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ABSTRACT 

The intrinsic complexity and variability of typical real time control problems 

makes a generalised approach to producing control systems difficult to specify. Due 

to a lack of standardisation, current machine controllers are usually extremely difficult 

to configure, support and integrate together in a generalised manner. These problems 

have severely hindered the development and subsequent application of advanced 

factory automation. The exploitation of advanced computer technology, particularly 

modern software methods can now enable a consistent machine control structure to be 

maintained for diverse applications of widely differing complexity. This thesis 

addresses the need for a major change in the design of machine control systems and 

proposes the use of a reference architecture which offers a consistent approach to the 

control of real time industrial operations. 

A broad based look at existing control systems focuses on the functiona,lity 

they currently offer in the control of various categories of industrial operations. A 

study of current manufacturing automation highlights the functional similarities be

tween the control requirements of different industrial processes both in terms of their 

control structure and hierarchical communication requirements for factory integration. 

Given this commonality it is proposed that all industrial controllers should logically be 

based upon a common hardware independent architecture. A design methodology has 

been devised, termed Universal Machine Control (UMC) which enables individual 

machine controllers to be created (with functionality closely matched to their specific 

applications) whilst still maintaining common structural and communications features. 

This methodology aims to simplify the process of defining, programming and 

controlling systems built up from user defined mechanical hardware. A modular 

design framework or reference architecture for machine control has been derived 

which allows control systems to be modelled in a generalised manner. 

A particular implementation of the control architecture conforming to this 

reference model and an associated definition environment have been created. The 

implementation is based on the selective use of modern computer methods and 

emerging standards for real-time control. A demonstration system has been produced 

targeted at the flexible assembly of printed circuit boards. The possible application 

areas for this control philosophy are however extremely diverse and it could have a 

significant impact on automation methods. 
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1 
Introduction 

Although still in its infancy industrial automation is becoming progressively 

more widespread with the need to reduce product costs through improved efficiency 

and better quality control. There is now a widely held belief that the key to ad

vanced automation is the integration of systems throughout business from boardroom 

to shopfloor. The subject of this thesis is the real-time control of industrial machines 

which form the foundation of this industrial hierarchy. 

Industrial machine and process control is extremely diverse both in form 

and function. The tasks performed can be simple or complex and may either partly 

or fully automate manufacturing operations. These diverse control requirements 

have led to a wide range of controller types often applied in an ad hoc manner with 

very little standardisation between them. As a result industrial real-time control 

systems are difficult to maintain, modify and integrate. 

In addition to localised real-time control, machine control systems have a 

vital but as yet largely unrealised role to play in computer integrated manufacturing 

(eIM) by enabling information access and exchange with higher factory levels. 

Typically enhanced machine control systems are required with appropriate additional 

functionality to achieve this information interchange. Machine controllers can no 

longer be regarded and evaluated as discrete items of plant but as vital building ele

ments of factory systems. 

The Modular Systems Group at Loughborough has worked for some eight 

years on designing and producing modular distributed manipulators and investigat

ing methods of applying them in flexible manufacturing. The concept behind this 

work is to enable programmable machines to be easily created to cope with any 

given application. The approach advocates the use of both distributed manipulation 

and processing elements which are an integral part of the required machine and in 

turn a given factory configuration. Actuator groups of appropriate type and perfor

mance are used where they are actually needed and support as much - but no more -

functional complexity than the various application tasks actually demand. This form 

of mechatronics approach to automation is now becoming a widely researched field 

of study. Central to the research into configurable manipulators at Loughborough 
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has been the desire to create a highly configurable machine control system. By em

bodying a generic structure and extendible functionality such a modular control 

system would potentially be able to meet in a consistent manner, diverse machine 

and process control requirements. 

This thesis addresses the need for a machine control strategy offering a 

major change in methodology from present methods. The aim is to overcome the 

lack of standardisation which currently blocks advanced machine automation, en

courages inefficiency and discourages future investment. The intrinsic complexity 

and variability of typical real-time control problems makes a generalised approach 

difficult to specify. The exploitation of advanced research into information technol

ogy, particularly modern software methods now offers the potential to maintain a 

consistent machine control structure for diverse applications which intrinsically in

volve widely differing complexity. The evolution of an effective approach to gener

alised control has required: 

(1) evaluating the nature of the control problem, 

(2) assessing the capabilities of the enabling technology and 

(3) selection of a new approach which is dominated by the problem rather 

than being handicapped by the technological origins which hinder the 

implementation of many current machine and process controllers. 

This decision process forms the basis for the construction of the thesis: 

Chapter two broadly establishes the role of real-time machine control in in

dustry and evaluates what attributes such control systems should possess in order to 

interface effectively with a CIM environment. 

Chapter three looks at the origin and capabilities of different forms of in

dustrial controller which are in widespread use today. The historical changes in en

abling technology are reviewed and their effect on the configuration and capabilities 

of current controllers is considered. The strengths and weaknesses of current indus

trial controller designs are assessed with reference to available customer and vendor 

perceptions of their future needs. From this assessment a set of requirements are de

rived for a more consistent approach to diverse control problems. 

Chapter four reviews the state of the art in problem oriented approaches to 

both control system architectures and methods of application program description. 
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Chapter five endeavours to realise a generalised approach to diverse control 

problems by advocating a Universal Machine Control (UMC) methodology. An es

sential model for a Reference Architecture (RA) to support generalised machine 

control is proposed. 

The enabling technology for the implementation of generalised machine 

control systems is assessed in chapter six. Conventional low level coding methods 

are contrasted with the use of an operating system as the environment for imple

menting real-time control. Modular computer hardware is assessed for the construc

tion of configurable physical control system architectures. 

From the creation of an essential model for a more generalised approach to 

machine control in chapter five and the evaluation of enabling technology in chapter 

six it emerges that the opportunity now exists for problem dominated approaches to 

the engineering of real-time process and machine control systems. 

Chapter seven looks at the practical implementation of a proof of concept 

Reference Architecture for the control of modular distributed manipulators. The 

chapter illustrates how the functionality offered by a real-time operating system is 

used to implement process and data structures confonning to the UMC methodology. 

The implementation (software design, structure and coding) of selected 

UMC software modules is detailed in chapter eight. 

Chapter nine considers the capabilities of the current implementation of 

UMC, its perceived advantages, limitations, industrial potential and possible routes 

to its exploitation. 

Future extensions to the UMC methodology are suggested in chapter ten to 

enable it to cater for the design and life cycle requirements of machine systems in a 

broader manner. 

Conclusions and a resume of the author's contributions to knowledge are 

presented in chapter eleven. 



2 
The Role of Machine Control in Manufacturing 

2.1 INTRODUCTION 

This chapter seeks to broadly establish the role of real-time machine control 

in flexible manufacturing. A layered model representing the manufacturing hierar

chy is utilised together with a broad classification of industrial manufacturing opera

tions. An evaluation is made of what attributes control systems should possess in 

order to help manufacturers to compete effectively in today's highly volatile business 

environment. 

2.2 AUTOMATION OF MANUFACTURING 

In the post war period there has been a demand within Western markets for 

manufactured goods in high volumes. Recent years have however seen the decline 

of many traditional industries in Europe and North America in an ever more com

petitive world environment [1]. 

Factory automation was initially applied to highly repetitive tasks, continu

ous process operations being the primary example of this. Such cyclic operations are 

predictable and thus relatively easy to cope with [2]. Automation has developed 

progressively from its origins in the manufacture of primarily "non-shaped" products 

(process automation) to products having "shapes" (mechanical automation), gener

ally requiring the handling of discrete parts in contrast to a continuous flow of mate

rials [3]. Machines can now enable many products to be made in large volumes in a 

short time. 

In the West the market for volume manufactured goods is now maturing 

and the desires of the consumer have changed considerably. There is now a per

ceived need for product diversification in manufacturing to meet increasing customer 

demand for choice [4]. This requirement for product diversification must be re

flected in the engineering of manufacturing systems. The emphasis when assessing 

manufacturing facilities must shift from purely measuring production rate as a figure 

of merit to assessing responsiveness to change [5]. The lack of responsiveness of 
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modem factories is now perceived as a serious problem. World-wide total industrial 

productivity is now approaching or even exceeding demand in a number of industrial 

sectors [6]. Items which the customer does not require represent waste however effi

ciently they are produced. 

New production systems must be able to respond quickly to changes in 

customer demand [7]. The emphasis is now changing from how to manufacture to 

what, when and how many to manufacture. The pressures on a modem production 

system are summarised in figure 2.1. The form of future manufacturing systems is 

an important consideration in enabling factories to be more responsive to customer 

demand. Computer integrated manufacturing (CIM) is seen as having the potential 

to revitalise many industries but its practical realisation remains limited [8]. The 

core concept of ClM is total optimisation in systems engineering.' A ClM system 

must however be well matched and interfaced to its environment or it may in itself 

be a recipe for chaos [9]. 

Management problem 
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revision of production system 

Reconstruction of productIon 
management system 

Training of engineers hU<D'S 
"" .......---..... a,. .... 
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reception cL _ E CD 

order to delivery / ! g 
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~ E'O 
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'-. 
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~*o,,~c, 
D Reduction. Z '\~ El 

In Ilfe time of E .:!! ! g-: 
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Figure 2.1. Pressures on a modem production system. Source: Suda. 
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It is in the context of a responsive manufacturing environment that the role 

and requirements for future real-time machine control systems must be evaluated. 

Real-time machine control tasks fonn the automated plant interface at the base level 

of the manufacturing hierarchy and their correct implementation is thus of vital im

portance. 

2.3 THE MANUFACTURING ENVIRONMENT 

Industries commonly require processes of different types to be integrated 

together within the same factory, on the same production line or indeed as parts of 

the same machine. This section considers the role of CIM systems in the context of 

a responsive factory structure and its implications on machine control. 

2.3.1 Functional Hierarchy 

Conceptual representations of the required levels in a manufacturing envi

ronment have been developed by several research groups [10]. 

A simplistic representation of the industrial functional hierarchy for all 

types of automation has been suggested by Bemard [11] and is shown in figure 2.2. 

