has been

decided not to consider all traffic coming from a black-listed country as

malicious. However, geographic location will be considered as one of the

parameters when evaluating IP addresses in the next module.

The proposed solution needs to know the countries black-listed by

administrators, in order to identify whether the IP geographic location is

suspicious or not. Thus, a simple user interface was developed (see Figure

5.4) to enable administrators to specify those countries; this list will be

stored in a database.

 106

Figure 5.4: Black-Listed Countries Selection

The IP geographic location can be obtained by storing IP geographic

information in a database, then checking the IP address against it to find its

location. Another way to achieve this information is through one of the

available web services (API). The main disadvantage of this first solution is

the need to regularly update. On the other hand, there are many web services

regularly updated and, therefore, it was decided to go with the second

option. Neutrinoapi is one of those web services that provides a method (IP-

info) for getting the IP geographic location. Table 5.2 shows the API request

structure, while table 5.3 shows the API response.

Parameter Required Type Default Description
Ip Yes String IPv4 address

reverse-lookup No Boolean FALSE

Do reverse DNS (PTR)
lookup. This option can add
extra delay to the request so

only use it if you need it

Table 5.2: API Request for Finding IP geographic location

(Neutrino API, 2013)

 107

Parameter Type Description

Valid Boolean Is this a valid IP address

Country String Full country name

country-code String ISO 2-letter country code

City String Full city name (if detectable)

Region String Full region name (if detectable)

Longitude Float Location longitude

Latitude Float Location latitude

Hostname String IP hostname (if reverse-lookup
has been used)

Table 5.3: API Response for Finding IP geographic location (Neutrino

API, 2013)

5.4.2 IP Block List
As mentioned earlier, IP geographic location is not the only criterion

that can be used to judge whether IP addresses may be a source of malicious

traffic. Thus, it is required to check other criteria in conjunction with the IP

geographic location. One of those criteria is whether the IP address is on a

block list or not. IP addresses that are on a block list can be spyware,

hijacked, spam-bot, exploit-bot, bot, or flagged in Dshield. If one of those

criteria is met, a flag of possible suspicious activity needs to be raised.

It will also be beneficial to check other criteria such as being an

anonymous web proxy, or exit tor node; meeting only one of those criteria

will not necessarily sound the alarm for potential suspicious activity.

Neutrinoapi web services provide another method (IP-block list) to get

information about those criteria for a specific IP address. Table 5.4 and 5.5

shows the API request and response structure for this method.

 108

Table 5.4: API Request to check whether IP is block listed (Neutrino

API, 2013)

Parameter Type Description
is-listed boolean Is this IP on a blocklist

list-count integer The number of blocklists the IP is listed on

is-proxy boolean IP has been detected as an anonymous web
proxy

is-tor boolean IP is coming from a TOR exit node

is-vpn boolean IP has been detected as coming from a VPN
hosting provider

is-spyware boolean IP is being used for spyware, malware, botnets
or other malicious activities

is-dshield boolean IP has been flagged on DShield (dshield.org)

is-hijacked Boolean IP is listed as being stolen or hijacked from the
rightful address owner

is-spider boolean IP is a web spider or crawler (legitimate or
otherwise)

is-bot boolean IP is hosting a malicious bot or is part of a
botnet

is-spam-bot boolean IP address is hosting a spam bot, comment
spamming or other spamming software

is-exploit-bot boolean IP is hosting an exploit finding bot or exploit
scanning software

Table 5.5: API Response check whether IP is block listed

(Neutrino API, 2013)

Parameter Required Type Default Description

Ip Yes string An IPv4 address

 109

5.4.3 IP Rating
In addition to checking whether the IP is on a block list or not,

Neutrinoapi web services provides another method (host-reputation) that

checks the IP rating in Domain Name System Block Lists (DNSBL). In

other words, this method checks the host’s reputation. Table 5.6 and 5.7

shows the API request and response structure for this method.

Parameter Required Type Default Description

Host Yes string

 An IPv4 address or a domain
name.
If you supply a domain name it
will be checked against the URI
DNSBL list

Table 5.6: API Request for Finding IP rating (Neutrino API, 2013)

Parameter Type Description
is-listed Boolean Is this host blacklisted

list-count Integer The number of DNSBL's the host is listed
on

Lists Array

An array of objects for each DNSBL
checked, with the following keys:

is-listed - true if listed, false if not

list-name - the name of the DNSBL
list-host - the domain/hostname of the

DNSBL
list-rating - the list rating [1-3] with 1
being the best rating and 3 the lowest

rating
txt-record - the TXT record returned for

this listing (if listed)

Table 5.7: API Response for Finding IP rating (Neutrino API, 2013)

5.4.4 Implementation
This module has been implemented using a PHP script; the script

curl library to make the required API calls (See Appendix F). The

 110

information obtained from the API calls will then be passed onto the next

module. Figure 5.5 shows the flow chart of this module.

Figure 5.5: The flow chart of the IP info finder module

 111

5.5 The reasoning module

5.5.1 Data Mining Technique Selection
The reasoning module is responsible for deciding whether there is

possible malicious traffic from an IP address, based on data collected from

the previous module. Analysing the collected data to give a decision can be

achieved through one of the data mining techniques. It was decided to use

the fuzzy logic in this module based on many reasons. The first one is that

analysing the collected data can be simply modelled using the “if then"

rules form, which is supported by fuzzy logic. In addition to this, there are

some scenarios where there is no certainty for deciding whether an IP

address is malicious or not. The fuzzy logic is suitable for those ambiguous

scenarios (Albertos et al. 2008). Moreover, constructing the fuzzy rules for

this system will not take much effort and time compared to machine

learning algorithms. Machine learning algorithms require large data sets for

training to obtain accurate results. In addition, the training time with a large

data set is very time consuming. Another parameter to be considered in the

choice of fuzzy logic is its simplicity to adapt to changes occurring in the

reasoning model, as it requires only modification of the fuzzy rules. On the

other hand, machine learning algorithm models need to be trained in that

case. Pulo (1999), in his investigation about fuzzy logic and machine

learning algorithms, supported the choice of using fuzzy logic rather than

machine learning algorithms in such circumstances saying:

“Humans perform much better when they are able to interpret and

gain meaning, understanding and information from the training data.

This is when they can generalize best and draw the best conclusions. ML

algorithms, however, have no such requirement, and can apply techniques

such as decision trees and Bayesian inference to obtain results

approaching the probabilistic optimum without any need to comprehend

anything”

 112

5.5.2 Pre-processing the inputs
The reasoning module receives its inputs from the IP info finder

module; these inputs are shown in table 5.8.

Input name Description

IP Geographic Location Specifies which country the IP is based at

Is IP in a block list Specfies whether the IP is found in a block
list or not

Is IP an anynomous proxy Specifies whether the IP is an anynomous
proxy or not

Is IP a TOR exit node Specifies whether the IP is a TOR exit node

IP Rating An array that shows the IP rating on
different DNSBL

Table 5.8: The reasoning module inputs

Some of the inputs described in the above table need to be pre-

processed before applying them to the fuzzy logic as they are not in a format

that can be handled by it. Table 5.9 shows how the inputs will be pre-

processed.

Input name Pre-processing rule

IP Geographic Location

The country name will be checked against the
black listed country specified by the

administrator. If it is found in that list, the
value will be set to one. Otherwise, it will be
set to zero. The input will be renamed to ‘is

IP in a black listed country’

Is IP in a block list Does not need processing as it is a boolean
value

Is IP an anynomous proxy Does not need processing as it is a boolean
value

Is IP a TOR exit node Does not need processing as it is a boolean
value

IP Rating
The average IP rating will be calculated. If
the IP address is not found in any DNSBL,

the value will be set to 3.

Table 5.9: Pre-processing the reasoning module inputs

 113

5.5.3 Fuzzy logic
As described in chapter three, the fuzzy logic system consists of four

elements; fuzzifier, rule base, defuzzifier and inference engine. These

components, as shown in figure 5.6, interact with each other in order to

produce an output. The following sections will discuss how each element

will be used and configured in the reasoning module.

Figure 5.6: A fuzzy logic elements

The fuzzifier is responsible for converting the crisp inputs to fuzzy

sets by using specified membership functions for each input. It was found

that four inputs (is IP in black- listed country, is IP an anonymous proxy, is

IP Tor Exit, and IP block listed) are Boolean, which can be handled by a

singleton function. The membership function selected for each of these

inputs, as shown in figure 5.7, is only set to one at a single value. On the

other hand, the membership function selected for IP rating is specified using

triangle functions, as shown in figure 5.8. The figure shows that IP

reputation can be described as high or low in the selected membership

function.

 114

Figure 5.7: The membership function selected for the inputs

having Boolean values

Figure 5.8: The selected membership function for IP reputation

Rule base is the part that contains the logic of producing the output.

It contains a number of (if …. then) rules that will be used by the

interference engine to produce a fuzzy output. Table 5.10 shows the rules

used in the reasoning module to predict malicious traffic.

0

0.2

0.4

0.6

0.8

1

1.2

1

 115

If condition Then ststement

(IP in a block list) Possible malicious traffic

(IP country in a black list) AND (IP is an
anynomous proxy) Possible malicious traffic

(IP country in a black list) AND (IP is a
TOR exit node) Possible malicious traffic

(IP Rating is low) Possible malicious traffic

Table 5.10: If then rules used in the reasoning module

The first rule is straightforward, the IP will be considered as a

malicious one if the IP address is found in a block list. Finding an IP in a

block list means that the IP address has been reported to be used in

malicious activities. The second and third rules check two parameters. One

of them is whether IP is in the black listed countries or not. It is not practical

to consider an IP as a malicious one if it is only located in one of the

countries found in the black list as there may be legal traffic from those

countries. Anonymous proxies and tor are used in a way that enable users to

protect access the web anonymously. Attacker normally do not need to be in

the listed countries, they direct their traffic through a proxy or tor located in

one of those countries. Therefore, getting a traffic from anonymous proxies

or tor exit nodes located in those countries raise an alert of potential

malicious traffic. The last rule checks the average IP rating (the host

reputation). The IP address will be considered malicious if the average

rating is low.

The defuzzifier is responsible for converting the fuzzy output to a

crisp value using a selected membership function for the output. Figure 5.9

shows the selected membership function for the output. The produced

output gives the probability of having malicious traffic from the checked IP

address. The final output will be considered as malicious if it is higher than

0.5, otherwise it will be considered as a normal.

