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i 

The work presented in this thesis concerns the recognition of 

isolated words using a pattern matching approach. In such a system, 

an unknown speech utterance, which is to be identified, is 

transformed into a pattern of characteristic features. These 

features are then compared with a set of pre-stored reference 

patterns that were generated from the vocabulary words. The unkrDwn 

word is identified as that v=abulary word f= which the reference 

pattern gives the best match. 

One of the major difficul ties in the pattern comparison process is 

that speech patterns, obtained from the same word, exhibit non-linear 

temporal fluctuations and thus a high degree of redundancy. The 

initial part of this thesis =nsiders various dynamic time warping 

techniques used for normalizing the temporal differences between 

speech patterns. Redundancy removal methods are also considered, and 

their effect on the recognition accuracy is assessed. 

Al though the use of dynamic time warping algorithms provide 

=nsiderable improvement in the accuracy of isolated word recognition 

schemes, the performance is ultimately limited by their poor ability 

to discriminate between acoustically similar words. Methods for 

enhancing the identification rate among acoustically similar words, 

by using common pattern features for similar sounding regions, are 

investigated. 

Pattern matching based, speaker independent systems, can only operate 

with a high recognition rate, by using multiple reference patterns 

for each of the words included in the vocabulary. These patterns are 

obtained from the utterances of a group of speakers. The use of 

multiple reference patterns, not only leads to a large increase in 

the memory requirements of the recognizer, but also an increase in 

the computational load. A recognition system is proposed in this 
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thesis, which overcomes these difficulties by (i) employing vector 

quantization techniques to reduce the storage of reference patterns, 

and (U) eliminating the need for dynamic time warping which reduces 

the computational complexity of the system. 

Finally, a method of identifying the acoustic structure of an 

utterance in terms of voiced, tmVOiced, and silence segments by using 

fuzzy set theory is proposed. The acoustic structure is then 

employed to enhance the recognition accuracy of a conventional 

isolated word recx:Jgnizer. 
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0IAPl'ER 1 

The concept of speech =rnmunication between man and machines is not 

new, bein;J found in the fOlklore of many ancient civilizations. The 

first major achievement towards such a goal can be attributed to the 

work of A.G. Bell [1] on the conversion of sound stimulus into 

electrical signals. However, it is only with the advent of 

electronics and modern =mputers that the subject has developed from 

myth into ·reality. 

Man-machine communication by voice can be subdivided into three 

regions: 

i) voice response systems 

H) speaker recognition systems 

Hi) . speech recognition systems 

Voice response systems translate the output of a device into a spoken 

message, thus providing a speech communication in one direction only 

i.e. from the device to man. In speaker recognition systems, the 

speech communication is from man to machine and the task is to verify 

or identify a speaker from a given list. Speech recognition systems 

also use voice communication from man to machine. '!he aim is either 

to recognize or 'understand' a spoken utterance. The art of 

'understanding' means that the device responds correctly to what was 

spoken. 

A combination of the three systems would enable a speaker to hold a 

'conversation' with a machine. Such a possibility would not only give 

rise to a lot of curiosity and academic interest, but also it can be 

usefully applied in a number of ways which are briefly described in 

the following sections. 
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1.1 THE VALUE OF MAN-MAClUNE SPEECH a:I>MJNICATION 

In the 20th century man has developed machines and in particular 

computers in order to satisfy the demand in efficiency of the 

activities of modern life. There is a call for the need to optimize 

the link between the machine and the operator. Traditionally, the 

link has been mainly mechanically oriented, but recent advancement in 

speech processing has exposed the great potential and the sui tabUi ty 

of voice as a link. Speech is man's most natural means of 

communication. 

Speech is also man's highest =mmunication capacity output channel. 

Several investigators [2], [3], [4] have examined the relative 

information carrying capabUi ties of some of the =mman techniques, 

among them: speaking, handwriting, typing, and touch-tone methods. 

Table 1.1 is a summary of the results obtained. These results 

strongly suggest that speech, as an information conveying medium, is 

unsurpassed by the other =mmon modes of =mmunication. Therefore, if 

computers could recognize human speech, they would exploit the 

potential offered by the speech communication and also become 

available for use by a large section of the population. In general, 

man-machine speech communication would find applications in such 

fields as: 

i) ccmnercial 

ii) military 

iii) social 

iv) scientific 

~ial Applications 

Speech technology will probably have its greatest use in =mmercial 

applications. Already voice input systems have be=me operational in 

quality control, automated material handling and st=k control. In 

most quality control tasks, the operators' eyes and hands are usually 

busy with inspection. By using a voice data entry system, the 

operator is able to re=rd his observations and measurements as he is 
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TABLE 1.1: INFORMATION RATE FOR CXM>ON CXMI1UNICATION M:lDES 

CXMI1UNICATION M)J)E INFORMATION RATE 
(words/sec) 

1. Speaking [2] 2.0-3.6 

2. Handwriting [2] 0.4 

3. Typing (skilled subjects) [2] 1. 6-2. 5 

4. Typing (unskilled subjects) [2] 0.2-0.4 

5. Touch-tone [3] 1.2-1.5 

6. Typing (skilled subjects in a 
0.6 prob1en solving situation) [4] 

7. Speaking in a prob1en solving 
2.9 situation [4] 
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doing his normal work. The operator is thus able to provide a fast, 

timely and a=ate inspection report. 

Telephone services currently provided by attendants, can also be 

automated and offered at a low cost by employing speaker and speech 

recognition systems. Such services are based on the retrieval of 

information from computerized data banks and include ordering and 

verifyin;J credit cards, teleptxJne banking, catalogue ordering, travel 

reservations, stock market quotations, weather forecast information, 

etc. 

Military Applications 

Speech recognition has also become attractive to the military 

especially for the purpose of security, surveillance, command and 

control. 

i) Security: 

Security precautions require the identification or the verification of 

persons before getting access into certain installations. Speaker 

recogni tion techniques can be used in conj unction with traditional 

methods like magnetic cards, badge readers etc, to enhance security. 

ii) Surveillance: 

Surveillance of enemy communication channels is undoubtedly of major 

interest to military intelligence. One of the aims is to recognize a 

keyword or a set of keywords embedded in narrow bandwidth conversation 

speech as found in a radio link. In the surveillance of lengthy 

speech conversations there is a need for a quick method of editing and 

scanning. The automatic recognition of keywords would perform this 

function. 

Channels can also be surveilled with the aim of identifying the 

language being used. Linguistic chains formed from the phonetic 

transcription of speech have been shJwn [5] to be a powerful means of 

discrimination between different languages. 
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iii) Q:mnand and control: 

In the aeroplane cockpit, the pilot is continuously monitoring and 

manipulating a diverse number of instruments. The use of his voice in 

issuing commands for the control of some devices can be a most 

important advantage. 

Social Applications 

The disabled would probably be the largest social group to enjoy the 

benefits of speech recognition techrDlogy. People who are paralysed 

from the neck down could use their power of speech to control a 

wheelchair. Systems which convert the voice output into a visual 

signal have been proposed as speech training aids for the deaf [6]. 

Speech recognition can 'also play a useful role in language learning 

and translation. Devices that can check spellings for a limited 

number of words, or translate some phrases from one language to 

another are already available. 

other applications which would interest the general public are voice­

controlled domestic i terns like 'IV sets, radios and toys. Voice output 

messages in fire alarm systems, in motor vehicles, and in personal 

items like watches, could also prove to be popular. 

Speaker recognition or verification can be put to use in criminal 

investigations. Already, voice identification results have been 

presented as evidence in some United States courts of law [7]. 

Scientific Applications 

The development of a computer capable of understanding human speech, 

under any circumstances, and conditions, would be a novel scientific 

invention. The achievement of such a goal would require a wealth of 

knowledge about the nature of speech and the manner in which human 

beings understand SPOken language. Such a system would have to model 
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aspects of human intelligence and would thereby serve as a testing 

ground for the effectiveness of the theories of artificial 

intelligence . 

1.2 HUM1\N FACroRS IN MI\N-MAOUNE CXM1UNICATION 

There exists a number of human factors that can affect the usefulness 

of voice as a medium of =mmunication with a computer f= data entry 

and oantro1 applications. Failure to attend to these factors would be 

detrimental to the tasks involved. 

i) Recognition accuracy 

The recognition accuracy in a practical speech recognition system must 

be reasonably high so as not to hinder the accomplishment of the 

intended task and to eliminate any loss of confidence by the user. 

Even where provision for e=or co=ection exists, high e=or rates 

tend to frustrate the user and he will =t wish to use the system. It 

has also been reP=ted that [8] re=gnition accuracy tends to decrease 

when the user senses that something is wrong with the system, and 

loses his confidence. 

ii) Error ==tion [9] 

Since the speech recognition process is generally error prone, it 

be=mes necessary to provide convenient e=or co=ection procedures. 

One =mmon method is to store the reoogni tion output in a buffer stage 

and only transmit it to the output device upon reception of a 

verification =mmand. Other =mmands can be used for erasing part of 

the data or for clearing the entire buffer. The problem with these 

commands is that they can also be misrecognized resulting in a 

frustrating exercise and in the addition of more e=ors to be 

==ected. 

iii) Response time 

In order for voice data entry to be competitive with other data entry 

media such as keyboards, it is necessary for the recognition process 

to be as fast as possible. Immediate feedback of the recognition 
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results must also be given to the user, usually as a direct echo of 

the words entered. Efficient use of the feedback for verification 

requires the delay to be minimized. 

1. 3 ORGI\NIZATION OF THE THESIS 

The thesis presents a research work in the speaker independent 

recognition of isolated words. The vocabulary of interest is =mposed 

of the 36 alpha numeric· digits and the 14 control words: YES, NO, SET, ADD, 

DELETE, STORE, MULTIPLY, ClJNI'ROL, READ, INPUT, CXJl'PlJI', LOAD, WRITE, 

END. 

The first chapter in the thesis discusses the role of speech as an 

input/output mode in man-machine communication. The difficulties 

encountered in achieving the goal of this interaction, which is the 

motivation of the research are briefly outlined. 

Chapter 2 opens with a discussion of the basic structure and mechanism 

of human speech production system, the nature of the speech signal and 

human perception system. The rest of the chapter is devoted to a 

review of the methods used in speech recognition systems. Isolated, 

connected, continuous and speech understanding systems are covered in 

a general sense, rather than a detailed description, with a minimum of 

mathematics. However, essential information is included to give the 

reader an understanding of the basic techniques involved. 

Chapter 3 is concerned with the modelling of non-linear time 

variations of the speech utterances. This poses one of the major 

problems in pattern matching based word rea:x,;J11.itian since it involves 

the comparison of speech patterns of different temporal lengths. 

Several speech pattern time normalization methods are examined and 

compared on the basis of their word recognition performance. 

The use of filter bank features in word recognition is examined in 

Chapter 4. The way the performance of different f11 ter banks, Le. 

number of filters, type of filters, frequency spacing, etc affect the 
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accuracy of word recognition is investigated. Techniques for 

improving recognition performance are also examined. 

Chapter 5 is concerned with word recognition based on linear 

prediction coding (LPC) coefficients. The problem of improving 

recognition performance, reducing memory requirements and attaining 

iow computational complexity in recognition systems is explored. 

Finally, a recognition system termed the LPC/VQ/SPLIT which is a 

hybrid of some two well established recognizers is presented. The 

proposed recognizer has the advantage of requiring far less memory 

storage and maintains comparable performance to the established 

schemes. 

In Chapter 6, the application of the fuzzy set theory in the 

segmentation of speech into voiced, unvoiced and silence is proposed 

and compared with an established method. The resul tirtJ segmentation 

process enables the broad acoustic structure of an utterance to be 

identified. The rest of the chapter deals with improving the 

performance of the LPC based recognizer by incorporating the 

information about the acoustic structure of the utterance as side 

information. 

The final chapter provides a recapitulation of both the novel 

recognition schemes proposed in this thesis and the main results 

obtained experimentally by computer simulations. Suggestions for 

further research work are also made. 
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2.1 Im'RODUCI'ION 

In this chapter, the concepts and theories underlying speech 

recognition systems are presented. The chapter commences with a 

discussion on the theory of speech prcxl:uction and the nature of speech 

signals. A brief historical survey of the developments in speech 

recognition is also presented. 

Speech recognition systems can be considered as belonging to one of 

the three categories: (i) isolated word systems, (H) connected word 

systems, = (Hi) continuous speech systems, depending on the form of 

speech input they are expected to accept. The general techniques 

applied in each of these three categories are discussed in order to 

expose the difficulties involved in the recognition task, and the 

aspects of the problems still to be solved. 

2.2 THE THEORY OF SPEECH PRODUCTION [10][11] 

The human speech production mechanism cbnsists of an excitation source 

and a time varying resonant cavity formed by the vocal tract. Figure 

2.1 illustrates the cross-sectional view of the vocal system. 

The vocal tract is a =-uniform tube with an average length of 17 cm. 

It is terminated at one end by the glottis, which is an opening 

between the vocal cords, and at the other end by. the lips. The =ss­

sectional area of the vocal tract varies along its length, from a 

complete closure to about 20 sq cm as determined by the movement of 

the lips, jaws, tongue and ve1um. The nasal cavity which begins at 

the ve1um and terminates at the rDStrils can be coupled to the vocal 

tract by the action of the velum to produce nasal sounds. Otherwise 

during the generation of non-nasal sounds, the velum seals off the 

vocal tract from the nasal cavity. 
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There are three basic ways in which sounds can be generated by the 

vocal system. Voiced SOtmds are produced by forcing the air from the 

lungs through the glottis with the tension of the vocal =rds adjusted 

so that they vibrate in a relaxed oscillation. The interrupted air 

flow produces quasi -periodic broad spectrum pulses which excite the 

vocal tract. The English vowels a, e, i, 0, u are produced in this 

manner. 

Fricative sounds such as /f/, /th/, /s/, /sh/ etc, are generated by 

using the articulators to form a constriction at some point on the 

tract and then forcing air through the constriction to produce 

turbulent flow. With both a constriction and vocal cord vibration, 

voiced fricatives such as /v / are generated. 

Plosive sounds such as /p/, /g/ and /t/ are generated by making a 

complete closure usually towards the lips end of the vocal tract, 

building up air pressure behind the closure, and then suddenly 

releasing the air. 

Click sounds unique to certain South African languages [12] are 

generated by the concurrence of two points of closure on the tongue, 

the back one always being velar. The air enclosed between the two 

points undergoes a rarefaction by the backward and downward movement 

of the tongue. When the front closure is released the air rushes into 

the mouth. 

All these techniques of speech production involve the modification of 

the frequency spectrum of the excitation source by the vocal tract. 

The rather loose interaction between the vocal system and the sound 

sources, can be approximately represented as linearly separable. 

Figure 2.2 shows the source tract model of speech production with the 

underlying linear systems theories. The sound radiated from the lips· 

s(t), can be approximated as the convolution of the vocal tract 

impulse response h(t), and the excitation signal g(t), i.e. 
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FIGURE 2.2: THE SOURCE TRACT MODEL OF SPEECH PRODUCTION [10] 
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set) = get) * het) 2.1 

The impulse response het) is time varying, since the various 

articulators in the vocal tract are continuously in motion. The 

excitation source get) too is time varying. However, b:Jth the source 

and vocal tract responses can be considered as stationary in the sh::>rt 

term. This concept is the basis of most recognition systems in which 

characteristic features are extracted from temporal segments of a 

speech signal. 

2.3 rnARACI'ERISTICS OF SPEEOI SOONDS 

Figure 2.3( a) s1nws a time waveform of voiced speech • The fine pseudo­

periOdic structure observed in the waveform arises from the psuedo­

periOdic excitation source. 

From the s1nrt time frequency spectrum of the voiced signal s1nwn in 

Figure 2.3(b), it can be observed that most of the spectral energy is 

concentrated in the lower frequency spectrum. The envelope of the 

spectrum exhibits resonances arising from the frequency response of 

the vocal tract. It is usual to find at least three dominant resonant 

. peaks below 4 kHz. The resonances are refe=ed to as formants. 

A time waveform of unvoiced speech and its short term spectrum are 

shown in Figure 2.4(a) and (b) respectively. Both the responses 

appear to be 'noise-like' owing to the nature of the excitation 

signal. The spectrum does not exhibit the fine resonant structure 

observed with voiced sounds. 

Speech signals are approximately stationary within short time 

intervals and non-stationary over a long time duration. Voiced and 

unvoiced sounds can further be subdivided into elemental speech units 

by taking into consideration their spectrographic characterization as 

well as the manner and place of articulation. These elemental speech 
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units, known.in linguistics as ph:lnemes, are the 'building blocks' of 

spoken words and play a similar role to letters in written language. 

The set of ph::memes .in any language is quite small =mpared with the 

set of all the possible words. In the English language, there are 

about 42 phonemes grouped into the four broad categories: vowels, 

semivowels, diphtoongs and consonants [13]. 

2.4 A BRIEF HIS'IORY OF A1.1KMATIC SPEEOI RECXXNITION 

Automatic speech recognition is generally defined as the process of 

extracting the message in a speech utterance. Most of the research 

work in this field has been done within the last thirty years with the 

early attempts having been initiated by the following two factors: 

i) the major developments in electronics, after the invention of 

the tube in 1930, gave rise to the availability of new 

electrical circuits for signal analysis; 

ii) the introduction of the vocoder by Dudley [14] in 1939 and the 

sound spectrograph by Potter et al [15] in 1947, gave a better 

understanding of the information bearing elements in a speech 

signal. The sound spectrograph, displaying a 3-dimensional plot 

of the speech energy - time axis - and frequency, for the first 

time gave scientists the chance of measuring and observing the 

changing a=ustic cues in the speech signal along its time axis. 

This helped to increase the knowledge on the nature of speech 

signals and their method of production thus opening the way f= 

future speech techfx)logy. 

2.4.1 The Early Work in the 1950s 

The first successful recognizer, reported by Davis, Biddulph and 

Balashek [16] of the Bell Laboratories in the USA in 1952, was 

concerned with the identification of the ten digits spoken in 

isolation. Their method of analysis was based on dividing the 

frequency spectrum of the speech signal .into two bands, one above and 

the other below 900 Hz. A count was made on the number of times the 
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signal level in each of the two bands crossed the zero amplitude axis 

(Le. zero crossings count). 

This indicated the approximate frequency range in which the energy in 

the speech signal is concentrated. Displaying the two measurements on 

a horizontal and vertical axis yielded what is now known as a first 

formant-second form ant (Fl-F2) plot. The resulting pattern of an input 

digit was then cross-oorrelated with each of the pre-stored patterns 

of the ten digits, zero to nine. The digit pattern which had the 

highest cross-oorrelation with the input was chosen as the identity of 

the digit. The device could recognize which of the ten digits was 

spoken, with an accuracy of over 90%, if the pre-stored Patterns had 

been formed from the samples of that particular speaker. With the 

speech of a different speaker, however, the accuracy could be as low 

as 50%. 

Apart from its historical significance, the Davis recognizer 

introduced the technique of reducing the input speech signal into a 

pattern and then oomparing it with pre-stored reference patterns, a 

method which is still in force today. 

Dudley and Balashek [17] in 1958 developed a recognizer that analyzed 

the speech signal by splitting into ten frequency bands and extracting 

certain features whose durations were compared with pre-stored 

reference patterns of the vocabulary words. A major aspect of the 

approach by Dudley, and his contemporaries like Fry and Denes [18], 

was the attempt to segment words into phonetic uni ts. Fry and Denes 

used a phonetic set comprising four vowels and nine consonants and 

stored estimates on the probability of a given phoneme following other 

phonemes. The overall performance of these early recognizers, 

especially in a speaker independent mode, was rot impressive, ranging 

from 24 to 44%. Nevertheless, these early attempts at reoognition did 

demonstrate the value of using the spectrograph as a usefUl tool in 

the study. 
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2.4.2 The 1960s 

The use of the digital computer in speech recognition was first 

employed in the early 1960s by Denes and Matthew [19]. They reported 

a system of recognizing the ten digits using a 17 channel spectrum 

ana1yzer to obtain word patterns. The resulting time-frequency 

patterns of a number of utterances for each digit were averaged and 

stored as reference patterns. 

The time-frequency pattern, from an input digit utterance to be 

identified, was compared by a cross-co=elation process with each 

stored pattern. The digit was classified as the reference pattern 

giving the best match. An important concept in the Danes and Matthew 

recognizer, was the introduction of time nonnalization of the speech 

patterns. Short versions of an utterance, that were spoken at a faster 

rate than the reference utterances, were stretched out to equal the 

duration of the reference utterance. On the other hand, slowly spoken 

long 'versions of an utterance were ccmpressed, to match the length of 

the reference utterance. Experiments showed that better recognition 

rates were obtained with the time oormalization than without it. 

Another early use of ccmputers in speech reccgnition was in the work 

reported by Forgie and Forgie [20] of the Linccln Laboratories in the 

USA, dealing with the identification of fricatives in initial and 

final positions of isolated words. 

The introduction of the Fast Fourier Transform (FFT), in the mid-1960s 

by Cooley and Tukey [21], made it possible to achieve complex 

mathematical analysis of speech waveforms with reasonable 

ccmputational effort and also paved the way for fully digital speech 

reccgnition systems. This, along with the desire to market small scale 

recognition products, led to the development of special purpose 

hardware. At about the same time, reccgnizers were also developed for 

other languages such as Japanese by Nagata et al [22] and German by 

Musman et al [23]. 
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At the end of the 1960s speech scientists had begun to expand their 

domain to the recognition of continuous speech. Early attempts were 

reported in 1968, by Otten [24], who proposed the application of 

syllabic units, pLOscxlics, and finite state language to represent the 

structure of speech dialogue with a machine. 

2.4.3 The Early 19706 

By 1970, the interest in continuous speech recognition had developed 

to such a stage that the Information Processing Techn:Jlogy Office of 

the Advanced Research Projects Agency (ARPA) of the United states 

Department of Defence, found it necessary to initiate a five year 

research programme [25]. The objective of the research was to make a 

breakthrough in the speech \IDderstanding capability that could be used 

in a practical man-machine communication system. The ARPA study group 

emphasized that the recognition of continuous speech needed to use, 

not only the advanced techniques achieved in acoustic analysis, but 

also required a methodological approach with the inclusion of 

grammatical, semantic and prosodic constraints, together with 

phonological rules which govern a given human language. These 

constraints would represent various kn::lwledge sources that could be 

brought to attain successive \IDderstand.ing of the message in speech. 

The ARPA project called for a system that would accept continuous 

speech from any cooperative speaker. The language was limited to a 

vocabulary of 1000 words and allowed to have an artificial syntax 

appropriate to a limited task situation, e.g. data management, chess 

playing etc. 

When the ARPA project ended in 1976 a number of task dependent 

systems: HARPY, HEARSAY, HWIM and SOC, which could \IDderstand spoken 

utterances within a given context had been developed [25]. Many of the 

present day continuous speech recognition systems still employ the 

techniques investigated during the ARPA project. 

Apart from the ARPA project, the work reported bY Baker [26] and 

simultaneously by Jenelik [27] has also contributed immensely to the 
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speech recognition research. The DRAGON system proposed by Ba,ker, 

models the knowledge sources necessary for automatic reoogni tion of 

continuous speech, as a probabilistic function of a Markov process. 

In conjunction with the ARPA project and the DR1IGJN'system, two other 

major developments in the early 19705 which helped to accelerate the 

pace in speech recognition, especially for isolated words, were the 

introduction of Linear Prediction Cbding (LPC) and Dynamic Programmirg 

(DP) techniques by Itakura in 1975 [28]. LPC, which is based on the 

speech synthesis mode, is particularly suitable since it describes 

efficiently the spectral characteristics of speech. On the other 

hand, DP provides an extremely useful technique in optimizing the 

temporal differences between speech utterances. 

2.5 ISOIJ\.TEJ) WJRD REOJGNITION SYSTEMS 

Isolated word recognition systems deal with speech input in the form 

of words spoken in isolation. Since distinct pauses exist between 

words, the problem of separatirg one word from another does not arise. 

The recognition process of isolated words begins by digitizing the 

Speech utterance which still results in a large number of data points. 

It then becomes necessary to employ a data reduction technique whereby 

the large set of data points is transformed into a small set of 

features which are equivalent in the sense that they faithfully 

describe the properties of the speech waveform. Usually a data 

reduction ratio between 100 and 10 is generally acceptable. 

2.5.1 Feature Extraction 

Different sets of features for representirg speech signals have been 

proposed, rangirg from simple measurements such as zero crossirg rates 

to the more =mplex short time spectral parameters. The motivation for 

choosing one feature set 'over another is often dependent on the 

constraints imposed on the system in terms of cost, speed and 

recognition accuracy. Some of the =mmonly used features are discussed 

belCM: 
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i) Filter bank features 

A popular set of features used in speech recogni tian is the output of 

a bank of filters. The speech utterance is passed through a bank of 

bandpass filters covering the speech bandwidth. The energy in the 

speech signal in a given frequency band is estimated from the output 

of the respective bandpass filter. For a given time instant on the 

speech utterance, a set of energy features define an Nth order feature 

vector, where N is the number of bandpass filters employed. Thus the 

whole utterance can be expressed as a pattern of discrete Nth order 

feature vectors. 

ii ) Linear prediction features 

Aoclther widely used set of features, is based on the linear prediction 

coding of speech, and was first proposed for recognition purp:lSes by 

Itakura [28]. Linear prediction is based on the assumption that a 

speech sample can be approximated as a linear combination of a number 

of immediately preceding samples. 

For each sample, a prediction errcr e(n), is defined as follows: 

p 

e(n) = x(n) - x(n) = x(n) - I a(i) x (n-i) 
i=l 

2.2 

where x(n) is the linearly predicted sample and x(n) is the actual 

sample. 
, 

On minimiZinJ the mean squa~e prediction error e(n), over a finite 
/ 

interval, a unique set of predictor coefficients, a(i), i = 1,2, ... p, 

can be obtained. These coefficients give a good short term spectral 

estimate. Thus, an utterance can be represented as a sequence of 

discrete vectors of linear prediction coefficients. 



22 

Hi) Articulatory parameters 

An ideal set of features for describing speech sounds would be the 

parameters giving the position of the tongue, lips, jaws and the velum 

as functions of time. Since these articulators take an infinite number 

of positions, a statistical analysis of X-ray data [29] can be done to 

determine an effective representation of the articulator movements in 

a reduced dimension space. The parameters can also be estimated from 

the speech signal [30] [31]. 

2.5.2 The Pattern Matching M:x1el for Isolated Word Reccgnition 

Figure 2.5 shows the typical pattern matching model employed in the 

majority of isolated word recognition systems. It consists of three 

main stages: 

i) feature extraction stage 

ii) pattern cx:mparison stage 

iii) decision rules stage 

The input to the model is an isolated utterance which is to be 

identified within a given vocabula'ry. After an analogue to digital 

conversion, features like those described in Section 2.5.1 are 

extracted from temporal segments of the utterance. The resulting 

pattern is compared with pre-stored patterns of reference vocabulary 

words. 

A decision rule is used to identify the input word as the reference 

vocabulary word giving the best match. This pattern matching model 

has been widely used with the following three advantages: 

i) the model is invariant for different vocabularies, feature sets, 

pattern a:rrq;Jarison measures and decision rules 

H) it is easily implemented 

Hi) it has been found to give satisfactory performance in practice. 
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One major difficulty in the pattern comparison stage is that speech 

utterances are rarely of equal temporal length. Their duration are 

dependent on the speaker, his rate of speaking and on the 

circumstances. The same is true, even if the speaker is the same 

person who recorded the reference patterns. One solution to this 

problem is to map the time axis of one pattern onto the other such 

that maximum coincidence is attained. 

The performance of the word recognizer is severely degraded if the 

input and the reference speech utterances are obtained from different 

speakers. However, these inter-speaker differences can be reduced by 

employing a large number of reference patterns obtairied from different 

speakers per vocabulary word. As a consequence of using multiple 

reference patterns per vocabulary word, the response time and the 

memory requirements of the system are greatly increased. In such 

situations clustering techniques, like vector quantization [32] in 

which a group of similar feature vectors are mapped into a single 

vector, can be applied to the reference patterns in order to reduce 

the memory requirements. 

2. 5.3 Stochastic Mx1elling Approach for Isolated Word Recognition 

[33] 

It would be quite natural to consider speech as being generated by a 

stochastic process of the type described by hidden Markov chains. A 

hidden Markov process consists of two inter-related mechanisms, an 

underlying Markov chain having a finite number of states, and a set of 

random functions, one of which is associated with each state. At a 

given time instant, the hidden Markov process is in a unique state and 

an observation is generated by the random function associated with the 

state. This causes the underlying Markov chain to change state in 

a=rdance with its transition probabilities. These states cannot be 

observed directly, only the outputs of the random functions at each 

state are seen. 
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In speech production, the vocal tract and the various articu1ators can 

be approximated as being in one of a finite number of articulatory 

configurations, or states. In a given state, a short time speech 

signal which can only have one of a finite number of spectral shapes 

is generated. Thus the short term spectrum of the speech signal is 

determined by the cu=ent state, while the spectral variation with 

time is determined by a transition probability distribution of the 

underlyin;;} Markov chain. 

Let the underlying Markov chain have the N states: 

and let the set V of K spectral shapes, also referred to as symbols, 

be 

The underlying Markov chain can be specified in terms of an initial 

state distribution vector 11 = (11 l' 11 2' ... l1N) and a state transition 

matrix A = [aij], 1" i" N, 1 .. j" N. l1i is defined as the 

probabili ty of observing state qi at time t=l. The value of aij is 

the probability of a transition to state qj given the current state 

qi 

i.e. 2.3a 

The random process associated with each state can be collectively 

represented by the stochastic matrix B = [bjk], 1 .. j "N, 1 .. k .. K. 

The value bjk is the probability of observing the spectral shape vk 

given the current state qj and is denoted as: 

2.3b 
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A hidden Markov model, M, is thus specified by the set (,r, A, B). 

Efficient meth:xis f= estimatin;l' parameters in the matrices A and B 

have been proposed by Baum [34]. 

Figure 2.6 illustrates the structure of a hidden Markov model with 5 

states, i.e. N=5. The model starts in state ql and terminates in 

state q5 by progressing from the left to the right with:Jut re-visitin;l' 

states which have been left. In the model, transitions within the 

state, i.e. all' a22 etc are allowed, so are transitions that skip 

neighbouring states, i.e. a13' a35 etc. By imposing different 

constraints on the transitions, other variants of the hidden Markov 

models can be obtained. 

In order to use the hidden Markov models to perform speech 

reco9ni tion, it is necessary first to generate the set of spectral 

shapes V, usually by vector quantization of LPC coefficients. Next a 

large number of repetitions of each vocabulary word are used as·a 

training set to derive the hidden Markov model for each vocabulary 

\>'ord. 

The speech recognition problem is thus specified as follows. Given a 

set W of R words vocabulary, W = (wl' w2' ... , wR) and a set of hidden 

Markov models for each word, Ml , M2, ... ,. MR. F= an unlmown word Wit: 

·W, with an observation sequence 0i = (01' 02' ... ° f! ..• , 0L' where 

each O~ t: V, 1 .;;; R,';;;. L. 

The probability, Pi' that this sequence was generated by the model Mi 

is given by: 

2.4 
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FIGURE 2.6: A HIDDEN MARKOV MODEL 
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The interpretation of equation 2.4 can be made as follows. The 

initial state ql exists with a probability 1T
ql

. The spectral shape 

01 is generated with probability b
q1 

(01). Then a transition is made 

to state q2 with probability ~l ~ to generate spectral shape Oz with 

probability bq2 (02). The process is continued until the last 

transition from state qN-l to state qN with the probability au . q 
"N-l N 

and the spectral shape Dr. generated with probability bq (Dr.). 
N 

A computationally efficient alg=ithm f= evaluating equation 2.4 has 

also been proposed by Baum [34]. 

