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I. ABSTRACT 
 

Assessing the impact of domestic low-carbon technologies on the electricity 

distribution network requires a detailed insight into the operation of networks and 

the power demands of consumers.  When used on a wide-scale, low-carbon 

technologies, including domestic scale micro-generation, heat pumps, electric 

vehicles and flexible demand, will change the nature of domestic electricity use.  In 

providing a basis for the quantification of the impact upon distribution networks, 

this thesis details the construction and use of a high-resolution integrated model 

that simulates both existing domestic electricity use and low voltage distribution 

networks. Electricity demand is modelled at the level of individual household 

appliances and is based upon surveyed occupant time-use data.  This approach 

results in a simulation that exhibits realistic time-variant demand characteristics, in 

both individual dwellings, as well as, groups of dwellings together.  Validation is 

performed against real domestic electricity use data, measured for this purpose, 

from dwellings in Loughborough in the East Midlands, UK.  The low voltage 

distribution network is modelled using real network data, and the output of its 

simulation is validated against measured network voltages and power demands.  

The integrated model provides a highly detailed insight into the operation of 

networks at a one-minute resolution.  This integrated model is the main output of 

this research, alongside published articles and a freely downloadable software 

implementation of the demand model.   

 

 

Key words: Home appliances, domestic low-carbon technologies, low voltage 

electricity distribution networks, load flow, demand side management, demand 

modelling, demand response, flexible demand. 
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1. INTRODUCTION 

1.1 Towards a low-carbon electricity system serving the domestic sector 

 
 

Fig. 1. A future perspective on the electricity system serving domestic consumers 
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With the aim of reducing emissions from the domestic sector, the widespread 

application of low-carbon technologies is of significant interest.  An example that 

shows a future low-carbon vision of the power system is presented in Fig. 1.  

Whilst it is difficult to foresee the detail of the power system decades ahead of time 

with many possible scenarios arising [25,26], it is likely to include a combination of 

many of the different technologies shown in the figure.    

 

From a centralised generation perspective, reduction of carbon emissions may 

include a considerable proportion of intermittent renewable generation, including 

wind and marine, combined with carbon capture technology used with fossil fuel 

plant, and new nuclear generation.  The inflexibility of this centralised generation 

will present new challenges in balancing the supply and demand of electricity, as 

is discussed by National Grid [27].  

 

From a domestic consumer perspective, shown in the lower part of Fig. 1, flexible 

demand could help with system balancing.  This would require that the time of use 

of appliances could be shifted with the aim of better matching electricity demand 

with supply.  The time of operation of some domestic loads may be shifted without 

inconvenience to the dwelling’s occupants.  An example is a fridge, where thermal 

storage provides scope to advance or delay a cooling cycle [28].  A further 

example is a washing machine, such as the one shown in Fig. 2, where a delay of 

a few hours may have a minimal impact on the household.  When aggregated to 

include the whole population, there is significant potential for demand rescheduling 

to provide benefit to system operation [29,30], and as a result, enable more 

inflexible low-carbon generation to be connected to the grid.  
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Fig. 2. Washing machine “Delay wash” mode 

 

Meanwhile, a low-carbon electricity system would likely involve the widespread 

use of other low-carbon domestic technologies, as is shown in the illustration 

in Fig. 1 and includes the following: 

 

• Solar photovoltaics (PV), where electricity is generated from sun light, reducing 

the need for higher carbon centralised generation. 

• Micro-combined heat and power (μCHP), a heat demand led technology that 

provides heating, as well as, micro-generation using otherwise wasted heat. 

• Air and ground source heat pumps that efficiently provide low-carbon heat by 

sourcing heat from the air or ground, particularly if powered by low-carbon 

electricity. 

• Electric vehicles that could support the decarbonisation of the transport sector 

by reducing the need to burn fossil fuels. 

• Energy efficient technologies that reduce the overall level of demand, such as 

the replacement of incandescent light bulbs with LED lighting. 

• Domestic energy use displays, made possible through advanced metering, that 

provide detailed energy use information resulting in household residents 

switching unused appliances off more often. 
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1.2 The consistent nature of domestic electricity demand 

The nature of domestic electricity demand in the UK has changed little over time.    

Statistics from DUKES [31], taking into account the number of households [32], 

show that annual electricity demand per household in 1971 was 4475 kWh, 

compared with 4864 kWh in 2008.   

 

Furthermore, when large numbers of dwellings are considered together, the shape 

of the daily aggregated power demand profile is very consistent.  A national mean 

domestic demand profile is shown in Fig. 3.  This represents the Domestic 

Unrestricted Profile Class 1 Group Average Demand (GAD) developed by the 

Electricity Association in 1997 [33] and used since in the UK Balancing and 

Settlement Code (BSC) [34].   The shape is also consistent with electricity demand 

measurements made as part of the work presented in this thesis, described later 

in Chapter 3.  The power system is designed and operated on the assumption that 

this demand profile is consistent and therefore predictable. 

 

 
Fig. 3. Half-hourly winter domestic demand profile 

Source: UKERC Energy Data Centre [33] 

 

However, the widespread introduction of domestic low-carbon technologies will 

alter both the level of demand, as well as, the shape of the demand profile.  

Furthermore, different domestic technologies will affect demand in different ways, 

as is discussed in the following section. 
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1.3 Different low-carbon technologies affect demand in different ways 

The ways in which different domestic low-carbon technologies introduced in Fig. 1  

could impact the shape of the demand curve is illustrated in Fig. 4.  The letters for 

each symbol, representing different domestic low-carbon technologies, refer to the 

discussion below: 

 

 
Fig. 4. Low-carbon technologies and the domestic demand profile 
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vehicles will follow the daily work-life pattern, domestic charging demand would be 

likely to peak when most people return from work (Fig. 4a), increasing the 

magnitude of peak demand in the demand profile in Fig. 3.  In such a scenario, it 

would be necessary to consider the control of the charging cycle through 

appropriate overnight scheduling (Fig. 4b). 

 

Domestic solar PV (Fig. 4c) 
Domestic solar PV generation (Fig. 4c) will offset demand and at some times may 

export electricity to the grid.  Subject to solar radiation intensity, the peak time of 

generation will be during the middle of the day.  Since this does not coincide with 

the time of peak demand during the early evening, large penetrations of solar PV 

would therefore worsen the peak to mean demand level, resulting in a greater 

variance.  
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 μCHP (Fig. 4d) and Heat Pumps (Fig. 4e) 
μCHP is a heat led technology and its use is seasonal.  Therefore, considerably 

more generation will occur in winter rather than summer months, and the time of 

generation will coincide with the time of peak heating demand in the morning.  

Conversely, heat pumps will operate at similar times, but have the opposite effect 

by placing additional demands on the network. Therefore, μCHP will reduce the 

morning peak demand (Fig. 4d), whilst heat pumps will increase it (Fig. 4e).  

 

Flexible Demand (Fig. 4f) 
If the time of use of appliances could be shifted with flexible demand, then the 

shape of the demand curve will change depending upon how the demand is 

scheduled.  In the example in Fig. 4f, the washing machine demand at the 

beginning of the evening peak could be scheduled to occur earlier in the 

afternoon, or perhaps overnight, in which case there would be a levelling effect on 

the profile.  

 

Energy Use Displays (Fig. 4g) and Efficient Technologies (Fig. 4h) 
Finally, the use of energy use display meters (Fig. 4g) or more energy efficient 

technologies (Fig. 4h) could reduce the overall magnitude of the demand profile. 

 

 

Therefore, the widespread use of one or more of the above technologies has the 

potential to considerably change the shape of the domestic demand profile.  There 

may be increased variability, increased peaks and troughs and the mean level of 

demand could change, depending on the penetration and combination of the 

technologies used.   

 

Whilst these low-carbon technologies are beneficial at a national level, as 

mentioned earlier, the change of the demand profile locally has significant 

implications for electricity distribution networks: these issues are discussed next.
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1.4 Low-carbon technologies and electricity distribution networks 

An example illustration of a section of distribution network is presented in Fig. 5, 

showing the use of low-carbon technologies in a number of dwellings.   

 

 
Fig. 5. Low carbon domestic technologies and the distribution network  

(Area map: Ordnance Survey ©Crown Copyright. All rights reserved.)  

 

The first major issue of concern to the Distribution Network Operator (DNO) is the 

network capacity limits.  The cables and transformers must be rated such that they 

are not subject to undue thermal stress in supporting the level and duration of 

peak demand.  As an example, the wide-scale use of electric vehicles and heat 

pumps, will provide a significant additional demand [37] that the network may be 

unable to meet.   
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The second major issue is that of voltage control.  Power quality standards require 

voltages to stay within limits: in the UK this is currently a nominal voltage 

of 230 V +10% -6% [38,39].  The voltage varies depending upon the level of 

demand.  Connecting low-carbon technologies to the low voltage distribution 

network will result in increased variability in demand, and therefore increased 

variability in voltage.  Furthermore, voltage rise due to the connection of micro-

generation is a particular concern [40].   

  

This thesis will focus on these two major issues, with a view to providing tools in 

order to assess this.  It is also noted that there are further concerns, including 

imbalance, flicker and harmonics [41, 42]. 

 

At present, the design procedure for distribution networks involves the use of 

simple calculations that are used to estimate the voltage variation along a circuit 

serving residential areas [43].  Whilst the physical characteristics of the cables are 

well understood, the parameter of particular importance is the “after diversity 

maximum demand” (ADMD).  The term is commonly used to describe the supply 

capacity required for each consumer connected to the network.  A formal definition 

is “the maximum demand, per customer, as the number of customers connected to 

the network approaches infinity” [44].  In the UK, an ADMD of 2 kW is a common 

design standard applied to dwellings that do not use electric space heating 

systems [43]. This takes into account that every appliance in every dwelling is 

never used all at the same time. 

 

As discussed previously, ADMD relies on the consistent nature of demand: 

introducing low-carbon technologies change the nature of this demand and may 

therefore undermine the simple network design calculations. 
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1.5 A new approach to the modelling of demand and low voltage networks 

This thesis is concerned with the construction and validation of a comprehensive 

model of domestic demand and existing low-voltage network operation.  The 

model therefore forms a basis upon which low-carbon technologies on distribution 

networks can be studied.  An overview of this model is presented in Fig. 7.   

 

 
Fig. 7. Domestic demand and low voltage network model  

(Map data: Ordnance Survey ©Crown Copyright. All rights reserved.) 
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With reference to Fig. 7, the domestic electricity demand model provides a 

simulation of whole-dwelling electricity use.  At its core, is the representation of 

“active occupancy” (that is, when occupants are within a dwelling and not asleep).  

Using this occupancy data, in conjunction with other physical input factors, such as 

natural light level in the case of domestic lighting, the model simulates the use of 

all major categories of domestic appliances, including cold, wet, cooking, heating 

and entertainment categories.  The model outputs realistic demand data on both 

shorter (e.g. minute to minute) and longer (e.g. annual) time frames, and is 

calibrated with annual electricity consumption data for individual appliance types. 

 

 
 

Fig. 8. Example one-day output of the electricity demand model 

 

 

An example of the output of the demand model for a single dwelling is shown 

in Fig. 8.   The active occupancy profile is shown in Fig. 8(a) and the whole-

dwelling electricity demand is shown in Fig. 8(b).  When simulating many dwellings 

together, each will have a different output: this is important in order to achieve the 

appropriate diversity in demand over time. 
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Referring again to Fig. 7, the demand model is used to provide data for input to a 

simulation of a real electricity distribution network.  In order to achieve this, the 

cables that form the low voltage network are represented together with the location 

of each domestic consumer.  A screen print showing an example of the GIS 

interface of the model is shown in Fig. 9.  In this case, the model is representing a 

residential area, with the low voltage cable topology clearly visible.   

 

 
Fig. 9. The user interface of the integrated model GIS software tool  

(Map data: Ordnance Survey ©Crown Copyright. All rights reserved.) 

 

Using the combination of the demand data and the network structure, a three-

phase unbalanced load flow is then used to determine the voltages and currents 

throughout the network. 

 

The whole model runs on a time-stepped basis.  At each step, the individual 

demand of each dwelling is determined and the load flow calculations are 

performed.  The model thereby provides a very detailed insight into the operation 

of the network.  
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1.6 Thesis structure 

The construction and validation of the model of domestic electricity demand forms 

a major part of this thesis.  This begins with a discussion of the literature on 

domestic demand in Chapter 2 and is followed with a description of a study of the 

nature of domestic demand in Chapter 3, for which the measurement of real 

domestic electricity use took place. 

 

The construction of the model of domestic occupancy is presented in Chapter 4.  

This occupancy data is used to construct a simulation of domestic lighting use 

in Chapter 5.  The model is then extended to include all other major categories of 

domestic appliances in Chapter 6, where the model is subsequently validated 

against measured data. 

 

The requirements for the modelling of low voltage networks are considered in 

Chapter 7, after which the construction of the integrated network and demand 

model is described in Chapter 8.  The validation of this model is presented in 

Chapter 9 and the use of the model is presented in Chapter 10.  

 

The conclusions of the work are presented in Chapter 11. 
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2. DEMAND MODELLING: A LITERATURE REVIEW 

2.1 Introduction 

The need for a detailed model of domestic electricity demand was discussed 

in Chapter 1.  The aim of this chapter is to determine the requirements for building 

such a model by considering what is already available in the literature.  The 

chapter concludes with a refined set of the features that the demand model must 

incorporate.  

 

This literature review relates only to the demand modelling components of the 

work.  The literature with respect to network modelling is considered separately 

in Chapter 7. 

 

It is noted that the terms “demand” and “load” are frequently used interchangeably 

in the literature and are therefore interpreted here as having the same meaning. 

 

2.2 Outline requirements 

The proposed requirements for an ideal demand model with the purpose of 

providing data for a simulation of domestic electricity networks is present in Fig. 

10.  The requirements are categorised using a MoSCoW approach [45], in order to 

rank their relative importance: they are grouped into categories of “must-have”, 

“should-have”, “could-have” and “will-not-have” groups.   
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Fig. 10. Outline demand model requirements 

 

 

With these general requirements in mind, the literature is now discussed in terms 

of the extent to which these have been satisfied before in other work. 
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2.3 Top-down and bottom-up models 

The two general categories of energy demand model are known as “top-down” 

and “bottom-up” approaches.  In the top-down case, the models are concerned 

with breaking-down an overall view of the whole system and are usually based 

upon aggregated consumption data.  In contrast, a bottom-up approach involves 

the modelling of individual end-uses of energy, specifically the individual 

appliances used within a dwelling, and building this up in order to achieve a wider 

view.  Swan and Ismet Ugursal (2009) [46] discuss these general categorisations 

in greater detail.   

 

One common application of the top-down modelling approach is for national load 

forecasting.   Gross and Galina (1987) [47] and Mogram and Rahman (1989) [48] 

discuss and review many of the available techniques.  In general, these 

approaches typically have an hourly resolution and the data generated is suited to 

system wide demand simulation.  Clearly, in order to meet the key requirement of 

modelling individual dwellings, a top-down approach is inappropriate, because the 

demand due to individual dwellings will not be suitably represented.   

 

A bottom-up model that is concerned with the end-use consumption for an 

individual dwelling, as is discussed by Paatero and Lund (2006) [49], will be most 

appropriate to meet the modelling requirements of this work.  The details of 

interest in such models include the types of the appliances within a dwelling, 

together with their patterns of use.   
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2.4 Stochastic methods 

With reference back to Fig. 10, it is not necessary for the model to deterministically 

predict when the residents of a dwelling will use appliances.  The model only 

needs to output demand data that has the appropriate statistical characteristics 

representing the patterns of use.  Stochastic, rather than deterministic methods 

are better suited to this type of simulation.   

 

In general terms, stochastic demand models use a set of probabilities that 

represent the likelihood of different appliances being used at different times of the 

day.  At each time step of the simulation, random numbers are compared to 

determine if appliance use occurs.  Such methods are useful because they allow 

the representation of random variation in individual dwellings.  However, when 

groups of dwellings are considered together, the expected shape of the demand 

profile is seen, by means of an averaging effect.  Three relevant demand models, 

that use stochastic methods, are introduced here and discussed throughout this 

chapter:   

 

The first example is a model for generating household load profiles 

by Paatero and Lund (2006) [49].  This model uses hourly probability factors 

assigned to appliances or groups of appliances.  These factors are used to 

determine the varying likelihood of the use of an appliance throughout the day.  

Summing the demand due to the individual appliances at each time step provides 

the whole dwelling demand.  The model can be described as largely self 

contained: it may be implemented from the data and algorithms that are described 

within the article.  The discussion of the suitability of this model will be returned to 

later. 
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The second example is the more complex residential load model 

by Capasso et al. (1994) [50].  As with the Paatero and Lund model, the 

characteristics of individual appliances, including their power demands and usage 

lengths are represented.   However, it goes much further by taking into account 

factors such as psychological and behavioural traits.  It does this by representing 

the human resources that are related to the use of particular appliances, including 

eyes, ears and hands.   However, as Paatero and Lund [49] note, the issue with 

such approaches is the requirement for extensive data about the domestic 

appliances and how they are used by the occupants.   The result is that whilst this 

is a comprehensive model, it is simply not practical to construct a working 

simulation without having first obtained a suitable data set, that details the nature 

of the appliances, and the interrelated behaviour of the household residents.   This 

is a major constraint.  Further, the model is too granular in the context of 

representing large numbers of dwellings: the modelling of the physical and socio-

economic characteristics of individual occupants is considered unnecessary in the 

context of the requirements set out earlier. 

 

The third stochastic model introduced here is that developed 

by Stokes (2005) [51].  This model can generate data at a one-minute resolution.  

For each appliance, for each half-hour time period of the day, a probability ratio is 

calculated.  These ratios are used to determine the likelihood of an appliance 

being used within that time period.  The ratio is formed using an expected mean 

half-hourly demand, taken from measured data, together with the power demand 

of the respective appliance.  Within each half-hourly period, appliance switch-on 

events are randomly assigned.  In a recent overview of demand modelling, Widén 

(2009) [52] describes this as “probably the most detailed domestic demand model 

up to date”.    
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2.5 Occupancy as a key driver of domestic energy use 

An important difference, that sets the Capasso model apart from the other two 

models outlined previously, is that it takes into account the behaviour of the 

occupants of a dwelling in determining when appliances are used.  It does this by 

representing the household resident’s “availability at home profile”, which is used 

to represent when occupants of a dwelling are at home and are available to use 

appliances.  Within this thesis, this is the concept of active occupancy that was 

introduced earlier.   

 

The concept of occupancy being a key driver of domestic energy demand is widely 

supported in the literature.  Santin et al. (2009) [53] conclude that “occupant 

characteristics and behaviour significantly affect energy use”. The Tyndall Centre 

report “Microgrids: distributed on-site generation” (2005) [54] comments that 

“electricity load profile depends mainly on the household size and occupancy 

pattern.”  Yohanis et al. (2008) [55] discuss how occupancy affects overall 

domestic electricity use, in terms of both the number of residents who live at a 

dwelling, as well as, the impact of daily occupancy patterns.  Tso and Yau (2003) 

[56] examine energy usage patterns through a large survey of households in Hong 

Kong.  Papakostas and Sotiropoulos (1997) [57] provide a survey of domestic 

occupancy patterns and energy use from a study in Greece.  The time variation of 

use of appliances, lighting, heating and water, within a dwelling, are highly 

dependent upon the number of residents that live within, and their patterns of 

occupancy. 

 

The literature therefore supports the idea that using occupancy is a good starting 

point in determining the times of electricity use within a dwelling.  With reference 

back to the initial requirements set out previously in Fig. 10, this is a fundamental 

requirement of the model.  The use of occupancy in meeting this requirement is 

explored further in the following sub-sections: 
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2.5.1 Occupancy within individual dwellings 

 

Given the requirement for the model to output realistic demand profiles for 

individual dwellings, and the bottom-up approach found best suited to the 

modelling of appliance use, the use of occupancy provides a way to represent the 

use of many appliances at the same time. The use of appliances at the same time 

has a significant impact on the daily demand profile of a dwelling: Wood and 

Newborough (2003) [58] discuss how demand peaks occur. 

 

As an example, an actively occupied dwelling on a winter evening is likely to have 

both lighting and television switched on and in use.  A dwelling that is unoccupied 

may have neither.  This implies a dependency, which is termed as concurrent 

appliance use.   If a model uses active occupancy as the basis for appliance use, 

then a more realistic concurrency can be taken into account, since concurrent use 

will only occur at times of the day with active occupancy. 

 

This correlation of appliance use is a particular issue for stochastic appliance 

models, as independently representing appliances will not provide the required 

diversity in concurrent appliance use.  This is of great importance as models that 

do not take active occupancy into account may unrealistically spread the appliance 

usage over the full day, resulting in less concurrency and therefore a less realistic 

demand profile.  This is an issue for both the Pattero and Lund, and the Stokes 

model, that represent individual appliances without regard to occupancy. 
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2.5.2 Multiple occupants within individual dwellings 

 

A further benefit is gained by using occupancy data, in that it is possible to 

represent the concept of sharing appliance use.  Sharing enables more realistic 

simulation of demand, since, for example, a second occupant arriving home on a 

winter evening is likely to only incrementally increase, rather than double, the 

lighting demand.   

 

 Crosbie (2008) [59] explores energy usage behaviours with a focus on television 

appliances.  A trend towards “individualised electronic entertainment” and the 

energy efficiency implications of appliance sharing are discussed.  Appliances, 

such as televisions, can of course be watched by more than one occupant at the 

same time.   

 

Models of energy demand that take the number of active occupants into account 

can thereby take into account the effect of sharing. 

 

 

2.5.3 Occupancy and multiple dwellings 

Returning again to the fundamental requirement to represent the appropriate time-

coincident demand between dwellings, Stokes et al. (2004) [60] note that ‘‘Taking 

account of these [occupancy] patterns would improve the modelling of diversity.’’   

 

If each individual dwelling in a simulation is assigned a stochastically generated 

(and therefore unique) occupancy pattern, then this provides a good basis for 

providing diversity in the times of energy demand throughout a day.  Therefore, it 

follows that when large groups of dwellings are aggregated together, the 

appropriate diversity in time-coincident demand will be seen. 
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2.5.4 Data availability 

The requirement for the model to be self-contained in data terms was outlined 

previously.  If occupancy is to be used as a basis for energy demand simulation, 

then the appropriate data is needed. 

 

Many demand models have used the concept of occupancy as an input, but the 

lack of availability of input data is a common issue. Yao and Steemers (2005) [61] 

use a fixed set of five occupancy patterns.  Jardine (2008) [62] points towards the 

scarcity of household occupancy data.  In this case, occupancy data is derived, by 

visual assessment of a set of measured domestic demand profiles.  This was done 

to determine when appliances were being used and therefore when the occupants 

were active.   This data was then used to synthesise large quantities of activity 

profiles.  In more recent work, Armstrong et al. (2009) [12] present another 

occupancy based demand model localised for Canada, where it is acknowledged 

that the availability of occupancy data was a constraint. 

 

One detailed survey of time use is the UK 2000 Time-Use Survey (TUS) [63].  This 

study collected diaries from many thousands of people that captured how they 

spent their time.  The diaries were recorded at a ten-minute resolution over 24-

hour periods.  The data is anonymous, but it is possible to identify what people do 

with their time within each dwelling within the survey.   This data set clearly 

provides a good basis upon which to study patterns of domestic occupancy. 
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2.6 Seasonal demand and lighting 

A key requirement noted earlier is that the model needs to represent seasonal 

variation in demand.  Lighting is an example of one electricity end-use that varies 

throughout the year.  Its use is dependent not just upon occupancy, but on a 

secondary factor, namely the level of natural light.  This twin dependency is 

addressed by Reinhart (2004) [64] in a model for the automated control of office 

lighting.  Hunt (1979) [65] discusses occupancy and daylight level effects in a non-

domestic context. In domestic use, detailed studies that look at the complexity of 

the occupant behaviour and lighting are scarce.  One exception is the detailed 

study by Bladh and Krantz (2008) [66] that investigates the factors that influence 

lighting use. 

 

Stokes et al. (2004) [60] describe a model of domestic lighting with a one-minute 

data resolution.  However, this is based upon measured lighting demand end-use 

data.  Occupancy patterns or light levels as inputs are not considered.   

 

The key point here is that the use of common physical input factors to a model, 

means that the same input data can be used for other model components.   For 

example, if occupancy data is used to model lighting, then it will be appropriate to 

use exactly the same data as an input to a model of other household appliances, 

such as a television.   

 

Only recently have domestic demand models been constructed that take into 

account multiple physical input factors, such as occupancy and natural light level.  

One such model is described in Chapter 4 as part of the published output of the 

work described in this thesis.    Another more recent model is a domestic lighting 

demand model constructed by Widén et al. (2009) [14] that simulates lighting use 

in Sweden. 

 

In summary, it is considered necessary to take seasonality into account by using 

the appropriate physical input factors, such as natural light level.  
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2.7 Modelling occupant activities 

The most recent demand models reflect a trend towards the use of data that 

represents how people spend their time.  This is known as time-use data.  Such 

models are concerned not only with when occupants are active in a dwelling, but 

with what the occupants are doing.   