 116

Figure 5.9: The selected membership function for the output

The inference engine can be considered as the heart of reasoning, as

it is responsible for mapping given inputs to a fuzzy output, using the

specified rules. The inference engine used in this module is mamdani, which

is commonly used in fuzzy logic system and successfully applied in

classification problems (Mathworks, 2015).

5.5.4 Implementation
 The reasoning module has been implemented using PHP and

MySQL. Figure 5.10 shows the flow chart of the reasoning module.

 117

Figure 5.10: The flow chart of the reasoning module

 118

5.5.5 Using Message Broker
It was found that evaluating each incoming or outgoing packet will

take a certain time, as it involves sending API requests in addition to the

processing time in the reasoning module. During that time, the system may

send or receive many network packets that the proposed system may miss

processing. Therefore, it is essential to modify the proposed system in a way

that allows it to process all messages. One of the solutions that can solve

this problem is to use a message broker between the network sniffing and IP

info finder modules. The network sniffing module will act as a message

producer that sends messages containing IP addresses to be checked; it will

send a message once a network packet is received or sent, without the need

to wait for other modules to finish their tasks. The messages sent by the

network sniffing module will stay in a queue until one of the consumers can

receive them for processing. The IP info finder will act as a consumer in

this case. Figure 5.11 shows what the proposed solution will look like after

using a message broker. The implementation of the network sniffing and IP

info finder info will be slightly changed by using RabbitMQ library.

RabbitMQ is one of message brokers widely used, and simple to use.

Figure 5.12 shows how the flow chart of the network sniffing module after

adding the message broker, while figure 5.13 shows the flow chart of IP info

finder module as a consumer.

Figure 5.11: The modified version of the proposed solution after adding

a message broker

 119

Figure 5.12: Network sniffing module when using message broker

 120

Figure 5.13: The flow chart of the IP information module when using

message brokers

 121

5.6 Summary

 In conclusion, many researchers use the event correlation approach,

but the downside of this approach is the need to keep the attack sequence

patterns up-to-date, in order to detect multi-stage attacks. Thus, another

approach was applied in this study, to predict multi-stage attacks. This

approach depends on checking the IP addresses involved in network traffic.

The proposed solution for using this approach consists of three modules.

The first one (network sniffing) is responsible for reading network traffic,

then extracting IP addresses from the packets. This module has been

implemented by using the TCPDUMP tool. The second module (IP

information finder) is responsible for getting information about IP addresses

extracted at the initial stage. The information is checked by the second

module, including the IP geographic location, and checking whether the IP

is on a block list, whether the IP is an anonymous proxy, or a TOR exit

node, and checking the IP rating in DNSBL. The last module (reasoning) is

responsible for deciding whether IP addresses may be a source of malicious

traffic or not, based on information passed from the second module. The

outputs of the second module need to be pre-processed before processing

them. The reasoning module was implemented using fuzzy logic. The

reason for choosing the fuzzy logic rather than any of the machine learning

algorithms is the nature of the problem; it can be simply solved using “if…

then” rules. In addition, it requires less time and effort to adapt to changes in

the reasoning logic compared to machine learning algorithms. Machine

learning algorithms require large sets of training data to get accurate results

and that consumes a lot of time in the training phase. One of the issues

found in the proposed system is the high chance of missing some network

packet, due to the time spent in obtaining the IP information and then

processing in the reasoning module. This issue has been dealt with by using

a message broker; the network sniffing module will queue IP addresses

extracted from network packets, rather than passing them directly to the IP

info module, and there is no need to wait for IP info finder and the

 122

reasoning module to complete their job. The IP info module will then

consume messages in the queue.

 123

CHAPTER 6

EVALUATION

6.1 Introduction

In the previous chapter, the proposed solution for predicting multi

stage attacks was discussed showing their different modules. This chapter

evaluates the effectiveness of the proposed solution. The evaluation is

divided into two stages. The first one is measuring the effectiveness of the

solution by following a metrics based approach. This approach was

introduced by Fink, et al. (2002). The approach looks at intrusion detection

systems from different perspective; it includes logistics, architectural, and

performance metrics. The logistic metrics allocates a score according to the

perceived merit in each category in terms of maintainability, manageability,

and dependency. The design metrics is used to find how well the system

performs in terms of resources consumption and speed. The last metrics

used in this approach is the confusion metrics (performance metrics), this

metrics finds how well the system does its job (detecting multi stage

attacks) in form of true positive, true negative, false positive, and false

negative.

The second section of this chapter discusses the logistics metrics, the

metrics includes evaluating distributed management, ease of configuration,

ease of policy management, outsource solutions, and platform requirements.

The third section looks at the design metrics that includes adjustable

sensitivity, data storage, multi sensor support, firewall interaction, packet

 124

loss, and system throughput. Each category in the logistic and design

metrics will have a score between one and three (one is the lowest and three

is the highest) based on number advantages and disadvantages For example,

consider evaluating the system throughput. The system will score one If it

has a low throughput while it will score two if it has a high throughput but

with consuming a lot of hardware resources. On the other hand, the system

will score three if it has a high throughput without consuming a lot of

hardware resources. The fourth section provides a performance evaluation

for the system in form of a confusion metrics. The last section gives a

conclusion for this chapter.

6.2 Logistics Evaluation

6.2.1 Distributed Management
 The distributed management for intrusion detection systems was

described by Einwechter (2001) as:

“Multiple Intrusion Detection Systems (IDS) over a large network,

all of which communicate with each other, or with a central server that

facilitates advanced network monitoring, incident analysis, and instant

attack data. By having these co-operative agents distributed across a

network, incident analysts, network operations, and security personnel are

able to get a broader view of what is occurring on their network as a

whole.”

By looking at the proposed solution, it has been found that it can

support distributed management by having several network sniffing

modules over a large network. The sniffing module will then queue

messages that will be consumed by the IP info module that will then feed

the reasoning module. Figure 6.1 shows the architecture of the solution

when having a distributed management over a network. In this architecture,

the centralized server will run both the IP information finder and reasoning

 125

modules. The downside of supporting this structure is creating a bottle nick

around the IP info and reasoning modules and slowing the process of

detecting multi stage attack overall.

Figure 6.1: Distributed Management Architecture

6.2.2 Ease of Configuration
Ease of configuration means how easy to install and configure the

system (Fink et al., 2002). In this context, the proposed system will be

assessed in terms of how easy to install and configure its components. The

system requires installing APACHE, PHP, MYSQL, TCPDUMP, and

AMQP. The first four components are easy to install and configure. For

example, installing APACHE on Linux environment requires running only a

single command. Moreover, in platforms like windows APACHE, MYSQL,

and PHP come in one package which simplifies the installation process. On

the other hand, installing and configuring AMQP is not as simple as others

components and passes through many steps to get running. Another point is

considered as a disadvantage in this context is that configuring the

components of the system is not centralized through one interface and a

prior knowledge for each component is required in order to configure them.

 126

6.2.3 Ease of Policy Management
Fink et al. (2002) describe measuring ease of policy management in

their metrics approach as how easy to update, create, and manage detection

rules. By looking at the proposed system, it has been found that detection

rules are defined through the fuzzy rules. Updating or adding fuzzy rules is

very simple and do not require changing the other reasoning module

components. That advantage of the fuzzy logic was discussed in the

previous chapter and it is one of the reasons of choosing it rather than any of

machine learning techniques. However, this advantage does exist as long as

there are no new inputs to be considered in deducing the output. It may be

discovered later that there are more IP data (new inputs) indicates whether

IP addresses are malicious or not. In addition to changing fuzzy rules,

adding more inputs requires adding more membership functions to the

fuzzifier.

6.2.4 Outsource Solutions
Measuring the level of dependency on external systems to run required

services is one of parameters required to be highly considered when

assessing a system. It has been found that the IP information module is

highly dependent on an external system as it uses web services to get

information about IP addresses. Although using web services to find IP

information has the advantage of getting up to date information, it is

considered at the same time as a disadvantage. Potts and Kopack (2003)

listed the availability as one of web services pitfalls saying:

“Everyone who uses the Internet knows that no site is 100%

available. It follows that Web services, which use the same infrastructure

as Web sites, will not be 100% available either. Even if the server is up

and running, your ISP might not be, or the ISP hosting the other side of

the transaction might not be either.”

They also mentioned that immutable interface is another issue with

using web services as request and response structure may be changed in a

 127

way that can break the IP information finder. Having the IP information

finder in a faulty status means that the reasoning module will not be able to

classify IP addresses as no inputs are provided by the IP information module

in this case. As a result, malicious traffic may pass through the system

without raising any alarm.

6.2.5 Platform Requirements
The system resources required to run the proposed system is another

parameter needs to be looked at. The system requires APACHE, MYSQL,

PHP, TCPDUMP and AMQP. All of those have distributions over different

operating systems (MAC, Windows, Linux) which gives the system the

flexibility to run on different platforms. In addition, all of those components

are free. By looking at the hardware requirements, it has been found that

there are no specific hardware requirements and it depends on traffic

volume. For example, memory resources required for buffering messages in

AMQP are specified based on traffic volume.

6.2.6 Conclusion
Table 6.1 shows the score for each item in the logistic assessment. The

score for the distributed management item is two as the system supports it

but with some potential issues in the buffering area. The score for of ease of

configuration and policy management is two, many components can be

easily installed but the configurations is not centralized on one user interface

and scattered over different areas. The score for ease of policy management

is also two as detection rules can be easily changed but using the same

inputs. The score for outsource solution is poor (one) as the system has been

found massively dependant on using web services. The score for platform

requirements are three as the system supports running on different platform

and its hardware requirements are dependent on network volume traffic.

 128

Item Score

Distributed Management 2

Ease of configuration 2

Ease of policy management 2

Outsource Solutions 1

Platform Requirements 3

Table 6.1: Logistic Metrics

6.3 Design Metrics

6.3.1 Adjustable sensitivity
This parameter was defined by Fink, et al. (2002) as follow:

“Ability to change the sensitivity of the IDS to compensate for high

false positive or false negative ratios.”

By looking at the system, it has been found that the sensitivity of the

system can be changed by modifying the fuzzy rules which define how to

find suspicious IP addresses. Modifying the fuzzy rules using the same

inputs specified in the previous chapter does not require a prior knowledge

from the user, they are simple and human readable if then rules. In addition

to the ability of modifying the fuzzy rules, the threshold value selected for

the reasoning module output can play a role in adjusting the sensitivity of

the system. Moreover, changing the black listed countries can have an

impact in this area. The main disadvantage is the difficulty to consider new

inputs in modifying the fuzzy rules to adjust the sensitivity. This requires

adding membership functions to the fuzzifier which requires a prior

knowledge of the fuzzy logic from the user.