The unIm:Mn utterance is classified as Wi if, and only if, 

2.5 

2.6 CONNECI'ED lIKlRD REO:X3NITION SYSTEMS 

In cormected word reoogni tion, the speech is a sequence of words from 

a specified v=abulary. Typical examples include the digit strings of 

telephone numbers, identification codes etc. where the vocabulary is 

the 10 digit set (0-9) and connected letters, like in word spellings, 

where the v=abulary is the 26 letter set (A-Z). 

The recognition of connected words can be performed by applying the 

pattern matching techniques of isolated word recognition. Thus, as 

illustrated in the block diagram in Figure 2.7, the connected speech 

recognition system is almost identical to the isolated word 

recognizer, except for the introduction of a section in which 

connected patterns are synthesized. 

Let an input speech pattern consisting of words of unkoown length, be 

expressed as the discrete sequence, C, of length I: 
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2.6a 

and let the vocabulary be the set of N words (1. 2 •... n •.... N). The 

reference pattern of word m is represented as a discrete sequence. Bm 

of length J m 

i.e. ~ 
m 

2.6b 

The concatenation of two speech patterns srn and sn is denoted as Bm @ 

sn and is the sequence: 

... , tfl 2.7a 
n 

A connected pattern B of words n(l). n(2) •... n(k) is synthesized by 

concatenating their reference patterns as follows: 

2.7b 

The unknown input speech pattern C. is matched with the synthesized 

reference pattern B. to give a distance D(C;B). The matching process 

is repeated. changing the number of words k and the indexes 

n(1).n(2) •... n(k). until all the permutations of the indexes are 

exhausted. 

A 

The optimum parameters. k=k and n(x) = n(x). x = 1. 2 •... k which give 

the minimum distance D(C.B) are determined. The unknown input pattern 
A 

C. is identified as the k connected words ;;(1). -~(2) •... nd{). The 

minimization problem can be expressed as the solution to the following 

equation: 
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I 
I\nin = k/~) i [D(C, an(l) (t)If1(2) $ ... + an(x) $ ... + an(k»] 

2.8 

Unfortunately, except for trivial cases with short sequences and small 

vocabularies, the exhaustive solution of equation 2.8 is impractical 

due to the excessive computation involved. A suitable approach for 

solving equation 2.8 has been proposed by Sakoe [35], in which the 

minimization problem is considered in two stages, one for the word 

level and the other for the whole connected words level. 

A partial pattern C(.Q, ,m), of the input pattern C is defined as: 

2.9 

In splitting the pattern C into k partial word patterns, the (k-l) 

word boundaries, .Q,(l), .Q,(2), ••• , .Q, (k-l) are assumed. 'lhus: 

C = C(.Q, (0) ,.Q, ( l)) (t) C(.Q, ( 1 ) ,£ ( 2)) <±> • •• $ C(£ (k-l),£ (k)) 2.10 

where .Q, (0) = 0 and R. (k) = 1. 

The distance between C and a concatenated reference pattern Bm ® an, 

is given by: 

D(C, sffi®an) = MIND(C(O,O, sffi) + D(C(£,I), an)) 2.11 
.Q, 

Inserting eciuatian 2.10 into 2.8 and applying the relationship defined 

in 2.11 gives: 
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k 
Doo.n = MIN { 2 MIN D [C(i(x-1),R.(x», Ifl(x)n 2.12 

k, i (x)x=l n (x) 

Equation 2.12 is solved by dynamic programming methods. Other 

techniques for solving the connected word recognition problem have 

been proposed by Myers et al [36]. 

2.7 THE REO:X:>NITION OF OJNI'INUOUS SPEEOi 

In a continuous speech recognition system, the input speech is in the 

form of naturally spoken words in a given language. The aim of the 

recognition system is either to identify the words or to decode the 

message in the input speech. The latter is also referred to as speech 

understandiIYJ • 

A study of human speech perception can provide a useful insight into 

the modelling of a computer recognition system for continuous speech. 

2.7.1 The Human Speech Perception [37] 

The human speech perception process comprises several stages of 

analysis, namely: 

i) auditory 

ii) phonetic 

iii) phonological 

iv) prosodical 

v) lexical 

vi) syntactic 

vii) semantic 

viii) pragmatic 

The speech signal heard by the listener is transformed by the cochlea, 

an organ located in the inner ear, into a time varying pattern wh:>se 

main features are the concentration of energy in a frequency~time 
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space. In the cochlea too, there are neurological systems for 

extracting features such as the fundamental frequency, intensity, 

spectral shape, duration of the speech signal and representing them by 

psychoaooustical sensations like pitch, loudness and timbre. 

The phonetic stage involves the extraction of features such as 

labiality, nasality, voiCing and frication which serve to discriminate 

between specific speech sounds. The auditory and phonetic stages of 

speech processing appear to be closely inter-related since certain 

consonantal speech sounds are known to be perceived as of being a 

particular phonetic type group without being discriminated within the 

group. Thus, the auditory proCessing Stage reduces the speech signal 

into a continuous parametric representation of frequency and time, on 

which the listener imposes a categorization on the space of sounds, 

from his linguistic knowledge, to give a string of phonemes. 

The phonological stage serves to bring aspects of the variability in 

pronunciation of words in the particular language, to bear on the 

perception process. Phonetic sequences of many words are markedly 

reorganized when the words are used in certain phrases. For example 

[38], for the phrase' would you' which when spoken fast appears as 

'wujeu', the listener must invert the generative rule: 

/wud/ + /ju/ = /woje/ 

so as to perceive =rrectly. 

In the prosodical stage, information on stress patterns, intonation 

and pauses are extracted from the speech Signal. This information 

gives a clue as to whether the message in speech is a question, 

statement, =mmand etc. 

Lexical, syntactic and semantic information are invoked to give the 

phonetic string a meaningful message. The lexical information 

pertains to the vocabulary words in the language known to the 

listener. The syntax is the grammatical structure of the language, 
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which describes not only the way words are concatenated to form 

sentences, but also the manner in which phJnemes form syllables, and 

syllables form words. Semantics is the meaning of the words. 

Pragmatics refers to the context of the conversation. Using these 

four knowledge sources, a sentence can be rejected if it is 

inconsistent with one of the knowledge sources. For example, [39], 

consider the fOllowing sentences: 

i) Sleep roses dangerously young colourless 

ii) Colourless yellCM ideas sleep furiously 

Hi) Colourless paper packages crackle loudly 

The first sentence is syntactically and consequently semantically 

unacceptable. The second sentence is syntactically correct but 

meaningless. The last sentence, though syntactically and semantically 

correct, would be rejected because it is pragmatically inconsistent. 

Generally, human listeners do experience difficulties in decoding the 

pragmatic concepts of a ICl:03Uage unless they are well CXJ!1Versant with 

the context of conversation. 

If the kn:Jwledge is incomplete or inaccurate, human listeners tend to 

make hypotheses. In many cases an unambiguous interpretation is 

possible on the basis of incomplete phonetiC representation, by 

generating a hypothesis that represents the listener's expectation of 

the continuation of the utterance. These observations have been 

reported by Wa=en [40] as the phoneme restoration effect, in which 

selected pln1emes were removed from words in sentences and replaced by 

various forms of noise and listeners still continued to 'hear' the 

missing sounds. 

In another experiment described by Reddy [39]. subjects were asked to 

listen to a sentence and then write down what they heard The results 

obtained are given 'in Table 2.1 and generally show that the listeners 

try to form their own hypothesis as to what was said. There is also 

the failure to detect the end of one word and the be9inning of the 

other, which contributes to erroneous hypothesis. 
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TABLE 2.1: HYPOI'HESIS GENERATION IN HUMAN LISTENERS [39] 

ACIUAL PHRASE RESPONSE 

in mud eels are, 1st subject: in muddies sar, in clay mannar 

in clay rnne are 

2nd subject: in my deals are, en clarmannar 

3rd subject: in my ders, en clain 

4th subject: in nodel sar, in claynanar 
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Despite these setbacks, it is evident that the study of human speech 

perception can be of immense benefit to continuous speech recognition. 

2.7.2 The Continuous Speech Recognition M:xlel [25] 

The continuous speech recognition system can be modelled as a two 

level hierarchy =nsisting of an acoustic processor as the first level 

and a language analyzer as the second level. Such a model is 

illustrated in the block diagram in Figure 2.8. 

i) The acoustic analyzer 

The first step, in the processing of the continuous input speech 

signal, is to transform it to a discrete symbol string. The symbols 

may be phonemic, syllabic or actual words depending on the 

segmentation process employed in the system. The transformation of 

speech into phonemic symbols involves. feature detection, segmentation 

and labelling. The features commonly extracted are energy and 

fundamental frequency which serves to detect frication, voicing, 

silence and stress in the speech signal within the segment. Each 

segment is then labelled with the closest ph::memic symbol. Before the 

symbol sequence can be applied to the language analyzer it is 

necessary to apply phonological rules to combine segments, change 

labels based on context, and delete transitional segments. Syllabic 

symbols can be extracted by detecting energy dips in the speech 

signal. 

When words in a sentence are separated with brief pauses, the process 

of detecting the beginning and ending points for the words can be done 

on the basis of temp:>ral variation of energy in the speech waveform. 

Energy minima of sufficient duration would indicate word boundaries. 

Let the language L, in the recognition task, be limited to a 

vocabulary V consisting of M symbols (1.e. words, syllables or 

phonemes) VI' V2, ... Vw An arbitrary sentence W in the language can 

be expressed as a string of symbols: 
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2.13 

The sentence W, as defined in 2.13 is encoded in s(t), the input 

speech to the acoustic ana1yzer. The acoustic ana1yzer decodes the 

speech to obtain an input sentence W, which is a corrupted form of W, 

Le. 

2.14 

'" "-where W i £ V for 1" i" K; but W is not necessarily a sentence in L. 

The aooustic ana1yzer also computes a distance matrix D. 

2.15 

'" where dij is the distance between the ith symbol Wi and the vocabulary 

symbol Vj . 

ii) Linguistic processor 
"-

The language processor accepts the symbol string W and distance matrix 
A 

D from the acoustic processor and then produces the string W: 

A A A 

for which the distance D(W) is given by:' 

K 
D(W) = MIN 'L (d .. ) . ~Ji 

~=l' . 
l"l"M 

~ 

2.16 

2.17 
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where ~ji is the distance between Wi and all the symools Vj that may 

appear in the ith position of sentences in L. Equation 2.17 is 
A 

minimized subject to the constraint that W is a sentence in the 

language L. 

Witlxlut a:tY!f cxmst:raints, given a v=abulary oonsistin;1 of M different 

words and admitting sentences having a maximum of K words each, the 

number of possible sentences that can be formed would be of the order 

of MK. The exponential growth in the number of sentences can be 

constrained by imposing a grammatical structure, as defined by the 

syntax, and invoking the relationship between objects and events in 

a=rdance with semantic rules. This prcx:ess can be approximated by 

elementary formal language theory and has been advantageously 

exploited in the computer recognition of continuous speech. 

A language which is generated by a grammar G is denoted as L(G). The 

grammar G is a function of four arguments: 

2.18 

where VT is a finite set of ~bols out of which sentences are formed 

i.e. vocabulary of possible words which are also designated as 

terminal symbols. VN is another set of symbols disjoint from VT, but 
+ 

whose members define VT. Symbols in VN are also described as non-

terminal symbols and would refer to generalized parts of a sentence 

like a predicate, verb, adjective, etc. S, which is a member of VN 
(S £ VN), is deSignated as a starting symbol, and would refer to a 

complete sentence. P is a finite set of transformations, termed 

production rules. Typically each production rule expresses a possible 

way of transforming a non-terminal symbol into a sequence of one or 

more symbols (terminal, non-terminal or both) as indicated below: 

+ For example, VN could be thought of as a phrase and VT as a word 



40 

2.19 

the asterisk * stands for the set of all strings of elements in the 

designated set. 

A sentence expressed as a string of symbols W = Wl , W2, ... Wi , ... WK, 

where Wi E V, f= 1 oE;; i oE;; K, is said to belong to the language L(G), if 

and only if there exists a sequence of production rules which can 

derive W from a starting symbol S, i.e. 

WE L(G), if S + aI' al + a2'···' <lr-l.+ W 2.20 

The use of different production rules leads to languages of different 

properties and complexities as formulated by Chomsky [14]. If the 

production rules are of the form: 

or 

A +a B 

C + b 2.21 

where VN = (A, B, C) and VT = (a, b), then the grammar is Classified 

as a Olcmsky type 3, also krla.-Jn as Regular gramnar. 

Regular grammars may be used to generate or analyze a subset of a 

natural language appropriate to a certain task and can be represented 

by a state transitional diagram as illustrated in Figure 2.9 for an 

airline reservation system [42]. In the diagram, transition from one 

state to another is dependent on the production rules in the grammar 

G. The edges are labelled with the terminal symbols in VT, which are 

the vocabulary W=lls. The fin! teness of the language is impiied in the 

state diagram by disallowing arry path from starting and ending at the 

same state. 
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FIGURE 2.9: A STATE TRANSITIONAL DIAGRAM [42] 
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Sentences or symbols in VN can be generated by starting from node 1 

and following any path to final node 6. As each transition is made, 

the vocabulary word associated with the transition is added to the 

rest of the string already formulated. 

The particular problem addressed by the formal language theory which 

is relevant to speech recognition is that of parsing sentences in a 

language. This specifically means determining whether W £ ;L(G), using a 

sequence of production rules for the derivation of S.,. W. The 

acoustic processor provides the distance matrix D, and the language 

analyzer finds the sentence W £ L(G) which satisfies equation 2.17. 

For example, if the acoustic transcription gives the sentence W' in 

equation 2.14 as 'WOULD MUCH IS TO FARE', it would be clear from the 

state diagram in Figure 2.9 that the sentence is invalid since there 

is no path whose edges are so labelled. The parsing algorithm 
"-

described by Levinson [42] aims to produce from W, a string of words 

with a valid path in the state diagram and with a minimum total 

distance. The production rules of the grammar are invoked in order to 

achieve the process. 

iii) Syntax directed approach to continuous speech recognition 

In practice it is difficult to determine accurately the phonemic or 

syllabic boundaries in speech. 

Phonemes are not easily determined acoustically due to co­

articulation. Furthermore, some sounds can belong equally to more 

than one proneme. It has been estimated [39] that phoneticians seem 

to agree only 51% of the time, when labelling continuous speech in 

unfamiliar languages. 

The problem with syllabic segmentation is that sometimes the 

boundaries cannot be specified uniquely. For example [38], for the 

word 'common' it is =t clear whether the syllables are /kom/ + /on/ 

or /ko/ + /mon/. 
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In continuous speech too, pauses cb rot normally exist between wards, 

and detecting the begi.nn:in;J and the ending points of words is an error 

prone pr=ess. 

One of the methods of recognizing continuous speech in the presence of 

unreliable segmentation is to use syntax to direct the matching of 

continuous speech symbols to reference prototype wards [42]. In this 

case the word segmentation problem is overcome by generating many 

hypothetical segmentations and choosing the best one. '!his 'hypothesis 

and test' approach requires the establishment of a feedback link 

between the acoustic processor and the language analyzer as shown in 

Figure 2.8. The language analyzer provides the acoustic processor 

wi th a list of those symbols which can occur at a given node in the 

sentence being processed and the acoustic processor computes only 

those entries in the distance matrix. Based on the parsing stage in 

the sentence, the linguistic analyzer also specifies the approximate 

time ts when the vocabulary symbol v should occur. 

In the acoustic processor, the output speech string beginning at ts is 

matched to the reference prototype word v to obtain the distance Dv 

and a computed endpoint te. The endpoint will then be used as the 

nominal begi.nn:in;J point for the next word in the candidate sentence. 

The parsing process is implemented by a dynamic programming recursion 

identical to equation 2.17, except for a pointer which is included to 

keep track of the segmentation. 

2.8 SPEEOf DATA BASE AND EX:!UIPMENI'S 

The speech data base in this research work was recorded in a silent 

room from the utterances of four male subjects SM1, SM2, SM3, SM4 and 

three female subjects SF1, SF2, SF3. All the subjects were native 

speakers of the English language. The subjects read the vocabulary of 

50 words in the order listed in Table 2.2, in a casual and cooperative 

manner. It was considered important to arrange the digit and alphabet 

words set in a random manner so as to reduce the co-articulation 

between adjacent words. 



Order 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 
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TABLE 2.2 

THE LIST OF VOCABULARY WJRDS AS READ BY THE SUBJECTS 
DURIN::; THE RECDRDIN3 SESSION 

Vocabulary Word Order Vocabulary Word 

DELETE 26 FOOR 

NINE 27 SroRE 

INPl1I' 28 L 

F 29 G 

0 30 A 

W 31 V 

Z 32 y 

K 33 I() 

THREE 34 E 

ZERO 35 I 

WRITE 36 Q 

END 37 FIVE 

SIX 38 READ 

J 39 U 

D 40 X 

S 41 '!W) 

LOAD 42 P 

N 43 EIGHT 

ONE 44 C 

ADD 45 T 

M 46 YES 

H 47 R 

B 48 SEVEN 

SE!' 49 MULTIPLY 

CDNTROL 50 CXJTPUT 

I 

I 
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Each vocabulary word was spoken twice by each male subject and once by 

each of the female subjects. The recorded speech was bandlimited to 5 

kHz+ and digitized at 10 kHz using a 12 bit A/D converter and 

subsequently transferred to the hard disk of a oomputer. 

The results presented in this thesis were obtained by simulations 

using the DEC pop 11/34 and pop 11/73 computers. 

2.9 DISQJSSION 

In this chapter, an attempt has been made to review developments and 

techniques used in speech recognition. A comparison of the 

recognition accuracy of the various systems is difficult to make. This 

is because the accuracy of a given system is not only dependent on the 

design techniques, but also on a number of diverse factors such as: 

the recognition vocabulary, noise level in the speech signal, speech 

. signal bandwidth, etc. As a general rule, however, isolated word 

systems can, and do, achieve better performance than connected word 

systems which in turn have a better performance than continuous speech 

systems. 

There is still a demand for an increase in performance in isolated 

word recognition systems which can be achieved by solving the 

following problems: 

i ) speaker independence 

ii) reduction in canputation time 

iU) reduction in merrory requirements 

iv) discrimination of aooustically similar words in the vocabulary. 

The rest of this thesis is primarily ooncerned with the recognition of 

isolated words, . and attention is focused on solving the above four 

problems. 

+ The 5 kHz bandwidth was selected to provide comparability with 
other research work 
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TIME N:lIM\LIZATICN DI SPEEXli PATI'ERNS 

3 • 1 INI'RODUCl'ICN 

The variation in the speaking rate, which is mainly dependent on the 

manner of the speaker and on his emotional status, means that 

different repetitions of the same word will rarely be of equal 

temporal length. The elimination of these fluctuations in speaking 

rate, or time normalization as it is often called, is a central issue 

in speech recognition systems based on comparison of patterns of 

unequal length. A linear transformation of the time axis, in order to 

eliminate the temporal differences between speech patterns, will 

prove inadequate to deal with the highly l'Xl\'l-linear fluctuations of 

the speaking rate. In this Chapter, several non-linear time 

normalization algorithms are discussed, and their performance is 

assessed with the aim of selecting the algorithm to be employed in 

the proposed isolated word recognition systems described in 

subsequent chapters. 

3.2 DYNAMIC TIME WARPII-G 

Temporal differences between two speech patterns, can be eliminated 

by warping the time axis of one of the patterns onto the other, such 

that maximum coincidence is attained. This requires the modelling of 

the time axis fluctuations by a l'Xl\'l-linear function of some specified 

properties. 

Let A(t) and B(t) be two speech patterns referred to as input and 

reference patterns respectively, which are rot necessarily of equal 

temporal length. The time rormalization problem is to find a function 

F(t) which maps the pattern A(t) onto the corresp:nding parts of B(t) 

such that the distance, D(A,B), between the two patterns is 

minimized. 
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Thus, F(t) is such that: 

t , a • 
D(A,B) = MIN J D(A(t), B(F(t»).G(t,F(t),F(t») dt 3.1 

t o 

where to and ta are points on the time axis which indicate the 

starting and ending point of the input pattern A(t). F(t) is 

specified to be a monotonica11y increasing and continuously . 
differentiable function. F(t) is the derivative of F(t). 

D(A(tl,B(F(t») is the'distance of an individual point in A at time t 

from a point in B at time F(t). G is a weighting function which is 
• 

dependent on t, F(t) and F(t). 

Unfortunately, 'there is no simple solution to the continuously 

variable problem of equation 3.1 and the only alternative is to use 

discrete functions. If the two speech patterns are time sampled with 

a constant and common sampling period, then the time warping 

function, F(n), can f'DW be determined as the solution to the problem: 

N 

D(A,B) = MIN L D(A(n), B(F(n») 
F(n) n=1 

3.2 

where D(A(n),B(F(n))) is the distance between the nth discrete frame 

of the input pattern and the frame F(n) of the reference pattern. 

Dynamic programming methods can be used efficiently to define the 

optimum time warping function, F(n), a=rding to equation 3.2, which 

minimizes the total distance between the two patterns. The 

optimization process is known as Dynamic Time Warping (DTW). A 

variety of DTW 'algorithms can be obtained by imposing different 

restrictions on the warping path. 
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3.2.1 The Sakoe and Oriba D'IW AlgoritlDns [43] 

Let the two speech patterns A(t) and B(t) be expressed as a sequence 

of discrete multi-dimensional vectors, i.e. 

3.3a 

3.3b 

where I and J are the number of vector frames in pattern A and B 

respectively. 

A matrix of distances, d(i,j) is ccnputed as: 

The distance between pattern A and B, can be defined along a path F, 

in the i-j plane as illustrated in Figure 3.1. 

Thus: 

F = f(l), f(2), ... , f(k), ... f(K); 1" k" K 3.4 

where f(l) = (1,1) and f(K) = (I,J). 

Let the grid point (i,j) at f(k), be denoted as (i(k), j(k», and the 

distance between the two feature vectors ai and bj at this point as 

d(f(k» = d(i,j). Then, the weighted sum of the distances along the 

warping function is given by: 



b. 
J 

FIGURE 3.1 

49 

input pattern A 

THE TIME WARPING FUNCTION 

f(K)=(I,J) 

warping 
funCtion 



50 

K 

D(F) = I d (f(k». w(k) 
k=l 

3.5 

where w(k) is a positive weighting coefficient related to the length 

of the path from f(k-l) to f(k). D(F) attains a minimum value when 

the warping function is chosen to provide an optimum time alignment 

between the two patterns. Then the time nonnalized distance, D(A,B), 

between patterns A and B, as given by equation 3.2 can be expressed 

as: 

K 
D(A,B) = MIN [ I d(f(k».w(k)]IN 3.6 

F(n) k=l 

where N is a normalization constant used to compensate for the number 

of points on the warping function. 

i) Restricticn en the warping path 

If the assumption that the input speech pattern A, and the reference 

pattern B coincide precisely at the initial frame and at the final 

frame, Le. fell = (1,1) and f(K) = (I,J), then the solution to the 

DTW equation 3.2 is equivalent to finding the 'best' path through a 

fini te set of grid points, and as such any 'path finding' technique 

can be used. However, the warping path is a model of the time axis 

fluctuations of the speech and, a=rdingly, it should reflect these 

fluctuations by preserving essential linguistic structures. In 

speech patterns these structures are continuity, mon::rtonicity, and 

limitation on the duration of acoustic segments, and can be realised 

on the warping function by imposing the following conditions: 

a) M::>notonic conditions: 

i(k-l) .;; i(k) and j(k-l) .;; j(k) 3.7 
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b ) Continuity condi tians: 

i(k) - i(k-1) '" 1 and j(k) - j(k-l) ( 1 3.8 

c) Boundary condi tians: 

i(l) = 1, j(l) = 1 3.9a 

and i(K) = I, j(K) = J 3.9b 

d) Wiru:lcM length condition: 

Ij (k) - i(k) I '" r 3.10 

where r is a suitable positive integer termed the adjustment 

window length. This condition removes the possibility of an 

excessive time difference between the two speech patterns. The 

maximum value of r is the absolute difference in frames between 

the input and the reference patterns. 

e) Warping path gradient condition: 

The gradient of the warping path should not be allowed to be too 

steep, nor too gentle, since it can result in the unrealistic 

=rrespandence between a short segment of one pattern with a long 

segment of the other pattern under =mparison. A situation like 

this would occur if a short segment of a phoneme transition in 

one speech pattern is in good coincidence with an entire vowel 

steady state segment in the other speech pattern. Thus, it is 

necessary to restrict the warping function gradient to a certain 

range which will not cause undesirable time axis warping. 

Consider two consecutive points f(k-1) and f(k) on the warping 

function as illustrated in Figure 3.2. The point f(k) is derived 

from the point f(k-1) by either horizontal, vertical or diagonal 
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f(k) 

n productions 

f()c-l) 

m preXluctions 

f (k.) 

n productions 

m productions 

FIGURE 3.2: THE WARPING PATH GRADIENT CONSTRAINT 



53 

productions = a series of their combinations. A minimum gradient 

condition can be realised by requiring n diagonal productions to be 

preceded by m horizontal productions. Similarly, a maximum gradient 

condition can be realised by having the n diagonal productions 

preceded by m vertical productions. So the gradient of any 

prospective path between f(k':'l) and f(k) is restricted by these two 

values. 

The intensity of the gradient constraint can be expressed as a 

measure P, given as: 

P = n/m 3.11 

Figure 3.3 illustrates the various series of productions for the 

different values of P. For example, in Figure 3.3c, the contribution 

to the grid point (i,j) comes either from (i-3, j-2), or (i-I, j-l), 

or (i-2, j-3). The minimum gradient from f(k-l) to f(k) has two 

diagonal productions and one horizontal production, and the maximum 

gradient has two diagonal productions and one vertical production. 

The gradient constraint measure P for this case is 2. The larger the 

value of P, the more restricted the gradient of the warping function. 

In the case where P = 00 the warping path would be restricted to the 

diagonal line i = j and the non-linear time normalization is not 

achieved. When P = 0, there is no restriction on the gradient of the 

warping function. 

ii) The weighting coefficient and the normalized cxnstant 

The computation of the time normalized distance O(A,B) between 

the two speech patterns A = {aI' a2' ..• ai' ... aI} 'and 

B = {bl ,b2 , ... , b j , ... , b J } as given in equation 3.6, requires the 

specification of the weighting coefficient w(k), and the 

normalization coefficient N, which is dependent on w(k). Several 
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(b) P=l 

f(k)=(i,j) 

f (k-l). 

=(i-2,J-l) f(k-l)=(i-l,j-l) 

f(k. 

=(i-l,j-2) 

f(k)=(i,j) 
~-----"1f 

f(k-l)=(i-l,j-l) 

FIGURE 3.3: \~ARPING PATH PRODUCTIONS FOR P=O, P=l, AND p=2 
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weighting functions which depend only an the lcx::al productions of the 

warping path have been PLqosed [43] and are of the fonn: 

Type a: w(k) = i(k)-i(k-l) 3.l2a 

Type b: w(k) = j(k)-j(k-l) 3.l2b 

Type c: w(k) = (i(k)-i(k-l) + j(k)-j(k-l» 3.l2c 

Type d: w(k) = ~ [(i(k)-i(k-l), (j(k)-j(k-l»] 3.12d 

Figures 3.4(a), (b) and (c) give a pictorial illustration of these 

weights on each production of a warping function with gradient 

constraint P=O, P=l and P=2 respectively. 

It can be observed that the weighting function type 'a', weighs the 

productions a=rding to the distance moved along the i axis; type 

'b' according to the distance moved along the j axis; type 'c' 

according to the sum of the distances moved in both i and j 

directions. Type 'd' weighs all the productions equally. For types 

'a' and 'b' weighting functions, the zero weights on some productions 

may result in the exclusion of some features in the speech pattern 

from the comparison process. Since the effect of these weighting 

functions is to map the time axis of one pattern onto the time axis 

of the other, the time normalization is referred to as of 

asymmetrical form. Type 'c' weighting function ensures that all the 

frames of both speech patterns are used in the comparison process, 

and is referred to as symmetrical form of time normalization. 

Symmetrical time normalization can be seen as a process whereby the 

time axis of both speech patterns are mapped onto a temporarily 

defined =mmon axis. 

The normalization coefficient N, is determined by the requirement 

that the total distance, D(A,B), should be the average local distance 

along the warping path and is expected to be independent of both the 



56 

(i-l,j) 1 (i, j) (i-1,j) o (i, j) 

1 1 

o 1 

(i-l,j-l) (i,j-ll (i-1,j-l) (i,j-l) 
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(i-l, ') 1 (i, j) (i-l,j) 1 (i, j) 

2 1 1 1 

(i- ,j-l) (i, -1) (i-l,j-l) (i,j-l) 

Type 'c' constraint Type 'd' constraint 

FIGURE 3.4 (a): WEIGHTING FUNCTIONS FOR A WARPING PATH \HTH 
GRADIENT CONSTRAINT P=O 
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Type 'a' constraint 

,r----<~I ---..i( i , j ) 
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2 
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1 
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FIGURE 3.4(b): WEIGHTING FUNCTION FOR A WARPING PATH WITH 
GRADIENT CONSTRAINT P=l 

r-... I--.(i, j) 
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(i-2,j-3) (i-2,j-3) 

Type 'a ' constraint Type tb' constraint 

1 (i, j) 1 (i,j) 

1 1 

2 

(i-3, j-2) 

(i-2,j-3) (i-2,j-3) 

Type 'e' constraint Type 'd' constraint 

FIGURE 3.4 (c): WEIGHTI,NG FUNCTIONS FOR A ,,)ARPING PATH WITH 
GRADIENT CONSTRAINT P=2 
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path and the temporal len;Jth of the two patterns and is of the form: 

K 
N = L w(k) 

k=l 
3.13a 

For the type 'a' weighting function, the normalized constant is 

reduced to: 

K 

N = L w(k) 
k=l 

K 
= L [i(k)-i(k-l)] = I 

k=l. 

while N, for type 'b' weighting function, beccmes: 

and for type 'c': 

K 

K 
N = L [j(k) - j(k-l)] = J 

k=l 

N = L [i(k)-i(k-l) + j(k)-j(k-l)] = I+J 
k=l 

3.13b 

3.13c 

3.l3d 

However, the type 'd' weighting function is dependent on the time 

alignment path. This dependence is illustrated in the example of 

Figure 3.5, which shJws two possible time alignment paths for speech 

patterns A and B. For simpliCity, it is assumed that the two 

patterns are of equal len;Jth L. Path 1 is the straight line joining 

the initial and the final end points, and path 2 is on the edge of 

the acceptable region in which the warping functions should lie f= 

an adjustment window len;Jth r. F= example, using values of L=7, and 

r=2, the time normalization constantS f= the path are: 

path 1: N = 6 

path 2: N = 8 
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FIGURE 3.5: TWO POSSIBLE PATHS THROUGH A GRID 
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The dependence of type 'd' normalization constant on the warping 

path, is a serious disadvantage. This is because the computation of 

the time normalized distance, D(A,B), is done by a dynamic 

programming method which relies on a local minimization process to 

arrive at a final solution iteratively and the optimum path can only 

be determined at the end of the computation. Thus a normalization 

constant dependent on the path is clearly unsuitable. The alternative 

is to choose an arbitrary value for the fX)J:'IIlalization constant, say 

L, at the expense of a bias in the D'IW process f= certain paths over 

others. The bias may result in a non-optimal path, thus affecting the 

performance of the warping process. 

Hi) 'ItE DP matching alg:xi ttm 

Dynamic programming (OP) methods can be effectively applied to 

compute the time oormalized distance, O(A,B), between the two speech 

patterns A and B which are defined as in equations 3.3a and 3.3b. 