 

The concept of “proclivity for home-activities” originally described by Capasso et 

al., is used to build a relationship between occupant activities and the usage of 

particular types of appliance.  A similar approach is seen in the more recent model 

by Prudenzi and Silvestri (2009) [67] where different classes of time use, such as 

cooking, housework or leisure time are represented.   

 

In their recent paper, Widén et al. [13] discuss how time-use data can be used to 

represent the behaviour of occupants in dwellings in terms of the appliances that 

they use.  This particular model uses Swedish time-use data to construct hourly 

resolution demand data.  The approach is extended in recent work in a one-minute 

resolution model [15] where time-use data from Swedish dwellings is used to 

construct a stochastic model, in which the activity patterns of individual occupants 

is represented.    

 

Time-use data to construct bottom-up models is therefore of considerable interest 

because it allows the linking of occupant behaviour to the likelihood of particular 

appliances being used.  This important concept is explored further in the following 

chapters.  
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2.8 Time resolution 

In contrast to the load forecasting models previously discussed, an hourly or half-

hourly simulation is less suitable for the study of demand at a local level, where it 

has already been identified that individual dwellings need to be modelled.  For 

example, Wright and Firth (2007) [68] discuss how “…averaging data over periods 

longer than a minute is shown to under-estimate the proportions of both 

[electricity] export and import”.  To examine this further, Fig. 11 shows an example 

where the same demand data is plotted at five different time resolutions: three-

second, one-minute, five-minute, fifteen-minute and half-hourly.  

 

When viewing a whole day of demand, there is little difference seen between the 

three-second and one-minute resolution series, except for a number of short 

spikes.  The cycling of cooling appliance can be seen throughout the day, with 

morning and evening increases in demand where other appliances are being 

used. 

 

At a five-minute resolution, some loss of detail is evident.  However, at a fifteen-

minute resolution, there is a considerable loss of detail and the smoothing effect is 

very evident.   At a half-hourly resolution, even more detail is lost: the peak 

demands and cycling of individual appliances can no longer be seen 

 

Whilst maintaining a good level of detail, there is a trade-off between the quantities 

of data that has to be managed.  One-day requires 28 800 data points at a three-

second resolution compared to 1440 at one-minute.  To store a whole year of data 

would require 10 512 000 and 525 600 data points respectively. When considering 

groups of dwellings together, this extra quantity of data at higher resolutions 

appears to offer little further benefit.  A one-minute resolution is therefore 

considered a good compromise. 
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2.9 Data sets for model validation 

Wright and Firth (2007) [68] also comment that “The data-sets and the literature on 

UK domestic-loads are quite limited”.   Now in 2010, the availability of demand 

data in the public domain in the UK is still scarce. 

 

At the most general end of the scale, national and regional electricity consumption 

data is widely available on an annual basis, such the MLSOA data set [36] that 

provides annual total demand figures based upon metered data.  Monthly demand 

data is available from DUKES [31].  Clearly however, these are not of a suitable 

resolution to study usage in an individual domestic dwelling. 

 

Daily mean profile data is available in the form of the GAD profiles [33] that were 

introduced in Chapter 1.  As aggregated demand profiles, again, these are of little 

use in examining the detail of individual dwellings. 

 

Hourly UK data is available from the UKERC Energy Data Centre [70] from 94 low 

energy dwellings recorded at the beginning of the 1990s, and half-hourly data is 

also known to exist for the UK as measured by the Load Research Group back in 

the mid-nineties [71].  However, hourly or half-hourly data has already been 

discounted as having too low a resolution.  A five-minute resolution data set known 

to be publicly available is the electric load profile data set [69], available as an 

output of the IEA/ECBCS Annex 42 research project [72].    However, individual 

dwelling data is only available for two flats and one house and this is considered 

insufficient in terms of being representative of the wider population.   

 

Whilst there have also been international studies, such as the domestic electricity 

data gathered by the Swedish Energy Agency [73], these are considered to be of 

limited use in the context of a UK based demand model. 

 

With the absence of available and accessible data, the need to perform 

measurements becomes clear and this work is described later in Chapter 3. 
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2.10 Additional requirements 

In the context of the outline requirements set out at the start of this chapter in Fig. 

10, a summary of the additional key points gained from the literature is now 

presented in Table 1. 

. 

Additional notes and requirements 

• The most appropriate structure for the model is a bottom-up type that allows 

for the representation of individual appliances. 

• Occupancy is a major factor that drives energy use that should be taken into 

account.  This is necessary to appropriately simulate demand within individual 

dwellings (by modelling sharing and the concurrent use of appliances) and 

between dwellings (through the representation of occupancy within each 

dwelling). 

• Other physical factors, such as the natural light level, need to be taken into 

account where appropriate, to represent seasonality. 

• Activity modelling can improve the representation of the behaviour of dwelling 

occupants.  This is a natural extension of the modelling of active occupancy.  

Representing what people are doing provides a basis for determining when 

different types of appliances are used.  The UK 2000 TUS provides a data set 

upon which such modelling could be based. 

• With respect to time-resolution, a one-minute resolution is considered a good 

compromise between loss of detail through smoothing, and quantity of data. 

• The scarcity of high-resolution domestic electricity demand data is a 

constraint.  It is necessary to perform measurements in real domestic 

dwellings, in order to make data available to validate a model.   

 

Table 1 - Summary of the key points derived from the literature 
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2.11 Summary 

The literature clearly points towards the use of occupancy as a good basis upon 

which to simulate the energy demand within dwellings. 

 

Three existing electricity demand models in the literature were introduced: it is 

concluded that whilst each of these models partially meet some of the 

requirements set out, no existing model satisfactorily meets all of them.  The 

Paatero and Lund [49] and Stoke’s [51] model do not use occupancy as an input.  

The Capasso et al. [50] model is considered too granular and its comprehensive 

data requirements are a considerable limiting factor. 

 

Chapters 4, 5 and 6 of this thesis address the construction of a new domestic 

electricity demand model.  The work involved in measuring detailed domestic 

consumption data is discussed next in Chapter 3. 
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3. A STUDY OF DOMESTIC ELECTRICITY DEMAND 

3.1 Overview 

This chapter describes a study of domestic electricity use in the Loughborough 

area, East Midlands, UK.  The scope of the project was to measure high-resolution 

domestic electricity demand, in order, to provide a data set for the validation of the 

model of domestic demand that is described later in this thesis.  The work involved 

the measuring of demand in 22 domestic dwellings using high-resolution electricity 

meters that were installed by E.ON.   

 

The purpose of this chapter is to describe how the data was gathered and to check 

that it is typical of domestic use and suitable for use in validating a demand model.  

Additionally, the latter part of the chapter inspects the data to find correlations 

between the electricity use within a dwelling and the characteristics of the 

household, in order to provide pointers in the construction of a new model. 

 

3.2 Domestic electricity demand data capture 

The project to capture domestic electricity demand data began in March 2007.  

The initial task was to recruit volunteer householders, who would agree to take 

part in the study, by having a high-resolution electricity meter installed at their 

dwelling.  The meter installations were performed in the autumn of 2007 by E.ON, 

and the data capture took place by the author throughout 2008.  

 

After a full year of data capture in January 2009, volunteers were each given a 

report on the detailed nature of their electricity use for the year.  The purpose of 

the study was to observe existing electricity use and not attempt to modify 

behaviour.  In the majority, volunteers were not given an insight into the detailed 

nature of their electricity use until after the year of data capture was complete.   At 

this time, each volunteer was asked to complete a short survey form in order to 

gather data about each dwelling’s characteristics. 
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The study resulted in the capture of a total of 7170 full days of electricity demand 

data covering 22 dwellings, at a one minute resolution, throughout 2008.   

 

3.2.1 Objectives 

A summary of the main objectives of the study is provided in Table 2. 

 

Objective Justification 

To capture domestic electricity 

demand data at a one-minute 

resolution. 

The time-averaging effect of lower 

resolutions discussed in the literature needs 

to be balanced with the quantity of data and 

capability of the metering technology.  The 

one-minute resolution was considered 

reasonable in this respect.  

To collect demand data for the 

period of at least one year. 

Seasonal variations in demand need to be 

identified and therefore at least one year of 

data capture was necessary. 

To collect data for as many 

dwellings as feasible. 

A large sample set is desirable for statistical 

analysis.  This was ultimately constrained by 

the ability to recruit volunteers. 

To attempt to identify the energy 

use characteristics of each 

dwelling. 

Understanding more about the dwelling 

characteristics supports the analysis of the 

demand data. 

To validate the data in terms of 

checking that it forms a 

representative sample. 

It is necessary to verify, as far as possible, 

that the data gathered is representative of 

the wider population.  This is necessary if the 

data is to be used for validating a model. 

 

Table 2 - Summary of the objectives of the study 
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3.2.2 Recruitment of energy study volunteers 

 

Volunteer recruitment began with a Loughborough University press release [74] in 

conjunction with the publishing of a web page to promote the study.   This led to 

the recruitment of 22 volunteers, who in the majority are University employees.  It 

was necessary for volunteers to be owner-occupiers in order that they were able to 

give permission for the extra meter to be installed.  It is acknowledged that this 

could slightly skew the profiles of the volunteers. 

 

The dwellings included in the study consist of 11 detached properties, 7 semi-

detached properties and 4 terraced dwellings.  This housing stock profile differs 

from local statistics available from the 2001 census [75] as is shown in 

Table 3.  There were no flats in the study. 

 

Housing Stock 
Type 

Percentage of 
housing type in the 
Energy Study 

Percentage of housing type 
from Charnwood local 
statistics [75] 

Detached 50 % 31 % 

Semi-detached 32 % 40% 

Terraced 18 % 19% 

Flats - 10% 
 

Table 3 - Housing stock types: energy study compared to local statistics 

 

It is further acknowledged that householders, who volunteer for an energy study, 

may also be energy use aware.  Therefore, they may not be representative of the 

general population.  The representativeness of the data as a result of these 

constraints is considered later in this chapter. 
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3.2.3 Domestic statistical electricity meters 

 

The domestic meters utilised were manufactured by Elster Metering and are of 

type A1140 [76].  An example installation is shown in Fig. 12. 

 

 

 
Fig. 12. Domestic high-resolution meter installation 

 

This type of meter has two characteristics that differ from the traditional UK 

consumer billing meter that make it appropriate for this study.  The first is that the 

meter has the capability to store demand data as a time series, rather than just a 

cumulative value of electricity used.  The highest time resolution available was 

one-minute and this was selected.  The second characteristic is that each meter 

has a mobile telephone modem installed.  This enables the meter data to be read 

without having to visit the site. This capability is commonly known as automatic 

meter reading (AMR) support.   

 

The geographic location of the first 17 meter installations is shown in Fig. 13, 

where the blue circles indicate approximate meter locations in the town.  The 

remaining 5 meters were installed in dwellings in the surrounding area. 

 

High-resolution 
meter

Existing consumer 
billing meter

Telephone aerial 
for meter modem

Supply cable and 
fuse
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Fig. 13. Geographic location of domestic meters 

 

The meters were read using Elster’s Power Master Unit software using a dial up 

modem.  The memory in the meters is sufficient to store three weeks of data, 

which meant that the meters had to be read frequently over the course of the year. 

 

3.2.4 Domestic household survey form   

 

The two page survey form is shown in Fig. 14 and a full size version is presented 

in Appendix G.  The survey was divided into three sections.  The first section 

asked about general energy use characteristics of the dwelling, the second aimed 

to gather information about the lighting installation, and the third aspect was to find 

out the numbers of main types of appliances.  The survey was designed to capture 

important aspects of energy use, without being a major endeavour for the 

volunteers to complete.  All 22 volunteers returned a survey form. 
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Fig. 14. Dwelling characteristics survey form 

 

3.2.5 Volunteer energy use report 

 

An example of the end of year electricity use report is shown in Fig. 15 and is 

provided in full in Appendix H.    

 

This report provided information to the householder in a number of areas, in far 

greater detail than would be available from a typical utility energy bill.   In addition 

to providing annual and monthly electricity use, it was possible to indicate where 

they ranked relative to other anonymous participants in the survey.  One-minute 

demand profiles were provided for the minimum, average and maximum electricity 

use days.   Seasonal demand profiles were also provided and shown together with 

the average profiles for the whole study. 

 

 

 



Chapter 3  A Study of Domestic Electricity Demand 
 

 

   51 

   

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15. Example dwelling electricity use report 
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3.2.6 Approach to the storage and analysis of the data 

 

The number of domestic readings taken during 2008 exceeded ten million data 

points.  A Microsoft SQL Server database was considered the most appropriate 

tool with which to store and query the data.  This is because of its capability to 

manage database tables with large quantities of rows and the suitability of the 

SQL query language to manipulate the data.  A single database table was used to 

store each time stamped demand level against a unique meter code.   

 

The meters recorded data throughout the year with Greenwich Mean Time (GMT) 

time stamps.  In the database, it was therefore necessary to time shift the 

measurements taken by one hour between 30th March, 2008 and 26th October, 

2008, in order to take account of the period of British Summer Time (BST). 
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3.3 Checking that the results are typical of domestic electricity demand 

It is necessary to check that the measured demand data is representative of the 

wider population.  In summary, this section includes a set of comparisons between 

the measured data and published data from elsewhere.  The annual electricity 

demand and seasonal demand profiles are considered.  The time-coincident 

demand characteristics are compared in terms of ADMD, the concept of maximum 

time-coincident demand per dwelling, introduced earlier.  Finally, the distribution of 

annual electricity consumption levels is considered. 
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3.3.1 Annual electricity demand 

 

A comparison of the annual demand between the measured data from 

Loughborough and UK government statistics [31] is shown in Fig. 16.  The 

measured annual demand is slightly lower than the local average.  Nevertheless, 

the data set is fairly typical in terms of the average demand. 

 

The most likely explanation for the difference is that none of the measured 

dwellings use electric storage heaters for space heating, which would be expected 

in a larger sample and which would contribute to a higher average annual 

demand. 

 

 
Fig. 16. Annual domestic electricity use comparison  

(Local authority data from [36]).    
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3.3.2 Daily demand profiles 

 

The average daily demand profiles measured in the 22 dwellings are now 

compared against other published data sets to check that the variation in demand 

through the course of a day is not atypical.  The profiles shown in 

Fig. 17 include two comparisons.  The first is against the national group average 

demand (GAD) Profile Class 1, introduced earlier.  The second is the 5-minute 

resolution European demand profiles from the COGEN-SIM project [77] which is 

an average of 69 dwellings.  The winter weekday profile is shown in  

Fig. 17(a) and the summer profile in Fig. 17 (b). 

 

There is a particularly good match with the GAD profile in both winter and summer 

cases. The demand in the 22 dwellings shows an earlier rise in the morning with a 

particular spike around 06:00 that could be explained by timed electric water 

heating.  The measured data shows earlier activity and there is a clear spike at 

18:00.  As was indicated earlier, most of the volunteers were university employees 

and as such would likely have a similar work life pattern, which could be a reason 

for the differences with the GAD profile. 

 

The COGEN-SIM data shows a general lower level of demand, although the 

shape of the curve follows a similar pattern.  It is noted that the measurements 

were made from social housing, which could explain the lower level of overall 

electricity consumption, as well as perhaps, the later morning ramp. 
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Fig. 17. Annual Comparison of summer and winter weekday demand profiles 

(Data sources: [33], [77]) 
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3.3.3 After Diversity Maximum Demand (ADMD) and Load Duration 

 

The ADMD value, as was discussed in the introductory chapter of this thesis, is 

calculated for the 22 dwellings by taking the maximum time-coincident demand 

and dividing by 22.   

 

The maximum time-coincident demand measured was 46.46 kW at 06:58 hours on 

31st October 2008, at which time four of the dwellings have demands in excess of 

8 kW, likely as the result of electric shower use.  Given that this demand was for 

22 dwellings, the ADMD is calculated as 2.11 kW. 

 

It is acknowledged that this calculation is based only on one data point.  To 

demonstrate that it is not an uncharacteristic value, the top five maximum time-

coincident demands are shown in Table 4.  The rank second maximum time-

coincident demand differs by only 0.26 kW.  Interestingly, this demand occurred at 

lunchtime on Christmas Day, when it would be expected that many households 

would be using cooking appliances. 

 

Rank Date Time Demand (kW) 

1 31st October, 2008 06:58 46.46 

2 25th December, 2008 12:53 46.18 

3 19th December, 2008 07:09 45.38 

4 28th March, 2008 18:03 45.27 

5 19th December, 2008 07:06 44.71 
 

Table 4 - Top five measured time-coincident demands 

 

 

As was indicated in the introduction, typical UK network design standards allow for 

an ADMD of 2kW per dwelling, where there is no electric space heating [43].  The 

value derived from the measured data is very close to this design standard and the 

measured data can therefore be said to be exhibiting typical time-coincident 

demand characteristics. 
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In terms of looking at the full range of loads over time, the load duration curve per 

dwelling, taking all 22 dwellings into account is shown in Fig. 18.  Rarely does the 

demand exceed 1 kW when averaged on a per dwelling basis.  The ADMD value 

of 2.11 kW previously calculated can be seen as the peak, although this rarely 

occurs: for much of the time, the demand is well below 1 kW. 

 

 
Fig. 18. Load duration curve (per dwelling basis) 
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3.3.4 Histogram of annual demand 

 

A histogram of the distribution of annual consumption levels is shown in Fig. 19 in 

comparison with a frequency density plot by Skinner (1984) [78], with a sample 

size of 12 000 consumers, randomly chosen from Electricity Board billing records.  

The measured data consists of only 22 dwellings, which results in too few data 

points to form a smooth density plot.  Nevertheless, the general shape of the 

distribution could be seen as being comparable to the shape of the Skinner 

distribution, albeit shifted to the right due to a greater mean demand. 

 

 

 
Fig. 19. Annual consumption distribution comparison 

(Comparison with Skinner [78]). 
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3.3.5 Seasonal variation 

 

The mean daily electricity use in each month of the year is shown in Fig. 20 for the 

22 dwellings plotted with national statistics from DUKES [31].  As would be 

expected, an increased demand is seen in the winter months: the summer months 

see the lowest relative demand in both series. 

 

 
Fig. 20. Mean daily demand for each month of the year 

(Sources  [79,31]). 

 

Both the magnitude of the demand and the shape are the same.  The DUKES 

statistics show a higher demand over the winter months.  One explanation for this 

is that none of the 22 dwellings have electric storage space heating, whereas the 

national data will take this into account. 

 

 

 
* The DUKES data is converted to daily averages using the domestic consumption figures presented in Table 5.5 

“Availability and consumption of electricity” for 2009 in [79] in combination with the figure of 26,334,000 households in 2008 

given in Table 3.3  “Overall drivers of energy consumption”  
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3.3.6 Conclusions 

 

This section set out to confirm that the data gathered from the 22 dwellings is 

representative of the wider population and is therefore usable in the context of the 

demand model output verification.   

 

The main conclusion is that, despite having only 22 dwellings in the sample set, 

the measured data is representative when compared to generally available 

statistics.  The magnitude of annual demand, the distribution of values and the 

daily profiles were found to be comparable with data published elsewhere. 

Using the measured data to validate a model of electricity demand can therefore 

be done with some confidence.   
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3.4 Dwelling characteristics and electricity use 

This section examines the measured data to identify relationships between the 

dwelling characteristics and level of electricity use.  Identifying such relationships 

is valuable in the subsequent construction of the new demand model described 

later in this thesis.  As a summary, floor area, dwelling construction type, numbers 

of residents, their attitudes and occupancy patterns are considered.    

 

3.4.1 Floor area 

 

The floor area of a dwelling is a main factor that is used within the BREDEM-8 

model [80] to estimate electricity demand of a dwelling from lighting and 

appliances.  The model has two methods of calculating the annual electricity 

demand: a simple version that uses only the floor area, considered here, and a 

second calculation that takes into account the number of residents, considered 

later in this section.  (Note also that the BREDEM calculations result in units of GJ 

per year and are converted to kWh for the purposes of comparison) . 

 

For the 22 dwellings, the floor area is obtained using the footprint area of the 

house from Ordnance Survey MasterMap Data.  (The use of this data is discussed 

in full later in Chapter 8).  This data is plotted against the measured annual 

electricity consumption in Fig. 21, shown together with the results of the BREDEM 

simple estimate calculation, and the findings of Yohanis et al. in 27 dwellings [55].   
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Fig. 21. Floor area and electricity use 

(Sources [55, 80]). 

 

Looking first at the measured data, there is little correlation between the two 

factors.  Both BREDEM and Yohanis et al. show a linear approximation that 

demand rises with floor area, but neither fits the measured data.  It is 

acknowledged that the BREDEM calculation used in this case does not take into 

account heating related demand, such as central heating pumps and fans.  

Nevertheless, the evidence from the 22 dwellings suggests that floor area alone is 

not particularly useful as a key determinant of electricity use. 

 

The BREDEM calculations are returned to later in the context of additionally taking 

the number of residents into account. 
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3.4.2 Dwelling construction type 

 

It is often assumed that there is a close relationship between dwelling construction 

type (e.g. detached, semi-detached, terraced or flats) and electricity use [55]. This 

section considers this relationship for the 22 measured dwellings.  The electricity 

use for the each dwelling is shown in Fig. 22, as grouped by construction type. 

 

 Although it is necessary to be cautious because of the small sample size, the 

measured data provides counter-intuitive results in that detached dwellings used 

considerably less electricity (a mean of 4155 kWh) than semi-detached dwellings 

(a mean of 4434 kWh).  However, there is considerable variation between 

dwellings in the data as is seen in the figure: the standard deviations are large.  

The measured data therefore provides little support for the idea that the type of 

dwelling is a major driver of electricity use.        

 

 
Fig. 22. Ranked demand by dwelling, grouped by construction type 
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3.4.3 Number of household residents 

 

In terms of the number of household residents, a comparison between the 

measured data and US statistical household data from the EIA [81] is shown in 

Fig. 23.    

 

It is noted that adding an extra resident to a single resident dwelling does not 

double the electricity use, but provides an increment.  The magnitude of the 

increment is reduced for each additional resident added.  

 

The pattern is the same as the US household data, although the US households 

use considerably more electricity.  Therefore, the number of household residents 

is considered as a significant driver of the electricity demand.   

 

 

 
Fig. 23. Numbers of household residents and electricity demand 
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3.4.4 Floor area and the number of household residents 

 

Returning now to the discussion of the BREDEM [80] electricity demand 

estimation calculations, a more complex calculation is provided for a “more 

accurate” estimate of demand.  In this case, the number of residents is taken into 

account in conjunction with the floor area of the dwelling.  The results from the 22 

dwellings are shown against the BREDEM estimate for the electricity demand of 

lighting and appliances in Fig. 24. 

 

 
Fig. 24. Floor area, number of residents and electricity use 

 
As was previously seen, the total number of residents does have an influence on 

the dwelling energy demand.  Therefore it would be expected that by taking this 

into account in the BREDEM calculation, that a better correlation would be found 

over one that only used the floor area. 
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3.4.5 Energy consciousness 

 

The dwelling characteristics survey form aimed to capture data that would infer the 

extent to which volunteers were energy use aware.  Whilst the previous sections 

looked at physical relationships between a dwelling characteristics and electricity, 

energy consciousness is more concerned with the behaviour and attitudes of the 

occupants.  In this case, data was captured on the use of switched-timers and the 

level of low energy lighting that had been installed. 

 

Ten of the 22 respondents in the survey indicated that they used timers in order to 

run appliances at night time.  Timers are usually used in this way to benefit from 

lower rate Economy 7 electricity.  It might be expected that those household 

residents who used timers in this way were more energy conscious, and therefore 

would perhaps use less electricity.  The data presented in Fig. 25 shows that this 

was not the case in this survey.  Those dwellings in which timers are used showed 

a mean electricity demand greater than 500 kWh per year more than those that did 

not.  The use of timers may therefore be considered as evidence of price 

consciousness, rather than awareness of overall electricity use. 

 

 
Fig. 25. Use of timers and electricity use 
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The electricity use plotted against the percentage of lighting units fitted with 

efficient CFLs is shown in Fig. 26(a).  Perhaps surprisingly from the measured 

data, dwellings with a greater proportion of efficient lighting did not in general use 

less energy.   

 

Looking specifically at higher demand halogen bulbs, Fig. 26(b) plots the bulb 

count against electricity use.  Again, no particular correlation can be observed. 

 

 

 
 

Fig. 26. Lighting configuration and annual electricity demand 
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3.4.6 Occupancy patterns and electricity use 

The literature, as discussed in the previous chapter, suggested that occupancy 

patterns are a major factor in the timing of electricity use.  To test this assertion, a 

diary of the number of active occupants within a dwelling was kept for a day, whilst 

the electricity demand in the dwelling was recorded.  A plot of the results is shown 

in Fig. 27.   