Functions are subdivided into three groups: business functions at the higher levels, 

manufacturing at the lower levels and safety functions at the bottom level. This the

sis addresses the requirements for real-time machine control which encompasses 

levels one to three of the CIM environment shown in figure 2.2. The NBS informa

tion hierarchy for discrete manufacturing plants [12] is shown in figure 2.4. The hi

erarchy proposed by the Mitsubishi Electrical Corp. for continuous process plants 

[13] is illustrated in figure 2.3. Both diagrams illustrate the progressive variations in 

the time and information domains with real-time devices frequently exchanging rel

atively small quantities of infonnation. It is interesting to note the similarities in 

these architectures which encompass widely differing types of industrial automation. 

2.3.2 The Need for Integration 

As explained by Ekong [14] and many others [15, 16], CIM requires the 

ability to integrate vertically between factory levels from planning down to the con

trol of real-time operations in a flexible manner. This type of interrelationship is de

picted in figure 2.5. There is also an increasing need for horizontal integration to di

rectly link one activity or operation with another, typically where synchronisation is 
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required [17]. See figure 2.6. The requirement for integration has profound effects 

on the functionality required at the real-time control levels in order to integrate with 

and adequately service the higher factory levels [18]. 

TYPES OF INDUSTRIAL AUTOMATION 

CONTINUOUS DISCONTINUOUS BATCH DISCRETE 

LEVEL BUSINESS FUNCTIONS 

5 CORPORATE • Economic Forecasting 
• Market and Production Plamlng 

PLANNING • Decision Support Systems 

4 TACTICAL • Process Mcxlelllng and Simulation 
PLANNING • Economic Sensitivity Analysis 

• Acoounting and Finance 

3 TECHNICAL • Management Information Systems 

SUPPORT • Computer Aided Design 
• Plant Malnlenanca Syslems 

2 PRODUCTION • Scheduling • Purchasing 
PLANNING • Batch Management • Inventory Control 

• Material Requirements Planning 

1 PRODUCTION • Order Entry and Tracl<lng • Material Utilisation 
CONTROL - labourlPayroll • Shipping and Billing 

MANUFACTURING FUNCTIONS 

5 DETERMINE • Optimlse Equipment Utilisation 
BEST OPERATING • Energy Management Systems 
CONDITIONS • Computer Aided Manulacture 

4 QUALITY • Composition Measurement Systems 
ASSURANCE • Statistical Quality Con~oI 

• Automated Inspecticn Systems 

3 MOVE • Supervisory Control 
OPERATING • Sequence Control 
CONDmONS • Cell Control 

2 HOLD DESIRED • Adaptive Control • Model Reference Control 
OPERATING • Multivarlable Con~oI 
CONDmONS • FeedfolWard Control • Wor1<station Control 

1 MEASUREMENT • Feedback Control 

AND ACTUATION • logic Control 
• Machine Control 

SAFETY FUNCTIONS 

0 HUMAN AND • Automatic Safety Systems 
PLANT • Manual Shutdown 
PROTECTION 

Figure 2.2. Simplistic representation of the industrial functional hierarchy for all types of automation. 
Source: Bernard. 
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Object Function Contents 

Factory Production control 
(equipment, materials, employees) 
Materials control 

[ 

Producllon p/aMln", actual 
production planning 

Cosl control 
Shipment control Producllon 

----f---------- )""''''rT"?''''-'-\ Office management control compLller 

Field 

Production • 
process 

Running control 

Operation control 

Control 

<MElTAS> 

~ 
11 

~' U h Discrete Sl'IIpmMlancl 

Process L..:.._,"_Y_-,-_Co_nt_In_uo_u_,_p_,oe_e_,_, --'-___ .l-In_'p_e_ct_Io_n-'-._"_ •• _.~_ • ....J process process r .... I"IaI .. goodl 

1sec or less 

Intensity 

Actuallzallon 

Figure 2.3. Hierarchy proposed by the Misubishi Electrical Corp. for a mixed operations plant 
Source: Misubishi Denki Giho. 

Level: Timing: 

1 Month 

2 Factory/Area Week 

3 Shop Days 

4 Cell Minutes 

5 Workstation Seconds 

6 Equipment/Device Real-time 

Figure 2.4. NBS architecture for discrete manufacturing plants. 
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Specific Machine 
Functional Step 

Figure 2.5 Integmte venically between factory levels. 

ACS ACS ACS 

.........•.... ~.~~.~~ ... ~~!!!~~ ......................... ~.~!l.~! ... ~J!!!l~ ......................... ~.~~.!! ... ~1!!!1~ ............... . 

Tnnsduce" 

Figure 2.6. Horizontal integmtion to directly link one activity or operation to another. Source: 
Fenney. 

2.4 CONTROL OF MANUFACTURING OPERATIONS 

This section looks at the types of manufacturing operations where real-time 

machine control systems are typically applied. With the aid of some examples the 

functional requirements for the control of widely differing manufacturing operations 

will be considered. 
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2.4.1 Characterisation of Real-Time Machine Control Systems 

Industrial machine control systems are extremely diverse both in form and 

function making a simple definition of real-time machine control difficult [19]. 

A real-time control system is characterised by being connected via physical 

devices to processes which are external to it. These external processes will operate 

in their own time scales and the controller is said to operate in real-time if the tasks 

carried out within the controller relate to the time scales of the external processes 

[20]. 

Appreciation of machine control varies widely between different engineer

ing and scientific disciplines involved in manufacturing automation due commonly 

to differences in background and hence intrinsic vocabularies [21]. 

There are no fixed boundaries between the types of control appropriate for 

process or mechanical automation [22, 23, 24] although there is much confusion in 

both terminology and methods surrounding the assessment, selection and application 

of real-time control systems [25]. See chapter three. Figure 2.7 illustrates some of 

the commonly used sub-divisions across the manufacturing spectrum. 

Market forces now dictate the creation of more flexible manufacturing sys

tems, particularly for the mechanical automation of the lower volume discrete parts 

manufacturing and job shop environments [7]. The focus of this thesis is on the real

time control of mechanical systems for such discrete parts handling. The origin of 

the work is in modular manipulator control which has been a field of intense re

search in the Department of Manufacturing Engineering over the past ten years [26]. 

See section 7.3.5. As will emerge later however, the concepts discussed in chapter 

four and the methodology proposed in chapter five are more generally applicable to 

both mechanical and process automation. 

2.4.2 Types of Manufacturing Operations 

One established method of classifying industrial operations [27] is to seg

ment the major industries into continuous, discontinuous, batch and discrete units of 

operations as shown in figure 2.8. 



High 
volume 

Mass 
Production 

High Volume 
Low Flexibility 
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Individual automation systems 
/ requiring customised controllers 

Medium Volume 
Medium Flexibility 

Job Shop 

Low Volume 
High Flexibility 

Low 
volume 

Figure 2.7. Commonly used sub-divisions across the manufacturing spectrum. Source: Greenwood. 

Major Industries 

Power 
Water and Waste 

PetroJeum Refn. 
Chemical 
01 and Gas 

Pulp and Paper 
Food 
Textile 
Stone, Clay, Glass 
Mining 
Phannaceulical 
Rubber and Plastic 
Wood Products 
Printing and Publishing 
L •• iher Goods 
Textile Products 
Elec~onlc and Electrical 
Fabricaled Molal Produc," 

Furniture 
Motor Vehicles 
Transportation Equipment 
Instruments 
Machinery 

ContlnuouI Dlscontlnuoul B.tch Discrete 

Figure 2.8. Segmentation of the major industries into continuous, discontinuous, batch and discrete 
units of operations. Source: Bemard. 
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Continuous operations are those where the raw materials, intermediates, and 

final products are processed in continuous fashion for long periods of time. These 

operations are typified by the petrochemical and water industries [20]. A typical ex

ample would be a large distillation operation as used in many petroleum and chemi

cal separations. 

Discontinuous operations, when running, are the same as continuous opera

tions with the exception that they are frequently changed from one product to an

other [27]. Such changes may occur every few hours or days. Examples of such op

erations are paper making machines and steel rolling mills. 

Batch operations are somewhat different in that the processing is done in a 

specified sequence over a given trajectory of operating conditions, such as tempera

ture and pressure [28]. Batch is the oldest form of unit operation and is still used 

extensively in many industries such as food, glass and textiles. Many electronic and 

metal parts are also processed in batches. 

Discrete processes are those which produce one product at a time, such as 

motor cars or cookers [29]. Such processes use an assembly line where the product 

moves through the various operations, or the product may be relatively stationary 

with different processing steps done at the same location. A vast array of products 

are manufactured by a series of discrete processes. These include computers, do

mestic appliances, furniture and toys. 

Job shop manufacture is a term often associated with production of discrete 

items in low volumes. It is characterised by small lot production of varied products, 

typically with a high manual labour content [6]. 

This is a generalised classification of manufacturing operations and many 

industries will to some extent combine these categories of operations in their manu

facturing cycle [30]. 

2.4.3 Automation of Diverse Manufacturing Operations 

Automation has been widely applied to high volume products [31] in most 

types of manufacturing operations. The need for more responsive production of 

smaller volumes has promoted a strong interest in small batch production and more 

flexible automation [32]. 
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At the two extremes of manufacturing operations are continuous processes 

and discrete parts handling. While the control requirements may at first sight appear 

very different in these sectors of industry much of the required controller functional

ity is the same [33]. This commonality is illustrated by considering the required 

functionality for machine controllers in a plant which embodies a board mix of 

manufacturing operations. 

Figure 2.9 is a schematic for such a machine line which is typical of many in the 

food and glass industries [34]. The product is initially processed in continuous form, 

then divided into discrete items for the final stages of manufacture and packaging. 

This fictitious production line can be divided into typical machine sections. Four 

typical manufacturing operations have been chosen for the example machines illus

trated in figure 2.9. 

Table 2.1 summarises the functionality that might typically be required for 

each of the chosen manufacturing operations. It can be seen from the table that: 

Varied physical requirements are imposed by the form of each machine. 