The procedure is recursively implemented by defining the minimum 

accumulated distance at a given point on the warping function as the 

sum of the accumulated distance at the preceding point plus the 

weighted local distance. Starting from the initial grid point (1,1) 

up to the final grid point (I,J), the final accumulated distance on 

the warping path can be found using a OP meth::xi. 

Step 1: 

Initial condition 

gl (f(l» = d(f(1».w(1) 3.15 

where g1(f(1» is the minimum accumulated distance at f(1). 

step 2: 

The DP equation is: 

IJ){ (f(k» = MIN {gk-1 (f(k-1» + d(f(k».W(k)} 3.16 
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step 3: 

Do step 2 for k = 2, 3, ... K. Restrict the warping function to the 

region j-r '" i '" j+r. 

step 4: 
The time lDnnalized distance, O(1).,B), is given by: 

O(1).,B) = (l/N) gK(f(K» 3.17 

where N is the normalization constant. 

The flowchart in Figure 3.6 illustrates the computations in the above 

algorithm. 

By imposing the restrictions on the warping function described in 

Section 3.2.1(i) and substituting equation 3.12 for the weighting 

coefficient w(k) in the OP equation in step 3, several practical 

algorithms can be realised. For example, for the asymmetrical form 

with no slope constraint (P=O) as illustrated in Figure 3.3a, the OP 

equation reduces to: 

r
g(i,j-l) + d(i,j) 0 

g(i,j) = MIN g(i-l,j-l) + d(i,j) 1 

g(i-l,j) + d(i,j) 1 

3.18 

Table 3.1 contains several OP equations for both symmetrical and 

asymmetrical forms of time normalization for various warping function 

gradient constraints.' 
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START 

Set i=l, j=l 
g(1,l)=d(l,l) 

i=l+l 

YES 

i=j-r 

j=j+l 
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Total Distance 
D(A,B) = g(I,J)/N 

STOP 

FIGURE 3.6: THE DF MATCHING ALGORITHM FLOWCHART 

NO 
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TABLE 3.1 

S1\KOE 1IND OUBA'S DIW AIroRITHMS [43] 

Gradient Synmetrica1/ DP Equation 
O::lnstant Asynmetrica1 g(i,j) = ••• 

P 

. [9(i,j-1)+d(i,j) 
0 Synmetrica1 MIN g(i-1,j-1)+2d(i,j) 

g(i-1,j )+d(i,j) 

{9(i,j-1) 
0 Asynmetrical MIN g(i-1,j-1)+d(i,j) 

(Type a constraint) g(i-1,j )+d(i,j) 

r(i-1,j-2)+2d( i, j-1 )+d(i,j ) 
1 Synmetrical MIN g(i-1,j-1)+2d(i,j) 

g(i-2,j-1)+2d(i-1,j )+d(i,j) 

{9(i-1,j-2)+d(i,j-1) 
1 Asynmetrica1 MIN g(i-1,j-1)+d(i,j) 

(Type a constraint) g(i-2,j-1)+d(i-1,j)+d(i,j) 

f9(i-2,j-3)+2d(i-1,j-2)+2d(i,j-1)+d(i,j) 
2 Synmetrical MIN g(i-1,j-1)+2d(i,j) 

g(i-3,j-2)+2d(i-2,j-1)+2d(i-1,j)+d(i,j) 

[9(i-2,j-3)+d(i-1,j-2)+d(i,j-1) 
2 Asymnetrica1 MIN g(i-1,j-1)+d(i,j) 

(Type a constraint) g(i-3,j-2)+d(i-2,j-1)+d(i-1,j)+d(i,j) 

J 
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3.2.2 The ltakura D'IW Algorithm [26] 

The Itakura DTW algorithm is realised by imposing different 

restrictions on the warpin] path gradient from toose described in the 

Sakoe and Chiba's algorithms. The moootonic, continuity and boundal:y 

conditions of the warping function remain the same. Figure 3.7a 

illustrates the relationship between adjacent points on the warpin] 

function. The accumulated distance g(i,j) at the grid p:>int (i,j) is 

the sum of the local distance between the ith and the jth frames of 

the input and the reference pattern respectively, and the minimum 

accumulated distance to the grid point (i-l,q), i.e. 

3.19 

The path to the grid point (i,j) can only originate from the three 

points: (i-l,j), (i-l,j-l) and (i-l,j-2). A further constraint on 

the warpin] path is that two successive hJrizantal productions are 

not allowed. Thus equation 3.19 takes the form: 

g(i-l,j) .W(i-l,j) 

g(i,j) = d(i,j) + MIN [9(i-l,j-l) 

g(i-l,j-2) 

where W(i-l,j) = ~ if f(i-l) = £(i-2) 

= 1 otherwise 

3.20a 

Dynamic Programmin] is used to compute equation 3.20a starting from 

the grid point (1,1) to the point (I,J) to give the final solution: 

D = g(I,J)/N 3.20b 

where N is the number of points on the warpin] function. 
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FIGURE 3.7(b) REGION OF POSSIBLE WARPING PATH FOR THE ITAKURA 
DTW ALGORITHM 
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The local constraints imposed on the warping function plus the end 

points boundary conditions result in a search area in the i-j plane 

in which the optimal path lies as illustrated in Figure 3.7b. The 

region is a parallelogram whose two extreme corners are the grid 

points (1,1) and (I,J) with lines of gradient 1/2 and 2. The 

parallelogram lines with gradient 1/2 arises from the condition 

prohibiting two successive horizental productions, so that no path to 

the grid point (i,j) can originate from a grid point higher than (i-

2,j-l). The lines with gradient of 2, are likewise determined by the 

condition that the path to the grid point (i,j) cannot originate from 

a lower grid point than (i-l,j-2). 

3.2.3 Results 

The performances of Sakoe/Chiba and Itakura DTW algorithms were 

evaluated in a pattern matching based isolated word recognition 

system. The speech patterns used were discrete sequences of '14th 

order LPC feature vectors, extracted from Hamming window weighted 

speech data in 25.6 msec segments. Two sets of 5 kHz bandlimited 

speech, consisting of a group of acoustically similar words 

(confusion set), and a group of dissimilar words (dissimilar set) 

were used in the experiments. The local distance for oomparing the 

input and the reference pattern frames is the distortion measure 

proposed by ltakura [26] and will be discussed further in Chapter 5 

of this thesis. The input pattern to the recognizer is matched with 

all the reference patterns and is recognized as the reference word 

with the smallest distance D(A,B). Details of the input and 

reference patterns are given below: 

a) Unfusicn set: 

The a:mfusion set of words was composed of the aooustically siinilar 

vocabulary words: G, B, C, D, E, V, P, T, spoken by the three male 

subjects SMl, SM2, SM3 and the two female subjects SFl, SF2. Each 

male speaker spoke each of the eight words twice, and the female 
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speakers only once. Wi th the speech patterns of SFl as the 

references, the DTW algorithms were tested with the speech utterances 

of SMl, SM2, SM3 and SF2 as the input. The test procedure was 

repeated with the speech patterns of SMl as reference and the input 

patterns from SMl, SM3, SFl and SF2. The percentage of co=ect 

identifications of the input words is defined as the recognition 

rate. 

b) Dissimilar set: 

The dissimilar set of words was composed of the vocabulary words: 

NINE, THREE, WRITE, CONTROL, STORE, FIVE, YES, SEVEN, which all 

appear to be acoustically different. These words were spoken by the 

three male subjects SMl, SM2, SM3, and the female subjects SFl, SF2. 

As with the confusion set, the three male speakers uttered the 

vocabulary words twice and the two female speakers once. The 

experimental procedure described al:xJve with the confusion set, was 

also repeated using the dissimilar set. 

The recognition test results using the Sakoe and Oll.ba DTW algorithms 

are shown in Table 3.2. Of interest here is the comparison in 

performance of different Sakoe/Oll.ba DTW algorithms. 'Iherefore, the 

actual value of the adjustment window length, r, used in the 

algorithms is not important as long as it is fixed for a given speech 

pattern pair. In the experiment, the value of r was fixed to four 

frames (Le. 102.4 msec), otherwise r was set to the value of the 

absolute difference in frames between the input and the reference 

patterns. The recognition test results for the Itakura DTW 

algori thms are also shown in Table 3.2, for both the confusion and 

the dissimilar vocabulary sets. 

3.3 MODIFIED D'IW ALOORITHMS 

3.3.1 The Endpoints Adjustment 

The assumptions in the DTW algorithms discussed in the preceding 

sections that the input and the reference speech patterns are in 
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TABLE 3.2 

RE:CI:GNITICN TEST RESULTS usrro (i) SAKOE AND OUBI\'S 
( ii ) ITAKURA' S IJIW AIroRITIffi 

Reoogni. tion Rate (%) 

Type of IJIW Algori tlIn Test Vocabul.a:cy 

Confusion Set Dissimilar Set 

. 
1. Sakoe & Chiba 

p=o 42.9 78.6 
Asymnetrical 
r ~ 4 

2. Sakoe & Chiba 
P=O 58.9 82.2 
Symnetrical . 
r~4 

3. Sakoe & Chiba 
P=1 60.7 78.6 
AsymnetriCal 
r ~ 4 

4. Sakoe & Chiba 
P=1 66.1 80.4 
Symnetrical 
r ~ 4 

5. Sakoe & Chiba 
P=2. 53.6 73.2 
Asymnetrical 
r ~4 

6. Sakoe & Chiba 
P=2 53.6 71.4 
Symnetrical 
r ~4 

7. ltakura 53.6 78.6 



69 

oomplete time synchronism at the initial and final frames, can only 

be justified where accurate deterrninatic:n of the beginning and the 

endpoints of both patterns can be made. Usually, the detection of 

the end frames of an utterance is a difficult task because of their 

similarity with silence frames. At the beginning of an utterance, 

breathing noise is usually present and it is easily confused with 

speech. Weak fricative sounds at the beginning or ending of an 

utterance, or vowel tails which appear at the end of an utterance, 

can sometimes be identified incorrectly as silence. Usually in a 

practical speech recognition system, the endpoints of the reference 

speech pattern are accurately determined manually and stored in 

memory. Thus it is only for the input utterance that endpoints have 

to be determined during the recognition process. If accurate 

detection of the endpoints of an utterance cannot be made, then the 

performance of the DTW process is degraded. An al ternati ve approach 

is to relax the boundary oondi tions of the time warping algorithm as 

proposed by Rabiner et al [44]. Their method is based on retaining 

the restrictions on the warping path described in Section 3.2.1(i), 

with the exception of the boundary oondi tions which are modified as 

foll=: 

1 .;;; i(l) .;;; 1+0 3.21a 

and 3.21b 

where <I is a positive constant representing the number of frames 

within which the endpoint is to be found. The non-zero value of 

<I increases the area of the allowed search region in the i-j plane in 

which the optimum path can lie. A value of <I = 1 has been suggested 

as generally suitable [44]. 
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3.3.2 Paliwal's Modification over the Sakoe and O'liba DTW Algorithm 

[45] 

In the Sakoe and Chiba's DTW algorithm, a given frame in the input 

speech pattern is compared with a limited number of frames in the 

reference speech pattern, in order to remove the possibility of 

excessive .time differences not normally present in speech. The 

allowable number of frames mismatch, r, is defined as in equation 

3.10, Le: 

3.22 

and is the width of the adjustment window in the warping path. This 

means that the grid endpoint (I,J) is outside the region in which the 

optimal path can be found if the absolute time difference, I J-II , 

between the two patterns is larger than r. Thus the algorithm is 

limited to patterns whose temporal differences are less than a 

certain value of r. This limitation is undesirable in word 

recogni tion systems because many of the speech patterns can be of 

diverse temporal lengths, and an accurate distance measure is still 

required between patterns of large temporal differences. 

Paliwal et al [45] have proposed some modification on the Sakoe and 

O'liba algorithm in order to enable the oomparison of patterns of any 

temporal difference. The modified algorithm uses the same adjustment 

window length and restricts the warping path to the region in the i-j 

plane bounded by two lines parallel to the diagonal line joining the 

initial grid point (1,1) to the final grid point (I,J). The 

adjustment wind:::M is given by: 

li - (jIs)1 .;; r 3.23 

where s = J/I is the gradient of the diagonal line. 
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The adjustment winOOw condition limits the warp:in:J path in the region 

bounded by lines j=si+r and j=si-r and ensures the inclusion of the 

endpoint (I,J) in the distance computation. Figure 3.8 is an 

illustration of the warping path region for both the Sakoe and 

Clriba's algorithms and the Paliwal's algorithm when II-JI > r. 

3.3.3 Myers' Algorithm [46] 

The performance of the Itakura's DTW algorithm, like the Sakoe and 

Chiba's algorithms, becomes inadequate when large temporal 

differences exist between the speech patterns to be compared. Myers 

et al [46] have examined the effects of the various ratios of the 

input to reference pattern lengths on the Itakura's OI'W algorithm. 

Figure 3.9 illustrates the relationship between the search area in 

which the optimum path can be found and the ratio I/J of the input to 

reference pattern length. The search area is maximum when the input 

and the reference patterns are of equal length. The area shrinks 

considerably when the input/reference pattern ratio is 2/3 and at a 

ratio of 1/2 only a single path, which is the straight line joining 

the grid points (1,1) and (I,J), is valid. Such a situation is merely 

a linear expansion of the reference axis and does not exploit any of 

the advantages offered by OI'W. 

The larger the search area, the less the restriction on the warping 

path re suI ting in many paths among which the best can be selected. 

Thus it would be reasonable to expect the DTW algorithm to give 

better performance for patterns of equal length since the search area 

will be maximum. Myers has proposed a scheme whereby toth reference 

and input patterns are reduced· to a standard length before applying 

the OI'W algorithm. Thus the input speech pattern A, given as: 
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is transfonned into a pattern A of length I' such that: 

where the feature vectors ai' are related to the original vectors ai 

as follows: 

i' = 1,2, .... , I' 3.24 

where 

i is the largest integer < [(i'-1)(1-1)/(I'-1)] + 1 3.25a 

and 

M = [(i'-1)(1-1)/(I'-1)] + 1-i 3.25b 

for example, a sequence A = {a1' a2' ... , as}. with 8 frames, is 

transformed into a sequence A' with 6 frames given by: 

Similarly the reference pattern B = {b1 , b 2, ... , bj , ... , bJ } is 

transformed into a pattern of the same length I' as the input 

pattern. Following the pattern length normalization, the DTW 

algorithm is then applied. 
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3.3.4 Results 

The modifications provided by the Paliwal and by Myers' approach on 

the DTW algorithms of Sakoe and Chiba, and Myers' approach on the 

ltakura DTW algorithm, were evaluated by their performance in an LPC­

based pattern matching isolated word recognition system. Both the 

confusion words set (B, C, D, E, G, P, T, V), and the dissimilar 

words set (NINE, THREE, WRITE, CONI'ROL, SmRE, FIVE, YES, SEVEN) were 

used in the experiments. 

i) Variation of the recognition rate with the adjustment window 

length 

The Sakoe and Chiba DTW algorithm, with the warping path gradient 

constraint P=l, and using the symmetrical form of matching, was found 

in Section 3.2.3 to give a higher performance than the other 

algori thms. The variation of the recognition rate, wi th the 

adjustment window length employed in the algorithm was investigated 

using the confusion set data. The results obtained are shown in 

Figure 3.10. The variation obtained on incorporating Paliwal and 

also Myers' approach are also slx:>wn in Figure 3.10. 

The results obtained on repeating the experiments with the dissimilar 

data set are slx:>wn in Figure 3.11. 

11) Paliwal's modificaticn as applied to the Sakoe am Chi.ba's mw 
algaritiIn 

The modified algorithm used a fixed window length, r, of four frames 

and employed the endpoint relaxation method discussed in Section 

3.3.1 with 0=1. The recognition test results obtained for different 

constraints are tabulated in Table 3.3. 
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TABLE 3.3 

RECXX;NITION TEST RESULTS OBTAINED ON usrro THE PALIWAL' S !oODIFICATION 
OVER THE SAKOE AND OUBI\.' S mw ALGORITHM 

Recognition Rate (%) 
Sakoe & Oliba' s mw 

algorithms 
constraints Test Vocabulary 

Confusion Set Dissimilar Set 

. I 

1. p:O 
Asynrnetrical 53.6 76.8 
=4 

I 2. p:O 
Symnetrical 

I 
58.9 80.4 

r:4 
I 

I 
3. P:l I 

Asynrnetrical i 60.1 80.4 
=4 I 

I 
I 

i 
4. P:l I Symnetrical I 66.1 83.9 

=4 
I 
I 

5. P:2 i 
Asynrnetrical 53.6 69.6 
=4 

6. P:2 
Symnetrical 44.6 66.1. 
=4 
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iii) Myers' ~ as awlled to tile Sakoe am Orlba's algaritim 

Using Myers' algorithm, all the speech patterns were rormalized to a 

fixed length which is the average length of the patterns within the 

recognition v=abulary. F= the oonfusion set the normalized length 

was 15 frames and 20 frames f= the dissimilar set. Since the speech 

patterns were already rormalized to a fixed length, a smaller window 

length r=2, was employed in the Sakoe and Chiba's algorithms. 

Endpoint relaxation f= the speech patterns was employed with o=l. 

The recognition test results are shown in Table 3.4. 

iv) Myers' ~ as ~1ied to tile Itakura's mw algatitim 

The speech patterns were processed as in (iii) above, using the 

Myers' alg=ithm and the same endpoint relaxation figure of 0=1. The 

recognition results are also tabulated in Table 3.4. 

3.4 THE ORDERED GRAPH SEAROI TEQlNIQUE 

The DTW methods discussed above have been found to give reliable time 

alignment between input and reference speech patterns, . but have the 

disadvantage of involving heavy computation. As a consequence, 

several al ternati ve procedures for reducing the computation have been 

proposed [44][47] but are mainly based on imposing more tight 

restrictions on the warping path constraints at the expense of losing 

optimality. Brown and Rabiner [48] have proposed a novel procedure 

based on the search algorithms des=ibed by Nilsson [49]. In their 

meth:Jd the DTW process is modelled as an ordered graph search (03S) 

through a constrained grid, in order to find the path with minimum 

cost as discussed below. 

3.4.1 Path Cost Estimation 

Consider the graph in Figure 3.1. Let each grid point in the search 

area be termed a rode since the optimal path may pass through it. A 

node is deSignated by its coordinates in the i-j plane. Thus the 
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TABLE 3.4 

REX:lXNITION RESULTS USIN3 MYERS' PA'I'l'ERN LEN:mi NORMALIZATION 
AlOORITHM WITH (i) SAKOE & ClilllA' S IYIW AIroRITHM 

(if) ITAKURA' S IYIW ALGoRITHM 

Reoogni tion Rate (%) 

Type of IYIW Alg=i thn Test Vocabulary 

Confusion Set Dissimilar Set 

. 
1. Sakoe & OUba 

P=O SO.O 80.4 
Asyrnnetrical 
r=2 

2. Sakoe & OUba 
P=O 50.0 82.1 
Synrnetrical 
r=2 I 

3. Sakoe & OUba 
P=l 48.2 83.9 
Asyrnnetrical 
r=2 

4. Sakoe & OUba 
P=l 53.6 83.9 
Synrnetrical 
r=2 

5. Sakoe & OUba 
P=2 SO.O 85.7 
Asyrnnetrical 
r=2 

6. Sakoe & OUba 
P=2 53.6 82.2 
Synrnetrical 
r=2 

7. Itakura 58.9 78.6 
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starting node s=(l,l) and the ending node e = (I,J). For any path in 

the grid passing through the node n, the path cost q(n) in terms of 

total accumulated distances at the node is given by: 

q(n) = g(n) + h(n) 3.26 

where g(n) is the path =st from the starting node s to n and h(n) is 

the minimum =st of the path from node n to the end node e. Since the 

search starts from node s, towards node e, the minimum cost g(n) is 

known exactly, but the cost h(n) can only be estimated. Thus an 

estimate of the minimum path =st q(n) at n for the path is given as: 

q(n) = g(n) + fi(n) 3.27 

where n(n) is an estimate of h(n). 

In the OGS algorithm, it is required to satisfy the conditionq(n)';;; 

q(n). Thus h(n) must underestimate the true path cost h(n), from 

node n to the terminal node e, i.e. 

I 

h(n) ,;;; h(n) = L 
k=i+l 

(D(A(k), B(f(k») 3.28 

where n = (i,j) and e = (I,J). A and B are the two speech patterns 

under consideration. The true path cost, from node n to the terminal 

node, is the sum of the local distances along the path. Considering 

the asymmetrical form of time warping where the number of grid points 

along the path is (I-i), h(n) can be bound above by: 

h(n) = (I-i).d 3.29 
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where d is a constant, small enough to ensure that h(n) < h(n). 

For acoustically different speech patterns, equation 3.29 has been 

found to be a gross underestimate re suI ting in a large number of 

nodes to be searched. In order to overcome these difficulties, an 

adaptive estimator has been prop:J;Sed [48], and is of the form: 

h(n) = (I-i). g(n)/i 3.30 

For similar sounding words, g(n)/i, tends to be small, thus giving an 

estimate of h(n) in the co=ect range. For patterns of acoustically 

dissimilar words, the overall effect is to increase h(n). Although 

there is no theoretical guarantee that n(n) of equation 3.30 

underestimates h(n) in all cases, it has been found to give a 

suitable estimate in practice [48]. 

3.4.2 The Search Algorithm 

In the standard DTW approach, the computation of all the local 

distances in the search region is required since all the possible 

warping paths are searched, subject to the imposed constraints. The 

gain in the computation efficiency in the graph search method is 

achieved by considering only the warping paths which appear to be 

likely candidates for the optimal path and as such, the local 

distances for some grid points are not required. 

A path starting from s to the node n is characterised by the nodal 

state at n given by: 

i) The node ooordinates (i,j) 

11 ) The producticn fron node n-l to node n 

i11) The estimated cost h(n) 

iv) The exact cost g(n). 
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At the given node n the path is searched by expanding the production 

for which the estimated oast is minimum, the other productions are 

terminated into 'open' nodes. These nodes are termed 'open' since if 

the chosen production is later found to be illegal = suIxlptimal then 

they can be re-visited and expanded f= the optimal path search. As 

the path search is carried out, an 'open list' of nodal states of 

potential paths is maintained. The 'open list' is arranged such that 

the path with the lowest estimated cost g(n) is on top of the list. 

The minimum oast path through the grid is found by removing the rnde 

on the top of the open list and expanding it to generate all legal 

successor nodes for which new path costs are estimated. '!he successor 

rndes are also sorted into the 'open list' and again the minimum oast 

node is removed from the list and expanded. If the following 

conditions are satisfied, then the first path to terminate at rnde e 

will be the minimum oast node. 

i) The node expansion operation is the same for all rodes 

ii) g(n) is monotonic and > 0 for 'i n=s 

iii) q(n)';; q(n) for 'i n 

iv) h(n) is monotonic, h(n) > 0, 'I n 'I e. 

The various steps in the algorithm are as follOWS: 

step 1: start with rnde s = (1,1) on open list 

Step 2: Remove rnde from open list having lowest estimated oast q(n) 

and place in closed list for expansion 

Step 3: Generate successor rnde subject to local constraints 

Step 4: If successor rnde is illegal go to step 2 

Step 5: If the successor rnde already exists in the open list or in 

closed list go to step 3 

Step 6: If successor rnde does not satisfy search constraints go to 

step 3 

Step 7: Save nodal state 

Step 8: If terminal node reached go to step 10 

Step 9: Compute the estimated cost q(n) and sort the node into the 

open list. Go to step 3 
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step 10: The minimum path cost is obtained from the nodal state as 

g(I). 

The above algorithm is illustrated in Figure 3.12, in which an input 

pattern, with 7 frames, is compared with a reference pattern with 6 

frames. The search begins at n::>de s = (1,1), which is expanded using 

horizontal, vertical and diagonal productions to grid point (1,2), 

(2,2), and (2,1), where an estimate of the path cost g(n) from 

equation 3.27 is made. The grid point (2,2), with the smallest cost 

g(n) is expanded, the cost at the other grid points being placed in 

an open list. The grid point (2,2) is expanded to points (3,3), 

(3,2) and (2,3), and the path costs estimated. On expanding the grid 

point (2,3), which has the lowest estimated path cost, to grid points 

(3,3), and (3,4), (the grid point (2,4) is illegal because it falls 

outside the search region), the path cost estimates show that an 

earlier grid point (3,2) has the smallest path cost estimate among 

all the open list n::>des. Therefore, the estimated costs at (3,4) and 

(3,3) are put in the open list and instead the grid point (3,2) is 

expanded. The process continues until grid point (7,6) is reached. 

3.4.3 Results 

The cx;s technique was compared with the DTW algorithm by performing 

recognition tests using the confusion set and the dissimilar set of 

v=abulary words of Sections 3.2.3 and 3.3.4. Only the asymmetrical 

form of Sakoe and Chiba's algorithms were considered. This is 

because the path cost estimation in the OGS algorithm, as given in 

equations 3.29 or 3.30, requires the asymmetrical path constraints. 

The recognition rate results and the number of distance oomputations 

done are given in Table 3.5. 

3.5 DISCUSSION 

From the results presented in the previous sections, the following 

points can be deduced: 
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TABLE 3.5 

A CD1PARISON OF THE RECX:X>NITICN RATE OBTAINED WITH THE 
ASYM>1ETIUCAL FORM OF SAKOE AND 0llBI\.' S ALG:>RITHM WHEN 

DIW AND WHEN cx:;s TEOlNI(VES ARE EMPLOYED 

Average number of 
Recognition Rate (%) distance canputations 

per word 

Algorithm DIW/ Confusion Dissimilar Confusion Dissimilar 
cx:;s Set Set Set Set 

Sakoe & Oliba DIW 53.6 76.8 88 123 

r=4 

P=O 

Asyrrmetrical cx:;s 50.0 76.8 34 48 

Sakoe & Oriba DIW 60.1 80.4 88 123 

r=4 

P=l 

Asyrrmetrical cx:;s 60.1 78.6 31 44 

Sakoe & Oliba DIW 53.6 69.6 88 123 

r=4 

P=2 

Asyrrmetrical cx:;s 53.6 66.1 26 45 
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i) The recognition rate performance of the Sakoe and Chiba's DTW 

algorithm, tabulated in Table 3.2, is seen to be heavily 

dependent on the warping path gradient constraint P. The 

symmetrical form of matching tends to give a better performance 

than the asymmetrical form of matching, for a given gradient 

oanstraint P. This would be expected since in the asymmetrical 

form of matching, the possibility of some of the frames in the 

speech patterns being excluded in the distance computation may 

arise. The symmetrical algorithm with the constraint P=l, gives 

better recognition rate than the other types of warping 

algorithms under consideration, including the Itakura DTW 

algorithm. These results are in agreement with the findings of 

Sakoe and O'liba [43]. 

11) The variation of the recognition rate with the adjustment window 

length in the Sakoe and O'liba's symmetrical algorithm with the 

gradient constraint P=l is illustrated in Figures 3.10 and 3.1l. 

An improvement in the recognition rate is obtained as the 

adjustment window length r is increased. For low values of r, 

the recognition rate is poor since the possibility that r is 

less than the absolute difference between input and reference 

patterns arises. 

Using Paliwal's modification on the Sakoe and Oliba algorithm, 

has the effect of significantly improving the recognition rate, 

as has been reported by Paliwal et al [45]. As the value of r 

is increased from unity, the recognition rate increases to a 

maximum value. Likewise using Myers' algorithm to rormalize the 

patterns to equal temporal length and then applying the Sakoe 

and O'liba DTW algorithm, improves the recognition rate, but as 

the value of r is increased a drop in the recognition rate may 

occur. 

iii) Results obtained by applying Paliwal's modification on the 

various types of Sakoe and O'liba's algorithms are given in Table 
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3.3. Again the algorithm, using the gradient constraint P=l, and 

of the symmetrical form of matching, shows a significant 

superi= performance over the other alg=i thms. 

iv) Results obtained when the input and reference speech patterns 

are normalized to a fixed temporal length using the Myers' 

algorithm, and then applying the Sakoe and Oliba's DTW algorithm 

in the matching process, are shown in Table 3.4. The 

symmetrical matching algorithm, with gradient constraint P=l, 

again gives better performance than the other DTW algorithms. 

The effect of using the Myers' normalized patterns in the 

Itakura DTW algorithm gives a slight improvement in the 

recognition rate as indicated by the results in Tables 3.2 and 

3.4. Myers et al [46] also reported similar characteristics. 

The advantage of using Myers' algorithm would be significant 

when the reference and input patterns have large temporal 

differences. 

v) Table 3.5 sh::>ws the recognition results obtained when the Sakoe 

and Chiba asymmetrical algorithm were computed using the DTW 

method and when the OGS method was employed. The OGS method 

requires far less local distance computations than the DTW, but 

this is realised at the expense ofa slight drop in the 

recognition rate. Brown and Rabiner [48] have reported similar 

conclusions in their comparison of the OGS method with the 

ltakura DTW algorithm. Since there are alternative ways, which 

will be discussed in Cllapter 5, of reducing the computation time 

in a word recognizer with negligible loss in recognition 

accuracy, the OGS method does not offer any advantages. 

In conclusion, from the results obtained in this Cllapter, Paliwal's 

modification on the Sakoe and Chiba DTW algorithm with gradient 

constraint P=l, and of the symmetrical form was found to offer the 

best performance in an isolated word recognizer and as such it is 

employed in the recognizers discussed in subsequent chapters. 
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0lAPl'ER 4 

'!HE USE OF FILTER BANK ENERGY FFA'lURES 

IN ISOLATED WJRD ~CN 

4.1 INTRODUCTION 

In the human speech perception system, speech signals undergo a 

bandpass filtering process in the cochlea, an organ located in the 

inner ear. Energy is extracted from the speech in frequency bands 

spaced a=rding to the natural, or as is often called, the critical 

band frequency scale of the ear. From the distribution of energy in 

the frequency bands, important acoustic cues which enable the 

decoding of the message in the speech signal are determined. 

Similarly, in computer based speech recognition systems an utterance 

can be represented as a discrete pattern of energy values obtained 

from the various frequency bands of a bandPass filtering process. In 

this Olapter, different filter banks, characterized by the number of 

fil ters, type of filters, filter passbands and filter spacing, are 

designed and used in the translation of a speech utterance into a 

pattern of energy parameter values. The effect of the type of filter 

bank employed in processing the speech utterances, on the accuracy of 

a word recognition system, is investigated. Finally, methods for 

reducing the redundancy present in speech energy patterns are 

suggested as a way of improving the word recognition accuracy. 

4.2 FILTER BANK FEATURE EXTRACTION 

The filter bank feature extraction process is illustrated in Figure 

4.1. A speech utterance, S, is passed through a bank of Q bandpass 

digital filters which partition the frequency spectrum of the signal 

into various frequency bands. The passbands of the filters are 

usually designed to be continuous over the signal frequency spectrum, 

so that the composite spectrum of the overall filter bank does not 
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have sharp dips between adjacent filters.· The frequency spacing can 

be determined in various ways. They can be placed on a uniform 

scale, a logarithmic scale or alc:nJ a critical band frequency scale 

which is related to the human speech perception system. 

Each bandpass output is passed through a n::n-11near network such as a 

square law detector, = a full wave rectifier. The non-linearity has 

the effect of non-uniformly distributing the =iginal band-limited 

signal energy over the entire frequency spectrum. However the energy 

at low frequency in the resultant signal, is generally proportional 

to the total bandlimi ted energy. Thus, the output of the low pass 

filter (LPF) which follows the non-linear network, is a measure of 

the energy in the speech signal in a pa,rticular frequency band. The 

sampler decimates the output of the low pass filter at a rate twice 

the LPF cut-off frequency. The set of energy values obtained from 

the Q channels generally have a large dynamic range. For this 

reason, a logarithmic =mpressor is applied to reduce the range. 

