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The work presented in this thesis concerns the recognition of
isclated words using a pattern matching approach. In such a system,
an unknown speech utterance, which is to be identified, is
transformed into a pattern of characteristic features. These
features are then compared with a set of pre-stored reference
patterms that were generated from the vocabulary words. The unknown
word is identified as that vocabulary word for which the reference
pattern gives the best match.

One of the major difficulties in the pattern comparison process is
that speech patterns, obtained from the same word, exhibit non-linear
temporal fluctuations and thus a high dégree of redundancy. The
initial part of this thesis considers various dynamic time warping
techniques used for normalizing the temporal differences between
speech patterns. Redundancy removal methods are also considered, and
their effect on the recognition accuracy is assessed.

Although the use of dynamic time warping algorithms provide
considerable improvement in the accuracy of isolated word recognition
schemes, the performance is ultimately limited by their poor ability
to discriminate between acoustically similar words. Methods for
enhancing the identification rate among acoustically similar words,
by using common pattern features for similar sounding regions, are
investigated.

Pattern matching based, speaker independent systems, can only operate
with a high recognition rate, by using multiple reference patterns
for each of the words included in the vocabulary. These patterns are
obtained from the utterances of a group of speakers. The use of
multiple reference patterns, not only leads to a large increase in
the memory requirements of the recognizer, but also an increase in
the computational load. A recognition system is proposed in this
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thesis, which overcomes these difficulties by (i) employing vector
quantization techniques to reduce the storage of reference patterns,
and (ii) eliminating the need for dmamic time warping which reduces
the computational c@nplexity_ of the system.

Finally, a method of identifying the acoustic structure of an
utterance in terms of woiced, urwoiced, and silence segments by using
fuzzy set theory is proposed. The acoustic structure is then
employed to enhance the recognition accuracy of a conventional
isolated word recognizer.
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CHAPTER 1

The concept of speech communication between man and machines is not
new, being found in the folklore of many ancient civilizations. The
first major achievement towards such a goal can be attributed to the
work of A.G. Bell [1l] on the conversion of sound stimulus into
electrical signals. However, it is only with the advent of
electronics and modern computers that the subject has developed from
myth into ‘reality.

Man-machine communication by voice can be subdivided into three
regions: '
i) wvoice response systems
ii) speaker recognition systems
jii) ‘speech recognition systems

Voice response systems translate the ocutput of a device into a spoken
message, thus providing a speech communication in one direction only
i.e. from the device to man. In speaker recognition systems, the
speech communication is from man to machine and the task is to verify
or identify a speaker from a given list. Speech recognition systems
also use voice communication from man to machine. The aim is either
to recognize or 'understand' a spoken utterance. The art of
'undexrstanding' means that the device responds correctly to what .was
spoken.

A combination of the three systems would enable a speaker to hold a
'conversation’ with a machine. Such a possibility would not only give
rise to a lot of curiosity and academic interest, but also it can be
usefully applied in a number of ways which are briefly described in
the following sections.



1.1 THE VALUE OF MAN-MACHINE SPEECH COMMUNICATION

In the 20th century man has developed machines and in particular
computers in order to satisfy the demand in efficiency of the
activities of modern life. There is a call for the need to optimize
the 1ink between the machine and the operator. Traditiconally, the
link has been mainly mechanically oriented, but recent advancement in
speech processing has exposed the great potential and the suitability
of voice as a link. Speech is man's most natural means of

communication, .
Speech is also man's highest communication capacity output channel.

Several investigators [2], [3], [4] have examined the relative
information carrying capabilities of some of the common techniques,
among them: speaking, handwriting, typing, and touch-tone methods.
Table 1.1 is a summary of the results obtained. These results
strongly suggest that speech, as an information caweying medium, is
unsurpassed by the other common modes of communication. Therefore, if
computers could recognize human speech, they would exploit the
potential offered by the speech communication and also become
available for use by a large section of the population. In general,
man-machine speech communication would find applications in such
fields as:

i) ocomercial

ii) military
iii) social

iv) scientific

Commercial Applications

Speech technology will probably have its greatest use in commercial
applications. Already voice input systems have become operational in
quality control, automated material handling and stock control. In
most guality control tasks, the operators' eyes and hands are usually
busy with inspection. By using a voice data entry system, the
operator is able to record his observations and measurements as he is



TABLE 1.1: INFORMATION RATE FOR OOMMON OCMMUNICATION MODES

CQOVMUNICATION MODE INFORMATION RATE
(words/sec)

1. Speaking [2] 2.0-3.6
2. Handwriting [2] 0.4
3. Typing (skilled subjects) [2] 1.6-2.5
4. Typing (unskilled subjects) [2] 0.2-0.4
5. Touch-tone [3] 1.2-1.5
6. Typing (skilled subjects in a

problem sclving situation) [4] 0.6
7. Speaking in a problem solving

situation [4] 2.9




doing his normal work. The operator is thus able to provide a fast,
timely and accurate inspection report.

Telephone services currently provided by attendants, can also be
automated and offered at a low cost by employing speaker and speech
recognition systems. Such services are based on the retrieval of
information from computerized data banks and include ordering and
verifying credit cards, telephone banking, catalogue ordering, travel
reservations, stock market quotations, weather forecast information,
etc.

Military Applicaticons

Speech recognition has also become attractive to the military
especially for the purpose of security, surveillance, command and
control.

i) Security:
Security precautions require the identification or the verification of
persons before getting access into certain installations. Speaker
recognition techniques can be used in conjunction with traditional
methods like magnetic cards, badge readers etc, to enhance security.

ii) Surveillance:

Surveillance of enemy communication chamnels is undoubtediy of major
interest to niilitary intelligence. One of the aims is to recognize a
keyword or a set of keywords embedded in narrow bandwidth conversation
speech as found in a radio link. In the surveillance of lengthy
speech conversations there is a need for a quick method of editing and
scanning. The automatic recognition of keywords would perform this
function.

Channels can also be surveilled with the aim of identifying the
language being used. Linguistic chains formed from the phonetic
transcription of speech have been shown [5] to be a powerful means of
discrimination between different languages.



iii) Command and control:

In the aeroplane cockpit, the pilot is continuocusly monitoring and
manipulating a diverse number of instruments. The use of his voice in
igssuing commands for the control of some devices can be a most

important advantage.

Social Applications

The disabled would probably be the largest social group to enjoy the
benefits of speech recognition technology. Pecople who are paralysed
from the neck down could Use their power of speech to control a
wheelchair. Systems which convert the voice ocutput Into a visual
signal have been proposed as speech training aids for the deaf [6].

Speech recognition can also play a useful role in language learning
and translation. Devices that can check spellings for a limited
number of words, or translate some phrases from one language to
another are already available.

Other applications which would interest the general public are voice-
controlled domestic items like TV sets, radios and toys. Voice output
messages in fire alarm systems, in motor vehicles, and in perscnal

items like watches, could also prove to be popular.
Speaker recogniticn or verification can be put to use in criminal
investigations. Already, voice identification results have been

presented as evidence in some United States courts of law [7].

Scientific Applications

The development of a computer capable of understanding human speech,
under any circumstances' and conditions, would be a novel scientific
invention. The achievement of such a goal would require a wealth of
knowledge about the nature of speech and the manner in which human
beings understand spoken language. Such a system would have to model



aspects of human intelligence and would thereby serve as a testing
ground for the effectiveness of the theories of artificial
intelligence.

1.2 HUWAN FACTORS IN MAN-MACHINE COMMUNICATION

There exists a number of human factors that can affect the usefulness
of voice as a medium of communication with a computer for data entry
and control applications. Failure to attend to these factors would be
detrimental to the tasks involved.

i) Recognition accuracy
The recognition accuracy in a practical speech recognition system must
be reasonably high so as not to hinder the accomplishment of the

intended task and to eliminate any loss of confidence by the user.
Even where provision for error correction exists, high error rates
tend to frustrate the user and he will not wish to use the system. It
has also been reported that [8] recognition accuracy tends to decrease
when the user senses that something is wrong with the system, and
loses his confidence.

ii) Error correction [9]

Since the speech recognition process is generally error prone, it
becomes necessary to provide convenient error correcticn procedures.
One common method is to store the recognition output in a buffer stage
and only transmit it to the output device upon reception of a
verification command. Other commands can be used for erasing part of
the data or for clearing the entire buffer. The problem with these
commands is that they can alsc be misrecognized resulting in a
frustrating exercise and in the addition of more errors to be
corrected.

iii) Resgponse time
In order for voice data entry to be competitive with o’che;' data entry
media such as keyboards, it is necessary for the recognition process

to be as fast as possible. Immediate feedback of the recognition



results must balso be given to the user, usually as a direct echo of
the words entered. Efficient use of the feedback for verification
requires the delay to be minimized.

1.3 ORGANIZATION OF THE THESIS

The thesis presents a research work in the speaker independent
recognition of isolated words. The vocabulary of interest is composed

of the 36 alpha numeric . digits and the 14 control words: YES, NO, SET, ADD,
DELETE, STORE, MULTIPLY, CONTROL, READ, INPUT, OUTFUT, LOAD, WRITE,
END.

The first chapter in the thesis discusses the role of speech as an
input/output mode in man-machine communication. The difficulties
encountered in achieving the goal of this interaction, which is the
motivation of the research are briefly ocutlined.

Chapter 2 opens with a discussion of the basic structure and mechanism
of human speech production system, the nature of the speech signal and
human perception system. The rest of the chapter is devoted to a
review of the methods used in speech recognition systems. Isolated,
connected, continuous and speech understanding systems are covered in
a general sense, rather than a detailed description, with a minimum of
mathematics. However, essential information is included to give the
reader an understanding of the basic techniques involved.

Chapter 3 is concerned with the modelling of non-linear time
variations of the speech utterances. This poses one of the major
problems in pattern matching based word recognitim since it involves
the comparison of speech patterns of diffex}‘ent tempeoral lengths.
Several speech pattern time normalization methods are examined and
compared on the basis of their word recognition performance.

The use of filter bank features in word recognition is examined in
Chapter 4. The way the performance of different filter banks, i.e.
number of filters, type of filters, frequency spacing, etc affect the



accuracy of word recognition is investigated. Techniques for
improving recognition performance are also examined

Chapter 5 is concerned with word recognition based on linear
prediction coding (LPC) coefficients. The problem of improving
recognition performance, reducing memory requirements and attaining
low computational complexity in recognition systems is explored.
Finally, a recognition system termed the LPC/VQ/SPLIT which is a
hybrid of some two well established recognizers is presented. The
proposed recognizer has the advantage of requiring far less memory
storage and maintains comparable performance to the established
schemes.

In Chapter 6, the application of the fuzzy set theory in the
segmentation of speech into voiced, unvoiced and silence is proposed
and compared with an established method. The resulting segmentation
process enables the broad acoustic structure of an utterance to be
identified. The rest of the chapter deals with improving the
performance of the LPC based recognizer by incorporating the
information about the acoustic structure of the utterance as side

information.

The final chapter provides a recapitulation of both the novel
recognition schemes proposed in this thesis and the main results
obtained experimentally by computer simulations., Suggestions for
further research work are also made.



QHAPTER 2

REVIEW OF SPEECH RECOGNITION SYSTEMS

2.1 INTRODUCTION

In this chapter, the concepts and theories underlying speech
recognition systems are presented. The chapter commences with a
discussion on the theory of speech production and the nature of speech
signals. A brief historical survey of the developments in speech
recogniticon is also presented

Speech recognition systems can be considered as belonging to one of
the three categories: (i) isolated word systems, (ii) connected word
systems, or (iii) contimuous speech systems, depending on the form of
speéch input they are expected to accept. The general techniques
applied in each of these three categories are discussed in order to
expose the difficulties involved in the recognition task, and the
aspects of the problems still to be solved.

. 2.2 THE THEORY OF SPEECH PRODUCTICN [10][11]

The human speech production mechanism consists of an excitation source
and a time varying resonant cavity formed by the vocal tract. Figure
2.1 illustrates the cross-sectional view of the vocal system.

The vocal tract is a non-uniform tube with an average length of 17 cm.
It is terminated at one end by the glottis, which is an opening
between the vocal cords, and at the other end by the lips. The cross-
sectional area of the vocal tract varies along its length, from a
complete closure to about 20 sq cm as determined by the movement of
the lips, jaws, tongue and velum. The nasal cavity which begins at
the wvelum and terminates at the nostrils can be coupled to the wvocal
tract by the action of the velum to produce nasal sounds., Otherwise
during the generation of non-nasal sounds, the velum seals off the
vocal tract from the nasal cavity.
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FIGURE 2.1: A CROSS-SECTIONAL VIEW OF THE VOCAL SYSTEM {11]
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There are three basic ways in which sounds can be generated by the
vocal system., Voiced sounds are produced by forcing the air from the
lungs through the glottis with the tension of the vocal cords adjusted
so that they vibrate in a relaxed oscillation. The interrupted air
flow produces quasi-periodic broad spectrum pulses which excite the
vocal tract. The English vowels a, e, i, 0, u are produced in this

manner.

Fricative sounds such as /f/, /th/, /s/, /sh/ etc, are generated by
using the articulators to form a constriction at some point on the
tract and then forcing air through the constriction to produce
turbulent flow. With both a constriction and vocal cord vibration,
voiced fricatives such as /v/ are generated.

Plosive sounds such as /p/, /g/ and /t/ are generated by making a
complete closure usually towards the lips end of the wvocal tract,
building up air pressure behind the closure, and then suddenly
releasing the air.

Click sounds unigque to certain Scuth African languages [12] are
generated by the concurrence of two points of closure on the tongue,
the back one always being velar. The air enclosed between the two
points undergoes a rarefaction by the backward and downward movement
of the tongue. When the front closure is released the air rushes into
the mouth.

All these techniques of speech production involve the meodification of
the frequency spectrum of the excitation source by the vocal tract.
The rather loose interaction between the vocal system and the sound
sources, can be approximately represented as linearly separable.
Figure 2.2 shows the source tract model of speech production with the
underlying linear systems theories. The sound radiated from the lips
s(t), can be approximated as the convolution of the vocal tract
impulse résponse h(t), and the excitation signal g(t), i.e.
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g(t) h(t) s{t) = (guh)
SOUND VOCAL TRACT SOUND
SOURCE FUNCTION

0 Pl _, 3 O 6_. 3kz O P 3KkHz

(VOICELESS)

FIGURE 2.2: THE SOQURCE TRACT MODEL OF SPEECH PRODUCTION [10]
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s(t) = g(t) * h(t) 2.1

The impulse response h(t) is time varying, since the wvarious
articulators in the vocal tract are continucusly in motion. The
excitation source g(t) too is time varying. However, both the source
and vocal tract responses can be considered as stationary in the short
term. This concept is the basis of most recognition systems in which
characteristic features are extracted from ternpqral segments of a

speech signal.

2.3 CHARACTERISTICS OF SPEECH SCUNDS

Figure 2.3(a) shows a time waveform of wvoiced speech.The fine pseudo-
pericdic structure observed in the waveform arises from the psuedo-
periodic excitation source.

From the short time frequency spectrum of the voiced signal shown in
Figure 2.3(b), it can be observed that most of the spectral energy is
concentrated in the lower frequency spectrum. The envelope of the
spectrum exhibits resonances arising from the freguency response of
the vocal tract. It is usual to find at least three dominant resconant
"peaks below 4 kHz. The rescnances are referred to as formants.

A time waveform of unvoiced speech and its short term spectrum are
shown in Figure 2.4(a) and (b) respectively. Both the responses
appear to be 'moise-like’' owing to the nature of the excitation
signal. The spectrum does not exhibit the fine resonant structure

observed with voiced sounds.

Speech signals are approximately stationary within short time
intervals and non-stationary over a long time duration. Voiced and
unvoiced sounds can further be subdivided into elemental speech units
by taking into consideration their spectrographic characterization as
well as the manner and place of articulation. These elemental speech
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units, known in lingquistics as phonemes, are the 'building blocks' of
spcken words and play a similar role to letters in written language.
The set of phonemes in any language is quite small compared with the
set of all the possible words. In the English language, there are
about 42 phonemes grouped into the four broad categories: wvowels,
semivowels, diphthongs and consonants [13].

2.4 A BRIEF HISTORY OF AUTCMATIC SPEECH REQOGNITION

Automatic speech recognition is generally defined as the process of
extracting the message in a speech utterance. Most of the research
work in this field has been done within the last thirty years with the
early attempts having been initiated by the following two factors:

i) the major developments in electronics, after the invention of
the tube in 1930, gave rise to the availability of new
electrical circuits for signal analysis; _

ii) the introduction of the vocoder by Dudley [14] in 1939 and the
sound spectrograph by Potter et al {15} in 1947, gave a better
understanding of the information bearing elements in a speech
signal. The sound spectrograph, displaying a 3-dimensional plot
of the speech energy - time axis - and frequency, for the first
time gave scientists the chance of measuring and cbserving the
changing acoustic cues in the speech signal along its time axis.
This helped to increase the knowledge on the nature of speech
signals and their method of production thus opening the way for
future speech technology.

2.4.1 The Early Work in the 1950s

The first successful recognizer, reported by Davis, Biddulph and
Balashek [16] of the Bell Laboratories in the USA in 1952, was
concerned with the identification of the ten digits spoken in
isclation. Their method of analysis was based on dividing the
frequency spectrum of the speech signal into two bands, one above and
the other below 900 Hz. A count was made on the number of times the
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signal level in each of the two bands crossed the zero amplitude axis
(i.e. zero crossings count).

This indicated the approximate frequency range in which the energy in
the speech signal is concentrated. Displaving the two measurements on
a horizontal and vertical axis yielded what is now known as a first
formant-second formant (F1-F2) plot. The resulting pattern of an input
digit was then cross-correlated with each of the pre-stored pattems
of the ten digits, zero to nine. The digit pattern which had the
highest cross-correlation with the input was chosen as the identity of
the digit. The device could recognize which of the ten digits was
spoken, with an accuracy of over 90%, if the pre-stored patterns had
been formed from the samples of that particular speaker. With the
speech of a different speaker, however, the accuracy could be as low
as 50%.

Apart from its historical significance, the Davis recognizer
introduced the technique of reducing the input speech signal into a
pattern and then comparing it with pre-stored reference patterns, a
method which is still in force today.

Dudley and Balashek [17] in 1958 developed a recognizer that analyzed
the speech signal by splitting into ten frequency bands and extracting
certain features whose durations were compared with pre-stored
reference patterns of the vocabulary words. A major aspect of the
approach by Dudley, and his contemporaries like Fry and Denes [18],
was the attempt to segment words into phonetic units. Fry and Denes
used a phonetic set comprising four vowels and nine consonants and
stored estimates on the probability of a given phoneme following other
phonemes. The overall performance of these early recognizers,
especially in a speaker independent mode, was not impressive, ranging
from 24 to 44%. Nevertheless, these early attempts at recognition did
demonstrate the value of using the spectrograph as a useful tool in
the study.
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2.4.2 The 1960s

The use of the digital computer in speech recognition was first
employed in the early 1960s by Denes and Matthew [19]. They reported
a system of recognizing the ten digits using a 17 channel spectrum
analyzer to obtain word patterns. The resulting time-freguency
patterns of a number of utterances for each digit were averaged and
stored as reference patterns.

The time-frequency pattern, from an input digit utterance to be
identified, was compared by a cross-correlation process with each
stored pattern. The digit was classified as the reference pattern
‘giving the best match. An important concept in the Denes and Matthew
recognizer, was the introduction of time normalization of the speech
pattermns. Short versions of an utterance, that were spoken at a faster
rate than the reference utterances, were stretched out to equal the
duration of the reference utterance. On the other hand, slowly spoken
long versions of an utterance were compressed, to match the length of
the reference utterance. Experiments showed that better recognition
rates were obtained with the time normalization than without it.

Another early use of computers in speech recognition was in the work
reported by Forgie and Forgie [20] of the Lincoln Laboratories in the
USA, dealing with the identification of fricatives in initial and
final positions of isclated words.

The introduction of the Fast Fourier Transform (FFT), in the mid-1960s
by Cooley and Tukey [21], made it possible to achieve complex
mathematical analysis of speech waveforms with reasonable
computational effort and also paved the way for fully digital speech
recognition systems. This, along with the desire to market small scale
recognition products, led to the development of special purpose
hardware. At about the same time, recognizers were also developed for
other languages such as Japanese by Nagata et al [22] and German by
Musman et al [23].
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At the end of the 1960s speech scientists had begun to expand their
domain to the recognition of continuous speech. Early attempts were
reported in 1968, by Otten [24]), who proposed the application of
syllabic units, prosodics, and finite state language to represent the
structure of speech dialogue with a machine.

2.4.3 The Early 1970s

By 1970, the interest in continuous speech recognition had developed
to such a stage that the Information Processing Technology Office of
the Advanced Research Projects Agency (ARPA) of the United States
Department of Defence, found it necessary to initiate a five year
research programme [25]. The objective of the research was to make a
breakthrough in the speech understanding capability that could be used
in a practical man-machine communication system. The ARPA study group
emphasized {:hat the recognition of continuous speech needed to use,
not only the advanced techniques achieved in acoustic analysis, but
also required a methodglogical approach with the inclusion of
grammatical, semantic and prosodic constraints, together with
phonological rules which govern a given human language. These
‘constraints would represent various krowledge sources that could be
brought to attain successive understanding of the message in speech.
The ARPA project called for a system that would accept continuous
speech from any cooperative speaker. The language was limited to a
vocabulary of 1000 words and allowed to have an artificial syntax
appropriate to a limited task situation, e.g. data management, chess
playing etc.

When the ARPA project ended in 1976 a number of task dependent
systems: HARPY, HEARSAY, HWIM and SDC, which could understand spoken
utterances within a given context had been developed [25]. Many of the
present day continuous speech recognition systems still employ the
techniques irvestigated during the ARPA project.

Apart from the ARPA project, the work reported by Baker [26] and
simultaneously by Jenelik [27] has also contributed immensely to the
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speech recognition research. The DRAGON system proposed by Baker,
models the knowledge sources necessary for automatic recognition of
continuous speech, as a probabilistic function of a Markov process.

In conjunction with the ARPA project and the DRAGON system, two other
major developments in the early 1970s which helped to accelerate the
pace in speech recognition, especially for isolated words, were the
introduction of Linear Prediction Coding (LPC) and Dynamic Programming
{DP) techniques by Itakura in 1975 [28]. LPC, which is based on the
speech synthesis mode, is particularly suitable since it describes
efficiently the spectral characteristics of speech. On the other
hand, DP provides an extremely useful technique in optimizing the
temporal differences between speech utterances.

2.5 ISOLATED WORD RECOGNITION SYSTEMS

Isolated word recognition systems deal with speech input in the form
of words spoken in isolation. Since distinct pauses exist between
words, the problem of separating one word from ancther does not arise.
The recognition process of isolated words begins by digitizing the
speech utterance which still results in a large number of data points.
It then becomes necessary to employ a data reduction technique whereby
the large set of data points is transformed into a small set of
features which are equivalent in the sense that they faithfully
describe the properties of the speech waveform. Usually a data
reduction ratio between 100 and 10 is generally acceptable.

2.5.1 Feature Extraction

Different sets of features for representing speech signals have been
probosed, ranging from simple measurements such as zero crossing rates
to the more complex short time spectral parameters. The motivation for
choosing one feature set over another is often dependent on the
constraints imposed on the system in terms of cost, speed and
recognition accuracy. Some of the commonly used features are discussed

below:



21

i) Filter bank features
A popular set of features used in speech recognition is the ocutput of
a bank of filters. The speech utterance is passed through a bank of
bandpass filters covering the speech bandwidth. The energy in the
speech signal in a given frequency band is estimated from the ocutput
of the respective bandpass filter. For a given time instant on the
speech utterance, a set of energy features define an Nth order feature
vector, where N is the number of bandpass filters employed. Thus the
whole utterance can be expressed as a pattern of discrete Nth order
feature vectors. '

ii) Linear prediction features

Another widely used set of features, is based on the linear prediction
coding of speech, and was first proposed for recognition purposes by
Itakura [28]. Linear prediction is based on the assumption that a

speech sample can be approximated as a linear combination of a number
of immediately preceding samples.

For each sample,- a prediction error e(n), is defined as follows:

p

e(n) = x(n) - X(n) = x(n) - _21 a(i) x (n-i) 2.2
l:

where x(n) is the linearly predicted sample and x(n) is the actual
sample.

on minimiz/ipgjj the mean squa:-re prediction error e(n), over a finite
interval, a unigue set of predictor coefficients, a(i), i = 1,2, ...p,
can be obtained. These coefficients give a good short term spectral
estimate. Thus, an utterance can be represented as a sequence of
discrete vectors of linear prediction coefficients.
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iii) Articulatory parameters
An ideal set of features for describing speech sounds would be the

parameters giving the position of the tongue, lips, jaws and the velum
as functions of time. Since these articulators take an infinite number
of positions, a statistical analysis of X-ray data [29] can be done to
determine an effective representation of the articulator movements in
a reduced dimensicn space. The parameters can also be estimated from
the speech signal [30][31].

2.5.2 The Pattern Matching Model for Isolated Word Recogniticn

Figure 2.5 shows the typical pattern matching model employed in the
majority of isolated word recognition systems. It consists of three
main stages:

i) feature extraction stage
ii) pattern comparison stage
iii) decision rules stage

The input to the model is an isolated utterance which is to be
identified within a given vocabula/ry. After an analogue to digital
conversion, features like those described in Section 2.5.1 are
extracted from temporal segments of the utterance. The resulting
pattern is compared with pre-stored patterns of reference vocabulary
words.

A decision rule is used to identify the input word as the reference
vocabulary word giving the best match. This pattern matching model
has been widely used with the following three advantages:

i) the model is invariant for different vocabularies, feature sets,
pattern comparison measures and decision rules
ii) it is easily implemented
iii) it has been found to give satisfactory performance in practice.
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One major difficulty in the pattern comparison stage is that speech
utterances are rarely of egual temporal length. Their duration are
dependent on the speaker, his rate of speaking and on the
circumstances. The same is true, even if the gpeaker is the same
person who recorded the reference patterns. One solution to this
problem is to map the time axis of one pattern onto the other such

that maximum coincidence is attained.

The performance of the word recognizer is severely degraded if the
input and the reference speech utterances are obtained from different
speakers. However, these inter-speaker differences can be reduced by
employing a large number of reference patterns obtained from different
speakers per vocabulary word. As a conseguence of using multiple
reference patterns per vocabulary word, the response time and the
memory requirements of the system are greatly increased. In such
situations clustering techniques, like vector quantization [32] in
which a group of similar feature vectors are mapped into a single
vector, can be appli_ed to the reference patterns in order to reduce
the memory requirements.

2.5.3 Stochastic Modelling Approach for Isolated Word Recognition
[33]

It would be guite natural to consider speech as being generated by a
stochastic process of the type described by hidden Markov chains. A
hidden Markov process consists of two inter-related mechanisms, an
underlying Markov chain having a finite number of states, and a set of
random functions, one of which is associated with each state. At a
given time instant, the hidden Markov process is in a unique state and
an observation is generated by the random function associated with the
state. This causes the underlying Markov chain to change state in
accordance with its transition probabilities., These states cannot be
observed directly, only the outputs of the random functions at each
state are seen.



In speech production, the vocal tract and the varicus articulators can
be approximated as being in one of a finite number of articulatory
configurations, or states. In a given state, a short time speech
signal which can only have one of a finite mumber of spectral shapes
is generated. Thus the short term spectrum of the speech signal is
determined by the current state, while the spectral variation with
time is determined by a transition probability distribution of the
underlying Markov chain.

Let the underlying Markov chain have the N states:

and let the set V of K spectral shapes, also referred to as symbols,
be

(Vl, Vz, aen, Vk, cve, VK)

The underlying Markov chain can be specified in terms of an initial
state distribution vector 1 = (111, T, e -nN) and a state transition

matrix A = [aij]' l1<1is< N, 1< j< N is defined as the

Ti
probability of observing state gy at time t=1. The value of 84 § is

the probability of a transition to state a4 given the current state

aij = pmb (q:i at t+l qi at t) 2-3a

The random process associated with each state can be collectively
represented by the stochastic matrix B = [bjk], 1<3j<€N, 1<k <K
The value bjk is the probability of observing the spectral shape v
given the current state a5 and is denoted as:



A hidden Markov model, M, is thus specified by the set (g, A, B).
Efficient methods for estimating parameters in the matrices A and B
have been proposed by Baum [34].

Figure 2.6 illustrates the structure of a hidden Markov model with 5
states, i.e. N=5. The model starts in state q; and terminates in
state gg by progressing from the left to the right without re-visiting
states which have been left. In the model, transitions within the
state, i.e. a11, 3o etc are allowed, so are transitions that skip
neighbouring states, i.e. aj;3, agzg etc. By imposing different
constraints on the transitions, other variants of the hidden Markov
models can be obtained.

In order to use the hidden Markov models to perform speech
recognition, it is necessary first to generate the set of spectral
shapes V, usually by vector quantization of LPC coefficients. Next a
large number of repetitions of each vocabulary word are used as a
training set to derive the hidden Markov model for each vocabulary
word.

The speech recognition problem is thus specified as follows. Given a
set W of R words vocabulary, W = (w;, Wy, ..., Wwp)and a set of hidden
Markov models for each word, M;, M,, ...,. Mg. For an unknown word wit
‘W, with an observation sequence 0y = (Ol, 02, 02, eeay OL, where
each Oy € V, 1 < 2 < L.

The probability, P

i, that this sequence was generated by the model My

is given by:

P; = prob (O3/M;) = - ) T b, (0p) B(05) ... by (O)

2.4
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The interpretation of equation 2.4 can be made as follows. The
initial state q; exists with a probability nql. The spectral shape
0, is generated with probability bql (Ol). Then a transition is made
to state g, with probability aql q, to generate spectral shape G, with
probability qu (O3). The process is continued until the last
transition from state qy_; to state gy with the probability a

-19N
and the spectral shape O; generated with probability b, (Op). 1
N

a

A computationally efficient algorithm for evaluating equation 2.4 has
also been proposed by Baum [34].
The unknown utterance is classified as Wy if, and only if,

P. >P;, for 1<j<R 2.5

2.6 CQONNECTED WORD REQOGNITION SYSTEMS

In commected word recognition, the speech is a sequence of words from
a specified vocabulary. Typical examples include the digit strings of
telephone numbers, identification codes etc. where the vocabulary is
the 10 digit set {(0-9) and connected letters, like in word spellings,
where the vocabulary is the 26 letter set (A-Z).

