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ABSTRACT 

The thesis is concerned with the estimation of the sampled 

impulse-response of time-varying voiceband channels, and in particular 

with the proposed synchronous serial transmission of 16-level quadra- 

ture amplitude modulated digital data signals at 9600 bit/s over HF 

radio links. With such a system, the optimum detector at the receiver 

is a maximum likelihood detector implemented, for example, using the 

Viterbi algorithm. In this case, the detector requires knowledge of 

the sampled impulse-response of the channel. Channel estimators can 

also be used for estimating the response of any time-varying linear 

bandpass channel and need not be restricted in use only with a 

maximum likelihood detector. They may be employed in any such 

application where a time-varying channel must be tracked to ensure 

the correct operation of the detector. 

The thesis includes a description of the ionospheric propagation 

medium, with particular emphasis on the nature of the impairments that 

are likely to be encountered by the data signal. An appropriate model 

of the HF channel is simulated for subsequent use in testing the 

channel estimators. A summary is also given of the more important 

forms of channel estimators that are used for time-invariant or 

slowly time-varying channels. 

The characteristics of the HF radio medium may vary rapidly 

with time, so an estimator based on the Kalman filter is investigated 

in order to exploit the fast tracking capability of the filter. 
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It is shown that inadequate modelling of the channel by the Kalman 

filter results in suboptimum performance (in the minimum mean square 

error sense) of the estimator, however, this can be improved by 

including a suitable predictor. The performance of the Kalman 

filter estimator, with and without the predictor, is then compared 

with the corresponding estimator which uses a feedforward trans- 

versal filter. 

The recently developed HF channel estimator based on the 

feedforward transversal-filter estimator is also investigated, but 

it is tested here over the simulated HF radio links with three 

independent Rayleigh fading sky waves, which represent typical 

poor conditions over actual links. Various degrees of prediction 

are also studied and based on the results, a change in the degree 

of prediction from that previously proposed is suggested as a 

better arrangement for use with the estimator when there are three 

sky waves. Finally, it is shown that a considerable reduction in 

the equipment complexity can be achieved by exploiting a self- 

correcting property of the estimator that has been discovered. 

f 
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GLOSSARY OF SYMBOLS AND TERMS 

a(t) Impulse response of a filter 

A(f) Frequency response of a filter 

IA(f)I Absolute value of A(f) 

c Step size of feedforward transversal-filter estimator 

ei Error in the estimated value of ri 

E["] Expectation operator 

g+l Number of samples in the sampled impulse-response of 
linear baseband channel 

j When not used as a subscript, j= �-T 

Ki Kalman gain vector 

m2 Number of possible levels of complex-valued data-symbol si 

n Delay in estimation (in sampling intervals) 

n(t) White Gaussian noise with zero mean and two-sided power 
spectral density of INo 

N Number of sky waves 

JNo Power spectral density of n(t) 

Pi, i-1 A priori error covariance matrix (Kalman filter) 

Pipi A posteriori error covariance matrix (Kalman filter) 

qh(t) Statistically independent random processes 

{qh'i} Sequences obtained by sampling qh(t) 

Qi Covariance matrix of Vi 

3e["] Real part of a complex number 

r(t) Received signal 

{ri} Sequence of received signal samples 

si Data symbol 



ix 

superscript * Complex conjugate 

superscript T Matrix transpose 

superscript (*T) Complex conjugate transpose 

T Sampling interval 
1 Signal-element rate (bauds) T 

Vi Vector whose components are statistically independent 
random variables 

w(t) Gaussian random process with zero mean 

y(t) Impulse response of linear baseband channel 

Yi Sampled impulse-response of linear baseband channel at 
time t=iT 

Yi Estimate of Yi at time t=iT 

Y! +n i Prediction of Y. , at time t=iT, 
1+n obtained from 

1 , h=i, i-1, .. the {Yh} fdr . 

e Small positive quantity 

Mean-square error in the estimate (prediction) of Yi 

Square of the error in the estimat e (prediction) of Yi 

v2 Variance of w(t) or {wi} 

Signal-to-noise ratio (= 10 log10 ) 
2 
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1. INTRODUCTION 

1.1 BACKGROUND 

For many years, the radio wave spectrum has been utilized for 

various communication purposes. At the lower end of the spectrum, 

the very low frequency (VLF) band (3-30 kHz) is used principally for 

long-range navigation and submarine communication. Further up the 

spectrum, we find the high frequency (HF) band (3-30 MHz) which is 

used for military communication, fixed service operation, point-to- 

point communication and international broadcasting (64,101,105). New 

technologies have also opened up frequencies well above the HF band 

for telecommunication purposes. With the use of satellites for beyond 

line-of-sight applications, HF radio, which is plagued by multipath 

fading, may have been thought to be losing out and becoming less 

important. However, this has not happened. The HF spectrum remains 

fully occupied with the variety of uses because HF radio offers 

economical and/or secure communication when compared with the alter- 

native systems, e. g. satellite, cable or line-of-sight terrestrial 

. microwave systems106,107) 
( 

HF radio relies on the ionosphere for wave propagation. The 

dependence on the ionosphere results in many problems of which the 

HF system designer must take full account. A radio wave incident 

onto the ionosphere is refracted back to Earth often by two or more 

different ionised layers, which means that it can travel to the 

receiver via several distinct paths. This is known as multipath 
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propagation. The lengths of these paths are slightly different so 

that the time taken by the signal traversing each path is not exactly 

the same. The relative delay in transmission, i. e. the interval 

between the arrival of the first and the last sky waves, is typically 

a few milliseconds. In addition, the signal on each path is subjected 

to random fluctuations both in amplitude and phase resulting in the 

frequency-selective fading of the resultant radio wave. Fade rates 

are usually in the region of 10 to 50 fades per minute 
(65). 

Despite 

these and other forms of distortion (63,65,66,68), 
the HF radio link 

permits reliable communication (90% path reliability) for distances 
(73) 

up to 6400 km. 

Due to the highly dispersive nature of the HF radio medium, the 

transmission of digital data has been confined in the past to very 

low data rates (typically 50-75 bit/s)(109). The simplest of these 

systems is the on-off-keying (00K) morse system, where a continuous 

wave carrier is manually interrupted according to the morse symbol. 

At these rates, the signal-element duration with serial transmission 

greatly exceeds the multipath spread, so that the signal is subjected 

to flat fading. With the appropriate signal design and detection 

process, the interchannel and intersymbol interference effects can 

now be reduced to negligible levels. At higher data rates, the 

signal-element duration is smaller, so that the multipath spread 

can be several sampling intervals long, the performance of the 

system is now degraded by intersymbol interference(2,65,106) 

This is the condition caused by the spreading in time of individual 

signal-elements by the HF radio link resulting in the overlapping of 
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adjacent signal-elements. The presence of unwanted components 

originating from the neighbouring signal-elements means that the 

system is less tolerant to noise and may be subject to the incorrect 

detection of the received signal even in a noiseless environment 
(2). 

Until recently, the preferred method of transmitting digital data 

at medium to high-speeds (> 1200 bit/s)(110,111) has been to employ 

a number of low speed channels in parallel so as to avoid intersymbol 

interference. The parallel modem may, for example, employ 16 sub- 

channels with quaternary differential phase-shift-keying (DPSK) 

modulation to achieve a speed typically around 2400 bit/s(111). 

An alternative approach is to use serial transmission and employing 

some form of adaptive signal processing at the receiver. Comparisons 

of the two transmission techniques at a speed of 2400 bit/s(96,110,112) 

have suggested that the serial modem may offer a better overall per- 

formance. With the increase in the processing speed of digital 

hardware and also improvements in signal processing techniques, 

the serial modems are now challenging the dominance of parallel 

modems for high speed applications. 

In the detection of serially transmitted digital data, the 

detector may adopt one of several strategies which are broadly 

classified into two groups(2). In the first group, the detector 

employs a device known as an equalizer to remove intersymbol 

interference which has been identified as the main cause of poor 

system performance. Each equalized signal-element is free from 

interference from the neighbouring signal-elements and can be 

detected as it arrives. The second group of detection processes 
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uses maximum likelihood sequence estimation (MLSE) algorithms known 

as maximum likelihood detectors (2,19,24). These algorithms are 

basically decoding procedures for obtaining the most likely trans- 

mitted data sequence. Unlike the equalizer, the MLSE makes no 

attempt to remove intersymbol interference so that the whole of the 

received signal energy is used in the detection of the data symbols. 

When the data signal is received in the presence of additive white 

Gaussian noise, the MLSE is the optimum detection process in the 

sense that it minimizes the probability of error in the detection 

of the entire received sequence(19). In many cases, its performance 

is as good as if intersymbol interference were absent. 

The basic requirement for the maximum likelihood detector is 

that the sampled impulse-response of the channel is known(2'19-21'27) 

This may be achieved by using a channel estimator which estimates the 

sampled impulse-response of the channel from the received signal. 

Many estimator designs have been described in the literature, 

(17,21,26,27,48,52-58,62) that are simple to implement and provide 

accurate estimates of the channel, provided only that the sampled 

impulse-response of the channel does not vary too rapidly with time. 

However, when there is rapid variation in the channel characteristics, 

as in the case of an HF radio link, a more sophisticated technique 

(16,33,37,50,89,95-97) is required, the estimation process being 

performed adaptively such that the detector is held correctly 

adjusted at all times for the channel. The need for a channel 

estimator is not confined to the MLSE alone. For instance, a 

particular type of equalizer employing the discrete Kalman filter 

-*, 
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also requires a channel estimator in order to adapt to a time- 

varying channel(33). 

1.2 OUTLINE OF THE INVESTIGATION 

A recent development of an HF channel estimator(95,97) that 

exploits some of the available prior knowledge of the basic struc- 

ture of the HF radio channel has shown that a reasonably accurate 

estimate of the sampled impulse-response may be obtained using a 

relatively simple structure. Consequently, the main objectives of 

this investigation are to study various aspects of the performance 

of this estimator and also another estimator known as the Kalman 

filter. The former of the two is an estimator based on the feed- 

forward transversal-filter estimator 
(26,27) 

which has been developed 

to include a predictor 
(44,89) 

so as to give an acceptable performance 

when used on HF channels. The Kalman. filter is studied because it is 

recognized, under certain conditions, as the best linear estimator 

and it gives the fastest possible rate of convergence(114,116) 

The latter property is essential if the estimator is to track the 

rapid variations that can occur in the characteristics of an HF 

channel. Thus, the Kalman filter seems to be very suitable for use 

on HF channels and it is potentially a better estimator if it can be 

developed along similar lines as the feedforward transversal-filter 

estimator. 

Before describing the estimators, a brief description is given 

in Section 2 of a general model of a data-transmission system. This 

is followed by a description of a data-transmission system which 
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employs combined amplitude and phase modulation known as Quadrature 

Amplitude Modulation (QAM). This type of modulation is frequently 

used for high-speed data transmission (9,10,13-17,22,23). 
Also 

described in Section 2 is the theory and a possible method of 

implementation of a detection process known as the Maximum Likeli- 

hood Sequence Estimation (MLSE) which, under the appropriate 

conditions, is considered as the optimum detection process. 

The basic requirement of a detector employing the MLSE is that 

the sampled impulse-response of the channel must be known. In most 

cases, the correct (exact) value of the sampled impulse-response at 

any time is not obtainable, but an estimate of this may be found by 

means of a channel estimator which derives the estimate from the 

received signal. In Section 3, some of the more important channel 

estimators for use on time-invariant or slowly time-varying channels 

are described. Two of these estimators form the basis of the HF 

channel estimators to be described in Sections 6 and 7. 

Section 4 is solely concerned with the HF radio channels. 

Here, a description is given of the physical composition of the 

ionosphere and also of the mechanism of radio wave propagation 

through this medium. Various types of signal impairment are also 

identified. Using this information, the HF channel is modelled and 

simulated on a computer for subsequent use in the testing of the 

estimators. 
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In Section 5, brief descriptions of the recently developed HF 

channel estimators are given. In particular, the first estimator 

is the feedforward transversal-filter estimator described in 

Section 3 with a predictor incorporated into it. The second 

estimator is actually the previous estimator but now the knowledge 

of the basic structure of the HF channel is used which consequently 

gives an improved performance. 

It is well known that the Kalman filter possesses far superior 

tracking capability than any other linear estimator, when used under 

the condition for which it has been designed. Therefore, in Section 

6, the development of the Kalman filter as an HF channel estimator 

is studied. Various modifications subsequently made to the original 

Kalman algorithm are also described. These involve the inclusion of 

the least-squares fading-memory predictor for use when updating the 

estimate of the channel and also various schemes to account for errors 

in modelling the HF channel. The performances of the Kalman estimator 

are compared with the corresponding estimator which uses a feedforward 

transversal-filter estimator. Results of computer simulation tests 

are presented and analysed. 

Section 7 considers the improved channel estimator which is only 

briefly mentioned in Section 5. The estimator is, here, tested over 

a model of an HF channel (Section 4) with three independent Rayleigh 

fading sky waves which represent a typical poor channel condition over 

actual HF links. Various degrees of prediction are also described. 

Finally, results of computer simulation tests are given and analysed. 
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2. DATA-TRANSMISSION SYSTEM 

2.1 GENERAL MODEL OF A DATA-TRANSMISSION SYSTEM 

In general, there are two forms of transmission for digital data. 

The system where the signal-elements are transmitted as a sequential 

stream and whose frequency spectrum occupies the whole of the 

available bandwidth is known as a serial system. A parallel system 

is one in which two or more sequential streams of signal-elements are 

sent simultaneously, and the spectrum of an individual data stream 

occupies only part of the available bandwidth( 1 ). 

Most often in a serial system the signal-elements are trans- 

mitted at a steady rate of a given number of elements per seconds 

(bauds), the receiver being held in time synchronism with the received 

signal. Such a system is known as a synchronous serial system and, 

in applications where a relatively high transmission rate is required 

over a given channel, it is the most commonly used system(2). There- 

fore, the synchronous serial system will be assumed throughout the 

thesis. A model of the data-transmission system is shown in 

Figure 2.1.1. 

In practice, the signal at the input to the transmitter filter 

would be in the form of a rectangular or rounded waveform. Each 

signal-element has the same duration of T seconds and is transmitted 

immediately after the preceding element, so that the signal-element 

rate is +bauds2. However., in order to simplify the theoretical 

analysis of the system, it is now assumed that the input signal is 
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a sequence of regularly spaced impulses, the ith of which occurs 

at time t= iT seconds. This form of representation of the signal- 

elements does not affect in any way the operation of the system other 

than an appropriate change in the transmitter filter. The input 

sequence can be represented in the form 

si 6(t-iT) 
i 

where ö(t-IT) is a unit impulse at, time t=i. T seconds. The value, or 

area, of each impulse, si 6(t-iT), is therefore, given by the corres- 

ponding data-symbol si. It is assumed that si may have one of m 

possible values. The {si} are statistically independent and equally 

likely to have any of the m possible values. Where this condition is 

not satisfied, it can normally be achieved by 'scrambling' the trans- 

mitted sequence of data symbols and appropriately 'descrambling' the 
(2) 

corresponding detected data symbols at the receiver. 

The transmitter filter is used to shape the frequency spectrum 

of the transmitted signal to match the available bandwidth of the 

transmission path. This minimizes the signal power lost in trans- 

mission and so maximizes the signal-to-noise power ratio at the 

receiver input for a given transmitted signal power('). 

The transmission path could be either a lowpass or a bandpass 

channel. In the latter case, the transmission path is assumed to 

include a linear modulator at the transmitter and a linear demodulator 

at the receiver. An example of such a system is an arrangement using 

vestigial sideband suppressed carrier (VSSC) amplitude modulation (AM) 
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at the transmitter and coherent demodulation at the receiver. A 

low-level pilot carrier is, in fact, inserted into the transmitted 

signal to enable the reference carrier of the coherent demodulator 

to be synchronized to the received signal. In such a system, where 

the instantaneous frequency of the reference carrier is held constant 

at the average instantaneous frequency of the received signal carrier 

(assuming that the latter does not drift steadily with time), the. 

bandpass channel together with the modulator at the transmitter and 

the demodulator at the receiver appear as a linear baseband channel, 

with the same fading characteristics as those of the original band- 

pass channel 
(2). The theoretical analysis of the resultant system, 

therefore, reduces to that of a simple linear baseband system. 

The. bandpass channel could be a telephone circuit or a high frequency 

(HF) radio link. These are the two main types of voice-frequency 

channels and the nominal bandwidth of these channels is 300-3000 Hz('). 

In practice, the data-transmission system is expected to operate 

on different channels which may have considerably different charac- 

teristics. Over the switched telephone network, the characteristics 

of a particular circuit may not vary significantly with time. However, 

a new circuit, obtained by dialling a new connection, usually has 

different characteristics from the previous circuit('). Therefore, 

the characteristics of the channel are usually not known prior to a 

transmission. Also, the channel may itself vary considerably (but 

usually slowly) with time, such as over point-to-point HF radio links. 

The receiver must then track the channel variation to ensure correct 

operation. In both cases, the sampled impulse-response of the channel 
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must be estimated at the receiver from the received signal. Where 

the channel characteristics do not vary significantly with time, this 

may be carried out at the start of a transmission(2-4), and where 

'the channel characteristics vary with time, this must be carried out 

continuously using the received data signal. 

The model assumes that the only noise introduced by the system 

is additive white Gaussian noise. The other types of additive and 

multiplicative noise have been neglected. It has been shown that 

the relative tolerances of different data-transmission systems to 

additive white Gaussian noise is a good measure of their relative 
(2' 

overall tolerances to most practical types. of additive noise. 

The Gaussian noise has zero mean and a two-sided power spectral 

density of JNo, and is added to the data signal at the output of 

the transmission path. 

The receiver filter removes the noise components outside a 

frequency band approximately corresponding to the bandwidth of the 

received signal, without excessively bandlimiting the signal itself. 

It is assumed that the receiver filter is such that the sample values 

of. the noise function w(t) at the output of the receiver filter, taken 

at intervals of T seconds by the sampler are statistically independent 

Gaussian random variables with zero mean and fixed variance, the 

precise conditions to be satisfied by the receiver filter here being 

considered in detail elsewhere('). It has been shown that if the 

amplitude response (B(f)r of the receiver filter in Figure 2.1.1 is 

in a constant ratio b to the amplitude response IA(f)l of the trans- 

mitter filter, over all values of frequency f, and the transmission 

k6- 



13 

path introduces no attenuation, delay or distortion, then the 

signal-to-noise power ratio at the detector input is maximiied0). 

The transmission path together with the transmitter and receiver 

filters are assumed here to form a linear baseband channel with impulse 

response y(t). Depending on the type of the transmission path, the 

impulse response, y(t), may or may not vary significantly with time. 

At transmission rates of up to 2400 bit/s over the switched telephone 

network, it is often reasonable to assume that the impulse response of 

the channel is unlikely to vary significantly over the duration of one 

transmission(2), and so it is safe to assume that y(t) is time-invariant. 

At higher transmission rates over the switched telephone network, and 

also usually the case over the HF radio links, y(t) may vary signifi- 

cantly with time(t). However, in order not to make the description 

of the model of the data-transmission system unduly complicated, it 

is here assumed that the impulse response of the channel is time- 

invariant, at least over the period involved in processing any one 

received signal element at the receiver. For practical purposes, 

the impulse response of the baseband channel is also assumed to be of 

finite duration. 

The received signal at the output of the baseband channel in 

Figure 2.1.1 is 

r(t) _ si y(t-iT) + w(t) (2.1.1) 

where w(t) is the noise component in r(t). The power spectral density 

of w(t) is(l) 

hh. - 
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JN0 IB(f)IZ 

where IB(f)I is the amplitude response of the receiver filter. It 

is assumed here that 

to I 
2T< f` 7 B(f) = 

elsewhere 

(2.1.2) 

The autocorrelation function of w(t) is given by('), 
, 

1 
RW(T') =JNO fI IB(f)12 exp(j21rfr')df (2.1.3) 

and for the assumed B(f), equation 2.1.3 becomes, 

sin 
(Tý) _ N0 (2.1.4) 

T 

11 

The received signal r(t) is sampled once per signal-element at the 

time instants {iT}, where i takes on all positive integer values. 

It is assumed that the delay in transmission, other than that involved 

in the time dispersion of the transmitted signal, is here neglected, 

so that y(hT) =0 for h<0 and h >g. Therefore, the sampled value 

of the received signal at the output of the baseband channel, at time 

t=iT, is, 

9 
ri 

hIO 
Si-h yh + Wi' (2.1.5) 

h6- 
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where yh = y(hT) for h=0,1, ..., g is the sampled'impulse-response 

of the baseband channel. Let Y represent the (g+l)-component column 

vector given by the sampled impulse-response, so that 

Y= [yo yl ... y9]T (2.1.6) 
I 

where the superscript T denotes transposition. 

The {wi} in equation 2.1.5 are samples of w(t) at the time instants 

OT}. They are Gaussian random variables with zero mean and variance 

given by, 

aW2'= I (0) = }No (2.1.7) 

Furthermore, from equation 2.1.4, 

sin 'ri 
i (iT) = JN0 T 

=0 for any nonzero integer i (2.1.8) 

The noise samples have zero mean and since the separation between 

any two noise samples wi and wR is a multiple of T seconds, from 

equation 2.1.8, they are uncorrelated and therefore statistically 

'independent Gaussian random variablesM. The statistical indepen- 

dence of the noise samples {wi} can be obtained using other more 

practical forms of the transfer function of the receiver filter. 

One such example is the square root of a raised cosine transfer 

function('). 

h6- 
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The detector in Figure 2.1.1 operates on the received samples 

{ri} to produce the sequence of detected data symbols {s1 }. With 

correct detection, the {si } are identical to the transmitted data 

symbols {si}. However, in practice, it is not possible to recover 

the transmitted data sequence with certainty due to the randomness 

of w(t). The best that can be done is to take {si } as the detected 

data sequence which has the least probability of error. 

2.2 THE TRANSMISSION OF DIGITAL DATA USING QUADRATURE AMPLITUDE 
MODULATION (QAM) 

The information to be transmitted over a voice-frequency channel 

is originally in the form of a baseband signal. The baseband signal 

cannot itself be transmitted satisfactorily over this type of channel 

because a significant fraction of the signal power will usually be 

lost in transmission. Also, the received signal will normally be 

so severely distorted as to make satisfactory detection impossible. 

A good number of the voice-frequency channels introduce a small 

frequency-offset into the transmitted signal. Where this occurs, 

the whole of the spectrum of the baseband data signal is shifted by 

a few Hz so as to make it impossible to detect the transmitted data 

signal correctly, unless the frequency shift is determined exactly 

and suitably corrected for at the receiver 
(2). A much simpler 

approach is to use the original baseband signal to modulate a sinu- 

soidal carrier. The frequency of the carrier is such that the spectrum 

of the transmitted data signal is placed in the centre of the avail- 

, 5,6) frequency band(l 

hh. - 
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A sinusoidal waveform has just three features which distinguish 
(7) it fron other sinusoids - phase, frequency and amplitude. 

Therefore, the phase, frequency, amplitude or a combination of 

these is varied in accordance with the information to be transmitted. 

There are various digital modulation formats, such as phase shift 

keying (PSK), frequency shift keying (FSK), amplitude shift keying 

(ASK), and a hybrid combination of ASK and PSK which is commonly 

known as quadrature amplitude modulation (QAM). Among the various 

possible modulation formats, QAM is frequently used for high-speed 
(2 

. data transmission, e. g. 4800 bit/s and above, 
8'15) 

A QAM signal is the sum of two double-sideband suppressed carrier 

AM signals whose carriers are of the same frequency but in phase 

quadrature (i. e. at phase angle of 900).. The two AM signals are in 

element synchronism. Clearly, a QAM system requires two modulators 

at the transmitter and two coherent demodulators at the receiver, 

which inevitably complicates the system. However, there are several 

,, important advantages of using QAM and some of these are summarized 

as fo11ows(2'5'8,16,17). 

1. It is a linear modulation method which greatly simplifies the 

implementation of the detector. 

2. Efficient bandwidth utilization. 

3. By using a suitable detection process, no particular phase 

relationship need be maintained between the reference carriers 

used for the demodulation of the two double-sideband AM signals 

and the suppressed carriers of the two AM signals themselves, 

just as long as the rate of change of the relative phase angles 

remains fairly small. 

k6- 



18 

4. Ability to track phase jitter unaided by any auxiliary trans- 

mitted pilot tone. 

5. High immunity to Gaussian noise. 

(2 5,8,16,17) It is due to these and also other advantages that a 

QAM system is used in the investigation. 

The two double-sideband suppressed carrier AM signals which 

constitute a QAM signal are transmitted in phase quadrature. With 

appropriate interconnection, the transmission path together with the 

two modulators at the transmitter and the two coherent demodulators 

at the receiver then appears as two linear baseband channels(2). 

If one of the baseband channels is considered as carrying a 'real' 

signal and the other as carrying an 'imaginary' signal, the two 

baseband channels can be considered as-a single baseband channel 

carrying a 'complex' signal. The theoretical analysis of the resul- 

tant system therefore reduces to that of a linear baseband channel. 

The model of a data-transmission system using QAM is shown in 

Figure 2.2.1. The information to be transmitted is carried by two 

streams of data-symbols {sr, i} and {sqj }. The {srj } and {sqJ} 

are statistically independent and equally likely to have any of m 

possible values, so that there are m2 possible combinations of any 

two data-symbols (srX sq, i). The two data streams are fed separately 

to two transmitter filters such that the resulting QAM signal is 

limited to the available bandwidth of the transmission path. It 

is assumed that the amplitude response IA(f)l of the transmitter 

filter has a cosine shape (square root of a raised cosine shape) as 

shown in Figure 2.2.2. 

hb. ý 
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FIGURE 2.2.2: AMPLITUDE RESPONSE OF LOWPASS 
FILTER A 

Io1f 
2T ý 
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One of the filtered data streams amplitude modulates a cosine 

carrier, and the other amplitude modulates a sine carrier. The two 

carriers have the same frequency, fc, but are in phase quadrature. 

The signals at the output of the linear modulators are added together 

to form the QAM signal, x(t). The carrier frequency is chosen so that 

the amplitude spectrum of the QAM signal fits into the frequency 

characteristics of the transmission path without appreciable loss 

in the transmitted signal energy. 

The QAM signal at the input to the transmission path is given 

by, 

x(t) = �Z [i sr, i a(t-iT) cos 2nfct -1 sq, i a(t-iT) sin 2irfct] 

(2.2.1) 

where sr, i and sq, i are the ith input data symbols and a(t-iT) is the 

impulse response of the transmitter filter delayed by iT seconds. If 

we define si as a complex data symbol, i. e. 

si = sr, i + jsq, i (2.2.2) 

where j ='/, then it is easily shown that equation 2.2.1 may be 

written as, 

x(t) = /. Re 
1 

or egwivalently, 

si a(t-iT) exp (j2nfCt)] (2.2.3) 

hh, 
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x(t) _1 [1 (si exp(j2, rfct) + si exp(-j2, rfet)) a(t-iT)] 

(2.2.4) 

where (si exp(-j2nfct)) is the complex conjugate of (si exp(j2nfct)). 

The-only additive noise assumed here is a stationary white 

Gaussian noise with zero mean and two-sided power spectral density 

of J No. The noise is added at the output of the transmission path. 

At the receiver, the bandpass filter suppresses the out-of-band 

noise and all signals that are outside the frequency range of interest. 

Furthermore, the demodulator is assumed to know the nominal value of 

the carrier frequency. However, a small difference in frequency and 

phase may exist between the transmitter and receiver carrier 

frequencies. The resulting phase error, o, is modelled as a system 

where the transmitter and receiver carrier frequencies are exact but 

the phase of the local oscillator in the receiver is in error. The 

signal at the output of the receiver filter is then coherently 

demodulated by two reference carriers of the same frequency but in 

phase quadrature. 

The signal at the input to the coherent demodulator is given 

by, 

z(t) = (x(t)*h(t)*c(t)) + (n(t)*c(t)) (2.2.5) 

where * denotes convolution. h(t) and c(t) are the impulse respon- 

ses of the transmission path and the bandpass filter C, respectively. 

lbb- 
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n(t) is the additive white Gaussian noise. The signals at the output 

of the cosine and sine demodulator are, respectively, 

ra(t) = �f z(t) cos (2nfct + a) * b(t) (2.2.6) 

and r2(t) = -F2 z(t) sin (2nfct + 0) * b(t) (2.2.7) 

Combining rl(t) and r2(t) to form the complex output signal 

r(t) = ra(t) +j r2(t) (2.2.8) 

From equations 2.2.6,2.2.7 and 2.2.8, 

r(t) =F (z(t) e)* b(t) (2.2.9) 

and from equations 2.2.4,2.2.5 and 2.2.9, 

j 21rf t* -j 2, rf t 

r(t) _ {[[: (sie c+ si ec) a(t-iT)]* h(t)* c(t)] x 

x e-J(2, 
rfet + o) 

}* b(t) +� [[n(t)* c(t)]e-J(2, 
rfet + o) 

]* b(t) 

(2.2.10) 

Using the property that(16) , 
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-j2, rf t -j2, rf t -j2, rf t 
(fi(t) *f2(t))e C= (f1(t)e C) *(f2(t)e C) 

(2.2.11) 

which results by the direct application of the convolution integral, 

equation 2.2.10 becomes, 

-j 2, rf t 
r(t) =E si{a(t-iT) * [(h(t) *c(t))e ]} e-3b * b(t) + i 

+ si {e-j4, 
rfct 

a(t-iT) *[(h(t) *c(t))e 
ý2nfct]}e-Jo 

*b(t) + 

-j(2nfct + ý) 
+ df [(n(t) *c(t)) e]* b(t) (2.2.12) 

Hence, r(t) is made up of three terms, 'the second of which reduces 
-j41rf t 

to zero since the spectrum of (e c a(t-iT)) lies outside the 

frequency band of the receiver lowpass filters. Therefore, equation 

2.2.12 can be simplified to, 

r(t) _ si y(t-iT) + w(t) (2.2.13) 

where, 

y(t) ={a(t)* [(h(t) *c(t))e 
-j2, rf ct le_3D*. b(t) 

(2.2.14) 

is the overall system impulse response, and, 



25 

w(t) = 12[(n(t) *c(t))e 
-j2, rfct 

]* b(t) (2.2.15) 

is the noise component in the received signal r(t). 

At first sight, y(t) as given by equation 2.2.14 does not appear 
-j2, rfct 

to be a baseband waveform because of the carrier component, e 

However, the waveform which results from the convolution of h(t) and 

c(t) is a bandpass waveform, i. e. the resulting spectrum is centred 

about the carrier frequency, fc. Thus, by multiplying this with 
-j21rf t 

ec, together with the bandlimiting action of the lowpass 

filters a(t) and b(t), the bandpass waveform is transformed into a' 

lowpass waveform, i. e. the whole spectrum is now shifted back by -fc. 

Therefore, the overall impulse response given by equation 2.2.14 

represents the impulse response of a baseband system which may be 

used to represent the QAM system shown in Figure 2.2.1. The baseband 

equivalent of the QAM system is shown in Figure 2.2.3. 

In practice, the amplitude and phase/frequency characteristics 

of a channel are, asymmetric and therefore y(t) is complex-valued. 

Also, y(t) usually persists over several sampling intervals. The 

first effect causes crosstalk interference between the real and 

imaginary data streams and the second effect causes intersymbol 

interference. 

From equation 2.2.13, the sample value of r(t) at time t=kT is, 

rk = si y((k-i)T) + w(kT) (2.2.15) 
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or, 

(2.2.16) = Si 'k-i + Wk . 2.16) 

However, y(t) is assumed to be of finite duration, so that yh =0 

for h<0 and h>g, consequently, 

rk = Sk-h 'h + Wk (2.2.17) 
h=0 

2.3 MAXIMUM LIKELIHOOD SEQUENCE ESTIMATION (MLSE) 

2.3.1 Basic Theory 

The function of the detector in Figure 2.1.1 is to operate on 

the received data sequence {ri} to produce the detected data 

sequence {si }, which is identical to the transmitted data sequence 

{si} if the detection is correct. There are various techniques avail- 

able that can be employed in the detection of digital data signals in 

the presence of intersymbol interference and they may be classified 

into two separate groups(2). In the first of these, an equalizer 

is employed to correct the distortion introduced by the channel so 

that the intersymbol interference is reduced and the received signal 

is restored into a copy of the transmitted signal. Therefore, the 

equalizer acts as an inverse of the channel, so that the channel in 

cascade with the equalizer introduces no signal distortion and thus 

each signal-element is detected as it arrives by comparing the 

corresponding sample value with the appropriate threshold level. 

In the second group of detection processes, the decision process 



28 

itself is modified to take into account the signal distortion intro- 

duced by the channel. Often, no attempt is made to remove or even 

reduce the signal distortion prior to the actual decision process. 

In practice, a detection process is chosen so that it gives the 

best compromise between performance and equipment complexity(2). 

For the two criteria to be satisfied, the adopted system may or may 

not be optimum according to the two main definitions(2'18) of what is 

the optimum detection process. In-the first definition, the optimum 

detection process minimizes the probability of error in the detection 

of an individual received signal-element and hence-minimizes the average 

error rate in the detected data-symbol values. The detector, here, 

evaluates the a posteriori probability of each of the possible values 

of a received data symbol, given the whole of the received signal, and 

then accepts the data-symbol value having the largest a posteriori 

probability as the detected value. This is a process of maximum a 

posteriori estimation (MAP). The second type of optimum detection 

process is known as maximum likelihood sequence estimation (MLSE). 

Here, the probability of error in the detection of the whole message 

(entire sequence) is minimized. The detector evaluates the a 

posteriori probability of each possible received message and 

accepts as the detected message the sequence having the highest a 

posteriori probability as being correct. 

It is inherent in either detection process (MAP or MLSE) that 

there is a certain delay before a decision is made, since the detec- 

tor has to wait for the arrival of the complete message. With a long 
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message, the detection process is also far too complex to be 

implemented. In practice, the received sequence is divided into 

relatively small overlapping groups, so that in the detection of 

the whole message, many detection processes are involved, in fact, 

one per received data symbol 
(2) 

. At high signal-to-noise ratios 

and with additive white Gaussian noise, the MLSE, in addition to 

minimizing the probability of error in the detection of the whole 

message, also, for practical purposes, minimizes the average error 

rate in the detected data symbols(2). Since the MLSE is appreciably 

less complex to implement than the other(19), it is considered as 

the optimum detection process. The MLSE will now be considered in 

detail. 

Consider again the'data-transmission system in Figure 2.1.1, the 

sample value of the received signal at the output of the baseband 

channel, at time t=iT seconds, is given by equation 2.1.5, 

ri =I si-h 'h + Wi (2.3.1) 
h=0 

In practice, the sampled impulse-response of the baseband channel 

is assumed to be of finite duration, so that yh =0 for h<0 and 

h>g, therefore, the discrete-time model of the data-transmission 

system that is equivalent to that in Figure 2.1.1 has only g+l taps 

and this is shown in Figure 2.3.1(19-21). In this model, {ri} is the 

received signal samples, {si} is the input data symbols and {yh} is 

the sampled impulse-response of the channel. The convolution of 

the {si} and {yh} gives the signal components {ri}. Nil is the 

kh. - 
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white Gaussian noise samples with zero mean and variance Q2. Let Y 

be the (g+l)-component column vector which represents the tap gains 

of the feedforward transversal filter in Figure 2.3.1, 

Y= [y0 y, ... y91T (2.3.2) 

where the superscript T denotes transposition. Let SN and WN be the 

N-component column vectors representing the entire transmitted 

sequence and the noise sequence, respectively. Then, 

... sN]T (2.3.3) SN = [sý S2 

where the {si} are statistically independent and equally likely to 

have any one of m possible values, and 

WN = [w1 w2 ... wN]T (2.3.4) 

Let RN be the corresponding N-component column vector of the received 

signals, 

RN =, [rI r2 ... rN] (2.3.5) 

where the {ri} are related to the {si}, {yh} and {wi} according to 

equation 2.3.1. Also, let XN, ZN and UN be the N-component column 

vectors given respectively by the following equations, 
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and 

XN = (xl X2 ... xN]T 

ZN = (zI Z2 ... ZN]T 

UN = [uff u2 .... uN]T 

where xi has one of m possible values of si, 

Zi = Xi-h 'h 
h=0 

and ui is the possible value of wi satisfying, 

(2.3.6) 

(2.3.7) 

(2.3.8) 

(2.3.9) 

ri = zi + u1 (2.3.10) 

The received message contains N data symbols and clearly there are 

mN equally likely vectors {XN}. The detector has prior knowledge of 

both Y and the possible values of si. It is required to make an 

estimate of SN from the set of vectors {XN}, given the received 

vector RN. One of these vectors for which p(XNIRN) is maximum is 

the maximum-likelihood estimate of SN. p(XNIRN) is the conditional 

probability density of XN given RN. 

However, from Bayes' theorem(2), 

p(XNIRN) = 
p(XN) 
p(R) p(RNI XN) (2.3.11) 
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where p(-) indicates the probability density function of (. ). 

Since p(RN) does not depend on XN, and p(XN) is a constant for all 

the mN equally likely vectors {XN}, the value of XN that maximizes 

p(XNIRN) also maximizes p(RNIXN) and vice versa. Thus, the vector 

XN can also be chosen to maximize p(RNIXN)' 

The components {wi} in the noise sequence of equation 2.3.4 

are statistically independent Gaussian random variables with zero 

mean and variance a2. However, the following analysis can also be 
(2) 

applied to other statistically independent random variables. 

The Gaussian distribution is used here as it is the type of noise 

assumed in all models of the data-transmission system. Since the 

receiver is assumed. to have prior knowledge of the vector Y and the 

possible values of si, It can be seen from equation 2.3.9 that zi is 

determined by the given {xi}. From equation 2.3.10, it'is a standard 

result that for the given value of ri and zi, ri is also a sample 

value of a Gaussian random variable with mean zi and variance v2, 

the N {ri} being sample values of statistically independent Gaussian 

random variables. Therefore, given the {xi}, the probability density 

function of any received sample r, is given by, 

1 (rý - zi )2 
p(r, Ixl, x2, ..., xN) = exp[- ] (2.3.12) 

CF2 2 2a2 

It is also a standard result that(2), for a sequence of statistically 

independent random variables {ri}, the probability density function 

of the sequence of N {ri}, given the sequence of N {xi}, satisfies the 

following equation, 
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p(r1"r2, ..., rNIx1, x2, ..., xN) = p(r1, r2, ..., rNIXN) 

N 
=n p(rjL XN) (2.3.13) 

j=1 

where p(rjlXN) is the conditional probability density of rj when 

XN is given. 

Now, the quantity to be minimized is p(RNIXN), which can also 

be written as, 

p(RNIXN) = p(r1, r2, ..., rNIXN) (2.3.14) 

Using equations 2.3.12 and 2.3.13, equation 2.3.14 becomes, 

N1 (rj _ Zj)2 
p(RN IXN) =n exp [- ] 

j=1- 2 2a2. 7ffrCry 

=I exp [- 1NI (r. - z. )2] 
(27r 2a2 j=1 JJ 

_1 N/7 exp [- IR 
N- ZNI2] 

(27rQ2) 2Q2 
(2.3.15) 

where IR 
N- ZNI is the Euclidean distance between RN and ZN. It is 

clear, from equation 2.3.15, that p(RN, I N) is maximum when the dis- 

tance between RN and ZN is a minimum. Now, from equation 2.3.10, 
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RN-ZN=UN 

thus, 

(2.3.16) 

p(RNIXN) *2 ý exp[- 
1 jUNý2] (2.3.17) 

(2ýv ) 2Q2 

Hence, the maximum-likelihood vector XN is its possible value such 

that 

IUNI2 = U12 + U22 +... + UN2 (2.3.18) 

is minimized. The quantity IUNI2is also known as the cost function 

for the sequence of N {xi}. For an m-level signal and a given vector 

RN, the cost function can take on mN possible values corresponding to 

the different possible sequences {XN}. Therefore, one possible method 

of finding the maximum-likelihood sequence XN is for the detector to 

evaluate the mN possible values of the cost function and the maximum- 

likelihood sequence is that which corresponds to the smallest cost 

function. 

The above derivation holds for real signals and is readily 

generalized to complex signals, where now the real and imaginary 

parts of the {ui} are statistically independent Gaussian random 

variables with zero mean and variance a2, and 

(UN12 = JU112 + Iu212 +... + IuN12 (2.3.19) 
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where' Juil is the modulus (absolute value) of ui. IRN - ZNI is 

now the unitary distance between RN and ZN, and again the maximum- 

. 
likelihood sequence XN is that for which 'UN12is minimum 

(2 

2.3.2 Implementation of the MLSE Using the Viterbi Algorithm 

As mentioned in the last section, the direct implementation of 

the MLSE involves the computation of mN cost functions. This is 

obviously impractical when the number of data symbols which consti- 

tute a message is several thousands long. The detector now has to 

consider an almost infinite number of possible sequences and the 

associated costs. However, a computationally efficient algorithm, 

known as the Viterbi algorithm, exists and can-produce the maximum- 

likelihood sequence recursively. The algorithm will now be described 

to show how the MLSE can be implemented. The description of the 

algorithm is really an extension from the previous section. 

Let Sk, Rk and Wk be the k-component column vectors whose ith 

components are si, ri and wig respectively, for i=1,2, ... 9 k and 

k<N. Also, let Xk, Zk and Uk be the k-component column vectors 

whose ith components are xi, zi' and ui, respectively, for i=1,2, ... k, 

where xi has one of the m possible values of Si, 

Zi =I Xi-h 'h (2.3.20) 
h=0 

and ui is the possible value of wi satisfying, 
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r1 = zi + ui (2.3.21) 

The maximum-likelihood vector Xk is its possible value such that, 

jUkI2= 1u112 + Iu212 +... + luk12 (2.3.22) 

is minimized. 

In the Viterbi algorithm detector, instead of the simultaneous 

processing of all the mN possible vectors {XN}, the receiver holds 

in store the last n components {xi} of each of the m9 different 

vectors {Xk}, where the vectors have all possible combinations of 

their last g components {xi}. Let the set of n-component vectors 

be {Qk}. where, 

4k = (xk-n+1 Xk-n+2 ... YT (2.3.23) 

Each vector Qk is here the maximum-likelihood vector subject to the 

constraint that its last g components have the given values. One 

of these vectors is the true maximum-likelihood vector. Thus, 

following the receipt of rk, each of the stored vectors {Qk} corres- 

ponding to the different possible combinations of values of 

T 
[xk-n+1 xk-n+2 ... xk] 

is a possible realization of the transmitted data sequence 
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[sk-n+1 Sk-n+2 "' SkiT 

Associated with each stored vector Qk is stored the cost IUk12, 

where IUkI2is evaluated using equations 2.3.20-2.3.22. The lower 

the cost, the more likely is the vector to be correct. The data-, 

symbol sk-n+l is detected as the value of xk-n+l in the true maximum- 

likelihood vector Qk which is the one of the vectors having the 

smallest cost. In this case, the delay in detecting a data symbol 

has been fixed to n-l sampling intervals, and n should be made as 

large as possible, preferably no less than 3g, in order to achieve 

. 
(21 

the best available tolerance to noise-23) 

On receipt of the sample rk+1, each stored vector tQk} is 

'expanded' to give m vectors 1Qk+l}' where the {Qk+l} are the 

possible combinations of 

[xk-n+2 Xk-n+3 "' xk+ll 
T 

The values of xk-n+2' xk-n+3' .. " xk are as in the original 

sequence, and xk+l takes on its m possible values. The number of 

possible vectors has increased to mg+l and the cost associated 

with each vector is evaluated according to, 

IUk+112 lUk12 + (rk+l 
I 

xk-h+1 Yh)2 
h=0 

(2.3.24) 

where IUkI2 is the cost of the vector Qk from which Qk+l originated. 

From the m9+1 vectors {Qk+l} are then selected the m9 vectors having 

hkh, 
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the m9 different possible combinations of the values of 

[Xk-g+2 Xk-g+3 ''' xk+l] 
T 

together with the lowest costs. The remaining vectors are discarded. 

The true maximum-likelihood vectorQk+l is the one of the set of mg 

surviving vectors {Qk+l} having the smallest cost. The process 

continues in this way. 

It can be seen that the detection process involves mg+l 

squaring operations per received data symbol together with the 

storage of mg n-component vectors {Qk} and m9 values of {IUk12}. 

Clearly, when g»1, the number of operations per received data 

symbol is excessive and also a large amount of storage is required. 

Therefore, various techniques have been developed to reduce the 

number of computations and stored values and yet maintained near 

optimum performance 
(2,22-25) 

. However, these developments will not 

be dealt into since they are not essential to the subject matter of 

this investigation. 

The Viterbi algorithm is optimum for maximum-likelihood estima- 

tion of the entire transmitted sequence, if an unbounded delay in 

detection is allowed, and is also effectively optimum in the same 

sense for reasonable finite delays(19)" The algorithm is not designed 

to minimize the symbol-error probability P(e), but at high signal-to- 

noise ratios, the detector that minimizes P(e) cannot improve sub- 

stantially on the performance of this detector(19). It is shown in 

Ref. 19 that, when the noise components {w1} are zero mean and 

k 
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variance Q2 Gaussian random variables, the upper and lower bounds 

for P(e) are given by, 

]t P(e) < Ku Q[dm] KZ Q[d 2cy (2.3.25) 

where Q["] is the probability of error function and is given by, 

2 
Q[x] f00 exp (- -) dy (2.3.26) 

x 

dmin is the minimum distance between any pair of the mN possible 

vectors {ZN}, (equation 2.3.7). Ku is a constant independent of 

a2 and KL is another constant typically within an order of magnitude 

of Ku. Therefore, equation 2.3.25 can be used to assess the perfor- 

mance of the maximum-likelihood estimator. 

hh, 
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3. CHANNEL ESTIMATORS FOR TIME-INVARIANT OR 
SLOWLY TIME-VARYING CHANNELS 

3.1 INTRODUCTION 

In the above discussion on the MLSE, it is assumed that the 

detector knows the vector Y, the sampled impulse-response of the 

channel. In fact, the knowledge of Y is required so that the 

possible signal vectors {ZN}, given by equations 2.3.7 and 2.3.9, 

can be calculated before evaluating the cost functions and hence 

selecting the maximum-likelihood sequence. Since the characteris- 

tics of the channel are usually unknown prior to a transmission and 

also possibly vary with time, some form of algorithm or device is 

needed to provide the detector with an accurate knowledge of the 

sampled impulse-response of the channel. 

Over telephone circuits, the channel characteristics only vary- very 

slowly with time, however by dialling another connection, the new 

path may have considerably different characteristics(2). In this 

case, the sampled impulse-response may be estimated continuously or 

if the transmission time is relatively short, it is estimated at the 

start of transmission and the values are held fixed for the duration 

of the transmission. When data is transmitted over an HF radio 

link, it is necessary to estimate the sampled impulse-response 

continuously, so that the detector is held correctly adjusted for 

the channel 
(2) 

. Also, in high speed data-transmission systems 

(>2400 bit/s), the channel characteristics may vary significantly 

with time even over telephone circuits(2) and so the sampled impulse- 

kh. - 
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response must be estimated continuously at the receiver from the 

received data signal. 

In the following sections, several algorithms that can be used 

to estimate the sampled impulse-response of a channel will be 

examined. Our attention is here restricted only to noisy linear 

channels which are time invariant or else vary slowly with time. 

The identification of nonlinear channels is beyond the scope of 

this thesis. However, as an example, the interested reader is 

referred to Ref. 25 which describes some techniques for estimating 

the sampled impulse-response of time-invariant, dispersive nonlinear 

systems with noisy outputs. We first begin in Section 3.2 with an 

outline of variousassumptions concerning the data-transmission system, 

some of these are necessary in order to simplify the descriptions of 

the estimators. In Section 3.3, an estimate of the channel is deri- 

ved using the least mean-squared error criterion. This is the most 

commonly used estimation criterion. Sections 3.4-3.7 describe the 

channel estimators. 

3.2 BASIC ASSUMPTIONS 

Since we are only interested in the estimation of the sampled 

impulse-response of the channel, the model of the data-transmission 

system of Figure 2.2.1 is simplified to that in Figure 3.2.1. Here, 

for convenience, the detector is omitted, so that any delay in the 

detection of a data symbol, which is the inherent property of, for 

example, the maximum likelihood detectors, is neglected. Thus, the 

data-symbol si is detected upon the arrival of the received signal ri. 

k6- 
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The estimator uses both of these signals for the estimation'of the 

sampled impulse-response. 

The signal at the input to the baseband channel is a sequence 

of regularly spaced impulses {si 6(t-ff)), where the {si} are assumed 

to be statistically independent and equally likely to have any of m 

possible values. It is assumed that transmission starts at time 

t=T seconds. The linear baseband channel is assumed to have an impulse 

response y(t) with an effective duration of less than (g+l)T seconds, 

where g is a given positive integer. The only noise introduced by 

the channel is stationary white Gaussian noise which is added to the 

data signal at the output of the transmission path such that the noise 

waveform w(t) at the output of the receiver filter is a band-limited 

Gaussian noise. At the output of the baseband channel, the received 

signal r(t) is sampled once per received signal-element, at the time 

instants {iT}, giving the received samples {ri}, where, 

9 
ri =I Si-h Yh + Wi (3.2.1) 

h=0 

In the foregoing equation, ri = r(iT), yh = h(hT) and wi = w(iT). 

For simplicity, it is assumed that the {si}, {yh}, {wi} and hence 

{ri} have only real values. The delay in transmission is neglected 

so that yi =0 for i<0 and i>g. Let Y represent the (g+l)-component 

column vector of the sampled impulse-response of the channel, 

Y= [y0 yJ ... y9]T (3.2.2) 

k6- 
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where the superscript T denotes transposition, and Y is time 
invariant. The noise samples {wi} have zero mean and a fixed 

variance of Q2. It is assumed that the {wi} are statistically 

independent of the {si}. Since it is assumed that there is no 

delay in the detection of a data symbol, si is detected immediately 

after the reception of ri. The detected value of si is designated 

si. Normally, the error rates for data communication are less than 

10"4(33), and with so few errors in the {sj} it is reasonable to 

assume that the {si} are all correctly detected. Thus, -s! = si for 

all {i}. The signals ri and si are fed to the channel estimator to 

give an estimate Y! of Y at time t=iT, where, 

T Yi = [y.. 
0 Y, ", (3.2.3) 

The estimate Yi is used by the detector for the detection of the 

next data symbol. 