 
Fig. 27. Patterns of active occupancy and electricity demand 

 
This dwelling has four residents.  The occupants rise at 07:00 and there is at least 

one active occupant present for most of the day, with the exception of the 

lunchtime period and the late evening.  During the times when there is no active 

occupancy, the cycling patterns of cooling appliances can be seen.  However, 

during periods when there is active occupancy, there is clearly more electricity 

consumption.  This illustrative example confirms that there is a relationship 

between the patterns of active occupancy and the times of demand for electricity. 

 

As a general observation, it also shows how intrusive the data is.  It is clearly 

possible to identify when the dwelling is actively occupied, and even possible to 

make a reasonable guess as to which appliances were used at what times.  
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3.4.7 Conclusions 

 

The patterns of active occupancy within a dwelling are considered to be a key 

driving factor in the times of energy use.  This was suggested by the literature in 

the previous chapter and was confirmed by the measurements taken in the work 

presented in this chapter.  The data showed that there is a correlation between the 

number of household residents and the annual electricity demand.   

 

Floor area was not found to be a key variable in electricity demand.  Neither was it 

apparent that energy awareness, evident through the use of times or energy 

efficient lighting, correlated with lower overall electricity demand.   

 

The next chapter of this thesis is concerned with the development of a model of 

active occupancy for use in energy demand modelling. 
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4. A HIGH-RESOLUTION DOMESTIC BUILDING OCCUPANCY MODEL FOR ENERGY 

DEMAND SIMULATIONS 

4.1 Introduction 

This chapter details the implementation and validation of a model of domestic 

active occupancy for the purpose of energy demand simulations.  To re-cap, active 

occupancy refers to occupants that are within a dwelling and are not asleep.  The 

context of this model was introduced in Fig. 7 in section 1.5 in describing its use as 

one input to the electricity demand model presented later in this thesis.   

 

The motivation for developing such a model is that active occupancy was identified 

as being a primary driver of electricity use: this was suggested by the literature 

discussed in Chapter 2, and confirmed by the diary and measurements taken in 

Chapter 3.  Being able to generate large volumes of data representing active 

occupancy, provides a way to show realistic activity within a group of dwellings, 

such as those within a housing estate, village or town.  The model is based upon 

the UK 2000 Time Use Survey (TUS) [63] data set introduced previously, and is 

capable of generating data with the same statistical characteristics. 

 

The work, as published in Energy and Buildings in 2008, is contained in full in 

Appendix A: this chapter provides a self-contained summary of the model and its 

validation. 
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4.2 Representation of active occupancy 

4.2.1 Individual occupancy profiles 

 

An example of the nature of active occupancy profiles is shown in Fig. 28, where 

fifty people are individually represented.  The black horizontal bar shown for each 

person represents the times of the day when they are active within their dwelling.  

The active occupancy during the night time period (from 00:00 to 07:00) can be 

seen to be sparse, as would be expected.  It can be seen that activity increases 

during the day, and reaches a maximum during the evening. 

 

 
Fig. 28. Fifty example active occupancy profiles taken from the TUS data 
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4.2.2 Single dwelling occupancy profile 

 

The TUS data provides sufficient detail to determine which occupants live 

together.  People’s activity within the same dwelling is often correlated and this is 

evident in the TUS data.  For example, the occupancy profile for the dwelling in 

Fig. 29 shows how both occupants become active at 08:00 (when they get up) and 

then both become inactive at 14:00 (when they most likely leave the dwelling 

together). 

 

 

Fig. 29. An example active occupancy pattern 
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4.2.3 Relationship with electricity demand 

 

Using the whole TUS data set, the proportion of dwellings with at least one active 

occupant throughout the day was calculated, in order to provide an average profile 

of active occupancy.   The resulting plot is shown in Fig. 30(a). There is little active 

occupancy at night, but the ramp up towards breakfast time can be seen to start 

at 05:00.  A second ramp up occurs during the evening period from 16:00.  

 

For comparison, a plot of the measured mean electricity demand from the study 

described in Chapter 3 is shown in Fig. 30(b).  A similarity between the shapes of 

the curve in the two plots can clearly be seen: this supports the notion that the two 

series are related and that active occupancy is a good basis for modelling 

electricity demand.  

 

 
 

Fig. 30. Active occupancy profile against measured electricity demand 
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4.3 Modelling  

4.3.1 Approach 

In order to construct a model capable of generating extensive synthetic occupancy 

data with the same statistical characteristics as the source TUS data, a first order 

Markov-Chain [82] technique was chosen as a well-established method.  The 

technique requires the derivation of a set of Transition Probability Matrices (TPM) 

from the source data, that details the probability of a transition from one level of 

active occupancy to another, at each time step throughout a day.  The number of 

active occupants within a dwelling for a particular ten-minute period is known as 

the state.   

 

An example of such a TPM is presented in Table 5 for the transition period 00:00 

to 00:10.  A ten-minute time-step resolution is used since this is the resolution of 

the source data set. 

  Next State  (at 00:10) 

 Active Occupants 0 1 

Current State 

(at 00:00) 

0 0.994 0.006 

1 0.207 0.793 

 
Table 5 - An example Transition Probability Matrix 

 

This example represents a dwelling with a single resident, where there are two 

states: they are either active (state 1), or not active (state 0).  The start state at 

00:00 must already be known.  The probabilities show the likelihood of the state 

remaining the same, or transitioning to the alternate state.  As would be expected, 

if there is no active occupancy at 00:00, then it is most likely that that state will 

remain the same at 00:10, as is indicated by the probability of 0.994.  Note that the 

sum of horizontal probabilities will always equal one as all possible state 

transitions are represented.    
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4.3.2 Constructing a transition probability matrix 

 

Each TPM matrix is constructed by calculating the likelihood of each possible state 

to state transition from the source data, as is illustrated in Table 6.  The table 

shows the transition probabilities for the 00:00 to 00:10 period, in this case for a 

single resident dwelling on a weekday. 

 

Number of active 

occupants 
Number of occurrences in the 

TUS data 

Transition 

Probability 
At 00:00 At 00:10 

0 0 1428 1428 + 8 = 

1436 

1428 / 1436= 0.994

0 1 8 8 / 1436 = 0.006 

1 0 55 
55 + 211 = 266 

55 / 266 = 0.207 

1 1 211 211 / 266 = 0.793 

 

Table 6 - Constructing a TPM 

 

Given two possible start and end states, there are four overall transition 

possibilities, as is seen in the first two columns.  The number of occurrences of 

each transition is counted from the TUS data, as is seen in the next two columns.  

For each start state, the probability of each transition is then calculated, as is seen 

in the final column. 
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4.3.3 Numbers of required matrices 

 

In order to represent a full day, 144 separate matrices are required to represent 

each ten-minute period.  This is necessary because the probabilities change at 

each step throughout the day. 

 

Furthermore, it is intuitive that occupancy patterns differ between weekday and 

weekend days due to the patterns of working life.  Modelling these separately 

doubles the number of matrices required. 

 

Finally, it is necessary to represent the total numbers of residents in different 

dwellings.  This adds a further dimension by requiring the calculation of matrices 

for each number of total residents, in this case from one to six.   

 

The numbers of matrices required in order to model all the necessary transitions, 

taking account of time of day, weekday and total residents, is shown in Table 7. 

 

 

 Household size 
(residents) 

Transition Probability 
Matrix for each time step 

Overall Transition 
Probability Matrices 

Weekday 

1 2 x 2 2 x 2 x 144 
2 3 x 3 3 x 3 x 144 
3 4 x 4 4 x 4 x 144 
4 5 x 5 5 x 5 x 144 
5 6 x 6 6 x 6 x 144 
6 7 x 7 7 x 7 x 144 

Weekend 

1 2 x 2 2 x 2 x 144 
2 3 x 3 3 x 3 x 144 
3 4 x 4 4 x 4 x 144 
4 5 x 5 5 x 5 x 144 
5 6 x 6 6 x 6 x 144 
6 7 x 7 7 x 7 x 144 

Total elements 40 032 
 

Table 7 - Numbers of transition probability matrices  
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4.3.4 Start states 

In determining the start state, in this example at 00:00, the TUS is grouped by total 

number of residents (from one to six) and the proportion of dwellings with each 

level of active occupancy is calculated, as is shown in Fig. 31.  These represent 

probability distributions from which a start state for each dwelling may be 

stochastically determined. 

 

 

Fig. 31. Percentage distribution of active occupancy states at 00:00 

 

4.3.5 Generating the data 

 

Once a start state is known, the Markov-Chain is determined by first picking a 

random number for each time step, then using this in conjunction with the relevant 
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4.4 Verification of the model 

4.4.1 Simulation of individual dwellings 

 

 

Fig. 32. Four occupancy model example run results  

(two resident household, weekdays) 
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The results from four example simulation runs for a single dwelling, are shown 

in Fig. 32.  Each simulation is different as a result of the different sequence of 

random numbers used to determine the transitions from state to state.  However, 

they all display the common characteristic of little activity at night, activity starting 

in the morning, leaving the dwelling during the day and finally returning before 

retiring in the evening. 

 

4.4.2 Verification of aggregated patterns of active occupancy 

 

 

Fig. 33. Comparison of synthetic and surveyed data 

 

The aggregated model output for 10 000 dwellings is compared to the aggregated 

active occupancy in 2000 dwellings in the TUS data in Fig. 33, for both weekend 
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4.4.3 Verification of transitions 

The number of people becoming active and inactive at each time-step through the 

day is compared with the synthetic model output and the TUS data, for 1000 two-

resident dwellings.  In both cases, as is seen in Fig. 34, the transition 

characteristics are very similar. 

 

 

Fig. 34. Number of people becoming active and inactive 

(2 resident household, weekday) 
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4.4.4 Verification of correlated occupancy changes 

 

The correlation of changes in occupancy, when people become active or inactive, 

is compared in Fig. 35 for 1000 two-resident dwellings.  The correlation between 

the model output and the TUS data is clearly evident. 

 

Fig. 35. Number of correlated occupancy changes  

(two resident household, weekday) 
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4.5 Downloadable example 

The model is implemented as an example as a Microsoft Excel spreadsheet with 

all the necessary data and VBA code to perform occupancy simulations.  An 

example screen print of the model is shown in Fig. 36.  The number of residents in 

the dwelling is specified, together with whether it is a weekday, as simulation input 

values.  The graph shows the simulation of a single dwelling over one day.  The 

execution of the simulation is computationally efficient, and it is possible to 

simulate large numbers of dwelling with this example. 

 

 

 
 

Fig. 36. Downloadable occupancy model 
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4.6 Conclusions 

 

This chapter detailed the construction of a model of domestic occupancy.  The 

Markov-Chain technique was found to be computationally efficient in generating 

synthetic data.  It was shown that this data has the same statistical characteristics 

as the source data. 

 

The next step, detailed in the following chapter, is the use of this active occupancy 

data in the construction of a model of the electricity use of domestic lighting.  
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5. DOMESTIC LIGHTING: A HIGH-RESOLUTION ENERGY DEMAND MODEL 

5.1 Introduction 

This chapter presents a high-resolution model of domestic lighting.  The model 

simulates the use of individual lighting units within a dwelling, by using a 

combination of active occupancy (discussed previously) and the natural light level.  

This model represents the first component of the whole-dwelling domestic 

electricity model that is presented in the next chapter. 

 

The work described in this chapter was published in Energy and Buildings in 2009, 

and is contained in full in Appendix B.  This chapter provides a self-contained 

description of the construction of the model.  For full details of the validation of the 

model, refer to the paper in the appendix. 
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5.2 Features of the model 

5.2.1 Natural lighting 

A key motivation for the use of domestic lighting is the occupant’s perception of 

the natural light level.  Clearly, people will use lighting after dusk or before dawn, 

or when weather conditions, such as overcast skies, reduce the available light.   

 

5.2.2 Active occupancy 

The majority of domestic lighting use is the result of people switching on lights as 

they move around the dwelling.  The concept of active occupancy is therefore 

useful in determining when people are within a dwelling and be available to use 

lighting as is required.  The model of active occupancy, described in the previous 

chapter, is used to provide simulations in this context.  

 

5.2.3 Sharing 

It is common for multiple occupants to share the use of lighting, for example, when 

two or more people are within the same room.  Using the number of active 

occupants as an input enables this sharing to be represented. 

 

5.2.4 Linking to other domestic demand models 

As the first component of the electricity demand model described later in this 

thesis, it is important that it is possible for the model to be integrated with 

simulations of other appliances.  Since the number of active occupants is closely 

related to the level of energy use within a dwelling, it is of benefit to use the same 

active occupancy data as input to all appliance use models. 

 

5.2.5 Lighting units 

The term “lighting unit” is used to describe one or more bulbs that are operated by 

a single switch.  As an example, this could be a single bulb in a hallway, or it could 

represent a set of halogen down lights within a kitchen.  
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5.2.6 Installed lighting technologies and ratings 

It is important to appropriately represent the numbers and types of bulbs within 

each dwelling that is to be simulated.  In reality, the lighting configuration within 

each dwelling will vary as a result of choices made by the occupants.   Statistics 

from the Lighting Association [83] are used to randomly populate each dwelling 

with an appropriately representative set of lighting units.  

 

5.2.7 Relative usage of lighting units 

The relative usage of different lighting units varies around the dwelling.  For 

example, lighting units in living areas, such as kitchens, will be used more than loft 

or cellar areas.  The model represents this variation of use with a weighting factor, 

picked at random from a probability distribution.   

 

5.2.8 Temporal resolution 

In common with the measured electricity demand data captured in the work 

described in Chapter 3, the model generates data at a one-minute resolution.  The 

model is designed in such a way that this resolution could be varied. 

 

5.2.9 Open-source downloadable model 

 

An open source downloadable implementation of the model in Microsoft Excel 

VBA is available from [8]. 

 

 

 

  



Chapter 5                                             Domestic Lighting: A High Resolution Energy Demand Model 
 

 

 

   88 

5.3 Construction of the model 

5.3.1 Outline structure of the model 

The outline structure of the model is presented in Fig. 37.  

 

 
 

Fig. 37. Outline structure of the model 

 

The outdoor irradiance data series has global scope, such that all dwellings in the 

simulation are subject to the same level of natural light. 

 

A second global variable is the calibration scalar: this is used to calibrate the 

model, such that the overall mean electricity demand of the lighting over a large 

number of simulations, will meet a required level, such as that from national 

statistical data. 

 

The main block of the diagram represents the inputs, outputs and processing 

performed for each dwelling in a simulation.  
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Each dwelling is assigned an active occupancy profile from the output of the model 

described in Chapter 4.  The level of active occupancy is transformed into an 

‘effective occupancy’ value, in order to take sharing into account. 

 

Each dwelling is also assigned a set of lighting units: the number and power 

ratings of all lights are thereby determined. 

 

Furthermore, each dwelling is assigned an irradiance threshold that defines the 

natural light level below which occupants will consider that lighting is required.  

 

The inner block, shown in the figure, represents the processing that occurs for 

each lighting unit at each time step of a simulation.  The combination of the 

effective occupancy, the irradiance level, the relative usage and the calibration 

scalar, is used to stochastically determine if a switch-on event occurs at each time 

step.   When this does occur, the length of time that the unit remains on is 

determined stochastically, by picking a value at random from an appropriate 

distribution. 

 

Finally, at each time step, the power demand of each lighting unit that is switched 

on, is summed at each time step to provide the overall demand. 

 

5.3.2 Outdoor irradiance data series 

The model assumes that the behaviour of an occupant in switching-on a light will 

be closely related to a threshold below which they consider that the current light 

level is insufficient.  This light level is related to the outdoor global irradiance.  The 

threshold level is represented by a normal distribution with a mean of 60 W/m2 and 

a standard deviation of 10 W/m2.   This distribution is used to represent the 

variability in human response to different light levels between dwellings. 

 

The model uses irradiance data from the CREST irradiance database [84]. To take 

into account delayed human response to a drop in irradiance (by nature of a cloud 

passing over), an exponential moving average filter is applied. 
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5.3.3 Creating the list of installed lighting units 

 

The lighting technologies used within each dwelling are stochastically assigned 

from probability distributions derived from data from the Lighting Association [83].   

The different types of technology that are represented, include incandescent 

general lighting service (GLS), compact fluorescent (CFL), fluorescent tubes and 

halogen.  The stochastic assignment means that each simulated dwelling will have 

a different set of lights.  An example of the assignment of numbers and types of 

bulbs to ten example dwellings is shown in Fig. 38. 

 

 
Fig. 38. Example allocation of lighting unit types in ten simulated dwellings 

 

Within each technology category, there are bulbs with different power ratings.  

Each lighting unit is assigned a power rating based upon available statistics.  For 

example, the UK Market Transformation Programme (MTP) [85] provides data on 

the usage of GLS bulbs of different power ratings (at levels of 100 W, 60 W 

and 40 W).  
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5.3.4 Switch-on events 

 

In determining the likelihood of a switch-on event, and with reference to Fig. 39, 

there are four considerations that need to be taken into account: 

 

• The current irradiance level is compared to the irradiance threshold for the 

dwelling.  This is done to determine if the level of natural light is low enough 

such that the occupants may consider using lighting. 

• The relative usage of lighting needs to be taken into account to differentiate 

between frequent or infrequent use. 

• The effective occupancy is taken into account to determine the demand for 

lighting.  If there is no active occupancy, then the effective occupancy is zero: 

in this case lighting will not be used. 

• The calibration scalar is used so that the mean lighting demand over a large 

number of simulations will be at the required level.  

 

 
 

Fig. 39. Calculation of the lighting unit switch-on probability 

 

The details of each of these factors are outlined next. 
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5.3.4.1 Natural light condition test 

The dwelling irradiance threshold is compared against the irradiance level at each 

time step.  If the current irradiance is below the threshold, then the output of the 

test is one, otherwise 0.  To take into account the use of lighting without regard to 

the natural light level (for example, in a home office used during the day), the 

model includes a five per cent chance that the irradiance level is ignored. 

 

5.3.4.2 Relative usage of different lighting units 

Some lighting units within a dwelling will be used more than others.  Whilst this 

concept is discussed in the literature [86,87], no detailed statistics could be found, 

upon which to build a probability distribution to represent this concept.  Instead, a 

negative natural logarithmic curve is used to represent the frequent use of a small 

number of bulbs, as is shown in Fig. 40.  Commonly used bulbs would be those 

with a higher relative use weighting to the left of the curve, whilst infrequently used 

bulbs are represented to the right. 

 

 

Fig. 40. Relative use weightings 
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5.3.4.3 Effective occupancy 

Doubling the number of active occupants within a dwelling will not double the use 

of lighting: sharing or “co-use” [66] will occur.  The value of effective occupancy 

takes this into account and is determined from the active occupancy, using the 

values shown in Fig. 41(b).   This is derived from lighting use data from the US 

Energy Information Administration’s Residential Energy Consumption Survey [88] 

shown in Fig. 41(a).  As the number of residents living in a dwelling increases, so 

does the lighting demand, albeit, by a smaller amount each time.  The assumption 

is made that this pattern also reflects the variation in use, as the number of active 

occupants varies.  Fig. 41(b) is derived from Fig. 41(a) by scaling the data such 

that the effective occupancy of a dwelling with one active occupant is one. 

 
 
 
 
 
 
 
 
 

         (a) U.S. mean domestic lighting energy use 
 

 

 

 

 

 

 

 

 

 

 

 

      Fig. 41. Mean annual U.S. lighting energy usage and effective occupancy 
 

Source of (a) US EIA [88]. 
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5.3.4.4 On duration model 

The probability of lights being used for a particular length of time once switched-on 

is provided by Stokes et al. [60] based upon measured data.  This distribution is 

shown in Fig. 42.  At each switch-on event, a random lighting event duration is 

picked from this distribution, and assigned to the lighting unit.  Note that if the 

active occupancy falls to zero, such as in the case when the occupants retire for 

the evening, then any switched-on bulbs will have their on-duration truncated.  In 

doing this, the model assumes that the occupants turn off the lights before going 

out or going to sleep.  

 
Fig. 42. On duration probability distribution from Stokes et al.  

(Source: [60]) 

5.3.4.5 Calibration 

Referring again back to Fig. 37, the calibration scalar is used in the switch-on 

calculation such that the model outputs a lighting demand of 715 kWh/y per 
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5.3.5 A review of the concepts 

A review of the concepts is provided in Table 8. 

Concept  Main concept references and data sources 

Irradiance model.  Lighting usage is 

dependent upon daylight levels.  The model 

needs to simulate the human behavioural 

response to low natural light levels. 

Yao and Steemers [61] 

Reinhart [64] 

Hunt [65] 

CREST, Loughborough University [89] 

Active occupancy model. Lighting usage is 

dependent upon active occupancy within a 

dwelling.  The model therefore requires high-

resolution active occupancy time series for 

domestic properties.   

Richardson, Thomson and Infield [1] 

Yao and Steemers [61] 

Reinhart [64] 

Bladh and Krantz [66] 

Wright and Firth [68] 

Installed lighting unit count, types and 
ratings.  The lighting model needs to define 

the number, type and power ratings of the 

lighting units in each dwelling. 

The Lighting Association [83] 

Stokes et al. [60] 

Market Transformation Programme [85] 

Sharing. Where there is more than one active 

occupant in a dwelling, it is likely that lighting 

will be shared.  An effective occupancy value is 

used to represent this concept. 

U.S. Energy Information Administration 

lighting demand data [88] 

Relative unit usage. Some light units in a 

dwelling will be used more frequently than 

others. 

Boardman et al. [86] 

Mills, Siminovitch [87] 

Stochastic switch-on event model.  The 

model requires a mechanism to determine if a 

switch-on event occurs. 

Paatero and Lund [49] 

Lighting event duration model.  If a unit is 

switched on, the model needs to determine for 

how long the unit remains on. 

Stokes et al. [60] 

 

Table 8 - A review of the concepts within the model of domestic lighting 
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5.4 Example simulation output 

This section presents an example simulation output of the model. 

 

5.4.1 Dwelling lighting unit allocation 

 

 
Fig. 43. Installed lighting unit configuration for an example dwelling 

 

The stochastic lighting unit allocation for a single dwelling is shown in Fig. 43.  

This dwelling is seen to have 23 lighting units.  The left axis shows the lighting unit 

rating and the right axis shows the assigned relative use weighing. 

 

It can be seen that unit 16 has a power rating of 100 W and a high relative use 

weighting.  Clearly, this bulb is used a lot and would likely be positioned in a living 

space area, such as a kitchen.  In contrast, unit 17 has the same power rating, but 

has a low relative use weighting: it may be positioned in the loft, for example. 
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5.4.2 One-day simulation 

 

 

 
Fig. 44. One-day lighting demand for a single dwelling 
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The simulation of a single day is shown in Fig. 44.  The level of irradiance and the 

number of active occupants throughout the day are shown in Fig. 44(a), providing 

the input values to the simulation.  The use of individual lighting units is shown in 

Fig. 44(b) and the aggregated lighting demand is shown in Fig. 44(c). 

 

5.4.3 Multiple dwellings 

 

The model was used to generate the aggregate demand from 100 dwellings for 

both a winter day and a summer day and the simulation is presented in Fig. 45 

and Fig. 46, respectively.  In each case, the inputs in terms of the irradiance and 

active occupancy are shown together with the aggregate demand.   

  

In the winter case, irradiance data for 2nd January, 2007 was used together with a 

weekday active occupancy profile.  As the irradiance level increases in the 

morning, the lighting demand falls.  The opposite occurs in the mid to late 

afternoon period and demand increases as the level of active occupancy 

increases in the evening.  Around 13:00, the irradiance can be seen to drop 

significantly, likely as the result of heavy cloud cover.  In response, the lighting 

demand can be seen to rise as the resulting switch-on of lighting is simulated in 

response. 

 

In the summer case, the level of irradiance during the day can be seen to be 

significantly higher.  Apart from a small peak between 06:00 and 07:00, there is 

little demand for lighting in the morning, despite the increasing level of active 

occupancy.  In the evening, little demand for lighting occurs until after 20:00 when 

the light level falls. The lighting demand ramps up quickly before reducing again, 

as occupants go to sleep. 
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Fig. 45. Lighting load simulation output for 100 dwellings (winter day) 
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Fig. 46. Lighting load simulation output for 100 dwellings (summer day) 
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5.4.4 Annual demand 

 

The annual lighting demand for dwellings with different numbers of residents is 

shown in Fig. 47.  The white columns show the required demand level, as scaled 

from the US EIA data [81] previously discussed, such that the overall demand 

across many dwellings will be 715 kWh/y. The grey columns show the output of 

the model in simulation of 100 dwellings.  Since the model is stochastic, each time 

it is run it will output different results.  However, the results are always close to the 

desired values.  This can be seen in the error bars that show two standard 

deviations. 

 

 
Fig. 47. Mean annual lighting demand per household by number of residents 
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5.5 Validation 

In the full paper presented in Appendix B, the model is validated by comparing it 

indirectly against measured data using Stokes et al. [60], which is based upon 

half-hourly demand data from 100 dwellings.  The seasonal variation is found to be 

very similar (as is seen in Fig. 48) in a comparison of monthly demand, as is the 

variation in demand throughout the day.  For further detail, refer to the full 

published paper that is presented in the appendix. 