The recognition of connected words can be performed by applying the
pattern matching techniques of isolated word recognition. Thus, as
illustrated in the block diagram in Figure 2.7, the comnected speech
recognition system is almost identical to the isolated word
recognizer, except for the introduction of a section in which
connected patterns are synthesized

Let an input speech pattern consisting of words of unknown length, be
expressed as the discrete sequence, C, of length I:
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C=¢C, G, «evy G4, +v. Cg 2.6a

and let the vocabulary be the set of N words (1, 2, ... n,....N). The
reference pattern of word m is represented as a discrete sequence, B™
of length J '

i.e. B™ = b‘f, bfzﬂ b‘J“ bg‘m 2.6b

The concatenation of two speech patterns B™ and B" is denoted as B @®
B and is the sequence:

O -, 8 gL 2.7a

n

A connected pattern B of words n(1), n(2), ... n(k) is synthesized by
concatenating their reference patterns as follows:

B=8"1) @ pM2) @... @K 2.7b

The unknown input speech pattern C, is matched with the synthesized
reference pattern B, to give a distance D(C;B). The matching process
is repeated, changing the number of words k and the indexes
n(l1),n(2),... n(k), until all the permutations of the indexes are
exhausted.

The optimum parameters, k=;c and n(x) = ﬁ(x), x = 1,2,...1’; which give
the minimum distance D(C,Bl are determined. The unknown input pattern
C, is identified as the k connected words ﬁ(l), 31(2),...?1(&). The
minimization problem can be expressed as the solution to the following
equation:
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Dpin = i R, i e, M) @2 @ .., + r®) g .. + 2Ky
: A 2.8
Unfortunately, except for trivial cases with short sequences and small
vocabularies, the exhaustive solution of equation 2.8 is impractical
due to the excessive computation involved. A suitable approach for
solving equation 2.8 has been proposed by Sakoe [35], in which the
minimization problem is considered in two stages,- one for the word

level and the other for the whole connected words level.

A partial pattern C{,m), of the input pattern C is defined as:
Cik ,m) =Co41r Coior +ve) Gyr 220, m<1I 2.9

In splitting the pattern C into k partial word patterns, the (k-1)
word boundaries, 2(1), 2(2), ..., 2(k-1) are assumed. Thus:

C=CR0),2(1)) ®CE(1),L(2) ®... ®C(k-1)},2(k))  2.10
where £ (0) = 0 and £ (k) = I.
The distance between C and a concatenated reference pattern B™ @& B,
is given by:

p(c, B"@®BM) = MgN D(C(0,2), B™ + D(C(2,I), B™)) 2.11

Inserting equation 2.10 into 2.8 and applying the relationship defined
in 2.11 gives:



.
Doin = MIN { § MIN D [C(r(x-1),2(x)), gn(x}y 2.12
k, % (x) xE_:Ln(x)

Equation 2.12 is solved by dynamic programming methods. Other
techniques for solving the connected word recognition problem have
been proposed by Myers et al [36].

2.7 THE RECOGNITION OF CONTINUOUS SPEECH

In a contimuous speech recognition system, the input speech is in the
form of naturally spoken words in a given language. The aim of the
recognition system is either to identify the words or to decode the
message in the input speech. The latter is also referred to as speech
understanding.

A study of human speech perception can provide a useful insight into
the modelling of a computer recognition system for continuous speech.

2.7.1 The Human Speech Perception [37]

The human speech perception process comprises several stages of
analysis, namely:

i} auditory
ii) phonetic
iii) phonological
iv) prosodical

v) lexical
vi) syntactic
vii) semantic

viii) pragmatic

The speech signal heard by the listener is transformed by the cochlea,
an organ located in the inner ear, into a time varying pattern whose

main features are the concentration of energy in a frequency-time
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space. In the cochlea too, there are neurological systems for
extracting features such as the fundamental frequency, intensity,
spectral shape, duration of the speech signal and representing them by
psychoacoustical sensations like pii:ch, lqldrmess and timbre.

The phonetic stage involves the extraction of features such as
labiality, nasality, voicing and frication which serve to discriminate
between specific speech sounds. The auditory and phonetic stages of
speech processing appear to be closely inter-related since certain
consonantal speech sounds are known to be perceived as of being a
particular phonetic type group without being discriminated within the
group. Thus, the auditory processing stage reduces the speech signal
into a continuous parametric representation of fregquency and time, on
which the listener imposes a categorization on the space of sounds,
from his linguistic knowledge, to give a string of phonemes.

The phonological stage serves to bring aspects of the variability in
pronunciation of words in the particular language, to bear on the
perception process. Phonetic sequences of many words are markedly
reorganized when the words are used in certain phrases. For example
[38]), for the phrase ' would you' which when spoken fast appears as

'wujeu', the listener must invert the generative rule:
/fwad/ + /ju/ = fwoje/
so as to perceive correctly.

In the prosodical stage, information on stress pattems, intonation
and pauses are extracted from the speech signal. This information
gives a clue as to whether the message in speech is a question,
statement, command etc. '

Lexical, syntactic and semantic information are invcked to give the
phonetic string a meaningful message. The lexical information
pertains to the vocabulary words in the language known to the

listener. The syntax is the grammatical structure of the language,
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which describes not only the way words are concatenated to form
sentences, but also the manner in which phonemes form syllables, and
syllables form words. Semantics is the meaning of the words.
Pragmatics refers to the context of the conversation. Using these
four knowledge sources, a sentence can be rejected if it is
inconsistent with one of the knowledge sources. For example, [39],
consider the following sentences:

i) Sleep roses dangerously young colourless
ii) Colourless yellow ideas sleep furiously
iii) Colourless paper packages crackle loudly

The first sentence is syntactically and consequently semantically
unacceptable. The second sentence is syntactically correct but
meaningless. The last sentence, though syntactically and semantically
correct, would be rejected because it is pragmatically inconsistent.
Generally, human listeners do experience difficulties in decoding the
pragmatic concepts of a language unless they are well conversant with
the context of conversation.

If the knowledge is incomplete or inaccurate, human listeners tend to
make hypcotheses. In many cases an unambiquous interpretation is
possible on the basis of incomplete phonetic representation, by
generating a hypothesis that represents the listener's expectation of
the continuation of the utterance. These observations have been
reported by Warren [40] as the phoneme restoration effect, in which
selected phonemes were removed from words in sentences and replaced by
various forms of noise and listeners still continued to 'hear' the
missing sounds.

In another experiment described by Reddy [39], subjects were asked to
listen to a sentence and then write down what they heard. The results
obtained are given 'in Table 2.1 and generally show that the listeners
try to form their own hypothesis as to what was said. There is also
the failure to detect the end of one word and the beginning of the
other, which contributes to erroneocus hypothesis.
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TABLE 2.1: HYPOTHESIS GENERATION IN HUMAN LISTENERS [39]

ACTUAL PHRASE RESPONSE

in mud eels are, 1st subject: in muddies sar, in clay mannar

in clay none are

2nd subject: in my deals are, en c¢lannannar

3rd subject: in my ders, en clain

4th subject: in model sar, in claynanar
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Despite these setbacks, it is evident that the study of human speech
perception can be of immense benefit to continuous speech recognition.

2.7.2 The Continucus Speech Recognition Model [25]

The continuocus speech recognition system can be modelled as a two
level hierarchy consisting of an acoustic processor as the first lewvel
and a language analyzer as the second level. Such a model is
illustrated in the block diagram in Figure 2.8.

i) The acoustic analyzer

The first step, in the processing of the continuous input speech
signal, is to transform it to a discrete symbol string. The symbols
may be phonemic¢, syllabic or. actual words depending on the
segmentatioﬁ process employed in the system. The transformation of
speech into phonemic symbols involves feature detection, segmentation
ahd labelling. The features commonly extracted are energy and
fundamental frequency which serves to detect frication, voicing,
silence and stress in the speech signal within the segment. Each
segment is then labelled with the closest phonemic symbol. Before the
symbol sequence can be applied to the language analyzer it is
necessary to apply phonological rules to combine segments, change
labels based on context, and delete transitional segments. Syllabic
symbols can be extracted by detecting energy dips in the speech
signal.

When words in a sentence are separated with brief pauses, the process
of detecting the beginning and ending points for the words can be done
on the basis of temporal wvariation of energy in the speech waveform,
Energy minima of sufficient duration would indicate word boundaries.

Let the language L, in the recognition task, be limited to a
vocabulary V consisting of M symbols (i.e. words, syllables or
phonemes) V;, Vp,... Vy. An arbitrary sentence W in the language can
be expressed as a string of symbols:
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W=W Wy oo Wy oel Wi 2.13
where Wje V, for 1 S { SK',

' The sentence W, as defined in 2.13 is encoded in s(t), the input
speech to the acoustic analyzer. The acoustic analyzer decodes the
speech to obtain an input sentence W, which is a corrupted form of W,
i.e.

y

n Ny v,
W=W1W2 .o Wi ---‘ql( 2.14

n, v
where W€V for 1 € i€ K:; but W is not necessarily a sentence in L.

The acoustic analyzer also computes a distance matrix D,
] 1< 1<K 1<jsM 2.15
where dij is the distance between the ith symbol l'\\fi and the vocabulary
symbol Vj. '

ii) Linguistic processor

LY
The language processor accepts the symbol string W and distance matrix
D from the acoustic processor and then produces the string W:

~ o ~

W= WWy ... Wy 2.16

for which the distance D(W) is given by:’

. K
D(W) = MIN .} (d;
i=1-

;) 1< SM 2.17
Ji J:L
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where dijj_ is the distance between W; and all the symbols Vj that may
appear in the ith position of sentences in L. Equation 2.17 is
minimized subject to the constraint that 1.‘:1 is a sentence in the
language L.

Without any constraints, given a vocabulary consisting of M different
words and admitting sentences having a maximum of K words each, the
number of possible sentences that can be formed would be of the order
of MK. The exponential growth in the number of sentences can be
constrained by imposing a grammatical structure, as defined by the
syntax, and invoking the relationship between objects and events in
accordance with semantic rules. This process can be approximated by
elementary formal language theory and has been advantageously
exploited in the computer recognition of ocm‘t:umous speech.

A language which is generated by a grammar G is denoted as L(G). The
grammar G is a function of four arguments:

G = G(VT, VN’ S, p), VN n VT = O 2.18

where Vp is a finite set of symbols out of which sentences are formed
i.e. vocabulary of possible words which are also designated as
terminal symbols. Vy is+another set of symbols disjoint from Vg, but
whose members define Vq. Symbols in Vi are also described as non-
terminal symbols and would refer to generalized parts of a sentence
like a predicate, verb, adjective, etc. S, which is a member of Vy
(Se Vy), is designated as a starting symbol, and would refer to a
complete sentence. P is a finite set of transformations, termed
production rules. Typically each production rule expresses a possible
way of transforming a non-terminal symbol into a sequence of one or
more symbols (terminal, non-terminal or both) as indicated below:

+ For example, V) could be thought of as a phrase and Vp as a word
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a+ B, a, Be(VWuvp)™ 2.19

the asterisk * stands for the set of all strings of elements in the
designated set.

A sentence expressed as a string of symbols W = Wi, Wo,eetWy,eoo Wi,
where Wy eV, for 1 €1 €K, is said to belong to the language L(G), if
and only if there exists a sequence of production rules which can
derive W from a starting symbol S, i.e.

WE L(G), if S+ a;, 8y + 8y,..., ay~> W ©2.20

The use of different production rules leads to languages of different
properties and complexities as formulated by Chomsky [14]. If the
production rules are of the form:

A »aB

or C—+Db 2.21

where Vy = (A, B, C) and Vp = (a, b), then the grammar is classified
as a Chomsky type 3, also known as Regular grammar.

Regular grammars may be used to generate or analyze a subset of a
natural language appropriate to a certain task and can be represented
by a state transitional diagram as illustrated in Figure 2.9 for an
airline reservation system [42]. In the diagram, transition from one
state to another is dependent on the production rules in the grammar
G. The edges are labelled with the terminal symbols in Vi, which are
the vocabulary words. The finiteness of the language is implied in the
state diagram by disallowing any path from starting and ending at the
same state.
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THE

FIGURE 2.9: A STATE TRANSITIONAL DIAGRAM [42]
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Sentences or symbols in Vy can be generated by starting from node 1
and following any path to final node 6. As each transition is made,
the vocabulary word asscociated with the transition is added to the
rest of the string already formulated.

The particular problem addressed by the formal language theory which
is relevant to speech recognition is that of parsing sentences in a
language. This specifically means determining whether WeL(G), using a
sequence of production rules for the derivation of S+ W. The
acoustic processor provides the distance matrix D, and the language
analyzer finds the sentence W e L(G) which satisfies equation 2.17.
For example, if the acoustic transcription gives the sentence ﬁ' in
equation 2.14 as "WOULD MUCH IS TO FARE', it would be clear from the
state diagram in Figure 2.9 that the sentence is invalid since there
is no path whose edges are so labelled. The parsing algorithm
described by Levinscon [42] aims to produce from 'br\&, a string of words
with a valid path in the state diagram and with a minimum total
distance. The production rules of the grammar are invoked in order to
achieve the process.

iii) Syntax directed approach to continuous speech recognition

In practice it is difficult to determine accurately the phonemic or
syllabic boundaries in speech.

Phonemes are not easily determined acoustically due to co-
articulation. Furthermore, some sounds can belong equally to more
than one phoneme. It has been estimated [39] that phoneticians seem
to agree only 51% of the time, when labelling continuous speech in
unfamiliar languages.

The problem with syllabic segmentation is that sometimes the
boundaries cannot be specified uniquely. For example [38], for the
word 'common' it is not clear whether the syllables are /kom/ + /on/
or /ko/ + /mon/. ‘
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In continuous speech too, pauses do not normally exist between words,
and detecting the beginning and the ending points of words is an error
prone process.

One of the methods of recognizing continuous speech in the presence of
unreliable segmentation is to use syntax to direct the matching of
continuous speech symbols to reference prototype words [42]. In this
case the word segmentation problem is overcome by generating many
hypothetical segmentations and choosing the best one. This 'hypothesis
and test' approcach requires the establishment of a feedback link
between the acoustic processor and the language analyzer as shown in
Figure 2.8. The language analyzer provides the acoustic processor
with a list of those symbols which can occur at a given node in the
sentence being processed and the acoustic processor computes only
those entries in the distance matrix. Based on the parsing stage in
the sentence, the linguistic analyzer also specifies the approximate
time t  when the vocabulary symbol v should occur.

In the acoustic processor, the output speech string begimning at tg is
matched to the reference prototype word v to obtain the distance D,
and a computed endpoint t,. The endpoint will then be used as the
nominal begirmming point for the next word in the candidate sentence.
The parsing process is implemented by a dynamic programming recursion
identical to equation 2.17, except for a pointer which is included to
keep track of the segmentation.

2.8 SPEECH DATA BASE AND EQUIPMENTS

The speech data base in this research work was recorded in a silent -
room from the utterances of four male subjects SM1, SM2, SM3, SM4 and
three female subjects SF1, SF2, SF3. All the subjects were native
speakers of the English language. The subjects read the vocabulary of
50 words in the order listed in Table 2.2, iIn a casual and cooperative
manner. It was considered important to arrange the digit and alphabet
words set in a random manner so as to reduce the co-articulation
between adjacent words.
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TABLE 2.2

THE LIST OF VOCABULARY WORDS AS READ BY THE SUBJECTS

DURING THE RECORDING SESSION

Order Vocabulary Word Order Vocabulary Word
1 DELETE 26 FOUR
2 NINE 27 STORE
3 INPUT 28 L
4 F 29 G
5 o 30 A
6 W 31 v
7 Z 32 Y
8 K 33 NO
9 THREE 34 E
10 ZERO 35 I
11 WRITE 36 Q
12 END 37 FIVE
13 SIX 38 READ
14 J 39 U
15 D 40 X
16 S 41 WO
17 LOAD 42 P
18 N 43 EIGHT
19 ONE 44 C
20 ADD 45 T
21 M 46 YES
22 H 47 R
23 B 48 SEVEN
24 SET 49 MULTIPLY
25 CONTROL 50 OUTPUT
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Each vocabulary word was spcoken twice by each male subject and once by
each of the female subjects. The recorded speech was bandlimited to 5
kHz* and digitized at 10 kHz using a 12 bit A/D converter and
subsequently transferred to the hard disk of a computer.

The results presented in this thesis were obtained by simulations
using the DEC PDP 11/34 and FDP 11/73 computers.

2.9 DISCUSSION

In this chapter, an attempt has been made to review developments and
techniques used in speech recognition. A comparison of the
recognition accuracy of the various systems is difficult 1o make. This
is because the accuracy of a given system is not only dependent on the
design techniques, but also on a number of diverse factors such as:
the recognition wvocabulary, noise level in the speech signal, speech
.signal bandwidth, etc. As a general rule, however, isolated word
systems can, and do, achieve better performance than oconnected word
systems which in turn have a better performance than continuous speech
systems.

There is still a demand for an increase in performance in isolated
word recognition systems which can be achieved by solving the
following problems:

i) speaker independence
ii) reduction in computation time
iii) reduction in memory requirements
iv) discrimination of acoustically similar words in the vocabulary.

The rest of this thesis is primarily concerned with the recognition of
isolated words, and attention is focused on solving the above four
problems,

+ The 5 kHz bandwidth was selected to provide comparability with
other research work
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CHAPTER 3

TIME NORMALIZATION IN SPEECH PATTERNS

3.1 INTRODUCTION

The variation in the speaking rate, which is mainly dependent on the
manner of the speaker and on his emctional status, means that
different repetitions of the same word will rarely be of equal
temporal length. The elimination of these fluctuations in speaking
rate, .or time normalization as it is often called, is a central issue
in speech recognition systems based on comparison of patterns of
unequal length. A linear transformation of the time axis, in order to
eliminate the temporal differences between speech patterns, will
prove inédequate to deal with the highly non-linear fluctﬁations of
the speaking rate. In this Chapter, several non-linear time
normalization algorithms are discussed, and their performance is
assessed with the aim of selecting the algorithm to be employed in
the proposed isolated word recognition systems described in
subsequent chapters.

3.2 DYNAMIC TIME WARPING

Temporal differences between two speech patterns, can be eliminated
by warping the time axis of one of the patterns onto the other, such
that maximum coincidence is attained. This requires the modelling of
the time axis fluctuations by a non-linear function of some specified

properties.

Let A(t) and B(t) be two speech patterns referred to as input and
reference pattems respectively, which are not necessarily of equal
temporal length. The time normalization problem is to find a function
F(t) which maps the pattern A(t) onto the corresponding parts of B(t)
such that the distance, D(A,B), between the two patterns is
minimized.
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Thus, F(t) is such that:

t

. a .
D(A,B) = MIN [ D(A(t), B(F(t))).G(t, F(t), F(t))dt 3.1

t
o

where to and ta are points on the time axis which indicate the
starting and ending point of the input patterm A(t). F(t) is
specified to be a monotonically increasing and continuously
differentiable function. f“(t) is the derivative of F(t).
D(A(t),B(F(t))) is the distance of an individual point in A at time t
from a point in B at time F(t). G is a weighting function which is
dependent on t, F(t) and F(t).

Unfortunately, there is no simple solution to the continuously
variable problem of equation 3.1 and the only alternative is to use
discrete functions. If the two speech patterns are time sampled with
a constant and common sampling period, then the time warping
function, F(n), can now be determined as the solution to the problem:

N

D(A,B) = MIN ) D(A(n), B(F(n})) 3.2
Fin) n=1

where D(A(n),B(F{n))) is the distance between the nth discrete frame
of the input pattern and the frame F(n) of the reference pattern.

Dynamic programming methods can be used efficiently to define the
optimum time warping function, F(n), according to equation 3.2, which
minimizes the total distance between the two patterns. The
optimization process is known as Dynamic Time Warping (DTW). A
variety of DTW 'algorithms can be obtained by imposing different
restrictions on the warping path.
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3.2.1 The Sakoe and Chiba DIW Algorithms [43]

Let the two speech patterms A(t) and B(t) be expressed as a sequence
of discrete multi-dimensional vectors, i.e.

o
[

=8y, 8y, «.v, 84, «+o, g 3.3a

B =Dby, by, ..., bjr eee, b3 3.3b
where I and J are the number of vector frames in pattern A and B
respectively.

A matrix of distances, d(i,j) is camputed as:

AN
o
VA
&

3.3c

The distance between pattem A and B, can be defined along a path F,
in the i-j plane as illustrated in Figure 3.1.
Thus:

3.4

F/AN
=

F = £(1), £(2), ..., £f(k), ... £f(K); 1S k

where £(1) = (1,1) and £(K) = (I,J).

Let the grid point (i, j) at f(k), be denoted as (i(k), j(k)), and the
distance between the two feature vectors ay and bj at this point as
d(f(k)) =d(i,j). Then, the weighted sum of the distances along the

warping function is given by:
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FIGURE 3.1: THE TIME WARPING FUNCTION
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D(F) = )} d (£(k)). w(k) 3.5
k=1

where w(k) is a positive weighting coefficient related to the length
of the path from £f(k-1) to £(k). D(F) attains a minimum value when
the warping function is chosen to provide an optimum time alignment
between the two patterns. Then the time normalized distance, D(A,B),
between patterns A and B, as given by equation 3.2 can be expressed
as:

X
D(A,B) = MIN [ [ Q(f(k)).w(k)I/N 3.6
F(n) k=1

where N is a normalization constant used to compensate for the number
of points on the warping function.

i) Restriction on the warping path

If the assumption that the input speech pattern A, and the reference
pattern B coincide precisely at the initial frame and at the final
frame, i.e. £(1) = (1,1) and f(K) = (I,J), then the solution to the
DTW equation 3.2 is equivalent to finding the 'best' path through a
finite set of grid points, and as such any 'path finding' technique
can be used. However, the warping path is a model of the time axis
fluctuations of the speech and, accordingly, it should reflect these
fluctuations by preserving essential linguistic structures, In
speech patterns these structures are continuity, monotonicity, and
limitation on the duration of acoustic segments, and can be realised
oan the warping function by imposing the following conditions:

a) Monotonic conditions:

i(k-1) € i(k) and j(k-1) < J(k) 3.7
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c)

d)

e)
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i(k) - i(k-1) €1 and (k) - j(k-1)y g1 3.8

Boundary conditions:

i(1) =1, (1) = 1 3.9
and i(K) = I, JK) = J 3.9b
Window length conditicn:

l3k) - i) | < 3.10

where r is a suitable positive integer termed the adjustment
window length. This condition removes the possibility of an
excessive time difference between the two speech patterns. The
maximum value of r is the absolute difference in frames between
the input and the reference patterns.

Warping path gradient condition:

The gradient of the warping path should not be allowed to be too
steep, nor too gentle, since it can result in the unrealistic
correspondence between a short segment of one pattern with a long
segment of the other pattexrn under comparison. A situation like
this would occur if a short segment of a phoneme transition in
one speech pattern is in good coincidence with an entire vowel
steady state segment in the other speech pattern. Thus, it is
necessary to restrict the warping function gradient to a certain
range which will not cause undesirable time axis warping.

Consider two consecutive points f(k-1) and f(k) on the warping

function as illustrated in Figure 3.2. The point f('k) is derived

from the point f(k-1) by either horizontal, vertical or diagonal
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n productions

m productions

fk-1)

FIGURE 3.2: THE WARPING PATH GRADIENT CONSTRAINT
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productions or a series of their combinations. A minimum gradient
condition can be realised by requiring n diagonal productions to be
preceded by m horizontal productions. Similarly, a maximum gradient
condition can be realised by having the n diagonal productions
preceded by m vertical productions. So the gradient of any
prospective path between f(k-1) and £(k) is restricted by these two
values.

The intensity of the gradient constraint can be expressed as a
measure P, given as:

P=n/m 3.11

Figure 3.3 illustrates the various series of productions for the
different values of P. For example, in Figure 3.3c, the contribution
to the grid point (i,j) comes either from (i-3, j-2), or (i-1, j-1),
or (i-2, j-3). The minimum gradient from £(k-1) to f(k) has two
diagonal productions and one horizontal production, and the maximum
gradient has two diagonal productions and one vertical production.
The gradient constraint measure P for this case is 2. The larger the
value of P, the more restricted the gradient of the warping function.
In the case where P = «» the warping path would be restricted to the
diagonal line 1 = j and the non-linear time normalization is not
achieved. When P = 0, there is no restriction on the gradient of the
warping function.

ii) 'The weighting coefficient and the normalized constant

The computation of the time normalized distance D(A,B) between
the two speech patterns A = {a;, a5, ... Ay, o ay} ‘and
B = {bl,bz, ves, bJ-,..., bJ} as given in equation 3.6, requires the
specification of the weighting coefficient w(k), and the

normalization coefficient N, which is dependent on w(k). Several
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(a) P=0 (b) P=1
f(k-1) f(k)=(lrj) E(k)=(lrj)
’
f{k-1)
£(k-1} =(i-2,3-1) flk-1)=(i-1,3-1)
=(i-1,3-1) ={i,j-1)
f(k-
=(i-1,3-2)
fk)=(i,3)
{c) P=2

£ (k-1)=(i-1,3-1)

f (k-1
=ii—323'-2)

f(k-1)
=(i-2,3-3)

FIGURE 3.3: WARPING PATH PRODUCTIONS FOR P=0, P=1,

AND P=2
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weighting functions which depend only on the local productions of the
warping path have been proposed [43] and are of the form:

Type a: wik) = i(k)-1i(k-1) 3.12a
Type b:  w(k) = j(k)-j(k-1) 3.12b
Type c: w(k} = (i(k)-i(k-1) + j(k)-j(k-1)) 3.12¢c
Type d:  w(k) = MAX [(i(k)-i(k-1), (J(k)-j(k-1)}] 3.124

Figures 3.4(a), (b) and (c) give a pictorial illustration of these
weights on each production of a warping function with gradient
constraint P=0, P=1 and P=2 respectively.

It can be observed that the weighting function type 'a’, weighs the
productions according to the distance moved along the i axis; type
'b' according to the distance moved along the j axis; type 'c'
according to the sum of the distances moved in both i and j
directions. Type 'd' weighs all the productions equally. For types
'a' and 'b' weighting functions, the zero weights on some productions
may result in the exclusion of some features in the speech pattern
from the comparison process. Since the effect of these weighting
functions is to map the time axis of one pattern onto the time axis
of the other, the time normalization is referred to as of
asymmetrical form. Type 'c¢' weighting function ensures that all the
frames of both speech patterns are used in the comparison process,
and is referred to as symmetrical form of time normalization.
Symmetrical time normalization can be seen as a process whereby the
time axis of both speech patterns are mapped onto a temporarily
defined common axis.

The normalization coefficient N, is determined by the requirement
that the total distance, D(A,B), should be the average local distance
along the warping path and is expected to be independent of both the



(i-1,3) 1 (1,3)

L ]
(1_1 :j—l) (l'j_l)

Type 'a' constraint

(i-1,3-1) (i,%9-1

Type 'c' constraint

56

(i-1,5) 0 (3,3)
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FIGURE 3.4(a): WEIGHTING FUNCTIONS FOR A WARPING PATH WITH

GRADIENT CONSTRAINT P=0
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FIGURE 3.4(b): WEIGHTING FUNCTION FOR A WARPING PATH WITH
GRADIENT CONSTRAINT P=1
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FIGURE 3.4(c): WEIGHTING FUNCTIONMS FOR A WARPING PATH WITH
GRADIENT CONSTRAINT P=2
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path and the temporal length of the two patterns arnd is of the form:

K
N = z w(k) 3.13a
k=1

For the type 'a' weighting function, the normalized constant is
reduced to:

K K
N= } wk)= § [L(k)-i(k-1)] =1 3.13b
k=1 k=1 .

while N, for type 'b' weighting function, becames:

K
N= } [§(k) - 3k-1)] =7 3.13¢c
k=1 .
and for type 'c':
K
N= ) [i(k)-i(k-1) + j(k)-j(k-1)] = I+J 3.134
k=1

However, the type 'd' weighting function is dependent on the time
alignment path. This dependence is illustrated in the example of
Figure 3.5, which shows two possible time alignment paths for speech
patterns A and B. For simplicity, it is assumed that the two
patterns are of equal length L. Path 1 is the straight line joining
the initial and the final end points, and path 2 is on the edge of
the acceptable region in which the warping functions should lie for
an adjustment window length r. For example, using values of L=7, and
r=2, the time normalization constants for the path are:

path 1: N
path 2: N

n 1
x O
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Path 1
Path 2
ol -l L ] 1
2 3 4 5 6 7
input pattern axis
FIGURE 3.5: TWO POSSIBLE PATHS THROUGH A GRID
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The dependence of type 'd' normalization constant on the warping
path, is a serious disadvantage. This is because the computation of
the time normalized distance, D(A,B), is done by a dynamic
programming method which relies on a local minimization process to
arrive at a final solution iteratively and the optimum path can only
be determined at the end of the computation. Thus a normalization
constant dependent on the path is clearly unsuitable. The altemmative
is to choose an arbitrary value for the normalization constant, say
L, at the expense of a bias in the DTW process for certain paths over
others. The bias may result in a non-optimal path, thus affecting the
performance of the warping process.

iii) The DP matching algoritim

Dynamic programming (DP) methods can be effectively applied to
compute the time normalized distance, D(A,B), between the two speech
patterns A and B which are defined as in equations 3.3a and 3.3b.
The procedure is recursively implemented by defining the minimum
accumulated distance at a given point on the warping function as the
sum of the accumulated distance at the preceding peoint plus the
weighted local distance. Starting from the initial grid point (1,1)
up to the final grid point (I,J), the final accumulated distance on
the warping path can be found using a DP method.