 129

6.3.2 Data storage
The system requires only to store fuzzy rules and black listed countries

in a database, the size of this data does not exceed one Megabyte. This

advantage is a result of using web services that get information about IP

addresses, the alternative of using web services was to store information

about IP addresses in a database and regularly update them. That database

would include tables for IP geographic information, block listed IP

addresses, and anonymous proxies. The size of such database would be

around 1 Gigabytes.

6.3.3 Multi sensor support
In this context, sensor is defined as network sniffer that reads network

packets coming from/to the system. The structure of the system supports

having multi sensor, this is a result of using buffer that queues messages

coming from network sniffing modules (sensors) and those messages are

consumed by the IP information module. In addition, different sensors can

be used with the system rather than the one implemented in the previous

chapter, the sensor just needs to send a message containing an IP address.

6.3.4 Firewall Interaction
The reasoning module has been implemented in PHP which allows any

person with prior knowledge of PHP to modify it as it is open source and

not compiled files. Therefore, it is possible to modify it in a way that

interacts with firewall based on the output it produces. For example, the

reasoning module classifies an IP address as malicious so it necessary to add

a firewall rules that blocks traffic from IP address.

6.3.5 Incident logging and notifications
As mentioned in the previous section, the system has been implemented

using PHP. Thus, it can be modified in a way that suits an organization to

notify and log incidents captured. For example, the system can be modified

 130

to email the system administrator in case of capturing a traffic coming from

a suspicious IP address.

6.3.6 Packet Loss
The proposed system uses TCPDUMP to capture network packets, this

tool is very effective in monitoring tasks. However, it was reported by

Antichi et al. (2014) in their research about monitoring high speed networks

that software based on timestamping and capture such as TCPDUMP is not

suitable to monitor traffic in scenarios where network speeds increases and

this may lead to losing capturing some packets.

6.3.7 System throughput
The system throughput can be defined as how many packets the system

can process per second. The system throughput depends on the environment

it is running at. It has been found that the throughput of the system when

running on the environment specified in table 6.2 was 10 packets/second.

CPU Intel Core(TM) i7 CPU (2.1 GHz)

RAM 8 GB

Operating System Windows 7

Table 6.2: Test environment for measuring system throughput`

6.3.8 Conclusion
Table 6.3 shows the score for each item in the design assessment. The

score for adjustable sensitivity is two as it supports adjusting sensitivity

through modifying the fuzzy rules but associated with some difficulties in

some scenarios. The score of data storage is three as it does not require more

than on Megabyte to store fuzzy rules and blacklisted countries in a

database. The score for multi-sensor support is three as it does that with the

ability to be communicated with different sensors than the one proposed

 131

with the system. The score for both firewall interaction and incident

logging/notification is also three at the system is an open source PHP code

that can be easily modified. The score for packet loss is two as TCPDUMP

can not perform well in high speed networks. The system throughput on the

testing environment has achieved an acceptable rate so the score will be two

for this item.

Item Score

Adjustable sensitivity 2

Data Storage 3

Multi sensor support 3

Firewall Interaction 3

Incident Logging and notification 3

Packet loss 2

System Throughput 2

Table 6.3: Design Metrics

6.4 Performance Evaluation

6.4.1 Testing Data
The performance evaluation will involve two phases. The first one is

evaluating whether the system is capable of detecting suspicious IP

addresses, this will be achieved by building an IP list from different sources

then go through each IP address in the list and apply it to the system and

find out whether the system will classify as expected or not. The IP list will

include suspicious addresses in different categories such as block listed,

anonymous proxy or exit tor node in a predefined blacklisted countries list.

In this experiment, the black listed country list will include China, Russia,

and North Korea. The sources used in building this list are SANS (around

 132

5,000 IP addresses), emerging threats (around 15,000 IP addresses),

iblocklist around 61,000 IP addresses), and proxy nova (523 IP addresses

for anonymous proxies). The second phase will test the system with some

multi-stage attacks, this will be achieved by using trace files of captured

traffic that involve multi stage attacks, the purpose of this phase is to prove

that the system can detect multi stage attacks. The trace files were obtained

from Computer Networks and Security research Group at Mugla Sitki

Kocman University.

6.4.2 First Phase
As mentioned above, the aim of the first phase is to test whether the

system is able to find suspicious IP addresses or not. The IP test list as

shown in Table 6.4 includes different categories; Normal IP addresses in

blacklisted countries, Normal IP addresses not in black listed countries,

anonymous proxies in blacklisted countries, and block listed IP addresses.

 Category Number of IP addresses Percentage

Normal IP addresses 10,000 10.99%

Anonymous proxy in a black listed

country
523 0.57%

Block listed IP addresses 81,221 88.53%

Table 6.4: Different classes in the IP test list

A PHP script has been developed to perform the testing process. The

scrip goes through the IP test list and applies each IP address to the IP info

finder module which will then feeds the reasoning module with IP info. The

output of the reasoning module is then compared with the expected result to

update false positive, false negative, true positive, and true negative figures.

Figure 6.2 shows the flow chart of the testing script.

 133

Figure 6.2: The flow chart of the testing proces

 134

The results obtained from the first phase of the testing (see table 6.5)

shows that all normal IP addresses are classified correctly (false positive is

zero and true negative is one). On the other hand, the system managed to

classify suspicious IP address with 0.994 true positive and 0.006 false

negative. Most of IP addresses incorrectly classified are anonymous proxies

located in black listed countries (357 IP addresses out of 523). This area can

be improved by using another web service that is more sophisticated in

finding anonymous IP addresses. One of those sophisticated web service is

fraud lab (fraudlabs, 2015). By using the fraud lab web, the true positive

went to 0.9984 as shown in table 6.6.

True Negative False Positive

1 0

True Positive False negative

.994 0.006

Table 6.5: The confusion metrics

True Negative False Positive

1 0

True Positive False negative

.9984 0.0016

Table 6.6: The confusion metrics after using the fraud lab web service

to detect anonymous proxy

6.4.3 The Second Phase
6.4.3.1 SQL Attack Scenario

In this scenario, the attacker tried to perform a SQL injection in order to

compromise a user on a web application. Table 6.7 shows IP participated in

this scenario. If IP addresses are extracted from the trace files in the packets

 135

order then apply them to the proposed system, the system will raise an alert

from on the first packet. The system has found that 220.245.173.190 is a

suspicious IP address (block listed IP address).

IP Addresses

220.245.173.190

12.25.187.58

12.25.187.61

12.25.187.255

Table 6.7: IP participated in the sql attack Scenario

6.4.3.2 UDP Scan Scenario

In this scenario, attackers performed a UDP scan using Nmap tool to

get some information for further attack steps not included in the trace file.

Table 6.8 shows IP participated in that attack. By applying the IPs extracted

from the packets at the same order, the system raised an alert on the first

packet, 24.6.173.220 has been found a suspicious IP address as it is block

listed.

Table 6.8: IP participated in the UDP scan Scenario

IP Address

24.6.173.220

74.207.244.221

74.207.244.221

24.6.173.220

 136

6.4.3.3 Exploiting Cross site Forgery Scenario

In this scenario, attackers exploited the cross site forgery

vulnerability in a web application to change the password for a certain user.

Table 6.9 shows IP participated in that scan. The system failed to raise an

alert as none of IP address participated were classified as suspicious IP

address.

IP Address

69.181.135.56

67.161.39.46

Table 6.9: IP participated in the cross site forgery scenario

6.4.3.4 Dictionary Attack Scenario

In this scenario, attackers performed a dictionary attack against FTP

server. Table 6.10 shows IP participated in that scan. It has been found that

the system raised an alert at the first packet indicating that 69.181.135.56 is

a suspicious IP address (Block listed IP address).

IP Address

69.181.135.56

67.161.39.46

Table 6.10: IP participated in dictionary attack against FTP server

6.5 Conclusion

The evaluation has been divided into two phases. In the first phase, the

metrics approach was followed. The metrics approach includes logistic,

 137

design, and performance evaluation. In the logistic evaluation, it has been

found that the score was medium (two) for supporting distributed

management, ease of configuration, and ease of policy management. The

system has a poor score in using outsource solutions while it achieved a

high score in the platform requirements. By moving to the design metrics, it

has been found that the system gets a high score in most of design criteria

including data storage, multi sensor support, firewall interaction, incident

logging and notification. However, it achieved a poor score in the system

output. In addition, it is not performing well in high speed network and

losses some packet due to using TCPDUMP in monitoring traffic. By

looking at the performance evaluation, it has been found that the

performance of the system in finding suspicious IP addresses after using the

fraud lab web service to detect anonymous proxy.

The system was also tested with four real multi stage attack scenarios

captured from a real network traffic. The system managed to capture three

of them, while it failed to capture one of them as the IP addresses not

classified as malicious. In the second phase, the proposed system was

compared with solutions proposed by other researchers. It has been found

that system does not require complex computation and memory resources

compared to other solutions. On the other hand, it has been found that the

main disadvantages is that it may not be able to capture an attack if IP

addresses participated are not classified as suspicious while other solutions

concerns about the attack logic not at identity of attacks sources. The

proposed system is not a silver bullet for all multi stage attacks but it helps

in reducing the occurrence of multi stage attacks. Introducing a system that

based on event correlation and IP information (hybrid approach) will reduce

the possibility of multi stage occurrence compared to using each approach

individually.

 138

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Overview

Many surveys and studies have shown the impact of cyber-attacks on

organisations, governments, and individuals around the world. Although

there are developments occurring in the computer security field, there are

still cyber-attacks causing damage, because they are constantly being

developed and evolved by attackers. This study has shown that improving

intrusion detection methods is a vital element in enhancing the security of a

system overall. This research investigated some industrial challenges in the

intrusion detection area, identifying two main challenges; the first one is

finding signature based intrusion detection systems such as SNORT lack the

capability of detecting attacks with new signatures without human

intervention. The other challenge is related to multi-stage attacks detection,

and it has been found that signature-based is not efficient in this area. The

contribution of this study has been in proposing methodologies that tackle

the mentioned challenges.