A separate logical structure is imposed by the particular control requirements 

of each machine. 

Control functions are generally a combination of concurrently operating tasks 

which can be open and closed loop controlled. 

External communications requirements typically consist of services for both 

machine synchronisation and information exchange with higher factory 

levels. 

These examples illustrate that although machine operations may be dis

tinctly different there are generally many common functional requirements for the 

machine control systems. It is the scale of the machines, mix of required functions 

and response times which commonly vary [35]. There will also typically be differ

ences in operational considerations such as the degree of fault tolerance or the 

maintainability required [36]. 



3SnOH3!:1VM 

!)NnaNVH 

NOI.L::l3dSNI 
,vnNVW 

S3NIH::lVW O.L 
!)NIH::l.L VVI MO';! 

NOI.L::l3dSNI 
::l1.LVVlO.LnV 

S3NIHOVW 
!)NIVI!:IO;! 

S!:I3033;! 
SnOnNI.LNOO 

!)NISS3::l0!:ld 

3snOH 
H::l.LV8 

1BE ROLE OF MACHINE CONTROL IN MANUFACTURING 14 

~ 
.; 
Cl 

:.::I ., 
Cl 
:a 

Cl 
~ ?J ~ s 
.... 

.9 .a ., 
::; 0 

~ 
. ., 
g u: 

i~=. II .s 
0: 11= ~ 0 I 1:-; ~ [;l ~ 

tI.) 

,~ 

'" 1, ;ayre;) c. 
0 '" I! oOl' ~ I I I I li: 10'00'0 

/0'00'0
0

" 



TIIE ROLE OF MAClITNE CON'IROL IN MANUFACTURING 15 

Operation Continuous Batch Continuous Batch Discrete Discrete 

Wet Process Dry Prooess Disordered Regular 

Example Food Mixing Wrapping Sorting Packaging 

Physical Distribution 10-100m 5-20m 1-10m 1-10m 

Time Response 0.1-1 sec 0.001-0.01000 0.001-0.01soo O.OO4-0.04soo 

Control Type Combination of Concurrent Closed loop and Discrete Event Tasks 
- --

Comments Mix Optimisation ! Programmable Gearbox i Interrupt Biased Sequential 

Communications I/O Interfacing and Machine Integration 

Operator Interfaoe Centralised Operator Interfaoe for Each Machine 

Table 2.1. Typical machine functionality. 

2.5 MACHINE CONTROL IN A RESPONSIVE MANUFACTURING 
ENVmONMENT 

This section looks at the necessary attributes which machine control sys-

terns should embody in order to support an integrated manufacturing environment 

which will be responsive to change. A set of desired capabilities for flexibly auto

mated machines suggested by Weston [37] are listed below: 

(1) 

(2) 

perform more quickly (Le. shorter cycle-times to improve responsiveness) 

facilitate fast product changes and interact with operatives in a generally 

efficient manner (Le. to enable small batch working and operations) 

(3) perform more accurately (to improve quality, yields and down time) 

(4) facilitate pre-, in- and post-process inspection and/or test (again to improve 

quality, yields and down time as well as avoiding the further processing of 

faulty products) 

(5) include error recovery procedures (to provide similar benefits to (4» 

(6) include comprehensive diagnostic/maintenance facilities (mainly to simplify 

support of the technology) 
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(7) enable efficient planning and manufacturing control (to interact with super

visory planning and control systems to yield short planning horizons and 

thus high levels of efficiency and responsiveness coupled with low inven

tory levels). 

(8) enable efficient logistic functions (to interact with archiving and materials 

control systems as well as planning systems, to reduce inventory, improve 

quality and enable improved process control) 

(9) facilitate "integratability", (in the sense that where possible vertical and hori

wntal integration should be enabled as appropriate so that the inherent over

heads of time and cost which result from separating out organisation, plan

ning, control and manufacturing functions can be reduced). 

In order to meet the requirements of any given application in a flexible 

manner it is necessary to optimise machine capabilities. A machine controller must 

therefore be capable of changing the number, type and interaction between the func

tions it offers [38]. This identifies the need to offer "configurability" in order to: 

(1) install machine controllers in diverse manufacturing applications, 

and; 

(2) modify/enhance their functionality in a given application as product changes 

and/or required operating practices dictate. 

Due to the great diversity of manufacturing operations the functionality re

quired for a specific machine controller is obviously very much application depen

dent as discussed in section 2.4. However although each machine may be of a 

unique configuration there will typically be many common real-time and communi

cation functions required by most machines particularly within a common industrial 

sector [14]. The essential need is therefore the provision of the correct combination 

of real-time machine control related functionality to suit each particular machine in a 

flexible manner. 

Factory integration requires the cooperation of many manufacturing entities 

which of course include machine control systems. The functionality of the overall 

manufacturing system depends on effective information exchange between these en

tities. Maximising the external visibility of machine control information is thus im

portant in supporting a responsive manufacturing environment. The provision of this 

external visibility combined with a suitable elM infrastructure is necessary to enable 

effective information exchange [39]. 

An effective infrastructure is required to support vertical and horizontal in

tegration both above and below the machine controller level. Machine controllers 
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need to integrate both dumb and intelligent sensing and actuating devices (position 

sensors, closed loop drives, vision systems etc). A supporting infrastructure is neces

sary to achieve this [40]. Similarly integration of machine controllers themselves as 

entities within the wider elM infrastructure requires the use of methods which are 

compatible with wider integration philosophies [41]. 

The implementation of flexible rather than hard automation offers the po

tential for companies to adopt efficient production methods whilst still remaining 

adaptable enough to cope with frequent product changes and enhancements. As 

suggested by Weston and others [42] the role of the machine control system in this 

type of responsive manufacturing environment is to provide both local real-time ma

chine control capabilities, and the global machine related needs of integrated manu

facturing in a flexible manner. The shift to more responsive approaches to automa

tion brings with it the need to look closely at the wider issue of methodologies for 

the design of machines and machine control systems [43]. It requires the ability for 

machine control systems to support the reconfiguration of production equipment in a 

structured manner. Support and design environments are required to enable both 

run-time and longer term configuration changes in order to adapt efficiently to prod

uct modification and change. See table 2.2. 

2.6 SUMMARY 

As product life cycles continue to fall, todays manufacturing environment 

needs to become more responsive to change. An important aspect of improving 

manufacturing responsiveness is the provision of more flexible production machin

ery and associated machine control systems. Machine control systems must embody 

adequate real-time machine control and integration capabilities. This functionality 

needs to be provided in a flexible manner through the provision of adequate design, 

configuration and run time support environments. The next chapter will assess the 

manner and degree to which current control systems are capable of fulfilling these 

requirements. 



LOCAL 
MACHINE/PROCESS 
RELATED 
REQUIREMENTS: 

GLOBAL 
MANUFACTURING 
RELATED 
REQUIREMENTS: 

DESIGN REQUIREMENTS: 
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CONTROLLER 
ATTRIBUTE 

REAL-TIME CONTROL 
CAPABILITIES TO 
MAXIMISE MACHINE 
PERFORMANCE 

MAXIMISE CONTROL 
SYSTEM FUNCTIONAL 
VISIBILITY 

FUNCTIONAL FLEXI BILlTY 

PROBLEM ORIENTED 
OPERATOR INTERFACE 

MAXIMISE INFORMATION 
VISIBILITY 

EFFECTIVE 
ARCHITECTURE AND 
SYSTEM BUILDING 
TOOLS 

REQUIRED CAPABIUTY 

PERFORM MORE 
QUICKLY 

PERFORM MORE 
ACCURATELY 

INCLUDE 
COMPREHENSIVE 
DIAGNOSTIC/MAIN
TENANCE FACILITIES 

FACILITATE PRE-, IN
AND POST-PROCESS 
INSPECTION AND/OR 
TEST 

INCLUDE ERROR 
RECOVERY 
PROCEDURES 

FACILITATE FAST 
PRODUCT CHANGES AND 
INTERACT WITH 
OPERATIVES IN A 
GENERALLY EFFICIENT 
MANNER 

ENABLE EFFICIENT 
PLANNING AND 
MANUFACTURING 
CONTROL 

ENABLE EFFICIENT 
LOGISTIC FUNCTIONS 

FACILITATE 
"INTEGRATABILlTY" 

FACILITATE 
"CONFIGU RABILITY" 

Table 2.2. Required Machine Control System Capabilities 
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3 
Current Practices in Machine Control 

3.1 INTRODUCTION 

Chapter two has considered what the role of machine control systems 

should be in flexible manufacturing. This chapter aims to evaluate how well current 

machine control systems fulfil this role. The origin and characteristics of computer 

based machine control systems are investigated and an assessment is made of the 

strengths and weaknesses of current designs. Where possible this assessment refer

ences user and vendor perceptions of both their current control systems and future 

needs. 

3.2 THE EVOLUTION OF MACHINE CONTROL METHODS 

3.2.1 Introduction 

In an industrial sector which is very much driven by user demand [1], an 

appreciation of how control technology has evolved is important since traditional 

techniques continue to have an enormous influence on the form of modern control 

systems [2]. 

Prior to the middle of this century the standard approach to machine control 

was purely mechanical. This typically involved the use of linkages, gears and cams 

which were an integral part of any given machine [3]. Tremendous expertise has 

been attained in the field of mechanical control and it is now a very mature subject 

area [4]. There are many examples of programmable machines dating back more 

than one hundred and fifty years including textile looms and automatic piano play

ers. As early as 1725 knitting machines were controlled with punch cards. These 

devices represent considerable technical achievement for their time [5]. The first 

automatic feedback controller used in industry is generally agreed to have been 

James Watt's fly-ball governor applied in 1769 to control the speed of a steam engine 

[6]. 
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A great diversity of both discrete and continuous control systems have been 

implemented mechanically. Cam shafts, linkages and peg-in-hole mechanisms have 

been developed to implement sequential and combinational logic [7]. The speed of 

response of such mechanisms is obviously limited by dynamic constraints [8, 9]. 