Step 1:
Initial condition

gy (£(1)) = d(£(1)).w(1) 3.15

where g1(£(1)) is the minimum accumulated distance at £(1).

Step 23
The DP equation is:

gk (£(k)) = MIN {gy_y (£(k-1)) + A(£(k)).w(k)} 3.16
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Step 3:
Do step 2 for k = 2, 3, ...K. Restrict the warping function to the
region j-r € 1 € j+r.

Step 4:
The time normalized distance, D(A,B), is given by:

D(A,B) = (1/N) gg(£(K)) 3.17

where N is the normalization constant.

The flowchart in Figure 3.6 illustrates the computations in the above
algorithm. ‘

By imposing the restrictions on the warping function described in
Section 3.2.1(i) and substituting equation 3.12 for the weighting
coefficient w(k) in the DP equation in step 3, several practical
algorithms can be realised. For example, for the asymmetrical form
with no slope constraint (P=0) as illustrated in Figure 3.3a, the DP
equation reduces to:

g(i,j-1) +d4(i,j) . 0
g(i,j) = MIN ! g(i-1,3-1) + 4(4,3) . 1 3.18
g(i-1,j) + d4(i,j) . 1

Table 3.1 contains several DP equations for both symmetrical and
asymmetrical forms of time normalization for various warping function
gradient constraints.
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START

l

Set i=1, j=1
g{l,1)=4(1,1)

l

i=1+1

i=j~-r

YES

i j=j+1

NO

YES

Total Distance
D(a,B) = g(1I,J)/N

STOP

DP Eguation
g(ir:])= LI I

FIGURE 3.6: THE DP MATCHING ALGORITHM FLOWCHART
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TABLE 3.1

SAKOE AND CHIBA'S DIW ALGORITHMS [43]

Gradient| Symmetxrical/
Constant| Asymmetrical

DP Equation
g(i,j) = ...

. g(ifj-l)+d(lfj)
0 Symmetrical MIN {g(i—l,j—1)+2d(i.j)
g(i"‘l,j )+d(irj )
: ' g(i,j-1)
0 Asymmetrical MIN {g(i-l,j-l)+d(i,j)

(Type a constraint)

g(1-1,3)+d(4,3)

1 Symmetrical

g(i-1,3~1)+24(4,3)

g(i-1,3-2)+2d(4, j-1)+d(4,3)
MIN{
g(i-2,j-1)+2d(i-1,j)+d(1,3)

g( i-lr j—1)+d(irj)

g(i-1,3-2)+d(1,3j-1)
MIN{
g(i-2,3-1)+d(i-1,3)+d(4,j)

g(i-2, j~3)42d(4i-1,§-2)+24(4, j-1)+d(4, )
MIN{

2 Symmetrical g(i-1,3~-1)+24(4,3)
g(i-3rj-2)+2d( i-2lj—1 )+2d( i_lrj )+d( irJ )
g(1-2, j-3)+d(i-1,3-2)+d(1,j-1)
MIN {g(i'lfj'l)*‘d(i,j)

2 Asymmetrical
: (Type a constraint)

g(i-3,j-2)+d(i-2,j-1)+d(i-1, j)+d(4,J)
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3.2.2 The Itakura DTW Algorithm [26]

The Itakura DTW algorithm is realised by imposing different
restrictions on the warping path gradient from those described in the
Sakoe and Chiba's algorithms. The monotonic, continuity and boundary
conditions of the warping function remain the same. Figure 3.7a
illustrates the relationship between adjacent points on the warping
function. The accumulated distance g(i,j) at the grid peoint (4,j) is
the sum of the local distance between the ith and the jth frames of
the input and the reference pattern respectively, and the minimum
accumulated distance to the grid peint (i-1,q), i.e.

g(i,j) = d(a;,bs) + MIN {g(i-1,q)} 3.19
B T 22Ny

The path toc the grid point (i,j) can only originate from the three
points: (i-1,j), (i-1,j-1) and (i-1,j-2). A further constraint on
the warping path is that two successive horizontal productions are
not allowed. Thus equation 3.19 takes the form:

g(i—lrj) -W(i—l,j)
g(i,j) = d(4,3) + MIN {g(i—l.j-l) 3.20a
g(i-1,j-2)

where W(i-1,j) = = if £(i-1) = £(i-2)

1 otherwise

Dynamic Programming is used to compute equation 3.20a starting from
the grid point (1,1) to the point (I,J) to give the final solution:

D = g(I,J)/N 3.20b

where N is the number of points on the warping function.
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The local constraints imposed on the warping function plus the end
points boundary conditions result in a search area in the i-j plane
in which the optimal path lies as illustrated in Figure 3.7b. The
region is a parallelogram whose two extreme corners are the grid
points (1,1) and (I,J) with lines of gradient 1/2 and 2. The
parallelogram lines with gradient 1/2 arises from the condition
prohibiting two successive horizontal productions, so that no path to
the grid point (4,j) can originate from a grid point higher than (i-
2,j-1). The lines with gradient of 2, are likewise determined by the
condition that the path to the grid point (i,j) cammot originate from
a lower grid point than (i-1,3-2). :

3.2.3 Results

The performances of Sakoe/Chiba and Itakura DTW algorithms were
evaluated in a pattern matching based isolated word recognition
system. The speech patterns used were discrete sequences of ‘14th
order LPC feature vectors, extracted from Hamming window weighted
speech data in 25.6 msec segments. Two sets of 5 kHz bandlimited
speech, consisting of a group of acoustically similar words
(confusion set), and a group of dissimilar words (dissimilar set)
were used in the experiments. The local distance for comparing the
input and the reference pattern frames is the distortion measure
proposed by Itakura [26] and will be discussed further in Chapter 5
of this thesis. The input pattern to the recognizer is matched with
all the reference patterms and is recognized as the reference word
with the smallest distance D(A,B). Details of the input and
reference patterns are given below:

a) 'Ocnfusim set:

The confusion set of words was composed of the acoustically similar
vocabulary words: G, B, C, D, E, V, P, T, spoken by the three male
subjects SM1, SM2, SM3 and the two female subjects SFl, SF2. Each
male speaker spoke each of the eight words twice, and the femalle
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speakers only once. With the speech patterns of SF1 as the
references, the DTW algorithms were tested with the speech utterances
of SM1, SM2, SM3 and SF2 as the input. The test procedure was
repeated with the speech patterns of SMl1 as reference and the input
patterns from SM1l, SM3, SFl1 and SF2. The percentage of correct
identifications of the input words is defined as the recognition
rate.

b) Dissimilar set:

The dissimilar set of words was composed of the vocabulary words:
NINE, THREE, WRITE, CONTROL, STORE, FIVE, YES, SEVEN, which all
appear to be acoustically different. These words were spoken by the
three male subjects SM1, SM2, SM3, and the female subjects SF1, SF2.
As with the confusion set, the three male speakers uttered the
vocabulary words twice and the two female speakers once. The
experimental procedure described above with the confusion set, was
also repeated using the dissimilar set.

The recognition test results using the Sakoe and Chiba DIW algorithms
are shown in Table 3.2. Of interest here is the comparison in
performance of different Sakoe/Chiba DTW algorithms. Therefore, the
actual value of the adjustment window length, r, used in the
algorithms is not important as long as it is fixed for a given speech
pattern pair. In the experiment, the value of r was fixed to four
frames (i.e. 102.4 msec), otherwise r was set to the value of the
absolute difference in frames between the input and the reference
patterns. The recognition test results for the Itakura DTW
algorithmé are also shown in Table 3.2, for both the confusion and

the dissimilar vocabulary sets.

3.3 MODIFIED DTW ALGORITHMS
3.3.1 The Endpoints Adjustment

The assumptions in the DTW algorithms discussed in the preceding

sections that the input and the reference speech patterns are in
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TABLE 3.2

RECOGNITION TEST RESULTS USING (i) SAKOE AND CHIBA'S

(ii) ITAKURA'S DTW ALGORITHMS

Type of DIW Algorithm

Recognition Rate (%)

Test Vocabulary

Confusion Set

Dissimilar Set

1. Sakoe & Chiba
P=0
Asymmetrical
r>4

42.9

78.6

2. Sakoe & Chiba
P=0
Symmetrical
r>4

58.9

B2.2

3. Sakoe & Chiba

Asymmeirical
rz 4

60.7

78.6

4. Sakoe & Chiba
=1
Symmetrical
rz 4

66.1

80.4

5. Sakoe & Chiba
P=2 .
Asymmetrical
r 24

53.6

73.2

6. Sakoe & Chiba
P=2 '
Symmetrical
r 24

53.6

71.4

7. Itakura

78.6
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complete time synchronism at the initial and final frames, can only
be justified where accurate determination of the beginning and the
endpoints of both patterns can be made. Usually, the detection of
the end frames of an utterance is a difficult task because of their
similarity with silence frames. At the beginning of an utterance,
breathing noise is usually present and it is easily confused with
speech. Weak fricative sounds at the beginning or ending of an
utterance, or vowel tails which appear at the end of an utterance,
can sometimes be identified incorrectly as silence. Usually in a
practical speech recognition system, the endpoints of the reference
speech pattern are accurately determined manually and stored in
memory. Thus it is only for the input utterance that endpoints have
to be determined during the recognition process. If accurate
detection of the endpoints of an utterance cannot be made, then the
performance of the DIW process is degraded. An alternative approach
is to relax the boundary conditicns of the time warping algorithm as
proposed by Rabiner et al [44]. Their method is based on retaining
the restrictions on the warping path described in Section 3.2.1(i),
with the exception of the boundary conditions which are modified as
follows:

1 S4i(1) €146 3.2l1a
and , I-5 < i(K)<I 3.21b

where § is a positive constant representing the number of frames
within which the endpoint is to be found. The non-zero value of
§ increases the area of the allowed search region in the i-j plane in
which the optimum path can lie. A value of § = 1 has been suggested
as generally suitable [44].
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3.3.2 Paliwal's Modification over the Sakoe and Chiba DTW Algorithm
[45]

In the Sakoe and Chiba's DTW algorithm, a given frame in the input
speech pattern is compared with a limited number of frames in the
reference speech pattern, in order to remove the possibility of
excessive time differences not normally present in speech. The
allowable number of frames mismatch, r, is defined as in equation
3.10, i.e:

li-j] < r 3.22

and is the width of the adjustment window in the warping path. This
means that the grid endpoint (I,J) is cutside the region in which the
optimal path can be found if the absolute time difference, |J-1I|,
between the two patterns is larger than r. Thus the algorithm is
limited to patterns whose temporal differences are less than a
certain value of r. This limitation is undesirable in word
recognition systems because many of the speedh patterns can be of
diverse temporal lengths, and an accurate distance measure is still
required between patterns of large temporal differences.

Paliwal et al [45] have proposed some modification on the Sakoe and
Chiba algorithm in order to enable the comparison of patterns of any
temporal difference. The modified algorithm uses the same adjustment
window length and restricts the warping path to the region in the i-j
plane bounded by two lines parallel to the diagonal line joining the
initial grid point (1,1) to the final grid point (I,bJ). The
adjustment window is given by:

i - (rs)l < 3.23

where s = J/I is the gradient of the diagonal line.
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The adjustment window condition limits the warping path in the region
bounded by lines j=si+r and j=si-r and ensures the inclusion of the
endpoint (I,J) in the distance computation. Figure 3.8 is an
illustration of the warping path region for both the Sakoe and
Chiba's algorithms and the Paliwal's algorithm when [I-J| > r.

3.3.3 Myers' Algorithm [46]

The performance of the Itakura's DTW algorithm, like the Sakoe and
Chiba's algorithms, becomes inadequate when large temporal
differences exist between the speech patterns to be compared. Myers
et al [46] have examined the effects of the various ratios of the
input to reference pattern lengths on the Itakura's DTW algorithm.

Figure 3.9 illustrates the relationship between the search area in
which the optimum path can be found and the ratio I/J of the input to
reference pattern length. The search area is maximum when the input
and the reference patterns are of egual length. The area shrinks
considerably when the input/reference patterm ratioc is 2/3 and at a
ratio of 1/2 only a single path, which is the straight line joining
the grid points (1,1) and (I,J), is valid. Such a situation is merely
a linear expansion of the reference axis and does not exploit any of
the advantages offered by DTW.

The larger the search area, the less the restriction on the warping
path resulting in many paths among which the best can be selected.
Thus it would be reasonable to expect the DTW algorithm to give
better performance for pattems of equal length since the search area
will be maximum. Myers has proposed a scheme whereby both reference
and input patterns are reduced to a standard length before applying
the DTW algorithm. Thus the input speech pattern A, given as:

A=1{a, a3, «.., 84, +.., 87)
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FOR BOTH THE SAKOE AND CHIBA'S DTW ALGORITHM,
AND THE PALIWAL'S MODIFICATION WHEN |I-J| >r
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is transformed into a pattern A of length 1I' such that:

A= {51,'52, “ew, ai., -..,‘EII}

where the feature vectors Eiv are related to the original vectors ay
as follows:

ajr = (M) ay +May,;, i'=1,2,..., I' 3.24

i is the largest integer < [(i'-1)(I-1)/(1'-1)] + 1 3.25a

M= [(i'-1)(I-1)/(I'-1)] + 1-i 3.25b

for example, a sequence A = {a;, as, .., agl, with 8 frames, is
transformed into a sequence A' with 6 frames given by:

A' = {al =3, éé = 0-632 + 0.483, 55 = 0.233 + 0-834,

]
=Y
!

= 0.835 + 0.236, 5—5 = 0.436 + 0.6a7’ 56 = 38}

Similarly the reference pattern B = {b;, by, ..., bj, ..s, b3} is
transformed into a pattern of the same length I' as the input
pattern. Following the pattern length normalization, the DTW
algorithm is then applied.
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3.3.4 Results

The modifications provided by the Paliwal and by Myers' approach on
the DTW algorithms of Sakoe and Chiba, and Myers' approach on the
Itakura DTW algorithm, were evaluated by their performance in an LPC-
based pattern matching isolated word recognition system. Both the
confusion words set (B, C, D, E, G, P, T, V), and the dissimilar
words set (NINE, THREE, WRITE, CONTROL, STORE, FIVE, YES, SEVEN) were

i) Variation of the recognition‘ rate with the adjustment window
length

The Sakoe and Chiba DTW algorithm, with the warping path gradient
constraint P=1, and using the symmetrical form of matching, was found
in Section 3.2.3 to give a higher performance than the other
algorithms. The variation of the recognition rate, with the
adjustment window length employed in the algorithm was investigated
using the confusion set data. The results obtained are shown in
Figure 3.10. The variation obtained on incorporating Paliwal and
also Myers' approach are also shown in Figure 3.10.

The results cobtained on repeating the experiments with the dissimilar
data set are shown in Figure 3.11.

ii) Paliwal's modification as applied to the Sakoe ard Chiba's DTW
algorithm

The modified algorithm used a fixed window length, r, of four frames
and employed the endpoint relaxation method discussed in Section
3.3.1 with d¢=1. The recognition test results obtained for different
constraints are tabulated in Table 3.3.
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TABLE 3.3

RECOGNITION TEST RESULTS OBTAINED ON USING THE PALIWAL'S MODIFICATION
OVER THE SAKODE AND CHIBA'S DTW ALGORITHM

Recognition Rate (%)
Sakoe & Chiba's DTW
algorithms

constraints Test Vocabulary

Confusion Set Dissimilar Set

Asymmetrical 53.6 76.8

r=4

Symmetrical 58.9 BD.4
r=4

Asymmetrical 60.1 80.4
r=4

Symmetrical 66.1 83.9
r=4

Asymmetrical 53.6 69.6
r=4

Symmetrical 44.6 66.1
r=4
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iii) Myers' approach as applied to the Sakoe and Chiba's algorithm

Using Myers' algorithm, all the speech pattems were normalized to a
fixed length which is the average length of the patterns within the
recognition vocabulary. For the confusion set the normalized length
was 15 frames and 20 frames for the dissimilar set. Since the speech
patterns were already normalized to a fixed length, a smaller window
length r=2, was employed in the Sakoe and Chiba's algorithms.
Endpoint relaxation for the speech patterns was employed with 6=1.
The recognition test results are shown in Table 3.4.

iv) Myers' approach as applied to the Italama's DIW algoritim
The speech patterns were processed as in (iii) above, using the
Myers' algorithm and the same endpoint relaxation figure of §=1. The

recognition results are also tabulated in Table 3.4.

3.4 THE ORDERED GRAPH SEARCH TECHNIQUE

The DTW methods discussed above have been found to give reliable time
alignment between input and reference spesch patterns, but have the
disadvantage of involving heavy computation. As a consequence,
several altermative procedures for reducing the computation have been
propcsed [44]1[47] but are mainly based on imposing more tight
restrictions on the warping path constraints at the expense of losing
optimality. Brown and Rabiner [48) have proposed a novel procedure
based on the search algorithms described by Nilsson [49]. In their
method the DTW process is modelled as an ordered graph search (0OGS)
through a constrained grid, in order to find the path with minimum
cost as discussed below.

3.4.1 Path Cost Estimation

Consider the graph in Figure 3.1. Let each grid point in the search
area be termed a node since the optimal path may pass through it. A
node is designated by its coordinates in the i-j plane. Thus the
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TABLE 3.4

RECOGNITION RESULTS USING MYERS' PATTERN LENGTH NORMALIZATION
A1GORITHM WITH (i) SAKOE & CHIBA'S DTW ALGORITHM

(ii) ITAKURA'S DTW ALGORITHM

Type of DTW Algorithm

Recognition Rate (%)

Test Vocabulary

Confusion Set

Dissimilar Set

1. Sakoe & Chiba
P=
Asymmetrical

r=2

80.4

2. Sakoe & Chiba
=0
Symmetrical
r=2

82.1

3. Sakoe & Chiba

Asymmetrical

r=2

48.2

83.9

53.6

83.9

85.7

6. Sakoe & Chiba

Symmetrical
r=2

82.2

7. Itakura

58.9

78.6
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starting node s=(1,1) and the ending node e = (I,J). For any path in
the grid passing through the node n, the path cost g(n) in terms of
total accumulated distances at the node is given by:

a(n) = g(n) + h(n) 3.26

where g(n) is the path cost from the starting node s ton and h(n) is
the minimum cost of the path from node n to the end node e. Since the
search starts from node s, towards node e, the minimum cost g(n) is
l-mowﬁ exactly, but the cost h(n) can only be estimated. Thus an
estimate of the minimum path cost g(n) at n for the path is given as:

q(n) = g(n) + A(n) 3.27

where h(n) is an estimate of h(n).

In the OGS algorithm, it is required to satisfy the condition 'a(n) <
q{n). Thus T}(n) must underestimate the true path cost h(n), from
node n to the terminal node e, i.e.

B(n) S h(n) = L (D(A(K), B(£(k))) 3.28
k=i-+1

wheren = (i,j) and e = (i,J). A and B are the two speech patterns
under consideration. The true path cost, from node n to the terminal
node, is the sum of the local distances along the path. Considering
the asymmetrical form of time warping where the number of grid points
along the path is (I-1i), h(n) can be bound above by:

h(n) = (I-i).d 3.29
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where d is a constant, small encugh to ensure that h(n) < h(n).

For acoustically different speech patterns, equation 3.29 has been
found to be a gross underestimate resulting in a large number of
nodes to be searched. In order to overcome these difficulties, an
adaptive estimator has been proposed [48], and is of the form:

h(n) = (I-1). g(n)/i 3.30

For similar sounding words, g(n)/i, tends to be small, thus giving an
estimate of h(n) in the correct range. For patterns of acoustically
dissimilar words, the overall effect is to increase h(n). Although
there is no theoretical guarantee that R(n) of eguation 3.30
underestimates.h(n) in all cases, it has been found to give a
suitable estimate in practice [48].

3.4.2 The Search Algorithm

In the standard DTW approach, the computation of all the local
distances in the search region is reguired since all the possible
warping paths are searched, subject to the imposed constraints, The
gain in the computation efficiency in the graph search method is
achieved by considering only the warping paths which appear to be
likely candidates for the optimal path and as such, the local
distances for some grid points are not reguired.

A path starting from s to the node n is characterised by the nodal
state at n given by:

i) The node coordinates (4, 3)

ii) The production fram node n-1 to node n
iii) The estimated cost h(n)

iv) The exact cost g(n).
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At the given node n the path is searched by expanding the production
for which the estimated cost is minimum, the other productions are
terminated into 'open' nodes. These nodes are termed 'open' since if
the chosen production is later found to be illegal or suboptimal then
they can be re-visited and expanded for the optimal path search. As
the path search is carried out, an 'open list' of nodal states of
potential paths is maintained. The ‘open list' is arranged such that
the path with the lowest estimated cost g(n) is on top of the list.
The minimum cost path through the grid is found by removing the node
on the top of the open list and expanding it to generate all legal
successor nodes for which new path oosts are estimated. The successor
nodes are also sorted into the 'open list' and again the minimum cost
node is removed from the 1list and expanded. If the following
conditions are satisfied, then the first path to terminate at node e
will be the minimum cost rode.

i) The node expansion operation is the same for all ncdes
ii) g(n) is monotonic and > 0 for ¥V n=s
iii) gn) < g(n) for v n '

iv) h(n) is monotonic, h(n) > 0, Vn # e.
The various steps in the algorithm are as follows:

Step 1: Start with node s = (1,1) on open list

Step 2: Remove node from open list having lowest estimated cost a(n)
and place in closed list for expansion

Step 3: Generate successor node subject to local constraints

Step 4: If successor node is illegal go to step 2

Step 5: If the successor node already exists in the open list or in
closed list go to step 3

Step 6: If successor ncde does not satisfy search constraints go to
step 3

Step 7: Bave nodal state _

Step 8: If terminal node reached go to step 10

Step 9: Compute the estimated cost g(n) and sort the node into the
open list. Go to step 3
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Step 10: The minimum path cost is obtained from the nodal state as
g(I).

The above algorithm is illustrated in Figure 3.12, in which an input
pattern, with 7 frames, is compared with a reference pattern with 6
frames. The search begins at node s = (1,1), which is expanded using
horizontal, vertical and diagonal productions to grid point (1,2),
(2,2), and (2,1), where an estimate of the path cost g(n) from
equation 3.27 is made. The grid point (2,2), with the smallest cost
g(n} is expanded, the cost at the other grid points being placed in
an open list. The grid peint (2,2) is expanded to points (3,3),
(3,2) and (2,3), and the path costs estimated. On expanding the grid
point (2,3), which has the lowest estimated path cost, to grid points
(3,3), and (3,4), (the grid point (2,4) is illegal because it falls
outside the search region), the pafh cost estimates show that an
earlier grid peint (3,2) has the smallest path cost estimate among
all the open list nodes. Therefore, the estimated costs at (3,4) and
(3,3) are put in the open list and instead the grid point (3,2) is
expanded. The process continues until grid point (7,6) is reached.

3.4.3 Results

The OGS technigue was compared with the DIW algorithm by performing
recognition tests using the confusion set and the dissimilar set of
vocabulary words of Sections 3.2.3 and 3.3.4. Only the asymmetrical
form of Sakoe and Chiba's algorithms were considered. This is
because the path cost estimation in the OGS algorithm, as given in
equations 3.29 or 3.30, requires the asymmetrical path constraints.
' The recognition rate results and the number of distance computations

done are given in Table 3.5.
3.5 DISCUSSION

From the results presented in the previous sections, the following
points can be deduced:
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TABLE 3.5

A OOMPARISON OF THE RECOGNITION RATE OBTAINED WITH THE
ASYMMETRICAL FORM OF SAKOE AND CHIBA'S ALGORITHM WHEN
DTW AND WHEN OGS TECHNIQUES ARE EMPLOYED

Average number of
Recognition Rate (%) distance computations
per word

Algorithm DTW/ | Confusion | Dissimilar | Confusion | Dissimilar

oGS Set Set Set Set
Sakoe & Chiba| DTW 53.6 76.8 g8 123
r=4
P=
Asymmetrical oGS 50.0 76.8 34 48
Sakoe & Chiba! DTW 60.1 80.4 88 123
r=4
P=1
Asymmetrical oGS 60.1 78.6 31 44
Sakoe & Chiba| DTW 53.6 69.6 88 123
r=4
P=2
Asymmetrical 0GS 53.6 £66.1 26 45
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The recognition rate performance of the Sakoe and Chiba's DTW
algorithm, tabulated in Table 3.2, is seen to be heavily
dependent on the warping path gradient constraint P. The
symmetrical form of matching tends to give a better performance
than the asymmetrical form of matching, for a given gradient
constraint P. This would be expected since in the asymmetrical
form of matching, the possibility of some of the frames in the
speech patbterns being excluded in the distance computation may
arise. The symmetrical algorithm with the constraint P=1, gives
better recognition rate than the other types of warping
algorithms under consideration, including the Itakura DTW
algorithm. These results are in agreement with the findings of
Sakoe and Chiba [43].

The variation of the recognition rate with the adjustment window
length in the Sakoe and Chiba's symmetrical algorithm with the
gradient constraint P=1 is illustrated in Figures 3.10 and 3.11.
An improvement in the recognition rate is obtained as the
adjustment window length r is increased. For low values of r,
the recognition rate is poor since the possibility that r is
less than the absolute difference between input and reference
patterns arises.

Using Paliwal's modification on the Sakoe and Chiba algorithm,
has the effect of significantly improving the recognition rate,
as has been reported by Paliwal et al [45]. As the value of r
is increased from unity, the recognition rate increases to a
maximum value. Likewise using Myers' algorithm to normalize the
patterns to equal temporal length and then applying the Sakoe
and Chiba DTW algorithm, improves the recognition rate, but as
the value of r is increased a drop in the recognition rate may

ocour.

Results obtained by applying Paliwal's modification on the
various types of Sakoe and Chiba's algorithms are given in Table
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3.3. Again the algorithm, using the gradient constraint P=1, and
of the symmetrical form of matching, shows a significant
superior performance over the other slgorithms.

Results obtained when the input and reference speech patterns
are normalized to a fixed temporal length using the Myers'
algorithm, and then applying the Sakoe and Chiba's DTW algorithm
in the matching process, are shown in Table 3.4. The
symmetrical matching algorithm, with gradient constraint P=1,
again gives better performance than the other DTW algorithms.
The effect of using the Myers' normalized patterns in the
Itakura DTW algorithm gives a slight improvement in the
recognition rate as indicated by the results in Tables 3.2 and
3.4. Myers et al [46] also reported similar characteristics.
The advantage of using Myers' algorithm would be significant
when the reference and input patterns have large temporal
differences.

Table 3.5 shows the recognition results obtained when the Sakoe
and Chiba asymmetrical algorithm were computed using the DTW
method and when the OGS method was employed. The OGS method
requires far less local distance computations than the DIW, but
this is realised at the expense of a slight drop in the
recognition rate. Brown and Rabiner [48] have reported similar
conclusions in their comparison of the OGS method with the
Itakura DTW algorithm. Since there are alternative ways, which
will be discussed in Chapter 5, of reducing the computation time
in a word recognizer with negligible loss in recognition
accuracy, the 0GS method does not offer any advantages.

In conclusion, from the results obtained in this Chapter, Paliwal's
modification on the Sakoe and Chiba DTW algorithm with gradient
constraint P=1, and of the symmetrical form was found to offer the

best performance in an isolated word recognizer and as such it is
employed in the recognizers discussed in subsegquent chapters.
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CHAPTER 4

THE USE OF FILTER BANK ENERGY FEATURES
IN ISOLATED WORD RECOGNITION

4.1 INTRODUCTION

In the human speech percepticn system, speech signals undergo a
bandpass filtering process in the cochlea, an organ located in the
inner ear. Energy is extracted from the speech in frequency bands
spaced according to the natural, or as is often called, the critical
band freguency scale of the ear. From the distribution of energy in
the frequency bands, important acoustic cues which enable the
decoding of the message in the speech signal are determined.

Similarly, in computer based speech recognition systems an utterance
can be represented as a discrete pattern of energy values obtained
from the variocus frequency bands of a bandpass filtering process. In
this Chapter, different filter banks, characterized by the number of
filters, type of filters, filter passbands and filter spacing, are
designed and used in the translation of a speech utterance into a
pattern of energy parameter values. The effect of the type of filter
bank employed in processing the speech utterances, on the accuracy of
a word recognition system, is investigated. Finally, methods for
reducing the redundancy present in speech energy patterns are

suggested as a way of improving the word recognition accuracy.

4.2 FILTER BANK FEATURE EXTRACTION

The filter bank feature extraction process is illustrated in Figure
4.1. A speech utterance, S, is passed through a bank of Q bandpass
digital filters which partition the frequency spectrum of the signal
into various frequency bands. The passbands of the filters are
usually designed to be continuous over the signal frequency spectrum,
so that the composite spectrum of the overall filter bank does not
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have sharp dips between adjacent filters.. The frequency spacing can
be determined in various ways. They can be placed on a uniform
scale, a logarithmic scale or along a critical band frequency scale
which is related to the human speech perception system.

Each bandpass output is passed through a non-linear network such as a
square law detector, or a full wave rectifier. The no:n—linearity has
the effect of non-uniformly distributing the original band-limited
signal energy over the entire frequency spectrum. However the energy
at low frequency in the resultant signal, is generally proportional
to the total bandlimited energy. Thus, the output of the low pass
filter (LPF) which follows the non-linear network, is a measure of
the energy in the speech signal in a particular frequency band. The
sampler decimates the output of the low pass filter at a rate twice
the LPF cut-off frequency. The set of energy values obtained from
the Q channels generally have a large dynamic range. For this
reason, a logarithmic compressor is applied to reduce the range.