 

 

Fig. 48. Seasonal variation of lighting demand 
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6. DOMESTIC ELECTRICITY USE: A HIGH-RESOLUTION ENERGY DEMAND MODEL 

6.1 Introduction 

This chapter presents a high-resolution model of whole-dwelling electricity 

demand.   Using the occupancy model presented in Chapter 4, and building upon 

the model of domestic lighting demand presented in the previous chapter, the 

model simulates the use of all major categories of household appliances. 

 

A paper describing the model is published in the October, 2010, issue of Energy 

and Buildings.  A copy of this paper is available in Appendix C.  This chapter 

provides a summary of the construction of the model, together with a discussion of 

the model output and its validation. 
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6.2 Model concepts 

6.2.1 Appliances 

 

The basic building block in the model is an appliance: this refers to any individual 

load that is used within a dwelling.  Examples are a kettle, iron, television or a 

washing machine. Each appliance is represented in the model as having particular 

power demand characteristics when in use.  These may be either a steady-state 

electricity consumption (such as for a kettle) or typical use cycles (such as in the 

case of a washing machine).   

6.2.2 Use of active occupancy 

As with the lighting model developed previously, active occupancy is again used 

as a main input.  In this whole-dwelling model, active occupancy enables the 

generation of realistic aggregate daily demand profiles, as well as, providing a 

mechanism to model time-correlated use both within and between dwellings.   

 

6.2.3 Occupant activity and appliance use 

 

 In addition to the level of active occupancy within dwellings, a second concept is 

required in order to represent the use of different types of appliance at different 

times of the day, depending upon what activities the occupants are likely to be 

engaged in.  For example, people will commonly use cooking appliances, such as 

ovens and hobs, around the meal times of the day, whilst television usage mainly 

occurs in the evening.  This concept is represented using “activity profiles” which, 

like the active occupancy data, are also derived from the TUS data set. 

 

The activity profiles are linked to the use of individual appliances.  As an example, 

the activity of watching television will require a television appliance to be in use.  

Similarly, a laundry activity may well require a washing machine to be used.  By 

assigning an activity profile to each appliance, the likelihood of that appliance 

being used at different times of the day may be represented. 
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6.2.4 Sharing of appliances 

As with the sharing of lighting described in the previous chapter, it is important to 

represent the sharing of appliance use, when there is more than one active 

occupant within a dwelling.  For example, the electricity demand of a cooking 

appliance will not double just because a second occupant arrives home.  The 

simulated likelihood of appliances being used increases non-linearly as the 

number of active occupants increases above one. 

 

6.2.5 Correlated use of appliances 

The correlated use of appliances is an important concept in realistically 

representing the time coincident demands within a dwelling.  For example, on a 

winter evening, it is likely that both lighting and the television will be in use in a 

dwelling that is actively occupied.   Using active occupancy as an input to the 

model enables the appropriate representation of these correlations.  

 

6.2.6 Temporal resolution 

In common with the model of domestic lighting demand, the model generates time 

stepped data at a one-minute resolution. 

 

6.2.7 Reactive power consumption 

In looking forward to the use of the model in network load-flow studies (discussed 

in the next chapter), it is appropriate that the model represents reactive power 

demand.  By assigning a power factor to each individual appliance, the model is 

able to represent reactive power demand. 

 

6.2.8 Validation of the model with measured data 

It is important to re-cap that the measured data presented in Chapter 3 of this 

thesis is used solely to validate the whole-dwelling demand model presented here.  

The model is constructed completely independently from this data. 
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6.3 Structure of the model 

 

The structure of the whole-dwelling electricity demand model is presented in Fig. 

49 and introduced below: 

 

 

 
Fig. 49. Whole-dwelling electricity demand model architecture 
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At each time-step of the simulation, a stochastic approach is taken to determining 

whether an appliance is switched-on.  If so, the power use characteristics are used 

to determine the appliance’s electricity demand.  Adding the demands of every 

appliance together at each time step gives the whole-dwelling demand.  

6.3.1 Daily activity profiles 

The activity profiles shown to the left of Fig. 49 include variants that take into 

account the current number of active occupants within the dwelling (one to five), 

as well as, whether the current day is a week day (Monday to Friday) or a 

weekend day (Saturday or Sunday). 

 

In Fig. 50, two weekday activity profiles are shown that represent a cooking 

activity.  The two profiles represent a different number of active occupants: one or 

two.  They represent the proportion of dwellings in which at least one active 

occupant is engaged in a cooking activity at different times of the day.  The 

probability of one active occupant performing a cooking activity at 17:30 is 0.26.  

However, if there is a second active occupant in the dwelling, the probability that 

either one of them is cooking is 0.37.   

 

 
Fig. 50. Activity profiles for ‘cooking’, for one or two active occupants on a week day  
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As might be expected, the peaks in the profiles in the figure occur around meal 

times: lunch time and dinner time are clearly visible.  However, it is important to 

note that cooking may occur at any time of the day.  During the night time period 

from 00:00 to 08:00, the profile for two active occupants can be seen to be volatile.  

This occurs because of the scarcity of cases of two occupants being active at night 

in the TUS data set. 

 

The first step in constructing the daily activity profiles from the TUS data, is to 

identify the numeric codes that are used within the survey diaries, to detail what 

activities are being performed.  For example, cooking activities are represented by 

the codes in the range 3100 to 3190.  The activity for “unspecified food 

management” is represented by the code 3100 and “food preparation” is 

represented by code 3110.  The definition of all the codes is provided in the TUS 

documentation [63]. 

 

The TUS diaries are grouped by the number of active occupants within a dwelling 

at each ten-minute period of the day, and then further sub-divided into weekday 

and weekend groups.  At each time period of the day, the number of dwellings in 

which a particular activity is taking place is counted so that a proportion can be 

determined.  For example, on a weekday between 08:00 and 08:10, the number of 

dwellings represented in the TUS data set where there is one active occupant is 

2082.  The number of dwellings where cooking is taking place is 288.  The 

proportion is therefore 288 divided by 2082, equal to 0.138, as can be seen in Fig. 

50. 

 

The full set of profile data is available in the downloadable example, available 

from [9]. 
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6.3.2 Installed appliances 

 

Before each simulation, the model allocates a set of installed appliances to each 

dwelling.  A stochastic approach is taken using statistics on appliance ownership 

from UK Department of Energy and Climate Change (DECC) [90], the UK Market 

Transformation Programme [91], the Lower Carbon Futures and 40% House 

reports from the ECI, Oxford University, UK [92,93] and the UK’s Ofcom [94]. 

 

The model is configured to include up to 33 of the major appliances typically used 

within dwellings.  To take account of the multiple ownership of appliances, such as 

televisions, the model explicitly lists each appliance.  For example, a dwelling may 

have zero, one, two or three televisions.  A list of many of the appliances is shown 

later in Fig. 52.  A full list of all the appliances, together with the statistical values 

used to represent the level of ownership is presented in the downloadable 

example [9]. 

 

6.3.3 Appliance annual energy use 

Each appliance is allocated an average demand value in kWh/year, based upon 

the statistical sources used in section 6.3.2, in addition to data from the Energy 

Saving Trust [95].  The values are adjusted to represent an overall mean annual 

electricity demand of 4358 kWh, typical of dwellings in the East Midlands region 

[96].  The full list of values is provided in the downloadable example [9]. 
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6.3.4 Appliance power characteristics 

 

During a time-stepped simulation, appliances may be either on or off.  The off 

state includes the representation of standby demand, where an appliance may 

consume electricity even when switched-off. 

 

Appliances may be configured to have a constant power demand when in use, or 

a time-varying demand.  The latter case is necessary to represent the demands of 

appliances such as washing machines, where demand varies over a wash cycle 

during water heating, washing, rinsing and spinning.  Whilst this would be less 

important for an hourly resolution model, at a one-minute resolution, the demand 

of such appliances varies considerably over time.  In this case, the modelled 

demand profile of this appliance is based upon measured data [97].   

 

A power factor is assigned to each appliance representing the mean value over a 

one-minute period.  Resistive heating appliances, such as a kettle or iron are 

assigned a unity factor.  Electronic entertainment appliances are configured with a 

power factor of 0.9 lagging.  Cooling and washing appliances are configured to 

use a power factor of 0.8.  A plug-in power meter was used to measure a number 

of power factors from actual appliances. 
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6.3.5 Appliance-activity mapping 

 

Appliances that are used when occupants are engaged in particular activities are 

mapped to the appropriate activity profile.  More than one appliance may be 

mapped to an activity profile.  In the case of cooking, for example, the electric hob, 

oven, microwave and dish-washer are all assigned to the cooking activity profile.  

This mapping relationship only models a likelihood of use of each appliance: just 

because cooking is taking place, it does not mean that all these appliances are 

used.  In a stochastic simulation run, none may be used, or one or more of the 

appliances may be used together. 

 

Some appliances are not associated with a particular activity.  The “other” 

category that is seen in Fig. 49 is applied in the following three cases: 

 

• For some appliances, the TUS data does not include sufficient data to 

determine when a relevant activity is being performed.  The use of a telephone 

is one example.  In this scenario, the use of the appliance is based only on the 

presence of active occupants within a dwelling. 

• The power demand of some appliances does not primarily depend on active 

occupancy at all. The cycling of fridges and freezers is an example. 

• Electric space heating does not fit well into the activity profile model because 

these profiles do not include seasonal effects.  Storage heater appliances, in 

particular, usually have an overnight use profile controlled by the times of 

Economy-7 electricity.  Storage heaters are represented in the model by using 

a monthly temperature variation instead of an activity profile. 
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6.3.6 Switch-on events 

 

The process to determine if an appliance is switched-on is shown in Fig. 51.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 51. Switch-on events 
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With reference to the Fig. 51, there are four steps: 

 

• In step 1, the daily activity profile that has been mapped to the appliance is 

selected using the current number of active occupants and the current day of 

the week. 

• In step 2, the probability that any of the active occupants are engaged in the 

activity is read from the activity profile. 

• In step 3, the activity probability is multiplied by the calibration scalar for this 

appliance.  The purpose of the calibration scalar is outlined in the following 

section. 

• Finally in step 4, the result of the previous step is compared to a random 

number between 0 and 1.  If the probability is more than the random number, 

then a switch-on event is said to occur. 

6.3.7 Appliance calibration scalars 

The model is calibrated such that on a large number of runs, the mean annual 

demand will match the required level.   

 

This is achieved by sub-dividing the overall level of domestic annual mean 

demand, into end-use demand by appliance, and ensuring that each appliance is 

used a particular number of times per year to meet its contribution level to the 

overall annual total.  For example, in the model, a washing machine is allocated a 

mean annual electricity demand of 183 kWh, where installed, excluding standby 

demand.  If the washing machine consumes 0.933 kWh each time it is used, then 

in order for it to consume 183 kWh over the course of a year, it must be used on 

196 occasions.   

 

Each appliance is allocated a “calibration scalar” which is used to calibrate the 

switch-on probability, such that the during a simulation run, the mean number of 

times that the appliance is used can be statistically predicted, and therefore the 

appropriate demand level for each appliance can be reached.  
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6.4 Example simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 52. Example simulation output (one dwelling, winter day) 

(a) Dwelling active occupancy profile 

(b) Simulate output; disaggregated by appliance 

(c) Simulation output; aggregated total 
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An example of the simulation of a single dwelling on a winter day is shown in Fig. 

52.  The active occupancy profile for the dwelling is shown in Fig. 52(a).  In this 

simulation, the dwelling has been allocated as having four total residents, but in 

this run, only three occupants are active at any one time.  The profile is typical in 

that there is no active occupancy at night and the level varies throughout the day. 

 

The list of appliances that has been allocated to the dwelling, before the simulation 

starts, can be seen in Fig. 52(b).  The simulated use of these appliances 

throughout the day is represented by the horizontal black markers.  Appliances 

such as the TV and PC are used for relatively longer periods during the day, 

whereas the microwave and kettle can be seen to be used for much shorter 

periods.  The washing machine, shown at the top of Fig. 52(b), is used on one 

occasion in the middle of the day.  Note that the time of use of most of the 

appliances coincides with the times of active occupancy in Fig. 52(a).   The fridge 

freezer appliance, however, is seen to cycle at intervals throughout the whole day 

regardless of active occupancy. 

 

The use of lighting is shown as a simplified single bar in Fig. 52(b), although the 

underlying lighting model (described in Chapter 5) does model the use of each 

individual lighting unit in the dwelling.  As a winter day, lighting can be seen to be 

used throughout the period of active occupancy. 

 

The aggregate demand for the whole-dwelling is shown in Fig. 52(c).  The spikes 

can be seen to coincide with the use of higher power demand appliances, such as 

the microwave, the washing machine and the kettle. 
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6.5 Validation of the model 

 

In the published paper that described the model of domestic electricity use (as 

presented in Appendix C), the validation of the model is fully presented.  The 

validation is formed of a comprehensive quantitative comparison between the 

output of the model and the measured data that was discussed earlier 

in Chapter 3.   

 

This section provides only a brief summary of the model validation that took place 

together with a short summary of the key findings: these are presented in Table 9.   

 

 

Comparison Measure Key Findings 

Mean annual electricity 

demand 

The model is appropriately calibrated.  It outputs data 

with a mean annual demand of 4124 kWh, against 

4172 kWh for the measured data. 

Variation of annual 

demand between 

dwellings 

The model outputs data with an appropriate demand 

variation between dwellings, although a slight under-

representation of the standard deviation is seen in the 

synthetic data.  It is considered likely that the occupancy 

model is slightly over-estimating the amount of time that 

dwellings are actively occupied. 

Mean daily demand by 

month 

The synthetic data shows an appropriate shape where 

demand is greater in the winter than the summer.  The 

level of variation is underestimated.  The occupancy 

model is not seasonal and the only seasonal effect 

represented in the output is the increased use of lighting 

in the winter. 
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Comparison Measure Key Findings 

Daily demand profile The mean daily demand profile follows the expected 

pattern; however, there are a number of discrepancies.  

Demand during the night is lower in the synthetic data, 

although the overnight use of appliances and lighting is 

not taken into account.  The measured data was from 

dwellings where at least one resident was in 

employment, which may account for discrepancies in 

the times of morning and evening peaks. 

Minute to minute 

demand volatility 

The synthetic and measured demand volatility is shown 

to be similar, but the model appears to under-represent 

the switching on and off of small appliances.  This would 

be expected as the model does not represent every 

small appliance type used in domestic dwellings. 

Time-coincident 

demand between 

different dwellings 

The model realistically represents the time-coincident 

demand between dwellings, which is confirmation that 

the occupancy model is an effective basis for doing this. 

After diversity maximum 

demand 

The model outputs data with an ADMD of approximately 

2 kW, which is close to typical UK standards discussed 

in the introduction. 

Load duration curves The load duration curves derived from the measured 

and synthetic data are very similar.  The model is seen 

to be underestimating night time demand as can be 

seen in a slight distortion of the load duration curve for 

the synthetic data. 

Power factor The power factor of aggregate loads is realistically 

represented by the model. 

 
Table 9 - Summary of model validation measures and findings 
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6.6 Summary 

This chapter presented the construction of a domestic electricity demand model 

and summarised its validation.  The model uses occupant time-use data as an 

input using the occupancy model presented earlier in Chapter 4.  Occupant activity 

is mapped to appliance use, in a stochastic simulation, and the model outputs 

synthetic demand data at a one-minute time resolution.   

 

Many of the concepts described in the model of domestic lighting, presented in 

Chapter 5, were built upon in the construction of this model.  The model used 

individual appliance power consumption and ownership data from nationally based 

statistics.  The measured data, discussed in Chapter 3, was used only for the 

validation of the model.   

 

A comprehensive quantitative comparison took place, as is fully described in the 

published paper in Energy and Buildings as presented in Appendix C.  The model 

is shown to output very realistic data: a particular strength of the model, is that is 

does realistically represent the time-coincidence of demand between dwellings, 

which was the objective of using the domestic occupancy model as its basis.   This 

is of great importance in the modelling of domestic low voltage electricity networks, 

introduced in the next chapter. 
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7. MODELLING OF LOW VOLTAGE NETWORKS 

7.1 Introduction 

Referring again to Fig. 7 in the introduction of this thesis, the next step is to use 

the model of domestic electricity demand within a simulation of a low voltage 

distribution network, serving a residential area.   

 

This chapter is concerned with determining the requirements for such a simulation, 

and begins with a brief overview of how electricity distribution networks are 

typically organised in the UK.  The conventional industrial approach to low voltage 

network design is discussed, and the tools that are available to help network 

designers are introduced.  The existing academic literature on low voltage network 

modelling is considered, and the chapter concludes with a resulting list of 

requirements for the construction of a new model. 

 

Whilst distribution networks may comprise of both underground cabling and 

overhead lines (particularly in rural areas), the term “cable” is used throughout to 

cover both cases. 
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7.2 Terminology 

The electricity distribution system consists of a number of layers that operate at 

difference voltages: this is illustrated in Fig. 53 and is discussed in the following 

sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 53. UK Power system voltage layers (domestic context) 
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With reference to Fig. 53, the highest voltage level, at 400 or 275 kV, is seen on 

the transmission system.  This network is managed by the Transmission System 

Operator (TSO) and feeds Grid Supply Points (GSP).  At each GSP, transformers 

step the voltage down to 132 kV, feeding into the top level of the distribution 

system at a regional level. 

 

The 132 kV network feeds Bulk Supply Points (BSP) where the voltage is again 

stepped down, typically to 33 kV (although other configurations do occur). 

 

The 33 kV circuits serve a set of Primary Substations.  As an example, four 

primary substations serve Loughborough and the surrounding towns: this includes 

approximately 35 000 domestic dwellings.  One of these primary substations is 

shown in Fig. 54.  At the primary substation, the voltage is usually stepped down 

to 11 kV, where it is distributed to a number of radial circuits called Feeders (also 

known as 11 kV secondary circuits).   

 

 
Fig. 54. 33 /11 kV Primary Substation, East Midlands, UK 
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The 11 kV feeders distribute electricity to Secondary Substations by means of 

underground cable, or overhead lines mounted on poles.  The number of 

secondary substations served by a feeder varies considerably: 17 is an average in 

the Loughborough area.    As an example, the overhead lines of an 11 kV feeder 

can be seen to feed a secondary substation in Fig. 55.    

 

 
Fig. 55. 11 kV /400 V Secondary substation, East Midlands, UK 

 

In this figure, the secondary substation can be seen to consist of a Transformer 
(lower left in the figure), a set of Switch Gear (behind the transformer) and a 

Distribution Board (lower right).   Whilst the switch gear controls the connection 

to the 11 kV feeder, the transformer steps the voltage down to a nominal level of 

400 V.  This is known as the Low Voltage (or LV) part of the distribution system.  

This particular example substation, serves a residential area of approximately 160 

dwellings, although such substations may also serve non-domestic consumers. 
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Many urban secondary substations, particularly more modern ones, are internally 

mounted inside an enclosure.  An example of this configuration is shown in Fig. 

56.  (Note that the doors are open for inspection in the photo, but are normally 

locked.) 

 

 
 

Fig. 56. 11 kV / 400 V Enclosure mounted secondary substation 

 

 

The distribution board connects a set of low voltage Circuits (sometimes called 

“mains”). The distribution board in Fig. 57 can be seen to serve four such circuits, 

which is fairly typical.  The circuit cables are three phase, connecting to each of 

the horizontal phase bus-bars, and leave the distribution board at the lower part of 

the cabinet.  Current meters can be seen to the right (one for each phase) together 

with fuses on each phase for circuit protection. 
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Fig. 57. Low voltage circuit distribution board 

 

Each low voltage circuit is radial and runs along the street, usually buried, or 

mounted in underground ducts.  The number of dwellings served by each circuit 

varies considerably, but is usually under 100.  For each dwelling, a Service 
Connection cable connects the consumer to the low voltage cable in the street.  

The service connections are single phase. 
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The service connection cable terminates in the Meter Cupboard at the dwelling, 

such as the one at the lower left of Fig. 58, where the fused connection to the 

consumer’s Electricity Meter can be seen.  This particular example, shows a Radio 

Teleswitch to the right, which is used to switch between the normal and low 

metering rates for Economy-7 tariffs. 

 

 
Fig. 58. Domestic Meter Cupboard 

 

To place the domestic demand model (described in Chapter 6) in context here, its 

output is representative of the electricity demand seen at this meter in each 

dwelling. 

 

Having looked at the structure of the distribution network, the conventional design 

approach is considered next. 
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7.3 Conventional low voltage network design 

The distribution system in the UK is divided into fourteen regional areas [98].  

Each area is managed by one of eight companies that perform the role of 

Distribution Network Operators (DNO). The DNO is responsible for the operation 

of existing networks, as well as, the design and build of new extensions to the 

network.   

  

The framework in which the DNOs operate involves a range of regulations, 

standards and technical design guidelines.  The number and structure of the 

regulations and standards is complex: a brief introduction to some of the primary 

relevant literature is provided here below.  Further information is available in 

greater detail in a useful report by P B Power [99]. 

 

The Electricity Regulations [38] comprise key legislation defining statutory 

standards for the safety, quality and continuity of the network covering protection, 

substations, underground cables and overhead lines.  In addition to this legislative 

basis, each DNO holds a license, which requires them to define and operate within 

a Distribution Code [100]: this is essentially a set of procedures and technical 

standards for the operation of the network.  The Distribution Code in turn, refers to 

a set of industry design standards called Engineering Recommendations (ER), 

that are maintained by the Energy Networks Association [101].  Many of these 

standards have a history dating back to the Area Board Chief Engineers’ (ACE) 

reports, developed many decades ago [102].  The standards relevant to the design 

of networks that serve residential areas, date back to ACE report 13 (1966) 

[103,43] and ACE report 105 (1986) [104] and exist now in Engineering 

Recommendation P5/5 (1987),  with other key recent standards including ER G81.  

The design approach to low voltage networks in residential areas has changed 

little over this time [99]. 
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Referring back to the introduction of this thesis, the main concern for the 

Distribution Network Operator (DNO) is the network capacity limits.  To re-cap, the 

cables and transformers must be appropriately rated, so that thermal operating 

limits are not exceeded.   

 

A further concern in that the voltage seen by each consumer is within the 

mandatory standards.  In conventional low voltage design, the voltage drops that 

occur along a circuit are calculated by using a simple formula, that takes into 

account a combination of knowledge of the proposed cable size, as well as, the 

level of demand.  As was defined at the beginning of this thesis, the demand is 

represented by the after diversity maximum demand (ADMD).  To re-cap, the 

ADMD represents the supply capacity required for each consumer connected to 

the network.    

 

The ADMD is used to calculate the voltage drop along a low voltage circuit, also 

taking into account unbalance and diversity, as is required by Engineering 

Recommendation G81.  This approach involves a relatively straightforward 

calculation that works because of the consistent nature of ADMD.  As was 

discussed in the introduction, adding low carbon technology changes the nature of 

ADMD, and therefore the calculations will no longer adequately represent the 

demands that the network must support. 

 

As a commercial entity, the DNO seeks to meet the obligatory standards at the 

minimum cost.  This is an important economic consideration that motivates the 

DNO to maximise the use of existing assets to their full extent.   Clearly, 

uncertainty as a result of a changing ADMD, through low carbon technology, 

makes this task more difficult.   
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7.4 Industry software tools for network analysis and design 

Whilst ADMD is the common method used to represent demand in conventional 

low voltage network design, the advances in computer technology over the past 

three decades have enabled enhanced approaches.   An early example is that of a 

computer program called DEBUT (Demand Estimation Based on Units of 

Time) [99], that took a statistical approach developed in ACE report 49 (1981) 

[105], where demand is represented using normal distributions.  A whole range of 

software tools now exist to support the network designer, some of which are listed 

in Table 10. 

 

CYMDIST, Cooper Power Systems [106] 

DINIS, ITC Software [107] 

PowerFactory, DIgSILENT, [108]  

OpenDNA, Open Systems International Inc. [109] 

Gaia LV Network, Phase to Phase, [115] 

PSS Sincal, Siemens, [110] 

Smallworld Design Manager and Power System Analysis Software, GE 

Energy [111] 

WinDEBUT, EA Technology [112] 

ETAP, Operation Technology Inc. [113] 

 
Table 10 - Examples of software usable for distribution network analysis and design  

 

Many software tools, for distribution network analysis and design, are better suited 

to the high voltage layers (i.e. 11 kV and above).  This is because the load 

representation is typically lumped together: the demands of individual dwellings 

are not simulated and in many cases, are simply lumped as static demands at the 

secondary substations.  There are many widely used tools which fall into this 

category, such as IPSA.   
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Elkwue, Roscoe and Lynch [114] report the results of a recent and interesting 

international survey looking at the software tools being used by DNOs.  For the 

UK, they found that the majority of DNOs use PSS/E, IPSA and DINIS and further 

that DNOs usually use the same tools for both 11 kV and 33 kV networks.    

 

However, this discussion is concerned with low voltage networks.  Elkwue, Roscoe 

and Lynch report that many DNOs did not use software tools networks at all: 

where a tool was used, it was one of ITC Software’s DINIS, Cooper Power 

System’s CYMDIST or EA Technology’s WinDebut, the latter being an updated 

version of the DEBUT tool described above. 