The set of energy values, for a given time instant, constitute a Q­

dimensional vector. Thus the input speech utterance, S, is reduced 

to a temp=al pattern of L vectors of energy values: 

4.la 

where 

4.lb 

is a vector of logarithmic energy values measured from the Q channels 

at a tiffie instant t. In speech re=gnition terminology, the vector 

St is also known as a frame. 

filter bank, is then subjected 

procedure, as described below. 

The output speech pattern from the 

to a time and frequency nonnalization 
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4.2.1 Channel 'l'hresOOldin;J 

The purpose of channel thresholding is to clamp low level noise 

signals in the channels, at instances when essentially no speech 

signal is present. This is accomplished by applying a threshold 

value, so that energy values below a certain level are clamped at the 

threshold value. In this manner, the operation of the system is less 

sensitive to background mise present in the input speech signal. The 

peak signal energy, for the utterance S, in the ith channel is given 

as: 

nax 
s(i) = MA}{ 

1 ';;R,~ 

and the threshold, T(i), for the ith channel is set at: 

ITI3X 
T(i) = s(i) - T 

4.2 

4.3 

The major effect of a finite value of T, is to eliminate errors 

arising due to widely varying energy values in bands with m speech 

energy. As such, its actual value is not important, as long as it is 

at least equal to the average signal to noise ratio of the input 

speech. In practice, the peak signal to noise ratio of the input 

speech has been suggested [50] as a suitable choice of T. 

4.2.2 Energy Normalization 

Energy mrmalization attempts to compensate for the variation in the 

gain level of speech from one utterance to another utterance. For 

the ith frame, the average energy value BR, is given by: 

s = 
R, 

o 
(I/O) I 

i=1 
s (i), f= 1" R, " L R, 

4.4 
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The normalized feature vector of the frame is then given by: 

4.5 

The whole discrete sequence, S, is thus transformed into a new 

sequence of normalized values. 

4.3 THE DIGITAL FILTER BANKS 

Finite Impulse Resp:mse (FIR) filters, were ch:lsen f= the bandpass 

filters in Figure 4.1, owing to their linear phase properties and 

stability. These filters were designed using the window approach 

technique (see Appendix A), although the equiripple approximation and 

the frequency sampling method are known [51] to give better 

performance in terms of the filter passband-stopband transition width 

f= a given passband and stopband ripple factor. The main advantage 

of the window design approach is its relative simplicity, and its 

flexibility in specifying the l&gt:h of the filter impulse response. 

4.3.1 Filter Bank Spacing 

Four different methods were investigated in dividing the, input signal 

frequency range into continuous bands, that is: uniform spacing, 

octave spacing, 1/3 octave spacing, and cri tica1 band spacing were 

investigated. 

i) Unif= spacing 

The uniformly spaced filter bank is obtained by dividing the 

frequency spectrum uniformly into the required number of channels. 

The centre frequency, fi of the ith charmel is given by: 

i; i = 1, 2, ... Q 4.6 
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where F s is the sampling frequency, N is the rrumber of filters that 

span the baseband frequency of the speech Signal. Thus, Q satisfies 

the property 

Q ..; N/2 

since the channels for i > N/2 are mirror images of the first N/2 

channels. 

The bandwidth Mi of the ith channel is given by: 

k ;;. 1 4.7 

when the factor k=l, the filters are placed "end to end". For k > 1, 

there is overlap between adjacent filters. 

11 ) Ideal octave arrl 1/3 octave spacing 

An alternative filter bank spacing is to arrange the channel 

bandwidth equally along a logarithmic scale. The bandwidth of the 

ith channel, lIFi is given by: 

lIFi = a lIFi _1 , i = 2, 3, ... , Q 4.8a 

lIFl = C 4.8b 

where a and C are fixed constants. 
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The centre frequency, F i' of the i th channel, is given by the 

relation: 

where 

i-1 
L 6F~ 

~ =1 

6Fi 
+~ 

is the la.-rer cut-off frequency of the first channel. 

4.9a 

4.9b 

For a value of a = 2, the spacing is ideal octave, and for a = 4/3, 

the spacing is 1/3 octave. 

iii) Critical band spacj~ 

Critical band spacing is based on the human auditory perception 

system, where the ear is known to process speech us~ a filter bank 

type of analysis [52] [53]. The filter spacing is highlyoon-uniform, 

and with characteristics that would be difficult to obtain with 

conventional filter design techniques. Figure 4.2 is an illustration 

of the amplitude/frequency characteristics of the auditory system 

filters [54]. The centre frequency Fi , the lower and upper cut-off 

frequencies FL and FH can be approximated by first transforming the 

linear frequency scale into a non-linear Barks [54] scale, as follows: 

0.01 F 

B(F) = 0.007F + 1.5, 

6 1n F - 32.6, 

o ,,; F ,,; 500 

500 ,,; F ,,; 1200 

F ~ 1220 

4.10 

where F is the frequency in Hz, B is the frequency in Barks. For a 

given filter, centred at frequency Fi , the critical bandwidth is 

obtained by first evaluating: 
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\ 

The lower cut-off frequency FL, the upper cut-off frequency FH, and 

the =itical bandwidth lIFi are given by [54]: 

FL = F (BO - 0.5) 

FH = F (BO + 0.5) 

4.12 

Thus, using equations 4.10, 4.11 and "4.12, it can be deduced that the 

lower frequency charmels, i.e. 200 .;; Fi .;; 500, have a bandwidth of 

100 Hz approximately. 

4.3.2 Bandpass Filter Design Results 

The individual bandpass filters in the filter bank were designed by 

truncating the infinite response of the ideal bandpass response with 

a Hamming window as described in Appendix A. An impulse response of 

128 samples in length was found to give reasonably sharp cut-off 

filters in the bandwidth range 100 Hz - 2.5 kHz. 

i) Uniform filter bank 

Filter banks with 5, 8, 10, 12 and 16 charmels equally spaced along 

the 5 kHz signal spectrum and with no overlap were designed. The 

spacing of these filters is given in Table 4.1. Figure 4.3 

illustrates the characteristics (log 'magnitUde against frequency) of 

the individual filters in the 8-charmel filter bank with no 

overlapping between adjacent filters. 



98 

TABLE 4.1 

UNIFORMLY SPACED FILTER BANKS WITH 5, 8, 10, 12 AND 16 OIANNELS 

PASSBANDS (Hz) 

0lanne1 5 0lanne1 8 0lanne1 10 0lanne1 12 01anne1 16 0lanne1 
No. Filter Filter Filter Filter Filter 

Bank Bank Bank Bank Bank 
Bandwidth Bandwidth Bandwidth Bandwidth Bandwidth 

(BW) = (BW) = (BW) = (BW) = (BW) = 
920 Hz 580 Hz 460 Hz 400 Hz 285 Hz 

1 200-1120 150- 730 200-660 150- 550 200- 485 

2 1120-2040 730-1310 660-1120 550- 950 485- 770 

3 2040-2960 1310-1890 1120-1580 950-1350 770-1055 

4 2960-3880 1890-2470 1580-2040 1350-1750 1055-1340 

5 3880-4800 2470-3050 2040-2500 1750-2150 1340-1625 

6 3050-3630 2500-2960 2150-2550 1625-1910 

7 3630-4210 2960-3420 2550-2950 1910-2195 

8 4210-4790 3420-3880 2950-3350 2195-2480 

9 3880-4340 3350-3750 2480-2765 

10 4340-4800 3750-4150 2765-3050 

11 4150-4550 3050-3335 

12 4550-4950 3335-3620 

13 3620-3905 

14 3905-4190 

15 4190-4475 

16 4475-4760 
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ii) Ideal octave spaci ng 

Assigning a bandwidth of the order of 100 Hz for the low frequency 

channel, the 5 kHz frequency spectrum range is divisible into 5 

channels spaced along an ideal octave frequency scale. The filter 

spacings are given in Table 4.2. The frequency response of the 

individual channels is sh:>wn in Figure 4.4. 

Hi) 1/3 octave spacing 

The low frequency channel is assigned a bandwidth of the order of 

100 Hz. The 5 kHz frequency spectrum range then yield 8 channels 

spaced along a 1/3 octave frequency scale as sh:>wn in Table 4.3. The 

frequency response of the individual channels is sh:>wn in Figure 4.5. 

iv) Critical band spacing 

The sixteen channels which cover the 5 kHz frequency spectrum on a 

critical band scale are given in Table 4.4. The frequency response 

of the individual channels is sh:>wn in Figure 4.6. 

4.4 THE ltKlRD RECI:X:;NITION SYSTEM 

4.4.1 System Description 

The block diagram of the word recognition system based on the filter 

bank analysis is shown in Figure 4.7. The input speech samples, 

S(n), n=1,2, ... , N, are passed through the bank of bandpass filters. 

A filtered signal, Yi(n), is obtained at the output of the ith 

bandpass filter as a convolution of the input signal with the filter 

impulse response thus: 

M-1 
Yi(n) = L ~ (m) S(n-m); 

m=O 
1 .;;; i .;;; Q 4.13 
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TABLE 4.2 

IDEAL OCI'AVE FILTER BANK OVER THE BASEBAND 150-4800 Hz 

0lanne1 Passband Bandwidth 
No. (Hz) (Hz) 

1 150- 300 150 

2 300-600 300 

3 600-1200 600 

4 1200-2400 1200 

5 2400-4800 2400 

TABLE 4.3 

·1/3 OCI'AVE FILTER BANK OVER THE 150-4860 Hz BllSEBAND 

O1anne1 Passband Bandwidth 

No. (Hz) (Hz) 

1 150- 325 175 

2 325- 555 230 

3 555- 866 311 

4 866-1280 414 

5 1280-1830 550 

6 1830-2570 740 

7 2570-3550 980 

8 3550-4860 1310 
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TABLE 4.4 

THE OUTICAL BAND SPACED FILTER BANK 

Olannel Passband Bandwidth 
No. (Hz) (Hz) 

1 250- 350 100 

2 350- 450 100 . 
3 450- 550 100 

4 550- 690 140 

5 690- 830 140 

6 830- 970 140 

7 970-1110 140 

8 1110-1255 145 

9 1255-1480 225 

10 1480-1750 270 

11 1750-2070 320 

12 2070-2450 380 

13 2450-2900 450 

14 2900-3430 530 

15 3430-4060 630 

16 4060-4800 740 
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where M is the duration of the filter impulse response h(m). The 

signal, Yi(n), is passed through a square law detector to obtain a 

signal sequenceYi(n). At the discrete time instant, n, the energy 

%(i), in the ith channel can be estimated by low pass filtering the 

signal Yi (n), i.e. 

where 

K-l 
%(i) = L Yi(n-k) w(k) 

k=O 
4.14 

A Hamming window, w(k), with a length K = 256, was employed as a LPF. 

Thus, at each time instant, n, the oUtput of the filter bank gives a 

Q-dimensional vector of energy values. By sampling sn(i), at 

sui table temporal intervals, the input signal can be represented as a 

pattern of L vectors of Q dimensions, as given in equation 4.1. The 

sampling interval of 25.6 msec was used in the experiments described 

here. The speech pattern is then subjected to a pre-processing stage 

where a channel threshold of 50 dB below peak signal energy, (Le. T 

= 50 dB) is employed. An energy normalization procedure as des=ibed 

by equations 4.4 and 4.5, is then performed. The resultant speech 

pattern of normalized energy vectors is then compared with pre-stored 

reference patterns of the vocabulary words. The pattern comparison 

yields a set of distance scores which are passed over to a decision 

stage, where the identification of the input word is made. 

i) Train:ing s si 0'\ 

The aim of a training session is to create reference patterns to be 

used in the word recognition process. In a single reference pattern 

recognition system, each vocabulary word is represented by one 

reference pattern formed from the utterances of a given speaker. In 

a multiple reference pattern system, each vocabulary word is 



109 

represented by pattems formed from the repetitions of the word by 

different speakers. 

it) Testing S s1cn 

In the testing session, the performance of the recognizer in 

=rrectly identifying an input word is assessed. The input word is 

reduced to a discrete sequence of channel energy values and =mpared 

with all the pre-stored set of reference pattems of the vocabulary 

words. Let the input word be represented by the pattern A, of I 

frames, and that each frame contains a set of Q energy values. 

Le. 4.15a 

where 4.15b 

Likewise, a reference pattern B is the sequence of J frarres: 

4.16a 

where 4.16b 

The matching process of pattern A to B requires the definition of a 

local distance between their frames. The absolute norm has been 

suggested as a suitable measure, and is used here mainly because of 

its simplicity and its reported satisfactory performance [55]. 

Thus, a distance d( ai' bj ) between frames ai and b j is given as 

d(ai' bj ) = ~ I aiq - bjq I 
q=l 

4.17 
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The Euclidean distance measure can also be used. as well as other 

alternative distance measure metrics proposed by Klatt [56]. 

The total distance D(A.B} between pattern A and B is obtained using 

the Sakoe and Chiba dynamic time warping algorithm with Paliwal's 

modification. as discussed earlier in Section 3.2 of Chapter 3. In a 

single reference pattern per vocabulary word system. the input word 

is recognized as the vocabulary word which gives the minimum error 

matching. i.e. the nearest neighbour rule. 

Let R = {R1 • R2 ••••• 1\, •...• RV} be the set of reference patterns 

of the V vocabulary words. The DTW matching stage computes the 

distance. D(A.I\,). v = 1. 2 ••.• V. between the input word and the 

vth reference pattern. The input word is recognized as the 

vocabulary word r represented by the rth pattern such that 

D (A. Rr> = MIN D (A. I\,) 
1';'v';'V 

4.18 

When multiple patterns are used for each vocabulary word. then the 'k 

nearest neighbour' (kNN) rule is used to identify the input word. 

Let each vocabulary word be represented by M patterns. Thus. the 
m -Ill m ID} reference patterns form the set {RI' H2' •••• RV •••• RV • where m = 

1.2 •.•. M. ~ is the mth occu=ence of the vth vocabulary word. 

Let the DTW distance between the input word pattern. A. and the 

reference pattern 1\,. 
there are M distances. 

be denoted as Dv. For each vocabulary word 

If these distances are re-ordered so that: 

rA. 1 _lI.2.:. .:. _lI. M '-V <; l.T~ "'<:: • •• ~ l.1v 4.19 

Then. for the kNN rule the average distance Dv is ccmputed fron: 
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K 
n = ~ i1",k 
-v L.V' 

k=1 
K(M 4.20 

The input word is recognized as the vocabulary word represented by 

the rth reference word which gives: 

4.21 

4.4.2 Recognition Results 

A series of experiments were performed in order to assess the 

influence of the different filter bank designs on the recognition 

accuracy. The investigations involved the use of: (a) uniformly 

spaced filter banks with 5, 8, 10, 12, and 16 channels; (b) a third 

octave spaced filter bank with 8 channels; (c) ideal octave spaced 

filter bank with 5 channelS, and (d) critical band spaced filter bank 

with 16 channels. 

i) Recognition performance in systems using single reference 

pattern per vocab.J.1ary word 

Table 4.5 gives the results obtained in different rec::x::>gnition systems 

employing single reference pattern per vocabulary word. utterances 

hun the male speakers SM1 and SM3, and from the female speaker SF1 

were used to test the recognizer in a speaker independent mode. The 

utterances of speaker SM2 were used in generating the reference 

patterns. 

ii) Recognition performance in systems using multiple reference 

patterns per vocab.J.1ary word 

In these experiments, each vocabulary word was represented by four 

patterns obtained from different speakers. The recognizer was tested 

with speech utterances from speakers who did not oontribute to the 
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TABLE 4.5 

PERFORMANCE: OF THE OORD REOXNIZER WITH VARIaJS FILTER BANK 
SYSTEMS: SIN3LE REFERENCE PATTERN/VOCABULARY WRD 

FILTER BANK SYSTEM REOXNITICN ~ ( %) 

Test 1 Test 2 Test 3 Aver!!9:e 
Filter No. of 
spacing 01anne1s .. .. 

'" .. '" .. '" .. 
QJ '" QJ '" QJ '" ,l( Q) ,l( Q) ,l( QJ 

'" ,l( '" ,l( '" ,l( 
Q) '" Q) '" Q) '" 0. Q) <% Q) <% Q) 
Ul 0. 0. <% Ul Ul 
+J +J +J 
t/l....-t'+-lN Ul M '+-I N tf) .....t 4-1 C"\I 
Q) ::;: Q) ::;: Q) ::;: QJ ::;: 
E-trnP::;tIl E-oUl":Ul 

QJ"Q)::;: 
E-iUlj:t:;U) 

Uniform 5 52 56 42 50.0 

Uniform 8 60 66 54 60.0 

Uniform 10 62 68 56 62.0 

Uniform 12 62 62 56 60.0 

Uniform 16 58 60 54 57.3 

Ideal 
5 64 66 52 60.6 Octave 

1/3 
8 68 70 62 66.6 Octave 

Critical 
16 64 62 58 61.3 Band 

, 

I 

I 
I 
i 
i 
I 

I 
I 
I , 
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generation of the reference patterns i.e. speaker independent mode. 

The decision process in the recognizer employed a kNN rule with k = 

3, to identify an input word, as described in Section 4.4.1. The 

experimental results are given in Table 4.6. 

4.5 THE EFF'ECl' OF SPEECH SIGNAL REDUNDANCY SUPPRESSION ON RECX::X3NI­

ZER PERFORMANCE 

In a word recognition system, a speech utterance, A, is expressed as 

a discrete sequence of points in a multi-dimensional feature space. 

Since the speech signal consists of stationary and transitional 

regions during which a rapid change in the characteristic of the 

spectrum occurs, some points along the discrete sequence 

representation will be spectrally similar to their immediate 

predecessors, and others will show large differences. In this 

section, two methods of transforming the points in A into a new 

sequence B, where the points have either less redundancy or are 

distributed equidistantly in a multi-dimensional space are discussed. 

The transformed speech patterns are then used in the word recognition 

system. 

4.5.1 A Simple Redundancy Rerroval Method 

Given a speech utterance, A, as a sequence of I multi-dimensional 

feature vectors, a less redundant sequence B can be formed by 

neglecting vectors in A which are less than a certain threshold 

distance from their immediate predecessors. 

Let, 4.22a 

then 4.22b 

where It < I 
and bi = ai if d(ai_I' ail > ~ 
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TABLE 4.6 

PERFORMANCE OF THE \'l)RD REClXN.[ZER WITH VARIOOS FILTER BANKS 
SYSTEMS: r-llLTIPLE REFERENCE PATI'ERNS/VOCABULARY \'l)RD 

FILTER BlINK SYSTEM REX:XlGIITION Aro.JRAC'f ( %) 

Test 1 Test 2 Test 3 Aver~e 
Filter No. of 
spacing 01anne1s '" - M ::;: ::;: ::;: .. .. Ul .. •• Ul .. •• Ul ... U) . ... U) · ... U) . 

Q) ><N Q) ><N Q) "'N 
.>< Q) r... .>< Q) r... .>< Q) r... 

'" '><Ul '" '><Ul '" .><Ul 
Q) '" . Q) '" · Q) '" . 
0. Q)" 0. Q)" 8: 1i.~ Ul 0.::;: Ul 0.::;: 

UlUl UlUl UlUl ...., ...., · ...., 
OO ...... 4-IN Cl) 1""1 4-1 N Ul_4-IN 
Q) ::;: Q) ::;: Q) :E ID ::E Q) tt.. Q) ::E 
E-<Ul!>:Ul E-icntr;Ul E-<UlI>:Ul 

Unifonn 5 62 72 64 66.0 

Unifonn 8 72 78 72 74.0 

Uniform 10 74 86 80 80.0 

Uniform 12 70 80 76 75.3 

Uniform 16 74 70 72 72.0 

Ideal 
5 70 84 80 78.0 Octave 

1/3 
8 74 90 82 82.0 Octave 

Critical 
16 72 88 82 80.6 Band 

-
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dr is a thresh::>ld value dependent on the required length I' of B. If 

N frames are to be purged from A, then from the ordered list of 

inter-frame distances, d l ~ d2 ~ ... dN ~ ... d I - l , d.r is set equal 

to dW The original sequence is said to be compressed by a factor 

of (1'/1) in obtaining the new sequence B. 

4.5.2 The Trace Segmentation method [57][58] 

The vectors aI' a2' ... , a I of the speech pattern A, (equation 4.2a), 

can be considered as describing a trace of I points in the multi­

dimensional feature space. The idea behind trace segmentation is to 

re-distribute the I points along the trace, into a fewer number of 

points which are equidistantly spaced. This is achieved by 

partitioning the trace into S segments, and thereafter using the S+l 

segment boundaries as the new pcints which describe the trace. The 

total accumulated distance D, along the discrete sequence A is 

computed as: 

1-1 
D = I d(ai' ai+l) 

i=1 
4.23 

where d(ai' ai+l), is the absolute distance between vectors ai and 

ai+l· 

The distance, D, is to be distributed equally along the S segments of 

the trace. Thus, once S is fixed, the distance DL between two 

consecutive points in the transformed sequence will be given by: 

~ = D/S 4.24 

The transformed sequence B = {bl , b2, ... , bS+I }' is formed from the 

sequence A, as follows: 
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The first and last points in A are retained in the transformed 

sequence, Le. 

and 

Then, starting with bl as the first point in the transformed 

sequence, the distance between consecutive points in A are computed 

lIDtil the following conditions are met: 

From equations 4.25 and 4.26, there exists a point bz, which belongs 

to the space between ak-l and ak' such that: 

Equation 4.27 can be rearranged as: 

d(ak_l' bz) = DL - d(bl , bz) - d(a2' a3)' - ••• -d(ak_2' ak-l) 
4.28 

Let the Q energy values, in say vector ay be denoted as: 
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The elements of vector~, can be located by linear interpolation: . 

4.29 

where q = 1,2, ••• , Q. 

Hence, starting fran ~, the algorithm is repeated to obtain: 

4.31 

Thus, the original sequence is replaced with the new sequence: 

4.32 

where b 1 = al and 

The trace segmentation pr=edure compresses the original patteIn, by 

a factor of (S/I), into points which are =t temporally equidistant, 

but spaced acoording to spectral changes along the utterance. In the 

new pattern more points will be allocated on the transition regions 

of the speech utterance where more accurate description is required, 

at the expense of stationary regions where the signal is more 

redundant. 
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4.5.3 Results 

The recognition system employing an 8 channel, 1/3 octave spaced 

filter bank is shown, in Table 4.6, to give better performance in a 

speaker independent manner, than the other systems under 

consideration. The effect of using speech utterances with reduced 

redundancy as described in Sections 4.5.1 and 4.5.2, on the 

performance of a word recognizer was then investigated for this type 

of filter bank. Figure 4.8 sh:>ws the recognition results, expressed 

as a percentage of correct identifications of the input word, 

obtained in three testing sessions. In these experiments, each 

vocabulary word was represented by four patterns from utterances of 

different speakers. The recognizer was tested with speech utterances 

from speakers woo did not contribute to the generation of reference 

patterns, as given in Table 4.6. Both the simple redundancy removal 

and the trace segmentation metoods were used with varying compression 

factors on the test and reference speech patterns. 

4.6 DISaJSSION 

In this Olapter, the use of filter bank features in word recognition 

is examined. Filter banks with different numbers of charmels were 

designed and their frequency characteristics are shown in Figures 

4.3, 4.4, 4.5 and 4.6. Each filter was designed by truncating the 

infinite response of an ideal bandpass filter with a Hamming window 

of 128 samples in length. The filters possess a reasonably sharp cut­

off rate, and also provide an attenuation of at least -60 dB in the 

stop band. 

On the performance of the word recognition system using various 

fil ter banks as given in Tables 4.5, 4.6 and Figure 4.8, the 

following points can be deduced: 

i) For a given filter bank system, the recognition accuracy is 

greatly enhanced by using multiple reference patterns per 

vocabulary word, rather than a single reference pattern per 
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vocabulary word. This is to be expected, since the multiple 

patterns from different speakers represent a wider variability 

of the vocabulary word. 

ii) On using uniformly spaced filter banks, the recognition 

performance degrades when the number of channels is too few (in 

the range of 5) or too many (in the range of 16). The 

recognition accuracy obtained with 10 channels was the highest. 

The reason for the degradation in performance when the number 

of channels is high is that the individual filters become so 

narrow in bandwidth that the energy estimation is poor due to 

large fluctuations in the spectrum. With a low number of 

channels, the system has a very poor frequency rerolution which 

leads to inability to discriminate between words. Similar 

results have been reported by Dautrich et al [50]. 

iii) Given the same number of channels, filters spaced on a non­

uniform scale give a better performance than those spaced on a 
, 

uniform scale, i.e. the 5 channel ideal octave vis;-a-vis the 5 

channel uniform spaced filter bank, the 8 channel 1/3 octave , 
vis-a-vis the 8 channel uniformly spaced filter bank, and the , 
16 channel critical band vis-a-vis the 16 channel uniform 

filter bank. The reason for this can be attributed to the fact 

that the uniform filter bank spacing weighs all the regions in 

the spectrum equally, whereas the non-uniform filter banks have 

a bias toward the lower spectrum range. From subjective 

listening tests, it is known that the spectral range below 3 

kHz is more important than the upper frequency range (3 kHz-5 

kHz) in the identification of speech utterances consisting 

mainly of voiced sounds. Probably, it is this bias in the non­

uniform filter banks, which gives them a superior performance 

over the uniform filter banks, in the recognition task. Note 

that the 50-word recognition vocabulary consists of utterances 

with mainly voiced sounds. 
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iv) The highest ward :recognition a=uracy was obtained using the 8 

channel 1/3 cx:tave filter bank. 

v) An improvement in the a=uracy of the ward recogn:i tion system 

can be achieved by using the proposed simple redundancy 

removal, or the trace segmentation methods, as sh:Jwn in Figure 

4.8. When a =mpression factor of 0.5 is used, the performance 

is severely degraded since useful information in the speech 

patterns is lost. A =mpression factor of 0.8 or 0.9 produces a 

significant improvement in recognition accuracy. This is 

because a bias is introduced, in which more features are 

extracted from transitional regions, as opposed to stationary 

regions in the speech signal. A major setback with the simple 

redundancy removal and the trace segmentation methods, is the 

difficulty involved in estimating the level of redundancy in a 

speech utterance, and hence the optimal =mpression factor to 

be used. 
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'HIE USE OF LPC FFATURES IN ISOLATED WJRD REX:XXM:TIGI 

5.1 INI'RODUCI'ION 

Linear prediction analysis has been established as a predominant 

method in the estimation of speech parameters such as pitch, 

formants, vocal tract area functions, spectra etc, with a reasonable 

a=uracy and a low =mputational load. The ability to describe the 

vocal tract transfer function with·a small number of parameters, is 

of fundamental ·importance in many aspects of speech processing. The 

short time spectral estimation of speech using linear prediction, 

also provides a suitable representation of the signal for recognition 

purposes. 

This chapter =mmences with a presentation of the linear prediction 

theory and i ts applicability in speech recogn1 tion. The performance 

of several LPC-based word recognition systems is then assessed by 

computer simulations. In order to achieve speaker independent 

performance, multiple reference patterns per vocabulary word are 

employed in the recognition system. However, an increase of the 

recognition a=uracy in such a system is realized at the expense of a 

large increase in the computational load. A method, based on 

clustering the reference pattern into a small number of disjoint 

groups is suggested as a means of reducing the =mputational load. 

The need to reduce the memory requirements in the recognizer, leads 

to the use of vector quantization techniques. Word recognition 

systems which employ vector quantization are therefore examined, and 

their performance =mpared. A new system, termed the LPC/VQ/SPLIT 

recognizer, which has a low memory requirement and still maintains a 

recognition a=uracy =mparable with established systems is finally 

proposed. 
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5.2 LINEAR PREDICTION OF SPEECH [11][59][60] 

The main idea behind linear prediction is that a given speech sample 

can be approximated as a linear combination of its immediately 

preceding samples. Such a representation leads to a simple all-pole 

fil ter that can model the short term vocal tract transfer function 

with a reasonable accuracy. 

5.2.1 Basic Principles 

The block diagram in Figure 5.1 is an illustration of the basic all­

pole speech synthesis model; a time-variant digital filter excited 

either by a periodic pulse train or by random noise. The steady state 

transfer function of the digital filter is of the fonn: 

H( z) = __ ----'=G'---__ _ 

where G is a gain parameter 

P 
1 + 2 a (k) 

k=1 

-k z 

and a(k), 1 .;; k .;; P are the filter roefficients. 

5.1 

This transfer function, H(z) is a simplification of the filter in the 

source filter model of speech production, first proposed by Fant [61] 

in which the =mbined spectral =ntributions from the vocal tract, 

glottal excitation and the radiation of the lips are represented by a 

single all-pole time varying filter. 

Voiced sounds are modelled by exciting the filter with pulses 

separated by a pitch period. Unvoiced sounds are modelled with 

random noise as the input. Nasals and fricative sounds are not well 

modelled by this simplified system since the acoustics of these 

sounds are described by a vocal tract transfer function containing 

zeros and poles. Nevertheless, for a high order of filter 

coefficients, p, a good representation of all kinds of sounds can be 

obtained with the all-pole synthesis model. A major advantage of the 
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model is that the filter parameters, i.e. the gain and the filter 

ooefficients, can be determined efficiently by the linear prediction 

analysis method. 

Linear prediction; as its name implies, is a method of predicting a 

speech sample, S(n), from a linear combination of a number of 

immediately preceding samples, i.e. 

p 

S(n) = L a(k) S(n-k) 
k=l 

5.2 

where S(n-k), k = 1,2, ... p, are the p preceding samples. The 

weighting coefficients, a(k), k = 1,2, ... p, are optimized by 

minimizing the sum of the squares of differences between actual 

speech samples and the linearly predicted ones. These ooefficients 

are known as the prediction ooefficients, and p is termed the order 

of prediction. 

Let the error between the actual value of a sample, S(n), and its 

predicted value, S(n), be e(n). 

Then, 

p 

e(n) = S(n) - S(n) = S(n) - 2 a(k) S(n-k) 
k=l 

5.3 

The prediction coefficient are obtained by minimizing the total 

squared error, E, given by: 

E = L e2 (n) = I (S(n) -. Y a(k) S(n-k»2 
. k=l 

5.4 

Depending on the range of summation in equation 5.4, there arises two 

distinct methods for the estimation of the prediction ooefficients, 

namely the autooo=elation and the oovariance methods. 



126 

5.2.2 The Autocorrelation Method 

In the autocorrelation method of computing predictor coefficients, 

equation 5.4 is minimized by considering only speech samples within a 

finite duration, and that outside this duration, the speech samples 

have zero values. This can be a=mplished by weighting the speech 

,samples, S(n) using the rectangular window, w(n). The windowed 

speech samples, S(n) are given by: 

__ {s(n) w(n), w(n) = 1, 

S' (n) 

0, otherwise 

1 .;; n .;; N-I 

5.5 

The length, N, of the window function w(n) is set to a suitable 

duration, since the speech signal is approximately stationary within 

short time segments. Since S(n) is non-zero only in the time 

interval 0 .;; n .;; N-l, the error e(n) for the pth order predictor will 

be non-zero over the interval 0 .;; ri .;; N-I+p. From equation 5.3, it 

can be observed that the error, e(n), will be large at the beginning 

of the interval, i.e. 0 .;; n';; p-I, because some of the predicted 

samples are set to zero. Likewise, e(n) can also be large at the end 

of the interval i.e. N';; n .;; N-I+p, because the actual speech samples 

are set to zero. Therefore, a window function such as Hamming or. 

Hann ing, which gradually reduces the speech samples at the beginning 

and at the end of the interval, is generally used. 