With the development of electrical engineering early this century binary 

sensors, solenoids and relays became available as building elements to implement 

combinational logic circuits [10]. "Fast" combinational logic could be implemented 

with relays relatively easily and circuit rewiring was quick in comparison to me

chanical redesign. 

In the continuous process industries analogue control was commonly im

plemented using pneumatic single-loop controllers in conjunction with relay oper

ated alarm circuits [11]. This type of technology predominated until about 1960. 

The advent of semiconductors saw the use of transistors and later integrated 

circuits for binary and analogue control improving the speed of response, reliability 

and ease of circuit modification [12]. Analogue electronics enabled a rapid expan

sion in closed loop control, particularly in the process industries [13]. These ad

vances allowed a great reduction or even complete elimination of moving parts in 

machine controllers. However since the logic for the actions to be performed was 

still defined in hardware, (albeit in electronic rather than mechanical form), ma

chines remained relatively inflexible in operation. 

3.2.2 The Emergence of Computer Control 

A major change in control systems technology occurred with the develop

ment of the so-called "stored program" computer which enabled the control logic to 

exist "independently" of the control hardware. One of the first electronic computers 

was ENIAC (Electronic Numerical Integrator And Calculator), produced in 1946 at 

the University of Pennsylvania. It was composed of more than 19,000 valves and 

was programmed using wired plug boards [14]. At this time John Von Neumann 

suggested the idea of storing the program instructions in the computer as coded dig

its, in the same way that the data itself was stored [15]. The earliest stored-program 

computers were research machines developed in the UK and the USA during 1950 

and 1951 [16]. 

The size, cost and environmental needs of these early computers limited 

their general applicability and the market for them was very definitely data process-
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ing at company corporate level. The newness of the technology was reflected in the 

poor reliability of these physically large and expensive machines. Serious attempts 

at using digital computers for real-time control did not emerge until the late 1950s 

[17]. These computers typically had an addition time of one millisecond and a mean 

time between failures (MTBF) of about 50 to 100 hours. They were used for cen

tralised supervision in process control applications where high installation and 

maintenance costs could be justified. 

By the 1960s digital computers typically had an addition time of about 100 

microseconds and a MTBF of around 1000 hours. Increased performance and relia

bility provided the opportunity to use computers not only in a supervisory mode but 

also to directly control processes. There were however still major problems with 

both controller cost and reliability in these applications [18]. 

During the decade from 1965 to 1975 smaller, faster, more reliable and 

lower cost computers termed minicomputers emerged and were widely used for 

complex control applications [19]. These minicomputers could typically perform 

additions in one microsecond and their MTBF was better than 20,000 hours [20]. 

3.2.3 Microcomputer Systems 

It was with the evolution of the microcomputer in the 1970s that the digital 

computer became an attractive alternative for nearly all control tasks [21]. These 

devices were just as powerful and reliable as existing minicomputers at from one

tenth to one-hundredth the cost [22]. During the 1980s, microcomputers have be

come even more attractive for both simple and demanding automation tasks. With 

developments in microelectronics technology such as Very Large Scale Integration 

(VLSI) the current trend toward more powerful and more cost effective microcom

puter hardware can be expected to continue [23]. See section 6.6. 

3.3 COMPUTER BASED MACHINE CONTROL 

3.3.1 Introduction 

Computer technology has been made usable in different industries each 

with their own distinct environment, background of skills and levels of user training. 

Current controller types while sharing common implementation technology have 

distinctly different historical origins. These different starting points have signifi-
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cantly affected how each type of controller is perceived [24]. The following sections 

take a more detailed look at the evolution of these major categories of computer 

based controller. 

3.3.2 Programmable Logic Control 

A programmable logic controller (PLC) is defined by the US National 

Electrical Manufacturers Association (NEMA) [25] as: 

"A digitally operating electronic apparatus which uses a programmable 

memory for the internal storage of instructions for implementing specific functions 

such as logic, sequencing, timing, counting and arithmetic to control, through digital 

or analogue input/output modules, various types of machines or processes." 

In essence the programmable controller consists of computer hardware 

which is programmed to simulate the operation of the individual logic and sequence 

elements that might be contained in a bank of relays, timers, counters and other hard

wired components [26]. 

In the late 1960s a small number of DEC PDP-8, mM 1800 and Honeywell 

316 computers were being used for control purposes [10]. In 1968 a specification 

was written for General Motors Hydromatic Division for a "programmable logic 

controller". Hydromatic had experience with computer control and were aware of its 

advantages. However the requirements for sophisticated software preparation and 

the problems associated with using mainframe computer hardware, which was not 

suited to industrial environments, made it clear to Hydromatic that a new generation 

of controls was required. Hydromatic's revolutionary concept was that of a solid

state control panel that could have its control functions changed without any wiring 

alterations [27]. 

The major reason that programmable controllers were acceptable when 

minicomputers were not, was in the area of software [10]. Minicomputer control re

quired applications programs written in either assembly language or in real-time 

Fortran. Few end users of control equipment had programming staff sufficiently 

trained to handle the problem of debugging or reprogramming minicomputers. The 

software technique that really made the programmable logic controller succeed was 

the introduction of a relay ladder format that provided the machine builder with a 

means of program representation he could relate to. It also allowed end users, typi-
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cally plant electricians. to change. update and edit the program once the machine was 

installed in his plant [28]. 

Early in its history the role of the PLC was clear; it was used primarily as a 

straight relay replacement [29]. The benefits were associated with economies in the 

wiring of the machines and probably most significantly in the area of machine de

bug. A completely new relay ladder logic program could be entered in a matter of 

hours whereas to rewire a relay panel would require days or even weeks [30]. Pro

grammable logic controllers were tailored to meet requirements such as repetitive 

I/O polling. rapid logic solving and repetitive real-time predictability. None of these 

features were available on a general purpose computer in an industrially usable form. 

PLCs are thus highly specialised computers which are widely used and understood 

on the shopfloor but their functionality has traditionally been limited [31]. 

The capabilities of PLC have been progressively extended in recent years to 

include closed loop process control. motion control. maths functions. operator 

graphics. high level language programming and networking capabilities [32]. In 

some of today's more advanced control systems the original concept and application 

of the PLC is almost forgotten. The PLC aided by its industrial respectability has 

evolved to become the cornerstone of many industrial automation systems compet

ing directly with industrial microcomputers [28]. See section 3.3.7. 

3.3.3 Process Control 

Computer process control is defined by Groover [33] as: 

"The use of a stored program digital computer to control an industrial pro

cess usually of a continuous nature." 

Closed loop pneumatic and electronic analogue controllers were first sup

plemented in the mid 1960s [34] with direct digital control (DDC) systems. imple

mented using large centralised computers [35]. Conventional analogue electronic 

controllers usually remained. mounted close to the sensors and actuators and were 

used for back up in the case of computer failure which frequently occurred. The fast 

DDC loops were written in assembler (process frequencies in seconds) while the 

slower supervisory loops (process frequencies in minutes) were typically written in 

Fortran [36]. The vendors of this early equipment included. Foxboro. GE and IBM 

[34]. 
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In addition to closed loop control, process plants typically require a large 

amount of binary I/O in order to interlock various devices and prevent damage par

ticularly during start up and shut down sequences. By the early 1970s PLCs were 

typically used independently of the process control system for these I/O functions 

and as direct replacements for relay panels [35]. 

The cost of DDC systems fell rapidly and by the mid 1970s they became 

within the financial reach of smaller process plants [37]. Many of these systems 

were however poorly implemented and did much to tarnish the image of DDC pro

cess control [35]. 

From 1975 onwards the microcomputer enabled massive reductions in the 

cost of control systems. It became cost effective to directly replace local analogue 

electronics and practical to integrate these devices in a reliable manner. Modular 

distributed controls systems (DCSs) offered local intelligence and a level of process 

redundance in the case of failure [38]. The efficiency of process control was pro

gressively improved through the use of feed forward and model based control tech

niques [39]. 

In state of the art systems local controllers now typically handle all pro

cessing tasks with the exception of global optimisation, statistical process/quality 

control and information storage [40]. The multiple microprocessor architectures 

now employed offer redundancy with automatic switch-over to back-up systems in 

the event of failure [41]. 

The latest process control philosophy is that of hybrid continu

ous!batch!sequence controls [42]. Many vendors have with mixed success, at

tempted to include some form of logic programming capability in their continuous 

control systems in order to replace the use of PLCs and relay ladder logic which has 

been found cumbersome by many users [35]. 

3.3.4 Numerical Control 

Numerical control (NC) is a form of programmable automation in which the 

processing equipment is controlled by means of a language composed of numbers, 

letters and other symbols [43]. The development of numerical control owes much to 

the U.S. Air Force and aerospace industry during the 1950s. Although early NC 

. controllers used valves or later semiconductors in their hardwired logic circuits and 
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not computer control, they defined numerical control to mean machining based on 

coded numerical information [44]. 

The development of software to automatically generate this numerical in

formation and thus enable high level applications programming was vital to the suc

cess of NC [45]. Work on NC programming systems at MIT resulted in the creation 

of APT which was first used industrially in the early 1960s on large mainframe com

puters [46]. Efforts were made at an early stage to create a machine independent 

programming system with postprocessing to suit machine specific NC codes as nec

essary [47]. There has since been a high degree of standardisation on at least the 

concepts of APT which has gained world-wide acceptance [48]. NC machine tools 

are thus typically supported by a centralised part programming system. Advanced 

direct numerical control (DNC) installations of the late 1960s and early 1970s inte

grated hardwired NC machine controllers with their part programming systems using 

large centralised computers [45]. 

With advances in computer technology (see section 3.22), hard-wired logic 

circuits were progressively replaced, and the computer numerically controlled 

(CNC) machine tool was created [49]. CNC systems have now been developed 

specifically for the machine tool industry. They typically accommodate only limited 

configurability and are supplied to customers with their associated type of machine 

tool [50]. 

The internal design of CNC controllers has seen progressive rationalisation 

with the introduction of multi-processor architectures and the adoption of electronics 

industry standard bus systems [51]. CNC controllers typically incorporate local 

software and graphic display facilities that enable the operator to review and modify 

NC programs. Advanced controllers usually of Japanese origin now incorporate 

features such as adaptive control and three-dimensional contouring capabilities [52]. 