 

A geographical information system (GIS) user interface is a useful feature of those 

tools that are better suited for low voltage network analysis.  This provides the 

capability to show not just the network schematic, but the network in geospatial 

map form, with the routes of cables and locations of the distribution system 

components.  All the software tools listed in Table 10, have some form of network 

graphical presentation capabilities.  To pick one example, Phase to Phase’s Gaia 

LV Network design [115] is a tool where a network topology can be specified, in 

terms of the cables, transformers and loads.  The package incorporates an 

unbalanced load flow and provides a range of analysis capabilities. 
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7.5 Existing low voltage network models and studies 

Many studies of distribution systems focus on the 11 kV voltage level and above, 

and simply lump the low voltage layer demand, representing it simply as a single 

load at the secondary substation.  An example study at the 11 kV level is the EA 

Technology report [116], discussing changes to network design due to the 

introduction of significant embedded generation.  Whilst these studies are useful at 

the 11 kV feeder sections of the distribution network, they do not address what is 

happening within the low voltage networks. 

 

The Task V Report IEA-PVPS [117] examined the impact of photovoltaic 

penetration in distribution networks, taking low voltage aspects into account.  

Whilst multiple circuits being serviced from each secondary substation are 

represented, the detail of the demand spacing, and low voltage circuit topology is 

not considered. This is an example where low voltage networks are taken into 

account, but are simplified into network of only a few nodes.   

 

Another study also addressing the integration of distributed generation from a 

control perspective was conducted by Econnect [118].  This included the 

construction of a low voltage network model, but under a limited number of 

maximum or minimum demand levels.   
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Another study by P B Power [99] examined the impact of micro-generation 

connected to the low voltage network, but represented load using the Load 

Research Group profiles, again using minimum and maximum demand levels: 

notably, demand is indicated as resistive, and reactive power demand is not taken 

into account.   

 

P B Power also worked on a detailed distribution network study [119], including the 

representation of 384 dwellings with a simplified network, with partially lumped 

loads, together with assumed minimum and maximum demand levels.    

 

Mott MacDonald followed up this work with their SIAM study [120], where different 

types of network were considered (urban, suburban and rural), but again used only 

minimum and maximum demand values derived from domestic profiles. 

 

The impact of PV generation on low voltage networks was considered in another 

EA Technology study [121], that looked at the issue on voltage levels, imbalance 

and the affect of network design given commercial, domestic retro-fit and domestic 

new build scenarios.  The study uses WinDEBUT for its analysis, again with the 

Load Research Group profiles [34], and only a generalised network topology is 

utilised.   

 

Trichakis, Taylor, Lyons and Hair [122] consider the impacts of generation 

connected to low voltage networks.  In this case, a generic simplified network 

model is utilised, again using only maximum and minimum demand values. 

 

More recently, P.Richardson and Keane [123] present an interesting study of the 

impact of micro-generation on Irish low voltage distribution networks, with a focus 

on voltage rise.  This study used network data representing a suburban area in 

Dublin.  Power Factory was used to look at the network performance under 

minimum load conditions, through the assignment of a fixed minimum demand 

level to each dwelling.     
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Whereas the above studies use either generic or simplified network topologies, or 

a simplified representation of demand, Thomson and Infield [124] attempt to model 

low voltage networks using real topology with a time-stepped demand model.  The 

study examines the high penetration of distributed generation using, a sizable area 

of real network based in a UK city.  It is detailed in its representation of the 

physical location of loads, by representing individual dwellings.  Furthermore, it 

uses one-minute resolution demand data, generated by the Stoke’s model [51] 

that was introduced earlier in Chapter 2.  One important shortcoming with this 

demand model, is that it is does not use domestic occupancy as an input: although 

the discussion of the model notes this as a suggestion for future development.  

Not taking into account occupancy, constrains the ability with which a model can 

represent the realistic diversity of the electricity use between different dwellings, as 

people perform their daily activities.    

 

Nevertheless, the combination of the Thomson and Infield study with the Stoke’s 

demand model, is the most detailed attempt to link high-resolution demand with a 

real network model, and study the network operation in conjunction with an 

unbalanced load flow. 

 

Most recently, Widén et al. (2010) [125] present a study of PV integration in three 

low voltage networks in Sweden.  The study uses their stochastic time-use based 

demand model constructed from Swedish data, and cited earlier [15].  In this case, 

an hourly resolution is chosen for simulation on an annual basis.  A balanced load 

flow is utilised, in conjunction with, a constant secondary substation source 

voltage.   
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7.6 Outline model requirements 

Having considered the conventional industrial approach to low voltage network 

design, looked at some of the available software tools, and considered the existing 

academic literature on low voltage network modelling, the requirements for the 

construction of a model are presented as follows: 

 

• The model must properly represent the realistic time varying demands of 

individual dwellings, through a time-stepped simulation:  therefore the network 

model and demand models need to be closely integrated. 

• The model must realistically represent the physical topology of a UK low 

voltage distribution network.  The variety of cables and their related electrical 

parameters must be represented. 

• The location of dwellings, and therefore the consumers, must be realistically 

modelled with regard to their geographical spacing. 

• The network model must implement a three phase unbalanced load flow. 
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7.7 Network topology data 

 

In representing a UK low voltage network, there is a need to represent the physical 

network topology of the lines and cables, together with, the location of the 

secondary substations.    

 

An obvious suggestion would be to use a generic test network.  There exist 

generic models of distribution networks, that provide typical topologies and 

characteristics.  One example is the United Kingdom Generic Distribution System 

(UKGDS) [126], which provides a set of network structures typical of those found 

in the UK.  A further example, is the set of IEEE radial feeder test models [127], of 

which the 123-node model is the most detailed.  Whilst useful for analysis of 

typical feeder topologies, these generic representations do not include the low 

voltage parts of the network, and are therefore not suitable for this study.  Recently 

in 2010, a new 8500 node example has been made available by the IEEE [127].  

This does include low voltage distribution, although it is based upon a US feeder. 

 

For the purposes of the model described in this thesis, the network data 

representing the town of Loughborough, a medium sized town in the East 

Midlands, UK, was extracted from the utility data base of Central Networks.  The 

use of this data meets the requirement to represent a realistic UK distribution 

network.  Furthermore, it links well with the logged domestic demand data 

discussed earlier in Chapter 3. 
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7.8 Approach to the implementation of the model 

A significant consideration is whether to utilise an existing software tool, or to 

construct an entirely new model as a bespoke application.  With regard to the 

outline model requirements detailed in section 7.6, the latter approach was chosen 

for the reasons that are discussed below: 

 

None of the software tools, introduced previously, has the domestic demand 

simulation capability with the characteristics of the one set out in Chapter 6 of this 

thesis.  Approaches using constant and/or lumped representations of demand, as 

was seen in many of the existing studies, are not considered adequate to meet the 

requirements of this work.   Those approaches using only minimum or maximum 

anticipated demand levels ignore the statistical variation in the load durations.  The 

importance of this is discussed by Widén [52], in the context of micro-generation 

causing over voltage events, in terms of how frequently these events occur. 

  

In addressing the requirement to realistically represent the topology of the low 

voltage network, simplified network approaches with a small number of nodes are 

not considered sufficiently representative or diverse for this purpose.  Many of the 

existing studies, discussed in this chapter, take a simplified approach at the low 

voltage level.  Given the representation of individual dwellings required in this 

work, the low voltage circuits must be fully represented in detail.   The constraints 

of existing tools, particularly with respect to demand representation in low voltage 

networks, point towards the need for a bespoke development. 
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Furthermore, as is seen in the next chapter, data that represents the detail of low 

voltage circuits tends to be both large in volume and complex.  Indeed, a major 

challenge exists in the handling of the data: building a bespoke application 

enables the use and management of the data in the most efficient way. 

 

The development of a bespoke application means that it can be tailored to exact 

requirements and extended as needed.  One example is the need to represent a 

DY11 configuration transformer, based upon the DY1 model described by 

Kersting [128].  With a bespoke development, such an enhancement may be 

integrated, whereas an existing software tool may not offer such flexibility.  

 

A benefit of using an existing software tool is that the load flow calculation 

capability would already be available: however, this is not considered a major 

drawback to a bespoke development.  Load flow calculation techniques are well 

documented and their implementation is not considered a significant constraint.   

 

It is acknowledged that some of the commercial packages provide macro 

languages, or integration methods, that could be used to implement integrated 

demand and network modelling functionality.  The integration of existing tools with 

the demand model presented in this thesis, would likely involve more work than 

writing a bespoke software application. 

 

The integrated approach to the construction of the new model is presented in the 

next chapter.
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8. CONSTRUCTION OF AN INTEGRATED DEMAND AND NETWORK MODEL 

8.1 Overview of the integrated model 

An overview of the structure of the integrated network model is shown in Fig. 59.  

The demand model, as described earlier in this thesis, is shown as an embedded 

component in the blue box.  The approach to the implementation of the model and 

discussions of each of the inputs and outputs, is presented in the subsequent 

sections.   

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 
 

Fig. 59. Structure of the integrated network and demand model 
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8.2 Model implementation 

8.2.1 Software development approach 

 

The Microsoft.NET C# language was chosen for the implementation of this model.  

This is because of its suitability for the development of an application requiring the 

fast handling of large quantities of structured data, fast file input and output, and 

capable of providing a flexible graphical user interface. 

 

With reference to Fig. 59, it can be seen that the load flow aspect is only one small 

part of the whole model.  As was concluded in the previous chapter, the use of an 

existing software tool to perform this function would not be a significant gain in 

bringing together all the other aspects of the model. 

 
  



Chapter 8                                                 Construction of an Integrated Demand and Network Model 
 

 

 

   139 

8.2.2 Use of the network topology data 

 

The data files containing the physical topology of the network, from the utility GIS 

database discussed previously in section 7.7, are parsed and loaded into the 

model.  The data is vector based and consists of physical geospatial point 

locations, called network nodes, connected by vector paths that represent the 

cables.  A node may be sited at a cable end point, or as a connection between two 

or more cables.  It has a physical location, specified in geographic coordinates, as 

well as, a unique logical identifier. 

 

An example area of low voltage distribution network served by a single secondary 

substation is shown in Fig. 60.  The green lines represent the routes of the cables.  

The purple circle shows the location of the substation.  This particular secondary 

substation serves five separate radial circuits.  One of these circuits, shown as a 

thick green line, is examined in detail to validate the model in the next chapter. 

 

 
Fig. 60. Low voltage cable topology from a single secondary substation  

(network data source: Central Networks) 
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Network topology data in visual GIS display applications is typically used for DNO 

asset management.  In day to day use, the cable routes and transformer locations 

simply need to be plotted in map form, such that contractors can be informed 

where components are physically located.  This is a very different application to 

network data use for load flow calculations as is required here. 

 

There exists a major issue with using GIS data in load flow applications: the 

vectors which describe the network must be logically connected.  It is not sufficient 

for them to appear to end in the same place on a map.  For the Loughborough 

area, significant effort was spent in checking the data and resolving any issues.  

This required the development of suitable algorithms to analyse and validate the 

data.  In some cases, it was necessary to physically visit a location in order to 

check the network configuration. 

 

It is emphasised that the effort involved in the management and validation of GIS 

data, for use in network load flow applications, should not be underestimated. 

 

8.2.3 Dwelling locations 

The next step is to approximate the location of consumers: the starting point to 

achieve this, is to represent the location of domestic dwellings.  In the UK, the 

Ordnance Survey (OS) MasterMap [129] data sets provides detailed mapping 

data, that represents the locations of all buildings.  This data is provided in an XML 

format that details polygons representing the physical building footprints.   

 

It is necessary to parse the XML to extract the coordinates of these polygons.    

The Microsoft C#.NET XmlTextReader class was used to perform this parsing and 

the data was loaded into a structured in-memory format, such that, it could be 

displayed in a bespoke Windows forms application.  An example of the data 

shown by the user interface is shown in Fig. 61, where a number of dwellings are 

shown in map form surrounding the street. 
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Fig. 61. Representing the location of dwellings  

(Map data: Ordnance Survey ©Crown Copyright. All rights reserved). 

 

The data contains information on the type of building, so that it is possible to 

identify domestic dwellings.  Furthermore, by comparing the proximity of the 

polygons, it is possible to determine whether the dwelling is detached or semi-

detached.  In Fig. 61, the yellow dwellings in can be seen to be detached and  the 

orange buildings are semi-detached.  

 

8.2.4 Domestic consumer locations 

 

Whilst the building location data provides a very good way of representing 

individual dwellings, it does not represent the common case where buildings are 

divided into flats.  In this scenario, each flat will have its own electricity meter.  

Therefore there may be multiple consumers within a single building.   
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The UK Ordnance Survey’s (OS) Address Layer 2 [130] data provides the 

geographic locations of all GB addresses.  These address points can therefore be 

used to represent the approximate locations of the consumers.  An example is 

shown in Fig. 62 where the blue dots represent these address points.   

 

 
 

Fig. 62. Representing the location of consumers  

(Map data: Ordnance Survey ©Crown Copyright. All rights reserved). 

 

Since in the case of flats, multiple addresses will exist at the same dwelling, the 

use of this address point data resolves the problem of representing multiple 

consumers in a single building. 
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8.2.5 Service connections 

In general, the DNO network data does not include the location of the service 

cables, from the main in the street, to the electricity meter at a dwelling.  Since the 

location of consumer loads is being represented by the address points previously 

discussed, it is necessary to connect these points to the network by adding in the 

service cables to the topology.  This is achieved by making the assumption that 

each address point connects the consumer to the nearest available low voltage 

cable in the distribution network.   

 

An example is shown in Fig. 63, where the black circles represent the nodes from 

the topology data, and the blue circles represent the address point locations.  The 

low voltage cable is shown in green, and the service cables that have been added 

to the topology, are shown as purple lines.     

 

An algorithm was developed to find the nearest low voltage cable for each address 

point.  To re-cap, the cable data is represented by chains of vectors connected by 

nodes.  This gives rise to two scenarios: the first simple case is when a node is 

already available at the nearest point, in which case, a new line representing the 

service cable may be added to the topology, connecting to an existing node, 

represented as a black circle.  The second more complex scenario arises if there 

is no available existing node to connect to.  In this case, it is necessary to insert a 

new node at the desired location, by splitting an existing cable vector. This 

requires a considerable amount of vector manipulation computation.  Again with 

reference to Fig. 63, cases where nodes have been inserted are shown as purple 

circles on the green low voltage cable. 

 

It is acknowledged that the nearest node approach to the connection may not 

represent the precise reality of the actual connections, but it is a good 

approximation.  

 

 



Chapter 8                                                 Construction of an Integrated Demand and Network Model 
 

 

 

   144 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 63. Service connections  

(Map data: Ordnance Survey ©Crown Copyright. All rights reserved). 

Address points 

represent the location 

of each consumer. 

Each service cable is 

added to the low 

voltage network 

topology. 

Case 1: Service cable 

connects to an 

existing node. 

Case 2: Service cable 

connects to a newly 

created network node. 



Ch
 

 

 

 

 A

fo

sh

 
 

hapter 8       

A larger sca

or the singl

hown witho

(a

 

(b) The 

 

                   

ale examp

e circuit re

out the bui

a) The netw

network ar

Fig. 6

(Map data: 

                    

le is shown

eferred to p

ldings in F

work area s

rea showin

64. Represe

Ordnance S

   Construct

n in Fig. 64

previously 

ig. 64(b).

shown tog

ng the cabl

enting the lo

Survey ©Crow

ion of an Inte

4(a), show

in Fig. 60.

ether with 

le topology

ocation of co

wn Copyrigh

egrated Dem

wing the loc

 For clarity

the locatio

y and cons

onsumer loa

ht. All rights r

mand and Ne

cation of th

y, the same

on of buildi

sumer load

ads  

eserved). 

twork Model

 145

e loads 

e figure is 

 
ngs 

 
d locations

 

5 



Chapter 8                                                 Construction of an Integrated Demand and Network Model 
 

 

 

   146 

8.2.6 Service cable connection phase 

Since domestic connections are usually single phase in the UK, it is necessary to 

determine to which phase each consumer is connected.   Archived historical 

records of the phase configuration are not generally available. Where data was 

found, it was archived by the DNO on micro-fiche, in a format that was not 

practical to import into a database containing a large number of dwelling locations. 

 

In the case where a three phase cable is routed along a street, the model 

approximates the connections by a sequential assignment to one of the three 

phases (A, B or C) as each dwelling is encountered.  An example of the phase 

connections to a number of dwellings is shown in Fig. 65. 

 

 
 

Fig. 65. Assignment of connection phases  

(Map data: Ordnance Survey ©Crown Copyright. All rights reserved). 

Where the network data indicates a single phase cable, that cable is assigned a 

phase at the point where it connects to the three phase network.  All dwellings 

connected to a single phase cable will thereby be connected to the same phase. 

Phase A 

Phase B 

Phase C

Phase A 
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8.2.7 Cable parameters 

 

In addition to the topology, the DNO data details the types of cable that are used 

throughout the network.  From the same utility database as the GIS topology data, 

a table of cable impedance parameters was extracted.  In conjunction with the 

topology data, the impedance values of each cable throughout the network can be 

estimated by taking their length into account. 

 

8.2.8 Integration of the demand model 

 

In order to represent the time-varying demands on the network, it is a key 

requirement for the network and demand models to be integrated.   

 

This is achieved by assigning each consumer load (represented by each address 

point) an electricity demand, using the demand model.   In data handling terms, 

this means that the occupancy is simulated within each dwelling.  The use of each 

individual lighting unit, and each individual appliance, in every dwelling, is 

simulated at a one-minute resolution.  The scalability of the demand model, in 

terms of its computation efficiency, is most important when representing larger 

numbers of dwellings.   

 

The computation involved is therefore considerably more complex than 

representing static aggregate demands for each dwelling.   

 

 

 

  



Chapter 8                                                 Construction of an Integrated Demand and Network Model 
 

 

 

   148 

8.2.9 Street lighting 

In addition to the demand from the dwellings, there is also demand for street 

lighting.  Unfortunately, there was no detail describing the location of street lighting 

in the network GIS data.  In order to represent street lighting, design guidelines 

from the British road lighting standards [131] were used to approximate the layout 

and electricity use.  There are many considerations involved, but for the purposes 

of this model, an approximation is made. Street lights are placed approximately 

47m apart, at locations on the low voltage distribution network.  Each street light is 

represented in the model as a 70 W SON/T (high pressure sodium) lamp.  The 

street lights are represented as yellow spots in Fig. 66. 

 

 
Fig. 66. Representation of street lighting 

(Map data: Ordnance Survey ©Crown Copyright. All rights reserved). 
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The model uses the lighting up time (in this case, defined as a half-hour after 

sunset, to a half-hour before sunrise) as a means of determining when the lights 

are switched-on.  The daily sunrise and sunset times for Loughborough were 

generated using the data services of the US Astronomical Applications 

Department of the US Naval Observatory [132].   

 

Although it is noted that street lighting is considered a relatively small proportion of 

the demand in residential areas, its inclusion involves little extra computational 

demand and enhances the realism of the model. 

 

8.2.10 Secondary distribution transformer data 

Since the model is concerned with the simulation of the low voltage circuits, it is 

necessary to represent the source voltage on each low voltage phase at the 

secondary substation transformer.  With the support of Central Networks, voltage 

data was recorded, at a one-minute resolution at four secondary substations in 

Loughborough, to provide data for this purpose. 

 

8.2.11 Future expansion possibilities 

The model is constructed in such a way as to make it extensible for future 

enhancement outside the scope of this thesis:  three of the main ways are noted 

below: 

 

Whilst the focus of this thesis is low voltage circuits, the model is constructed so 

that it may also represent 11 kV feeders.   

 

Furthermore, as a platform for the study of low-carbon technologies, the demand 

model is capable of being expanded, to include new modules representing the 

various forms of technology already discussed. 

 

Finally, for studies of network response to flexible demand, the way that the 

demand and network model are integrated, mean that future studies could take 

place, where demand may be controlled in response to network conditions.
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8.3 Load flow implementation 

Having built the model, a three-phase unbalanced load flow is required to calculate 

the voltages and currents throughout the network, as a result of the demand of the 

domestic consumers.  At each time step of network simulation, a steady state is 

assumed with a sinusoidal waveform.  An efficient load-flow was required because 

of the number of nodes and the time step loops.  Specifically, Newton-Raphson or 

Gauss-Seidel methods were not appropriate because of the need to manipulate 

very large sparse matrices.  Instead, Kersting’s ladder iterative unbalanced three-

phase load flow [128] is implemented.  This method is known to be 

computationally efficient and works well for radial circuits [133].   The method is 

sometimes known as a “forward backward sweep” approach.  On the outward 

sweep, from the voltage source, the voltages are calculated at each node.  On the 

backward sweep, the current carried by each cable is calculated.  The process is 

continued until the voltages converge to a suitable precision, in this case chosen 

to be 0.1 mV. 

 

This load-flow is implemented computationally by representing the network 

topology as a tree structure, in memory, using an appropriate C# object structure 

design.  Starting from the voltage source at the secondary substation, a depth-first 

traversal of the tree takes place, using a recursive algorithm.  The tree search is 

performed in a “post order” way, which means that the sub-trees, at a particular 

node, are all traversed before the parent node is visited.  This means that the 

currents flowing deeper into the network, from a parent node, are all available on 

the backward sweep, where they are summed to determine the current flow on the 

parent cable. 
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8.4 Raw output and post-processing 

The model outputs raw data, comprising the voltages at each node in the network, 

and the current flowing along each cable: the raw data is written to comma 

separated files.  These values are available for every time step performed in a 

simulation.  In addition to the raw data files, the GIS interface of the model is 

capable of showing the voltage and current data in a map form. 

 

An example, showing the phase voltage and current on each service connection, 

for a number of dwellings, is shown in Fig. 67.  On each phase, the voltages can 

be seen to drop towards the lower-right of the figure. 

 

 

 
Fig. 67. Raw load flow results displayed by the GIS interface 

(Map data: Ordnance Survey ©Crown Copyright. All rights reserved). 
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With reference back to Fig. 59, post processing of the raw data may be performed 

to structure the data for visualisation.  This is performed for the purposes of 

validating the model, the subject of the next chapter, and later in the use of the 

model described in Chapter 10. 
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9. VALIDATION OF THE INTEGRATED DEMAND AND NETWORK MODEL 

9.1 Scope 

Having constructed an integrated model of the distribution network and domestic 

demand, as detailed in the previous chapter, the next step is to validate it against 

data measured from the actual physical distribution network.  In line with the 

original scope of the model, described in the introduction, the validation of the 

model is performed, in terms of the demand, taking into account network losses, 

as well as, the voltage variation that occurs along low voltage circuits. 
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9.2 Measuring data for comparison against the model output 

With the support of E.ON, voltage, current and energy demand was measured on 

the low voltage side of four secondary substations serving residential areas, in the 

town of Loughborough.  An example showing how the data was logged is 

presented in Fig. 68.  A distribution board is seen to serve five separate circuits.  

The five low voltage distribution cables can be seen on the lower part of the 

distribution board, where the left-most circuit cable is being logged in this case.  

 

 

 

 

 

 
 

 

 

 
Fig. 68. Substation monitoring equipment 

 

Five circuits are served 

Logger 
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To the lower centre of the figure a Rochester Instrument Systems power and 

quality recorder can be seen.  The voltages are measured by connecting the 

logger to pins on the test panel, to the lower right hand side.  The current is 

measured using current transformers, that are placed around each phase cable, 

and the clamps can just be seen behind the left most circuit connectors.  

 

In particular, the voltage and current data for the circuit presented in Fig. 64(b) 

was recorded at a one-minute resolution.   This circuit was determined as serving 

99 domestic dwellings, and one small community centre, and therefore chosen 

because is serves mainly residential loads.    

 

Furthermore, it was possible to install a number of voltage loggers within dwellings 

served by this substation.  The voltage loggers used were Electrocorder plug-in 

types and these were also configured to capture data at a one-minute resolution.   
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9.3 Aggregated demand 

9.3.1 Comparison of measured and modelled demand profiles 

 

The first comparison to make, is that between the measured and modelled real 

power demand, served by the test substation circuit.  The model was used to 

generate a week of data to compare against measured data taken during 

September, 2009.  Note that the integrated network and demand model will take 

network losses into account.  A graph showing both data series is presented 

in Fig. 69.   

 

 
Fig. 69. One-week demand comparison 
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The modelled and measured data have very similar characteristics, in terms of 

both magnitude of demand, and the daily cycling that can be seen.  The mean 

values are 52.8 kW for the measured data and 52.2 kW for the modelled data.  

The peak demand is 118.0 kW as measured and 123.2 kW as modelled.  The 

seven daily cycles can be clearly seen in both series.  Each day is characterised 

by low demand at night, followed by two peaks: one in the morning and a second 

in the evening. 

 
For a more detailed perspective on a daily basis, an individual daily profile is 

presented in Fig. 70(a). 

  
 

 
 

Fig. 70. One-day demand comparison (Tuesday 22nd September, 2009) 
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With reference to Fig. 70(a), the model is generating very realistic demand 

profiles: the measured and simulated demand has very similar characteristics.  

