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Abstract 
 

Assessment of finger range of motion (ROM) is often required for monitoring the 

effectiveness of rehabilitative treatments and for evaluating patients' functional 

impairment. There are several devices which are used to measure this motion, 

such as wire tracing, tracing onto paper and mechanical and electronic 

goniometry. These devices are quite cheap, excluding electronic goniometry; 

however the drawbacks of these devices are their lack of accuracy and the 

time- consuming nature of the measurement process. 

 

The work described in this thesis considers the design, implementation and 

validation of a new medical measurement system utilized in the evaluation of 

the range of motion of the human finger joints instead of the current 

measurement tools.  

 

The proposed system is a non-contact measurement device based on computer 

vision technology and has many advantages over the existing measurement 

devices. In terms of accuracy, better results are achieved by this system, it can 

be operated by semi-skilled person, and is time saving for the evaluator. 

 

The computer vision system in this study consists of CCD cameras to capture 

the images, a frame-grabber to change the analogue signal from the cameras to 

digital signals which can be manipulated by a computer, Ultra Violet light (UV) to 

illuminate the measurement space, software to process the images and perform 

the required computation, a darkened enclosure to accommodate the cameras 

and UV light and to shield the working area from any undesirable ambient light. 

 

Two calibration techniques were used to calibrate the cameras, Direct Linear 

Transformation and Tsai. A calibration piece that suits this application was 

designed and manufactured. A steel hand model was used to measure the 

fingers joint angles. The average error from measuring the finger angles using 



iv 
 

this system was around 1 degree compared with 5 degrees for the existing used 

techniques. 

 

Key words 

Direct Linear Transformation, Tsai camera calibration, 3D computer vision, 

photogrammetry, Camera calibration, camera parameters, non-contact 

measurement system, fingers range of motion. 
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1 Introduction 
 
 

1.1 Problem identification 
 
The range of motion (ROM) at a joint in a limb is considered by many clinicians 

as a measurable and definable entity and is therefore often used as an 

assessment measure. Joint angle measurements are also used as an indicator 

for change and as an outcome measure to evaluate the result of medical, 

surgical and other therapeutic remedies (Ellis, et al., 1997). 

 

In most physiotherapy departments and orthopaedic clinics, medical staff often 

assesses the range of motion of a joint using traditional methods of 

measurement including visual estimation, goniometry, composite finger flexion 

to distal palmar crease (see Ellis, B., et al, 2002 for this method) and wire 

tracing or more sophisticated techniques such as a goniometric glove and 

electronic devices (Williams, et al., 2000 and Sturman, et al., 1994). 

 

Reliable and valid measurement of the active range of motion of hand joints is 

one of the most important factors in evaluating the outcome from injury, 

treatment, or disease of the hand (Bainbridge, 2000).It is normally required to 

evaluate three types of finger joints which are metacarpophalangeal (MCP), 

proximal interphalangeal (PIP) and distal interphalangeal joints (DIP), see 

Figure  1-1. 
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Figure  1-1: An anterior palmar view of the hand (Norkin, et al., 2003) 
 

When the motion of the hand needs to be assessed, the assessor should 

measure the finger joints, when it bends towards the palm of the hand (flexion 

motion) and when the finger moved towards the back of the hand (extension 

motion), see Figure  1-2, and with three joints per digit that means 

30measurementsshould be obtained for each hand, making a total of 60 

readings for both hands. However, due to the difficulties and time expenditure 

needed to obtain the range of motion, it is uncommon for patients to have their 

full range of finger motion measured except in legal cases. The doctor or 

surgeon uses general words such as; the motion is “improved”, “worse” or 

“same as last time”, as a result of lack of accuracy of the devices used.  

 
The present manual measuring tools produce  readings which have an accuracy 

of no more than ± 5 and the readings are generally rounded to the nearest 5 

or 10 (Bainbridge, 2000).  
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Figure  1-2: Extension and flexion motion of the fingers (Norkin, et al., 2003) 
 

1.2 The thesis motivation and objective 
 
This work was started after consultant surgeon Mr L.C. Bainbridge from Derby 

Royal Infirmary suggested that if a system that allowed automatic and rapid 

measurement of the range of motion of the hand could be designed, it would 

have great value in medical applications. In other words, for the first time 

doctors would be able serially to assess the improvement of the motion of the 

hands without difficulties and in a short period of time. Moreover, in legal cases 

requiring assessments for compensation, the results could be stored in the 

machine and retrieved if needed as evidence in court (Bainbridge, 2000).They 

would be also an accurate and repeatable, quantitative method of evaluating 

treatment regimes. 

 

Therefore, this work is a combination of engineering science represented by 3D 

computer vision technology and medical science represented by measuring the 

finger joint angles.    
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The ultimate scope of the work is to contribute to the knowledge in the field of 

hand motion assessment. The objective is to design, implement, and validate a 

computer vision system, which can be utilised in orthopaedic and rehabilitation 

clinics instead of the existing traditional devices, and help the assessor to have 

a precise knowledge and assessment of the motion of the patient’s fingers after 

treatment or surgery and to save the assessor’s time. Moreover, using this 

vision system, the data can be graphically displayed and easily recorded for 

future requirements.  

 

Also, we are aiming to get the process time below 1 minute for a single hand 

and the angular accuracy down to better than +/- 1 degree.  

1.2.1 Potential advantages of the proposed system 
 
The proposed system is expected to have the following advantages over 

existing hand measurement devices. 

 
 As the system will be based on computer technology, the measurement 

process is expected to take a short time and to produce good accuracy.  

 Data will be recorded and retrieved more easily (data on all digits of one 

or both hands could be integrated). 

 In case of legal issues, the outcome of an operation or treatment could 

be evaluated precisely, so the correct amount of compensation could be 

determined.  

 The proposed system should be user friendly as much as possible in 

order to be operated by a wide range of medical staff after simple 

training. 

 The system will help physiotherapists to follow up the progress on the 

screen via a graphical display. 

 The system will not include any mechanical or moving parts, so it will not 

need regular maintenance. However if the cameras are moved from their 

positions, the system will need to be calibrated again. 
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 The size of the proposed system will be less than 1m3 in order to occupy 

a small volume in the clinic, and could be easily moved around.  

 

1.3 Thesis methodology 
 
In this work the finger joint angles will be measured using computer vision 

technology and the procedures below will be followed: 

 

 Collecting all the information and equipment for the construction of the 

computer vision system. 

 Designing the calibration piece, according to the information which has 

been found in the literature and which suits the system and gives the 

highest accuracy. 

 Measuring the direction vectors of the bones in each finger of the hand in 

3D space, and then deducing the angles between these fingers. To do 

this, the finger skin of the patient will be marked at intervals along the line 

of the bone, and then these marks will be located in 3D space. 

 The vector along the skin is assumed to be parallel to the centre of the 

bone lineand that the bones are straight. 

 In order to measure all finger angles, several simultaneous views of the 

hand will be required. 

 A plane mirror will be added to the computer vision system to enable 

capturing images of the fingers at all positions.   

 A model of a human hand will be designed and manufactured to use as a 

test piece for measuring all the finger joints before measuring the real 

hand. 

 A Coordinate Measurement Machine or CMM will be used to measure 

the 3D world coordinate system ( ,  ,  )X Y Z  for the calibration points and 

to compare the angles of finger joints obtained from the vision system. 
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The data from the CMM will be compared with that obtained from the 

computer vision system. 

 Calibrating the cameras will be accomplished by using two popular 

calibration techniques. 

 The image in a computer environment is represented as a matrix, and 

the techniques used to calibrate the cameras involve matrices solving. As 

MATLAB is matrices based software package, it will be used to 

manipulate the images and in writing the code for this study. 

 

1.4 Thesis Outline 
 

A broad range of topics is covered in this thesis. An overview of the chapters is 

given in this section. 

 

Chapter 1: an introduction to the problem, the motivation for this study and the 

proposed method and strategy for solving the task. 

 

Chapter 2: gives an idea about the anatomy of the human fingers, and type and 

range of motion they can achieve. Also it includes a survey covering broadly 

most previous devices used and under research for evaluating finger joint 

angles. The advantages and the drawbacks for these tools are also reviewed. 

The last part of this chapter discusses the elements of the computer vision 

system and the function of each element.  

 

Chapter 3: discusses how the computer vision system is used to extract 3D 

information from 2D images.  Camera calibration, which is important in the 

3Dcomputer vision environment, is also explained. The two most popular 

camera calibration techniques, DLT and Tsai, are introduced and reviewed. 

 

Chapter 4: describes the components of the computer vision system for this 

study, and how to design a suitable calibration piece in order to increase the 
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efficiency of the computer vision system. It also illustrates the procedures that 

are used to calibrate the cameras and to measure the finger joint angles of a 

human hand model. The correspondences between the measurement points for 

all images are also explained. 

 

Chapter 5: describes the mathematical model which is obtained to examine the 

effect of the shift in X,Y and Z coordinates from the correct hand positions on 

the measured angles of the finger joints. Also in this part of the thesis; the 

computer vision system is tested. A hand model is designed and built to 

measure the angles of the finger joints. The results from the measurement 

process are discussed. Finally, to examine the system for measuring real 

fingers, the measurement process is implemented on two joints of a real human 

hand. 

 

Chapter 6: in chapter five, the measurement process involved assessment of 

finger joints by placing cameras above the hand. This position of the cameras 

does not allow images of the measurement points at all flexion positions to be 

captured. In chapter six, the system is modified so it becomes able to measure 

the hand movement at all positions.  

 

Chapter 7: summarizes the contribution and draws the conclusions of this 

research and gives a short outlook into the future. 
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2 Literature review 

 

2.1 Anatomy and the motion of the fingers 
 
The human finger consists of three joints as illustrated in Figure  1-1, the distal 

interphalangeal joint, abbreviated as DIP, the proximal interphalangeal joint, 

abbreviated as PIP and the metacarpophalangeal joint, abbreviated as the 

MCP. These joints have two types of motion, the primary motion being in the 

flexion-extension plane, Figure  2-1. Abduction and adduction are limited and 

occur only at the MCP joints, see Figure  2-2. 

 

The values of the flexion-extension motion vary from one joint to another.   

Table  2-1 (Norkin, et al., 2003) provides a summary of typical ranges of motion 

values for the MCP, PIP, and DIP joints of the fingers, for a healthy human 

(adult) male. Although these values were reported by different sources, it can be 

concluded that the PIP joints have the greatest amount of flexion followed by 

the MCP and DIP joints. The MCP joints have the greatest amount of extension. 

 
  Table  2-1: Finger motion in degree from selected  

Joint Motion AAOS 

(Degrees)

AMA 

(Degrees)

Hume,M. 

1990 

(Degrees)

Mallon, 

W. 1991 

(Degrees) 

MCP Flexion 90 90 100 95 

 Extension 45 20 0 20 

PIP Flexion 100 100 105 105 

 Extension 0 0 0 7 

DIP Flexion 90 70 85 68 

 Extension 0 0 0 8 

  AAOS = American Association of orthopaedic surgery. 
  AMA = American medical Association. 
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Figure  2-1: Flexion-extension motion (Greene, et al., 1994) 
  

 
 

Figure  2-2: Abduction / adduction motion (Greene, et al., 1994) 
 
 

2.2 Existing finger joints measurements devices 
 
Accuracy of a measurement refers to the difference between the quantity as 

measured and its true value (Thomas, 2000), and accurate measurement of 
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active range of motion of finger joints is very important for hand assessment 

(Macdermid, et al., 2001 and Dipietro, et al., 2003) in case of injuries or 

treatments. 

 

Precision or repeatability of a measurement is defined as the ability of a device to 

reproduce the same measurement over and over again under the same 

conditions (Thomas Y., 2000). A precise assessment allows disease progression 

and response to therapeutic interventions to be assessed (Rose, et al., 2002). In 

orthopaedic clinics the assessments are usually done by visual estimation or by 

means of simple tools, for instance wire tracing, traditional goniometry, or 

measurement of composite flexion and span (Low, 1976). However, some 

departments use more sophisticated techniques such as the goniometric glove 

and other electronic devices (Williams, et al., 2000, Sturman, et al., 1994). 

  

2.2.1 Visual estimation 
 
Visual evaluation was the first method used and is still commonly employed in 

clinical assessment of joint function (Salter, 1995). It is a quick, easy method, 

does not require any tools and can be used for all joints. The assessor looks at 

the joint range and visualises it against an imaginary protractor and the range 

expected in a healthy joint. 

 

There are potential sources of error when using visual estimation method. For 

instance, if the evaluator is inconsistent and views the joint from different angles, 

results may be ambiguous (Simpson, 2002). Rose, et al., 2002, demonstrated 

that this method is an inaccurate and unreliable technique of obtaining finger 

range measurements, and should only be used when other methods are 

unavailable. 
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2.2.2 Tracing onto paper 
 
Getting the digit joint angles by this method is done with a piece of paper which is 

placed between the fingers, and the profile of the bent finger is traced onto the 

paper using a pencil (Ellis, et al., 1997). The angles are then measured from 

marks made on the paper. This measurement method does not include the MCP 

joint and is very time consuming.  

 

2.2.3 Wire tracing 
 
Wire tracing is another traditional method in which solder wire is laid along the 

back of the hand and bent to conform to the angle of each joint. The wire is then 

lifted off the finger and laid on paper, then the angles are measured by tracing 

this wire onto a piece of paper ( Ellis, et al., 1997), This method is particularly 

useful for painful hands as there is less need to repeat movements. Wire tracing 

is a cheap method, and the whole hand can be recorded on one sheet of A4 

paper (Simpson, 2002).  However it has a low accuracy shows limitations as a 

reliable assessment tools and is slow (Ellis, et al., 1997).  

 

2.2.4 Composite finger flexion or pulp to palm measure 
 
In this method as the name suggests, a composite measure of finger range of 

motion, measured as the distance of the finger tip to a fixed point in the palm, is 

made by using a ruler (Ellis, et al., 2001), see Figure  2-3. 

 

Composite finger flexion is a quick, simple and cheap method and provides a 

measure which therapists and patients can use as an indicator of progress 

(MacDermid, et al., 2001). This method measures the distance of the digit from 

the palm so it reflects the functional ability to form a fist. The disadvantage of the 

Composite finger flexion method is that, change in range of motion does not 
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reflect an improvement or deterioration at a specific joint, unlike the 

measurement carried out using goniometry (Ellis, et al., 2001). 

 

 

Figure  2-3: Technique for measuring range of motion by using composite finger 
        flexion (Ellis, et al., 2001)  

                

2.2.5 Universal Goniometry 
 
The goniometer is one of the primary measures of hand function and involves 

measurement of the range of motion of the finger joints with a metal or plastic 

protractor (Weiss, et al., 1994). The two-arm goniometer is still the most widely 

used, most economical, and most portable device for evaluation of range of 

motion. The device consists of two connecting arms; one of these arms remains 

fixed but the other moves (Lea, et al., 1995).  There are many types of 

goniometer available on the market.   Figure  2-4 shows some of them. 

 

A goniometer is a simple measurement device and is a non-invasive method of 

quantifying the range of motion of joint angles which can be measured in a 

standing position or in flexion or extension (Jaegger, et al., 2002).However, 

measurement of total finger flexion by goniometry involves the measurement of 

flexion at the metacarpophalangeal, proximal inter-phalangeal and distal 

interphalangeal joints of a finger and adding these together. Total active motion 

is the total active flexion minus any loss of extension (extension lag) at the three 

finger joints. Therefore, total active motion measurement requires six separate 
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measurements for each digit (MacDermid, et al., 2001), which is very time 

demanding.  

 
Although traditional goniometry may be clinically acceptable, it is a static 

measure of dynamic function and can only be used to assess one joint at a time 

and the accuracy is no more than ±5º. Additionally, the position of proximal joints 

can influence the range of motion at the measured joint (Williams, et al., 2000). 

Subject error in finger joint measuring tends to be more complex than large 

joints, due to the large number of joints in a small space (Weiss, et al., 1994). 

 

 

  Figure  2-4: Universal goniometer (Cambridge, 1995) 
 
 

Another limitation of traditional goniometers arises because evaluating ROM 

simultaneously from all the hand is not easy, as the whole measurement process 

is tedious and time demanding for the assessor and the patient (Dipietro, et al., 

2003). Furthermore, if the fingers are injured the measurement process can 

cause discomfort to the patient. 

 

The traditional goniometer can be affected by several errors such as 

inexperience of the assessor (increase in error from not adhering to the standard 
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measurement technique), and instrument error which arises from using improper 

size of the instrument, for instance by using a large goniometer to asses a small 

bones or vice versa (Dipietro, et al., 2003). Also the recording of data is 

performed manually. 

 

2.2.6 Inclinometer or gravity-dependent goniometer 
 
The inclinometer offers an alternative to the universal goniometer for measuring 

the motion of the joint (Lea, et al., 1995). The inclinometer uses gravity’s effect 

on pointers and fluid level to measure joint position and motion (Norkin, et al., 

2003). There are two major types of inclinometers, mechanical and electronic. 

The mechanical inclinometers are based upon a weighted pendulum or a fluid 

level. The pendulum weighted inclinometer has a starting position indicated by 

the pendulum. In the fluid type the fluid level specifies the horizontal position 

(Lea, et al., 1995 and Gerhardt, et al., 2002). Figure  2-5 illustrates different 

examples. 

 

The electronic inclinometer has a specially programmed software and recording 

system and must be recalibrated horizontally or vertically against known vertical 

or horizontal system (Lea, et al., 1995). 

 

The main advantages of the inclinometer are that it enables the assessor to 

identify the same starting position on successive measurements, because gravity 

does not change (Gerhardt, et al., 2002).  

 

Inclinometer measurement is time consuming for assessing the finger joints as it 

measures one joint at a time. Moreover they are difficult to use on small joints of 

the fingers where there is soft tissue deformity or oedema (Clarkson, 2000 and 

Moore, 1978). 
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Figure  2-5: Mechanical (on the left) and fluid level inclinometers (Gerhardt, et al.,  
                  2002) 
 

2.2.7 Electrogoniometer 
 
The electrogoniometer is an electrical potentiometer that can be used to measure 

the joint angles. Changes in joint position cause the resistance of the 

potentiometer to vary, and the voltage output from the potentiometer can be 

calibrated so that the measured voltage can be read as a joint angle.  

 

Electrogoniometers are expensive and take time to calibrate so they are often 

used in research rather than in clinical assessment.  

 

2.2.8 HandMaster 
 
The HandMaster is an exoskeleton-like device worn on the fingers and hand. 

Using sensors (potentiometers) at the finger joints it can accurately measure the 

three joints of each finger as well as the complex motion of the thumb (Sturman, 

et al., 1994). 

 

The MCP, PIP and DIP joints for the index finger have been measured by the 

HandMaster and the goniometer. The results showed that the HandMaster has 

better reliability and greater sensitive compared with the goniometer (Weiss, et 
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al., 1994). However, this type of measurement devices takes time to be fixed on 

the hand and is difficult to use if the hand is seriously injured. 

2.2.9 Glove technology 
 

Typically, the therapist performs the hand measurements via a simple plastic or 

metal goniometers (Rand, et al., 1993), which must be placed on each finger joint 

to evaluate the flexion and extension angles (Dipietro, et al., 2003). Due to the 

limitations of the mechanical goniometers as mentioned in section 2.2.5 above, 

Glove technology has been of interest to researchers over the past few years. 

The gloves measure the range of motion of the finger joints as the hand is flexed 

and extended (Sturman, et al., 1994). 

 

The measurement process using gloves can be automated, which leads to less 

time demand for both the therapist and the patient. This in theory could reduce 

the costs of rehabilitative treatment. Another advantage is that the glove allows 

dynamic and simultaneous recording of all hand joints which is not achievable 

with the instruments used at present for the same purpose (Dipietro, et al., 2003). 

 

There are many gloves that have appeared in the literature and in the market 

place, such as the Sayre glove, DataGlove, Led glove, and the Mattel Power 

glove, which is based on acoustic tracker technology (Sturman, et al., 1994), and 

an instrumented glove (Rand, et al., 1993). 

 
The Gonimetric glove shown in Figure  2-6 is composed of a light, flexible grade 

of Lycra Flexion sensors, placed over the DIP, PIP, and (MCP) joints of the 

fingers. The accuracy of the glove is within the limits of traditional goniometry. 

The electronic glove may reduce or remove observer bias noted with traditional 

measurement devices. In addition, multiple joint angles can be recorded at any 

one time which will speed up the measurement process, which is an advantage 

over traditional goniometry (William, et al., 2000). However, gloves cannot be 

used if the injury to the hand includes swelling, bandages, splints, etc.  
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Figure  2-6 : The completed goniometric gloves, small and medium size (William,  
                    et al., 2000) 
 
 
Table  2-2: Comparison between existing finger joints measurements  
                 devices     

 Assessment 
time  

Accuracy Cost  Repeatability Resolution Drawback 
 

Visual estimation Very short inaccurate and 
unreliable 

N/A Low data not 
available 
 

Not reliable 

Tracing on paper Time 
consuming 

Low Cheap Low data not 
available 
 

Does not 
include the 
MCP 

Wire tracing Slow  Low Cheap  data not 
available 
 

data not 
available 
 

Not reliable 

Universal 
Goniometry 

Time 
consuming 

Low (±5°) Cheap   5 degrees 4 data not 
available 
 

Assess one 
joint at a time 

Goniometric Glove quick 5.6 degrees 1 Expensive ± 2 .3 degrees 1 1 degree 1 Does not suit 
swelling or 
injured  hands 

Inclinometer Time 
consuming 

 ±2 degree 2 Reasonable data not 
available 
 

 0.01 degree 2 Measures one 
joint at a time 

Electrogoniometer 
 

Time 
consuming 

5-7 degrees 3 Expensive 1 degree 3 data not 
available 
 

Measures one 
joint at a time 

1) Wise, et al (1990). 
2) Wikipedia (2013). 
3) Thomas, et al (2000). 
4) Macionis (2013). 
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All the finger joint measurement techniques explained in section 2.2 above are 

based on direct contact measurement i.e. the device must be kept in contact with 

the fingers. Other approaches that are based on non-contact measurement can 

be used to evaluate the range of motion of the hand, by using optical devices. 

 

There are two common non-contact measurement methods, the first uses 

markers on the object such as small infrared-reflecting points, flashing infrared 

LEDs or any other material which glows under some circumstances. Two or more 

cameras distributed around the subject capture the markers in their fields of view. 

Software matches the markers from the multi-cameras and Three-dimensional 

(3D) coordinates for each mark can be obtained using different reconstruction 

techniques (Sturman, et al., 1994). In this work, a similar non-contact 

measurement system was designed known as a computer vision system. 

 

The second non-contact measurement approach uses one camera and a mirror, 

so the camera capture two images of the same object one image of the real 

object and the second trough the mirror. Then the image coordinates of each pair 

of symmetric points of the two images are used to reconstruct the 3D coordinates 

of the object (Sturman, et al., 1994 and Zhang, et al., 1998). 

 

2.3 Three-dimensional Computer vision system 
 

2.3.1 What is a Three-dimensional computer vision system? 
 
The Three-dimensional (3D) computer vision system is a system in which a 

computer understands or extracts features in 3D scenes from visual input (Shirai, 

1992, Leta, et al., 2006). The visual input may be a monocular image, a range 

image or time sequence images. 

 

A computer vision system recovers useful information about a scene from its 

two–dimensional projections. Since images are a two-dimensional projection of 
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the three-dimensional world, the information is not directly available and must be 

recovered (Jain, et al., 1995) by means of software analysis. 

 

A major problem associated with 3D computer vision is that a 3D scene may 

include many objects which look different depending on the viewer direction, 

illumination conditions, and geometrical relations among objects (Shirai, 1992). 

 

2.3.2 Why use a computer vision system? 
 

Computer vision technology is important in many industrial applications, and it 

improves productivity and quality management and provides a competitive 

advantage to industries that use this technology. These include electronic 

manufacturing, medical diagnosis, virtual reality systems, glass making, food 

production, automated assembly, automotive manufacturing, pharmaceutical and 

medical, container and packaging and so on (Kerr, 2003, Lin, et al., 2003). 

 

With the advent of low-cost computational hardware, computer vision systems 

have emerged as financially viable devices in automated manufacturing and 

measurement systems (Lin, et al., 2003, Chen, 2002). 

 

Computer Vision offers accuracy, consistency, and repeatability, in contrast to 

the subjectivity, fatigue, slowness, and cost associated with human inspection 

(Leta,et al., 2006). The advantages of using a machine vision system for 

assessment include a decrease in the time required for measurement as well as 

greater accuracy of non-contact measurements and better flexibility than the 

conventional methods (Chen, 2002). 

 

2.3.3 Factors that affect the performance of the computer vision system 
 
As mentioned above the computer vision system has many advantages. 

However, it requires a lot of effort and cost to develop a reliable 3D measuring 
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system (Lin,et al., 2006).The essential problem of using computer vision 

techniques consists in image quality, as image analysis requires the features of 

interest be well defined. The choice of the most suitable method to pre-

processing and threshold the image into its two main components (the object and 

the background), must be sufficiently robust to obtain images without information 

loss (Leta, et al., 2006). 

 

Like the human eye, vision systems are affected by the level and quality of 

illumination. By adjustment of the lighting, the appearance of an object can be 

changed with the feature of interest clarified or blurred. Therefore the 

performance of the illumination system can affect the quality of the image and 

plays an important role in the over all efficiency and accuracy of the system 

(Brosnan, et al., 2004). 

 

Also, computer vision systems are subjected to human error during the 

calibration process, as the centre of the calibration points measured by a 

machine, such asa coordinate measurement machine, may not coincide with the 

centre measured by the vision system. 

 

Other sources of errors result from electronic devices, for instance the camera 

analogue signal connected to the computer through the frame grabber. During 

the sampling process, mismatch between the pixel locations in the camera 

sensor and those in the sampled image may occur (for more details see(Lenz, et 

al., 1990 and Horn, 2000)).Moreover cameras often have noticeable geometric 

distortions caused by the optical system that can affect the accuracy of the 

computer vision system (Tsai, 1987). 

 

2.4 Some applications of computer vision systems. 
 
3D Computer vision systems have many applications in medical and industrial 

sectors. These applications include automatic quality control or inventory 
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management systems, computer-assisted surgery, security surveillance, as well 

as, 3D human tracking in sport and medical science and 3D medical images 

(Henderson, 2003). 

 

Ringer, et al., (2000) proposed a tracking technique and 3D reconstruction of 

human location. The scheme uses a number of video cameras and the aim is to 

obtain complete and accurate information on the three-dimensional location and 

motion of the bodies over time, see Figure  2-7. 

 

The system uses markers placed at the joints of the arm(s) or leg(s) being 

analysed. The location of these markers on each camera’s image plane provides 

the input to the tracking system, see Figure  2-8. It has many applications in 

medicine, sports analysis and motion capture for animation. 

 

 

Figure  2-7: Parameters used to describe the position of a leg (Ringer, 2000) 
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Figure  2-8: Example of the proposed system tracking the legs of a person 
                        Walking (Ringer, 2000) 
 
Aguilar, et al., (2005), developed a stereo system to measure free-form surfaces 

of railway concrete sleepers (Figure 2-9) and calculate track and rail seat 

dimensional tolerances, to replace Digital measurement of concrete sleeper 

dimensions using digital venires and data loggers. The system consists of CCD 

cameras which calibrated using the calibration object shown in      Figure  2-10.  

During the calibration, the geometry, position and orientation of the cameras are 

calculated using the Tsai non-coplanar method. 

 

 

 

                 Figure  2-9: Railway concrete sleepers (Aguilar, et al., 2005) 
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     Figure  2-10 : Calibration object used by Aguilar, et al., (2005) 

 

To obtain the 3D coordinates of the measured points the triangulation technique 

was used. For evaluating the accuracy, the same points are measured with a 

coordinate measurement machine (CMM) and compared with the obtained 

results. 

 
Bin, et al., (2010) used Direct Linear Transformation algorithm to reconstruct 3D 

of femur from biplanar radiography. Firstly the camera parameters were obtained 

using DLT technique. To produce the 3D information of the femur, they do not 

use and markers, however this method is based on the principle that the 

anatomical landmarks can be found in the 2D contours of the two images. 

 

Two X-ray radiographs (antero-posterior (AP) and lateral (LAT)) of the femur 

were used to reconstruct the 3D of the femur. To process these images, the 

median filter was applied to filtering out the noise, and then canny edge detection 

was used to detect the edges, the output image shown in Figure  2-11. 

Figure  2-12 shows the 3D of the femur. 
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Figure  2-11: The final results of edge detection of two X-ray images of the femur  
                     (Bin, et al., 2010) 
 
 

 
 

Figure  2-12: 3D femur (Bin, et al., 2010) 
 
 
Instead of using multiple cameras, and to reconstruct 3D information, Zhang, et 

al., (1998) utilized a single camera and a plane mirror. Thus the object and its 

image in the mirror will form a bilaterally symmetric structure. Then the image 

coordinates of each pair of symmetric points are used to reconstruct the 3D 
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coordinates of the object. For finding the intrinsic and extrinsic camera 

parameters, Tsai’s algorithm was adopted  

 

Figure  2-13 (a) shows the image of a cardboard box in front of a plane mirror and 

Figure  2-13 (b) shows the shape of the box determined by the six 6 vertices of 

the box that are visible both in and outside the mirror.  