State of the art distributed numerical control (DNC) systems typically involve the 

use of a central computer for part program storage and real-time transmission to 

various attached CNC controls [53]. 

The term NC is now universally applied to the flexible automation of gen

eral purpose machine tools. The applications of numerical control have expanded 

from purely metal cutting to include applications such as PCB drilling, assembly, 

drafting and inspection [54]. The common operating principle of NC in all these ap

plications is control of the relative position of a tool or processing element with re

spect to the object (e.g. work piece) being processed [33]. 
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3.3.5 Robot Control 

The evolution of the robot is a very emotive subject which has been well 

documented [55, 56]. There is however no international agreement as to what con

stitutes a robot [57, 58]. The ISO (International Standards Organisation) definition 

of an industrial robot begins: 

"An automatic servo-controlled reprogrammable multifunction manipulator 

having multiple axes, capable of handling materials, parts, tools or specialised de

vices through variable programmed operations for the performance of a variety of 

tasks." 

In Japan a pick and place device ( a simple arm whose motions are defined 

by mechanical end-stops and typically sequenced from a PLC) is termed a robot, 

whereas in the West it is considered to be a special case of fixed automation [59]. 

To complicate the issue further there are now numerous classes of robotic device in

cluding various modular machines and programmable manipulator systems [60,61]. 

See also section 7.3.5. In an effort to overcome this confusion the Japanese have 

coined the global term Mechatronics to refer to the combination of mechanics and 

electronics that is present in all these devices [62]. 

The mechanical requirements for robots have never been particularly de

manding [63] and the restraining technical factors in robot development have been 

primarily in real-time control and the successful integration of associated sensors and 

actuators [64]. Viewed in terms of its general configuration a robot is essentially a 

sophisticated machine tool and thus its control system possesses similar basic fea

tures and has been able to utilise machine tool technology for much of its develop

ment [65]. The robot however is applied as a general purpose manipulator and there

fore requires integration into its intended application [66] whereas the CNC machine 

tool is generally able to operate as an essentially self contained special purpose ma

chine of well defined functionality [67]. 

Many of the early developments in industrial robots and their associated 

control systems originated from the work of George Devol between 1954 and 1958. 

This work was exploited commercially in the US by Unimation, a company formed 

in 1962 by J Engelberger [68]. The controllers of these early industrial robots were 

hardwired to perform a specific set of tasks. 

One of the first flexible control systems originated at MIT in 1968 and was 

based on a DEC PDP-6 computer [69]. Robotic control architectures have since 
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taken a number of approaches to meeting the inter-related requirements of config

urability, computational power and programming. Early systems [70,71] typically 

relied on a large minicomputer to provide both programming and control functions, 

but the systems themselves were typically implemented for a particular robot with 

little attention to modularity. Provision for non-manipulator interfaces and for man

ufacturing integration has usually received scant attention [72]. Later systems [73, 

74] have tended to employ a larger number of processors utilising much of the con

trol technology which had already been developed for the machine tool industry 

[64]. Recently there has been interest in the use of specialised computational hard

ware for manipulator control [75]. 

Robot programming methods have evolved which are distinctly different 

from those used for NC part programming. Facilities for motion teaching are almost 

always provided and more advanced systems incorporate off line textual program

ming facilities [76]. 

In the past there has been little standardisation of robot programming sys

tems [77] although a number of groups are now starting to address this issue [78, 

79]. To improve application visualisation and productivity, state of the art systems 

are starting to utilise graphical interface, modelling and simulation tools [80, 81]. 

See also sections 4.5 and 4.5. 

3.3.6 Motion Controllers 

Programmable motion controllers are a new breed of position control de

vice, usually with limited I/O and programming capability. They answer the need 

for custom motion control in user defined machine configurations [82]. 

Motion controllers have their technological origins in CNC and robotic 

control systems. The need for motion control in diverse manufacturing applications 

has led to the development of general purpose controllers for both open and closed 

loop motion control. The capabilities of these devices have evolved from simple 

point to point operation of single axes to multi-axis coordinated operation [83] and 

they are now available in numerous forms [84]. The general trend has been to offer 

more flexibility in the manner in which motions can be described and programmed 

[85,86]. 

The application of motion controllers is extremely diverse. Overall system 

performance is typically limited by the capabilities of the drive systems used [87]. 
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The notable development of brushless servo motor drives has progressively ad

vanced the application boundaries for programmable motion control using closed 

loop electric drives [88]. 

Motion controllers are typically used as devices within larger machine con

trol systems. The integration of such systems is typically achieved using industrial 

microcomputers [89] or more crudely with PLCs [90]. 

3.3.7 General Purpose Industrial Computers 

Having traced the emergence of computer control in section 3.2, this section 

reviews the current state of general purpose industrial computer systems. 

Most standard business or personal computers are neither sufficiently robust 

nor offer the required electromagnetic screening for the shopfloor [91]. The 

manufacturer's solution to these problems has been the development of more 

ruggedly packaged general purpose computers. These fall broadly into two hardware 

categories, industrialised business or personal computers, and purpose built indus

trial computers [92]. The former are today predominantly mM compatible MSDOS 

based microcomputers [93]. 

Business and personal computers have a wealth of excellent software pack

ages available for them and have become widely accepted [94]. In an industrial 

context they are well suited to program preparation, data logging, user display and 

supervisory control. Software packages are now available for them to fulfil many 

types of control applications at least to some degree and at modest cost [93, 95]. A 

wide variety of expansion hardware is also available to extend their capabilities in an 

industrialised and modular form [96]. Restrictions on the use of purely MSDOS 

based computers relate chiefly to severe limitations in the operating system for real

time control applications [97,98]. 

Purpose built industrial microcomputers are typically based around stan

dardised parallel bus hardware together with a suitable real-time operating system. 

This technology is reviewed in chapter six. Industrial microcomputers are now be

ing extensively used for the flexible control and integration of both dumb and intelli

gent devices [99]. Microcomputer system applications are extremely diverse and 

range from low level sensor and actuator interfacing to cell control activities [lOO]. 

Section 3.4.4 considers the integration of such control devices. 
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3.4 ASSESSMENT OF CURRENT CONTROL METHODS 

3.4.1 Introduction 

Regardless of the type of industry, common changes can be observed in the 

implementation of control systems as enabling technology has improved. 

Mechanical control systems were typically an integral part of the machine 

they regulated. With the development of electrical and electronic circuits the con

troller became a physically separate item but remained close to the sensing and actu

ating elements associated with it. 

The advent of the first reliable computers saw a progressive move towards 

more centralised control of machines and processes in high volume or high cost pro

duction sectors of industry which could justify very high levels of investment in au

tomation. Computer technology was initially very expensive, non ruggedised and 

difficult to program. Centralised controllers were the most cost effective solutions 

with a minimum of dedicated control electronics at individual machines or devices. 

As the cost of the technology progressively dropped and its industrial pack

aging and usability improved it became practical to place more intelligence close to 

the process sensors and actuators on individual machines. Such decentralised con

trol, based on low cost microprocessor technology has now penetrated virtually ev

ery industrial sector [101]. 

3.4.2 Control System Usage 

The industrial usage of microelectronics-based real-time controllers is 

shown in figure 3.1, from a recent Policy Studies Institute (pSI) report funded by the 

DTI [102]. Between 1981 and 1987 the differences in usage between industries have 

progressively narrowed as the technology has spread to more plants in the tradition

ally low-tech sectors. 

Table 3.1 lists the range of applications identified as being controlled by 

microelectronics in the 1985 PSI survey [101]. PSI reported that between 1981 and 

1983 the number of different processes controlled by microprocessors had doubled 

and was half as great again by 1985. In 1989 they concluded that the technology is 

being used in most of the main production processes of importance in industry today. 
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colour sorting 
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time control 
pattern control 
flow control 
speed control 
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refrigeration 
pasteurisation 
cooking 
firing 
melting 
boiling 
moulding 
drawing 
rolling 
unrolling 
forming 
forging 
die casting 
extrusion 
compressing 
shaping 
straightening 
bending 
defiling 
folding 
flanging 
coiling 
winding 
twisting 
spinning 
stranding 
scouring 
carding 
seaming 
weaving 
tentering 
knitting 
stitching 
embroidery 
baling 
binding 
glueing 
bonding 
welding 
riveting 
soldering 
sawin~ 
guillotlninQ 
metal cutting 
fabric cutting 
polystyrene cutting 
drilling 

Table 3.1. Type of control application. 
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Figure 3.1. The use of microelectronics in manufacturing processes by industry. 

The most common fonns of microelectronics in production processes are 

used for the control of individual machines (particularly in the metal working indus

tries) or individual pieces of process plant (mainly in continuous process industries 

such as food, drink, chemicals and metals). Although the kinds of plant are varied, 

the basic control principles involved are often very similar [l01]. As reported by 

PSI the percentage of plants using microelectronics for the control of individual ma

chines has risen steadily from 50 per cent in 1983 to 71 per cent in 1987. Micro

electronics have also been rapidly exploited for testing and quality control. 

For many industries centralised computer control was neither appropriate 

nor economic and has never been applied. In typically shopfloor machine control in

stallations separate relay panels were used and are now being progressively replaced 

by individual PLCs. With the development of low cost PLCs particularly from Japan 

it is now more cost effective to use a PLC rather than a set of relays down to less 

than ten I/O lines [103]. 

At the other extreme in tenns of processing power, CNC and robot control 

systems again use localised microcomputer systems typically with multi-processor 
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architectures [104]. PLCs and process controllers are adopting similar architectures 

in demanding applications [105]. 

Figure 3.2 compares the usage of several major categories of machine con

trollers [102]. PLCs are the most widely used kind of control equipment. Nearly 30 

per cent of all factories use them and the total number used has doubled in the last 

four years. They are employed mostly for relatively straight forward control or 

monitoring of a single process or piece of equipment [101]. The Frost and Sullivan 

report on PLCs [106] predicted a rise in the UK market value from $530.2 million in 

1986 to $1,416.3 million by 1991 and this despite large anticipated reductions in the 

unit costs of these devices with continued improvements in hardware technology. 