Demand is lower at night and less volatile.  In the morning, the magnitude and 

volatility of demand increases.  The peak demand occurs during the evening in 

both data sets.  The daily cycling pattern is consistent between the two data sets.  

Over the full week, the mean values differ by only 0.6 kW, which is particularly 

close.  Over the same time period, the peak value of the modelled data is only 5.2 

kW above the measured data. 

 

As a stochastic simulation, on a minute to minute basis, the level of demand would 

not, of course, be expected to match exactly.  The important consideration is that 

very little is physically known about the consumers served by this circuit.  Despite 

this, Fig. 70 (b) shows a percentage based comparison between the modelled and 

the measured demand.  In this case, the mean difference is 0.9%, which shows 

that the overall mean level of demand over time is very similar.   

 

The following is not known and therefore cannot be used as input to the model: 

• The total actual number of residents in each physical house. 

• The real occupancy patterns of the residents. 

• The actual numbers and types of appliances and lighting in each dwelling. 

• The actual resident’s attitudes to energy use and how their behaviour 

affects the use of lighting and appliances.  

 

The following is known and the model is configured accordingly: 

• That there are approximately 100 domestic dwellings served by the circuit. 

• The physical geographical distribution of these dwellings. 

• The topology and impedance parameters of the low voltage network. 

• The typical demand characteristics of UK dwellings, calibrated to a demand 

level typical of the East Midlands region. 

 

Despite the lack of detailed input data, the integrated model is generating data that 

is highly representative of this circuit.    
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9.3.2 Discrepancy in midday demand 

 

It was noted that in some cases, the measured demand during the mid-day period 

exceeded that of the modelled demand.  This is more clearly visible in the plot of 

average weekday demand shown in Fig. 71, over a one-week period.  The 

measured data shows greater demand during the period 10:00 to 16:00  

 

 

 

Fig. 71. Comparison of average daily demand profiles 

 

 

One explanation for this, could be that the model is not fully representing the 

occupancy pattern characteristics of the dwellings in this area.  For example, if 

there was greater active occupancy during the day than the average level 

simulated by the occupancy model, then a higher level of demand during the day 

would be expected in the measured data.  
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The occupancy model uses a data set that is assumed to be representative of a 

national average occupancy profile.  From census data [134], it was found that this 

area has a relatively higher proportion of residents of Asian origin.  Again using the 

TUS data, a comparison of the average occupancy profile is shown, against a 

profile correctly weighted to represent the structure of ethnic groups resident in the 

area, and is presented in Fig. 72. 

 
 

 
Fig. 72. Comparison of occupancy profiles (weekday) 

(Derived from the TUS data set [63]). 

 

Greater daytime occupancy can clearly be seen in the weighted profile.  This 

greater occupancy would account for higher demand for electricity during this 

period. 
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9.4 Voltages 

9.4.1 Daily voltage profile 

A comparison of one-day voltage profiles is shown in Fig. 73.  The dark blue line 

shows the measured voltage on the phase C circuit at the secondary substation.  

The red line shows the modelled voltage at the test house.  The lighter blue line 

shows the measured voltage at the test house.  

 

 
Fig. 73. One day voltage profile at two network locations (19th September, 2009) 

 
 
The voltage at the substation varies considerably throughout the day.  These 

variations are a function not only of the demand served by this substation, but the 

variation of the voltages on the 11 kV feeder serving the substation.  A significant 

voltage drop is seen to occur at 00:30 that could be related to the Economy-7 start 

time, but could also be a tap change at the primary substation, or even a large 

industrial load switching-on.  The measured and modelled demand will not match 

exactly, due to the stochastic nature of the modelling, and therefore, it is not 

expected that there should be an exact match between the voltages at the test 

house.  However, the magnitude and volatility of the voltages are approximately 

the same.   
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9.4.2 Voltage histogram 

 

For a whole week, the voltage at the test dwelling is plotted in histogram form 

in Fig. 74.   

 

 
Fig. 74. Voltage histogram comparison (19th - 25th September, 2009) 

 

Since it was concluded previously, that the voltage variation at the voltage source 

within the secondary substation is dominant, all this really shows is that the model 

is slighting underestimating the voltage drop that occurs in the circuit, between the 

secondary substation and the test dwelling.   
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9.4.3 Voltage drop histogram 

 

Looking now at the relative proportions of voltage drop over the week, the model 

slightly underestimates the voltage drop: this can clearly be seen in the histogram 

presented in Fig. 75.  The model is generating results where smaller voltage drops 

(up to 2 V), occur more frequently than in the measured data.  However, to put this 

in context, the voltage drop levels are only a small proportion of the phase voltage.  

 

 
 

Fig. 75. Voltage drop histogram 

 
 

As was previously discussed, the model has limited input data for the actual 

dwellings served by this circuit.  One factor, which will affect the voltage drops, is 

the relative distribution of demand along the circuit.  Some dwellings may have 

large demands and others may have small demands.  Where these different 

dwellings connect to the circuit will affect the mean voltage drop.  It is quite 

possible that in reality, there are dwellings at the distant ends of the circuit that 

result in the greater measured voltage drop, although it is not possible to verify this 

with the available data.     
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9.4.4 Voltage drop and relationship to demand 

A correlation between the demand on a particular phase and the voltage drop is 

anticipated.  The voltage drop is plotted against the apparent power demand for 

both measured and modelled cases, and the results are shown in Fig. 76.     

 
 

 
(a) Measured on 19th September, 2009. 

 

 
(b) Modelled 

Fig. 76. Comparison of single phase demand and voltage drop 
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Note that it is not appropriate to compare the measured and modelled voltage 

drops directly together over time: the stochastically generated synthetic demand 

data will not match the measured demand on a minute to minute basis, as in Fig. 

76(a) and Fig. 76(b) respectively.  There is, however, a correlation between the 

voltage drop and the demand in both cases.   

 
The correlation is not perfect in either case, as the voltage drop will depend upon 

the distribution of demand along the circuit.  For example, a large demand located 

next to the substation will result in a lower voltage drop, than a distant demand of 

the same magnitude.  The measured data shows significant voltage drops 

between 01:00 and 04:00, perhaps as the results of a large load, such as an 

electric storage heating system, distant from the substation. 

 

9.5 Summary 

In summary, the model output compares very well with the measured data.  The 

comparison is good in both aggregate demand, taking into account the network 

losses, and the voltage drops that occur along the circuit.  The output of the model 

is considered particularly good, given that nothing is known about the actual 

individual demands and behaviours of the residents in the dwellings in the 

measured area.  
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10. USE OF THE INTEGRATED MODEL 

10.1 Data post-processing and visualisation 

Referring back to the structure of the integrated model presented in Fig. 59 in 

Chapter 7, post-processing the raw simulation output of the model, allows for 

many possibilities in terms of visualising the operation of the network.  This output 

of the model enables the user to observe voltages and currents, with both 

geospatial distribution, as well as, over high-resolution time series.   Such 

visualisation would not be possible with simple models. 

 

This chapter shows how the integrated model is used to explore cable loading, 

voltages and losses in the low voltage network. 

 

 

 

 

10.2 Geospatial current representation 

A diagram showing the simulated geospatial cable loading on 19th September, 

2009 at 00:00, for the test circuit is shown in Fig. 77.  The width of the green line 

representing the cable is proportional to the current and the blue dots again 

represent the location of the consumers.  As would be expected, the cables nearer 

the secondary substation are more heavily loaded, where a thick line is evident.  

The further away from the substation, the less current is carried.   
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Fig. 77. Modelled low voltage network current at 00:00 

 

 

 

Again referring to Fig. 77, it is interesting to note that the individual service cables 

are generally lightly loaded at this point in time.  The dwelling to the left of the 

figure marked with the letter ‘A’ is seen to have a greater demand than the other 

dwellings at this time.  As a stochastic simulation, this particular dwelling has been 

allocated a 3 kW immersion heater by the demand model: at this point in time, it is 

in use.  This illustrates that the model does capture the random nature of the real 

world.   
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10.3 Current flow of a circuit route over a time-stepped series 

The previous visualisation, shown in Fig. 77, presented the current loading 

conditions at a single point in time.   

 

The next visualisation, shown in Fig. 78, adds a time dimension and replaces the 

geospatial layout by a cable distance from the secondary substation.  In this case, 

this represents the distance along the circuit route formed by the cables from the 

secondary substation to the dwelling marked ‘B’ in Fig. 77.  For clarity, only the 

current flowing in phase conductor A is shown. 

 

Fig. 78. Modelled phase A current over one day at one-minute resolution 
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With reference to Fig. 78, the current at night can be seen to be relatively low.  A 

sudden drop can be seen at approximately 200 m along the cable length through 

the day.  This ridge represents the point at which the circuit splits to feed two 

separate streets (referring back to Fig. 77).  The current infrequently 

exceeds 150 A, which is well within the rating of 290 A.  Peaks can be seen to 

occur: the highest is seen to be in the early evening, coincident with the time of 

peak domestic demand. 

 

A significant benefit of using stochastic models over a time stepped series, is that 

it is possible to estimate the probability of different cable loading conditions, 

occurring at each time step: this is considered next.  It is important to note that a 

conventional calculation, based on a peak demand, would yield only a single 

figure.   
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10.4 Cable loading probability density visualisation 

A histogram is a useful way of visualising the cable loading.  For example, Fig. 79 

shows the modelled cable loading of the cable at a point adjacent to the 

substation.   

 

 
Fig. 79. Modelled cable loading histogram (adjacent to substation)  

 

 

At this location in the circuit, the loading is rarely less than 10% or great that 50% 

of its rating. 

 

The integrated model outputs data for the whole circuit, and therefore it is possible 

to see the cable loading all the way along from its beginning, to the end of the 

cable, which is considered next. 
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The dimension of distance is added in Fig. 80, which shows a probability density 

plot representing the simulated phase A cable loading conditions over one-week.   

The figure represents the same route through the circuit, from the secondary 

substation to dwelling ‘B’.  In this figure, each vertical cross-section represents a 

histogram like the one seen before in Fig. 79.  The more common loading 

conditions are indicated by a darker colour. 

 
 

 
 

Fig. 80. Modelled cable loading probability density  
 

 

It is immediately apparent from the graph that the cable rarely experiences greater 

than 50% of its rating in the first 200 metres.  Beyond that distance, rarely is the 

loading above 20%.  The most distant section of cable does not exceed 5% of its 

rating. 
  
 
The loading on the cable beyond 190 metres is considerably less and a big drop 

can be seen in the figure at this point.  This is the result of the split in the circuit 

(that can be seen in the middle of Fig. 77).  
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The first 20 metres of cable from the substation in this circuit has a 335 A rating, 

whereas the rating is 290 A elsewhere.  The loading is seen to be slightly lower in 

this region. 

 

The other steps that can be seen are due to large loads within dwellings at these 

points along the cable.  Electric storage heaters and electric stored water heaters, 

in particular, are the cause of these changes in the loading.  It is possible to look 

into the detailed output of the demand model, to identify which individual 

appliances were switched on. 

 

The voltage variations that occur along the cable are considered next in the 

following section. 
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10.5 Voltage drop profiles 

As was discussed in the introduction, standards require that the voltage remains in 

the range from 216 V to 253 V (230 V +10% -6%).  It is useful to see the voltage 

drops that occur, with respect to the source voltage at the secondary substation.  

Looking only at the voltage drops excludes the voltage variations on the 11 kV 

feeder. 

 

The model is used to calculate the voltage drop along the same circuit, as has 

been discussed previously, from the secondary substation to dwelling ‘B’ in Fig. 

77.  A visual representation of the phase A voltage drop at a one-minute resolution 

over the period of a day, is shown in Fig. 81.  

Fig. 81. Modelled voltage drop by distance and time 
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The voltage drop at the secondary substation is zero by definition.  The greatest 

voltage drop occurs at the most distant point from the substation.  The maximum 

drop seen is approximately -7 V, during the evening peak demand.   To put this in 

context, the range of acceptable voltages is 253 – 216 = 37 V.  It is interesting to 

observe that the 7 V drop seen in this simulation, is a significant slice of this 

acceptable range: particularly, as this is a relatively short circuit within a densely 

populated urban area.  With a longer cable, say in a rural area, the slice of this 

range would be even greater. 
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The stochastic high-resolution simulation enables visualisation of the likelihood of 

different voltages, at different distances along the cable.  A density plot of the 

phase A voltage is shown in Fig. 82.  The darker the colour, the greater the 

likelihood of a particular voltage, at each point along the cable. 

 

 
 

Fig. 82. Voltage drop probability density plot 

 
 

To the left of Fig. 82, at the secondary substation, the voltage is commonly within 

the 252 V to 254 V range, although it does vary between 247 V and 256 V: the 

spread here is wide to begin with.  As the distance from the substation increases, 

the voltage level falls and has an even greater spread.  The voltage does not fall 

below 243 V, showing that this circuit is well above the nominal level of 230 V. 

 

In terms of the voltage standards, the voltage is on the high side: the implications 

of this are that the connection of micro-generation would increase the likelihood of 

over voltage conditions.  Similarly, connection of electric vehicles could 

significantly widen the spread of voltages. 
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10.6 Comparison with half-hourly data 

A histogram is shown in Fig. 83 representing the spread of voltages seen at 

dwelling ‘B’ at the end of the circuit, for both one-minute and half-hourly data.   

 

 

 
 
 

Fig. 83. Comparison of one-minute and half-hourly voltages 

 
 
It is interesting to note that at a half-hourly resolution, there is not generally a 

significant difference, when compared to the one-minute data.  However, it is 

noted that the standard deviation of the voltages at a one-minute resolution is 

slightly greater, as can be seen by the occassional lower values of 243 V and 

244 V, and higher numbers of peak voltages over 253 V (i.e. more over voltage 

conditions are seen to occur with a one-minute resolution).  The difference 

between the two resolutions was not as great as was anticipated. 
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10.7 Cable losses  

The cable losses over the whole low voltage circuit, serving 100 consumers, are 

calculated, and the results are shown over the course of a week in Fig. 84. 

 

 

Fig. 84. Modelled losses 

The average loss over the course of the week is 0.96 %.  The peak loss seen over 

this period is 3%.  In terms of energy, the losses in the circuit amount to 95 kWh 

over one week, which in a simplistic extrapolation, based on this simulation in a 

September shoulder month, would amount to 4930 kWh/year. 

 

This value compares well with data published elsewhere.  Ofgem provides figures 

for annual losses within distribution networks [135].  For the East Midlands area, a 

loss of 4.9% across the whole distribution network is given.  However, it is 

necessary to take into account only technical losses from the low voltage part of 

the network.  An estimate of the proportion of these losses, within a low voltage 

distribution network, is given by Shaw et al. [136] at 28%.  Therefore, 28% of 4.9% 

results in a total anticipated loss of 1.4%.  This is close to the value found in the 

simulation above.  The next section considers the case for cable reinforcement in 

this circuit, in order to reduce these losses. 
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10.8 Network reinforcement 

Given that losses are proportional to the square of the current, it follows that that 

the majority of losses occur nearer the substation.  This is to be expected, since it 

is these parts of the circuit that carry the most current, as was seen earlier in Fig. 

78. 

 

With the aim of finding out if network reinforcement would be worthwhile in the test 

circuit; the replacement of the first 100 m of cable with higher specification 

300 mm2 copper cable was simulated using the integrated model.   

 

In annual terms, it was found that this reduced losses to 3276 kWh/year (instead 

of 4930 kWh).  However, a saving of 1654 kWh/year is little justification for digging 

up a considerable section of street, and it is clear that there would be little 

economic case for doing so: particularly given that the cables are already 

underutilised, as was discussed earlier. 

 

10.9 Summary 

This chapter presented how the close integration of the demand and network 

models, enables detailed visualisation of the operation of networks: the model 

provides the capability to shed considerable light on network utilisation, as well as, 

performance with respect to voltage constraints. 

  

The electricity distribution industry is concerned with the capability of existing 

networks to cope with the integration of low-carbon technologies, such as electric 

vehicles and heat pumps.  The visualisation that has been shown in this chapter is 

a way of providing far greater insight into network operation, than has been 

available with conventional methods.  
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11. CONCLUSIONS 
 

11.1 Drivers of domestic electricity use 

The number of residents at a dwelling, specifically their active occupancy, was 

observed to be a major factor in electricity use: this was expressed in the literature 

discussed in Chapter 2 and validated with measured data in Chapter 3.   

 

For large numbers of dwellings, and by using the UK 2000 TUS data set, it was 

shown that there is a strong similarity between the shape of the mean annual 

demand profile, and the mean active occupancy profile. 

 

Within an individual dwelling, by taking measurements of electricity demand and 

active occupancy, a clear correlation was observed between the times of active 

occupancy and the times of electricity use.  

 

It was also concluded from the data gathered, as presented in Chapter 3, that floor 

area is not a good basis upon which to estimate electricity use.  This is relevant to 

the BREDEM-8 model which uses floor area as a main input variable. 

 

 

11.2 Using stochastic methods to model domestic occupancy 

Realistic active occupancy patterns may be generated in a stochastic simulation.  

This was performed by using a Markov-Chain technique, through the calculation of 

transition probability matrices, from the UK 2000 TUS data set: a novel application 

of this method.  It is a computationally efficient method, and the model of domestic 

occupancy described in Chapter 4, was confirmed to output data with the same 

statistical characteristics as that of the original survey data. 
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11.3 High-resolution domestic lighting demand modelling 

The use of individual lighting units, within a domestic dwelling, can be effectively 

simulated using a bottom-up stochastic modelling approach.   

 

A high-resolution model of domestic lighting demand was constructed and 

validated, as described in Chapter 5.  The model works well: in particular, when 

simulating many dwellings together, the lighting demand aggregates appropriately. 

 

Two time-varying input factors, representing active occupancy and natural light 

level, were found to be a good basis for modelling lighting demand.  Using natural 

light level as an input, takes seasonality into account. 

 

An important strength of the model is that changes in lighting technologies can be 

taken in account:  the model may be configured as required.  This would not be 

possible using less granular models, or those based upon aggregate lighting data 

alone. 
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11.4 Aggregated whole-dwelling demand 

The whole-dwelling high-resolution aggregated demand from domestic appliances, 

may be simulated by modelling using a bottom-up approach, in conjunction with 

stochastic methods.  In reaching this conclusion, a whole-dwelling electricity 

demand model was constructed, and shown to output data with the appropriate 

statistical characteristics.   

 

The model was built using UK statistics on appliance ownership and electricity 

demand.  It was successfully validated by comparing the output against the 

measured electricity demand data described in Chapter 3. The quantitative 

comparisons included time-coincidence of demand, minute-to-minute volatility, 

mean daily demand profiles, seasonal variation, ADMD and power factors.   

 

The use of activity profiles was found to be an effective way of modelling the use 

of different types of appliances, at different times of the day.  This was achieved by 

linking the activities that an occupant may be performing, and the appliances that 

they use in performing that activity. 

 
 

11.5 Integrated demand and network modelling 

An integrated demand and network model was constructed: the model works and 

is validated against measured network data.  The modelling is both high-

resolution, in its time stepped simulation capability, as well as, detailed, in its 

representation of the low voltage distribution network and domestic electricity 

consumers.   
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11.6 Insight into the operation of low voltage networks 

The integrated modelling approach enables a new level of detailed visualisation of 

the operation of the low voltage networks, over conventional methods.  Given the 

need to maximise the utilisation of existing networks, as low-carbon domestic 

technologies become more common, this visualisation has great potential for 

supporting the network design process.  When considering, both cable capacity 

and voltage limits, it is important that network designers have the appropriate 

tools.  The integrated approach presented in this thesis can thereby facilitate the 

uptake of such technologies: this visualisation facilitates the making of network 

design decisions with greater confidence, such that the deployment of low-carbon 

technologies is not unnecessarily constrained. 

 

 

 

 

 

 

  



Chapter 11  Conclusions 
  

 

   183 

11.7 Contribution of this Research 

11.7.1 Provision of freely downloadable models 

The occupancy, lighting and whole house electricity demand models, described in 

this thesis, were developed in the C# software language.  Despite their 

sophistication, the model implementations were migrated to VBA, within Microsoft 

Excel, to make them convenient for others to use.   

 

In the existing literature, regarding electricity demand modelling, some papers 

provide all the information needed to build the model, whilst others are lacking in 

this respect and the reader is left to gather their own data.  In either case, it is 

usually a time consuming activity to re-construct any model in software, from the 

text of an article, and verify the output.   

 

In contrast, this research has provided self-contained working examples that may 

be downloaded and used immediately, or configured, or integrated with other 

models.  At the time of writing, these example models have been downloaded in 

excess of 350 times [7,8,9].  The models have been used elsewhere [22]. 

 

11.7.2 Availability of measured electricity use data 

 

As was mentioned in Section III at the start of the thesis, the one-minute domestic 

meter data (collected as described in Chapter 3) has been accepted by and 

uploaded to the UK Data Archive (hosted by the University of Essex).   

 

11.7.3 Citations of this research in parallel work 

 

The papers describing the occupancy and lighting models, published in Energy 

and Buildings, have been cited in other research as was detailed in section III at 

the beginning of this thesis (13 citations at the time of writing). 
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11.8 Potential for further work 

Possible areas for further work are summarised in Table 11. 

Potential  Comments / benefits 

Study active network 

management. 

Since the model presented in this thesis includes the simulation of 

both high-resolution demand and network operation, it would be 

possible to model active network management.   

Modelling of flexible 

demand. 

The demand model could be utilised to simulate demand flexibility.  

This could be achieved by adding control parameters to the appliance 

switch-on probability calculations.  This would require the “dynamic 

feedback” loop, shown in Fig. 59, to be implemented.   

Refinement and 

improvement of the 

electricity demand model. 

 

Although the demand model has been shown to simulate whole house 

electricity use in a realistic fashion, there are refinements that could 

be made, in particular, in support of the modelling of flexible demand.  

It is noted that many of these are constrained by the availability of 

statistical data, but nevertheless include: 

• Improved linking of occupant activities and the appliances that are 

used during these activities, and the correlations of ownership and 

use of different appliances.  Bringing such behavioural aspects 

into the model would be considered highly beneficial. 

• Refine the model to account for different socio-economic profiles 

in different localised areas. 

Inclusion of a thermal 

model of dwellings in the 

demand model. 

Thermal modelling would enable improved modelling of electric 

heating, including night storage and other forms of direct electric 

heating, as well as, heat pumps and μCHP. 

Model non-domestic 

demand, thereby 

extending the capability 

of the model to include 

11 kV feeders. 

It would be useful for distribution network studies to expand the 

modelling of domestic electricity demand into industrial, public-sector 

buildings, commercial buildings and others.  This would enable the 

high-resolution modelling of demand on 11 kV feeders. 

Real-time network 

visualisation. 

The integration of real-time data from smart meters would enable the 

capability to visualise distribution network operation in real-time. 

 

Table 11 - Potential areas for further work 

  



References      
  

 

   185 

12. REFERENCES 
 

1  I. Richardson, M. Thomson, D. Infield, A high-resolution domestic building occupancy model 
for energy demand simulations, Energy and Buildings 40 (8) (2008) 1560-1566. 
http://dx.doi.org/10.1016/j.enbuild.2008.02.006 

2  I. Richardson, M. Thomson, D. Infield, A. Delahunty, Domestic lighting: A high-resolution 
energy demand model, Energy and Buildings 41 (7) (2009) 781-789. 
http://dx.doi.org/10.1016/j.enbuild.2009.02.010 

3  I. Richardson, M. Thomson, D. Infield, C. Clifford, Domestic electricity use: A high-resolution 
energy demand model, Energy and Buildings 42 (10) (2010) 1878-1887. 
http://dx.doi.org/10.1016/j.enbuild.2009.02.010 

4  I. Richardson, M. Thomson, D. Infield, A. Delahunty, A Modelling Framework for the Study of 
Highly Distributed Power Systems and Demand Side Management, Proceedings of the 1st 
International Conference on Sustainable Power Generation and Supply (SUPERGEN), 
Nanjing, China, 6-7th April, 2009. http://dx.doi.org/10.1109/SUPERGEN.2009.5348274. 

5  I. Richardson, G. Hodgson, M. Thomson, D. Infield, A. Delahunty, Simulation of high-
resolution domestic electricity demand based on a building occupancy model and its 
applicability to the study of demand side management, The 5th International Conference on 
Energy Efficiency in Domestic Appliances and Lighting (EEDAL), Berlin, June 16th-18th, 
2009.  http://hdl.handle.net/2134/4972. 

6  I. Richardson, M. Thomson, Highly distributed power systems: Distribution network modelling 
and demand simulation, The Universitas 21 International Conference in Energy 
Technologies and Policy, 7-10 September 2008, University of Birmingham, UK. 