The total squared error, E, is given by: 

+= N-1+p 

E = I e2(n) = I e2(n) = 
""" n=O 

E is minimized by setting, dE 

da (i) 

N-1+p 

I 
n=O 

p 

(S(n) + L 
k=1 

= 0, 1';; i .;; p 

a(k).S(n-k»2 5.6 

5.7 



which gives: 

N-1+p 

L 
n=O 

= 
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p 

(S(n) + L a(k) S(n-k» 
k=1 

p 

S(n) S(n-i) = - I a(k) 
k=1 

p 

I S(n-i) = 0 
i=1 

N-1+p 
~ S(n-k) S(n-i) 

n=O 

i = 1,2, ... p 

5.8 

5.9 

The minimum total squared e=r, ~, also known simply as the minimum 

prediction error, is obtained by substituting equation 5.9 into 5.6 

giving: 

N-l+p P 
~ = ), S(n)2 + l a(k) 

n=O k=1 

Equations 5.9 and 5.10 reduce to: 

p 

N-l+p 
L S(n) 

n=O 
S(n-k) 

L a(k) R(i-k) = - R(i), 1';; i .;; p 
k=1 

and 

5.10 

5.11 

5.12a 

The normalized prediction error, Vp ' is obtained by normalizing Ep 

with R(O): 

i.e. v = ~ = 1 +! a(k) R(k)/R(O) 
p R(O) k=1 

5.12b 
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where 

00 N-1 
R(i) = L S(n) S(n-i) = L S(n) S(n-i), 0 .. i" p 5.13 

n=-<x> n=O 

The coefficients, R(i-k) in equation 5.11 are the autoco=elation 

coefficients of the speech signal, hence the name given to the 

analysis method. 

The set of equations defined by equation 5.11, can be expressed in a 

matrix form as follCMS: 

R(O) 

R(l) 

R(2) 

R(p-l) 

R(l) 

R(O) 

R(l) 

R(p-2) 

R(2) 

R(l) 

R(O) 

R(p-3) 

R(p-l) 

R(p-2) 

R(p-3) 

R(O) 

a(l) R(l) 

a(2) R(2) 

a(3) = - R(3) 5.14 

a(p) R(p) 

The p by p matrix of the autocorrelation coefficients is Toeplitz 

i.e. the elements along any given diagonal are equal, a property 

which can be advantageously exploited in the computation of the 

predictor coefficients. 

5.2.3 The Covariance Method 

In the second approach, the minimization of the total squared error, 

E, is done over a fixed interval, i.e. the error signal, e(n), is 

wincbwed but the speech samples are not. 

E = 
N-1 
L 

n=O 

N-1 
L (S(n) + 

n=-p 

p 
1. a(k) S(n-k»2 

k=1 
5.15 
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Equation 5.9 'OCM becanes: 

N-1 
L S(n) S(n-k) = 

P N-1 
1. a(k) L S(n-k) S(n-iL 1 ~ i ~ P 5.16 

n='-'p k=1 n=-'p 

Equation 5.16 is very similar to 5.9, except for the range of 

summation which uses values of S(n) in the interval -p ~ n ~ N-l, 

rather than over the interval ° ~ n ~ N-l. Although these differences 

seem to be minor, the set of linear equations eventually derived, has 

significantly different properties that affect the method of solution 

and leads to different predictor parameters. 

Equation 5.16 reduces to: 

p 

1. a(k) 4>(i,k) = - 4>(O,iL 
k=1 

00 

l~i';;p 5.17 

where, ~(i,k) =1. we(n) S(n-i) S(n-k), gives the cross-co=elation 
n=-oo 

of the speech samples windowed by the function we(n), usually a 

rectangular window. 

The relationship defined by equation 5.17 can be expressed in matrix 

form as: 

~(1,1) 

4>(2,1) 

4>(p,l) 

4>(1,2) 

4>(2,2) 

4>(p,2) 

4>(l,p) 

4>(2,p) 

~ (p,p) 

a(l) 

a(2) 

a(p) 

= 

~(l,O) 

~ (2, 0) 

4>(p,O) 

5.18 
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The aIxJve covariance matrix is symmetrical, i.e. cl> (i,k) = cl>(k,i) but 

unlike the autocx::>rrelation matrix it is n:>t Toeplitz. 

The minimum prediction eror, ~, is given by: 

~ = cI>(O,O) + a(k) cI>(O,k) 5.19 

5.2.4 Oomputation of the Predictor Coefficients 

The solution to equations 5.11 and 5.17 for the predictor 

coefficients can be obtained using aIT:l of the established methods for 

solving p linear equations in p unknowns, e.g. the Gauss-Siedel 

method [62]. Generally these methods would require heavy 

=mputation, but utilising the properties of the coefficient matrices 

of these equations leads to more efficient and faster computation. 

For example, the symmetrical nature of the covariance matrix enables 

the use of Cholesky's decomposition solution [63]. For the 

autocorrelation method, the coefficient matrix is not only 

symmetrical but also Toepli tz and for this special case, Levinson 

[64] and Durbin [65] developed a recursive technique to efficiently 

compute the prediction coefficients for a given order. Their 

algorithm is as follows: 

p 

step i: Given the matrix equation 1. a(k) R(i-k) = -R(i), for 1';;; . 
k=1 

i .;;; p, it is desired to solve for the predictor 

coefficients {ak}' k = 1, 2, ... p 

Step ii: Let Eo = R(O) 

, Step iii: Canpute 

step iv: 

I 

i-l' 
ki = - [R(i) + 2:ai - l (j) R(i-j )]/Ei - l 

j=l 

5.20 

5.21 

) 
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5.22 

step vi: 
2 

E· = (1 - k.) E· 1 l. l. l.- 5.23 

step vii: steps (iii), (iv) and (v) are solved recursive1y for 

i = 1, 2, ... p and the final solution for the predictor 

coefficients is given by: 

a(j) = aP(j) 1 .. j .. p 5.24 

In the algorithm, the =mputation for predictor order p, is preceded 

by the =mputation for the solution of all predictors of order less 

than p. The algorithm also =mputes the minimum error, Ei at every 

step, which decreases as the order of prediction increases, i.e. 

EO = R(O) 5.25 

The intermediate quantities, k i , are referred to as reflection 

coefficients, or partial correlation coefficients, and are always 

less than unity in magnitude, i.e. 

- 1" k· .. 1 
l. ' 1 .. i" P 5.26 

Equation 5.26 has been shown [67] to be the necessary and sufficient 

condition for the all-pole filter to be stable, i.e. all the poles 

inside the unit circle. This is a major advantage of the 

autoco=elation method over the covariance in =mputing the predictor 

coefficients. As long as the autocorrelation coefficients are 

nonnalized, the Levinson-Durbin re=sive algorithm always produces a 

stable filter, a =ndition which is not guaranteed in the covariance 

method. Apart from the autoco=elation and the covariance methods, 
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many other formulations of the linear prediction exist, e.g. maximum 

likelihood [66], lattice [59] and inverse filter methods [11]. 

5.2.5 The Gain of the Synthesis M::xlel 

From the transfer function of the synthesis model, given in equation 

5.1, the output speech samples S(n) are related to the excitation 

signal U(n) as follows: 

p 
S(n) -. L a(k) S(n-k) + G U(n) 

k=1 

Since the prediction error signal e(n) is defined as: 

or 

p 
e(n) = S(n) - S(n) = S(n) - 1. a(k) S(n-k) 

k=1 

p 
S(n) = 1. a(k) S(n-k) + e(n) 

k=1 

If the speech samples are defined exactly by the model, then: 

e(n) = G U(n) 

5.27 

5.28a 

5.28b 

5.29 

i.e. the error signal is proportional to the excitation signal, where 

the constant of proportionality is the gain, G. In practice, it is 

not possible to solve for the gain, G, directly from the error 

signal. Instead, a reasonable assumption that the energy in the 

error signal is equal to the energy in the excitation signal, is 

made: 
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~ 

N-1 
e 2 (n) G2 N-1 

Le. l. = L U(n) 5.30 
n=O n=O 

N-1 
and that L U(n) = 1 

n=O 

Thus, 

G2 = ~ 5.31 

5.2.6 Spectral Properties 

The autocorre1ation approach is directly suitable for the frequency 

domain interpretation of linear prediction and therefore will be used 

in the follCMing discussion. 

The total squared e=r, E, expressed in the time domain by equation 

5.6, can be regarded as the output obtained by filtering the speech 

signal with an all-zero filter whose transfer function, A(z), is 

given by: 

p 
A(z) = 1 + I. a(k) z-k 

k=1 
5.33 

Let E(W) be the Fourier transform of the error signal, e(n), and Sew) 

be the Fourier transform of the speech signal, S(n), in a given time 

interval. 

Using Parseval's theorem: 

E =_1 
27f 

7f 

J I E(w ) I 2 dw = _1 
-IT . . 2TI 

Substituting, H(w) = ~ into equation 5.34, gives: 
A(w) 

5.34 
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E = G2 

2IT 

or, in tenns of the pcMer spectrum: 

+7I··~(W) 2 . 
J Hw) dUl 
"'"71 

2 +1T 
E=~ J E.1J&ldw 

21T -71 P (w) 

5.35 

5.36 

A 

where P(w) is the power spectrum of the speech signal and P( w) the 

power spectrum of the mcdel defined by H(z). 

Thus, minimizing the total square error in the frequency domain, is 

equivalent to minimizing the integrated ratio of the signal spectnun, 
A 

P(w), to its approximation, P(w). The total square e=or is large 
A A 

when P( w) < P( w), and small, . for P( w) > P(w). Since the power 

spectrum contains resonances at the form ant frequencies, it means 

that for a quasi-periodic signal the spectral approximation is far 

superior at the harmonics than between harmonics. 'Ihese properties 

are illustrated in Figure 5.2, which shows the signal spectnun of a 

vowel sound modelled by a 28-pole linear prediction spectnun. The 

original signal spectrum was obtained by an FFT analysis on a 25.6 

msec segment of voiced speech. 

It can be shown [see Appendix B), that the autocorrelation 

coefficient of the speech segment and the autoccrrelation coefficient 

of the impulse response corresponding to the system function H(z), 

are equal for the first (p+l) values. As p ... 00, all the 

autocorrelation coefficients are equal, and leads to the following 

relationship: 

Lim IH(w)12 = Is(w)1 2 

p->oo 
5.37 

This means that, for a large value of p, the signal spectrum is 

closely approximated by the all-pole model function, H(z), with an 
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arbitrary small error. This is illustrated in Figure 5.3, which 

shows the original speech segment input signal, its FFT derived 

spectrum and the linear prediction spectrum for various values of the 

prediction order p. 

5.2.7 Limitation of Linear Predictive Analysis 

In the linear predictive analysis, it is assumed that all the speech 

sounds can be generated by exciting the all-pole filter with either 

quasi -periodic pulses or random IX>ise. This means that nasal sounds 

and voiced fricatives can=t be suitably modelled using the all-pole 

model. Fortunately, human perception is more sensitive to the 

location of resonances than anti-resonances and so the synthesized 

speech is generally acceptable as of good quality. 

The IX>rmalized prediction error, Vp' defined in equation 5.12b, has 

been shown to be dependent on the shape of the model spectrum [67], 

by expressing it as: 

1 
TT ~ 

exp [4TT J log P(w) dw] 

Vp = -'IT 

_ TT ~ 

1 
J P(w) dw 2TT 

5.38 

-TT 

where P(w) is the power spectrum defined by the linear prediction 

model. 

Vp can be seen as a measure of the spectral flatness of the model 
~ -

spectrum. It attains a maximum value of 1 if P(w) is flat, and tends 
. ~ 

to zero when P(w) exhibits large fluctuations. 

Thus, the spectrum of a voiced speech segment, which is characterized 

by resonances at a number of formant frequencies, is well modelled by 

linear prediction. 