The report points out that the current applications represent only half the potential 

uses for PLCs even in todays market place. There have also been large increases in 

the use of machine and process controllers used in more complex applications than 

can be handled by a PLC [101]. Frost and Sullivan also stated that for many appli

cations the choice between process controllers, industrial computers and PLCs is no 

longer obvious. 
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Figure 3.2. Usage of CNC. PLC. robots and pick and place machines. 
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In Britain about one factory in five currently uses CNC machine tools and 

associated controls. Far fewer factories, only between 2 and 3 per cent of them, use 

robots, so while the robot embodies what are perhaps the most complex control sys

tems, their practical utilisation remains very small [102]. 

The extent of use of microelectronics in production processes is difficult to accu

rately determine [107]. The PSI survey calculated (by consideration of the total em

ployment in UK manufacturing) that the usage of microelectronics for process 

applications rose from 43 per cent in 1981 to 82 per cent in 1987. On average about 

a third of these production processes were controlled by some form of computer con

troller. See table 3.2. The report concluded that some 25 per cent of processes were 

controlled using microelectronics in factories employing 20 or more. people. While 

difficult to quantify the survey states that the microcomputer is still considerably 

under-exploited by existing users and that most companies do not recognise the 

scope that currently exists for its further application [107]. 

1981 1983 1985 1987 

Process applications 

% of users (a) 43 65 76 82 

% of their processes (b) 22 27 32 31 

% of total processes (a*b) 10 18 24 25 

Table 3.2. Overall extent of use. 

The integration of groups of machines or several stages of processes offers 

greater potential advantages when used in appropriate situations, but requires much 

greater specialist expertise and organisational change to introduce successfully and is 

therefore at present much less common [101]. 
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3.4.3 User Perceptions 

Most users derive very important benefits from the application of micro

electronics based controls. Of those surveyed by PSI in 1989 [108], three-quarters 

reported the ability to manufacture more consistent, better quality products through 

improved control of their production processes. More than half the user of computer 

based machine contrOllers recognised benefits from greater speed of output, lower 

production costs and more efficient use of labour, equipment and materials. 
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Figure 3.3. Main difficulties of microelectronics users. 
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The most common difficulty, experienced by nearly half the users surveyed 

by PSI over the last seven years, has been a lack of people with the specialist micro

electronics expertise required. Figure 3.3 lists the main difficulties of microelec

tronics users as found by PSI [l08]. One in five users reported problems with exist

ing control software. They were reported particularly from plants with high levels of 

control system usage and with more advanced kinds of application. PSI concluded 

that software problems were assuming growing importance and were not merely the 

"teething troubles" experienced by new users. Hardware problems were found much 

less predominant and were usually related to equipment price or supply rather than 

performance. 
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3.4.4 Integration Needs 

In both continuous process and discrete parts manufacture there is now a 

perceived need for plant wide integration to increase manufacturing responsiveness. 

See chapter two. Since microprocessor based control systems are now commonly 

distributed and placed with their associated I/O close to the controlled plant they pro

vide the potential for tremendous real-time information visibility if properly inte

grated [109]. However in the drive towards the implementation of elM, the role of 

the machine control system is often overlooked, ignored, or simply too difficult for 

companies to implement effectively [102]. 

As illustrated in figure 3.4, about half the factories in Britain are using mi

croelectronics in stand-alone applications - to control one or more individual de

vices, machines or processes. Far fewer, only about 19 per cent, have implemented 

any form of integrated control of a group of devices, machines or processes. 
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Automated storage 
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Figure 3.4. Application of microprocessor based controllers. 

The integration of a diverse range of application dependent devices is an 

important practical requirement for machine control. In a typical mechatronics envi

ronment multiple devices, many with their own intelligent controllers, must be made 
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to function as a single integrated whole [110]. The physical and logical structures 

for integration have been the subject of extensive research and are typically hierar

chical [111]. The concept behind such integration is however relatively simple; at 

machine level a set of hardware and software functional entities will be required to 

create an individual control system. When viewed externally this system can in turn 

be considered as a single composite element at the next level of integration and so on 

[112]. See figure 3.5. 

Manufacturing 
Process 

Production 
Cell 

Production 
Machine SpecifiC Machine 

Functional Step 

Figure 3.5. Integration hierarchy. Note this figure is identical to figure 2.5 and is reproduced for 
convenience. 

Despite the potential offered by the computer the practical integration of 

control devices still presents major problems [113]. Manufacturers typically base 

the operation of their controllers on proprietary software and hardware that offers the 

required functionality when the devices ( e.g. robots, PLCs, conveyors, packaging 

machines, vision systems) are used stand-alone but is often inadequate when the de

vices need to be integrated together to form a practical system [66, 65]. 

The typical current solution to such problems is to directly interconnect 

digital I/O between the various device controllers [114]. In this type of set-up a PLC 

is often used to provide the primary sequencing of more complex custom devices 
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(such as motion controllers, robots or machine tools) using its configurable I/O sys

tem. Such inelegant and ad hoc solutions may work, but are difficult to design, 

commission and maintain. Of even greater importance they are almost impossible to 

reconfigure to meet varying production requirements. 

In order to improve on such solutions many system builders advocate inte

gration using PCs, dedicated machine controllers and PLCs in a triangular hierarchy 

[llS, 116, 117]. See figure 3.6. The PLCs and machine controllers are utilised for 

time critical control while the PCs perform monitoring, data collection and data 

management functions. Such systems are typical of practical but unstandardised ap

proaches to integration which will become increasingly difficult to maintain and re

configure in the future [118]. 

Machine 
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Programmable Controllers (PLC) 

Figure 3.6. Pes, dedicated machine controllers and PLCs integrated in a triangular hierarchy. 
Source: Pinto. 
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To address the issue of integration in a more ordered way, numerous ven

dors, users, and university research groups have talked about and worked on various 

cell control concepts [112, 119]. See also sections 4.2 and 4.3. Practical cell control 

systems typically involve the use of an industrial microcomputer of appropriate 

power which: 

Interfaces to a higher level network if present. 

Provides a cell-level man-machine interface if required. 

Provides reprogrammable integration of the cell's individual device 

controllers to provide maximum operational flexibility. 

While relatively simple in concept, see figure 3.7, the universal cell con

troller has proved to be rather elusive due to a number of complications. Interfacing 

to all the device controllers in an adequate manner usually proves very difficult since 

many projects involve an element of retrofit to older controllers or unsupported de

vices [114]. Thus where integration has been attempted the system configuration is 

often effectively fixed since the costs and problems associated with expansion or 

modification are generally immense [112]. 
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There are current examples of well integrated systems particularly in CNC 

and large scale process control applications where requirements are relatively fixed 

and well defined [120]. Even in these systems, equipment from different manufac

turers is usually not compatible and there is virtually no support for non-standard de

vices making system reconfiguration difficult. 

The safest option for most companies currently is to leave the integration of 

machine control systems to specialist system builders who have experience in solv

ing interfacing problems [34]. For some years to come at least, such system builders 

will be almost indispensable for overcoming the problems of merely linking incom

patible devices together [121] with little consideration being given to the wider is

sues involved in achieving effective system integration [ll8]. 

Manufacturers have failed to realise that in attempting to tie together and 

control computerised processes, they need to establish a control hierarchy with a 

supporting infrastructure even at the lowest levels i.e. associated with real-time con

trOl. As a result current manufacturing facilities are typically composed of a multi

tude of disjointed systems and applications [114]. Due to these shortcomings ven

dors of traditional controllers are now realising the importance of supporting inte

gration. "Significantly larger PLCs will be used in the future. These devices will 

tend to aggregate groups of integrated systems into a single group and they will be 

significantly larger in communication and integration capabilities. Extra functional

ity must be built into the controller to enable such capabilities to be supported. The 

functionality in terms of machine control may be similar but the manner of imple

mentation will be fundamentally different." D. Morley, Modicom AEG [122]. 

A consistent approach to integration is vital if CIM is ever to become 

widely utilised. The information visibility currently provided within machine con

trollers is generally very poor [123] and this makes the effective integration of these 

real-time systems particularly difficult. 

3.4.5 Controller Configurability 

Control requirements are obviously applications related and ideally the 

functionality of any controller should be individually matched to the needs of each 

specific process or machine. Using a suitable set of hardware and software entities 

(from the wide range which are currently available) a machine control system can 

now be readily created to perform a single, specific manufacturing application [95]. 
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However most current controllers are of a fixed configuration (set-up to ful

fil within predefined boundaries a dedicated set of functions) which cannot be easily 

modified or extended. Machines and control systems are therefore often badly 

matched or applied to inappropriate applications. US robot manufacturers for exam

ple, have found it nearly impossible to reach a break-even level of profitability [65]. 

Part of their problem has been producing robots and in particular associated control 

systems of fixed configuration that have been far more sophisticated than necessary 

for the relatively simple jobs that most users have wanted them to perform [124]. 

In some cases families of existing control devices can be flexibly config

ured and this feature is now being perceived as an important requirement by both 

system vendors and users [125]. PLCs are the best current example of a config

urable controller [122]. They are however now constrained by a structure and pro

gramming philosophy which, while well understood by their traditional customers, is 

totally inappropriate to many areas of application. 

Alternative approaches based typically around industrial board-based mi

crocomputer systems are viewed with suspicion and even fear by many customers 

who do not have the skill required to support such devices in house. The use of real

time industrial computers, operating systems and system programming languages 

can now enable the development of flexible and efficient control systems. These ap

proaches require a high degree of programming skill to implement but provide a very 

powerful, flexible solution to control problems and are commonly used by custom 

machine builders [86]. Such systems can initially be tailored exactly to the intended 

application but once installed represent a custom solution to all but the most techni

cally skilled industrial users. 

The PLC is the principal reconfigurable controller used in industry today. 