 139

7.2 Automatic Creation for SNORT Rules

As mentioned in the previous section, signature-based intrusion detection

systems lack the capability of detecting attacks with new signatures. Part of

the solution offered in this study has dealt with that issue through a multi-

layer classification approach. In this approach, the first layer tries to classify

the traffic either to normal or malicious. If the first layer fails to classify the

traffic, the second layer (the reasoning module) will be triggered to classify

the traffic. Both layers are based on data mining techniques. The signature

holder will then be updated with the new attack signature. The first one was

built using the J45 Decision Tree algorithm. The selection of this algorithm

came after comparing results obtained by that algorithm with results obtained

using the Naïve Bayes algorithm. The experiment conducted used the

KDD’99 intrusion detection data set. The data were collected as a result of a

setup of a fictitious military network with a number of target machines

running various services. The data set consisted of 41 discrete and

continuous attributes and had 22 attack classes and 1 normal class, where

each instance in the data set was categorised as one class. A Correlation-

based Feature Selection (CFS) algorithm was employed to evaluate the

importance of each feature and provide a subset of features. The result of

applying this algorithm in the data set was ten features. The selected features

from the data set were used to train and evaluate both the Decision Tree and

the Naïve Bayes. The results in the experiment showed that, although Naïve

Bayes has a high TP, it is skewed by results of FP. On the other hand, the

Decision Tree generates almost a consistent high TP and consistent low FP.

The reasoning module is based on a hybrid approach. Consisting of two

modules; the first one is based on a neural network while the second one is

based on fuzzy logic. The reasoning module will only classify network

traffic as normal if both modules classify it as normal, while it will classify it

as attack if either of them classifies the traffic as attack. A neural network

has the advantage of the ability to work with incomplete and imprecise data.

 140

This advantage can be employed in an IDS context for detecting attack

patterns presented during the training phase but modified by an attacker in

order to pass through the system. The flexibility of fuzzy logic can be

employed in case of uncertain problems of intrusion detection and allows

much greater complexity for IDS.

The benefit of using the hybrid approach is in increasing the intrusion

detection rate; some of the attacks may not be detected by one of the

modules but another one may be able to detect them. In other words, one

module will overcome some of the other module’s shortcomings in detecting

malicious traffic. However, there is a chance of increasing the false positive

rate for malicious traffic for the composite module, compared to each one

individually. The data set used in the second layer is used to train the neural

network and deduce the rules for the fuzzy logic module. It is then used to

evaluate the reasoning module. The evaluation result showed that the true

positive rate achieved was 0.966 with the neural network, 0.9995 with fuzzy

logic, and 0.9997 when combining them together in one module. On the

other hand, the false positive rate was .029 with the neural network, .022

with fuzzy logic, and increased to .048 with the composite module as

expected.

Although good results were achieved in that area, some limitations have

been found. One of those limitations is that both the neural network and

Decision Tree modules may regularly require additional training to improve

efficiency with detecting new patterns of attacks. The training process

requires large set of data and consumes a lot of time. The fuzzy logic rules

may also need to be updated in order to detect new patterns but it does not

require as much time to get updated as the Decision Tree and neural network

modules. The computer security context is always dynamic and changes

dramatically. Thus, it is essential to update the modules used in the proposed

approach when the true positive rate falls below a threshold value specified

by the system administrator. In our case, all modules created in the

experiments will definitely require an update if they are to be used with a

 141

live system, as they were built using an old data set (KDD 1999). That data

set was used to prove the concept of the approach. Part of this data set was

used for training and creating fuzzy rules while the other part was used for

evaluation to test whether the system was able to detect patterns not

represented in the training process.

Another limitation that has been found is that fuzzy logic is relatively

slow in processing the network traffic compared to the neural network and

Decision Tree; this slowness is down to the size of fuzzy rules (1343 rules

were used in the experiment). The inference engine needs to evaluate the

rules with the fuzzy inputs provided, in order to produce an output. In

addition to these limitations, the proposed approach will not help signature-

based intrusion detection systems in improving multi-stage attack detection.

Each step in multi-stage attacks looks legitimate and does not violate any

rules with signature-based intrusion detection systems.

7.3 Multi-Stage Attack Prediction

The other industrial challenge that this study focused on was multi-stage

attack detection. These attacks occur through multiple phases to get access to

an organisation. Most of these attacks pass through three stages. In the first

stage, attackers try to analyse available information about the target to find

vulnerabilities and weaknesses that can be exploited. In the second stage,

attackers exploit the weaknesses found in the first phase to inject malware

into, or gain access to, the system. In addition, they try to get more details

and conduct a deep analysis about the system to find data or resources they

have an interest in. In the final phase attackers destroy the system or steal

valuable information.

The study started looking at this industrial challenge by analysing four

different multi-stage attack scenarios to understand the behaviour of multi-

stage attacks and find any clue to predicting or detecting such kinds of

attacks. In each scenario, the network traffic was analysed highlighting all

 142

the steps that occurred and which were not considered by many security

systems. The first scenario was about communication with a bad DNS server

and how that can be exploited by an attacker to register machines to its bot

army. The second scenario discussed the Shady Rat attack, which is a good

example that shows how social engineering can be employed to target an

organisation. The third scenario showed how header splitting can be

employed by an attacker to target a network connected to a web host running

a web application. The last scenario discussed how a vulnerable FTP service

can be exploited to perform multi-stage attacks. An analysis of these four

scenarios indicated that predicting such kinds of attacks may be achieved by

carrying out a reputation check of IP addresses found in incoming and

outgoing traffic.

The proposed approach in predicting multi-stage attacks is based on

evaluating IP information. This approach was preferred over the event

correlation- based approach, as the latter one requires having up-to-date

multi-stage attack patterns (sequence), which is not easy to achieve in a very

short time, as discovering new complex attacks normally takes some time.

The Shady Rat Operation attack is a good example of that; it started in 2006

but was only discovered in 2011.

 The proposed solution involves using three modules. The first one

(network sniffing) is in charge of reading network traffic, and then

extracting IP addresses from the packets. This module was built by using the

TCPDUMP tool. The TCPDUMP was preferred over other sniffing tools,

as it is available on many operating systems. In addition, it can be easily

integrated into the proposed solution, as it is command line-based.

The second module (IP information finder) was created to gather

information about IP addresses extracted from the first module. There were

two options to obtain the IP information. The first option was by storing IP

information in a database, then checking the IP address against it to find any

associated information. The second option was to obtain the IP information

 143

through one of the available web services (API). The main disadvantage of

this first solution was the need to be regularly updated. On the other hand,

there are many web services regularly updated and, therefore, it was decided

to go with the second option. The information obtained by the second

module involved finding the IP geographic location, checking whether the

IP was on a block list, whether the IP was an anonymous proxy, or a TOR

exit node, and checking the IP rating in DNSBL. The last module

(reasoning) was responsible for deciding whether the IP addresses may be a

source of malicious traffic or not, based on information passed from the

second module. The outputs of the second module need to be pre-processed

before processing them.

The reasoning module was implemented using fuzzy logic. The

reason for choosing fuzzy logic, rather than any of the machine learning

algorithms, was the nature of the problem; it can be simply solved using

“if… then” rules. In addition, it requires less time and effort to adapt to

changes in the reasoning logic compared to machine learning algorithms.

Machine learning algorithms require large sets of training data to get

accurate results and that consumes a lot of time in the training phase. The

fuzzy logic was initially tested with four rules. The first rule stated that the

IP will be considered as a malicious one if the IP address is found in a block

list. Having an IP in a block list implies that the IP address was reported as

being used in malicious traffic. The second and third were similar, with each

rule involving the checking of two parameters. One of them was finding

whether the IP was based in one of the black listed countries or not. Being

in a black listed country does not mean that the traffic is malicious, as there

may be legal traffic from those countries. The second parameter checked

whether an anonymous proxy or exit tor node was used or not. Anonymous

proxies and exit tor nodes are used in a way that enables users to protect

their access to the web anonymously. Attackers normally do not necessarily

need to be based in the listed countries, they forward their traffic through a

proxy or tor located in one of those countries. Thus, receiving traffic from

 144

anonymous proxies or tor exit nodes located in those countries raises an

alert of potential malicious traffic. The last rule was to find out the average

IP rating (the host reputation). The IP address is treated as malicious if the

average rating is low.

The evaluation process of the proposed approach was carried out using

the metrics based approach which looked at the evaluated approach from the

different perspectives of logistic, design, and performance. The last metric

used in this approach was the confusion metric (performance metric), which

finds how well the system does its job (detecting multi-stage attacks) in the

form of true positive, true negative, false positive, and false negative. The

logistic metrics evaluates the system in terms of maintainability,

manageability, and dependency. It was found that the proposed approach got

a medium score from the logistics perspective. On the other hand, it had a

high score when looking from the design perspective that measured how

well the approach performed in terms of resources consumption and speed.

Regarding the performance, it was first measured using a list of 91,744 IP

addresses, including different categories (10.99% Normal, 0.57%

anonymous proxy in a black listed country, 88.53% block listed IP

addresses) to ensure that the approach was capable of distinguishing between

malicious and normal IP addresses. It was found that the system achieved a

good performance with zero false positive and a high true positive rate

(0.9984). However, it was found in the second stage of the performance

evaluation that it failed to detect multi-stage attack scenarios, if the IP

addresses participating in the traffic were not classified as malicious IP

addresses. That stage involved testing the approach with four different multi-

stage attack scenarios.

When comparing the proposed solution with other solutions based on

event correlation, it has an advantage over them by not being dependent on

receiving alerts from IDS. In addition, it does not require a complex

computation, or memory resources, compared to them. Furthermore, the

previous solutions required an update with sequences of new attacks, while

 145

the proposed solution focuses on the identity. However, this may represent

an issue, if an attack comes from an IP address not classified yet as

suspicious. Moreover, the throughput of the proposed system is relatively

low compared to other solutions, due to using web services that take some

time to get IP information.

7.4 Future Work

It is planned to overcome some of the limitations found in the

proposed approaches during the experiments. One of those limitations is the

slowness found with the fuzzy logic module created in the system that

automates the creation of automatic rules. The work to be carried out in this

area will involve optimising a number of rules used with the fuzzy logic

modules. In addition, it is intended to re-create both the Neural Network and

fuzzy logic modules using all classes, and then compare the results with

results obtained in this study. Moreover, different data mining techniques

will be tried with fuzzy logic and Neural.