 

Due to limitation of the geometry, only a fraction of an object and its 

corresponding image in a plane mirror can be simultaneously visible in a single 

view. This fraction is usually less than 1/2. In order to reconstruct a large part of 

the object, two or more mirrors may be placed at different orientations and 

locations, so a large part of the object can be reconstructed. 

 

 
(a)                      (b) 
 
Figure  2-13: The cardboard box and the house model and their recovered 
                    structures (Zhang, et al., 1998) 
                      

2.5 Elements of a computer vision system 
 
A computer vision system (Figure  2-14) consists of all the elements necessary to 

obtain a digital representation of a visual image, to modify the data, and to 

present the data to the external world. In an industrial environment, the system 

may seem complex due to all the associated manufacturing process equipment 
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used. However the complexity is reduced when the vision system is divided into 

three main components (Galbiati, 1990). 

 Image acquisition 

 Processing 

 Output or display 

 

 

 

Figure  2-14: Computer vision system 
 
 

2.5.1 Image acquisition 
 
Image acquisition converts the image of a physical object into a set of digitized 

data which can be used by the processing unit of the system. The acquisition 

function can be regarded as consisting of four phases. 

 Illumination 

 Image formation and focusing 

 Image detection 

 Camera and output signal   

 

Frame 
Grabber

Object 

Camera 
and Lens

Power 
Supply 

Light 

PC and 
Softwar

Cabling
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2.5.2 Illumination 
 
One of the complications that have troubled the computer vision system design is 

the variability of an object’s appearance from one image to another. With slight 

changes in lighting conditions and viewpoint often come large changes in the 

object’s appearance (Belhumeur, et al., 1998). 

 

How the object appears in a computer vision system can be significantly affected 

by the illumination. By carefully choosing type, position and direction of the 

illumination light source, the contrast between the features in the object and the 

background can be enhanced, thereby simplifying the automatic computer vision 

task. Light always makes the difference between the success and failure in a 

vision system (Titus, 2001). 

 

A lighting system must deliver as much light as evenly as possible to the units in 

the camera's field of view (Masi, 1998).  However, uneven illumination, in 

principle, sometimes can enable the vision system to distinguish between or 

recognize different objects in the images. 

 

Many industrial computer vision applications in the past have used visible light 

since the source was available and the application frequently was the automation 

of a manual inspection task. There are three types of visible lamps most 

frequently used in computer vision applications: fluorescent, tungsten-halogen, 

and LEDs. However, the use of illumination outside the visible range, such as 

ultraviolet, x-ray, and infrared is increasing because of the need to achieve 

special tasks which are not possible with visible light.  

 
Environmental illumination can affect all lighting methods by changing the total 

level of illumination on the object which appears as noise in the data. The affect 

of environmental illumination can be reduced by the use of light shields and 

barriers which reduce or prevent the amount of stray radiation entering the lens, 

also by using of automatic thresholding in software. 
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2.5.3 Image formation and focusing 
 
The image of the scene is focused on the sensing element with a lens, in a way 

similar to that in a photographic camera. The difference between the 

photographic camera and the computer vision system is that a camera uses film, 

and a computer vision system uses a sensor instead, to capture the image. The 

sensor converts the image to an electrical signal. 

 
The computer vision camera is usually specified separately from the vision 

system as the capability and feature requirements are dependent on the 

application. In addition the camera lens specification must be given as it is the 

element which adapts the camera to the specific task. There are four important 

parameters connected with the optical lens of the vision system. 

 
1. Magnification 

2. Focal length 

3. Depth of field 

4. Flange back length (Lens mounting) 

 

Magnification (m) is a measure of the relative size of the object to the size of the 

image formed on the sensor of the camera. The magnification value will be less 

than 1 in the case of conventional industrial applications, since the dimension of 

the detector is smaller than the object being viewed. In the case of microscopic 

application the value of m will be greater than 1 (Burger, et al., 2009 and Bueche, 

1977).  

 
The focal length of a lens is the distance along the optical axis from the lens to 

the focus (or focal point). The f-number (focal ratio) expresses the diameter of 

the diaphragm aperture in terms of the effective focal length of the lens. The 

greater the f-number, the less light per unit area reaches the focal plane of the 

camera sensor (Demant, et al., 1999). 
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The depth of field is a function of aperture size, magnification, and size of the 

sensor elements. A smaller aperture provides more depth of field but admits less 

light; a larger aperture admits more light but reduces the depth of field. The 

smaller the pixel areas of the sensor the smaller the depth of field (Nelkon, et al., 

1979 and Demant, et al., 1999). 

 
The flange distance, also known as lens mount, is the distance from the back of 

the lens flange to the sensor plane. There are two types of flange back lengths: 

 

C-mount- distance from the back of the lens flange to the sensor is 17.526 mm 

CS-mount- distance from the back of the lens flange to the sensor is 12.526 mm 

(Demant, et al., 1999). 

 

2.5.4 Image detection 
 
In order to acquire a digital image a device should be sensitive to the energy 

radiation that is reflected or scattered by the object that is being imaged.  

 

The lens focuses the image of the physical object onto the sensor. The sensor 

element produces an electrical signal representing the visible image. The 

digitizer then converts the output of the sensor into a digital signal which can be 

understood and processed by a computer. The amount of electrical output from 

the sensor is proportional to the light intensity, and the digitizer changes this 

analogue signal into digital form (Galbiati, 1990). 

 

2.5.5 Solid state camera and output signal 
 
Solid state cameras such as charge coupled device (CCD), charge injected 

device (CID), or multiplexed photosensor are the most widely used devices in 

computer vision systems, because they are relatively cheap, reliable and rugged. 

The camera works as transducer and all image processing happens after the 
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camera video signal is sampled and digitized to obtain a matrix of numbers in the 

frame buffer (Wittels, et al., 1989). 

 

The basic concept behind the solid state camera is that a separate electrical 

signal is produced for each pixel element in the sensor. The sensor can be 

arranged in either a linear or in a rectangular array. The output of the sensor is a 

series of voltage pulses representing the light intensity at the pixel location. Solid 

state cameras are not subject to blooming and flare, virtually no geometric 

distortion, drift or lag and they are light, rugged and consume little power. Solid 

state sensors compromise CCD, CID, CMOS (complementary metal oxide 

semiconductor), and CPD (charge priming device) (Galbiati, 1990).  

 
The charge couple device or CCD is a sensor based on semiconductor 

technology. CCDs have become the sensor of choice because they do not suffer 

from geometric distortion and their response to incoming light does not weaken 

with long exposure times.  

 
A CCD consists of an M by N rectangular grid of photosensors which are 

sensitive to light intensity. Each photosensor can be considered as a very small 

rectangular black box which converts light energy to voltage. The physical area 

of the array is typically 6.4 mm ×4.8 mm (for a half inch format sensor).  

 

When the light falls on a CCD, the photosensors accumulate an amount of 

electric charge proportional to the illumination time and the intensity of the 

incident illumination. The output of the CCD array is a continuous electric signal, 

The signal is then sent to an electronic device called a frame-grabber, where it is 

digitized into a 2D rectangular array and stored in a memory buffer (the final 

digital storage area for the image shown by a computer display) (Efford, 2002  

and Sonka,  et al,1999).  

 
The output of most analogue image sensors is a continuous voltage waveform in 

which the amplitude and spatial behaviour are related to the physical 
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phenomenon being sensed. In order to produce a digital image, the continuously 

sensed data needs to be converted into digital form. This consists of two 

processes: sampling and quantization. 

 

Sampling and quantization are the processes that convert the continuous image 

irradiance as it is projected by an optical system onto the image plane into a 

matrix of digital numbers that can be stored and processed by a computer 

(Jähne, 2002).  

 
The result of sampling and quantization of the image function ( , )f x y  is a two-

dimensional array of points. A point on the dimension grid is called a pixel or pel. 

Both words are an abbreviation of “picture element”. The position of the pixel is 

given by the common notation for a matrix. The first index, m, denotes the 

position of the row, the second, n, the position of the column, as shown in               

Figure  2-15.  

 
              Figure  2-15: Digital image represented by a matrix 

 
 
If the size of the digital image is M by N pixels, i.e. is represented by an M × N 

matrix, the index n runs from 0 to N -1 and the index m runs from 0 to M - 1. The 

vertical axis (y axis) runs from top to bottom not vice versa as it is common in 
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graphs. The horizontal axis (x axis) runs from left to right. N coordinate values 

along the first row of the image are (0, 1) and so on until the coordinate values 

(0, N-1), and the same for the columns (Jähne, 2002). 

 
The digital image can be written in matrix form as: 

 

(0,0) (0,1) ... (0, 1)

(1,0) ... ... (1, 1)
( , )

... ... ... ...

( 1,0) ( 1,1) ... ( 1, 1)

f f f M

f f M
f x y

f N f N f N M

 
  
 
     

                             (  2-1)

 

 
Dense sampling produces a high resolution image in which there are many 

pixels, each pixel represents the contribution of a very small part of the scene. By 

contrast coarse sampling produces a low resolution image in which there are few 

pixels, each pixel represents the contribution of a relatively large part of the 

scene to the image (Efford, 2002). Image resolution is defined as the smallest 

number of discernible line pairs per unit distance; for instance, 2540 line pairs per 

inch (Gonzalez, R, et al, 2002).     

 

2.5.6 Image processing techniques 
 
Image processing techniques involve two steps, image enhancement and image 

segmentation. 

 

a) Image enhancement: 

Random and systematic noise can appear in the image data because of the 

physical limitations of the hardware used for image acquisition. In addition, the 

image may contain data features which are not of interest or which mask the 

items of interest. So the image should be enhanced before applying any 

segmentation technique. 

 

Image enhancement is the process of manipulating an image so that the output 

image is more suitable than the input image for a certain application. The 
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enhancement methods are problem oriented. For example a technique that suits 

the enhancement of X-Ray images which was taken under restricted conditions 

may not be the best approach for enhancing an image that taken under natural 

illumination. So choosing the proper enhancement technique depends on the 

nature of the image under investigation. 

 

Image enhancement is one of the most important issues in image processing and  

A lot of techniques have been developed. 

 
One of the simplest and most useful image enhancement operations involve the 

adjustment of brightness and contrast in the image. The usual reason for 

manipulating these quantities is the need to compensate for the difficulties in 

image acquisition. Without the aid of image processing, the image may need to 

be re-acquired several times, adjusting the exposure each time until satisfactory 

results are obtained (Galbiati, 1990). 

 

b) Image segmentation: 

Image segmentation is very essential and critical in many image, video, and 

computer vision applications. It is used to partition the object of interest from the 

background, which ideally to identify which part of the data array makes up the 

objects of interest in the real world. Segmentation supports tasks such as 

measurement, visualisation, registration and reconstruction, each task of them 

has specific needs. For example, the demand for accuracy is much higher for 

measurement than for visualisation. Many segmentation methods have been 

developed such as edge detection, thresholding, shape detection, nearest 

neighbour classification and so on. 
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2.5.7 Thresholding 
 

Thresholding has been a popular tool used in image segmentation for separating 

objects from background (Tsai, 1995), especially in those images where pixels 

belonging to the object are substantially different from the grey levels of the 

pixels belonging to the background.  

 

In the thresholding process, the pixels having a grey scale value at or below a 

given threshold value are given a zero value (black) and all above the threshold 

are set at one (white) (Gonzalez, et al., 2002), (Galbiati, 1990). 

 

Many thresholding techniques are available in the literature, (Lin, 2003), and 

most of these methods can be classified into two categories: global and local 

thresholding. A global technique finds a single threshold value for the entire 

image, whereas the local ones use information obtained from a certain size of 

neighbourhood, or a certain reference domain within the image (Sue, et al., 

2003).  

 

 
a) Global thresholding: 

If the background grey level is reasonably constant throughout the image, and if 

the objects all have approximately equal contrast above the background, then a 

fixed global threshold (T) will usually work well. 

 

A thresholded image ),( yxg  1     if  ),( yxf > T and  

   ),( yxg  0     if  ),( yxf   ≤ T 
 
Where: ),( yxg is the thresholded image 

  ),( yxf is the grey level of point (x, y) 
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b) Local thresholding: 

In many cases, the background grey level is not constant, and the contrast of an 

object differs between the objects in the scene. In such cases, the thresholding 

value which can be applied in one area of the image might not work well in other 

areas. In these situations, it is better to use a threshold grey level that is slowly 

varying throughout the image, according to some local image property 

(Gonzalez, et al., 2002 and Castleman, 1996). 

 
When the thresholding value T depends only on ( , )f x y  (the grey level values) 

the thresholding is called global. If T depends on both ( , )f x y  and some local 

property of the point (x, y) for instance the average grey level of a neighbourhood 

centred on (x, y), this type of threshold is called local. If T depends on the spatial 

coordinates x and y, the threshold is called dynamic or adaptive. 

 

2.6 Conclusions 
 
The human finger consists of three joints DIP, PIP, and MCP. These joints have 

two types of motion; the primary motion is in the flexion-extension plane. 

Abduction and adduction are limited and occur only at the MCP joints. 

 

There are several existing tools for measuring the angles of the finger joints, they 

are considered as contact measuring devices, which sometimes can be difficult 

to use especially if the hand is suffering from serious injuries or damage. 

 

Some of these existing tools are quite cheap, however the time demand for the 

assessor and the patient, and the lack of accuracy are the major drawback of 

these devices. Also most of the existing devices assess one joint at a time, so it 

takes longer to measure all of the fingers joints.  

 

A computer vision system can be used to assess the finger joints instead of the 

current tools. Such a system is non-contact and harmless to the patient. As the 
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proposed system is based on computer technology, the measurement process is 

expected to be achieved in a few seconds. If the accuracy of the system 

achieves ±1 degree, compared with the measurements obtained from the CMM, 

then it will compete with the existing tools, such as Universal Goniometry and 

visual estimation. Moreover this system in a non-contact measurement tools 

which  has no effect on human hand in case if it is injured or swollen, unlike wire 

tracing, Inclinometer, and hand gloves which are difficult to use if the hand is 

seriously injured. 

 

However, to develop a reliable 3D computer vision system takes a lot of effort 

and cost as there are many factors that influence the overall efficiency and 

accuracy of the system. 
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3 Camera calibration and reconstruction of 3D 
coordinates 

 

3.1 Summary 
 

This chapter explains how the computer vision system is used to extract 3D 

information from 2D images, and the two most popular techniques which have 

been used to calibrate the cameras in order to deduce the camera parameters. 

 

The first part illustrates the four steps method, which was introduced by Tsai 

(Tsai, 1987), and how this method can be implemented to calculate the camera 

parameters. The mathematical procedures required to reconstruct the 3D world 

coordinate from the image system are then shown. 

 

The second part shows an alternative calibration technique which was introduced 

by Abdel-Aziz and Karara (Abdel-Aziz, 1971) and is known as the Direct Linear 

Transformation or DLT. This method is easier than the four steps method 

because it is based only on solving a linear equation. Also, this part 

demonstrates how 3D information can be obtained. 

 

3.2 Introduction 
 
Camera calibration is a crucial problem and an important step towards 

computational computer vision, i.e. for extracting 3D information from 2D images 

(Salvi, et al., 2002 and Robert, 1996). Accurate camera calibration and 

orientation procedures are a necessary prerequisite for the extraction of precise 

and reliable 3D metric information from images. 

 

In principle, to use cameras to extract 3D information from a scene, there are two 

techniques: stereovision or by camera calibration. Stereovision is a technique for 

recovering the 3D structure of a scene from two different viewpoints. From a pair 
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of images and by using this technique the 3D coordinates of a physical 3D point 

can be computed by triangulation (Orteu, 2009), for more detail see (Orteu, 2009, 

Efford, 2000, and Gonzalez, et al., 2002). As soon as the accuracy requirement 

increases, then this method is no longer sufficient (Würz-Wessel, 2003). 

 

The camera calibration approach is a mathematical model which can be used to 

deduce 3D world coordinates of an object from two or more 2D images.  

Depending on the required accuracy, the calibration algorithm starts from solving 

a linear equation and goes on to use a more sophisticated and complex model. 

 

There are different requirements for camera calibration. In some robotics 

applications for instance, the calibration procedure should be fast and automatic, 

however in metrology applications the accuracy is a more important factor 

(Heikkila, 2000). 

 

3.3 What is camera calibration? 
 

Camera calibration is a necessary step in 3D computer vision in order to extract 

metric information from 2D images (Zhengyou, 2000). The purpose of this 

calibration is to create the relationship between 3D world coordinates and their 

corresponding 2D image coordinates. Once this relationship is established, 3D 

information can be inferred from 2D information, and vice versa (Luong, et al., 

1992). 

 

One common method for extracting 3D information from intensity images is to 

acquire a pair of images using two cameras placed apart from each other. Two 

corresponding points in these two images result in 3D information. As an 

alternative, two or more images, taken from a moving camera, can also be used 

to compute 3D information (Zehang, et al., 2001). 
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Camera calibration in the context of three-dimensional computer vision is the 

process of determining the internal camera geometric and optical characteristics 

(intrinsic parameters) and the 3D position and orientation of the camera frame 

relative to a certain world coordinate system (extrinsic parameters), which 

represent the first step in 3D computer vision measurements. Generally, the 

overall performance of the computer vision system strongly relies on the 

accuracy of the camera calibration (Heikkila, 1997). 

 

3.4 Why We Need Calibration 
 

One of the important aims of 3D computer vision is to find the position of objects 

in real space. We measure everything in real space by establishing a reference 

frame, which is called the world reference frame. An object in an image is 

measured in terms of pixel coordinates, which are in the image reference frame.  

 

Because we know the distance between pixels in an image, and do not know the 

distance between these pixels in the real world, we must create some equations 

to link the world reference frame and image reference frame in order to find the 

relation between the coordinates of points in 3D space and the coordinates of the 

points in the image. 

 

The difficulty is we cannot find the relation between those two reference frames 

directly. To link these frames together, we need another reference frame called 

the camera reference frame. The basic idea is to find an equation linking the 

camera reference frame with the image reference frame, and another equation 

linking the world reference frame with the camera reference frame. Solving this 

system results in the relation we are interested in (Zhengyou, 2000). 

 

The problem of camera calibration is to compute the camera extrinsic and 

intrinsic parameters. Extrinsic parameters are the parameters that define the 

location and orientation of the camera reference frame with respect to a known 
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world reference frame. Intrinsic parameters are the parameters necessary to link 

the pixel coordinates of image points with the corresponding points in the camera 

reference frame (Zehang, et al., 2001). 

 

A direct measurement of the extrinsic and the intrinsic parameters of a camera 

positioned in 3D space is technically impossible or not feasible. Because of this, 

camera parameters are calculated indirectly using suitable calibration techniques 

(Klette, et al., 1998). Calibration of a camera is the procedure of indirectly 

measuring these parameters in practice. 

 

3.5 Calibration Techniques 
 
Several calibration techniques for the determination of extrinsic and intrinsic 

parameters have been published such as Abduel-Azez and Karar (1971), Tsai 

(1987), Heikkila& Silven (1997), and Zhang (2000). To review them is outside the 

scope of this work (for different camera calibration approaches see Tsai, R.1986, 

Salvi, et al., 2002 and Würz-Wessel, 2003). These are all based on the pinhole 

camera model. They generally include measurements which enable almost direct 

calculation of camera position and orientation, as well as internal camera 

parameters (Dapena,  et al., 1982). 

 

The calibration techniques can be roughly classify into two categories: standard 

calibration and self-calibration (Maybank, et al., 1992 and Zhang, 2000). 

 

3.5.1 Standard and classical calibration 
 

The standard calibration method, see Figure 3-1, uses a calibration object, 

whose geometry in 3D world coordinates is known with very good accuracy. 

These 3D world coordinates can be obtained by using a modern machine, such 

as a Coordinate Measurement Machine (CMM), which has an accuracy of 0.7 

μm. Then the calibration object is put in the field of view of the cameras in order 
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to find the relation between world coordinates and image coordinates from which 

the parameters of the cameras can be extracted (Ji, et al., 2004).  

 

There are many standard calibration techniques available from the literature and 

the most popular two are the Direct Linear Transformation and Tsai camera 

calibration. The standard calibration methods are unsuitable in many applications 

because the camera must be directed toward a calibration pattern. So another 

calibration technique was developed known as camera self-calibration (Maybank, 

et al., 1992 and Zhang, 2000). 

 

 

     Figure  3-1: Standard calibration method 
 

3.5.2 Camera self-calibration 
 
The self-calibration technique does not use any calibration object, and performs 

calibration using the matched 2D points in different views (Dai, et al., 2001). 

Camera self-calibration is especially important in circumstances where reference 

objects cannot easily be placed in the environment (e.g., for the remote control 

robot). Therefore, the camera extrinsic parameters, i.e. the position and 

  
Cameras 

 Calibration 
points 

Calibration 
object 
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orientation of the camera relative to the world coordinate system, are not 

involved in self-calibration methods. Camera self-calibration is not the interest of 

this work; more details about this technique can be found in (Maybank, et al., 

1992 and Sang, 1996). 

3.6 Calibration objects 
 
Choosing the size and the shape of the calibration object depends on the 

purpose of the application. There are pre-manufactured calibration objects which 

can be used to calibrate the cameras such as the ones shown in Figure  3-2, 3-3, 

and 3-4. The 3D world coordinates for these calibration objects are already 

measured so there is no need to use a CMM or other device to find the 3D world 

coordinates.  

 

However, the size and distribution of these pre-manufactured calibration objects 

do not always satisfy all computer vision system applications. In other words, 

some computer vision systems required a specially designed and manufactured 

calibration object, as in the case of this work. 

 

The geometry of the objects that are used for calibration needs to be known very 

accurately (Allard, et al.,(1995) stated that Doeblin (1975) recommends use of a 

calibration standard 10 times as accurate as the accuracy required of the device 

being calibrated). The 3D coordinates of the calibration object can be obtained 

with some specific devices such as theodolites (Robert, 1996) or a Coordinate 

Measurement Machine (CMM). 

 

According to the nature of the measurement process, the calibration points can 

be light emitting diodes (LEDs) that usually emit infrared light, or light reflecting 

points that reflect ambient or projected light (Sturman, et al., 1994). 
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Figure  3-2: framed calibration piece. The 
                  calibration points are the         
                  white balls (Klette, et al,1998) 
     

Figure  3-3: open cube calibration piece. The
                  calibration points are the black    
                  spots (Klette, et al., 1998) 
 
 

 

Figure  3-4: Two perpendicular plates, The calibration points are corners of the small    
                   squares region(Robert, 1996)              
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3.7 Camera parameters 
 
Computer vision algorithms for reconstruction of the 3D structure of a scene or 

for computing the position of objects in space need equations linking the 

coordinates of points in 3D space with the coordinates of their corresponding 

image points. There are two types of camera parameters: 

 

3.7.1 External parameters (Extrinsic) 
 
The camera reference frame is often unknown, and a common problem is how to 

determine the location and orientation of the camera with respect to a known 

world reference frame, using the image information. The extrinsic parameters are 

the rotation and translation matrices that define location and orientation of the 

camera reference frame with respect to the world frame (Shah, et al., 1996). 

 

3.7.2 Internal parameters (Intrinsic) 

 
The intrinsic parameters are the parameters that link the image coordinates 

(pixels) with the camera coordinates. These parameters include:  

 Focal length of lens. 

 Lens distortion coefficient, radial and tangential. 

 Image centre coordinates. 

 Uncertainty scale factor (because of converting from analogue to digital in 

the frame-grabber (Tsai, 1987).  

 

3.8 Tsai’s calibration method 
 
Many techniques for geometric calibration of CCD cameras are available from 

the computer vision literature. The widely used method proposed by R.Y. Tsai 

(1986), which is based on a two-step technique (Salvi, et al., 2002) will be 

described here. 
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Tsai’s technique is complicated and requires an estimate of as many parameters 

as possible using linear least-squares fitting methods. These estimated 

parameter values are used only as starting values for the final optimization. In a 

subsequent step, the rest of the parameters are obtained using a nonlinear 

optimization method. 

 

The Tsai approach also includes the determination coefficients of radial lens 

distortion 1k and 2k , and of the scaling factor xs . The method requires at least 

seven non-coplanar, accurately detected calibration points, which are given in 

any arbitrary order, but with known geometric configuration. 

 
The Tsai method starts with capturing an image of the calibration piece. Then the 

image coordinates of the calibration points are found. The correspondences 

between the world coordinate system of calibration points and their images 

coordinates are obtained. These data represent the basic data on which the 

calibration is based. 

 

The Tsai model is based on a pinhole camera; a pinhole camera is a 

simple camera without a lens and with a single small aperture as shown in   

 Figure  3-5. Tsai model has eleven parameters in total, five of these are 

internal (also called intrinsic or interior) parameters: 

 

                      

   Figure  3-5: Sketch of pinhole camera 
 
 
 

 

Object  

  

Image 

Light rays 

 

Pinhole 
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 f        The distance between the lens centre and image plane (effective   

            focal length of the pin-hole camera), 

1k         1storder radial lens distortion coefficient, 

,x yC C    The coordinates of the principle point (i.e. the intersection point 

             of the optical axis with the image plane)           

xs          scale factor to account for any uncertainty in the 

             frame-grabber's re-sampling of the horizontal scanline. 

 

And six are external (also called extrinsic or exterior) parameters: 

 

, ,x y zR R R  - rotation angles for the transformation between the  

                   world and camera coordinate frames, 

, ,x y zT T T - translational components for the transformation between the 

                world and camera coordinate frames. 

 

In addition to the eleven variable camera parameters, Tsai's model has six fixed 

intrinsic camera constants (which can be read from the manufacturers’ data 

sheets) as below: 

 

cxN      Number of sensor elements in camera's x direction, 

fxN       Number of pixels in frame grabber's x direction (in pixels), 

xd        X dimension of camera's sensor element (mm), 

yd        Y dimension of camera's sensor element (mm), 

'xd       Effective X dimension of pixel in frame grabber ( mm/pixel), and 

'yd       Effective Y dimension of pixel in frame grabber (mm/pixel). 

  See Figure 3-6. 
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3.8.1 Image distortion 
 

Projection in an ideal imaging system is governed by the pin-hole model. Real 

optical systems suffer from a number of inevitable geometric distortions. In 

optical systems made of spherical surfaces, with centres along the optical axis, 

geometric distortion occurs in the radial direction.  Figure 3-7 shows the influence 

of this distortion on the acquired image. When both vertical and horizontal image 

lines bend in toward the centre of the image, the distortion is called positive 

distortion (pincushion). Barrel distortion (negative distortion) causes the outlines 

of an image to curve outward. 

 

.  

   Figure  3-6: Intrinsic camera constants 
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Figure  3-7: Deformation of the ideal image by radial lens distortion (Montabone, 
                  2010) 
 
The effects of radial lens distortion can be described mathematically. However, 

an ideal modelling of the lens distortion leads to an infinite number of distortion 

coefficients. In practice only one or two coefficients are sufficient (Klette, et al., 

1998). 

 

3.8.2 The horizontal Uncertainty Factor and image centre 
 

Due to a variety of factors, such as slight hardware timing errors between the 

image acquisition hardware and camera scanning hardware, or the imprecision 

of the timing of TV scanning itself, an additional uncertainty parameter has to be 

introduced. Even a one-percent difference can cause three- to five-pixels error 

for a full resolution frame. Therefore, an unknown parameter xs is added to 

accommodate this uncertainty, and to include it in the list of unknown parameters 

to be calibrated. 

 

However, since the image is scanned line by line, obviously the distance 

between adjacent pixels in the y direction is just the same as the centre to centre 

distance between adjacent CCD sensor elements in the Y direction (Tsai, 1987). 

 

a) Barrel distortion b) Pincushion distortion 



49 
 

3.8.3 Tsai camera model 
 
Figure  3-8 shows the geometry of the Tsai camera model. The 3D coordinates of 

the object point P in the 3D world coordinate system are ܲሺݔ௪	, ,௪ݕ ௪ሻݖ  and  

ܲሺݔ, ,ݕ ሻݖ  are the 3D coordinates of the object point P in the 3D camera 

coordinate system, which is centred at the optical centre (pointO ). The ݖ axis is 

the same as the optical axis. The image coordinate system ( , )X Y has the origin 

at point iO . f  is the distance between the front image plane and the optical 

centre. ( , )u uX Y is the image coordinate of ( , , )P x y z if a perfect pinhole camera 

model is used. ( , )d dX Y is the actual image coordinate which differs from ( , )u uX Y  

due to lens distortion. Since the unit of the coordinate system used in the 

computer ( , )f fX Y is pixel, additional parameters need to be specified (and 

calibrated) that relate the image coordinate in the front image plane to the 

computer image coordinate in the frame memory ( , )f fX Y . 

 

The overall transformation from world coordinate system ( , , )w w wx y z  to the 

computer image coordinate system ( , )f fX Y is shown in Figure  3-9. 

 

3.9 Reconstruction of 3-D world coordinates using Tsai 
method 

 
The Tsai equations for camera parameters (see Appendix (A) for more details) 

are: 

 

1 1 2 1 2 3
1

7 8 9

' ' w w w x
x x x x

w w w z

r x r y r z T
s d X s d X k r f

r x r y r z T
    

 
  

  ( 3-1) 

 

4 5 62
1

7 8 9

' ' w w w y
y y

w w w z

r x r y r z T
d Y d Y k r f

r x r y r z T

  
 

  
    ( 3-2) 

 
From equation (3-1) we have:  
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 7 8 9 1 2 3w w w z w w w xA r x Ar y Ar z A T f r x f r y f r z f T        

 

7 1 8 2 9 3( ) ( ) ( )w w w x zA r f r x Ar f r y Ar f r z f T A T                            ( 3-3) 

            
Where: 

  1 1 2
1' 'x x x xA s d X s d X k r    

 
 
And from equation (3-2) we have 

 7 8 9 4 5 6w w w z w w w yB r x B r y B r z B T f r x f r y f r z f T        

 

7 4 8 5 9 6( ) ( ) ( )w w w y zB r f r x B r f r y B r f r z f T B T      
                           

( 3-4) 

 
Where: 

2
1y yB d Y d Y k r   

 
By rearranging equations (3-3,3-4) and when the number of cameras is two or 

more, the following reconstruction matrix is used to find the world coordinates 

( , , )w w wx y z  . 