Obviously, in the above description the channel estimator is 

assumed to be recursive. However, some of the estimators to be 

examined are nonrecursive. In this case, the estimator waits for the 

arrival of all {ri}, resulting from the transmission of a fairly short 

data sequence, before estimating the sampled impulse-response of the 

channel. 

h6- 
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3.3 LEAST-SQUARES ESTIMATION 

The sample value of the received signal taken at time t=kT is 

given by, 

9 
rk = 

h1 
Sk-h yh + Wk (3.3.1) 

where {yhl, h=0,1,..., g are the g+l unknown parameters. {yh} are 

the sampled impulse-response of the channel and these are to be esti- 

mated in some manner. {wk} are statistically independent Gaussian 

random variables with zero mean and variance v2. Also, the {wk} are 

statistically'independent of the {sk}. wk is the noise component in 

rk. 

Let us assume that at time t=iT, i samples {rk} have been 

received and the corresponding_i data symbols have been detected. 

If Yi (equation 3.2.3) is an estimate of Y based on the i received 

samples rl, r2, ..., ri then the estimate of the kth received signal 

rk is given by, 

9 
rk =I Sk-h yi, h k=1,2,..., i (3.3.2) 

h=0 

bearing in mind that the {si} are assumed to be correctly detected, 

and yi, h is in general a better estimate of yh than is yk, h for k<i. 

The error in the estimate of rk is, 

9 
ek = rk 

ho 
Sk-h yi, h k=1,2,.., i (3.3.3) 

h6- 
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The sum of the squares of the errors in the estimates of the {rk} 

using equation 3.3.2 up to time t=iT is given by, 

2 M. = (rk Sk-h yi, hi k=1 h=0 
(3.3.4) 

The sequence of values {Yi, h} that minimizes Mi is the least-squares 

estimate of Y. Differentiating Mi with respect to each of the {yi, h) 

gives, 

aMi i9 

ay, -- =21 (rk - sk_h yi, h) sk_j j=0,1,... 19 ij k=1 h=0 

(3.3.5) 

Defining the cross-correlation vector and the autocorrelation matrix, 

respectively, as, 

i 
bj = 

k=1 
rk sk_j j=0,1,..., g (3.3.6) 

and 
ih=0,1,..., g 

qh, j = sk-h sk-j (3.3.7) k=1 j=O, l,..., g 

The sequence of values {yý, h} that minimizes Mi can be found by 

setting to zero the partial derivatives of Mi w. r. t. {yý, h}, that 

is, 

hh. - 
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k-1 -h 
yi, h) sk_j =09 21 (rk - 

h-0 
sk 

9ii 
or 

hI0 
yi h kIl 

Sk-h Sk-j = 
kI1 

rk Sk-j 3= 0919 .9 

9 
or 

hI0 
y! 

ýh 
qh, J = bJ j=0,1,... 99 

(3.3.8) 

Let 

B1 _ [b0 b1 ... bg]T (3.3.9) 

and =01-_ 

C1 = Si s2 ... sl o =ý (3.3.10) 

so Si ... si 
-1 

L s1-g S2-g si-g 

then, the set of equations 3.3.8 may be written in matrix form as, 

cT Y. = B1 (3.3.11) 

If CICT is nonsingular, then it has an inverse, so that the solution 

for Yj is given by, 

kh. - 
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where, 

Yý = AiB (3.3.12) 

Al = (C1C1 )1 (3.3.13) 

Furthermore, if Sk is a (g+l)-component column vector of the detected 

data symbols and defined as, 

Sk = [sk Sk-1 ... sk_9]T 

0 [Sk Sk-1 ... Sk_g]T (3.3.14) 

then, it is easily shown that, 

and 

CiC, 
ký1 

SkSk (3.3.15) 

1 

B. = 
kIl 

rk Sk (3.3.16) 

Therefore, the least-squares solution can also be written as, 

Yý SkSk]-1 I rkSk (3.3.17) 
k=1 k=1 

For sufficiently large values of i, equation 3.3.17 can be replaced 

by (28) 
, 
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E[SkST]Y' = E[rkSk] (3.3.18) 

where E is the expectation operator. Expanding the foregoing equation, 

we have, 

E[sk sk] E[sk sk-1] E[sk sk_g] Yýý0 E[r ksk] 
E[sk-lsk] E[sk-lsk-1] ... E[sk-lsk-g] YLi E[rksk-1] 

E[sk-gsk] E[sk-gsk-1] 
... 

E[sk_gsk-g] Yj, g E[rksk-g] 

(3.3.19) 

Since the {si} are uncorrelated and also statistically independent of 

the {wi}, equation 3.3.19 reduces to 

E[sksk] 

0 

Elsk-1 k-1' 

0 "1,0 

Y 

E[Sk_9Sk_g] Y. 
,g 

E[sksk] 

E[sk-lsk-1] 

E[sk_gsk_gl 

(3.3.20) 
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The inverse of the nonsingular diagonal matrix on the left-hand 

side of equation 3.3.20 is simply 

(Etsksk])-i 
0 

(E(sk-lsk-11)-1 

0 

" 0 

(E(Sk-gSk-g]) 1 

Premultiplying equation 3.3.20 by this inverse, results in, 

Y. =Y (3.3.21) 

Hence, when i is large and the statistical properties of the {sk} 

and {wk} are met, the estimate Y! converges exactly to the actual 

value of Y. Otherwise, by noting that ST k Y. = YiT Sk and 

Bi = Ail Yi (equation 3.3.12), the minimum value of Mi is, 

i 'T i Mi(min) '2 
k1i 

(rk - Yi SO 

_I (rk - 2rkYlTSk + YýTSkSkY! ) 
k=1 

_ rk2 - 2Y: T rkSk + Y'I(I SkSk)Y. i k=1 k=1 k=1 

I 
1 
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1 

= 
kIlrk2 

- 2YýTB1 + YiTAi1Yý. 

_ k2 - 2YiTA-lY! + YýTAi'Yi_ 
k=1 

i 
= 

kIlrk2 - Y! TA-lY! 

3.4 RECURSIVE LEAST-SQUARES EýTIMATOR 

(3.3.22) 

Although the estimate Y! as given by equation 3.3.12 is optimum 

in the sense that the least-squares criterion function is minimized, 

it is nonrecursive and difficult to implement in practice. The first 

difficulty is that all the components of the (g+l)xi matrix Ci must 

be known beforehand. Secondly, the matrix CiCJ has to be inverted 

every time which will involve a large amount of processing time when 

g and i are large. Therefore, a recursive form of the solution given 

by equation 3.3.12 is desirable where the new estimate Yi at time t=iT 

is derived from past estimates. 

The nonrecursive least-squares estimate of Y is 

Yý = AiB1 (3.4.1) 

1 

where A. = (kII SkSk)-1 (3.4.2) 

1 

and Bi =I rkSk (3.4.3) 
k=1 
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Using equations 3.4.2 and 3.4.3, Ai and Bi can be related to their 

previous values Ai_l and Bi_l, respectively, by the following 

equations, 

Abi = Ai1, +ss (3.4.4) 

and Bi = B1_1 +riSi (3.4.5) 

Let us consider equation 3.4.4. Premultiplying it by-Ai and post- 

multiplying by Ai_l gives, 

Ai-1 ° Al + A1S1SJA1_1 (3.4.6) 

Postmultiplying by Si, 

Ai-1Si = A1Si + AiSiSiAi-1Si 

AiSi (1 + SiAi-1Si) (3.4.7) 

Postmultiplying by (1 + SiAi-1Si)_'SiAi-1' 

Ai-1Si(1 + SiAi_1Si)SiAi-1 = AiSiSiAi-1 

(3.4.8) 

Substituting the value of AjSiSTAi_1 from equation 3.4.6 into the 

foregoing equation, we have 
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A1_1Si (1 + SiAi_iSi)_1SiAi-1 = Ai-1 - Ai 

or 
Al = Al-1 - Ai-1Si(1 + SiA1-1Si)-Is Ai-1 

= a; 
-ý 

K; S; a; 
-ý 

where, 

(3.4.9) 

K1 = A1_1Si (1 + STA1_1Si)-1 (3.4.10) 

Finally, using equations 3.4.5,3.4.9 and 3.4.10, equation 3.4.1 

becomes, 

K1SiA1_1)(Bi-1 + r1S1) 

- Ai-I i-1 + r1Ai-1Si - KiSiAi-iBi-1 - 

- r1K1S 
T 
iAi_1Si 

= Ai_1B1_1 + r1Ki (1 + STAi_1S1) - 

- KýSiAI_1Bi-1 - riKiSiAi-1Si 

- Ai-1Bi-1 + Ki(ri - SiAi-lBi-1) 

- Yi-1 + Ki (ri - SiYi-1) (3.4.11) 
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Therefore, equations 3.4.9,3.4.10 and 3.4.11 constitute a recursive 

form of the least-squares solution and these are regrouped in the 

order in which they are executed as follows. 

Ki = Ai_1Si (1 + STAi_1Si)_1 (3.4.12a) 

Ai = A1_1 - KiSiAi-1 (3.4.12b) 

Y! = Yß_1 + Ki (r1 - SiYi-1) (3.4.12c) 

Notice here that no matrix inversion is required. The term 

(1 + STAi_1Si) in equation 3.4.12a is simply a scalar quantity. 

To start the estimator, values of A0 and Yö are required. As an 

example, Yö may be set to a null vector and A0 is set to a diagonal 
(32) 

matrix with large diagonal elements. 

In deriving the above algorithms, no mention was made of the 

statistical properties of the noise components {wi}. To improve the 

estimator, we can include this information in the algorithms and this 

is done as follows. 

The least-squares estimate Y! given by equation 3.3.12 can be 

shown 
(40) to be an unbiased estimate, that is, 

E[Yl'] =Y (3.4.13) 
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Also.. if we define the error covariance matrix Pi as, 

Pi = E[(Y! - Y)(Y! - Y)T] (3.4.14) 

then it can easily be shown that, under the conditions assumed here. (40), 

Pi = v2 Ai (3.4.15) 

where a2 is the variance of the {wi}. Therefore, using the relation- 

ship in equation 3.4.15, the recursive algorithms of equations 3.4.12a- 

3.4.12c are transformed into a new set of algorithms as-given below, 

Ki = Pi-1Si(a2 + SiPi-1Si)-1 (3.4.16a) 

Pi = Pi_1 - KiSiPi-1 (3.4.16b) 

Y! = Y! 
_1 

+ Ký(rý - STY! 
_-) 

(3.4.16c) 

Clearly, the inclusion of the statistical properties of the {wi} 

has improved the estimator. In addition to providing the least-squares 

estimates Y!, we are now able to get an indication of the accuracy of 

these estimates through the error covariance matrix Pi. The initial 

values required here are those of P0 and Y. Since Pi is an error 

covariance matrix, P0 may be chosen to reflect the degree of confi- 

dence in the initial estimate Y,. Usually, little is known of Y at 

the start of the estimation process, so the most useful value for 

Yo is the null vector, and Po is set to be a diagonal matrix with 
(32) 

large diagonal elements. 
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The nonrecursive least-squares solution (equation 3.3.12) and 

both algorithms 3.4.12(a)-(c) and 3.4.16(a)-(c) assume implicitly 

that Y is reasonably time-invariant over the interval T<t<iT. 

When this is not the case or if there is an uncertainty on this 

point, both recursive algorithms can be reformulated to include the 

knowledge of the variation of Y. 

Let us assume that the variation of Y is described by a first- 

order recursive process driven by zero mean white noise process, 

that is, 

vi - zi, i-iYi. -1 
+ vi-1 (3.4.17) 

where Di, i_l is the (g+1)x(g+1) transition matrix and Vi_l is the 

(g+l)-component column vector of random variables representing the 

fluctuations in Yi. The received sample ri which contains the infor- 

mation on Yi is given by, 

ri = SiY1 + wi (3.4.18) 

where Si is defined in equation 3.3.14 and wi is the noise component 

in ri. {wi} and {Vi} have the following statistics. 
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E[wi] =0 

E[Vi] =0 

E[w12]= v2 

E[V iVJ] = Q1& 

E[wiViT] =0 for all i, j 

(3.4.19) 

where Qi is the covariance matrix of Vi, and 8i, ß is the Kronecker 

delta which is defined as 

(3.4.20) 
1 i=J 

at time t=iT and just prior to the receipt of ri, the knowledge of 

the variation in Y (equation 3.4.17) can be used to make an a priori 

prediction Yl, i_1 or Yi. From equation 3.4.17, since E[Vi] = 0, we 

have, 

E[Yi]= Ili, i-1Yi-1 (3.4.21) 

so that, the best prediction of Yi just before the arrival of the 

next received sample ri is 

YI, i_l _ "i, i_iY1_1 (3.4.22) 
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and the covariance of the error in this prediction is given by, 

Pi, i_1 = E[(Yl"i_1 - Yi)(Yl, i_1 - Yi)T] (3.4.23) 

-E« oi, i-1Yi-1 lli, i-lyi-1 

= E[(ýi, i-1(Yi-1 - Yi-1) -- Yi-1) - Vi-1)T] 

E[oiýi_1(YI_1 - Yi-1)(Yi-1 - Yi-1) Týi, 
i-1] - 

- E(»1,1-1(Yi-1 - Yi-1)Vi-1] - 

- E[Yi_l(ti, i-l(Yi-1 - yi_l))T] + 

+ E[Vj_1Vi-1] 

But, from equation 3.4.17, V1_1 only affects Yi, so that 

E[, Dii1(Yi-1 - Yi-l)Vi-1] -0 

E[V1-1(1,1-1(Yi-1 - Yi-1))TI =0 

and equation 3.4.24 reduces to, 

(3.4.24) 

Pi, i-1 - ýi, i-1 i-1 i, i-i + 4i-i (3.4.25) 
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where Pi_1 is the error covariance matrix of the previous estimate 

Y! 
_1 

and is defined by equation 3.4.14. Therefore, using equations 

3.4.22 and 3.4.25 as the a priori information, the algorithms giving 

the mean-square estimate is as follows. 

Yi, i-1 - ýi, i-lYi-1 (3.4.26a) 

T) Pi, i-i ij -1 i-lDi, i-1 + Qi-1 (3.4.26b 

Ki = Pi, i-1Si (Q2 +s Pipi-1Si)-1 (3.4.26c) 

P1 = P1,1.1 - KiSiPi, i-1 (3.4.26d) 

Y1 = Yi, i-1 + K. (ri - SiYi, i-1) (3.4.26e) 

The algorithms 3.4.26(a)-(e) are normally known as the Kalman filter 

estimator. In order to use the above algorithms, o and Q as well as 

Po, Y, and a2 must be specified. In some cases, it is difficult to 

specify the model of the channel as in equation 3.4.17. However, c 

may be set to the identity matrix and V may be used to cover any 

error in the modelling of the channel and also any random fluctuations 

of the channel. A potential weakness of this estimation process is 

clearly the error that may be introduced into the estimate of Y by the 

assumptions that are made about a channel whose behaviour is not accu- 

rately known. The more prior knowledge that is used about a channel, 

the greater is the error that is likely to be caused inýthe estimate 

by any inaccuracies in the channel model. As before, Y; is set to 
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the null vector and Po is set to a diagonal matrix with large 

diagonal elements. The optimum value of a2 can be determined by 

trial and error. Clearly, when Q is set to the null matrix, the 

algorithms 3.4.26(a)-(e) are identical to algorithms 3.4.16(a)-(c) 

where the channel is time-invariant. 

Now, for the case when o=I, where I is the identity matrix, 

the algorithms 3.4.26(a)-(e) simplify to, 

Pi, i-1 - Pi-1 + Qi-1 (3.4.27a) 

Ki = Pi, i-lsi (Q2 + STP1ýi)-1 (3.4.27b) 
-1S. 

Pi = Pi, ý_1 - KiSiPi, i-1 (3.4.27c) 

Ya = Yß_1 + Ki (r1 - sTy! ) (3.4.27d) 

Under the assumed conditions, all four estimators (algorithms 

3.4.12(a)-(c), 3.4.16(a)-(c), 3.4.26(a)-(e) and 3.4.27(a)-(d) yield 

the optimal estimate (in the minimum mean-square error sense) of the 

channel. 

As a measure of complexity, the number of multiplications per 

received sample using algorithms 3.4.27(a)-(d) is 3(g+l)2 +3(g+l). 

By comparison, the nonrecursive solution which involves matrix 

inversion (equation 3.4.1) requires of the order of (g+l)3 multi- 

plications. When g is large, even the algorithms 3.4.27(a)-(d) 

involve a considerable amount of computation per received sample, 
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and so various other estimators have been designed but may not 

perform so well. 

3.5 FEEDFORWARD TRANSVERSAL-FILTER ESTIMATOR 

The estimator has been developed by Magee and Proakis(27). 

Its structure is identical to that of the linear feedback transversal 

equalizer 
(2,116). The estimator has g+l taps which is equal to the 

number of components in the sampled impulse-response of the channel 

and these tap gains are adjusted in such a way as to minimise the 

mean-square error between the actual received sample ri and its 

estimate r! at the output of the estimator. Under ideal conditions, 

the resulting values of the tap gains are the components of the 

sampled impulse-response of the equivalent discrete-time channel 
(27) 

model (Figure 2.3.1). 

The feedforward transversal-filter estimator operates as 

follows. Each box labelled T in Figure 3.5.1 is a store that holds 

the corresponding detected data-symbols {s! 
_h}. 

Each time the stores 

are triggered, the stored values are shifted one place to the right. 

At time t=iT, the estimator is fed with the received sample ri and 

the detected data-symbol s.. If Y! 
_l 

is the previous stored esti- 

mate of Y, then an estimate r! of ri at the output of the estimator 

is given by, 

ri 
I 

si-hyi-l, h (. 3.5.1) 
h=0 

The error in this estimate which is 
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eý = r1 - rý (3.5.2) 

is then scaled by a. small positive quantity c resulting in the 

signal cei. Each signal s1_h for h=0,1,..., g is multiplied by 

cei and the products are added to the corresponding components of 

the previous estimate Yß_1, giving the new stored estimate Yi, where 

the (i+l)th component of Yi is given by, 

yi, h - yi-l, h + Ceisi-h (3.5.3) 

Equation 3.5.3 is usually known as the stochastic gradient algorithm 

and it can be shown 
(17 that it is the steepest descent algorithm for 

adjusting the tap gains of the estimator. When it is properly opti- 

mized in the absence of noise, the values of the tap gains are the 

values of the sampled impulse-response of the channel (see Section 3.3). 

The factor c in equation 3.5.3 is usually known as the step size 

of the estimator and it need not necessarily be a constant. It is 

desirable to make c as small as possible so that the additive noise 

will have a small effect on Y. However, this results in the esti- 

mator having a slower rate of response to changes in y(26). It can 

be seen that the number of multiplications involved in generating Y! 

is equal to (2g+3). 

Clearly, the feedforward transversal-filter estimator can be 

implemented easily and it is also able to track slow variations in 

the channel response 
(21 ). However, it is well known that when the 

input samples {s1} are highly correlated, the convergence of the 
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estimate to the optimum value is slow(37). When the channel varia- 

tion is rapid, such as that obtainable over some HF links, the 

Kalman filter estimator might be expected to be better at coping 

with these variations. 

3.6 FEEDBACK ESTIMATOR 

The feedback estimator was developed by Clark et al 
26). A 

brief description of its operation will now be given. 

The estimator obtains for each received sample ri+g a 'raw' 

estimate Yi of Y which is then used to update the stored estimate 

Yi_1. When Yß_1 =Y and there is negligible noise, Yi = Y. Let Z. 

be the (g+l)x(g+l) matrix defined as, 

Zi = si si-1 si-2 

si+1 Si si-1 

si+2 5i+1 si 

si_g 

si_g+l 

si-g+2 

si+g si+g-1 si+g-2 ... Si 

(3.6.1) 

and let Di, Ei and Fi be the (g+l)x(g+1) matrices, all derived from 

Zi, and are defined as follows, 
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Clearly, 

Di = 
(diagonal 
matrix) 

Ei = 
(upper 
triangular 
matrix) 

Fi = 
(lower 
triangular 
matrix) 

Si 
0 

si 

0 

si 

0 si-1 si_2 ."" sj_g 

00 sß_1 """ Si-9+1 

000.. " si_g+2 

000... 0 

000... 0 

si+1 00... 0 

si+2 si+l 0... 0 

si+g si+g-1 si+g-2. .. 
0 

(3.6.2) 

(3.6.3) 

(3.6.4) 

(3.6.5) Zi = Di + E1 + Fi 
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and Di is nonsingular, so long as si . 0. Let us define, 

Ri = Ili ri+1 ... ri+9]T 

and 

T [w1 wi+i ... wj+gl 

(3.6.6) 

(3.6.7) 

When Y is time invariant over the time interval iT4t4(i+g)T, the 

received samples ri to ri+g are given in matrix form by, 

Ri = (Di +E1 +Fi)Y+Wi (3.6.8) 

The estimator starts operation by making an estimate Li of (Ei + Fi)Y. 

In forming Li, the estimator uses one or more of the previous estimates 

of Y and also its knowledge of Ei' and Fi derived from the {s which 

are assumed to be correct. Subtracting Li from Ri gives, 

Ni = Rý - Li 

= D1Y + (E1 + Fi )Y - Li + WI 

Premultiplying the foregoing equation by Di1 gives, 

Yý = DI'Ni 

(3.6.9) 

=Y+ Di1((Ei + F1)Y - Li) + Di 1W1 (3.6.10) 
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The inversion of a diagonal matrix Di is, of course, trivial. D71 

is also a diagonal matrix with each element along the main diagonal 

equal to the reciprocal of the corresponding diagonal element of 

the original matrix Di. 

When Li = (Ei + F1)Y, equation 3.6.10 reduces to, 

Yi =Y+ Di1Wi (3.6.11) 

Yi is then used to update the previous estimate Y1! 
_1 

to give the new 

estimate, 

Yi = cYi + (1 - c)Yj_1 

Yi-1 + c(Y1 - Y! 
- 

(3.6.12) 

The role of the parameter c is similar to the step size of the trans- 

versal-filter estimator. Usually, c«1 but need not necessarily be 

a constant. Notice here that Yi is determined after the reception of 

ri+g and not ri as in the previous estimators. The change simplifies 

the terminology. 

A The raw estimate Yican be formed using various methods. Clark 

et a1(263 presented two of these which were named Feedback Estimators 

1 and 2. However, we will not go into these estimators, it is suffi- 

cient here to indicate only the complexity of each estimator when 

forming the estimate Y. For the Feedback Estimator 1, the number 

of multiplications are i(g+l)(g+2)+2g+l and the Feedback Estimator 2 

requires 4g+2 mul-tiplications. 
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3.7 FAST CHANNEL ESTIMATORS 

As the name suggests, these estimators yield the optimum 

estimate of the channel at the fastest possible rate. They usually 

require some special inputs and are ideal for use during the training 

period at the start of a transmission. 

3.7.1 Recursive Channel Estimator Using a Pseudorandom Binary 
Sequence (PRBS) , 

The estimator is developed by Luvison et a1(52'53) and it 

operates as follows. The input training sequence is a pseudorandom 
(60 

binary sequence (PRBS), 61) 
of length N= 2n - 1, where n is the 

number of cells in the shift register that is used to generate the 

sequence. The PRBS is cyclic with a period of N and it has a two- 

level autocorrelation function which approximates to that of a truly 

random sequence. 

Let Si (equation 3.3.14) be a (g+l)-component column vector 

consisting of the transmitted data-symbols {±1}. Associated with 

each Si is the received signal ri (equation 3.3.1). The algorithms 

for estimating the sampled impulse-response of the channel are, 

AA 

Si = Si - Si-1 + aisi-1 (3.7. la) 

AA 

ri = ri - ri-1 + airi-1 (3.7.1b) 

2 
Y. i = Y'_1 + (N+1) i +1riSi 

(3.7.1c) 

where ai = (N -i+ 3)(N -i+ 2)-1 (3.7.1d) 
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and i=1,2,..., N. All the initial values are simply set to zero. 

The vectors {Si} are formed as follows. Let {di} be the components 

of the PRBS, where 

dN+i = di i=1,2,... 

then the {si} in equation 3.3.14 are given by, 

si = dg+i for i=0,1,2,... 

... and i= -19-29 

so that the vectors {Si} are given by, 

[SI S2 ... SN-gSN-g+1SN-g+2 .... SN] 

(3.7.2) 

(3.7.3) 

dg+"j dg+2 ..... dN d1 d2 . ... d9 

dg dg+l ..... dN-1 dN d1 dg-1 

dg-1 dg .... dN-2 dN-1 dN dg-2 

dI d2 .""" dN_g dN-g+1 dN-g+2 .. dN 

(3.7.4) 
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3.7.2 Channel Estimator Using the Fast Hadamard Transform 

The estimator is developed by Justesen(55) and it is based on 

the correlation method 
(56). The sampled impulse-response is obtained 

by correlating the output and input sequences. The input training 

sequence is the maximum length shift register sequence (or PRBS) of 

period N= 2n - 1, and all 0's and 1's produced by the shift register 

are replaced by 1's and -l's, respectively. If the values of the 

sampled impulse-response {yh} are zero for h>g, then the PRBS is 

chosen such that its length N is equal to g+l, or if a sequence of 

that length is unavailable, the next longer sequence is chosen. In 

the latter case, the number of components in the sampled impulse- 

response is extended to N by adding the required number of zeroes 

at the end of the response. The number of components in the sampled 

impulse-response, for convenience, is still given by g+l. 

Associated with each vector Si (equation 3.3.14) of the input 

signal is the received signal ri (equation 3.3.1). In the absence 

of noise, ri is given by,. 

ri =I Si-hyh 
h=0 

(3.7.5) 

The periodic autocorrelation function of the pseudorandom sequence 

is given by(60), 

I g+1 
1k=0 (mod g+1) 

bk = g+T il 
Sisi+k 

1 k#0 (mod g+l) g+l 

(3.7.6) 
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A measure of the cross-correlation between the input and output 

sequences, for a shift of k places, where k=O, l,..., g, is given 

by, 

g+1 
Ck = 

ij1 
ri+ksi 

g+1 
(3.7.7) 

_ Si+k-hyhsi 
i=1 h=0 

g+1 
-= h 0yh i= . 

ý1 Si+k-hsi (3.7.8) 
- 

Notice that the actual value of the cross-correlation between the 

{ri} and the {si} is (g+1) times ck. Using equation 3.7.6, equation 

3.7.8 becomes, 

ýk = (9+1)yk -1 yn (3.7.9) 
n=o 
h#k 

Summing the {r1} for i=1,2,..., g+1 and using equation 3.7.5 we have, 

g+1 g+1 

.1 ri =I= Yhsi-h 
1=1 i=1 h=0 

9 g+l 
_ yh 

= 
Si-h 

h=0 i=1 

=I Yh h=0 

yk -I yh (3.7.10) 
h=0 
h#k 
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The above derivation uses the fact that, for the PRBS, 

g+1 
I s1 =-1 

i=1 

Subtracting equation 3.7.10 from equation 3.7.9, gives 

(3.7.11) 

g+1 
yk = (g+2)-1 (ck - 

1ý1 
r1) (3.7.12) 

The unknown quantities in equation 3.7.12 are the {ck}. The novelty 

of Justesen's estimator is in the way the {ck} are calculated, which 

is performed as follows. Expanding equation 3.7.7 we have, 

co = s1 r1 + s2r2 

cý = sýr2 + s2r3 

cg = sý rg+1+ s2rg. 

+.... + sg+lrg+1 

+.... + sg+lrg+1+1 

(3.7.13) 

O+1+ '''+ sg+lrg+1+g 

However, rg+l+i = ri for i=1,2,... as the input sequence is periodic 

with period equal to g+1. Therefore equation 3.7.13 becomes 
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c0 sIr1 + s2r2 +... + sg+lrg+l 

cl sIr2 + s2r3 +... + sg+lrl 

(3.7.14) 

cg = sIrg+1 + s2r1 +... + s9+1r9 

Rearranging and writing equation 3.7.14 in matrix form, 

Co sl s2 ."""" sg+l r1, 

c1 sg+1 s1 .. """ sg r2 

" 
(3.7.15) 

cg s2 s3 ..... s1 rg+l 

The matrix in equation 3.7.15 is now increased in size by adding a 

row and a column of l's to give a (g+2)x(g+2) matrix. The rows and 

columns of the resultant matrix are rearranged such that the matrix 

is converted to the Hadamard matrix, that is 

rH_l Hn-1 

Hn = (3.7.16) 

L Hn-1 -Hn-1 

where, for example 
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11 
H1 = (3.7.17) 

1 -1 

and 

H1H F1 111 

-1 H2 
-Hi 1 -1 -1 

(3.7.18) 
1 

-1 -1 1 

The reordering of the rows and columns is taken as the permutation 

that takes the binary n-vectors listed in the order in which they 

appear in the linear feedback shift register into the sequence of 

integers in binary positional notation(55). When the matrix is in 

the Hadamard form, application of the fast Hadamard transform, which 

involves only additions and subtractions, yields the {ck}. The 

channel coefficients are then obtained using equation 3.7.12. 

3.7.3 Channel Estimator Using the Fast Fourier Transform 

The estimator, which was developed by Butcher and Cook(57), uses 

the fast Fourier transform (FFT) to calculate the sampled impulse- 

response of the channel. It operates as follows. 

By definition, the (k+l)th component of the discrete Fourier 

transform (DFT) of any sequence of N sample values {xi} is (2,59) 

N-1 2nki 
xk =I xi exp(-j Nk=0,1,..., N-1 (3.7.19) 

i=0 

and the inverse discrete Fourier transform (IDFT) is given by, 
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Nil 
nki xi = 

k0 
xk exp(+j 

Z 21) (3.7.20) 

where i= 1T. Let us assume that the channel whose sampled impulse- 

response we wish to identify has g+l components {yh} where h=0,19 ... 99- 
Through this channel, a sequence of only m+l data symbols is trans- 

mitted, so that-si =0 for i<0 and im. The corresponding received 

signal sequence is given by the convolution of the {si} and {yh} 

(equation 3.3.1). Alternatively, if 

Sf N= (st sý ..... sf_1]T (3.7.21) 

and 

Yw = [yo 
A...... 

yN-13T (3.7.22) 

are the N-point DFT's of the input sequence and the sampled impulse- 

response of the channel, respectively, then the (k+l)th component of 

the N-point DFT of the received signal sequence {ri}, in the absence 

of noise, is given by. 

rk = skyk' (3.7.23) 

that is, the convolution of the {si} and the {yh}in the time domain 

is replaced by a simple multiplication in the frequency domain. 

The inverse DFT (IDFT) of rö, rý, ..., rN_1 gives the {ri}. 

Clearly, because of the periodic nature of equations 3.7.19 and 

3.7.20, the results of the convolution are also periodic. In order 

to avoid the result of the convolution over one period being interfered 
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by the neighbours, N is chosen according to the relationship 

Na (m+l) + (g+l) -1 (3.7.24) 

In addition, N is selected as a power of 2 so as to obtain maximum 

efficiency when computing the DFT's using the algorithms known as 

the FFT(59). From equation 3.7.23, the (k+l)th component of the DFT 

of the sampled impulse-response is 

y= rk/sk (3.7.25) 

that is, each component of the DFT of the received signal sequence 

is simply divided by the corresponding component. of the input signal 

sequence. For a channel which is time invariant at least over N 

sampling intervals and in the absence of additive. noise, equation 

3.7.25 gives the exact values of the sampled impulse-response. When 

additive noise is present in the {ri}, the estimates'{yý} are chosen 

to minimize the function 

N-1 zf 
Mk = I-k - (Yk)FI2 (3.7.26) 

k= =0 ST k 

where zk and (yk)t are the (k+l)th components of the DFT of the 

corrupted received signal sequence and the DFT of the estimate of 

the sampled impulse-response, respectively. The minimization of 

equation 3.7.26 yields(57), 
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N-1 Zk 
yh R k=0 st 

exp(j27rkh ) h=0,1,..., 9 (3.7.27) 

Evaluation of the {yh} using equation 3.7.25 requires three 

" applications of the transform. For N= 2n, the FFT requires Nn/2 

complex multiplications. 
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4. THE HF RADIO LINK 

Before attempting to develop any HF channel estimator, it is 

essential that the ionospheric propagation medium is well understood. 

Thus, we begin in Section 4.1 with a lengthy discussion on the phy- 

sical composition of the ionosphere. This is followed in Section 4.2 

with an outline of the mechanism of radio wave propagation through 

the ionosphere. In Section 4.3, various forms of signal impairments 

that are encountered by the radio signal are identified. A model of 

the HF channel is then considered and it is simulated on a digital 

computer (Section 4.4), the simulated channel being used later in 

the testing of the estimators. Finally, a discussion is presented 

on the transmission of digital data using QAM over the model of the 

HF radio link (Section 4.5). 

4.1 THE IONOSPHERE 

The ionosphere is a region about 50 km above the surface of the 

Earth(66,69). It is composed mainly of molecules and atoms of oxygen 

and nitrogen. These molecules are progressively replaced by their 
(68) 

respective atoms as the height increases. In addition, as the 

result of electrical discharges, some oxygen and nitrogen atoms 

combine to produce a small proportion of nitric oxide. It is 

generally believed that the Sun's radiation and, to a lesser extent, 

cosmic rays cause these molecules and atoms to be converted into 

ions and free electrons 
(63967968). Also, a significant amount of 
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ionization is caused by meteors travelling through this atmosphere(68). 

The degree of ionization is not constant throughout the height 

of the ionosphere. There are regions where the ionization is more 

intense (66,67). As an example, Figure 4.1.1 which is taken from 

Ref. 69, shows a typical electron density profile for summer noon 

and midnight at middle latitudes. Generally, the ionosphere is 

divided into three regions, D, E and F regions. Each region consists 

of one or more layers. The different regions of the ionosphere have 

been determined using vertical and oblique soundings, and also using 
(63 , 68). 

rockets and satellites 

The height of each region varies. from day to night and with the 

seasons, and is in fact changing continuously 
(67) 

. The part of the 

ionosphere between 50 and 90 km is known as the D-region. Here, the 

electron concentration is low (108 - 109 electrons/m3). The critical 

frequency or plasma frequency, defined as the highest carrier 

frequency of a vertically-incident ray which can be reflected by 

the layer (69), is given by(68), 

1 Ne21 fo =2 Cm 
E) 

= 9N (4.1.1) 

where N is the number of electrons per m3, 

c is the negative charge of an electron = -1.6 x 10-19 C, 

is is the permittivity of free space =x 10-9 F/m, 
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and m is the mass of an electron =9x 10-31 kg. 

The critical frequency is dependent on the ionization level and 

therefore is low for the D-region (100-700 kHz). The molecular 

concentration is high (of the order of 1020 molecules/m3) and the 

collision frequency between electrons and molecules is high 

(5 x 105 -5x 106 per m3/s). Thus, for HF radio waves, the D- 

region acts principally as an attenuator. The D-region is a daytime 

phenomena. At night, in the absence of solar radiation, very little 

ionization takes place, being limited to that due to meteors. The 

ions now combine with the electrons and the D-region virtually 

disappears. The attenuation is therefore not present so that 

propagation over long distances is. possible but the background 

interference has increased. 

The E-region spans the altitude 90 to 150 km(68'69). The 

maximum ionization is found at around 120 km(68) and at this height 

the electron density is of the order of 1011 electrons/m3 and the 

corresponding critical frequency is around 4 MHz. At night, a 

certain amount of ionization still persists due to imperfect ion 

recombination and ionization due to meteors and so the critical 

frequency drops by an order of magnitude from its daytime value. 

The critical frequency can be calculated approximately using the 

equation 
(63), 

f0E = 0.9 [(180 + 1.44R) cos X]°"25 (4.1.2) 
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where R is the sunspot number and x is the solar zenith angle. The 

value of foE obtained from equation 4.1.2 is usually very close 

(within 0.2 MHz) to the observed value and is independent of the 

time of day or year(63). The number of collisions between electrons 

and molecules is rather large (5. x 103 -2x 104 per m3/s) so that 

there is still a significant amount of absorption but not as much as 

in the D-region (68) 
. The E-region can support propagation for 

distances up to around 2000 km. 

Occasionally, within the E-region, patches of much denser ionized 

clouds appear and these are capable of reflecting high frequencies. 

These clouds are known as sporadic E-layers(63,68) because of their 

unpredictable occurrence. The sporadic E-layer is obviously respon- 

sible for creating interference because signals are being reflected 

into areas which they are not intended for. 

The F-region of the ionosphere extends upwards from about 150 km. 

The lower part behaves differently from the upper part and so it has 

been divided into two layers, Fl and F2. The Fl-layer is observed 

only during the day at a height of about 200 km. Absorption in this 

layer is small and the critical frequency for any time of day and for 

any season can be approximated by(63), 

f0F, = (4.3 + 0.01R) cos0'2 x (4.1.3) 

The Fl-layer is not generally used for long-distance comnunication(66), 
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The F2-layer is the part of the ionosphere above 250 km and 

contains the highest concentration of electrons, typically around 

1012 electrons/m3 at the altitude of 300 km_ The critical frequency 

is between 5 to 10 MHz at middle latitude. The F2-layer is the most 

useful part of the ionosphere for HF radio communication. It is the 

most reliable reflecting media during both day and night. Due to 

its considerable height, the F2-layer can support propagation for 

a distance of 4000km or more, even using single-hop transmission. 

However, it has the most complex behaviour. For instance, unlike 

the D, E and Fl layers, the critical frequency is not directly 

related to the solar zenith angle. Its value is higher at noon in 

winter than the corresponding time in summer and usually the maximum 

value occurs not at noon but slightly later (1500 or 1600 hours)(68). 

During nighttime and sometimes during the day, especially in winter, 

the F1-layer merges with the F2-layer resulting in a single F-layer 

around the altitude of 300 km(66,69). The critical frequency drops 

to around 3 to 5 MHz (see Figure 4.1.1). 

4.2 IONOSPHERIC RADIO PROPAGATION 

The ionosphere affects the propagation of all waves up to a 

frequency of about 50 MHz. Frequencies lower than approximately 

30 MHz are propagated by refraction and frequencies between 30 and 

50 MHz are propagated by scattering(68). The HF radio waves are 

refracted back to the Earth because the refractive index, n, of the 

layer changes continuously with its height. This is due to the depen- 

dence of n on the electron density of the ionized medium. The 
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refractive index of the medium is given by (63,68) 

n= (1 -N c2)j (4.2.1) 
m e0 w2 

where w is the angular frequency of the radio wave and all other 

symbols are as defined previously in Section 4.1. Since the electron 

density increases with the height of the layer (see Figure 4.1.1), the 

refractive index decreases continuously for a given value of w. 

Therefore, at a certain height of the layer where the electron 

density is sufficiently large to reduce the value of n such that 

n=sin ei (4.2.2) 

the wave will be refracted back to Earth. ei is the angle of 

incidence of the wave measured from-the normal. From equations 4.2.1 

and 4.2.2, we have 

sin ei = (1 -N E2 (4.2.3) 
me0W2 

With normal incidence, ei = 0, we obtain from equation 4.2.3, 

w= (N max 
c0 

e2 
) (4.2.4) 

where Nmax is the electron density at the maximum height. 
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Hence, by writing w= 2nf0, the critical frequency is given by, 

N E2 
fo = z7r 

me0 (4.2.5) 

which is the highest frequency that can be reflected from the layer 

using vertical incidence. The frequency fo is the critical frequency 

mentioned previously in Section. 4. l. Clearly, by using other values 

of ei (i. e. oblique incidence) a given layer can reflect higher 

frequencies. Using equations 4.2.3 and 4.2.5, the frequencies can 

be calculated using 

f= fo sec ei (4.2.6) 

So far, the terms refraction and reflection have sometimes been 

used interchangeably to describe the process by which the radio wave 

is returned to the Earth. This is supported by a theorem by Breit 

and Tuve(63,68) which shows that the refraction process at some height 

B is equivalent to a mirror-like reflection at height A. In Figure 

4.2.1 where a plane Earth And a plane ionosphere is assumed, B is 

known as the real height, and A is the so-called virtual height, so 

that TBR is the actual ray path and TAR is the virtual ray path. The 

height B is always lower than A. Also, waves of any angle of inci- 

dence which have the same real refraction height can be shown 
(68) 

to 

have the same virtual reflection height. Furthermore, Martyn's 

theorem 
(63) 

shows that the virtual height of reflection for an 

obliquely incident wave is the same as the equivalent vertical wave. 
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Therefore, the actual ray path can be replaced by a virtual ray which 

travels in a medium with refractive index of 1 and reflected by a 

plane at the virtual height., Thus, the geometry of the ray path 

becomes very simple. For practical purposes, the principal reflec- 

ting layers are the E and F2 layers, and so in Figure 4.2.2 some of 

the possible ray paths are illustrated. 

Now, consider a tramsission over a distance d (see Figure 4.2.1). 

Since the wave experiences the equivalent of a mirror-like reflection 

at height A, by simple geometry, the angle TAP is equal to the angle 

of incidence ei. Thus, ei is related to the virtual height h' by 

tan eý _ 
ý, 

-d (4.2.7) 

So that, from equation 4.2.6, we have 

f= f0 sec ei = fo [1 + (2r)2] (4.2.8) 

The solution for f is usually found graphically. 

Figure 4.2.3(63) shows a plot of a family of curves that give h' as 

a function of fo for a distance of 2000 km. These graphs are super- 

imposed on a curve obtained using echo sounding (i. e. the ionogram). 

The three sections of this curve correspond to reflections from the 

E, F, and F2 layers. Consider as an example, the wave with a carrier 
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frequency of 14 MHz propagating over the distance of 2000 km. The 

ray can travel by several paths. Two of these paths could be reflec- 

ted from the F2-layer at heights corresponding to the intersections 

at a and a'. The ray which is reflected from the lower virtual 

height is called the low-angle ray and that reflected from the 

higher virtual height is known as the high-angle ray. The 14 MHz 

ray is also reflected at two heights from the F1-layer and only one 

reflection from the E-layer. These ray paths are shown in Figure 

4.2.4. Now, as the carrier frequency increases, the points of 

intersection (ee' and bb') get closer and finally the 20 MHz curve 

becomes a tangent at the point c to the h' versus fý curve-and so the 

low- and high-angle rays merge together. This frequency is known as 

the maximum usable frequency (MUF). Above the MUF, no frequencies 

are reflected. Therefore, when the carrier frequency is lower than 

the MUF, reflections from a single layer produce two ray paths. 

In the preceding discussion, the curvature-of the Earth and 

also of the ionosphere have been neglected. However, it can be shown 

(63,68) that these effects can be taken into account by introducing 

corrective terms. Furthermore, the effects of the Earth magnetic field 

has been shown 
(63,68) to split an incident wave on entering the ionized 

medium into two circularly polarized waves, the ordinary and the extra- 

ordinary waves. The effect is known as magneto-ionic splitting. The 

two rays travel along different paths but they can sometimes recom- 

bine on leaving the ionized medium, to give an elliptically polarized 

wave 
(68). Under extreme conditions only-one of the two rays is 

reflected. 
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4.3 TYPES OF DISTORTION ON HF CHANNELS 

When a data signal is transmitted through a channel, it is bound 

to suffer some form of distortion. Over an HF channel, the random 

fluctuations of the ionosphere contribute more severe forms of distor- 

tion and these will be discussed in the next few subsections. 

4.3.1 Multipath Propagation and Time Dispersion 

We have seen in the previous section that the transmitted radio 

wave may be propagated to the receiver along one or more different 

paths of unequal lengths, that is, by multipath propagation. Many of 

these propagation paths or modes are possible, especially for long- 

distance propagation; however, the number of . 
'effective' modes are 

small. Clearly, the time taken by the signals traversing these paths 

are different, so that when a short pulse of RF energy is transmitted, 

the received signal will have a profile such as that in Figure 4.3.1. 

In Figure 4.3.1, the time between the reception of the first and 

the last pulses is known as the time spread or time dispersion of the 

received signal. It is caused by the difference in the group delays 

between the different modes. When the reciprocal of the signalling 

rate is comparable with the relative multipath delay, the signals 

received over the different modes overlap each other giving rise to 

intersymbol interference. Figure 4.3.2 shows the variation in the 

maximum relative time delay with path length. It can be seen 
(63) 

that for a 2500 km path, the maximum time dispersion is about 3 ms and 

for a 1000 km path, the value is about 5 ms. 
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Fading is another form of distortion experienced over HF channels. 

Generally fading may be classified under one or more of the following 

headings, 
(63,65,67) 

1. Interference fading 

2. Polarization fading 

3. Absorption fading 

4. Skip fading. 

We have seen in Section 4.2 that the received signal may consist 

of high- and low-angle rays, each having ordinary and extraordinary 

components. In addition, there may be other sets of signals corres- 

ponding to rays propagating over different modes. The relative phases 

of these rays vary randomly because of the continuous variation in the 

path lengths as a result of the movement of ionospheric irregularities(63). 

Since the received signal is a vector sum of all these signals, inter- 

ference fading occurs. Clearly, when all the individual components are 

in phase, the resultant amplitude of the received signal is a maximum. 

The amplitude distribution of the received signal approximates to a 

Rayleigh distribution (63,65-68) 
when the various components are of 

about the same amplitude and the relative phases are varying randomly. 

When a specular (steady amplitude) component is present, due to a 

ground wave, for example, the distribution becomes Ricean(63). However, 

for a continuous wave and also for trains of pulses, the amplitude 

distribution is usually close to Rayleigh(63). 
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Interference fading is usually frequency selective because it 

depends on the wavelength of the interfering signals(63). For this 

type of fading, the fading period varies from a fraction of a second 
(63) 

to several seconds. 

Polarization fading occurs because of the continuous change in 

the polarization of the individual signal reflected from the 

ionosphere 
(67). This is due to the effect of the Earth's magnetic 

field on the ionosphere during the reflection process. The fading 
(63) 

period also varies from a fraction of a second to several seconds. 

Absorption fading is caused by the variation with time of iono- 

spheric absorption(63) and is usually greatest at sunrise and sunset(65). 

The fading period is here of the order of an hour or longer. 

Skip fading is caused by the continuous variation over short 

periods of time of the MUF for a given path. When the MUF decreases 

temporarily below that for the particular path and the frequency in 

use, the skip distance(63) (the distance for which a given frequency 

is also the maximum frequency) lengthens, so that the receiver is 

brought within the skip zone and therefore no signal is received. 

Skip fading is generally non-periodic and can be avoided by working 
(63 

well below the MUF, 65). 

To give some idea of the depths of fading and also the fading 

rates, Figure 4.3.3 is included. This is taken from Ref. 65, and gives 

the average fading rates and depths for a typical HF channel at middle 

latitudes. It can be seen that the very deep fades occur infrequently 

and, for most of the time, lie between 5 and 10 dB, the latter 
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occurring most frequently in the evening. Also, it is shown in 

Figure 4.3.3 that the fading rates of 10 to 50 fades per minute are 

the most common, especially at dawn and in the evening, whereas at 

midday, they are distributed rather evenly between 0 to 50 fades per 

minute. 

4.3.3 Frequency Dispersion 

The variation of path length due to the movement of the ionospheric 

reflecting layers which, for example, can reach 50 km/hour for the F2- 

layer, and also the time variation of the electron density and hence 

the refractive index along the propagation path cause the received 

signal to be shifted in frequency(2,65,72,73). The frequency (Doppler) 

shifts are relatively small at night. Also, the shifts are considerably 

greater for propagation involving the F-layer than the E-layer. Typical 

values are in the range 0.01 to 1 Hz(65). However, greater frequency 

shifts are possible when the ionosphere is disturbed. For instance, 

shifts of 5-10 Hz(65) may be encountered when the conditions which 

give rise to spread F(63) occurs. Values of up to 50 Hz have also 

been observed during strong solar flares, but this is very rare 
(65). 

The frequency shift, on one propagation path is different from 

that on another path. This causes the frequency spreading of the 
(2 

received signai'65) . Under normal conditions, during the so-called 

'quiet' days, typical values of the frequency shift are 0.02 Hz for E 
(65) 

modes and 0.15 Hz for F modes. 
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4.3.4 Delay Distortion 

Group delay is defined as the rate of change of phase with 

frequency 
(73) 

and thus for a signal reflected from the ionosphere 

the group delay is not constant across the signal bandwidth. This 

results in the distortion of the received signal known as delay 

distortion. In Figure 4.3.4(65), the variation in group delay with 

frequency is shown for a 430 km path and a 1365 km path, obtained by 

oblique soundings. From these graphs, it is clear that the E-layer 

causes very small dispersion; typical value of the rate of change of 

group delay with frequency is 5'x 10-6 us/Hz(65). The F-layer, however, 

can give more rapid changes of group delay with frequency, particularly 

near its MUF. 

4.4 MODEL AND SIMULATION OF AN HF CHANNEL 

Practical evaluation of HF digital communication systems may be 

carried out either by testing the equipment over actual HF channels 

or by testing it by computer simulation with an appropriate model of 

the channel. The first method may be costly to implement as any change 

required for the adjustments and/or improvements of the equipment could 

well involve alterations to the hardware. Also, when several systems 

are to be compared, they have to be tested simultaneously because the 

same propagation and channel conditions are difficult to obtain at 

different times due to the random variation in time and frequency of 

the HF channel. To avoid such problems, laboratory measurements using 

a valid model of the HF channel offer a considerable reduction in cost 
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because in the testing and certainly in the initial study of the 

system, the simulator is usually in the form of software, so that 

any alteration required will merely involve changes to the computer 

simulation program. 

HF channel simulators, whether in hardware or software form, 

are versatile, in that a variety of channel conditions can simply be 

produced. If desired, these can be repeated any number of times with 

consistent results. Also, the type and amount of distortion can be 

controlled so that any particular weakness of the system can be 

identified and studied in isolation. 

In addition to-the above techniques, one can also carry out 

theoretical analyses of the performance of the system. Here, a valid 

model of the channel is also required. However, because many factors 

are involved complete analyses are usually laborious and often diffi- 

cult. Therefore, computer testing of the system over the channel 

simulator is usually preferred. 

Although ionospheric channels are nonstationary in both frequency 

and time, most narrowband channels (say, 10 kHz) can be represented 
(76) 

by a given model at least for short time durations (say, 10 minutes). 

Thus, the HF channel can be adequately studied by computer simulation. 

Many simulator designs have been described in the literature (76-88) 
; 

most of these are based on the tapped delay-line model which has been 

proposed by Watterson, et al in Ref. 76. This model has been adopted 

unanimously by the International Radio Consultative Committee (CCIR) 

of the International Telecommunication Union (ITU). This investigation 
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also uses the tapped delay-line model as shown in Figure 4.4.1, but 

operating here on a complex-valued baseband signal. 

The input signal is fed to an ideal delay line and is delivered 

at several taps, one for each ionospheric propagation path. Rayleigh 

fading is then imposed on the delayed signals by multiplying each 

signal by a suitable tap gain function-Qh(t). The resulting delayed 

and modulated signals from., the different taps are added to form an 

output of the tapped delay line. The received signal is the sum of 

the output of the tapped delay line and an additive noise term VN(t) 

which represents the noise and/or interference on HF channels. Although 

various types of noise, such as atmospheric, man-made and thermal, are 

present on HF channels, it is a common practice to represent these by 
(7$' 

. white Gaussian noise$ý'$$ý 

Now, if we consider only one propagation path, the Rayleigh fading 

introduced by the sky wave is modelled as in Figure 4.4.2(89), where 

ql(t) and q2(t) are two random processes which must have the following 

properties 
(78): 

1. Each random process must be Gaussian with zero mean and the same 

variance. 