The set of energy values, for a given time instant, constitute a Q-
dimensional wvector. Thus the input speech utterance, §, is reduced
to a temporal pattern of L vectors of energy wvalues:

S = {51, 8y, -+, Sgr eeey s1,} 4.1a

sy = [54(1), s5,(2), ... 5, (0)1, 1€ 2L 4.1h

is a vector of logarithmic energy values measured from the Q chamnels
at a time instant . In speech recognition terminology, the vector
Sy is also known as a frame. The output speech pattern from the
filter bank, is then subjected to a time and frequency normalization
procedure, as described below.
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4.2.1 Channel Thresholding

The purpose of channel thresholding is to clamp low level noise
signals in the channels, at instances when essentially no speech
signal is present. This is accomplished by applying a threshold
value, so that energy values below a certain level are clamped at the
threshold value. In this manner, the operation of the system is less
sensitive to background noise present in the input speech signal. The
peak signal energy, for the utterance S, in the ith chamel is given
as:

s(i) = : % [sﬂ(i)] 4.2

and the threshold, T(i), for the ith chamnel is set at:
_ max
(i) = s(i) - T 4.3

The major effect of a finite value of T, is to eliminate errors
arising due to widely varying energy values in bands with no speech
energy. As such, its actual value is not important, as long as it is
at least equal to the average signal to noise ratio of the input
speech. In practice, the peak signal to noise ratio of the input
speech has been suggested [50] as a suitable choice of T.

4.2.2 Energy Normmalization

Energy normalization attempts to compensate for the variation in the
gain level of speech from one utterance to ancther utterance. For

the ith frame, the average energy value s_,g is given by:

- Q
§£ = (1/Q) 121 sg(i), for 1< f@ <L 4.4
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The normalized feature vector of the frame is then given by:
§£(i)=s(i)-§, 1€1isQ 4.5
The whole discrete sequence, S, is thus transformed into a new

sequence of normalized values.

4.3 THE DIGITAL FILTER BANKS

Finite Impulse Response (FIR) filters, were chosen for the bandpass
filters in Figure 4.1, owing to their linear phase properties and
stability. These filters were designed using the window approach
technique (see Appendix A), although the equiripple approximation and
the frequency sampling method are known [51] to give better
performance in terms of the filter passband-stopband transition width
for a given passband and stopband ripple factor. The main advantage
of the window design approach is its relative simplicity, and its

flexibility in specifying the length of the filter impulse response.

4.3.1 Filter Bark Spacing

Four different methods were investigated in dividing the. input signal
frequency range into continuous bands, that is: uniform spacing,
octave spacing, 1/3 octave spacing, and critical band spacing were
investigated.

i) Unifcrm spacing
The uniformly spaced filter bank is obtained by dividing the
frequency spectrum uniformly into the required number of channels.

The centre frequency, f; of the ith channel is given by:

£ =(Fg/MN) 4i; 1=1,2, ...0 4.6
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where Fg is the sampling frequency, N is the rumber of filters that
span the baseband frequency of the speech signal. Thus, Q satisfies
the property

0O < N/2
since the channels for i > N/2 are mirror images of the first N/2

channels.

The bandwidth Af; of the ith channel is given by:

AEy = (£5 - £4.9)- kK, Kk >1 4.7

when the factor k=1, the filters are placed "end to end". For k > 1,
there is overlap between adjacent filters.

ii) IXIdeal octave arnd 1/3 coctave spacing

An alternative filter bank spacing is to arrange the channel

bandwidth eqhally along a logarithmic scale. The bandwidth of the
ith channel, AF; is given by:

5
"
b
&
A

i=2,3 ..., 0 4.8a

4.8b

|
)

AF]._

where a and C are fixed constants.
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The centre frequency, Fy, of the ith channel, is given by the

relation:
i-1 AFi
F; = Fg+ ] AF, + 4.9a
2 =1

is the lower cut-off frequency of the first channel.

For a value of a = 2, the spacing is ideal octave, and for a = 4/3,
the spacing is 1/3 octave.

iii) Critical band spacing

Critical band spacing is based on the human auditory perception
system, where the ear is known to process speech using a filter bank
type of analysis [52]([53]. The filter spacing is highly non-uniform,
and with characteristics that would be difficult to obtain with
conventional filter design techniques. Figure 4.2 is an illustration
of the amplitude/frequency characteristics of the auditory system
filters [54]. The centre frequency F;, the lower and upper cut-off
frequencies F; and Fy can be approximated by first transforming the
linear frequency scale into a non-linear Barks [54] scale, as follows:

0.01 F 0 <F < 500
B(F) = 0.007F + 1.5, 500 < F < 1200 4.10
6 In F - 32.6, F > 1220

where F is the freguency in Hz, B is the freguency in Barks. For a
given filter, centred at frequency F;, the critical bandwidth is
obtained by first evaluating:
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FIGURE 4.2:

Fregquency

FREQUENCY CHARACTERISTICS OF THE AUDITORY
SYSTEM FILTER [54]
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By = B(Fy) 4.11

\
The lower cut-off frequency Fy, the upper cut-off frequency Fy, and
the critical bandwidth AF; are given by [54]:

FL = F (BO - 0-5)
Fy = F (Bg + 0.5)

Thus, using equations 4.10, 4.11 andd 4.12, it can be deduced that the
lower frequency channels, i.e. 200 € Fy € 500, have a bandwidth of
100 Hz approximately. ’

4.3.2 Bandpass Filter Design Results

The individual bandpass filters in the filter bank were designed by
truncating the infinite response of the ideal bandpass response with
a Hamming window as described in Appendix A. An impulse response of
128 samples in length was found to give reasonably sharp cut-off
filters in the bandwidth range 100 Hz - 2.5 kH=z.

i) Uniform filter bank

Filter banks with 5, 8, 10, 12 and 16 channels equally spaced along
the 5 kHz signal spectrum and with no overlap were designed. The
spacing of these filters is given in Table 4.1. Figure 4.3
illustrates the characteristics (log magnitude against freguency) of
the individual filters in the 8-channel filter bank with no
overlapping between adjacent filters.
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TABLE 4.1

UNIFORMLY SPACED FILTER BANKS WITH 5, 8, 10, 12 AND 16 CHANNELS

PASSBANDS (Hz)

Charmel | 5 Channel | 8 Chamnel |10 Chamnel | 12 Chammnel| 16 Channel

No. Filter Filter Filter Filter Filter

Bank Bank Bank Bank Bank
Bandwidth | Bandwidth |Bandwidth | Bandwidth | Bandwidth

(BW) = (BW) = (BW) = (BW) = (BW) =

920 Hz 580 Hz 460 Hz 400 Hz 285 Hz
1 200-1120 | 150- 730 | 200- 660 150- 550 200- 485
2 1120-2040 | 730-1310 | 660-1120 550- 950 485- 770
3 2040-2960 | 1310-1890 |1120-1580 950-1350 770-1055
4 2960-3880 }1890-2470 11580-2040 | 1350-1750 | 1055-1340
5 3880-4800 |2470-3050 |2040-2500 | 1750-2150 | 1340-1625
6 3050-3630 |2500-2960 | 2150-2550 | 1625-1910
7 3630-4210 (2960-3420 | 2550-2950 | 1910-2195
8 4210-4790 |3420-3880 | 2950-3350 | 2195-2480
9 3880-4340 | 3350-3750 | 2480-2765
10 4340-4800 | 3750-4150  2765-3050
11 4150-4550 | 3050-3335
12 4550-4950 | 3335-3620
13 3620-3905
14 3905-4190
15 4190-4475
16 4475~-4760
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ii) Ideal octave spacing

Assigning a bandwidth of the order of 100 Hz for the low frequency
channel, the 5 kHz frequency spectrum range is divisible into 5
charmels spaced along an ideal octave frequency scale. The filter
spacings are given in Table 4.2. The frequency response of the
individual chamnels is shown in Figure 4.4.

iii) 1/3 octave spacing

The low freguency channel is assigned a bandwidth of the order of
100 Hz. The 5 KHz frequency spectrum range then yield 8 channels
spaced along a 1/3 octave frequency scale as shown in Table 4.3. The
frequency response of the individual chamnels is shown in Figure 4.5,

iv) Critical band spacing
The sixteen channels which cover the 5 kHz frequency spectrum on a
critical band scale are given in Table 4.4. The frequency response

of the individual channels is shown in Figure 4.6.

4.4 THE WORD RECOGNITION SYSTEM
4.4.1 System Description

The block diagram of the word recognition system based on the filter
bank analysis is shown in Figure 4.7. The input speech samples,
8(n), n=1,2, ..., N, are passed through the bank of bandpass filters.
A filtered signal, y;(n), is obtained at the output of the ith
bandpass filter as a convolution of the input signal with the filter
impulse response thus:

M-1
yi(n) = I hy(m) S(n-m); 1 <i<gQ 4.13
m=0
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TABLE 4.2

IDEAL OCTAVE FILTER BANK OVER THE BASEBAND 150-4800 Hz

Channel Passband Bandwidth
No. (Hz) (Hz)
1 150- 300 150
2 300- 600 300
3 600-1200 600
4 1200-2400 1200
5 2400-4800 2400
TABLE 4.3

'1/3 OCTAVE FILTER BANK OVER THE 150-4860 Hz BASEBAND

Channel Passband Bandwidth
No. (Hz) (Hz)
1 150- 325 175
2 325- 555 230
3 555- B66 311
4 866-1280 414
5 1280-1830 550
6 1830-2570 740
7 2570~-3550 980
8 3550-4860 1310
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TABLE 4.4

THE CRITICAL BAND SPACED FILTER BANK

Channel Passband Bandwidth
No. (Hz) (Hz)
1 250- 350 100
2 350~ 450 100
3 450- 550 100
4 550- 690 140
5 690- 830 140
6 830- 970 140
7 970-1110 140
8 1110-1255 145
9 1255-1480 225
10 1480-1750 270
11 1750-2070 320
12 2070-2450 380
13 2450-2900 450
14 2900-3430 530
15 3430-4060 630
16 4060-4800 740
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where M is the duration of the filter impulse response h(m). The
signal, yi(n), is passed through a square law detector to obtain a
signal sequence y;(n). At the discrete time instant, n, the energy
s,(1), in the ith channel can be estimated by low pass filtering the
signal y4(n), i.e.

K-1
(1) = } Fi(nk) wik) 4.14
Sn 2o i
where Fi(n) = (y4(n))2, 1€ n< Nv-1

A Hamming window, w(k), with a length K = 256, was employed as a LPF.
Thus, at each time instant, n, the cdtput of the filter bank gives a
Q-dimensional vector of energy values. By sampling s (i), at
suitable temporal intervalsg, the input signal can be represented as a
pattern of L vectors of Q dimensions, as given in equaticn 4.1. The
sampling interval of 25.6 msec was used in the experiments described
here. The speech pattern is then subjected to a pre-processing stage
where a channel threshold of 50 dB below peak signal energy, (i.e. T
= 50 dB) is employed. An energy normalization procedure as described
by equations 4.4 and 4.5, is then performed. The resultant speech
pattern of normalized energy vectors is then compared with pre-stored
reference patterns of the vocabulary words. The pattern comparison
yields a set of distance scores which are passed over to a decision
stage, where the identification of the input word is made.

i) Training session

The aim of a training session is to create reference patterns to be
used in the word recognition process. In a single reference pattern
recognition system, each vocabulary word is represented by one
reference pattern formed from the utterances of a given speaker. In
a multiple reference pattern system, each vocabulary word is
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represented by patterns formed from the repetitions of the word by
different speakers,

ii) Testing session

In the testing session, the performance of the recognizer in
correctly identifying an input word is assessed. The input word is
reduced to a discrete sequence of channel energy values and compared
with all the pre-stored set of reference patterns of the vocabulary

words. Let the input word be represented by the patterm A, of I
frames, and that each frame contains a set of Q energy values.

i.e. A= {al, B9, ey 84, wee, aI} 4.15a
where ay = (341, @19, -« By - aiQ] 4.15b:
Likewise, a reference pattern B is the sequence of J frames:

B = {by, by, ..., by} 4.16a
where bj = [bjl, bjz,...,qu,...ij] 4.16b

The matching process of pattern A to B requires the definition of a
local distance between their frames. The absolute norm has been
suggested as a suitable measure, and is used here mainly because of
its simplicity and its reported satisfactory performance [55].

Thus, a distance d(a;, bj) between frames a; and bj is given as

d(ai, b:j) = ?ll aiq - qul : 4,17
a=
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The Euclidean distance measure can also be used, as well as other
alternative distance measure metrics proposed by Klatt [56].

The total distance D(A,B) between pattern A and B is obtained using
the Sakoe and Chiba dynamic time warping algorithm with Paliwal's
modification, as discussed earlier in Section 3.2 of Chapter 3. 1In a
single reference pattern per vocabulary word system, the input word
is recognized as the vocabulary word which gives the minimum error
matching, i1.e. the nearest neighbour rule.

Let R = {Rl, Ry, ey Ry, oo, Rv} be the set of reference patterns
of the V vocabulary words. The DTW matching stage computes the
distance, D(A,Rv), v=1, 2, ... V, between the input word and the
vth reference pattern. The input word is recognized as the
vocabulary word r represented by the rth pattern such that

D (A,RI) = 1lif,N<V D (A, R,) 4.18

When multiple patterns are used for each vocabulary word, then the 'k
nearest neighbour' (KNN) rule is used to identify the input word.
Let each vocabulary word be represented by M patterns. Thus, the
reference patterns form the set {R]r_", Rm, eses R‘I,n, aee R‘f,r}, where m =

1,2, ... M. l{'j, is the mth occurrence of the vth vocabulary word.

Let the DTW distance between the input word pattern, A, and the
reference pattern R,,, be denoted as D,,. For each vocabulary word
there are M distances. If these distances are re-ordered so that:

pfle o2 <... < DM 4.19

Then, for the KNN rule the average distance D, is computed fram:
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K
B, = ) DMK, K«<M 4.20

The input word is recognized as the vocabulary word represented by
the rth reference word which gives:

D.= MIN D, 4.21
1<vEV

4.4.2 Recogndticn Results

A series of experiments were performed in order to assess the
influence of the different filter bank designs on the recognition
accuracy. The investigations involved the use of: (a) uniformly
spaced filter banks with 5, 8, 10, 12, and 16 channels; (b) a third
octave spaced filter bank with 8 channels; (c) ideal octave spaced
filter bank with 5 channels, and (d) critical band spaced filter bank
with 16 channels.

i) Recognition performance in systems using single reference
pattern per vocabulary word

Table 4.5 gives the results obtained in different recognition systems
employing single reference pattem per vocabulary word. Utterances
fram the male speakers SM1 and SM3, and from the female speaker SF1
were used to test the recognizer in a speaker independent mode. The
utterances of speaker SMZ were used in generating the reference

pattems.

ii) Recognition performance in systems using multiple reference
patberns per vocabulary word

In these experiments, each vocabulary word was represented by four
patterns obtained from different speakers. The recognizer was tested
with speech utterances from speakers who did not contribute to the
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TABLE

4.5

PERFORMANCE OF THE WORD REQCOGNIZER WITH VARIOUS FILTER BANK

SYSTEMS:

SINGLE REFERENCE PATTERN/VOCABULARY WORD

FILTER BANK SYSTEM RECOGNITION ACCURACY ( Y)

Test 1 Test 2 Test 3 Average
Filter No. of
spacing |Channels o . o . o

Q o] [oF] tl ] M

4 L A QD ~ <H]

q 6 o« c A

4] n @ o v 15}

& & & & & 8

w wn 44 ]

I 1) +

SESE | SEYY | dmsd

g nmmwn ERHwmm W BH @ wn
Uni form 5 52 56 42 50.0
Uniform 8 60 66 54 60.0
Uniform 10 62 68 56 62.0
Uniform 12 62 62 56 60.0
Uniform 16 58 60 54 57.3
Ideal il
Octave 5 64 66 52 60.6
1/3
Octave 8 68 70 62 66.6
Critical
Band 16 64 62 58 61.3
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generation of the reference patterns i.e. speaker independent mode.
The decision process in the recognizer employed a kNN rule with k =
3, to identify an input word, as described in Section 4.4.1. The
experimental results are given in Table 4.6.

4.5 THE EFFECT OF SPEECH SIGNAL REDUNDANCY SUPPRESSION ON RECOGNI-
ZER PERFORMANCE

In a word recognition system, a speech utterance, A, is expressed as
a discrete sequence of points in a multi-dimensional feature space.
Since the speech signal consists of stationary and transitional
regions during which a rapid change in the characteristic of the
spectrum occurs, some points along the discrete sequence
representation will be spectrally similar to their immediate
predecessors, and others will show large differences. In this
section, two methods of transforming the points in A into a new
sequence B, where the points have either less redundancy or are
distributed equidistantly in a multi-dimensicnal space are discussed.
The transformed speech patterns are then used in the word recognition
system.

4.5.1 A Simple Redundancy Removal Method

Given a speech utterance, A, as a sequence of I multi-dimensional
feature vectors, a less redundant seguence B can be formed by
neglecting vectors in A which are less than a certain threshold
distance from their immediate predecessors.

Let, A = {al,'-az, cees 84, eeny, aI} 4.22a
then B ={by, by, ..., by, ..., bp:) 4.22b
where I' < I

and bi = ai if d(ai_l, al) > dT
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TABLE 4.6

PERFORMANCE OF THE WORD RECOGNIZER WITH VARIQUS FILTER BANKS
SYSTEMS: MULTIPLE REFERENCE PATTERNS/VOCABULARY WORD

FILTER BANK SYSTEM RECORNITION ACCURACY ( °/°)

Test 1 Test 2 Test 3 Average
Filter No. of
spacing [Channels L = 9

.- o N .“ « v w

) 0w o~ ~ no o~ M m o~

L O™ Q Moo [6)] o NN

Y] TN I T -~ 0

[ A U o L] [} L&

2 fe | & iz | & %+

T &G | 7 85 T &G

+ - 4 - o -

SE8E | dgys Bl

g Wy W B oW HWmWm
Uniform 5 62 72 64 66.0
Uniform 8 72 78 72 74.0
Uniform 10 74 86 BO 80.0
Uniform 12 70 80 76 75.3
Uniform 16 74 70 72 72.0
Ideal
Octave 5 70 84 80 78.0
1
Oc/:?:ave B 74 a0 82 82.0
i BT 72 88 82 80.6
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dr is a threshold value dependent cn the required length I' of B. If
N frames are to be purged from A, then from the ordered list of
inter-frame distances, d; € 45 < ... dy €... d;_;, dp is set equal
to dy. The original sequence is said to be compressed by a factor
of (I'/I) in obtaining the new sequence B.

4.5.2 The Trace Segmentation method [571[58]

The vectors a;, a,, ..., aj of the speech pattern A, (eguation 4.2a),
can be considered as describing a trace of I points in the multi-
dimensional feature space. The idea behind trace segmentation is to
re-distribute the I points along the trace, into a fewer number of
points which are equidistantly spaced. This is achieved by
partitioning the trace into S segments, and thereafter using the $+1
segment boundaries as the new points which describe the trace. ' The
total accumulated distance D, along the discrete sequence A is
computed as:

I-1
D= .21 d(a;, aj41) 4.23
i=

where d(a;, ai+l)' is the absolute distance between vectors a; and

8541

The distance, D, is to be distributed equally along the S segments of
the trace. Thus, once S is fixed, the distance Dj between two
consecutive points in the transformed sequence will be given by:

Dy, = D/S 4.24

The transformed sequence B = {bl, by, ..., bs+1}, is formed from the
sequence A, as follows:
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The first and last points in A are retained in the transformed
sequence, i.e.

by =28  and  bgy =3

Then, starting with b; as the first point in the transformed
sequence, the distance between consecutive points in A are computed
until the following conditions are met:

d(bl' 32) + d(az, 33) + ...t d(ak_l, ak) ?DL 4.25
d(bl’ 82) + d(az, 33) + ... + d(ak_z, ak_l) < DL 4,26

From equations 4.25 and 4.26, there exists a point b,, which belongs
to the space between a,_, and g, such that:

d(by, ay) + d(ay, ag) + ... + d(a,_, by) = Dy 4.27

Equation 4.27 can be rearranged as:

d(ay_y, by) =D - &(by, by) - d(ay, agz), - ... ~dlay_ 5, ;)
a 4.28

Let the Q energy values, in say vector a;, be denoted as:

1 q a2
i3 7 ©
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The elements of vector by, can be located by linear interpolation:
(b}~ afy)/Dp, = (3§ - 8j.1)/d(84y, 8y) 4.29
where q = 1,2, ..., Q.
bj = aj; + ((ay’- afly) - D/A(ayoy, ap)d 4.30

Hence, starting fram by, the algorithm is repeated to obtain:

b.ar b4f sesy bs+1 4.31

Thus, the original sequence is replaced with the new sequence:

B = {bl, bz, b3, ewv o, bS"’l} 4.32

where b'l = a1 and bs+1 = ag.

The trace segmentation procedure compresses the original pattern, by
a factor of (S/I), into points which are not ' temporally equidistant,”
but spaced according to spectral changes along the utterance. In the
new pattern more points will be allocated on the transition regions
of the speech utterance where more accurate description is reguired,
at the expense of stationary regions where the signal is more
redundant. '
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4.5.3 Results

The recognition system employing an 8 channel, 1/3 octave spaced
filter bank is shown, in Table 4.6, to give better performance in a
speaker independent manner, than the other systems under
consideration. The effect of using speech utterances with reduced
redundancy as described in Sections 4.5.1 and 4.5.2, on the
performance of a word recognizer was then investigated for this type
of filter bank. Figure 4.8 shows the recognition results, expressed
as a percentage of correct identifications of the input word,
obtained in three testing sessions. In these experiments, each
vocabulary word was represented by four patterns from utterances of
different speakers. The recognizer was tested with speech utterances
from speakers who did not contribute to the generation of reference
patterns, as given in Table 4.6. Both the simple redunjancy removal
and the trace segmentation methods were used with vaxrying compression
factors on the teét and reference speech pattems.

4.6 DISCUSSION

In this Chapter, the use of filter bank features in word recognition
is examined. Filter banks with different numbers of channels were
designed and their frequency characteristics are shown in Figures
4.3, 4.4, A.5 and 4.6. Each filter was designed by truncating the
infinite response of an ideal bandpass filter with a Hamming window
of 128 samples in length. The filters possess a reasonably sharp cut-
off rate, and also provide an attenuation of at least -60 dB in the

stop band.

On the performance of the word recognition system using various
filter banks as given in Tables 4.5, 4.6 and Figure 4.8, the
following points can be deduced:

i) For a given filter bank system, the recognition accuracy is
greatly enhanced by using multiple reference patterns per

vocabulary word, rather than a single reference pattern per
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vocabulary word. This is to be expected, since the multiple
patterns from different speakers represent a wider variability
of the vocabulary word.

On using uniformly spaced filter banks, the recognition
performance degrades when the number of channels is too few (in
the range of 5) or too many (in the range of 16). The
recognition accuracy obtained with 10 channels was the highest.
The reason for the degradation in performance when the number
of channels is high is that the individual filters become so
narrow in bandwidth that the energy estimation is poor due to
large fluctuations in the spectrum. With a low number of
channels, the system has a very poor frequency resolution which
leads to inability to discriminate between words. Similar
results have been reported by Dautrich et al [50].

Given the same number ©f channels, filters spaced on a non-
uniform scale give a better performance than those spaced on a
uniform scale, i.e. the 5 channel?deal_ octave vis+—::1- vis the 5
channel uniform spaced filter bank, the 8 channel 1/3 octave
vis—::l—vis the 8 chamnel uniformly spaced filter bank, and the
16 channel critical band vis-;-vis the 16 channel uniform
filter bank. The reason for this can be attributed to the fact
that the uniform filter bank spacing weighs all the regions in
the spectrum equally, whereas the non-uniform filter banks have
a bias toward the lower spectrum range. From subjective
listening tests, it is known that the spectral range below 3
kHz is more important than the upper frequency range (3 kHz-5
kHz) in the identification of speech utterances consisting
mainly of voiced sounds. Probably, it is this bias in the non-
uniform filter banks, which gives them a superior performance
over the uniform filter banks, in the recognition task. Note
that the 50-word recognition vocabulary consists of utterances
with mainly voiced sounds. '
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iv) The highest word recognition accuracy was obtained using the 8

V)

charnel 1/3 octave filter bank.

An improvement in the accuracy of the word recognition system
can be achieved by using the proposed simple redundancy
removal, or the trace segmentation methods, as shown in Figure
4.8. When a compression factor of 0.5 is used, the performance
is severely degraded since useful information in the speech
pattems is lost. A compression factor of 0.8 or 0.9 produces a
significant improvement in recognition accuracy. This is
because a bias is introduced, in which more features are
extracted from transitional regions, as opposed to stationary
regions in the speech signal. A major setback with the simple
redundancy removal and the trace segmentation methods, is the
difficulty involved in estimating the level of redundancy in a
speech utterance, and hence the optimal compressibn factor to
be used.
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CHAPTER 5

THE USE OF LPC FEATURES IN ISOLATED WORD RECOGNITION

5.1 INTRODUCTION

Linear prediction analysis has been established as a predominant
method in the estimation of speech parameters such as pitch,
formants, vocal tract area functions, spectra etc, with a reasonable
accuracy and a low computational load The ability to describe the
vocal tract transfer function with'a small number of parameters, is
of fundamental importance in many aspects of speech processing. The
short time spectral estimation of speech using linear prediction,
also provides a suitable representation of the signal for recognition
purposes. '

This chapter commences with a presentation of the linear prediction
theory and its applicability in speech recognition. The performance
of several LPC-based word recognition systems is then assessed by
computer simulations. In order to achieve speaker independent
performance, multiple reference patterns per vocabulary word are
employed in the recognition system. However, an increase of the
recognition accuracy in such a system is realized at the expense of a
large increase in the computational load. A method, based on
clustering the reference pattern into a small number of disjoint
groups is suggested as a means of reducing the computational load.

The need to reduce the memory reguirements in the recognizer, leads
to the use of vector quantization techniques. Word recognition
systems which employ vector quantization are therefore examined, and
their performance compared. A new system, termed the LPC/VQ/SPLIT
recognizer, which has a low memory requirement and still maintains a
recognition accuracy comparable with established systems is finally
proposed.
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5.2 LINEAR PREDICTION QF SPEECH [11][59]1[60]

The main idea behind linear prediction is that a given speech sample
can be approximated as a linear combination of its immediately
preceding samples. Such a representation leads to a simple all-pole
filter that can model the short term vocal tract transfer function

with a reascnable accuracy.

5.2.1 Basic Principles

The block diagram in Figure 5.1 is an illustration of the basic all-
pole speech synthesis model; a time-variant digital filter excited
either by a periodic pulse train or by random noise. The steady state
transfer function of the digital filter is of the form:

H(z) = G 5.1
P
1+ § ak) z®
} k=1
where G is a gain parameter
and a(k), 1 £k €p are the filter coefficients.

This transfer function, H(z) is a simplification of the filter in the
source filter model of speech producticn, first proposed by Fant [61]
in which the combined spectral contributions from the vocal txract,
glottal excitation and the radiation of the lips are represented by a
single all-pole time varying filter.

Voiced sounds are modelled by exciting the filter with pulses
separated by a pitch period. Unvoiced sounds are modelled with
random noise as the input. Nasals and fricative sounds are not well
modelled by this simplified system since the acoustics of these
sounds are described by a vocal tract transfer function containing
zeros and poles. Nevertheless, for a high order of filter
coefficients, p, a good representation of all kinds of sounds can be
obtained with the all-pole synthesis model. A major advantage of the
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Pitch
Pulse
Generator
Voiced/ S (n)
unvoiced —
switch
§ a(k) s(n-k)
White noise k=1 Linear
generator predictor [~
of order p

FIGURE 5.1: THE SOURCE-FILTER SPEECH SYNTHESIS MODEL



125

model is that the filter parameters, i.e. the gain and the filter
coefficients, can be determined efficiently by the linear prediction
analysis method.

Linear prediction, as its name implies, is a method of predicting a
speech sample, S{n), from a linear combination of a number of
immediately preceding samples, i.e.

§(n) =
k

a{k) S(n-k) 5.2
4

.~ g

where S(n-k), k = 1,2, ...p, are the p preceding sampies. The
weighting coefficients, a(k), k = 1,2, ... p, are optimized by
minimizing the sum of the squares of differences between actual
speech samples and the linearly predicted ones. These coefficients
are known as the prediction ccoefficients, and p is termed the order
of prediction. '

Let the error between the actual value of a sample, S(n}, and its
predicted value, S(n), be e(n).
Then,

P

e(n) = S(n) - 3(n) = §(n) - § a(k) S(n-k) 5.3
k=1

The prediction coefficient are obtained by minimizing the total
squared error, E, given by:

E= ] e%(n) = (S(n) -. § a(k) $(n-k))? - 24
. . k=1

Depending on the range of summation in equation 5.4, there arises two
distinct methods for the estimation of the prediction coefficients,
namely the autocorrelation and the covariance methods.
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5.2.2 The Autocorrelation Method

In the autocorrelation method of computing predictor coefficients,
equation 5.4 is minimized by considering only speech samples within a
finite duration, and that cutside this duration, the speech samples
have zero wvalues., This can be accomplished by weighting the speech
samples, S(n) using the rectangular window, w{n). The windowed
speech samples, S(n) are given by:

S(n) w(n), w(n) =1, 1<n<N-1
S'(n) = 5.5
0, ctherwise

The length, N, of the window function w(n) is set to a suitablé
duration, since the speech signal is approximately stationary within
short time segments. Since S(n) is non-zero only in the time
interval 0 € n € N-1, the error e(n) for the pth order predictor will
be non-zero over the interval 0 € n € N-1+p. From equation 5.3, it
can be observed that the error, e(n), will be large at the beginning
of the interval, i.e. 0 € n < p-1, because some of the predicted
samples are set to zero. Likewise, e(n) can also be large at the end
of the interval i.e. N € n £ N-1+p, because the actual speech samples
are set to zero. Therefore, a window function such as Hamming or.
Hann- ing, which gradually reduces the speech samples at the beginning
and at the end of the interval, is generally used.