 

11 7 1 1 8 2 1 9 3

17 4 8 5 1 9 6

7 1 8 2 9 3

7 4 8 5 9 6

: : : :

: : : :

x z

y z

w

w

w
m m m x m z

m m m y m z

f T A TA r f r A r f r A r f r

f T B TB r f r B r f r B r f r
x

y

z
A r f r A r f r A r f r f T A T

B r f r B r f r B r f r f T B T

    
                                  

                         

( 3-5) 

 
           
Where: 

          m is the number of camera used in the system. 

 
 
A detailed explanation of the four steps model and how it can be implemented to 

obtain the camera parameters and reconstruct the 3-D coordinates can be found 

in Appendix (A). 
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Figure  3-8: Tsai camera model with perspective and radial lens distortion (Tsai,  

                    1987) 
 
 
 



52 
 

 
Figure  3-9: Four steps transformation from 3D world coordinate system 

                          to computer image coordinate. 
 
 
 
 
 
 
 

Step 1 
Rigid body transformation from ( , , )w w wx y z  to (x, y, z).  Parameter to be 

calibrated: R, T

Ideal undistorted image 
coordinates 

 
(x, y, z).  3D Camera coordinate 

system  

Step 2 
Perspective projection with pin-hole camera, parameter to be 

calibrated: f 

Step 3 
Radial lens distortion:  Parameter to be calibrated: k1 

(Xu,Yu) 
 

Step 4 
TV scanning, Sampling:  Parameter to be calibrated: uncertainty 

scale sx factor, image origin (Cx, Cy)   

(Xd,Yd) 
 

True image 
coordinates 

Result: computer image coordinates in frame memory (Xf, Yf) 

 
Given 3D world coordinate of points 

( , , )w w wx y z  
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3.10 Direct Linear Transformation method 
 
The Direct Linear Transformation (DLT) is one of the most popular techniques 

used for reconstruction of 3D coordinates from two or more 2D images (Hinrichs, 

1995, Challis, et al., 1994). The Direct Linear Transformation method was first 

proposed  by Abdel-Aziz and Karara, 1971; Marzan and Karara, 1975 and it was 

improved by Hatze, 1988, and  Gazzani, 1993. It allows the determination of the 

3D coordinates of a point from two or more 2D views of this point. These 

methods are commonly used in kinematic analysis of human and animal 

movement. This is because of the accuracy of the results obtained and the great 

flexibility in camera set-up (Pourcelot, et al., 2000). 

 

Through a calibration procedure, the standard DLT approach determines the DLT 

parameters. As long as there are at least six control points, the least squares 

method can be used to determine the DLT parameters. If there are less than six 

control points, the 11 DLT parameters will be undetermined. 

 
The DLT parameters are solved using a least squares method since the DLT 

forms an overdetermined system of linear equations. The transformation 

depends on the position and orientation of the camera, and is characterized by 

eleven or more parameters. The method is commonly used to obtain 3D 

coordinates from two or more cameras.  The DLT equations are: 

 

1 2 3 4

9 10 11 1

L X L Y L Z L
u

L X L Y L Z

  


                              ( 3-6) 

5 6 7 8

9 10 11 1

L X LY L Z L
v
L X L Y L Z

  


                              ( 3-7) 

Where:  

( , , )X Y Z = the real world coordinate axes for a point in space. 

( , )u v  = the image-plane coordinate for the same point. 

ሺܮଵ	,  .ሻ= camera parameters	ଵଵܮ
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If we have six or more calibration points with known ( , , )X Y Z  coordinates, and 

corresponding image coordinates ( , )u v , the camera parameters 1 11( , )L L can be 

obtained as we have twelve or more equations (two for each calibration point) 

with eleven unknowns.  This is done for each camera.   

 

Given the parameters for two or more cameras, which are placed apart from 

each other, and their image point coordinate data, the unknown world coordinate 

( , , )X Y Z  of any other object located inside the control volume can be calculated 

because there are four or more equations for the three unknowns ( , , )X Y Z . 

 

The major drawbacks of DLT technique are that the control points must be 

distributed evenly within the measurement space, and location of the control 

points in space has to be known (Challis, et al., 1992).  

 
The mathematics behind the DLT and how it is used to calculate world 

coordinates for a given object are explained in full in Appendix (A.2). 

 

3.10.1 Configuration of calibration points 
 
Distribution of the calibration points has an effect on the accuracy obtained from 

these techniques. Challis, et al, (1992) examined five different configurations 

within one calibration structure to find out what effect the distribution of the 

calibration points had on the accuracy. The five configurations are shown in 

Figure  3-10, Figure  3-11, Figure  3-12, Figure  3-13, and Figure  3-14. 

 

The results show that configurations 1 and 4 gave the least accuracy, with the 

remaining configurations producing similar results. Frame 1 which has only 8 

calibration points gave results comparable with frame 5, even though frame 5 

had over four times the number of the calibration points distributed throughout 

the perimeter of the calibration space. These results illustrate that it is more 

important to distribute the points around the space in which the measurement is 



55 
 

to take place than to have them inside the space, as this configuration is covering 

all the measuring volume. Chen, et al., 1994, found that the best results were 

generally obtained when the calibration points were evenly distributed in the 

whole calibration region. Leroux, et al.,1991 concluded that increasing the 

number of calibration points leads to an insignificant increase of the system 

accuracy. The accuracy of measurement process can be increased by having the 

control points covering all the measurement volume, in other words all the 

measurement points, at any hand position and location, have an equivalent 

calibration points but this is not feasible, so in this work the calibration piece was 

designed to have control points surround and inside the measuring volume. 
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Figure  3-10: Control points configuration 1 
 

 
Figure  3-11: Control points configuration 2 

 
Figure  3-12: Control point configuration 3 

 

 
 
Figure  3-13: Control point configuration 4 

 

 

 
Figure  3-14: Control points configuration 5 
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3.11 Conclusion 
 

Camera calibration is an important task in a computer vision environment; the 

cameras need to be calibrated in order to find the parameters that link the 3-D 

world coordinate system with the image coordinates. There are several methods 

available to achieve this task.  

 

In this chapter two popular methods have been discussed, one is called the four 

steps transformation method, also known as the Tsai method, where a non-linear 

system of equations needs to be solved. The second technique is known as the 

Direct Linear Transformation or DLT technique. The latter method is easier 

because it only involves linear equations. In both methods, the location of the 

cameras need not be known.  

 

In this work DLT and Tsai were used because they are the most widely-used 

techniques employed for image-based motion analysis. The two techniques are 

compared back-to-back with regard to performance in chapter 5. 

 

To achieve better accuracy from the measurement system the 3D location of the 

calibration points must be precisely obtained, and should be evenly distributed 

across the control region. 
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4 System design and measurement process 
 

4.1 Introduction 
 
This chapter describes the components of the computer vision system for this 

study, and also discusses the criteria that are required to design the calibration 

piece for this system. It also illustrates the human hand model which was used 

to carry out the measurement of the angles between the finger joints. The 

procedure for calibrating the cameras and measuring the angles of the human 

hand model are also explained in this part. 

 

4.2 Components of the computer vision system for this study 
 

4.2.1 Cameras 
 
Pulnix TM-500 analogue monochrome cameras were used to capture images 

for the calibration and the test piece. These are a low cost ½ inch format CCD 

camera and give high resolution images. The cameras were connected to the 

host computer through the frame grabber. More information about the features 

and the specifications of these cameras are available in Appendix (A.3). 

 

4.2.2 Lens 
 
The working volume in this project should be as small as possible, so as not to 

occupy a large volume inside the clinic and should be easily moveable if 

needed. As a working limit, a maximum enclosed volume of not more than 

1m3was decided on. The focal length of the lens is thus restricted by this 

working volume and the dimensions of the object under investigation, i.e. the 

calibration piece and a human hand in this application. A lens with 12mm focal 

length has been used as its field of view can cover the calibration object within 

the proposed working volume. Reducing the focal length will increase the FOV 
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and make the job easier, but will reduce the spatial resolution of the image. For 

a 12 mm focal length lens, the maximum FOV at 1m is 533mm. At a working 

distance of 750mm, this falls to 400mm, which is more than sufficient to cover 

the entire hand. 

 

4.2.3 Frame Grabber 
 
The frame grabber, or video capture card, interfaces the camera to the host 

computer. The frame grabber type DT3155 from Data Translation was used in 

order to take the image data provided by the Pulnix TM 500 camera in analogue 

TV form and convert it to digital information so it can be processed by the host 

PC. 

 

The DT3155 is a programmable, monochrome frame grabber board for the PCI 

bus. It provides digital video synchronization for reduced pixel jitter which gives 

high-accuracy data sampling. The DT3155 is suitable for both image analysis 

and machine vision applications. It is also has 4 camera inputs and a MATLAB 

driver for the image acquisition toolbox.   

 

The DT3155 accepts video signals in many different monochrome formats and 

digitizes the image. The board either stores the digitized data to the host 

computer’s system memory or transfers the digitized data to the computer’s 

display controller to display images in real time. The board transfers image data 

to the host computer using PCI burst transfers.  

 

Appendix (A.4) shows the key features of this card and how it is connected to 

the system. 

 

4.2.4 Illumination 
 

The calibration points, which are distributed throughout the calibration piece in 
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order to calibrate the cameras and the measurement points, which in turn are 

used to measure the angles of the fingers joints, consist of fluorescent gel. 

When these gel points are exposed to UV light, they will fluoresce and give a 

good contrast against the darker background. For this reason, twoultraviolet8W 

lamps were used to illuminate the working area, so that the cameras can see 

the glowing gel. The dimensions of the lamp are 320 mm × 82 mm × 40 mm 

(L×D×H as illustrated in Figure  4-1). 

 

 

Figure  4-1: UV lamp used in this work 

 

4.2.5 Marker and marker-less computer vision system 
 
Some 3D stereo vision systems use markers to create a correspondence 

between images that captured by cameras placed at different locations, and 

others systems are marker-less. 

 

There are several markers that have been used in stereo vision systems, such 

as passive and active markers. Passive markers are not luminescent 

themselves, but they are covered by reflective materials, which are activated by 

the arrays of infrared light emitting diodes surrounding the position sensor. 

While active markers can emit infrared light themselves as they use electronic 

circuit and batteries (Zhou, et al., 2008). 
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These type or markers cannot be used in this work because of the size and the 

way they operate. Figure  4-2 shows examples of passive markers. 

 

 

Figure  4-2: Reflective markers used in vision systems (Zhou, et al., 2008) 

 

In case of marker-less vision systems, and to reconstruct the 3D information  of 

the object, the images of the object under investigation must have some 

features which can be used to create matching between the images, such as 

edges, lines, and so on. The disadvantage of marker-less systems is that some 

objects do not have clear features that can be used to create correspondence 

between the images. Marker-less stereo vision system has many applications 

such as human motion tracking; examples of this application can be found in 

Caillette, et al., (2004) and Azad, et al., (2008). 

 

One of the main tasks in 3D computer vision system is how to process the 2D 

digital images, in order to segment the markers or the features which are used 

to reconstruct the 3D information of the object. From the author’s work in digital 

image processing, enhancement and segmenting digital images to extract 

features or markers is not always a simple task, particularly if the system has to 

be done automatically as in case of system proposed in this work. And in many 

cases, the enhancement techniques do not produce the desired images, so 

some mathematical estimation, or other techniques, should be used to clarify 

the objects from the background. 
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So, to ease the task of enhancing and segmenting the digital image, in order to 

automatically process the image, then the markers should be easily 

distinguished from the background. One way to achieve that is using ultraviolet 

(UV) gel which has been used by Hemmings (2002) and produced a high 

contrast image. In this work the same gel was used for the reasons mentioned 

in the following section. 

 

4.2.6 Ultraviolet gel 
 

UV hair gel was used to create the calibration points for the calibration piece 

and as measurement points for the hand model because of the following 

advantages: 

 
The images created using the hair gel markers can be easily processed because 

of the high contrast between the objects and the background. Figure  4-3 shows 

an image of real hand with UV gel. 

The markers can be applied directly to the hand without using any adhesives.  

The markers can be removed easily by using soap and water. 

The size of the markers can be made very small to increase the accuracy of the 

measurement process. 

The gel has no adverse effect on the skin, i.e. is harmless to patients.   

The cost of the gel is negligible, and it is commercially available from high- street 

stores. 
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Figure  4-3: The gel points spread on a real human hand 

 

Figure  4-4: shows how the gel points spread on the hand model during the 

evaluation process. 

 

 

Figure  4-4: UV gel points (white spots) appear on the hand model during the 
                     measurement process  
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4.2.7 Calibration piece 
 
Design of the calibration piece 

 
A proper design of the calibration piece is one of the important issues in 3D 

computer vision measurements. In order to increase the accuracy of the 

computer vision system, the calibration piece should have the following 

characteristics: 

 

The calibration piece should be designed so that it covers all the space occupied 

by the object to be measured, to avoid extrapolation-based reconstruction of the 

points located outside the control volume, as Wood, G. et al, 1986 and Challis, J. 

et al, 1992 illustrated that the error in measurements increases if extrapolation is 

used for the DLT technique. In this work, the control volume should enclose the 

human hand (human fingers model) in both flexion (finger joints are relaxed) and 

extension (finger joints are bent) positions. Also, all the calibration points should 

be located within the FOV of the cameras. 

 

1. The control points should be evenly distributed within the measurement 

volume (Challis, J. et al, 1992). 

 
2. To calibrate the cameras by implementing the DLT technique, the 

number of calibration points should be at least six, and seven for the Tsai 

approach (so the equations can be solved). Further increases in the 

number of calibration points should theoretically improve the accuracy of 

the measurements. However Hatze, 1988 and Challis, et al, 1992 found 

that increasing the number of control points leads only to a minor 

improvement in the reconstruction accuracy, taking into account the 

increased cost and effort of the measurement process in terms of image 

capturing and manipulating. 
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Calculating the size of the calibration piece 

 
The size of the calibration piece should cover the hand at extension, flexion, 

and Ulnar and Radial deviation (Figure 2-1 illustrates flexion and extension, and 

Ulnar and Radial motion of the wrist). At the same time the calibration piece 

should be covered by the FOV of the cameras within the available working 

volume, which has been adopted for this work. As the hand occupies a volume 

in space, then the calibration piece should have a volumetric shape. To 

determine the suitable size of the calibration piece, the length, width and the 

movement of a typical human hand should be established first. 

 

Gregory, (2002) stated that, Garrett, (1971) found the typical length of the hand 

(the distance from the distal wrist crease to the tip of the long finger with the 

hand extended) for maleswas190 mm; and the hand breadth (the distance 

across the back of the hand) for male was 86mm.The dimension of the male 

hand was considered in this work because it is larger than the female hand, so 

the design will also cover the female hand. According to the American Medical 

Association, maximum wrist motion is 30º and 20º for Ulnar and Radial 

deviation respectively and 60º for both flexion and extension (Norkin, et al., 

2003). 

 
  Calculating the length of the calibration piece 

 

Figure  4-5 shows a schematic of the Ulnar and Radial deviation of the hand. In 

this figure we define the following dimensions: 

W    →  The distance across the back of the hand 

L     →  The distance from wrist to the tip of the long finger (middle finger) 

Ø    →   The Ulnar deviation angle 

 

The calculation of the length of the calibration piece is based on the Ulnar 

deviation angle (Ø) and not on the Radial deviation angle, because Ø is greater 
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than the Radial deviation angle, and leads to a design of the calibration piece 

that covers the hand at all positions, see Figure  4-5. 

Since             cosD L Ø                     ( 4-1) 

   sin  H W Ø                     ( 4-2) 

 

And  L = 190 mm, W = 86 mm, and Ø  = 30º (see section 4.2.7) 

Then, the total length of the calibration piece, Lc should be  

        190  cos  30   86  sin  30  198.5 Lc D H mm      
 

 

Calculating the width of the calibration piece 

 

From Figure  4-5 we have: 

 sind L Ø                      ( 4-3) 

            sin  h L                                  ( 4-4) 

 

Where θ is Radial deviation angle, at maximum Radial deviation θ = 20º 

Then, the total width of the calibration piece should be 

          190  sin  30        86  190  sin  20cW h W d         (See Figure  4-5)

  222  cW mm  
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Figure  4-5: The length and width of the calibration piece 
 
 
Calculating the height of the calibration piece 

 

The height of the calibration piece should correspond to the hand at full 

extension position. From     Figure  4-6 the height of the calibration piece is: 

  sin   cH L Ф                                      ( 4-5) 

Where:  Ф is the extension angle of the wrist. 

 

Given that the maximum extension angle is 60º as reported in Norkin, et 

al.,(2003), then the total height of the calibration piece, when the hand is at 

maximum extension angle, should be   

   190  sin  60   164.5 Hc mm  
                                            ( 4-6) 
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    Figure  4-6 : The height of the calibration piece 
 

If the calibration piece is designed so that it includes a volume encompassing 

the hand at maximum range of motion of the Ulnar and Radial deviation, and 

the distance from the distal wrist crease to the tip of the long finger with the 

hand extended, that means the dimensions of the calibration piece as 

calculated above are 198.5×222×164.5 (Lc×Wc×Hc) mm. These dimensions 

need to be kept as small as possible for the reasons stated previously, and so 

can be reduced as follows: 

 

1. The effective length of the finger (the actual distance between the first and 

last measurement points on the finger which is less than the total length of 

the finger can be used in the calculation instead of the total length, so the 

length can be reduced by around 30 mm, because the measurement 

points will not be placed either at the distal wrist crease or at the tip of the 

middle finger, for more details see Figure  4-7. 
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The patient’s hand can be placed on a support so that the Ulnar and Radial 

deviation of the hand will be restricted to smaller angles. Reduction from steps 1 

and 2 lead to a reduction in the length and the width of the calibration piece. 

 

The height of the calibration piece is a function of the hand length and the 

extension angle of the wrist (Ф). Reducing this angle by using a hand support, 

and using the effective length of the hand, leads to a reduction in the height of 

the calibration piece. 

 

Given the effective hand length of 160 mm, hand breadth of 86 mm, Ulnar 

deviation angle Ø  20º, Radial deviation angle θ 13º and extension angle of wrist

Ф   45, the dimensions of the calibration piece thus reduce to approximately

180 180 115  (     )c c cmm L W H    . 

 

Based on the discussion above; the calibration piece was designed and built, 

with the dimensions stated. It consisted of 6 steel pins, of 6mm diameter, fixed 

into a wooden base. The base had a square shape of 200 mm in length. Six steel 

bars of 2 mm diameter were inserted through the pins. Twenty seven points were 

distributed throughout the calibration piece (9 on the base, 9 in the middle and 9 

on the top), making the distance between each pair of points 90 mm. The 

calibration points were placed with a pen and were approximately circular in 

shape, with average diameters of around 2 mm. Figure 4-8 (a, b) shows a layout 

of the calibration piece and the distribution of the calibration points. 

 

The effect of temperature on the steel pins and bars that compose the calibration 

piece was not considered, as all the experimental work has done under the same 

indoor temperature, i.e. 20 degrees. In case, and if the temperature changed, 

and to avoid any error from expansion or contraction of the steel bars and pins, 

the 3D world coordinates of the measurement points should be  re measured by 

the CMM before calibrating the cameras. Then the new data file that contains the 
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calibration points replaces the old data file of the same points. And this is very 

simple task. 

      

Figure  4-7: Total and effective length of the human hand (Norkin, et al., 2003) 
 
 

 

                           Figure 4-8 (a):Front view of the calibration piece   
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                           Figure  4-8 (b): Side view of the calibration piece 
 

Because of the absorbing property of the black colour when exposed to white 

light, the calibration piece was painted with black matt paint, in order to produce 

a high contrast monochrome image with almost white calibration points on a dark 

background. Figure  4-9 shows a picture of the calibration piece. 

 

 

Figure  4-9: Picture of one of the calibration pieces used in this work 
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4.2.8 The computer and the software 
 
The computer is an important element of a computer vision system. In general, 

the faster the computer, the less time the vision system will need to process the 

images. A computer with a Pentium 1.4 MHZ processor and 512 MB memory 

was used in this design.   

 

Two software programs were utilized to manipulate the data. Image Pro Plus was 

firstly used then later on MATLAB was used instead. MATLAB is matrix based 

software and as the digital images are represented by matrices, this makes 

MATLAB powerful for dealing with these images. It is also well designed for 

solving equations simultaneously in matrix form; i.e. the DLT equations. It has 

many built-in functions which makes the code easier to write and faster to 

execute. Also it is compatible with the DT3155 framegrabber. 

 

4.3 Design of the hand model 
 

A model of the human hand was designed and manufactured from steel. The 

hand was painted matt black. The same remarks can be made about the benefit 

of the black paint as were made for the calibration piece above. The model only 

included four fingers, the thumb is not considered because it lies on a different 

plane. The bones for each finger can be bent and extended up to an angle 

similar to the real hand. This model was used to carry out all the angle 

measurement procedures similar to the measurement of real human finger joints. 

The lengths of the bones for the hand model are shown in Table  4-1. These 

dimensions were chosen to be similar to human hand. 
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Table  4-1: Dimensions of finger bones used in hand model (Parish, 1968, 
                 Wagner, 1988, and Gregory, 2002) 
Bone’s name Length (mm) 

Metacarpus 50 

Proximal Phalanx 40 

Middle Phalanx 30 

Distal Phalanx 20 

 

 

  Figure  4-10: Human hand model 
 

In order to measure the angles between each pair of bones, two points of UV gel 

were placed on each bone, so a line between each pair of points represents a 

vector in space. Then the angles of the joint between each adjacent pair of bones 

are calculated from the intersection of two vectors in space. Figure 4-10 above  

shows a picture for the human hand model.  

 

4.4 Distribution of the cameras around the measurement 
volume 

 

The cameras should be distributed so that the maximum accuracy for the 

calibration parameters can be achieved. However there are some factors which 

restrict this requirement, for instance: 
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The size of the working space should be reasonable, so that it does not occupy a 

large volume. The volume of the measurement area should not exceed 1m3 (the 

smaller the size, if possible, the more practical the system as it will occupy a 

small volume when it is placed in the clinic and can be shifted or replaced easily). 

 

One of the aims of this work is to reconstruct 3D world coordinates from two or 

more images, that means the calibration points and the measurement points 

should be captured by at least two cameras. So when the cameras are placed 

this factor should be considered. 

 

The nature of this work requires that the cameras be placed at positions so that 

images for the human hand that is under assessment can be obtained with either 

the hand at flexion (relax) or extension location. 

 

The focal length of the lenses also has to be considered; lenses with a shorter 

focal length will increase the field of view, but at the same time produce images 

with low spatial resolution. To cover the control volume in this work with a 

maximum focal length, 12mm focal length lenses were used. 

The cameras were placed initially in positions where they could acquire images 

of the hand model when all the measurement points could be seen by all 

cameras directly, i.e. the situation when the hand is at the full extension position 

was not included (this situation will be considered in chapter six). 

 

The cameras’ location and the calibration piece can be represented by a cylinder 

which has diameter D and height h. The three cameras were placed at 120º apart 

from each other on the upper circumference of this cylinder and the calibration 

piece was placed at the base point of the cylinder. Figures 4-11 and 4-12 are 

sketches following the above geometry, showing the distribution of the cameras 

around the calibration piece. 
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Figure  4-11: Locations of the cameras and the calibration piece (cameras  
          Z coordinates are longer than X and Y coordinates)  

 
 

 

       Figure  4-12: Cameras location with respect to the calibration piece, top view 
 

Figure  4-13 shows the front view of one camera and the calibration piece. From 

this figure we have: 

h - The camera height in mm (from the base). 

L - The horizontal distance from the calibration piece to the camera in mm. 

W - The side length of the calibration piece in mm. 
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-1 = tan  ( / ) L h                 ( 4-7) 

      
-1 (   )  2 tan  (   / 2 )Angle of FOV width of CCD f              ( 4-8) 

∆x is the horizontal distance in which the calibration piece can be shifted. 

     c    - ( - )H  L sin  x X X x Ф                  ( 4-9) 

Where: 

 X  tan  ( )  - -h W L                           ( 4-10) 

 And    ( - )  tan ( )  X x l                           ( 4-11) 

∆z is the vertical distance in which the calibration piece can be shifted.  

  z  = x  / tan ( )                 ( 4-12) 

The numerical values for all the above parameters (D, W, h, θ, etc) will be 

illustrated in chapter five. 

 

4.5 The test rig 
 

The rig consists of four parts: 

1- An aluminium support frame to which the cameras are fixed. The upper 

part of the frame has a square shape with side length of 650mm. This part 

is placed on three stands, each 640mm in height. All the cameras are 

mounted on the upper part, so that they cover the volume under 

investigation. 

 

2- Two lamp holders to hold the UV lamps at a position where a maximum 

fluorescent of the gel points can be achieved whilst keeping the lamps 

outside the FOV of the cameras.  

 

3- The base where the calibration piece or hand is placed; the calibration 

piece should be at a fixed position by using two 200mm in length angle 

steel bars fitted on the base so that they form a right angle between each 

other, the height of the bars being 20mm (see  Figure  4-14). Thus, the 
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correspondence between the points in 3D world coordinates and the 

image coordinates can be established automatically.  

 

.  

Figure  4-13: cameras location with respect to the calibration piece, front view, left 
                    camera 
 

4- A cubical frame, with length 75 mm to enclose all the three parts above. 

The frame was covered with black sheets to exclude day light from all 

sides excluding the bottom and the front sides. A black curtain was placed 

over the front side to give access for the measurement process. 

 

 Figure  4-14 illustrates all the components of the rig, cameras and the UV lamps 

for the computer vision system in this project. 
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 Figure  4-14: The rig used for this study  
 

4.6 The procedure for measuring the angles of finger joints 
 

The measurement of the finger joint angles consists of two steps, the first is to 

obtain camera parameters from the calibration process and the second is to 

measure the finger joint angles. 

 

4.6.1 Calibration process 
 
To calibrate the cameras the following procedures were implemented: 

 

1) The calibration piece was placed at a fixed position (in order to automatically 

create a matching between the calibrations points from different images) inside 

the calibration box. Then the function image_capture (written using MATLAB) is 

run to order the cameras to capture a sequence of images, two or three 

Calibration or test piece Calibration piece 
holder

UV lamp 

Aluminium 
support 
farm 

Camera 

Darkened 
enclosure 
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depending on the number of the cameras used. The images are saved at a 

certain location or processed directly (they have been saved for reference 

purposes). Notice that, all the software functions mentioned in section 4-6 were 

written using MATLAB. Some of these functions are shown in full in Appendix 

(B).  

 

2) A thresholding function threshold_value was written to threshold the 

monochrome images. This function separates the objects (calibration points in 

this case) from the background. The thresholding process produces binary 

images, with all the pixels values either 1 for white or 0 for black.  

 

The histogram shown in Figure  4-15-b illustrates that grey levels in image of the 

calibration piece are normally distributed, so to find the thresholding value, the 

standard deviation and the mean of the grey level image are first found, and then 

the following formula used to compute the thresholding value: 

 

     (3*   )*1.1T STD M      ( 4-13) 
 

 Where: STD is the standard deviation of the global image grey level. 

    M is the global mean grey level of the image.  

 

This empirically-derived formula gives a good result for both the calibration piece 

and the test piece under the circumstances of the experimental work. Figure  4-15 

(a, c) are grey level and binary image of the calibration piece.  

 

After thresholding the images, and getting the binary versions, the 

calb_piece_image_processing function was implemented, the output from which 

is a three column matrix, where the first column includes the object number, the 

second and third containing the imx and imy  image coordinates for the calibration 

points. The number of rows of this matrix depends on the number of calibration 
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points under investigation. The purpose of putting data in a matrix form is to 

benefit from the power of MATLAB for handling matrices. 

 

The image coordinates of the calibration and measurement points were found by 

using a built in Matlab function called regionprops. This function calculates the 

centre of mass (centroid) rather than the centre, which calculated by CMM. There 

was an idea to write a Matlab function that calculate the centre on the calibration 

and control points, but there is no guarantee the result will have significant 

improvement, taking into account the shape of calibration and measurement 

points is approximately a circle with around 2 mm diameter, and the centroid and 

the centre of a circle are the same. 

 

3) From the step (2) above we have 3 data files produced from processing the 3 

digital images of the calibration piece that captured by the three cameras. Each 

file contains a matrix with 27 rows and 3 columns. Number of rows represents 

the calibration points and the first column represents the calibration point number 

and the second and third columns represent the x and y image coordinate of the 

calibration points (an example of this format can be seen in Table  5-2). 

 

Nevertheless, and because of the cameras located at different location, as a 

result the data on each file does not have the same order, in other words, 

calibration point located in row one in the data file produced by camera one will 

not be at the same row for the data file of camera two, the same for camera 

three. 