2. The random processes ql(t) and q2(t) must be statistically 

independent. 

3. The power spectrum of each random process must be Gaussian in 

shape and with the same rms frequency, frm. 
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The power spectra of q, (t) and q2(t) are given by, 

(Q1(f)12 =IQ2(f)12 = exp C- 
2f22 

(4.4.1) 

rms 

and are shown in Figure 4.4.3. The frequency (Doppler) spread, fsp, 

introduced by ql(t) and q2(t) into an unmodulated carrier is defined(78) 

as the width of the power spectrum and this is given by, 

fsp = 2frms (4.4.2) 

The rms frequency is related to the fading rate, fe, which is defined(78 

(for a single carrier) as the average number of downward crossings per 

second of the envelope through the median value, according to the 

equation(78), 

frms - T. 
f 
475 (4.4.3) 

From equations 4.4.2 and 4.4.3, fsp is related to fe by, 

fsp = 1.356 fe (4.4.4) 

so, for example, a1 Hz frequency spread is equivalent to a fading 

rate of 44 fades/min. 

The random process ql(t) is generated by filtering a zero mean 

white Gaussian noise waveform vl(t) as shown in Figure 4.4.4. q2(t) 

is similarly generated but using a different Gaussian noise waveform 
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v2(t), which is independent of vl(t). The frequency response of the 

linear filter is also Gaussian, so that it matches the required power 

spectra of ql(t) and q2(t). The square of the absolute value of the 

transfer function of each filter is given by equation 4.4.1. Conse- 

quently, the frequency response of the filter is given by, 

F(f) = exp (- f2 ) (4.4.5) 
4z 

rms 

From equation 4.4.5, the 3-dB cutoff frequency of the filter is, 

fc. = 1.17741 fms (4.4.6) 

Using equation 4.4.2, an alternative expression for fC. is, 

fc. = 0.588705 fsp (4.4.7) 

It is well known (92) that as the order of a Bessel filter is 

increased, the frequency and impulse responses of the filter tend 

towards Gaussian. Therefore, two Bessel filters are used to filter 

the Gaussian noise process V1(t) and v2(t). The s-plane transfer 

function of the Bessel filter is(92)9 

. d. 
H(s) L° 

dks 
k=0 

(4.4.8) 

where L is the order of the filter and 
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d (2L-k)! 
(4.4.9) k-2-ck! (L-k)! 

As a practical choice, L has been chosen to be 5, so that equation 

4.4.8 becomes, 

H(s) = 
945 

s5 + 15s" + 105s3 + 42052 + 945s + 945 

Factorizing the denominator in equation 4.4.10, yields, 

H(s) = 
945 

n (s-p1) 
i=0 

(4.4.10) 

(4.4.11) 

where the {pi} are known as the poles of H(s) and are given by(90), 

pl = -3.64674 + j0 

p2, p3 = -3.35196 t j1.74266 (4.4.12) 

P41P5 = -2.32467 t j3.57102 

Thus, the frequency response of the fifth order Bessel filter is given 

by equation 4.4.11 by substituting s by in, i. e. 

Wig) = 
945 (4.4.13) 

n (gin-p 
i=1 

0 
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where n is the angular frequency, j= �- T and the poles {pi} are 

given by equation 4.4.12. The 3-dB cutoff angular frequency is(16)ý 

nc = 2.4274 rad/s (4.4.14) 

Since three channels with different frequency spreads are required to 

be simulated, the cutoff frequency of the Bessel filter must be 

changeable to correspond to the different frequency spreads. This is 

achieved by first introducing a new angular frequency variable w, such 

that 

w= con (4.4.15) 

where 

w 2, rf 
co = ýc =c (4.4.16) 

PC c 

where fc is the desired cutoff frequency. From equations 4.4.14 and 

4.4.16, 

co = 2.58844 fc (4.4.17) 

Using equation 4.4.17 to replace a in equation 4.4.13, we have, 

H(jw) = 
945 

11 (J-Pi) 
i=1 Co 
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or 945 c5 
H(jw) =50 (4.4.18) 

n (jw - P1 ) 
1=1 

and substituting the value of co from equation 4.4.17, gives, 

109805.05 fc5d 
H(jw) =750 (4.4.19) 

II (jw - pj ) II (jw - p! ) 
i=1 i=1 

where the {pi } are the poles of the Bessel filter and are given by, 

pi = cop1 

or 

pi = 2.58844 fcpi for i=1,2,.., 5 (4.4.20) 

Substituting jw = s, equation 4.4.19 becomes, 

d 
H(s) _5° (4.4.21) 

ii (s - pi ) 
i=1 

The three different values of the frequency spreads are J, 1 and 

2 Hz. Using equation 4.4.7, the corresponding cutoff frequencies of 

the Bessel filter are 0.2943,0.5887 and 1.1774 Hz, respectively. 

Thus, all the parameters of the Bessel filter have been specified 

and they are summarized in Table 4.4.1. 
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Frequency spread, fsp(Hz) 1 1 2 

Cutoff frequency, fc(Hz) 0.2943 0.5887 1.1774 

Constant, d0 242.42 7764.124 248451.98 

P, -2.7785+j0 -5.5570+j0 -11.1140+j0 

Filter poles p2 'p3 -2.5540±jl. 3277 -5.1078±j2.6555 -10.2156±j5-. 3110 
in the s-plane 

p4 'p5 -1.7712±j2.7208 -3.5424±j5.4400 -7.0848±jlO. 8830 

TABLE 4.4.1: FIFTH ORDER ANALOG BESSEL FILTER FOR DIFFERENT FREQUENCY 
SPREADS 

The Bessel filters derived above are all in analog form. Since 

they are to be simulated on a digital computer, a digital form of the 

filters is required. Various methods, such as impulse invariance, 

bilinear and matched z transformations (92) 
may be applied to digitize 

the analog transfer function (equation 4.4.21). Here, the impulse 

invariance technique is chosen so that the impulse response of the 

resulting digital filter is a sampled version of the impulse response 

of the analog filter(92). Using this technique, the poles {pi } in 
T 

the s-plane are transformed to poles at {ep1 } in the z-plane'92), 

where T is the sampling period. Thus, the transfer function given by 

equation 4.4.21 becomes, 

H(z) = 
KP. 

T (4.4.22) 

It (1 -e' z-1) 
i=1 
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or 

H(z) =K (4.4.23) 
II (1 - Pi z-1) 

i=1 

where the {Pi} are the poles of the filters in the z-plane and K is 

a constant whose role will be explained later. 

From Nyquist theorem, for the accurate representation of the 

qh(t), they must be sampled at least at twice the highest frequency 

contained in them. However, qh(t) have Gaussian spectra, and so 

contain all frequencies, but from Table 4.4.1, it can be seen that 

the 3-dB bandwidths of the analog filters are at most about 2.4 Hz, 

which implies that the frequency components at a filter output, above 

25 Hz, are negligible, so that a sampling rate-of 50 samples/s should 

be adequate. For reasons connected with the processing of the trans- 

mitted. data signal, the actual sampling rate used is 4800 samples/s. 

Unfortunately, at this rate the filter poles are very close to the 

unit circle in the z-plane, and to obtain the desired filter charac- 

teristics, these poles must be specified with very high degree of 

accuracy. Therefore, as a solution, the required sampling rate is 

achieved by sampling at a lower rate and obtaining the remaining 

samples by linear interpolation. Here, the sampling frequency is 

50 Hz, so that T= 20 ms. This value is chosen as a compromise 

between the requirements for the Nyquist sampling criterion and the 

need to limit the degree of interpolation used. The values of K and 

the poles {Pi} of the equivalent digital filter are given in Table 

4.4.2(16). 
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Frequency spread, fsp(Hz) 1 2 

Constant, K-1 325623.4 16121.6 893.06 

Pl 0.9460+j0 0.8950+j0 0.8010+j0 
Filter poles 
in the P21P3 0.9500±jO. 0252 0.9018±jO. 0479 0.8109±jO. 0863 
z-plane 

P41P5 0.9638±jO. 0524 0.9262±jO. 1010 0.8477±jO. 1872 

TABLE 4.4.2: FIFTH ORDER DIGITAL BESSEL FILTER FOR DIFFERENT 
FREQUENCY SPREADS - 

The digital filter is implemented as shown in Figure 4.4.5. It 

is a cascade of two 2-pole sections and one 1-pole section. Each 

2-pole section has complm. conjugate poles and the 1-pole section has 

a real pole. The filter coefficients {ci} are given by (16,97) 

cý _ -Pý 

c2 = -(P2 + P3) 

C3= P2P3 (4.4.24) 

c4 = -(P4 + P5) 

c5 P4P5 

The input to the filter, {vh, i} is a sequence of statistically indepen- 

dent Gaussian random variables with zero mean and a fixed variance. 

In the computer simulation, the {vh,. } are obtained by calling the 

Gaussian random number generator subroutine G05DDF(0,1) from the NAG 
(94) 

Library. 
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We have seen earlier (Figure 4.4.2) that two signals ql(t) and 

q2(t) are required for the fading of a sky wave. For the second sky 

wave, another two signals q3(t) and q4(t) are required; and so on. 

These signals are generated by the method described above but using 

different input Gaussian noise waveforms {vh(t)}. The variances 

of the {qh, i} are equal and the actual values depend on the number 

of sky waves present. For example, if there are two sky waves, the 

number of signals qh(t) required is 4 and the variance of each {qh, i} 
is J. When there are three sky waves, 6 of the signals qh(t) are 

required, the variance of each tgh, i} becomes 1/6. Thus, by having 

the variance of each {qhj t equal to the reciprocal of the number 

of qh(t) required, the total variance of the {qh, i} equals 1. The 

reason for this will become clear later. The value of the gain K 

at the input of the filter (Figure 4.4.5) is adjusted such that the 

{qhi} have the required variance. In Table 4.4.2, the values of K 

for the three filters ensure that each of the {qh, i} has variance 

of 1. Finally, a complete model of the HF radio link with N sky 

waves is given in Figure 4.4.6. 

4.5 DATA TRANSMISSION OVER A MODEL OF AN HF CHANNEL USING QAM 

In Section 2.2, a general description is given of a model of a 

data-transmission system using QAM. Here, we will consider the 

transmission of the QAM signals over a model of an HF radio channel 

that has been described in the previous section. 
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In order to simplify the description of the system, it is 

assumed that the HF channel has only two independent Rayleigh fading 

sky waves. The relative delay in transmission between the sky waves 

is T seconds. Figure 4.5.1 shows the model of the data-transmission 

system which employs�the HF radio channel as the transmission medium. 

The signal at the input to the system is a sequence of signal 

elements si 6(t-iT), where si is a complex-valued data signal and 
i 

may have one of a finite number of possible values, and T is the 

signalling interval. The function of the filter A' is to shape the 

spectrum of the input. signal so that it matches the available band- 

width of the HF channel. The transmitted signal is then modulated 

using QAM with a carrier frequency of fc. The frequency response of 

the filter A' is assumed such that 

A'(f) =0 for f<- fc + kfsp 

and f> fc - kfsp (4.5.1) 

where fsp is the maximum expected value of the frequency spread that 

is introduced into the data signal by the HF channel, and k is an 

integer. The QAM signal x2(t) that is fed to the radio-transmitter 

filter is the real part of the complex signal xl(t) (see Section 

2.2) at the output of the modulator. The radio-transmitter filter 

G uses single sideband suppressed carrier amplitude modulation to 

shift the spectrum of the modulated signal from the voice channel 

to the HF band, without of course changing the bandwidth of the 

signal. The resulting signal x(t) is transmitted via the two sky waves 
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and is subjected to Rayleigh fading. The radio-receiver filter D 

shifts the spectrum of the signal z(t) at the output of the trans- 

mission path back to voice-band. It is assumed that the only form 

of noise present is a white Gaussian noise n(t) which is added. to 

the signal z(t)(89'95). The additive white Gaussian noise has zero 

mean and two-sided power spectral density of JN0. The bandpass 

filter C removes the noise frequencies outside the bandwidth of the 

data signal without unduly distorting it. The noisy, distorted and 

Rayleigh-faded QAM signal is then coherently demodulated by multi- 

plying it by complex-valued reference signal /e -j 2, rf c't and low- 

pass filtered by the filter B' so that the high frequency components 

of the signal are removed. It is assumed that the reference carrier 

fc is equal to the average instantaneous carrier. frequency of the 

received signal, thus eliminating any constant or near-constant 

frequency offset in the received QAM signal. Thus, 

fC = fc (4.5.2) 

The frequency response of the receiver . lter B' is such that 

rB' (f) =0 for If > fo (4.5.3) 

The signal x(t) at the output of the radio-transmitter filter G is, 

x(t) = Re [�f si a'(t-iT)e 
j2nf 

ct ] *9(t) 
1 

(4.5.4) 
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where * denotes convolution, and a'(t) and g(t) are the impulse 

responses of the filters A' and G, respectively. The foregoing 
(l6) 

equation can also be written as 

x(t) = [I si a(t-iT)e 
j2, rfc t+s* 

a*(t -iT)e 
-j2, rfc t 

. V7 ii 
(4.5.5) 

where si and a*(t-iT) are the complex conjugates of si and a(t-iT), 

respectively, and 

a(t-iT) = a'(t-iT)*(g(t)e 
-j27rf ct) (4.5.6) 

Equation 4.5.6 shows the overall filtering carried out at the trans- 

mitter side of the system, where the filtering is considered as opera- 

ting entirely on the baseband signal. Thus a(t) is the impulse response 

of the resultant equivalent baseband filter at the transmitter. Now, 

let x(t) represents the Hilbert transform of x(t), then, 

x(t) = x(t)*f(t) (4.5.7) 

where f(t) is a function such that its Fourier transform r(f) is given 

by, 

j f<0 

r(f) =0f=0 (4.5.8) 

-j f>0 
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Subsituting for x(t) from equation 4.5.5 in equation 4.5.7, we have, 

j2nft 
x(t) =2 {I si[a(t-iT)e c] *f(t) + 

+ s1, [a*(t-iT)e-J2nfctI *f(t)} (4.5.9) 

which may be written as(16), 

-j2, rf t j2, rf t 
x(t) si[a(t-iT)*f(t)e C]ec+ 

** 
j2, rfc t -j2, rfct 

+ si [a (t-iT)*f(t)e ]e (4.5.10) 

From equation 4.5.6, it can be seen that A(f), the frequency response 

of a(t), is bandlimited to that of A'(f) (equation 4.5.1). The Fourier 
-j2nf t 

transform of f(t)e c is r(f+fc) which is the spectrum of r(f) 

shifted down in frequency by fc. Consequently, r(f+fc) has the value 

-j over the frequency range -fc <f< fc. The Fourier transform of 
j 2, rf t 

f(t)e c is r(f-fc) which is the spectrum of r(f) shifted up in 

frequency by fc. Therefore, r(f-fc) is equal to j for -fc <f< fc. 

By taking the Fourier transform of x(t), and replacing r(f+fc) and' 

r(f-fc) by their values obtained above, and then taking the inverse 

Fourier transform, equation 4.5.10 becomes, 

j21rfýt ** -j21rfct 
x(t) [1-js1a(t-iT)e + js'a'(t-iT)e ] 

(4.5.11) 
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The signal at the output of the model of the HF radio channel is 

given by, 

z(t) = x(t)g1(t) + X(t)g2(t) + x(t-T)g3(t) + X(t-T)g4(t) 

(4.5.12) 

From equation 4.5.5 and 4.5.11, we have 

z(t) =2 {I sia(t-iT) [qi(t) - jg2(t)] ej2, 
rf ct+ 

-j27rf t 
+ s. a*(t-iT) [ql(t) + jq2(t)] eC± 

+ sia(t-z-iT) Lg3(t) -J g4(t)lej2nfc(t-T) + 

+ si a*(t-t-iT) [q3(t) + Jg4(t)] e-j2wf(t-z) 
(4.5.13) 

If we let 

hi(t-iT) = a(t-iT) [ql(t) - jg2(t)] + 

+ a(t-'c-iT) [q3(t) - jq4(t)] e 
-j2, rfct 

(4.5.14) 

then, equation 4.5.13 can be rewritten as, 

j 2nf t -i 2, ' 'f t 
z(t) =1 [I sihi(t-iT)e c+ si hi(t -iT)e 

c] 

-.. 



124 

The delay tr is assumed to be a constant. Therefore, the factor 
-j2, rf T 

ec in equation 4.5.14 is a complex-valued scalar with absolute 

value of 1, and since q3(t) and q4(t) are statistically independent 

with zero mean, it has no effect on the statistical properties of 
-j2nfct 

{[q3(t) - jg4(t)] e} nor does it affect the power spectrum of 

this signal. Thus, we may rewrite equation 4.5.14 as, 

+ hi(t-iT) = a(t-iT) [ql(t) - jq2(t)] 

+a(t-T-iT) [q3(t) - Jg4(t)] (4.5.16) 

The signal at the output of the linear demodulator is now, 

-j21rft 
r(t) = �£ {[z(t)*d(t)*c(t)] ec }*bl(t)+ 

+/ {n(t)*c(t)1 e 
-j2, rf ct }*b'(t) (4.5.17) 

where d(t), c(t) and b'(t) are the impulse responses of the filters 

D, C and B', respectively. It is assumed in equation 4.5.17 that 

fý = fý. If we let 

-j2, rf t 
b(t) = {[d(t)*c(t)] ec }*b'(t) 

and 
-j2, rf t 

w(t) = º/ý {[n(t)*c(t)]e }*b'(t) 

(4.5.18) 

(4.5.19) 
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then equation 4.5.17 may be written as, 

r(t) =A [z(t)e 
-j2, rf ct ]*b(t) + w(t) (4.5.20) 

b(t) represents the overall filtering at the receiver end of the system 

when considered as operating on the demodulated baseband signal, and 

w(t) is the Gaussian noise component in r(t). Clearly, both b(t) and 

w(t) are baseband waveforms. Substituting for z(t) from equation 

4.5.15 into equation 4.5.20, we have 

r(t) = J[shi(t-iT) + sý 'h! (t -iT)e 
-j41rf ct ]*b(t)+w(t) 

(4.5.21) 

It may be shown(16) that the Fourier transform of s1 h1(t -iT)e 
-J4nf ot 

is outside the passband of the lowpass filter whose impulse response 

is b(t), and so equation 4.5.21 reduces to, 

r(t) =I sihi(t-iT)*b(t) + w(t) (4.5.22) 

Let 

yi(t-iT) = hi(t-iT)* b(t) (4.5.23) 

then equation 4.5.22 becomes, 

r(t) _ siyi(t-iT) +-w(t) (4.5.24) 
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The impulse response yi(t-iT) in equation 4.5.23 may also be 

written as, 

yi(t-iT) _ {a(t-iT) [q1(t) - Jg2(t)]+ 

+ a(t-T-iT) [q3(t) - Jg4(t)l}*b(t) 

4.5.25) 

where hi(t-iT) has been replaced by its value from equation 4.5.16. 

yi(t-iT) is the impulse response of the linear baseband channel in 

Figure 4.5.1 which is obviously time-varying. 

Equation 4.5.24 represents the baseband model of the QAM system 

over the HF radio link and this is shown in Figure 4.5.2. In this 

model, the impulse response a(t) (equation 4.5.6) represents the 

overall filtering at the transmitter side of the data-transmission 

system, and b(t) (equation 4.5.18) is the overall filtering at the 

receiver side of the system, each, impulse response being, of course, 

a baseband waveform. The characteristics of these filters (or, in 

fact, the characteristics of their combinations) are given in Figures 

4.5.3-4.5.5, where the filters are, for convenience, shown as the 

equivalent bandpass filter operating on the voiceband signal, since 

this enables them to be compared with the corresponding radio filter 

(Figure 4.5.5). The noise waveform w(t) (equation 4.5.19) is a 

complex-valued Gaussian random process with autocorrelation which 

may be shown to be(16)9 
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f 

RW(T') = Nof 
cIC(f+fc) 

I2IB' (fl2 ej2, rft' df (4.5.26) 
-fc 

It has been shown(16) that when Rw(T') is real, the real and 

imaginary part of w(t) are uncorrelated, and this is achieved when 

C(f) is symmetric about fc. The variance of w(t) is, of course, given 

by, 

fc 
RW(0) = No f IC(f+fc)I2IB'(f)I2df 

-f c 

(4.5.27) 

The average transmitted energy per signal-element at the output 

of the transmitter filter in Figure 4.5.2 is given by, 

Co 
Et =E[f Isia(t-iT)l2 dt] (4.5.28) 

-CO 

where E["] is the expected value of ["]. If we denote 

sie = E[lsil2] (4.5.29) 

then using Parseval's theorem 
(101), 

equation 4.5.28 becomes, 

Et = sie (A(f)12 df (4.5.30) 

The average energy per signal-element at the input of the receiver 

filter in Figure 4.5.2 is given by, 
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Er = E[ I Ist{a(t-iT)(q, (t) - ig2(t))+ 
-Cm 

+ a(t-T-iT) (q3(t) - J94(t))}I2 dt 

=s ý9 t) + 922(t) + q32(t) + g42ýt)) J IA(f)I2df 
-CO 

(4.5.31) 

where q(t), q2 t, q3 t and q4 t are the variances of ql(t), 

q2(t), q3(t) and q4(t), respectively. Clearly, when these four 

If variances are equal and their sums equal 1, the energy Er is the 

same as Et. This means that the sky-waves do not introduce, on 

average, any gain or attenuation into the transmitted data signal, 

which greatly simplifies the calculation of the signal-to-noise ratio 

in the computer simulation tests. 
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5. HF CHANNEL ESTIMATORS 

5.1 INTRODUCTION 

In a study on channel estimators, Clark et al(26) have suggested 

that where the channel varies in a particularly unpredictable manner 

or where the receive' has only a limited knowledge of the correct 

model of the channel, a linear feedforward transversal-filter estima- 

tor (Section 3.5) is likely to form the basis of the most cost-effec- 

tive estimator (see Section 3). However, with the feedforward 

transversal-filter estimator, the present estimate of the channel is 

simply derived from the immediate past estimate (equation 3.5.3). 

Clearly, when the characteristics of the channel vary rapidly, which 

is possible on HF radio links, a considerable advantage may be gained 

by first making a prediction of the sampled impulse-response, and 

then using the prediction in the estimation process(89). The resul- 

ting arrangement has been shown to give an acceptable performance when 

used in a synchronous serial HF radio data-transmission system which 

transmits 4-level QAM signal at 2400 bit/s'89'96'97). Unfortunately, 

at a data rate of 9600 bit/s, the number of components in the sampled 

impulse-response is almost doubled and the estimator no longer works 

satisfactorily(95). However, by incorporating some prior knowledge of 

the basic structure of the channel, an acceptable estimate of the 

channel response is now possible(95). This arrangement is known as 

the improved channel estimator. 
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In Section 5.2, various arrangements of prediction for the 

possible use with the feedforward transversal-filter estimator are 

described. In the following section (Section 5.3), a brief outline 

of the improved channel estimator is given. Finally, the performances 

of the estimators are summarized in Section 5.4. 

5.2 FEEDFORWARD TRANSVERSAL-FILTER ESTIMATOR AS AN HF CHANNEL 

ESTIMATOR 

The method of steepest descent (gradient algorithm) used to 

obtain an estimate of Yj is given in Section 3.5 by equation 3.5.3. 

The quantities involved in equation 3.5.3 are all real, whereas here, 

the input and output signals as well as the channel response are 

complex-valued quantities, and so equation 3.5.3 is modified to(89)9 

(in vector form), 

Yý = Yi-1 +c e1 Sr (5.2.1) 

where, as usual, c is a small positive quantity which influences the 

rate of convergence of the estimator; ei is the error in the estimate 

of the ith received signal ri, so that 

ei = ri -L sý_h yl_1ýh (5.2.2) 
h=0 

and Si is a (g+1)-component vector given by, 

Sý = C(si)* (Si-1)* ... (si_9)*]T (5.2.3) 
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When a prediction of Yi is available, the estimator uses this 

instead of Yj_1 to give the estimate Y! in equation 5.2.1. Thus, 

at time t=(i-1)T, a prediction is made of Yi and the prediction is 

designated Yl'1_l. The estimator uses Yi'i_I to form the new 

estimate r? of ri, so that 

9 
ri - h=O 

Si-h yi, i-1, h (5.2.4) 

The estimate Yi of Yi is now given by, 

Yi.. = Yi, i-1 +c ei Si (5.2.5) 

where e-i is no longer given by equation 5.2.2, but becomes, 

ei = ri -. 
h1o 

s-h yi, i-1, h (5.2.6) 

where y! is the (h+l) th 
component of Y" . 

C-The detailed 
i, i-l, h I, i-1 

implementation of equation 5.2.5 is given in Section 6.4. ý 

The HF channel estimator is designed for use with a maximum- 

likelihood detector (Section 2.3). Inherent with this type of detec- 

tor is a delay of n-1 sampling intervals before the detection of a 

data symbol, such that si is detected after the reception of ri+n-1' 

Thus, the received samples r1, ri+l, ..., ri+n-1 must be stored in a 

shift register and fed at the appropriate time to the channel estima- 

tor for the generation of the corresponding error signals ei, ei+l, 

ý, ý, eitn-1. Therefore, at time t=(i+n-1)T, the inputs to the 
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channel estimator are sj and ri to give Y. at the output. The 

estimate Yj is then used by the detector on the receipt of ri+n for 

the detection of si+l. Thus, the effective delay in estimation is 

n sampling intervals. Ideally, the detector must use the estimate, 

Yt+n of Yi+n in the detection of si+l. This is the case when n is 

large or when there are rapid variations in the channel impulse- 

response. However. Yj+n is not available yet, which means that it 

has to be predicted. The n-step prediction Yi+n, i is derived from 

the estimates Y. , Y! 
_l, ... . Various methods of forming the 

predictions Yý+l, i and Y1+n, i have been studied in Ref. 89 and these 

will be reviewed next. 

To summarize, 
[we have seen that when there is a delay in detec- 

tion of n-i sampling intervals, the delay in estimation is n sampling 

intervals. Also, on the receipt of ri}n and after Y, has been formed, 

two predictions Yý+l 
,i 

of Yitl and. Yý}nýi of Yi+n are required. The 

first of these is for use in the estimator for the evaluation of the 

next estimate Y,! 
}1 of Yifl. The second prediction Yi! 

+n, _i 
is used by 

the detector in place of Y' i for the detection of si}l. 

5.2.1 Fixed-Memory Prediction(89) 

At any time t=iT, the m+2 most recent estimates of the sampled 

impulse-response of the channel are 

Yi-m-1 
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and based on some or all of these estimates, the predictor makes 

two predictions Yi+l, i of Yi+l and Yi+n, i of Yi+n, where n is the 

delay in estimation. The fixed-memory predictor assumes that 

these estimates are reasonably accurate and that they meet a certain 

condition. For example, when Yl! 
-h - YI! 

-h-1 
is a constant for 

h=0,1,..., m-1, then it is likely that 

Yi+l - Yi = Yi. - Yi-1 (5.2.7) 

which gives, 

Yi+l' = Yi + (Yi_ - Yi-1) (5.2.8) 

Clearly, good predictions of Yi+l and Yi}n from the estimates 

ye ye "'' i-m 
' Y' are now given by, 

Yi+l, ý = vi. + Al, i (5.2.9) 

and Yý}n, i = Y1 +n o3 i (5.2.10) 

where n1ýi =m (Yi Y1-m) (5.2.11) 

Equations 5.2.9 and 5.2.10 represent arrangements of degree-1 fixed- 

memory prediction. 

If, however, ((Y' - Y! 
i -h 

)- (Yi-h-1 - Yi-h-2)) is a constant ' 
-h-1 

for. h = 0,1, ..., m-l, then it is likely that 
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(Y Yi ) -(Y - Yi-1) -i- Yi-1) -(Yi-1 - Yi-2) 

(5.2.12) 

which gives, 

Yi+l - Y. + (Y. - Yi-1) + ((Yi - Y1-1) (Y1-1 - Yi-2)) 

(5.2.13) 

Then, good predictions of Yi+j and Yi+n from the estimates 

Yi , Y1! 
-1' "'' Yi-m-1 can be shown to be given by(89), 

I. Yi+l, i = Yi + ol'i + ao2, i 

= Yi + (a+l) eIli - ae1ý1_1 (5.2.14) 

and Yi+n, i - Yi + nnýýý +n (a + l(n-1))o2, 
i 

= Y. +n('a +1 + 7(n-1)) A1,1 -n(a +. (n-1))A1 
i-1 

where a is given by(97)9 

a =(m+l) (5.2.16) 

and Q2, i -m« Yi- - Yi-1) (Yi-m - Yi-m-1)) (5.2.17) 

Equations 5.2.14 and 5.2.15 represent arrangements of degree-2 fixed- 

memory prediction. 
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On the other hand, if Yi , Yi_l, ... are all approximately 

equal, a good prediction of Yi+l and Yi+n from these estimates are 

simply given by, 

VI 
1 

'i+l, i - Yi (5.2.18) 

and Yi+n, i = Yi (5.2.19) 

respectively. Equations 5.2.18 and 5.2.19 represent arrangements of 

degree-0 fixed-memory prediction, and as such represent the absence 

of any prediction. 

5.2.2 Simple Fading-Memory Prediction (89) 

Wit p1 e_degrpe 2 fixed-memory prediction, only the m+2 

estimates Yi , Yi_1, """, Y. i_m_l are used in forming the predictions 

ys . and Yý+n, i, the rest being totally ignored. Each of these 
I+lj 

estimates is given equal emphasis or weight. However, in practice, 

the reliability of an estimate for use in the prediction process is 

likely to decrease with its age, and so a better prediction scheme is 

one where no estimates are totally ignored but the older estimates are 

progressively given less weight. 

The arrangements for degree-1 simple fading-memory prediction is 

given by(89) 

Yi+l, i Yi + Al, i (5.2.20) 
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and Yi+n, i = Yi +n n1, i (5.2.21) 

and for degree-2 prediction, they are given by (89) 
9 

Yi+i, i - Y1 + ei, i +b e2, i (5.2.22) 

and Yi+n, i - Yi + ne1, i + n(.. +'(n-1)n2, i. (5.2.23) 

where b is a small positive real constant, and elli and n2, i are now 

given by (89) 
9 

A1, i = (1-b) 1, i-1 + b(Y '- Yi-1) 

= el, i-1 +. b(Yý - Yi-1 - e1, i-1) (5.2.24) 

and n2, i = (1-b)e2, i-1 + b(YI - 2Y'_1 + Yi-2) 

_ A2, i_1 + b(Y' - 2Y_1 + Yi-2 - 12, i-1) 
(5.2.25) 

, from which it can be shown that(89) 

A2, i - Al'i - nisi-1 (5.2.26) 

The initial values of the various quantities in equations 5.2.24 and 

5.2.25 are assumed to be, 
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Yö = Y'ý = Y'2 = Yo (5.2.27) 

and Al 
'o 

= A1-1 =0 (5.2.28) 

The parameter b determines the number of estimates Yi ' Yi-1' 

which are used in the prediction process. A small value of b means 

that more estimates are effectively involved in forminýa prediction 

5.2.3 Least-Squares Fading-Memory Prediction (89) 

Here, a set of g+l polynomials of given degree (0,1 or 2) are 

determined, and each gives the weighted least-squares fit to the 

components in the corresponding location in the vectors Y1', Y1! 
_1, ... 

The predictions Yi+l, i and Yý+n, i are the values of the polynomials 

at times t= (i+l)T and t= (i+n)T, respectively. The arrangements 

of degree-0,1 and 2 least-squares fading-memory predictions are 

given by, 

Degree-0: 

Yi+l, i - Y! .+ (1-e)Ei (5.2.29) 
Il-i 

Yi+n, i 

Degree-1: 

(5.2.30) 

(Yi+1, i)ß - (Yi, i-1)ý + (1-e)2 Ei (5.2.31) 

1+1, i)' + (1-e2)Ei (5.2.32) Yi+1, i - Yi, i-1 + (Y! 
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Yi+l, i + (n-1)(Y! 

Degree-2: I 
ýYi+1, i)" = (Y1s1-, )11 +ý1-e)3Ei 

(5.2.33) 

(5.2.34) 

(Yi+l, i), (Yi, i-1), + 2(Yi+l, i)ýý + (1-e)2(l+e)Ei 

(5.2.35) 

Yi+1, i - Yi, i-1 + (Y! + (1-e3)Ei 

(5.2.36) 

)" Y: = Y: + (n-1)(Yi: 
+l, i)' + (n-1)2(Y' 

+1 ,i 
(5.2.37) 

where Ei is given by, 

Ei = '1 - 'i. i-1 (5.2.38) 

The quantities (Y,! 
+l, i)' and (Yi+l, i)" are,. respectively, functions 

of the first and second differentials of Y1+l, i with respect to time. 

Since they appear essentially as dummy variables in the algorithm, 

their only function being to assist in determining the required 

prediction, it is not necessary to consider them in further detail. 

The initial values of the various quantities in the above arrangements 

are, 

Yi, o = Yo, = Yo (5.2.39) 

(Viso)' =0 (5.2.40) 
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=0 (5.2.41) 

The parameter 0 is a real constant in the range 0 to 1. By increa- 

sing the value of e towards 1, the weight factor that is used when 

fitting the polynomials decreases more slowly with age and so more 

estimates are effectively involved in the prediction process. 

5.3 IMPROVED CHANNEL ESTIMATOR 

This estimator is the subject of the whole of Section 7 and so 

it is sufficient here to outline it briefly. 

The improved channel estimator is basically a feedforward 

transversal-filter estimator which employs the least-squares fading- 

memory prediction. The latter has been shown to be the most effec- 

tive arrangement of prediction(89). However, the predictor is greatly 

reduced in complexity because, instead of involving a separate predic- 

tion process for each of the g+l components of Yi, only some two or 

three prediction processes are employed. The simplification is 

possible because the estimator assumes that the basic structure of 

the HF channel is of a certain form. Specifically, it assumes that 

the sampled impulse-response of a two-sky-wave channel is represented 

by, 

Yý _xL+ uiM (5.3.1) 
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where L and M are fixed (g+l)-component vectors, and -ai and ui are 

the time-variable scalar quantities. The vectors L and M span a 

two-dimensional subspace of the (9+1)-component unitary vector space 

that contains Yi. If L and M can be determined, the estimation of 

Y. simplifies to only the estimation of the two random variables 

x add V. However, L and M are difficult to determine and instead, 

the estimator determines (estimates) two orthonormal vectors A and 

B which also span the subspace, such that Yi is also given by, 

Y1 =aiA+biB (5.3.2) 

The estimation of A and B is implemented adaptively according to an 

algorithm very similar to the well known gradient algorithm. There- 

fore. the predictions that are involved in the formation of Y! 
1+1 'i 

and Yi+n, i are merely the predictions of the scalar variables ai and 

bi (see Section 7). 

5.4 PERFORMANCE OF ESTIMATORS 

The results of computer simulation tests on the above estimators 

have been presented by Clark and McVerry in Refs. 89 and 95. Here, 

we will summarize only their main conclusions. 

At a high signal-to-noise ratio of 60 dB, the estimator in 

Section 5.2 with the best performance is that which employs degree-2 

least-squares fading-memory prediction. However, over the range of 

signal-to-noise ratios from 10 to 30 dB, the three degree-1 predictors 
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are the best, with the degree-1 fixed-memory predictor marginally 

better than the other two, and these are closely followed by the 

degree-2 least-squares fading-memory predictor. The degree-1 fixed- 

memory predictor requires a smaller number of computations per cycle 

than the other two degree-1 predictors. However, it has the disadvan- 

tage of requiring a substantial amount of storage to hold the {Yi }, 

because the optimum value of m is typically around 100. Therefore, 

the most promising of the predictors appears to be the degree-1 

least-squares fading-memory predictor. In Ref. 95, it is shown that 

the performance of the feedforward transversal-filter estimator using 

degree-1 least-squares fading-memory prediction is improved consi- 

derably with the help of additional information on the basic struc- 

ture of the HF channel. This is described in Section 7. 
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6. HF CHANNEL ESTIMATORS BASED 
ON THE KALMAN FILTER 

6.1 INTRODUCTION 

The radio frequency band in the region of 3 to 30 MHz is 

traditionally known as the high-frequency (HF) band (66). At these 

frequencies, propagation of the radio signal is achieved by ionos- 

pheric reflection (refraction) from one or more layers of the 

ionosphere(63-73). Ionospheric radio propagation is characterised 

by fading and multipath propagation, that is, the radio signal is 

normally received via several different paths, and the signal on 

each path is subjected to random fluctuations both in amplitude 

and phase, which results. in the frequency selective fading of the 

received signal. The random variations are caused by the continuously 

changing physical characteristics of the ionosphere, which means that 

the impulse response of the HF channel is time-varying. 

IThe fading and dispersive nature of the HF channel has meant 

that high-speed data transmission over this medium, comparable to 

that which can be achieved over the telephone network, remains 

impossible. However, a speed of 2400 bit/s has been achieved satis- 
(96 

factorily with both serial and parallel modems , 110,111) 
. Compara- 

tive tests of the two systems 
(96,110) have suggested that, under most 

conditions, the performance of the serial modem is likely to be better 

than that of the parallel modem. The serial modem may employ QAM 

as the signal modulation format and a detector of the maximum- 

likelihood type (96). The difficulty with the design of such a system 
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is in the extraction of the sampled impulse-response of the channel, 

a knowledge of which is required by the maximum-likelihood detector 

in the detection of the data signal. 

A comparison of several channel estimators 
(26), for the applica- 

tion involving a constant or a completely random channel, has sugges- 

ted that the feedforward transversal-filter estimator is likely to 

be the most cost-effective estimator. A major drawback with this 

estimator is however its slow rate of convergence. On the other 

hand, the least-squares (Kalman) estimator has far superior conver- 

gence, especially when the estimator has no prior knowledge of the 

channel. In fact, when the Kalman estimator is correctly optimized, 

it has the best possible performance(26,114). With the feedforward 

estimator, it has been shown that the inclusion of a suitable predic- 

tor improves its performance considerably(89'96). The prediction of 

the sampled impulse-response is here derived from past estimates of 

the channel 
(89. ) The estimator, in turn, uses the appropriate predic- 

tion of the channel when forming the required updated estimate. 

Unfortunately, the Kalman estimator has a major disadvantage 

which is the excessive number of operations required when there are 

many components in the sampled impulse-response of the channel. It 

is possible to reduce these by using the 'fast' Kalman algorithm(128). 

The improvements obtained by using a predictor with the feedforward 

estimator suggest that it may also be possible to achieve similar 

results by making the corresponding modifications to the Kalman 

estimator. In order to assess the cost effectiveness of the modified 
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Kalman estimator, its performance will have to be compared with the 

corresponding feedforward estimator which is still the simpler 

arrangement of the two. 

The latest modification to the feedforward estimator is the 

arrangement known as the improved channel estimator(95). This is an 

arrangement which consists of the feedforward estimator and a predic- 

tor, and utilizes a knowledge of the'basic structure of the HF channel, 

giving a considerable improvement in performance over the arrangement 

which has no such knowledge. The Kalman filter, with its well known 

superior convergence and tracking capabilities, is potentially a 

better estimator if it can be modified in a similar manner to the 

feedforward estimator. 

In this section, both the feedforward estimator (Section 6.4) 

and the Kalman estimator (Section 6.3) are described. An arrangement 

of prediction which is of the least-squares fading-memory type, is 

described next in Section 6.5. In Section 6.6, the performances of 

the conventional Kalman estimator and various modifications are 

presented, and these are then compared with the corresponding versions 

of the feedforward estimator. The estimators are tested on a model of 

an HF radio link with two Rayleigh fading sky-waves, the model being 

part of a simulated data-transmission system which uses a 16-level 

QAM signal transmitted at a rate of 9600 bit/s. 

0 
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6.2 BASIC ASSUMPTIONS 

The model of the data-transmission system that is used in the 

tests is shown in Figure 6.2.1. It is a synchronous serial system 

involving a model of an HF radio link as the transmission path. The 

transmission of QAM signals over a model of such a system has been 

described in Section 4.5. 

The input data signal is assumed to be a sequence of data symbols 

{si} which are statistically independent and equally likely to have 

any one of their 16 possible values. The ith data symbol is here 

given by, 

si Sr, i + jsq, i (6.2.1) 

where sr, i = ±1 or ±3, and sq, i = ±1 or A. The baseband 

signal generator and linear modulator converts the {si} into a stream 

of 16-level QAM signal-elements with an 1800 Hz carrier and an element 

rate of 2400 bauds. Each signal-element is, in fact, the sum of two 

quaternary double-sideband suppressed carrier amplitude modulated 

elements with their carriers in phase quadrature, the values of the 

'in-phase' and 'quadrature' components being determined, respectively, 

by the real and imaginary parts of the corresponding data-symbol si 

(equation 6.2.1). The average transmitted energy per bit of informa- 

tion is arranged to be unity. 

The HF radio link uses linear modulation to shift the spectrum of 

the input data signal from the voice band to the HF band, the bandwidth 
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of the signal being some 2400 Hz. The resulting HF radio signal is 

transmitted via two independent Rayleigh fading sky waves (Figure 

4.4.6). The waveforms qh(t) for h=1,2,3 or 4 (Figure 4.4.6) are 

real-valued narrow-band Gaussian noise, waveforms whose spectral 

shaping is approximately Gaussian (Section 4.4). They are statis- 

tically independent with zero mean, the same variance and the same 

root-mean-square bandwidth of 
I Hz. Therefore, the signal received 

over each sky wave has the same mean-square value and the same 

frequency spread of 1 Hz. The relative delay in transmission 

between the two sky waves is 2 ms. At the radio receiving equipment, 

the spectrum of the received signal is shifted back to the voice-band 

by a process of linear coherent demodulation. 

The various types of additive noise that are normally introduced 

by an HF radio channel are neglected. It is assumed that the only 

noise is stationary white Gaussian noise with zero mean and a two- 

sided power spectral density of JN0. The noise is added to the data 

signal at the output of the HF radio link. 

The linear demodulator in the model of the system uses linear 

coherent demodulation to recover the complex-valued baseband modula- 

ting waveform from the received QAM signal . It includes at its 

input a bandpass filter which removes as much as possible the noise 

outside the frequency band of the data signal without excessively 

distorting it. The two reference carriers used for demodulation are 

adaptively adjusted so that they are of the same average instantaneous 

frequency as the carrier of the received signal, thus eliminating any 

constant frequency offset in the received signal. The phases of the 

t 
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reference carriers are not kept to any given relationship with the 

phase of the received signal, so that the whole of the time-varying 

distortion introduced by the HF radio link appearrin the demodulated 

waveform. The values of the demodulated signals from the 'in-phase' 

and 'quadrature' channels are, respectively, taken as the real and 

imaginary values of the demodulated baseband signal r(t). 

The signal r(t) is sampled, once per received signal-element, 

to give the sequence of complex-valued samples {ri}, the ith of which 

is given by, 

ri =I Si-h 'i, h + wi (6.2.2) 
h=0 

For practical purposes, it is assumed that yi, h =0 for h<0 and h>g, 

so that the sampled impulse-response of the linear baseband channel 

in Figure 6.2.1, at time t=iT, is given by the (g+1)-component column 

vector 

Yi = [yi, o yi, l ... yi, g] 
T (6.2.3) 

Y. is obtained by sampling the impulse responses ly"(t-iT)} where 

yi(t-iT) is given by equation 4.5.25 as 

+ yi(t-iT) = {a(t-iT)[q, (t) - jq2(t)] 

+ a(t -T -iT) [q3(t) - jg4(t)]}*b(t) (6.2.4) 
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at a rate of 2400 samples/second (T = seconds). It is important 

to observe from equation 6.2.2 that Yi is not here given by the 

successive samples of the impulse response, but rather by the g+l 

components of successive impulse responses that are coincident at 

time t=iT. This definition of the sampled impulse-response is used 

for two reasons. Firstly, it is the definition of the sampled impulse- 

response employed by a maximum likelihood detector, and secondly, over 

practical time-varying channels, the delay in transmission of the 

first nonzero component of the sampled impulse-response of the 

channel is not necessarily known or well defined, leading to possible 

confusion as to the precise meaning of the sampled impulse-response 

at time t=iT. The adopted definition, on the other hand, gives a 

precise and unique definition of the sampled impulse-response, since 

it requires no knowledge of the delay in transmission. 

In order to avoid any aliasing that is likely to occur when any 

of the qh(t) is changing rapidly, the convolution as indicated by 

equation 6.2.4 is carried oüt at a sampling rate of 4800 samples/ 

second, which is well above the Nyquist rate for the transmitter and 

receiver filters (see Figures 4.5.3 and 4.5.4). Therefore, each of 

the sequences {qh, i} for h=1,2,3 or 4 is, in fact, given by the 

values of the corresponding waveform qh(t) sampled at 4800 samples/ 

second. The multipath propagation delay T is expressed as a whole 

number of sampling periods p plus a sampling phase p'(< -Z), i. e. 

T_ PT +pý (6.2.5) 
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For example, with a delay of 2 ms, the relevant values are 

p=9 
(6.2.6) 

ý' = 0.6/4800 

The time delay introduced in transmission over each sky wave is 

taken to be fixed over the duration of the data signal and the timing 

waveform at the receiver that determines the sampling instants {iT} 

is taken to have a constant phase relationship with the received 

stream of signal elements. 

The detector in Figure 6.2.1 is a near-maximum-likelihood detec- 

tor which operates directly on the received samples {ri} without using 

any adaptive linear prefilter('). The delay in detection is n-1 sam- 

pling intervals, so that the detected data-symbol s! +, 
is determined 

following the reception of ri+n, at time t=(i+n)T. However, we are 

concerned with the operation of the channel estimator and not the 

detector, so that it is assumed that s! = si for all {i}, even at low 

signal-to-noise ratios. The performance of the channel estimator is 

only seriously affected by errors in the {si} at the higher error 
(95) 

rates 

From equation 6.2.2, it is evident that the updated estimate Y! 

of Yi can only be determined when ri and s! are available at the 

inputs of the channel estimator. Since the delay in detection is 

n-1 sampling intervals, si is fed to the channel estimator after a 

delay of n sampling intervals and so the sequence of received 
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samples {ri} that is also fed to the channel estimator must be 

delayed by n sampling intervals. 

In practice, Yi may be more conveniently estimated after the 

detection of si and before the receipt of r1+n, rather than imme- 

diately after the receipt of ri+n and before the detection of si+l' 

For the sake of clarity, we will assume the latter arrangement in 

the analysis. Since the sampled impulse-response of the linear 

baseband channel is time-varying, the error in using Yi in the detec- 

tion of si+l may be excessive. Ideally, the detector uses Yi+n in 

the detection of si+l, but since this estimate is not available, 

the estimator forms a prediction Yý+n, i of Yi+n from the estimates 

Y!, Y! 
_l, ... Various techniques of forming the prediction have 

been discussed previously in Section 5.. In this section, we will 

use the degree-1 least-squares fading-memory predictor which is 

described in Section 6.5. 

6.3 DERIVATION OF KALMAN FILTER ESTIMATOR 

Since the appearance of the classical paper by Kalman(29), the 
(34 

discrete Kalman filter has been derived in many ways, 
44,51,114) 

The original derivation by Kalman uses the concept of orthogonal 

projections(114) which we will now follow. 

Consider a time-varying channel which is described by the 

linear vector difference equation, 

Yi+i =0 i+1, i Yi + riVi (6.3.1) 
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where, 

Yi. _ [Yi, 
o Yi, l ... yi, g] 

T (6.3.2) 

is the sampled impulse-response of the linear baseband 
channel (Figure 6.2.1) at time t=iT, 

is the (g+l)x(g+l) transition matrix, 
ri is the (g+l)x(g+l) weight matrix, 

Vi = [vi, 
o vi'l ... vi, g] 

T (6.3.3) 

whose components are statistically independent random 
variables. 

The measurement model is given by the linear algebraic equation, 

9 
ri 

hI0 
Si-hyi, h + wi (6.3.4) 

or r= SiY, + wI (6.3.5) 

or r1 = YTS +w . (6.3.6) 

where, 

Si - [si si-1 ... si_9]T (6.3.7) 

is a sequence of input data symbols, 

w. is a Gaussian random variable which represents 1 the noise component in ri. 

All quantities in equations 6.3.1-6.3.7 are complex-valued. The 

superscript T used in the above description denotes transposition. 

It is assumed that the random variables in equations 6.3.1 and 

6.3.6 have the following statistical properties, 
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E[V] =0 

E[wi] =0 

E[V1VýT] = Q1 S 

E [wiwý Q2 

E[Viwý )=0, for all i, j 

where, 

(6.3.8) 

E is the expectation operator, so that E["] is the expected value 

of ["], 

i'j is the Kronecker delta, such that, 

11 
i=j 

i. j 0ij 
(6.3.9) 

* indicates the complex conjugate. 

Equation 6.3.8 merely states that the random variable wi has zero 

mean and variance a2. Also, the mean of V. is a zero vector and its 

covariance matrix is Qi. In addition, wi and the components of Vi, 

which are {vi, h}, are uncorrelated. 

Based on the sequence of received samples, 

R1 -, = [r1 r2 ... r1]T (6.3.10) 
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we wish to determine the optimum linear minimum-error-variance 

unbiased estimate of Yi which will be denoted as Yl!, i, or simply Yi. 

The error in this estimate is given by, 

Xi = Yý - Y.; (6.3.11) 

Since the estimate is required to be unbiased, the estimation error 

Xi has zero mean and so E[Y! ] = E[Yj](114). Of the many possible 

linear unbiased estimators, we select here the one which gives the 

minimum error variance. The linear minimum variance estimate of Yi 

. given the vector Ri is then the conditional expectation of Yi, given 

R. (114,115,122) that is, 

Y! = E[YilRi] (6.3.12) 

The symbol E has been used instead of E because, in the general case, 

the linear minimum variance estimator is not the true conditional 

mean 
(114,115). E[Yi1Ri] will become E[Y11Ri] if Y, V and w all have 

Gaussian distributions, but this is not necessary in the derivation, 

so that the resulting estimator may not be the best but only the 
14). (1 

best linear estimator 

Although we ultimately require the estimate Yi which is equal 

to E[YilRi], we shall first derive the 1-step prediction Y. 
+l, i 

and later use, it to find Y. The 1-step prediction Y! 
+l, i is 

defined as, 
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Y. 
+1, i = E[Yi+1IRi] (6.3.13) 

and is the prediction of Yi+1 using data which are available up to 

time t=iT. Let us assume that, at time t=iT, Yl!, i_1, which is the 

prediction of Yi based on data up to time t=(i-1)T, is known. Using 

the newly arrived information ri and YI, i_l, we are required to com- 

pute Y. 
+1ý. 