The total squared error, E, is given by:

400 N-1+4p N-1+p P )
E= ) eXn)= J eXn)= J] (s(n)+ § a(k).S(nk))?* 5.6
Zeo n= fi=0 k=1
E is minimized by setting, —%E_ =0, 1< i< p 5.7

oa (1)
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which gives:
N-1+p P P
Y (Stn) + ) a(k) S(nk)) } S(n-i) =0 5.8
n=0 k=1 i=1
oxr
N—§+p p N-1+p
S(n) S(n-1) = - § a(k) ) S(n-k) S(n-i) 5.9
n=0 k=1 - n=0

i=12, ...p

The minimum total squared error, Ep, also known simply as the minimum
prediction error, is obtained by substituting equation 5.9 into 5.6

giving:

N-1+p P N-1+
31_ s(n)? + ) a(k) % P s(n) s(nk) 5.10
n=0 k=1 n=0

Ep:

Equations 5.9 and 5.10 reduce to:

j
Y a(k) R(i-k) = - R(1), 1<i<p 5.11
k=1

Ep = R(O) +. § a(k) R(k) ' 5.12a
k=1

The normalized prediction error, V., is obtained by normalizing Ep
with R(0):

Ep P
i.e. Vp=—= =1+ Y a(k) R(k)/R(0) 5.12b
R(0) k=1
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% N-1 :
R(1) = )} S(n) S(n-i) = } S(n) S(n-i), 0< i< p 5.13
n=-« n=0

The coefficients, R(i-k) in equation 5.11 are the avtocorrelation
coefficients of the speech signal, hence the name given to the
analysis method.

The set of equations defined by equation 5.11, can be expressed in a
matrix form as follows:

R(0) R(1) R(2) ... R(p—l)_ —a(l) ] PR(l)d
R(1) R(0O) R(1) ... R(p-2) a(2) R(2)
R(2) R(1) R(O) ... R(p-3) a(3) {=- | R(3) |5.14
| R(p-1) R(p-2) R(p-3) R(0) | L a(p) | | R(p) |

The p by p matrix of the autocorrelation coefficients is Toeplitz
i.e. the elements along any given diagonal are equal, a property
which can be advantageously exploited in the computation of the

predictor coefficients.

5.2.3 The Covariance Method

In the second approach, the minimization of the total sguared error,
E, is done over a fixed interval, i.e. the error signal, e(n), is
windowed but the speech samples are not.

N-1 N-1 P
E= ) e2n)= ) (S(n)+ ) a(k) S(nk))? 5.15
n=0 n':'—P k=1
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Equation 5.9 now becomes:

N=1 P N-1
I - 8(n) S(nk) = - y a(k) E S(n-k) S(n-i), 1<i<g<p 5.16
n=-p k=1 n=-p

Equation 5.16 is very similar to 5.9, except for the range of
summation which uses values of S(n) in the interval -p $n € N-1,
rather than over the interval 0 € n € N-1. Although these differences
seem to be minor, the sef of linear equations eventually derived, has
significantly different properties that affect the method of solution
and leads to different predictor parameters.

Equation 5.16 reduces to:

p

Y a(k) o(i,k) = - ¢(0,i), 1<i<p 5.17
k=1

o
where, ¢(i, k) = 5 we(n) S(n-i) S(n-k}, gives the cross-correlation
of the speech 1gEfr_nmples windowed by the function w,(n), usually a
rectanguiar window.

The relationship defined by equation 5.17 can be expressed in matrix
form as:

(6(1,1)  0(1,2) ... oL | | &) |ea0)
0(2,1)  9(2,2) ... ¢(2,p) a(2) 4(2,0)
. ) ] . = X 5.18

. * e - -

L¢P, 1) $(p,2) ... ¢(pP) | | alp) ] | ¢{p.0)]
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The above covariance matrix is symmetrical, i.e. ¢(i,k) = ¢$(k,i) but
unlike the autocorrelation matrix it is not Toeplitz.

The minimm prediction eror, Ep is given by:

p
E, = $(0,0) + Y a(k) $(0,k) 5.19
k=1

5.2.4 Camputation of the Predictor Coefficients

The solution to equations 5.11 and 5.17 for the predictor
coefficients can be obtained using any of the established methods for
solving p linear equations in p unknowns, e.g. the Gauss-Siedel
method [62]. Generally these methods would reguire heavy
" computation, but utilising the properties of the coefficient matrices
of these equations leads to more efficient and faster computation.
" For example, the symmetrical nature of the covariance matrix enables
the use of Cholesky's decomposition solution [63]. For the
autocorrelation method, the coefficient matrix is not conly
symmetrical but also Toeplitz and for this special case, Levinscn
[64] and Durbin [65] developed a recursive technique to efficiently
compute the prediction coefficients for a given order. Their

algorithm is as follows:

P
Step i: Given the matrix eguation 5 a(k) R(i-k) = -R(4i), for 1< .
=1
i <€p, it is desired to solve for the predictor
coefficients {ak}, k=1, 2, ...p

Step ii: Let E, = R(0O)

f

© Step iii: Compute i-1
ky = - [R(1) + Ja'™1(3) R(-3)1/E5 5.20

J=1
Step iwv: ai(i) = K. 5.21
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Step  v: at(3) = alT(§) + ky al7l(d-3); 1< <il 5.22

, 2

Step vi: Ei = (l - ki) Ei_l 5.23

Step vii: Steps (iii), (iv) and (v) are solved recursively for
i=1, 2, ...p and the final solution for the predictor
coefficients is given by:

a(j) = aP(§) 1 €j <p 5.24

In the algorithm, the computation for predictor order p, is preceded
by the computation for the solution of all predictors of order less
than p. The algorithm also computes the minimum error, E; at every

step, which decreases as the order of prediction increases, i.e.

i i-1- E, = R(0) 5.25

The intermediate quantities, ki' are referred to as reflection
coefficients, or partial correlation coefficients, and are always

less than unity in magnitude, i.e.

-1< k<1, 1<igp 5.26

Equation 5.26 has been shown [67] to be the necessary and sufficient
condition for the all-pole filter to be stable, i.e. all the poles
inside the unit circle. This is a major advantage of the
autocorrelation method over the covariance in computing the predictor
coefficients. As long as the autocorrelation coefficients are
normalized, the Levinson-Durbin recursive algorithm always produces a
stable filter, a condition which is not guaranteed in the covariance
method. Apart from the autocorrelation and the covariance methods,
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many other formulations of the linear prediction exist, e.g. maximum
likelihood [66], lattice [59] and inverse filter methods [11].

5.2.5 The Gain of the Synthesis Model

From the transfer function of the synthesis model, given in eguation
5.1, the output speech samples S(n) are related to the excitation
signal U(n) as follows:

P
S(n) =. Y a(k) S(n-k) + G U(n) 5.27
k=1

Since the prediction error signal e(n) is defined as:

o P
e(n) = $(n) - S(n) = §(n) - } a(k) S(n-k) 5.28a
o k=1
p

S(n) = ) a(k) S(n-k) + e(n) 5.28b
k=1

If the speech samples are defined exactly by the model, then:
e(n) = G U(n) 5.29

i.e. the error signal is proportional to the excitation signal, where
the constant of proportionality is the gain, G. In practice, it is
not possible to solve for the gain, G, directly from the error
signal. Instead, a reasonable assumption that the energy in the
error signal is equal to the energy in the excitation signal, is

made:
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N-1 N-1
i.e. 7 e?m) =62 .7 un) 5.30
n= n=
N-1
and that Y un) =1
n=0

Thus,

G2 = E, 5.31

5.2.6 Spectral Properties

The autocorrelation approach is directly suitable for the frequency
domain interpretation of linear prediction and therefore will be used
in the following discussion.

The total squared error, E, expressed in the time domain by equation
5.6, can be regarded as the output obtained by filtering the speech
signal with an all-zero filter whose transfer function, A(z), is
given by:

P
A(z) =1+ ) a(k)z ¥ 5.33
k=1

Let E(W) be the Fourier transform of the error signal, e(n), and S(ﬁi)
be the Fourier transform of the speech signal, S(n), in a given time
interval.

Using Parseval's theorem:

T ) ) +T
2 2 i 2
E =_2l1T __j | E(w)] dw=71r- JIst® (A} aw 5.34
m . . =T
Substituting, H{w) = G into equation 5.34, gives:

Alw)
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+TT Ly
GZ .- S(w) 2 .
E==2. f ]l-—(-_ll., dw 5.35
27 =T Hw)

or, in terms of the power spectrum:

+1
E=C [ Pl g, 5.36
T - P(w)

where P(w) is the power spectrum of the speech signal and f’(w) the
power spectrum of the model defined by H(z). ;

Thus, minimizing the total sguare error in the frequency domain, is
equivalent to minimizing the integrated ratio of the signal spectrum,
P(Q), to its approximation, 5( ui). The total square error is large
when s(ui) < P( uj), and small, for 5(03) > P(Q). Since the power
spectrum contains resonances at the formant frequencies, it means
that for a quasi-periodic signal the spectral approximation is far
superior at the harmonics than between harmonics. These properties
are illustrated in Figure 5.2, which shows the signal spectrum of a
vowel sound modelled by a 28B-pole linear prediction spectrum. The
original signal spectrum was obtained by an FFT analysis on a 25.6

msec segment of voiced speech.

It can be shown [see Appendix B), that the autocorrelation
coefficient of the speech segment and the autocorrelation coefficient
of the impulse response corresponding to the system function H(z),
are equal for the first (p+l1l) wvalues. As p -+ o, all the
autocorrelation coefficients are equal, and leads to the following
relationship:

Lim [H@w)|?2 = |sw)|2 5.37
P
This means that, for a large value of p, the signal spectrum is

closely approximated by the all-pole model function, H(z), with an
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arbitrary small error. This is illustrated in Figure 5.3, which
shows the original speech segment input signal, its FFT derived
spectrum and the linear prediction spectrum for various values of the
prediction order p.

5.2.7 Limitation of Linear Predictive Analysis

In the linear predictive analysis,it is assumed that all the speech
sounds can be generated by exciting the all-pole filter with either
quasi-periodic pulses or random noise. This means that nasal sounds
and voiced fricatives cannot be suitably modelled using the all-pole
"model. Fortunately, human perception is more sensitive to the
location of resonances than anti-resonances and so the synthesized
speech is generally acceptable as of good quality.

The normalized prediction error, V_,, defined in equation 5.12b, has
been shown to be dependent on the shape of the model spectrum [67],
by expressing it as:

- ~
exp b [ log Plw) du]

v, = l 5.38

LT oA
Z__TT_:I{ P{w) dw

where P(Q) is the power spectrum defined by the linear prediction
model .

Vp can be seen as a measure of the spectral flatness of the meodel
spectrum. It fttains a maximum value of 1 if P(uj) is fiat, and tends

to zero when P(w) exhibits large fluctuations.

Thus, the spectrum of a voiced speech segment, which is characterized
by resonances at a number of formant freguencies, is well modelled by
linear prediction.

Conversely, the spectrum of unvoiced scunds tend to be flat, and the

prediction error becomes higher. Of course, in both cases the
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prediction error is also a factor of the order of prediction, p. The
variation of the normalized prediction error Vp, as a function of p,
for both voiced and unvoiced sounds is shown in Figure 5.4.

The fact that linear prediction spectral estimation of a quasi-
periodic speech signal, is far more accurate at the harmonics than
between harmonics, results in a better model for male speech than
female speech. In female speech, the spectral harmonics are further
apart than in male speech due to the higher pitch, thus giving a
poorer fit, Children's speech results in even less accurate spectral
estimation because the pitch frequency is much higher.

5.2.8 Extracting LPC Coefficients for Speech Recognition

The short-time power spectrum has been used as one of the main
features in the description of speech segments. Since linear
prediction coefficients give a good estimate of the short-time
spectrum, their use in speech recognition becomes very attractive.
The manner in which the LPC parameters are extracted from a speech
utterance is illustrated in the block diagram of Figure 5.5.

The digitized speech utterance, S(n), is first pre-emphasized by
using a first order non-recursive filter with a transfer function,
H(z) = 1 ~ az™ L, to obtain the signal, S'(n) = S(n) - a S(n-1). A
suitable estimate of the pre-emphasis factor, 'a', is given by the
ratio, R(1)/R(0), [60]. The aim of pre-emphasis is to reduce the
spectral dynamic range of the signal.

In the next stage, the signal is segmented into frames, each of N
samples. The temporal length of the frames should be of the order of
a few pitch pericds in the speech signal. Typical frame sizes range
from 15 msec to 50 msec which correspond to values of N from 150 to
500 samples, at a sampling range of 10 kHz. Consecutive frames are
spaced M samples apart. When O < M < N, there is an overlap of the
blocks.
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The speech data in each block is windowed by a function, w(n), so as
to gradually taper the samples to zero, starting from the centre of
the frame and proceeding towards the frame edges. A frequently used
window in LPC analysis, is the Hamming window, given by:

0.54 - 0.46 Cos (2m/N-1), 0€ n< N-1
w(n) = [ 5.39

0, otherwise

Autocorrelation coefficients, R(g), £ =0, 1, ..., p, are computed
fraom the Hamming windowed speech samples, using the relation:

N-1-2
R(g) = . ) S(m) S(nth). g < g gpu 5,40
n=0 N ’

where p is the order of prediction.

The autocorrelation coefficients are usually normalized by the zeroth
delay autocorrelation coefficient, R(0). Levinson and Durbin's
recursive algorithm can then be employed to derive the values of
linear prediction coefficients of the desired order.

In this manner, the speech signal is reduced to a discrete sequence
of LPC vectors which describe the short-time spectral shape of the

signal.

5.3 DISTANCE MEASURES FOR LPC QOEFFICIENTS

The use of linear pi‘ediction in speech recognition has found wide
acceptance since Itakura and Saito [66][67] first proposed a suitable
distance measure in the compariscon of two speech frames expressed in
the LPC domain. To be useful, a distance measure d(X,¥Y) between the
speech frames X and Y should satisfy the following properties:

i) d(X,Y) should be positive definite, i.e.
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AX,Y) >0 for X £ Y
a(X,X) = 0 5.41

and be subjectively meaningful in the sense that small and large
distance measures correspond to similarity and dissimilarity

respectively.

ii) 4(X,Y) should have a physically meaningful interpretation in the
frequency domain.

iii) The distance measure should be efficiently computable.

The conventional sgquared error and the absolute norm distance
measures discussed in Chapter 4 do not appear to be subjectively
meaningful when applied to LPC coefficient sets. For this reason, a
number of distance measures which have meaningful frequency domain
interpretation have been proposed [67][68]1{69] and some are briefly
discussed below. :

5.3.1 The Log Spectral Measure [69][70]

Consider two spectral models,

P -
G/(1 +k):1 a(k) z %), and G/(1 + i a(k) zK)

The spectral difference, V(8), between these models on a log

magnitude versus freguency scale is given by:

P P
V(8) = log, (G%/]1 + 1 a(k)e 3|2y — 109, (G%/|1 + | ak)e K2
k=1 k=1

5.42

where 6 is the frequency on a scale normalized by the factor Fg/2n.

Fg is the sampling frequency.
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One set of logical choices for a measure of distance based on V{g),
is the Lp norms defined by dp, where,

e
4
- P 4o
R ANOTEE 5-43

When a value of p=1 is used, dp defines the absolute log spectral
measure. For p=2, the rms log spectral measure is defined and for p
approaching infinity the peak log spectral measure is obtained.

The Lp measures exhibit linearity, in the sense that multiplication
of V(8) by a scalar constant results in a multiplication of dp by the
same constant. In addition, the Lp measures are symmetric and
positive definite. However the main problem with the sbove distance
measures is the computational load required to obtain sufficient
values of V(0) in order to approximate the integral in equation 5..43
by a summation.

5. 32 The Itakura-Saitc Distance Measure [67]

Let Pqp(w) and PR(Q) be two power spectra of a test and a reference
speech frame described respectively by the LPC sets, ap = {1,a(1),a(2),
;--a(p)} and ag = {1,a(l),a{2} ...,a(P}. Then, the Itakura-Saito
distance, dIS' between the two spectra is defined as:

+m P P
N J‘ T T

drg (Pp, PR) = J [ - logy (=) - 1]
- PR PR

dw

— 5.44
27T

The thecoretical significance of d;g, comes from the formulation of
linear prediction as an approximate maximum likelihood estimation.
Since of concern here is the power spectrum estimates of P and Py
which are of the form:
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G? _ G*
PT = and PR = 5.45

P
1+ T amzX? e ¥ a2
R =

Equation 5.44 can be expressed as [see Appendix C]:

drg (Pp Pg) = — + logy (6% - logy (6%) -1 5.46
G
p —
where d= r(0) ry(0) +2 ) r(n) ry(n)
n=1
Pon _
and r,(n) = 5 a(i) a(im)
i=0

and where r(n) are the time-domain autocorrelation coefficients of
PT(w).

For a given power spectrum, P(w), and a scaled version of itself
AP( ), the Itakura-Saito distance between the two spectra, as defined
“in equation 5.44, is simplified to:

drg (P,)P) = T + logg) - 1 5.47

Thus dig is a gain sensitive distance measure, a characteristic that
is completely undesirable in the comparison of speech frames.
However, two gain insensitive versions of dIS are available and are

referred to as the gain optimized and the gain normalized measures.

i) The gain optimized Itakura-Saito distance measure:
The gain optimized Itakura-Saito distance measure, don, is given
by:

L[}

dgo (Pp, PR) = DON drg (P, P) 5.48

TTPwa P'I' dw

kil
10g, | o o= - [ log, (52) o= 5.49

"
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For an all-pole power spectra, eqguation 5.49 can be expressed as,

(Pp, PR) = logg (a) - logg (G%) 5.50
T e e

The gain-normalized Itakura-Saito distance measure:
The gain normalized Itakura-Saito distance, Aoy, for spectra of
the all-pole form, is defined as:

Fp B

G @
L | 5.52

G2
The three distance measures are inter-related as follows:
dgo = 10ge (1 + dgy) 5.33a
=l 2

dep = 109, [acj_ (drg + 1ogg _2? + 1)] 5.53b

An interpretation of the Itakura-Saito distance measure:
The gain normalized Itakura-Saito distance measure, dgy can also

be rewritten in matrix form as follows [see Appendix C]:

@) R [al*

(Pp, Pg) = -1 5.54
R

where [Rp] is the autocorrelation coefficient matrix of the test
frame speech data, and [a]t denotes the transposed vector of
[a]l. An interpretation of the distance measure is illustrated

in Figure 5.6.
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If a test speech frame, ST(n), is passed through its own inverse LPC
filter Ap(z), the energy of the error signal, ep(n) is equal to G2
(equation 5.30), which can also be expressed in matrix form as
{a]l[Ry] [a]t (see Appendix C). If the same test speech frame is passed
through the inverse LPC system described by the parameters of the
reference speech frame, the energy of the error signal, eg(n), will
be given by [a] [Rel [a]¥. The minimum energy in the error signal
will occur only when the signal is passed through its own inverse LPC
system, since the LPC parameters are cptimized for the frame.

The ratio, [al] [RT] [§]t/[a] [RT] [a]t, thus defines a measure of
difference between test and reference speech frames on their spectra.
The ratio is equal to unity only when the two frames are identical,
otherwise it is always greater than unity.

Some criticisms have been made on the three forms of Itakura-Saito
distance measure; especially that they do not satisfy the properties
of a true metric,

i.e. drg (X,Y) # dpg (Y, X) 5.55

It has been shown by de Souza [71], that the Itakura-Saito distance
measure is not a 'x,z-disiribution with p degrees of freedom (where p
is the order of prediction}, and therefore it is not optimal as a
test statistic. However, despite these objections, the Itakura-Saito
distance measures have been used in many practical applications with
excellent results.

5.4 THE LPC-BASED WORD REOOGNITION SYSTEM

The block diagram of a conventicnal word recognition system based on
the LPC analysis is shown in Figure 5.7. An input speech utterance,
S(n} is passed through a pre-emphasis network with transfer function,
1-0.90z"1. After an autocorrelation analysis on 25.6 msec Hamming
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windowed speech segments, LPC coefficients are extracted once every
25.6 msec, employing the Levinson-Durbin's recursive algorithm. The
input word is thus expressed as a discrete pattern of LPC vectors.
The recognition task requires the input word pattern to be matched
with a pre-stored set of reference vocabulary word patterns. These
reference patterns are generated a priori during a training session.
The dynamic time warping technique proposed by Sakoe and Chiba,
including Paliwal's modification, as discussed earlier in Section
3.2, is employed to obtain a time normalized distance between the
input word pattern and each reference pattern. The gain-normalized
Itakura-Saito distance measure was used for the local distance
between the frames of the patterns. In order to achieve speaker
independent performance, each vocabulary word is represented by
multiple reference patterns. Hence, the input word is identified
from the vocabulary using the k nearest neighbour (KNN) rule,
discussed earlier in Section 4.4 of Chapter 4.

i) ‘Traini e
In the training session, reference patterns of the wvocabulary words
are generated by an LPC analysis. Each vocabulary word is
represented by patterms formed from the repetitions of the word by
four speakers.

ii) Recognition results

A series of tests were carried out in order to investigate the
performance of the recognizer in correctly identifying input words.
The input words to the recognizer were taken from a speaker who did
not contribute to the generation of reference patterns. Each of the
50 vocabulary words, was represented by four reference patterns while
the input word was identified using the kNN rule, with k=3. The
results obtained on the recognition accuracy, as a percentage of
correct identifications of the input words, are given in Table 5.1.
The order of prediction, p, was varied from 6 to 14.




149

TABLE 5.1

PERFORMANCE OF THE LPC-BASED WORD RECOGNIZER WITH
VARYING PREDICTION ORDERS

RECOGNITION ACCURACY (%)

Order of Test 1 Test 2 Test 3 o
Predictor | Test speaker SMl1{Test speaker SM3 | Test spezker SF1 | &
p Ref speakers: Ref speakers: Ref speakers: §
SM2,SM4,SF2,SM3 |SM2,SM4,SF2,SML | sM2,SM4,S5F2,SM3 | &
p=6 74 64 60 66.0
p=8 78 70 64 70.6
p = 10 84 80 72 78.6
p = 12 90 88 84 87.3
p =14 94 20 84 89.3
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5.4.1 The Use of Discriminative Pattemns

Although the dynamic time warping algorithm achieves considerable
success in word recognition, its performance is ultimately limited by
its poor ability to discriminate between acoustically similar words.
The problem arises because all local differences between a test and a
reference pattern are assumed to be of equal importance. For
acoustically similar words, some local differences are crucial to the
correct identification of the input word, whereas some other local
differences are irrelevant. For example, in the vocabulary under
consideration, the words set {B, C, D, E, G, P, T, V} have all got a
common ending sound /e/, and differ only in their initial regions.
If in the recognition of a word 'B', the ending /e/ sound happens to
be more similar to the /e/ region in the reference pattern 'E', than
the /e/ region in the reference pattern 'B', then it is quite
possible for a misrecognition to occcur. A pattern matching technique
in which attention is focussed on those regions in the patterm that
serve to distinguish it from similar words, would provide a solution
to this problem.

Mocre et al [72], have proposed the following method of re-
structuring the reference patterns, so that similar regions are
represented by common frames. Consider a speech pattern A, of I
frames, and a pattern B, of J frames,

i.e. A= {al, az, vesn, ai, P aI} and B = {bl' bz, .oy bj,‘--, bJ}

and the distances d(i,j), along the optimal time registration path
cbtained by a DTW procedure.

If patterns A and B represent different words which have some similar
sounding regions, then some distances d(i,j), will be large and
others small. A probability distribution of these distances can be
obtained by using a large training set of the word pairs. The local
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distance d(i,j) can then be replaced with a probabilistic measure,
L(i,j/d), which gives the likelihood that frame a; belongs to the
class of frame a5, given the distance d(i,j). From the variation of
L(i,j/d) along the time registration path, a suitable threshold,
below which frames can be considered to be similar, is determined.
Thus, the similar frames in pattern A can be replaced with the
corresponding frames in pattern B. Moore et al [79], successfully
used this approach to discriminate between the acoustically similar
set of words pairs, {FIVE, NINE} {K, J}, {B, b}, {D, T}, {STALACTITE,
STALAGMITE} {RIDER, WRITER}. They reported a reduction in
recognition error rate, from 26.8% to 7.0%, on employing the

discriminative reference patterns.

However, the above procedure reguires a large training set of the
acoustically similar words, in order to obtain the probability
distribution of the inter-frame distances. In the absence of such
data, an approximate procedure is used here, in which the distances
d(i,j), of one word pair, are used to identify the similar regions.

i) Training Session
The reference patterns of the words set {B, C, D, E, G, P, T, V3,
obtained from the same speaker were considered. Using Myer's
algorithm, each word pattern was normalized to a length equal to that
of word pattern 'E'. The Sakoe-Chiba asymmetric DTW algorithm with a
gradient constraint, P=1, was employed to obtain the inter-frame
distances along the warping path, between each word pattern and the
word pattern 'E'. Figure 5.8 depicts the distances along the time
registration path, obtained with the above words set, uttered by the
male speaker SM1l. A threshold level is set by observation since the
end regions of the word pair are expected to display strong
similarity. The use of the symmetric DTW process, discussed in
Chapter 3, ensures that consecutive points on the optimal time

registration path, correspond to different frames in pattern E.
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ii) Results .
Tests were carried out to assess the influence of the reference
pattern structure discussed above, on the word recognition accuracy.
The input words in each test were obtained from a speaker who did not
contribute to the reference pattern generation. Each vocabulary word
was represented by four reference patterms. The results obtained are
given in Table 5.2, as a percentage of correct identification of the
input words. For comparison purposes, the results obtained without
using the discriminative reference patterns are also given in the
same table.

5.4.2 A Computation Cost Reduction Method

The error rate of a speaker independent isclated word recognition
system can be decreased by using reference vocabulary patterns which
reflect the inter-speaker variations for a given word. This is
achieved when each vocabulary word is represented by multiple
patterns of the same word uttered by different speakers. Such an
approach, while improving the recognition error rate, results in a
huge increase in computation, since an input utterance to be
classified must be compared with a greatly increased number of
reference patterns, as opposed to the case of a single reference
pattern per vocabulary word system.

It would be of interest, therefore, toc reduce the computational load
in the pattern matching stage of a recognition system by limiting the
number of reference patterns which are compared with the input
utterance. This can be achieved by using a clustering procedure
which partitions the reference patterns of the vocabulary words into
a small number of disjoint groups.- For each group, a representative
pattern, termed a cluster centroid, is determined. The input
utterance to be identified, is first compared with all the cluster
centroids, and then only with the reféerence patterns associated with
the closest centroid. The reduction in computational cost of the
proposed recognition system is dependent on the number of clusters
and their occupancy.
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TABLE 5.2

THE PERFORMANCE OF THE LPC-BASED WORD RECOGNIZER USING DISCRIMINATIVE

REFERENCE PATTERNS FOR THE WORDS SET {B, C, D, E, G, P, T, V}

RECOGNITION ACCURACY (%)

Recognition
System
{Predictor
order, p=14)

TEST 1
Test speaker:SM1
Ref speakers:SM2
SM4, SF2, sSM3

TEST 2

SM4, SF2, sMi

Test speaker:SM3
Ref speakers:SM2

TEST 3
Test speaker:SF1
Ref speakers:SM2

SM4, SF2, SM3

Average

With
discrimi-
native
reference
pattern for
the set
{B,C,D,E,
G,P,T,V}

94

92

88

91.3

Without
discrimi-
native
patterns

94

90

84

89.3
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Wilpon and Rabiner [73], have recently proposed a Modified K Means
(MKM), algorithm for use in the selection of a small number of
reference patterns from a large training set composed of repetitions
of the same word by different speakers. Their aim was to obtain a
small set of patterns which represent the major diversities of the
vocabulary word. These patterns are then employed to enhance the
speaker independent performance of a recognition system. Here, the
MKM algorithm is employed to solve a different problem. By
clustering all the reference patterns of the entire vocabulary, into
small disjoint groups, a computationally faster recognition process
can be realized. The algorithm can be described in the following
steps.

Step 1: Given: A set W = {W,, Wy, ..., Wy} of V isolated words of
different temporal lengths, and each word is a discrete sequence of
LPC vectors. The distance matrix of the entire set, DW;, wj), 1< i
j €V, is computed using a DTW process. The cobjective is to cluster
the entries in W into M disjoint groups such that words within each
group exhibit a certain level of similarity. Set the convergence
check parameter, D, to a large value.

Step 2: Find the two entries Wy and Wy which are most dissimilar.
Set N, the number of clusters to 2 and let the two initial cluster
centroids W' and W be Wy and Wp.

Step 3: Classify each entry in W, to the nearest of the previously
defined centroids.

Step 4: For each cluster, find the pattermn whose maximum distance to
any other pattern within the cluster is minimum i.e. the minimax
centre given by:

MAX D™, W) = . MIN |:1 MAX . p(u[ wﬁ‘}] 5.56

1) ™m
1<I<p igp | 1<9&p i
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where p™ is the occupancy of cluster m and W™ is the minimax centre
and also the centroid. wime cluster m.,

Step 5: Compute the average intracluster distance P for each
cluster and the average intercluster distance, D

—_ 1 =
Dp = - L D(W", wl 5.57a
p L=1
N
and D = 21 (B/N) 5.57b
m:

Step 6: If (Doyny = D)/Dgogny > 0-05, reset D n.y to D, and exit if N=
M, otherwise go to Step 3. .If"(I‘) -D)/D < _0.0E, _;_x_:mtmue..

Step 7: Set N = N+l. Identify the largest cluster g, 1 € g N-1.
The centroid of the new cluster WM is the pattern of cluster g
furthest from the centroid W9 Go to step 3.

A flowchart illustrating the above steps in the algorithm, is shown
in Figure 5.9,

i) Testing Session:
Using the MKM clustering algorithm, the reference vocabulary ‘is
clustered into M disjoint groups, whose centroids are the set of {Wl,

we, ..., @h.

An unknown input word, X, is then compared with this set of the
centroids and classified into the cluster associated with the nearest
centroid, i.e.