7  I. Richardson, M. Thomson, Domestic active occupancy model - simulation example, 
Loughborough University Institutional Repository (2008) http://hdl.handle.net/2134/3112  

8  I. Richardson, M. Thomson, Domestic lighting demand model - simulation example, 
Loughborough University Institutional Repository (2008) http://hdl.handle.net/2134/4065  

9  I. Richardson, M. Thomson, Domestic electricity demand model - simulation example, 
Loughborough University Institutional Repository (2010) http://hdl.handle.net/2134/5786  

10   UK Data Archive, University of Essex, Colchester, Essex. http://www.data-archive.ac.uk   

11  Economic and Social Data Service (ESDS), University of Essex, Colchester, Essex. 
https://www.esds.ac.uk/  

12   M. Armstrong, M. Swinton, H. Ribberink, I. Beausoleil-Morrison, J. Millette, Synthetically 
derived profiles for representing occupant-driven electric loads in Canadian housing, Journal 
of Building Performance Simulation, 2 (1) (2009) 15-30. 

 



References      
  

 

   186 

 

13  J. Widén, M. Lundh, I. Vassileva, E. Dahlquist, K. Ellegård, E. Wäckelgård, Constructing load 
profiles for household electricity and hot water from time-use data-Modelling approach and 
validation, Energy and Buildings, 41 (7) (2009) 753-768. 

14  J. Widén, A. Nilsson, E. Wäckelgård, A combined Markov-chain and bottom-up approach to 
modelling of domestic lighting demand,  Energy and Buildings 41 (10) (2009) 1001-1012. 

15  J. Widén, E. Wäckelgård, A high-resolution stochastic model of domestic activity patterns 
and electricity demand, Applied Energy 87 (6) (2010) 1880-1892. 

16  Y. Chiou, Deriving U.S. Household Energy Consumption Profiles from American Time Use 
Survey Data, Building Simulation 2009, Eleventh International IBPSA Conference, Glasgow, 
Scotland, July 27-30, 2009. 

17  Y. Chiou, A Time Use Survey Derived Integrative Human-Physical Household System 
Energy Performance Model, 26th Conference on Passive and Low Energy Architecture, 
Quebec City, Canada, 22-24 June, 2009. 

18  S. Firth, R. Buswell, K. Lomas, A Simple Model of Domestic PV Systems and their 
Integration with Building Loads, Building Simulation 2009, Eleventh International IBPSA 
Conference, Glasgow, Scotland, July 27-30, 2009. 

19  S. Hay, A. Rice, The case for apportionment, Proceedings of the First ACM Workshop On 
Embedded Sensing Systems For Energy-Efficiency In Buildings, Berkeley, US, 3 Nov, 2009. 

20  J. Paauw, B. Roossien, M. Aries, O. Guerra Santin, Energy pattern generator - 
Understanding the effect of user behaviour on energy systems, First European conference 
on energy efficiency and behaviour, Maastricht, The Netherlands, 18th-20th October, 2009. 

21  J.Carval, High Time Resolution Appliance Energy Use, Monitoring & Residential Climate 
Dependant End-Uses Analysis, Fourth Year Internship Report, Lawrence Berkeley National 
Laboratory, US (2008) 

22  R. Baetens, R. De Coninck, L. Helsen, D. Saelensa, The impact of domestic load profiles on 
the grid-interaction of building integrated photovoltaic (BIPV) systems in extremely low-
energy dwellings, Renewable Energy Research Conference 2010, Trondheim, Norway, 7th-
8th June, 2010, 

23  Young-Jin Kim, Cheol-Soo Park, Stochastic Model Based Prediction of Occupants' Presence 
in Residential Apartment Buildings, Architectural Institute of Korea 25 (3) 271-279. 

24  C. Liao, P. Barooah, An Integrated Approach to Occupancy Modeling and Estimation in 
Commercial Buildings, 2010 American Control Conference, 30th June - 2nd July, 2010, 
Baltimore. 

25  C. Jardine, G. Ault, Scenarios for examination of highly distributed power systems, 
Proceedings of the I MECH E Part A Journal of Power and Energy 222 (7) (2008) 643-655. 

 



References      
  

 

   187 

 

26  J. Watson, Tyndall Centre for Climate Change Research, UK Electricity Scenarios for 2050, 
Working Paper 41, 2003. 

27  National Grid plc, Policy Brief: Operating the System Beyond 2020, June 2009. 
http://www.nationalgrid.com/NR/rdonlyres/45D855F7-32B6-41E5-9BD5-
1B9A65DB9197/35114/FactSheet2020SO1.pdf (Consulted 22nd June, 2010) 

28  M. Stadler, W. Krause, M. Sonnenschein, U. Vogel, Modelling and evaluation of control 
schemes for enhancing load shift of electricity demand for cooling devices, Environmental 
Modelling & Software 24 (2) (2009) 285-295. 

29  A. Sheffrin, H. Yoshimura, D. LaPlante, B. Neenan, Harnessing the Power of Demand, The 
Electricity Journal 21 (2) (2008) 39-50. 

30  M.H. Albadi, E.F. El-Saadany, A summary of demand response in electricity markets, 
Electric Power Systems Research 78 (11) (2008) 1989-1996. 

31  UK Department of Energy and Climate Change, Energy Consumption in the UK, Domestic 
data tables, A National Statistics Publication, 2009. Crown copyright. 

32  Office for National Statistics, Social Trends No. 39 (2009 Edition), Crown Copyright 2007. 

33  Group Average Demand (GAD) Profile Class 1, Domestic Unrestricted, Electricity user load 
profiles by profile class, UK Energy Research Centre (UKERC) Energy Data Centre, 
Electricity Association (supplied by Elexon Ltd), http://data.ukedc.rl.ac.uk/cgi-
bin/dataset_catalogue//view.cgi.py?id=6.  

34  Elexon,  Load Profiles and Their Use in Electricity Settlement, 
http://www.elexon.co.uk/documents/participating_in_the_market/market_guidance_-
_industry_helpdesk_faqs/load_profiles.pdf, (consulted 2nd July, 2010). 

35  G. Offer, D. Howey, M. Contestabile, R. Clague, N. Brandon, Comparative analysis of 
battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport 
system, Energy Policy, In Press, Corrected Proof, Available online 8 September 2009. 

36  Department for Business Innovation and Skills, 2006 Local Authority consumption statistics 
from Energy Trends table,  Electricity and Gas Consumption Data at Middle Layer Super 
Output Area and Intermediate Geography (MLSOA/IG): 2006, East Midlands Government 
Office region, 2007. 

37  R. Webster, Can the electricity distribution network cope with an influx of electric vehicles?, 
Journal of Power Sources, Volume 80 (1-2) (1999) 217-225. 

38  Electricity Regulations, Statutory Instrument 2002 No. 2665, The Electricity Safety, Quality 
and Continuity Regulations (ESQCR) 2002, Crown Copyright 2002. 
http://www.opsi.gov.uk/si/si2002/20022665.htm 

 



References      
  

 

   188 

 

39  British Standard BS 7671:200,1 Amendment No 2, Appendix 2, Paragraph 14. 

40  M. Thomson, D. G. Infield, Network Power-Flow Analysis for a High Penetration of 
Distributed Generation, IEEE Transactions on Power Systems 22 (3) (2007) 1157-1162. 

41  UK Department for Business Innovation & Skills (formerly the Department of Trade and 
Industry), Halcrow Group Ltd, Distribution System Constraints and their Impact on 
Distributed Generation, Final Report, Crown Copyright 2004, 
http://www.bis.gov.uk/files/file20833.pdf  

42  P. Barker, R. De Mello, Determining the impact of distributed generation on power systems. 
I. Radial distribution systems, IEEE Power Engineering Society Summer Meeting 3 (2000) 
1645-1656. 

43  Central Networks, Network Design Manual, Version 7.7, 2006. 

44  D. McQueen, P. Hyland, S. Watson, Monte Carlo simulation of residential electricity demand 
for forecasting maximum demand on distribution networks, IEEE Transactions on Power 
Systems 19 (3) (2004) 1685-1689. 

45  MoSCoW requirements methods, http://en.wikipedia.org/wiki/ (Consulted 28th June, 2010). 

46  L. Swan, V. Ismet Ugursal, Modeling of end-use energy consumption in the residential 
sector: A review of modeling techniques, Renewable and Sustainable Energy Reviews 13 (8) 
(2009) 1819-1835. 

47  G. Gross, F. Galiana, Short term load forecasting, Proceedings of the IEEE 75 (12) (1987) 
1558-1573. 

48  I. Moghram, S. Rahman, Analysis and evaluation of five short-term load forecasting 
techniques, IEEE Transactions on Power Systems 4 (4) (1989) 1484-1491. 

49  J. Paatero, P. Lund, A model for generating household electricity load profiles, International 
Journal of Energy Research 30 (5) (2006) 273–290. 

50  A. Capasso, W. Grattieri, R. Lamedica, A. Prudenzi, A bottom-up approach to residential 
load modelling, IEEE Transactions on Power Systems 9 (2) (1994) 957-964. 

51  M. Stokes, Removing barriers to embedded generation: a fine-grained load model to support 
low voltage network performance analysis (PhD Thesis), Institute of Energy and Sustainable 
Development, De Montfort University, Leicester, 2005. 

52  J. Widén, Distributed Photovoltaics in the Swedish Energy System, Model Development and 
Simulations, Licentiate Thesis, Uppsala University, Sweden (2009). 

 



References      
  

 

   189 

 

53  O. Santin, L. Itard, H. Visscher, The effect of occupancy and building characteristics on 
energy use for space and water heating in Dutch residential stock, Energy and Buildings 41 
(11) (2009) 1223-1232. 

54  S. Abu-Sharkh, R. Li, T. Markvart, N. Ross, P. Wilson, R. Yao, K. Steemers, J. Kohler, R. 
Arnold, Microgrids: distributed on-site generation, Technical Report 22, Tyndall Centre for 
Climate Change Research, 2005. 

55  Y. Yohanis, J. Mondol, A. Wright, B. Norton, Real-life energy use in the UK: How occupancy 
and dwelling characteristics affect domestic electricity use, Energy and Buildings 40 (6) 
(2008) 1053-1059. 

56  G. Tso, K. Yau, A study of domestic energy usage patterns in Hong Kong, Energy 28 (15) 
(2003) 1671-1682. 

57  K. Papakostas, B. Sotiropoulos, Occupational and energy behaviour patterns in Greek 
residences, Energy and Buildings 26 (2) (1997) 207-213. 

58  G. Wood, M. Newborough, Dynamic energy-consumption indicators for domestic appliances: 
environment, behaviour and design, Energy and Buildings 35 (8) (2003) 821-841. 

59  T. Crosbie, Household energy consumption and consumer electronics: The case of 
television, Energy Policy 36 (6) (2008) 2191-2199. 

60  M. Stokes, M. Rylatt, K. Lomas, A simple model of domestic lighting demand, Energy and 
Buildings 36 (2) (2004) 103–116. 

61  R. Yao, K. Steemers, A method of formulating energy load profile for domestic buildings in 
the UK, Energy and Buildings 37 (6) (2005) 663-671. 

62  C. Jardine, Synthesis of high resolution domestic electricity load profiles, First International 
Conference and Workshop on Micro-Cogeneration Technologies and Applications National 
Arts Centre, Ottawa, Ontario, 2008. 

63  Ipsos-RSL and Office for National Statistics, United Kingdom Time Use Survey, 2000 
(Computer File), third ed., UK Data Archive (distributor), Colchester, Essex, September 
2003, SN: 4504. 

64  C. Reinhart, Lightswitch-2002: a model for manual and automated control of electric lighting 
and blinds, Solar Energy 77 (1) (2004) 15-28. 

65  D. Hunt, The use of artificial lighting in relation to daylight levels and occupancy, Building 
and Environment 14 (1) (1979) 21–33. 

66  M. Bladh, H. Krantz, Towards a bright future? Household use of electric light: A microlevel 
study, Energy Policy 36 (2008) 3521-3530. 

 



References      
  

 

   190 

 

67  A. Prudenzi, A. Silvestri, M. Regoli, A Residential Electric Load Simulator to Support 
Demand Management Strategies in Competitive Electricity Markets, The 5th International 
Conference on Energy Efficiency in Domestic Appliances and Lighting (EEDAL), Berlin, June 
16-18, 2009. 

68  A. Wright, S. Firth, The nature of domestic electricity-loads and effects of time averaging on 
statistics and on-site generation calculations, Applied Energy 84 (4) (2007) 389-403. 

69  IEA/ECBCS Annex 42: The Simulation of Building-Integrated Fuel Cell and Other 
Cogeneration Systems, Data files. http://cogen-sim.net/index.php?pg=datafiles  (Consulted 
28th June, 2010). 

70  UK Energy Research Centre (UKERC), Energy Data Centre (EDC), List of all datasets held 
by the EDC, http://data.ukedc.rl.ac.uk/cgi-bin/dataset_catalogue/catalogue.cgi.py (Consulted 
23rd September, 2009). 

71  M. Stokes, M. Rylatt, K. Lomas, A simple model of domestic lighting demand, Energy and 
Buildings 36 (2) (2004) 103–116. 

72  I. Knight, N. Kreutzer, M. Manning, M. Swinton, H. Ribberink, European and Canadian non-
HVAC Electric and DHW Load Profiles for Use in Simulating  the Performance of Residential 
Cogeneration Systems, A Report of Subtask A of FC+COGEN-SIM The Simulation of 
Building-Integrated Fuel Cell and Other Cogeneration Systems, Annex 42 of the International 
Energy Agency Energy Conservation in Buildings and Community Systems Programme 
(2007). 

73  Swedish Energy Agency, http://www.energimyndigheten.se/en/Facts-and-figures1/Improved-
energy-statistics-in-buildings/Measuring-household-electricity-at-individual-equipment-level/, 
(Consulted 1st August, 2010). 

74  “Loughborough University to recruit energy research volunteers”, Press release: Latest news 
from Loughborough University, 24 April 2007 PR 07/51, 
http://www.lboro.com/service/publicity/news-releases/2007/51_energy_volunteers.html 
(Consulted 28th September, 2009). 

75  Profile of Charnwood Wards, Charnwood Borough Council, 
http://www.charnwood.gov.uk/pages/profilesofcharnwoodwards (Consulted 30th September, 
2009). 

76  Elster A1140 meter specification, http://www.elster.ru/en/443.html (Consulted 30th 
September, 2009). 

77  I. Knight, N. Kreutzer, M. Manning, M. Swinton, H. Ribberink, European and Canadian non-
HVAC Electric and DHW Load Profiles for Use in Simulating the Performance of Residential 
Cogeneration Systems, A Report of Subtask A of FC+COGEN-SIM The Simulation of 
Building-Integrated Fuel Cell and Other Cogeneration Systems, Annex 42 of the International 

 



References      
  

 

   191 

 

Energy Agency Energy Conservation in Buildings and Community Systems Programme 
(2007), http://cogen-sim.net/ . 

78  N. H. Skinner, Load Research and Its Application to Electricity Demand Forecasting, 
Proceedings of the 1983 I.O.S. Annual Conference on Energy Statistics, The Statistician 33 
(1) (1984) 65-73. 

79  Digest of United Kingdom energy statistics (DUKES), Department of Energy and Climate 
Change, A National Statistics publication, London: TSO, Crown Copyright,  2009. 

80  Department for Environment, Food and Rural Affairs (DEFRA), Building Research 
Establishment Ltd, Construction Research Communications Ltd, BREDEM-8 Model 
Description, 2001 Update. 

81  U.S. Department of Energy, Energy Information Administration, 2005 Residential Energy 
Consumption Survey: Energy Consumption and Expenditures Tables, 
http://www.eia.doe.gov/emeu/recs/recs2005/c&e/summary/pdf/tableus8.pdf (Consulted 16th 
November, 2009). 

82  E.W. Weisstein, Markov Chain, From MathWorld -- A Wolfram Web Resource. 
http://mathworld.wolfram.com/MarkovChain.html  (consulted 23rd November, 2007). 

83  The Lighting Association, Telford, UK. In Home Lighting Audit Report, Domestic Lighting 
Report 2008. 

84  Solar irradiation data for Loughborough (2007), Centre for Renewable Energy Systems 
Technology (CREST), Loughborough University, UK. 

85  Department for Environment, Food and Rural Affairs, Smith Square, London, UK. Market 
Transformation Programme, Assumptions for energy scenarios in the domestic lighting 
sector, version 4.0, 2008. 

86  Boardman et al., DECADE, Second year report, Energy and Environment Programme, 
Environmental Change Unit, University of Oxford, UK, 1995. 

87  E. Mills, M. Siminovitch, "Dedicated CFL Fixtures Bring Savings Home", International 
Association for Energy Efficient Lighting, IAEEL newsletter 1/95. 

88  U.S. Department of Energy, Energy Information Administration, 1993 Residential Energy 
Consumption Survey, Mean Annual Electricity Consumption for Lighting, by Family Income 
by Number of Household Members, http://www.eia.doe.gov/emeu/lighting/. 

89  T. Betts, Solar Irradiation Data for Loughborough, Centre for Renewable Energy Systems 
Technology (CREST), Loughborough University, UK, 2007. 

 



References      
  

 

   192 

 

90  UK Department of Energy and Climate Change (DECC) (formerly the Department for 
Business, Enterprise and Regulatory Reform), Energy Consumption in the UK, Domestic 
data tables, A National Statistics Publication, 2009. 

91  UK Market Transformation Programme, Department for Environment, Food and Rural 
Affairs, Smith Square, London, UK, http://www.mtprog.com/, 2008. 

92  T. Fawcett, K. Lane, B. Boardman, et al., Lower Carbon Futures for European Households, 
Environmental Change Institute (ECI), University of Oxford, UK, 2000. 

93  40% House, B. Boardman, S. Darby, G. Killip, M. Hinnells, C. Jardine, J. Palmer, G. Sinden, 
Environmental Change Institute, University of Oxford, UK, 2005. 

94  UK Ofcom, Southwark Bridge Road, London, http://www.ofcom.org.uk/research/. 

95  The Energy Saving Trust, Domestic heating by electricity (2006 edition), CE185, UK, 2006. 

96  UK Department for Business Innovation and Skills, 2006 Local Authority consumption 
statistics from Energy Trends table,  Electricity and Gas Consumption Data at Middle Layer 
Super Output Area and Intermediate Geography (MLSOA/IG), 2006, East Midlands 
Government Office region, 2007. 

97  Washing machine profile data from personal communication with a major washing machine 
appliance manufacturer. 

98  National Grid plc. Distribution Network Operator (DNO) Companies, 
http://www.nationalgrid.com/uk/Electricity/AboutElectricity/DistributionCompanies/ (Consulted 
12th July, 2010). 

99  Department for Trade and Industry (DTI), P B Power, Micro Generation Network Connection, 
URN 03/537 (2003)  

100  UK Office of Gas and Electricity Markters (Ofgem), Distribution Code, 
http://www.ofgem.gov.uk/Licensing/ElecCodes/DistCode/Pages/DistCode.aspx (Consulted 
12th July, 2010). 

101  Energy Networks Association, http://2010.energynetworks.org/link-to-engineering-
documents/ (Consulted 12th July 2010). 

102  C. Buck, History of the Electricity Council, Supplement to the Histelec News, March 2009, 
http://www.swehs.co.uk/archives/news41su.pdf (Consulted 12th July, 2010). 

103  Energy Networks Association, Document Catalogue, ACE Report 13, Design of medium 
voltage underground networks for new housing estates (1966) http://www.ena-eng.org/ENA-
Docs/EADocs.asp?WCI=SearchResults&DocSubjectID=94  

 



References      
  

 

   193 

 

104  Energy Networks Association, Document Catalogue, ACE Report 105, Report on the design 
of low voltage underground networks for new housing (1986) http://www.ena-eng.org/ENA-
Docs/EADocs.asp?WCI=SearchResults&DocSubjectID=94  

105  Energy Networks Association, Document Catalogue, ACE Report 49, Statistical method for 
calculating demands and voltage regulations on LV radial distribution systems (1981) 
http://www.ena-eng.org/ENA-Docs/EADocs.asp?WCI=SearchResults&DocSubjectID=94  

106  Cooper Power Systems, CYMDIST, http://www.cyme.com/software/cymdist/  (Consulted 12th 
July, 2010). 

107  ITC Software, DINIS, http://www.itcsoftware.com/energy/dinisfeatures.htm (Consulted 12th 
July, 2010). 

108  DIgSILENT PowerFactory, 
http://www.digsilent.de/Software/DIgSILENT_PowerFactory/PFv14_Software.pdf (Consulted 
12th July, 2010). 

109  Open Systems International Inc., OpenDNA, http://www.osii.com/pdf/dms/OpenDNA_PS.pdf 
(Consulted 12th July, 2010). 

110  Siemens PSS Sincal,http://www.energy.siemens.com/hq/en/services/power-transmission-
distribution/power-technologies-international/software-solutions/pss-sincal.htm (Consulted 
12th July, 2010). 

111  GE Smallworld Design Manager 
http://www.gepower.com/prod_serv/products/gis_software/en/downloads/design_manager_o
verview.pdf (Consulted 12th July, 2010). 

112  EA Technology, WinDEBUT, 
http://www.eatechnology.com/business/consulting/softwaresolutions (Consulted 12th July, 
2010). 

113  ETAP, Operation Technology Inc, ETAP, http://etap.com/company/oti-operation-
technology.htm (Consulted 12th July, 2010). 

114  A. Ekwue, N. Roscoe, C. Lynch, A Survey of Power Systems Packages for Distribution 
Network Analysis, PB Network 68, August 2008. 

115  http://www.phasetophase.nl/en_products/vision_lv_network_design.html (Consulted 7th 
December, 2009). 

116  A. Beddoes, A Collinson, EA Technology Ltd, Likely Changes to Network Design as a 
Results of Significant Embedded Generation, DTI/Pub URN 01/782, Crown Copyright, 2001. 

117  A. Povlsen, Impacts of power penetration from photovoltaic power systems in distribution 
networks, Task V Report, IEA-PVPS T5-10 (2002) 

 



References      
  

 

   194 

 

118  C. Barbier, A. Maloyd, G. Putrus, Embedded Controller for LV Network with Distributed 
Generation, Econnect Ventures Ltd., DTI Contract Number K/EL/00334/00/REP (2007) 

119  Department for Trade and Industry (DTI), P B Power, The Impact of Small Scale Embedded 
Generation on the Operating Parameters of Distribution Networks, URN 03/1051, Crown 
Copyright 2003. 

120  Department for Trade and Industry (DTI), Mott MacDonald, System Integration of Additional 
Microgeneration (SIAM), URN 04/1664, Crown Copyright 2004  

121  A. Collinson et al., EA Technology, DTI, The Impact of High PV Penetration Levels on 
Electrical Distribution Networks, URN 02/1289, Crown Copyright 2002 

122  P. Trichakis, P.C. Taylor, P.F. Lyons, R. Hair, Predicting the technical impacts of high levels 
of small-scale embedded generators on low-voltage networks, IET Renewable Power 
Generation 2 (4) (2008) 249-262. 

123  P. Richardson, A. Keane, Impact of High Penetrations of Micro-generation on Low Voltage 
Distribution Networks, Paper 0172, 20th International Conference on Electricity Distribution 
(CIRED), Prague, 8th-11th June, 2009. 

124  M. Thomson, D.G. Infield, Network Power-Flow Analysis for a High Penetration of Distributed 
Generation, IEEE Transactions on Power Systems 22 (3) (2007) 1157-1162. 

125  J. Widén, E. Wäckelgård, J. Paatero, P. Lund, Impacts of distributed photovoltaics on 
network voltages: Stochastic simulations of three Swedish low-voltage distribution grids, 
Electric Power Systems Research 80 (12) (2010) 1562-1571. 

126  United Kingdom Generic Distribution System, Centre for Sustainable Electricity and 
Distributed Generation, http://www.sedg.ac.uk/ (Consulted 23rd December, 2009) 

127  Radial Test Feeders - IEEE Distribution System Analysis Subcommittee, 
http://ewh.ieee.org/soc/pes/dsacom/testfeeders/index.html  (Consulted 8th July 2010) 

128  W. H. Kersting, Distribution System Modeling and Analysis (2nd ed.), Boca Raton, Florida, 
U.S., CRC Press, 2007. 

129  Ordnance Survey, Southampton, UK. OS MasterMap Topography Layer. © Crown 
Copyright. All Rights reserved. 

130  Ordnance Survey, Southampton, UK. OS MasterMap Address Layer 2. © Crown Copyright. 
All Rights reserved. 

131  British Standard BS 5489, Part 3, 1992, Road Lighting, Code of practice for lighting for 
subsidiary roads and associated pedestrian areas, BSI (1997) 

 



References      
  

 

   195 

 

132  The United States Naval Observatory (USNO), Naval Oceanography Portal, Sun or Moon 
Rise/Set Table for One Year: Locations Worldwide. 
http://www.usno.navy.mil/USNO/astronomical-applications/data-services/rs-one-year-world   

133  M. Thomson et al, Secondary distribution network power-flow analysis, Proceedings of the 
IASTED International Conference, Power and Energy Systems, February 24-26, 2003, Palm 
Springs, CA, USA. 

134  Census 2001 Key Statistics: Charnwood Borough Loughborough Lemyngton Ward, 2001 
Census, Office of National Statistics.    