In general, ri is not statistically orthogonal to the 

components of Ri_l, but it is easily shown that the so-called 

'innovation' process 
(51,114), 

YiTi-1 Si (6.3.14) 

is orthogonal to R1_1(28,51,114,115) which means that 

E[ei, i-1 Ri-11 00 (6.3.15) 

Now, using equation 6.3.14, we may rewrite equation 6.3.13 as, 

Yi+1, i = E[Yi+1JRi_1, ri] 

(6.3.16) 

since ri - ei, i_l is contained in Ri_1 and thus adds no 'new 

information' to the representation of Y! 
1+1, i, e1,1_1 is orthogonal 

to Ri_l (equation 6.3.15), and so we may use the linearity property 

of the minimum variance estimator and the orthogonal projection lemma(114) 

to rewrite equation 6.3.16 as, 
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AA 

Yi+l, i = E[Yi+1lRi-1] + E[Yi+lJei, i-1] (6.3.17) 

or 
Yi+l, i = Yi+l, i-1 + E[Yi+1 ei, i-1] (6.3.18) 

because E[Yi+iIRi_1] is, by definition, equal to Y! 
1+l, i-1' 

Thus, the predictor has taken the familiar predictor-corrector form. 

Equation 6.3.18 shows that the prediction Yý+1, i is obtained by 

predicting Yi+l using the received samples up to time t=(i-1)T, and 

then correcting the prediction with the new information ei, i_1 in 

the current sample. 

Let us examine the two terms on the right-hand side of equation 

6.3.17. Substituting the value of Yi+l from equation 6.3.1 into the 

first term gives, 

E[Yi+11R1_1] = E[(oi+1,. Yi + riVi)IRi_1] 

= (D .i [Y lRi-li +rEV. R. 
_ 

6.3.19 

By definition, 

E[YiIR1_1] = Yi, i_l (6.3.20) 

Thus, equation 6.3.19 becomes, 
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ww 

E[Yi+1lRi-1] = of+l, i Yi, i-1 + riE[vilRi-1] (6.3.21) 

Now, it follows from equations 6.3.1 and 6.3.6 that Ri_l is dependent 

on Vi only for j<i-1, so that the expected value of Vi, given R, 
_1 

is simply given by E[Vi] whichisa zero vector (equation 6.3.8). 

Therefore, equation 6.3.21 reduces to, 

(6.3.22) 

Next, we consider the term E[Yi+llei, i_1] on the right-hand side of 

equation 6.3.17. We quote here without proof the results obtained by 

Sage and Melsa(114) which show that, with the appropriate modifications 

for complex signals, the orthogonal projection theorem may be used to 

write E[Yi+llei, i-1] as, 

E[Yi+llei, i-1] = E[Yi+lei, i-1]{E[ei, i-lei, i-1]}1 ei, 1_1 

(6.3.23) 

Substituting the value of Yi+l from equation 6.3.1 into the term 

E[Yi+lei, i_1] on the right-hand side of equation 6.3.23, 

E[Yi+lei, 1_1] = E[(oi+1,. Yi + r. V. )ei,. 
_ 

] (6.3.24) 

But, with ri given by equation 6.3.6, ei, i_1 in equation 6.3.14 may be 

written as, 
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T' YiSi + wi - YiT 
, i-1Si 

_ (YT - YiTi_I)S. + W. - (6.3.25) 

If we denote the error in the 1-step prediction of Y. as, 

Xij_1 = Yi - Yi'i_1 (6.3.26) 

then, equation 6.3.25 reduces to, 

ei, i-1 = Xi, i-lsi + wi (6.3.27) 

Substituting for ei, i_l in equation 6.3.24, we have 

E[Yi+lei, i-1] = E[(oi+1, iyi + rivi)(X 
i", 

Ti-1 Si *+ Wi)] 

ýi+l, i E[Y. X 1-1]si + 'i+1, i E[Yiw! ] + 

+ ri E[V iXiTi-1]Si + 

+ rj E[Viwi] (6.3.28) 

Since Yi depends only on Yi_1 and Vi_1 (equation 6.3.1) and Vi and 

wi are uncorrelated (equation 6.3.8), E[Yiwi] = 0. Also E[ViXiTi-11 =0 

since Xi, i_l is independent of Vi whose mean is a zero vector (Equations 

6.3.26 and 6.3.1). Thus equation 6.3.28 reduces to, 
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E[Yi+lei, i-11 - lli+1, i E(YiXili-1]Si (6.3.29) 

But, from equation 6.3.26, Y. may be expressed in terms of the predic- 

tion error as, 

i Yi = Yi, i-i + Xi, i-1 (6.3.30) 

Substituting Yi from equation 6.3.30 into equation 6.3.29 gives, 

I *T E[Yi+lei, i-1] = of+1, i E[Yi, i-1Xi, i-1]Si + 

E[Xi, i-1X 
*i, T 

i-l]si (6.3.31 

By virtue of the orthogonal projection theorem (114) 
, E[Y! x 

_ý] = 0. 

Also, by defining 

Pi, i-1 2 E[Xi, i-1X. 
Ti-11 (6.3.32) 

equation 6.3.31 simplies to, 

E[Yi+lei, i-1l = 4ýi+1, i Pi, i-lsi (6.3.33) 

Let us now consider the term E[ei, i_lei, i-1] on the right-hand side 

of equation 6.3.23. This term may be expanded using equation 6.3.27 

to give, 

0 
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EpT *T 
+wi)(Xiii-is i* +Wi*)] 

Since XT, i_ýS1 = Si Xi, i_I , equation 6.3.34 becomes 

(6.3.34) 

STE[Xi, i_iXi, i-1]Si +Si E[Xi, i_1wi] + 

+ E[wiXili-ilsi + E[wiwi] (6.3.35) 

The second and third terms on the right-hand side of equation 6.3.35 

are obviously zero, so that from equations 6.3.32 and 6.3.8, equation 

6.3.35 reduces to, 

Eiei j-1ei, i-1l = Si Pill-1 Si + °2 (6.3.36) 

Using equations 6.3.36,6.3.33 and 6.3.14 to substitute for the terms 

on the right-hand side of equation 6.3.23, we have, 

*T*1 E[Yi+llei, i-1l = Di+l, 1 i, i_, Si (SiPi, i-lsi + a2) X 

x (ri - Y'T i-1 Si) 

If we denote 

i+lJ ' "i+1, i Pi, i-1Si (Si P+ 02)'1 

(6.3.37) 

(6.3.38) 
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then equation 6.3.37 becomes, 

E[Y" Ie" ]=K (r" - Y: T. S. ) (6.3.39) 1,1-ý+ý, 1 1 1,1-1 1) 

Hence, using values from equations 6.3.22 and 6.3.39, the 1-step 

prediction of Yi+i is given from equation 6.3*. 17 by, 

Y' _ ý. Y: + K. (r - Y'T Si) (6.3.40) i+l, i i+l, i Ili-1 "I+l, i i i, i-1 

In order to use equation 6.3.40, we need to specify Pi, i_l for the 

calculation of Ki+l, i (equation 6.3.38). Alternatively, we may 

determine Pi+l, i, and this is obtained as follows. The error in the 

1-step prediction of Yi}1 is given by, 

i+l, i - i+l Yi+l, i (6.3.41) 

Substituting for Yi+l (equation 6.3.1) and Y1! 
+1,1 

(equation 6.3.40), 

we have 

Xi+l, i - ýi+1, i Yi + rivi - 'i+1, i Y! 
-1 - 

' 
i i-1 Si) (6.3.42) - Ki+l, i (ri - YT 

Substituting for ri from equation 6.3.5 and noting that YTSi 

ST, Vf . _ý , 
equation 6.3.42 becomes, 
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Xi+1, i = 'ti+l, i (Y1 - Yi, i-1) - Ki+1, iSi (Yi - Yi, i-1ý - 

- Ki+l. iwi + rivi 

_ ýi+1, i Xi, i-l - Ki+t 
,i 

SiXi, i-1 - 

- Ki+1, i wi + riVi 

ST i 

- Ki+l, iwi + r1V1 (6.3.43) 

From the definition of Pi, i_l (equation 6.3.32), we have 

Pi+l, i = E[Xi+1, i Xi*T 
+1, i3 

From equation-; 6.3.43 and since X1, i_l, wi and Vi are statistically 

orthogonal, we have 
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Pi+l, i E[(Ti+11 i- Ki+l, i Si )Xi, i-i x 1-1 Ki+1, isI + 

+ Ki+1, i Wiwi Ki+1, i + r1 V 1V1 
T1 

- i+l ,iP 

*T 
- Ki+l, i Si Pi, i-1 ýi+1, i - 

* *7 
- i+1, i Pi, i-1Si Ki+l, i + 

+ K. STP. S*K*T 
t+ t+1, i t , i-1 i i+1, i 

2 *T 
+ Ki+l, i a Ki+l, i + 

+ ri QiriT 

* T_ 
0 i+l, i Pi, i-1ti+1, i 

T *T 
_ - Ki+1, i SIPi, i-1 ýi+l, i 

* *T 
- ýi+1, i Pi, i-1Si Ki+1, i + 

+K (ST PS+ a2) K*T 
i+ +l, i i ili-1 i+l, i 

+ r1 Qi riT (6.3.44) 
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Substituting for Ki+l, i (equation 6.3.38) in equation 6.3.44, we have, 

ei*T 

- ý. PS (ST P S. + Q2)-1SiT Pi e*T _ 

* *T Pi, i lsi Ki+l, i + 

+ ýi+l, i Pi, i-lsi (Si Pi, i-l Si + a2)-l(si Pi, i-l Si + 02)Ki+l, i + 

+ r, QiriT 

*T 
- ýi+1, i Pi, i-lei+hi - 

-0P S* (ST P S* + QZ)-1ST P O*T i+ +1, i i, i-1 i i, i-1 iii, i-1 i+l, i 

*T 
+ riQ1ri (6.3.45) 

Now, it can be seen from equations 6.3.1 and 6.3.5 that Yi and ri depend 

on Vi for j<i, which mean that Ri contains no information about Vi. 

Therefore, the prediction of Yi+l based on Ri could simply be obtained 

by a 1-step prediction from Y!, with the estimate of Vi being set equal 

to a zero vector. Thus, 

Yi (6.3.46) 
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Clearly, the two predictions given by equations 6.3.40 and 6.3.46 

are the same, and so replacing Y1! +1'1 
in equation 6.3.40 by its 

value in equation 6.3.46, we have, 

Yi - Y+ Ki+l(ri - ST 

(6.3.47) 

Premultiplying equation 6.3.47 by oi, i+l and using the properties of 

the transition matrix(114) that of+l, i = we have, 

Yi = ýi, i-lYi-1 + ý1, i+1Ki+1, i Cri - Si0 

If we define 

Ki - ýi, i+lKi+l, i 

(6.3.48) 

(6.3.49) 

I then, using the value of Ki+l, i from equqtion 6.3.38, we have, 

Ki = Pi, i-1Si (Si T Pi, i-I S. + a2) 1 (6.3.50) 

and equation 6.3.48 simplifies to, 

Yi = ýiýi-lYi-1 + K. (ri - Si0i, i-lYi-1) (6.3.51) 

An alternative form to equation 6.3.51 is obtained by substituting 
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ýi, i-lYi-1 by Yý, i_l (equation 6.3.46), so that 

YI = Yi, i-1 + Ki (r1 - Si Yi, i-1) (6.3.52) 

Next, we obtain an expression for the covariance of the error vector 

in the estimate Y. Using the definition for X. (equation 6.3.11) and 

the expression for Yi above, we have, 

Ki (ri - Si Yi, i-1) 

_ (Yi - Y!, i-1) - K1 (Si(Y1 - Yi, i-1) + w1) 

T) 
= Xi, i-1 - Ki (Sixi, i-1 + w1) (6.3.53 

Since X1, i_l and wi are statistically orthogonal, we have, 

P1ý1 = E[X1X1TI 

= E[Xi, i-1Xi 
*T 

, i-11 - 

*T * *T 
- E[Xi, i-1Xi, i-1]Si Ki - 

- Ki SIE[Xili-1Xi*, i-1] + 

TE[X *T * *T 
+ KiSIi, i-1Xi, i-1]SiKi + 

+ Ki E [wiwi ] Ki T 
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= Pýýi_ý - Pi - KiSJPi, i-1 + 

+ KiS. P.. S. KiT + K. Q2K. 
T 

T S* *T 
- ýI - Kisi)Pi, i-1 - Pi, i-1SiKi + 

+ Ki (SiPi, i-lsi + a2)KiT (6.3.54) 

where I is a (g+l)x(g+l) identity matrix. Substituting the value of 

Ki (equation 6.3.50) into the last term on the right-hand side of 

equation 6.3.54 gives, 

- 
T)* *T 

p1,1 = (I Kisi Pi, i-1 - Pi, i-1SiKi + 

+ Pi, i_1Si (SiPi, i-1Si + a2) 1x 

X (SiPi, i-ls+ a2) KIT 

= (I - Ki ST) Pi 
,i -1 

(6.3.55) 

It can be seen that the expression for Pili contains Pi, i_l which can 

be obtained from Pi+l, i (equation 6.3.45). First we rewrite equation 

6.3.45 as, 
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Pi+l, i = ti+1, i (Pi, i-1 - KiSi P1,1_1)Oi+1, i 

+ riQ1riT 

0i+l, i (I - Kisi) Pi, I_lei+l, i + riQiriT 

Thus, from equation 6.3.55, 
t 

i+l, i Pi, iýi+l, i + riQirýT 

(6.3.56) 

(6.3.57) 

Clearly, Pi, i_l could be obtained from equation 6.3.57, i. e., 

Pi, i-1 O*iT 
-1 

+ ri-1Qi-1ri_1 (6.3.58) 

Hence, equations 6.3.46,6.3.50,6.3.52,6.3.55 and 6.3.58 constitute 

the Kalman filter estimator giving the minimum error-variance unbiased 

estimate of Yi based on the channel model of equation 6.3.1 and the 

measurement model of equation 6.3.4. These equations are summarized 

below. 

YI, i-1 = i, i-1 Y1-1 (6.3.59a) 

pi, i-1 i, i-1, i-1, i-I -1+ 
ri-14i-1ri-i (6.3.59b) 

K. = P. S (ST PS+ cz)"1 (6.3.59c) 

(I - Kisi) Pi, i-1 (6.3.59d) 

Yi = Yi, i-1 + Ki (ri- Si Yi, i-1) (6.3.59e) 



173 

The flow chart and the block diagram of the Kalman filter estimator 

are shown in Figures 6.3.1 and 6.3.2, respectively. 

Before using the Kalman filter estimator, it is necessary to 

assign proper initial conditions for the estimate of Y and also 

the covariance matrix P. In practice, Yo is unlikely to be available 
(51 

so that a random initial condition is most appropriate, 
114) 

Suppose therefore that Yo is a random vector with mean To and 

covariance matrix Po, that is, 

E[Yo] = Yo 

(6.3.60) 

E[(Y0 'yo)(Yo -fo)*T] =p0 

then, clearly, the best estimate of Yo, prior to the arrival of any 

received signal is given by 

Yo' = E[Yo] = Yo (6.3.61) 

Consequently, the estimate (or prediction) of Yl, given no received 

signal, is simply 

'l1 
,o- 

Il1, oYo1 = "l, o 0 
(6.3.62) 

If we examine the algorithms for computing the Kalman gain vector KV 

the a priori covariance matrix Pi, i_l and the a posteriori covariance 

matrix Pipi, we would observe that they do not depend on the received 
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P0,0 

'i'd 

STEP 1 
Compute Pi, 1_1 

(Equation 6*3.59b 

STEP 2 

Compute K1 

(Equation 6.3.59c 

STEP 3 
Update-Estimate 

Y! ri ý 
Equation 6.3.59e) I 

STEP 4 
Compute Pi, i 

(Equation 6.3.59d) 

i=i+1 

FIGURE 6.3.1: FLOW CHART OF THE CONVENTIONAL KALMAN 
FILTER ESTIMATOR 
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signals {ri}, and so, for example, the gain vector K may be computed 

beforehand and kept in store. This is obviously advantageous if the 

cost of storage is cheaper than real-time computation. 

An important feature of the Kalman algorithm is-that in addition 

to providing a recursive solution to the least-squares problem that 

can be implemented directly, it also computes the error covariance 

matrix P which may be used to judge the accuracy of the estimates. 

In practice, the actual value of the matrices 0 and r are not 

known to the receiver. However, intuitively, one may consider the 

HF channel, over a sufficiently long time interval, to be randomly 

varying about some mean value, then, 

Yi+l = Yi + V! (6.3.63) 

where V, is a noise vector. Clearly, in this case,, both matrices can 

be set: to the identity matrices of the appropriate dimensions. 

Consequently algorithm 6.3.59 reduces to 

Pi, i-1 2 Pi-l, i-1 + Qi-1 (6.3.64a) 

Ki = Pi, i-1Si (Si Pi, i-1 Si+ a2)-1 (6.3.64b) 

Pi, i = (I - KiSi) Pi, i-1 (6.3.64c) 

Tý Yý = Yß_1 + Ki (ri - Si Yi-1ý (6.3.64d 
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because the one-step prediction Yi, i-1 is now simply given by the 

estimate Y,! 
_l 

(see equation 6.3.59a). 

Clearly, equation 6.3.59a computes the prediction of Yi from 

the updated estimate Y! 
_l. 

Perhaps, a better arrangement is that 

where and r are still the identity matrices, but Yi is predicted 

using a suitable arrangement of prediction. Among the various 

predictors that have been studied in Ref. 89, for applications 

involving the HF channel, the most promising is the degree-1 least- 

squares fading-memory predictor. Therefore, the Kalman filter is now 

of the form 

Y! 
ýi_l 

= obtained by degree-1 least-squares 
fading-memory prediction (6.3.65a) 

Pi, i-1 = Pi-l, i-1 + Qi-1 (6.3.65b) 

K; = Pi, i-lsi (Si p1, i-lsi + ý2)-1 (6.3.65c) 

P11 = (I - KIST) Pi 
, i-1 (6.3.65d) 

Y! = Yýli-1 + Ki (ri - Si Yi, i-1) (6.3.65e) 

The matrix Qi_l in equations 6.3.64a and 6.3.65b is the covariance 

matrix of Vi-1. i. e., 

l Qi-1 = E[Vi-1 (vi-1) *T (6.3.66) 

In practice, Q is also not known and, in fact, it may be estimated as 

outlined by Jazwinski(49). Earlier, we have assigned o and r each 
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to be an identity matrix. Clearly, these assumptions have resulted in 

a different model from that assumed by the Kalman filter. However, 

one may choose the matrix Q such that model errors are 'covered' with 

noise. Here, we assign the matrix Q1_ß as 

4i-1 = cl (6.3.67) 

where c is a small positive real constant and I is an identity matrix. 

This means that the components of V! are statistically independent. 

Another alternative for the value of Qi_l is 

Qi-1 =q Pi-l, i-1 (6.3.68) 

where q is a small positive constant. The potential weakness of 

having Qi_l as in equation 6.3.68 is that after repeated application 

of the Kalman filter, the matrix Pi, i_l may cease to be a positive 

definite matrix which means that it is no longer the correct error 

covariance matrix. Therefore, in order to impose Pi, i_l to be a 

positive definite matrix, one may use, 

Q1_1 =q Pi-l, i-1 + cl (6.3.69) 

When the various possible values of Qi_1 are incorporated into algo- 

rithms 6.3.64 and 6.3.65, the following algorithms are obtained. 
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Kalman Estimator 1 

Pi, i-1 - Pi-l, i-i + cl 

Ki = P1 
li-i 

Si (S. P. 
li-1 

Si +0 2 

Pi 
li 

= (I - Ki ST) PI I-i 

Yý = Y1_1 + K. (ri - ST 

Kalman Estimator 2 

Y! 
ýi_1 

= obtained by degree-1 least-squares 
fading-memory prediction 

Pi, i-1 = Pi-l, i-i + CI 

Ki = Pi 
ýi_lsi 

(Si T Pi, i-1 Si + Q2)-i 

Ki Si) Pi, i-1 

Yý = Yýýi-1 + Ki (ri -Si Y 
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Kalman Estimator 3 

obtained by degree-1 least-squares 
fading-memory prediction 

Pi, i_1 = Pi_l, i-1 +q Pi-1li-1 

Ki = Pi, i-1 Si (Si Pi i-1 Si + Q2)-' 

T Pi, i = (I - K1Si )P1,1_1 

Yi =Y Li-1 + Ki (ri. - ST Yi, i-1) 

Kalman Estimator 4 

Yiýi_1 = obtained by degree-1 least-squares 
fading-memory prediction 

Pi, i-1 = Pi-1li-1 +q Pi-l, i-1 + cI 

3 Ki - Pi, i-ls (STp i-lsi + a2)-i 

pi, i = (I - KIST) Pl, l_I' 

+ Ki (r1 - ST Y, i_ý) 
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'ý40.. 

. 
Kalman Estimator 5 

Pi, i-1 4 Pi-l, i-1 +q Pi-l, i-1 

Ki = Pi 
ýi-1 

si (Si Pi, i-1 Si + Qzý i 

Pi, i = (I - KiSJ) Pi, i-1 

Yý =Yß_1 +Ki (r1 -SiYh) 

In all cases the optimum values of o2, c and q are found by trial 

and error. 

6.4 COMPLEX FEEDFORWARD TRANSVERSAL-FILTER ESTIMATOR 

The structure of the complex feedforWard transversal-filter 

estimator is as shown in Figure 6.4.1. It is basically a modification 

of the linear feedförward transversal-filter estimator in Section 3.5. 

but the estimator is required here to handle complex-valued signals. 

It operates as follows. 

Upon the reception of ri+n and before the detection of si+l, the 

signals along the delay line are the detected data-symbols sý, s! 
_l, ... 

s! Each symbol si_h for h=0,1, ..., g is multiplied by the 
1 9** 

corresponding component y! _l, h of the previous estimate Yß_1. The 

resulting products are added to form an estimate r! of the received 

signal ri, that is 
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9 
ri - h-0 

Si-h yi-1, h (6.4.1) 

The estimate r1 is subtracted from the corresponding received 

sample ri which was previously held in store to give the error 

signal 

=r1 -ri (6.4.2) 

ei is then multiplied by a small positive real quantity c. The 

resulting signal cei multiplies each of the complex conjugates 

(si) , (si-1) , """, 
(sl'-_g) of the detected data-symbols 

s!, s! 
_1, ..., s! 

_g. 
The resulting products are added to the corres- 

ponding components of Yi_1 to give the updated estimate Yi of Y 

Thus, the (h+l)th component of Yi is 

yi, h = i-l, h + cei(si_h) (6.4.3) 

In vector notation, the estimate of Yi is given by, 

Yý = Y! 
_l 

+ ce1 Si (6.4.4) 

where S is a (g+l)-component column vector with components {(s: *}, 
i _h) 

that is 

Si - IN) (si-1)* (sß_9)*]T (6.4.5) 
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The positive real quantity c in equations 6.4.3 and 6.4.4 is 

known as the step size of the estimator. The smaller the value of 

c, the smaller is the effect of additive noise on the estimate V. 

However, with small values of c, the rate of response of Y! to 

variations in Yi is slow. 

The algorithm given by equation 6.4.4 is the well known gradient 
(21,26-27,89,116-121) 

or steepest descent algorithm . We will call this 

algorithm the Feedforward Estimator 1. The algorithm, is, in fact, 

a recursive solution to the least-squares estimation problem of 

Section 3.3, but modified to handle complex quantities. Basically, 

the estimator starts with an initial estimate Yo and measures the 

gradient of the mean square error function that it to be minimized, 

and updates the estimate according to the gradient. When the process 

is repeated, the error, in the estimate is successively reduced. and the 

estimate converges to the optimum estimate of the channel. 

A comparison of various channel estimators(26) has shown that the 

overall performance of the gradient algorithm is as good as the least- 

squares estimator in applications where the channel is time-invariant 

or slowly time-varying, as for example, a random walk channel. Over 

HF radio links, rapid variations may occur in the characteristics of 

the channel. Thus, more sophisticated techniques are required for 

the estimation of this type of channel. It has been shown(89) that 

when the gradient algorithm is employed in the estimation of a linear 

baseband channel that includes an HF radio. link; a useful improvement 

in performance is obtained by including a predictor. The Feedforward 
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Estimator 1 is then modified.. to 

+ ce1 S1 (6.4.6) 

where Yl., i_1 is the prediction of Yi at time t=(i-1)T. Various 

arrangements of prediction have been studied in Ref. 89. The most 

promising arrangement is the degree-1 least-squares fading-memory 

predictor. Detailed descriptions of the predictor will be given in 

the next section. We will call the algorithm given by equation 6.4.6 

the Feedforward Estimator 2. 

6.5 LEAST-SQUARES FADING-MEMORY PREDICTION 

With a receiver that employs a maximum likelihood detector, 

there is an inherent delay of several sampling intervals, say n-1, 

in the detection of a data symbol. For example, si is detected after 

the reception of ri+n_1. This means that the estimate Y! of Yi 

produced by the feedforward transversal-filter estimator (Section 

6.4) or the Kalman filter estimator (Section 6.3) is only available 

to the detector on the receipt of ri+n so that si+1 may then be 

detected. Therefore, the delay in the estimation of Yi is n sampling 

intervals. The error in using Y! instead of Yý+n in the detection of 

si+l becomes excessive when n is large or when the sampled impulse- 

response of the channel changes rapidly. Thus, it is necessary to 

make a prediction of Yi+n, which can be derived from the estimates 

y!, y! 
_1, .... In addition to the n-step prediction Yý+n, i, a 1-step 

prediction Y! +1,1 of Yi+l is also required so that Y! can be replaced 
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by Yý+1,1 when forming the updated estimate Yý+1 in the channel 

estimator. Clark and McVerry(89) have tested several arrangements 

of prediction on a model of an HF radio link with two independent 

Rayleigh fading sky waves. The most promising of the predictors is 

the degree-1 least-squares fading-memory predictor, and so, in this 

part of the investigation, we have used this predictor for determining 

Y and ' The degree-1 least-squares fading memory predictor i+l, i Yi+n, i' 

will now be described. 

Here, the predicted value of a variable parameter at any time 

instant in the future is taken as the value of a polynomial, at the 

particular instant, the polynomial being designed to give the best 

fit to the sequence of past observations in the sense that it mini- 

mizes an appropriately weighted sum of the squares of the errors. 

Morrison(4) has suggested that the weight factor be an exponentially 

decaying function so that the older observations have less influence 

on the choice of the polynomial. The name least-squares that is 

given to this type of predictor comes from the fact that the crite- 

rion for choosing a polynomial is that the weighted sum of the 

squares of the errors in the predictions of the received signals {ri} 

be minimized, where the predictions of the {ri} are themselves derived 

from the predictions of the sampled-impulse-response of the channel. 

The least-squares fading-memory prediction as applied by Morrison (44) 

derived the prediction from past observations of the parameter in 

question. However, Clark and McVerry(89) have obtained the prediction 

using past updated estimates of the parameter. The latter arrangement 

seems more likely to become unstable when the estimates are themselves 
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in error. The results of extensive computer simulation tests(89) 

have however shown that, with proper setting, the predictor is 

stable under a variety of channel conditions. 

Clearly, each of the g+l components of the sampled impulse- 

response of the channel can be considered as a variable parameter, 

and so in the prediction of these components, g+1 polynomials of a 

given degree are determined, each of which gives the weighted least- 

squares fit to the components in the corresponding locations in the 

vector Yi, Yj_1, ... . Degree-1 prediction is now given as follows. 

(Yi, i-1)' + (1-e)2 Ei (6.5.1) 

Yi+l, i = Yi, i-1 + (Y+l, i)' + (1-e2) Ei (6.5.2) 

Yi+n, i = V. I + (6.5.3) 

where is a function of the first differential-of Y! 
+l, i 

with respect to time. e is a real constant with a value in the 

range 0 to 1, but normally close to 1. The vector Ei is the error 

in the prediction Y, i_j with respect to Y!, that is, 

Eý - Yý -' hi-1 (6.5.4) 

The updated estimate Yj used in the above equations is provided by 

the channel estimator. In order to start the whole process of 

estimation and prediction, the following initial values may be used. 
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Yll'o = Yo, - Yo 

(Yi, 
0)' =0 

(6.5.5) 

(6.5.6) 

The channel estimator uses Yý1o to determine Yý so that El can be 

obtained. The predictor, in turn, uses El and the initial values in 

equations 6.5.5 and 6.5.6 to form Y2'ß which is subsequently used by 

the estimator to obtain Y. The process continues in this way.: 

6.6 RESULTS AND ANALYSIS OF COMPUTER SIMULATION TESTS 

Extensive tests have been carried out to investigate the possible 

application of the Kalman filter to the estimation of the sampled 

impulse-response of an HF radio channel which forms part of a 

synchronous serial data-transmission system. The digital data is 

to be transmitted at the data rate of 9600 bit/s, using quadrature 

amplitude modulation. All the tests have been performed by computer- 

simulation using the powerful CDC 7600 computer at the University of 

Manchester Regional Computer Centre. ý An example of the simulation 

programs are given in Appendices A3 and A4. 

The model of the HF radio link that is used in the tests has 

two independent Rayleigh fading sky waves. Each sky wave introduces 

the same average attenuation and the same frequency spread of 1 Hz 

into the data signal, such that the average attenuation over the radio 

link is 0 dB. The relative delay in transmission between the two sky 

waves is 2 milliseconds. For ease of simulation, we are confined here 

to a fixed delay which can be altered to other values if required. 
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For the purpose of assessing the cost effectiveness of the Kalman 

filter estimator, we compare its performance with a feedforward trans- 

versal-filter estimator. The latter has been suggested as the basis 

of the most cost-effective estimator for applications involving an 
(89 

HF radio link. Clark and McVerry. in fact, have tested the feed- 

forward transversal-filter estimator with various arrangements of 

prediction on a model of an HF channel with the above specifications. 

However, the tests were carried out at the data rate of 2400 bit/s 

with 4-level QAM signal. Our tests are at 9600 bit/s with 16-level 

QAM signal, which, therefore, has shorter sampling interval (when 

sampling once per data symbol) and so increases the number of compo- 

nents in the sampled impulse-response of the channel. Consequently, 

we would expect our results. for the feedforward transversal-filter 

estimator to show a possible degradation when compared with the 

corresponding estimator in Ref. 89. However, a fair comparison 

cannot be made between these results. for several reasons. Firstly, 

although the channel used in these tests has the same values for the 

relative transmission delay of the two sky waves and for the frequency 

spread, different random number sequences used for generating the 

fading sequences in the model of the HF channel can cause appreciable 

difference in the performance of the estimator. Secondly, the optimum 

values of the various parameters associated with the estimator are not 

the same due to the absence of any exact procedure for obtaining these 

values. However, if we compare the general behaviour of the estimator, 

the two results are in agreement. 
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The performances of the estimators are summarized in Figures 

6.6.1-6.6.11 and Table 6.6.4. The quantity that is used for checking 
the convergence of the estimators is ci'which is the square of the 

error in the n-step prediction Y= , and is given by, 
i, i-n 

gý _ lYi - Yiýi-nlg (6.6.1 

A 

As explained previously, n is the delay in the estimation of Yi which 

is typically 17 sampling intervals(95). In order to minimize the 

influence of a particular sequence of input data symbols on the per- 

formance of the estimator, we calculate &i instead, which, -for each 

value of i, is the ensemble average of. 20 values of Ci obtained from 

the transmission of 20 different sequences of {si} together with 20 

different sequences of {wi}. Although the process of evaluating Ti 

is rather tedious, we can consider each curve obtained in this way as 

representing the 'average' behaviour of the estimator. The other 

quantity that is used to judge the performance of the estimator is 

which is the mean-square error in the n-step prediction Yi, i-n' 

measured in dB relative to unity, and is given by 

= 10 1og10 
21137 

ýÖý 
i= 938 

IYi - Y1, i-ni2) 

(6.6.2) 

In the foregoing equation, we have deliberately omitted the first 

1937 n-step predictions of Yi, so that any transient behaviour of the 

estimator just after it commences operation will not affect &. 
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Consequently, E can be taken as representing the 'steady-state' 

performance of the estimator. The number 1937 has not been chosen 

for any particular reason, it was merely selected for the convenience 

of simulating the estimators. Clearly, from equation 6.6.2, each 

value of ý is the result of the transmission of over 21000 data 

symbols and also involving the same number of {Yi} in the prediction/ 

estimation process. 

The average transmitted energy per bit of information at the 

input and output of the HF radio link is arranged to be unity. The 

additive noise that corrupts the signal at the output of the HF radio 

link is Gaussian with two-sided power spectral density of 'IN0. Thus, 

the signal-to-noise ratio *, defined as the ratio in dB of the average 

transmitted energy per bit to the two sided noise power spectral den- 

I sity at the receiver input, is given by, 

4= 10 log10 (1/JN0) (6.6.3) 

In all tests on the Kalman estimators, the quantity a2 that appears 

in the Kalman gain equation is assumed to be known. In practice, a2 

should be adjusted by trial and error to obtain the optimum performance 

of the estimator. 

Figure 6.6.1 summarizes the results of extensive computer simu- 

lation tests, comparing the performances of the Feedforward Estimators 

1 and 2 with the Kalman Estimators 1 and 2. The delay in estimation 

is 17 sampling intervals. The parameters that can be adjusted are 

0 
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e and c, and so when these are set to their respective optimum 

values, the performances of the estimators are the best obtainable 

under the given conditions. Thus, at every point on each curve in 

Figure 6.6.1, the parameters e and c have been given values as close 

as possible to their optimum values. The adjustments of the para- 

meters have taken up a considerable amount of computing time. 

Basically, the method involves the alternate adjustment of each 

parameter, for example, with 0, say, fixed at a certain value, c is 

varied to find the optimum value of & under the given condition. The 

value of c for which c is optimum is noted and, in the next step, c 

is fixed at this value while e is varied. A second minimum value of 

& is obtained. The value of 0 at the second minimum is noted and 

used in the next step to find another minimum value of ý in the same 

way as before. The process continues in this way until no further 

improvement is obtained in the value of C by adjusting e and c. 

Therefore, at the end of these adjustments, the particular combination 

of e and c gives the best obtainable performance of each estimator, 

and the values of e and c are considered as the optimum values (see 

Tables 6.6.1 and 6.6.3 for the optimum values of 0 and c). From these 

curves, we observe,. that at high signal-to-noise ratios (, p>30), both 

types of estimators (Kalman and feedforward) give a considerable 

improvement in performance when a prediction is involved in updating 

an estimate. The advantage is less obvious at the lower signal-to- 

noise ratios. This is as expected because the predictor is clearly 

less effective in 'noisy' environments. We also observed that at 

lower signal-to-noise ratios (i, <20) the performance of the Kalman 

Estimator 1 is almost identical to that of the Feedforward Estimator 1. 
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Figure 6.6.2 shows the variation of the mean-square error in 

the 1-step prediction of Yi with , i. The 1-step prediction Y! 
l i-1 

is required by the predictor in forming the n-step prediction 

Yi, i_n, and in addition, it is required by the Feedforward Estimator 

2, Kalman Estimators 2,3 and 4 in updating the estimate Yi. The 

mean-square error in the 1-step prediction Yý'j_1 is defined as 

1 21137 
ý' = 10 log10 (19200 

i= 
I 
1938 

i1 - Yi, i-112) 
(6.6.4) 

The values of e and c at every point on each curve are the same as 

the corresponding set of values in Figure 6.6.1. This means that 

these parameters may not give the optimum value of C' at each value of 

*, and so further improvements in E' may be obtained for all the 

estimators. However, in most cases, the optimum values of e and c 

which give the minimum value of & also give the minimum value of &'. 

Thus, Figure 6.6.2 is very close to that where 0 and c are adjusted 

for the minimum value of c'. The objective here is to obtain the 

most accurate n-step prediction of Yi as it is the n-step predictions 

which are required by the detector in the detection of the data symbols. 

Consequently, e and c have not been optimized for the mean-square-error 

&I. Figure 6.6.2 has been included so as to show approximately the 

accuracy of the 1-step predictions. 

In Figure 6.6.3, the mean-square error ý" in the updated estimated 

Y! is shown for values of On the range of 5 to 60. The mean-square 

error is defined as 
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10 1og10 ( 
21137 

00 
ýYi - YýU2) (6.6.5) 

i=1938 

The parameters e and c at each signal-to-noise ratio are here not the 

values which minimize E". They are in fact the values which give 

the minimum value of C at each value of p. Therefore, Figure 6.6.3 

has been included merely to show the accuracy of the updated estimate 

of Yi when the parameters 0 and c are optimized for the n-step predic- 

tion of Yi. It can be seen that errors in the updated estimates also 

follow the same behaviour as in the previous two figures. 

From these three figures, it is clear that the Kalman Estimator 

2 and the Feedforward Estimator 2 are worthy of further consideration. 

Figures 6.6.4 and 6.6.5 show the variation of the error in the 

n-step prediction Y., i_n with the parameter c at various signal-to- 

noise ratios for the Kalman Estimator 2 and the Feedforward Estimator 

2, respectively. The parameter e is set to its optimum value at each 

signal-to-noise ratio for the optimum value of c and it is held fixed 

along each curve. The parameter c used with the Kalman Estimator 2 

is the value of each diagonal component of the matrix Qi_l in the 

equation for the a priori error covariance matrix Pi, i_l. In the 

case of the Feedforward Estimator 2, c is the step size of the esti- 

mator. It can be seen that, with the Kalman Estimator 2, as the signal- 

to-noise ratio increases, the optimum value of c decreases. At a 

signal-to-noise ratio of 5 dB, the optimum value of c is 10-4, at 

= 60, the optimum value of c is 10-7. The performance of the 

Kalman Estimator 2 deteriorates rapidly when c falls below its opti- 

mum value. However, the estimator remains almost optimum for values 
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of c above the optimum value, at least over the range tested. As 

for the Feedforward Estimator 2, very small values of c are to be 

avoided because then the estimator cannot adequately track the 

received signal. The optimum values of c for both estimators at 

different values of ' are given in Table 6.6.1. 

The variations of ý with, 0 at various signal-to-noise ratios 

for the Kalman Estimator 2 and the Feedforward Estimator 2 are given 

in Figures 6.6.6 and 6.6.7, respectively. For each curve, the para- 

meter c is fixed at the optimum value for the particular signal-to- 

noise ratio. Both sets of curves exhibit the same behaviour, that 

is, the optimum value of 0 increases as the signal-to-noise ratio 

decreases. The optimum values of e are given in Table 6.6.1. 

Figures 6.6.8-6.6.11 show the convergence of the Kalman Esti- 

mators 1 and 2 and the Feedforward Estimators 1 and 2 under various 

initial conditions. Each of these curves is the ensemble average of 

20 convergence curves which have been obtained using 20 different 

sequences of {si} and 20 different sequences of {wi}. The initial 

conditions are given in Table 6.6.2, where I is a (g+l)x(g+l) identity 

matrix, and 0 is a (g+l)-component column vector with all its compo- 

nents equal to zero. It is assumed in all cases that the estimators 

do not know the rate of change of Yi at the start of transmission, 

so that (Y` 
_1)' = 0. In all tests, the signal-to-noise ratio is 

o, 
60 dB and the parameters e and c are optimum. 

Figure 6.6.8 shows the convergence of the Kalman Estimator 1 

and the Feedforward Estimator 1 at the start of transmission when 
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f 

both estimators have no prior knowledge of Yj. Accordingly, we set 

the a priori error covariance matrix Po, 
o 

for the Kalman Estimator 1 

to a diagonal matrix with large diagonal elements (= 106). If we 

consider the convergence of the estimators to their respective values 

of the steady-state mean square error C, the Kalman Estimator 1 con- 

verges in about 160 sampling intervals, while the Feedforward Esti- 

mator 1 takes about 280 sampling intervals. When the estimators have 

prior knowledge of Yi at the start of transmission (Figure 6.6.9) 

both estimators take very little time to converge to the steady- 

state mean-square error. The little 'hump' that appears at the 

beginning of each convergence.: curve is most likely due to the delay 

in obtaining sufficiently accurate estimate of the rate of change of 

Yi by the predictor. When Figure 6.6.8 is. compared with Figure 6.6.9, 

we can see that the performance of the Kalman Estimator 1 in Figure 

6.6.8 becomes identical to that in Figure 6.6.9 after about 200 sam- 

pling intervals, while the corresponding value for the Feedforward 

Estimator 1 is 440 sampling intervals. Thus, the Kalman Estimator 1 

recovers relatively quickly from the absence of the prior knowledge 

of Yi. 

Figure 6.6.10 shows the convergence of the Kalman Estimator 2 

and the Feedforward Estimator 2 when both have no prior knowledge of 

Yi at the start of transmission. The Feedforward Estimator 2 conver- 

ges to its steady-state mean-square error C in about 840 sampling 

intervals, while the corresponding value for the Kalman Estimator 2 

is 1240 sampling intervals. The convergence of both estimators are 

slower than the case in Figure 6.6.8 because the 1-step predictor of 

- ýý., 
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the sampled impulse-response is here part of the updating algorithm 

for Yi, and clearly, the absence of any prior knowledge of Yý, 

Yo', 
_l 

and (Yömeans that the predictor requires a longer time 

to obtain sufficiently accurate estimates of these quantities and 

therefore slows down considerably the convergence of both estimators. 

In Figure 6.6.11, the convergence of both estimators is more rapid 

because of the prior knowledge of Yi at the start of transmission. 

However, the Kalman Estimator 2 still converges more slowly to its 

steady-state mean-square error than the Feedforward Estimator 2. 

So far, we have seen that the performance of the Feedforward 

Estimator 1 follows quite closely that of the Kalman Estimator 1. 

In fact, the two estimators are almost identical in performance 

below ýy = 20 (see Figure 6.6.1). At these signal-to-noise ratios, 

the optimum values of e for both estimators are the same (see Table 

6.6.3). This means that both estimators are using the same predictor. 

Thus, the almost identical performances of both estimators suggest 

that probably the Kalman Estimator 1 effectively degenerates into 

the Feedfordard Estimator 1. This will only happen when the matrix 

pi, i-l is set to kI, where k is a scalar constant and I is the 

(g+l)x(g+l) identity matrix, so that 

*9 (Si Pi, i-lS. + a2)-i = (k 
hIOIsi-hl2 

+ a2)-i 

(6.6.6) 

which is a scalar quantity. Therefore the Kalman gain vector 

becomes 
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Ký =k (k (s1-h, z + a2)-i Si (6.6.7) 
h=0 

A comparison between the updating equation for the Kalman Estimator 

1 (equation 6.3.64d), with Ki given by equation 6.6.7, and the corres- 

ponding equation for the Feedforward Estimator 1 (equation 6.4.4) 

suggests that 

k (k 
I 

psi-h12 + o2) 1= c (6.6.8) 
h=0 

where c is a scalar positive constant and is the step size of the 

Feedforward Estimator 1. Close examination of the foregoing equation 
9 

reveals that in order for the relationship to be maintained, I psi-h{2 
h=0 

must remain almost a constant. However, the data-symbols {si} are 

statistically independent and equally likely to have any of their 16 

possible values as given by equation 6.2.1, and so it is most likely 

that Isi-hI2 will not remain a constant. Also, in our tests, 
h=O 

we have not deliberately made Pi, 1 _1 = kI and checks have been made 

on the actual matrix Pi, i_1 which show that it is not equal to kI. 

Thus, the Kalman Estimator 1 has not degenerated into the Feedforward 

Estimator 1. We can deduce that the Kalman Estimator 1 as applied to 

our problem here is not optimum. This, in a way, is what we might 

have expected because with the Kalman Estimator, we have assumed 

that the matrices o and r (equation 6.3.1) both to be the identity 

matrices. Therefore, the channel is modelled simply as in equation 

6.3.63, and so we rely on Qi_1 (equation 6.3.66) to compensate for any 

modelling errors. In all the tests above, Qi_1 = cI, where c is a 



199 

small positive constant. Hsu(126) has suggested setting Qi_l to be 

proportional to Pi-l, 1_1, that is, 

Qi-1 =q Pi-l, i-1 (6.6.9) 

where q («1) is a small positive constant. We have also considered 

Qi_l as a combination of these two schemes, that is, 

Qi-1 =q Pi-l, i-1 + cl (6.6.10) 

With c given a positive value, the scheme given by equation 6.6.10 

ensures that the matrix Pi, i_l remains a positive definite matrix. 

Table 6.6.4 gives the performances of the Kalman Estimators using 

various schemes, with all the parameters optimum. 

With reference to Table 6.6.4, the entries for the Kalman Esti- 

mator 2 enclosed within the brackets are the actual values of the 

steady-state mean-square error & in the n-step prediction of Yi. 

The figures for the other estimators give their performance, measured 

in dB, relative to the Kalman Estimator 2. Clearly, from Table 6.6.4, 

the best performance is given by the Kalman Estimator 2 followed by 

the Kalman Estimator 4. 

Let us now re-examine why the Kalman Estimator 1 is not optimum 

as an estimator of the sampled impulse-response of the linear baseband 

channel in Figure 6.2.1, which includes a model of an HF radio link. 

Modelling of the HF radio channel is the subject of the CCIR Report 
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No. 549 of the CCIR XII Plenary Assembly (1974)(77). It is recommen- 

ded that the HF channel be modelled theoretically as a complex tapped 

delay. line with the number of taps corresponding to the number of 

sky waves present (Section 4.4). The signal on each tap is multi- 

plied by a complex narrow-band baseband Gaussian waveform which 

imposes the Rayleigh fading. Alternatively, we can consider the signal 

to be separately multiplied by two real-valued narrow-band baseband 

Gaussian waveforms as in Figure 4.4.2. Thus, four Gaussian waveforms 

are involved in the two-sky-wave model. It is well known that the 

transfer function and impulse response of a Bessel filter tend 

towards Gaussian as the order of the filter is increased. Therefore, 

in our simulation the required Gaussian spectrum is approximated using 

a fifth order digital Bessel filter (Section 4.4) which is implemented 

as three separate filters connected in cascade. Each fading sequence 

{qh, i} for any given h (= 1,2,3. or 4) that multiplies the signal at 

each tap is then generated by filtering a sequence of statistically 

independent Gaussian random variables {vh, i} using the Bessel filter. 

Ref. 89 gives a clearer idea of how {vhJ} is processed into {qhJ}, 

which we have simply reproduced here in Figure 6.6.12. From Figure 

6.6.12, it is clear that the {qh, i} and therefore Yi are not first- 

order Markov processes, where, the present state at time t=iT is 

dependent on the previous state at time t=(i-1)T and a white noise 

component. In fact, here, the present state depends on the last five 

of the previous states. The derivation of the Kalman filter estimator 

assumes that the channel can be modelled as a first-order Markov 

process. Obviously, any higher-order process can easily be reduced 



201 

to first-order by simple algebraic manipulations. However, if we 

are to do this here, all the matrices in the resultant Kalman filter 

estimator will be extended five fold, and thus become considerably 

more complex and require excessive computation. The feedforward 

transversal-filter estimator is far simpler to implement and 

requires far fewer computations. When it is modified to include 

a predictor and also utilizes some prior knowledge of the channel, 

the performance is far superior to the Kalman estimators (Section 7). 

Due to the above fundamental weakness of the Kalman filter and 

its poor performance as a channel estimator, we have not pursued 

the study of other variants of the Kalman filter, such as the fast 

Kalman 
(128) 

and the square-root Kalman(51,126) algorithms. In any 

case, these algorithms merely improve certain aspects of the con- 

ventional Kalman filter. For instance, the fast Kalman reduces the 

number of operations per cycle from n2 to n. The square-root Kalman 

requires roughly equivalent number of multiplications per cycle as 

the conventional Kalman filter but it has improved stability and 

increased numerical accuracy. 
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Kalman Estimator 2 Feedforward Estimator 2 

c e c e 

5 10'4 0.96 5 0.03 0.98 

10 10-4 0.96 10 0.04 0.98 

20 10-4 0.95 20 0.04 0.97 

30 10-6 0.92 30 0.02 0.94 

40 10-6 0.89 40 0.03 0.93 

50 10'7 0.86 50 0.08 0.94 

60 10'7. 0.81 60 0.05 0.91 

TABLE 6.6.1: OPTIMUM VALUES OF e AND c FOR THE KALMAN ESTIMATOR 2 

AND THE FEEDFORWARD ESTIMATOR 2 



203 

Y' Yo f Y' (Y' )I 
o, -1 

p 
0,0 

Kalman Estimator 1 0 0 0 1061 
Figure 6.6.8 

Feedforward 0 0 0 

------------ 

Estimator 1 

-------------------- ------ ------- -------- ------- 
Kalman Estimator 1 Yo Y 0 I 

Figure 6.6.9 o 
Feedforward 
E i 1 Y Y 0 " 

------------ 

st mator 

-------------------- 

o 

------- 

o 

------- -------- ------ 
Kalman Estimator 2 0 0 0 1061 

Figure 6.610 
Feedforward 0 0 0 

------------ 

Estimator 2 

-------------------- ------- ------- -------- ------- 

Kalman Estimator 2 Y Y 0 I 
Figure 6.6.11 o o 

Feedforward 
t E 2 Y Y 0 stima or o o 

TABLE 6.6.2: VARIOUS INITIAL CONDITIONS FOR THE KALMAN ESTIMATORS 
1 AND 2 AND THE FEEDFORWARD ESTIMATORS 1 AND 2- 
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Kalman Estimator 1 Feedforward Estimator 1 

c e c e 

5 10-5 0.99 5 0.003 0.99 

10 10'5 0.99 10 0.006 0.99 

20 10-4 0.99 20 0.010 0.99 

30 10-4 0.98 30 0.015 0.98 

40 10-2 0.97 40 0.020 0.98 

50 10"3 0.96 50 0.020 0.98 

60 10"4 0.96 60 0.020 0.98 

TABLE 6.6.3: OPTIMUM VALUES OF e AND c FOR THE KALMAN ESTIMATOR 
1 AND THE FEEDFORWARD ESTIMATOR 1 
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9 

Signal-to-noise 
ratio, 

Estimator 
60 30 

(-49.6638 dB) (-32.0351 dB) 
Kalman Estimator 2 0 0 

(Qý = cI) 

Kalman Estimator 3 1.40 0.23 
(Qi =q Pil, i-1) 

Kalman Estimator 4 0.28 0.11 
(Qi =q Pi-i-, i-1 + CI) 

Kalman Estimator 1 14.27 1.36 
(Qi = cI) 

Kalman Estimator 5 13.35 1.28 
(Qi =q Pi-l, i-1) 

TABLE 6.6.4: COMPARISON OF THE MEAN-SQUARE ERRORS GIVEN BY THE 
KALMAN ESTIMATORS, MEASURED IN dB, RELATIVE TO THE 
KALMAN ESTIMATOR 2 

L 
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FIGURE 6.6.2: PERFORMANCE OF ESTIMATORS MEASURED BY THE 
1-STEP PREDICTION 
e AND c AS FOR FIGURE 6.6.1 
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7. IMPROVED CHANNEL ESTIMATOR 

7.1 INTRODUCTION 

Recently, some computer simulation tests have shown that the 

performance of a feedforward transversal -filter channel estimator is 

improved considerably if the estimator knows the basic structure of 

the HF channel 
95). Specifically, the estimator requires knowledge 

of the number of sky waves present and assumes that the relative 

delays in transmission between these sky waves are fixed. This a 

priori information appears to be of limited use, but as we shall see 

later, it is exploited very well by the estimator when making an 

estimate of the channel. These conclusions are drawn from tests 

carried out using a model of an HF radio link that has two Rayleigh 

fading sky waves'95). The HF radio link is part of a synchronous 

serial data transmission system which transmits data at the rate of 

9600 bit/s using quadrature amplitude modulation. 