 

To calculate the camera parameters, the three data files of the three images of 

the calibration piece must be first rearranged in order so that all files have the 

same order for each calibration point.  I.e. calibration point located at row number 

one for the first camera will have the row location for cameras two and three, and 

the same for the rest of the calibration points.   
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Figure  4-15: 
 a) A grey level image for the calibration piece (white spots represent  
     the fluorescent gel calibration points) 
 b) An image histogram of the calibration piece. 
 c) An image for the calibration piece after thresholding at level T. 
 

4) Having that, the calibration piece located at a fixed place with respect to the 

cameras, not as in the case of the finger joints, so we know in advance where 

the location of calibration points captured by each camera. For example the 

calibration points captured by camera number one, for instance, located at row 

number one will be located at row number 27, and the same for the rest of the 

calibration points. See Figure 4-16 for more clarification. 
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5) The fourth step of calibrating the cameras is to run the function auto_match 

which automatically order the calibration points from the three images. For 

example if the calibration point number one located at the first row of the data file 

of image  number one, then the same points will locate at first row of the images 

number two and three, and so on. Also this function creates matching between 

the 3D world coordinates ( , , )w w wx y z and the image coordinates ( , )im imx y of the 

calibration points.  

 

Notice that, the function auto_match can be written by any programming 

language such as C, however the code of this function was written by Matlab, as 

Matlab contains built in functions which make manipulating matrix much easier, 

given that the data files of the three images represent matrices. 

 

Once the correspondence is established, then the data are now ready to be 

processed by the function camera_parameters, which computes the parameters 

for each camera. 

 

 
Figure  4-16:a) Image of calibration points captured by camera No (1) shows the 
location of the calibration point No 1, b) image of calibration points captured by 
camera No (2) shows the change of location of the calibration point No 1 to point 
No 27. 
 

Calibration point No 27 

Calibration point No 1 a) b) 
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5) To find the cameras’ parameters, using the DLT (or another technique) a 

camera_parameters function has been written, the inputs of which are the 3D 

world coordinates for the calibration points and the x, y image coordinates for the 

same points. Output from this function is a matrix with two or more columns, 

depending on the number of cameras, and each column represents the twelve 

parameters for each camera in the case of using the DLT method. 

 

4.6.2 Measurement of the angles of finger joints 
 

Once the parameters for all the cameras have been found, the next step is to 

measure the angles between each pair of finger bones. To measure these 

angles, firstly one model finger, which was designed previously by Hemmings, 

M.2002 (see Figure  4-17), was utilized to carry out the measurement process. 

The results from these measurements are shown in chapter five.  

 

 

Figure  4-17: One finger test piece 
 

Measuring the angles for one finger is straightforward, because it has only eight 

measurement points. However measuring all 4 fingers of the whole hand with 32 

measurement points is quite complicated, because it requires sorting out and 

handling the correspondence matter for the 32 measurement points. To measure 

the whole hand, the following technique was adopted: 

MCP 
joint 
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joint 
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joint 
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Firstly the hand model, with 32 UV gel points distributed on the fingers so each 

bone has two points, was placed inside the control volume, and procedures 1 

and 2 in section (4.6.1) were used to capture and threshold the images of the 

hand. Then the function hand_image_processing was implemented. The results 

are two or more matrices depending on the number of cameras the system 

contains. Each matrix has three columns, object number, and x and y image 

coordinates for the measured points, and 32 rows characterising the number of 

the measured points. Figure  4-18 shows three thresholded images of the hand 

taken from three cameras at different positions, (see Figure 4-11 for the relative 

positions of these cameras). 

 
Reconstructing the 3D coordinates for an object in space, using the DLT or other 

similar technique such as Tsai camera calibration which will be implemented in 

this work as well, requires two or more images for the same object captured by 

cameras located at different positions so that the mathematical equations for the 

technique can be solved.    

 

Figures (4-19, 4-20 and 4-21) show three images of measurement points of the 

hand model after applying thresholding and inverting the images. Notice that 

these images were not taken from one experiment, and are intended to illustrate 

that the location of the measurement points can be at various positions, i.e. 

sometimes they are close to each other and sometimes not.  

 

The coordinates of the measurement points are different from one image to 

another because of the location of the cameras. For instance, the image 

coordinates (x,y) of the pair of points that are located on the Metacarpal bone, for 

the image captured by the right camera, are not the same as those captured by 

the left or inner camera, see Figures 4-19, 4-20 and 4-21. 

 

 



85 
 

4.6.3 Correspondence problem 
 
The primary problems to be solved in 3D computer vision are calibration, 

correspondence, and reconstruction. Calibration and reconstruction have already 

been described. The correspondence problem involves extracting features such 

as points, lines and contours in the images and then establishing their 

correspondences between images. The images can be taken from a different 

point of view, at different times, and with objects in the scene in general motion 

relative to the camera(s).Both the process of feature extraction and of feature 

matching is often computationally expensive and noise sensitive (Lee,et al., 

1993). 

  

In general, there are two basic ways to find the correspondences between two or 

more images which are area-based and feature-based. The area-based stereo 

(ABS) method creates a description for each image pixel location, usually by 

producing a measure of the local intensity profile of the area surrounding the 

pixel and compares this measure to the candidate target pixels in the other 

image (Goulermas, et al., 2001). 

 
The area-based techniques have a disadvantage in that they use intensity values 

at each pixel directly, and are thus sensitive to distortions as a result of changes 

in viewing position as well as changes in absolute intensity, contrast, and 

illumination (Dhond, et al., 1989). 

 

Feature-based stereo (FBS) techniques use symbolic features derived from 

intensity images rather than image intensities themselves. Hence, these systems 

are more stable towards changes in contrast and ambient lighting. The features 

used most commonly are  edge points,  line segments and corners. 

 

Also, feature-based methods allow for simple comparisons between attributes of 

the features being matched, and are hence faster than correlation-based area 

matching methods (Dhond, et al., 1989). 
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It is not possible in general to say whether ABS is “better” than FBS or vice 

versa. It is nevertheless the nature of the images under investigation that push 

towards choosing the proper matching approach or to develop a new method to 

achieve the best effective correspondence technique. 

 

In this work, and to create an effective and robust a matching between all 

images, a new technique was developed based on the following features that can 

be detected from the captured images (see images Figure 4.17). 

 
The images contain a certain number of measurement points. 

All the images contain the same number of measurement points. 

Measurement points have an approximately circular shape. 

The size of the measurement points is located within a certain interval. 

The measurement points are separated from each other. 

Each finger has not more than 8measurement points. 

The measurement points have a good contrast with respect to the background. 

Four measurement points (MPs) are needed to produce one finger joint angle. 

The calibration and measurement points have an average diameter of 6 pixels 

and 1 pixel equal  0.38 mm at the optical magnification used. This relation can be 

found by placing a known length inside the calibration volume, and find out how 

many pixels per one unit measurement.    

 

The image features mentioned above were used to develop a new technique to 

mach all the MPs that are captured by all the cameras. To make the system 

robust and to speed up the measurement process, the computer vision system 

should handle the correspondence matter automatically as explained in the 

following section. 

4.6.4 Automatic matching of the measurement points 

 
A critical problem in the design of this computer vision system is how it can 

automatically create correspondence between each measurement point in one 
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image with the rest of the other images, so that the system can automatically 

reconstruct the 3D world space of the measurement points, allowing the finger 

joint angles to then be obtained.  

 

 

Figure  4-18: Thresholded images of the hand taken from three different cameras. 
a) Right camera (see Fig 4-11) 
b) Left camera (see Fig 4-11) 
c) Inner camera (see Fig 4-11) 
 
The technique, which is explained below, starts with determining the 

measurement points for each finger and for each bone in that finger for all the 

images, three in this case. Then the system matches each point in an image to 
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its equivalent location in the other images (see Figures 4-18, 4-19 and 4-20), The 

following sections explains how this task was achieved. 

 

 

Figure  4-19 : Image of the hand’s measurement points captured by the right 
                         camera 
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Figure  4-20: Image of the hand’s measurement points captured by the left 
                        camera 



90 
 

 

Figure  4-21: Image of the hand’s measurement points captured by the Inner  
                        camera 
 

A) Arranging the measurement points from the inner camera 

 

After processing the images of the hand model by using the 

hand_image_prpcessing function as explained in section (4.6.2), the outputs 

from this function are three matrices. Each matrix has 32 rows that characterize 

the number of measurement points, and three columns that represent object 

number, and x and y image coordinates for the same points. The six steps below 

explain how to sort out the measurement points for the inner camera and locate 

each point with its corresponding finger. 

 

1) Determine the first measurement point in the image. Figure  4-22 shows the 

image of the measurement points of the hand, captured by the inner camera. The 

first measurement point, in this case point E in Figure  4-22, was determined 

2 measurement points for 
Metacarpal bone for the 
first finger

2 measurement points for 
proximal phalanx bone for 
the first finger 

2 measurement points for 
Middle phalanx bone for the 
first finger

2 measurement points 
for Distal phalanx bone 
for the first finger 

x 

y 

4th finger 

3rd finger

2nd finger
1st finger

Image co-ordinates 



91 
 

based on the image y-coordinates. In other words, the point with minimum y- 

coordinates. So, point E is the first point for the index finger. 

 

Mathematically the first point is found from sorting the matrix data for the inner 

camera obtained from section (4.6.2) above, in ascending order based on the y-

coordinates, then selecting the first row from the matrix.  

 

2) Calculate the distance d between the first point obtained from step 1 above 

and the rest of the measurement points, in terms of pixels, using the formula, 

2 2
1 1( - ) ( - )n n nd x x y y                    ( 4-14) 

For all  2.........n M  

Where M   total number of measurement points. 

 

3) Find the 3 closest measurement points to the first point (point E in figure 4-21). 

Figure  4-23 shows points G, F and H which are the three closest points to point 

E. 

 

4) Calculate the horizontal difference ( x ) between the first point (E) and points 

G, F and H, see Figure  4-23. Once x  has been found, choose the two points 

that have the smallest x  values, points G and H in Figure  4-23.  Two points 

were chosen because the point which has minimum x  is not always the next 

measurement point of the finger under investigation. 

 

5) Compute the absolute difference between ∆xG and ∆xH i.e find abs (∆xG - ∆xH). 

If the difference ≤ 5 pixels (this value was determined from the experimental 

work), then the next point will be the point which has minimum y coordinates, 

otherwise the next point is the point which has minimum x . 
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Figure  4-22: point (E) is the first point in the 
 

 

Figure  4-23: Closest 3 points to E and ∆x 
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6) Once the second measurement point for the index finger has been 

determined, point G in this case (see Figure  4-24), then the steps 1 to 5 above 

are repeated to determine the third measurement point for the same finger (point 

K). Notice that in step 1, the points F,I and J in Figure  4-24 have y-coordinates 

greater than the y-coordinate for the first point (point G in this case), so these 

points are not included in the code because they are not related to the finger 

under investigation (index finger in this case, see Figure  4-24). 

 

7) After determining the 8 measurement points for the Index finger, the same 

procedures 1 to 6 are then applied to establish the measurement points for the 

Middle and Ring fingers. 

 

8) Once the measurement points for the first three fingers have been determined 

(Index, Middle and Ring fingers), the remaining 8 points must belong to the last 

finger (Little finger). Sorting them out requires only ranking them based on their 

y-coordinates, see Figure  4-25. 

 

9) So far, the eight measurement points for each finger have been established, 

then the fingers are  arranged, based on their first points on the Metacarpal bone, 

according to x-coordinates that mach their location in the hand, see Figure  4-26. 

  

10)  The output from step 9 above is a matrix containing 32 rows representing all 

the measurement points of the hand and 3 columns representing point number 

and x and y image coordinates for the measurement points. The first eight rows 

belong to the Index finger starting from the first point on the Metacarpal bone and 

ending on the last point on the Distal phalanx bone. The same applies for the 

Middle, Ring, and Little fingers.  
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Figure  4-24: Points F,I,J and E are not included when determining the 
                              measurement points of the Index finger 
 

  

Figure  4-25: The remaining No of points in the image = 8, need to be sorted 
     according to their y locations 
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Figure  4-26: Fingers are arranged, based on their first point on Metacarpal bone, 
           according to x-coordinates  
 

B) Arranging the measurement points from the left and right cameras 

 

For arranging the points that are captured by the left and right cameras, a similar 

technique to that applied for the inner camera, with some changes, has been 

used. For instance in step (1) above, the matrix data for the inner camera were 

sorted in ascending order based on y-coordinates to determine the first point. But 

for the left and right cameras the data are sorted in ascending order based on x- 

coordinates because the fingers are extend in the x direction, unlike the Inner 

camera where the fingers are extended in the y direction, see Figure  4-19 and 

Figure 4-20 in order to see the difference between the direction of the 

measurement points. 

 

The technique adopted above is easy to implement and can be applied at 

different camera positions, taking into account minimal changes in the code(see 

some samples of the codes in Appendix (B). 
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Up to this point, the hand was placed at positions in which the measuring points 

could be seen directly from all the cameras. Later, an explanation is given of a 

method which can be used in the case where the measurement points cannot be 

seen directly by all cameras.  Also so far, the number of measurement points has 

been 32. However the points can be reduced to 26 and still allow the 

measurements to be made as described in chapter (7). This reduction of points 

will make the measurement process easier and faster. 

 

Once each finger is matched with its own measurement points and each point is 

linked to its corresponding point in the other images, the next step is to 

reconstruct the 3D coordinates for each point using the DLT method (Appendix 

A.2).  

 

4.7 Calculation angle between two vectors in space 
 
Having the 3D coordinates ( , , )w w wx y z  for the points, the angles of the finger 

joints can be computed by finding the angles between two adjacent vectors in 

space (see Figure  4-27) using the following equation: 

 

ܣ  ∙ ܤ ൌ  ሻ                 ( 4-15)ߠሺݏ݋ܿ|ܤ||ܣ|

ሻߠሺݏ݋ܿ  ൌ
஺∙஻

|஺||஻|
                 ( 4-16)  

Where andA Bare two vectors in space and   is the angle between them. 
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Figure  4-27: Angle between two vectors in space 

 

Figure  4-28 summarizes the process for the camera calibration and 

measurement of the angles between the fingers bones. Each one of these 

processes contains several MATLAB functions (see Appendix (A)).  

 

B 

A 

ө
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place the calibration piece at its location inside the rig

process the images and automatically establish the
correspondence between the image and world

coordinates

compute the cameras' parameters using DLT or another technique

place the hand within the control volume of the calibration
piece and capture the images from two or three cameras

process the images and match each finger with its
measuring points

 given image coordinates for the measuring points from two
or three cameras reconstruct the 3-D worldcoordinates

 compute the angles for the fingers joints given two vectors
in space

Captures the images for the calibration piece

 
 

Figure  4-28: the procedures that have been used to measure the angles 
                           for the fingers joints 
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4.8 Summary 
 

Any computer vision system generally consists of camera, lens, frame grabber, 

illumination, software and the processing unit. Some differences can be found 

among vision systems, for instance if a digital camera is used, there is no need to 

use a frame grabber. Also some systems involve only natural illumination and 

some use special types of light such as UV, the light that has been utilised in this 

work. 

 

Choosing the proper calibration piece for a certain computer vision task is an 

important matter, so that a system with good accuracy can be designed. The 

calibration piece for this work was designed so that it occupied the measurement 

volume best suited to the average male hand at all positions, and the control 

points were evenly distributed within the measuring volume as much as possible. 

The calibration piece was painted with black matt paint to increase the contrast 

between it and the UV gel control points. 

 

A model of the human hand was designed and manufactured from steel and 

painted matt black. 32 measurement points produced from UV gel were placed 

on the fingers, 2 points for each finger bone, to form a vector in space. The 

calibration and measurement points have an average diameter of 6 pixels (1 

pixel = 0.38 mm at the optical magnification used). 

 

The last part of this chapter explained how the cameras were calibrated, and the 

technique adopted to obtain correspondence between the measurement points 

so the finger angle can be measured using the hand model. 
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5 Experimental work and results 
 

5.1 Summary 
 

This chapter covers the first part of the experimental work for this study. Firstly 

the errors in X,Y and Z coordinates of the measured control points were 

examined. Then to see the effect of this error on the finger joint angles, a 

mathematical model was used. Then the angles for one finger were evaluated.  

 

The hand model with 12 joints representing all the fingers was then used to carry 

out a full measurement process. To check the robustness of the computer vision 

system, the hand was placed at different locations and the finger joint angles 

were measured based on the DLT and the Tsai techniques separately. Finally to 

examine the system for measuring real fingers, the measurement process was 

implemented on two joints of a real human hand.  

 

5.2 Experimental work 
 
During the first stages of this study, the experimental work was carried out by 

using a single “finger”, which was designed and built previously by Hemmings 

(Hemmings, 2002), as shown in Figure 4-17. This simulated finger has three 

“joints”, i.e., the MCP, PIP, and DIP joints. 

 

To evaluate the finger joint angles, firstly the cameras have to be calibrated. The 

calibration piece shown in   Figure  5-1 was used, its dimensions being shown in 

Appendix 5. It has a pyramid shape with a square base and made from wood.  

 

There are many shapes of the calibration objects available from the literature 

such as the ones mentioned in section 3.6. However, the pyramid shape was 

chosen, because the nature of this shape makes all the calibration points are 
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seen by the three cameras. As well as this shape is easy to manufacture from 

wood. 

 

 

  Figure  5-1: Pyramid calibration piece 
 

Notice that, this calibration piece was designed at the beginning of this work and 

to cover only one finger. However this pyramid shape did not work when we want 

to measure the four fingers, as increasing the size of the pyramid, in order to 

locate the fingers inside the calibration volume, will lead to increase the size of 

the working enclosure which is not comply with this computer vision system. As a 

result, the new calibration piece which described in section 4.2.6 was introduced. 

 

Three cameras were distributed symmetrically around the calibration piece, the 

diameter D of the cylinder was 440 mm, and the height h of each camera, from 

the base, was 520 mm, see  Figure  5-2 for more details.  
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 Figure  5-2: Distribution of the cameras within the working volume 

 

The size of the cameras and camera holders restricted and reduced the effective 

working volume (dimensions of the camera are 45mm x 39mm x 92mm (W X H X 

L)) and the length of the camera holder is 80mm).If the size of the cameras and 

holders are reduced, this will give more space and lead to an increase in the 

FOV of the system. 

 

The FOV of the cameras must cover the calibration piece, under the available 

working volume and the given focal length of the lens. The following determines 

the FOV of the camera that is required for this computer vision system. 

5.2.1 Calculating the FOV angle 
 

Figure  5-3 shows the general field of view angle of a camera, which can be 

calculated as below:  

 

f

widthsensor

2
)

2
tan( 


                 ( 5-1) 

 )2/(tan2 1 fwidthsensor                   ( 5-2) 
 

ө 
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Where: 

  f is the focal length of the lens in mm. 

    is the angle of field of view in degrees. 

 

 

Figure  5-3: Field of view angle ( ) 
 

Cameras with a ½" CCD sensor format have been used, i.e. the heightof the 

sensor is 4.8 mm. The angle of the maximum field of view (FOV) of the camera 

with the 12 mm lens is: 

  6.22)122/8.4(tan2 1   degrees   ( 5-3) 
 
 

5.2.2 Calculating the horizontal and vertical distances in which the 
calibration piece can be shifted 

 

Placing the calibration piece, shown in   Figure  5-1, at the extreme edge of the 

FOV as shown in Figure  5-4, allows the calibration piece to be moved 

horizontally by ∆x and vertically by ∆z. Firstly ∆z and ∆x will be determined and 

then the effect of the position of the calibration piece on the calibration accuracy 

will be tested.  

 

Based on Figure  5-4 we have: 

∆x  the horizontal distance that the calibration piece can be moved within the  

FOV. 

∆z the vertical distance that the calibration piece can be moved within the FOV. 

FOV 

 2/

f

Sensor
width 
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h     Camera height = 520 mm (from the base). 

L    The horizontal distance from the calibration piece to the camera = 145 mm. 

W    The side length of the calibration piece = 150 mm. 

l      The height of the calibration piece = 85 mm 

 

)/(tan 1 hL                                      ( 5-4) 

-1 = tan  (14.5/ 52)   
6.15  degrees 

                               
                   h = 520 mm, W= 50 mm, l= 85 mm, L= 145 mm 

X  ( tan  ( ) ) - -h W L     

Figure  5-4: Cameras location with respect to the calibration piece, front view, left  
                  camera 
 

Given angle of FOV 22.6    from equation (5-3), the horizontal distance in 

which the calibration piece can be shifted (∆x), and still located in the FOV of the 

cameras, can be found as: 
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    - ( - )x X X x                                   ( 5-5) 

Where: 

X  ( tan  ( ) ) - -h W L     

X  ( tan  (22.6 15.6) 520) -150-145    

 X  114.2 mm  

And     ( - )  tan ( )  X x l      

mmxX 9.6685)6.156.22tan()(   

From equation ( 5-5) 

 mmx 3.479.662.114   

 

And ∆z, the vertical distance in which the calibration piece can be shifted, and 

still located in the FOV of the cameras, is: 

 

z  = x  / tan ( )                                                            ( 5-6) 

mmz 1.60)6.156.22tan(/3.47   

 

5.3 Measuring the 3D world coordinates for the calibration 
piece by CMM 

 

The 3D world coordinates for the calibration points of the calibration piece 

shown in   Figure  5-1 were measured using a CMM machine; to do so firstly the 

origin was chosen to be at the bottom left corner of the calibration piece. To 

measure the 3D world coordinates for each calibration point, then the probe of 

the machine was placed on the centre of the calibration point. When the probe 

touches the calibration point, the machine beeps to indicate the measurement 

have done and the data saved. All the calibration points were measured by the 

same method and data file which contains the 3D world coordinates for the 

calibration points was obtained in order to use it to calibrate the cameras within 

the vision system. The measurements are shown in Table  5-1. 
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Table  5-1: Calibration points 3D world coordinates from CM machine 
Point 
No X (mm) Y(mm) Z (mm) 

1 2.67 2.14 17.16
2 147.68 2.80 17.21
3 18.36 18.35 34.55
4 133.61 18.07 34.54
5 35.85 33.19 51.94
6 120.12 33.83 52.03
7 50.78 49.95 69.33
8 104.16 48.97 69.31
9 65.19 63.47 86.47

10 89.43 63.99 86.43
11 64.78 87.88 86.51
12 90.03 88.05 86.44
13 51.45 103.66 69.47
14 105.58 102.03 69.44
15 36.15 117.40 52.12
16 120.24 118.17 51.94
17 19.01 132.57 34.53
18 132.94 133.24 34.55
19 3.47 146.79 17.20
20 147.32 147.29 17.11

 

5.4 Calibrating the cameras using DLT 
 
The calibration piece shown in   Figure  5-1was then placed inside the FOV of 

the three cameras as shown in  Figure  5-2. Three images (one from each 

camera) were captured and processed to extract the calibration points from the 

background and to find the x, y image coordinates for the same points. To do 

this task; the function Image_capture (see Appendix B) was written using 

Matlab. This function instructs the vision system to capture the three images for 

the calibration piece. 

 

Also another function called image_processing (see Appendix B) was written. 

The task of this function is to automatically process the three images and 

segment the calibration points from the background. To find the x and y image 

coordinates for each calibration point, a built-in Matlab function called 
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regionprops was implemented (see Matlab help for this function). Figure  5-5 

shows an image of the calibration piece before and after thresholding. 

 

                              (a)            (b)  

Figure  5-5: Two images for the calibration piece, a) Grey level image b) binary 
            image after thresholding 
 

The output of the second function (image_processing) is in three data files, 

comprising the object number and x and y coordinates for the calibration points.  

Table 5-2 shows the output from the image_processing function for one camera. 

 
After implementing the function that automatically matches the calibration points 

from all images (see section 4.6.1 point 5 for more details), the twelve camera 

parameters were calculated using the DLT technique (see Appendix A.2 for DLT 

techniques and camera parameters). 

 
 

Table  5-3 shows the twelve parameters produced by the DLT technique for the 

three cameras. This table illustrates that the parameters cannot indicate how 

much the accuracy is, which is different from the Tsai technique, wherein each 

parameter has a physical meaning and should be located in a certain interval. 
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Table  5-2 : x and y coordinates for the calibration points captured by the Right  
                  camera 

Calibration 
point No 

X 
coordinate 

(pixel) 

y 
coordinate 

(pixel) 
1 164.4 134.4 
2 171.4 492.4 
3 210.0 143.0 
4 219.7 432.8 
5 264.3 155.1 
6 275.0 373.9 
7 316.2 165.2 
8 323.1 306.6 
9 367.1 181.6 
10 374.0 246.9 
11 442.5 181.2 
12 448.5 245.3 
13 473.7 171.1 
14 487.0 308.1 
15 498.3 156.7 
16 516.0 146.0 
17 526.7 368.5 
18 536.0 138.1 
19 556.1 426.3 
20 584.8 479.7 

 
Table  5-3: Camera parameters for the three cameras by using DLT 
Parameter 

No Camera 1 Camera 2 Camera 3 
1 1.0000 -2.3364 0.4381 
2 2.0000 -0.0427 -2.0600 
3 3.0000 -0.4654 -1.2168 
4 4.0000 134.6732 680.4959 
5 5.0000 0.0821 -2.1341 
6 6.0000 2.0058 0.0540 
7 7.0000 -1.0049 -0.9732 
8 8.0000 132.9118 111.6558 
9 9.0000 0.0000 0.0004 
10 10.0000 -0.0004 0.0005 
11 11.0000 -0.0014 -0.0013 
12 12.0000 0.0000 0.0000 

 



109 
 

5.5 Reconstruct the 3D coordinates of the calibration points 
using DLT 

 
Having the camera parameters for all cameras and the x and y co-ordinates for 

the calibration points for the three images, the 3D world coordinates (X, Y, Z) for 

the control points were reconstructed using the DLT reconstruction equations 

explained in section 3.10 and Appendix A.2.1. Table 5-4 shows the 3D 

coordinates for the calibration points obtained from the vision system. 

 
Table  5-4 : 3D coordinates for the calibration points obtained from the vision 
        system(The calibration piece placed as shown in figure 5-7) 

Points 
X 
(mm) 

Y 
(mm) 

Z 
(mm) 

1 2.60 2.41 16.91
2 147.43 3.22 17.75
3 18.36 18.26 34.28
4 133.83 18.14 34.55
5 35.92 32.97 51.83
6 120.43 33.77 52.01
7 50.46 49.97 69.50
8 104.17 49.11 69.41
9 65.33 63.64 86.47
10 89.22 64.32 86.46
11 65.03 87.67 86.55
12 89.71 88.24 86.53
13 51.57 103.43 69.59
14 105.41 101.91 69.67
15 36.30 117.46 52.10
16 120.29 118.27 52.15
17 18.86 132.76 34.41
18 133.04 133.33 34.73
19 3.36 146.64 17.31
20 147.06 147.09 17.62

 

To see the effect of the location of the calibration piece on the system accuracy, 

the calibration piece was placed at various positions within the FOV of the three 

cameras and within the limited movement that was obtained in sections5-2.1 and 

5.2.2. 

 



110 
 

The data from the vision system was then compared with the data obtained from 

the coordinate measuring machine. The results are shown below: 

 

First position: 

The centre of the calibration piece placed at the base point of the cylinder,see 

Figure  5-6. 

L = 145mm,  

h = 520 mm (from the base to the camera), 

 

To compare the performance of the CVS and the CMM the Root Mean Square 

error and the Standard Deviation were calculated as described below.  

 

Root Mean Square error (RMS)can be calculated using the formula: 

 

n
erorRMS

2
n

2
3

2
2

2
1 x...........x x+x 


       ( 5-7) 

Where: 

 is the difference between the readings obtained from the two systems, and ݔ

݊ is number of samples.  

 

As the whole data are used in the analysis, so the standard deviation population 

was found by the following formula: 

 





n

i
i mxSTD

0

)(

                      
( 5-8) 

Where: 

݉ is the mean. 

݊ is number of samples.  

 

The Root Mean Square (RMS) error and the standard deviation between the 

CVS obtained from first position shown in Table  5-5. 
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Table  5-5: RMS error and Standard deviation between the CVS obtained from 
                 first position                     

 X (mm) Y(mm) Z(mm) 
RMS error 0.18 0.15 0.15 
Standard Deviation 0.10 0.08 0.10 

 

 

Figure  5-6: First position 
 

Second position:  

In this test the vertical distance from the base was increased by 70 mm. (notice 

that 70 mm >∆z (see step 1 above), but the pyramid shape of the calibration 

piece gives more space in the vertical direction), i.e. h = 450 mm, and L = 145 

mm, see Figure  5-7.The RMS error and the standard deviation between the CVS 

and CMM are shown in Table  5-6. 

 

Table  5-6: RMS error and Standard deviation between the CVS obtained from  
                 second position 

 X (mm) Y(mm) Z(mm) 
RMS error 0.17 0.16 0.23 
Standard Deviation 0.11 0.08 0.16 
 

Third position: 

ө 



112 
 

L =145, 

Vertical distance was reduced by 35mm, i.e. h = 485 mm, see Figure  5-8. 

 

The RMS error and the standard deviation between the CVS and CMM are 

shown in 

.  

Table  5-7: RMS error and Standard deviation between the CVS obtained from 
                 third position 

 X (mm) Y (mm) Z (mm) 
RMS error 0.17 0.15 0.19 
Standard Deviation 0.09 0.08 0.14 
 

 

 

Figure  5-7: Second position, side view  
             (top view same as Figure (5-6))

 

Figure  5-8: Third position, side view(top
                  view same as Figure (5-6))   

 

 
Forth position: 

H = 520mm, L =145mm. The calibration piece was rotated by 15º, see Figure  5-9. 