Moving to the multi-stage detection area, it is planned to improve the IP

information module by using alternative web services, in case the web

service provided by Neutrino fails. It can be investigated whether there is

more IP information that can be used in identifying malicious traffic. The

proposed approach in this research can also be combined with an event

correlation-based approach to gain advantage of both approaches by looking

at both identities and traffic content.

 146

7.5 Publications Related to this Thesis

1. Almutairi, A. Parish, D. Flint, J. “Predicting Multi-Stage Atta Based

on IP Information ” in Proc. of Internet Technology and Secured

Transactions conference, vol.8, no.1, pp. 42-50, 2015.

2. Almutairi, A. and Parish, D. “Improving Intrusion Detection by the

Automated Generation of Detection Rules” in International Journal

of Intelligent Computing Research, vol.5, no.1, pp. 495-502, 2014.

3. Almutairi, A. and Parish, D. “Using classification techniques for

creation of predictive intrusion detection model” in Proc. of Internet

Technology and Secured Transactions conference, pp. 223-228,

2014.

4. Almutairi, A. And Parish, D. “Survey of High Interaction Honeypot

Tools: Merits and Shortcomings” in Proc. of PGNET, vol.8, pp. 42-

50, 2012.

5. Almutairi, A., Flint, J. and Parish, D., 2015. Predicting multi-stage

attacks based on hybrid approach. International Journal for

Information Security Research, 5 (3), pp. 582 - 590.

 147

References
1. Abbes, T., Bouhoula, A., and Rusinowitch, M. (2004) Protocol

analysis in intrusion detection using decision tree ITCC 2004.

International Conference 1(April 2004), pp. 404-408

2. Abraham, T., IDDM: Intrusion detection using data mining

techniques. 2001.

3. Alberto, P., Sala, A. and Olivares, M. “Fuzzy Logic Controllers.

Methodology. Advantages and Drawbacks” [Online] Available

from: http://www.softcomputing.es/estylf08/es/2000-

X%20Congreso/01%20SESION%20INAUGURAL.pdf [Accessed:

19th April 2015]

4. Albin, E. (2011) A COMPARATIVE ANALYSIS OF THE SNORT

AND SURICATA INTRUSION-DETECTION SYSTEMS,

NAVAL POSTGRADUATE SCHOOL.

5. Allen, W. H. 2007. Mixing wheat with the chaff: Creating useful test

data for IDS evaluation. IEEE Security & Privacy, 65-67.

6. Al-Mamory, S. and Zhang, H. (2008) New data mining technique

to enhance IDS alarms quality. Journal in Computer Virology , 6(1),

pp 43-55

7. Alserhani, F. et al. (2010): "Multi-Tier Evaluation of Network

Intrusion Detection Systems" Journal for Information Assurance and

Security (JIAS), 5 (4): 301-310.

8. Altwaijry, H., Bayesian based intrusion detection system, in IAENG

Transactions on Engineering Technologies2013, Springer. p. 29-44.

9. Amiri, F., et al., Mutual information-based feature selection for

intrusion detection systems. Journal of Network and Computer

Applications, 2011. 34(4): p. 1184-1199

 148

10. Amor, N., Benferhat, S. and Elouedi, Z. (2004) Proceeding SAC'04

Proceedings of the 2004 ACM symposium on Applied computing,

PP. 420-424.

11. Amro, S. et al. 2012. Evolutionary Computation in Computer

Security and Forensics: An Overview. Computational Intelligence

for Privacy and Security, 25-34.

12. Anthony, C. (2014) ARTIFICIAL NEURAL NETWORKS IN

PROTEIN SECONDARY STRUCTURE PREDICTION: A

CRITICAL REVIEW OF PRESENT AND FUTURE

APPLICATIONS, Stanford University

13. Anthony, M. and Bartlett, P. “Neural Network Learning: Theoretical

Foundations” 2009, Campridge University.

14. Antichi, G. et al. Enabling open-source high speed network

monitoring. In Proceedings of NetFPGA IEEE 2012 Network

Operations and Management Symposium, pp.1029-1035, April 2012

15. Axelsson, S. The base-rate fallacy and its implications for the

difficulty of intrusion detection. in Proceedings of the 6th ACM

Conference on Computer and Communications Security. 1999.

ACM.

16. Bace, R. and Mell, P. (2001) Intrusion Detection System. National

Institute of Standards and Technology, Available from

http://www.cryptome.org/

17. Baecher, P. et al. The nepenthes platform: An efficient approach to

collect malware. Recent Advances in Intrusion Detection, 2006.

Springer, 165-184.

18. Barbara, D., et al., ADAM: a testbed for exploring the use of data

mining in intrusion detection. ACM Sigmod Record, 2001. 30(4): p.

15-24.

19. Batal, I. (2014) Dimensionality Reduction techniques, University of

Pittsburgh. Available From http://people.cs.pitt.edu/~iyad/

 149

20. Bellard, F. Qemu, a fast and portable dynamic translator. 2005.

USENIX.

21. Bhargava, N., et al., Decision Tree Analysis on J48 Algorithm for

Data Mining. International Journal, 2013. 3(6).

22. Bidgoli, B., Analoui, M., Rezvani, M. ,and Shahhosein, H. (2008)

Performance Evaluation of Decision Tree for Intrusion Detection

Using Reduced Feature Spaces. Iran University of Science and

Technology

23. Borah, S. and A. Chakraborty, Towards the Development of an

Efficient Intrusion Detection System. International Journal of

Computer Applications, 2014. 90.

24. Bouzida, Y. and Cuppens, F. Neural networks vs. decision trees for

intrusion detection.

25. Bradely, T. Introduction to Intrusion Detection Systems (IDS).

About Technology, Available from http://netsecurity.about.com/

26. Bridges, S. and Vaughn, R. (2000). FUZZY DATA MINING AND

GENETIC ALGORITHMS APPLIED TO INTRUSION

DETECTION. Department of Computer Science Mississippi State

University

27. Castro, L. and Zuben, F. (2002) Learning and Optimization Using

the Clonal Selection Principle. IEEE Transactions on Evolutionary

Computation, 6 (3), pp. 239–251

28. Chae, H. and Choi, S. (2014) Feature Selection for efficient

Intrusion Detection using Attribute Ratio. INTERNATIONAL

JOURNAL OF COMPUTERS AND COMMUNICATIONS,

8(2014)

29. Chang, R. et al., “Intrusion detection by backpropagation neural

networks with sample-query and attribute-query,” International

Journal of Computational Intelligence Research, 2007, vol.3, n.1, pp.

6-10.

 150

30. Chang, R.-I., et al., Intrusion detection by backpropagation neural

networks with sample-query and attribute-query. International

Journal of Computational Intelligence Research, 2007. 3(1): p. 6-10.

31. Chitrey, A. “Apprehensive Study of Social Engineering Based

Attacks in India to Develop a Conceptual Model” IJINS ,2012.

vol.1, n.4

32. Chittur, A. (2001) Model generation for an intrusion detection

system via genetic algorithms [Online] Available from

http://www.hacktory.cs.columbia.edu [Accessed 15th September

2014]

33. Chou, T. (2007), Correlation-Based Feature Selection for Intrusion

Detection Design. Military Communications Conference, 2007.

MILCOM 2007. IEEE, pp. 1-7

34. Clark, D. “The Problem isn't Attribution; It's Multi-Stage Attacks”

the Re-Architecting the Internet Workshop, 2010, Article No.11

35. Corchado, E. and Å. Herrero, Neural visualization of network traffic

data for intrusion detection. Applied Soft Computing, 2011. 11(2): p.

2042-2056.

36. Corey, J. 2003. Local honeypot identification. Fake Phrack

Magazine http://www.ouah.org/p62-0x07.txt.

37. Crosbie, M., and Spafford, E. (1995) Applying Genetic

Programming to Intrusion Detection, Proceedings of the AAAI Fall

Symposium.

38. Cunningham, R. and Lippmann, R. (2000) Improving Intrusion

Detection performance using Keyword selection and Neural

Networks. MIT Lincoln University Available from

http://www.ll.mit.edu/IST/pubs.html

39. Davis, J.J. and A.J. Clark, Data preprocessing for anomaly based

network intrusion detection: A review. computers & security, 2011.

30(6): p. 353-375.

 151

40. Derban, G. and Moldovan, G. (2006) A comparison of clustering

techniques in aspect mining. Studia University, (51), pp. 69-78.

41. Einwechter, N. (2002) An Introduction To Distributed Intrusion

Detection Systems [Online] Available from:

http://www.symantec.com/connect/articles/introduction-distributed-

intrusion-detection-systems [Accessed: 22nd July 2015]

42. Ertoz, L., et al. 2004. Minds-minnesota intrusion detection system.

Next Generation Data Mining, 199-218.

43. Escamilla, T. (1998) Intrusion Detection: Network Security Beyond

the Firewall. New York: John Wiley and Sons.

44. Ethereal. 2012. Ethereal: A Network Protocol Analyser [Online].

Available: http://www.ethereal.com [Accessed 1st March 2012].

45. Fink, A. “A Metrics-Based Approach to Intrusion Detection System

Evaluation for Distributed Real-Time Systems” Information

TransferTechnology Group, 2002, Code B35, Naval Surface

Warfare Center, Dahlgren Division

46. Gabra, H., Baha-Eldin, A., and Korshi, H. (2014) Classifications of

IDS Alertys with Data Mining Techniques. International Journal of

Electronic Commerce Studies, 5(1) pp. 1-2

47. Gadelrab, M. et al. Defining categories to select representative attack

test-cases. 2007. ACM, 40-42.

48. Garcia-Teodoro, P. et al. 2009. Anomaly-based network intrusion

detection: Techniques, systems and challenges. computers &

security, 28, 18-28.

49. GCHQ and Cert-UK (2015) Common Cyber Attacks: Reducing The

Impact. [Paper]. United Kingdom: GCHQ and Cert-UK

50. Ghosh, A. and Schwartzbard, A. (2000) A study using Neural

Networks for anomaly detection and misuse detection. Reliable

Software Technologies, Available from http://www.docshow.net/ids/

 152

51. Grossman, L. Data Mining (1997) Challenges and Opportunities for

Data Mining During the Next Decade. [Online] Available from:

http://www.lac.uic.edu [Accessed 19th August 2014]

52. GUPTA, P. et al. 2012. Securing WMN using Honeypot Technique.

International Journal on Computer Science and Engineering, 4, 235-

238.

53. Hall, B. 2011 Countering Web Injection Attacks: A Proof of

Concept, MSc thesis, University of Manchester UK.