The improved channel estimator is further studied here so as to 

gain deeper insights into the structure and the method of operation 

of the estimator. 
[he 

essential difference in the conditions under 

which the estimator is tested, from those in Ref. 95, where a two-sky-wave 

model of the channel is used, is that three sky waves are now 

present. 
' The latter is considered as a typical poor channel 

condition over actual HF radio links. The model of the data- 

transmission system used here, is basically the same as that in 

Section 6, but with several differences which are outlined in 

Section 7.2. One of these involves the property of the sampled 
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impulse-responses of the transmitter and receiver filters. Here, 

the impulse responsesof the filters are made minimum phase. The 

conversion of the impulse responses to minimum phase is described 

in Appendix Al. The derivation of the improved channel estimator 

is given in Section 7.3. The estimator is tested by computer 

simulation and the results are presented and analysed in Sections 

7.4.1-7.4.8. 

7.2 MODEL OF DATA-TRANSMISSION SYSTEM USED IN THE TESTS 

The model of the data-transmission system that is used in the 

computer simulation tests, the results of which are presented in 

Section 7.4 is basically the same as that previously described in 

Section 6.2, but with the following exceptions: 

1. It is assumed that the data signal is here-transmitted via 

three independent Rayleigh fading sky waves. This represents 
(typical 

poor channel conditions over actual HF radio links111,123) 

In the model of the HF radio link (Section 4.4), six waveforms 

qh(t), where h=1,2,..., 6, are now required for generating the 

corresponding fading sequences {qh, i). The variance of each 

qh(t) is arranged to be 6, so that the sum of the variances is 

still equal to 1. Thus, the sky waves, here, also do not 

introduce, on average, any gain or attenuation into the trans- 

mitted data signal. The required variances are achieved by 

adjusting the gain K at the input of the digital Bessel filter 

(Section 4.4, Figure 4.4.5). Table 4.4.2 gives, for each filter, 
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the value of K which sets the variance of each sequence {qh, i} 

to J. Clearly, the gain K is different here. Table 7.2.1 

gives the values of K (or, in fact, K"1) for the three filters. 

The relative delays in transmission between the different sky 

waves are also given in Table 7.2.1. In this table, T1 is the 

relative delay in transmission between the first and the second 

sky waves, and 12 is that between the first and the third sky 

waves. As before, the average attenuation introduced by the 

HF radio link is zero. 

Channel 1 2 3 

Frequency spread, fsp (Hz) 1 1 2 

Constant, K'1 398805.63 19744.873 1093.7761 

Relative delay 
in 

Tl (ms) 1 
T 1 2 

Is 

transmission r2 ms 

TABLE 7.2.1: VARIOUS PARAMETERS ASSOCIATED WITH THE MODEL OF THE 
HF RADIO LINK 

9 The sampled impdse-responses of the transmitter and receiver 

filters are here minimum phase. These filters represent the 

overall filtering carried out at the appropriate ends of the 

system. The reasons and method used for converting the -- 

sampled impulse-responses to minimum phase are discussed in 

Appendix Al. 
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Apart from these two exceptions, all the assumptions made in 

Section 6.2 are valid here. 

7.3 DERIVATION OF IMPROVED CHANNEL ESTIMATOR 

In the analysis to be presented here, it is assumed that the 

data signal is transmitted via three independent sky waves and that 

the time delay introduced in transmission over each of the sky waves 

is taken to be fixed over the duration of the data signal. It is 

also assumed that correct sampling frequency is used at the receiver. 

Now, since the resultant impulse response of the combined transmitter 

and receiver filters extends over only a few sampling intervals and 

the rate of fading in the received data signal is very small compared 

with the signal-element rate, the sampled impulse-response of the 

linear baseband channel, at time t=iT, can be taken to be, 

Yý = a1L * uiM + p1N (7.3.1) 

where L, M and N are fixed (9+1)-component vectors with complex- 

valued components and, Xi, ui and pi are complex-valued scalars which 

vary with i. Clearly, from the properties of qh(t) (Section 4.4), the 

real and imaginary part of Xis ui and pi'are statistically independent 

Gaussian random variables with zero mean and the same variance. 

Therefore {xi}, {ui} and {pi} are uncorrelated; however, neighbouring 

values of each random variable are highly correlated. Each of the 

terms in Yi (equation 7.3.1) corresponds to the sampled impulse- 

response of the corresponding sky wave, so that, Y. has the value 
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x1L, uiM or piN if only the first, second or third sky wave is 

present, respectively. 

Equation 7.3.1 is correct at all times if the data signal in 

the demodulated waveform r(t) is shaped entirely by the linear 

filters (Figure 6.2.1) that precede the HF radio link; but when 

the receiver filter also introduces some signal shaping, equation 

7.3.1 is no longer accurate, especially during the deepest fades. 

However, results of an investigation(16) have indicated that with 

the filter actually used, equation 7.3.1 is still, for practical 

purposes, correct for the data-transmission system assumed. 

Clearly, from equation 7.3.1, if the receiver can determine the 

time-invariant vectors L, M and N, then an estimate of Yi is obtained 

by estimating only the random variables ai, ui and pi. However, the 

vectors L, M and N are not easily determined; they are not normally 

orthogonal or even related in any very simple manner. But it is 

evident from equation 7.3.1 that the vector Yi must lie in a three- 

dimensional subspace spanned by L, M and N, in the (g+l)-dimensional 

unitary vector space containing all. (g+l) -component vectors over the 

complex field. Since, L, M and N are fixed the subspace spanned by 

these vectors is also fixed, so that the receiver needs only estimate 

the subspace. This is achieved by estimating three orthonormal 

vectors A, B and C which also span the subspace, such that 

Y1 = a1A + b1B * c1C (7.3.2) 
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for all {i}. The scalars, a1, bi and ci and the components of A, 

B and C are all complex-valued. The vectors A, B and C are all of 

unit length and they could lie anywhere in the subspace, but are 

orthogonal to each other at all times. 

Just prior to the reception of ri+n, the receiver holds the 

vectors 

Al = [a1,0 a1'l ... aj g] 
T (7.3.3) 

=ý Bý [bi, 0 bi. l b1ý9]T (7.3.4 

and Ci = [c1,0 ci'l ... ci, 9]T 
(7.3.5) 

which are the estimates of A, B and C, respectively. The formation 

of these vectors will be described later. Since Ai, Bi and C. are 

only estimates of A, B and C, they do not lie exactly in the sub- 

space spanned by A, B and C, but lie close to the subspace. At time 

t=(i+n)T, ri and the detected symbol s! are fed to the feedforward 

transversal-filter estimator, which, together with the value of the 

1-step prediction of Yi, form an estimate Yi of Yi (see Section 6.4). 

Since Y! normally does not lie in the three-dimensional subspace 

spanned by Ai, Bi and Cis an improved estimate of Yi is formed by 

projecting Y! orthogonally onto the three-dimensional subspace. 

The vector , that lies in the subspace, resulting from the projection 

is given by, 
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Fi = a1Ai + siB1 + YiCi (7.3.6) 

where ai' ßi and yi are obtained as follows. Since Yi - Fi is 

orthogonal to the three-dimensional subspace, it is also orthogonal 

to the vectors Ai, Bi and C.. Thus, 

AT (Y! - Fi) =0 (7.3.7) 

B1T (Y! - F1) =0 (7.3.8) 

and C1T (Y! - Fi) =0 (7.3.9) 

where AI , B, T 
and Ci are the conjugate transposes of Ai, Bi and Cis 

respectively. Substituting the value of F. from equation 7.3.6 into 

equations 7.3.7-7.3.9, we have, 

A*T (Y! - a1Aý - g1Bi - Yi C1) =0 (7.3.10) 

BST (Yi - aAi - ß1B - y1Ci) =0 (7.3.11) 

and CiT (Yý - a1A1 - ß1B1 - YiCi) =0 (7.3.12) 

A., B. and Ci are orthonormal vectors which means 

A*TA1 = B*TB1 = CiTCý =1 (7.3.13) 
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*T *T *T *T *T *T 
and A B1 =B Al =C1 Al = C1 Bi = A1 Ci =B1 Ci =0 

(7.3.14) 

Using this property, the values of «i, si and y, are obtained from 

equations 7.3.10,7.3.11 and 7.3.12, respectively 

ai = ARTY! (7.3.15) 

ßi = BýTY! (7.3.16) 

and Yi = CITY! (7.3.17) 

As previously mentioned, Ai, Bi and Ci are unlikely to lie exactly 

in the three-dimensional subspace containing Yi and, in addition, the 

vectors L, M and N may in fact vary slowly with time, so also may the 

subspace. Therefore, for satisfactory operation, the subspace spanned 

by Ai, Bi and Ci should be adjusted adaptively to track the received 

signal. The adjustment is made using Y. such that the new subspace 

spanned by Ai+l Bi+l and Ci+l is slightly closer to Y. For the 

minimum change in the subspace spanned by Ai, Bi and Ci, corresponding 

to a given small reduction in the distance I Yi - FiI, the subspace 

must be rotated towards Y!, the rotation being pivoted about a two- 

dimensional subspace which lies in the subspace spanned by Ai, Bi and 

Ci and also is orthogonal to -Fi. If we let 

Ei = Yi - Fi (7.3.18) 
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then, the vectors in the new three-dimensional subspace that corres- 

pond to the vectors aiAi, ßiBi and yiCi in the original subspace 

are approximately, 

a1Ai+1 - aiA1 + nI a, I2Ei (7.3.19) 

ßiBi+l = ß1Bi + �iß1I2E1 (7.3.20) 

and YiCý+l - YiCi + nI Yi12Ei (7.3.21) 

where n is a small positive real quantity. Simplifying equations 

7.3.19-7.3.21, gives, 

Ai+1 = Ai + noLiEi (7.3.22) 

Bi+l = B1 + n8E1 (7.3.23) 

and Ci+l = Ci + nyiEi (7.3.24) 

* 
where c ßi and yi are the conjugates of ai, ßi and y1, respectively. 

The vectors Aý+l, Bý+l and Cý+l form a basis of a new three-dimensional 

subspace. Clearly, from equations 7.3.22-7.3.24, the vectors A! 
+l' 

gý+l and Ci are not exactly orthonormal and so they are orthonormalized 
(98) 

using the Gram-Schmidt orthonormalization process, as follows. First 

the receiver sets 
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'. 
+1 

Ai+l - JAi+1'_1A1 (7.3.25) 

so that IA1+1I = 1, and then 

and 

*T Ai+l B1+1Ai+l 

u1u Bi+l - ýBi+1ý Bi+l 

(7.3.26) 

(7.3.27) 

so that IBi+lI =1 and Al+1Bi+1 = 0, and finally 

ýi+l =C1' -Bi+lCi+1gi+1 - Ai+1Ci+1Ai+1 (7.3.28) 

and Ci+1 - IC 
+l'-'Ci+1 (7.3.29) 

so that JCi+lj =1 and A*+1Ci+1 = Bi+1Ci+1 = 0. 

The receiver next predicts the values of ai+1, ßi+1 and Yi+l using 

least-squares fading-memory prediction(44). If ai, i_1, gi, i_1 and 

Yi, i-l are the previously derived predictions of ai, gi and Yi, 

respectively, then the errorsin these predictions are, 

Ea, j = al aij-1 (7.3.30) 

eß, j = ß1 (7.3.31) 

and c= Yi - Yi, 1_i (7.3.32) 
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where «i, ßi and yi have been found using equations 7.3.15,7.3.16 

and 7.3.17, respectively. The 1-step predictions are obtained as 

follows. 

Degree-O prediction: 

ai+l, i = ai, i-1 + (1-e)ca, i (7.3.33) 

ßi+l, i - ßi, i-1 + (1-e)Eß, i (7.3.34) 

Yi+1, i - Yi, i-1 + (1-e)cy9i (7.3.35) 

Degree-1 prediction: 

ai+l, i + (1-e)2eaýi (7.3.36) 

ßi+l, i 2 , ßii-1 + (1-e)2eß, i (7.3.37) 

Yi+l, i - Yi, i-1 + (1-e)2sy,. (7.3.38) 

ai+l, i - ai, i-1 + al+ý, i + (1-A2)ecc 
,1 

(7.3.39) 

ßi+l, i ßi, i-1 + ßi+1, i + (1-e2)c . (7.3.40) 

Yi, l-1 + Y1+1,1 + (l-e? )cY9i (7.3.41) 
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Degree-2 prediction: 

ai+l, i 0 ai, i-1 + ý(1-9)3eaýi (7.3.42) 

ß1+1 
,i=i ti-i 

+ (1-9)3£ßd (7.3.43) 

+ 'F(l-6)3EYýi (7.3.44) 

ai+l, i ai, i-1 + tai+l, i +3 i-e)2(1+e)c i 
(7.3.45) 

0i+1, i - ßi, i-1 + 2ß+ -Z(1-e)2(1+e)e 
(7.3.46) 

Yý = Ye 
.+ ZY° + 

3(1-e)2(1+e)e 

i, i-1 i+1 ,i7Y 
(7.3.47) 

clj+l, i aj, j-1 + ai+l, i + (1-03)ea'j 

(7.3.48) 

ßi+1, j ß1,1-j + ß+j, i ß1+1,1 + (1-93 )e 

(7.3.49) 

3 Yi+1, i = Yi, i-i + Yl+lýi Yj+1, j + (1-0 )cy, 
i 

(7.3.50) 

where a! +l, i, $! +1, i and Yi+l, i are measures of the rates of change 

of ai, Si and Yi respectively; and a'. '+l, i, Bi+l, i and Y'. +l, i give an 
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indication of the corresponding accelerations. e is a positive real 

constant in the range of G to 1 and generally close to 1. Having 

obtained the 1-step predictions ai+l, i, ßi+1, i and Yi+l, i and also 

the vectors Al+i Bi+1 and CW, the receiver forms the prediction 

of Yi+i as, 

Yi+l, i = ai+l, iAi+1 + ßi+l, iBi+1 + Yi+1, iCi+1 (7.3.51) 

Yý+l'i is required by the complex feedforward transversal-filter 

estimator, on the receipt of ri+l at the input of the estimator, firstly 

to form an estimate of ri+l (equation 6.4.1) and secondly, after forming 

the error signal ei+l (equation 6.4.2), to form the updated estimate 

Yý+l of Yi+1 (equation 6.4.4). ' 

The receiver is also required to determine the n-step prediction 

Yi+n, i of Yi+n for use in the detection of si+l at time t=(i+n)T. 

This is obtained as follows. First, the receiver computes the n-step 

predictions of ai+n' ßi+n and Yi+n as, 

Degree-O prediction: 

a1+n, i = al+l, i (7.3.52) 

ßi+n, i ßi+l, i (7.3.53) 

Yi+n, i 1i+1, i (7.3.54) 
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Degree-1 prediction: 

ai+n, i = ai+l, i + (n-1)a1! 
+191 

(7.3.55) 

ßi+n, i = ßi+1, i + (n-1)B1+1, i (7.3.56) 

Yi+n, i = Yi+1, i + (n-1)yi+1, i (7.3.57) 

Degree-2 prediction: 

ai+n, i = ai+1, i + (n-1)aß+l, i + (n-1)2ai+l, i 
(7.3.58) 

ßi+n, i = ßi+1, i + (n-1)Bý+l, i + (n-1)261+1, i 

(7.3.59) 

Yi+n, i - Yi+l, i + (n-1)Y1+1, i + (n-1)2Yi+1, i 

(7.3.60) 

The n-step prediction Yi+n, i is given by 

Yi+n, i -ai+n, iAi+l + ßi+n, iBi+l + Yi+n, ici+1 
(7.3.61) 

The performance of the estimator is judged by the accuracy of the 

n-step prediction Yj*n, i as this is the information that is used in 

the detection of the data symbols. It is evident that a single esti- 

mation process involves many steps and these will be listed below in 

the order of use. In this listing, it is assumed that the vectors A!, 
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B! and C! are orthonormalized at each i, and degree-1 prediction is 

used. 

Step 1 rý _ 
h=0 

Si-h 'i, i-1, h 

Step 2 ei = r1 - r! 

Step 3 Yi = Yii_l + ceiS1 

Step 4 ai = A*TY. 
" 

ßý = BiTY. 

Yý=cTy 

Step 5 F1 = ai Ai +aiBi+ YICI 

Step 6 E1 = Y! - Fi 

Step 7 Ai+l = Ai +r 1E. 

8ý+1 = Bi + TißiEi 

ýi+l - Ci + Tiy Ei 
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Step 8 Ai+l - ýAi+1 lA1+l 

B'. ' = *T Bi+1 - Bi+1 - Ai+16i+1Ai+1 

Bi +I 
IB"i+1' 'i+I 

C1+1 = Ci+1 - Bi+1C1+1gi+1 - Ai+1Ci+1 ai+1 

ýi+l -1 'i+l'-l'i+l 

Step 9C"= ai - ai, i-1 

£ ßi ßii-1 0.1 - 

Ey, 1 = Ii 1i, i-1 

ai+l i- ai, i-1, + (1-e)2ea, i 

'+ 1-B 2eß ßl+M ß1, l-1 
.1 

Yi+l, l - Yi, i-1 + (1-e)2eY. 
i 
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al+l, l - aj, j-1 + a1! +1,1 
+ (1-62)ta, 

1 

Bi, i_1 + ßi+1, i + (1'e )£ß, i 

_2 Yi+1,1 Y1, i-1 + Y1+1,1 + ý1-e ýEY 
1 

Step 10 Yý+l, i = ai+l, iAi+1 + ßi+l, iei+l + Yi+l, ici+l 

Step 11 «i+n, i = «i+1, i + 

0 i+n, i -ßf n-1 ßßWo 
1+1 'i 

+ n-1 ' Yi+n, i = Yi+l, i 

Step 12 Y1+n, i ai+n, iAi+1 + ßi+n, iBi+l + Yi+n, iýi+l 

Clearly, before the estimator can start to operate, the initial 

values of the vectors Ai, Bi and C. and also the scalars ai, Bi, yip 

1, i_1 must be available. 1ii-1' a1., i-1' ßi, i-l and y! x1,1-1' 

The vectors A0, B0 and C0 may be determined as follows. Using a 

conventional estimation method, such as those in Section 3.7, estimates 

of the sampled impulse-response of the channel are obtained at three 

well-spaced time instances, t= -2kT, t= AT and t=0 and let these 

estimates be Y'2k' Y'k and Yö, respectively. The constant k is a 

reasonably large positive integer, say 1000. In addition, the 

receiver also determines an estimate Y'R or Y_,, at time t= -RT, 
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which will be required later. i is also a positive integer but not 

as large as k; typical value of 2. is 64. It is assumed that these 

estimates are reasonably correct and that the estimates are signi- 

ficantly 'different', so that they are not collinear. The estimates 

Y 2k, Y'k and Yö are then orthonormalized to give the orthonormal 

vectors, 

where 

and 

A0 t''2k'_1Y'2k (7.3.62) 

Bo = IB'' 1Bo' (7.3.63) 

Co = IC'l-iC' (7.3.64) 

Bö = Yk - A*TY'kAO (7.3.65) 

CIO = Yo' - B*IY1 
o- 

*IYIAO (7.3.66) 

The vectors Ao, Bo and Co, therefore, form an orthonormal basis of 

the three-dimensional subspace spanned by Y'2k' Y'k and Y. The 

initial values of the scalars ai, i_1' ßi, i-l' Yi, i-1' ai' ßi and Yi 

are then given by, 

ao, _1 
= ao = 0A 

TYö (7.3.67) 

ß0, 
-l = ßo = B0TY1 (7.3.68) 
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yo, _l = Yo = c(y0 (7.3.69) 

The reason for obtaining the estimate Y'., of Y_R is to enable the 

receiver to form reasonably accurate initial estimates of the rates 

of change of a, ß and y. These are obtained as follows. The receiver 

forms 

a-R - A*Ty, (7.3.70) 

ß_R = B*TYo& (7.3.71) 

Y_ý _c 
Ty-l1 (7.3.72) 

and uses these values to calculate the rates of change 

ai'0 = (ao - a_R)/ý (7.3.73) 

I 
ß1, a - (ßo (7.3.74) 

Yi, a 
(Yo -Y-. t)/. t (7.3.75) 

The rates of change of a, ß and y may have been derived either from 

the estimate Y: 2k or Y' k' but since k is so large, the values obtained 

are most likely to be inaccurate. 
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With all the initial values now specified, the improved channel 

estimator operates exactly as previously indicated starting from 

step 1 and arriving at the required value of the n-step prediction 

of the sampled impulse-response of the channel at step 12. 

7.4 RESULTS AND ANALYSIS OF COMPUTER SIMULATION TESTS 

Extensive computer simulation tests have been carried out on the 

improved channel estimator for the proposed use in a synchronous 

serial data-transmission system (Figure 6.2.1) that operates at the 

data rate of 9600 bit/s over HF radio links. These tests were perfor- 

med using the CDC 7600 computer at the University of Manchester 

Regional Computer Centre. An example of the simulation which also 

includes the channel simulator is given in Appendix A5. In the simu- 

lation of the HF radio link, it is assumed that three independent 

Rayleigh fading sky waves are present. This represents typical poor 

channel conditions over actual HF radio links(111,123). Each sky 

wave introduces the same average attenuation and the same frequency 

spread into the data signal, such that the average attenuation over 

the radio link is 0 dB. Three channels with different rates of fading 

were used in the tests. It is assumed that. the relative delays in 

transmission between the different sky waves are time-invariant, but 

may be changed if desired. All the relevant parameters for each 

channel are summarized in Table 7.4.1. T1 is here the relative time delay 

between the first and second sky waves and T2 is the relative time 

delay between the first and third sky waves. 
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Channel 
Frequency 

Spread 
Relative delay in transmission 

(Hz) r1-(ms) T2 (ms) 

1 7 1 1 

2 1 1 2 

3 2 2 3 

TABLE 7.4.1: PARAMETERS OF THE CHANNELS USED IN THE TESTS 

The results of the tests are shown in Figures 7.4.1-7.4.39. In 

many of these graphs, the parameter that is plotted is ci which is 

the square of the error in the n-step prediction Y! 
-n 

and is given 

by, 

ýý _ (Yi - YiJ-n12 (7.4.1) 

Another parameter that is also used to judge the performance of the 

estimator is ý, which is the mean-square error in the prediction 

yi, i-n, measured in dB relative to unity, and is given by, 

49872 
= 10 10910 ( 60 E lyi- V, i-n12) (7.4.2) 

i=1873 

It can be seen that, in the above equation, the first 1872 values of 

the square of the error in Yi, i-n, i. e. IYi - Yi, i-nl2 have been 

omitted. This is done deliberately so that any transient behaviour 

of the estimator which may occur immediately after the estimator 
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commences operation will have settled and so will not affect the 

value of C. No particular significance is attached to the value 

of 1872 which is a compromise between the need to ensure that the 

initial transients have decayed to zero and the need to avoid a 

needless increase in the number. of data symbols transmitted in any 

one test. Later, it will be shown that this value is more than 

adequate for preventing the initial transients from affecting E. 

Thus, & gives a measure of the performance of the estimator when it 

is already operating properly. In other words, we can consider & as 

a measure of the 'steady-state' performance of the estimator. Also, 

it can be seen from equation. 7.4.2 that each test involves the trans- 

mission of nearly 50,000 data-symbols {si} over the-appropriate, -channel. 

Each of the three channels has been represented by a particular 

sequence of nearly 50,000 vectors {Yi}. The six fading sequences 

{qh, 
i} have been selected such that the influence of the chosen 

sequences on the performance of the estimator is minimized. In all 

tests, 

n =. 17 (7.4.3) 

k= 1440 (7.4.4) 

2. = 64 (7.4.5) 

where n sampling intervals is the. delay in estimation, and -2kT, 

-kT and -LT are the time instants when the estimates Y'2k Y'k and 

Y'R are determined, respectively. The estimates Y' 2k and Y'k are 
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required together with the estimate Y0 for the formation of the 

initial vectors A0, B0 and C0 (equations 7.3.62-7.3.64). The 

estimate Y'R is used to calculate and Y_, (equations 

7.3.70-7.3.72) which are subsequently used in equations 7.3.73- 

7.3.75 to calculate the initial valuesof the rates of change of a 

g and y. The chosen value of n is typical of that likely to be 

used in practice(89'95). The signal-to-noise ratio is measured as 

i dB, where, 

ý= 10 log10 (1/JN0) (7.4.6) 

This equation uses the fact that the average transmitted energy per 

bit of information, at the input and output of the HF radio link, is 

unity, and the two-sided power spectral density of the additive white 

Gaussian noise at the output of the HF radio link is JN0.1 

In all tests, except where stated, the estimates Y' 2k' Y_k and 

YO, are taken as their actual values Y-2k' Y-k and Yo, respectively. 

Thus, the orthonormal vectors Ao, Bo and C0 derived from these esti- 

mates span the correct subspace containing Y_2k' Y_k' Y0 and, in fact, 

all the {Y1}. Obviously, the subspace must be held fixed and this is 

achieved by setting the parameter n to zero. In this case, steps 5 

to 8 of the improved channel estimator are omitted from the estimation 

process. Thus, when the parameters 0 and c have their optimum values, 

the performance of the improved channel estimator is the upper bound 

to its actual performance. 
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7.4.1 Convergence of Estimator 

Each of the convergence curves presented in the following 

pages, with the exception of Figure 7.4.1, is in fact the variation 

of 10 log10 ti with i, where gi is the ensemble average of 20 values 

of ýi obtained using 20 different sequences of {s1} and 20 different 

sequences of the additive noise {wi}. Where this is the case, we 

can consider the convergence curve as representing the approximate 

behaviour of the estimator in the mean. 

Figure 7.4.1 shows the performance of the improved channel 

estimator immediately after the starting-up procedure. Channel 3 has 

been used when investigating the convergence properties of the estima- 

tor because it represents a particularly bad channel with a fading 

rate of over 88 fades per minute. Channels 1 and 2 are not so severe, 

so that a good performance of the estimator over channel 3 most likely 

will mean a good or even better performance over channels 1 and 2. 

The result shown in Figure 7.4.1 has been obtained using a single 

sequence of the values {si) and a single sequence of {wi}, with the 

signal-to-noise ratio set to 60 dB. The predictor uses degree-1 

. 
least-squares fading-memory prediction. The parameters e and c are 

given the'values of 0.80 and 0. Q-respectively. The given combina- 

tion of e and c are the optimum values of these parameters at the 

particular signal-to-noise ratio. The method of finding the optimum 

values will be discussed later. Each point on the convergence curve 

is the square of the error in the n-step prediction of Yi (equation 

7.4.1). In Figure 7.4.2, an ensemble average of 20 convergence curves 

is presented. As expected, the errors in the n-step predictions converge 
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rapidly to the steady-state mean value of about -44 dB, but a more 

prominent feature of the two convergence curves is the "high- 

frequency oscillation" of the prediction errors. Here, the 

frequency of oscillation is about 50 Hz and the peak-to-peak value 

is about 10, dB. The rapid convergence of the estimator is as 

expected since the correct subspace has been used throughout and 

also the estimator has fairly accurate knowledge of the initial 

values of the rates of change of a, ß and y. When the correct sub- 

space is used, the rapidity of convergence is determined here by the 

accuracy of the prior knowledge of the rates of change of a, a and y; 

the more accurate they are, the faster is the convergence. The beha- 

viour of the estimator was also investigated at a lower signal-to- 

noise ratio. Figure 7.4.5 shows, among other information, the conver- 

gence of the estimator (curved marked Degree 1) at the signal-to-noise 

ratio of 20 dB. It can be seen that, unlike the corresponding case 

(p = 60) above, i fluctuates randomly about the mean value. Thus, 

the oscillation of the errors as shown in Figures 7.4.1 and 7.4.2 is 

t not a typical behaviour of the estimator. The reason for the oscilla- 

tion is likely to be the small value of the parameter e used by the 

predictor. e is an important parameter and its role is explained as 

follows. We will only consider the formation of the n-step predic- 

tion of ai+n because the same method is also used to find ßi+n, i 

and Y"+n, i' . The predictor is required here to predict a single 
ý 

variable parameter, a. Now, the-prediction ai+n, i is calculated in 

two stages. Firstly, the predictor forms the 1-step prediction 

ai+l, i (equation 7.3.39) and the rate of change a! +I, i 
(equation 7.3.36) 
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using the degree-1 least-squares fading-memory prediction, and 

secondly it uses these values to calculate ai+n'i by linear inter- 

polation. The prediction ai+l, i is the value, at time t=(i+l)T, 

of the polynomial of degree 1 which has been fitted to the sequence 

of updated estimates ai, ai-1, a. -2, ... . The polynomial has been 

chosen such that the weighted sum of the squares of the errors in 

the 1-step prediction is minimized. The weighting function is the 

exponential function er, where r=0,1,2,... and 0 is real and its 

value lies in the range 0<0<1. The value r=0 corresponds to the 

current time instant and as r increases time recedes into the past, 

i. e. i decreases. By using an exponential weighting function, the 

older estimates have less influence on the prediction. When the 

estimating polynomial has the given degree, a small value of e 

results in large oscillation of the prediction errors but small 

systematic (or bias) errors. Here, systematic errors are defined 

as the errors due to the inadequate fitting of. the sequence of the 

updated estimates ai, ai-1, ai-21 ... by the chosen polynomial. 

When e has the value closer to 1, a small regular oscillation is 

obtained butthe penalty is the large systematic errors. This beha- 

viour is evident from the results given in Figure 7.4.3, which shows 

that increasing e from 0.8 to 0.9 has apparently reduced the amplitude 

of the oscillation but the value of ý has increased due to the rise in 

systematic errors. 

We have seen that when e is small the systematic errors are 

small, and at the same time the weighting function er dies out more 

rapidly. This means that the prediction is then based on very few 
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recent updated estimates. When the estimates themselves are 

seriously in error, it is likely that the resulting prediction 

will be in error. Any recursive algorithm is potentially unstable, 

more so when, in this case, the prediction is derived from past 

updated estimates rather than from a sequence of observations as 

described in Ref. 44. However, the 
, 
results presented here as well 

as others 
(89,95,97) have shown that the predictor is stable if 

sensible values of the parameters e and c are used. 

The discussion above has shown that in order to reduce the 

oscillation in the prediction errors, the parameter e must be 

increased to a value closer to 1. However, this results in an 

increase in the systematic. errors which increases the steady-state 

mean value E. One possible solution is to increase the degree of 

the estimating polynomial to degree 2, so that the systematic errors 

are reduced. Intuitively, this must be so because increasing-the 

degree of the estimating polynomial should result in a better fit 

on the data and therefore reducing the systematic errors. In addi- 

tion, the optimum value of e is now higher than in the previous case 

and so a smaller oscillation is achieved. This is in fact what we have 

observed. In Figure 7.4.4, we have plotted the convergence curves of 

the estimator for channel 3 using degree-2 least-squares fading-memory 

prediction at the signal-to-noise ratios of 20 dB and 60 dB. The 

optimum value of e for the curve with ý= 20 is 0.97 and that for 

*= 60 is 0.94. In order to give a better comparison, in Figure 7.4.5 

we have superimposed the convergence curves using degree-2 prediction 

onto the corresponding curves which uses degree-1 prediction. It can 
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be seen that the curve for p= 60 and using degree-2 prediction 

converges to a lower steady-state mean value compared to the corres- 

ponding curve using degree-1 prediction. However, the convergence 

is now slower. The reason is that while the estimator knows the 

correct subspace when forming a prediction, it only has accurate 

prior knowledge of the rates of change (first differentials) of 

a, a and y, and no prior knowledge at all of the accelerations 

(second differentials) of these quantities. Therefore, it takes 

some time before the estimator can obtain sufficiently accurate 

estimates of the accelerations. Also, the 

curves for i= 60 in Figure 7.4.5 show that by increasing the degree 

of the estimating polynomial, systematic errors are reduced which 

results in an improvement in the steady-state mean value of &. 

In addition, a smaller oscillation in the prediction errors is 

obtained asalarger value of e is now used. At ' =-20-there is very 

little difference in the behaviour of the estimator when using 

degree-1 or degree-2 prediction. The optimum values of e are 0.95 

and 0.97 respectively. Here, the signal-to-noise ratio is low and so 

the performance of the estimator is large affected by the additive 

noise. 

7.4.2 Optimum Values of 6 and c 

One of the factors that determines the performance of the estima- 

tor is the choice of e and c. The parameter e used by the least-squares 

fading-memory prediction has a value in the range 0 to 1, and is usually 
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(95) 
set close to 1 . The 1 arger the value of e, the 1 onger is the 'memory' 

of the predictor, which means that more estimates are effectively 

involved in forming a prediction(89). On the other hand, the step 

size of the feedforward transversal filter (parameter c) is 

preferably small so that the estimate Y! will be less affected by 

additive noise, however, the convergence of the estimator to its 

steady-state performance will now be slow. 

The search for e and c that results in the optimum performance 

of the estimator is not too difficult but is very time consuming. 

Here, a systematic approach is taken and is illustrated in Figures 

7.4.6 and 7.4.7. In the first stage, a parameter (say, 6) is varied 

over a certain range while keeping the other parameter (c) at some 

fixed value. A minimum-value of C is obtained corresponding to the 

given value of c (point 1, Figure 7.4.6). In the second stage, e is 

fixed at the value corresponding to the first minimum value of t and 

c is now varied. A second minimum value of & is found at point 2 in 

Figure 7.4.7. The third stage involves varying the parameter e 

while fixing c at the value corresponding to the previous minimum. 

The process of adjusting 0 and c continues alternately in this way 

until no further improvements in the value of c are obtained. The 

valuesof e and c which correspond to the best performance of the 

estimator are considered as the optimum values of the parameters. 

The process of adjusting e and c as outlined above is dependent on 

their starting values. Obviously, fewer adjustments are required if 

their starting values are chosen closer to their respective optimum 

values. Otherwise, many laborious adjustments are required. 
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Generally, the optimum values of e and c are not the same at 

different channel conditions or with different arrangements of 

prediction. Thus, for each of the three channels used in the tests, 

we have used the above method to find the optimum values of e and c 

at signal-to-noise ratios of 5,10,20,30,40,50 and 60 dB. 

Figures 7.4.8-7.4.16 show the variation of C with the parameter c 

at various signal-to-noise ratios with 0 optimum and held fixed along 

each curve. The predictor is the least-squares fading-memory type of 

degree 0,1 or 2. The three-dimensional subspace which contain the 

{Y1} is assumed to be known. Table 7.4.2 gives the optimum values 

of c. Clearly, from these curves, values of c greater than zero but 

not too large are to be used so that the estimator can adequately 

track the received signal (equation 6.4.6). Figures 7.4.17-7.4.25 

show the variations of E with e,, where c is. -. now optimum and it is held 

constant along each curve. As e approaches 1, systematic errors are 

large so that & increases very rapidly, and the estimates (predictions) 

finally diverge when e=1. We have seen before that the optimum 

value of e when using degree-1 prediction can become quite small, 

especially over channels 2 and 3 at the higher signal-to-noise ratios, 

apparently resulting in large oscillations of the prediction errors. 

. 
However, from Figures 7.4.21 and 7.4.24, the value of e can be 

increased while keeping the estimating polynomial to degree 1 at the 

expense of only a few dB reduction in performance. The optimum values 

of e for the different degrees of the estimating polynomials are 

summarized in Table 7.4.3. 
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Degree of 
estimating 
polynomial 

Signal-to- 

. Noise 
Patio 

Channel 
V=5 10 20 30 40 - 50 60 

1 0.01 0.01 0.01 0.03 0.06 0.10 0.11 

0 2 0.01 0.01 0.02 0.05 0.08 0.10 0.11 

----------- 
3 

---------------- 
0.01 

----- 
0.02 

----- 
0.04 

----- 
0.07 

----- 
0.10 

----- 
0.11 

------ 
0.11 
----- --- 

1 0.07 0.10 0.06 0.07 0.09 0.09 0.07 

1 2 0.05 0.07 0.08 0.10 0.08 0.06 0.07 

-------- 
3 

-------------- - 
0.13 

----- 
0.09 

----- 
0.08 

----- 
0.07 

----- 
0.04 

----- 
0.05 

----- 
0.05 

------ ------ 
1 0.07 0.07 0.08 0.11 0.08 0.11 0.08 

2 2 0.08 0.09 0.18 0.39 0.17 0.13 0.11 
3 0.07 0.08 0.08 0.08 0.08 0.08 0.06 

TABLE 7.4.2: OPTIMUM VALUES OF c 

Degree of 
estimating 
polynomial 

Signal-to- 
Noise 

Ratio 
Channel 

p=5 10 20 30 40 50 60 

0 
------------ 

1,2,3 
---------------- ------- ----- 

0= 
----- 

0 
----- ----- ---- ------ -- 

1 0.99 0.99 0.98 0.97 0.96 0.94 0.90 

1 2 0.98 0.98 0.97 0.96 0.93 0.88 0.85 

--------- 
3 

---------------- 
0.98 

------- 
0.97 
----- 

0.95 
---- 

0.92 
------ 

0.86 
----- 

0.82 
---- 

0.80 
------ ----- 

1 0.99 0.99 0.99 0.99 0.98 0.98 0.97 

2 2 0.99 0.99 0.99 0.99 0.98 0.97 0.96 
3 0.98 0.98 0.97 0.96 0.95 0.94 0.94 

I- - 

TABLE 7.4.3: OPTIMUM VALUES OF e 
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7.4.3 Steady-State Performance of Estimator 

Figures 7.4.26-7.4.28 show the steady-state performance of the 

improved channel estimator when operating over channels 1,2 and 3. 

On each graph, three curves are plotted showing the performance of 

the estimator when it uses degree-0,1 or 2 least-squares fading- 

memory prediction. At every point on each curve, the parameters e 

and c have their optimum values. Now, when the estimator uses 

degree-0 prediction, the optimum value of e, in every case, is zero 

(Table 7.4.3). Thus, for instance, ai+l, i and ai+n'i are given by 

(equations 7.3.33 and 7.3.52)., 

ai+1, i - ai (7.4.7) 

and ai+n, i = ai (7.4.8) 

which mean that the predictions of ai+l and ai+n are simply the. 

present estimate ai, and as such the arrangement represents no 

prediction. Since a (also ß and i) is time-varying, the larger the 

value of n the poorer is the prediction given by equation 7.4.8. 

Obviously, degree-O prediction is inferior in performance when it is 

compared with degree-1 or degree-2 prediction, and this is demonstra- 

ted by the performance curves in Figures 7.4.26-7.4.28. The perfor- 

mance of the estimator over all three channels follows a similar 

pattern. At the higher signal-to-noise ratios (' = 40 to 60), 

degree-1 or degree-2 prediction gives a considerable improvement of 

the order of 15 to 20 dB over degree-0 prediction. As the signal-to- 
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noise ratio decreases, the advantage remains significant but not as 

much as when little or no additive noise is present. When making 

the above comparisons, degree-1 and degree-2 predictions have been 

grouped together because they have comparable performances. However, 

noticeable difference exists between the performance of degree-1 and 

degree-2 prediction. With the value of * greater than about 20, 

degree-2 prediction offers a significant improvement over degree-1 

prediction. For example, at p= 60, degree-2 prediction is better 

by 2.3,3.8 and 3.8 dB for channels 1,2 and 3, respectively. At 

low signal-to-noise ratios, the performance'of degree-1 prediction 

is now better than degree-2 prediction, but the improvement is only 

marginal. 

A comparison between the results obtained here for channels 1 and 

3 and the corresponding channels with the same frequency spreads in 

Ref. 95 shows that when the sky wave increases from two to three, 

there is only a marginal deterioration in the performance of the 

estimator, roughly in the region of 1 or 2 dB. 

7.4.4 Influence of Prior Knowledge of Rates of Change of 
a, ß and y on Convergence of Estimator 

During the starting-up of the estimator, predictions of the 

rates of change of a, ß and y at time t=T are made and the values 

are fed to the estimator to helpimprove the initial response. These 

predictions are accurate since the correct values of the appropriate 

vectors in {Y } have been used in the calculations (equations 7.3.73- 

7.3.75). 
, -, In Figure 7.4.29, the convergence of the estimator when it 
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uses the predictions of the rates of change of a, ß and y is compared 

with the case where these predictions are not available. In the 

latter case, ai, o, 
ß1, d and Yl', o 

(equations 7.3.73-7.3.75) are all 

set to zero, so that the estimate Y! 
Jt 

need not be determined. 

Clearly, when the estimator has no knowledge of the rates of change 

of a, 6 and y, the errors in the n-step predictions of the {Yi} 

are initially large. However, the curve quickly converges to that 

where the rates of change are known after about 90 sampling intervals. 

7.4.5 Effects of the Accuracy of the Initial Estimates of 
the Subspace on the Performance of Estimator 

Figure 7.4.30 gives a comparison of the behaviour of the estima- 

tor"over channel 3 when operating under two different conditions. 

Firstly, the estimator knows at all times the correct three- 

dimensional subspace containing the {Yi} and secondly, it has no 

knowledge of the subspace and so must estimate this subspace. For 

each curve the signal-to-noise ratio is 60 dB. Now, as described 

previously, when the correct subspace is used, the parameter n is 

simply set to zero. In Figure 7.4.30, two curves are shown marked 

n=0. One of these curves uses e and c(0.80 and 0.05, respectively) 

which are optimum for steady-state operation. This curve is in fact 

the same as that plotted in Figure 7.4.2. The second curve marked 

n=0 uses e and c (0.81 and 0.12, respectively) which are optimized 

for the starting-up procedure. As explained previously, because the 

two values of e are very nearly the same, both curves oscillate at 

about the same frequency and roughly of equal peak-to-peak amplitude. 
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However, in the latter case, the optimum value of c is larger and so 

marginally improves the convergence, but the steady-state performance 

of the estimator as indicated by the value of t (equation 7.4.2) has 

increased by a small amount. This must be so because it is the 

property of the feedforward transversal-filter estimator (Figure 

6.4.1) that a large value of c results in faster convergence at the 

expense of greater sensitivity to additive noise.. The curves for 

n0 show the behaviour of. the estimator when it has no prior know- 

ledge of the correct three-dimensional subspace. Previously, the 

correct subspace was available because the estimates Y'2k, Y'k and 

Yol are assumed to be the correct vectors Y_2k' Y-k and Yo, respectively. 

In, practice, the correct-vectors are not known and so they must be esti- 

mated using other estimation processes (Section 3.7). It is inevitable 

that these estimates are to some degree in error but surprisingly 

accurate estimates can be obtained using a suitable- estimator. In 

the simulation, the errors in the estimates are modelled as statisti- 

cally independent Gaussian random variables with zero mean and variance 

that reflects the degree of error(95). Thus, the estimates Y_ 2k, Y'k 

and Yö are assumed to be, 

Yl2k = Y-2k + Z-2k (7.4.9) 

Y_k = Y_k + Z_k - (7.4.10) 

and 
Yo, = Yo + Zo (7.4.11) 
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where Z_2k, Z_k and Z0 are complex-valued (g+l)-dimensional vectors. 

The real and imaginary parts of these vectors are sample values of 
statistically independent Gaussian random variables with zero mean 

and variance aZ2. For the three curves (n = 0.001, n= 0.01 and 

in = 0.1), e, c and aZ2 are given the values 0.80, -0.05 and 10-6, 

respectively. In addition to these convergence curves, Table 7.4.4 

gives the values of the steady-state mean-square error C, for 

different values of n and also for different vectors Ao, Bo and Co 

which span the initial three-dimensional subspace. Under the given 

condition, the curve for n=0 converges to the best steady-state 

performance of the estimator. When the initial three-dimensional 

subspace is fairly accurate (QZ? = 10-6), the curve for n=0 is 

approached quite closely. by, the curve for n=0.1 . (Figure 7.4.30) 

and this is maintained even-_in. the steady-state (Table 7.4.4). When 

a larger value of 0Z2 is used, say 10-3, the initial estimate of the 

subspace is poor and using Ti = 0.1 still gives abetter performance 

than n=0.001, but this arrangement-is now almost 8 dB inferior to 

that with n= 0. Thus, as expected, an accurate initial estimate of 

the subspace must be obtained in order to achieve the best initial 

performance of the estimator. Also shown in Table 7.4.4 is the quan- 

tity initial which gives a rough indication of the initial performance 

of the estimator. initial is calculated in the same way as 

(equation 7.4.2), but, here, only the first 1872 n-step predictions 

of the {Yi} are used. Clearly, when the initial estimate of the 

subspace is poor, the initial performance of the estimator is improved 

by using n=0.1. 
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(dB) initial (dB) 

aZ2 =0 n=0 -44.20 -44.83 

Variance n=0.001 -40.72 -39.06 
oZ2 = 10-6 

of n=0.1 -42.38 -42.89 
Z & Z-2k' 

-k 
z0 10-3 2 

n=0.001 -13.38 -12.15 
= dZ 

n=0.1 -36.37 -19.81 

TABLE 7.4.4: COMPARISON OF THE VALUES OF E AND &initial FOR 

CHANNEL 3, = 60, c=0.05, e=0.80 

7.4.6 Near-Orthonormal Property of Vectors 

One of the essential processes undertaken by the improved 

channel estimator is the estimation of the three-dimensional sub- 

space containing the {Yi}. Due to the difficulty in determining 

the vectors L, M and N (equation 7.3.1) that span the subspace, the 

estimator forms estimates Ai, Bi and Ci of the three orthonormal 

(vectors A, B and C which also span the subspace. Usually the sub- 

space spanned by the estimates Ai, Bi and Ci is unlikely to be the 

correct subspace that contains the {Yi} and so Ai, Bi and-Ci are 

adjusted (equations 7.3.22-7.3.24), so that the new subspace spanned 

by Ai+l' Bi+l and Ci+l is slightly closer to Y. Clearly, from 

equations 7.3.22-7.3.24, if Ai, Bi and Ci are orthonormal, the new 

vectors Ai+l' Bi+l and Cj+l cannot be orthonormal. The length of 

Ai+1' Bj+l and Ci+l is slightly greater than 1 and they are unlikely 
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to be orthogonal. In the formulation of the improved channel 

estimator, these vectors have been assumed orthonormal, in parti- 

cular, ai, ßi and y1 (equations 7.3.15-7.3.17) are derived using 

this property. Thus, the vectors Ai, Bi and Ci, ideally, must be 

orthonormalized at all times. The orthonormalization of the 

vectors (equations 7.3.25-7.3.29) involves a considerable amount 

of computation per received signal. However, tests have shown 

that when A0, B0 and C0 are orthonormal, the subsequent vectors 

Al B1 and Ci remain very nearly orthonormal. Figures 7.4.31- 

7.4.34 show the lengths 1Ai1,1B11 and ICil for i=0,1,..., 50000. 

The estimator is here operating over the worst channel, i. e. channel 

ý3 and the signal-to-noise ratio (i, ) is 60 dB: As before, the para- 

meters e (0.80) and c(0.05) are. optimum for steady-state operation 

at-the particular value of * and n=0. In Figures 7.4.31 and 

7; 4.32, QZ2 has the value 10-6 and the corresponding value for 

Figures 7.4.33 and 7.4.34 is 10-3. This means that, in the latter 

case, the estimator begins operation with a subspace which is further 

away from the correct subspace. Two values of n have been used for 

each value of QZ2. In Figures 7.4.31 and 7.4.33, n=0.001, while 

in Figures 7.4.32 and 7.4.34, n=0.1. The main feature of the 

four graphs is the capability of the vectors to (almost) self- 

normalize themselves, even after a sudden increase in their lengths. 

It can be seen that n=0.001 causes less increase in the lengths of 

the vectors from unity but the steady-state performance is poor. 

In addition to the self-normalizing property, the vectors are also 

very nearly orthogonal. Figures 7.4.35 and 7.4.36 attempt to 
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demonstrate this property. The relevant parameters, here, are 

cZZ = 10-6, p= 60, c=0.05, e= 0.80, n=0.001 (Figure 7.4.35) 

and n=0.1 (Figure 7.4.36). By definition, for the vectors to 

be orthogonal, their inner products Ai"Bi, Ai"Ci and Bi"Ci must be 

zero or, in fact, 0+j0 as the vectors have complex values. The 

inner products could have been presented as points on the complex 

number plane. However, by the nature of the results, this repre- 

sentation will show many points clustered together near the origin 

and it would be difficult to indicate the value of i for each point. 

Therefore, we have plotted, instead, the variation of the magnitudes 

of the inner products with i. Clearly, for both cases (n = 0.001 

and 0.1), the orthogonality of the vectors is very nearly maintained 

at all times. Although Figures 7.4.35 and 7.4.36 demonstrate the 

approximate orthogonality of the first 3000 sets of vectors, similar 

behaviour has also been observed for the subsequent vectors. Also, 

it. has been observed that the vectors tend to orthonormalize them- 

selves when degree-2 prediction is used. 

The results above are indeed astonishing because they are con- 

trary to our expectation that the lengths of the vectors will keep 

increasing and also the orthogonality between the vectors will be 

lost if they are not made orthonormal at least once in a while. 

Here, we will present a simple intuitive argument as to why the 

vectors Ai, Bi and C. remain very nearly orthonormal. 

At the start of the estimation process, the vectors A0, B0 and 

C0 which are derived from the vectors Y'2k, Y'k and Y0 are made 

orthonormal. Using these starting vectors, a0, go and y are formed 
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using equations 7.3.15,7.3.16 and 7.3.17, respectively. Since 

the estimator assumes that the vectors are orthonormal, which they 

are, ao, Bo and yo obtained from these equations have their correct 

values. The vector Fo, which is given by 

Fo = aoA0 + ß0B0 + y0C0 (7.4.12) 

is then the correct orthogonal projection of Y0 onto the three- 

dimensional subspace spanned by A0, B0 and Co. This means that 

the vector Eo, which is given by 

Eo=Yö - Fo (7.4.13) 

is orthogonal to the three-dimensional subspace spanned by Ao, Bo 

and Co. At the next sampling instant, the vectors Ao, Bo and C0 

are updated to Al, B1 and Cl according to equations 7.3.22,7.3.23 

and 7.3.24, respectively. It is clear from these equations that if 

Ao, Bo and Co are orthonormal, then the new vectors Al, B1 and Cl 

are no longer orthogonal and each of length slightly greater than 1. 