Conversely, the spectrum of unvoiced sounds tend to be flat, and the 

prediction error becomes higher. Of course, in both cases the 



136 

.Or----r--~r_--._--_.----~--_r----r_--_r--_,r___, 

~ ~Ul~~--~+_--_1----~--_1r_--~----t_--_+----+_--_1 

>-
.. 40 
a: 
w 
~~~--~~--~~ ... 
~ ~~---+----~~-1----~L-~~ 
c 
-' 
w .o~---+----4----1----4-----~q-~--~~~~~~~~-1 a: 

O~ __ ~ __ -+ __ ~~ __ +-__ ~ __ ~ __ ~~~~ __ ~ __ ~ 
o 2).' 6 e 9 10 

FREQUENCY (It.HJ) 

FIGURE 5.2: A 28 POLE FIT TO AN FFT SIGNAL SPECTRUM [60] 

IB~'9r------------------A'----------~~~----' 

~ 
1\ INPUT SIGNAL 

''''PLlTUOE <>V~ 'V~O ~S.l \/\f~ov :-<: 
- '3 776 .. -'-___ ~---' ______ ~__A1__~ __ L___' __ _'_ __ ~ __ .L__C 

o 119 

,B 'Ol;WP~ SHORT-liME SPECTRUM I 

66tL~~"A~ . 
o 3000 

FREOuENCY IN HZ 

:;;::J 
3000 

FR[OUE NO IN HZ 

dB \::E~_-,-IP_'~ 
o 3000 

FREQUENCY IN HZ 

,B '06 I 
NO ~~ 

FIGURE 5.3: 

FREQuENCY IN HZ 

SPECTRA FOR lal VOWEL SAMPLED AT 6 kHz FOR 
SEVERAL VALUES OF PREDICTOR ORDER, P [59) 



137 

prediction error is also a factor of the order of prediction, p. The 

variation of the oormalized prediction error Vp' as a function of p, 

f= Ix>th voiced and urwoiced sounds is slxlwn in Figure 5.4. 

The fact that linear prediction spectral estimation of a quasi­

periodic speech signal, is far more accurate at the harmonics than 

between harmOniCs, results in a better model for male speech than 

female speech. In female speech, the spectral harmonics are further 

apart than in male speech due to the higher pitch, thus giving a 

poorer fit. Oll.ldren's speech results in even less accurate spectral 

estimation because the pitch frequency is much higher. 

5.2.8 EXtracting LPC Coefficients for Speech Recognition 

The short-time power spectrum has been used as one of the main 

features in the description of speech segments. Since linear 

prediction coefficients give a good estimate of the short-time 

spectrum, their use in speech recognition becomes very attractive. 

The manner in which the LPC parameters are extracted from a speech 

utterance is illustrated in the block diagram of Figure 5.5. 

The digitized speech utterance, S(n), is first pre-emphasized by 

using a first order non-recursive filter with a transfer function, 

H(z) = 1 - az-l , to obtain the signal, S'(n) = S(n) - a S(n-l). A 

sui table estimate of the pre-emphasis factor, 'a', is given by the 

ratio, R(l)/R(O), [60]. The aim of pre-emphasis is to reduce the 

spectral dynamic range of the signal. 

In the next stage, the signal is segmented into frames, each of N 

samples. The temporal length of the frames should be of the order of 

a few pitch periods in the speech signal. Typical frame sizes range 

from 15 msec to 50 msec which co=espond to values of N from 150 to 

500 samples, at a sampling range of 10 kHz. Consecutive frames are 

spaced M samples apart. When 0 < M < N, there is an overlap of the 

blocks. 
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The speech data in each block is windowed by a function, w(n), so as 

to gradually taper the samples to zero, starting from the centre of 

the frame and prcceed:ing towards the frame edges. A frequently used 

window in LPC analysis, is the Hamming window, given by: 

[

0.54 - 0.46 Cos (2nn/N-l), 0"; n"; N-1 

w(n) = 
0, otherwise 

5.39 

Autoco=elation coefficients, R( i), i = 0, 1, •.• , p, are computed 

fron the Hamming wi.ndcMed speech samples, using the relation: 

N-1-i 
R(i) = L 

n'=O 

S(n) S(nH). 
N ' 

where p is the order of prediction. 

° ..; i ..; p+1 5.40 

The autoco=elation coefficients are usually normalized by the zeroth 

delay autocorrelation coefficient, R(O). Levinson and Durbin's 

recursive algorithm can then be employed to derive the values of 

linear prediction coefficients of the desired order. 

In this manner, the speech signal is reduced to a discrete sequence 

of LPC vectors which describe the short-time spectral shape of the 

signal. 

5.3 DISTANCE MEASURES FOR LPC COEFFICIENTS 

The use of linear prediction in speech recognition has found wide 

acceptance since Itakura and Saito [66] [67] first proposed a suitable 

distance measure in the =mparison of two speech frames expressed in 

the LPC domain. To be useful, a distance measure d(X, Y) between the 

speech frames X and Y should satisfy the fOllowing properties: 

i) d(X, Y) should be positive definite, i.e. 
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d(X,Y) > 0 for X f Y 

d(X,X) = 0 5.41 

and be subjectively meaningful in the sense that small and large 

distance measures co=espond to similarity and dissimilarity 

respectively. 

ii) d(X, Y) should have a physically meaningful interpretation in the 

frequency danain. 

iii) The distance measure should be efficiently computable. 

The conventional squared error and the absolute norm distance 

measures discussed in Chapter 4 do not appear to be subjectively 

meaningful when applied to LPC coefficient sets. For this reason, a. 

number of distance measures which have meaningful frequency·domain 

interpretation have been proposed [67] [68] [69] and some are briefly 

discussed below. 

5.3.1 The Log Spectral Measure [69] [70] 

Consider two spectral models, 

P 
G/(1 + L 

k=l 
a(k) z-k), and G/(1 + I 

k=l 

The spectral difference, V( e), between these modelS on a log 

magnitude versus frequency scale is given by: 

V( 8) 

p 

= lege {G2/11 + I: a(k)e-j8kI2} - lege {G2/11 
k=l 

p 

+ y. 
k=l 

5.42 

where 8 is the frequency on a scale normalized by the factor Fs/2rr. 

F s is the sampling frequency. 
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One set of logical choices for a measure of distance based on V(S)' 

is the lp norms defined by '\>, where, 

lip 

5.43 

When a value of p=l is used, '\> defines the absolute log spectral 

measure. For p=2, the rms log spectral measure is defined and for p 

approaching infinity the peak log spectral measure is obtained. 

The lp measures exhibit linearity, in the sense that multiplication 

of V( 6) by a scalar constant results in a multiplication of '\> by the 

same constant. In addition, the Lp measures are symmetric and 

positive definite. However the main problem with the above distance 

measures is the computational load required to obtain sufficient 

values of V( 8) in order to approximate the integral in equation 5..43 

by a summation. 

5.3.2 The Itakura-Saito Distance Measure [67] 

Let PT(w) and PR(w) be two power spectra of a test and a reference 

speech frame described respectively by the LPC sets, ~ = {l,a(1),a(2), 

, .. a(p)} and a R = {1,a(l),a(2) ••. , a(p)}. Then, the Itakura-Saito 

distance, dIS' between the two spectra is defined as: 

5.44 

The theoretical significance of dIS' comes from the formulation of 

linear prediction as an approximate maximum likelihood estimation. 

Since of concern here is the power spectrum estimates of PT and PR 

which are of the form: 
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G2 

PT = ---------------
P 

11 + I a(k)z-k I2 
k=1 

Equation 5.44 can be expressed as 

p 

(;2 
and· PR = -------

11 + I 
k=1 

[see Appendix C]: 

where eJ,= r(O) ra(O) + 2 L r(n) ra(n) 
n=1 

p=n 
and ra(n) = ) a(i) a(i+n) 

i·=O 

5.45 

5.46 

and where r(n) are the time-domain autocorrelation coefficients of 

PT( w). 

For a given power spectrum, P(w), and a scaled version of itself 

AP( w), the Itakura-Saito distance between the two spectra, as defined 

. in· equation 5.44, is simplified to: 

drs (P,AP) = t + logeA - 1 5.47 

Thus drs is a gain sensitive distance measure, a characteristic that 

is completely undesirable in the comparison of speech frames. 

However, two gain insensitive versions of drs are available and are 

referred to as the gain optimized and the gain normalized measures. 

i) The gain optimized rtakura-Saito distance measure: 

The gain optimized Itakura-Saito distance measure, <\;0, is given 

by: 

<\;0 (PT' PR) MIN = 1.-+0 drs (P, AP) 5.48 

TT PT dw TT P dw = loge J pTTI- J loge (--'!') 
2TT 

5.49 
-TT R -TT PR 
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For an all-pole power spectra, equation 5.49 can be expressed as, 

5.50 

H) The gain-normalized Itakura-Saito distance measure: 

The gain normalized Itakura-Saito distance, drn, for spectra of 

the all-pole form, is defined as: 

drn (PT' PR) = d IS 
PT PR 

5.51 (- , -) 
G' G> 

Cl - 1 5.52 --
G' 

The three distance measures are inter-related as foll=: 

doo = lege (1 + drn) 5.53a 

G G' doo = lege [G' (dIS + lege - + 1)] 
G' 

5.53b 

An intapretation of the Itakura-Saito distance measure: 

The gain normalized Itakura-Saito distance measure, drn can also 

be rewritten in matrix form as foll= [see Appendix C]: 

[a] [R.r] ra] t 

[a] [R.rl [a] t 
- 1 5.54 

where [~] is the aut=o=elation coefficient matrix of the test 

frame speech data, and [a]t denotes the transposed vector of 

[a]. An interpretation of the distance measure is illustrated 

in Figure 5.6. 
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If a test speech frame, Sr(n), is passed through its own inverse LPC 

filter ~(z), the energy of the error signal, eT(n) is equal to G2 

(equation 5.30), which can also be expressed in matrix form as 

[a] [Rr] [a]t (see Appendix C). If the same test speech frame is passed 

through the inverse LPC system described by the parameters of the 

reference speech frame, the energy of the error signal, eR(n), will 

be given by [a] [RT] [alto The minimum energy in the error signal 

will occur only when the signal is passed through its own inverse LPC 

system, since the LPC parameters are optimized for the frame. 

The ratio, [a] [RT] [a]t/[a] [RT] [a]t, thus defines a measure of 

difference between test and reference speech frames on their spectra. 

The ratio is equal to unity only when the two frames are identical, 

otherwise it is always greater than unity. 

Some criticisms have been made on the three forms of Itakura-Saito 

distance measure; especially that they do =t satisfy the properties 

of a true metric, 

i.e. dIS (X,Y) t dIS (Y, X) 5.55 

It has been shown by de Souza [71], that the Itakura-Saito distance 

measure is =t a -i-distribution with p degrees of freedom (where p 

is the order of prediction), and therefore it is not optimal as a 

test statistic. However, despite these objections, the Itakura-Sai to 

distance measures have been used in many practical applications with 

excellent results. 

5.4 THE LPC-BASED VKJRD REQ:X;NITION SYSTEM 

The block diagram of a conventional word recognition system based on 

the LPC analysis is shown in Figure 5.7. An input speech utterance, 

S(n) is passed through a pre-emphasis network with transfer function, 

1-0.90z-1. After an autocorrelation analysis on 25.6 msec Hamming 
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windowed speech segments, LPC coefficients are extracted once every 

25.6 msec, employing the Levinson-Durbin's recursive algorithm. The 

input word is thus expressed as a discrete pattern of LPC vectors. 

The recognition task requires the input word pattern to be matched 

wi th a pre-stored set of reference vocabulary word patterns. These 

reference patterns are generated a priori during a training session. 

The dynamic time warping technique proposed by Sakoe and Chiba, 

including Paliwal's modification, as discussed earlier in Section 

3.2, is employed to obtain a time normalized distance between the 

input word pattern and each reference patteIn. The gain-normalized 

Itakura-Saito distance measure was used for the local distance 

between the frames of the patterns. In order to achieve speaker 

independent performance, each vocabulary word is represented by 

mul tiple reference patterns. Hence, the input word is identified 

from the vocabulary using ,the k nearest neighbour (kNN) rule, 

discussed earlier in Section 4.4 of Chapter 4. 

i ) 'l'rain:inJ procedLn:'e 

In the training session, reference patterns of the vocabulary words 

are generated by an LPC analysis. Each vocabulary word is 

represented by patterns formed from the repetitions of the word by 

four speakers. 

ii) Recogni tian results 

A series of tests were carried out in order to investigate the 

performance of the reoognizer in co=ectly identifying input words. 

The input words to the recognizer were taken from a speaker who did 

not contribute to the generation of reference patterns. Each of the 

50 vocabulary words, was represented by four reference patterns while 

the input word was identified using the kNN rule, with k=3. The 

results obtained on the recognition accuracy, as a percentage of 

correct identifications of the input words, are given in Table 5.1. 

The order of prediction, p, was varied from 6 to 14. 



Order of 
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p 

p = 6 

p = 8 

P = 10 

p = 12 

P = 14 
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TABLE 5.1 

PERFORMANCE: OF TriE LPC-BI\SED W:>RD REalGNIZER WITH 
VARYIN3 PREDlcrION ORDERS 

REalGNITION ACDJRAr::i (%) 

Test 1 Test 2 Test 3 
Test speaker SMl Test speaker 5M3 Test speaker SFl 
Ref speakers: Ref speakers: Ref speakers: 
SM2, SM4, SF2, 5M3 SM2, SM4, SF2, SMl SM2, SM4, SF2, SM3 

74 64 60 

78 70 64 

84 80 72 

90 88 84 

94 90 84 

[ 
~ 

66.0 

70.6 

78.6 

87.3 

89.3 
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5.4.1 The Use of Discr.irninati ve Patterns 

AI though the dynamic time warping algorithm achieves considerable 

success in word recognition, its performance is ultimately limited by 

its poor ability to discriminate between acoustically similar words. 

The problem arises because all local differences between a test and a 

reference pattern are assumed to be of equal importance. For 

acoustically similar words, some local differences are crucial to the 

=rrect identification of the input word, whareas some other local 

differences are irrelevant. For example, in the vocabulary under 

consideration, the words set {B, C, D, E, G, P, T, V} have all got a 

common ending sound /e/, and differ only in their initial regions. 

If in the recognition of a word 'B', the ending /e/ sound happens to 

be more similar to the /e/ region in the reference pattern 'E', than 

the /e/ region in the reference pattern 'B', then it is quite 

possible for a misrecognition to occur. A pattern matching technique 

in which attention is focussed on those regions in the pattern that 

serve to distinguish it from similar words, would provide a solution 

to this problem. 

Moore et al [72], have proposed the fOllowing method of re­

structuring the reference patterns, so that similar regions are 

represented by common frames. Consider a speech pattern A, of I 

frames, and a pattern B, of J frames, 

and the distances d(i,j), along the optimal time registration path 

obtained by a DTW procedure. 

If patterns A and B represent different words which have some similar 

sounding regions, then some distances d(i,j), will be large and 

others small. A probability distribution of these distances can be 

obtained by using a large training set of the word pairs. The local 
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distance d(i,j) can then be replaced with a probabilistic measure, 

L(i,j/d), which gives the likelihood that frame ai belongs to the 

class of frame aj' given the distance d(i,j). From the variation of 

L(i,j/d) along the time registration path, a suitable threshold, 

below which frames can be considered to be similar, is determined. 

Thus, the similar frames in pattern A can be replaced with the 

co=esponding frames in pattern B. Moore et a1 [79J, successfully 

used this approach to dis=iminate between the acoustically similar 

set of words pairs, {FIVE, NINE} {K, J}, {B, D}, {D, T}, {STALAcrITE, 

STALAGMITE} {RIDER, WRITER}. They reported a reduction in 

recognition e=or rate, from 26.8% to 7.0%, on employing the 

discriminative reference patterns. 

However, the above procedure requires a large training set of the 

acoustically similar words, in order to obtain the probability 

distribution of the inter-frame distances. In the absence of such 

data, an approximate procedure is used here, in which the distances 

d(i,j), of one word pair, are used to identify the similar regions. 

i) Train:i.nJ Sessicn 

The reference patterns of the words set {B, C, D, E, G, P, T, V}, 

obtained from the same speaker were conSidered. Using Myer's 

algorithm, each word patteUl was normalized to a length equal to that 

of word patte= 'E'. The Sakoe-Chiba asymmetric DTW algorithm with a 

gradient constraint, P=l, was employed to obtain the inter-frame 

distances along the warping path, between each word patte= and the 

word pattern 'E'. Figure 5.8 depicts the distances along the time 

registration path, obtained with the above words set, uttered bY the 

male speaker SMl. A threshold level is set bY observation since the 

end regions of the word pair are expected to display strong 

similarity. The use of the symmetric DTW process, discussed in 

Chapter 3, ensures that consecutive pOints on the optimal time 

registration path, =rrespond to different frames in patte= E. 
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ii) Results 

Tests were carried out to assess the influence of the reference 

pattern structure discussed above, on the word recognition accuracy. 

The input words in each test were obtained from a speaker who did =t 

contribute to the reference pattern generation. Each vocabulary word 

was represented by four reference patterns. The results obtained are 

given in Table 5.2, as a percentage of correct identification of the 

input words. F= comparison purposes, the results obtained without 

using the discriminative reference patterns are also given in the 

same table. 

5.4.2 A Collputation Cost Reduction Method 

The e=or rate of a speaker independent isolated word recognition 

system can be decreased by using reference vocabulaIY patterns which 

reflect the inter-speaker variations for a given word. This is 

achieved when each vocabulary word is represented by multiple 

patterns of the same word uttered by' different speakers. Such an 

approach, while improving the recognition error rate, results in a 

huge increase in computation, since an input utterance to be 

classified must be compared with a greatly increased number of 

reference patterns, as opposed to the case of a single reference 

pattern per vocabulary word system. 

It would be of interest, therefore, to reduce the computational load 

in the pattern matching stage of a recognition system by limiting the 

number of reference patterns which are compared with the input 

utterance. This can be achieved by using a clustering procedure 

which partitions the reference patterns of the vocabulary words into 

a small number of disjoint groups.- For each group, a representative 

pattern, termed a cluster centroid, is determined. The input 

utterance to be identified, is first compared with all the cluster 

centroids, and then only with the reference patterns associated with 

the closest centroid. The reduction in computational cost of the 

proposed recognition system is dependent on the number of clusters 

and their occupancy. 
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TABLE 5.2 

THE PERFORMANCE OF THE LPC-BASED \\DRD RECXX;NIZER US:rn; DISCRIMINATIVE 
REFERENCE PATTERNS FOR THE \\DRDS SET {B, C, D, E, G, P, T, V} 

REOXNITION ACOJRAC'l (%) 

Recognition TESTl TEST 2 TEST 3 g System Test speaker: SMl Test speaker: SM3 Test speaker:SFl 
(Predictor Ref speakers: SM2 Ref speakers: SM2 Ref speakers:SM2 .~ order, p=l4) SM4, SF2, SM3 SM4, SF2, SMl SM4, SF2, SM3 

With 
discrimi-
native 
reference 
pattern for 94 92 88 91.3 
the set 
{ B,C,D,E, 
G,P,T,V} 

Withoot 
discrimi- 94 90 84 89.3 
native 
patterns 
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Wilpon and Rabiner [73], have recently proposed a Modified K Means 

(MKM), algorithm for use in the selection of a small number of 

reference patterns from a large training set oomposed of repetitions 

of the same word by different speakers. Their aim was to obtain a 

small set of patterns which represent the major diversities of the 

vocabulary word. These patterns are then employed to enhance the 

speaker independent performance of a recognition system. Here, the 

MKM algorithm is employed to solve a different problem. By 

clustering all the reference patterns of the entire vocabulary, into 

small disjoint groups, a computatianally faster recognition process 

can be realized. The algorithm can be described in the following 

steps. 

step 1: Given: A set W = {WI , W2 , ... , WV} of V isolated words of 

different temporal lengths, and each word is a discrete sequence of 

LPC vectors. The distance matrix of the entire set, D(Wi , Wj ), 1 ~ i 

j .:; V, is computed using a DTW 'process. The objective is to cluster 

the entries in W into M disjoint groups such that words within each 

group exhibit a certain level of similarity. Set the convergence 

check parameter, D=, to a large value. 

step 2: Find the two entries WK and WL which are most dissimilar. 

Set N, the number of clusters to 2 and let the two initial cluster 
--1 -2 centroids W and W be WK and WL. 

step 3: Classify each entry in W, to the nearest of the previously 

defined centroids. 

step 4: For each cluster, find the pattern whose maximum distance to 

any other pattern within the cluster is minimum i.e. the minimax 

centre given by: 

D(Wf, w~J 5.56 
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where pm is the occupancy of cluster m and "Wm is the minimax centre 

and also the centroid W:£ cluster m. 

step 5: Compute the average intracluster distance iim for each 

cluster and the average intercluster distance, D 

5.57a 

N 

and D = I (iSm!N) 
m=1 

5.57b 

Step 6: If (Dconv - D)!Dconv > 0.05, reset Dconv to D, and exit if N= 

M, otherwise go to step 3. If .. (I)oonv-D)/D~"; 0.05, oontinue._ 
. . -- ---

Step 7: Set N = N+l. Identify the largest cluster g, 1 ..; g..; N-l. 

The centroid of the new cluster WN is the pattern of cluster g 

furthest from the centroid W9. Go to step 3. 

A flowchart illustrating the above steps in the algorithm, is shown 

in Figure 5.9. 
,,' 

i) Testing Session: 

Using the MKM clustering algorithm, the reference vocabulary 'is 

clustered into M disjoint groups, whose centroids are the set of {Wl , 
-2 ...NI 
W , ••• , w"}. 

An unknown input word, x, is then compared with this set of the 

centroids and classified into the cluster associated with the nearest 

centroid, i.e. 

Classify X in L if D(X, wL) = MIN D(X, WL) 5.58 
1QAM 
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Next, the pattern X, is compared with all the J entries in cluster L 

and is identified as the reference vocabulary word whose pattern 

gives the minimum distance. 

i.e. Identify X fron 

MIN D(X, 2'>. 2' e: cluster L 
1:>;jQ J J 

5.59 

The number of pattern comparisons needed for the identification of X 

are (M+J), and is thus dependent on the cluster =cupancy. 

In general, the highest number of pattern comparisons that need to be 

ca=ied out in identifying an input word, is given by (M+JLl. where 

J L is the size of the largest cluster. Thus, the reduction in 

computational cost, obtained on using the al:xJve clustering pr=ess on 

reference patterns, is given by the ratio, (M+JL)/V. Also the 

computation involved in the MKM clustering pr=edure is considered as 

negligible overhead cost since it is only done once during the 

training session of the recognizer. 

ii) Results 

The training set for the MKM clustering algorithm was composed of 150 

patterns which were derived from repetitions of each vocabulary word 

by the speakers SM3, SM4 and SF2. Figure 5.10 illustrates the 

properties of the clusters generated in terms of their average 

intercluster distance. 

The speech utterances from the speakers SM1, SM2 and SFl were used to 

test the performance of the recognition system with 4, 6, 8, 10, 12 

and 15 reference pattern clusters. Figure 5.11 illustrates the 

recogni. tion error rate and the computational cost reduction obtained 

using different numbers of clusters for the reference patterns, as 

compared with the recognition system where the reference patterns are 

not clustered. 
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5.5 VECroR QUANI'IZATION IN WJRD REC(X;NITION 

In the word recognition systems presented in the preceding sections, 

a large amount of memory is required to store the multiple reference 

patterns of the vocabulary words, which are employed in order to 

achieve speaker independence. These word recognizers also employ the 

=mputationally expensive DTW process in the pattern matching stage. 

As such, techniques which would reduce the memory requirements or 

eliminate the need for a DTW process, without seriously degrading the 

recognition accuracy, could be very useful. vector quantization 

offers such a possibility, and is the subject of discussion in this 

section. Two word recognition systems, LPC/SPLIT and LPC/VO, which 

employ VQ techniques to reduce memory requirements and to eliminate 

the need for the DTW process respectively are investigated. A hybrid 

system, the LPC/VO/SPLIT, which combines the advantages offered by 

the two recognition systems is then proposed. 

5.5.1 The Theory of Vector Quantization [74] [75] 

vector quantization, (VQ), which was first applied to low bit rate 

coding of speech signals, is a fundamental result of Shannon's rate 

distortion theorem [76], . which states that for a given rate or 

distortion function, a source can always be more accurately 

represented by coding vectors rather than scalars. Although Shannon's 

rate distortion theorem expounds the optimality of vector based 

coding, it does not provide an insight as to how such a system can be 

designed. Furthermore, the traditional scalar coders often yield 

satisfactory performance. As a result, few design techniques for 

vector coders were considered prior to the late 1970's, when it was 

found that a simple algorithm proposed by Lloyd [77] for the design 

of pulse code modulation systems, provided a suitable technique for 

the design of VQ Codebooks of data sources such as speech waveforms, 

speech parameter vectors, images etc. The main application of VQ has 

been in minimization of communication channel capacity and in the 

reduction of memory requirements for data storage, the latter 
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application being directly relevant to the speech recognition 

problem. 

Vector quantization, can be defined simply as a system for mapping a 

group of similar vectors into a single entity. 

Let T = {tl , t 2 , ... , t N}, be a large set of LPC vectors, obtained 

from the reference patterns of vocabulary words. The main idea 

behind vector quantization is to =eate an optimum set of LPC vectors 
A ~ A 

{ap a2-' "', aM}' M«N, termed a codebook, such that, for a given 

value of M, the error in replacing a vector in the set T by the 

closest entry in the codebook, is minimized. 

The optimization problem can be expressed as: 

~(M) = MIN 
{.i} 

N 
[1,. L 
N i=1 

MIN 
l~ 

5.60 

where ~(M) is the average distortion of the training set =ntaining 
A 

N LPC vectors when the codebook has M entries. d(ti , a m-), is the 

gain-normalized Itakura-Saito distance between training set vector ti 
A 

and oodebook entry Bm. 

Equation 5.60 can be solved efficiently by the so called binary 

splitting methods [78] [79] [80]. 

5. 5.2 The Binary Splitting VQ Algorithm 

There are two forms of the binary splitting algorithms, namely the 

full-search and the tree search algorithms. 

i) The full-search algoritlIn 

The full-search algorithm begins by finding an optimum solution for a 

codebook with two entries (Le. M=2), and then splits each of the 

entries into two components; hence the name binary split. The 
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alg=ithm, computes the optimum solution f= this 4 entries codebook, 

and continues the iterations until the codebook size, M, is as large 

as desired or until the rate of decrease in the average distortion 

Drlm) of the training set satisfies a predetermined threshold. The 

algorithm can be described in the following steps. 

Step 1: Start with a training set, T = {tl , t 2 , ... , t N}, of a large 

number of LPC vectors of the reference patterns. 

Step 2: Select two vectors from the set T, to be the initial 
A A 

codebook entries, {al' a2}' i.e. m=2. Set Do' the initial average 

distortion of the training set to a large value. 

Step 3: Compute the distance between each vector in T and the 

codebook entries. The average distortion ~(m), of the training set 

is given by: 

~(m) MIN 
1~'~ 

5.61 

Step 4: If the decrease in average distortion (Do-DN(m)/Do ) < £, 

set Do = DN(m) and go to step 6. £ is a pre-set threshold. 

Step 5: Update the codebook entries by clustering the vectors in the 

training set T, into m clusters. Each vector in ti£T, is assigned to 

cluster m' a=rding to the nearest neighbour rule, i.e. 

A 

Classify ti in cluster m' if d(ti , ~,) = 

A A A A 

~}, are the m codebook entries. 

Determine the centroid, Cm" rn' = 1,2, ... m of each cluster. Cm' is 

the LPC vector corresponding to the average autocorrelation 
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coefficients of the vectors in cluster m'. Use the centroids as the 

new oodebook entries. Go to step 3. 

Step 6: Exit if the desired size, M, of the codebook has been 

achieved. Otherwise, split each centroid into two components by 

perturbing its elements by a small quantity, 6, i.e. the centroid, 
" ..... r" am" is split into two vectors amI = (l+6)Clm' and am2 = (l-u)am,· 

Set m=2m and go to step 3. 

In the above algorithm, the initial selection of the codebook entries 

can either be made by picking two vectors arbitrarily from the 

training set, or by calculating the centroid of the whole training 

set, and then splitting the centroid to give two vectors which are 

spectrally dissimilar. In running the algorithm, each training set 

vector is compared with every codebook entry, hence the name full 

search. When a group of training vectors are determined to belong to 

the same cluster, the procedure in step 5 of the algorithm, aims to 

obtain a single vector that represents the whole cluster with minimum 

error. This vector is termed the centroid of the cluster and is 

computed by averaging the corresponding autoccrrelation vectors, and 

then deriving the LPC vector of this averaged autoccrrelation vector. 

The algorithm terminates when the desired number of entries, M, in 

the codebcck is achieved or when the average distortion falls below a 

pre-set threshold 

A flow chart which illustrates the full search binary split algorithm 

is given in Figure 5.12. 

ii) The tree-search algorittm 

The tree-search VQ algorithm starts with an optimum 2-entries (i.e. 

m=2) codebook which has been generated by a full search algorithm. 

The two entries in the codebook are split to give a 4-entries 

codebook. Instead of running a full search procedure on the training 

set, each of the 4-entries searches only the training vectors in the 

cluster associated with its parent entry. The complete algorithm can 

be described as follows: 
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Step 1: Start with a training set, T = {tl , t 2, ... , t N}, of a large 

rrumber of LPC vectors obtained from the reference patterns. 

Step 2: Select two vectors from the set T, to be the initial 

codebook entries {al' a2}' Le. m=2. Set Do' the initial average 

distortion of the training set to a large value. 

Step 3: If m=2, compute the distance DN(m) as in Step 3 of the full 

search algorithm. For m > 2, =mputethe distance between an entIy 

and the training vectors coded by its parent entry, to obtain the 

average distortion of the training set. 

Step 4: Code each of the training set vectors by the nearest 

codebook entIy, based on nearest distance, i.e. vector ti E T belongs 

to cluster m' if 

MIN 
1.;m'.;m 

5.62 

Step 5: If the decrease in average distortion, (Do - DN(m»/Do ' is 

less than a pre-set threshold E, set Do equal to DN(m ) and go to 

step 7. 

Step 6: Compute the centroid of each of m clusters in the training 

set. Use the centroids as the new codebook entries. Go to step 4. 

Step 7: Exit if the desired size, M, of the codebook has been 

achieved, otherwise split each entIy into two components. Set m=2m 

and go to step 3. 

5.5.3 VQ Experimental Results 

The vector quantizer training set {T}, was derived from a speech data 

base formulated from the utterances of five speakers: SM2, SM3, SM4, 

SF2 and SF3, on the 50 words vocabulary. Each vocabulary word was 
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represented by eight reference patterns; two patterns from each of 

the male subjects SM2, SM3, SM4 and one pattern from each of the 

subjects SF2, SF3. After passing the speech signal through a pre­

emphasis network, H(z) = 1-0.90z-l , a 14th order LPC analysis was 

performed on 25.6 msec Hamming windowed speech segments and a set 

{T}, of 7658 LPC vectors was obtained. 

Both the full-search and the true-search VQ algorithms used the above 

training set to generate codebooks of sizes 8, 16, 32, 64 and 128. 

In the algorithms, the initial two entries in the codebook were 

selected arbitrarily from the training set. 

During the iterative process, the decrease in average training set 

distortion, ~m) is monitored, using a pre-set distortion threshold 

E = 0.05. A centroid, ~, is split into two vectors, Bu,l and ~2' by 
A. A 

retaining the centroid as amI' and generating am2 as the Slightly 

perturbed centroid by an arbitrary factor, of say, 0.98, i.e. 

~ = 0.98~, 

Results obtained on the average distortion, DN(m) of the training 

set, in the generation of codebook of sizes 2, 4, 8, 16, 32, 64 and 

128 entries, for both full-search and tree-search algorithms, is 

shown in Figure 5.13. With the full search method the 128 entries 

codebook was generated after 73 iterations, =mpared to 58 iterations 

for the tree-search method. Thus, as would be expected, the tree-

search method oonverges faster than the full-search method. 

in convergence rate is obtained at the expense of a higher 

set distortion level. 

The gain 

training 

The cluster occupancy, Ni' is defined as the number of training 

vectors in the ith cluster, Le. the cluster represented by the ith 

codebook entry. Figure 5.14 shows a histogram of the number of 

clusters and their occupancy for the 128 entries codebook generated 
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by the full-search method. The largest cluster had 381 training 

vectors, and the smallest cluster contained 10 training vectors. A 

similar characteristic for the 128 entries codebook generated by a 

tree-search method is shown in Figure 5.15. The largest cluster had 

323 training vectors and the smallest cluster had only one training 

vector. These characteristics indicate that empty clusters would 

more easily arise in the tree-search rather than in the full-search 

method. 

5.5.4 The LPC/SPLIT Reoognizer 

The memory storage in a word recognizer is mainly used for the 

reference patterns of v=abulary words. In order to achieve speaker 

independence, multiple reference patterns per vocabulary word are 

usually employed. This results in a large increase in memory 

requirements. Sugamura et al [81], proposed the LPC/SPLIT 

recognition system which uses vector quantization techniques to 

reduce the memory requirements without severely degrading the 

recognition accuracy of the system. Figure 5.16 is an illustration of 

the LPC/SPLIT recognition system. 

i) The training pt, cedrre 

A set {T}, of thousands of LPC vectors is extracted from a speech 

data base consisting of all the v=abulary words uttered by different 

speakers. Using a full search VQ pr=ess on the set {T}, a oodebook 

Cx of M entries is generated. The entries in codebook CX' can be 

regarded as 'phoneme-like' or pseudo-phoneme since they exhibit 

distinct spectral properties. Each reference pattern is then 

expressed as a 'sequence of phoneme-like templates', hence the name 

SPLIT, by (a) oomputing the spectral distance, between each reference 

pattern LPC vector, and all the phoneme-like templates, (b) 

substi tuting the LPC vector of each segment for the co=esponding 

phoneme-l~e template which offers minimum spectral distance, Le. 
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Let the reference pattern, B, be the sequence of J, LPC vectors 

5.63a 

and the set of ptnneme-like templates Se, be 

Se = {c;J, c1, "', c:' "', ~} 5.63b 

where c: is the mth phoneme-like template. 

The pattern B is expressed as a sequence of J ptnneme-like templates 

as follows: 

where 

m1 m2 mj mJ 
B = {Se ,Se ' "', Se ,'" Se } 

MIN 
1~ 

5.63c 

5.63d 

Thus, in the LPC/SPLIT recognizer, it will only be necessary to store 

the set of phoneme-like templates, CX' and the sequence of indices 

that define each reference patteTIl. 

ii) Reoogni ticn procedure 

During the recognition procedure, the input word is expressed as a 

sequence of LPC vectors and compared with the reference patterns 

which have already been expressed as a sequence of phoneme-like 

templates. A dynamic time warping process is used to obtain a time 
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normalized distance between the input and reference patterns. 

Subsequently, the input word is identified as the vocabulary word 

whose reference pattern is associated with minimum distance. 

The speaker independent performance of the LPC/SPLIT system can be 

enhanced by using multiple reference patterns per vocabulary word, 

and then using a kNN rule, as discussed in Section 4.4·of Chapter 4, 

to identify the input word. 

5.5.5 The LPCjVQ Recognizer 

Most isolated word recognition systems which employ the pattern 

matching approach, require some form of time normalization procedure 

in order to eliminate the temporal differences between reference and 

input speech patterns. These time normalization procedures are 

generally computationally expensive, and as such, techniques capable 

of obliviating their use, would be desirable. Shore and Burton [82], 

have proposed a recognition system, which uses reference patterns 

whose time sequence information has been removed. The system, 

therefore, is able to achieve pattern comparison without the need for 

a DTW procedure. The Shore-Burton recognizer, referred to as the 

LPC/VQ recognizer in this thesis, uses a VQ technique to generate 

reference patterns without a temporal axis. 

Figure 5.17 is a block diagram which illustrates the structure of an 

LPCjVQ recognition system. 

i) Training sessicn 

Each vocabulary word is represented by multiple reference patterns 

obtained from a group of speakers. These patterns provide a short 

training sequence of LPC vectors, which are used to generate a 

oodebook for the vcx:abulary word. Thus, each vcx:abulary word will be 

represented by a unique oodebook whose entries no longer possess the 

time sequence information. For example, a codebook for the 

vocabulary word "X" is generated by running a full-search VQ 
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procedure on the available versions of the word 'X'. The codebooks 

can be designed to be of fixed size or fixed distortion. 

Fixed size codebooks have a predetermined size M, and the VQ 

algorithm generates the M entries that minimize the training set 

distortion rate to an acceptable threshold. Therefore, fixed size 

codebooks of the various vocabulary words, will display different 