54. Hawrylkiw, D. Network Intrusion and use of automated responses.

[Online] Available from:

http://www.sans.org/resources/idfaq/auto_res.php, [Accessed 20th

August 2015]

55. Hall, M. (1999) Correlation-based Feature Selection for Machine

Learning. University of Waikato.

56. Hall, M., et al., The WEKA Data Mining Software: An Update.

SIGKDD Explorations, 2009. 11(1).

57. Hall, M.A., Correlation-based feature selection for machine learning,

1999, The University of Waikato. (Hall, 1999)

58. Hassan, M. (2011) Difference Between Firewall and Intrusion

Detection System, [Online] Available from http://www.scribd.com/

[Accessed 18th August 2014]

59. Hes, R., Engineering, V. U. O. W. S. O. & Science, C. 2009. The

Capture-HPC client architecture, School of Engineering and

Computer Science, Victoria University of Wellington.

60. Ho, C. Lin, Y. Lai, Y. Chen, I. Wang and Tai, W. (2012) False

Positives and Negatives from Real Traffic with Intrusion

Detection/Prevention Systems. International Conference on

Advancements in Information Technology, pp. 1-4

61. Huang, P., Yang, C. & Ahn, T. Design and implementation of a

distributed early warning system combined with intrusion detection

system and honeypot. Proceedings of the 2009 International

 153

Conference on Hybrid Information Technology ICHIT '09 2009.

ACM, 232-238.

62. I-Blocklist, List of blocklisted IP addresses, [Online] Available

from: https://www.iblocklist.com/ [Accessed: 24th July 2015]

63. J. Muila, A Novel Intrusion Detection System (IDS) Architecture,

2010

64. Ji, Yu, Zhang, (2011). A novel Naive Bayes model: Packaged

Hidden Naive Bayes. Information Technology and Artificial

Intelligence Conference, 2(Aug 2011), pp. 484 -487

65. Jiang, X. & Wang, X. Out-of-the-box monitoring of VM-based high-

interaction honeypots. Proceedings of the 10th international

conference on Recent advances in intrusion detection RAID'07 2007

Gold Goast, Australia. Springer-Verlag, 198-218.

66. Jyothsna, V., Prasad, V. and Prasad, K. (2011) A Review of

Anomaly based Intrusion Detection Systems. International Journal

of Computer Applications, 28(7)

67. K. Labib and R. Vemuri (2002) NSOM: a real-time network-based

intrusion detection system using self-organizing maps, Networks and

Security

68. Kachal, C. and Shevade, K. (2012) Comparison of Different

Intrusion Detection and Prevention Systems. International Journal of

Emerging Technology and Advanced Engineering, 2(12)

69. Kailashiya, D. and Jain, R. (2012) Improve Intrusion Detection

Using Decision Tree with Sampling. International Journal of

Computer Science and Telecommunications, 3(3), pp. 1209

70. Kamepalli, S. and Mothukuri, R. (2014) Implementation of

Clustering-Based Feature Subset Selection Algorithm for High

Dimentional Data. International Journal of Emerging Trends &

Technology in Computer Science, 3(3)

71. Kang, D.-K., D. Fuller, and V. Honavar. Learning classifiers for

misuse and anomaly detection using a bag of system calls

 154

representation. in Information Assurance Workshop, 2005. IAW'05.

Proceedings from the Sixth Annual IEEE SMC. 2005. IEEE.

72. Kayacik, H. G., Zincir-Heywood, A. N. & Heywood, M. I. 2012.

Intrusion Detection Systems. Signal Processing, 1pp.

73. KDD'99. KDD Cup 1999 Data. 1999 [cited 2014; Available from:

https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

74. KFSENSOR. 2012. KFSensor: Advanced Windows Honeypot

System [Online]. Ket Focus. Available:

http://www.keyfocus.net/kfsensor/ [Accessed 15th March 2012].

75. Kim, G., S. Lee, and S. Kim, A novel hybrid intrusion detection

method integrating anomaly detection with misuse detection. Expert

Systems with Applications, 2014. 41(4): p. 1690-1700.

76. Kukiełka, P. and Kotulski, Z. (2010) “Adaptation of the neural

network-based IDS to new attacks detection”, Available from:

http://arxiv.org/abs/1009.2406 (Access Date: 17 Oct, 2014).

77. Kukiełka1, K. and Kotulski, Z. (2010) . Analysis of neural networks

usage for detection of a new attack in IDS Annales UMCS

Informatica AI X, 1 (2010) 51-59

78. Kumar and Guyal (2004) GA-NIDS: A Genetic Algorithm based

Network Intrusion Detection System, Northwestern University

79. Kuwatly, I. et al. A dynamic honeypot design for intrusion detection.

IEEE/ACS International Conference on Pervasive Services, 2004.

ICPS 2004, 2004. IEEE, 95-104.

80. LAZAREVIC, A. et al. comparative study of anomaly detection

schemes in network intrusion detection. 2003. SIAM, 25-36.

81. Lee, W. and S.J. Stolfo, A framework for constructing features and

models for intrusion detection systems. ACM transactions on

Information and system security (TiSSEC), 2000. 3(4): p. 227-261.

82. Liao, H.-J., et al., Intrusion detection system: A comprehensive

review. Journal of Network and Computer Applications, 2013.

36(1): p. 16-24.

 155

83. Liaoa, H., Lina, C. Lina, Y. and Tunga, K. (2012) Intrusion

detection system: A comprehensive review. Journal of Network and

Computer Applications.

84. Lindfors, A. and Peuhkuri, M. “Vulnerabilities of FTP protocol, FTP

servers and clients” 1999, Department of Electical Engineering,

Helsinki University of technology

85. Lippmann, R. et al. Evaluating intrusion detection systems: The

1998 DARPA off-line intrusion detection evaluation. 2000. IEEE,

12-26 vol. 2.

86. Lo, O., Graves, J. & Buchanan, W. J. Towards a framework for the

generation of enhanced attack/background network traffic for

evaluation of network-based intrusion detection systems. 2010.

Academic Conferences Limited, 190.

87. Mabu, S., et al., An intrusion-detection model based on fuzzy class-

association-rule mining using genetic network programming.

Systems, Man, and Cybernetics, Part C: Applications and Reviews,

IEEE Transactions on, 2011. 41(1): p. 130-139.

88. Mahoney, M. & Chan, P. An analysis of the 1999 DARPA/Lincoln

Laboratory evaluation data for network anomaly detection. 2003.

Springer, 220-237.

89. Majeed, P. and Kumar, S. (2014) Genetic Algorithms in Intrusion

Detection Systems: A Survey. International Journal of Innovation

and Applied Studies, 5(Mar 2014), pp. 233-240

90. Makkithaya, M., Reddy, N., and Acharya, U. (2008) Improved C-

Fuzzy Decision Tree for Intrusion Detection. World Academy of

Science, Engineering and Technology, 2(6)

91. Markey, J. (2011) Using Decision Tree Analysis for Intrusion

Detection: A How-To Guide. Sans Institute, Available from

http://www.sans.org/reading-room

 156

92. Mathworks – What Is Mamdani-Type Fuzzy Inference? [Online]

Available from: http://uk.mathworks.com/help/fuzzy/what-is-

mamdani-type-fuzzy-inference.html. [Accessed: 26th April 2015]

93. Mcafee. Operation Shady Rat – What It Really Means, and What

You Can Learn From It? [Online] Available from:

http://www.symantec.com/connect/blogs/truth-behind-shady-rat/ .

[Accessed: 25th Feb 2015]

94. MCHUGH, J. 2000. Testing intrusion detection systems: A critique

of the 1998 and 1999 DARPA intrusion detection system evaluations

as performed by Lincoln Laboratory. ACM transactions on

Information and system Security, 3, 262-294.

95. Mehra, P. (2012) A brief study and comparison of SNORT and

BroOpen Source Network Intrusion Detection Systems. International

Journal of Advanced Research in Computer and Communication

Engineering, 1(6).

96. Meijerink, M. & Spellen, J. 2006. Intrusion Detection System

honeypots. Master Program System and Network Administration,

University of Amsterdam.

97. Mell, P., et al. 2003. An overview of issues in testing intrusion

detection systems.

98. Mitnick, K. (2002) How to hack people”, BBC News Online

99. Mokube, I. & Adams, M. Honeypots: concepts, approaches, and

challenges. Proceedings of the 45th annual southeast regional

conference ACM-SE 45, 2007 Winston-Salem, North Carolina.

ACM, 321-326.

100. Muila, J. A Novel Intrusion Detection System (IDS)

Architecture, 2010

101. Mujahid, T. and Mathew, T. (2014) A Genetic Algorithm Analysis

towards Optimization solutions, International Journal of Digital

Information and Wireless Communications 4(1), pp. 124-142

 157

102. Naudts, J. (2004) Improvement of Weka, a datamining tool.

Universiteit Gent

103. Nazer, G. M. & Selvakumar, A. A. L. 2012. Intelligent Data

Mining Techniques for Intrusion Detection Models on Network.

European Journal of Scientific Research, 71, 36-45.

104. NETSEC. 2012. Specter [Online]. Netsec. Available:

http://www.specter.com/default50.htm [Accessed 15th March 2012].

105. Nikolova, E. & Jecheva, V. 2011. Evaluations of the effectiveness

of anomaly based intrusion detection systems based on an adaptive

knn algorithm.

106. Ourston, D. et al. Applications of hidden markov models to

detecting multistage network attacks. In Proceedings of the 36th

Hawaii International Conference on Systems Sciences, Los

Alamitos, CA, USA, 2003.

107. Paliwal, S. and Gupta, R. Denial-of-Service, Probing & Remote to

User (R2L) Attack Detection using Genetic Algorithm. International

Journal of Computer Applications 60(19), pp. 57-62.

108. Panda, M. and Patra, M. (2007) Network intrusion deteciton using

naïve Bayes. International Journal of Computer Science and

Network Security, 7(12), pp. 258-263.

109. Attacking Fhttps://pentestlab.wordpress.com/2012/03/01/attacking-

the-ftp-service/ [Accessed 7th May 2015]

110. Phung, M. (2000) Intrusion Detection FAQ: Data Mining in

Intrusion Detection, SANS Institue, Available from

http://www.sans.org/

111. Ponemon Institue(2014) Global Report on the Cost of Cyber

Crime. [Benchmark study]. United States: Ponemon Institue

112. Portokalidis, G., Slowinska, A. & BOS, H. 2006. Argos: an

emulator for fingerprinting zero-day attacks for advertised honeypots

with automatic signature generation. ACM SIGOPS Operating

Systems Review, 40, 15-27.