The next step in the estimation process involves the calculation of 

äl, ßl and Y1 according to equations 7.3.15,7.3.16 and 7.3.17, 

respectively. These equations have been derived assuming the 

vectors are orthonormal. As this is not the case, values of al 

01, and y1 obtained using these equations are obviously incorrect 

and, in fact, the magnitudes IalI, IßiI and 1r1I are greater than 

they should be. Since the vector F1 is obtained using the equation 
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F, = a, AI + BIB, + YlcI (7.4.14) 

the length of Fl is greater than it should be. Thus, the vector 

Fl is not the orthogonal projection of Y onto the subspace spanned 

by Al, B1 and Cl. This, in turn, means that El, as given by 

E, =Yj -F, (7.4.15) 

is not orthogonal to the subspace spanned by Al, Bl and Cl. In fact, 

El. contains a component which is proportional to -Fl. Therefore, when 

the vectors are updated in the next sampling interval using 

.A 
C'l + na*E1 (7.4.16) 

B2 = B1 + nglE1 (7.4.17) 

CZ = C1 + ny1EI (7.4.18) 

then, clearly, the lengths IA21 < JAI I, IB21 <I B1I and IC21 < (ClI, 

and the inner products between any two vectors A2, B2 and C2 are 

greater than that corresponding to the previous vectors Al, BI 

and C1. 

Obviously, similar arguments can be used for the case where, 

say, at some time instant iT, the length of the vector Fi as derived 

from equation 7.3.6 is smaller than it should be. In this case, 

the new vectors Ai+l, Bi+l and Ci+1 will be greater in length when 
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compared to the previous vectors A1, Bi and Cis respectively. The 

inner products between any two of the vectors Ai+i, Bi+l and Ci+l 

are' now smaller than that corresponding pair of the previous 

vectors Ai, Bi and CV Thus, it is sufficient to make only the 

vectors A0, B0 and Co orthonormal. The subsequent vectors A1, Bi 

and Ci are nearly orthonormal because the error vector Ei is not 

orthogonal to the subspace spanned by Ai, Bi and C. Due to this 

'built-in' compensating mechanism that keeps the vectors nearly 

orthonormal, it is therefore not essential for them to be made 

orthonormal. The results obtained have confirmed this conclusion. 

The advantage of leaving. out the Gram-Schmidt orthonormalization 

process (equations 7.3.25-7.3.29)-in terms of the reduction in 

computational requirement is clearly enormous. For the three-sky- 

wave model, the number of computations is reduced by 

36 (g+l) equivalent scalar multiplications 

9 (g+l) equivalent scalar- additions or subtractions 

3 square-root operations 

and 3 scalar divisions 

7.4.7 Effects of Quantization Noise 

The performance of degree-0, degree-1 and degree-2 predictions 

have so far been compared assuming that, in all calculations, the 

quantization is that introduced by the accuracy of the computer 

itself. This is obviously not true in practice. For instance, 

when two b bits numbers are multiplied, the result requires a 
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storage of 2b bits and when the product occurs in a recursive struc- 

ture, the storage required will grow at each successive iteration. 

Therefore, practical limitation forces the result to be quantized 

to a fixed number of bits. Figures 7.4.37-7.4.39 show the effects 

of quantization noise, in particular, the errors due to rounding 

off the results of multiplications, on degree-0, degree-1 and 

degree-2 predictions. The detailed descriptions of how these 

results are obtained are given in Appendix A2. Briefly, the round- 

off noise is accounted for by assuming the multiplication to be 

done in infinite precision and the roundoff noise is simply added 

to the result(93). Each noise sample is a sample value of a uni- 

form random variable with zero mean and variance 2-2b/12, where b+l 

is the number of bits of each register. In all cases, the signal- 

to-noise ratio is 60 dB. The parameters 0 and c are the optimum 

values. n=0, so that the correct three-dimensional subspace is 

used throughout. It can be seen that, in terms of word length, 

degree-0 requires the least number of bits but the performance is 

greatly inferior to degree-1 or degree-2 prediction. For all three 

channels, the optimum performance when using degree-1 prediction is 

obtained with register length of about 20 bits, while degree-2 requires 

an additional 8 bits. 

7.4.8 Summary of Results and Recommendation 

From the results, it is obvious that the degree-0 estimating 

polynomial is totally inadequate for use as a predictor of the sampled 

impulse-response of the channel. The choice between degree-1 and 
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degree-2 is not so clear. At high signal-to-noise ratios, degree-2 

prediction offers a significant improvement in steady-state perfor- 

mance over degree-1 prediction. However, at low signal-to-noise 

ratios, degree-1 gives a better performance, albeit only by a 

very small amount. With degree-1 prediction, it is possible for 

the accuracy of the predictions (of the {Yi}) to vary in an oscilla- 

tory manner. Therefore, although the value of the steady-state mean- 

square error (0 is low, sometimes the errors in these predictions 

are quite large, which means that the detector is fed at these 

times with poor estimates of the channel. With degree-2 prediction, 

the oscillatory effect is effectively eliminated as the optimum 

value of e is now higher. The disadvantages of degree-2 prediction 

are that it requires slightly more computations per received signal 

and also slightly larger word length for the optimum performance of 

the estimator. As a comparison, degree-1 prediction requires 3N 

complex multiplications and 5N complex additions or subtractions in 

generating the n-step predictions of a, 6 andiy, where N is the 

number of sky waves. Degree-2 prediction requires 6N complex 

multiplications and 9N complex additions or subtractions, which, 

however, are still relatively small because N is usually 2 or 3. 

In terms of word size, the number of bits required by degree-1 and 

degree-2 predictions are 20 and 28 bits, respectively, both of which 

are not excessive. Therefore, degree-2 prediction appears to be a 

better choice because of its improved performance at the higher 

signal-to-noise ratios and also for its good performance over all 

signal-to-noise ratios. In addition, we have not encountered any 

stability problem in using the higher degree prediction. Also, it 
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was found that only the vectors that spanned the initial estimate 

of the subspace need be orthonormalized. The estimator remains 

stable even though the subsequent vectors are not orthonormalized. 

This reduces considerably the amount of computation required in the 

prediction of the sampled impulse-response. 

ol 
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8. SUGGESTIONS FOR *FURTHER WORK 

The main conclusion of Section 6 is that the performance of the 

conventional Kalman estimator as tested on a model of an HF channel 

is not optimum. This is due to the fact that the Kalman estimator 

has been formulated with the assumption that the channel can be 

modelled as a first-order Markov process. However, when the model of 

the channel is reduced to the required form, the complexity of the 

resulting Kalman estimator is increased, in our case, by five times. 

The estimator is now too complex to be implemented. In recent years, 

a new type of algorithm, the adaptive lattice algorithm, has received 

much interest in the published literature. The lattice algorithm does 

not make any assumption like the Kalman fi1ter-. concerning the HF channel. 

It is basically a simple structure which decorrelates the input samples 

so that rapid convergence is possible. The convergence properties of 

the lattice algorithm are identical to the Kalman filter, and its com- 

putational requirement is comparable to the fast Kalman algorithm. 

Obviously, this is far too complex when compared with the feedforward 

transversal-filter estimator. Nevertheless, with the superior tracking 

capability of the lattice algorithm compared to the feedforward trans- 

versal-filter estimator, it may prove worthwhile to develop the former 

in a similar fashion to the feedforward transversal -filter estimator 

as in the improved channel estimator. 

In Section 7, we have tested the improved channel estimator 

assuming that it is started correctly. We have seen that the three 

starting-up vectors must be reasonably accurate in order for the 
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estimator to have a performance close to the best that can be 

obtained. Therefore, a suitable channel estimator is required for 

the starting-up procedure that can give fast and reasonably accurate 

estimates of the channel at the appropriate times. 

In the formulation of the improved channel estimator, it is 

assumed that the number of sky waves is fixed to some number and the 

relative delays in transmission between the sky waves are fixed. 

Obviously, this is not-the case in practice. If the estimator can 

recognise the correct number of sky waves present, obviously this 

leads to a more effective arrangement as this avoids the unnecessary 

computation when the estimator is higher than the required dimension. 

Therefore, the channel simulator must first be modified to simulate 

the above effects and the estimator tested before implementing it in 

hardware. This is also a test on the effectiveness of the estimator 

when the channel no longer obeys the above assumptions.. 
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9. CONCLUSIONS 

The investigation has been concerned with techniques of esti- 

mating the sampled impulse-response of HF radio links. The channel 

estimators are either based on the Kalman filter or the feedforward 

transversal -filter estimator. 

Computer simulation tests have shown that the performance of 

the conventional Kalman filter estimator is not optimum. The reason 

has been attributed to the assumption by the Kalman filter that the 

channel is modelled as a first-order Markov process. This is not true 

for the model of the HF radio link used in the tests which, in fact, 

conform to CCIR recommendation. If the model of the channel is to be 

reduced to a first-order Markov process, the complexity of the resul- 

ting Kalman estimator increases five fold and consequently is not 

worthy of further consideration. However, it has been shown that 

several modifications of the conventional Kalman estimator give an 

improved performance particularly at high signal-to-noise ratios 

(Section 6.6). 

The results of the investigation on the improved channel esti- 

mator are presented in Section 7.4. This estimator is based on the 

feedforward transversal-filter estimator but has been modified to 

include a predictor and also utilizes some prior knowledge of the 

basic structure of the channel in the estimation process. Comparison 

of these results with that of the conventional Kalman estimator shows 

the considerable superiority of the improved channel estimator. It 
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is also shown that when the predictor is the degree-1 least-squares 

fading-memory predictor, it is possible for the accuracy of the 

estimation (prediction) to oscillate over a large range of values 

(Section 7.4.1). This is remedied by increasing the degree of the 

predictor to degree 2. Simulation results have also revealed the 

self-orthonormalizing property of the estimator (Section 7.4.6) which 

allows a considerable reduction in equipment complexity to be achie- 

ved by omitting the orthonormalization process. 



306 

APPENDIX Al 

CONVERSION OF THE SAMPLED IMPULSE-RESPONSES 

OF THE TRANSMITTER AND RECEIVER FILTERS TO 
MINIMUM PHASE 

The sampled impulse-responses of the transmitter and receiver 

filters used in Figure 6.2.1 are nonminimum phase which means that 

the responses rise slowly towards their respective peaks. This has 

the effect of reducing the tolerance of the detection process to 

additive noise and also increasing the minimum value of n, where n-1 

is the delay in the detection of a data symbol(16), so that the esti- 

mator is required to make predictions over a large interval. 

Obviously, large-interval predictions are likely to be less accurate 

than short-interval predictions. Therefore, due to these two reasons, 

it is necessary to make the transmitter and receiver filters minimum 

phase. Ideally, for the optimum performance of the detector, the 

sampled impulse-response of the linear baseband channel must be made 

minimum phase, and, for a time-invariant channel, this is achieved by 

introducing an adaptive linear filter ahead of the detector (2) 
. The 

linear filter replaces the roots of the z-transform of the sampled 

impulse-response of the linear baseband channel, which lie outside 

the unit circle in the z-plane, by the complex conjugates of their 

reciprocals 
(93). However, the relatively rapid variations in the 

characteristics of the HF radio link mean that the adjustment of the 

adaptive linear filter is difficult. Therefore, the best that can be 

done is to restrict the minimum phase condition to the sampled impulse- 

responses of the transmitter and receiver filters. 
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The transmitter filter, with impulse response al(t) is in fact 

a cascade of several filters which include the baseband signal 

shaping filter (lowpass), the post-modulation filter (bandpass) and 

the radio transmitter filter. It is assumed that exactly half of 

the total radio filter frequency response is present at the trans- 

mitter end of the transmission system and the remaining half at the 

receiver end. The receiver filter, with impulse response b'(t) is 

also a cascade of several filters which include the radio receiver 

filter, the pre-demodulation filter (bandpass) and the post-demodula- 

tion filter (lowpass). The characteristics of the radio filter are 

those of an actual radio set, i. e. the Clansman VRC 321. The charac- 

teristics of these filters (or their combinations) are already given 

in Section 4.5. The impulse responses al(t) and b'(t) here are, of 

course, the same as a(t) and b(t) in Section 4.5. al(t) and b'(t) 

, are the nonminimum phase impulse responses of the transmitter and 

receiver filters, respectively. The change in notation is found 

necessary so that the minimum phase impulse responses that result 

!.. from the conversion of a(t) and b'(t) can be denoted by a(t) and 

b(t). Therefore, a(t) and b(t) still represent the overall filtering 

at the transmitter and receiver, respectively. 

The conversion of the sampled impulse-responses of the trans- 

mitter and receiver filters to minimum phase is as follows(93). 

The impulse responses al(t) and b'(t) were supplied by F. McVerry in 

the form of sampled values (Table A1.1), where the sampling rate is 

4800 samples/second. It is assumed that the impulse responses a'(t) 

and b'(t) are of finite duration, so that the sampled values {aP and 

*i 
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'{bh} for h<0 and h>g' are zero. The integer g'+l is the number of 

samples in the sampled impulse-response. Clearly, from the charac- 

teristics'of the filters (Section 4.5), a sampling rate of 4800 samples/ 

second is well above the Nyquist rate of these filters. Thus, by virtue 

of the uniform sampling theorem, al(t) and b'(t) can be completely 

reconstructed from the samples {ah} and {bh}, respectively, using an 

ideal lowpass, filter(99-101), in this case, with a cut-off frequency 

of fc = 2400 Hz. The conversion to minimum phase is outlined here 

1 
-1 only for the {ah} as the same procedure is also applicable for the 

{bh}. The waveform which is reconstructed using the ideal lowpass 

filter is given by ! 99-101-, 125) 

'- o0 

a' (t) _ 
.L 

ah sinc 4800 (t -h (Al 
. 1) 

h=ý 

where the sampled values {ah} are given in Table Al. l. Clearly, 

from equation A1.1, the sampled values {ah} are recovered at the 

sampling instants {} because at these times all the sinc functions 

have the values zero except for one whose value is aý = a'(h ) 

At all other times, a'(t) is the sum of the values of the sinc 

functions at the particular instant weighted by the {ah} (equation 

Al. 1). 

Before finding the roots of the z-transform of the sampled 

impulse-response {ah}, we have chosen first to oversample al(t). 

The reason for this will become clear later. The new sampling rate 

is 9600 samples/second which means that an additional value of a'(t) 

is required at half-way between any two given samples {ah}. These 

v 
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" values are easily calculated using equation Al. l. Let us denote 

the resulting sequence of the finely-sampled values by {ah"} 

(Table A1.2). It is convenient to represent the sampled impulse- 

response in the form of a polynomial 

q 
A'(z) _ all z-h (Al. 2) 

h=0 

where z= exp(j 960) and i= d-T. The integer q+l is the number of 

samples {ah} which, in this case, is equal to 32. A'(z) is also 

known as the z-transform of the sequence of values {ah}. The 

polynomial A'(z) can also be expressed as 

q 
A' (z) =ao 

hxil 
(1 -& z-1) (Al. 3) 

where 6,62, ... 9 aq are the q roots of the polynomial A'(z). All 

the roots are complex-valued and are determined using the root-finding 

algorithm C02ADF(104). The values of these roots are given in 

Table A1.3. All roots which lie outside the unit circle in the z- 

plane are then replaced by the complex conjugate of their reciprocals (93) 

The roots which are already inside the unit circle remain unchanged. 

Let öl, d2, "", ", öq represent the new set of roots where all of these 

are now inside the unit circle. Therefore, the minimum phase sampled 

impulse-response is given by, 

q 
A(z) = aöka IT (1 -dhz-1) (A1.4) 

h=1 
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'where ka is a constant that is required in order to preserve the 

discrete energy-density of a'(t), so that the transformation is 

merely a pure phase transformation(2) and does not introduce any 

gain or attenuation in the signal energy. The value of ka is simply 

the product of the distances from the origin of the z-plane of all 

the roots of {ah} which lie outside the unit circle. Table A1.4 

gives the values of the minimum phase sampled impulse-response which 

are found by expanding equation A1.4. It can be seen from Table Al. 4 

that the rise time to the peak value is now shorter than the non- 

minimum sampled impulse-response. Also, the energy of the minimum 

phase sampled impulse-response is concentrated around an earlier 

sample (h=6)-for both the transmitter and receiver filters, whereas, 

for the nonminimum phase sampled impulse-responses, h=12 and h=13, 

respectively (Figures A1.1 and A1.2). The quantity plotted in 

Figures A1.1 and A1.2 is the energy contribution of the first p+1 

samples of the impulse response, e. g., 

E(P) =_ Iah I2 (A1.5) 
h=0 

It can be seen that, 

p 
I Iahjl Jah12, for all p (A1.6) 

h=0 h=0 

which means that the minimum phase sampled impulse-response intro- 

duces the minimum amount of delay (93). This is also true for the 

receiver filter. 
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Having obtained the minimum phase sampled impulse-response 

{ah}, the. ideal lowpass filter is used, as previously, to reconstruct 

the impulse response a(t) from the samples {ah}. The cut-off frequency 

of the filter is 4800 Hz. Thus, a(t) is given by, 

nc 9600 (t -h 
ý) (A1.7) a(t) _ J_0 ah si 

Now, the impulse response c(t) of the ideal lowpass filter is non- 

causal(99), i. e., 

C(t) #0, fort<0 (A1.8) 

Therefore, the response of the ideal lowpass filter with the sequence 

{ah} as the input is of a significant magnitude for t<0. This is 

due to the presence of the tails of the sinc functions. The actual 

value of the response at any time instaht is given by the sum of the 

weighted sinc functions (equation A1.7). However, as the rate of 

sampling of the response of the transmitter filter is increased, 

the magnitude of the tails at both ends of the response of the ideal 

lowpass filter gets smaller. Thus, the sampling rate of 9600 samples/ 

second is chosen as a compromise between having small ripples in the 

lowpass filter response when t<0 and a manageable number of samples 

in the transmitter filter response to be used by the root-finding 

algorithm. The reconstruction of the impulse response a(t) is 

necessary so that values of a(t) can be obtained at any other sampling 

phase and sampling rate. Clearly, from equation 4.5.25, each sky wave 

is multiplied by the sampled impulse-response of the transmitter filter 
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which is sampled at a certain phase. Let {a, h}' {a2, h} and {a3, h}, 
be the sampled impulse-responses of the transmitter filter sampled 

at 4800 samples/second which correspond to the impulse responses 

a(t), a(t-T1) and a(t-T2), respectively. T1 and i2 are, respec- 

tively, the multipath propagation delays of the second and the third 

sky waves with respect to the first sky wave. The delays are expressed 

as a whole number of sampling periods plus a sampling phase(16), e. g., 

Ti = Pl '2 + pl (A1.9) 

where pl is the number of sampling periods and T is the signalling 

and a, is the sampling phase (< ýT) interval (= ý) . As an example, 

for the channel with the delays il =a ms and T2 =3 ms, the relevant 

values are, 

pl =3 

p2 = 14 

P, = 0.2/4800 

P2 = 0.4/4800 

(ai. io) 

and the sampled impulse-responses {alh}, {a2, h}, {a3, h} and {bh} are 

shown in Table A1.5. 

Finally, the sequence of noise samples {wi} which is added to 

the data signals at the output of the linear baseband channel 
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(Figure 6.2.1) is obtained by filtering a sequence of complex-valued 

statistically independent Gaussian random variables with zero mean 

and variance a 2(16). The sampled impulse-response of the filter 

is {b"}, where the {bh} is given by, 

bh 
) bh _I (Al. 112 

h 

so that 

ýIbhI2 =1 (Al. 12) 

Therefore , it can be shown 
(16) that the variances of the input and 

the output noise samples are the same, but the output noise sequence 

is slightly correlated.. 
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TABLE A1.1: THE NONMINIMUM PHASE SAMPLED IMPULSE-RESPONSES OF THE 
TRANSMITTER AND RECEIVER FILTERS SAMPLED AT 4800 SAMPLES/ 
SECOND 

Sampled impulse-response 
of the transmitter filter, {ah} 

Real Imaginary 
part part 

Sampledimpulse-response 
of the receiver filer; {bý} 

Real Imaginary 
part part 

-0.0382 -0.5007 -0.4107 -0.2882 

0.2457 1.3823 -0.2050 0.6548 

0.0557 2.3229 0.2219 2.0303 

4.3052 1.6233 1.4222 3.4222 

22.3184 -2.3123 11.5059 1.8432 

44.8006 -7.0695, 33.8749 -5.1777 

42.0069 -5.2753 46.7973 -11.4399 

9.6632 2.7801 28.1107 -5.1152 

-13.7143 5.0775 -2.5666 7.5627 

-7.1940 0.3151 -12.3912 8.1280 

4.7637 -0.6568 -2.6308 -0.8993 

2.6054 1.3191 4.3105 -2,9923 

-1.9526 -0.0767 2.0033 0.8730 

-0.2429 -1.0017 -1.2050 1.1213 

0.7289 0.5064 -0.7537 -0.6766 

-0.4394 0.3751 0.4731 -0.3189 

ý,: -.. 
.{ 



315 

TABLE A1.2: THE NONMINIMUM PHASE SAMPLED IMPULSE-RESPONSES OF THE 
TRANSMITTER AND RECEIVER FILTERS SAMPLED AT 9600 SAMPLES/ 
SECOND 

Sampled impuse-response 
of the transmitter filter, {ah} 

Real Imaginary 
part part 

Sampled impulse-response 
of the receiver filter, {bh} 

Real Imaginary 
part part 

-0.0382 0.5007 -0.4107 0.2882 

0.1028 0.8954 -0.4323 0.4191 

0.2457 1.3823 -0.2050 0.6548 

0.1670 1.9185 0.0847 1.1921 

0.0557 2.3229 0.2219 2.0303 

0.9140 2.3162 0.3858 2.8989 

4.3052 1.6233 1.4222 3.4222 

11.4730 0.0630 4.7111 3.2167 

22.3184 -2.3123 11.5059 1.8432 

34.7403 -5.0150 21.8845 -1.0427 
44.8006 -7.0695 33.8749 -5.1777 
48.0903 -7.3538 43.5905 -9.2903 
42.0069 -5.2753 46.7973 -11.4399 
27.6243 -1.3579 41.2284 -10.0760 
9.6632 2.7801 28.1107 -5.1152 

-5.6773 5.2497 11.7500 1.7134 

-13.7143 5.0775 -2.5666 7.5627 

-13.3492 2.8632 -10.9678 9.9369 

-7.1340 0.3151 -12.3912 8.1280 

0.1670 -0.9961 -8.5298 3.6243 

4.7637 -0.6568 -2.6308 -0.8993 
5.1605 0.5273 2.1945 -3.2794 
2.6054 1.3191 4.3105 -2.9923 

-0.4127 1.0165 3.8518 -1.0659 

Continued... 
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TABLE A1.2 continued 

-1.9526 -0.0767 2.0033 0.8730 

-1.5886 -0.9945 0.0364 1.6495 

-0.2429 -1.0017 -1.2050 1.1213 
0.7567 -0.2414 -1.3974 0.0404 
0.7289 0.5064 -0.7537 -0.6766 
0.0461 0.6718 0.0808 -0.6862 

-0.4394 0.3751 0.4731 -0.3189 
-0.3401 0.0792 0.3129 -0.0471 
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TABLE A1.3: ROOTS OF THE NONOMINIMUM PHASE SAMPLED IMPULSE-RESPONSES 
OF THE TRANSMITTER AND RECEIVER FILTERS 

Roots of the 
response of 

Real 
Part 

sampled impulse- 
the transmitter 

filter 
Imaginary 

part 

Roots of the sampled impulse- 
response of the receiver 

filter 
Real Imaginary 
part part 

1.542713 0.375924 1.141239 -0.992131 
-0.923559 0.323485 1.259681 1.076074 

1.183257 -1.030641 -0.930914 -0.292618 
-0.201917 -0.972178 1.564782 0.277184 
0.511298 0.984301 -0.656985 0.717809 

-0.890323 -0.400737 0.395981 -1.053240 
0.115413 1.017592 0.234388 0.978854 
0.722994 -0.245218 -0.470449 -0.850972 

-0.680373 -0.703588 -0.182849 0.970264 

-0.609533 0.775278 0.372906 -0.646634 
0.571004 1.322234 -0.871534 0.423016 
0.404667 -0.988114 0.684503 0.297149 

-0.975522 -0.041948 -0.748088 -0.614189 
0.735817 0.190313 0.074496 -0.996252 

-0.022479 -1.020884 0.408216 0.936265 

-0.287358 0.953022 -0.964082 0.069910 

-0.376043 -0.910869 0.743087 -0.166141 
0.631750 0.412323 -0.513406 0.830456 

-0.741692 0.645077 -0.304536 -0.927783 
-0.537503 -0.821000 0.542441 0.867407 
0.346879 0.997610 -0.620157 -0.745439 
0.484888 -0.435231 -0.016778 1.003321 

-0.847649 0.492744 0.326867 -0.932239 
"0.197426 -0.957681 -0.934374 0.250826 

-0.112229 0.995169 0.739256 0.065513 
0.400470 -0.807719 -0.777901 0.580480 

-0.456069 0.879016 0.597154 -0.305347 
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TABLE A1.3 continued 

0.767182 -0.044329 -0.352912 0.915072 

-0.966696 0.143160 -0.129193 -0.975133 
-0.799427 -0.561965 -0.849567 -0.461511 

-0.949746 -0.225377 -0.959548 -0.113384 
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TABLE A1.4: THE MINIMUM PHASE SAMPLED IMPULSE-RESPONSES OF THE 
TRANSMITTER AND RECEIVER FILTERS SAMPLED AT 9600 
SAMPLES/SECOND 

Sampled impulse-response of 
the transmitter filter {ah} 

Real Imaginary 
part part 

Sampled impulse-response of 
the receiver filter, {bh} 

Real Imaginary 
part part 

-0.1795896 2.3539405 -1.9417691 1.3625952 

-1.0126608 9.1023947 -7.1672741 5.0809811 

-3.0773455 20.7590237 -15.9797864 11.5941040 

-6.3729500 34.6175663 -26.4837803 19.8575657 

-9.9409021 45.5584592 -35.1417733 27.3342937 

-12.1892194 48.5737623 -38.4036552 30.8364948 

-11.7869473 41.4909978 -34.4788717 28.0870086 

-8.5086317 26.3691069 -24.3073589 19.2456629 

-3.4618271 8.7045826 -11.2301982 7.2714615 
1.4399026 -5.2922114 0.5324620 -3.4220063 
4.4438154 -11.7869820 7.8155160 -9.2602472 
4.8093491 -10.8377828 9.7283726 -9.2402194 
3.0642536 -5.5819054 7.5124057 -5.0954462 
0.5572495 -0.0043047 3.4078680 -0.0090979 

-1.3596576 3.1582131 -0.5057505 3.2326498 

-1.9971243 3.3428704 -2.9068417 3.5893140 

-1.4973528 1.7365460 -3.3707125 1.8975352 

-0.5158362 0.0226668 -2.3084858 -0.1488969 
0.2925598 -0.7776891 -0.6759166 -1.2813604 
0.6217121 -0.646187 0.5852576 -1.2373936 
0.5180829 -0.1292556 1.0482656 -0.4830313 
0.1794357 0.2537894 0.8502824 0.3399562 

-0.1842786 0.2880296 0.3621876 0.7614804 

-0.3807598 0.0471432 -0.0950895 0.6378702 

-0.3167778 -0.2324818 -0.3105902 0.1979014 

-0.1118142 -0.3298345 -0.2141025 -0.1413245 
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TABLE A1.4 continued 

0.0021899 -0.2107548 0.0438410 -0.1532672 
-0.0314648 -0.0348275 0.1793671 0.0155204 

-0.0443806 0.0392056 0.0738947 0.0940330 
0.0400357 0.0206312 -0.0843017 0.0287380 
0.051533 0.0098505 -0.0646936 -0.0312132 

-0.0723509 0.0168479 0.0661712 -0.0099654 
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APPENDIX A2 

EFFECTS OF QUANTIZATION NOISE ON 
LEAST-SQUARES FADING-MEMORY PREDICTOR 

Perhaps the most interesting source of quantization noise is 
112). ( 

the error introduced by quantizing the results of multiplications 

For example, if two numbers are each quantized to b bits, the result 

of their multiplication will require 2b bits of register length for 

storage. If the length of this product is not reduced, and if the 

product occurs in a recursive structure, then on successive iterations, 

the storage required will grow linearly to a considerable amount. 

Therefore, practical limitations force the numbers to be quantized. 

There are two standard methods of eliminating the low-order bits 

resulting from the multiplications and these are truncation and rounding. 

The latter is preferred because of its desirable properties, i. e. the 

error signal is independent of the type of arithmetic (floating or 

fixed point), its. mean is zero and no other method yields lower 

variance 
(92). To account for the round-off noise, the multiplication 

is first assumed to be performed in infinite precision, the round-off 

noise being then added to the results. Each noise sample is a sample 

value of a uniform random variable with zero mean and variance of 

2-2b/12, where b+1 is the number of bits of each word. 

Consider the degree-1 least-squares fading-memory prediction as 

an example (see Section 7.3). Figure A2.1 shows a possible implemen- 

tation of the algorithm in infinite precision arithmetic. In Figure 

AZ. 2 the position of the three noise sources e,, e2 and e3 are shown. 
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The effects of quantization noise on the degree-0,1, and 2 least- 

squares fading-memory predictors are presented in Section 7.4.7. 



326 

I 

cc 1 

+n, i 
1T 

FIGURE A2.1: DEGREE-1 LEAST SQUARES-FADING-MEMORY PREDICTOR ASSUMING 
INFINITE PRECISION 

ci +1 

i-1 T 

n-1 

e+ 3 
(Ii ai+n, i 
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APPENDIX A3 

AN EXAMPLE OF THE SIMULATION 

OF THE KALMAN FILTER ESTIMATOR 

PROGRAM! R000 2( INPUT, OUTPUT, TAPE1=INPUT, TAPE 2=OUTPUT ) 

KALIIAN FILTER ESTIMATOR APPLIED TO 2-SKYS"JAVL H. F LINK 
PREDICTION : LEAST-SQUARES FADING-MEMORY USING POLYNOIIIAL OF 

DEGREE 1 
INPUT SIGNAL : 16-POINT QAM 
AVERAGE TRANSMITTED ENERGY PER BIT IS UNITY 
BIT RATE IS 9600 BITS/SEC 
CHANNEL VECTOR IS NOT NORMALISED 
CHANNEL SIMULATED - CH. 2 -- 1 HZ AND 2 MILLISECS 
INITIAL VALUES ARE 

S(0,0) -I 
Q(I) -C* S(I-1, I-1) 

X(1,0) - Y(0) 
DELAY IN ESTIMATION = 17 SAMPLING INTERVALS 
----------------------------------------------------- 

DIMENSION RAYLI1(5), RAYLQI(5), RAYLI2(5), RAYLQ2(5), COEFF(5), 
1X1( 2) , Y1( 2), X2( 2), Y2( 2), R( 4,50) , Q( 4,50) 

DIMENSION OPI1( 4) , OPQ1( 4) , 0PI2( 4) , OPQ 2( 4) 
DIMENSION RAY1(1100), RAY2(1100), RAY3(1100), RAY4(1100) 
DIMENSION CI(16), CQ(16), CID(16), CQD(16) 
DIMENSION WSI(30), WSQ(30) 
DIMENSION ANOIR(30) , ANOIQ (30) 
DIMENSION TI (30,30) , TQ( 30,30) 
DIMENSION HIT(50,50), HQT(50,50), CRI(30), CRQ(30) 
DII: ENSION SER( 25), SEQ( 25), CER( 25), CEQ( 25), PPR( 25,25), PPQ( 25,25), 

1PR( 25,25) , PQ( 25,25), QVR( 25,25), QVQ( 25,25), SPR( 25), SPQ( 25), 
2PSR( 25), PSQ( 25), GSR( 25,25), GSQ( 25,25) , GR( 25), GQ( 25), 
3GSPR( 25,25) , GSPQ( 25,25) 
DIMENSION XX1R( 25), XX1Q( 25), XXOR( 25), XXOQ( 25), XXUIR( 25), XXNQ( 25), 

1EPR( 25), EPQ( 25) 
DIIIENSION XSR(16), XSQ(16) 
DIMENSION SSR(60), SSQ(60), RRR(60), RRQ(60) 
INTEGER SDEL, SDEL1 
DATA WWýSI/-0.0059, -0.003,0.0032,0.0205,0.1662,0.4893,0.6759, 

1 0.406, -0.0371, -0.179, -0.038,0.06 23,0.0289, -0.017 4, -0.0109, 2-0.0068, O. 
IO., 

O., O. 
IO. �0 ", 

0.10" 
, 

0., 0., 0., 0., 0., 0. / 

DATA 11SQ/0.00 42,0.0095,0.0293,0.0 494,0.0266, -0.07 48, -0.1652, 1 -0.0739,0.1092,0.117 4, -0.013, -0,0432,0.0126,0.0162, -0.0098, 
2 -0.0046,0., 0., 0., 0., 0., 0., 0.10.10., 0., 0., 0., 0., 0. / 
DATA CRI/-0.4107, -0.205,0.2219,1.4222,11.5059,33.87 49,46.7973, 

1 28.1107, -2.5666, -12.3912, -2.6308,4.3105,2.0033, -1.205, 2 -0.7537,0.4731,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. / 
DATA CRQ/0.2882,0.6 548,2.0303,3.4222,1.843 2, -5.1777, -11.4399, 
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1 -5.1152r7. -56 -5.1152,7.5627,8. ]. 28, -O. 8993, -2.9923,0.873,, 1.1213, -0.6766o, 2 -0.3189,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. / 
DATA CI/-0.0382,0.2457,0.0557,4.3052,22,3184,44,8006420069 

, 19.6632, -13.71 43, -7.1940,4.7637,2.6054, -1.9526, -0.2429,0.7 289, 2-0.43 9, V 
DATA CQ/ 0.50 07 , 1.3 823,2.3 229,1.6 233, - 2.3123, -7.06 95, -5.27 53, 12.7 501,5.0775,0.3151, -0.656 8,1.3191, -0.0767, -1.0017,0.506 4, 20.3751/ 
DATA CID/-0.1703,0.2024,0.0702,1.4971,13.8791,37.6942,47.5134, 

123.1 819, -8.4805, -1 2.2511,1.6 847,4.7107, -1.0031, -1.2512,0.8066, 2-0.06/ 
DATA CQD/0.3445,0.9827,2.0572,2.2102, -0.4665, -5.6382, -7.0769, 1-0.245,5.4433,2.2094, -1.0544,0.8176,0.77 6, -1.0ti 43, -0.06 24,0.7109/ 
DATA 
DATA 
CALL DARRAY(1000,10,10,1) 

C 
C 

WRITE( 2,206 0) 
WRITE( 2,2070) 
READ(1, *)IXX 
READ Us, *) ILOOPS 
READ(1, *)(COEFF(I), I=1,5), DEL, DCGAIN 
READ(1, *) IMPL, SR 
READ(1, *)SDEL 
READ(1, *)C 
READ (1, *) AIIEAN, S IGMA 
READ(1, *)THETA 
DCGAIN=1.0/DCGAIN 
CALL GO5CBF(IXX) 
DO 3 I=1,50 
DO 3 J=1,50 
HIT(I, J) 0.0 

3 HQT(I, J) .0 
IDEL=IIJT(DEL* 2*SR) 
IIIP1=II4PL+IDEL 
IM]. =Il. 1P1-1 
II"IPR=( 2*II4PL+IDEL-1)/ 2 
II: PES =IIPR 
SCALE= 2.0/SQRT(10.0) 
IS=0 
IC=0 
LB =31 
LS 1=LI3 +1 
ITDEL=LB+SDEL 
SDEL1=SDEL-1 
M11=50 
11111 =I:. i+l 
FiI12=IUi+10 
SIN=0.0 
ROT=0.0 
TSQ ERR =0.0 
TSQ1=0.0 
TSQN=0.0 
TH ETA]. =(1.0 -TIi ETA) **2 
THETA2=1.0-Ti3ETA* *2 
DO 7 90 I =1, II IPR 
XX1R(I) O. 0 

7 90 XX1Q (I) 0.0 
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DO 794 I=1, IIIPR 
DO 794 J=I, IIIPR 
IF(I. NE. J)GO TO 796 
PR(I, J) =1.0 
PQ(I, J) =0.0 
GO TO 794 

7 96 PR(I, J) =O. 0 
PQ(I, J) =0.0 
PR(J, I)=PR(I, J) 
PQ(J, I)=-PQ(I, J) 

794 CONTINUE 
POS=-1.0 
DO 6I =1, II IP 1 
DO 8 J=1, IMP1 
TI (I, J) =0.0 
TQ(I, J) =0.0 
IMPP=IIIPR+2 
II, IPRP =II IPR+1 
ISTEP=20* 2*SR 
STIP=1.0/ISTEP 
DO 10 I=1,5 
RAYLII(I)4.0 
RAYLQ 1(I) 4.0 
RAYLI2(I) =O. 0 

10 RAYLQ 2 (I) -0.0 
C 
C 

DO 40 J=1,50 
OPI1(1) =GO5DDF(0.0,1.0)-(RAYLI1(1)*COEFF(1) 
OPQ1(1) O5DDF(0.0,1.0)-(RAYLQ1(1)*COEFF(1) 
OPI 2(1) aGO5DDF (0.0,1.0) -(RAYLI2(1) *COEFF (1) 
OPQ2(1) -G05DDF(0.0,1.0) -(RAYLQ 2(1) *COEFF (1) 
OPI1( 2) =OPI1(1) -(RAYLI1(3) *COEFF (3) +RAYLI1( 
OPQ1( 2) =OPQ1(1) -(RAYLQ1(3) *COEFF (3) +RAYLQ1( 
OPI 2( 2) =OPI 2(1) -(RAYLI 2(3) *COEFF (3) +RAYLI 2( 
OPQ2( 2) =OPQ2(1) -(RAYLQ 2(3) *COEFF (3) +RAYLQ 2( 
X1( 2) =OPI1 2) -RAYLII (5) *COEFF (5) 
Y1(2) =OPQ1(2) -RAYLQ1(5) *COEFF (5) 
X 2( 2) API 2( 2) -RAYLI 2(5) *COEFF (5) 
Y2( 2) =OPQ2( 2) -RAYLQ 2( 5) *COEFF ( 5) 
RAYLI1(5) X1(2) 
RAYLQ1(5) =Y1(2) 
RAYLI 2(5) X 2( 2) 
RAYLQ2(5) =Y2( 2) 
X1( 2) =X1( 2) *DCGAIN 
Y1( 2) =Y1( 2) *DCGAIN 
X 2(. 2) =X 2( 2) *DCGAIN 
Y 2( 2) =Y 2( 2) *DCGAIN 
RAYL 11 ( 4) =RAYL I1( 3) 
RAYLII (3) 0PI1(2) 
RAYLI1 2) =RAYLI1 (1) 
RAYLI1(1)DPI1(1) 
RAYLQI( 4) =RAYLQ1( 3) 
RAYLQ1(3) ---OPQ1(2) 
RAYLQ1 ( 2) =RAYLQ1(1) 
RAYLQ1(1) =CPQ1(1) 
RAYL 122 ( 4) =RAYL 12 ( 3) 
RAYLI2( 3) -OPI 2( 2) 
RAYLI 2( 2) =RAYLI 2(1) 
RAYLI2(1) API 2(1) 
RAYLQ 2( 4) =RAYLQ 2( 3) 
RAYLQ 2( 3) =OPQ 2( 2) 
RAYLQ 2( 2) =RAYLQ 2 (1) 

40 RAYLQ 2 (1) 0PQ 2 (1) 

+RAYL 11( 2) 
+RAYLQ1 C 2) 
+RAYL 12 ( 2) 
+RAYLQ 2( 2) 
4)*COEFF(4 
4)*COEFF 
4)*COEFF 
4)*COEFF(ý 

*COEFF (2) ) 
*COEFF (2) ) 
*COEFF ( 2) ) 
*COEFF ( 2) ) 

4) ) 
E) ) 
4) ) 

S. 



330 

C 
C 

IL0P=100+ILOOPS 
C 
C 

DO 45 K=1, ILOP 
OPI1(1) =GO5DDF(0.0,1.0) -(RAYLI1(1)*COEFF(1)+RAYLI1(2)*COEFF (2) ) OPQ1(1) G05DDF(0.0,1.0) -(RAYLQ1(1)*COEFF(1)+RAYLQ1(2)*COEFF (2) ) OPI2(1) =GO5DDF(0.0,1.0) -(RAYLI2(1)*COEFF(1) +RAYLI2( 2)*COEFF (2) ) OP02(1) =G05DDF(0.0,1.0) -(RAYLQ2(1)*COEFF(1)+RAYLQ2( 2)*COEFF (2)) 
OPI]. ( 2) OPI1(1) -(RAYLI1(3) *COEFF (3) +Fý'lYLI1 (4) *COEFF (4) ) 
OPQ1 (2) =OPQ1 (1) -(RAYLQ1(3) *COEFF (3) +RAYLQ1(4) *COEFF ( 4) ) 
0P12( 2) API 2(1) -(RAYLI 2(3) *COEFF (3) +RAYLI2( 4) *COEFF (4) ) 
O PQ 2 (2) =OPQ 2 (l) - (RAYLQ 2 (3) * CO E FF (3) +RA, YLQ 2 (4) * CO E FF (4) ) 
X 1(1) =OPI1(2) -RAYL I1(5) * COEFF (5) 
Y1(1) OPQ1(2) -RAYLQ1(5) *COEFF (5) 
X 2(1) =OPI 2( 2) -RAYLI 2(5) *COEFF (5) 
Y2(1) OPQ2( 2) -RAYLQ 2(5) *COEFF (5) 
RAYLI1 (5) X1(1) 
RAYLQ1(5) =Y1(1) 
RAYLI2(5)=X2(1) 
RAYLQ 2 (5) =Y 2(1) 
X1(1) X1(1)*DCGAIN 
Y1(1) =Yl (1) *DCGAIN 
X 2(1) X 2(1) *DCGAIN 
Y 2(1) =Y 2(1) *DCGAIN 
RAYL 11 ( 4) =RAYLIl ( 3) 
RAYLI1(3)-0PI4(2) 
RAYLI1 2) =RAYLI1(1) 
RAYLI1(1) --m0PIl(1) 
RAYLQ1( 4) =RAYLQ1(3) 
RAYLQ1(3) =OPQ1(2) 
RAYLQ1 2) =RAYLQ1 (1) 
RAYLQI(1) 0PQ1(1) 
RAYLI2( 4) =RAYLI2(3) 
RAYLI2(3) =OPI 2( 2) 
RAYL 12 ( 2) =RAYL 12 (l ) 
RAYLI2(1) =OPI 2(1) 
RAYLQ 2( 4) =RAYLQ 2( 3) 
RAYLQ2(3) =OPQ2( 2) 
RAYLQ 2( 2) =RAYLQ 2 (1) 
RAYLQ2(1) =OPQ2(1) 
RAY1(K) X1(1) 
RAY 2(K) =Yl (1) 
RAY3(K) X2(1) 

45 RAY 4(K) Y2(1) 
C 
C 

DO 64 J=1, IMIP1 
DO 64 I=1,4 
R(I, J) =0.0 

64 Q(I, J)=0.0 
IQ =50 
CALL G05CBF(IQ) 
DO 798 I=2,60 
IISYXI=INT(G05DAF(1.0,16.9999999999) ) 
SSR(I) XSR(NSYI"i)*SCALE 

798 SSQ (I) XSQ (NSY14) *SCALE- 
DO 797 I=1,30 
A IOIR(I) =G0 SDDF (AI. IEAI1, SIGMA) 

797 ANOIQ(I) =G05DDF(AIIEAN, SIGMA) 
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C 
C 

DO 400 IRUUJ=1, ILOP 
Xl(1) =RAY1(IRUPU) 
Y1(1) =RAY2(IRUfl) 
X2(1) =RAY3(IRUI4) 
Y 2(1) =RAY 4 (1 RU 11) 
CONST1=(X1(1) -X1( 2))*STIP 
CONST2=(Y1(1) Y1( 2))*STIP 
CONST3=(X 2(1) -X 2( 2) ) *STIP 
CONST 4=(Y 2(1) Y 2( 2) ) *STIP 

68 DO 200 ISYM=1, ISTEP 

305 

310 

330 

596 
590 

600 

597 

2000 

2010 

DO 305 I=1, Ir1P1 
R(1, I) =0.0 

i Q(1, I) 0.0 
K =ISYM-1 
AINCR=K*CONST1 
BINCR=K*CONST2 
DO 310 I =1, IMPL 
R(l, I) CI(I)*(X1(2)+AINCR-Yl(2)-BINCR)-CQ(I)*(Yl(2)+BINCR+X1(2)+AI 

1NCR) 
Q(1, I)=CI(I)*(X1( 2)+AINCR+Y1( 2)+BINCR)+CQ(I)*(Xl(2)+AINCR-Yl(2)-BI 

1NCR) 
AINCR=K*CONST3 
BINCR=K*CONST4 
DO 330 I=1, IMPL 

. R(l, I+IDEL) =R(l, I+IDEL) +CID (I) * (X 2( 2) +AINCR-Y 2( 2) -BINCR) -CQD (I) * (Y 12( 2) +BINCR+X 2( 2) +AINCR) 
Q(1, I+IDEL)=Q(1, I+IDEL)+CID(I)*(Y2( 2)+BINCR+X2( 2)+AINCR)1CQD(I)*(X 

12( 2) +AINCR-Y 2( 2) -BINCR) 
DO 596 I=1, IMP1 
DO 596 J=1, IM1 
TI (I, IMP1+1-J) =TI (I, IMP1-J). 
TQ (I, IMP1+1-J) =TQ (I, IMP1-J) 
DO 600 I=1, IMP1 
TI(I, 1) =(Q(1, I)+R(1, I))*0.5 
TQ(I, 1) =(Q(1, I)-R(1, I))*0.5 
POS=-POS 
IF(POS. LT. 0.0)GO TO 200 
DO 597 I=1, IMPR 
DO 5 97 J =1,49 
HIT(I, 51-J) =HIT(I, 50-J) 
HQT(I, 51-J) =HQT(I150 -J) 
10 =0 
DO 2010 I=1, Ii"IP1,2 
IO =I0+1 
HIT(IO, 1)=0.0 
HQT(IO, l)=0.0 
DO 2000 J=1, I 
HIT(I0,1) =HIT (I0,1)+TI(J, I+1-J)*CRI (I+1-J) -TQ(J, I+1-7)*CRQ(I+1 J) HQT(IO, 1)=IIQT(IO, 1)+'Q(J, I+1-J)*CRI(I+1-J)+TI(J, I+1-J)*CRQ(I+1-7) HIT(IO, 1) =HIT(IO, 1)* 2.0 8333333E-4 
EQT(IO, 1) =HQT(IO, 1) * 2.0 8333333E-4 
DO 2030 1=1,1111,2 
IO =IO+1 
HIT(IO, 1) z0.0 
HQT(I0,1) 4.0 
K =1 +I 
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DO 20 20 J=K, II"IP1 
HIT(IO, 1) =HIT (I0,1)+TI(J, IMP1+1+I-J)*CRI (IMP1+1+I-J) -TQ(J, II"IP1+1+I 1 _J) *CRQ (ILIP1+1+I-J) 

2020 HQT(IO, 1) =HQT(IO, 1) +TQ(J, It"1P1+1+I-J)*CRI(II"IP1+1+I-J) +TI(3, IIIP1+1+I 1 _7) *CRQ (IIIP1+1+I-J) 
HIT (IO, 1) =HIT (I0,1) * 2.0 8333333E- 4 

2030 HQT(10,1) =HQT(10,1)* 2.0 8333333E-4 
IF(IRUN. LT. 14II42)GO TO 200 
IC=IC+1 
IF(IC-LB) 200,805,807 

805 CONTINUE 
DO 799 I=1, It"IPR 
CER(I) =HIT(I, 1) 
CEQ(I)=HQT(I, 1) 
XXOR(I) =HIT(I, 1) 
XXOQ(I)=HQT(I, 1) 

799 CONTINUE 
GO TO 200 

807 CONTINUE 
IF (IC-ITDEL) 806,806,816 

C 
C- SETTING THE DELAY 
C DELAY - SDEL 
C_ ------------ 

806 CONTINUE 
NSYM=INT(GO5DAF(1.0,16.9999999999)) 
SSR(1)=XSR(NSYM)*SCALE 
SSQ(1) XSQ(NSYM)*SCALE 
RRR(1) 0.0 
RRQ(1) =O. 0 
DO 80 8 I=1, IMPR 
RRR(1)=RRR(1)+SSR(I)*HIT(I, 1)-SSQ(I)*HQT(I, l) 

808 RRQ(1) =RRQ(l)+SSQ(I)*HIT(I, l)+SSR(I)*HQT(I, 1) 
DO 810 I=1, INPR 
ANOIR(IMPP-I) =ANOIR(It4PRP-I ) 

810 ANOIQ (IMPP-I) =ANOIQ (IZIPRP-I ) 
ANOIR(1) =G05DDF (AMEAN, SIG14A) 

- ANOIQ (1) =G0 5DDF (AMEAN, SIGMA) 
CORNR=0.0 
CORNQ =0.0 
DO 312 I=1, IUPR 
CORNR=CORNR+ANOIR(I)*WSI(I) -ANOIQ(I)*t, 1SQ(I) 

812 CORNQ=COF, NQ+AIlOIQ(I)*t'ISI(I)+ANOIR(I)*WSQ(I) 
RRR(1) =R R(1)+COINR 
RRQ (1) =RFQ (1) +CORNQ 
SSIN=SSR(1)**2+SSQ(1)**2 
RROT=RRR(1) ** 2+RRQ (1) ** 2 
SIN=SIN+SSIN 
ROT=ROT+RROT 
DO 814 I=1,59 
SSR(61-I) =SSR(60-I) 
SSQ(61-I) =SSQ(60-I) 
RRR(61-I) =RRR(60-I) 

814 RRQ(61-I) =RRQ(60-I) 
GO TO 200 
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C 
C KALI-IAN FILTER ESTIMATOR 
C ----------------------- 

816 CONTINUE 
IS =IS+1 
NSYP-I=INT(G0 5DAF (1.0,16.9999999999) ) 
S SR ( 1) =XS R (NSYM) *S CAL E 
SSQ(1) XSQ(NSYI4)*SCALE 
RRR(1) =O. 0 
RRQ(-1) =0 .0 
DO 818 I=1, IMPR 
RRR(1) =RRR(1)+SSR(I)*HIT (I, 1) -SSQ(I)*HQT(I, 1) 