 

The RMS error and the standard deviation between the CVS and CMM are 

shown in Table  5-8. 
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. 

Table  5-8; RMS error and Standard deviation between the CVS obtained from 
                 fourth position 

 X (mm) Y(mm) Z(mm) 
RMS error 0.16 0.18 0.22 
Standard Deviation 0.10 0.10 0.17 

 

Fifth position: 

H = 520mm, L = 145mm and the calibration piece was shifted forward by 

30mm,Figure  5-10. 

 

The RMS error and the standard deviation between the CVS and CMM are 

shown in Table  5-9. 

 

Table  5-9: RMS error and Standard deviation between the CVS obtained from  
       fifth position 

 X (mm) Y (mm) Z (mm) 
RMS error 0.16 0.14 0.17 
Standard Deviation 0.09 0.08 0.09 
 

 

Figure  5-9: Forth position, Top view  
         (side view same as Figure (5-6)) 

 

Figure  5-10: Fifth position, Top view   
          (side view same as Figure (5-6)) 

 

Sixth position: 
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H = 520mm, L 145mm and the calibration piece was shifted backward by 30mm 

as depicted in Figure  5-11. 

The RMS error and the standard deviation between the CV system and CMM are 

shown in Table  5-10. 

 

Table  5-10: RMS error and Standard deviation between the CVS obtained from  
                    sixth position 

 X (mm) Y(mm) Z(mm) 
RMS error 0.19 0.18 0.27 
Standard Deviation 0.10 0.10 0.20 

 

Figure  5-11: Sixth position, Top view(side view same as Figure (5-6)) 
 
From the all six results above, the absolute mean errors between the CMM and 

the CVS in X, Y and Z are summarized in Table  5-11. 

 

Table  5-11: The absolute mean errors between the CMM and the CVS 
 X(mm) Y(mm) Z(mm) 
RMSE, first position   

0.18 0.15 0.15 
RMSE,  second position 

0.17 0.16 0.23 
RMSE,  third position 

0.17 0.15 0.19 
RMSE,  forth position 

0.16 0.18 0.22 
RMSE,  fifth position 

0.16 0.14 0.17 
RMSE,  sixth position 

0.19 0.18 0.27 
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Mean error 
0.17 0.16 0.20 

St Dev 
0.01 0.02 0.04 

 

From table 5-5 above, Z coordinate shows slightly higher mean error and St Dev 

(but not significant) than the X and Y coordinates. This is probably because the Z 

coordinates of the cameras are larger than their X and Y coordinates, due to the 

physical constraints of the apparatus. 

 

In general the standard deviation for the six tests in X, Y, and Z are very low. In 

other words it can be concluded that, variations in placing the calibration piece 

over a small range of locations within the FOV of the cameras as calculated in 

sections 5.2.1 and 5.2.2,does not significantly affect the error between the CVS 

and the CMM. Moreover this relaxes the positioning constraints of the calibration 

piece, making it easier for a non-expert to set up the calibration procedure. 

 

5.6 Determining the effect of the error in X, Y, Z coordinates on 
the value of finger joint angles 

 

The ultimate aim of this work is to measure the angles for the finger joints, each 

joint being defined by the intersection of two vectors in space. To indicate how 

much the error in terms of X, Y and Z co-ordinates will affect the angles of 

interest, the following formulae have been derived.  
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Figure  5-12: Angle between two vectors in space 

 

Let: 2 2 2 2 3 3 3 3( , , ), ( , , ), ( , , )P x y z P x y z P x y z  in Figure  5-12 be three points in space, so 

the two vectors between these points are:  

UzzyyxxPP  ],,[ 2222  and 

VzzyyxxPP  ],,[ 3333  

 

and let theta ( ) be the angle between the two vectors, so that 
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Squaring each side of the equation above, we get  
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Now let N= 

ө
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Hence 
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To find the change of theta with respect to zandyx,  for point P we find
x


, 
y


 

and
z
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. 

From equation (5-11), taking partial derivatives of   with respect to x  gives 
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From equation (5-9) 
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By substituting equations (5-15, 5-16) in (5-14) we obtain 
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Given 1cossin 22    →  2cos1sin     →   
M

N
 1sin              ( 5-20) 

 

By putting the values of cos   and sin  from equations (5-15 and 5-20) in 

equation (5-19), we obtain 
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Similarly  
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Similarly for the Point 2P we have  
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( 5-26) 

 

And for the Point 3P we have 
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( 5-29) 

 

A change in the angle between two vectors in space with respect to the 3D 

world co-ordinates depends on the location of these vectors in space. For 

instance, if the two vectors are located in a plane parallel to the Y-Z plane, that 

means 
x


= 0, 

y


 ≠ 0 and
z


 ≠ 0.The change of  with respect to the X, Y, Z 

coordinates is directly proportional to the value of . 

 

Given that the fingers are placed parallel to the y-axis as depicted in Figure  5-13 

and that the two vectors U and V that form the finger joint angle   are as shown 

in          Figure  5-14, the minimum change of   will be with respect to the X 

coordinate. 

 

Let the values of 32 ,, PPP be (57, 50, 77),(40, 50, 60) and (60, 40, 65) mm 

respectively; these three points are located within the control volume of the 

calibration piece (  Figure  5-1).Then the magnitude of the vectors 2PP  = 24 mm 

and 3PP = 15.9 mm, which are similar to the distance between pairs of 

measurement points on the fingers of the hand model. 
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To find out the rate of change of theta with respect to x, y and z at the given 

points 32 ,, PPP , we substitute these 3D coordinates into equations (5-19, 5-20, 5-

21). 

 

MATLAB code was written to find
x


, 
y


 and

z


, the values were calculated as 

follows: 

x


 = -1.84   degree/mm  

y


= -0.64   degree/mm  

z


 = -2.88 degree/mm 

Given that 1 pixel = 0.38 mm, from the vision system, we have 1 mm = 2.63 pixel, 

then 
x


 = -0.70 degree/pixel, 

y


 = -0.24 degree/pixel and 
z


= -1.0 

degree/pixel 

Similarly 

2x




= -1.22 degree/mm = -0.46 degree/pixel 

2y




= 1.63 degree/mm = 0.62 degree/pixel 

2z




= 1.22 degree/mm = 0.46 degree/pixel 

3x




= 3.07 degree/mm= 1.16 degree/pixel 

3y




= -0.98 degree/mm = -0.37 degree/pixel 

3z




= 1.59 degree/mm = 0.6 degree/pixel 

The total changes of   with respect to , andx y zcoordinates are: 
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2 3x x x

    
 

  
= 0.01 degree/mm 

డఏ

డ௬
൅	 డఏ

డ௬మ
൅ డఏ

డ௬య
= 0.01 degree/mm 

2 3z z z

    
 

  
= -0.07 degree/mm 

 

This means if the errors in X, Y, Z in mm for instance are 0.156, 0.128 and 0.112 

respectively (these values are the average absolute error between CMM and the 

vision system for the calibration piece shown in Figure 5-2 ), then    will change 

by 0.0015º, 0.0012º and 0.0078º for X, Y, and Z. From these results it can be 

seen that the error between the readings obtained from the CMM and from the 

vision system has an insignificant effect on the deduced angle between the two 

vectors in space. We can therefore conclude at this stage that the level of joint 

angle measurement accuracy, for all the fingers measured by this computer 

vision system is very encouraging. 

 

                                             

Figure  5-13: Position of the fingers with respect to world co-ordinates (Top view) 
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         Figure  5-14: Two vectors in space represent finger angle joint (Side view) 
 

Up to now the finger joint measurements have been carried out on one model 

finger which was designed previously by Hemmings (2002) as shown in Figure 4-

16. This finger contains three angles, each angle formed from the intersection of 

two vectors in space, so 8 points are needed to measure these angles.  

 

After the cameras had been calibrated, the three angles were measured by the 

CMM machine. To measure these angles by the CMM, firstly the 3D world 

coordinates for the 8 points were found as explained in section 5.3. To measure 

any joint angle, the four points which represent the two vectors that form this 

angle are selected, then the CMM software calculate the angle as described in 

section 4.7. 

 

The measurement process by the CMM was repeated three times to find out how 

much human error can affect the evaluation of the angles, see Table  5-12. 
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Table  5-12: Finger angles measurement from CMM 

Finger 

joint 

First  

measurement 

(degree) 

Second  

measurement 

(degree) 

Third  

measurement 

(degree) 

Max 

(degree) 

Min 

(degree) 

Range 

(Max-

Min) 

(degree)

MCP 

joint  20.19 20.49 20.10 20.49 20.10 0.39 

PIP 

joint 17.03 16.73 17.28 17.28 16.73 0.55 

DIP 

joint 28.07 28.10 27.92 28.10 27.92 0.18 

 

From Table 5-12 above, there is some discrepancy between the angles obtained 

from the CMM (mainly due to human error); the highest difference between the 

maximum and the minimum reading was 0.55º. Thus we have a worst case error 

of ± 0.27 degrees in the CMM readings (half the maximum range). 

 

The finger was then placed inside the control volume, and the computer vision 

measurement process was carried out to reconstruct the 3D world coordinates of 

the measurement points as discussed in section 5.5. Then joint finger angles 

were calculated based on the formula shown in section 4-7. Table  5-13 displays 

the results from the computer vision system. 

 
Table  5-13 : Finger angles measurement for the CVS 

Finger joint 

Angle 

(degrees) 

MCP joint  20.6 

PIP joint 16.82 

DIP joint 28.9 

 

Comparing, the tables 5-6 and 5-7 above, the PIP joint angle obtained from the 

CVS lies within the range of the measurements that were obtained from the CMM. 
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Thus, the MCP joint angle measured by the CVS can be considered as within the 

range of the measurement obtained by the CMM machine, as the difference 

between the two measurements is about 0.1 degrees.  

 

However, in the case of the DIP angle, the angle measured by the CV system is 

outside the range of the CMM machine measurement by 0.8 degrees, which is 

quite high compared with the PIP and MCP angles. For reasons that may be 

behind this error, see Figure 5-17 and the discussion related to that figure. 

Nevertheless, this error is still below the specification target of this work which is 

1 degree.  

 

The absolute error between the three measurements from the CMM and 

readings from the CV system are shown in Table  5-14. 

 

Table  5-14 : Absolute error between the three measurements from the CMM and 
                    readings from the CV system 

Finger 
joint 

Absolute error, 
first 

measurement 
(degree ) 

Absolute 
error, second  
measurement

 (degree ) 

Absolute error, 
third  

measurement 
 (degree ) 

Average 
error 
(degree) 

MCP joint  
0.46 0.16 0.54 0.38 

PIP joint 
0.186 0.12 0.43 0.24 

DIP joint 
0.82 0.79 0.97 0.86 

Mean 
error 0.49 

 

From Table  5-14 the overall mean error between the CMM and the CVS when 

one finger joints were measured is 0.5º, which is lower than our target. 

 

5.7 Measuring all 4 fingers of the hand 
 

So far, the angles for only one finger have been evaluated. To measure the joint 

angles for all four fingers, a new calibration piece was designed, as the size of 
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the one shown in Figure 5-1was not sufficient to enclose all four fingers. The new 

calibration piece was designed according to the factors discussed in section 

(4.2.6) and is shown in Figure 4-9.  

 

In this test the FOV of the cameras was increased by increasing the height of the 

three cameras to 800 mm (see Figure  5-15) in order to cover the calibration 

piece.  

 

The new calibration piece has 27 calibration points evenly distributed, the 3D 

world coordinates for these points were measured by CMM and then it obtained 

from the Computer Vision System (CVS) the data is shown in Table  5-15. 

 

                                                           

Figure  5-15: Increasing the height of the camera (H) to 800 mm leads to increase  
                    the field of view (X)   
 
Once the 3D coordinates of the calibration piece had been obtained, it was 

placed at a fixed position inside the working volume by using two steel strips with 

L cross section as location stops. Placing the calibration piece at a fixed position 

helps to establish an automatic correspondence between the calibration points 

captured by different cameras. The cameras’ parameters were then obtained by 

using the DLT technique.  

 

Camera 

H 

 

X 
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The 3D coordinates for the calibration points were reconstructed and compared 

with the ones from the CMM. Table  5-16 displays the mean and standard 

deviation of the error between CVS and CMM for the calibration points in mm. 

 

Table  5-15 : 3D world coordinates of the calibration points for the calibration  
                     piece shown in Figure  4-9 (measured by CVS and CMM) 
 Measured by CVS Measured by CMM 
Calibration 
point X(mm) Y(mm) Z(mm) X(mm) Y(mm) Z(mm) 

1 -21.53 19.90 22.68 -22.26 19.54 24.59 
2 -25.13 11.28 80.26 -24.52 11.43 79.75 
3 -21.19 12.84 137.38 -20.53 13.18 137.03 
4 -21.37 101.13 22.49 -21.16 100.99 22.78 
5 -19.70 100.36 80.91 -19.58 100.41 81.00 
6 -18.15 100.03 138.90 -18.37 99.91 138.85 
7 -22.81 184.01 24.29 -22.43 184.01 23.91 
8 -23.15 188.09 82.01 -23.28 187.22 83.05 
9 -23.23 187.59 138.11 -23.86 186.17 140.06 

10 -99.81 11.02 23.38 -99.29 11.66 22.29 
11 -100.91 10.56 81.19 -100.66 10.98 80.71 
12 -95.22 11.90 139.36 -95.03 12.00 139.78 
13 -97.82 98.17 22.03 -97.58 98.56 21.67 
14 -99.26 100.23 81.32 -99.31 100.71 81.16 
15 -102.25 99.62 140.60 -102.60 99.88 140.46 
16 -100.40 187.32 23.58 -100.65 187.39 23.11 
17 -100.11 189.84 81.84 -100.59 189.02 82.67 
18 -97.43 188.62 139.00 -97.97 186.93 140.64 
19 -178.26 13.66 24.94 -177.92 13.86 24.04 
20 -178.73 11.57 81.76 -178.80 11.57 81.43 
21 -177.37 12.23 138.17 -177.74 12.19 138.49 
22 -182.51 100.46 23.49 -182.56 100.60 23.53 
23 -181.93 99.51 81.68 -182.24 99.62 81.56 
24 -181.69 99.36 139.83 -182.39 99.59 139.11 
25 -177.37 185.03 25.00 -177.96 184.98 25.08 
26 -177.75 188.60 82.46 -178.44 188.19 83.05 
27 -176.36 187.95 138.90 -177.11 186.97 140.09 
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Table  5-16: Absolute error between CMM and CVS (see Table  5-15) 
Calibration 
point X(mm) Y(mm) Z(mm)

1 0.73 0.36 1.91 
2 0.61 0.15 0.51 
3 0.66 0.34 0.35 
4 0.21 0.14 0.29 
5 0.12 0.05 0.09 
6 0.22 0.13 0.05 
7 0.38 0.00 0.38 
8 0.13 0.87 1.03 
9 0.63 1.42 1.95 
10 0.53 0.64 1.09 
11 0.25 0.42 0.49 
12 0.19 0.09 0.42 
13 0.24 0.39 0.36 
14 0.05 0.49 0.16 
15 0.35 0.27 0.13 
16 0.25 0.07 0.47 
17 0.48 0.82 0.82
18 0.54 1.70 1.64 
19 0.34 0.21 0.90 
20 0.07 0.01 0.33 
21 0.37 0.04 0.32 
22 0.05 0.15 0.04 
23 0.31 0.10 0.12 
24 0.70 0.23 0.72 
25 0.59 0.05 0.08 
26 0.69 0.41 0.59 
27 0.75 0.99 1.19 

Mean error 0.39 0.39 0.61 
STDEV 0.22 0.42 0.54 

 
Looking to Table  5-16 above, the mean error in X direction is 0.39 mm and the 

standard deviation is 0.22 mm which means the data is very close to the mean. 

For the error in Y direction the mean error is same as X direction; however the 

standard deviation is higher than X direction. Looking to the data in Y direction it 

is clear that most of the data is very small, i.e. very close to the mean except two 

readings; 1.7 mm and 1.42 mm (see Table  5-16). There is no explanation for 

these high errors unless; they could be a human error while using CMM (see 

Table  5-14) or/and errors from electronic devices that composes the CVS. 
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In the case of the error from the Z direction, the mean and standard deviation is 

higher than both X and Y directions, the same reason behind Y direction can be 

mentioned here. Nevertheless and in general the data in Z coordinate is slightly 

higher than the X and Y coordinates. This is could be the same reason that 

mentioned about the data shown in Table  5-11. Reducing the Z coordinates of 

the cameras will lead to a reduction in the FOV, which is not acceptable. Also 

increasing the X and Y coordinates of the cameras will lead to an increase in the 

working volume which is undesirable as well. 

 

The hand model depicted in Figure 4-10 was then placed into the control volume, 

so the finger joint angles could be evaluated. In order to test the robustness of 

the system, two categories of angles were measured. In the first category, the 

range of joints angles varied between 21º and 43º (the finger joints can be bent 

up to around 100º). However these angles have been used in order to enable the 

cameras to see the measurement points directly). In the second category, the 

angles varied between 2º and 8º. Also, for each category the hand model was 

placed at different positions within the control volume. Then the angles measured 

by the CMM and the CVS were compared, and to avoid compound angles the 

four measurement points were placed so their top projection shapes straight line, 

as much as possible. The results from the two categories were as below: 

 

A) First category (joints angles varied between 21º and 43º) 

The values of pre-set joint angles measured by the CMM (Table  5-17) were: 

 

Table  5-17: Joint angles measured by CMM 

 

MCP 

joint(º) 

PIP 

joint(º) 

DIP 

joint(º) 

First finger 21.35 23.39 33.16 

Second finger 23.47 30.72 33.62 

Third finger 22.89 20.32 28.65 

Fourth finger 27.71 38.29 41.27 
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The hand model with above set angles was placed at different positions in the 

control volume and the measurement process was carried out as illustrated 

below: 

 

First position 

The hand was placed at the centre of the control volume, seeFigure  5-16. The 

absolute errors between the CMM and the CVS are shown inTable  5-18. 

 
Table  5-18: Absolute errors between the CMM and the CVS (first position) 

 

MCP 

joint(º) 

PIP 

joint(º) 

DIP 

joint(º) 

First finger 0.23  0.14  0.11  

Second finger 0.04  0.92  0.04 

Third finger 0.25  0.05  0.06  

Fourth finger 0.61  0.47  0.59  

Mean                  0.29 

STDEV                  0.28 

 

From Table 5-18, the mean error is 0.29° and the standard devation is 0.28°. 

This is a very low error as most of the results are much less than one degree 

except one angle which 0.92 degree. 
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Figure  5-16: First position, hand model placed at the centre of the calibration 
    piece. 
 
Second position 

The hand model was shifted to the right by 30 mm from the first position, see  
Figure  5-17.The absolute errors between the CMM and the CVS are shown in 

Table  5-19: 
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Table  5-19: Absolute errors between the CMM and the CVS (second position)  

 

MCP 

joint(º) 

PIP 

joint(º) 

DIP 

joint(º) 

First finger 0.08 0.65 0.23 

second finger 0.15 0.47 0.15 

Third finger 0.40 0.71 1.18 

Fourth finger 0.01 1.24 0.61 

Mean                  0.49 

STDEV                  0.39 

                        

 
Figure  5-17:  Second position, the hand model shifted from the first position to  

    the right by 30 mm 
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Third position 

The hand model was shifted to the left by 30 mm from the first position, see 
Figure 5-18. The absolute errors between the CMM and the CVS are shown in 
Table  5-20. 
 

Table  5-20: Absolute errors between the CMM and the CVS (third position) 

 

MCP 

joint(º) 

PIP 

joint(º) 

DIP 

joint(º) 

First finger 0.35 0.88 0.15 

Second finger 0.20 0.02 0.47 

Third finger 0.47 0.29 0.43 

Fourth finger 0.61 2.35 1.80 

Mean               0.67 

STDEV               0.67 

 

Comparing Table  5-19 and Table  5-20, the errors in MCP joints for the two 

measurements are very close to each other and they are much less than 1 

degree. However the PIP and DIP joints of the fourth finger obtained from the 

third position is significantly higher than the errors at the same joints obtained 

from the second position.  This is should not be the case, as moving the hand 

model by 30 mm to the right or to the left from the first position, should not have 

significant difference between the two positions because in both cases the hand 

model located within the control volume which has evenly distributed calibration 

points. 

 

Moreover, at the second position the fourth finger located at the same position 

with respect to the calibration points as the first finger in the third position as 

shown in Figure 5-17 and Figure 5-18. So the errors in these two fingers should 

be similar. However the errors increased from 0.65 degree to 2.35 degree for the 

PIP joint and from 0.23 degree to 1.80 degree for the DIP joint. Having that the 

two tests were done under the same conditions and the same camera 

parameters were used, the difference only was in the location of the hand model 
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which should not have a significant effect in the results. So these random errors 

could be from the electronic devices. 

 

 

 
Figure  5-18: Third position, the hand model shifted from the first position to the 

   left by 30 mm 
 
 
Forth position 

The hand model was rotated to the right by 15º, see Figure  5-19. The average 

errors between the two readings are shown in Table  5-21. 

 

 

 

 

 

 

 

1
st
 finger 

2
nd

 finger 3
rd

 finger 

4
th
  finger 

Calibration points 

Measurement 
points  

Hand model 

Calibration 
object 

Finger  tip 

Wrist 

DIP joint 

PIP joint 

MCP joint 



134 
 

Table  5-21: Absolute errors between the CMM and the CVS (fourth position) 

 

MCP 

joint(º) 

PIP 

joint(º) 

DIP 

joint(º) 

First finger 0.11 0.65 1.03 

Second finger 0.04 0.08 0.23 

Third finger 0.10 0.04 0.03 

Fourth finger 0.96 0.44 0.32 

Mean                  0.34  

STDEV                  0.35 

 

From Table  5-21 the mean and the standard deviation are similar to the first 

position. The table shows twelve errors, out of 12, which are much less than one 

degree and two errors are almost on degree each.  

 

Figure  5-19: Fourth position, the hand model was rotated by 15 degrees to the 
   right from first position 
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Fifth position 

The hand model was rotated to the left by 15º, see Figure  5-20. The absolute 

errors between the CMM and the CVS are shown in Table  5-22. 

 

Table  5-22: Absolute errors between the CMM and the CVS (fifth position) 

 

MCP 

joint(º) 

PIP 

joint(º) 

DIP 

joint(º) 

First finger 0.02 0.28 0.19 

Second finger 0.11 0.01 0.70 

Third finger 0.60 0.83 0.20 

Fourth finger 0.45 1.11 0.74 

Mean                    0.44 

STDEV                    0.34 

 

From Table  5-22 the mean and standard deviation is very low. And all the errors 

are much less than the target of this work, except the PIP joint for the fourth 

finger which is 1.11 degree. Nevertheless it is still very acceptable as it is not 

significantly higher than one degree.  

 

By comparing Table 5-21 and Table  5-22 it can be concluded that, the rotating 

the handle model to the right and to the left produced errors much less than the 

target error.  
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Figure  5-20: Fifth position, the hand model was rotated by 15 degrees to the left  
  from first position. 
 
Sixth position  

The hand model was same as first position and lifted upward by 50 mm. The 
absolute errors between the CMM and the CVS are shown in Table  5-23. 
 

Table  5-23: Absolute errors between the CMM and the CVS (sixth position) 

 

MCP 

joint(º) 

PIP 

joint(º) 

DIP 

joint(º) 

First finger 0.45 0.46 0.10 

second finger 0.32 0.92 1.18 

Third finger 0.17 1.15 1.14 

Fourth finger 0.61 1.93 1.42 

Mean                   0.82 

STDEV                   0.53 
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From Table  5-23 above the mean error and the standard deviation are higher 

than the first position and they should be similar as the first position. This result 

as a consequence of the high errors that produced by the PIP and DIP joints of 

the fourth finger. The reason of these errors could be the same one that disrobed 

about the result shown in Table  5-20.  

 

Seventh position 

The hand model was same as third position and lifted upward by 50 mm. The 

absolute errors between the CMM and the CVS are shown in Table  5-24. 

 

Table  5-24: Absolute errors between the CMM and the CVS (seventh position) 

 

MCP 

joint(º) 

PIP 

joint(º) 

DIP 

joint(º) 

First finger 1.08 0.60 0.82 

Second finger 0.07 0.32 0.73 

Third finger 0.30 0.06 0.87 

Fourth finger 0.34 0.30 2.24 

Mean                  0.64 

STDEV                  0.57 

 

All the errors shown in Table  5-24 are very low, i.e. less than the target; however 

the error from the DIP joint for the fourth finger is very high. 

 

Eighth position 

The hand model was as second position and lifted upward by around 50 mm. 

The absolute errors between the CMM and the CVS are shown in Table  5-25. 
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Table  5-25: Absolute errors between the CMM and the CVS (eighth position) 

 

MCP 

joint(º) 

PIP 

joint(º) 

DIP 

joint(º) 

First finger 0.40 1.26 1.34 

Second finger 0.18 0.21 0.19 

Third finger 0.15 0.52 0.68 

Fourth finger 0.20 1.54 3.62 

Mean                  0.86 

STDEV                 0.96 

 

From the eight data tables above which obtained by placing the hand model at 

different locations within the control volume, it is obvious that most of the finger 

joint angles measured by the CVS have an error of less than one degree 

compared with the CMM machine. However, there are some tables shown one or 

two errors, out of 12 readings, which are more than one degree. These errors 

should not be existed as placing the hand model at different locations within the 

calibration piece should not significantly affect the result. Given that the 

calibration points were evenly distributed and all the tested were used the same 

cameras parameters. So the electronic devices could be behind these high errors. 

 

B) Second category: new finger angles were set and the angles varied 

between 2º and 8º 

 

The values of pre-set joint angles measured by the CMM are shown in 

Table  5-26. 

 

Table  5-26: Joint angles measured by CMM 

 
MCP joint(º) PIP joint(º) DIP joint(º) 

First finger 2.39 2.91 5.59 
second finger 3.29 0.72 7.36 
Third finger 3.22 2.36 1.49 
Fourth finger 4.78 1.11 0.44 
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In the second category the hand model was placed at different positions similar 

to category A. The mean error from category B is higher than category A. And 

after investigation it was found that for all hand locations the largest error always 

emerged on two joints only; the DIP joint for the third finger gave an error of 

around 4º and the DIP joint for the fourth finger gave an error of around 2º.The 

rest of the joints produced a very small error comparable with the error for the 

category (A).  The reason for this large error could be human error from the CMM 

measurements, and because the DIP joint angle is produced from the 

intersection of the two smallest vectors in the finger. The first vector is formed 

from a pair of measurement points for the Distal phalanx bone and the second 

vector from a pair of measurement points for the Middle phalanx bone.It is 

suggested that the error for the joint angle (from the CMM) produced from short 

vectors would be expected to be larger than the one produced from long vectors, 

see Figure  5-21. Another cause of this error might be mismatching between the 

points used to calculate the vector in space by the CMM machine and the points 

from the vision system. In the vision system the centroid of the points is used to 

find the vectors. If the measuring probe of the CMM does coincide with the 

position of the vision system, an additional error between the two readings will 

emerge (see Figure  5-22). 

 

The height of the UV gel (Z) shown in Figure  5-22 was not considered because 

all the measurement process were carried out after the UV gel had dried, and in 

this case the Z height is insignificant. 
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Figure  5-21: Relationship between error in angle and the distance 
 ө2> ө1 despite the height of the gel measurement points 
(H) is the same, this is because of D2 > D1 

 
 
 

 

 
 
Figure  5-22: Mismatching between the two measuring devices (CMM and VS) 
 

To test the repeatability of the system, i.e. to see the degree of consistency 

between successive measures of the same joints while, all parameters are fixed. 

The finger joints angles were vary from less than one degree to more than 39 

degrees in order to make sure the CVS works fine in the case of small and large 

angles as well. The fingers joints were measured 4 times in sequence by using 

the computer vision system, the results are shown in Table  5-27. From this table, 
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there are difference between some reading despite all of them are used the 

same cameras parameters and the hand model was placed at fixed position, but 

only difference between these tests is the captured images, so the reason for 

these differences are the image coordinates for the measurement points which is 

not related to the calibration technique but related to the electronic devices.  

 

From this table the difference is ranged from 0.27 degree to 1.11 degree and can 

appear at any finger joint randomly. This error and in addition to the error from 

the calibration technique leads to increase the error to more than one degree in 

one or two joints as seen in Table  5-24. 

 

Table  5-27: Results from examine the CVS repeatability 

  
Finger joints angles in  

degrees 

 
finger 
joints 

1st 
test  

2nd  
test 

3rd 
test 

4th 
test 

Min  Max Max-
Min 

1st finger MCP 17.31 17.43 16.85 17.63 16.85 17.63 0.78 
2nd finger MCP 15.52 15.69 15.37 15.9 15.37 15.9 0.53 
3rd finger MCP 22.45 22.51 22.28 22.91 22.28 22.91 0.63 
4th finger MCP 29.43 29.15 29.13 29.58 29.13 29.58 0.45 
1st finger PIP 2.41 2.1 2.44 3.15 2.1 3.15 1.05 
2nd finger PIP 1.75 1.41 1.72 0.64 0.64 1.75 1.11 
3rd finger PIP 19 18.8 19.11 19.63 18.8 19.63 0.83 
4th finger PIP 39.7 39.86 39.02 39.38 39.02 39.86 0.84 
1st finger DIP 5.21 5.98 5.26 4.92 4.92 5.98 1.06 
2nd finger DIP 21.52 21.5 21.65 20.69 20.69 21.65 0.96 
3rd finger DIP 5.69 5.73 5.46 5.56 5.46 5.73 0.27 
4th finger DIP 1.37 1.33 1.83 1.45 1.33 1.83 0.5 

 

5.8 Measuring fingers joints based on the Tsai technique 
 
All the results above were carried out using the DLT technique. The Tsai 

technique was then used as another calibration technique to estimate the camera 

parameters. The Tsai technique was used because the literature says it should 

be superior to the DLT and confirmation of this was required. 