distortion levels. 

In the fixed-distortion codebooks, the VQ algorithm produces a 

codebook that encodes the training data with a pre-set average 

distortion. Fixed-distortion codebooks of the different vocabulary 

words will not necessarily be of equal size. 

Fixed-size codebooks of 8 entries and of 16 entries were generated 

for every vocabulary word. 

ii) Testing sessicn: 

Let an unknown input utterance, A, be represented as the discrete 

sequence of I, LPC vectors: 

and let R be the number of words in the reoogni tion vocabulary. Then 

there are R codebooks Cr , r = 1, 2, ... , R. The size of the rth 

codebook S-, is denoted ~. 

The average distortion obtained on encoding this input pattern with 

the rth codebook is given by: 

~ =1,. 
I 

5.64b 
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where c:) is the jth entry of the codebook Cr' and d(ai' .C~) is the 

gain-oormalized Itakura-Sai to distortion between ai and ~. 

The decision logic that follOWS, classifies the input pattern as the 

vocabulary word associated with the codebook that has the minimum 

weighted average distance measure Dm, defined as: 

I1n= MIN 
1~ 

(dr/Lz.) 5.64c 

where Lr is the number of distinct entries used in the rth codebook 

to obtain dr. 

5.5.6 The LPC/VQ/SPLIT Recognizer [83] 

The proposed LPCjVQ/SPLIT recognizer combines the design philosophies 

of the two previous systems, i.e. the LPC/SPLIT and the LPC/VQ 

recognizers, to yield an efficient isolated word recognizer with 

improved memory and computational complexity characteristics. The 

system is illustrated in the block diagram in Figure 5.18. 

i) Training session 

The LPCjVQ/SPLIT recognizer employs a separate reference codebook per 

vocabulary word, in the same way as the LPC/VQ recognizer. Each 

codebook is based on one word uttered a number of times by different 

speakers, as in the LPCjVQ recognizer training session. A codebook 

of M pseudo-phonemes is also generated by a full search \IQ process in 

a long training sequence of vocabulary words. In addition, the 

entries of each reference codebook are replaced with the nearest of 

the M pseudo phonemes. That is, given an R word vocabulary, the rth 

codebook er of size Np 

1 2 . Nr er = {Cr ' C2 ' •.• , c], ... , er } 5.65a 
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j 
where Cr is the jth entry 

and, given alSO, the pOOneme-like templates codebook, X 

5.65b 

the m:xlified codebook Cr is defined as: 

" ...... 1 '" 2 A j '" Nr Cr = {Cr, Cr, ... , Cr ... , Cr } 5.65c 

where c~= Xk , and the index k minimizes the distortion measure 

d(c?,Xk ) for k = 1,2, .•. M. 

Fixed-size codebooks, Cr; with 8 entries and 16 entries were 

generated. 

ii) Testing sessicn 

An input word, A, which is expressed as a sequence of I, 

is compared with each of the modified reference oodebooks 

a distance dp r = 1,2, ••. R i.e. 

I 

~=! l. MIN 
I i=1 l';;j~ 

A 

LPC vectors 
A 

Cr to give 

5.65d 

where d(ai' Cj
r ), is the gain-normalized Itakura-~aito distance 

between the i th LPC vector of A, and the j th entry of er, 

The input word is recognized as the word which corresponds to that 

codebook giving the minimum weighted average distance Dm, as in 

equation" 5.64c. 
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5.5.7 Results 

i) Recxlgni ticn accuracy 

The recognition accuracy of the LPC/SPLIT, LPCfVQ and LPCfVQ/SPLIT 

systems operating on the 50 word vocabulaIy was assessed by =mputer 

simulations. The training speech data base was composed of the 

utterances of three male subjects who spoke each word twice, and the 

utterances of the two female subjects who spoke each word once. The 

speech utterances were bandlimited to 5 kHz and then sampled at 10 

kHz. The 12-bit per sample, digitized signal, was segmented into 

25.6 msec frames, from which LPC vectors were obtained by a 14th 

order analysis on the pre-emphasized and Hamming windowed speech 

every 12.8 msec. 

The LPC/SPLIT recognizer used a 128 entries codebook generated by a 

full-search VQ procedure, on the whole training data sequence as 

described in Section 5.5.2 (ii). 

The LPCfVQ recognizer, used a codebook per vocabulaIy word generated 

from the eight repetitions of the word. Fixed size codebooks of 8 

entries and 16 entries were obtained for every v=abulary word. Table 

5.3 gives the average distortion, DN(M), on the training data from 

subjects SMl, SM2, SM4, SF2 and SF3, in the generation of the 

COdebooks. 

The proposed LPCfVQ/SPLIT recognizer, employed both the 128 entries 

codebook of the LPC/SPLIT recognizer, and the fixed size codebooks of 

the LPCfVQ recognizer. 

Table 5.4 shows the recogn.i tion performance of the three systems in 

three testing sessions. The results are based on the utterances 

spoken by a male and a female subject who did not contribute to the 

training data used to generate the reference codel:xx:>ks. 
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TABLE 5.3 

FIXED SIZE, REFERENCE CXlDEBOOKS DIS'lORl'IOO, GENERATED BY THE 
FULL-SEAROl ME:l'HOD 

vocabulm:y No. of Distortion Vocabulm:y No. of Distortion 
Word Training f= 8/16 Word ~lates· f= 8/16 

SetTem- size Code- in TrairlinJ entries 
plates books Set Codebooks 

One 268 0.940/0.565 p 258 0.502/0.311 

Two 258 0.743/0.596 Q 294 0.760/0.570 

Three 286 0.697/0.408 'R 278 0.558/0.345 

Four 272 0.463/0.395 S 302 0.537/0.402 

Five 334 0.726/0.415 T 248 0.418/0.348 

Six 384 0.541/0.379 U 274 0.645/0.398 

Seven 332 0.601/0.372 V 260 0.457/0.319 

Eight 302 0.845/0.539 W 326 . 0.795/0.590 I 
Nine 322 0.685/0.462 X 354 0.537/0.590 I 

I 

Zero 348 0.706/0.442 Y 298 1.143/0.584 i 
I 

A 246 0.481/0.274 Z 272 0.594/0.414 i 
! 

B 222 0.411/0.338 Delete 336 0.631/0.487 i 
I 

C 318 0.460/0.374 Input 356 1.023/0.743 i , 
D 230 0.339/0.246 Write 332 1.095/0.630 ! 
E 236 0.367/0.282 End 302 i 0.664/0.446 I , 
F 274 0.285/0.217 Load 324 0.868/0.508 ; 

G 258 0.459/0.266 Md 238 0.742/0.449 ! 
H 336 0.680/0.445 Set 336 0.589/0. 383 1 

I 264 0.676/0.382 Control 426 1.041/0.705 i 
J 282 0.536/0.358 Store 368 0.731/0.531 ! 
K 254 0.442/0.302 No 304 0.737/0. 495 1 

L 238 0.569/0.387 Read 332 0.978/0.422\ 

M 234 0.662/0.397 Yes 356 0.719/0.493 

N 246 0.562/0.383 Multiply 486 0.947/0.685 

0 246 0.654/0.435 Output 398 0.769/0.620 
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TABLE 5.4 

PERFORMANCE OF THE LPC/SPLIT, LPC/VO, LPC/VO/SPLIT RECXlGNIZERS 

RECXlGNITION AroJRACf ( %) 

Recognition Test 1 Test 2 Test 3 ~ 
System Test speaker Test speaker Test speaker 

~ SMl SM3 SFl 

Ref Speakers: Ref Speakers: Ref Speakers: 
SM2, SM3, SMl, SM2, SMl, SM2, 
SM4, SF2 SM4, SF2 SM4, SF2 

LPC/SPLIT 
(4 ref 
patterns/ 

86 86 78 83.1 

v=. v.urd) 

Ref Speakers: Ref Speakers: Ref Speakers: 
SM2, SM3, SMl, SM2, SMl, SM2, 

SM4, SF2, SF3 SM4, SF2, SF3 SM4, SF2, SF3 

LPC/VO 
8 entries 92 90 88 90.0 
CXJdebook 

LPC/VO I 16 entries 96 96 90 94.0 
CXJdebook 

LPC/VQ/SPLIT 
8 entries 90 88 84 87.3 
CXJdebook 

LPC/VO/SPLIT 
16 entries 96 92 90 92.6 
CXJdebook 
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H) l>B,ULY requi.ranents 

The memory required in each system, for storing the reference 

patterns can be easily computed for an R words vocabulary. Assuming 

that the rth codebook Cr, consists of ~, p-dimensional LPC vectors, 

and that each vector element is represented with an average of Na 

bits, then the LPC/VO recognizer requires a memory size, Svo, given 

by: 

R 

Svo = 1. ~.p Na bits 
r=1 

5.66 

The LPC/SPLIT recognizer requires to store the set of phoneme-like 

templates, and the index sequences of the reference patterns. Thus, 

using N reference patterns for each vocabulary word and assuming Qi 

frames in the i th reference pattern, the memory required, SSPLIT' is, 

N.R 
SSPLIT = M.p. Na + L Qi logjM bits" 

i=1 

where M is the number of pseudo-phonemes. 

5.67 

Similarly the memory size, Svo/SPLIT' required in the LPC/VO/SPLIT 

system, is given by: 

R 
Svo/SPLIT = M.p.Na + I 

i=1 
5.68 

The memory characteristics of the three systems are sh:>wn in Figure 

5.19, as a ratio of the memory size in the LPC/VQ/SPLIT recognizer 

with R = 10, M = 128 and Nr = 16. 

Hi) 0::mpJtaticDa1 cx:nplexity 

To a first approximation, a comparison of the computational 

complexi ty of the systems can be based on the complexity of their 
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pattern matching" stage of the recognition process, and in particular 

on the computational effort involved in forming the required spectral 

distances between the LPC vectors. 

Consider the LPC/SPLIT recognizer, with an average of J frames per 

reference pattern, and using an adjustment window in the DTW process 

of r frames wide. If the input pattern has an average of I frames, 

and N reference patterns per vocabulary word are used, then the 

number of spectral distances, Dl , required is: 

Dl = [I.J - (I-r)(J-r)]N.R 5.69 

Similarly, in the LPC/VQ, and in the LPC/VQ/SPLIT recognizers, the 

number of spectral distances, D2, to be computed is given by: 

where Nr is the average number of entries in a codebook. For example, 

using typical values, such as I = 40, J = 40, Nr = 16, N = 4 and r = 
8, gives an estimate of the ratio Dl /D2, as: 

5.71 

5.6 DISCUSSION 

In this Chapter, word recognition systems using patterns expressed as 

discrete sequences of LPC feature vectors, are examined. The initial 

investigations were concerned with the effects of the LPC prediction 

order on the recognition accuracy. Since the short-time spectral 

estimation of a speech segment improves while increasing the 
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prediction order p, the recognition a=acy is expected to display 

the same characteristic. As the order of prediction was varied from 

6 to 14, the recognition results shown in Table 5.1, indicate a 

monotonic improvement. However, the difference between results 

obtained with prediction order, p = 12 and p = 14, show only a slight 

improvement. This is because f= values of prediction larger than 12, 

the rate of decrease in the prediction en:or of the system is small, 

as illustrated in Figure 5.4. The results obtained with the female 

subject sh:>w a markedly lower a=acy in comparison with the male 

subjects, as shown in Tables 5.1, 5.2 and 5.4 The reason can be 

attributed to the inferior LPC modelling of female speech. 

The use of discriminative reference patterns, f= the similar w=ds 

set {B,C, D, E, G, V, P, T}, sh:>ws an improvement in word recognition 

accuracy, as shown in Table 5.2. This would be expected, since 

attention is focus sed on those regions in which a speech pattern 

differs from patterns of acoustically similar words. 

The heavy computational cost, in word recognition systems employing 

multiple reference patterns, leads to the investigation of the use of 

clustering techniques to reduce this cost. The meth:ld of clustering 

reference patterns into small disjoint groups, using the MKM 

algorithm was found to be effective in this respect. As shown in 

Figure 5.11, the method provides a reduction in computational load by 

about a half, at the expense of a Slight degradation in recognition 

a=acy. 

The multiple reference patterns, which are employed in the word 

recognition system to achieve speaker independence, increases the 

memory requirements of the system. In addition, the DTW procedure, 

used to provide a non-linear time alignment between input and 

reference patterns, is a computationally expensive pr=ess. Thus, 

vect= quantization techniqueS, which can be used to solve these two 

problems were also investigated. The generation of vector 

quantization codebcoks from a large training data set was performed 

using both the full-search and the tree-search binary split metlxx1s. 
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From the results given in Figures 5.13, 5.14 and 5.15, the 

superiority of the full-search method over the tree-search is 

exposed. The codebook obtained with the full-search method gives a 

lower training data set distortion than the codebook of similar size 

generated with the tree-search method. The full-search method also 

partitions the training set into better distributed clusters, than 

the tree-search method. The smallest cluster in the full-search 

method contains 10 training set vectors, whereas with the tree­

search, clusters =taining single vectors were found. This means 

that the tree-search method is more likely to give rise to empty 

clusters, which would be an undesirable situation. The only 

advantage with the tree-search is its faster OOIWergence rate. 

Three isolated word recognition systems, LPC/SPLIT, LPC/VQ and 

LPC/VQ/SPLIT, were then studied. From the computer simulation 

results given in Section 5.5.7, the advantages of the proposed 

LPC/VQ/SPLIT recognition system over the other two established 

systems is clearly evident. The LPC/VQ system offers the highest 

recognition accuracy, but its memory requirement proves to be 

prohibitive for large vocabularies. Although the memory requirements 

are relaxed in the LPC/SPLIT system, the recognition accuracy is 

relatively poorer. Only the LPC/VQ/SPLIT system offers high 

recognition rate, with low memory/computational complexity 

characteristics. 

5.7 NOTE ON PUBLI~TION 

A paper entitled, "The use of phoneme-like templates in isolated word 

recognition without time alignment", in co-authorship with the 

Supervisor, Dr C S Xydeas, has been published in the proceedings of 

the 3rd European Signal Processing Conference (EUSIPCX), held at· the 

Hague, the Netherlands on 2-5 September 1986. The paper is based on 

the work presented in Section 5.5. 
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rnAPl'ER 6 

'IHE USE OF VOICE), UNVOICE), AND SII.I;KE OJISSIFICATICIiI 
OF SPEEllI SEG1ENl'S IN \'aID REX:X:UlITICIiI 

6.1 INTRODUCTION 

An improvement in the ac=acy of an isolated word recognition system 

can be achieved using the techniques discussed earlier in Olapters 4 

and 5 namely: multiple reference patterns per vocabulary word, 

redundancy suppression in the speech utterances, discriminative 

reference.patterns for similar sounding words, and vector 

quantization. An alternative approach for improving the recognition 

rate, is to detect the broad acoustic structure of an utterance, and 

then use the information to supplement a conventional recognizer. 

The acoustic structure obtained using the three voiced, unvoiced and 

silence classes, can give a strong indication as to the identity of 

an ~ utterance within the recognition vocabulary. For example, 

in a 'digit' recognition system, if the unknown input utterance is 

detected to begin with an unvoiced fricative, then it is obvious that 

the word cannot be a 'ONE', 'EIGHT', or a 'NINE', and thus the 

pattern comparison would be limited to the other seven reference 

candidate words. If the input word is further determined to have the 

acoustic structure, 'unvoiced-voiced-silence-unvoiced', then the most 

likely candidate is the word 'SIX'. 

The information of the acoustic structure of an utterance can also be 

exploi ted in order to discriminate between utterances which have 

Similar sounding regions. For example, the word sets {X,SIX}, 

{YES,S}, may result in a very close distance measure in the LPC-based 

recognizer and hence misclassification will occur, if saY,an input 

utterance 'SIX' has its 'X' portion more similar to the reference 

word 'X' than to the reference word 'SIX'. Since 'X' and 'SIX' have 

quite different acoustic structures, it would be advantageous to use 

the acoustic structure as an aid in the recognition process. 
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In this Chapter, a new method on the voiced-unvoiced-silence 

classification of speech segments using the fuzzy set theory, is 

first presented. The pmposed algorithm is subsequently employed in 

obtaining the acoustic structure of the input utterances which in 

turn is used to enhance the accuracy of a conventional word 

recognizer . 

6.2 VOICED-UNVOICED-SILENCE CLASSIFICATION OF SPEECH 

The need to classify successive segments of speech as Voiced, 

Unvoiced, or Silence (WS), arises in speech recognition, as well as 

in the areas of voice synthesis and the reduction of acoustic noise 

which has been added to speech signals. A number of existing VUS 

classification methods are based on five parameters measured from the 

input signal, namely: 

i) the zero-crossing rate 

ii) the logarithmic energy 

iii) the first autocorrelation ooefficient 

iv) the first LPC ooefficient 

v) the normalized prediction e=or. 

The choice of these specific parameters, hereafter referred to as the 

'ws parameters', to determine the voiced, unvoiced or silence nature 

of speech segments can be attributed to experimental observations as 

well as to speech synthesis theory. Given the value of these 

parameters, the question arises however as how to use the information 

for an accurate WS classification of an input speech segment. Atal 

and Rabiner [84] for example, assumed that the five parameters are 

distributed according to a multidimensional Gaussian probability 

density function whose mean and covariances are obtained using a 

training procedure. A minimum distance rule was subsequently employed 

to classify the speech segments as voiced, unvoiced or silence. 
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In this section, an alternative approach to VUS classification using 

fuzzy set theory is prop:>sed [85] and its performance oompared with 

the Atal and Rabiner's meth:Jd. 

The classification of speech segments into VUS classes can be 

suitably modelled by fuzzy algorithms, since the various classes are 

defined in an inexact manner by the five parameters. In the proposed 

scheme, a training procedure is used, in which speech segments from 

the voiced, unvoiced and silence classes are manually selected and 

analyzed to derive the average values of the mentioned five 

parameters in each class. A deCision rule which characterizes each 

class, is formulated based on the values of the parameters. For 

example, an unvoiced segment is characterized by a 'high' zero 

crossing rate count, a 'medium' logarithmic energy, a 'low' first 

delay autoco=elation coefficient, a 'high' first LPC coefficient, a 

'medium' normalized prediction error. The linguistic terms, 'lOW', 

'medium' and 'high' are relative and do not possess sharp boundaries, 

and hence are vaguely defined. The parameters of an input speech 

utterance to be classified, are considered as elements of a fuzzy 

set, whose membership grades are distributed according to the so 

called n or S functions. The WS parameters obtained in the training 

procedure are used to specify the 'IT and S functions. Modelling the 

parameters of the input speech segment with the decision rule for 

each class serves to identify its 'closeness' to that class. The 

'closeness' can be defined as a number in the interval, [0,1]. In the 

following sections, a discussion on the theory of fuzzy sets and its 

applicability in the classification of speech signals is presented. 

The VUS classification method proposed by Atal and Rabiner, is also 

discussed. The performance of the two methods, in classifying speech 

segments from subjects who did not contribute to the training 

procedure, is oompared. 

6.2.1 Elements of the Fuzzy Set Theory [86][87][88] 

The fuzzy set theory is an algebra based on imprecision, whereby each 

object under consideration as an element of a set, is aSSigned a 
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membership grade which expresses its degree of belongin;p1ess to that 

set. Thus, a gradual transition from non-membership of the set to 

fun membership is provided. 

A fuzzy set A, of a universe of disoourse U is thus characterized by 

a membership function: 

11 : U .... [0,1] 6.1 

which assigns a membership grade 11, for every element of U, in the 

interval [0,1]. Full membership grade is designated as 1, and non­

membership as grade O. A cross-over point in the set A, is the 

element y whose grade of membership is 0.5. A fuzzy singleton is a 

fuzzy set consisting of a single element. If A is a fuzzy singleton, 

and y is its element in U, with the membership grade 11, then A is 

expressed with the denotation: 

A = ]J/y 6.2 

A fuzzy set may be seen as the union of its singletons: 

i.e. A = J 11 (y)/y 
u 

and, if A has a finite number of singletons, then: 

where iJf , i = 1,2, ... , n, is the membership grade of Yi in A. 

6.3 

6.4 

In many situations, it is appropriate to express the membership 

function of a fuzzy set in terms of a standard function whose 
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parameters are adjustable to approximately fit a specified membership 

function. Figures 6.1 and 6.2 illustrate the standard functions, S 

and IT, which are commonly used. A function is S type, if it is 

maootonically increasirYJ (S+), or decreasirYJ (S-) and is defined as 

follCMS: 

t
o fory";;a 

2 «y-a)/( y_a»2 for 0: ,,;; y ,,;; i3 

= 1 - 2 «y-y)/(y _a»2 for i3,,;; y ,,;; y 

1 fory~y 6.5a 

and 

s-(y:a,i3,Y) = 1 - S+ (y:a,i3,y) 6.5b 

where i3 = (a+y)/2, is the cross-over point. 

A function is IT type, if there exists only a single point at which 

maootonicity changes direction, and is defined as: 

= [S+(Y; y-i3, y -f!l2, yj for y,,;;y 

TT (y: 8, y) 

1-S+(y; y, y+i3, y+i3) for y~ 

6.6 

where i3 is the bandwidth, i.e. the separation between the two cross-
-

over points of IT. Y is the point at which IT is unity. 
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6.2.2 The \IUS Parameters 

F= the \IUS classification of speech segments, it is desirable to use 

parameters which are easy to extract from the signal and efficient in 

dis=iminating between the voiced, unvoiced and silence classes. The 

following parameters are known to satisfy these requirements: 

i) The zero crossing rate count (ZCR) is related to the number of 

sample polarity changes in the speech segment and indicates the 

frequency at which spectral energy is concentrated. Spectral 

energy is concentrated at low frequency for voiced sounds, and 

at high frequency for unvoiced sounds. Depending on the 

background noise, the ZCR count for silence frames is generally 

higher than that of voiced segments, but lower than the ZCR of 

unvoiced segments. 

ii) The logarithmic energy, LE, in the voiced speech segments is 

considerably higher than in unvoiced segments. Silence frames 

contain the least energy. 

11i) The unit sample delay autoco=elation coefficient R(l), lies by 

definition, between -1 and +1. Since in voiced sounds, the 

energy is concentrated in the low frequency range, adjacent 

speech samples are highly correlated, and R(l) takes a value 

close to +1. The correlation is close to zero for unvoiced 

sounds. 

iv) The first LPC coefficient is identical to the value of the 

Cepstrum of the signal at unit sample delay [see Appendix DJ. 

Since the spectrum of these three classes have such considerable 

difference, so sh::>u1d the first LPC coefficient. 

v) The prediction error is an iridication of the uniformity of the 

speech spectrum. Voiced sounds have a spectrum with resonances 

which result in a smaller prediction error than for unvoiced 

sounds. The prediction error ~ discussed in Section 5.2.2, is 
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normalized with the frame energy LE, to give the logarithmic 

rx>rmalized prediction e=, ERR; i.e. 

-p 
ERR = LE - 10 loglO [R(O) + I a(i) R(i)] 

i=l 
6.7 

where a(i) is the ith LPC coefficient, R(i) the ith 

autocorrelation coefficient, p is the order of prediction, and 

LE is the logarithmic energy of the speech samples in the frame. 

The value of ERR will be high for voiced sounds and low for 

unvoiced sounds. 

6.2.3 The DeciSion Process 

The classification of speech segments into VUS classes can be 

suitably modelled by fuzzy reasoning since these classes are defined 

in an inexact manner by the five parameters. Rules can be formulated 

relating the classes to these parameters using fuzzy linguistic 

terms. For example, the rule for voiced class indicates its 

characterization as low zero crossing rate count (ZCR), a high 

logarithmic energy (LE), a high unit delay autocorrelation 

coefficient (R(l», a low first LPC coefficient (LPl) and a high 

logarithmic normalized prediction error (ERR). The complete set of 

rules are as follows: 

Rule 1: Voiced class = low ZCR + high LE + high R(l) + low LPl + 

high ERR 

Rule 2: Unvoiced class = high ZCR + medium LE + low R(l) + high LPl 

+ medium 'ERR 
Rule 3: Silence class = medium ZCR + low LE + medium R(l) + medium 

LPl +' low ERR 

i) Train:in3 sessicn 

The linguistic terms 'high', 'low', 'medium', can be described by the 

S+, S- and n functions of Figures 6.la, 6.lb and 6.2 respectively 

wi th the thresholds a and y determined during a training session. 
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The speech utterance 'At the side of the rock, a small stream flowed 

into the river', spoken by a female subject, bimdlimi ted at 3.4 kHz 

and sampled at 8 kHz was manually classified into voiced, unvoiced 

and silence intervals. Speech segments of 16 msec duration, from each 

of the three classes, were selected and analyzed to derive the 

average values of the mentioned five VUS parameters. The logarithmic 

=rmalized prediction error was calculated using a 12th order filter. 

For example, the fuzzy set 'low zrn' is described by the S- function 

illustrated in Figure 6.1b. The threshold Cl is the average value of 

the voiced segment ZCR count, and y is the average unvoiced ZCR 

count. In Table 6.1, the parameter values obtained in the training 

procedure and the thresholds used in the various fuzzy sets are 

shcx-m. 

ii) Classificaticn 

The speech utterances to be classified are bandlimi ted to 3400 Hz, 

sampled at 8 kHz and segmented at intervals of 16 msec.In each 

segment, the five VUS parameters are obtained. 

Using rule 1, the 'closeness' of the measured VUS parameters to the 

voiced class can be determined. The grade of membership of the 

parameters in the respective fuzzy sets are evaluated, e.g. the grade 

of membership, v1' of the ZCR count in the fuzzy set 'low ZCR' is 

obtained using the S- function. Rule 1 gives the following relation, 

defined as the fuzzy set VX ' 

Vx=V1/IOW ZCR + v2/high LE + v3/high R(l) + v4/1ow LPl + v5/high ERR 

6.8 

where v1' v2' v3' v4' v5 are the membership grades of the VUS 

parameters, ZCR, LE, R(l), LP1, ERR, in the respective fUzzy sets. 

The 'closeness' of the same VUS parameters to the unvoiced class is 

evaluated in a similar manner, using rule 2. The fuzzy set, Ux ' 



TABLE 6.1: THE VUS PARAMETER VALUES, FUZZY SET THRESHOLDS, AND COVARIANCE MATRICES OBTAINED IN THE 
TRAINING SESSION 

PARAMETERS 
CLASS 

ZCR LE R ( 1 ) LP1 ERR 

VOiced 19.58 49.89 0.86 _1.67 13.77 
Unvoiced 86.52 29.26 -0.51 0.80 6.62 
Silence 26.52 3.86 0.65 -0.70 4.09 

FUZZY SET THRESHOLDS 

- + 
11 Sets S Sets S Sets 

Low ZCR (a= 19.58, y= 86.52) High ZCR (a= 19.58, y= 86.52) Medium ZCR (y= 26.52, 8= 3.47) 
Low LE (a= 3.86, y= 47.89) High LE (a= 3.86, y= 47.89) Medium LE (y= 29.26, 8= 9.32) 
Low R( 1) (a= -0.51, y= 0.86 ) High R(l) (a= -0.51, y= 0.86 Medium R(1) (y= 0.65, s= 0.80) 
Low LP1' (,,= -1. 67, y= 0.80) High LF) (a= -1. 67, y= 0.80 Medium LP1 (y= -0.70, s= 0.48) 
Low ERR (a= 4.09, y= 13.77) High ERR (a= 4.09, y= 13.77) Medium ERR (y= 6.62, 8= 1.26) 

COVARIANCE MATRICES 

VOiced Class Unvoiced Class 

1. 00 0.691 -0.930 0.237 -0.768 1. 00 -0.252 -0.981 0.659 0.234 
0.691 1. 00 -0.810 0.153 -0.890 -0.252 1.00 0.245 0.177 0.234 

-0.930 -0.810 1. 00 -0.141 0.847 -0.981 0.245 1. 00 -0.725 -0.290 
0.237 0.153 -0.141 1. 00 -0.437 0.659 0.177 -0.725 1.00 0.755 

-0.768 -0.890 -0.847 -0.437 1. 00 0.234 0.324 -0.290 0.755 1. 00 

Silence Class 

1. 00 -0.840 -0.641 0.760 -0.742 
-0.840 1.00 0.665 -0.937 -0.884 
-0.641 0.665 1. 00 -0.793 -0.881 

0.760 -0.937 -0.793 1. 00 -0.970 
-0.742 -0.884 -0.881 -0.970 1. 00 

I 

... 
\D 
co 
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obtained in this case is given by: 

+ uS!' medil.D1l ERR 6 . 9 

where ul' u2' u3' u4' Us are the membership grades of the VUS 

parameters in the respective fuzzy sets. 

Finally, rule 3 is used to determine the 'closeness' of the VUS 

parameters to the silence class. The fuzzy set Sx obtained in this 

case is given by: 

6.10 

where sl' SZ, ~, s4' Ss are the membership grades in the respective 

fuzzy sets. 

Since the grade of membership of an element in a fuzzy set indicates 

the degree of belongingness to the concept expressed by that set, it 

can also be interpreted as a measure of 'truthfulness'. Absolute 

truth would be indicated by a membership grade 1, and absolute 

falsity by O. The decision for VUS classification can be based on 

the degree of 'truth' in each of the three sets Vx ' Ux' and Sx. The 

sum of membership grades in each of the sets Vx ' Ux and Sx lies 

between a maximum of S and a minimum of O. The S+ function can be 

used as a 'truth' distribution with the two thresh:>ld extremes et and 

Y set to 0 and S respectively. The class yielding the highest 

'truth' value is interpreted as the correct class for the speech 

segment, i.e. from the relationships expressed in equations 6.8, 6.9 

and 6.10. 
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Let, 

5 5 5 
Yl = 1. v., Y2 = >: Uj' and Y3 = i: Sj 

j';1 J j=1 j=1 

6.11 

The grade of membership, Pi, of Yi in the 'truth' distribution set is 

given by: 

i = 1,2,3 6.l2a 

The speech segment is classified in i, if 

/', 
Class i = MAX(lli)' i = 1,2,3 6.l2b 

Class 1,2,3 refers to voiced, unvoiced and silence classes 

respectively. 

6.2.4 Atal and Rabiner's Method [84] 

The same five parameters are also used in Atal and Rabiner's method 

to classify the speech segment into VUS classes. To make this 

decision, a classical minimum probability of error decision rule is 

employed which assumes a multidimensional Gaussian distribution of 

the parameters, with a mean and covariance matrix obtained from a 

training session. The mean VUS parameter values, and the 

corresponding covariance matrices for 16 msec segments of the 

training speech utterance of Section 6.2.3 are given in Table 6.1. 

Specifically, let x be an L-dimensional column vector representing 

the five parameters in a speech segment to be classified. Then the 

L-dimensional Gaussian density function, gi(x), for x with mean 
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vector mi and =variance matrix Wi , f= the ith class, is given by: 

6.13 

where Wil is the inverse of Wi , Iwil is the determinant of Wi and 

(x-mi)t is the transpose of (x-mi). 

The mean mi and covariance matrix Wi , for the class i are given by: 

N 

~ = y. x(n)/N 6.14 

and n'''1 

N 

Wi 2 (x(n)xt(n) t 
= - mimi )/N 

n=1 
6.15 

where N is the number of training vectors for class i, i = 1,2,3. 

Class 1,2,3 refers to voiced, unvoiced and silence classes 

respectively. 

For multidimensional Gaussian distribution, a discriminant function, 

di(x), which classifies feature vectors with a minimwn error is given 

as [89]: 

6.16 

That is, to classify a feature vector x, the weighted distance, 

di (x), from x to each of the class mean vectors, mi' is computed. 

Vector x is assigned to the class which gives the nearest distance. 
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6.2.5 Results 

The speech utterance, 'Industrial shares were mostly a trifle 

higher', from a male subject, and the utterance 'Joining hands, they 

danced in excitement around the fire', from a female speaker were 

used to test the performance of both the fuzzy set and the Atal and 

Rabiner's classification methods. The input speech signal was 

bandlimited to 3.4 kHz and sampled at 8 kHz. The results obtained in 

Classifying 16 msec speech segments, using both algorithms, are given 

in Tables 6.2 and 6.3 in the form of a confusion matrix of co=ect 

and inco=ect identifications. For example in Table 6.2, using the 

fuzzy set meth:>d, 260 voiced segments were co=ectly classified, 2 

voiced segments were classified as unvoiced and 7 voiced segments 

were classified as silence. Figure 6.3 shows the time waveform of 

the utterance 'Industrial shares were mostly a trifle higher', and 

the classification of its segments into VUS classes using the fuzzy 

set method. These results show that the fuzzy set method provides a 

classification accuracY comparable to the Atal and Rabiner's method. 

In addition, the absence of matrix multiplications in the fuzzy 

meth:>d, unlike in Atal and Rabiner's meth:>d, se:rves to simplify the 

computational load. 

6.3 ACOUSTIC SEGMENTATION 

A speech utterance can be expressed as a sequence of segments 

belonging to the voiced, unvoiced or silence classes by dividing the 

utterance into segments of suitable temporal durations and 

Classifying the signal in each interval as voiced, unvoiced or 

silence. For recognition purposes, however, this 'fine' segmentation 

results in a cumbersome system. This is because versions of the same 

word will have a different number of segments, hence giving rise to 

acoustically different patterns. As such, a coarse segmentation 

process which gives the general acoustic structure of the utterance 

is desirable. Attempts to use methods based on rules for combining or 

deleting classified segments in order to obtain a coarse acoustic 

structure of an utterance, proved unfruitful. The main problem was 



203 

TABLE 6.2: RESULTS FRCM THE FUZZY AIroRITHM 

Actual Class 
Identified as: 

Voiced Unvoiced Silence 

VOICED 260 0 6 

UNVOICED 2 59 3 

SILENCE 7 5 58 

TABLE 6.3: RESULTS FRCM ATllli AND RABINER'S ALGJRITHM 

Actual Class 
Identified as: 

Voiced Unvoiced Silence 

VOICED 263 2 5 

UNVOICED 3 60 3 

SILENCE 3 2 59 
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I .. 

FIGURE 6.3: CLASSIFICATION OF THE SEGMENTS OF THE UTTERANCE 
'INDUSTRIAL SHARES WERE MOSTLY A TRIFLE HIGHER' 
USING THE FUZZY SET THEORY METHOD 
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to obtain a fixed number of coarse segments per utterance. In 

addition, such rules can lead to erroneous decisions. For example, 

the occurrence of a short silence duration, preceded and succeeded by 

a larger voiced duration, can be an actual possibility. Thus, using 

rules to obtain coarse segments, by deleting the silence frames in 

such a situation, would result in an erroneous decision. A suitable 

method for obtaining a coarse structure from the fine segmentation is 

to optimally divide an utterance into a given number of regions, and 

then Classifying each region according to the nature of segments it 

contains. The pr=edure is discussed below. 

6.3.1 Bridle's Algorithm [90] 

An optimum pr=edure for segmenting a" speech utterance into a given 

number of regions has been proposed by Bridle et al [90], and is as 

follows: 

Let a speech utterance be represented by the discrete sequence of 

multidimensional feature vectors, {aI' a2' ... aN}' and that it is 

desired to divide the utterance into M regions, where M < N. The 

speech pattern has N-l junctions, numbered 1, 2, .", N-1 between 

feature vectors where the boundary of the regions might be placed. 

Let the fixed boundaries before a1 and after aN' be numbered 0 and N 

respectively. The division of the utterance into M regions now 

reduces to selecting the M-I of the interior junctions i 1 , i 2 , ... , 

i M- 1, and keeping the fixed boundaries, i.e. io = ° and iM = N. 

In the algorithm, a 'segment evaluation function', f(i,j), is defined 

as the error introduced by representing the region of the utterance 

between junction i and junction j, as a single feature vector and is 

given by: 

f(i,j) = 

j 

{
" I d(ak' aij ) 
k=i+1 

0, if i = j 

6.17 
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j 
where aij = 1. ak!(j-i); is the mean vector of the feature vectors 

in the regicnt-l.and d(~, aij) is a distance measure. 

A global segmentation criterion, G, which is a function of the 

sequence of junctions clnsen as the new boundaries is defined as. the 

sum of errors introduced in each portion of the utterance and is 

given as: 

M 

= L 6.18 
k=1 

It is of significance that equation 6.18 can be defined recursively 

as: 

The aim of the algorithm is to obtain the sequence {iO' i l , ... , i M}, 

which minimizes G. Let F(m,n) be the minimum value of G obtained in 

dividing the first n segments of the utterance into m sections: 

Le. F(m,n) = MIN 
i1 ,i2 ,·· ·~1 

G{O, i l , ... , ~-l' n} 6.20 

using equation 6.19, then equation 6.20 can be expressed as: 

F(m,n) = MIN G{O, i l , ... , ~-l} + f(~_l' n) 6.21 

which s:implifies to: 
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F(m,n) = MIN [F(m-1, i) + f(1,n)] 
i 

6.22 

Equation 6.22, allows the computation of the approximate error for 

the best division of the whole utterance into M sections. During the 

computation, the values F(l,N), F(2,N), ... , F(M-1,N) which are the 

minimum errors if fewer sections are required, are also produced. At 

every stage in the computation, the junction number 1, which 

minimizes equation 6.22 is stored in an array P(m,n). After F(M,N) is 

obtained, the optimal section boundaries can be re=vered by starting 

with iM = M, and then traCing back through the array P(m,n). 

6.3.2 Results 

Bridle's segmentation algorithm was tested with the three 5 kHz 

band1imi ted speech utterances, 'SIX', 'X', 'INPUT' obtained from the 

subject SMl. Each utterance was segmented into 25.6 msec frames and 

then a 14th order LPC analysis carried out. Bridle's algorithm was 

then used to divide the utterance into a required number of regions. 

Since the LPC coefficients in each segment are available, the segment 

evaluation function of equation 6.15 employed the gain-normalized 

Itakura-Saito distance measure. 

Figure 6.4 shows the time waveform of the utterance, 'SIX', 

consisting of 23 segments of 25.6 msec duration each. The result of 

dividing the utterance into 3, 4, 5 or 6 regions using Bridle's 

algorithm is shown in the figure. For example, the boundaries of a 

four region division of the utterance are: 0, 6, 10, 16, 23. It can 

be seen from the figure that these boundaries tend to correspond to 

acoustic changes in the utterance. Also shown in the figure is the 

voiced, unvoiced, silence classification of the 23 segments as 

obtained with the fuzzy set theory approach. Similarly results 

obtained with the utterances 'X' and 'INPUI" are shown in Figures 6.5 

and 6.6 respectively. 
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Most of the 50 words in the reoogni tion vccabulary (apart from words 

like MULTIPLY, (l)NTROL, SEVEN) can be suitably des=ibed by 4 or less 

coarse regions. As such, a division of the utterances into 4 

regions, was used in the word recognition systems described in 

subsequent sections. 

6.4 THE I'X)RD RE(XX;NITION SYSTEMS 

The detection of the broad acoustic structure of speech utterances 

can be used in enhancing the performance of the word reoognizer. The 

acoustic identity of an utterance is incorporated in a word 

recognizer either as a first pass section or as a parallel section, 

as described below. 

6.4.1 Word Recognizers with a First Pass VUS-Based Recognizer 

The structure of the recognition system is shown in Figure 6.7. The 

first pass is a VUS-based recognizer which outputs the identity of 

vocabulary words having a similar VUS structure to the input 

utterance. During the second pass, a conventional recognition process 