818 RRQ(1) =RRQ(1)+SSQ(I)*HIT (I, 1)+SSR(I)*HQT(I, 1) 
DO 820 I=1, IMPR 

820 ANOIQ (IMPP-I) =ANOIQ ( II"IPRP-I 
ANOIR(1) G05DDF(AMEAN, SIGMA) 
ANOIQ (1) =G0 5DDF (AMEAN, SIGMA) 
CORNR=0.0 
CORNQ=0.0 
DO 822 I=1, II. IPR 
CORNR=CORNR+ANOIR(I)*WSI(I)-ANOIQ(I)*WSQ(I) 

822 CORNQ CORNQ+ANOIQ(I)*WSI(I)+ANOIR(I)*WSQ(I) 
RRR (1) =RRR (1) +CORNR 
RRQ (1) =RRQ (1) +CORNQ 
SSIN=SSR(1) ** 2+SSQ (1) ** 2 
RRO T -RRR (1) ** 2+RRQ (1) **2 
SIN=SIN+SS IN 
ROT=ROT+RROT 
DO 824 I=1, IMPR 
SER(I)=SSR(I+SDEL) 

824 SEQ (I) =SSQ (I+SDEL) 
ZR=RRR(1+SDEL) 
ZQ=RRQ(1+SDEL) 
ZER=0.0 
ZEQ=0.0 
DO 300 I=1, IP"IPR 
ZER=ZER+SER(I)*XXOR(I)-SEQ(I)*XXOQ(I) 

300 ZEQ=ZEQ+SEQ(I)*XXOR(I)+SER(I)*XXOQ(I) 
ANUR=ZR-ZER 
ANUQ=ZQ-ZEQ 
DO 9000 I=1, IiIPR 
DO 9000 J=1, I; "IPR 
QVR(I, J) *PR(I, J) 
QVQ(IýJ) C*PQ(I, J) 

9000 CONTINUE 
DO 302 I=1, Ii, IPR 
DO 302 J=I, IMPR 
IF(I. NE. J)GO TO 301 
PPR(I, J)=PR(I, J)+QVR(I, J) 
PPQ(I, J) =O. 0 
GO TO 302 

301 PPR(I, J)=PR(I, J)+QVR(I, J) 
PPQ(I, J) =PQ(I, J)+QVQ(I" J) 
PPR(J, I)=PPR(I, J) 
PPQ(J, I)=-PPQ(I, J) 

302 CONTINUE 
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DO 306 J=1, IUIPR 
SP1=0.0 
SP2=0.0 
DO 30 i I=1, IIIPR 
SPI=SPI+SE R(I)*PPP. (I, J) -SEQ(I)*PPQ(I, J) 

304 SP2=SP2+Si: 2(I)*PPQ(I, J)+SEQ(I)*PPR(I, J) 
SPR(J) =SP1 

306 SPQ(J) =SP2 
SPSP, =0.0 
SPSQ =0.0 
DO 30C, 1=1, II IPP. 
S, PS S Fäl: i'SP-i&(I)*SEP. (I)+SPQ(I)*SEQ(I) 
SPSSý=SPS)+SPlý(I)*SER(I) -SPR(I)*SEQ(I) 

30 8 CONTIilUü 

SPSSR=SPSR+SIGI, IA** 2 
DO 36 2 11, I! iPR 
PSR(I) =0.0 
PS-: (I)=0.0 
DO 36 2 J=1, IIIPR 
PS1: (I) =PSR(I) +PPR(I, J) *SER(J) +PPQ (I, J) *SEQ (J) 

3G 2 PSQ(I) =PSQ(I)+PPQ(I, J)*SER(J) -PPR(I, J)*SEQ(J) 
DO 314. I=l, IMPR 
GR(I) =PSR(I)/SPSSR 

314 G2 (I) =PSQ(I)/SPSSR 
DO 326 I =1, I I"IPR 
DO 326 J =1, I I"IPR 
GSR(I, J) SR(I)*SER(J)_GQ(I)*SEQ(J) 

326 GSQ(I, J) GR(I)*SEQ(J)-FGQ(I)*SER(J) 
DO 327 I =1, IMPR 
DO 327 J=I, IIßPR 
IF(I. NE. J)GO TO 329 
GSPQ(I, J) =0.0 
GSPR(I, J) 0.0 
DO 328 K=1, IMPR 

328 GSPR(I, J)=GSPR(I, J)+GSR(I, K)*PPR(K, J)-GSQ(I, K)*PPQ(K, J) 
GO TO 327 

329 GSPR(I, J) =0.0 
GSPQ(I, J) =0.0 
DO 331 K =1, I I-IPR 
GSPP. (I, J) =GSPR(I, J)+GSR(I, F: )*PPR(K, J) -GSQ(I, I: )*PPQ(IC, J) 

331 GSPQ(I, J) =SPQ(I, J) fGSR(I, K)*PPQ(K, J)+GSQ(I, II)*PPR(K, J) 
GSPR(J, I)=GSPR(I, J) 
GSPQ (J, I) =-GSPQ (I, J) 

327 CONTINUE 
DO 36 4I =1, I I-IPR 
DO 36 4 J=I, IIIPR 
IF(I. NE. J)GO TO 365 
PR(I, J) =PPR(I, J) -GSPR(I, J) 
PQ(I, J) =O. 0 
GO TO 364 

365 PR(I, J) =PPR(I, J) -GSPR(I, J) 
PQ(I, J) =PPQ(I, J) -GSPQ(I, J) 
PR(J, I)=PR(I, J) 
PQ (J, I)=-PQ(I, J) 

36 4 CONTINUE 
DO 332 I =1, II.: PR 
CER(I) XXOR(I)+GR(I)*ANUR-GQ(I)*AIIUQ 

332 CEQ(I) =XXOQ(I)+GQ(I)*ANUR+GR(I)*ANUQ 
DO 371 I=1, IIIPR 
EPR(I)=CER(I)-X'. OR(I) 

371 EPQ(I) CIQ(I)-XXOQ(I) 
DO 373 I =1, II iPR 
XX1R(I ), =XX1R(I) +THETA1*EPR(I ) 

373 XX1Q(I) XX1Q(I)+THETA1*EPQ(I) 
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DO 37 5 I=1, IMPR 
XXOR(I) =XXOR(I) +XX1R(I) + HETA2*EPR(I ) 

375 XXOQ(I) XXOQ(I)+XX1Q(I)+THETA2*EPQ(I) 
00 377 I=1, IMPR 
XXNR(I) =XXOR(I)+SDEL1*XX1R(I) 

377 XXNQ(I) =XXOQ(I)+SDEL1*XX1Q(I) 
SQE=0.0 
SQE1=0.0 
SQEN=0.0 
DO 334 I=1, It4PR 
SQE1=SQE1+(HIT(I, SDEL) -XXOR(I))**2+(HQT(I, SDEL) XXOQ(I))**2 
SQEN=SQEN+(HIT(I, 1)-XXNR(I))**2+(HQT(I, 1) XXNQ(I))**2 

. 334 SQE=SQE+(HIT(I, 1+SDEL) -CER(I))** 2+(HQT(I, 1+SDEL) -CEO (1))** 2 SQ1=10.0*ALOG10 (SQE) 
SQ11=10.0*ALOG10 (SQE1) 
SQN1=10.0*ALOG10(SQEN) 

1000 CONTINUE 
IF(IRUN. LE. 100)GO TO 346 

'3 45 TSQ ERR =TSQ ERR+SQ E 
TSQ1=TSQ1+SQE1 
TSQN=TSQN+SQEN 

346 CONTINUE 
DO 338 1-1,, 59 
SSR(61-I) =SSR(60-I) 
SSO (61 -1) =SSQ (60-1) 
RRR(61-I) =RRR(60-I) 

338 RRQ(61-I) =RRQ(60-I) 
200 CONTINUE 

c 
c 

Xl(2)=X1(1) 
Y1(2)=Yl(1) 
X2(2)-X2(1) 
Y2(2)=Y2(1) 

400 CONTINUE 
C 
C 

AVI-ISQE-TSQERR/FLOAT((ISTEP*ILOOPS)/ 2) 
AVTS1 TSQ1/FLOAT((ISTEP*ILOOPS)/2) 
AVTSN TSQN/FLOAT ((ISTEP* ILOOPS) / 2) 
AVMSQE=10.0*ALOG10 (AVMMSQE) 
AVTS1=10.0*ALOG10 (AVTS1) 
AVTSN=10.0*ALOG10(AVTSN) 
WRITE ( 2,3 41)AVFISQE 
WRITE( 2,3200)AVTS1 
WRITE( 2,3202)AVTSN 
WRITE (2,3 42) C 
I-IRITE (2,3 20 4) THETA 
SIN=SIN/FLOAT(21137) 
ROT=ROT/FLOAT ( 21137) 
WRITE( 2,7000) SIN 
WRITE(2,7002) ROT 

C 
C 

DCGAIN=1.0/DCGAIN 
6"7RITE(2,3000) (CI(I), I=1,16) 
WRITE(2,3001) (CQ(I), I=1,16) 
WRITE( 2,3002) (CID(I), I=1,16) 
WRITE(2,3003) (CQD(I), I=1,16) 
WRITE ( 2,300 4) IXX, IQ 
WRITE ( 2,3005) DEL 
IIRITE(2,3006) (COEFF(I), I=1,5) 
WRITE (2,3007) DCGAIII 
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C 
C 

206 0 FORMTAT (1H1, ' KALRAN FILTER ESTItIATOR APPLIED TO 2-SKYWAVE H. F LINK' 1, /, ' INPUT SIGNAL : 16 -POINT QAI. 1' , /, 2' AVERAGE TRAIIS14ITTED ENERGY PER BIT IS UNITY' , /, 3' BIT RATE IS 9600 BITS/SEC', /, 
4' CHANNEL VECTOR IS NOT NOR14AL IS ED' 

2070 FORMAT(1H , 'CHANNEL :2; 1 HZ AND 2 tIILLISECS', //, 
1' PREDICTION : LEAST-SQUARES FADING-NIEt10RY, DEGREE 1' , /, 2' INITIAL VALUES ARE : ', /, 
3' S(0,0) = I' , /, 4' Q(I)*S(I-1, I-1)' "/º 5' X(1,0) = Y(0) 
7' I TAKEN FROM 4801 TO 24000' 

7000 FORfAT(1H , 'INPUT SIGNAL ENERGY = ', F15.8) 
7002 FOR14AT(1H , 'OUTPUT SIGNAL ENERGY = ', F15.8) 
3000 FORMAT(1H , 'CI', /, 2(10F8.4/)) 
3001 FORMAT(1H , 'CQ', /, 2(10F8.4/) ) 
3002 FORMAT(1H , 'CID', /, 2(10F8.4/) ) 
3003 FOR14AT (1H ,' CQD' , /, 2(10F 8.4/) ) 
3004 FORMAT(1H , 'IXX = ', I4, ', IQ - ', I4) 
3005 FORMAT(1H , 'DEL = ', F4.1) 
3006 FORMAT(1H , 'COEFF = ', 5F13.7) 

3007 FORMAT (1H ,' DCGAIN ', F15.4) 
347 FOR14AT(1H , 'ESTIMATE ERROR (INITIAL) - ', F20.10) 
341 FORMAT (lH , 'ESTIMATE ERROR (S. STATE) ',, F30.15) 

342 FORMAT(18 , 'C ="', F20.15) 
3200 FORMAT(1H , 'LAMBDA (1-STEP). - ', F30.15) 
3202 FORMAT (lit , 'LAMBDA (N-STEP)'= ', F30.15) 
3204 FOR14AT(1H , 'THETA - ', F6.3) 

C. 
C 

STOP 
END 
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APPENDIX A4 

AN EXAMPLE OF THE SIMULATION OF THE 
FEEDFORWARD TRANSVERSAL-FILTER ESTIMATOR 

PROGRAM R000 2(INPUT, OUTPUT, TAPE 1=INPUT, TAPE 20OUTPUT) 

LINEAR FEEDFORWARD ESTIMATOR WITH PREDICTION 
APPLIED TO 2-SKYWAVE H. F LINK 

PREDICTION : LEAST-SQUARES FADING-MEMORY USING POLYNOMIAL OF 
DEGREE 1 

DELAY IN ESTIMATION - 17 SAMPLING INTERVALS 
INPUT SIGNAL : 16 -POINT QAM 
AVERAGE TRANSMITTED ENERGY PER BIT IS UNITY 
BIT RATE IS 9600 BITS/SEC 
CHANNEL VECTOR IS NOT NORMALISED 
CHANNEL SIMULATED - CH. 2 -- 1 HZ AND 2 MILLISECS 
----------------------------------------------------- 

DIMENSION RAYLI1(5) , RAYLQ1(5) , RAYLI 2(5) , RAYLQ 2(5) , COEFF (5) , 1X1( 2), Y1( 2) , X2( 2), Y2( 2) , R( 4,50) , Q( 4,50) 
DIMENSION OPI1( 4), OPQ1( 4), OPI 2( 4), 0PQ2( 4) 
DIMENSION RAY1(1100), RAY2(1100), RAY3(1100), RAY4(1100) 
DIMENSION CI(16), CQ(16), CID(16), CQD(16) 
DIMENSION WSI(30), WSQ(30) 
DIMENSION ANOIR( 30) , A. NOIQ( 30) 
DIMENSION TI(30,30), TQ(30,30) 
DIMENSION HIT ("50,50), HQT(50,50), CRI(30), CRQ(30) 
DIMENSION SER( 25), SEQ( 25), CER( 25), CEQ( 25) 
DIMENSION XX1R( 25) , XX1Q( 25) , XXOR( 25) , XXOQ ( 25) , XXNR( 25) , XXNJQ ( 25) 

1EPR( 25) , EPQ ( 25) 
DIMENSION XSR(16), XSQ(16) 
DIMENSION SSR(60), SSQ(60), RRR(60), RRQ(60) 
INTEGER SDEL, SDEL1 
INTEGER VECL, VECLI-I, VECLP 
DATA IISI/-0.0059, -0.003,0.0032,0.0205,0.1662,0.4893,0.6759, 

1 0.406, -0.0371, -0.179, -0.038,0.06.23,0.0289, -0.017 4, -0.0109, 2-0.0068,0., 0., 0., 0., 0., 0.0.0. 
. , 0.0.0., 0 ,0 ,0/ DATA WSQ/0.0042,0.0095,0. Ö293,0.04b4, b. 0266, -0.07 48, -0.1652, 1 -0.0739,0.1092,0.117 4, -0.013, -0.0 432,0.0126,0.016 2, -0.0098, 2 -0.0046,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. / 

DATA CRI/-0.4107, -0.205,0.2219,1.4222,11.5059,33.87 49,46.7973, 
1 28.1107 , -2.5666, -1 2.3912, -2.6308,4.3105,2.0033, -1.205, 2 -0.7537,0.4731,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. / 

DATA CRQ/0.2882,0.6548,2.0303,3.4222,1.8432, 
-5.1777, -11.4399, 1 -5.1152,7.5671,8.1 28, -0.8993, -2.9923,0.873,1.1213, -0.6766, 2 -0.3159,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. / 
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DATA CI/-0.0382,0.2457,0.0557,4.3052,22.3184,44.8006,42.0069, 
19.6632, -13.7143, -7.1940,4.7637,2.6054, -1.9526, -0.2429,0.7 289, 2-0.439/ 

DATA CQ/ 0.5007 , 1.3 823,2.3 229,1.6 23 3, -2.3123, -7.06 95, -5.27 53, 12.7 801,5.077 5,0.3151, -0.656 8,1.3191, -0.0767, -1.0017,0.506 4, 20.3751/ 
DATA' CID/-0.1703#, 0.20241,0.0702,, 1.4971,13.8791,37.6942,47.5134,, 

1 23.1819, -8.4805, -12.2511,1.6 847,4.7107, -1.0031, -1.251 2,0.8066, 
2-0.06/ 
DATA CQD/0.3 445,0.9827,2.057 2,2.2102, -0.4665, -5.6382, -7.0769, 1-0.245,5.4433,2.2094, -1.0544,0.8176,0.77 8, -1.06 43, -0.06 24,0.7109/ 
DATA 
DATA 
CALL DARRAY(1000,10,10,1) 

C 
C_ 

WRITE ( 2,206 0) 
WRITE ( 2,207 0) 
READ(1, *)IXX 
READ(1, *)ILOOPS 
READ(1, *) (COEFF(I), I=1,5), DEL, DCGAIN 
READ(]., *) IMPL, SR 
READ(1, *)SDEL 
READ(1, *)C 
READ (1, *) AMEAN, SIGMA 
READ(l, *)THETA 
DCGAIN-1.0/DCGAIN 
DO 700 IPROG=1, l 
IF (IPROG. EQ. 1)C-O. 00 2 
IF(IPROG. EQ. 2)C-0.00 4. 
IF(IPROG. EQ. 3)C=0.005 
IF(IPROG. EQ. 4)C=0.006 
CALL G05CBF(IXX) 
DO 3 I=1,50 

- DO 3 J=1,50 
HIT(I, J) =0.0 

3 HQT(I, J) =0.0 
IDEL=INT(DEL* 2*SR) 
IMP1=IMPL+IDEL 
IMI=IMP1-1 
IMPR=( 2*IMPL+IDEL-1)/ 2 
II"IPES =II"IPR 
SCALE=2.0/SQRT (10.0 ) 
IS=0 
IC=0 
LB=31 
LB 1=LB +1 
ITDEL=LB+SDEL 
SDEL1=SDEL-1 
I-ýI1=50 
I. 1I11=M 1+1 
11112=1414+10 
SIN=0.0 
ROT =0.0 
TSQ ERR =0.0 
TSQ1O. 0 
TSQ N'=0.0 
THETA]. =(1.0 -THETA) **2 
THETA2=1.0 -THETA* *2 
DO 7 90 I=1, II4PR 
XX1R(I) =O. 0 

790 XX1Q(I) =O. 0 
pos=-1-0 
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C 
C 

C 
C 
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DO 8 I=1, IMP1 
DO 8 J=1, IMP1 
TI(I, J) =0.0 
TQ(I, J) =O. 0 
IMPP=IMPR+2 
IMPRP=It-MPR+1 
VECL=2*IMM1PR 
VECLP=VECL+2 
VECLM=VECL+1 
ISTEP-20* 2*SR 
STIP=1.0/ISTEP 
DO 10 I=1,5 
RAYLI1(I) =0.0 
RAYLQ1(I) .0 
RAYLI2(I) =O. 0 

10 RAYLQ2(I) 0.0 

DO 40 J=1,50 
OPI1(1) =GO5DDF(0.0,1.0) -(RAYLI1 (1) *COEFF (1) 
OPQ1(1) G05DDF(0.0,1.0) -(RAYLQ1 (1) *COEFF (1) 
OPI 2(1) -GO 5DDF(0.0,1.0) -(RAYLI2(1)*COEFF(1) 
OPQ2(1) =GO5DDF(0.0,1.0) -(RAYLQ2(1)*COEFF(1) 
OPI1(2) OPI1(1) -(RAYLI1(3) *COEFF (3) +RAYLI1( 
OPQ1 2) -0P01 (1) -(RAYLQ1(3) *COEFF (3) +RAYLQ1( 
OPI 2( 2) OPI 2(1) -(RAYLI 2( 3) *COEFF (3) +RAYLI 2( 
OPQ2( 2) =OPP2(1)-(RAYLQ2(3)*COEFF(3)+RAYLQ2( 
Xl 2) =OPI1( 2) -RAYLI1 (5) *COEFF(5) 
Y 1( 2) =OPQ1(2) -RAYLQ1(5) *COEFF (5) 
X 2( 2) =OPI 2( 2) -RAYLI 2(5) *COEFF (5) 
Y 2( 2) -OPQ 2( 2) RAYLQ 2(5) *COEFF (5) 
RAYLI1(5)-X1(2) 
RAYLQ1(5) =Y1(2) 
RAYLI 2(5) =X 2( 2) 
RAYLQ 2( 5) =Y 2( 2) 
X1( 2) X1( 2) *DCGAIN 
Y1(2) =Y1( 2) *DCGAIN 
X 2( 2) X 2( 2) *DCGAIN 
Y 2( 2) =Y 2( 2) *DCGAIN 
RAYL 11 ( 4) -RAYL I1( 3) 
RAYLI1(3) =OPI1( 2) 
RAYL I1( 2) =RAYL I1(1) 
RAYL I1(1) OPI l (1) 
RAYLQ1 4) =RAYLQ1(3) 
RAYLQ1(3) OPQ1(2) 
1? AYLQ1( 2) =RAYLQ1(1) 
RAYLQ1(1) OPQ1(1) 
RAYL 12( 4) =RAYL 12( 3) 
RAYLI2( 3) API 2( 2) 
RAYLI2( 2) =RAYLI2(1) 
RAYLI 2(1) OPI 2(1) 
RAYLQ 2( 4) =RAYLQ 2 (3 ) 
RAYLQ2(3) ZOPQ2( 2) 
RAYLQ 2( 2) =RAYLQ 2 (1) 

40 fAYLQ 2(1) 0PQ 2(1) 

ILOP=100+ILOOPS 

+RAYLI1( 2) *COEFF ( 2) ) 
+RAYLQ1 C 2) *COEFF ( 2) ) 
+RAYLI 2( 2) *COEFF ( 2) ) 
+RAYLQ 2( 2) *COEFF ( 2) ) 
4) *COEFF ( 4) ) 
4)*COEFF(4)) 
4) *COEFP ( 4) ) 
4)*COEFF(4)) 

C 
C 



DO 45 K =1, ILOP 
OPI1(1) =G05DDF(0.0,1.0) -(RAYLII(1)*COEFF(1)+RAYLI1( 2)*COEFF ( 2) ) OPQ1(1) =G05DDF(0.0(1.0) -(RAYLQI(1)*COEFF(1)+RAYLQ1(2)*COEFF (2) OPI2(1) =G05DDF(0.0,1.0) -(RAYLI2(1)*COEFF(1)+. lAyLI2( 2)*COEFF (2) ) OPQ2(1) =G05DDF(0.01,1.0) -(RAYLQ2(1)*COEFF(1) +RAYLQ2( 2)*COEFF (2) OPIl (2) =OPI1(1) -(RAYLII (3) *COEFF (3) +RAYLIl ( 4) *COEFF ( 4) ) 
OPQ1(2) =OPQ1(1) -(PAYLQI (3) *COEFF (3) +RAYLQI (4) *COEFF ( 4) ) OPI 2( 2) API 2(1) -(RAYLI 2(3) *COEFF (3) +RAYLI 2( 4) *COEFF (4) ) 
0PQ 2( 2) =OPQ 2(1) -(RAYLQ 2( 3) *COEFF (3) +RAYLQ 2( 4) *COEFF (4) ) X1(1) =OPI1( 2) -RAYLIl(5)*COEFF(5) 
Y1(1) =OPQ1 ( 2) -RAYLQ1 (5) *COEFF (5) 
X 2(1) =OPI 2( 2) -RAYLI 2( 5) *COEFF (5) 
Y 2(1) =OPQ 2( 2) -RAYLQ 2(5) *COEFF (5) 
RAYLII(5) X1(1) 
RAYLQ1(5) =Y1(1) 
RAYLI 2( 5) X 2(1) 
RAYLQ2(5)=Y2(1) 
X1(1) =X1(1)*DCGAIN 
Y1(1) =Y1(1)*DCGAIN 
X 2(1) X 2(1) *DCGAIN 
Y2(1) =Y2(1)*DCGAIN 
RAYL 11 ( 4) =RAYL I1( 3) 
RAYLII (3) =OPI1(2) 
RAYL I1( 2) =RAYL I1(1) 
RAYLI1(1) --: OPI1(1) 
RAYLQ1( 4) =RAYLQ1(3) 
RAYLQ1(3) -0PQ1(2) 
RAYLQ1(2) =RAYLQI(1) 
RAYLQ1(1)'OPQ1(1) 
RAYLI 2( 4) -RAYLI2(3) 
RAYLI2(3) -OPI2(2) - 
RAYLI2( 2) =RAYLI2(1) 
RAYLI 2(1) mOPI 2(1) 
RAYLQ 2( 4) -RAYLQ 2( 3) 
RAYLQ 2(3) =OPQ 2( 2) 
RAYLQ2(2). =RAYLQ2(1) 
RAYLQ2(1)OPQ2(1) 
RAY1(K) =ßt1(1) 
RAY 2(K) =Y1(1) 
RAY 3 (K) =X 2( 1) 

45 RAY4(K)=Y2(1) 
C 
C 

DO 64 J=1, II4P1 
DO 64 I=1,4 
R(I, J) =O. 0 

64 Q(I, J) =O"0 
IQ=50 
CALL GO5CBF(IQ) 
DO 798 I=2,60 
IISYI, I=INT(GO5DAF(1.0,16.9999999999) ) 
SSR(I) XSR(NSYM)*SCALE 

798 SSQ(I) XSQ(NSYM)*SCALE 
DO 797 I=1,30 
ANO IR (I) G0 5DD F (AI-IEAN, S IG MA ) 

797 ANOIQ(I) =G05DDF(AAIEAN, SIGMA) 
DO 400 IRUN=1, ILOP 
X1(1) =RAY1(IRUN) 
Y1(1) =RAY2(IRUN) 
X2(1) =RAY3(IRUN) 
Y2(1) =RAY4(IRUN) 
CONST1=(X1(1) -X1( 2)) *STIP 
CONST2=(Y1(1) Y1( 2)) *STIP 
CONST3=(X 2(1) X 2( 2) ) *STIP 
CONST 4=(Y 2(1) Y 2( 2) ) *STIP 
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C 
C 

68 DO 200 ISY14=1, ISTEP 
DO 305 I=1, IlIP1 
R(1, I) 0.0 

305 Q(1, I) =0.0 
K =ISYM-1 
AINCR=K*CONST1 
BINCR=K*CONST2 
DO 310 I=1, IMPL 
R(1, I)CI(I)*(X1( 2)+AINCR-Y1( 2)-BINCR)-CQ(I)*(Y1( 2)+BINCR+X1( 2)+AI 

1 NCR ) 
310 Q(1, I)=CI(I)*(Xl(2)+AINCR+Y1(2)+BINCR)+CQ(I)*(X1(2)+AINCR-Yl(2)-BI 

1NCR) 
AINCR=K*CONST3 
BINCR=K*CONST4 
DO 330 I=1, IMPL 
R(1, I+IDEL) =R(1, I+IDEL) +CID (I) * (X 2( 2) +AINCR-Y 2( 2) -BINCR) -CQD (I) * (Y 

12(2) +BINCR+X 2(2) +AINCR) 
330 Q (1, I+IDEL) Q (1, I+IDEL) +CID (I) * (Y 2(2) +BINCR+X 2(2) +AINCR) +CQD (I) * (X 

12( 2) +AINCR-Y 2( 2) -BINCR) 
DO 596 I=1, IMP1 
DO 596 J=1, IM1 
TI(I, IMP1+1 J)=TI(I, IMPl-17) 

596 TQ (I, IMP1+1-11) Q (I, IMP1-J) 
590 DO 600 I=LIMP]. 

TI(I, 1) =(Q(1, I). +R(l, I))*0.5 
=(Q(1, Ij=R(l, I))*0.5 600 TQ(I. l) 

Pos=-POS 
IF(POS. LT. 0.0)GO. TO! ' 200 
DO 5 97 I =1, IMPR 
DO 597 J=1,49 
HIT(I, 51-J) =HIT(I, 50-J) 

597 HQT(I, 51-J) HQT(I, 50-J) 
I0=0 
DO 2010 I=1, IMP1,2 
I0 =I0+1 
HIT(IO, 1) 0.0 
HQT(IO, 1) =O. 0 
DO 2000 J=1, ,I 
HIT(IO, 1) =HIT (IO, 1)+TI(J, I+1-J)*CRI (I+1_T) -TQ(J, I+1-ti3)*CRQ(I+1-. 7) 

; 
2000 HQT(IO, 

1) HQT(IO, 1)+TQ(J, 33333E 4RI(I+1-J)+TI(J, 
I+1-J)*CRQ(I+l-J) 

2010 HQT(I0,1) =HQT(IO, 1)* 2.0 8333333E-4 
DO 2030 I=1, It"il, 2 
10 =I0+1 
IIIT(IO, 1) 0.0 

00 HQT(I0,1) =0 .0 
K =1 +I 
DO 2020 J=K, IMP1 
HIT(I0,1) =HIT (I0,1) +TI Or IMP1+1+I-J) *CRI (II"IPl+l+I-J) -TQ (J, IMPI+I+I 

1-J) *CRQ (II"IP1+1+I-J) 
HQT 2020 

1) *CO, 
) =HQ1+(IO, l) (J, IMP1+1+I-J) *CRI (II4P1+1+I-J) +TI (J, IMPl+1+I 

HIT(IO, 1) =HIT(IO, 1)* 2.0 8333333E-4 
2030 HQT(I0,1) =HQT(I0,1)* 2.0 8333333E-4 

IF(IRON. LT. MN12)GO TO 200 
IC=IC+1 
IF(IC-LB) 200,805,807 

805 CONTINUE 



DO 799 I=1, IMPR 
CER(I) --il IT (1,, 1) 
CEQ(I) =HQT(I, 1) 
XXOR(I)=HIT (I, 1) 
XXOQ(I) =HQT(I, 1) 

799 CONTINUE 
GO TO 200 

807 CONTINUE 
IF(IC-ITDEL) 806,806,816 

c 
c 
c 
c 

C 
C 
C 
C 
C 

2 

SETTING THE DELAY 
DELAY = SDEL 

806 CONTINUE 
------------ 

NSYM=INT(GO5DAF(1.0,16.9999999999) ) 
SSR(1) XSR(NSYM)*SCALE 
SSQ(1) XSQ(NSYM)*SCALE 
RRR(1) =O. 0 
RRQ(1) 0.0 
DO 808 I=1, IMPR 
RRR(1) =RRR(1)+SSR(I)*HIT(I, 1) -SSQ(I)*HQT(I , 1) 

808 RRQ(1) =RRQ(1) +SSQ(I)*HIT (I, 1) +SSR(I)*HQT(I , 1) 
DO 810 I =1; I MPR 
ANOIR(IMPP-I) ANOIR(IMPRP-I) 

810 ANOIQ(IMPP-I) ANOIQ(IMPRP-I) 
ANOIR(1) -GO 5DDF(AMEAN, SIGMA) 
AN O IQ (1) =G0 5DD F (AMEAN, S IG MA ) 
CORNR=0.0 
CORNQ =0.0 
'DO 812 I=1, IMPR 
CORNR CORNR+ANOIR (I) *WSI (I) -ANOIQ (I) *WSQ (I ) 

812 CORNQ CORNQ+ANOIQ(I)*WSI(I)+ANOIR(I)*WSQ(I ) 
RRR(1) =RRR(1) +CORNR 
RRQ (1) =RRQ (1) +CORNQ 
SSIN=SSR(1) ** 2+SSQ (1) ** 2 
BROT =RRR (1) ** 2+RRQ (1) **2 
SIN=SIN+SSIN 
ROT =ROT+RROT 
DO 814 I=1,59 
SSR(61-I) =SSR(60-I) 
SSQ(61-I)=SSQ(60-I) 
RRR(61-I)=RRR(60-I) 

814 RRQ(61-I) =RRQ(60-1) 
GO TO 200 

LINEAR FEEDFORWARD ESTIMATOR 
WITH DEGREE 1 LEAST-SQUARES 
FADING-MEMORY PREDICTION 
---------------------------- 

816 CONTINUE 
IS=IS+1 
NSYI4=INT(GO5DAF(1.0,16.9999999999) ) 
SSR(1) =YSR(NSYI"I) *SCALE 
SSQ(1) XSQ(NSYM)*SCALE 
RRR(1) =O. 0 
RRQ(1) =O. 0 
DO 818 I=1, IMIPR 
RRR(1)=RRR(1)+SSR(I)*HIT (I, 1)-SSQ(I)*HQT(I, 1) 

818 RRQ(1) =RRQ(1)+SSQ(I)*HIT (I, 1)+SSR(I)*HQT(I, 1) 
DO 820 I=1, IMPR 
ANOIR(IMPP-I) =ANOIR (II"IPRP-I ) 

820 ANOIQ (INPP-I) =ANOIQ (IiIPRP-I ) 
ANOIR(1) --; GO 5DDF(AIIEAN, SIGIIA) 
ANNOIQ(1) =G05DDF(AMEAN, SIGMA) 



CORN R=0,, 0 
CORNQ =0.0 
DO 822 I=1, It"1PR 
CORNR=CORNR+ANOIR(I)*WSI(I)'-ANOIQ(I)*WJSQ(I) 

822 CORNQ=CORNQ+ANOIQ(I)*WSI(I)+ANOIR(I)*IiSQ(I) 
RRR(1) =RP. R(1) +CORNR 
RRQ (1) =RRQ (1) +CORNQ 
SSIN=SSR(1) ** 2+SSQ (1) ** 2 
RROT=RRR(1) ** 2+RRQ (1) ** 2 
SIN=SIN+SSIN 
ROT=ROT+RROT 
DO 824 I=1, IMPR 
SER(I) =SSR(I+SDEL) 

824 SEQ (I) =SSQ (I+SDEL) 
ZR=RRR(1+SDEL) 
ZQ=RRQ (1+SDEL) 
ZER=0.0 
ZEQ=0.0 
DO 300 I=1, INPR 
ZER=ZER+SER(I)*XXOR(I) -SEQ(I)*XXOQ(I) 

300 ZEQ=ZEQ+SER(I)*XXOQ(I)+SEQ(I)*XXOR(I) 
ANUR=ZR-ZER, 
ANUQ =Z Q -Z EQ 
CANUR=C*ANUR 
CANUQ C*ANUQ 
DO 332 I=1, IMPR 
CER(I) XXOR(I)+CANUR*SER(I)+CANUQ*SEQ(I) 

332 CEQ (I) XXOQ (I) +CANUQ*SER(I) -CANUR*SEQ (I ) 
DO 371 I sl , IMPR 
EPR(I) CER(I)-XXOR(I) 

371 EPQ(I) 1CEQ(I) XXOQ(I) 
DO 373 I =1, IMPR 
XX1R(I) XX1R(I)+THETA1*EPR(I) 

'}t 373 XX1Q(I) XX1Q(I)+THETAl*EPQ(I) 
DO 375 I=1, IMPR 

- XXOR(I) =XXOR(I)+XX1R(I)+THETA2*EPR(I) 
375 XXOQ(I) =XXOQ(I)+XX1Q(I)+THETA2*EPQ(I) 

DO 377 I =1, IM4PR 
XXNR(I) XXOR(I) +SDEL1*XX1R(I ) 

377 XXNQ(I) XXOQ(I)+SDEL1*XX1Q(I) 
SQE=0.0 
SQE1 O. 0 
SQEN=0.0 
DO 33 4 I=1, INPR 
SQEl=SQEl+(HIT(I, SDEL) XXOR(I))**2+(HQT(I, SDEL) XXOQ(I))**2 
SQEN=SQEN+(HIT(I, 1) XXNR(I))**2+(HQT(I, 1) XXNIQ(I))**2 

334 SQE=SQE+(HIT(I, 1+SDEL) -CER(I))** 2+(HQT(I, 1+SDEL) -CEQ(I))** 2 
SQ 1=10.0 *AL OG 10 (SQ E) 
SQ11=10.0*ALOG10 (SQEl ) 
SQIll =10.0*ALOG10 (SQEN) 
IF(IS. EQ. 200. OR. IS. EQ. 201)T"7RITE( 2,1097) IS, SQI, SQ11, SQNl 

1097 FORMAT (1H #, ' IS = ', 16,1 SQ1 = ', F15.10, ' SQ11 =', F15.10, 
1' SQ111 = ', F15.10) 

1000 CONTINUE 
IF(IRUN. LE. 100)GO TO 346 
TSQ1=TSQ1+SQE1 
TSQ N =TSQ II+SQ EN 

3 45 TSQ ERR --TSQ ERR+SQ E 
346 CONTINUE 

DO 338 I=1,59 
SSR(61-I) =SSR(60-I) 
SSQ(61-I) =SSQ(60-I) 
RRR(61-I) =RRR(60-I) 

338 RRQ(61-I) =RRQ(60-I) 
200 CONTINUE 



C 
C 

344 

X1(2) X1(1), 
Yl(2) =Y1(1) 
X 2( 2) X 2(1) 
Y 2( 2) =Y2(1) 

400 CONTINUE 
C 
C 

AVtdSQ E=TSQ ERR/FLOAT ((ISTEP*ILOOPS) / 2) 
AVTS1 TSQ1/FLOAT((ISTEP* ILOOPS)/2) 
AVTSN=TSQN/FLOAT( (ISTEP*ILOOPS)/ 2) 
AVNNISQE=10.0*ALOG10 (AVMSQE) 
AVTS1=10.0*ALOG10(AVTS1) 
AVTSN=10.0*ALOG10 (AVTSN) 
SIN =SIN/FLOAT ( 21137) 
ROT=ROT/FLOAT(21137) 
WRITE(2,7000) SIN 
WRITE(2,7002) ROT 
WRITE ( 2, ,3 41) AVMSQE 
WRITE( 2,3200)AVTS1 
WRITE (2,320 2) AVTSN 
WRITE ( 2,342)C 
WRITE ( 2#3 20 4) THETA 
WRITE ( 2,3 206) SDEL 
SNR-10.0*ALOG10(1. Q/(SIGMA** 2) ) 

- WRITE(2,3210) SNR 
3210 FORMAT (1H ,' SNR "= "-#F10.5, ' DB') 

700 CONTINUE 
c 
C 

DCGAIN=1.0/DCGAIN 
WRITE(2,3000) (CI(I)or=1,16) 
WRITE( 2,3001) (CQ(I), I=1,16) 
WRITE( 2,3002) (CID(I), I=1,16) 
WRITE( 2,3003) (COD (I), I=1,16) 
WRITE(2,3004) IXX, IQ 
WRITE ( 2,300 5) DEL 
WRITE( 2,3006) (COEFF(I), I=1,5) 
WRITE ( 2#3 007) DCGAIN 

C 
C 

206 0 FORINT (1H1, ' LINEAR FEEDFORWARD ESTIMATOR WITH PREDICTION' 
5' APPLIED TO 2-SKYWAVE H. F LINK' 
1, /, ' INPUT SIGNAL : 16-POINT QAN' , /, 
2' AVERAGE TRANSMITTED ENERGY PER BIT IS UNITY' 
3' BIT RATE IS 9600 BITS/SEC',, /,, 
4' CHANNEL VECTOR IS NOT NORMALISED' 

2070 FORMAT (111., 'CHANNEL_:. 2,; 1 HZ AND 2 I"IILLISECS', //, 
1' HERE XU(1, U) = Y(U)', /, 
2' AND X1(1,0) = 0' , /, 
3' SNR =5 DB', /, 
4' FIX THETA = 0.98, VARY CO , //) 
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3206 FORMAT (1H , 'DELAY IN ESTIMATION =', I5) 
3000 FORMAT (1H , 'CI', /, 2(10F8.4/) ) 
3001 FORMAT(1H , 'CQ', /, 2(10F8.4/) ) 

- 300 2 FORMAT (1H , 'CID' , /, 2(10F 8.4/) ) 
3003 FORMAT (1H ,' CQD' , /, 2(10F 8.41)) 
3004 FORMAT (IH 'IXX = ', I4, ', IQ = ', 14) 
3005 FORMAT(1H , 'DEL = ', F4.1) 
3006 FORMAT(1H , 'COEFF = ', 5F13.7) 

3007 FORMAT(1H , 'DCGAIN = ', F15.4) 
3200 FORMAT (1H , 'LAIßDA (1-STEP) =' , F30.15) 
3202 FORHAT(1H , 'LAMBDA (N-STEP) =' , F30.15) 

341 FORMAT (1H , 'ESTIMATE ERROR (S. STATE) _ ', F30.15) 
342 FORMAT(1H , 'C = ', F10.5) 

3204 FOR14AT(1H , 'THETA = ', F6.3) 
7 000 FORMAT (1H , 'INPUT SIGNAL ENERGY = ', F15.8) 
7002 FORNAT(1H , 'OUTPUT SIGNAL ENERGY = ', F]. 5.8) 
C 
C 

STOP 
END 
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APPENDIX A5 

AN EXAMPLE OF THE SIMULATION OF THE 
IMPROVED CHANNEL ESTIMATOR 

C 
PROGRAM R000 3 (INPUT, OUTPUT, TAPE1=INPUT, TAPE 2OUTPUT) 

C 

C 
C IMPROVED CHANNEL ESTIMATOR FOR AN H. F. RADIOLINK 
C NUMBER OF SKYWAVE =3 
C RELATIVE DELAY BETWEEN FIRST AND SECOND, AND 
C FIRST AND THIRD SKYWAVES ARE W3 &3 MILLISECS RESPECTIVELY 
C CORRECT STARTING AND PLANE HELD FIXED 
C" STARTING ESTIMATES ARE Y(-2K), Y(-K), Y(-L), Y(0) 
C INPUT SIGNAL : 16 -POINT QAM 
C AVERAGE TRANSMITTED ENERGY PER BIT IS UNITY 
C BIT RATE IS 9600 BITS/SEC 
C DELAY IN ESTIMATION - 17 SAMPLING INTERVALS 
C TRANSMITTER & RECEIVER FILTERS-ARE MINIMUM PHASE FILTERS 

************º********s*****************f***********************tt****f 
C 
C 

DIMENSION RAYLI1(5), RAYLQ1(5), RAYLI2(5), RAYLQ2(5), COEPF(5), 
]. X1( 2), Y1( 2), X2( 2), Y2( 2) #R(4#50) , Q( 4,50) 

DIMENSION OPI1( 4) , OPQ1( 4) , OPI 2( 4) , OPQ 2( 4) 
DIMENSION RAY1(1100), RAY2(1100), RAY3(1100), RAY4(1100) 
DIMENSION CI(16), CQ(16), CID1(16), CQD1(16), CID2(16), CQD2(16) 
DIMENSION YMLR( 30) , YMLQ(30) 
DIMENSION WSI(30), WSQ(30) 
DIMENSION TI(30,30), TQ(30,30) 
DIMENSION HIT(50,50), HQT(50,50), CRI(30), CRQ(30) 
DINIENSION RAYLI3(5), RAYLQ3(5), X3( 2), Y3( 2) 
DIMENSION OPI3( 4), OPQ3( 4) 
DIMENSION RAY5(1100), RAY6(1100) 
DItIENSION YI"I2KR(30), YId2KQ(30), YM1KR(30), YI"I1KQ(30), 

* YNOTR( 30) , YNOTQ ( 30) 
DIMENSION AR(30), AQ(30), BR( 30), BQ(30), CCR(30), CCQ(30) 
DIMENSION FR(30), FQ(30), ERRR(30), ERRQ(30), YYR(30), YYQ(30), 

* YYPR (30) , YYPQ (30 ) 
DIMENSION XSR(16), XSQ(16) 
DIIIENSION SSR(60), SSQ(60), RRR(60), RRQ(60) 
DIIMEIISION ANOIR( 30) , ANOIQ ( 30) 
DII"IENSION SER(30) , SEQ(30) 
INTEGER SDEL, SDELl 
DATA CI/-0.1795896#, -3.0773455, -9.9409021#-11.7869473,, 

1 -3.4618271,4.4438154,3.0642536, -1.3596576, -1.4973528, 
2 O. 2925598,0.5180829, -0.1842786,0.3167778,0.0021899, 
3 -0.0443806,090515533/ 
DATA CQ/2.3539405,20.7590237,45.5584592,41.4909978, 

1 8.7045826, -11.7 869820, -5.5819054,3.1582131,1.7365460, 
2 -0.7776 891, -0.1292556,0.2860 296, -0.23 2481 8, -0.2107 548, 
3 0.0392056,0.0098505/ 
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DATA CID1/-0.06 22160, -2.0 820312, -8.576 457 4, -12.3102029, 1 -5.5766967,3.5478141,3.9398962, -0.7258700, 
2 -1.7957047,0.0207712,0.601 8517 , -0.046 451 4, 
3 -0.3680978o, -0.0182370,, -0.0471151#, 0.07695641 

DATA CQD1/0.9639589,15.5920086,41.8806123,45.4936549, 
1 15.6491184t-10.1779415t-7.9404850o, 2.2650217#, 
2 2.4780490, -0.5908297, -0.3459233, Q. 3143350, 
3 -0.13 50 97 9, -0.27 9016 9,0.0 231 42 2,0.0 0716 6 2/ 

DATA CID 2/-0.0105240, -l. 3136 537, -7.110 4051, -12.346 97 21, 
1 -7.5848703,2.2353854,4.5938614,0.0931639, 
2 -1.9704176, -0.3233694,0.6313238,0.1035718, 
3 -0.3 865939, -0.0734526, -0.0386 471,0.06080 46/ 

DATA CQD2/0.1932385,11.06 8896 2,37.2136597,47.9575159, 
1 22.8.162482#, -7.2498590r-10.0026703o, 0.86954371 
2 3.1072800#-0.2261096, -0.5552906,0.2882096,, 
3 -0.0156703, -0.3215770, -0.0107706,0.0140909/ 

DATA CRI/-1.9417691, -15.9797864,, -35.1417733, -34.4788717r 1 -11.2301982,7.8155160,7.5124057, -0.5057505, -3.3707125, 
2 -0.6759166,1.0482656,0.3621.876, -0.3105902,0.0438410, 
3 0.0738947, -0.06 46936,0., 0., 0., 0., 0., 0.0., 0.0.0., 0., 0. 
4 0., 0. / 
DATA CRQ/1.3625952,11.5941040,27.3342937,28.0870086, 

1 7.2714615i, -9.2602472o, -5.0954462p3.2326498#, 1.8975352, 
2 -1.2813604, -0.4 83 0 313 , 0.7 61480 4,0.197 9 014, - 0.15 326 7 2, 
3 0.0940330, -0.0312132,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 
4 0., 0. / 
DATA WSI/-0.0280463, -0.2308071, -0.5075768, -0.4980021,, 

1 -0.1622055,0.1128849,0.1085069, -0.0073049, 
2 -0.0486855, -0.0097627,0.0151408, O. 0052313, 
3 -0.0044861,0.0006332,0.0010673, -0.0009344, 
4 0.0000000,0.0000000,0.0000000,0.0000000, 
5'0.0000000,0.0000000,0.0000000,0.0000000, 
6 0.0000000,0.0000000,0.0000000', 0.0000000, 
7 0.0000000,0.0000000/ 

DATA W SQ/ 0.0196 80 9,0.16 7 4616 , 0.3 9 480 80 , 0.4056 80 0, 
1 0.1050267, -0.1337521, -0.0735970,0.0966914, 
2 0.027 407 4, -0.0185076, -0.006976 8,0.0109986, 
3 0.0028584, -0.0022137,0.0013582, -0.0004508, 
4 0.0000000,0.0000000,0.0000000,0.0000000, 
5 0.0000000,0.0000000,0.0000000,0.0000000, 
6 0.0000000,0.0000000,0.0000000,0.0000000, 
7 0.0000000,0.0000000/. 