 



142 
 

Having the camera parameters, the hand model was placed at five deferent 

positions within the control volume and the finger joints angles were measured 

using the computer vision system, and then compared with the angle values 

obtained from the CMM. The results are shown in Table  5-28. The mean error, 

standard deviation and the root mean square error for all the results is less than 

one degree.  

 

Also from this table there are some results have errors less than or around 1 

degree, as seen in the first and fifth tests, while the third test contains two errors, 

out off twelve readings, which are slightly higher than one degree. For the 

second and fourth test, each contains two errors ranged between 1.52 degree 

and 1.87 degree. The result from using Tsai camera calibration is similar to the 

ones obtained from using DLT technique as shown in Table  5-22 to Table  5-25.  

 

Table  5-28: Absolute error between CMM and TSAI 

 
Finger 
joints  Absolute error between CMM and TSAI 

  1st test 2nd test 3rd test 4th test 5th test 
1st finger MCP 0.05 0.09 0.27 0.20 0.23 
2nd finger MCP 0.71 0.85 1.34 0.94 1.25 
3rd finger MCP 0.06 0.17 0.42 0.21 0.07 
4th finger MCP 0.84 0.66 0.27 0.02 0.36 
1st finger PIP 0.13 0.86 0.50 0.88 0.02 
2nd finger PIP 1.18 1.67 0.54 1.30 0.89 
3rd finger PIP 0.16 0.10 1.21 1.55 0.93 
4th finger PIP 0.96 1.87 1.42 1.52 0.93 
1st finger DIP 0.47 0.01 0.41 0.95 0.50 
2nd finger DIP 0.20 0.60 0.35 0.92 0.38 
3rd finger DIP 0.19 0.56 1.25 1.34 0.57 
4th finger DIP 0.50 0.20 0.62 0.41 0.64 
Mean 0.64 
STDEV 0.48 
RMSE 0.80 

 

To find which camera calibration method gives better result, i.e. DLT or Tsai, the 

finger joint angles were measured by using the DLT and Tsai under the same 
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conditions. To do so, firstly the cameras were calibrated using DLT technique as 

explained in section 5.4. Then the calibration piece was used to calibrate the 

cameras by Tsai method as explained in detail in Appendix A.1.  

 

At this stage we have the camera parameter obtained by both techniques stored 

in the vision system. Then the hand model was placed inside the calibrated 

volume to capture the images of the hand.  

 

In order to automatically match all the measurement points of the hand that 

captured by the cameras, the technique explained in section 4.6.4 was 

implemented. 

 

Then the 3D world coordinates of the measurement points were reconstructed 

using DLT technique as explained in section 5.5. And to calculate the fingers 

joints angles the formula shown in section 4-7 was used.  

 

With the same images which used for DLT, the 3D world coordinates of the 

measurement points were reconstructed using Tsai technique as explained in 

Appendix A.1.2, then the fingers joints angles were calculated as above. 

 

Table  5-29 and Figure 5-23 compare the results from using both DLT and Tsai 

techniques. 

 

From Table  5-29 and Figure 5-23 it can be concluded that the Tsai method gave 

a better result than the DLT as expected. Also from this table all the results 

obtained by Tsai method is less than one degree except one reading which is 

slightly higher than one degree (1.25). Comparing the error at DIP joints for the 

third finger, it is clear that error from DLT is much higher than Tsai, but this does 

not necessary mean the high error obtained by the DLT is correct, as this could 

be from the electronic devices rather than the calibration technique. 
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Despite the fact that the Tsai method is more computationally expensive and 

complex as it needs to solve non-linear system of equations. However, recent 

advances in computer software and hardware makes this complexity much 

easier to solve at relatively low cost. Nevertheless, in the case where a high 

degree of accuracy is not required, then it is much better to calibrate the cameras 

by the DLT to avoid the mathematical complexity. 

 

Table  5-29: Comparison between DLT and Tsai 

 
Finger 
joints 

DLT 
,CMM (º) 

TSAI 
,CMM (º) 

1st finger MCP 0.40 0.23 
2nd finger MCP 1.07 1.25 
3rd finger MCP 0.07 0.07 
4th finger MCP 0.17 0.36 
1st finger PIP 0.14 0.02 
2nd finger PIP 0.86 0.89 
3rd finger PIP 0.91 0.93 
4th finger PIP 1.76 0.93 
1st finger DIP 0.16 0.50 
2nd finger DIP 1.10 0.38 
3rd finger DIP 1.99 0.57 
4th finger DIP 0.31 0.64 
Mean  0.75 0.56 
STDEV  0.65 0.38 
MSE  0.94 0.45 
RMSE  0.97 0.67 

MSE = mean squared error 
RMSE = root mean squared error 
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  Figure  5-23: Comparison between DLT and Tsai based on CMM 
 

5.9 Measurements of a real hand 
 
To measure the finger joint angles of a real hand, 8 gel points were placed on a 

real hand and two images were captured by two cameras, while the hand holding 

a tennis ball for two reasons. The first is to bend the fingers and the second to 

ensure that the fingers did not move between measurements by CVS and 

protractor. 

 

The images of the real hand that obtained from the vision system are shown in 

Figure  5-24 and Figure  5-25. These images were processed and the MCP joint 

angles for the index and middle fingers were evaluated.  

 

Then the hand moved from the vision system, and while it is holding the tennis 

ball, the same angles were measured by the protractor shown in    

Figure  5-26.The results from the two methods are illustrated in Table  5-30. To 

ensure that the finger did not move between measurements by CVS and 
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protractor, the hand was measured holding a tennis ball during all measurement 

processes. 

 
 
Figure  5-24: Real hand grey level image with UV gel captured by the left camera 
 

 
 

Figure  5-25: Real hand grey level image with UV gel captured by the right 
       camera  
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   Figure  5-26: Protractor which used to measure the MCP joints 
 
 
Table  5-30: Results from using CVS and a protractor 
 Results from CVS in 

degrees 

Results from protractor 

in degrees 

MCP joint for the Middle 

finger 

43.5 48 

MCP joint for the Index 

finger 

52 57 

 

From Table  5-30 above it is obvious that the difference between the reading 

obtained by the CVS and the protractor was around 5 degrees. This result is 

similar to the one found in literature where the measurement process carried out 

by the traditional goniometry (Bainbridge, 2000 and Williams, et al., 2000).From 

this test it is clear that the protractor is not a reliable one for measuring finger 

angles; also in general the error from using a protractor or any goniometry can be 

up to ±5 degrees.  
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5.10 Conclusion 
 

The computer vision system in this study has proved to be a reliable and 

accurate tool for evaluation of the range of motion of the fingers. The results from 

using a steel hand model showed that the proposed system is reliable and 

produced encouraged results.  

 

Firstly, the FOV of the cameras is calculated in order to guarantee that it covers 

the calibration and test piece. The results show the location of the cameras under 

the available working volume and the given focal length of the lens is sufficient to 

cover the calibration and test piece. The FOV of the cameras can be increased if 

the size of the cameras and cameras holders are replaced by smaller ones.  

 

The 12 hand finger joints were measured by using the CMM, then the hand 

model was placed at several locations inside the control volume and the finger 

joints angles were measured by the CVS and the two results were compared. 

The comparison showed that the error between the CMM and the CVS was very 

small for most of the joints (less than one degree). However, some results show 

one or two errors out of twelve are more than one degree. After investigation it 

was found that these large errors were not related to the CVS but as a result of 

human error while measuring the angles by the CMM or from the electronic 

devices that compose the CVS, the later can be avoided by replacing the 

analogue cameras by digital ones.  

 

Two calibration approaches were used to calibrate the cameras, DLT and Tsai. A 

comparison between the DLT and the Tsai techniques showed that the latter 

produced better results when the finger joints angles were evaluated. 

 

The experimental work showed that moving the calibration piece within the 

allowable FOV had an insignificant effect on the accuracy of the system. 
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A real hand was measured and it was illustrated that using the UV gel as 

measurement points gave good contrast with the human skin. However, the error 

between the computer vision system and the protractor used to measure the 

finger joint angles was quite high (around 5 degrees). This error is because of the 

unreliability of the protractor for assessing the finger joints.  
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6 Measuring the full range of finger motion 
 

So far, this work has involved assessment of fingers joints by placing cameras 

above the hand. This position of the cameras does not allow images of the 

measurement points at all flexion positions to be captured, see Figure  6-1. To 

cover all the hand at different values of flexion and extension gestures, the four 

ideas below have been considered. 

  

 

 

Figure  6-1: Finger at maximum flexion position, at this position the top cameras 
         cannot see the UV gel measurement points A, B, C, and D  

 

1. Placing cameras underneath the hand as well as above it, so 

images for the hand can be captured while they are in the flexed 

position. This option was discarded because it would lead to a 

significant increase in the size of the working volume (to double the 

existing size) and would add to the cost. Keeping the size of the 

working volume as small as possible is a major factor in this study, 

so that the vision system occupies a small volume in the clinic.  
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2. The second option was to place the hand so that its back is facing 

the cameras, and then to capture the measurement points which 

are available in view. The points which can’t be captured from this 

position can be imaged by turning the hand through180 degrees. 

However, using this method will increase the assessment time, 

which is not desirable and may lead to more patient discomfort. 

 

3. The third idea was to place a concave mirror underneath the hand, 

so that the cameras placed above it can see all the measurement 

points on the fingers even if the hand is at the fully flexed position. 

From the properties of concave mirrors, if the measurement points 

are located between the centre of curvature and the focal point, the 

image will be located beyond the centre of curvature. In this case 

the virtual image can be placed inside the control volume. However, 

because of the geometrical distortion from using this type of mirror, 

this idea was discounted. 

 

4. The fourth idea, which was adopted in this work, was to use a plane 

mirror or a 50:50 Beam Splitter (BS). If the cameras cannot see the 

measurement points directly, then they will be seen through the BS 

or mirror. The BS or mirror is placed underneath the hand and 

parallel to the X, Y world plane, so the location of the virtual points 

will differ from their real ones in Z coordinates only. In either case 

(BS or plane mirror), it is important to be able to distinguish 

between real and virtual measurement points. 

 

Beam Splitter 

In the case of the beam splitter (BS), the discrimination between the virtual 

measurement points and the real ones can be achieved based on their 

brightness values (grey level).The virtual points that are reflected from the BS will 

have brightness values 50% or so less than the real measurement points. After 
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calculating the Z world coordinates for the virtual points by using either the DLT 

or Tsai method, the actual Z coordinates for the virtual points can be calculated 

as shown below.  

 

    2        actual BS virtual virtualZ Z Z Z   
             ( 6-1) 

 
 2    BS virtualZ Z                   ( 6-2) 

 
Where: 

 actualZ - The actual Z coordinate for the real point, see                          

Figure  6-2. 

.B SZ - The Z coordinate of the beam splitter (known from the design). 

ܼ௩௜௥௧௨௔௟ -The Z coordinate of the virtual point calculated by the CVS. 

 

                     
                            Figure  6-2: Location of real and virtual points 

 
Plane mirror 

In the case of using a plane mirror, both real and virtual points have equal 

brightness. So after reconstruction of the 3D world coordinates, the virtual points 

Z  Beam Splitter 
Virtual point 

Z virtual 

Beam Splitter or 
mirror, parallel to X,Y 
plane 

Y

Z

Z Actual

Real point 

Two cameras 



153 
 

have Z coordinates less than the Z coordinate for the plane of the mirror. If any 

two points have similar X,Y coordinates, and one of them is virtual and the other 

is real, this means that the cameras see the virtual and the real point at the same 

time. In this case, the real one should be chosen and the virtual one eliminated. 

 

6.1 Extension and flexion range of the fingers 
 

Table  6-1 shows the typical expected finger motion in degrees from four literature 

sources. From this table, the maximum flexion angle of the DIP joints according 

to the AAOS (American Association of Orthopaedic Surgery) is 90º, which cannot 

be achieved unless a force is applied to the Distal phalanx bone toward the 

flexion direction of the DIP joint. Since this is not the case when measuring the 

finger joint angles in this study, this source has been discarded. 

 

Table  6-1: Maximum finger motion in degrees from selected sources 
Joint Motion AAOS AMA Hume, M. 

1990 

Mallon, 

W. 1991 

MCP Flexion 90 90 100 95 

 Extension 45 20 0 20 

PIP Flexion 100 100 105 105 

 Extension 0 0 0 7 

DIP Flexion 90 70 85 68 

 Extension 0 0 0 8 

AAOS = American Association of orthopaedic surgery. 
AMA = American medical Association. 
 

Similarly, the maximum extension values of the PIP and DIP joints measured by 

Mallon (1991) were 7º and 8º respectively. These angles also can’t be achieved 

unless a force is applied toward the extension direction. The maximum extension 

angle for the MCP joint obtained by Hume (1990) is 0º.  By observation of typical 

hand motion, it is obvious that this joint angle should be > 0º.   

 



154 
 

Based on the discussion above, the maximum extension and flexion movement 

of the fingers used by the AMA (American medical Association) has been chosen 

to be utilized in the new design process. Figure  6-3 shows a sketch of the 

maximum finger flexion angles as obtained by the AMA.  

 

 

Figure  6-3: Maximum finger flexion motion according to AMM (side view) 

 

6.2 Design of the new system 
 
In order that the measurement points can be captured at all finger positions, the 

new system will use four cameras, two of them to capture the measurement 

points of the Middle Phalanx and the Distal, and the other two to deal with the 

Metacarpus and Proximal Phalanx or all the finger joints, depending on the 

position of the hand.  

 

The BS is made from a coated glass plate of thickness 3 mm and with 

dimensions 186 × 76 mm. It must be placed so that it is parallel to the X, Y plane 

of the world coordinate system so that it does not affect the X,Y location of the 
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measurement points and so that the points seen through the BS will be shifted 

only in the Z direction.   

 
Figure  6-4 shows the Beam Splitter placed on a specially designed support, at a 

height of 32 mm in the Z direction in order to insure that the virtual points are 

located inside the control volume of the calibration piece. Any error that might 

appear from the extrapolation can thus be avoided, see Figure 6-5. 

 

 

    Figure  6-4: The Beam Splitter used in this work 
 
 

 
32 mm height support 

The beam 
Splitter 
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    Figure  6-5: Illustrates the position of the hand with respect to the cameras 
 

Movement of the DIP joint (see Figure  6-3) leads naturally to movement of the 

PIP joint and vice versa. The linear relationship between the two joints can be 

expressed by equation (6-3), Lee, et al., (1993). 

 

2

3DIP PIP       ( 6-3) 

 
Applying equation (6-3) to this work will help to determine the number of 

measurement points at different positions of the DIP joint and the PIP joint. 

However this formula can’t be applied in the case of injured fingers, where there 

is a possibility that the movement of the DIP and PIP joints may not follow the 

natural movement of the fingers as indicated by equation (6-3). 

 

In order to reduce the number of virtual points that are involved in the 

measurement process, the hand is placed at a position such that the virtual 

measurement points for the distal bone reflected by the Beam Splitter are used 
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and not any other virtual measurement points. Before carrying out the 

measurement process we need to determine the following: 

 

1. The distance between the two measurement points of the Middle 

Phalanx (points C and D in     Figure  6-5 in terms of pixels, when the 

hand is at maximum flexion. In this case only the real measurement 

points (MPs) of the Middle Phalanx bone are used to measure the angle. 

The points C and D in the image should be spaced apart from each other 

at a distance where they can be recognized. 

 

2. As the finger moves towards the extension position, the front cameras 

will see the real MPs of the distal bone. We need to determine the 

distance between the two measurement points of the distal bone in terms 

of pixels at the position when the front cameras start seeing the real 

measurement points of the distal bone. 

 

Given the above we can conclude that: 

(i)- The front cameras axes and Middle phalanx make angles of 35º and 20º with 

      the vertical axis respectively.  

 
(ii)- The distance between the two MPs of the Middle Phalanx must be 15 mm  

     (±3mm) (This distance is for the measurement points of the Middle Phalanx  

     bone of the little finger and is larger for the Middle Phalanx of the rest of  

    the fingers). 

 

(iii)- According to the system configuration, 1mm ≡ 2.3 pixels. 

 

To show how the measurement points for the Middle phalanx bone are projected 

on the camera sensor, the measurement points for the Middle phalanx bone and 

the camera sensor shown in Figure 6-5 can be transferred and redrawn as 

illustrated in Figure  6-6. 
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Figure  6-6 illustrates the distance between the measurement points for the 

Middle phalanx ( L ), the projection of L on the camera sensor in terms of pixels (

X ), and angle between the vector L and the camera sensor ( ). 

 

 

Figure  6-6: The relation between the MP for the Middle phalanx (L) and its 
         projection on the camera sensor X (see     Figure  6-5 for more 
details)  

 

The value of  from     Figure  6-5 above is: 

  20   55   75                       ( 6-4) 
 
Then the distance X can be calculated from the following formula: 

 
 X   cos 75  15 2.3  9    Pixels              ( 6-5) 

 

From the equation(6-5) above, the distance between the MPs of the Middle 

Phalanx is 9 pixels, when the hand is at maximum extension and this distance 

will be increased as the hand moves towards the flexion position. 

 
As mentioned above, when the hand is at maximum flexion, the virtual 

measurement points of the distal phalanx will be seen by the front cameras only. 

Also the measurement points for the distal phalanx and the camera sensor 

shown in Figure 6-5 can be transferred and redrawn as illustrated in Figure  6-7. 
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Figure  6-7 shows the relationship between the virtual measurement points of the 

distal phalanx and the camera sensor. From this figure we have: 

 
d   is the distance between the virtual MPs of the Distal phalanx for the  

     little finger, 10mm. 

C  is the projection of d on the camera sensor C . 

  is the angle between the vector D  and the camera sensor (35 degrees)  

and the scaling factor is 2.3 pixels/mm as before. Then the length of C 

in terms of pixels can be calculated as: 

   cos   2.33  16.4 C d    pixels                 ( 6-6) 
 

Distance C increases as the hand moves towards its extension position and it 

reaches the maximum value when d ̀ is parallel to the camera sensor (i.e. when 

the Distal phalanx is parallel to the axis of the camera).  When the Distal phalanx 

angle with respect to the vertical axis is equal to or less than the angle of the 

camera axis, then the camera starts “seeing” the real measurement points of the 

Distal phalanx as well as virtual ones, until the Distal phalanx becomes parallel to 

the vertical axis, when at this stage the cameras will “see” two real measurement 

points and only one virtual point. When the Distal phalanx is extended further, 

only the real points will be seen by the front cameras.  

 

 

Figure  6-7: The relationship between the virtual M.P of the Distal phalanx(d ̀),and  
   their projection on the camera sensor (C) (see Figure 6-5 for more detail)  
 



160 
 

6.3 How to select the relative measurement points for the front 
cameras 

 

When the fingers are at maximum flexion, the two front cameras (see Figure 6-5) 

will “see” 8 MPs, 2 for the Proximal phalanx (real), and 4 for the Middle phalanx 

(2 real and 2 virtual). The last 2 measurement points for the Distal phalanx are 

virtual. Figure 6-8 illustrates a sketch of the finger when it is at maximum flexion. 

 
From Figure 6-8 if all 4 virtual points are seen (points E, F, G and I); this means 

that the finger is at maximum flexion. The 2 virtual measurement points which 

have maximum X coordinates (points G and I) can thus be removed because 

these points belong to the middle Phalanx, and the front cameras can see the 

real measurement points of this bone (points C and D). Also the two 

measurement points which have minimum X coordinates (points A and B)can be 

removed, because the back cameras will deal with them instead. 

 

 

      Figure  6-8: Finger at maximum flexion 
 

As the finger moves towards the extension position, the number of measurement 

points will be reduced from 5 to 0. If the number of measurement points seen by 
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the front cameras is less than 2, then the points captured by the back cameras 

will be used for the calculation rather than those from the front cameras. 

 

The two back cameras will process the real measurement points, either 4 or 8 

depending on the number of points seen by the front cameras. 

 

The correspondence matter has already been considered in Chapter five to 

obtain matching between the measurements points of the fingers, and the same 

technique was applied here. Thus, the 3D reconstruction of the points can now 

be achieved. 

 

The hand model was placed inside the control volume and the fingers were bent 

to approximately the maximum flexion position so that some of the measurement 

points were reflected from the Beam Splitter and the camera could only see the 

virtual images of these measurement points.   

 
The finger joint angles were then measured at different hand positions using the 

new system. Results from the measurement process carried out are shown in 

Table  6-2 and Figure 6-9 illustrates some of the results obtained by using the 

DLT and Tsai techniques. 
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Table  6-2: The absolute error between DLT and CMM, Tsai and CMM 

Figure joints 
CMM 

(degrees) 
DLT 

(degrees) 
Tsai 

(degrees) 
ABS Err DLT & CMM 

(degrees) 
ABS Err TSAI & 
CMM (degrees) 

1st finger MCP 32.16 33.42 33.27 1.25 1.11 
2nd finger MCP 30.45 32.13 31.92 1.67 1.46 
3rd finger MCP 29.76 31.15 31.04 1.40 1.29 
4th finger MCP 28.18 30.65 30.41 2.47 2.23 
1st finger PIP 35.49 35.07 35.04 0.43 0.46 
2nd finger PIP 41.19 39.61 39.82 1.59 1.37 
3rd finger PIP 49.49 49.78 50.21 0.29 0.72 
4th finger PIP 45.82 43.79 44.78 2.03 1.04 
1st finger DIP 85.22 83.86 83.66 1.36 1.56 
2nd finger DIP 85.30 88.43 87.96 3.13 2.66 
3rd finger DIP 73.63 74.18 73.48 0.55 0.16 
4th finger DIP 84.85 85.81 84.50 0.96 0.35 
Mean    1.43 1.20 
Max    3.13 2.66 
Min    0.29 0.16 
STDEV    0.84 0.74 

 

             

              Figure  6-9: Absolute error between DLT and CMM, Tsai and CMM 

                 Joints numbers 1 to 4 are MCP joints and each joint produced from 4 real points, 
                 Joints numbers 5 to 8 are PIP joints and each joint produced from 4 real points, 
                 Joints numbers 9 to 12 are DIP joints and each joint produced from two real and two 
                 virtual. 
 

Upon inspection of the data, it was found that there were large errors which had 

not existed before. To find what had caused these errors, the hand model was 

placed at a fixed location and the finger joint angles were measured six times, 
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using the same camera parameters for all the 6 tests. It was found that there was 

significant error between the readings despite all the parameters being the same.  

Ideally there should be no significant error between the 6 tests. The results in 

Figure 6-10 below shows there are significant errors obtained from the finger joint 

angles 6, 8 and 10. 

 

 

Figure  6-10: Errors between six measurements made under the same 
                     parameters 
 

Now let us investigate further, in order to understand how these errors may have 

arisen.  

 

Table 6-3 shows two values of a finger joint that was captured twice using the 

same camera parameters and under the same conditions. The comparison 

shows 3.2 degrees difference between the two readings. Having that all the 

parameters are the same for the two tests except each test has its own images, 
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so the difference in joint angles measurement should be from the image 

coordinates.  

 

Table  6-3: Result of measuring the same joint twice under the same conditions 
 First 

reading  
Second 
reading 

Difference between 
readings 

Finger joint 
angle 

84.4 87.6 3.2 

 
Table 6-4 shows the X, Y and Z coordinates that were used to calculate the 

finger joint angles show in Table 6-3. 

 
Table  6-4: 3D world coordinates for the points that used to calculate the angle 
                 shown in Table  6-3 

 X1 mm Y1mm Z1 mm X2 mm Y2 mm Z2 mm X2-X1 Y2-Y1 Z2-Z1
1st point -258.78 291.28 107.69 -258.78 291.23 107.85 0.00 -0.05 0.15
2nd point -259.48 283.35 100.78 -259.48 283.34 100.83 0.00 -0.01 0.05
3rd point -258.73 280.21 81.89 -258.83 279.89 81.19 -0.10 -0.32 -0.70
4th point -259.54 288.08 70.95 -259.52 288.18 71.12 +0.03 +0.10 +0.17

 
 
The table above (the last column) illustrates that there is a difference in Z 

coordinate between the first and second test. For instance, in the second test, 

the 3rd measurement point shifted downwards by 0.7 mm and 4th point shifted 

upward by 0.17 mm (See Figure  6-11). Also the 1st and 2nd points moved 

upwards by 0.15 mm and 0.05 mm. According to the finger position with respect 

to the 3D world coordinates, see Figure  6-11, the error in Z direction has the 

maximum influence on the change in the angle between the two vectors (Vectors 

A and B in Figure  6-11). 

 

From Figure  6-11, it is clear that the shifts in Z coordinates in the  second 

measurement process led to increase the angle between vector A and vector B.  

This explains the reason behind the difference between the same joint angle that 

measured twice under the same conditions (see Table  6-3).  
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Having that the two measurements were done under the same conditions, and 

the only difference was the image coordinates, so the error in the angle between 

the two measurements was produced from the shift in image pixels.  

 

 
Figure  6-11.The error between the two measurement led to an increase in the 
                    Value of Ѳ for the second measurement. 
 

Further investigation into the x, y pixel location of the measurement points used 

to calculate the finger joint angle, shown in see Table  6-3 above, demonstrated 

that there was up to 0.5 pixel shift between the set of images for the first and 

second measurement processes. Also, it was found that if the pixel shift is not 

significant (around 0.1 pixel), then there is no significant difference of the finger 

joint angles between the readings. 
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Also, by comparing results shown in Table  6-2 and Figure  6-10 with Table  5-21, 

Table  5-24 and Table  5-29 it can be concluded that the system have developed 

more errors which are not existed before. 

 

From the data sheet of the frame-grabber, the shift of the pixel should not be 

more than 0.15 pixels. After contacting the frame-gabber manufacturer (Data 

Translation) it was concluded that the frame-grabber has a fault which was not 

existed during the measurement process shown in chapter 5. 

 

6.4 Conclusion 
 

To assess the finger angle joints using the computer vision system, the system 

should cover the hand at all flexion and extension motions. To achieve that 

several ideas have been discussed, each one has advantages and drawbacks.   

The one which was applied in this prototype system is based on the property of 

reflection of objects from a plane mirror or a Beam Splitter. In case of a plane 

mirror the brightness of the real and the virtual object is the same, however the 

virtual objects reflected from the Beam Splitter have brightness less than real 

ones, depending on the coating property of the Beam Splitter. The disadvantage 

of using a Beam Splitter is that the illumination needs more consideration in order 

to increase the efficiency of the Beam Splitter. 

 

The Beam Splitter was added to the computer vision system, and all the design 

theory behind placing the Beam Splitter with respect to the hand was discussed 

so that the system can cover the hand at all extension and flexion motions.  

 

The new system was then used to evaluate the hand. Several measurement 

processes were carried out and the system appeared to operate satisfactorily; 

however its accuracy was slightly reduced compared with the results obtained 

before introducing the Beam Splitter (as described in Chapter five). 
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The angles with large error were checked further and it was found that there was 

a large shift in pixel location which could be associated with the measured 

angular error. The pixel shifting was 0.50 pixel (some measurements produced a 

pixel shift around one pixel),however according to the data sheet for the frame 

grabber used in this work, the pixel shifting should be limited to between ±0.15 

pixels. As the pixel coordinates are used to reconstruct the 3D coordinates of the 

measurement points, they affect the 3D location of the measurement points and 

as a result the angles between two vectors in space will be affected (finger joint 

angles). To avoid such problems in the future, digital cameras should be used 

instead of the analogue ones or a better frame-grabber should be used. 
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7 Discussion, conclusion and further work 
 

Accurate measurement of finger joints is an important procedure in hand therapy 

in order to examine the function of the hand after treatment or surgery. The 

evaluation of finger ROM involves assessment of the metacarpophalangeal 

(MCP), proximal interphalangeal (PIP) and distal interphalangeal joints (DIP). 

 

There are several existing tools for measuring the angles of the finger joints that 

are quite cheap and easy to use, such as visual estimation, wire tracing, and 

traditional goniometry. However the time demanded for the assessor and the 

patient, and the lack of accuracy are the major drawbacks of these devices. Also 

they only allow assessment of one joint at a time. Other devices are more 

expensive and sophisticated; for instance the goniometric glove and 

electrogoniometer. However these devices cannot be used if the finger is injured.   

 

To replace the existing devices for measuring finger motion, a new measurement 

system based on computer vision technology was designed and built. The 

proposed system is a non-contact measurement device and has many 

advantages over the existing measurement devices. In terms of accuracy an 

error of less than 1 degree has been achieved by this system; which is very low 

compared to the existing devices. For instance, traditional goniometry has an 

error of 5 degrees (Bainbridge, 2000 and Williams, et al., 2000). Also the new 

system is better than the goniometric glove and electrogoniometer which are 

currently still the subject of research and have an error similar to the traditional 

goniometer (Williams, N. et al, 2000).  