 158

113. Potts, S. and Kopack M. 2003, Web Service. United States: Sams

Publishing

114. Prediction Works , Data Mining Glossary, Available from

http://www.predictionworks.com/glossary

115. Project, T. H. 2012. The Honeynet Project [Online]. Available:

http://www.honeynet.org [Accessed 1st March 2012].

116. Provos, N. Honeyd-a virtual honeypot daemon. 10th DFNCERT

Workshop, 2003.

117. Proxynova, List of anonymous proxy, [Online] Available

from: https://www.proxynova.com/ [Accessed: 25th July 2015]

118. Pulo, K. “Fuzzy Logic vs Machine Learning” , [Online] Available

from: http://www.kev.pulo.com.au/ai/fuzzyml_report/ [Accessed:

20th April 2015]

119. Rajasekaran, S. and Pai, G. “Neural Networks, Fuzzy |Logic and

Genetic Algorithm: Synthesis and Applications” 2003, PHI Learning

Pvt. Ltd.

120. Rani, S. and Singh, V. (2014) An Open Source Network Security

Tool for Intrusion Detection in Campus Network Environment,

International Journal of Computer Technology and Electronics

Engineering, 2(1)

121. Rawat, R. and A. Jain, Review: Boosting Classifiers For Intrusion

Detection. nternational Journal of Scientific & Engineering

Research, 2013. 4(7): p. 1-5.

122. Rawlings, N. (2013) Anonymous Hackers Plead Guilty to PayPal

Cyber Attack. [online] United : Time. Available from

http://techland.time.com/2013/12/09/anonymous-hackers-plead-

guilty-to-paypal-cyber-attack/ [Accessed 2nd September 2015].

123. Reddy, Kesavulu., Reddy, V., and Rajulu, P. (2011) A Study of

Intrusion Detection in Data Mining. the World Congress on

Engineering, 3(July 2011)

 159

124. Reddy, P. (2011) Data Mining Machine Learning Techniques – A

Study on Abnormal Anomaly Detection System. International

Journal of Computer Science and Telecommunications, 2(6), pp. 8-

14

125. Roesch, M. SNORT: Lightweight Intrusion Detection for

Networks. in LISA. 1999.

126. Rokach, L. and Mimon, O. (2014) Data Mining with Decision

Trees. 2nd Edition, Massachusetts: World Scientific

127. Rossey, L. et al. Lariat: Lincoln adaptable real-time information

assurance testbed. 2002. Ieee, 6-2671-2676, 6-2678-6-2682 vol. 6.

128. Ruggieri, S. Efficient C4.5. IEEE Transactions on Knowledge and

Data Engineering. Vol. 14, Issue 2, March-April 2002, 438-444.

129. Saber, M., Bouchentouf, T. & Benazzi, A. Generation of attack

scenarios by modeling algorithms for evaluating IDS. 2011. IEEE,

1-5.

130. Sadasivam, K., Samudrala, B. & Yang, T. A. 2005. Design of

network security projects using honeypots. Journal of Computing

Sciences in Colleges, 20, 282-293.

131. Sagane, A. and Dhande, S. (2014) Malicious Code Detection Using

Naïve Bayes Classifier. International Journal of Application or

Innovation in Engineering & Management, 3(4)

132. Saini, H., Mishra, B. K., Pratihari, H. & Panda, T. 2011. Extended

Honeypot Framework to Detect old/new cyber attacks. International

Journal of Engineering Science (IJEST), 3, 2421-2426.

133. Salah, K., Al-Khiaty, M. , Ahmed, R. , Mahdi, A. (2011)

Performance Evaluation of SNORT under Windows 7 and Windows

Server 2008.Journal of Universal Computer Science, 17(11), pp.

1605-1622

134. Sans Block List [Online] Available from:

https://isc.sans.edu//block.txt. [Accessed: 26th April 2015]

135. SANS Institute (2001) Understanding Intrusion Detection Systems.

http://www.di.unipi.it/%7Eruggieri/Papers/ec45.pdf

 160

136. SANS Institute (2007) Social Engineering: A Means To Violate A

Computer System

137. SANS Isstitue (2001) Intrusion Detection Systems: Definition,

Need and Challenges.

138. Scarfone, K. and Mell, P. (2007) Guide to Intrusion Detection and

Prevention Systems (IDPS). National Institute of Standards and

Technology.

139. Shanmugam, B. “Improved Intrusion Detection System Using

Fuzzy Logic for Detecting Anamoly and Misuse Type of Attacks” in

Proceedings of the Conference of Soft Computing and Pattern

Recognition. 2009, pp.212-217.

140. Sharma, N. & Sran, S. S. 2011. Detection of threats in Honeynet

using Honeywall. International Journal on Computer Science and

Engineering (IJCSE), 3, 3332-3336.

141. Singh, A. N. & Joshi, R. A honeypot system for efficient capture

and analysis of network attack traffic. International Conference on

Signal Processing, Communication, Computing and Networking

Technologies (ICSCCN), 2011, 2011. IEEE, 514-519.

142. Singh, S. (2010) Data Clustering Using K-Mean Algorithm for

Network Intusion Detection. Lovely Proffessional University.

143. Sommers, J., Yegneswaran, V. & Barford, P. Recent 2005. Toward

comprehensive traffic generation for online ids evaluation.

University of Wisconsin, Tech. Rep.

144. Sommers, J., Yegneswaran, V. & Barford, P. Recent A framework

for malicious workload generation. 2004. ACM, 82-87.

145. Sommers, J., Yegneswaran, V. & Barford, P. Recent advances in

network intrusion detection system tuning. 2006. Ieee, 1490-1495.

146. Spadaro, A. 2013 Event correlation for detecting advanced multi-

stage cyber-attacks, MSc thesis, Delft University of Technology

Netherlands.

 161

147. Spitzner, L. 2000. Know your enemy: A forensic analysis.

http://www.rootprompt.org/article.php3?article=520.

148. Spitzner, L. 2003. Honeypots: simple, cost-effective detection.

SecurityFocus InFocus Article,

http://www.securityfocus.com/infocus/1690.

149. Statistia(2015) Costs of external consequences of cyber attacks on

businesses 2015. [Survey] United States: Statistia

150. Sterling, T. and Escritt, T. (2015) Dutch government website

outage caused by cyber attack. [online] London: Reuters. Available

from http://www.reuters.com/article/2015/02/11/us-netherlands-

government-websites-

idUSKBN0LF0N320150211#2vGIVmOh5yBuYCdH.97 [Accessed

29th August 2015].

151. Swanson, I. Malware, Viruses and Log Visualisation. 2008. 54.

152. Tal Global. (2011) Operation Shady Rat – What It Really Means,

and What You Can Learn From It? [Online] Available from:

http://talglobal.com/operation-shady-rat-what-it-really-means-and-

what-you-can-learn-from-it/ . [Accessed: 19th Feb 2015]

153. Tan, P., Steinbach, M., and Kumar, V. (2006) Introduction to Data

Mining. Boston: Pearson.

154. Taruna, S. and Hiranwal, S. (2013) Enhanced Naïve Bayes

Algorithm for Intrusion Detection in Data Mining. International

Journal of Computer Science and Information Technologies, 4(6) ,

pp. 960-962

155. TCPDUMP. 2012. TCPDUMP [Online]. TCPDUMP. Available:

http://www.TCPDUMP.org [Accessed 16th March 2012].

156. Templeton S. and Levit. K. A requires/provides model for

computer attacks. In Proc. of New Security Paradigms Workshop,

pages 31 – 38. September 2000.

 162

157. TP Group, Network Trace Files [Online] Available from:

http://www.tp.org/jay/nwanalysis/traces/General%20Trace%20Files/

[Accessed: 24th Feb 2015].

158. Vora, P., Oza, B. (2013) A Survey on K-mean Clustering and

Particle Swarm Optimization. International Journal of Science and

Modern Engineering. 1(3)

159. Wahbeh, A., Al-Radaideh, Q., Al-Kabi, M., and Shawakfa, E.

(2011) International Journal of Advanced Computer Science and

Applications, Special Issue on Artificial Intelligence, pp. 18-26

160. Wang, G., et al., A new approach to intrusion detection using

Artificial Neural Networks and fuzzy clustering. Expert Systems

with Applications, 2010. 37(9): p. 6225-6232.

161. Weber, D. (1998) A Taxonomy of Computer Intrusions. Master’s

thesis, Massachusetts Institute of Technology

162. WEI, D.-z., Q.-g. WANG, and L.-n. LIN, Design and Application

of a SNORT System Based on Data Mining. Journal of Jimei

University (Natural Science), 2011. 5: p. 016.

163. Wei, M., Xia, L., and Su, J. (2011) Research on the Application of

Improved K-Means in Intrusion Detection. Communications in

Computer and Information Science, 243(2011), pp. 673-678

164. Werlinger, R. The challenges of using an intrusion detection

system: is it worth the effort?. In Proc. of the 4th symposium on

Usable privacy and security, pages 107 – 118. 2008.

165. Werlinger, R., Hawkey, K., Muldner, K., Jaferian, P., and

Beznosov, K. (2008) The Challenges of Using an Intrusion

Detection System: Is It Worth the Effort? University of British

Columbia, pp.1-2

166. Williams, R.(2014) Cyber crime costs global economy $445 bn

annually. [online] London: Telegraph. Available from

http://www.telegraph.co.uk/technology/internet-security/10886640

[Accessed 18th August 2015].

 163

167. Zanero, S. & Savaresi, S. M. Unsupervised learning techniques for

an intrusion detection system. 2004. ACM, 412-419.

 164

Appendix A: Project plan

A.1 Project Management Methodology

The project management methodology used in this project is a

modified approach of Method123 project management methodology, which

is a Prince2 based methodology. Method123 includes some activities which

are used with medium and large sized projects. Some of those activities not

applicable to this research project. Thus, Method123 has been tailored to

suit the project's size and requirements.

A.2 Project Schedule

Table A.1 shows the break down structure of the project, detailing its

phases, and activities while figure 1.3 shows the Gantt chart. This illustrates

the project schedule, showing that the project requires n working days for

completion.