The PLC has evolved to satisfy the customers needs for a usable shopfloor controller 

and any replacement for it must offer similar usability. The industrial acceptance, 

simplicity, versatility and other time proven virtues of the PLC need to be retained. 

However there is no longer a good reason to design control systems in isolation. The 

machine controller of the future must be an integral part of CIM. To achieve this the 

functionality of controllers must be increased [126] but even more importantly this 

functionality must be visible to the programmer [127]. 
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3.4.6 Control Functionality 

When considering a specific machine application, an appropriate level of 

functional performance and operational flexibility is required from the control sys

tem. The actual requirement for both the machine and its associated controls are ob

viously dependent on the range and type of products to be made and anticipated 

changes in operating conditions. The available budget, method of implementation, 

available controller performance and other physical constraints typically limit the 

level of operational flexibility which can be achieved [128]. 

For the majority of current control applications adequate real-time control 

functionality is available from existing control systems and in many cases there are 

many alternative methods of implementation [107]. 

from: 

The limitations placed on most state of the art control systems come chiefly 

physical restrictions imposed by available sensor or actuator technol

ogy (e.g., drive technology limits the boundaries of programmable 

motion control performance) [129] or 

difficulties associated with making advanced control technology us

able [127]. 

The capabilities of control systems have expanded progressively with im

provements in enabling technologies. As discussed in section 3.2, the successive ap

plication of mechanical, electrical, electronic and latterly computer systems have all 

had a profound effect on manufacturing control. The advent of the digital computer 

has enabled the creation of controllers that are many orders of magnitude more pow

erful than their earlier counterparts [95, 130, 126]. 

Maturing technology has enabled current controllers (PLCs, DSCs, CNCs, 

robot controllers etc.) to solve most routine control problems in their own traditional 

fields and expansion into other market sectors has often been achieved by adding ad

ditional control functionality. The boundaries between controller types have thus 

been blurred by advanced units which now have some characteristics of microcom

puters, PLCs and process controllers [2]. These advances have occurred in an ad hoc 

manner with little standardisation. Common examples are PLCs offering process 

control capability [128] or conversely process controller offering sequential logic 

capabilities [35]. The relationship between DSCs and PLCs is illustrated in figure 
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3.8. Such developments illustrate the inherent potential of microcomputers to con

trol almost any task given suitable peripherals and software but they are currently 

implemented in a largely unstructured and unstandardised manner. 

100% 
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PLC q 
Application Type 

100% 
Analogue 

~ DSC 

Figure 3.8. The relationship between DSCs and PLCs. 

3.4.7 Compatibility and Standards 

The adoption of general standards may not at frrst sight seem important 

particularly when considering the control of an isolated machine. Standards how

ever become cmcial for machines to communicate with one another and to be main

tained, expanded and integrated in an effective manner. 

Equipment compatibility and maintainability are major fears to users con

sidering the purchase of new control equipment According to a recent survey in the 

US magazine Automation [122] 82 per cent of users considered compatibility with 

existing equipment to be the most important need; more important than price, avail

ability and even ability to upgrade. Control software is of almost endless variety and 

while many systems now offer very similar real-time functionality (as discussed in 

section 3.4.6) few are compatible, even for the same class of controller [2]. 
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Due to these fears over equipment incompatibility and maintainability con

troller manufacturers particularly in the PLC market often become the preferred sup

plier of control equipment to certain companies. Their products become an in house 

company standard which is understood, known to be reliable and which can be ac

cepted and supported on the shop floor. This sort of policy has however often greatly 

restricted user choice and has resulted in the use of certain controllers in totally in

appropriate applications. For example the use of PLCs employing relay ladder logic 

to control the motion of servo motors [I]. 

Despite the possible advantages there has been very little standardisation of 

machine controllers. Many users are not aware of the importance of standardised 

controller structure and implementation methods to facilitate system configuration 

and integration [131]. The International Electro-technical Commission (1EC) al

ready has limited PLC standards [132] that specify programming and debugging 

tools, programming languages and PLC selection criteria, although conformance 

with these standards is currently very poor. There have also been some initial at

tempts at using standard hardware busses in PLCs [133, 2]. Manufacturers have vir

tually all adopted their own individual hardware and software systems each restricted 

to a limited range of applications. 

Standards are required that can be accepted and adopted by industry in 

equipment of widely varying cost and performance [65]. Vendors are now realising 

that standards and open architectures are going to play a large role in future devel

opments. "Open architectures are perceived as being a benefit. I think you'll see 

several vendors move [ towards standards and open architectures ] either subtly or 

very significantly." (Ken Jannotta, PLC Marketing Manager, GE Fanuc Automa

tion) [122]. 

3.4.8 Problem Representation 

The application of "technology" to real-time applications obviously pre

dates the availability of electronic digital computers. Many open-loop and closed

loop control systems were (and still are) implemented with electrical or electronic 

binary and analogue devices. However the development of modern computer tech

nology has enabled the solving of larger and more complex problems. As enabling 

technology has improved, techniques from the business systems computing sphere 

and methods developed for binary or analogue process/machine control engineering 

have been adapted in an ad hoc fashion to the engineering of modern digital elec

tronic real-time control systems. 
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In the business sphere computer technology has been applied to simplify 

applications [134]. The computer technology utilised in these business applications 

has been implemented in a problem oriented way. This type of user friendliness is 

generally lacking in the configuration and use of industrial control system software 

[135]. In a limited manner PCs now offer cost effective and flexible solutions to 

such tasks as PLC programming, plant monitoring, mimic displays, data analysis and 

limited supervisory control [93, 94]. 

Powerful computer hardware is available today at low cost. Indeed in the 

computer industry the development of greater processing power has by far out

stripped the development of software to exploit it effectively [l36]. This software 

deficiency is seen in machine controllers where for example a new breed of "super" 

programmable logic controllers have been developed with very powerful processing 

units but a muddled software environment In the business and real-time systems 

programming fields standard languages, operating systems and more recently CASE 

(computer aided systems engineering) tools have emerged [137]. These develop

ment tools are generally not suitable for direct embodiment in industrial real-time 

control systems but are now being exploited through the use of industrial microcom

puters. They allow a more consistent approach to control problems, given the avail

ability of software engineers to use them. See sections 4.4 and 4.5. The skills short

age is an underlying problem and it is only by using advanced software to simplify 

the representation of control problems that inevitably limited human resources can 

be efficiently utilised. 

3-5 CONCLUSIONS 

A major effect of the use of the computer for industrial control is that, with 

the exception of the provision of appropriate processing power and the configuration 

of I/O and other peripherals the hardware is essentially application independent. It 

is the interface devices and software which define a particular controllers functional

ity [2]. The flexibility of computer control is illustrated by its penetration into al

most every sector of the machine controller market. The computer offers the key to 

an as yet largely unrealised opportunity for standardisation since the controller has 

now become independent of the machine it commands [135]. 

Current methods however are fundamentally flawed since due principally to 

their diverse origins they are unable to accommodate todays needs for integration, 

configuration and flexibility in a coherent manner [114]. These features are all po

tentially available by correctly utilising todays enabling technology. See chapter six. 
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The requirements of elM suggest that a problem dominated approach is ur

gently required for the creation of a new breed of real-time machine controllers with 

a more natural method for control implementation. 

Having studied the application of current control technology a number of 

characteristics can be highlighted: 

For a large number of applications the function aspects of real-time 

machine control are well understood at machine level. Problem rep

resentation is however often restricted due to technical limitations 

which need no longer exist if current enabling technology can be cor

rectly utilised [l]. 

Study of the evolving practices in business and real-time systems de

velopment reveals the following clear trends [138, 139]: 

(1) The current ad hoc development practices used for the imple

mentation of machine controllers should be superseded. 

(2) The scope of development practices should be widened from fo

cusing purely on implementation to encompass problem formulation 

and defmition. 

Producing a range of machine controllers which can be totally inte

grated into a maintainable system requires the use of a coordinated 

approach [140]. There is the need for open systems architectures to 

achieve compatibility between devices to enable a more consistent 

approach to integration [141]. Much emphasis has been placed on the 

importance of the development of standard hardware communications 

interfaces [142, 143]. See section 6.6. This is however only one 

small but essential facet of the requirements for the emergence of 

open standards in control. If an open architecture approach to ma

chine control is to be effective it must not restrict the use of new en

abling technology for example improved processing hardware or 

software, the development of new user interface or better program

ming methods. Provision for corr.patibility with existing hardware is 

needed together with a coherent structure for expansion [72]. 

An ability to accommodate wide variations in system size with rea

sonable efficiency is seen as essential. It is important not to overbur

den a simple system with complex hardware and software which is 
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largely redundant but to offer logical integration and expansion paths 

[140]. 

The microprocessor is a very powerful industrial tool however the 

availability of engineers with a proper insight into its correct imple

mentation is currently limited and this problem is likely to worsen 

[144]. A consistent approach to control offers the potential to sim

plify problem presentation and thus utilise skilled personnel in a more 

efficient manner. 
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4 
Problem Oriented Approaches to Machine 

Control 

4.1 INTRODUCTION 

Two trends are now having a major influence on control system design. 

Firstly as illustrated in chapter three hardware costs have dropped dramatically, 

function for function, while software implementation costs, being labour intensive 

continue to rise. Secondly as discussed in chapter two the demands for higher manu

facturing quality, greater productivity and responsiveness have in turn demanded 

more sophisticated automation. Much more is now demanded from control systems 

and there is a need for more efficient engineering methods which can help to coordi

nate the efforts of the machine or process designer and the control system engineer. 

This chapter looks at problem oriented approaches to machine control sys

tem design and implementation within the factory environment. A problem oriented 

approach uses methods related to the nature of the problem and is not compromised 

by technological limitations. Obviously the state of the enabling technology avail

able must fully meet the requirements of the problem in question to allow such an 

approach to be adopted [1]. 

Models can be created to represent a machine control system as part of its 

factory environment. Similarly the internal behaviour of a controller can be mod

elled. Such models can provide order and structure to the design and implementa

tion of systems. The concepts behind system modelling are discussed and an evalu

ation is made of existing factory reference models, generalised architectures for ma

chine control and their implementation. 