 

The system can be operated by a semi-skilled person and all four fingers of one 

hand can be assessed at the same time. Also the measurement process takes 

only a few minutes to prepare the patient and then less than 5 seconds to run the 

computer vision system and obtain the joints angles, so it saves the evaluator’s 

time. 
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As the new system is a non-contact measurement device, it causes no 

discomfort for the patient especially if the hand is injured. This facility is not 

available for the existing measurement tools such as the conventional 

goniometer and the goniometric glove. 

 

It is possible to display the output from the measurement system process 

graphically; for instance a 3D simulation of the patient’s hand could be 

reconstructed and displayed on a screen so that the assessor can visually check  

the progress of the finger range of motion, making it easier to monitor changes in 

the condition of the hand. Also the data can be electronically saved and retrieve 

swiftly at any time.  

 

The 3D computer vision system has a lot of advantages as mentioned above, 

however to design a high precision 3D measuring system requires a lot of effort 

and cost as there are many factors affecting the efficiency of this system. 

 

For instance, the level and quality of illumination can improve or decrease the 

image captured by the vision system. Choosing the optimal light distribution, the 

appearance of an object can be improved and the feature of interest clarified. 

Once a good quality image is obtained from the system, then the image 

enhancement techniques can be applied to process and analyse with fewer 

difficulties, and the features of interest can be extracted without information loss.  

 

From the experimental procedure for this work, the effect of illumination on the 

captured images was very clear particularly when the Beam Splitter was used. 

The idea behind introducing the Beam Splitter was to distinguish between the 

virtual and real measurement points based on the brightness of these points. 

However, because of the illumination this task was difficult to achieve. As a 

result, a mirror was used instead of the Beam Splitter to cope with these 

illumination problems. 
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Also, the electronic devices which are essential components of the computer 

vision system, such as camera sensor and frame-grabber, may have a negative 

contribution to the accuracy of the system. When converting the analogue signal 

from the camera to a digital signal, to be read by the computer, some spatial 

mismatch between pixel’s locations in the camera sensor and sampled image 

may occur. Also pixel shifting can have negative effect of on the system as 

shown in Figure 6.11. Moreover cameras often have noticeable geometric 

distortions caused by their optical systems. 

 

Before carrying out the measurement processes using the proposed 3D 

computer vision system, the cameras must be calibrated using a proper 

calibration piece. At the beginning of this work a pyramid shape calibration piece 

was used to cover only one finger. However it was not possible to use the same 

shape to cover the four fingers, as increasing the size of the pyramid, will lead to 

increase the size of the working enclosure which is not comply with this computer 

vision system. As a result, the new calibration piece was introduced. 

 

The calibration piece used in this was designed so that it covered the hand at 

extension, flexion, and Ulnar and Radial deviation. At the same time the 

calibration piece should be covered by the FOV of the cameras within the 

available working volume, which has been adopted for this work. As the hand 

occupies a volume in space, then the calibration piece should have a volumetric 

shape. The size of the calibration piece was calculated based on the dimension 

of the male hand because it is larger than the female hand, so the design will 

also cover the female hand. 

 

Reconstructing the 3D coordinates for an object in space, using the DLT or Tsai 

technique, requires two or more images of the same object captured by cameras 

located at different locations. Consequently the (x,y) image co-ordinates for the 

captured object will differ from one image to another.  
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To use the DLT or Tsai technique for this work, a match or correspondence 

between all the measurement points of the finger joints from one image and the 

rest of the images should be established first. Also, to make the computer vision 

system efficient and reliable, the correspondence problem should be solved 

automatically. A new automated technique was developed and implemented to 

resolve this issue and it works at all hand locations within the calibration volume 

and at all had positions. 

 

A Coordinate Measurement Machine (CMM) was used, as a reference, to 

measure the X, Y, Z world co-ordinates for the measurement points. Then the 

result was compared with the one obtained from the computer vision system. To 

see the effect of the difference between the two results on the finger joints 

angles, a mathematical model was written. The model shows the effect of error 

on the finger joints angles is insignificant.   

 

At the first stage of this work the measurement process did not cover the hand at 

all positions, i.e. the cameras did not capture the measurement points when the 

hand was at maximum flexion. The measurement process was carried out using 

both the DLT and the Tsai techniques. 

 

The hand model was placed at several locations inside the control volume in 

order to measure the joints angles at different flexion and extension anglesand at 

different hand locations. Then fingers joints angles were measured by the CVS. 

The results show the errors between the CMM and the CVS are less than one 

degree at most angles; however there are one or two errors out of twelve are 

larger than one degree. After investigation it was found that these large errors 

were not related to the CVS but as a result of human error while measuring the 

angles by the CMM or from the electronic devices that compose the CVS such as 

frame grabber. The Table 7-1 below compares the results from the two 

techniques based on the CMM control data. 
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Table  7-1: Comparison between DLT and Tsai 
 Std. 

Deviation 

(º) Mean  

(º) 
MSE 
(º) 

RMSE 
(º) 

DLT 0.62 0.60 0.75 0.86 
Tsai 0.48 0.64 0.64 0.80 

 

The Table  7-1 above shows that the Tsai method gave better results than the 

DLT, despite being more complicated than the DLT and given that its equations 

required optimization methods to be solved. 

 

At the second stage of this work, to cover all the hand at different values of 

flexion and extension of the fingers, a Beam Splitter was added to the system to 

enable the cameras to see the measurement points. A plane mirror could have 

been used instead of the Beam Splitter. The difference between the plane mirror 

and the Beam Splitter is only the method of separating the virtual points from the 

real ones. Also the location of the light needs more care if the Beam Splitter is 

used so that the brightness of the real points is considerably higher than virtual 

ones (unlike using the plane mirror). From the experimental results, using a plane 

mirror for this work is better than the Beam Splitter because of the illumination 

matter.  

 

The measurement process was carried out on a real human hand, in order to 

show that the UV gel works well and gives a good contrast between the skin and 

the measurement points. The finger joint angles obtained from the computer 

vision system were compared with the ones measured by a manual protractor. 

The results showed there was a large difference between the two measurement 

modalities. We cannot rely on the result from the protractor because it is not 

designed for this purpose; even if a proper manual goniometer was used we 

cannot use it to evaluate the computer vision system because of its large 

documented error. 
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Figure  7-1 below summarizes the finger joint angles measurement process. 

  

 

 
Figure  7-1: The procedures of the measurement process 
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7.1 Sources of error 
 

There are several errors which can decrease the accuracy of the computer vision 

system, for instance: 

 

a) The calibration points and the model hand finger joint angles were measured 

with a high accuracy Coordinate Measurement Machine; however human error 

can reduce the accuracy of the measurement process. To examine the human 

error the measurement process was repeated three times under the same 

conditions. The results showed the error to be around 0.35 degrees. This 

repeatability error affects the results from the computer vision system as the 

reading from the Coordinate Measurement Machine was used as a reference 

datum. In order to decrease this error, a robust statistical approach should be 

used when using the CMM to measure the calibration and the measurement 

points. For example, several measurements of the same point should be taken, 

and the mean or median value used. 

 

b) When the calibration or the measurement points were obtained from the 

Coordinate Measurement Machine, the measurement probe of the machine, with 

a spherical shape, was placed roughly at the centre of the points, and when the 

images of the points were processed to obtain the x,y image coordinates for 

either the calibration or measurement points, the calculation of the x and y 

coordinates were based on the centroid, not on the centre. This lead to a 

mismatch between the points that the CMM used to calculate coordinates and 

the ones from the image system (although the centre and the centroid of a circle 

are the same, still less than half a pixel difference can contribute to the overall 

error).  

 

c) Even if the image system is adjusted to calculate the x and y image 

coordinates based on the centre of the points, we cannot guarantee that the 

measurement probe picks up the same centre. This leads to an additional error 
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between the measurements obtained from the CMM and the ones from the 

computer vision system. It is very hard to determine the value of this error 

because of the existence of many parameters such as optical and electronic 

devices, but from the experimental work 0.3 shifting in pixel location can increase 

the error significantly. 

 

d) The location of the calibration or the measurement points with respect to the 

camera’s position can lead to a difference in the centroid of the same point, 

which adds an error to the system. If it is experimentally possible, all the cameras 

should see the same centroid of all the calibration and measurement piece are 

the same. For instance the original shape of the blob should ideally be a regular 

(convex) shape, if possible an ellipse or circle. 

 

e) Shifting in the pixel location caused by the capture card, when it converts the 

signal from analogue to digital, can increase the error; this error can be avoided 

by using better capture card in terms of pixel shifting or by replacing the 

analogue cameras with digital ones.  

 

7.2 Further work 
 

The total number of measurement points used to measure the whole hand was 

32. However, this number can be reduced without significant loss of useful 

information. For example, instead of 8 points for the Metacarpus bones (back of 

the hand), these can be reduced to 2 points only for the following reasons  

 The Metacarpus bones are converging and placing the measurement 

points (the UV gel) needs extra care, not like the other finger bones where 

they are separated.  

 In some people the shape of the back of the hand and the blood vessels 

makes placing the gel quite difficult.  
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 The change in angle value between the Metacarpus bones and the 

Proximal Phalanx bones depends on the movement of the Proximal 

Phalanx bones and not the Metacarpus bones. 

 

When using a reduced number of points for the Metacarpus bone, the following 

procedures must be adopted: 

 

 Place two points on one finger, for instance the middle finger.  

 These two points represent a vector in space which can be used to 

measure the angle between this vector and all the other Proximal Phalanx 

bones. 

 If it is desired to evaluate the progress that the patient has achieved after 

a certain period, we can compare the results from a specific time to 

another time.  

 If it is desired to measure the angles and compare them with the standard 

joint angle (i.e. for a medically healthy person), it is necessary to 

determine the range of angles between the vector on the metacarpal bone 

for the middle finger and all the other Proximal Phalanx bones for healthy 

people by using the CVS or another available measurement method. 

 

The size of the cameras and camera holders restricted and reduced the actual 

working volume, so they should be replaced with smaller ones. This will give 

more space and lead to an increase in the FOV of the system. 

 

Finally the computer vision system explained in this thesis can replace the 

existing finger joint measurement devices and to be commercialized the following 

work needs to be done. 

 

1) The user interface needs to be designed and the range of motion of the hand 

should be graphically displayed in 2D or 3D view so that the assessor can follow 

up any change of this motion graphically. 
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2) The computer vision system so far was mainly tested on a black painted hand 

model; this hand model has different properties from the real hand such as the 

colour, skin of the hand, and hand vessels and hair. So the system should be 

tested on real hands to see if the range of error is same as the one from testing 

the hand model. However the contrast between the skin of the hand and the 

measurement point was tested and the measurement point can be easily 

separated from the background (skin). 

 

When the hand model was used to check the accuracy of the computer vision 

system, the results were compared withthose obtained from the Coordinate 

Measurement Machine, with a theoretical accuracy of 0.7 μm. However the 

Coordinate Measurement Machine cannot be used to measure the finger joint 

angles for a real hand because any object measured by a Coordinate 

Measurement Machine must be placed at a fixed position and not moved at all, 

which is very hard to achieve with the real hand.  

 

From literature it has not been possible to find an accurate method to evaluate 

the angles measured by the computer vision system for the real hand. The 

traditional goniometer, which is currently used for evaluating the range of motion 

of the hand, cannot be used to assess the data obtained from the computer 

vision system because the traditional goniometer has too large error.  

 

One method which could be used to evaluate the data from the computer vision 

system, for the real hand, is by using 2D photography. In this method one finger 

would be evaluated at a time and the finger imaged from the side, not from the 

top as in the computer vision system, so that the projection of the measurement 

points on the image plane shape the angles between the finger bones, see 

Figure  7-2 for more detail. The angles between the finger joints would be 

calculated from finding the angle between two vectors in a 2D plane.      
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Figure  7-2: Projection of the measurement points for one finger on the X,Y image 
                  plane 
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Appendix A 
 

A.1 Tsai camera model  
 
The following explains how we can find the camera parameters by the method 

proposed by Tsai and how the 3-D space co-ordinates for a point can be 

obtained. 

This technique involves four steps of transformation as illustrated below: 
 
Step 1: 
 
Transformation from the object world coordinate system ( , , )w w wx y z to the camera 

3D coordinate system ( , , )x y z  shown as step 1 in Figure (7-1), can be described 

by the following equation. 
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    ( 7-1) 

  
Where is R is the 3 X 3 rotation matrix defining the camera orientation and T  is a 

translation vector representing the camera position, which can further be defined 

as 

1 2 3
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r r r

R r r r
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And the translation vector as 
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There are six extrinsic parameters: the three angles of rotation yaw  , pitch , 

and tilt  ,  and the three components for the translation vector T. The rotation 

matrix R can be expressed as function of  , and    as follows: 

 
  
 

 
Figure A-1: World-to-camera Transformation 
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( 7-3)

 

The parameters to be calibrated are andTR .  

Step 2: 
 
Transformation from 3D camera coordinates ( , , )x y z  to ideal (undistorted) 

image coordinates ( , )u uX Y using perspective projection with pinhole camera 

geometry Fig (7-2). 
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   u
x

X f
z

       ( 7-4) 

   u
y

Y f
z

       ( 7-5) 

The parameter to be found is the effective focal length f . 
 

 
 

Figure A-2: Ideal transformation from 3D camera coordinates to image      

                   Coordinates 

 
 
Step 3: Transformation from ideal (undistorted) ( , )u uX Y to distorted image 

coordinates ( , )d dX Y  

 

The distorted image coordinates ( , )d dX Y  can be determined from undistorted 

image coordinates ( , )u uX Y  using the equations 

 

Optical centre 

Image 
plane 

O 

Pw(Xw,Yw,Zw) 
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   x u dD X X       ( 7-6) 

   y u dD Y Y        ( 7-7) 

Where: 

 ( , )d dX Y  is the distorted image coordinate on the image plane ,and 

  
2 4

1 2

1 2

( ....)

, ,...
x dD X k r k r

k k

  
 

 
   1 2,k k are distortion coefficients 

   2 4
1 2( ....)y dD Y k r k r    

 

   2 2
d dr X Y   

 

Tsai wrote  that from his experience of an industrial machine vision application, 

only radial distortion needs to be considered, and only one term is needed (Tsai, 

R.Y. 1987).The positive values of  1k  means that the image has to be stretched 

towards the corner (pincushion distortion). On the other hand a negative value of  

1k  means the inverse situation (barrel distortion). 

 

Figure A-3: location of point P before and after applying radial Lens Distortion 

 
Step 4: 
 
Transformation from real image coordinates ( , )d dX Y  to computer image 

coordinates: ( , )f fX Y  
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   1'f x x d xX s d X C      ( 7-8) 

    

   1
f y d yY d Y C       ( 7-9) 

    

   ' cx
x x

fx

N
d d

N
  

Where: 
 
 ( , )f fX Y   row and column numbers of the image pixel in computer   

       frame memory.                                           
 ( , )x yC C  row and column numbers of the centre of computer frame  

  memory. 
 
 xd           Centre to centre distance between adjacent sensor elements         

       in X (scan line) direction (mm). 
 

          yd           Centre to centre distance between adjacent sensor elements           

      in Y direction (mm). 
 
 cxN          Number of sensor elements in camera's x direction. 

 fxN          Number of pixels in frame grabber's x direction . 

. xs            Is the uncertainty scale factor in vertical  direction only. 

 
The parameter to be found is the uncertainty image scale xs . 

 
A.1.1 How to Implement the Tsai technique  
 
The following procedure illustrates how the Tsai method can be used to calibrate 

cameras. 

A. Computing the distorted image coordinates ( , )d dX Y  

             1. capture an image for the calibration points. From the image find  

  out the row and column number of each calibration point and    

call it ( , )fi fiX Y  

         2. find , , ' and  cx fx x yN N d d using the information supplied by the    

  camera manufacturer.  
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             3. find the centre pixel of frame memory ( , )x yC C . 

         4. calculate ( , )di diX Y using equations (8,9) 

 
1 1' ( )di x x fi xX s d X C    

 
    ( )di y fi yY d Y C   

 
Where: 

i=1,……..,N , N is the total number of calibration points. 
 
 
 

 
 

 

From Fig (7-4) the image plane parallel to the plane passing through Pand ozP

and //i d ozO P P P  and they are the intersection of a plane passing through 

, ozO P and P . Similarly //i d ozO P P P . 

 
Image 
plane 

Object point 

Optical centre

World co-ordinates 
and origin 

Poz (0,0,Z)

Focal length  = O-Oi 

Parallel to 
image plane 

 
 

   Figure A-4: Tsai camera model
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Since the cross product of any two parallel vectors is the null vector then  

 

  0i d ozO P P P        ( 7-10) 

  ( 0, 0) ( , )i d d d d dO P X Y X Y       ( 7-11) 

  
Similarly 

( 0, 0, ) ( , )ozP P x y z z x y          ( 7-12) 

     
 

By substituting the value of i dO P  and ozP P  from equations (11, 12) into (10) we 

get: 

 ( , )d dX Y  ( , )x y = 0      ( 7-13) 

 ( . . )d dX y Y x = 0      ( 7-14) 

 
From equation (1) and (2) we have 

 1 2 3w w w xx r x r y r z T          ( 7-15) 

 4 5 6w w w yy r x r y r z T         ( 7-16) 

 7 8 9w w w zz r x r y r z T         ( 7-17) 

 
Substitute the values of ( , , )x y z from equations (15, 16) into (14) we get, 

 

1 2 3 4 5 6.( ) .( )d w w w x d w w w yY r x r y r z T X r x r y r z T      
 

( 7-18) 

1 2 3d w d w d w d xY r x Y r y Y r z Y T     

   4 5 6d w d w d w d yX r x X r y X r z X T        ( 7-19) 

 

Dividing (19) by 1
yT
  we get: 

1 1 1 1
1 2 3d y w d y w d y w d y xY T r x Y T r y Y T r z Y T T        

1 1 1
4 5 6d y w d y w d y w dX T r x X T r y X T r z X      ( 7-20) 

 

By rearranging the terms in (20), the following equation is obtained.  
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1
1

1
2

1
3

1

1
4

1
5

1
6

di wi di wi di wi di di wi di wi di wi

y x

y x

y x

y x x di

y

y

y

Y x Y y Y z Y X x X y X z

T s r

T s r

T s r

T s T X

T r

T r

T r















   
 
 
 
 
 
   
 
 
 
 
  

    ( 7-21) 

Where:  

 xs is the uncertainty scale factor and its initial value is equal to 1  

 

B. compute 1 1 1 1 1 1 1
1, 2, 3, , 4, 5, 6,y x y x y x y x x y y yT s r T s r T s r T s T T r T r T r        

Using equation (21) with the number of control points i at seven or more, an 

overdetermined system of linear equations can be can solved for the seven 

unknowns  1 1 1
1 2 2, , ,y x y x y xT s r T s r T s r   1 1

4, ,y x x yT s T T r  1
5 ,yT r 1

6yT r  

 

C. compute
9,1,...........,( , )r x yr T T from 1 1 1

1 2 2, , ,y x y x y xT s r T s r T s r    

   1 1 1 1
4 5 6, , ,y x x y y yT s T T r T r T r     

1) Finding   yT from 1 1 1
1 2 2, , ,y x y x y xT s r T s r T s r    

   1 1 1 1
4 5 6, , ,y x x y y yT s T T r T r T r     

 Let  

  

1 1 1 1
1 1 2 2 3 3 4

1 1 1
5 4 6 5 7 6

y x y x y x y x x

y y y

a T s r a T s r a T s r a T s T

a T r a T r a T r

   

  

   

  
 

Where:  

 1 2 7, ,....a a a   were determined from equation (21) 

 

To compute yT  
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      Form the orthonormal property of R  and the definition of 5 6 7, anda a a  we         

have    
2 2 2 1/ 2 1 1 1 1/ 2

5 6 7 4 5 6( ) (( ) ( ) ( ))y y ya a a T r T r T r          

 

   
2 2 2 1/ 2

4 5 6.( )y yT r r r T      

              Since  2 2 2
4 5 6( ) 1r r r    

 
             Then  

2 2 2 1/2
5 6 7( )yT a a a     

  
To determine the sign of yT ,. We chose a point i in the computer image 

coordinate whose image position ( , )fi fiX Y  lies far away from the principal point 

( ,  )x yC C  and its world coordinate is ( , , )wi wi wix y z . First the sign of yT  is 

assumed to be positive. We then find the following parameters by putting the 
value of xs =1. 

 
 

1
1 1( ).y x yr T s r T 1

2 2( ).y x yr T s r T  

1
3 3( ).y x yr T s r T 1

4 4( ).y yr T r T  

1
5 5( ).y yr T r T  

1
6 6( ).y yr T r T  

1( ).x y x x yT T s T T  

xwww Tzryrxrx  321  

4 5 6w w w yy r x r y r z T     

 
where: 

1
1y xT s r

, 
1

2y xT s r
,

1
3y xT s r

,
1

y x xT s T
, 

1
4yT r

, 
1

5yT r
, 

1
6yT r

 

are determined from equation (21)   
 
if ( x  and fiX )have the same sign and ( y  and fiY ) have the same sign, then yT

is positive, else  yT is negative.   
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2) Determine xs    

2 2 2 1/ 2
1 2 3( ) ya a a T   = 

yxyxyxy TrsTrsTrsT 2/12
3

12
2

12
1

1 ))()()((    

2 2 2 1/ 2
1 2 3( ) ya a a T   = 

2/12
3

2
2

2
1 )(  rrrsx           ( 7-22) 

 
From the orthonormal property of the rotation matrix R  we have   
 

     
2 2 2

1 2 3( ) 1r r r    

 
Then  

   
2 2 2 1/ 2

1 2 3( )x ys a a a T      ( 7-23) 

 
3) Computing the rotation matrix 1 2 3 9( , , ,.........., )R r r r r  

 

xy sTar /.11   xy sTar /.22   xy sTar /.33   

yTar .54   yTar .65    yTar .76   

 yx TaT .4  

Where 1 2 7, ,..............,a a a   are the seven variables which computed in (1). 

Once 1 2 6, ,..........,r r r  have been found, which are the first two rows of the 

rotation matrixR , the third row 7 8 9( , , )r r r can be computed as the cross product 

of the first two rows, using the orthonormal property of R  as follows  

 
  7 2 6 3 5r r r r r     

  8 3 4 1 6r r r r r     

  9 1 5 2 4r r r r r     

 
4) Computing the focal length, distortion coefficients, and z position.  
  

 
By rearranging equations (8, 9) we obtain 

     1( ) 'd f x x xX X C s d   

     ( )d f y yY Y C d   
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Substitute andd dX Y  in equations (6, 7) 

1 1 2
1( ) ' ( ) 'u f x x x f x x xX X C s d X C s d k r      

2
1( ) ( )u f y y f y yY Y C d Y C d k r     

From equations (4, 5)  and the values of  ,Xu Yu  which are obtained above,  the 

computer coordinates are related to the 3D coordinate of the object point in the 

camera coordinate system according to the following equations. 

  1 1 2
1' 'x x x x

x
s d X s d X k r f

z
        ( 7-24) 

  2
1' 'y y

y
d Y d Y k r f

z
        ( 7-25) 

 
Where:  

  
2 1 2 2( ' ) ( )x x yr s d X d Y   

( )f xX X C   

( )f yY Y C   

 
Substitute values of ( , , )x y z from (15, 16, 17) into (24, 25) we get 

 1 1 2 1 2 3
1

7 8 9

' ' w w w x
x x x x

w w w z

r x r y r z T
s d X s d X k r f

r x r y r z T
    

 
  

    ( 7-26) 

And  

 
4 5 62

1
7 8 9

' ' w w w y
y y

w w w z

r x r y r z T
d Y d Y k r f

r x r y r z T

  
 

  
                        ( 7-27) 

 

5a) Find initial values of and zf T  by putting the value of the lens distortion 

coefficient equal to zero in (27) 

 

 
4 5 6

7 8 9

' w w w y
y

w w w z

r x r y r z T
d Y f

r x r y r z T

  


                  ( 7-28) 

                   (28) 
 
Equation (28) can be written as  

  ' '
y i i y z i

d Y w d Y T f y                             ( 7-29) 

Where:   
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  ywiwiwii Tzryrxry  654  

  wiwiwii zryrxrw 987   

 
From equation (29) we get 

 

' 'y i i i y zd Y w y f d Y T                        ( 7-30) 

    
Using equation (30) with several calibration points, gives an overdetermined 

system of linear equations with unknown and zf T . Tsai suggested using the 

steepest decent method to solve these equations, but here we are using a least 

squares method as below:   

 

From equation (30): 

   i y z i y i if y d T Y d Y w   

   
Using least squares method 

  2

1

( , ) ( )
n

z i y z i y i i
i

Error E f T f y d T Y d Y w


     

 
The least value of the squared error occurs when the partial derivative of the 

error with respect to and zf T  is equal to zero. 

 

 
1

2 ( )
n

i y z i y i i i
i

E
f y d T Y d Y w y

f 


  

   

  2

1

2
n

i y z i i y i i i
i

f y d T Y y d Y w y


    

  2

1 1 1

2 2 2 0
n n n

i z y i i y i i i
i i i

f y T d Y y d Y w y
  

       

  2

1 1 1

n n n

i z y i i y i i i
i i i

f y T d Y y d Yw y
  

        ( 7-31) 

 

Similarly 
z

E

T




gives  
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  2 2

1 1 1

n n n

i i z y i y i i
i i i

f y Y T d Y d Y w
  

        ( 7-32) 

 
By rearranging equations (31, 32) we get: 

 

 

2

1 1 1

2 2

1 1 1

n n n

i y i i y i i i
i i i

n n n
z

i i y i y i i
i i i

y d Y y d Y w y
f

T
y Y d Y d Y w

  

  

       
    
          

  

  
   ( 7-33) 

 
Where: 

  ywiwiwii Tzryrxry  654  

  wiwiwii zryrxrw 987   

 
By solving equation (33) the approximate values of and zf T  are obtained. 

 
5b) finding the exact values of  1, andzf T k  

 
With , x yR T and T have been determined previously, equation (27) becomes a 

nonlinear equation with  1, andzf T k  as unknowns which can be found as 

explained below. 

 

 
2 2

1 1i y i i y i i y z i y z if y d Y w d Y k r w d T Y d TY k r                 ( 7-34) 

 
Using least squares method 

2 2 2
1 1 1

1

( , , ) ( )
n

z i y i i y i i y z i y z i
i

Error E f T k f y d Yw d Y k r w d T Y d TY k r


       

 

 
 
 
 

 

2 2
1 1

1

2( )
n

i y i i y i i y z i y z i i
i

E
f y d Y w d Y k r w d T Y d T Y k r y

f 


    

 

1

, ,
z

E E E

f T k

  
  
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2 2 2
1 1

1

2 ( ) 0
n

i y i i i y i i i y z i i y z i i
i

f y d Y w y d Y k r w y d T Y y d T Y k r y


       

 

2 2 2
1 1

1 1 1 1

n n n n

i y i i i y z i i y z i i y i i i
i i i i

y d k Y r w y d T Y y d T k Y r y d Y w y
   

        

 
2 2

1 1
1 1 1 1

2

1

n n n n

y i i i y i i i y z i i y z i i
i i i i

n

i
i

d Y w y d k Y r w y d T Y y d T k Y r y

f
y

   



  


   


               ( 7-35) 

                       

And similar from 
z

E

T




we have  

2 2 2 2 2

1 1 1
1

2 2

1

[ ( )] ( ) ( ( )

[ ( ( )]

n n n

y i i y i i z y i i i z y z i y i i z
i i i

n

y i i z
i

d Y w r d Y r w T f d y Y r w T d T Y d Y r w T

k
d Y r w T

  



    




  


 

          
 
( 7-36) 

 

And from 
1

E

k




we have  

2 2 2 2 2

1 1 1
1

2 2

1

[ ( )] ( ) ( ( )

[ ( ( )]

n n n

y i i y i i z y i i i z y z i y i i z
i i i

n

y i i z
i

d Y w r d Y r w T f d y Y r w T d T Y d Y r w T

k
d Y r w T

  



    




  


 

                           ( 7-37) 
 

Having the initial values of  and zf T  from equation (33) and zero as an initial 

guess for 1k ,and by substituting these initial values into the equations (35,36,37) 

the exact values of 1, and kzf T  can be obtained through iterations.  

 
A.1.2 Reconstruction of 3D world coordinates using Tsai 
technique 
 
From equation (26) we have:  
  
 7 8 9 1 2 3w w w z w w w xA r x Ar y Ar z A T f r x f r y f r z f T        

7 1 8 2 9 3( ) ( ) ( )w w w x zA r f r x Ar f r y Ar f r z f T A T                              ( 7-38) 

 
Where: 
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  1 1 2
1' 'x x x xA s d X s d X k r    

 
And from equation (27) we have 
 
 7 8 9 4 5 6w w w z w w w yB r x B r y B r z B T f r x f r y f r z f T        

7 4 8 5 9 6( ) ( ) ( )w w w y zB r f r x B r f r y B r f r z f T B T                              ( 7-39) 

Where: 
 

2
1y yB d Y d Y k r   

 
By rearranging equations (38,39) and with two or more cameras, the following 

reconstruction matrix is used to find the world coordinates ( , , )w w wx y z  . 

11 7 1 1 8 2 1 9 3

17 4 8 5 1 9 6

7 1 8 2 9 3

7 4 8 5 9 6

: : : :

: : : :

x z

y z

w

w

w
m m m x m z

m m m y m z

f T A TA r f r A r f r A r f r

f T B TB r f r B r f r B r f r
x

y

z
A r f r A r f r A r f r f T A T

B r f r B r f r B r f r f T B T

    
                                  

        

           ( 7-40) 

 

Where: 

          m is the number of camera used in the system. 