DATA 
DATA 
CALL DARRAY(1000,10,10,1) 

C 
C 

WRITE ( 2,206 0) 

; TRITE ( 2,207 0) 
READ(1, *)IXX 
READ(1, *)ILOOPS 
READ(1, *)(COEFF(I), I=1,5), DEL, DCGAIN 
READ(1, *)DEL1 
READ (1, *) II"IPL, SR 
READ(1, *) SDEL 
P. EAD (1, *) K 2, K1, K111, KO, K01 
READ(1, *) NTII"IE, XL 
READ (1, *) MEAN, SIGMA 
READ(1, *) C 
READ(1, *) THETA 
READ(1, *) ETA 
DCGAIN=1.0/DCGAIN 



348 

.3 

8 

i" 

f 

ýr +ý 

10 
C 
C 

DO 700 IPROG=1, NTIIIE 
CALL G05CBF(IXX) 
DO 3 I=1,50 
DO 3 J=1,50 
HIT(I, J) =0.0 
HQT(I, J) =0.0 
IDEL=INT(DEL* 2*SR) 
IDELI =INT(DEL1* 2*SR) 
IMP1=IMPL+IDEL 
IMI=IMP1-1 
IMPR=( 2* IMPL+IDEL-1) /2 
IMPES=IMPR 
POS=-1.0 
DO 8 I=1, IMP1 
DO 8 J=1, IMP1 
TI(I, J) =0.0 
TQ(I, J) =O. 0 
I MPP =I I1PR+ 2 
It1PRP=I[-IPR+l 
ISTEP=20* 2*SR 
STIP=1.0/ISTEP 
THETA]. =(1.0-T'dETA)** 2 
TH ETA 2=1.0 -TH ETA* *2 
SCALE=2.0/SQRT(10.0) 
SDELl =SDEL* 2-1 
TSQ El =0.0 
TSQEN=0.0 
TSQI1O. 0 
TSQ IN =0.0 
TSQ =0.0 
TSQI=0.0 
RIN=0.0 
SIN=0.0 
ROT=0.0 
XXAPR=0.0 
XXAPQ =0.0 
XXBPR=0.0 
XXBPQ=0.0 
XXG PR=O. 0 
XXG PQ =0.0 
IS =0 
DO 10 I=1,5 
RAYLI1(I)-0.0 
RAYLQ 1(I) =0.0 
RAYL I 2(1) 0.0 
RAYLQ 2 (I) =0.0 
RAYL I3 (I) =0.0 
P"AYLQ 3 (I) =0.0 

DO 40 J=1,50 
OPI1(1) =GO5DDF(0.0,1.0) -(RAYLI1(1) *COEFF(1) +RAYLI1(2) *COEFF(2) ) 
OPQ1(1) G05DDF(0.0,1.0) -(RAYLQ1(1) *COEFF(1) +RAYLQ1( 2) *COEFF( 2) ) 
OPI2(1) Go5DDF(0.0,1.0) -(RAYLI2(1)*COEFF(1)+RAyLI2(, 2)*COEFF(2) ) 
0PQ2(1) G05DDF(0.0,1.0) -(RAYLQ2(1)*COEFF(1) +RAYLQ2( 2)*COEFF(2) ) 
OPI3(1) =G05DDF(0.0,1.0) -(RAYLI3(1)*COEFF(1)+RAYLI3( 2)*COEFF('2) ) 
OPQ3(1) =G05DDF(0.0,1.0) -(RAYLQ3(1)*COEFF(1)+RAYLQ3(2)*COEFF(2) ) 
OPI1(2) =OPI1(1) -(RAYLIl(3)*COEFF, (3)+RAYI: Il(4)*COEFF(4) ) 
OPQ1(2) )PQ1(1) -(RAYLQI(3) *COEFF (3) +RAYLQI(4) *COEFF (4) ) 
0PI 2(2) 0PI 2(1) -(RAYLI 2(3) *COEFF (3) +RAYLI 2(4) *COEFF (4) ) 
0PQ 2( 2) OPQ 2(1) -(RAYLQ 2(3) *COEFF (3) +RAYLQ 2( 4) *COEFF (4) ) 
OPI3(2) OPI3(1) -(RAYLI3(3)*COEFF(3)+RAYLI3( 4)*COEFF(4) ) 
OPQ3(2) OPQ3(1) -(RAYLQ3(3)*COEFF(3)+RAYLQ3(4)*COEFF(4) ) 
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XI ( 2) JPI1( 2) -RAYLI1( 
Y1( 2) =-QPQ1( 2) -RAYLQ1 
X 2( 2) DPI 2( 2) -RAYLI2( 
Y2( 2) =OPQ2( 2) -RAYLQ2( 
X3(2) =OPI 3(2) -RAYLI3 
Y3( 2) =OPQ3( 2) -RAYLQ3( 
RAYL I1(5) =X1( 2) 
RAYLQ1(5) =Y1( 2)_ 
RAYLI 2(5) X 2( 2) 
RAYLQ2(5) =Y2( 2) 
RAYLI3(5) =X3( 2) 
RAYLQ3(5) =Y3( 2) 
X1( 2) X1( 2) *DCGAIN, 
Y1(2) =Y1( 2) *DCGAIN 
X 2( 2) X 2(2) *DCGAIN 
Y 2( 2) =Y 2( 2) *DCGAIN 
X3( 2) =X 3( 2) *DCGAIN 
Y3( 2) =Y3( 2) *DCGAIN 
RAYL I1( 4) =RAYL I1(3 ) 
RAYLI1(3) 0PI1( 2) 
RAYL I1(2) =RAYL I1(1) 
RAYLI1(1) ýOPI1(1) 
RAYLQ1( 4) =RAYLQ1(3) 
RAYLQ1(3) -OPQ1(2) 
RAYLQ1 2) =RAYLQ1(1) 
RAYLQ1(1) )PQ1(1) 
RAYL12( 4) =RAYL12(3) 
RAYLI2(3) -OPI2(2) 
RAYL 12 ( 2) -RAYL 12 (1) 
RAYLI 2(1) API 2(1) 
RAYLQ 2( 4) =RAYLQ 2 (3) 
RAYLQ 2( 3) OPQ 2( 2) 
RAYLQ 2( 2) =RAYLQ 2 (1) 
RAYLQ 2(l) =0 PQ 2(l) 
RAYL 13 ( 4) =RAYL 13 (3 ) 
RAYLI3(3) OPI3(2) 
RAYLI3(2) =RAYLI3(1) 
RAYLI3(1) =0PI3(1) 
RAYLQ 3( 4) =RAYLQ 3 (3) 
RAYLQ3(3) OPQ3( 2) 
RAYLQ 3( 2) =RAYLQ 3 (1) 

40 RAYLQ3(1) 0PQ3(1) 
C 
C 

IL0P=100+ILOOPS 
C 
C 

DO 45 K =1, ILOP 
OPi1(1) =GO5DDF( 
OPQ1(1) =GO5DDF( 
OPI 2(l) =GO 5DDF 
OPQ2(1) =GO5DDF( 
OPI3(1) ýGO5DDF 
OPQ3(1) =G05DDF( 
OPI1( 2) --: OPI1(1) 
OPQ1( 2) =OPQ1(1) 
OPI2( 2) OPI2(1) 
OPQ2( 2) OPQ2(1) 
OPI3 (2) =OPI3 (1) 
OPQ3( 2) 0PQ3(1) 

5) *COEFF (5) 
5) *COEFF (5) 
5) *COEFF (5) 
5) *COEFF (5) 
5) *COEFF (5) 
5) *COEFF (5) 

0.0,1.0)-(RAYLI1(1)*COEFF(1) 
0.0,1.0)-(RAYLQ1(1)*COEFF(1) 
0.0,1.0)-(RAYLI2(1)*COEFF(1) 
0.0,1.0) -(RAYLQ2(1)*COEFF(1) 
0.0,1.0)-(RAYLI3(1)*COEFF(1) 
0.0,1.0) -(R. AYLQ3(1) *COEFF(1) 
-(RAYLII(3) *COEFF (3) +RAYLII( 
-(RAYLQ1(3)*COEFF(3)+RAYLQ]( 
-(RAYLI2(3) *COEFF (3) +RAYLI2( 
-(RAYLQ 2(3) *COEFF (3) +RAYLQ 2( 
-(RAYL I3 (3) * COEFF (3) +RAYL I3( 
-(RAYLQ3 (3) *COEFF (3) +RAYLQ3 ( 

+RAYLI1(2)*COEFF( 
+RAYLQ1 ( 2) *COEFF ( 
+RAYLI 2( 2) *COEFF ( 
+RAYLQ 2( 2) *COEFF ( 
+RAYLI3(2)*COEFF( 
+RAYLQ3( 2)*COEFF( 
4) *COEFF ( 4) ) 
4) *COEFF ( 4) ) 
4) *COEFF ( 4) ) 
4) *COEFF ( 4) ) 
4) *COEFF ( 4) ) 
4) *COEFF ( 4) ) 

2) 
2) 
2) 
2) 
2) 
2) 
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45 
C 
C 

480 

482 

X1(1) 0P11( 2) -RAY LI 1( 
Y1(1) OPQ1( 2) -RAYLQ1( 
X 2(1) API 2( 2) -RAYLI2( 
Y2(1) OPQ2( 2) -RAYLQ2( 
X3(1) =OPI3( 2) -RAYLI3( 
Y3(1) =OPQ3( 2) -RAYLQ3( 
RAYLI1(5) =X1(1) 
RAYLQ1(5)=Y1(1) 
RAYLI 2(5) X 2(1) 
RAYLQ2(5) =Y 2(1) 
RAYLI3(5)=X3(1) 
RAYLQ3(5) =Y3(1) 
X1(1) =X1(1)*DCGAIN 
Y1(1) =Y1(1)*DCGAIN 
X2(1) X2(1)*DCGAIN 
Y 2(1) =Y 2(1) *DCGAIN 
X3(1) =X3(1) *DCGAIN 
Y3(1) =Y3(1)*DCGAIN 
RAYL I 1(4) =RAYL I1(3 ) 
RAYL I1(3) OPI 1(2) 
RAYLII( 2) =RAYLI1(1) 
RAYLI1(1) OPI1(1) 
RAYLQ1( 4) =RAYLQ1(3) 
RAYLQ1 3) OPQ1( 2) 
RAYLQ1(2) =RAYLQI(1) 
RAYLQ1(1) OPQ1(1) 
RAYL I2( 4) =RAYL I2 (3 ) 
RAYLI 2(3) OPI 2(. 2) 
RAYLI2( 2) =RAYLI2(1) 
RAYLI2(1) -OPI 2(1) 
RAYLQ 2( 4) =RAYLQ 2 (3) 
RAYLQ 2(3) =OPQ 2( 2) 
RAYLQ 2( 2) =RAYLQ 2 (1) 
RAYLQ2(1) =OPQ2(1) 
RAYL 13 ( 4) =RAYL I3 (3 ) 
RAYLI3(3) =OPI 3( 2) 
RAYL 13 (2) =RAYL I3 (1) 
RAYLI3(1) OPI3(1) 
RAYLQ 3( 4) =RAYLQ 3 (3 ) 
RAYLQ3(3) 0PQ3( 2) 
RAYLQ 3 (2) =RAYLQ 3 (1) 
RAYLQ 3 (1) =OPQ 3 (1) 
RAY1(K) X1(1) 
RAY2(K) =Y1(1) 
RAY3(K) X2(1) 
RAY4(K) =Y2(1) 
RAYS(K)=X3(1) 
RAY6(K) =Y3(1) 

DO 64J =1, I I"iP 1 
DO 64 I=1,4 
R(I, J) =0.0 

64 Q(I, J) =0.0 
IQ =50 

5) *COEFF (5) 
5) *COEFF (5) 
5) *COEFF (5) 
5) *COEFF (5) 
5) *COEFF ( 5) 
5) *COEFF (5) 

CALL G05CBF(IQ) 
DO 480 I=2,60 
NSYM=INT(GO SDAF (1.0,16 
SSR(I) XSR(NSYM)*SCALE 
SSQ(I) XSQ(NSYM)*SCALE 
DO 482 I=1,30 
ANOIR(I) =G0 5DDF (AIIEAN, 
ANOIQ (I) =GO 5DDF (AFIEAN, 

9999999999999)) 

SIGIIA) 
SIGIL A) 
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DO 400 IRUDI=1, ILOP 
X1(1)=RAY1(IRUN) 
Y1(1) =RAY 2(IRUN) 
X2(1) =RAY3(IRUN) 
Y 2(1) =RAY 4(IRUN) 
X3(1) =RAY5(IRUN) 
Y3(1) =RAY6(IRUN) 
CONST1=(X1(1) X1( 2)) *STIP 
CONST2=(Y1(1) -Y1(2)) *STIP 
CONST3=(X 2(1) X 2( 2) ) *STIP 
CONST 4=(Y 2(1) Y 2( 2) ) *STIP 
CONST5=(X3(1) -X3( 2)) *STIP 
CONST6 =(Y3(1) Y3( 2) ) *STIP 

C 
C 

6E 

305 

310 

345 

330 

596 
590 

600 

40 6 

40 8 

I DO 200 ISYM=1, ISTEP 
DO 305 I=1, IMP1 
R(1, I)=0.0 
Q(1, i)=0.0 
K =ISYM-1 
AINCR=K*CONST1 
BINCR=K*CONST2 
DO 310 I=1, IMPL 
R(1, I)=CI(I)*(X1(2)+AINCR-Y1(2)-BINCR)-CQ(I)*(Y1(2)+BINCR+X1(2)+AI 

1NCR) 
Q(18, I) =CI"(I)* (X1(2)+AINCR+Yl( 2) +BINCR)+CQ(I)* (X1(2)+AINCR-Y1(2) -BI 1NCR) 
AINCR=K*CONST5 
BINCR=K*CONST6 
DO 3 45 I=1, IMPL 
R (1, I+IDEL1) =R (1, I+IDEL1) +CI D1(I) * (X 3 (2) +AINCR-Y 3 (2) - 

1 BINCR)-CQD1(I)*(Y3( 2)+BINCR+X3( 2)+AINCR) 
Q(1, I+IDEL1) Q(1, I+IDEL1)+CID1(I)*(Y3(2)+BINCR+X3(2)+ 

1 AINCR)+CQD1(I)*(X3( 2)+AINCR-Y3( 2)-BINCR) 
AINCR-K*CONST3 
BINCR K*CONST4 
DO 330 I=1, IMPL 
R(1, I+IDEL) =R(1, I+IDEL) +CID 2(1)* (X 2( 2) +AINCR-Y 2( 2) -BINCR) - 

1 CQD 2(I) * (Y 2( 2) +BINCR+X 2( 2) +AINCR) 
Q (1, I+IDEL) Q (1, I+IDEL) +CID 2(I) * (Y 2( 2) +BINCR+X 2( 2) +AINCR) + 

1 CQD2(I)* (X 2( 2) +AINCR-Y2( 2) -BINCR) 
DO 596 I=1, IPIP1 
DO 596 J=1, Ii11 
TI (I, IMP1+l-J) =TI (I, It1P1-J) 
TQ(I, IP1P1+1-J). T0(I, IIIP1-J) 
DO 600 I=11II-IP1 
TI(I, l) =(Q(1, I)+P. (1, I))*0.5 
TQ(It1) =(Q(1, I) -R(1, I))*0.5 
DO 406 I=1, II. IPR 
ANOIR(INPP-I) ANOIR (IMPRP-I ) 
ANOIQ (IIIPP-I) =ANOIQ (IiiPRP-I ) 
ANOIR(1) =G05DDF (AlIEAN, SIGflA) 
AP10IQ(1) =: G05DDF(AUIEAN, SIGMA) 
CORPNR=0.0 
CORNQ =0.0 
DO 40 8I =1, II IPR 
CORNR=CORNR+ATIOIR(I) *WSI (I) -AIJOIQ (I) *IJSQ (I) 
CORNQ=CORNQ+ANOIQ(I)*WSI(I)+MOIR(I)*WSQ(I) 
POS =-POS 
IF(POS. LT. 0.0)GO TO 200 
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DO 597 I=1, I14PR 
DO 5 97 J =l, 49 
HIT(I, 51-J) =HIT (I, 50-J) 

597 HQT(I, 51-J) =HQT(I, 50-J) 
10 =0 
DO 2010 I=1, IMP1,2 
IO=IO+1 
HIT(I0,1) =O. 0 
HQT(IO, 1) =O. 0 
DO 2000 J=1# ,I 
HIT(IO, 1)=HIT(IO, 1)+TI(J, I+1_7)*CRI(I+1-J)-TQ(J, I+1_J)*CRQ(I+J'J) 

2000 HQT(IO, 1)=HQT(IO, 1)+TQ(J, I+1_7)*CRI(I+1-J)+TI(J, I+1-J)*CRQ(I+1. J) 
HIT(IO, 1) =HIT(IO, 1)* 2.0 8333333E-4 

2010 HQT(I0,1)=HQT(IO, 1)*2.08333333E-4 
DO 2030 I=1, It-11,2 
IO =IO+1 
HIT(IO, 1) =0.0 
HQT(IO, 1) =O. 0 
K =1 +I 
DO 2020 J=K, IMP1 
HIT(IO, 1) =HIT(I0,1) +TI (J, IMP1+1+I-J) *CRI(IMP1+1+I-J) -TQ(J, IMP1+1+I 

1-J) *CRQ (IMP1+1+I-J) 
2020 HQT(I0,1) -GOT (I0,1)+TQOF IMP1+1+I-J)*CRI (IMP1+1+I-, J)+TI(J, IMPI+I+I 

1-J) *CRQ (IMPI+1+I-J) 
HIT(IO, 1) =HIT(I0., 1)* 2.0 8333333E-4 

2030 HQT(IO, 1) 4QT(IO, 1)*2.08333333E-4 "": 4, 
IF (IRUN. DQ. K 2. AND. ISYM. LT. 95) GO TO 200 
IF (IRUN. DQ. R 2. AND. ISYM. EQ. 95) GO TO 202 
IF(IRUN. LT. K1) GO TO 200 
IF(IRUN. EQ. KI. AND. ISYM. LT. 95) GO TO 200 
IF(IRUN. DQ. KI. AND. ISYM. EQ. 95) GO TO 206 
IF(IRUN. EQ. KM1. AND. ISYM. EQ. 63)GO TO 750 
IF(IRON. LT. K0) GO TO 200 
IF(IRUN. EQ. KO. AND. ISYM. LT. 95) GO TO 200 
IF (IRUN. EQ. KO. AND. ISYM. EQ. 95) GO TO 210 
IF (IRON. EQ. K 01. AND. ISYM. LE. SDEL1) GO TO 402 
IF(IRON. GE. K01) GO TO 412 

C 
C STARTING-UP PROCEDURE 
C*********************************************************************** 

C 
202 DO 204 I =1, II. 1PR 

YN42KR(I)=HIT(I, 1) 
204 Y112KQ(I) =HQT(I, 1) 

WRITE(2j203) (YM2KR(I), I=1, It"SPR) 
WRITE(2j205) (YM2KQ(I), I=1, IHPR) 
GO TO 200 

C 
C 

DO 20 8I =1 IMPR 206 
YD11KR(I) =HIT (I, 1) 

208 YM1KQ(I) =HQT(I, 1) 
WRITE (2,207) (YM1KR (I) ,I =1, IMPR ) 
L1RITE(2,209) (Y141KQ(I), I=1, IPlPR) 
GO TO 200 

C 
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C 
7 50 DO 752 I =1, I MPR 

YMLR(I) =HIT(I, 1) 
752 YMLQ(I) =HQT(I, 1) 

WRITE(2,754) (YMLR(I), I=1, Ii1PR) 
WRITE( 2,7 55) (YMLQ (I) , I=l, IMPR) 
GO TO 200 

C 
C 
210 DO 212 I=1, IMPR 

YNOTR( I) =HIT (I, 1) 
212 YNOTQ(I) =HQT(I, 1) 

VIRITE(2,211) (YNOTR(I), I=1, II4PR) 
WRITE(2,213) (YNOTQ(I), I=l, IMPR) 

C 
C 

AN M1 R=0.0 
AN MIL Q =0.0 
ANt"I2R=0.0 
A21I"12Q =0.0 
AN113R=0.0 
ANM3Q=0.0 
DO 214 I=1, IMPR 
ANM1 R=ANNA R+YM 2KR (I) *YNOTR (I) +YM 2KQ (I) *YNOTQ (I ) 
ANI. 11Q=ANI. I1Q+YM2KQ(I)*YNOTR(I) YI42KR(I)*YNOTQ(I). 
ANM2R=ANM2R*YMIKR(I)*YNOTR(I)+YM1KQ(I)*YNOTQ(I) 
ANM2Q=ANM2Q+YMIKQ(I)*YNOTR(I) YM1KR(I)*YNOTQ(I) 
ANM3R-ANM3R+YM2KR(I)*YM1KR(I)+YM2KQ(I)*YM1KQ(I) 

214 ANM3Q-ANM3Q+YM2KQ(I)*YM1KR(I) YM2KR(I)*YM1KQ(I) 
DEN11=0.0 
DEN12=0.0 
DEN21O. 0 
DO 216 I=1, IMPR 
DEN11 DEN11 +YIMZ 2KR (I) ** 2+YM 2KQ (I) **2 
DEN12 DEN1 2+YNOTR(I) ** 2+YNOTQ (I) ** 2 

216 DEN 21 =DEN 21 +YM1KR (I) ** 2+YM1KQ(I)** 2 
ANGL1=((ANI, I1R** 2+ANtIIQ** 2)/ (DEN11*DEN12)) **0.5 
ANGL2=((ANM2R** 2+ANNMI2Q** 2)/(DEN 21*DEN12))**0.5 
ANGL3=((ANI. 13R** 2+ANM3Q** 2)/(DEN11*DEN21)) **0.5 
ANGL1=(180.0*7.0*ACOS(ANGL1) )/22.0 
ANGL2=(180.0*7.0*ACOS (ANGL2) )/ 22.0 
ANGL3=(180.0*7.0*ACOS(ANGL3) )/ 22.0 
WRITE( 2,21 8) AI; GLI, ANGL2, ANGL3 
IF (DEN11) 220,222,220 

222 Y ZCI-I=0.0 
GO TO 224 

220 Y 2Ki"1=1.0/DEN11 **0.5 
224 DO 2 26 I =1, I I"IPR , 

AR(I) =Y2KII*YII2KR(I) 
226 AQ(I) =Y2: I, I*YI-I2KQ(I) 

WRITE( 2,225) (AR(I) , I=1, Ii"1PR) 
WRITE(2,227) (AQ(I), I=1, IIUPR) 
YKR=0.0 
YKQ=0.0 
DO 228 I=1, IIIPR 
YKR=YKR+YN1KR(I)*AR(I)+YI41KQ(I)*AQ(I) 

228 YKQ=YKQ+YM11KQ(I)*AR(I) YI41KR(I)*AQ(I) 
DO 230 I=1, IMIPR 
BR(I) =YM1KR(I) -(YKR*AR(I) -YKQ*AQ(I) ) 

230 BQ(I)=YIU11KQ(I)-(YKQ*AR(I)+YKR*AQ(I)) 

.ý 
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Bi1AG =0.0 
DO 23 2I =1, IUPR 

232 BNAG=SNAG+BR(I)** 2+BQ(I)** 2 
BI; AG =SQ RT (Br1AG ) 
IF (BMAG) 23 4,236 , 23 4 

" 236 BMAG =0.0 
GO TO 23 8 

23 4 BNAG =1.0/BMAG 
238 DO 240 I=1, IFIPR 

BR(I) =BI"MAG*BR(I ) 
240 BQ(I) =BMMAG*BQ(I) 

WRITE(2,241) (BR(I), I=1, IMPR) 
WRITE(2,243) (BQ(I), I=1, IHHPR) 
YNBR=O. 0 
YNBQ =0.0 
YNAR=0.0 
YNAQ=0.0 
DO 2 42 I=1, IMPR 
YNBR=YNBR+YNOTR(I)*BR(I)+YNOTQ(I)*BQ(I) 
YNBQ=YNBQ+YNOTQ(I)*BR(I) -YNOTR(I)*BQ(I) 
YNAR=YNAR+YIIOTR(I)*AR(I)+YNOTQ(I)*AQ(I) 

242 YNAQ=YNAQ+YNOTQ(I)*AR(I) YNOTR(I)*AQ(I) 
DO 244 I=1, IMPR 
CCR(I)=YNOTR(I)-(YNBR*BR(I) YNBQ*BQ(I))-(YNAR*AR(I) YNAQ*AQ(I)) 

244 CCQ(I)=YNOTQ(I)-(YNBQ*BR(I)+YNBR*BQ(I))-(YNAQ*AR(I)+YNAR*AQ(I)) 
C14AG =0.0 
DO 246 I=1, IMPR 

246 CMAG=CMAG+CCR(I)**2+CCQ(I)**2 
CMAG =SQRT (CMAG ý 
IF(CMAG) 241,248,247 

248 Cr1AG =0.0 
GO TO 250 

247 CMAG -1.0/CMAG 
250 DO 252 I=1, IMPR 

CCR(I) -CMAG*CCR(I) 
252 CCQ (I) C1"IAG *CCQ (I ) 

j"IRITE(2,251) (CCR(I), I=1, IMPR) 
WRITE(2,253) (CCQ(I), I=1, INPR) 
AMAG =0.0 
BMAG =0.0 
Ci1AG =0.0 
DO 254I =1, I I. 1PR 
AMAG =ANAG +AR (I) ** 2+AQ (I) **2 
BMAG=BMAG+BR(I)** 2+BQ(I)** 2 

254 CI. 1AG=CI"IAG+CCR(I)** 2+CCQ(I)** 2 
ANAG =SQ RT (ANAG ) 
BZ"IAG =SQRT (BI"IAG ) 
CMAG =SQRT (Cf tAG ) 
WRITE (2,255) AMAG, BI"IAG, C, 'IAG 
XBAR=0.0 
XBAQ=0.0 
XCAR=0.0 
XC'1Q=0.0 
XBCR=0.0 
XBCQ=0.0 
DO 484 I=1, IIIPR 
XBAR=XBAR+BR(I)*AR(I)+BQ(I)*AQ(I) 
XBAQ=XBAQ+BQ(I)*AR(I) -BR(I)*AQ(I) 
XCAR=XCAR+CCR(I)*AR(I)+CCQ(I)*AQ(I) 
XCAQ=XCAQ+CCQ(I)*AR(I) -CCR(I)*AQ(I) 
XBCR=XBCR+BR(I)*CCR(I)+BQ(I)*CCQ(I) 

484 
TRITE(B2,486) 

(XBAR,, 
XBAQ, XCAR, XCAQ, XBCR,. %BCQ 
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YNCR=0.0 
YNCQ =0.0 
DO 256 I=1, IMPR 
YNCR=YNCR+YNOTR(I)*CCR(I)+YNOTQ(I)*CCQ(I) 

256 YNCQ=YNCQ+YNOTQ(I)*CCR(I)-YNOTR(I)*CCQ(I) 
ALR=YNAR 
ALQ =YN AQ 
BBER=YNBR 
BB EQ =YtUBQ 
GAIIR=YNCR 
GAMQ =YNCQ 
ALIHLR=O. 0 
ALMLQ=o. 0 
BBMLR=0.0 
BB LQ=0.0 
GAIILR=0.0 
GAI"ILQ =0.0 
DO 760 I=1, IMPR 
ALMLR=ALMLR+YMLR(I) *AR (I) +YP"ILQ (I) *AQ (I ) 
ALtILQ=ALMLQ+YMLQ(I)*AR(I) YMLR(I)*AQ(I) 
BBHHLR=BBMLR+YMLR(I)*BR(I)+YMLQ(I)*BQ(I) 
BBNLQ=BBMLQ+YMLQ (I) *BR(I) YMLR(I) *BQ (I) 
GAMLR=GAIMMLR+YMLR(I) *CCR(I) +YMLQ (I) *CCQ (I) 

760 GAMLQ -GAMLQ +YMLQ (I) * CCR (I) YML R (I) *C CQ (I) 
XXAPR=(ALR-ALMLR)/XL 
xXAPQ = (ALQ -ALMLQ) /XL " 
XXBPR-(BBER-BBMLR)/XL 
XXBPQ=(BBEQ-BBMLQ)/XL 
XXGPR-(GAMR-GAMLR)/XL 
XXG PQ = (GAMQ -GÄMLQ) /XL 
PALR=YNAR+XXAPR 
PALQ =YNAQ+XXAPQ 
PBBER=YNBR+XXBPR 
PBB EQ =YNBQ +XXB PQ 
PGADIR=YN CR+XXG PR 
PG Af. IQ =YNCQ +XXG PQ 
DO 25 8I =1, IMPR 
FR(I)=(ALR*AR(I)-ALQ*AQ(I))+(BBER*BR(I)-BBEQ*BQ(I)) 

* +(GAt"IR*CCR (I) -GA14Q *CCQ (I) ) 
258 FQ(I) =(ALQ*AR(I) +ALR*AQ (I)) +(BBEQ*BR(I) +BBER*BQ (I)) 

* +(GAI"IQ *CCR (I) +GAI"1R*CCQ (I) ) 

260 

26 2 

264 

266 

26 5 
268 

270 

W lÖU 1=1,11'1YK 

ERRR(I) =YNOTR(I) -FR(I) 
ERRQ(I) =YNOTQ(I) FQ(I) 
DO 262 I=1, IIlPR 
AR(I) =AR(I)+ETA*(ALR*ERRR(I)+ALQ*ERRQ(I) ) 
AQ(I) =AQ(I)+ETA*(ALR*ERRQ(I) -ALQ*ERRR(I) ) 
BR(I) =3R(I)+ETA*(BBER*ERRR(I)+BBEQ*ERRQ(I) ) 
BQ(I) =BQ(I) +ETA* (BEER*ERRQ(I) -BBEQ*ERRR(I)) 
CCR(I) =CCR(I) +ETA* (GAI, IR*ERRR(I) +GAIýSQ*ERRQ (I) ) 
CCQ(I) =CCQ(I) +ETA* (GAf"lR*EpRQ (I) -GAIIQ*ERRR(I) ) 
AMAG =0.0 
DO 26 4 I=1, IMPR 
AMAG =Af IAG +AR (I) ** 2+AQ (I) **2 
AMAG =SQ RT (At IAG ) 
IF (AFIAG) 265,266,265 
AMAG =0.0 
GO TO 268 
AMAG =1.0/AMAG 
DO 270 I=1, IMPR 
AR (I) =AI IAG *AR (I) 
AQ(I)=AIIAG*AQ(I) 
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BAR=0.0 
BAQ=0.0 
DO 27 2 I=1, IMPR 
BAR=BAR+BR(I)*AR(I)+BQ(I)*AQ(I) 

27 2 BAQ=BAQ+BQ(I)*AR(I)-BR(I)*AQ(I) 
DO 27 4 I=1, II4PR 
BR(I) =BR(I) -(BAR*AR(I) -BAQ*AQ(I) ) 

27 4 BQ(I) =BQ(I) -(BAQ*AR(I)+BAR*AQ(I) ) 
BRAG =0.0 
DO 273 I=1, IMMPR 

273 BMAG =BNIAG +BR (I) ** 2+BQ (1)** 2 
IF (BMAG) 277 , 27 5,277 

27 5 BMAG =0.0 
GO TO 276 

277 BUAG=1.0/BMAG 
276 DO 27 8 I=1, IMPR 

BR(I) =BLIAG*BR(I ) 
278 13Q (I) =BMAG*BQ(I) 

CBR=0.0 
CBQ =0.0 
CAR =0.0 
CAQ=0.0 
DO 280 I=1, IIIPR 
CBR=CBR+CCR(I)*BR(I)+CCQ(I)*BQ(I) 
CBQ: KBQ+CCQ(I)*BR(I) -CCR(I)*BQ(I) 
CAR=CAR+CCR(I)*AR(I)+CCQ(I)*AQ(I) 

280 CAQ CAQ+CCQ(I)*AR(I)-CCR(I)*AQ(I) 
DO 282 I=1, IMPR 
CCR (I) SCR (I) -(CBR*BR (I) -CBQ *BQ (I) } -(CAR*AR (I) -CAQ *AQ ti) 

282- -CCQ(I)CCQ(I)-(CBQ*BR(I)+CBR*BQ(I))-(CAQ*AR(I)+CAR*AQ(I)) 
CMAG =0.0 
DO 283 I=1, IMPR 

283 CI-LAG MAG+CCR(I)**2+CCQ(I)**2 
CIIAG =SQ RT (CMAG ) 
IF(CMAG) 284,285,284 

2 85 CRAG =0.0 
GO TO 286 

284 CI IAG =1.0/CMAG 
286 DO 288 I=1, II-IPR 

CCR(I) =C! IAG*CCR(I) 
288 CCQ(I) =C IAG*CCQ(I) 

DO 290 I =1, II. 1PR 
YYR(I) =(PALR*AR (I) -PALQ *AQ (I)) +(PBB ER*B R (I) -PBB EQ *BQ (I) ) 

* +(GAI IR*CCR (I) -GAMQ *CCQ (I) 
290 YYQ (I) =(PALQ*AR (I) +PALR*AQ (I)) +(PBBEQ*BR(I) +PBBCR*BQ (I) ) 

* R*CCQ(I)) 
t"7RITE(2,291) (YYR(I), I=1, It1PR) 

+(GA iQ*CCP. (I) +GAU 

WRITE(2,292) (YYQ(I), I=1, IMPR) 
GO TO 200 

C 
C 

C*********************************************************************** 

C SETTING-UP THE DELAY 
C DELAY = SDEL 
C**********************************************************************# 

C 
C 
C 
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40 2 CONTINUE 
NSY 1=INT(G05DAF(1.0,16.9999999999999) ) 
SSR(1) XSR(NSYM)*SCALE 
SSQ(1) =XSQ(NSYM)*SCALE 
RRR(1) =O. 0 
RRQ(1) =O. 0 
DO 40 4 I=1, IMPR 
RRR(1) =RRR(1)+SSR(I)*HIT(I, 1) -SSQ(I)*HQT(I, 1) 

404 RRQ(1)=RRQ(1)+SSQ(I)*HIT(I, 1)+SSR(I)*HQT(I, 1) 
RR IN =RRR (1) ** 2+RRQ (1) **2 
RIN =RIN+RRIN 
RRR (1) =RRR (1) +CORN R 
RRQ (1) =RRQ (1) +CORNQ 
SSIN=SSR(1) ** 2+SSQ (1) ** 2 
RROT=RRR (1) ** 2+RRQ (1) **2 
SIN =SIN+SS IN 
ROT=ROT+RROT 
DO 410 I=1,59 
SSR(61-I) =SSR(60-I) 
SSQ(61-I) =SSQ(60-I) 
RRR (61-I) =RRR (6 0 -I ) 

410 R 2(61-I)=RRQ(60-I) 
GO TO 200 

C 
C 
C***************************ýr******************************************* 
C 
C IMPROVED CHANNEL ESTIMATO': 
C NO. OF SKYWAVE =3 

C 
C 
412 CONTINUE 

IS =IS+1 
NSYM=INT(GO5DAF(1.0,16.9999999999999)) 
SSR(1)=XSR(NSYM)*SCALE 
SSQ(1)=XSQ(NSYM)*SCALE 
RRR(1) =0 .0 
RRQ(1) =0 .0 
DO 414 I=1, INPR 
RRR(1) =RRR(1)+SSR(I)*HIT (I, 1) -SSQ(I)*HQT(I, 1) 

414 RRQ(1)=PJQ(1)+SSQ(I)*HIT (I, 1)+SSR(I)*HQT(I, 1) 
RR III =RRR (1) ** 2+RRQ (1) **2 
RIN=RIN+RRIN 
RRR (1) =RRR ( 1) +CO RN R 
RP. Q (1) =RRQ (1) +CORNQ 
SSIN=SSR(1)**2+SSQ(1)**2 
RROT=RRR(1)**2+RRQ(1)**2 
SIN=SIN+SSIN 
ROT=ROT+RROT 
DO 420 I=1, I!, IPR 
SER(I)=SSR(I+SDEL) 

420 SEQ*(I) =SSQ (I+SDEL) 
ZR=RP. R(1+SDEL) 
ZQ=RRQ (1+SDEL) 
ZER=0.0 " 
ZEQ=0.0 
DO 422 I=1, IMPR 
ZER=ZER+SER(I)*YYR(I)-SEQ(I)*YYQ(I) 

422 ZEQ=ZEQ+SEQ(I)*YYR(I)+SER(I)*YYQ(I) 
ER=ZR-ZER 
EQ=ZQ-ZEQ 
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DO 424 I=1, II"MPR 
YYR(I) =YYR(I)+C*(ER*SER(I). +EQ*SEQ(I) ) 

424 YYQ(I)=YYQ(I)+C*(EQ*SER(I)-ER*SEQ(I)) 
SQ=0.0 
DO 25 I=1, IMPR 

25 SQ=SQ+(HIT(I, 1+SDEL) -YYR(I))** 2+(HQT(I, 1+SDEL) YYQ(I))**2 
ALR=0.0 
ALQ=0.0 
BBER=0.0 
BBEQ=0.0 
GAMR =0.0 
GAMQ =0.0 
DO 426 I =1, I1IPR 
ALR=ALR+YYR(I)*AR(I)+YYQ(I)*AQ(I) 
ALQ=ALQ+YYQ(I)*AR(I) YYR(I)*AQ(I) 
BBER=BBER+YYR(I)*BR(I)+YYQ(I)*BQ(I) 
BBEQ=BBEQ+YYQ(I)*BR(I) YYR(I)*BQ(I) 
GAP-NR GAIýIR+YYR (I) * CCR (I) +YYQ (I) * CCQ (I ) 

426 GAI-IQ=GANQ+YYQ(I)*CCR(I) YYR(I)*CCQ(I) 
DO 428 I=1, IMPR 
FR(I) =(ALR*AR(I) -ALQ*AQ(I))+(BBER*BR(I) -BBEQ*BQ(I) ) 

* +(GAMR*CCR(I) -GAI. IQ*CCQ (I) ) 
428 FQ(I) =(ALQ*AR(I)+ALR*AQ(I)) +(BBEQ*BR(I)+BBER*BQ(I) ) 

* +(GAflQ*CCR(I)+GAMR*CCQ(I)) 
DO 430 I =1, IMPR 
ERRR(I) =YYR(I) -FR(I) 

430 ERRQ(I) =YYQ(I) -PQ (I) 
DO 432 I =1, IMPR 

"=r AR (I) =AR (I) +ETA* (ALR*ERRR(I) +ALQ*ERRQ (I) ) 
AQ (I) =AQ (I )" +ETA* (AL R* E RRQ (I) -ALQ *E RRR (I) ) 
BR(I)=BR(I)+ETA*(BBER*ERRR(I)+BBEQ*ERRQ(I) ) 
BQ(I)=BQ(I)+ETA*(BBER*ERRQ(I)-BBEQ*ERRR(I) ) 
CCR (I) CR(I) +ETA* (GAMR*ERRR(I) +GAI4Q*ERRQ (I) ) 

432 CCQ(I)-CCQ(I)+ETA*(GAMR*ERRQ(I)-GMiQ*ERRR(I) ) 
AJIAG =0.0 
DO 434 I =1, IMPR 

434 AMAG =AMAG+AR (I) ** 2+AQ (I) **2 
AINIAG =SQ RT (AMAG ) 
IF(AMAG) 433,435,433 

435 AMAG =0.0 
GO TO 436 

433 AI-IAG =1.0/AI IAG 
436 DO 438 I =1, II"IPR 

ARM =AI IAG *AR (I ) 
438 AQ(I) =AIIAG*AQ(I) 

BAR=0.0 
BAQ=0.0 
DO 440 I =1, IMPR 
BAR=BAR+BR(I)*AR(I)+BQ(I)*AQ(I) 

440 BAQ=BAQ+BQ(I)*AR(I)-BR(I)*AQ(I) 
DO 442 I=1, IIIPR 
BR(I) =BR(I) -(BAR*AR(I) -BAQ*AQ(I) ) 

442 BQ(I)=BQ(I)-(BAQ*AR(I)+BAR*AQ(I)) 
BMAG =0.0 
DO 444 I =1, II"IPR 

444 Bý"IAG =B I"IAG +BR (I) ** 2+BQ (I) **2 
IF(BDIAG) 443,445,443 

4 45 BMAG =0.0 
GO TO 446 

4 43 BMAG =1.0/BNIAG 
446 DO 448 I=1, IMPR 

BR(I) =BIIAG*BR(I) 
448 BQ (I) =BRAG *BQ (I) 



450 

45 2 

454 

45 5 

453 
456 

458 

460 

462 
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CBR=0.0 
CBQ =0.0 
CAR=O. 0 
CAQ =0.0 
DO 450 I =1, IMPR 
CBR=CBR+CCR(I) *BR(I) +CCQ (I) *BQ (I) 
CBQ=CBQ+CCQ(I)*BR(I) -CCR(I)*BQ(I) 
CAR=CAR+CCR(I)*AR(I)+CCQ(I)*AQ(I) 
CAQ=CAQ+CCQ(I)*AR(I) -CCR(I)*AQ(I) 
DO 452 I=1, IMPR 
CCR(I) CR(I) -(CBR*BR(I) -CBQ*BQ(I)) -(CAR*AR(I) -CAQ*AQ(I) ) 
CCQ(I)=CCQ(I)-(CBQ*BR(I)+CBR*BQ(I))-(CAQ*AR(I)+CAR*AQ(I)) 
CRAG =0 .0 
DO 454 I=1, IMPR 
CMAG =CMlAG+CCR (I) ** 2+CCQ ( I) **2 
CMAG =SQ RT (Ct'IAG ) 
IF(CIIAG) 453,455,453 
CMAG =0.0 
GO TO 456 
CMAG =1.0/CMAG 
DO 458 I=1, IMPR 
CCR(I) =CMAG*CCR(I) 
CCQ(I)=CMAG*CCQ(I) 
ERBAR=ALR-PALR 
ERRAQ =ALQ -PALQ 
ERRBR-BBER-PBBER 
ERRBQ =BBEQ -PBB EQ 
ERRGR=GAMR-PGAMR " 
ERRGQ =GAMQ -PGAMQ 
XXAPR"XXAPR+THETA1*ERRAR 
XXAPQ-XXAPQ+TH ETA1*ERRAQ 
XXB PR=XXBLPR+TH ETA1* ERRBR 
XXB PQ -XXB PQ +TH ETA1 *E RRBQ 
XXG PR=XXG PR+TH ETA1 * ERRG R 
XXGPQ=XXGPQ+THETA1*ERRGQ 
PALR=PALR+XXAPR+TH ETA 2*ERRAR 
PALQ =PALQ +XXAPQ +TH ETA 2* ERRAQ 
PBB ER=PBB ER+XXB PR+TH ETA 2* ERRBR 
PBB EQ =PBB EQ +XXB PQ +TH ETA 2* ERRBQ 
PG AMR=PGANR+XXG PR+TH ETA 2* ERRG R 
PGAMQ =PG At-IQ +XXG PQ +TH ETA 2* ERP. GQ 
DO 460 I =1, I I"IPR 
YYR (I) =(PALR*AR (I) -PALQ *AQ (I)) +(PBB ER*B R (I) -PBB EQ *BQ (I) ) 

* +(PGAIILR*CCR(I) -PGAI-IQ*CCQ(I) ) 
YYQ(I) _(PALQ*AR(I)+PALR*AQ(I))+(PBBEQ*BR(I)+PBBER*BQ(I) ) 

* 
PALNR=PALR+(SDEL-1.0)*XXAPR 

+(PGAtIQ*CCR(I)+PGAIIR*CCQ(I) ) 

PALNQ =PALQ+(SDEL-1.0) *XXAPQ 
PBENR=PBBER+(SDEL-1.0) *XXBPR 
PBENQ=PBBEQ+(SDEL-1.0) *XXBPQ 
PGANR=PGAN1R+(SDEL-1.0) *XXGPR 
PGANQ=PGAI11Q+(SDEL-1.0) *XXGPQ 
DO 46 2. I =1, It. IPR 
YYPR (I) =(PALNR*AR (I) -PALNQ *AQ (I)) +(PB ENR*B R (I) -PB ENQ *BQ (I) ) 

* +(PGANR*CCR (I) -PGANQ*CCQ (I) ) 
YYPQ (I) =(PALNQ *AR (I) +PALNR*AQ (I)) +(PB ENQ *B R (I) +PB ENR*BQ (I) ) 

* +(PGANQ*CCR(I)+PGANR*CCQ(I) ) 
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SQ E1=0.0 
SQEN=0.0 
DO 46 4 1=1, INPR 
SQEI=SQE1+(HIT(I, SDEL) YYR(I))**2+(HQT(I, SDEL) YYQ(I))**2 

464 SQEN=SQEN+(HIT(I, I) YYPR(I))**2+(HQT(I, 1) YYPQ(I))**2 
SQEL1=10.0*ALOG10 (SQE1) 
SQELN=10.0*ALOG10 (SQEN) 
IF(IRUN-100)77 4,77 4,775 

774 TSQ I1=TSQ I1 +SQ E1 
TSQ IN =TSQ IN+SQ EN 
TSQ I =TSQ I+SQ 
GO TO 776 

775 TSQEI=TSQEl+SQE1 
TSQ EN =TSQ EN+SQ EN 
TSQ =TSQ+SQ 

776 CONTINUE 
466 DO 468 I=1,59 

SSR(61-I) =SSR(60-I) 
SSQ(61-I) =SSQ(60-I) 
RRR(61-I) =RRR(60-I) 

468 RRQ(61-I) =RRQ(60-I) 
200 CONTINUE 

C 
C 

X1(2)-X1(1) 
Y1(2)=Yl(1) 
X2(2)x4t2(1) 
Y2(2)-Y2(1) 
X3(2) =X3(1) 
Y3(2) =Y3(1) 

400 CONTINUE 
k. 'C 

C 
AVMl=TSQE1/FLOAT((ISTEP*ILOOPS)/2) 
AVMN TSQEN/FLOAT( (ISTEP*ILOOPS) / 2) 
AV--TSQ/FLOAT((ISTEP*ILOOPS)/2) 
AVIN1=TSQI1/FLOAT((ISTEP*(100-K0) )/2) 
AVINN-TSQIN/FLOAT((ISTEP* (100 K0) )/ 2) 
AVI--TSQI/FLOAT((ISTEP* (100-K0) )/ 2) 
AVL=10.0*ALOG10(AV) 
AVIL=10.0*ALOG10 (AVI) 
AVI1L=10.0*ALOG10(AVIN1) 
AV INL =1 0.0 *ALOG1 0 (AV INN) 
AVI. 11L=10.0*ALOG10 (AVI"I1) 
AVUNL=10.0*ALOG10 (AVI. IN) 
SIN=SIN/FLOAT ((ISTEP*(ILOOPS+(100-K0)) )/2) 
ROT=ROT/FLOAT ( (ISTEP* (ILOOPS+ ( 10 0 -K 0) ) )/2) 
RIN=RIN/FLOAT((ISTEP* (ILOOPS+(100-K0)) )/2) 
WRITE (2,26) AVL 
WRITE( 2,27) AV IL 
WRITE( 2,779) AVI1L 
WRITE( 2,7 60) AVINL 
WRITE( 2s, 470) AVM1L 
WRITE ( 2,471) AVNNL 
WRITE ( 2,47 2) SIN 
WRITE( 2,77 2) RIN 
WRITE 21,47 3) ROT 
WRITE( 2# 47 4) C 
WRITE( 2p 47 5) THETA 
WRITE (2,476) ETA 
WRITE( 2,477) SDEL 

700 CONTINUE 



361 

4 

li i' 
. t. -; 

77 0 
c c 
206 0 
2070 
3000 
3001 
3002 
3003 
3020 
3021 
3022 
3023 
3024 
3025 
300 4 
3005 
3006 
203 
205 
207 
209 
754 
7 55 
211 
213 
218 

2 25 
227 
241 
2 43 
251 
253 
255 
291 
292 
467 
27 
779 
7 80 

WRITE( 2,3000) (CI(I), I=1,16) 
WRITE(2,3001) (CQ(I), I=1,16) 
WRITE( 2,3002) (CIDl (I), I=1,16) 
WRITE( 2,3003) (CQD1(I ), I=1,16) 
WRITE( 2,3020) (CID2(I), I=1,16) 
WRITE(2,3021) (CQD2(I), I=1,16) 
WRITE( 2,3022) (CRI(I), I=1,30) 
WRITE( 2,3023) (CRQ(I), I=1,30) 
WRITE( 2,3024) (WSI(I), I=1,30) 
WRITE( 2#3025) (WSQ(I), I=1,30) 
WRITE(2j3004) IXX, IQ 
WRITE( 2,3005)DELl, DEL 
WRITE(2,3006) (COEFF(I), I=1,5) 
DCGAIN=1.0/DCGAIN 
WRITE(2F3008) DCGAIN 
WRITE(2,3010) K2, K1, KM1, K0, KO1, XL 
WRITE (2,3012) ILOOPS 
IF(SIGMA. EQ. 0.0) GO TO 770 
SNR=10.0*ALOG10 (1.0/ (SIGMA** 2) ) 
WRITE (2,2,7 91) SNR 
CONTINUE 

FOR14AT(///, 1H , 'IMPROVED CHANNEL ESTIMATOR') 
FORMAT (1H ,' 3-SKYWAVE MODEL - CHANNEL 3'v///) 
FORMAT(1H , 'CI', /, 2(10F12.7/)) 
FORMAT(1H v'COO , /, 2(10F12.7/) ) 
FORMAT(1H , 'CID1'2(10F12.7/) ) 
FORMAT (1H ,' OQD1' , /, 2(10F12.7/) ) 
FORMAT(1H CID2' #/, 2(10F12.7/) ) 
FORMAT(1H , 'CQD2', /, 2(10F12.7/) ) 
FORMAT 1H , 'CRI', /, 3(10F12.7/) ) 
FORMAT (111 ,' CRQ' , /, 3 (10F1 2.7/) 
FORMAT (1H ,' WSI' ,/, 3 (l0F 12.7/) ) 
FORMAT 111 , 'WSQ', /, 3(10F12.7/)) " 
FORMAT (1H ,' IXX = ', 14, ', IQ = ', 14) 
FORMAT 1H , 'DELI = ', F15.10, ' DEL - ', F15.10) 
FORMAT(1H , 'COEFF = ', 5F13.7) 
FORMAT(1H REAL PART OF Y(-2K)', /, 3(l0F10.6/)) 
FORMAT(1H , 'IMAGINARY PART OF Y(-2K)', /, 3(1OF10.6/)) 
FORMAT(1H , 'REAL PART OF Y(-K)', /, 3(10F10.6/)) 
FORMAT (1H ,' IMAGINARY PART OF Y(-K)', /, 3(1OF10.6/) ) 
FORNAT(1H , 'REAL PART OF Y(-L)', /, 3(1OF10.6/)) 
FORMAT(1H ,' IIIAGINARY PART OF Y(-L)', /, 3(1OF10.6/) ) 
FORNAT(1H , 'REAL PART OF Y(0)'1/13(1OF10.6/)) 
FORIIAT(1H ,' IMAGINARY PART OF Y(0)', /, 3(10F10.6/) ) 
FORMAT (1H s , 'ANGLE BETWEEIN Y (-Z) &Y (O) _', F7.3, ' DEGREES', /, 

* ' ANGLE BETWEEN Y( K) & Y(O) = ', F7.3, ' DEGREES', /, 
& ' ANGLE BETWEEN Y (-Z<) &Y (-I-', ) _ ',, F7.3#1 DEGREES') 

FORT-LA. T(1H , 'REAL PART OF A(0)', /, 3(10F10.6/) ) 
FORMAT(1H , 'IMAGINARY PART OF A(0)', /, 3(10F10.6/)) 
FORNAT(1H , 'REAL PART OF B(0)', /, 3(1OF10.6/) ) 
FORUAT(1H , 'IMAGINARY PART OF B(0)', /, 3(1OF10.6/)) 
FORI"IAT(1H , 'REAL PART OF C(0)', /, 3(1OF10.6/) ) 
FORNAT(1H , 'IZIAGIIIARY PART OF C(0)', /, 3(10F10.6/)) 
FORMAT(1H , '11NIAG = ', F10.5, ' BMAG = ', F10.5, ' CIIAG =', F10.5) 
FORMAT(1H , 'REAL PART OF Y(1,0)', /, 3(1OF10.6/)) 
FORMAT(1H ''II"IAGINARY PART OF Y(1,0)', /, 3(l0F10.6/)) 
FORMAT (1H �'IS = ', 16, ' L-1 STEP =' , F15. ß, ' L-PISTEP =', F15.8) 
FORMAT(1H , 'AVERAGE LAMBDA (TRAINING PERIOD) _ ', F15.8) 
FORMAT(1H , 'AVERAGE L-1STEP (TRAINING PERIOD) _ ', F15.8) 
FORNAT(1H , 'AVERAGE L-NSTEP (TRAINING PERIOD) ', F15.8) 
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25 FORMAT(1H , 'AVERAGE LAMBDA = ', F15.8) 
470 FORMAT(1H , 'AVERAGE L-1STEP ', F15.8) 
471 FOR14AT (1H , 'AVERAGE L-NSTEP = ', F15.8) 
472 FORMAT(1H , 'INPUT SIGNAL ENERGY = ', F20.10) 
772 FORMAT(1H , 'REC. SIG. ENERGY BEFORE NOISE ADDED =' ,F 20.10) 
473 FORMAT (1H , 'OUTPUT SIGNAL ENERGY =', F 20.10) 
474 FOR11AT (1H , 'STEP SIZE FOR FEEDF0141ARD ESTIMATOR, C=', F10.5) 
475 FORMAT(1H , 'PREDICTION CONSTANT, THETA = ', F10.5) 
476 FORMAT (1H , 'PLANE UPDATE CONSTANT, ETA =', F10.5) 
477 FORMAT(1H 'DELAY IN ESTIMATION = ', I4) 
486 FORMAT(1H , 'B. A = ', F10.7, ' +J', F10.7, 

*'C. A = ', F10.7, ' +J', F10.7, 
$'B. C = ', F10.7, ' +J', F10.7) 

3008 FORMAT (1H ,' DCGAIN = ', F20. ]0) 
3010 FORMAT (1H 11-2K ', 13, ', -K = ', 13, ', -L = 'j13, 

1 to 0=', 13, ', 01 = ', I3, ', L=', F4.1) 
791 FORMAT(1H , 'SNR = ', F20.10) 
3012 FORMAT (1H ,' ILOOPS = ',, 15) 
C 
C 

STOP 
END 
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