Classify X in L if D(X, W) = MIN D(X, W) 5.58
1M
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Next, the pattern X, is compared with all the J entries in cluster L
and is identified as the reference vocabulary word whose pattern
gives the minimum distance.

i.e. Identify X from

MIN D(X, C¥), C& ¢ cluster L 5.59
1< P

The number of pattern comparisons needed for the identification of X
are (M+J), and is thus dependent on the cluster occupancy.

In general, the highest number of pattern comparisons that need to be
carried out in identifying an input word, is given by (M+J; ), where
Jy, is the size of the largest cluster. Thus, the reduction in
computational cost, obtained on using the above clustering process on
reference patterns, is given by the ratio, (M+Jp)/V. Also the
computation involved in the MKM clustering procedure is considered as
negligible overhead cost since it is only done once during the
training session of the recocgnizer.

ii) Results

The training set for the MKM clustering algorithm was composed of 150
patterns which were derived from repetitions of each vocabulary word
by the speakers SM3, SM4 and SFZ2. Figure 5.10 illustrates the
properties of the clusters generated in terms of their average
intercluster distance.

The speech utterances from the speakers SM1, SMZ2 and SF1 were used to
test the performance of the recognition system with4, 6, 8, 10, 12
and 15 reference pattern clusters. Figure 5.11 illustrates the
recognition error rate and the computational cost reduction obtained
usin;g different numbers of clusters for the reference patterns, as
compared with the recognition system where the reference patterns are
not clustered.



Distortion b

10.0

1.0

159

~——— Initial distortion

L | A
2 3 4

FIGURE 5.10:

1 1 1 ) 1 | 1 [ @
5 ) 7 8 9 10 11 12 13 4 15
Number of clusters

AVERAGE INTERCLUSTER DISTORTION D, AS A FUNCTION
OF THE NUMBER OF CLUSTERS



Recognition rate (%)

100

60

160

Recognition rate

‘\$eduction

-t .

Number of clusters

FIGURE 5.11: RECOGNITION RATE AND THE COMPUTATION REDUCTION
RATIO VERSUS THE NUMBER OF CLUSTERS IN THE
REFERENCE VOCABULARY

« Computation 0.4

Computation reduction ratio



161

5.5 VECTOR QUANTIZATION IN WORD RECOGNITION

In the word recognition systems presented in the preceding sections,
a large amount of memory is required to store the multiple reference
patterns of the vocabulary words, which are employed in order to
achieve speaker independence. These word recognizers also employ the
computationally expensive DIW process in the patterm matching stage.
As such, techniques which would reduce the memory requirements or
eliminate the need for a DTW process, without seriocusly degrading the
recognition accuracy, could be very useful. Vector guantization
offers such a possibility, and is the subject of discussion in this
section. Two word recognition systems, LPC/SPLIT and LPC/VD, which
employ VQ technicues to reduce memory requirements and to eliminate
the need for the DTW process respectively are investigated. A hybrid
system, the LPC/VQ/SPLIT, which combines the advantages offered by
the two recognition systems is then proposed.

5.5.1 The Theory of Vector Quantization [74][75]

Vector quantization, (VQ), which was first applied to low bit rate
coding of speech signals, is a fundamental result of Shannon's rate
distortion theorem [76], which states that for a given rate or
distortion function, a source can always be more accurately
represented by coding vectors rather than scalars. Although Shannon's
rate distortion theorem expounds the optimality of vector based
coding, it does not provide an insight as to how such a system can be

designed. Furthermore, the traditional scalar coders often yield .
satisfactory performance. As a result, few design techniques for
vector coders were considered prior to the late 197(M's, when it was
found that a simple algorithm proposed by Lloyd [77] for the design
of pulse code modulation systems, provided a suitable technique for
the design of VQ Codebocks of data sources such as speech waveforms,
speech parameter vectors, images etc. The main application of VQ has
been in minimization of communication channel capacity and in the

reduction of memory requirements for data storage, the latter
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application being directly relevant to the speech recognition
problem.

Vector quantization, can be defined simply as a system for mapping a
group of similar vectors into a single entity.

Let T = {tl, to, ..., tN}, be a large set of LPC vectors, obtained
from the reference patterns of vocabulary words. The main idea

i vector quantization is to create an optimum set of LPC vectors
{31': :::12-, ves, %M}, M<<N, termed a codebook, such that, for a given
value of M, the error in replacing a vector in the set T by the

closest entry in the codebook, is minimized.

The optimization problem can be expressed as:

N ~
Dp(M) = MIN [%]. ) MIN d(ty, ap)] 5.60
{a} i=1 1<mM :

where Dy(M) is the average distortion of the training set containing
N LPC vectors when the codebook has M entries. d(t;, é‘m.), is the
gain-normalized Itakura-Saito distance between training set vector t;
and codebock entry a.

Equation 5.60 can be solved efficiently by the so called binary
splitting methods [78]1[79]1[80].

5.5.2 The Binary Splitting VO Algorithm

There are two forms of the binary splitting algorithms, namely the
full-search and the tree search algorithms.

i) The full-search algorithm
The full-search algorithm begins by finding an optimum solution for a
codebook with two entries (i.e. M=2), and then splits each of the

entries into two components; hence the name binary split. The



163

algorithm, computes the optimum solution for this 4 entries codebook,
and continues the iterations until the codebook size, M, is as large
as desired or until the rate of decrease in the average distortion
DN(m) of the training set satisfies a predetermined threshold. The
algorithm can be described in the following steps.

Step 1: Start with a training set, T = {t;, t,, ..., ty}, of a large
number of LPC vectors of the reference patterns.

Step 2: Select tv.’v\o vectors from the set T, to be the initial

codebook entries, {a;, a}, i.e. m=2. Set D,, the initial average

O
distortion of the training set to a large value.

Step 3: Compute the distance between each vector in T and the
codebook entries. The average distortion DN(rn), of the training set

is given by:

=2

1~

a(t;, ag) 5.61

2=

Dy(m) =

ML
i=1 1€m'sm

Step 4: If the decrease in average distortion (DO-DN(m)/DO) < £,
set Do = DN(m) and go to step 6. € is a pre-set threshold.

Step 5: Update the codebook entries by clustering the vectors in the
training set T, into m clusters., Each vector in tiET, is assigned to
cluster m' according to the nearest neighbour rule, i.e.

Classify t; in cluster m' if d(ty, am|) = MIN d(ai, am.)
A lsm'sm
where {a), &y, ..., @y, ... 8y}, are the m codeboock entries.
Determine the centroid, C, ., m' =1,2, ... m of each cluster. C,. is

the LPC vector corresponding to the average autocorrelation
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coefficients of the vectors in cluster m'. Use the centroids as the
new codebook entries. Go to step 3.

Step 6: Exit if the desired size, M, of the codebook has been
achieved. Otherwise, split each centroid into two components by
perturblng its elements by a small quantity, 6§, i.e. the centroid,
am., is split into two vectors apy; = (1+5)am' and ag, = (1- 6)a r.

Set m=2m and go to step 3.

In the above algorithm, the initial selection of the codebook entries
can either be made by picking two vectors arbitrarily from the
training set, or by calculating the centroid of the whole training
set, and then splitting the centroid to give two vectors which are
spectrally dissimilar. In running the algorithm, each training set
vector is compared with every codebook entry, hence the name full
search. When a group of training vectors are determined to belong to
the same cluster, the procedure in step 5 of the algorithm, aims to
cbtain a single vector that represents the whole cluster with minimum
error. This vector is termed the centroid of the cluster and is
computed by averaging the corresponding autocorrelation vectors, and
then deriving the LPC vector of this averaged autocorrelation vector.
The algorithm terminates when the desired number of entries, M, in
the codebock is achieved or when the average distortion falls below a
pre-set threshold.

A flow chart which illustrates the full search binary split algorithm
is given in Figure 5.12.

ii) The tree-search algorithm

The tree-search VQ algorithm starts with an optimum 2-entries (i.e.
m=2) codebook which has been generated by a full search algorithm.
The two entries in the codebook are split to give a 4-entries
codebock. Instead of running a full search procedure on the training
set, each of the 4-entries searches only the training vectors in the
cluster associated with its parent entxy. The complete algorithm can
be described as follows:
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Step 1: Start with a training set, T = (tj, t,, ..., ty}, of a large
number of LPC vectors obtained from the reference patterns.

Step 2: Select two vectors from the set T, to be the initial
codebock entries {a;, ay}, i.e. m=2. Set D,, the initial average
distortion of the training set to a large value.

Step 3: If m=2, compute the distance Dy(m) as in Step 3 of the full
search algorithm. For m > 2, compute the distance between an entry
and the training vectors coded by its parent entry, to obtain the
average distortion of the training set.

Step 4: Code each of the training set vectors by the nearest
codebook entry, based on nearest distance, i.e. vector t; € T belangs
to cluster m' if

d(ti' C‘m-) = IQMT?ENQH d(tl’ le) 5.62

Step 5: If the decrease in average distortion, (Do - DN(m))/Do, is
less than a pre-set threshold ¢, set D, equal to DN(m } and go to
step 7.

Step 6: Compute the centroid of each of m clusters in the training
set. Use the centroids as the new codebock entries. Go to step 4.

Step 7: Exit if the desired size, M, of the codebook has been
achieved, otherwise split each entry into two components. Set m=2m

and go to step 3.

5.5.3 W Experimental Results

The vector quantizer training set {T}, was derived from a speech data
base formulated from the utterances of five speakers: SMZ, SM3, SM4,
SF2 and SF3, on the 50 words vocabulary. Each vocabulary word was
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represented by eight reference patterns; two patterns from each of
the male subjects SM2, SM3, SM4 and one pattern from each of the
subjects SF2, SF3. After passing the speech signal through a pre-
emphasis network, H(z) = 1-—0.90z"1, a l4th order LPC analysis was
performed on 25.6 msec Hamming windowed speech segments and a set
{T}, of 7658 LPC vectors was obtained.

Both the full-search and the true-search VQ algorithms used the abowve
training set to generate codebocks of sizes 8, 16, 32, 64 and 128.
In the algorithms, the initial two entries in the codebook were

selected arbitrarily from the training set.

During the iterative process, the decrease in average training set
distortion, Dy(m) is monitored, using a pre-set distortion threshold
e = 0.05. A centroid, a, is split into two vectors, 3, and & ,, by
retaining the centroid as §m_1, and generating ?“mz as the slightly
perturbed centroid by an arbitrary factor, of say, 0.98, i.e,

8 = au and &, = 0.98 &

Results obtained on the average distortion, DN( m) of the training
. set, in the generation of codebook of sizes 2, 4, 8, 16, 32, 64 and
128 entries, for both full-search and tree-search algorithms, is
shown in Figure 5.13. With the full search method the 128 entries
codebook was generated after 73 iterations, compared to 58 iterations
for the tree-search method. Thus, as would be expected, the tree-
search method converges faster than the full-search method. The gain
in convergence rate is obtained at the expense of a higher training
set distortion level.

The cluster occupancy, Nj,

vectors in the ith cluster, i.e. the cluster represented by the ith

is defined as the number of training

codebook entry. Figure 5.14 shows a histogram of the number of
clusters and their occupancy for the 128 entries codebook generated
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by the full-search method. The largest cluster had 381 training
vectors, and the smallest cluster contained 10 training vectors. A
similar characteristic for the 128 entries codebook generated by a
tree-search method is shown in Figure 5.15. The largest cluster had
323 training vectors and the smallest cluster had only one training
vector. These characteristics indicate that empty clusters would
more easily arise in the tree-search rather than in the full-search
method.

5.5.4 The LPC/SPLIT Recognizer

The memory storage in a word recognizer is mainly used for the
reference pattermns of vocabulary words. In order to achieve speaker
independence, multiple reference patterns per vocabulary word are
usually employed. This results in a large increase in memory
reqguirements. Sugamura et al [81], proposed the LPC/SPLIT
recognition system which uses vector quantization techniques to
reduce the memory requirements without severely degrading the
recognition accuracy of the system. Figure 5.16 is an illustration of
the LPC/SPLIT recognition system.

i) The training procedure

A set {T}, of thousands of LPC vectors is extracted from a speech
data base consisting of all the vocabulary words uttered by different
speakers. Using a full search VQ process on the set {T}, a codebook
C, of M entries is generated. The entries in codebook C,, can be
regarded as 'phoneme-like' or pseudo-phoneme since they exhibit
distinct spectral properties. Each reference pattern is then
expressed as a 'sequence of phoneme-like templates', hencé the name
SPLIT, by (a) computing the spectral distance, between each reference
pattern LPC vector, and all the phoneme-like templates, (b)
substituting the LPC vector of each segment for the corresponding
phoneme-like template which offers minimum spectral distance, i.e.
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' Let the reference pattern, B, be the sequence of J, LPC vectors

B = {by, by, -.., bj, «e+s by} 5.63a
and the set of phoneme-like templates C,, be

G ={c, 2 ..., B ..., 5.63b

where C;nis the mth phoneme-like template.

The pattern B is expressed as a sequence of J phoneme-like templates .

as follows:
mi m2 mj mJ
B={Cx » Gy s +oes G oot G ) 5.63¢
where
: m
d(b;, c,™) = MIN by, , 1< 37 5.63d
(by, ) 5 (b, G ) J

Thus, in the LPC/SPLIT recognizer, it wilil only be necessary to store
the set of phoneme-1like templates, Cg;, and the sequence of indices
that define each reference pattern.

ii) Recognition procedure
During the recognition procedure, the input word is expressed as a
sequence of LPC vectors and compared with the reference patterns
which have already been expressed as a sequence of phoneme-like

templates. A dynamic time warping process is used to obtain a time
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normalized distance between the input and reference patterns.
Subsequently, the input word is identified as the vocabulary word
whose reference pattern is associated with minimum distance.

The speaker independent performance of the LPC/SPLIT system can be
enhanced by using multiple reference pattems per vocabulary word,
and then using a kNN rule, as discussed in Section 4.4 of Chapter 4,
to identify the input word.

5.5.5 The LPC/VQ Recognizer

Most isolated word recognition systems which employ the pattern
matching approach, require some form of time normalization procedure
in order to eliminate the temporal differences between reference and
input speech patterns. These time normalization procedures are
generally computationally expensive, and as such, techniques capable
of obliviating their use, would be desirable. Shore and Burton [82],
have proposed a recognition system, which uses reference patterns
whose time sequence information has been removed. The system,
therefore, is able to achieve pattern comparison without the need for
a DTW procedure. The Shore-Burton recognizer, referred to as the
LPC/VQ recognizer in this thesis, uses a VQ technique to generate

reference patterms without a temporal axis.

Figure 5.17 is a block diagram which illustrates the structure of an
LPC/VQ recognition system.

i) Training session

Each vocabulary word is represented by multiple reference patterns
obtained from a group of speakers. These patterns provide a short
training sequence of LPC vectors, which are used to generate a
codebook for the vocabulary word. Thus, each vocabulary word will be
represented by a unique codebock whose entries no longer possess the
time sequence information. For example, a codebook for the

vocabulary word "X" is generated by running a full-search VQ
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procedure on the available versions of the word 'X'. The codebooks
can be designed to be of fixed size or fixed distortion.

Fixed size codebooks have a predetermined size M, and the VQ
algorithm generates the M entries that minimize the training set
distortion rate to an acceptable threshold. Therefore, fixed size
codebocoks of the various vocabulary words, will display different
distortion levels.

In the fixed-distortion codebooks, the VQ algorithm produces a
codebook that encodes the training data with a pre-set average
distortion. Fixed-distortion codebooks of the different vocabulary
words will not necessarily be of equal size.

Fixed-size codebooks of 8 entries and of 16 entries were generated
for every vocabulary word.

ii) Testing session:
Let an unknown input utterance, A, be represented as the discrete
sequence of I, LPC vectors:

A={a, ay, ..., 84, -.. 8} 5.64a

and let R be the number of words in the recognition wvocabulary. Then
there are R codebooks C,., r = 1, 2, ...,R. The size of the rth
codebook C.., is denoted N..

The average distortion obtained on encoding this input pattern with
the rth codebook is given by:

N da;, Q) 5.64b
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where Czj is the jth entry of the codebook C., and d(a;, _Cg.) is the
gain-normalized Itakura-Saito distortion between a; and C.
The decision logic that follows, classifies the input pattern as the

vocabulary word associated with the codebook that has the minimum
weighted average distance measure D_, defined as:

= MIN /L) 5.64c
Dy Tk (dy/Ly

where Lr is the number of distinct entzies used in the rth codebock
to obtain dr'

5.5.6 The LPC/VQ/SPLIT Recognizer [83]

The proposed LPC/VQ/SPLIT recognizer combines the design philosophies
of the two previous systems, i.e. the LPC/SPLIT and the LPC/VQ
recognizers, to yield an efficient isolated word recognizer with
improved memory and computational complexity characteristics. The
system is illustrated in the block diagram in Figure 5.18.

i) Training session

The LPC/VQ/SPLIT recognizer employs a separate reference codebook per
vocabulary word, in the same way as the LPC/VQ recognizer. Each
codebock is based on one word uttered a number of times by different
speakers, as in the LPC/VQ recognizer training session. A codebook
of M pseudo-phonemes is also generated by a full search W) process in
a long training sequence of vocabulary words. In addition, the
entries of each reference codebook are replaced with the nearest of
the M pseudo phonemes. That is, given an R word vocabulary, the rth
codebook C.. of size N,

} 5.65a
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J
where C. is the jth entry
and, given also, the phoneme-like templates codebock, X

X={X, X, «ve, X «v0 Ky 5.65b

the modified codebook Cr'is defined as:

~1 2 23 ~ Ny

Coo= {Ch) Gy veey 2 ven, O 53 5.65¢

where C3-= Xyer and the index K minimizes the distortion measure
a(cl,x,) for k = 1,2, ..M.

-~

Fixed-size codebooks, C..;

r» with 8 entries and 16 entries were

generated.

ii) Testing session

An input word, A, which is expressed as a sequence of I, LPC vectors
is compared with each of the mcdified reference codebcoks ?:r to give
a distance dr, r=12, ... R 1i.e.

I
% T OMIN  &ay, C5) 5.65d

i=1 1<HN

where d(aj, Cj ), is the gain-normalized Itakura- Salto distance
between the ith LPC vector of A, and the jth entry of Cr

The input word is recognized as the word which corresponds to that
codebook giving the minimum weighted average distance D,, as in
equation 5.64c.
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5.5.7 Results

i) Recognition accuracy

The recognition accuracy of the LPC/SPLIT, LPC/W) and LPC/VQ/SPLIT
systems operating on the 50 word vocabulary was assessed by computer
simulations. The training speech data base was composed of the
utterances of three male subjects who spoke each word twice, and the
utterances of the two female subjects who spoke each word once. The
speech utterances were bandlimited to 5 kHz and then sampled at 10
kHz. The 12-bit per sample, digitized signal, was segmented into
25.6 msec frames, from which LPC vectors were obtained by a 14th
order analysis on the pre-emphasized and Hamming windowed speech
every 12.8 msec.

The LPC/SPLIT recognizer used a 128 entries codebock generated by a
full-search VQ procedure, on the whole training data sequence as
described in Section 5.5.2 (ii).

The LPC/VQ recognizer, used a codebock per vocabulary word generated
from the eight repetitions of the word. Fixed size codebooks of 8
entries and 16 entries were obtained for every vocabulary word. Table
5.3 gives the average distortion, Dy(M), on the training data from
subjects SM1, SM2, SM4, SF2 and SF3, in the generation of the
¢odebooks.

The proposed LPC/VR/SPLIT recognizer, employed both the 128 entries
codebook of the LPC/SPLIT recognizer, and the fixed size codebooks of
the LPC/VQ recognizer.

Table 5.4 shows the recognition performance of the three systems in
three testing sessions. The results are based on the utterances
spoken by a male and a female subject who did not contribute to the
training data used to generate the reference codebooks.
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LE 5.3

FIXED SIZE, REFERENCE (OODEBOOKS DISTORTION, GENERATED BY THE
" FULL-SEARCH METHOD

PP,

Vocabulary No. of Distortion |Vocabulary No. of Distortion

Word Training for 8/16 Word Templates  for 8/16

Set Tem- size Code- in Training entries

plates bocks Set Codeboaks

One 268 0.940/0.565 | P 258 0.502/0.311
TWO 258 0.743/0.596 | © 294 0.760/0.570
Three 286 0.697/0.408 | ‘R 278 0.558/0.345
Four 272 0.463/0.395 | s 302 0.537/0.402
Five 334 0.726/0.415 | T 248 0.418/0.348
Six 384 0.541/0.379 | U 274 0.645/0.398

| Seven 332 0.601/0.372 | Vv 260 0.457/0.319
i Eight 302 0.845/0.539 | W 326 0.795/0.590
| Nine 322 0.685/0.462 | X 354 " 0.537/0.590 |
Zero 348 0.706/0.442 | ¥ 298 1.143/0.584 |

. 246 0.481/0.274 | 2 272 0.594/0.414
' B 222 0.411/0.338 | Delete a3e 0.631/0.487 :
C 318 0.460/0.374 | Input 356 1.023/0.743 |
. D 230 0.339/0.246 | Write 332 1.095/0.630 |
. E 236 0.367/0.282 | End 302 0.664,/0.446 |
. F 274 0.285/0.217 | Load 324 0.868/0.508 |
e 258 0.459/0.266 | Add 238 0.742/0.449
{ H 336 0.680/0.445 | set 336 0.589/0.383
‘ I 264 0.676/0.382 | Control 426 1.041/0.705
L 282 0.536/0.358 | Store 368 0.731/0.531 |
K 254 0.442/0.302 | No 304 0.737/0.495
L 238 0.569/0.387 | Read 332 0.978/0.422

M 234 0.662/0.397 | Yes 356 0.719/0.493
N 246 0.562/0.383 | Multiply 486 0.947/0.685
0 246 0.654/0.435 | Output 398 0.769/0.620
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TABLE 5.4

RECOGNITION ACCURACY ( °/°)
Recognition Test 1 Test 2 Test 3 ag)\
System Test speaker Test speaker Test speaker §
SM1 sM3 SF1 Z
Ref Speakers: Ref Speakers: Ref Speakers:
SM2, SsM3, sM1, sz, sMl, sMmz,
SM4, SF2 SM4, SF2 sM4, SF2
LPC/SPLIT
(4 ref 86 86 78 83.1
pattems/
voc. word)
Ref Speakers: Ref Speakers: Ref Speakérs:
sM2, sM3, sM1, smz2, SM1, sM2,
SM4, SF2, SF3 SM4, SF2, SF3 SM4, SF2, SF3
LPC/VQ
B entries 92 a0 88 80.0
codebook
LPC/VQ
16 entries 96 96 90 94.0
codebook
LPC/VQ/SPLIT
8 entries 90 88 84 87.3
codebook
LPC/VQ/SPLIT
16 entries 96 92 a0 92.6

codebock
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ii) Memory requirements
The memory required in each system, for storing the reference
pattermns can be easily computed for an R words vocabulary. Assuming
that the rth codebock C., consists of N, p-dimensional LPC vectors,
and that each vector element is represented with an average of N,
bits, then the LPC/VQ recognizer requires a memory size, SVQ’ given
by:

R

Svo = 21 N,.p N, bits 5.66
r=

The LPC/SPLIT recoxmizer requires to store the set of ﬁhoneme—like
templates, and the index sequences of the reference patterns. Thus,
using N reference patterns for each vocabulary word and assuming Q;
frames in the ith reference pattern, the memcry required, SSPLIT' is,

N.R :
SgpL1T = M-P- Ny + _21 Q; log,M bits 5.67
i=

where M is the number cof pseudo-phonemes.

Similarly the memory size, SVQ /SPLIT- regquired in the LPC/VQ/SPLIT
system, is given by:

R
Svo/spLIT = M-P-Ng + 51 N.1logoM bits 5.68
A=

The memory characteristics of the three systems are shown in Figure
5.19, as a ratio of the memory size in the LPC/VQ/SPLIT recognizer
with R = 10, M = 128 and N, = 16.

iii) Caomputational complexity
To a first approximation, a comparison of the computational

complexity of the systems can be based on thé complexity of their
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MEMORY REQUIREMENTS IN THE RECOGNITION
SYSTEMS AS A RATIO OF THE MEMORY SIZE

IN THE LPC/VQ/SPLIT SYSTEM WITH R=10,

M=128 AND Nr =16
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pattern matching stage of the recognition process, and in particular
on the computational effort involved in forming the required spectral
distances between the LPC vectors.

Consider the LPC/SPLIT recognizer, with an average of J frames per
reference pattern, and using an adjustment window in the DTW process
of r frames wide. If the input pattern has an average of I frames,
and N reference patterns per vocabulary word are used, then the
number of spectral distances, D;, required is:

D = [I.J - (I-T)(J-r)IN.R 5.69

Similarly, in the LPC/VQ, and in the LPC/VQ/SPLIT recognizers, the
number of spectral distances, D), to be computed is given by:

D, = I.N..R 5.70

where N, is the average number of entries in a codebook. For example,
using typical values, such as I = 40, J = 40, N, = 16, N=4 andr =
8, gives an estimate of the ratio D1/D2f as:

4 <(Dy/Dy) <8 5.71

5.6 DISCUSSION

In this Chapter, word recognition systems using pattermns expressed as
discrete sequences of LPC feature vectors, are examined. The initial
irrvestigétions were concerned with the effects of the LPC prediction
order on the recognition accuracy. Since the short-time spectral

estimation of a speech segment improves while increasing the
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prediction order p, the recognition accuracy is expected to display
the same characteristic. As the order of prediction was varied from
6 to 14, the recognition results shown in Table 5.1, indicate a
monotonic improvement. However, the difference between results
obtained with prediction order, p = 12 and p = 14, show only a slight
improvement. This is because for values of predicticn larger than 12,
the rate of decrease in the prediction error of the system is small,
as illustrated in Figure 5.4. The results obtained with the female
subject show a markedly lower accuracy in comparison with the male
subjects, as shown in Tables 5.1, 5.2 and 5.4 The reason can be
attributed to the inferior LPC modelling of female speech.

The use of discriminative reference patterns, for the similar words
set {B,C, D, E, G, V, P, T}, shows an improvement in word recognition
accuracy, as shown in Table 5.2. This would be expected, since
attention is focussed on those regions in which a speech pattern
differs from patterms of acoustically similar words.

The heavy computational cost, in word recognition systems employing
multiple reference patterns, leads to the investigation of the use of
clustering techniques to reduce this cost. The method of clustering
reference patterns into small disjoint groups, using the MKM
algorithm was found to be éffective in this respect. As shown in
Figure 5.11, the method provides a reduction in computational locad by
about a half, at the expense of a slight degradation in recognition
accuracy.

The multiple reference patterns, which are employed in the word
recognition system to achieve speaker independence, increases the
memory requirements of the system. In addition, the DTW procedure,
used to provide a non-linear time alignment between input and
reference patterns, is a computationally expensive process. Thus,
vector quantization techniques, which can be used to solve these two
problems were also investigated. The generation of vector
quantization codebooks from é large training data set was performed
using both the full-search and the tree-search binary split methods.
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From the results given in Figures 5.13, 5.14 and 5.15, the
superiority of the full-search method over the tree-search is
exposed. The codebook obtained with the full-search method gives a
lower training data set distortion than the codebock of similar size
generated with the tree-search method. The full-search method also
partitions the training set i_nto better distributed clusters, than
the tree-search method. The smallest cluster in the full-search
method contains 10 training set vectors, whereas with the tree-
search, clusters contamlng single vectors were found. This méans
that the tree-search method is more likely to give rise to empty
clusters, which would be an undesirable situation. The only
advantage with the tree-search is its faster convergence rate.

Three isolated word recognition systems, LPC/SPLIT, LPC/VQ and
LPC/VQ/SPLIT, were then studied. From the computer simulation
results given in Section 5.5.7, the aévantages of the proposed
LPC/VQ/SPLIT recognition system over the other two established
systems is clearly evident. The LPC/VQ system offers the highest
recognition accuracy, but its memory requirement proves to be
prohibitive for large vocabularies. Although the memory requirements
are relaxed in the LPC/SPLIT system, the recognition accuracy is
relatively poorer. Only the LPC/VQ/SPLIT system offers high
recognition rate, with low memory/computational complexity
characteristics.

5.7 NOTE ON PUBLICATION

A paper entitled, "The use of phoneme-like templates in isolated word
recognition without time alignment", in co-authorship with the
Supervisor, Dr C S Xydeas, has been published in the Proceedings of
the 3rd European Signal Processing Conference (EUSIPCD), held at the
Hague, the Netherlands on 2-5 September 1986. The paper is based on
the work presented in Section 5.5.



188

CHAPTER 6

THE USE OF VOICED, UNVOICED, AND SILENCE CLASSIFICATICN
OF SPEECH SHGMENTS IN WORD RECOGNITION

6.1 INTRODUCTION

An improvement in the accuracy of an isolated word recognition system
can be achieved using the techniques discussed earlier in Chapters 4
and 5 namely: multiple reference patterns per vocabulary word,
redundancy suppression in the speech utterances, discriminative
reference .patterns for similar sounding words, and vector
quantization. An alternative approach for improving the recognition
rate, is to detect the broad acoustic structure of an utterance, and
then use the information to supplement a conventional recognizer.
The acoustic structure obtained using the three voiced, unvoiced and
silence classes, can give a strong indication as to the identity of
an urnknown utterance within the recognition wvocshulary., For example,
in a 'digit' recognition system, if the unknown input utterance is
detected to begin with an unvoiced fricative, then it is obvious that
the word cannot be a 'ONE', 'EIGHT', or a 'NINE', and thus the
pattern comparison would be limited to the other seven reference
candidate words. If the input word is further determined to have the
acoustic structure, 'unvoiced-voiced-silence-unvoiced', then the most
likely candidate is the word 'SIX'.