 165

 Activity Start End
L

ite
ra

tu
re

 su
rv

ey

Investigation about honeypot 11/01/2011 09/30/12

Investigation about IDS 11/01/2011 12/31/11

Investigation about data mining
techniques 01/01/2012 03/31/12

Preparation for a conference 04/01/2012 07/31/12

Writing the first year report 08/01/2012 08/31/12

E
xp

er
im

en
t 1

 Requirement Analysis 09/01/2012 09/30/12

Design 10/01/2012 09/30/13
Implementation 10/01/2012 11/15/12

Evaluation 11/16/12 12/31/12
Preparation for a conference 01/01/2013 05/31/13

Writing the second year report 06/01/2013 07/31/13

E
xp

er
im

en
t 1

 Requirement Analysis 08/01/2013 08/31/13

Design 09/01/2013 09/30/13
Implementation 10/01/2013 09/30/14

Evaluation 10/01/2013 11/15/13
Preparation for a conference 11/16/13 12/31/13

Writing the second year report 01/01/2014 05/31/14

W
ri

tin
g

U
P

Chapter 2 06/01/2014 07/31/14
Chapter 3 08/01/2014 08/31/14
Chapter 4 09/01/2014 09/30/14
Chapter 5 10/01/2014 05/31/15
Chapter 6 10/01/2014 10/31/14
Chapter 1 11/01/2014 11/30/14
Chapter 7 12/01/2014 12/31/14

Finalizing the document 01/01/2015 01/31/15

Table A.1: The project schedule

 166

Fig A.1: GANT Chart

 167

A.3 Resource plan

In this research project, some software tools and equipment are

required along this research project. Table A.2 shows the schedule of

resource.

Resource Purpose of
usage Start Date End Date

Software

Method123 Project
Management 01/11/2011 01/08/2015

Wika Implementation 01/01/2013 01/08/2015

Implementation 01/01/2013 01/08/2014 PHP

Implementation 01/01/2013 01/08/2014 MYSQL

Virtual Machines Testing 01/01/2013 01/08/2014

Equipment

Machine with internet connection

01/11/2011 01/08/2015

Finding
information

from the
internet,

writing reports
and working in

the
development
environment.

Testing 01/01/2013 01/08/2014 Web Server

Table A.2: Resource plan

 168

A.3 Communications plan

Table 1.3 describes the communication activities required to get and

receive information in a timely manner.

Activity Time Frame Description

Phase Completion Discussion Yearly

Discussing phase outcomes and plan for

following phase (Meeting the

supervisor)

Feedback Request Monthly

Requesting a feedback from the

supervisor after completing a piece of

work (e.g. conference paper, design)

Table A.3: Communication plan

A.4 Risk plan

A.4.1 Feasibility – Automated Data Analysis

Likelihood Impact Priority

High High High

Risk Description:

In the project schedule, some activities may be

underestimated. Therefore, there is a chance to miss the deadline.

Contingency Plan:
This risk can be overcome by working in holidays and

increasing the number of working hours per day to 10 hour in order.

 169

A.4.2 Data Loss

Likelihood Impact Priority

High High High

Risk Description:

There is a chance to loss all project data and files due to

some hardware failure.

Contingency Plan:
It is essential to store the data in multiple device in addition to

a cloud storage area.

A.4.3 Feasibility – Automated Data Analysis

Likelihood Impact Priority
Medium Medium Medium

Risk Description:

In order to perform data analysis, various data mining

algorithms would be studied for their feasibility with regard to

application in anomaly detection autonomously. This would require

initial creation implementation based in offline data that would be

subjected to analysis. There is a risk that a rather than one technique,

a combination of methods would be useful for analysis.

Contingency Plan:

In order to mitigate this risk it would be ensured that

technique or combination of techniques that lead to high true

positive rate and low false negative rate would be selected. Based on

these results of initial feasibility for a data mining technique with

regard to anomaly detection, techniques would be selected for

implementation in automated data analysis.

 170

A.4.4 Implementation Issues

Likelihood Impact Priority

High Low Medium

Risk Description:

Implementation of analysis techniques may require

additional set of skills with regard to programming that researcher

may have to learn or get trained for. This may cause delay and can

have cascading effect on all the following activities.

Contingency Plan:

The researcher aims to use Java for purpose of development.

Various third party application programming interfaces have been

written for analysis techniques in Java, hence it would mitigate the

risk of delay caused due to creation of technique.

 171

Appendix B: Neural Network
Training Code

 172

Appendix C: Fuzzy Rules
Generation Code

 173

 174

Appendix D: Hybrid Module Code

 175

 176

 177

 178

 179

Appendix E: Network sniffing
module Code

 180

Appendix F: IP Information
Finder Module

 181

Appendix G: The reasoning
Module Code

 182

 183

Appendix H: The Network Sniffing
Module Code with a message
broker

 184

 185

Appendix I: The IP Information
Module Code with a message
broker

 186

 187

Appendix J: The Test Script for
Multi-stage Prediction

 188

	Chapter 1

	Introduction
	1.1 Background
	1.2 Motivations of the research
	1.3 Research Aim and objectives
	1.4 Thesis original contribution
	1.5 Research Methodology
	1.6 Thesis Outline

	Chapter 2

	Literature Review
	2.1 Introduction and Background
	2.2 Classification of Honeypots
	2.2.1 Low-Interaction Honeypots
	2.2.2 High-Interaction Honeypots

	2.3 Purpose of Honeypot
	2.3.1 Research Honeypot
	2.3.2 Production Honeypots

	2.4 Monitoring Methods of Honeypots
	2.5 Monitoring Methods of Low-Interaction Honeypots
	2.5.1 Mwcollect (Malware Collection Tool)
	2.5.2 Honeyd

	2.6 Monitoring Methods of High-Interaction Honeypots
	2.6.1 Sebek
	2.6.2 Honeynets
	2.6.3 Argos

	2.7 Advantages and Disadvantages of Honeypots
	2.8 Intrusion Detection Systems
	2.8.1 Overview
	2.8.2 Detection methodologies
	2.8.3 Limitations of Intrusion Detection Systems
	2.8.4 IDS Tools
	2.8.5 Evaluation Metrics of IDSs
	2.8.6 Offline Evaluation
	2.8.7 Online Evaluation

	2.9 Data Mining
	2.9.1 Overview
	2.9.2 Data mining limitations
	2.9.3 Genetic algorithms
	2.9.4 Artificial Neural Network
	2.9.5 Naive Bayes
	2.9.6 Decision Tree
	2.9.7 K Means
	2.9.8 Related Research Works to the first contribution
	2.9.9 Related Research Works to the Second Contribution
	2.9.10 Weka data mining tool

	2.10 Feature selection
	2.11 Discussion
	2.12 Summary

	Chapter 3

	Multi-Layer Classification System
	3.1 Introduction
	3.2 Classification Approach
	3.3 Data Set – KDD’99
	3.3.1 Overview
	1.3.2 Features of the Data Set

	3.4 Classifier Module
	3.4.1 Overview
	3.4.2 Naïve Bayes
	3.4.3 Decision Tree
	3.4.4 Experiment Environment
	3.4.5 All-Classes Based Model Creation Strategy
	3.4.6 Two-Classes Based Model Creation Strategy
	3.4.7 Chosen Model

	3.5 Reasoning Module
	3.5.1 Overview
	3.5.2 Neural Network
	3.5.3 Fuzzy Logic
	3.5.4 Experiment Environment
	3.5.5 Experiment Results

	3.6 Conclusion

	Chapter 4

	Multi Stage Attacks
	4.1 Introduction
	4.2 Analysis Approach
	4.3 Scenario A
	4.3.1 Trace file
	4.3.2 IP Involved in the Scenario
	4.3.3 Stages of the attack
	4.3.4 Summary of the Scenario
	4.3.5 Analysis Outcome:

	4.4 Scenario B
	4.4.1 Social Engineering
	4.4.2 Operation Shady Rat Attack
	4.4.3 Analysis Outcome

	4.5 Scenario C
	4.5.1 CRLF Injection
	4.5.2 Scenario C.1
	4.5.3 Scenario C.2
	4.5.4 Analysis Outcome

	4.6 Scenario D
	4.6.1 Vulnerable FTP Service
	4.6.2 Scenario Description
	4.6.3 Analysis Outcome

	4.7 Conclusion

	Chapter 5

	Multi Stage Attacks Prediction
	5.1 Introduction
	5.2 An overview of the proposed solution
	5.3 Network Sniffing Module
	5.3.1 Choosing a sniffing tool

	5.4 IP Information Finder Module
	5.4.1 IP geographic Location
	5.4.2 IP Block List
	5.4.3 IP Rating
	5.4.4 Implementation

	5.5 The reasoning module
	5.5.1 Data Mining Technique Selection
	5.5.2 Pre-processing the inputs
	5.5.3 Fuzzy logic
	5.5.4 Implementation
	5.5.5 Using Message Broker

	5.6 Summary

	Chapter 6

	Evaluation
	6.1 Introduction
	6.2 Logistics Evaluation
	6.2.1 Distributed Management
	6.2.2 Ease of Configuration
	6.2.3 Ease of Policy Management
	6.2.4 Outsource Solutions
	6.2.5 Platform Requirements
	6.2.6 Conclusion

	6.3 Design Metrics
	6.3.1 Adjustable sensitivity
	6.3.2 Data storage
	6.3.3 Multi sensor support
	6.3.4 Firewall Interaction
	6.3.5 Incident logging and notifications
	6.3.6 Packet Loss
	6.3.7 System throughput
	6.3.8 Conclusion

	6.4 Performance Evaluation
	6.4.1 Testing Data
	6.4.2 First Phase
	6.4.3 The Second Phase

	6.5 Conclusion

	Chapter 7

	Conclusions and Future Work
	7.1 Overview
	7.2 Automatic Creation for SNORT Rules
	7.3 Multi-Stage Attack Prediction
	7.4 Future Work
	7.5 Publications Related to this Thesis

	References
	Appendix A: Project plan
	A.1 Project Management Methodology
	A.2 Project Schedule
	A.3 Resource plan
	A.3 Communications plan
	A.4 Risk plan

	Appendix B: Neural Network Training Code
	Appendix C: Fuzzy Rules Generation Code
	Appendix D: Hybrid Module Code
	Appendix E: Network sniffing module Code
	Appendix F: IP Information Finder Module
	Appendix G: The reasoning Module Code
	Appendix H: The Network Sniffing Module Code with a message broker
	Appendix I: The IP Information Module Code with a message broker
	Appendix J: The Test Script for Multi-stage Prediction