 

A.2 Mathematical formula for DLT 
 
In any camera system the light is passed through a lens onto a point on the 

image plane. The colinearity condition states that the world coordinates of the 

object ( )O , and the image coordinates of an image ( )I lie on a line, which passes 

through the optical centre of the lens ( )N Fig (8-6). 
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Figure A-5:  the colinearity condition 
 

Using the colinearity condition principle, it is possible to project the image back 

through the lens centre onto a comparator plane; the aim of this projection is to 

remove inversion which otherwise will be present.  

 

Fig (7-6) shows the object-space reference frame [ , , ]X Y Z  and the new image- 

plane reference frame[ , ]u v .The space coordinates for the point ( )O  is[ , , ]X Y Z , 

and[ , ]u v is the image-plane coordinates for the image point ( )I . 

 

 
Figure A-6 

 
 
Since points ( )O  and ( )N are collinear, then it could be assumed that the 

coordinates for point ( )N are 0 0 0( , , )X Y Z and vector A can be represented by 

0 0 0( , , )X X Y Y Z Z   Fig (7-7).  

 

Lens centre 
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In order to make the image-plane reference frame 3-dimensional a third axis (W)

was added. In this case the value of (W) for any point on the image plane is 

always 0, therefore the 3-dimensional position for point (I)  is (u,v,0) . Fig (7-7). 

 

 

Figure A-7 
 

 

 
 

Figure A-8 
 
In Fig (7-8) the point P (the principal point) was added to the image-plane, and a 

perpendicular line was drawn from N  to P  and parallel to the axis W . Line (NP)

is called the principle axis and the principle distance d is the distance between 

points P and N .    
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Given those points O, I, Nare collinear, then the vectors A in Fig. (7-7) and B in 

Fig (7-8) form a single straight line, and the relationship between A and B can be 

expressed as: 

 
                            B= cA                                               ( 7-41) 
 
Where c = the camera scale factor. 
 
It is obvious that, vectors A and B were expressed in the object-space reference 

frame and the image-plane reference frame, respectively. In order to describe 

these vectors in a common reference frame, vector A is transferred to the image-

plane reference frame by using the following transformation matrix. 

11 12 13

/ 21 22 23

31 32 33

I O

r r r

T r r r

r r r

 
   
  

 

11 12 13
( ) ( ) ( )

/ 21 22 23

31 32 33

. .I O O
I O

r r r

A T A r r r A

r r r

 
    
  

    ( 7-42) 

Where: 

( )IA = vector A described in the image-plane reference frame, 

( )OA = vector A described in the object-space reference frame, and 

TI/O = the transformation matrix from the object-space reference frame to the 

image-plane reference frame.  

 

By substituting values of A and B in equation (41) we get: 
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0

0

u u

v v

d

 
  
  

 =  c 

11 12 13

21 22 23

31 32 33

r r r

r r r

r r r

 
 
 
  

0

0

0

X X

Y Y

Z Z

 
  
  

      ( 7-43) 

Or          
 

0 11 0 12 0 13 0[ ( ) ( ) ( )]u u c r X X r Y Y r Z Z              ( 7-44) 

 
0 21 0 22 0 23 0[ ( ) ( ) ( )]v v c r X X r Y Y r Z Z                     ( 7-45) 

 

31 0 32 0 33 0[ ( ) ( ) ( )]d c r X X r Y Y r Z Z                      ( 7-46) 

 
From equation (46)   
 

31 0 32 0 33 0[ ( ) ( ) ( )]

d
c

r X X r Y Y r Z Z




    
              ( 7-47) 

 
Substitute (47) for c in (44) and (45) gives: 
 
 

1 1 1 2 1 3

3 1 3 2 3 3

[  r (  X -X o  ) r  (Y -Y o ) r  (Z -Z o ) ]  

[   r (  X -X o  ) r  (Y -Y o ) r   (Z -Z o ) ]ou u d
 

  
 

         ( 7-48) 

          
 
 

2 1 2 2 2 3

3 1 3 2 3 3

[ r (  X - X o  ) r ( Y - Y o ) r ( Z - Z o ) ]  

[ r (  X - X o  ) r ( Y - Y o ) r ( Z - Z o ) ]ov v d
 

  
 

    

( 7-49) 

The image coordinates 0, ,u v u  and 0v  in equations (8) and (9) are in the real-

world length unit, such as mm. In reality, however, the image-plane system may 

use different length units, such as pixels. Therefore we need a scale factor 

conversion in order to use the pixel units as the measurement units. 

 
 ( )o u ou u u u    

 

 
 

 ( )o v ov v v v  
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11 0 12 0 13 0

31 0 32 0 33 0

  -d   [ r  ( X   -X  ) r  (Y-Y ) r  (Z-Z )] 

       [  r  ( X   -X  ) r  (Y -Y ) r   (Z-Z )]o
u

u u


 
 

 
    ( 7-50) 

 

21 0 22 0 23 0

31 0 32 0 33 0

-d  [ r  ( X  -X  ) r  (Y-Y ) r  (Z-Z )] 

   [  r  ( X  -X  ) r  (Y-Y ) r   (Z-Z )]o
v

v v


 
 

 
    ( 7-51) 

 
 
Where [ , ]u v  = the unit conversion factors for the u  and v  axis, respectively. 
 
Rearranging equations (47) and (88) gives the two DLT equations originally 

developed by Abdel-Aziz and Karara in 1971. The basic equations of the 3D DLT 

are: 

 
 
 

1 2 3 4

9 10 11 1

L X L Y L Z L
u

L X L Y L Z

  


  
       ( 7-52) 

 

5 6 7 8

9 10 11 1

L X L Y L Z L
v

L X L Y L Z

  


         ( 7-53) 

Where: 
 

 , ,u v
u v

d d
d d

 
 

  
 

              ( 7-54-a) 

       

0 31 0 32 0 33( )D X r Y r Z r                  (71-b) 

 

0 31 11
1

uu r d r
L

D


                  (71-c) 

 

0 32 12
2

uu r d r
L

D


                  (71-d) 

0 33 13
3

uu r d r
L

D


                            (71-e) 

 

11 0 31 0 12 0 32 0 13 0 33 0
4

( ) ( ) ( )u u ud r u r X d r u r Y d r u r Z
L

D

    
                       (71-f) 



206 
 

 

0 31 21
5

vv r d r
L

D


                          (71-g) 

 

0 33 22
6

vv r d r
L

D


                           (71-i)  

 

0 33 23
7

vv r d r
L

D


                 (71-j) 

 

21 0 31 0 22 0 32 0 23 0 33 0
8

( ) ( ) ( )v v vd r v r X d r v r Y d r v r Z
L

D

    
   (71-k) 

 

31
9

r
L

D
                   (71-l) 

 

32
10

r
L

D
                   (71-m) 

 

33
11

r
L

D
                   (71-n) 

 
 
Coefficients 1 11( )L L in equations (52, 53) are the DLT parameters which reflect 

the relationships between the object reference frame and the image-plane 

reference frame.  

 

By rearranging the DLT equations (52, 53) the following equations can be 

produced for the 11 DLT parameters. 
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  ( 7-55) 

 
With the number of calibration points larger than eleven, an overdetermined 

system of linear equations can be established and solved for the unknowns

1 11( )L L  using a least squares method. 

The formula (56) below illustrates the equation (55) in case of using many (n) 

calibration points. 

 

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 2

10

11

1 0 0 0 0

0 0 0 0 1

:: : : : : : : : : : : :

:: : : : : : : : : : : :

1 0 0 0 0

0 0 0 0 1
nn n n n n n n n n

nn n n n n n n n n

X Y Z u X uY uZ L u

X Y Z v X vY vZ L v

uX Y Z u X u Y u Z L

vX Y Z v X v Y v Z L

       
          
    

    
    
      
    

         










   ( 7-56) 

 
Where: 
 n  is the number of calibration points.  
 
 
The aspheric nature of the camera lenses used in the image acquisition system 

can cause distortion and make flat objects appear slightly curved. So the optical 

errors from the lens ,u v  may be included in equations (52) and (53). 

 
 



208 
 

1 2 3 4

9 10 11 1

L X L Y L Z L
u u

L X L Y L Z

  
 

         ( 7-57) 

                                              (57) 
 

5 6 7 8

9 10 11 1

L X LY L Z L
v v

L X L Y L Z

  
 

         ( 7-58) 

 

Where ( , )u v  = the optical errors. Optical errors can be expressed as  

 

2 4 6 2 2
12 13 14 16 10( ) ( 2 )u L r L r L r L L r           ( 7-59) 

2 4 6 2 2
12 13 14 16 10( ) ( 2 )u v L r L r L r L L r            ( 7-60) 

Where: 

           ξ is the component of this devotion in the u direction  

η is the component of this devotion in the u direction  

 0u u   0v v    

From equation (59) and (60) we can calculate 5 extra camera parameters 12L to 

16L , however in this project the twelfth parameter is only added. As a result the 

equations (59), (60) were reduced to: 

u =ξ L12 r
2              ( 7-61) 

v = ηL12 r
2          ( 7-62) 

Where: 

r is the deviation of the point on the image from the image centre P. 

2 2 2r     
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The values of 0u and 0v can be calculated after getting the first eleven camera 

parameters, as following: 

From equation (54) we have  

1 9 2 10 3 11( ) ( ) ( ) ( ) ( ) ( )DL DL DL DL DL DL    

0 31 11 31 0 32 12 32 0 33 13 33( ) ( ) ( )u u uu r d r r u r d r r u r d r r      

2 2 2
0 31 32 33 11 31 12 32 13 33 0( ) ( )uu r r r d r r r r r r u           ( 7-63) 

Also from equation (54) we have 

 2 2 2 2 2 2
9 10 11 31 32 332 2

1 1
[ ]L L L r r r

D D
       

 2
2 2 2

9 10 11

1
D

L L L


 
       ( 7-64) 

From (63, 64) 

1 9 2 10 3 112
0 1 9 2 10 3 11 2 2 2

9 10 11

( )
L L L L L L

u D L L L L L L
L L L

 
   

   

And similarly the value of can be found  

5 9 6 10 7 11 0( ) ( ) ( ) ( ) ( ) ( )DL DL DL DL DL DL v    

5 9 6 10 7 112
0 5 9 6 10 7 11 2 2 2

9 10 11

( )
L L L L L L

v D L L L L L L
L L L

 
   

   

Where: 1 11( )L L  are calculated in equation (55) above 

 
By rearranging equations (52) above we have  
 

9 10 11 1 2 3 4L uX L uY L uZ u L X L Y L Z L uR       

1 2 3 4 9 10 11u L X L Y L Z L L uX L uY L uZ uR            ( 7-65) 

Where: 
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 9 10 11 1R L X L Y L Z     

 
Similarly by rearranging equations (53) above we have 
 

5 6 7 8 9 10 11v L X L Y L Z L L uX L uY L uZ v R           ( 7-66) 

 
 
Equations (65, 66) can be written in a matrix form as.  
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   
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 
 
 
 

 
  
  
  

   

 

  

The camera parameters 1 12( )L L  are calculated using the formula above. 

 
 
A.2.1 Reconstruction of world coordinates  ( , , )X Y Z  
 
From equations (52) above we have  
 

9 10 11 1 2 3 4L X L Y L Z L X L Y L Z L           

 

9 1 10 2 11 3 4( ) ( ) ( )L L X L L Y L L Z L             ( 7-67) 

 
Where: 
 u u    
Similarly Fromequations (53) above we have  
 

9 5 10 6 11 7 8( ) ( ) ( )L L X L L Y L L Z L              ( 7-68) 

 
Where: 
 v v    
 
From equations (67, 68) and with the number of cameras at two or more, the 

following reconstruction matrix is used to find the world coordinates ( , , )X Y Z  
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( 7-69) 

Where: 
 
          m is the number of camera used in the system 
 

A.3 Pulnix TM-500 camera 
A.3.1 the features  
• Miniature size. 
• High resolution. 
• Shuttering to 1/10,000 sec. 

• Auto-shutter option. 
• External sync option. 
• C and CS Mount. 
• Excellentshock and vibration resistance. 
• Low cost. 
 
A.3.2 specification of Pulnix TM-500 camera 
 
Imager 1/2" CCD 
Pixel 500(H) x 582(V) 
Cell size 12.7µm(H) x 8.3µm(V) 
Scanning 625 lines, 50 Hz CCIR 
Lens mount  C/CS mount 
Min. illumination 0.2 lux @ F 1.2 
Power required , 12V DC < 2.4 W 
Operating temperature -10°C to 50° 
Size (W X H X L)  45mm x 39mm x 92mm 
Weight  235 grams 
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A.4 DT3155 board 
 
A.4.1 Key features of the board 
 

 Operates on the PCI local bus interface; 

 Digitizes 8-bit monochrome video from any one of four 60 Hz or 

            50 Hz video input channels; 
  Synchronizes to any of the video inputs; 

 Accepts an external trigger with selectable polarity; 

 Provides programmable black and white levels; 

 Provides a 256 x 8-bit input look-up table (ILUT); 

 Provides a 256 x 8-bit passthru look-up table; 

 Provides passthru scaling to 1/4 of the frame size; and 

 Provides eight TTL-level digital output signals for 

            general-purpose use. (DT3155 data sheet) 
 

 compatible with Image Pro Plus and MATLAB software 
 

 
 

Figure A-9 : The DT3155, monochrome frame grabber for the PCI Bus 
 
 

Video Input Channels 
 
The DT3155 supports monochrome video input from one of four software-

selectable video channels (0 to 3). The channel is software selectable. By 

default, channel 0 is selected. 
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In this card there are two video connectors, J1 and J2 

 

Video Input Connector J1 
 
Connector J1 is a 15-pin, male, D-shell connector that accepts all the signals 

brought out by the DT3155 board through the user-designed cable or EP306 

cable. The cable has been designed for this project. Fig (7.10) shows the pin 

locations for connector J1. 

 

 

Figure A-10 : Connector J1 
 

Video Coaxial Connector J2 
 
Connector J2 is a female coaxial connector that connects to the video output of 

the video source using a 75 Ω coaxial cable with a male connector. The single-

use BNC input connector, J2, is shared with the VID0 signal (pin 8) on video 

input connector J1. So both signals should not be matched, otherwise, the two 

video sources will be shorted together, and could damage the video sources. Fig 

(7.11) illustrates coaxial connector J2 and Fig (7-12) shows how the cameras 

connected to the system. 
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Figure A-11: coaxial connector J2 
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Figure A-12: connecting 3 cameras to the frame grabber 
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A.5 Dimension of the pyramid calibration piece  
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Figure A-13: Pyramid calibration piece a) top view, b) side view (dimension in 
mm) 
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Appendix B 
 
% function returns the angles for  all the fingers 
function H = display_the_fingers_angles  
 
clear 
% create an empty matrix in order to fill it by the angles for the  
%4 fingers.  
H=[];  
for I = 1 : 4  
%----------------------------------------------------------------------
---- 
%if the No of points = 8 then sort the matrix in Ascending 
%order based on the X coordinate (the second column). 
%the function (points_from_all_cameras) returns 3 matrices, these  
%matrices are, points_from_Right_camera,points_from_Inner_camera and 
%points_from_Left_camera, each represents the points on the fingers  
%in order that match the equivalent points in the other cameras.  
%The size of each matrix is 32 rows by 3 columns 
 
[points_from_Right_camera,points_from_Inner_camera,points_from_Left_cam
era] = points_from_all_cameras; 
 
R = size (points_from_Right_camera,1);  % no of rows in the matrix.  
%points_from_Right_camera. 
C = size (points_from_Inner_camera,1);  %no of rows in the matrix.         
%points_from_Inner_camera. 
P = size (points_from_Left_camera,1);   %no of rows in the matrix.  
%points_from_Left_camera. 
%----------------------------------------------------------------------
---- 
%the formula below (1+((R-24)*(I-1)) Produces Numbers 1,9,17,25 for the  
%for loop I =1 ,2,3 ,4 respectively,% so we can choose 8 rows from the   
%matrix each time and the formula((R-24)*I))Produces Numbers 8 ,16,24, 
%32 for I=1 ,2,3 ,4 respectively. so the first for loop chooses the    
%matrix (1:8,:),and the second (9:16,:), the third (17:24,:)and the   
%last for loop chooses the matrix (25:32,:),so we can choose 8 rows   
%from the 32 rows matrix each time, and each matrix represents the  
%points for each finger 
 
 
points_from_Right_camera =  points_from_Right_camera(((1+((R-24)*(I-
1))):((R-24)*I)),:);    
points_from_Inner_camera = points_from_Inner_camera (((1+((C-24)*(I-
1))):((C-24)*I)),:);  
points_from_Left_camera  = points_from_Left_camera  (((1+((P-24)*(I-
1))):((P-24)*I)),:);     
 
%----------------------------------------------------------------------                
% function (find_fingers_angles) gives the angles between the finger 
% joints. 
g = 
find_fingers_angles(points_from_Right_camera,points_from_Inner_camera,p
oints_from_Left_camera); 
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H =[H;g]; 
%---------------------------------------------------------------------- 
 
end% end for (for I = 1 : 4 ) 
 
 
disp('The angles for the fingers are '); 
disp(H); 
 
% ********************************************************** 
% ********************************************************** 
 
 
% this function is used for ordering the image that captured by inner 
% camera 
function  [finger_1,finger_2,finger_3,finger_4]= 
order_points_inner_camera (ICRim) 
 
%reorder the column of the matrix  
finger_markers = ICRim(:,[2 1 3 4]);         
 
% delete column No 1, The remaining columns are the points No ,  
%X position and Y position 
 
finger_markers = finger_markers(:,2:4);  
 
% this function (new_matrix_min_y)finds out the min value of Y  
% coordinats which will be used as a first point in the matrix for  
% the image that has been captured by the inner camera 
finger_markers = new_matrix_min_y (finger_markers);        
 
%this for loop represents the 4 fingers of the hand. 
for I = 1 : 4                                          
 
% for the 4th finger we do not need to go through the all   
% calculation,because we have only the 8 points for the fourth  
% finger, so we need only to sort them. 
if I < 4 
 
% creat an empty matrix in order to fill it with the out put 
    A=[];                                      
 
    m = finger_markers; 
 
 
%7 times for loop, because we want to find 7 points for a   
%certain finger based on the  first point, i.e. the total No    
%of points for each finger are 8                                    
for k = 1 : 7                        
 
 
        [N,M] = size(m); 
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%if number of rows in matrix m <= 2 , the next point is the  
%last point in the matrix 
if N >2                                  
 
 
%function call: this function (dist_between_points_inner_cam) 
%calculates the distance between the first point and all  
      %other points 
        c = dist_between_points_inner_cam (N,m);            
 
 
% sortrows is a MATLAB function used to  sort the rows of   
% the matrix (in this case "c") in ascending order based on  
% a specified columns(in this case first column which has the  
% distances between the first point and all other points). 
        sort_c = sortrows(c,[1]);                 
 
        [H,W] = size (sort_c); 
 
 
%call the function that calculate the min distance(3or rows) 
        x = min_distance_inner_cam (H,m,sort_c);    
 
% find the size of the matrix (x) 
        [dd,hh]= size (x);  
 
 
%if No of rows in matrix (x) >=2,then sort out the   
%matrix in asending order based on the first row  
% which has min delta  x, and select the first two  

% rows 
if dd >= 2    
%------------------------------------------------ 
%this function used in case of No of rows in the   
%matrix x =3 (matrix x consists of 3 columns the   
%1st is Delta_x,2nd is Point No, 3rd is X  
% coordinates  and the 4th is y coordinates). and  
% it tests if the 3 points located on the same  
%finger or not, in case  of the 3 points located  
% on the same finger this function choose the two  
% points that closer to our reference point, by   
%comparing the X coordinates for the 3 points.  
%if the deference in X coordinates  <= 5 pixels  
%that means all the 3 points belong to the same  
   %finger, otherwise not. 
if dd == 3 
                     x = select_two_points_inner_camera(dd,x); 
 
end%end for (if dd == 3) 
 
%---------------------------------------------------- 
% sort matrix y in asending order based on the  
%firs column 
                     sort_X = sortrows(x,[1]);              
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% select the two points which have min delta x,  
%ie  the first and second rows; because some                                   
%times the point with min delta x is not the  
%next point, so the two points are selected ,                                       
min_2delta_x = sort_X (1:2,:);          
 
 
% this function (find_next_point_x)finds the next   
% point in case of inner camera.   
                   next_point = find_next_point_x (min_2delta_x);                      
 
%else for (if dd >= 2). if No of rows in the  
% matrix (x)= 1 then this is the next point  
else 
 
                   next_point = x; 
end%end for (if dd >= 2)                                        
 
% remove the first column which contains the min  
%dinstance, so the matrix has the point No, X                                       
% coordinates and Y coordinates                                       
                    next_point = next_point (:,2:4);        
 
% remove the row that contains the second point  
% from the matrix c. 
                    c = c(all(c~= next_point(1,1),2),:);     
 
 
% remove the first column from the matrix i.e the  
% column that has the distance between the points  
% in order to continue order to continue finding  
%the next point 
                    c = c(:,2:4);                            
 
%Append the row that contains the next point to  
%the matrix c 
                    c = [next_point;c];                                                
                    m = c; 
 
else% else for if N >2 
 
                             next_point = m(2,:); 
 
end% end for if N >2                  
 
                    A =[A;next_point]; 
 
 
end% end for loop (k=1:7)  
 



220 
 

 
% add the first row i.e the row that contains the  
% first point to the matrix to produce the eight  
% points which represent the finger                                     
               A = [finger_markers(1,:);A] ;            
 
% this function (remove_points) remove the 8 points of the                            
%finger from the whole matrix, 
       D = remove_points (finger_markers,A);                                           
 
 
%this function (new_matrix_Y)finds the first point of the next  
%finger and returns a new matrix,the first row has the data for  
%the first point for the next finger. 
    finger_markers = new_matrix_Y (D);                  
 
else%else for if I < 4    
 
% if the No of points = 8 then sort the matrix in Ascending  
% order based on the Y %coordinate (the third column )                                 
        finger_markers = sortrows(finger_markers,[3]);    
        A = finger_markers; 
end%end  for if I < 4 
 
 
if I == 1 
                    finger_A  = A;  % 8 points for the first finger. 
elseif I == 2 
                   finger_B = A ;   % 8 points for the second finger. 
elseif I == 3 
                   finger_C  = A;   % 8 points for the third finger. 
elseif I == 4 
                   finger_D  = A ;  % 8 points for the fourth finger. 
end 
 
end% end for I = 1 : 4  
 
% this function (rank_fingers_x_coord)sort out%the fingers 
 
 
[finger_1,finger_2,finger_3,finger_4] = rank_fingers_x_coord 
(finger_A,finger_B,finger_C,finger_D);                                                 
 
 
% ********************************************************** 
% ********************************************************** 
 
%Function to calculate angles between joints given points in space 
function angles = angles(ThreeD)   
 
numang = size(ThreeD,1); 
numang = (numang/2)-1; 
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for i = 1:numang+1;  
 
   v(i,:) = ThreeD(2*i,:) - ThreeD(2*i-1,:); 
 
end 
 
 
for i = 1:numang; 
 
   ang(i) = 
acos(sum(v(i,:).*v(i+1,:))/(sqrt(sum(v(i,:).^2))*sqrt(sum(v(i+1,:).^2))
)); 
 
end 
 
angles = (180/pi)*ang; 
 
% ********************************************************** 
% ********************************************************** 
% this function retunes the angles between the joints for the 4 
fingers.   
function angle = find_fingers_angles 
(points_from_Right_amera,points_from_Inner_amera,points_from_Left_amera
); 
 
cam1m(:,1) = points_from_Inner_amera(:,2);    
cam1m(:,2) = points_from_Inner_amera(:,3);    
cam2m(:,1) = points_from_Left_amera(:,2);    
cam2m(:,2) = points_from_Left_amera(:,3); 
cam3m(:,1) = points_from_Right_amera(:,2);    
cam3m(:,2) = points_from_Right_amera(:,3); 
 
 
TwoD1(:,:,1) = cam1m;        
TwoD1(:,:,2) = cam2m; 
TwoD1(:,:,3) = cam3m; 
 
    load dozparams.dat 
    pars1(:,1) = dozparams(:,1);  
    pars1(:,2) = dozparams(:,2); 
     pars1(:,3) = dozparams(:,3); 
 
 
    format short 
ThreeD1 = recon(pars1,TwoD1);   
 
 
angle = angles(ThreeD1); 
 
 
% ********************************************************** 
% ********************************************************** 
%this function calculates the X and Y coordinate for the 3 images of  



222 
 

%the calibration piece that captures by Right, Left and the Inner  
%cameras. Each image contains 27 points represent the calibration 
%points.  
 
function []= calib_piece_images_processing 
 
%Change directory to access the files under investigation. 
 
cd u:\6_pins_calib_piece\1st_test_new_calb_piece 
 
%this for loop determines which image will be processed                                
for k=1:3                                   
 
if (k==1) 
 
%imread is a matlab function to read image from graphics file 
   
I=imread('u:\6_pins_calib_piece\1st_test_new_calb_piece\Right_camera_ca
lib_piece.tiff'); 
 
 
elseif (k==2) 
 
   I = imread 
('u:\6_pins_calib_piece\1st_test_new_calb_piece\Left_Camera_calib_piece
.tiff'); % to read image from the file 
elseif (k==3) 
   I = 
imread('u:\6_pins_calib_piece\1st_test_new_calb_piece\Inner_Camera_cali
b_piece.tiff'); % to read image from the file 
end 
 
%this function (forground_image)put all back ground pixels into  
%zero and the pixels in foreground remain as their original       
%value. 
 
   I = forground_image(I);               
 
%[labeled,numObjects]= bwlabel(I,n) returns a matrix labeled, of  
%the same size as I, containing labels for the connected objects  
%in imageI. n can have a value of either 4 or 8,where 4  
%specifies 4-connected  objects and 8 specifies 8-connected                            
%objects. and numObjects has number of connected objects found in  
   %the image I. Label components.                                     
 
   [labeled,numObjects]= bwlabel(I,8);   
 
   t= numObjects; 
 
   figure; imshow(labeled);  
   pixval on 
 
%regionprops is a MATLAB function Measure properties of  matrix  
%labeled, if properties is the 'basic', then these measurements  
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%are : 'Area', 'Centroid', and 'BoundingBox'.Only Area and  
  % Centroid will be calculated 
 
    data = regionprops(labeled,'basic'); 
 
% No of calibration points in the image is 27 
for  j=1:27                              
 
%Object_No is No of control points for the calibration piece 
        Object_No(j)=(j);                       
 
%Calculate the area of the points in the imageI. we do no  
%need the area just for checking 
        Area(j) = data(j).Area;  
 
%Calculate the centroid of the control points in X direction 
        Centre_X(j)=data(j).Centroid(1); 
%Calculate the centroid of the control points in Y direction 
Centre_Y(j)=data(j).Centroid(2); 
end% end for j=1:32 
 
 
if (k==1) 
    m =[Object_No',Area',Centre_X',Centre_Y']; 
 
%save the data(Object_No',Area',%Centre_X',Centre_Y') to cnt file  
%or to any data file such as xls. 
 
    
save('u:\6_pins_calib_piece\1st_test_new_calb_piece\Right_camera_calib_
piece.cnt','m','-ascii')  
elseif (k==2) 
    m =[Object_No',Area',Centre_X',Centre_Y']; 
 
    
save('u:\6_pins_calib_piece\1st_test_new_calb_piece\Left_Camera_calib_p
iece.cnt','m','-ascii') 
elseif (k==3) 
    m =[Object_No',Area',Centre_X',Centre_Y']; 
 
    
save('u:\6_pins_calib_piece\1st_test_new_calb_piece\Inner_Camera_calib_
piece.cnt','m','-ascii')     
end%end if (k==1) 
 
end% end for k=1:3  
 
% ********************************************************** 
% ********************************************************** 
 
 
%this function threshold the input image I by using the thresholding  
%value 3*the standard deviation of the image I + the mean of the   
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%image (I) and return back the binary image. 
 
function A = thresholdvalue(I) 
 
 
threshold = (3*(Std2(I))+ mean2(I))*1.1; % threashold value 
 
A=(I>=threshold); % A is alogical array 
 
% ********************************************************** 
% ********************************************************** 
 
 
% The input of this function (find_next_point_y)is the matrix that    
% contains the min 2 delta y. By Finding  the deference between the   
% delta y. i.e. The deference between the first and second rows of    
% the first column. If the deference <= 5 pixels, then the next point   
%will be the point which has min X coordinate, otherwise the next point    
%is the point which has min delta y. this function is used in case of   
%Left and Right Cameras. 
function next_point = find_next_point_y (min_2delta_y) 
 
 
% Find the deference between the delta y, i.e. the deference between    
%the first and second rows of  the first column. 
 
A = abs(min_2delta_y(1,1)-min_2delta_y(2,1));  
%------------------------------------------------------------------ 
if A <= 5    
 
% this sort out the matrix min_2delta_y, which has two rows  
% represent the min delta_y, in ascending order based on    
% X_coordinta (the third column),then the point that has  
% min X_coordinate is the next point. 
 
min_X_coordinat = sortrows (min_2delta_y,[3]);    
 
next_point = min_X_coordinat; 
 
else 
 
        next_point = min_2delta_y (1,:); 
 
end 
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