The information of the acoustic structure of an utterance can also be
exp'loited in order to discriminate between utterances which have
similar sounding regions. For example, the word sets {X,SIX},
{YES,S}, may result in a very close distance measure in the LPC-based
recognizer and hence misclassification will occur, if say, an input
utterance 'SIX' has its 'X' portion more similar to the reference
word 'X' than to the reference word 'SIX'. Since 'X'and 'SIX' have
quite different acoustic structures, it would be advantageous to use
the acoustic structure as an aid in the recognition process.
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In this Chapter, a new method on the voiced-unvoiced-silence
classification of speech segments using the fuzzy set theory, is
first presented. The proposed algorithm is subsequently employed in
obtaining the acoustic structure of the input utterances which in

turn is used to enhance the accuracy of a conventional word
recognizer.,

6.2  VOICED-UNVOICED-SILENCE CLASSIFICATION OF SPEECH

The need to classify successive segments of speech as Voiced,
Unvoiced, or Silence (VUS), arises in speech recognition, as well as
in the areas of voice synthesis and the reduction of acoustic noise
which has been added to speech signals. A number of existing VUS
classification methods are based on five parameters measured from the
input signal, namely: |

i) the zero-crossing rate

ii) the logarithmic energy
iii) the first autocorrelation coefficient
iv) the first LPC coefficient

v) the normalized prediction error.

The choice of these specific parameters, hereafter referred to as the
'"WUS parameters', to determine the voiced, unvoiced or silence nature
of speech segments can be attributed to experimental chservations as
well as to speech synthesis theory. Given the value of these
parameters, the question arises however as how to use the information
for an accurate VUS classification of an input speech segment. Atal
and Rabiner [84] for example, assumed that the five parameters are
distributed according to a multidimensional Gaussian probability
density function whose mean and covariances are obtained using a
training procedure. A minimum distance rule was subsequently employed
to classify the speech segments as voiced, unvoiced or silence.
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In this section, an alternative approach to VUS classification using
fuzzy set theory is proposed [8B5] and its performance compared with
the Atal and Rabiner's method

The classification of speech segments into VUS classes can be
suitably modelled by fuzzy algorithms, since the various classes are
defined in an inexact manner by the five pa:r.‘ameters.. In the proposed
scheme, a training procedure is used, in which speech segments from
the voiced, unvoiced and silence classes are manually selected and
analyzed to derive the average values of the mentioned five
parameters in each class. A decision rule which characterizes each
class, is formulated based on the values of the parameters. For
example, an unvoiced segment is characterized by a 'high' zero
crossing rate count, a 'medium’ logarithmic energy, a 'low' first
delay autocorrelation coefficient, a 'high' first LPC coefficient, a
'medium' normalized prediction error. The linguistic terms, 'low’,
'medium’' and 'high' are relative and do not possess sharp boundaries,
and hence are vaguely defined. The parameters of an input speech
utterance to be classified, are considered as elements of a fuzzy
set, whose membership grades are distributed according to the so
called © or S functions. The VUS parameters obtained in the training
procedure are used to specify the # and S functions. Modelling the
parameters of the input speech segment with the decision rule for
each class serves to identify its 'closeness' to that class. The
'closeness’ can be defined as a number in the interval, {0,1}. In the
following sections, a discussion on the theory of fuzzy sets and its
applicability in the classification of speech signals is presented.
The VUS classification method proposed by Atal and Rabiner, is also
discussed. The performance of the two methods, in classifying speech

segments from subjects who did not contribute to the training

procedure, is compared.

6.2.1 Elements of the Fuzzy Set Theory - [861[87][88]

The fuzzy set theory is an algebra based on imprecision, whereby each

object under consideration as an element of a set, is assigned a
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membership grade which expresses its degree of belongingness to that
set. Thus, a gradual transition from non-membership of the set to
full membership is provided.

A fuzzy set A, of a wniverse of discourse U is thus characterized by
a membership function:

¥z U~ [0,1] 6.1

which assigns a membership grade i, for every element of U, in the
interval [0,1]. Full membership g;:ade is designated as 1, and non-
membership as grade 0. A cross-over point in the set A, is the
element y whose grade of membership is 0.5. A fuzzy singleton is a
fuzzy set consisting of a single element. If A is a fuzzy singleton,
and y is its element in U, with the membership grade y;, then A is
expressed with the denotaticn: '

A

Wy 6.2

A fuzzy set may be seen as the union of its singletons:

i.e. A= jp(y)/y 6.3
U

and, if A has a finite number of singletons, then:

A=U1/y) *Hp/yp ¥ een ¥ H3/Y5 Y s+ pp/fY, 6.4

where U‘{, i=12, ..., n, is the membership grade of y; in A.

In many situations, it is appropriate to express the membership

function of a fuzzy set in terms of a standard function whose
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parameters are adjustable to approximately fit a specified membership
function. Figures 6.1 and 6.2 illustrate the standard functions, §
and 7, which are commonly used. A function is S type, if it is
monotonically increasing (S8'), or decreasing (S7) and is defined as
follows:

0 for

Yy<o
2 ((y-0)/(v-a))2  for 4 <y < B
s*y:o,8,7) = 11 -2 ((y-y)/(y-0))? for B<y < v
1 foryz>vy 6.5a
and
ST(y:2,B,Y) = 1 - s* (y:0,8,v) 6.5b

where 8 = (a+y)/2, is the cross-over point.

A function is 7 type, if there exists only a single point at which
monotonicity changes direction, and is defined as:

. s*(y; Y-8 v -®2, y) for y<y
m(y:8, V) = _ 6.6
1-s*(y; Y, Y+B, y*B) for y>y

where B is the bandwidth, i.e. the separation between the two cross-
cover points of . vy is the poif}t at which 7 is unity.
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FIGURE 6.1a: PLOT OF THE S' FUNCTION
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FIGURE 6.1b: PLOT OF THE S~ FUNCTION
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FIGURE 6.2: PLOT OF THE 1m FUNCTION



195

6.2.2 The VUS Parameters

For the VUS classification of speech segments, it is desirable to use
parameters which are easy to extract from the signal and efficient in
discriminating between the voiced, unvoiced and silence classes. The
following parameters are known to satisfy these requirements:

i) The zero crossing rate count (ZCR) is related to the number of

ii)

iii)

iv)

V)

sample polarity changes in the speech segment and indicates the
frequency at which spectral energy is concentrated. Spectral
energy is concentrated at low frequency for voiced sounds, and
at high frequency for unvoiced sounds. Depending on the
background noise, the ZCR count for silence frames is generally
higher than that of voiced segments, but lower than the ZCR of
unvoiced segments.

The logarithmic eriergy, LE, in the voiced speech segments is
considerably higher than in unvoiced segments. Silence frames
contain the least energy.

The unit sample delay autocorrelation coefficient R(1), lies by
definition, between -1 and +1. Since in voiced sounds, the
energy is concentrated in the low frequency range, adjacent
speech samples are highly correlated, and R(1l) takes a value
close to +1. The correlation is close to zero for unvoiced
sounds.

The first LPC coefficient is identical to the value of the
Cepstrum of the signal at unit sample delay [see Appendix D].
Since the spectrum of these three classes have such considerable
difference, so should the first LPC coefficient.

The prediction error is an indication of the uniformity of the
speech spectrum. Voiced sounds have a spectrum with rescnances
which result in a smaller prediction error than for unvoiced
sourxis. The prediction error Ep, discussed in Section 5.2.2, is
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normalized with the frame energy LE, to give the logarithmic
normalized prediction error, ERR; i.e.

ERR = LE - 10 logyg [R(O) + ? a(i) R(i)] 6.7
i=1
where a(i) is the ith LPC coefficient, R(i) the ith
autocorrelation coefficient, p is the order of prediction, and
LE is the logarithmic energy of the speech samples in the frame.
The value of ERR will be high for voiced sounds and low for
unvoiced sounds.

6.2.3 The Decision Process

The classification of speech segments into VUS classes can be
suitably modelled by fuzzy reasoning since these classes are defined
in an inexact manner by the five parameters. Rules can be formulated
relating the classes to these parameters using fuzzy linguistic
terms. For example, the rule for voiced class indicates its
characterization as low zero crossing rate count (ZCR), a high
logarithmic energy (LE), a high unit delay autocorrelation
coefficient (R{(1)), a low first LPC coefficient (LP1l) and a high
logarithmic normalized prediction érror (ERR). The complete set of
rules are as follows:

Rule 1: Voiced class = low ZCR + high LE + high R(1) + low LP1l +
high ERR

Rule 2: Unvoiced class = high ZCR + medium LE + low R(1) + high LP1
+ medium ERR

Rule 3: Silence class = medium ZCR + low LE + medium R({(1) + medium
LP1 + low ERR

i) Training session

The linguistic terms ‘high', 'low', 'medium', can be described by the
s*, 87 and n functions of Figures 6.la, 6.1b and 6.2 respectively
with the thresholds « and vy determined during a traininé session,
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The speech utterance 'At the side of the rock, a small stream flowed
into the river', spoken by a female subject, bandlimited at 3.4 kHz
and sampled at 8 kHz was manually classified into voiced, unvoiced
and silence intervals. Speech segments of 16 msec duration, from each
of the three classes, were selected and analyzed to derive the
average values of the mentioned five VUS parameters. The logarithmic
normalized prediction error was calculated using a 12th order filter.

For example, the fuzzy set 'low ZCR' is described by the S~ function
illustrated in Figure 6.1b. The threshold o is the average value of
the voiced segment ZCR count, and y is the average unvoiced ZCR
count. In Table 6.1, the parameter values obtained in the training
procedure and the thresholds used in the various fuzzy sets are
shown.

ij) Classification

The speech utterances to be classified are bandlimited to 3400 Hz,
sampled at 8 kHz and segmented at intervals of 16 msec.In each
segment, the five VUS parameters are obtained.

Using rule 1, the 'closeness' of the measured VUS parameters to the
voiced class can be determined. The grade of membership of the
parameters in the respective fuzzy sets are evaluated, e.g. the grade
of membership, vy, of the ZCR count in the fuzzy set 'low ZCR' is
obtained using the S~ function. Rule 1 gives the following relation,
defined as the fuzzy set V,,

Vy=vi/low ZCR + vy/high LE + vg/high R(1) + vp/low LPL + vg/high ERR
6.8

where vy, Vo, V3, V4, Vg are the membership grades of the VUS
parameters, ZCR, LE, R(l), LPl, ERR, in the respective fuzzy sets.

The 'closeness' of the same VUS parameters to the unvoiced class is

evaluated in a similar manner, using rule 2. The fuzzy set, U,,



TABLE 6.1: THE VUS PARAMETER VALUES, FUZZY SET THRESHOLDS, AND COVARIANCE MATRICES OBTAINED IN THE
TRAINING SESSION

CLASS PARAMETERS
ZCR LE R(1) LP1 ERR
Voiced 19.58 49.89 0.86 ~1.67 13.77
Unvoiced 86.52 29.26 -0.51 0.80 6.62
Silence 26.52 3.86 0.65 -0.70 4,09
FUZZY SET THRESHOLDS
5~ sets s' _sets T _Sets
Low ZCR (a= 19.58, y= 86.52) High ZCR (a= 19.58, y= 86.52) Medium ZCR {y= 26.52, 8= 3.47)
Low LE (a= 3.86, y= 47.89) High LE («= 3.86, y= 47.89) Medium LE (y= 29.26, g= 9.32)
Low R(1) (a= -0.51, y= 0.86) High R(1) (a= -0.51, y= 0.86 Medium R{1) (y= 0.65, B= 0.80)
Low LP1 (o= -1.67, y= -0.80) High LF) (a= -1.67, y= 90.80 Medium LP1 (y= -0.70, B= 0.48)
Low ERR (a= 4.09, y= 13.77) High ERR (a= 4.09, y= 13.77) Medium ERR {y= 6.62, B= 1.26}
COVARIANCE MATRICES
' Voiced Class Unvoiced Class
1.00 0.691 -0.930 0.237 -0.768 ©1.00 =-0.252 -0,981 0.659 0,234
0.691 1.00 -0.810 0.153 -0.890 -0.252 1.00 0.245 0.177 0.234
-0.930 -0.810 1.00 -0.141 0.847 -0,981 0.245 1.00 =0.725 «0.,290
0.237 0.153 =0.,141 1.00 -0.437 0.659 0.177 <~0.725 1.00 0.755
-0.768 -0.8%0 -0.847 -0.437 1.00 0.234 0.324 =0.,290 0.755 1.00
Silence Class
1.00 -0.840 ~0.641 0.760 -0.742
-0.840 1.00 0.665 -0,937 -0.884
-0.641 0.665 1.00 -0.793 -0.881
0.760 -0.937 -0.793 1.00 -0.970

-0.742 -0.884 -0.881 -0.970 1.00

86T
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obtained in this case is given by:
U, = uy/high ZCR + u,y/medium LE + ug/low R(1) + uy/high LP1

+ ug/' medium ERR 6.9

where u;, up, uz, uy, ug are the membership grades of the VUS
parameters in the respective fuzzy sets.

Finally, rule 3 is used to determine the 'closeness' of the VUS
parameters to the silence class. The fuzzy set S, obtained in this

case is given by:

Sy = sy/medium ZCR + So/low LE + ss/mediwn R(1) +

s4/medium LPl + 55/ low ERR 6.10

where sq, Sy, S3, S4, Sy are the membership grades in the respective
fuzzy sets.

Since the grade of membership of an element in a fuzzy set indicates
the degree of belongingness to the concept expressed by that set, it
can also be interpreted as a measure of 'truthfulness'., Absolute
truth would be indicated by a membership grade 1, and absolute
falsity by 0. The decision for VUS classification can be based on
the degree of 'truth' in each of the three sets v,, U,, and S,. The
sum of membership grades in each of the sets V,, U, and S, lies
between a maximum of 5 and a minimum of 0. The S* function can be
used as a "truth' distribution with the two threshold extremes o and
Y set to 0 and 5 respectively. The class yielding the highest
'truth' value is interpreted as the correct class for the speech
segment, i.e. from the relationships expressed in eguations 6.8, 6.9
and 6.10.
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The grade of membership, By, of y; in the 'truth' distribution set is
given by:

W= s (yz: o B Y)  i=1,23 6.12a

The speech segment is classified in i, if
Class i 2 MAX(Hy), 1=1,2,3 6.12b
Class 1,2,3 refers to voiced, unvoiced and silence classes

respectively.

6.2.4 Atal and Rabiner's Method [84]

The same five parameters are also used in Atal and Rabiner's method
to classify the speech segment into VUS classes. To make this
decision, a classical minimum probability of error decision rule is
employed which assumes a multidimensional Gaussian distribution of
the parameters, with a mean and covariance matrix obtained from a
training session. The mean VUS parameter values, and the
corresponding covariance matrices for 16 msec segments of the
training speech utterance of Section 6.2.3 are given in Table 6.1.
Specifically, let x be an L-dimensional column vector representing
the five parameters in a speech segment to be classified. Then the

L-dimensional Gaussian density function, g4(x), for x with mean
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vector m; and covariance matrix Wy, for the ith class, is given by:
gi(x) = (2mL/2 1W1|-& GXP[-—lé (x-m; )t w‘il (x-m; )] 6.13
where W;_l is the inverse of Wi, |wi| is the determinant of W; and

(x—mi)t is the transpose of (x-m,).

The mean m; and covariance matrix W;, for the class i are given by:

N
my = y x(n)/N 6.14
and n=1
N
Wy = 21(x(n)x’°(n) - mym; 5y /N 6.15
n=

where N is the number of training vectors for class i, i = 1,2,3.
Class 1,2,3 refers to voiced, unvoiced and silence classes
respectively.

For multidimensional Gaussian distritution, a discriminant function,
di(x), which classifies feature vectors with a minimum error is given
as [89]:

& (x) = (xom)F Wt (xemy) 6.16

That is, to classify a feature vector x, the weighted distance,
di(x), from x to each of the class mean vectors, m,;, is computed.
Vector x is assigned to the class which gives the nearest distance.
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6.2.5 Results

The speech utterance, 'Industrial shares were mostly a trifle
higher', from a male subject, and the utterance 'Joining hands, they
danced in excitement arocund the fire', from a female speaker were
used to test the performance of both the fuzzy set and the Atal and
Rabiner's classification methods. The input speech signal was
bandlimited to 3.4 kHz and sampled at 8 kHz. The results obtained in
classifying 16 msec speech segments, using both algorithms, are given
in Tables 6.2 and 6.3 in the form of a confusion matrix of correct
and incorrect identifications. For example in Table 6.2, using the
fuzzy set method, 260 voiéed segments were correctly classified, 2
voiced segments were classified as unvoiced and 7 voiced segments
were classified as silence. Figure 6.3 shows the time waveform of
the utterance 'Industrial shares were mostly a trifle higher', and
the classification of its segments into VUS classes using the fuzzy
set method. These results show that the fuzzy set method provides a
classification accuraci{ comparable to the Atal and Rabiner's method.
In addition, the absence of matrix multiplications in the fuzzy
method, unlike in Atal and Rabiner's method, serves to simplify the
computational load.

6.3 ACCUSTIC SEQVENTATION

A speech utterance can be expressed as a sequence of segments
belonging to the voiced, unvoiced or silence classes by dividing the
utterance into segments of suitable temporal durations and
classifying the signal in each interval as voiced, unvoiced or
silence. For reccgnition purposes, however, this 'fine' segmentation
results in a cumbersome system. This is because versions of the same
word will have a different number of segments, hence giving rise to
acoustically different patterns. As such, a coarse segmentation
process which gives the general acoustic structure of the utterance
is desirable. Attempts to use methods based on rules for combining or
deleting classified segments in order to obtain a coarse acoustic
structure of an utterance, proved unfruitful. The main problem was
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TABLE 6.2: RESULTS FROM THE FUZZY ALGORITHM
Actual Class
Identified as:
Voiced Unvoiced Silence
VOICED 260 0 6
UNVOICED 2 59 3
SILENCE 7 5 58
TABLE 6.3: RESULTS FROM ATAL AND RABINER'S ALGCORITHM
Actual Class
Identified as:
Voiced Unvoiced Silence
VOICED 263 2 5
UNVOICED 3 60 3
SILENCE 3 2 59
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to obtain a fixed number of coarse segments per utterance. In
addition, such rules can lead to erronecus decisions. For example,
the occurrence of a short silence duration, preceded and succeeded by
a larger voiced duration, can be an actual possibility. Thus, using
rules to obtain coarse segments, by deleting the silence frames in
such a situaﬁion, would result in an erroneocus decision. A suitable
method for obtaining a coarse structure from the fine segmentation is
to coptimally divide an utterance into a given number of regions, and
then classifying each region according to the nature of segments it
contains. The procedure is discussed below.

6.3.1 Bridle's Algorithm [90]

An optimum procedure for segmenting a speech utterance into a given
number of regions has been proposed by Bridle et al [90], and is as
follows:

Let a speech utterance be represented by the discrete sequence of
multidimensional feature vectors, {al, 8y, e aN}, and that it is
desired to divide the utterance into M regions, where M < N. The
speech pattern has N-1 junctions, numbered 1, 2, ..., N-1 between
feature vectors where the boundary of the regions might be placed.
Let the fixed boundaries before a, and after ay, be numbered O and N
respectively. The division of the utterance into M regions now
reduces to selecting the M-1 of the interior junctions i, i,, ...,

im-1. @nd keeping the fixed boundaries, i.e. iy = Oandiy =N.

In the algorithm, a 'segment evaluation function', £(i,j), is defined
as the error introduced by representing the region of the utterance
between junction i and junction j, as a single feature vector and is

given by:

I d(a r _a' ')
. k=1i+1 ke 743
£f(i,j) = 6.17

0, ifi=3
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;|
where Ei y= 5 a,/(j-i), is the mean vector of the feature vectors
k=i -
in the region, J'ancl dia,, aij) is a distance measure.

A global segmentation criterion, G, which is a function of the
sequence of junctions chosen as the new boundaries is defined as the
sum of errors introduced in each portion of the utterance and is

given as:

M
Glig, 13, .., i) = k):1 £(dp_q1, i) 6.18

It is of significance that eguation 6.18 can be defined recursively
as:

G{lo, il" ese, iM} = G{io, il’ “way iM_l} + f{iM_l, iM} 6.19

The aim of the algorithm is to obtain the sequence {igy, i, ..., iy},
which minimizes G. Let F{m,n) be the minimum value of G obtained in
dividing the first n segments of the utterance into m sections:

i.e. F(m,n) = MIN G(0, 11, eee, igeys n} 6.20
Tyrdgreeedng
using equation 6.19, then equation 6.20 can be expressed as:

F(m,n) = MIN G{O, il' “eny, an"l} + f(irn_l, n) 6.21

which simplifies to:
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F(m,n) = MIN {F{m-1, i) + £(i,n)] 6.22
i

Equation 6.22, allows the computation of the approximate error for
the best division of the whole utterance into M sections. During the
computation, the wvalues F(1,N), F(2,N), ..., F(M-1,N) which are the
minimum errors if fewer sections are required, are also produced. At
every stage in the computation, the junction number i, which
minimizes equation 6.22 is stored in an array P(m,n). After F(M,N) is
obtained, the optimal section boundaries can be recovered by starting
with iy = M, and then tracing back through the array B(m,n).

6.3.2 Results

Bridle's segmentation algorithm was tested with the three 5 kHz
bandlimited speech utterances, 'SIX', 'X', 'INPUT' obtained from the
subject SMl. Each utterance was segmented into 25.6 msec frames and
then a 14th order LPC analysis carried out. Bridle's algorithm was
then used to divide the utterance into a required number of regicns.
Since the LPC coefficients in each segment are available, the segment
evaluation function of eqguation 6.15 employed the gain-normalized
Itakura-Saito distance measure.

Figure 6.4 shows the time waveform of the utterance, 'SIX',
consisting of 23 segments of 25.6 msec duration each. The result of
dividing the utterance into 3, 4, 5 or 6 regions using Bridle's
algorithm is shown in the figure. For example, the boundaries of a
four region division of the utterance are: O, 6, 10, 16, 23. It can
be seen from the figure that these boundaries tend to correspond to
acoustic changes in the utterance. Also shown in the figure is the
voiced, unvoiced, silence classification of the 23 segments as
obtained with the fuzzy set theory approach. Similarly results
obtained with the utterances 'X' and 'INPUT' are shown in Figures 6.5
and 6.6 respectively.
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Most of the 50 words in the recognition vocabulary (apart from words
like MULTIPLY, OONTROL, SEVEN) can be suitably described by 4 or less
coarse regions. As such, a division of the utterances into 4
regions, was used in the word recognition systems described in
subsequent sections.

6.4 THE WORD RECOGNITION SYSTEMS

The detection of the broad acoustic structure of speech utterances
can be used in enhancing the performance of the word recognizer. The
acoustic identity of an utterance is incorporated in a word
recognizer either as a first pass section or as a parallel section,
as described below.

6.4.1 Word Recognizers with a First Pass VUS-Based Recognizer

The structure of the recognition system is shown in Figure 6.7. The
first pass is a VUS-based recognizer which outputs the identity of
vocabulary words having a similar VUS structure to the input
utterance. During the seccond pass, a conventicnal recognition process
is employed, in which the input word pattern is matched only to those
reference patterns identified in the first stage as likely

candidates. The detailed recognition process is as follows.

An input word is segmented into 25.6 msec frames and 14 LPC
coefficients are extracted after Hamming windowing the speech
segments which have already been pre-emphasized through a first order
network with a transfer function, 1—0.92'1. Each frame is then
classified as wvoiced, unvoiced or silence. This is accomplished by
extracting from the speech segment, the five VUS parameters: zero-
crossing rate count, the logarithmic ehergy, the unit delay
autcocorrelation coefficient, the first LPC coefficient and the
normalized prediction error, and then applying the fuzzy set
classification method. The fuzzy set thresholds which define the
linguistic terms, low, medium, high, were obtained in a training
session as described in Section 6.2, The next step in the VUS-based
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recognizer, involves the division of the input word pattern into four
regions, by employing Bridle's algorithm to locate the junctions in
the sequence where the region boundaries are to be placed. Since the
speech utterance is also expressed as a sequence of LPC vectors, the
segment evaluation function in Bridle's algorithm employs the gain-
normalized Itakura-Saito distance measure. Each of the four regions
is then classified as voiced, uwvoiced or silence, according to the
identity of the majority of the segment contained within the region.
The result of the above procedure, is that the input word is
expressed as a sequence of four voiced, unvoiced or silence labels
that indicate the broad acocustic structure of the word. This broad
VUS pattern of the input word is compared with reference VUS patterms
of vocabulary words generated in a similar manner during a training
session. All the reference words, whose VUS patterns have the same
structure as that of the input word, are identified as potential
candidates. '

The second pass of the recognition system, can employ any of the
recognizers discussed in Chapter 5. The input utterance, described
as a pattern of LPC vectors, is compared only with reference words
identified as potential candidates in the first pass. The input word
is then identified according to the decision rules in use by the
particular recognizer, i.e. the nearest neighbour rule, or the KNN
rule.

6.4.2 Word Recognizers with a Parallel VUS-Based Recognizer Section

The VUS-based recognizer can also be used as fa parallel section to a
conventional word recognizer. The composite recognition system is
shown in the block diagram in Figure 6.8. The reference word
patterns used in the recognition system are obtained during a
training session.

During the testing session, an input word, A, is expressed as a
sequence of LPC vectors and applied to the cornventional recognizer to
obtain an output V4. The same word, A, is partitioned into four
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regions using Bridle's algorithm and its VUS sequence identified
using the fuzzy set theory method. The input word, as a VUS pattern,
is applied to the VUS-based recognizer, which gives the cutput set of
words, {VZ}, whose VUS structures are identical to that of the input.
The outputs of both the conventional recognizer and the VUS-based
recognizer are passed over to a decision stage. The input word is
 identified as V4, if V; e {V5}, otherwise a feedback to the VUS-based
recognizer is made if 41 ¢ {V5}. Eachword in the set {vp U vz}, is
expressed both as a sequeﬁce of LPC vectors, and as a sequence of
four VUS segments. The following method was used to identify the
input word in the set {V{ U V,}.

Let the word pattern X ¢ {Vl U Vz} be expressed as the discrete
sequence of I, LPC vectors:

i.e. X = xl, x2, “rey, xi, “on, XI 6.23

The Bridle's algorithm is used to partition X into four regions. Let
the mth region, where 1 € m £ 4, contain the L, LPC vectors

xi’ x_-i_+1p “ee, xi"‘L‘l 6.24

The mth region is then represented by the vector x,, obtained from
the autocorrelation coefficients vector R, given by:

L
R, = ‘21 Ry4q-1 6.25
J:

H e

where R; is the autocorrelation coefficients vector which gives the
LPC vector x;.
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Thus, the whole utterance, X, is represented by four LPC vectors,
(i?l, :?2, }?3, :?4}. The input pattern A is also reduced to a discrete
pattern of four LPC vectors as described above. The distance between
the input word pattern A = {&;, 3,, 33, &4} and the reference pattern
X in VU {V,}, is given by:

4
D(X,A) = | d(xi, 3y) 6.26
351

where d(;:i, a;) is the gain-normalized Itakura-Saito distance
measure.

The unknown input word is identified as the reference word in the set
V,U {V5}, which gives the minimum distance.

6.4.3 Results

The influence of a first pass VUS-based i:ecognizer, on the
performance of conventional isolated word recognizers was
investigated. The corwentional recognizers used are those presented
in Chapter 5, i.e:

1) The LPC-based recognizer with multiple reference patterns

ii) The LPC/SPLIT recognizer with multiple reference pattems
iii) The LPC/VQ recognizer with 16 entry reference codebooks

iv) The LPC/VQ/SPLIT recognizer with 16 entry reference codebooks.

The input words, spoken by a subject who did not contribute to the
generation of reference patterns, were used for testing -the
recognition system. The recognition results obtained, as a
percentage of correct identification of the input words, are given in
Table 6.4. Similarly, the influence of the VUS-based recognizer, as
a parallel section, on the performance of the above conventional
recognizers was also assessed. The recognition results are given in
Table 6.5.
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TABLE 6.4

PERFORMANCE OF CONVENTIONAL WORD REOOGNIZER
WITH A FIRST-PASS VUS BASED RECOGNIZER

RECOGNITION ACCURACY (%)

RECOGNITION Test 1 Test 2 Test 3 Average
SYSTEM Test speaker | Test speaker | Test speaker
sMi sM3 SF1
Ref Speakers: | Ref Speakers: | Ref Speakers:
sM2, SM3, sm4 | sMi, sM2, SM4 | sM1, SM2, smd
SF2 SF2 SF2

LPC-based
recognizer
(4 ref 86 82 80 B2.7
patterns per
voc. word)
LPC/SPLIT
(4 ref 84 82 72 3
patterns/ 79-
voc word)

Ref Speakers: | Ref Speakers: | Ref Speakers:

SM2, sSM3, smM4 | sM1, sM2, SM4 ;sMl, SM2, SM4

SF2, SF3 SF2, SF3 ; SF2, SF3

LPC/VO
16 entries 88 90 ‘ 84 87.3
codebook :
LPC/VQ/SPLIT
16 entries 88 86 82 85.3

codebook
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TABLE 6.5

PERFORMANCE OF CONVENTICONAL REOCOGNIZERS
WITH A PARALLEL WVJS BASED RECOGNIZER

RECOGNITION AOCURACY (%)

RECQOGNITION Test 1 Test 2 Test 3 Average
SYSTEM Test speaker | Test speaker | Test speaker
sM1 sM3 SF1
Ref Speakers: | Ref Speakers: | Ref Speakers:
[ SM2, sM3, sM4 {sMl, sv2, sM4 lsMl, sM2, sm4
; SF2 SF2 SF2
LPC-based |
recognizer
(4 ref
patterns
per voc. 94 90 90 91.3
word froam
subjects
sM1, sSM2,
SM4, SF2)
LPC/SPLIT
(4 ref
patterms/
voc. word 92 90 86 89.3
fram subjects
SMl, SM2, .
SM4, SF2) :
|
i
i Ref Speakers: |[Ref Speakers: |Ref Speakers:
| sv2, SM3, SM4 |sMl, SM2, SM4 |SMl, SM2, SM4
SF2, SF3 SF2, SF3 SF2, SF3
LPC/VQ
16 entries 96 98 92 95.3
codebock :
LPC/VQ/SPLIT
16 entries 96 o8 92 85.3
codebook
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6.5 DISCUSSION

The Chapter commenced with a presentation of the VUS classification
of speech segments. For this purpose, the five parameters - zero
crossing rate count, energy, first delay autocorrelation coefficient,
first LPC coefficient, normalized prediction error, were extracted
from the speech segments. The results given in Tables 6.1 and 6.2
shows the VUS classification of speech segments in utterances, spoken
by subjects who did not contribute to the training process, using the
fuzzy set theory method and the Atal and Rabiner's method
respectively. These results indicate that the accuracy obtained with
fuzzy set method is comparable to Atal and Rabiner's method. The
classification process using Atal and Rabiner's method, requires the
computation of the matrix equation defined in equation 6.16, whereas
for the fuzzy set approach, only the evaluation of the membership
grades as defined in equation 6.8 are required. Thus the fuzzy set
method offers a éomputationally simpler approach. However, both
Classification processes are still error prone. Most of the errors
arise from the confusion between weak voiced segments and silence
segments. Other errors occur in classifying segments in which the
speech samples are changing from one class to another, i.e. when
speech signal transitions are present within a segment. In such a
case, the speech segment consists of samples from more than one
class, and thus classifying the whole segment becomes ambiguous.