is employed, in which the input word pattern is matched only to those 

reference patterns identified in the first stage as likely 

candidates. The detailed recognition process is as follows. 

An input word is segmented into 25.6 msec frames and 14 LPC 

coefficients are extracted after Hamming windowing the speech 

segments which have already been pre-emphasized through a first order 

network with a transfer function, 1-O.9z-1. Each frame is then 

classified as VOiced, urwoiced or silence. This is a=mplished by 

extracting from the speech segment, the five VUS parameters: zero­

crOSSing rate count, the logarithmic energy, the unit delay 

autocorrelation coefficient, the first LPC coefficient and the 

normalized prediction error, and then applying the fuzzy set 

classification method. The fuzzy set thresholds which define the 

linguistic terms, low, medium, high, were obtained in a training 

session as described in Section 6.2. The next step in the VUS-based 
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recognizer, involves the division of the input word pattern into four 

regions, by employing Bridle's algorithm to locate the junctions in 

the sequence where the region boundaries are to be placed. Since the 

speech utterance is also expressed as a sequence of LPC vectors, the 

segment evaluation function in Bridle's algorithm employs the gain­

normalized ltakura-Saito distance measure. Each of the four regions 

is then classified as voiced, unvoiced or silence, according to the 

identity of the majority of the segment contained within the region. 

The result of the above procedure, is that the input word is 

expressed as a sequence of four voiced, unvoiced or silence labels 

that indicate the broad acoustic structure of the word. This broad 

VUS pattern of the input word is compared with reference VUS patterns 

of vocabulary words generated in a similar manner during a training 

session. All the reference words, whose VUS patterns have the same 

structure as that of the input word, are identified as potential 

candidates . 

The second pass of the recognition system, can employ any of the 

recognizers discussed in Chapter 5. The input utterance, des=ibed 

as a pattern of LPC vectors, is compared only with reference words 

identified as potential candidates in the first pass. The input word 

is then identified according to the decision rules in use by the 

particular recognizer, i.e. the nearest neighbour rule, or the KNN 

rule. 

6.4.2 Word Reoognizers with a Parallel VUS-Based Reccgnizer Section 

The VUS-based recognizer can also be used as a parallel section to a 

conventional word recognizer. The composite recognition system is 

shown in the block diagram in Figure 6.8. The reference word 

patterns used in the recognition system are obtained during a 

training session. 

During the testing session, an input word, A, is expressed as a 

sequence of LPC vectors and applied to the conventional recognizer to 

obtain an output VI. The same word, A, is partitioned into four 
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regions using Bridle's algorithm and its VUS sequence identified 

using the fuzzy set theory method. The input word, as a VUS pattern, 

is applied to the VUS-based reoognizer, which gives the output set of 

words, {V2}' whose VUS structures are identical to that of the input. 

The outputs of both the conventional recognizer and the VUS-based 

recognizer are passed over to -a decision stage. The input word is 

. identified as Vl' if Vl E {V2}, otherwise a feedback to the VUS-based 

recognizer is made if VI ~ {V2}. Each word in the set {VI U V2 }, is 

expressed both as a sequence of LPC vectors, and as a sequence of 

four VUS segments. The following method was used to identify the 

input word in the set {Vl U V2}. 

Let the word pattern X E {Vl U V2} be expressed as the discrete 

sequence of I, LPC vectors: 

i.e. 6.23 

The Bridle's algorithm is used to partition X into four regions. Let 

the mth region, where 1 " m" 4, contain the L, LPC vectors 

6.24 

The mth region is then represented by the vector x m' obtained from 

the autocorrelation coefficients vector Rm given by: 

L 

~ =.!. I Ri +j - l 
L j=1 

6.25 

where Ri is the autocorrelation coefficients vector which gives the 

LPC vector xi. 
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Thus, the whole utterance, X, is represented by four LPC vectors, 

(Xl' x2' x3' x4}' The input pattern A is also reduced to a discrete 

pattern of four LPC vectors as described· above. The distance between 

the input word pattern A = {al' 1r2' 83' 84} and the reference pattern 

X in V1U {V2}' is given by: 

4 
D(X,A) = I d(Xi' ail 

i=1 
6.26 

where d(xi' ail is the gain-normalized Itakura-Saito distance 

measure. 

The unknown input word is identified as the reference word in the set 

V1U {V2}, which gives the minilnum distance. 

6.4.3 Results 

The influence of a first pass VUS-based recognizer, on the 

performance of conventional isolated word recognizers was 

investigated. The conventional recognizers used are th:>se presented 

in Chapter 5, i.e: 

i) The LPC-based reoognizer with multiple reference patterns 

ii) The LPC/SPLIT reoognizer with multiple reference patterns 

iii) The LPC/VO reoognizer with 16 entry reference codebooks 

iv) The LPC/VO/SPLIT reoognizer with 16 entry reference codebooks. 

The input words, spoken by a subject who did not contribute to the 

generation of reference patterns, were used for testing the 

recognition system. The recognition results obtained, as a 

percentage of oorrect identification of the input words, are given in 

Table 6.4. Similarly, the influence of the VUS-based reoognizer, as 

a parallel section, on the performance of the above conventional 

recognizers was also assessed. The recognition results are given in 

Table 6.5. 



217 

TABLE 6.4 

PERFORMANCE OF mNVENl'IONAL WJRD REOJGNIZER 
WITH A FIRST-PASS VUS BASED RECD3NIZER 

RECXX;NITION ACOJRACl (%) 

REOJGNITION 
SYSTEM 

Test 1 
Test speaker 

SMl 

Test 2 
Test speaker 

SM3 

Test 3 Average 

LPC-based 
reoognizer 
(4 ref 
patterns per 
voc. word) 

LPC/SPLIT 
(4 ref 
patterns/ 
voc word) 

LPCjVQ 
16 entries 
codel:xx:>k 

LPCjVQ/SPLIT 
16 entries 
codel:xx:>k 

Ref Speakers: 
SM2, SM3, SM4 

SF2 

86 

84 

Ref Speakers: 
SM2, 5M3, SM4 

SF2, SF3 

88 

88 

Ref Speakers: 
SMl, SM2, SM4 

SF2 

82 

82 

i 

Test speaker 
SF! 

Ref Speakers: 
SMl, SM2, SM4 

SF2 

80 

72 

I 
Ref Speakers: I Ref Speakers: 
SMl,SM2, SM4 i SMl ,SM2,SM4 

SF2, SF3 ; SF2, SF3 

90 84 

86 82 

82.7 

79.3 

87.3 

85.3 



RECXX;NITION 
SYSTEM 

LPC-based 
recognizer 
(4 ref 
patterns 
per v=. 
word fron 
subjects 
SMl, SM2, 
SM4, SF2) 

LPC/SPLIT 
(4 ref 
patterns/ 
v=. word 
fron subjects 
SMl, SM2, 
SM4, SF2) 

LPCjVQ 
16 entries 
codebook 

LPCjVQ/SPLIT 
16 entries 
codebook 
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TABLE 6.5 

PERFORMANCE OF OJN\IENI'IONAL REO:X:;NIZERS 
WITH A PARALLEL VUS BASED REO:X:;NIZER 

RECXX;NITION AroJRAC'l (%) 

Test 1 Test 2 Test 3 
Test speaker Test speaker Test speaker 

SMl SM3 SF1 
I 

I 
i Ref Speakers: Ref Speakers: Ref Speakers: , 

00, SM3, SM4 SMl, SM2, SM4 SMl, 00, SM4 ! 

i SF2 SF2 SF2 
, 
, 
! 

: 

; 

94 90 90 

I , 

I 
92 I 90 86 

I 
, I 
i 
I 

i 
! Ref Speakers: Ref Speakers: Ref Speakers: 
I 00, SM3, SM4 SMl, SM2, SM4 SMl, SM2, SM4 , 
I 

SF2, SF3 SF2, SF3 SF2, SF3 I 
I 
I 
I 
! , 96 98 92 

I 

96 98 92 

Average 

91.3 

89.3 

95.3 

95.3 
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6.5 DISrusSION 

The O1apter commenced with a presentation of the VUS classification 

of speech segments. For this purpose, the five parameters - zero 

crossing rate count, energy, first delay autocorrelation coefficient, 

first LPC coefficient, normalized prediction e=or, were extracted 

from the speech segments. The results given in Tables 6.1 and 6.2 

shows the VUS classification of speech segments in utterances, spoken 

by subjects woo did =t oontribute to the training process, using the 

fuzzy set theory method and the Atal and Rabiner's method 

respectively. These results indicate that the accuracy obtained with 

fuzzy set method is comparable to Atal and Rabiner's method. The 

classification process using Atal and Rabiner's method, requires the 

computation of the matrix equation defined in equation 6.16, whereas 

for the fuzzy set approach, only the evaluation of the membership 

grades as defined in equation 6.8 are required. Thus the fuzzy set 

method offers a computationally simpler approach. However, both 

classification processes are still error prone. Most of the errors 

arise from the confusion between weak voiced segments and silence 

segments. other errors occur in classifying segments in which the 

speech samples are changing from one class to another, i.e. when 

speech signal transitions are present within a segment. In such a 

case, the speech segment consists of samples from more than one 

class, and thus classifying the woole segment becomes ambiguous. 

For recognition purposes, it would be desirable to obtain a general 

acoustic structure of the speech utterance, from its VUS 

classification of fine segments. This was achieved by using Bridle's 

algorithm of segmenting an utterance into a specific number of 

regions. Figures 6.3, 6.4 and 6.5 show the segmentation of the words 

'SIX', 'X', 'INPUT', respectively, into 3, 4, 5 and 6 regions using 

Bridle's algorithm. The algorithm can be seen to be a powerful method 

of partitioning a speech utterance into a required number of regions, 

as the boundaries are placed at junctions where speech 

characteristics are in transition, subject to the frame size. 
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The identification of the vus structure of an utterance was usefully 

exploited in enhancing the accuracy of a word recognition system. 

When the VUS-based recognizer was used as a parallel section to a 

conventional recognizer, the recognition accuracy was significantly 

improved. These improvements are shown in Table 6.6, which is a 

comparison of the results in Tables 5.1, 5.4 and 6.5. However, 

employing the VUS-based recognizer as a first pass section, results 

in a drop in recognition accuracy as shown in Table 6.6. The reason 

f= this po= performance, is that any err=s made in the first pass 

section are passed ewer to the conventional recognizer, which will 

subsequently make an erroneous identification. Such a situation 

would not arise when the VUS based recognizer is employed, as a 

parallel section to a conventional recognizer. This is because 

classification e=ors made in one section will not influence the 

decision process in the other section. Furthermore, when the parallel 

section is used, there is a provision for a feedback path if the 

outputs of the two sections are IXlt in agreement. The LPCjVQ and the 

LPCjVQ/SPLIT systems both gave an accuracy of 95.3% when employing a 

parallel VUS-based recognizer section. This recognition accuracy was 

the highest among the systems under consideration in Table 6.6. 

6.6 NOTE ON PUBLICATION 

A paper entitled "Voiced-Unvoiced-Silence classification of speech 

using fuzzy set theory", in co-authorship with the supervisor, Dr C S 

Xydeas, has been published in the Proceedings of IEEE/ Medite=anean 

Electrotechnical Conference, held in Madrid, Spain, from 7-10 

October, 1985, pp 123-126. The paper is based on the work presented 

in Section 6.2. 
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TABLE 6.6 

A CXMPARISON OF THE IDRD REX:X:GNITION AroJRACl IN THE THREE SYSTEMS: 

. i) a cx:nwentional recognizer 
ii) a conventional recognizer employing a parallel VUS-based 

recognizer 
iii) a conventional recognizer employing a first pass VUS-based 

recognizer 

CXlNVENl'IONAL Cornrentional Cornrentional Conventional 
RECXJGNIZER recognizer recognizer recognizer 

with:Jut VUS- with parallel with first 
based VUS-based pass 
recognizer recognizer recognizer 

LPC-based 
recognizer 
(4 reference 89.3 91.3 82.7 
patterns per 
vocabulary 
word) 

LPC/SPLIT 
(4 reference 
patterns per 83.1 89.3 79.3 
vocabulary 
word) 

LPCjVQ 
(16 entries 94 95.3 87.3 
oodebook) 

LPCjVQ/SPLIT 
(16 entries 92.6 95.3 85.3 
oodebook) 
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0IAPl'ER 7 

7 • 1 INI'RODUCI'ION 

In this thesis, isolated word recognition systems based on pattern 

matching techniques have been studied and new improved techniques 

have been developed. The main objectives throughout have been to 

achieve a high recognition rate, whilst keeping the computational 

complexity and memory requirements at a minimum. Several word 

recognition techniques were investigated, and their performance in a 

speaker independent mode was assessed by computer simulations. 

The initial work was mainly concerned with the problem of modelling 

the n:m-l1near temporal fluctuations in a speech signal. This enabled 

the comparison of patterns of diverse temporal durations to be 

achieved. Speech utterances can be represented in a sui table form, 

for recognition purposes, by characteristic spectral features 

extracted from short temporal speech segments. '!':wo spectral feature 

sets were considered, namely: filter bank features and LPC features. 

From simulation results, it was found that systems using speech 

utterances expressed as patterns of LPC features give a higher 

recognition accuracy than those using filter bank spectral estimates. 

This gave an impetus to further study of recognition systems which 

use speech patterns described by LPC features. However, it was 

quickly realised that the use of multiple reference patterns per 

vocabulary word, in order to achieve a speaker independent system 

raised considerably the memory requirements of the recognizer. 

Furthermore, the DTW techniques used in the pattern matching stage of 

the recognizer, were computationally expensive. The desire to solve 

these problems, led to the use of vector quantization techniques. A 

new recognition system, termed the LPC/VQ/SPLIT recognizer, was 

developed. In this system, reference patterns are stored as 
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sequences of Cl:x:iebook entries, and in the pattern matching stage the 

need f= using the =mputationally complex DTW is eliminated. 

The accuracy of word recognizers can be enhanced further by taking 

into consideration the broad a=ustic structure of input words. F= 

this purpose, a new method of speech segment classification into 

voiced, unvoiced, and silence categ=ies using the fuzzy set theory 

was pLOfosed. 

The general conclusions relating to the work carried out in each 

Chapter are revie·wed in the following sections, fOllowed by 

suggestions f= further work and closing remarks. 

7.2 TIME N:>RM1ILIZATION IN SPEEOI PATl'ERNS 

The main reason for exploring time normalization techniques in 

O1apter 3 was to obtain a suitable method that would be employed in 

the word recognition experiments. The Sakoe and Orlba DTW algorithm 

was found to be inadequate for the vocabulary words under 

consideration. This is because temporal differences between the 

input and reference patterns, exceeded the number of allowed frames 

mismatch in the algorithm. As such, Paliwal's modification on 

Sakoe/Orlba DTW algorithm was employed to correct the inadequacies. 

The DTW algorithm proposed by Itakura, was also investigated and 

found to exhibit similar deficiencies as the Sakoe/Orlba algorithm. 

That is, for example, an input word pattern cannot be matched with a 

reference pattern if the ratio of their temporal lengths is greater 

than 2. Myers' method, in which word patterns are transformed into 

patterns of fixed lengths, was used with Itakura's DTW algorithm and 

it was found to overcome these problems. 

Myers' method was alsO used to provide fixed length patterns for the 

Sakoe and Chiba's algorithm. Two sets of vocabulary words, one of 

which is composed of acoustically similar words and the other of 

acoustically dissimilar words, were used to test the performance of 
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the following schemes: (i) Sakoe/Chiba DTW algorithm, (11) Paliwal's 

modification as applied to Sakoe/Chiba DTW algorithm, (ili) Myers' 

method with Sakoe/Chiba DTW algorithm, and (iv) Itakura's DTW 

algorithm with fixed lengths patterns generated with Myers' method. 

From a compariSCD'l of the word recognition results obtained with the 

above schemes, Paliwal's modification as applied to the Sakoe/Oliba 

DTW algorithm gave the highest accuracy. For this reason the word 

re=gnition systems described in subsequent Olapters, employed this 

particular algorithm in the patte= matching stage. 

The concern for the heavy computational complexity of the DTW 

algorithm led to a =nsideration of Brown and Rabiner's graph search 

technique in Section 3.5. From the simulation results, the graph 

search technique, while offering less computations, resulted in a 

drop in word re=gni tion a=acy as opposed to the DTW meth:lds. As 

such, the graph search method was abandoned in favour of the DTW 

method. However, other computational load reduction methods were 

investigated and are described in Olapter 5. 

7.3 THE USE OF FILTER BlINK FEAWRES IN WJRD REalGNITION 

The representation of speech utterances as discrete patterns of 

energy values in selected frequency bands, and their subsequent use 

in a word recognition system, was considered in Chapter 4. The FIR 

filter bank systems, designed to awer the 0-5 kHz bandwidth of the 

speech signalS are: (i) an a-channel, 1/3 octave spaced filter bank, 

(ii) a 5-channel, ideal octave spaced filter bank, (11) 5, 8, 10, 12 

and 16 channel uniformly spaced filter banks, (iv) 16 channel 

critical band spaced filter bank. The accuracy obtained in the 

isolated word recognizer using speech utterances processed by 

different filter banks was compared. First, the word recognition 

systems were tested in a speaker independent mode using a single 

reference pattern per vocabulary word, and then in a multiple 

reference pattern per vocabulary word situation. The results of 

these experiments show an overwhelming superiority of multiple 
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reference patterns over single reference pattern systems. In addition 

the 8 channel, 1/3 octave spaced filter bank gave a better 

recognition a=acy (82.0%) than the other filter bank systems under 

consideration. 

Attempts were also made to improve on the accuracy of multiple 

reference systems, by suppressing the redundancy present in speech 

patterns. Two redundancy suppression methods, namely: trace 

segmentation and a simple redundancy removal method, were employed as 

discussed in Section 4.5. In the 8 channel, 1/3 octave filter bank 

word recognition system, an improvement in recognition a=acy by 

5.5% is obtained when the simple redundancy method is used to 

compress the speech patterns by a factor of 0.9, as shown in Figure 

4.8. Although these redundancy suppression methods lead to 

improvement in recognition accuracy, their use would be impeded by 

the difficulty involved in estimating the level of redundancy in the 

speech pattern. 

7.4 THE USE OF LPC FEATURES IN WJRD RECJ:X:;NITION 

The word recognition system using patterns of LPC features was 

considered in Olapter 5. The first issue was to assess the influence. 

of the prediction order of the LPC model on the recognition a=acy. 

An average recognition a=acy of 89.3%, as stx>wn in Table 5.1, was 

obtained when a 14th order LPC analysis was used. A comparison of the 

average accuracy of the word recognizer employing an 8-channel, 1/3 

octave filter bank (Table 4.6), and the LPC based recognizer with 

14th order LPC coefficient (Table 5.1), reveals the superior 

performance of the LPC based system. It was thus decided to proceed 

with further investigations of word recognizers employing LPC 

features. 

The acoustic similarity of some vocabulary words is an obvious source 

of recognition e=ors. A method of generating discriminative 

reference patterns for similar sounding words in the vocabulary was 

used to reduce such e=ors. An average recognition a=acy of 91.3% 
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was obtained on using the discriminative reference patterns f= the 

words set {B, C, D, E, G, P, T, V}. However, the use of multiple 

reference patterns in the recognition systems, imposes a high 

computational load in the recognition process. F= this purpose, the 

computational cost reduction method of Section 5.4.2 was proposed. 

In this method, reference patterns are clustered into a disjoint 

number of groups, and each group is represented by a cluster 

centroid. The input word is first compared with the cluster 

centroids of the various groups, and then only with the reference 

patterns associated with the best match cluster centroid. The 

reduction in computational cost is dependent on the number of 

clusters and their occupancy, as illustrated in Figure 5.9. From the 

simulation results, a computational reduction of 10:3 was obtained at 

a slight drop in recognition accuracy by 1.5%. 

Next, attention was focussed on (i) large memory requirements of the 

LPC based word recognizer in st=ing the reference patterns, and (ii) 

on the complexity of the DTW algorithm during the pattern matching 

process. These considerations led to the use of vector quantization 

techniques. Two established recognizers, termed the LPC/SPLIT and 

the LPC/VQ systems, were studied by computer simulations. The 

LPC/SPLIT word recognition system operates with a reduced memory 

requirement but still uses the DTW process, whereas the LPC/VO system 

requires a large memory space, but has the advantage of eliminating 

the need f= the Iirw process. Based on the characteristics of these 

two recognizers, a hybrid system termed the LPC;\IQ/SPLIT system in 

which the advantages of both recognizers were preserved, was 

developed. From the computer simulation results given in Table 5.4, 

and the memory characteristics illustrated in Figure 5.17, the 

advantages offered by the LPC/VQ/SPLIT can be deduced, i.e. a high 

recognition accuracy (92.6%) and low memory/computational complexity 

characteristics. 
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7.5 THE USE OF VOICED, UNVOICED AND SILENCE CLASSIFICATION OF SPEEOi 

SEG1ENTS IN \OClRD RE'.CX:GNITION 

In Chapter 6, a method for enhancing the accuracy of a word 

reoogni tion system by identifying the broad aooustic structure of the 

input speech utterance is formulated. The method requires as a 

prerequisite, a reliable classification of speech segments into 

voiced, unvoiced and silence classes. A new and simple technique 

which applies the fuzzy set theory to obtain such classification was 

developed, and found to offer comparable performance to the 

established but complex statistical method of Atal and Rabiner 

(Tables 6.1 and 6.2). The segmentation of an utterance into temporal 

durations of the order of 25.6 msec, and the subsequent 

classification into VOiced, unvoiced and silence classes yields a 

'fine' acoustic structure which is not suitable for recognition 

purposes. Bridle's algorithm for dividing an utterance into a few 

regions was therefore employed in obtaining the coarse acoustic 

structure. Two strategies of supplementing a conventional word 

recognition system with the coarse VUS structure of speech utterances 

were then investigated. The VUS-based recognizer was initially used 

as a first pass section and a =nventional recognizer as the second 

pass. It was Observed that, in such a system, the recognition 

accuracy actually decreased, as indicated by results in Tables 5.4 

and 6.4. The deterioriation in recognition a=acy is due to errors 

in the first pass stage being carried over to the conventional 

recognizer • 

It was therefore decided to investigate the effects of using the VUS­

based recognizer as a parallel section'to the conventional word 

recognizer. The results of these investigations are given in Table 

6.5. A comparison of the accuracy obtained with conventional 

systems, as given in Tables 5.1 and 5.4, and when a parallel VUS 

recognizer is used, as given in Table 6.5, reveals an improvement in, 

recognition accuracy as follows: (i) 2% increase in the LPC based 

word recognizer, (11) 6.2% increase in the LPC/SPLIT system, (iii) 

1.3% increase in the LPC/VQ system employing 16 entry oodebooks, and 
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(iv) 2.7% increase in the LPC/VQ/SPLIT system employing 16 entry 

codebooks. 

The LPC/VO/SPLIT and the LPC/VO systems employing 16 entry codebooks 

gave an identical re<XlgI1ition accuracy of 95.3%, when the VUS-based 

recognizer was used as a parallel section. The recognition accuracy 

was higher than obtained with the other systems under oonsideration. 

7.6 SlmESTIONS FOR FURTHER \'ORK 

As a further extension to the work discussed in this thesis, the 

following suggestions are made: 

i) The use of trace segmentation and redundancy remOlTal methods, 

in word recognition systems, as discussed in Section 4.5, 

provided an improvement in recognition accuracy for small 

compression factors. Such results serve to strengthen the 

premises that the information contained in transitional regions 

of an utterance play a more important role than the stationary 

regions in the recognition pr=ess. Tlrus, if one could extract 

more features during transitions rather than in stationary 

regions, it can be envisaged that the recognition accuracy 

could be enhanced. Such an approach has been considered by 

Watari et al [91], but still requires an accurate detection of 

transitional regions in the speech signal. 

ii) It is considered that further research into certain aspects of 

the design of vector quantization codebooks may yield improved 

results. In Section 5.5, the centroid of a group of LPC 

vectors was computed from the average autooorrelation vector of 

the whole group. A better centroid, in terms of the distance 

to any vector within the group, would probably be obtained as 

the vector-whose maximum distance to any other vector is 

minimum, Le. minimax. Such centroids would give rise to 

codebooks that represent the training set with less distortion. 

Also, the VQ design methods employed in the same section, 
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namely: the binary splitting algorithms, may possibly be 

improved (in terms of convergence rate and not distortion 

level) by the use of more sophisticated 'multiple splitting' 

strategies . 

iii) The VUS-based recognizer was used either as a first-pass 

section or as a parallel section added to a conventional 

recognizer. It could not be used in isolation because its 

acoustic description of an utterance is too generalized. A 

more exact representation of the acoustic structure would 

require the classification of segments into more than the three 

classes. For example, the voiced class can be split into 

vowelS, semivowels, diphthongs, voiced-stops, voiced 

fricatives. The unvoiced class can similarly be split into 

unvoiced fricatives and unvoiced stops. Features which can 

help to identify these subgroups have been studied by Ruske 

[37] and by Zue et al [92]. The fuzzy set theory can be 

applied to model the classification into a similar manner as 

proposed in this thesis. However, such work would require the 

use of a spectrograph, especially f= the training procedures. 

7.7 CLOSING REMARKS 

The last 15 years have seen spectacular and Significant advances in 

the general area of speech recognition and in particular isolated 

word systems. The formulation of the Itakura-Saito distance measure 

and the DTW techniques are landmarks in isolated, as well .as 

connected word reoogni tion systems. The strategy, emphasized in the 

ARPA programme, of combining several knowledge sources in order to 

attain successful understanding of speech sentences, has been 

accepted as the key to continuous speech recognition. 

However, in spite of the significant progress, there are still 

several problems to be SOlved. These include the recognition of: 

speech degraded by noise, telephone bandwidth speech, speech from 

uncooperative subjects, speech distorted by the environment e.g. 
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'helium' ,speech. The 1ncoLprn:ation of certain krowledge sources like 

pragmatics and prosody in continuous speech recogni tiro is yet to be 

solved. The solution to these problems will require the cooperaticn 

with scientists in other fields such as artificial intelligence, 

linguistics, ergonomics and psychology. 

The developments in mi=otechnology have produced powerful signal 

processing chips like NEe uPD7720 and Texas Instrument's TMS320. 

These chips have been available for the last five years and can be 

programmed to perform a number of speech processing algorithms in 

real time. The most recent speech recognition chip available from NEC 

is the uPD7764. This new chip has been designed specifically for 

speech recognition yet comprises two independent general purpose 

processors (labelled the D-processor and the G-processor) holding 

their programs in RAM. The calculation of the. distance between two 

vectors of filter bank energy features are performed in the D­

processor. The DTW algorithm is performed in the G-processor. 

However, the extraction of the feature'vectors is not performed by 

the 7764 but by a 7763 spectrum analyzer. With these new chips, NEC 

claims the implementation of an isolated word recognition system, 

with a 380 word vocabulary, operating with a response time of 300 

msec. The features used are 16 dimensional filter bank energies of 

16 msec speech segments in the spectral range 250 Hz-5400 Hz. Many 

other manufacturers can also be expected to develop similar devices 

possessing great potential for speech recognit:ion. Thus, the 

widespread use of speech recognition will most likely be held up by 

theoretical rather than technical aspects. 

The author hopes that the effort put :in the work described in this 

thesis makes a contribut:ion to the future development of :isolated 

word recognition. 
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APPmlIX A 

'!HE WINIlCM DESIGl MImD> FCR FIR FILTERS 

The system functicn of an FIR filter is of the form: 

H(z) hen) z-n A.l 

where hen), 0 ~ n .. N-l, is the jropulse respcnse. 

The window design technique starts with a specification of the 

required frequency response, H(~w), of the filter. Figure A.l(a) 

sh:lws the amplitude/frequency characteristics of an ideal low pass 

filter (LPF). Since the frequency respcnse of any digital filter is 

perlodic in frequency, then it can be expanded as a Fourier series as 

follows: 

00 

L h' (n)e-j wn 
n·:-oo 

where h' (n) is the corresponding impulse respcnse sequerx::e 

i.e. 

h'(n) = _1 r H'(&iUl) &iwndw 
. 2rr ""'" 

The impulse respcnse is sI'nm in Figure A.2(b). 

A.2 

A.3 

A finite duration of the impulse response can be obtained from h'(n) 

by a simple truncation process, as follows: 



(a) 

(c) 

-tOe Wc 
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Fourier transform( ) 
pair (F.T) b 

with linear phase .. .. 
W 

h (n) 

Ideal low pass filter Infinite impulse response 

H (1.0) 

LT. .... ... 

Gibb's phenomena 

F.T. ... .. 
W 

Less ripples present 

hen) * rectangular window 

"Jl 
Infinite response truncated 
with a rectangular window 

hen) * Hamming window 

"'JL 
Infinite impulse response 
truncated with a Hamming 
window 

FIGURE A.l: THE DESIGN OF AN IDEAL LO\,l PASS FILTER USING 
THE WINDOW APPROACH TECHNI0.UE 



• 

245 

('o(n) , 
hen) = l 

o ~ n ~ N-l 

1'..4 

otheJ:wi.se 

In general, hen) can be represented as a product of the desired 

impulse response, h'(n) and a 'window', wen), of finite duration, 

i.e. 

hen) = wen) h'(n) 1'..5 

In equati= 1'..4, wen) is a rectangular window defined as: 

__ (l' wen) 

0, 

o ~ n ~ N-l 

A.6 

ot:hendse 

The resultant frequency response, H(ejw), shown in Figure A.l(c) is 

given by: 

1'..7 

i.e. it is the periodic continuous convolution of the desired 

frequency respa1S9 with the Fouriertransform, W(~w,> of the wj,ndow. 

Altoough the rectarY:;JUlar winOOw gives a sharp cut-off frequency, the 

presence of ripples in the passband is undesirable. A number of 

window functions (Hamm:in;J, Hann:in;J, Blackman, Kaiser ete) have been 

proposed [93,94], and are used in order to smooth out the ripples 

i.e. to reduce the effects of the Gibbs phenomena [95]. However, 
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these wincbw functions achieve a moderaticn in the Gibbs pheoc>mena at 

the expense of a wider passband-stopbaOO. transiticn regicn. 

Figure A.l(e) shows the frequency response obtained on using the 

Hammin;l wincbw in the impulse response truncaticn process. A Hammin;l 

wincbw, Wen) is defined as follows: 

Wen) = 0.54 - 0.46 cos (2rrn/N-l), o :<; n "N-l A.a 
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J\PPEN}IX B 

PRJPERl'lES OF "mE J\lJl'OOJRRELATCH UEFFICIENl'S OF "mE 

IMPULSE RESPtNSE OF "mE ALL-FOLE KDEL 

F= the all-pole filter, defined by the transfer furx::tian, H(z), 

G 
H( z) = ---,,--------:-

1 + I a(k) z-k 
K=l 

B.l 

where G is the gain, and a(k), k = 1,2, ••• p, are the predictor 

coefficients. The i~se response, h(n) of the fil.ter is 

{ 

O,f=n<O 

h(n) = G, f= n = 0 

Ea(k) h(n-k), for n > 0 

B.2 

The autcx:x:n:Ls1atian functian, R(i), of the impulse response is given 

by: 

'" 
R(i) = L h(n) h(n+lil) = L h(n) h(n+lil), for all i B.3 

n""'"'" n=O 

Substitut:in;;l B.2 into B.3, gives 

p 

R(i) = L a(k) R(I i-k I)' f= O<i<'" B.4 
k~l 

and 
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R(O) a(k) R(Jt) B.5 

'l1'le autocunelatian coefficients, R(i), f= speech samples was slx)wn 

. earlier in Secticn 5.2.2 to obey the following equaticns: 

P 
R(i) = 1. a(k) R(i-k) 

k=1 

R(O) = G2 + 
p 
L a(k) R(k) 

k=1 

B.6 

B.7 

Except for the range of delay order, i, the two sets of equations, 

B.4 and B.6, are of the same form. Therefore, for the range 

o <; i " p, the tWo autocorrelaticn coefficient sets are related by a 

constant, c 

i.e. R(i) = c R(i) B.8 

Since the total energy in h(n) must equal that in the speech sample, 

then: 

R(O) = R(O) B.9 

Fran B. 8 and B. 9, the constant c must be unity, and hence: 

R(i) = R(i) 

Therefore, the first (p+l) coefficients of the autocorrelaticn of the 

impulse repsonse of H(z) are identical to the corresponding 

coefficients of the Signal. 
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APPENlIX C 

'mE ITAI<lJRA-SAI'lO DISTJIr.lE MEASURE [66] [67] 

If PT(w) and PR(w) are the power spectra of a test and a reference 

speech frame, then the Itakura-Saito distance, dIS' between them is 

defined as: 

+7f P P 
dw dIS(PT,PR) = J [/ - loge (/)- 1] 

':'7f R R 27f 
C.l 

where 
G2 G2 

PT = = 

11 + ~ a(k) z-k
l
2 1A.r(z)j2 ~ 

k=1 

C.2 

and 

PR = 
(';2 G2 

= p C.3 

11 + L a(k) -k 12 l~(z) 12 z' 
k=1 

G and G are gain parameters, a(k) and a(k); where k = 1,2, .•. p are 

the predicticn coefficients. Both a(O) and atO) are defined as equal 

tol. 

If A(z) has all its zeros within the unit circle, then A(l/z) will be 

analytic on and within the unit circle, since all its zeros are 

outside the unit circle. Residue calculus can be used to sb::lw that: 

= 2 Real 
7f (J log {A(e-jw)} dw 

e 27f 7f 

= 2 Real (~ loge {A (l/z)} ~) 
27fJz 

= 2 Real {loge {A(oo)]} = 2 Real [loge(l)] 

= 0 

C.4 

C.5 

C.6 

C.7 
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'Ihus, equation C.l reduces to: 

+11 P +11 -J Tdw_J 
- -11 PR TIT -11 lege 

C.s 

C.g 

The first term on the right hand side of equation C.g can be 

simplified as follows: 

1 +11 
J ( 
';'11 

=-
+11 P P 
J L L 

G' . -11 k=O R.=O 

1 

Put PT( w) = L R(n) e-jnw and R(n) = 

C.lO 

C.l! 

p (w) dw 
T 211 

C.l2 

i.e. the spectral density PT(w) is a non-negative even function of 

w, whose Fourier coefficients R(n) define an autoco=elation 

sequence. 

Thus, 

1 

G' 

- -a(k) a( R.) R(k-R.) C.l3 

- -t = [a][R][a] = ~ C.l4 
G' 
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where [a] is the LPC coefficient vector and [R] the matrix of 

autocuocLelation coefficients. 

The numerator, a, is usually expressed in a more computationally 

efficient form as follows: 

a = R(O) Ra(O) + 2. r. R(i) Ra(i) 
1:=1 

p:i 
= 1. a(k) a(k+i) 

k=O 

C.IS 

.C.16 

Fquation C.1S can be obtained fLOTl C.14 using the followil'YJ steps: 

p P 
a(k) a( t) R(k- t) = Y L a(k+i) a(k) R(i) C.17 

i=-k k=O 

p 

= Y (a(O) a(k) R(k) + a(l) a(k) R(k-l) + 
k=O 

+ a(p) a(k) R(k-p)} 

C.IS 

= atO) atO) R(O) + a(l) 8(0) R(l) + + s(P) s(O) R(p) 

+ a(0) ir(l) R(l) + a(l) a(l) R(O) + ••• + a(p) a(l) R(p-l) 

+ atO) at2) R(2) + a(l) a(2) R(l) + ••. + a(p) 8(2) R(p-2) 

+ ••• 

+ atO) atp) R(p) C.19 
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By inspecticn equation C.l9 can be expressed as: 

p _ p-l 
R( 0) 1. a(k) a(k) + 2 R(l) L a(k) <I(k+l) 

k~O k=O 

p-2 
+ 2 R(2) L a(k) a(k+2) + ••• + 2 R(p) a{0) a(p) = Cl C.20 

k~l 

Therefore the ltakura-Sai to. distance measure, d IS can be expressed in 

a simplified form as: 

The gain-n::mnalized ltakura-Saito distance measure, ~, is defined 

as: 

C.22 

The parameter, cl-, in equaticn C.22 can be expressed in a matrix form 

as follows: 

cl- = [a][R][a]t 

This relationship can be shown in the following steps: 

p p 
[a][R][a]t = L L a(i) a(k) R(i-k) 

i=O k·"O 

p 

L ( 
i=O 

p 

1. a(i) a(k) R(i-k) + a(i) a(O) R(i)} 
k=l 

C.23 

C.24 

C.25 
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P P P 
= ~ L a(i) a(k) R(i-k) + L a(i) R(i) 

i=O k'= 1 i'=O 

p p 

= L a(i) a(k) R(i-k) + ' L a(O) a(k) 
k~1 k~1 

C.26 

,P 

R(k) + L a(i)R(i) 
i'=O 

C.27 

'lb3 relationship between predictor coefficients and aulocxlr:relatial 

coefficients is given by: 

p 

L a(k) R(i-k) = - R(i). l';;' i';; P 
k'=1 

C.28 

substituting C.2B into the first term on the right hand side of 

equatial C.27. gives: 

p 

- Y a(i) R(i) + 
i'=1 

p 

L a(k) R(k) + 
k'=1 

p 

Y a(i) R(i) 
i'=O 

p p 

C.29 

= Y a(i) R(i) = R(O) + L a(i) R(i) = G2 C.30 
i=O ' i=1 

Thus 

deN = [a][R][a] - 1 
[a] [R1 [a]t 

C.3l 
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APPENDIX 0 

'lHE RELATICH5HIP BEl'WEEN LPC <IEFFlCIENl'S AND 

tEPSTRAL UJEFFICIENl'S 

Fran the LPC fU ter defined by the transfer function, 

G 
H(z) = ------

P 
1 + 2 

k=1 

-k a(k)z 

0.1 

where a(k), k = 1,2, ... p are the prediction coefficients and p the 

order of prediction. G is the gain of the fU ter. 

The Cepstrum, C(z) is defined in the z domain by taking the log of 

the transfer function, H(z), i.e. 

'" 
lege H(z) = C(z) = }, C(n) z-n 0.2 

n"1 

where C(n) are the cepstral coefficients. 

Substituting equation D.1 into D.2 and taking the derivatives of both 

sides with respect to z-l, gives 

P 
[1 + 1. a(k) z-k]} 

k=1 

D.3 can be simplified to give 

p 

[ 2 
k=1 

P 
k a(k) z-k+1]/[1 + !. a(k) z-k] = 

k=1 

co 

= ~ 2 C(n)z-n 0.3 
dz-1 n=1 

'" 
) n C(n) 

n=1 
-n+1 z D.4 



I· 

= 
p 

- I 
k=1 
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P 
k a(k) z~k+1 = (1 + Y. 

k=1 

00 

a(k) z-k) y. n C(n)z-n+1 0.5 
n=1 

Equating the constant term and the various powers of z -1 , on the left 

and the right hand sides of equation 0.5, gives the relationship 

between C(n) and a(n), Le. 

C(1) = - a(1) 0.6 

n-1 
C(n) = I (1 - kin) a(k) C(n-k) + a(n) 1 ~ n~ p 0.7 

k=1 

Thus, the cepstral coefficient at unit delay is identical to the 

first LPC ooefficient. 