135   UK Ofgem, Electricity Distribution Loss Percentages by Distribution Network Operator (DNO) 
Area, 
http://www.ofgem.gov.uk/Networks/ElecDist/Documents1/Distribution%20Units%20and%20L
oss%20Percentages%20Summary.pdf (Consulted 20th September, 2010). 

136  R. Shaw, M. Attree, T. Jackson, M. Kay, The value of reducing distribution losses by 
domestic load-shifting: a network perspective, Energy Policy 37 (2009) 3159-3167. 

 



Appendix A 
 

 

Ian Richardson, Murray Thomson, David Infield, 

A high-resolution domestic building occupancy model  

for energy demand simulations 

 

Energy and Buildings 40 (8) (2008) 1560-1566 

http://dx.doi.org/10.1016/j.enbuild.2008.02.006 

 



Appendix B 
 

 

Ian Richardson, Murray Thomson, David Infield, Alice Delahunty, 

Domestic lighting: A high-resolution energy demand model 

 

Energy and Buildings 41 (7) (2009) 781-789 

http://dx.doi.org/10.1016/j.enbuild.2009.02.010 



Appendix C 
 

 

Ian Richardson, Murray Thomson, David Infield, Conor Clifford, 

Domestic electricity use: A high-resolution energy demand model 

 

Energy and Buildings 42 (10) (2010) 1878-1887 

http://dx.doi.org/10.1016/j.enbuild.2010.05.023 

 



Appendix D 
 

 

Ian Richardson, Murray Thomson, David Infield, Alice Delahunty, 

A Modelling Framework for the Study of Highly Distributed Power Systems and 
Demand Side Management 

Proceedings of the 1st International Conference on Sustainable Power Generation and 

Supply (SUPERGEN), Nanjing, China, 6-7th April, 2009. 

http://dx.doi.org/10.1109/SUPERGEN.2009.5348274 

 

 



Appendix E 
 

 

Ian Richardson, Graeme Hodgson, Murray Thomson, David Infield, Alice Delahunty,  

Simulation of high-resolution domestic electricity demand based on a building 
occupancy model and its applicability to the study of demand side management 

The 5th International Conference on Energy Efficiency in Domestic Appliances and 

Lighting (EEDAL), Berlin, June 16th-18th, 2009.  

http://hdl.handle.net/2134/4972 

 

 

 



Simulation of high-resolution domestic electricity demand based 
on a building occupancy model and its applicability to the study of 
demand side management 

Ian Richardson a1, Graeme Hodgson a, Murray Thomson a, David Infield b, Alice 
Delahunty c 
a CREST (Centre for Renewable Energy Systems Technology), Loughborough 
University, UK 
b Department of Electronic and Electrical Engineering, University of 
Strathclyde, UK 
c E.ON Engineering Limited, UK 

Abstract 

Alongside the well understood need to reduce overall electricity consumption, there is an increasing 
need to provide demand response: the ability to time shift electrical demand in accordance with 
available low-carbon generation including wind, marine and solar power.  Many domestic loads can 
readily be employed to provide time shifting demand response in the range of minutes to hours and 
this concept is already the subject of numerous demonstrations worldwide.  The modelling presented 
in this paper provides a basis for the quantification of the availability and impact of demand response 
in the domestic sector. In particular, this paper describes the development of a domestic electricity 
demand model capable of providing data with a one-minute time resolution and with which the 
operation of demand response may be assessed.  The electricity demand model is constructed at the 
level of individual household appliances and their usage is based on surveyed time-use data.  This 
provides for appropriate temporal diversity of energy use between simulated dwellings.  Occupancy 
data allows the correlated usage of appliances to be represented within an actively occupied dwelling, 
as well as representing the sharing of appliances, such as lighting, in dwellings with multiple 
occupants.    This paper summarises previously developed occupancy and lighting models and 
explains how the lighting model can be extended to create an integrated appliance model. 

Introduction 

Demand response is considered to provide benefits to both electricity market operation and technical 
system efficiency [1],[2]. It is of particular interest in electricity generation systems that comprise time 
variable generation sources such as renewable technologies because demand can be scheduled to 
coincide with generation availability. 

The time of operation of many domestic loads may be shifted without undue inconvenience to the 
dwelling’s occupants.  An example is in the cold appliances category, where thermal storage provides 
scope to advance or delay a cooling cycle of a fridge [3].  A further example, in the wet appliance 
category, is a washing machine, where the delay of operation by several hours may have minimal 
impact on the household.  When aggregated to include many thousands of dwellings (and hence 
appliance units), there is clearly significant potential for demand rescheduling in response to market 
or technical balancing considerations.   

This work is concerned with the development of a model of domestic demand at sufficient time 
resolution (initially one-minute) to support studies of demand response.  Because effective demand 
response is dependent on having sufficient quantities of appliances to time shift, it is essential that 
any such modelling takes properly into account demand diversity between dwellings, as well as, 
appropriate correlation of appliance use within a dwelling that is actively occupied.  It is acknowledged 
that a one-minute time resolution is more suitable for local studies, rather than an electricity market. 
This resolution does however provide a basis for assessing fast demand response. 

                                                      
1 Corresponding author. Tel.: +44 1509 635326. Email: I.W.Richardson2@lboro.ac.uk (I. Richardson). Address: CREST, 
Department of Electronic and Electrical Engineering, Loughborough University, Leicestershire LE11 3TU, UK 



 2

The appliance model presented in this paper uses high-resolution domestic occupancy patterns as an 
input.  These patterns detail when people are active within a dwelling and hence likely to use 
electrical appliances.  The model simulates the use of the main types of electrical devices found in 
domestic dwellings in order to provide high-resolution synthetic electricity demand profiles. 

The occupancy model [4] and the domestic lighting [5] aspects of the model have both been 
completed and the results published.  Excel Worksheet examples of the models are available for free 
download [6],[7]. 

 

Architecture of the Appliance Model 

The architecture of the integrated appliance model is presented in Fig. 1.   The core of the model is 
the simulation of active occupancy, which is provided as one of a number of common data inputs to 
the individual appliance models.  The use over time of domestic appliances is stochastically 
simulated.  The simulation uses a set of physical input factors, such active occupancy and the level of 
natural light which are both used to determine the demand for lighting. 

 

Fig. 1. Architecture of the integrated appliance model 

In a high-resolution simulation, the power demand of all appliances in use at a given time is summed 
to give an overall domestic demand profile for each dwelling in the simulation.  The model is validated 
by comparing the demand profiles against measured data that is being recorded as part of the study. 
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In the context of demand response, the model is capable of taking into account other data, such as 
pricing or electricity generation supply margin, in the form of a demand response signal as can be 
seen in Fig. 1.  Furthermore, the fast demand response capability of heat pump or micro-CHP units 
will depend upon thermal constraints.  For example, the internal temperature of the dwelling and the 
heating thermostat set-point will constrain the delay or advance of heating cycles.  A simple building 
heat demand model will therefore be integrated to provide thermal data to the appliance model. 

The core aspects of domestic occupancy pattern simulation and the approach to the modelling of 
individual appliance categories are presented in the following sections. 

 

The Modelling of Domestic Occupancy 

Why use occupancy as a basis for energy modelling? 

The nature of appliance usage within domestic dwellings varies significantly throughout the day as a 
result of the behaviour of the occupants. The number of residents who live in a dwelling, together with 
the pattern of their active occupancy are key determinants of the energy demand profile of a dwelling 
[4],[8].  Active occupancy refers to occupants that are within a dwelling and are not asleep. 

The modelling of domestic occupancy as a basis for energy demand simulations has three benefits:  

Firstly, it is possible to take account of the sharing of appliance use.  For example, a second occupant 
arriving home on a winter evening is likely to only incrementally increase, rather than say double, the 
lighting demand upon their arrival.  An occupancy model can address this by providing a numerical 
sequence of the number of active occupancy over a number of time periods. 

Secondly, active occupancy enables multiple different appliance models to use the same input data. 
For example, an actively occupied house on a winter evening is likely to have both lighting and 
television appliance loads.  This correlation of appliance use is a particular issue for stochastic 
appliance models, as independently representing appliances will not provide the required realistic 
diversity in usage. 

Thirdly, being able to apply stochastically generated occupancy patterns to a large number of 
dwellings allows for appropriate diversity in energy demand between dwellings over time. 

 

Model Implementation 

The occupancy model uses the data captured in diaries from the United Kingdom 2000 Time Use 
Survey (TUS) [9] as a basis for a stochastic simulation of occupancy.  This data in the survey contains 
information on the location and activities the occupants were undertaking during the survey at a ten-
minute resolution. This data is used to determine when occupants were active and not asleep.  The 
model uses a Markov Chain method to generate statistically comparable data sets using a set of 
transition probability matrices to represent the likelihood of changes in the number of active occupants 
within a dwelling over time. 

Using the Model 

The model is run to generate stochastic active occupancy profiles.  Two example occupancy profiles 
are shown in Fig. 2, both for dwellings with two occupants.   The first example is representative of a 
dwelling lived in by a couple that both work.  There is no active occupancy during the night, a short 
period of activity at breakfast, followed by absence through the day with further activity in the evening.  
The second example is perhaps more representative of a retired couple.  In this case, both occupants 
are active within a dwelling for the majority of the day with a three hour gap in the morning.  Note that 
the transition from two to zero active occupants occurs simultaneously at 09:00 AM.  The state 
transition approach allows for correlated changes in dwelling occupancy. 
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(a) Example 1 
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(b) Example 2 

Fig. 2. Example active occupancy profiles for two dwellings, each with two residents 

 

The results of a simulation of 1000 dwellings for weekdays are shown in Fig. 3.  Each dwelling in the 
simulation has been allocated a total number of occupants using UK household statistical data [10].  
The plot shows the proportion of dwellings that have active occupancy, showing one, two or three or 
more active occupants throughout the day.  As is to be expected, there is very low activity at night, 
with a sharp spike at breakfast time, a small activity increase at lunch time and a significant further 
rise in activity in the evening period.  The graph shows that we can expect approximately 80% of 
houses to have active occupants in a given sample during the evening period. 
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Fig. 3. Simulation results of the proportion of houses with different level of weekday active 
occupancy, over one day (from a pool of 1000 houses, averaged over one year) 

 

The model is capable of the generation of large quantities of synthetic occupancy data.  Each time a 
dwelling is simulated, a different profile will be generated.  When aggregated together with other 
dwellings, the profile will tend towards that seen in Fig. 3.   

It is notable that the active occupancy profiles shown in Fig. 3, which are based purely on people’s 
time use diaries, already bear a strong resemblance to typical electricity demand profiles that may be 
measured in houses in the UK [4].  This strongly supports our earlier assertion that domestic 
electricity use varies as a result of the behaviour of the occupants.  

 

 

An Integrated Appliance Model 

The active occupancy data is used as a common input to a set of appliance models that represent the 
typical range of consumer electronic devices found within domestic dwellings.  The first component of 
the integrated appliance model is for domestic lighting use [5]. 

 

A Model of Domestic Lighting Use 

In addition to utilising the state of active occupancy within a dwelling at a given time, the lighting 
model uses the physical concept of the level of natural light at a given time in determining domestic 
lighting demand.  Using these two dynamic variables in a high-resolution time based model, allows a 
consistent light level to be applied to a number of dwellings, whilst demand diversity is accounted for 
by the variations in active occupancy between dwellings.  The direct use of natural light level also 
introduces seasonality into the model, since winter evenings are dark, resulting in a greater lighting 
demand. 
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From a demand response perspective, it is important to be able to represent individual appliances 
within a dwelling such that it is possible to explore time shifting aspects on individual appliances.  The 
model therefore has the capability to represent individual lighting units (typically a single bulb or 
multiple bulb light fittings).  The model operates by stochastically determining the likelihood of a 
lighting unit switch-on event occurring for each bulb in each simulated dwelling at every time step.  An 
example simulation output is presented in Fig. 4. 
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Fig. 4. Single dwelling lighting simulation example (weekend day in September, two occupants 
living in the dwelling) 

 

The physical input factors are shown in Fig. 4a.  As a weekend day, both occupants are active for 
most of the day.  Lighting is used mainly in the earlier morning and evening hours. 

The aggregated demand for lighting in 100 dwellings is shown in Fig. 5.  Examples are shown for both 
a winter and a summer day.  The winter scenario shows a significant demand in the morning hours 
and the evening demand starts in the late afternoon as would be expected.  In summer, lighting 
demand ramps up much later in the evening due to the longer daylight hours. 

(a) Simulated lighting demand (single dwelling) 

(b) Input data 
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Fig. 5. Simulated aggregated lighting demand (100 dwellings) for winter and summer days 

 

 

Extending the Model into an Integrated Dwelling Appliance Model 

The authors are currently in the process of extending the model to provide a fully integrated domestic 
appliance energy demand model.  Utilising the same common active occupancy data for a dwelling, 
an integrated appliance model can be constructed.  Whereas lighting use was determined as 
depending upon occupancy as well as natural light, different appliance types will be used at varying 
times of the day.  For example, cooking appliances will typically be used at meal times, and television 
usage may predominantly take place in the evening. 

The TUS data [9] contains details on the survey participants’ activities throughout each day of the 
survey.  This data is used to determine daily probability profiles of particular activity categories.  For 
example, activities such as cooking, washing, laundry, television and entertainment activities are 
reported in the diary data and the times when these activities take place each have a statistical daily 
profile.  The stochastic model uses these distributions to assign relative weights of the likelihood of a 
particular appliance being used.  For example, the TUS data shows that television usage does 
increase through the day, peaking in the evening.  In the appliance model, an appliance structure 
similar to that described by Paatero and Lund [11] is used, together with a ‘starting probability’ 
function that is used to stochastically determine when appliances are switched-on.   

Prior to a simulation, each house is configured with a set of appliances, similar to that of the 
configuration of the number and types of bulbs within the lighting model.  At each time step in the 
simulation, appliance start events are stochastically determined.  When an appliance is used, its 
power demand is added to the aggregated total for the dwelling. 

In parallel with the modelling work, electricity demand is being measured in 22 real households in 
Loughborough UK. The logging equipment has been in service for over a year and provides validation 
data with a one-minute time resolution. 

Examples of both synthetic and measured domestic appliance profiles are shown in Fig. 6a and 6b 
respectively.  Daily demand profiles vary significantly, both between different dwellings on the same 
day, as well as between different days for the same dwelling.  The plots shown are random samples 
and it would not be expected for them to match. However, there are common characteristics and the 
example is shown to present how active occupancy is a significant driver of appliance usage.  The 
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cycling of cold appliances can be seen in both data sets.  The active occupancy is shown against the 
synthetic data and it can be seen that the majority of demand takes places only when there is active 
occupancy in the dwelling.  Similarly in the measured data, it can be seen that the use of appliances 
takes place mainly in the early morning and evening periods.  In the measured data, the house can be 
seen to be inactively occupied throughout the night, and between the mid-morning and mid-afternoon 
periods.  The occupants can be seen to retire for the day shortly after 10PM. 
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(a) Synthetic domestic profile for one day shown with active occupancy 
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(b)  Example measured domestic demand profile 

Fig .6. Synthetic and measured domestic demand profile examples 

 

Application of demand modelling to demand side management 

The construction of the high-resolution model at an appliance level, as has been described, was 
designed from the outset to allow the study of DSM, particularly with respect to appliance time shifting 
and to assess the impact of smart appliances.   

For example, if the simulation determines that a washing machine start event is required at a point in 
time, then we can delay the actual start time by any required factor.  Since the model can simulate 
large quantities of dwellings simultaneously, we will be able to make an assessment of the potential 
for different types of appliance to profile a demand response service. 

Since each component of the model is constructed to take account of physical input conditions (such 
as lighting, which uses both active occupancy and the natural light level), it is also possible to take 
into account other conditions or signals, such as real-time pricing data or generation supply margin 
data. 
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In the context of domestic electricity micro-generation, signals, such as an indication of insufficient 
supply margin over a short time period, could be used to bring forward the firing cycles of micro 
combined heat and power units.   Similarly, delaying the use of ground or air source heat pumps can 
provide demand response.   

The model described is also capable of supporting the study of energy efficiency measures through 
the changing of the demand parameters of particular appliance categories.  For example, the 
increased use of compact fluorescent light can be explored by changing the statistical distribution of 
lighting technologies within a particular group of dwellings. 

 

Conclusions 

This paper has outlined work to develop a high-resolution domestic electricity demand model.  The 
model is based upon dwelling occupancy patterns, which are a key contributor to the patterns of 
energy use in the home.  This approach provides significant advantages in terms of providing the 
appropriate levels of diversity in energy use between simulated dwellings and also allows appliance 
usage to be shared within the home, with appropriate usage correlation in time.  

It is important that the model represents individual appliances, in order that the demand response 
potential of different appliance groups can be properly simulated.  It would not be possible to perform 
such analysis solely with an aggregated demand profile. 

The active occupancy and lighting elements of the model have already been published and example 
implementations of the models are freely available for use and integration in other energy demand 
studies.  The detail of the full integrated appliance model is intended as the subject of a forthcoming 
publication. 

 

References 

[1] Anjali Sheffrin, Henry Yoshimura, David LaPlante, Bernard Neenan, Harnessing the Power of 
Demand, The Electricity Journal, Volume 21, Issue 2, March 2008, Pages 39-50. 

[2] M.H. Albadi, E.F. El-Saadany, A summary of demand response in electricity markets, Electric 
Power Systems Research, Volume 78, Issue 11, November 2008, Pages 1989-1996. 

[3] Michael Stadler, Wolfram Krause, Michael Sonnenschein, Ute Vogel, Modelling and evaluation 
of control schemes for enhancing load shift of electricity demand for cooling devices, 
Environmental Modelling & Software, Volume 24, Issue 2, February 2009, Pages 285-295. 

[4] Ian Richardson, Murray Thomson, David Infield, A high-resolution domestic building occupancy 
model for energy demand simulations, Energy and Buildings, Volume 40, Issue 8, 2008, Pages 
1560-1566. doi:10.1016/j.enbuild.2008.02.006 

[5] Ian Richardson, Murray Thomson, David Infield, Alice Delahunty, Domestic lighting: A high-
resolution energy demand model, Energy and Buildings, In Press, Corrected Proof, Available 
online 6 March 2009. doi:10.1016/j.enbuild.2009.02.010 

[6] Ian Richardson, Murray Thomson, Domestic Active Occupancy Model—Simulation Example, 
Loughborough University Institutional Repository (2008) http://hdl.handle.net/2134/3112. 

[7] Ian Richardson, Murray Thomson, Domestic Lighting Demand Model—Simulation Example, 
Loughborough University Institutional Repository (2008) http://hdl.handle.net/2134/4065. 

[8]  S. Abu-Sharkh, R. Li, T. Markvart, N. Ross, P. Wilson, R. Yao, K. Steemers, J. Kohler, R. 
Arnold, Microgrids: distributed on-site generation, Technical Report 22, Tyndall Centre for 
Climate Change Research, 2005. 



 10

[9] Ipsos-RSL and Office for National Statistics, United Kingdom Time Use Survey, 2000 
(Computer File), third ed., UK Data Archive (distributor), Colchester, Essex, September 2003, 
SN: 4504. 

[10]  Office for National Statistics, Social Trends No. 36, 2006 Edition, HMSO, Crown Copyright 
2006. 

[11]  J. V. Paatero, P.D. Lund, A model for generating household electricity load profiles, 
International Journal of Energy Research 30 (5) (2005) 273-290. 

 

 

 

 

 

 

 

 

 

 



Appendix F 
 

Ian Richardson, Murray Thomson, 

Highly distributed power systems:  

Distribution network modelling and demand simulation 

(Conference Poster) 

 

Presented at the poster session at: 

The Universitas 21 International Conference in Energy Technologies and Policy 

7th-10th September, 2008, University of Birmingham, United Kingdom. 

http://hdl.handle.net/2134/5103 

 

 

  



 

 

 



Appendix G 
 

Loughborough Energy Study Dwelling Characteristics Survey Form 

 



CREST (Centre for Renewable Energy Systems Technology) 
GX Office, Garendon Wing, Holywell Park,  
Loughborough University,  
Loughborough.  
LE11 3TU 
 
telephone: 01509 635326 
email: I.W.Richardson2@lboro.ac.uk           Date: 2nd January 2009 
 

Loughborough Energy Study –Survey Form 
 
This survey should take less than five minutes to complete and has three parts: 
 

1. General energy use 
2. Lighting  
3. Appliances  

 
 
Please complete the survey electronically and return by email, or alternatively, print it out and 
return by post to Ian Richardson at the address above.  The data from this survey will be held 
in compliance with our Data Protection Policy.  
 
Please enter your unique meter reference number: 

(this can be found on your energy summary report):  0000 
 
Part 1 – General Energy Use 
 
 

Number of household occupants:   
 
Do you have gas or oil fired central heating? 
 

 Yes 
 No 

 
Do you use gas or oil to heat your water? 
 

 Yes – All year 
 Yes – Just in winter 
 No 

 
Do you have an electric shower? 
 

 Yes 
 No 

 
Do you regularly use any electric heaters? 
 

 Yes – Night storage heaters 
 Yes – Oil filled radiators, fan, convector or 

halogen heaters  
 No 

 
Do you have? 
 

 Double glazing 
 Draft proofing 
 Loft insulation 
 Cavity wall insulation 

 
Do you have an Economy 7 electricity 
tariff? 
 

 Yes 
 No 

 
Do you use timers to run any 
appliances at night (such as a 
washing machine)? 
 

 Yes 
 No 

 
Do you generate any of your own 
electricity (e.g. with grid connected 
solar panels)? 
 

 Yes 
 No 

YOUR UNIQUE 
METER REFERENCE



Part 2 - Lighting 
 
What percentage of your light bulbs are 
Energy Saving (including fluorescents)? 
 

      
 
How many halogen bulbs do you have? 
 

      
 

Do you use an outdoor floodlight (with 
or without a sensor)? 
 

 Yes 
 No 

 

 
 
 
Part 3 - Appliances 
 
How many of the following appliances do you have? (Please enter a number in each box.) 
 
Cold Appliances 

      Refrigerator 

      Fridge-freezer 

      Upright freezer 

      Chest freezer 

Consumer Electronics 

      Television – CRT (Cathode Ray Tube) 

      Television – Plasma screen 

      Television – LCD screen 

      Computer 

 
 
Which of the following appliances do you use regularly? (Please tick.) 
 
Cooking 

 Electric hob 
 Electric oven 
 Gas hob 
 Gas oven 

 
 Microwave 
 Kettle 
 Sandwich toaster 
 Toaster 
 Electric steamer 

Washing and Dishes 

 Dish Washer 
 Washing Machine 
 Tumble Dryer 
 Washer Dryer 

 
Other 

 Dehumidifier 
 Air conditioning unit 

 

 
 
 
Thank you for completing this survey. 



Appendix H 
 

Loughborough Energy Study Example Electricity Use Report 

 



CREST (Centre for Renewable Energy Systems Technology)
GX Office, Garendon Wing, Holywell Park, 
Loughborough University, LE11 3TU

Telephone: 01509 635326 Email: I.W.Richardson2@lboro.ac.uk

Loughborough Energy Study - Your 2008 Electricity Use Results

Part 1: Your Electricity Use During 2008
Survey date range:
01/01/2008 to 31/12/2008 4909

Your annual electricity usage: 2964 kWh/y

Your peak demand was: 12.1 kW at 21/12/2008 09:25

Number of full days of meter data: 341 from 366 (please refer to the covering letter.)

Part 2: Your Electricity Use Compared to Others in the Survey
There were 22 meters in the study, installed in domestic properties in the area.   The following details
compare your electricity use to the other meters in the survey.

Your electricity use ranking is: 6 / 22 (where 1 represents the lowest energy usage)
The average demand in the survey: 4191 kWh/y (over all 22 meters.)

As a further comparison, according to government statistics, the average annual electricity consumption
level in the Charnwood area in 2005 was 4451 kWh/year (1).

(1) BERR,  Middle layer super output area (MLSOA) electricity and gas estimates 2005
East Midlands Government Office region

Part 3: Your Monthly Electricity Usage in 2008
Your monthly electricity usage during 2008 is shown in the following graph:

Your Unique Meter Reference
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Part 4: Maximum, Average and Minimum Electricity Usage Days

The following three graphs show your electricity use over 24-hours for the maximum, nearest to average
and minimum use days.  The vertical axis shows the power consumption in kW at a one-minute resolution.

A. DAY OF MAXIMUM ELECTRICITY USE IN 2008
The day when you used the most electricity was on 31/12/2008. You used 17.0 kWh on that day:

B. AVERAGE DAY IN 2008
The nearest day to your overall daily average demand was on 09/11/2008. You used 8.1 kWh on that day:

C. LOWEST ELECTRICITY USE DAY IN 2008
The day when you used the least electricity was on 20/08/2008. You used 1.5 kWh on that day:
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Part 5: Seasonal Average Profiles

The following four graphs show your average daily use profile on a seasonal basis.  Each graph shows
your profile against the average profile for all meters in the study.

A. SPRING (March, April and May 2008)

A. SUMMER (June, July and August 2008)

A. AUTUMN (September, October and November 2008)

D. WINTER (January, February and December 2008)
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