For recognition purposes, it would be desirable to obtain a general
acoustic structure of the speech utterance, from its VUS
classification of fine segments. This was achieved by using Bridle's
algorithm of segmenting an utterance into a specific number of
regions. Figures 6.3, 6.4 and 6.5 show the segmentation of the words
'SIX', 'X', 'INPUT’', respectively, into 3, 4, 5 and 6 regions usiné
Bridle's algorithm. The algorithm can be seen to be a powerful method
of partitioning a speech utterance into a recquired number of regions,
as the boundaries are placed at junctions where speech

characteristics are in transition, subject to the frame size.
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The identification of the VUS structure of an utterance was usefully
exploited in enhancing the accuracy of a word i‘eoognition system.
When the VUS-based recognizer was used as a parallel section to a
canventional recognizer, the recognition accuracy was significantly
improved. These improvements are shown in Table 6.6, which is a
comparison of the results in Tables 5.1, 5.4 and 6.5. However,
employing the VUS-based recognizer as a first pass section, results
in a drop in recognition accuracy as shown in Table 6.6. The reason
for this poor performance, is that any errors made in the first pass
section are passed over to the conventiconal recognizer, which will
subsequently make an erronecus identification. Such a situation
would not arise when the VUS based recognizer is employed, as a
parallel section to a conventional recognizer. This is because
classification errors made in one section will not influence the
decision process in the other section. Furthermore, when the parallel
section is used, there is a provision for a feedback path if the
outputs of the two sections are not in agreement. The LPC/VQ and the
LPC/VQ/SPLIT systems both gave an accuracy of 95.3% when employing a
parallel VUS-based recognizer section. This recognition accuracy was
the highest among the systems under consideration in Table 6.6.

6.6 NOTE ON PUBLICATION

‘ A paper entitled "Voiced-Unvoiced-Silence classification of speech
using fuzzy set theory”, in co-authorship with the supervisor, Dr C S
Xydeas, has been published in the Proceedings of IEEE/ Mediterranean
Electrotechnical Conference, held in Madriqd, Spain, from 7-10
October, 1985, pp 123-126. The paper is based on the work presented
in Section 6.2,
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TABLE 6.6

A QOMPARISON OF THE WORD RECOGNITION ACCURACY IN THE THREE SYSTEMS:

i) a conventional recognizer
ii) a conventional recognizer employing a parallel VUS-based

recognizer
iii) a conventional recognizer employing a first pass VUS-based
recognizer

OONVENT IONAL Conventional Conventional Corwventional

RECOGNIZER recognizer recognizer recognizer
without VUS- with parallel with first
based VUS-based pass
recognizer recognizer recognizer

LPC-based

recognizer

(4 reference 89.3 91.3 82.7

patterns per

vocabulary

word )

LPC/SPLIT

(4 reference

patterns per 83.1 89.3 79.3

vocabulary

word)

LFC/VQ

(16 entries _ a4 95.3 87.3

codebook )

LPC/VQ/SPLIT

(16 entries 92.6 95.3 85.3

codebook)
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CHAPTER 7

RECAPITULATION

7.1 INTRODUCTION

In this thesis, isclated word recognition systems based on pattern
matching technigques have been studied and new improved techniques
have been developed. The main objectives throughout have been to
achieve a high recognition rate, whilst keeping the computational
complexity and memory requirements at a minimum. Several word
recognition techniques were investigated, and their performance in a
speaker independent mode was assessed by computer simulations.

The initial work was mainly concermed with the problem of modelling
the non-linear temporal fluctuations in a speech signal. This enabled
the comparison of patterns of diverse temporal durations to be
achieved. Speech utterances can be represented in a suitable form,
for recognition purposes, by characteristic spectral features
extracted from short temporal speech segments. Two spectral feature
sets were considered, namely: filter bank features and LPC features.
From simulation results, it was found that systems using speech
utterances expressed as patterhs of LPC features give a higher
recognition accuracy than those using filter bank spectral estimates.
This gave an impetus to further study of recognition systems which
use speech patterns described by LPC features. However, it was
quickly realised that the use of multiple reference patterns per
vocabulary word, in order to achieve a speakKer independent system
raised considerably the memory regquirements of the recognizer.
Furthermore, the DTW techniques used in the pattern matching stage of
the recognizer, were computaticnally expensive. The desire to solve
these problems, led to the use of vector quantization techniques. A
new recognition system, termed the LPC/VQ/SPLIT recognizer, was
developed. In this system, reference patterns are stored as
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sequences of Codebook entries, and in the pattern matching stage the
need for using the computationally complex DIW is eliminated.

The accuracy of word recognizers can be enhanced further by taking
into consideration the broad acoustic structure of input words. For
this purpose, a new method of speech segment classification into
voiced, urwvoiced, and silence categories using the fuzzy set theory
was proposed. ’

The general conclusions relating to the work carried out in each
Chapter are reviewed in the following sections, followed by

suggestions for further work and closing remarks,

7.2 TIME NORMALIZATION IN SPEECH PATTERNS

The main reason for exploring time normalization techniques in
Chapter 3 was to obtain a suitable method that would be employed in
the word recognition experiments. The Sakoe and Chiba DTW algorithm
was found to be inadeguate for the vocabulary words under
consideration. This is because temporal differences between the
input and reference patterns, exceeded the number of allowed frames
mismatch in the algorithm. As such, Paliwal's modification on
Sakoe/Chiba DTW algorithm was employed to correct the inadequacies.
The DTW algorithm proposed by Itakura, was also investigated and
found to exhibit similar deficiencies as the Sakoe/Chiba algorithm.
That is, for example, an input word pattern cannot be matched with a
reference pattern if the ratio of their temporal lengths is greater
than 2. Myers' method, in which word patterns are transformed into
patterns of fixed lengths, was used with Itakura's DTW algoritlun and
it was found to overcome these problems.

Myers' method was also used to provide fixed length patterns for the
Sakoe and Chiba's algorithm. Two sets of vocabulary words, one of
which is composed of acoustically similar words and the other of
acoustically dissimilar words, were used to test the performance of
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the following schemes: (i) Sakoe/Chiba DTW algorithm, (ii) Paliwal's
modification as applied to Sakoe/Chiba DTW algorithm, (iii) Myers'
method with Sakoe/Chiba DTW algorithm, and (iv) Itakura's DTW
algorithm with fixed lengths patterns generated with Myers' method.

From a comparison of the word recognition results obtained with the
above schemes, Paliwal's modification as applied to the Sakoe/Chiba
DTW algorithm gave the highest accuracy. For this reason the word
recognition systems described in subsequent Chapters, employed this
particular algorithm in the pattern matching stage.

The concern for the heavy computational complexity of the DTW
algorithm led to a consideration of Brown and Rabiner's graph search
techﬁique in Section 3.5. From the simulation results, the graph
search technique, while offering less computations, resulted in a
drop in word recognit:.on accuracy as opposed to the DTW methods. As
such, the graph search method was abandoned in favour of the DTW
method. However, other computational load reduction methods were
investigated and are described in Chapter 5.

7.3 THE USE OF FILTER BANK FEATURES IN WORD RECOGNITION

The representation of speech utterances as discrete patterns of
energy values in selected frequency bands, and their subsequent use
in a word recognition system, was considered in Chapter 4. The FIR
filter bank systems, designed to cover the 0-5 kHz bandwidth of the
speech signals are: (i) an B-chamnel, 1/3 octave spaced filter bank,
(ii) a 5-channel, ideal octave spaced filter bank, (ii) 5, 8, 10, 12
and 16 channel uniformly spaced filter banks, (iv) 16 channel
critical band spaced filter bank. The accuracy obtained in the
isolated word recognizer using speech utterances processed by
different filter banks was compared. First, the word recognition
systems were tested in a speaker independent mode using a single
reference pattern per vocabulary word, and then in a multiple
reference pattern per vocabulary word situation. The results of

these experiments show an overwhelming superiority of multiple



225

reference patterns over single reference pattern systems. In addition
the 8 channel, 1/3 octave spaced filter bank gave a better
recognition accuracy (82.0%) than the other filter bank systems under
consideration.

Attempts were also made to improve on the accuracy of multiple
reference systems, by suppressing the redundancy present in speech
patterns. Two redundancy suppression methods, namely: trace
segmentation and a simple redundancy removal method, were employed as
discussed in Section 4.5. In the 8 channel, 1/3 octave filter bank
word recognition system, an improvement in recognition accuracy by
5.5% is obtained when the simple redundancy method is used to
compress the speech patterns by a factor of 0.9, as shown in Figure
4.8. Although these redundancy suppression methods lead to
improvement in recognition accuracy, their use would be impeded by
the difficulty involved in estimating the level of redndancy in the
speech pattern.

7.4 THE USE OF LPC FEATURES IN WORD RECOGNITION

The word recognition system using patterns of LPC features was
considered in Chapter 5. The first issue was to assess the influence.
of the prediction order of the LPC model on the recognition accuracy.
An average recognition accuracy of 89.3%, as shown in Table 5.1, was
obtained when a 14th order LPC analysis was used. A comparison of the
average accuracy of the word recognizer employing an 8-channel, 1/3
octave filter bank (Table 4.6), and the LPC based recognizer with
14th order LPC coefficient (Table 5.1), reveals the superior
performance of the LPC based system. It was thus decided to proceed
with further investigations of word recognizers employing LPC
features.

The acoustic similarity of some vocabulary words is an obvious source
of recognition errors. A method of generating discriminative
reference patterns for similar sounding words in the vocabulary was
used to reduce such errors. An average recognition accuracy of 91.3%
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was obtained on using the discriminative reference patterns for the
words set {B, C, D, E, G, P, T, V}. However, the use of multiple
reference patterns in the recognition systems, imposes a high
computational 1dad in the recognition process. For this purpose, the
computational cost reduction method of Section 5.4.2 was proposed.
In this method, reference patterns are clustered into a disjoint
number of groups, and each group is represented by a cluster
centroid. The input word is first compared with the cluster
centroids of the varicus groups, and then only with the reference
patterns associated with the best match cluster centroid. The
reduction in computational cost is dependent on the number of
clusters and their occupancy, as illustrated in Figure 5.9. From the
simulation results, a computational reduction of 10:3 was obtained at

a slight drop in recognition accuracy by 1.5%.

Next, attention was focussed on (i) large memory requirements of the
LPC based word recognizer in storing the reference patterns, and (ii)
on the complexity of the DTW algorithm during the pattern matching
process. These considerations led to the use of vector quantization
techniques. Two established recognizers, termed the LPC/SPLIT and
the LPC/VQ systems, were studied by computer simulations. The
LPC/SPLIT word recognition system operates with a reduced memory
requirement but still uses the DTW prﬁcess, whereas the LPC/VQ system
requires a large memory space, but has the advantage of eliminating
the need for the DTW process. Based on the characteristics of these
two recognizers, a hybrid system termed the LPC/VQ/SPLIT system in
which the advantages of both recognizers were preserved, was
developed. From the computer simulation results given in Table 5.4,
and the memory characteristics illustrated in Figure 5.17, the
advantages offered by the LPC/VQ/SPLIT can be deduced, i.e. a high
recognition accuracy (92.6%) and low memory/computaticonal complexity
characteristics.
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7.5 THE USE OF VOICED, UNVOICED AND SILENCE CLASSIFICATION OF SPEECH
SBEGMENTS IN WORD RECOGNITION

In Chapter 6, a method for enhancing the accuracy of a word
recognition system by identifying the broad acoustic structure of the
input speech utterance is formulated. The method requires as a
prerequisite, a reliable classification of speech segments into
voiced, unvoiced and silence classes. A new and simple technidque
which applies the fuzzy set theory to obtain such classification was
developed, and found to offer comparable performance to the
established but complex statistical method of Atal and Rabiner
(Tables 6.1 and 6.2). The segmentation of an utterance into temporal
durations of the order of 25.6 msec, and the subsequent
classification into voiced, unvoiced and silence classes yields a
'fine' acoustic structure which is not suitable for recognition
purposes. Bridle's algorithm for dividing an utterance into a few -
regions was therefore employed in obtaining the coarse acoustic
structure. Two strategies of supplementing a conventional word -
recognition system with the coarse VUS structure of speech utterances
were then inwvestigated The VUS-based recognizer was initially used
as a first pass section and a conventional recognizer as the second
pass. It was observed that, in such a system, the recognition
accuracy actually decreased, as indicated by results in Tables 5.4
and 6.4, The deterioriation in recognition accuracy is due to errors

in the first pass stage being carried over to the conventional

recognizer,

It was therefore decided to investigate the effects of using the VUS-
based recognizer as a parallel section to the conventional word
recognizer. The results of these investigations are given in Table
6.5. A comparison of the accuracy obtained with conventional
systems, as given in Tables 5.1 and 5.4, and when a parallel VUS
recognizer is used, as given in Table 6.5, reveals an improvement in.
recognition accuracy as follows: (i) 2% increase in the LPC based
word recognizer, (ii) 6.2% increase in the LPC/SPLIT system, (iii)
1.3% increase in the LPC/VQ system employing 16 entry codebooks, and
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(iv) 2.7% increase in the LPC/VQ/SPLIT system employing 16 entry
codebooks.,

The LPC/VQ/SPLIT and the LPC/VD systems employing 16 entry codebooks
gave an identical recognition accuracy of 95.3%, when the VUS-based
recognizer was used as a parallel section. The recognition accuracy
was higher than obtained with the other systems under oonsideration.

7.6 SUGGESTIONS FOR FURTHER WORK

As a further extension to the work discussed in this thesis, the

following suggestions are made:

i)

ii)

The use of trace segmentation and redundancy removal methods,
in word recognition systems, as discussed in Section 4.5,
provided an improvement in recognition accuracy for small
compression factors. Such results serve to strengthen the
premises that the information contained in transitional regions
of an utterance play a more important role than the stationary
regions in the recognition process. Thus, if one could extract
more features during transitions rather than in stationary
regions, it can be envisaged that the recognition accuracy
could be enhanced. Such an approach has been considered by
Watari et al [91], but still requires an accurate detection of
transitional regions in the speech signal.

It is considered that further research into certain aspects of
the design of vector quantization codebooks may yield improved
results. In Section 5.5, the centroid of a group of LPC
vectors was computed from the average autocorrelation vector of
the whole group. A better centroid, in terms of the distance
to any vector within the group, would probably be obtained as
the vector whose maximum distance to any other vector is
minimum, i.e. minimax. Such centroids would give rise to
codebocks that represent the training set with less distortion.
Also, the VQ design methods employed in the same section,
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namely: the binary splitting algorithms, may possibly be
improved (in terms of convergence rate and not distortion
level) by the use of more sophisticated 'multiple splitting’
strategies.

iii) The VUS-based recognizer was used either as a first-pass
section or as a parallel section added to a conventional
recognizer. It could not be used in isolation because its
acoustic description of an utterance is too generalized. A
more exact representation of the acoustic structure would
require the classification of segments into more than the three
classes. For example, the voiced class can be split into
vowels, semivowels, diphthongs, voiced-stops, voiced
fricatives. The unvoiced class can similarly be split into
unvoiced fricatives and unvoiced stops. Features which can
help to identify these subgroups have been studied by Ruske
[37] and by Zue et al [92]. The fuzzy set theory can be
applied to model the classification into a similar manner as
proposed in this thesis. However, such work would require the
use of a spectrograph, especially for the training procedures.

7.7  CLOSING REMARKS

The 1asf 15 years have seen spectacular and significant advances in
the general area of speech recognition and in particular isolated
word systems, The formulation of the Ttakura-Saito distance measure
and the DTW techniques are landmarks in isolated, as well .as
comnected word recognition systems. The strategy, emphasized in the
ARPA programme, of combining several knowledge sources in order to
attain successful understanding of speech sentences, has been
accepted as the key to continuous speech recognition.

However, in spite of the significant progress, there are still
several problems to be solved. These include the recognition of:
speech degraded by noise, telephone bandwidth speech, speech from

uncooperative subjects, speech distorted by the environment e.qg.
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'helium' speech. The incorporation of certain knowledge sources like
pragmatics and prosody in continucus speech recognition is yet to be
solved. The solution to these problems will require the cooperation
with scientists in other fields such as artificial intelligence,

linguistics, ergonomics and psychology.

The developments in microtechnology have produced powerful signal
processing chips 1like NEC uPD7720 and Texas Instrument's TMS320.
These chips have been available for the last five years and can be
programmed to perform a number of speech processing algorithms in
real time. The most recent speech recognition chip available from NEC
is the uPD7764. This new chip has been designed specifically for
speech recognition yet comprises two independent general purpose
processors (labelled the D-processor and the G-processor) holding
their programs in RAM. The calculation of the distance between two
vectors of filter bank energy features are performed in the D-
processor. The DTW algorithm is performed in the G-processor.
However, the extraction of the feature vectors is not performed by
the 7764 tut by a 7763 spectrum analyzer. With these new chips, NEC
claims the implementation of an isolated word recognition system,
with a 380 word vocabulary, operating with a response time of 300
msec. The features used are 16 dimensional filter bank energies of
16 msec speech segments in the spectral range 250 Hz-5400 Hz. Many
other manufacturers can also be expected to develop similar devices
possessing great potential for speech recognition. Thus, the
widespread use of speech recognition will most likely be held up by
theoretical rather than technical aspects.

The author hopes that the effort put in the work described in this
thesis makes a contribution to the future development of isolated
word recognition.
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APPENDIX A

THE WINDOW DESIGN METHID FCR FIR FILTERS
The system function of an FIR filter is of the form:

N-1
H(z) = .} h(n)z™ A.l
n=0

where hi{n), 0 €n < N-1, is the impulse response.

The window desigh technique starts with a specification of the
required frequency response, H(ej“’), cf the filter. Figure A.1l(a)
shows the amplitude/frequency characteristics of an ideal low pass
filter (LPF). Since the frequency response of any digital filter is

periodic in frequency, then it can be expanded as a Fourier series as
follows:

H'(ed®) = §  hi(njedun A.2

n==<x

whereh'(n)isﬂmeoorrespaﬁingimpulserespmsesequelwe

i.e.

h'(n) =

2 . .
L | wedy dunagg A.3
2 L

The impulse response is shown in Figure A.2(b).

A finite duration of the impulse response can be obtained from h'(n)
by a simple truncation process, as follows:
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[ {w) |
Fourier transform h{n)
a) pair (F.T) (b}
with linear phase
-
_mc wc w
Ideal low pass filter Infinite impulse response
H{Ww)
h(n) * rectangular window
{e) P.T. (d)
-
) |
- (L!: mc {0
Gibb's phenomena Infinite response truncated

with a rectangular window

Hiw h{n} * Hamming window
(e) F.T. {f)
-l
) 1 !
We, w

W,

" Less ripples present ’ Infinite impulse response
truncated with a Hamming
window

FIGURE A.l: THE DESIGN OF AN IDEAL LOW PASS FILTER USING
THE WINDOW APPRCACH TECHNIQUE

1
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h(n) = . A.4

In general, h(n) can be represented as a product of the desired
impulse response, h'(n) and a 'window', w(n), of finite duration,

i.e.
h(n) = w(n) h'(n) A.5

In equation A.4, w(n) is a rectargular window defined as:
w(n) = A.6

The resultant frequency response, H(e:l ¥y, shown in Figure A.1l(c) is
given by: '

4 .
H(c.=s-'|“’)_=2iTT f H'(ed%) wedw2)y ge A7

i.e. it is the pericdic continuous convolution of the desired
frequency response with the Fourier transform, W(el®) of the window.
Although the rectangular window gives a sharp cut-off frequency, the
presence of ripples in the passband is undesirable. A number o/iE
window functions (Hamming, Hanning, Blackman, Kaiser etc) have been
proposed [93,94], and are used in order to smooth out the ripples
i.e. to reduce the effects of the Gibbs phenomena [95]. However,
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these window 'functia':s achieve a moderation in the Gibbs phenomena at
the expense of a wider passband-stopband transition region.

Figure A.l(e) shows the fregquency response obtained on using the

Hamming window in the impulse response truncation process. A Hamming
window, W(n) is defined as follows:

W(n) = 0.54 - 0.46 cos (2m/N-1), O0<n <€N-1 A.8
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APPENDIX B

PROPERTIES OF THE AUTOODRRELATION QUEFFICIENTS OF THE
IMPULSE RESPONSE OF THE ALL-POLE MODEL

For the all-pole filter, defined by the transfer function, H(z),

G
H(z) =

1+ E atk) 2 K

K=1
where G is the gain, and a(k), k = 1,2, ... p, are the predictor
coefficients. The impulse response, h(n) of the filter is

0 , forn<O0
h(n) = G , forn
ta(k) h(n-k), for n

]
o

B.2

v
Q

The autocorrelation function, -i(i), of the impulse response is given
byr:

R(i) = § h(n) h(n+|i]) = ! h(n) h(n+|i]), for a11 i B.3
n=—ow n=0

Substituting B.2 into B.3, gives

P
R(i) = )} a(k) R(l1i-k]), for 0< i <= B.4
k=1
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R(O) = G% + 51 a(k) R(k) B.5

The autocorrelation coefficlents, R(1), for speech samples was shown
earlier in Section 5.2.2 to cbey the fellowing equations:

P
R(1) = ) a(k) R(i-k) 1<€1i<p B.6
k=1
P
R(0) = G + § a(k) R(k) B.7
k=1

Except for the range of delay order, i, the two sets of equations,
B.4 and B.6, are of the same form. Therefore, for the range
0 < i< p, the two autocorrelation coefficient sets are related by a
constant, c

i.e. R(1) =cR(1) 0<i<p B.8
Since the total energy in h(n) must equal that in the speech sample,

then:

R(0) = R(0) B.9
From B.8 and B.9, the constant ¢ must be unity, and hence:
R(i) = R(1) 0 €1 €p

Therefore, the first (p+l) coefficients of the autocorrelation of the
impulse repsonse of H(z) are identical to the corresponding
coefficients of the signal. '
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APPENDIX C
' THE TTAKURA-SAITO DISTANCE MEASURE [66]([67]
If Pp(w) and Pgplw) are the power spectra of a test and a reference

speech frame, then the Itakura-Saito distance, dIS' between them is
defined as:

}-‘rr 1-)T P'1‘ dw
d1e(Pm,Pg) = [= - logg (=)= 1] == C.1
ISV T-*R
r PR e Py 27
SN e G2
PT = = . C.2
e ] ag 2K [An(2) |2
k=1
rors 2
: G G
PR = 5 - = Cc.3
1+ 1Atk 272 |agiz)|?
k=1 :

G and G are gain parameters, a(k) and a(k), where k = 1,2,...p are
the prediction ccefficients. Both a(0) and a[0) are defined as equal
to 1.

If A(z) has all its zeros withih the unit circle, then A(1l/z) will be
analytic on and within the unit circle, since all its zeros are
autside the unit circle. Residue calculus can be used to show that:

+T 1 _ .
J10g, tlacei)i?y &2 - § 105 (agemdw)|%) Su c.4
" ~juyy dw
= 2 Real ( 1{10% (a(e™ 9y &2 C.5
= dz
= 2 Real (¢ logy {A (1/2)} 2“jz) C.6

2 Real {logy {A(®)]} = 2 Real [logg(1l)]

=0 C.?7
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Thus, equation C.1 reduces to:

+T P +T G2/|AT(Z)|2
T dw d
dre (Pp,Pg) = - 1 [———W—] ZW -1 c.8
s et = e L e R
D -
- gl‘ | Prlag(z)|? %L; + logy (G%) - 1ogg (6%) -1 C.9
- -1

The first term on the right hand side of equation C.9 can be
simplified as follows:

1 2de _ 1 T = -jkw dw
= [ Prlag(2) ¢ = -J.-WIREO'a(k) o IkOR pr(wy G C.10
1Ty 3 kw2
=L [ ak) eIk p () D c.11
_G-2 =TF '='0 2TT
g T P P _ _ .
=L [ 1 1 at a(w) eI pyw) 9@
G -1 k=0 2=0 27 c.12

. ] +T .
Put Pp(w) = J R(n) e 3™“ and R(n) = {Tr Py w) e3P %1:

i.e. the spectral density Pp(w) is a non-negative even function of

w, whose Fourier coefficients R(n) define an autocorrelation

sequence.
Thus,
, P P _
1 [ Pplag(z)|? ¥ =1 ¥ ¥ a(k) a(L) R(k-%) C.13
- TR 2T _ _
G? G k=0 %0
_ _t
- [al[R][a] _ C.14

2
@ ¢
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where [a] is the LPC coefficient vector and [R] the matrix of
autocorrelation coefficients.

The numerator, <, is usually expressed in a more computaticnally

efficient form as follows:

a = R(0) Ry(0) + 2. § R(1) Ry(1) C.15
i1

P -
where Ry(1) = ] a(k) a(k+i) c.16

Eguation C.15 can be obtained from C.14 using the following steps:

P P . P P
T 1 atk) am Rk-2) = § 1 a(ket) alk) R(1) C.17
20 k=0 i=-k k=0
p — —
= § (a(0) a(k) R(k) + (1) a(k) R(k-1) + ... + a(p) a(k) R(k-p)}
k=0 c.18

= &0) a(0) R(0) + a(1) a(0) R(1) + ... + a(p) a(0) R(p)
+ &0) a(1) R(1) + a(1) a(1) R(0) + ... + A&p) a(1l) R(p-1)

+ a(0) a(2) R(2) + a(1) a(2) Rr(1) . + a(p) ac2) rR(p-2)

+

+ a(0) a(p) R(p) C.19
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By inspection equation C.19 can be expressed as:

P
- pzl . _
R(O) 5 a(k) a(k) + 2 R(1) z a(k) a(k+1)
k=0 k=0
p=2
+ 2 R(2) 5 a(k) a(k+2) + ... + 2 R(p) al0) a(p) = o C.20

Therefore the Itakura-Saito distance measure, djg can be expressed in
a simplified form as:

drg (Pp, Pp) = % + logy (&) - log, (6%) - 1 c.21

The gain-normalized Itakura-Saito distance measure, dgy, 1is defined

as:

Ay (PT’ PR) = O - Cc.22

G2

The parameter, G2, in equation C.22 can be expressed in a matrix form
as follows:

G2 = [a]{R][a]® .23

This relationship can be shown in the following steps:

P P

[a][R}{a]® = §  a(i) a(k) R(i-k) c.24
i=0 k=0
P P

= J { ¥ a(1) a(k) R(i-k) + a(1) a(0) R(1)} c.25

0 k=1
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P P . P

= ¥ 7 a(d) a(k) R(i-k) + ¥ a(i) R(1) C.26
iZ0 k=1 iZo
P P P P

= 1 I a(d) a(k) R(1-k) + - ] a(0) a(k) R(k) + ) a(i)R(i)
i=1 k=1 k=1 i=0

c.27

The relationship between predictor coefficients and aubtocorrelation
coefficients is given by:

P

Y a(k) R(i-k) = -~ R(1), 1<i< p c.28
k=1 .

Substituting C.28 into the first term on the right hand side of
equation C.27, giwves:

P P P
- ¥ a(d) R(4) + ¥ a(k) R(k) + § a(i) R(1) c.29
i=1 k=1 i=0
2 P
= I a(d)R@) = RO) + 1 a(l) R(1) = G2 C.30
i=0 - i=1
Thus
gy = FRIURIEE) _ 4 c.31

[al[R][a]t
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APPENDIX D

THE RELATIONSHIP BETWEEN LPC (XEFFICIENTS AND
CEPSTRAL QOEFFICIENTS

Fram the LPC filter defined by the h:an_sfer function,

G
H(z) = D.1
. p

1 + z a(]()z-k
k=1 .
where a(k), kK = 1,2, ...p are the prediction coefficients and p the

order of prediction. G is the gain of the filter.

The Cepstrum, C(z) is defined in the z domain by taking the log of
the transfer function, H(z), i.e.

logg H(z) = C(z) = ) C(n) 2D D.2
n-

where C(n) are the cepstral coefficients.

Substituting equation D.1 into D.2 and taking the derivatives of both
sides with respect to z"l, gives

p o
9 {109, G - log, [1+ ] a(k) 27X} = 4. ] cmz™ D.3
az" k=1 dz ' n=1
'D.3 can be simplified to give
P p - ,
S0 ) xam) zRlym+ ¥ oak) z¥1 = ) oncn) 2™ D.4

k=1 k=1 n=1
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p | p -
- kK a(k) z %1 - (1 4+ Y a(k) 27Ky Y n c(n)z 1 D.5
k=1 k=1 n=1

Equating the constant term and the various powers of z'"l, on the left
and the right hand sides of equation D.5, gives the relationship
between C(n) and a{n), i.e.

C(1) = - a(l) ' - D.6
n~1

C(n) = Y (1 -k/n) a(k) C(n-k) +a(n) 1<n<p D.7
k=1

Thus, the cepstral coefficient at unit delay is identical to the
first LPC coefficient.