Within the disciplines of computer science and software engineering, 

methodologies have evolved to aid the generalised modelling and structured devel

opment of real-time embedded systems [44]. These methodologies embody the con

cept of supporting the stages of a control systems life cycle not only through design 

and implementation but also to enable effective system maintenance and enhance

ment. Recently activity in the emerging field of Computer Aided Systems Engi-
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neering (CASE) has seen the creation of software tools which can automate the ap

plication of these methods. There would appear to be significant potential for the 

application of such approaches to the development of machine control systems. 

Programming languages for industrial machine control systems are evolving 

along multiple paths driven by regional influences, controlled machine architecture, 

end use, industry use and software technology. Methods for the efficient representa

tion of machine control problems are considered. If the method of problem repre

sentation reflects the problem being tackled both in terms of system structure and 

programming method then significant advantages might be gained in developing, 

maintaining and integrating machine control systems. 

4.2 CONTROL SYSTEM MODELLING 

4.2.1 Introduction 

Additional to the physical structure of a given control system are also the 

less easily visible information and application structures, which should exist within 

the system software and require simultaneous planning during systems development. 

For any non trivial system the design and management of these software structures is 

a very complex task and in order to make these activities easier to cope with sup

porting methods and tools have been proposed by a number of research groups. 

Models can be created to help with problem visualisation and to enable the 

implementation of control systems to defined structures or architectures. The scope 

and purposes of modelling techniques is extremely wide ranging. 

4.2.2 Reference Models for Manufacturing Control 

In recent years industrial and academic research groups have proposed 

"reference models" for manufacturing which encompass machine control. The scope 

of these reference models varies widely but in essence they provide "conceptual 

frameworks" for the manufacturing environment. 

Numerous manufacturing reference models have appeared recently, in sup

port of efforts for standardisation or as aids to specific factory management or con

trOl system implementations. They aim to provide an ordered description of essen-
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tial system requirements which can in turn guide designers of both hardware and 

software tools to support their efficient implementation. 

The following paragraphs provide brief summaries of known manufacturing 

reference models and associated system building tools: 

CAMI 

DECl&2 

CIMOSA 

FOXBORO 

HUGHES 

ICAM 

ISO 

m 

Computer Aided Manufacturing International model is a 
aimed at facilitating integration in discrete parts manufactur
ing [2]. 

The Digital Equipment Corporation has produced models 
aimed at control, manufacturing and marketing [3]. 

ESPRIT project 688 "CIM-OSA" aims to provide an Open 
Systems Architecture which covers all the information needs 
of all functions in a manufacturing enterprise. CIM-OSA pro
vides a reference framework made up of two parts. A Refer
ence Architecture which contains generic building blocks and 
a Particular Architecture that contains particularised building 
blocks for a specific enterprise [4]. 

As a supplier of industrial process control system, Foxboro 
has produced a detailed analysis of manufacturing functions 
[5]. 

A management and information architecture developed at 
Hughes for internal operations [6]. 

United States Air Force Integrated Computer Manufacturing 
Program provides a conceptual framework for integrated 
manufacturing in the aerospace industry. A set of implemen
tation projects aim to make these ideas a reality by the mid-
1990s [7]. 

The International Standards Organisation aim to create a 
multidimensional open-ended reference model to aid long
range planning for standardisation through the identification 
of interfaces between and characteristics of system automation 
elements [8]. 

The US National Bureau of Standards has developed a hierar
chical control architecture in support of its Automated Manu
facturing Research Facility [9]. See section 4.3.2. 

The m work promotes the idea of connectionist models for 
factory systems. These are naturally distributed and parallel 
thus offering a natural fit with the distributed computational 
resources available with modem control hardware and soft
ware techniques. The connectionist model encourages the de
velopment of low level primitives and provides a promising 
approach to the creation of a tool kit for generic control [10, 
11]. 

INow renamed NlST (National Institute for Standards Technology). 



NAYLOR 

PLAIC 

GRAI 

FFS 

AUTOMAIL 

MKS 
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Mathematical models for manufacturing software [12]. 

The Purdue Laboratory for Applied Industrial Control has 
produced reference models for the process industries [13]. 

Doumeingts at the RAI Institute of Grenoble has identified 
physical, information and decision structures in a model for 
manufacturing systems [14]. 

The Japanese Future Factory System initiative takes a holonic 
approach to manufacturing systems. A holon is an entity 
which has a double character to permit autonomy of a unit and 
order of a whole. The basic idea is developed from making an 
analogy between the holonic hierarchy of a living body and 
the structure of a factory enterprise or processing machine 
[15]. 

Automail is an "integration shell" which comprises of a dis
tributed system application language and a set of configuration 
management, concurrent task management and debugging 
tools. It does not seek to impose any particular application 
structure but supports the concepts of separate communica
tion, application and information architectures [16]. 

Manufacturing Knowledge System is a computational frame
work for CIM which embodies an object-oriented methodol
ogy for applying knowledge systems in an advanced manu
facturing environment. The test bed for this research is a 
semiconductor fabrication line at Stanford's Centre for Inte
grated Systems (CIS) [17]. 

4.2.3 Reference Model Construction 

Parunak [18] discusses the essentially intuitive concepts behind the con

struction of reference models. The process is one of developing a set of generic re

quirements and then abstracting a generalised model from these. The model formed 

can then be used for reference in building specific systems. Figure 4.1 shows how 

this concept can lead to the development of a series of reference models at different 

levels of specificity, through a series of abstractions followed by a series of 

syntheses. Section 5.5 describes the formation of the UMC reference model. 

4.2.4 Control Hierarchy 

The most common structure, and the one represented in most factory refer

ence models [18], describes the control of a system through a series of hierarchical 

layers. Table 4.1 illustrates the trends that emerge in such hierarchies. 
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Abstraction 

Other Other 

/ 
Requirements 

~ 
Requirements 

More Generic Generic More Specific 
Requirements Requirements Requirements 

j 
More Generic Model More Specific 

Model 

~ 
Model 

Other Models Other Models 

Synthesis 

Figure 4.1. The concepts of model abstraction and synthesis. Source: Parunak. 

Control Scope 

Time Constant 

View of Data 

Predominant 
Activity 

Relative Position in Hierarchy 

Top 

Wide 

Long 

Summarised 

Planning 

Table4.1. Trends in Hierarchical Models. 

Bottom 

Narrow 

Short 

Detailed 

Execution 

Various control hierarchies have been suggested by different research 

groups ranging between the extremes of completely open hierarchies and completely 

closed hierarchies. 
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4.2.5 Open Hierarchy 

An open hierarchy can have any number of levels. depending on the needs 

of the specific application. The m control hierarchy for example allows an arbitrary 

number of levels [11]. Thus the number of levels need not be specified in the refer

ence model. Instead. the emphasis is on generic behaviour which every level must 

provide. Such a hierarchy of generic entities may be termed a fractal description 

[19]. Where practical such methods permit the development of a common software 

framework for every level and can thus greatly reduce the programming effort 

needed to implement a control hierarchy. See figure 4.2. Section 5.5.2.2 describes 

the concept of a completely open hierarchy for the UMC task structure. 

sensorl 
world model 
feedback in 

sensorl 
world model 
reQuost ou1 

command in 

GENERIC 
CONTROL 

LEVEL 

+ er 
c:ommand out stalUI r. 

Figure 4.2. A generic control hierarchy. Source: NBS. 

Open hierarchies typically identify functions that are common to all or most 

levels. The NBS model has three components at each level. Section 4.3.2 describes 

the implementation of the NBS model by a number of research groups. 

The following list summarises the generic functions which have been pro

posed by various published open hierarchies [18]. Each level is responsible to; 

decompose commands that it receives into sub-tasks for its subordi

nates; 
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schedule the execution of sub-tasks by its subordinates; 

dispatch sub-tasks to subordinates; 

predict feedback from subordinates; 

analyse feedback from subordinates; 

report conditions to its supervisor; and 

complete its assigned task. 

4.2.6 Closed Hierarchy 

A closed hierarchy has a fixed number of levels. with specific functions 

bound to each level. For example the physical structure or organisational require

ments of a control system may required that specific functions are associated with 

particular levels. 

Figure 4.3 lists the levels that appear in a number of factory reference mod

els and indicates which models have which levels. The double-headed arrows indi

cate a single level in one model that spans two or more levels in another model. 

CAMI Hughes ISO PLAIC ICAM DEC1 NBS 

Enterprise • 
Factory • • • • • • • 
Centre 

I I • I • • • 
Cell • • • • 
Workstation • • • • • • • 
Machine 

I I I I I • • 
Device Cntrl. • • 

Figure 4.3. Factory model levels. Source: Parunak. 
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Although there is general consensus, not all of these models use the same 

terminology for the various levels. The following definitions are used in figure 4.3: 

Enterprise 

Factory 

Centre 

Cell 

Workstation 

Machine 

Device 
Control 

Geographically separate production facilities. 

All operations at one geographical location. 

An area within a factory that is managed as a unit 

Two or more workstations integrated to perform a group of 
related processing steps. 

A closely-coupled collection of equipment that performs a 
single distinct step in the manufacturing process. 

A single piece of equipment, with a single external control 
interface. 

A component of a machine with its own control interface. 

It is interesting that in the models considered only DECI and NBS include 

separate machine and device control levels. Most have concentrated their efforts at 

the higher levels and simply view machines externally without specifying their inter

nal application or information structures. 

4.2.7 Hierarchy Evaluation 

The difference between open and closed hierarchies is not one of right or 

wrong. Often the most generic model of a system can be formed using an open hier

archy. As more specific functions are added to specific layers a hierarchy becomes 

closed. According to Parunak, open hierarchies are typically pure control structures, 

while closed hierarchies are usually a hybrid of control and organisational require

ments [18]. 

4.3 ARCHITECTURES FOR REAL-TIME CONTROL 

4.3.1 Introduction 

Having considered the concept of factory reference models this section con

siders the more specific modelling and implementation of structured machine control 

systems. These are typically open control hierarchies with application dependent 

structures which may be distributed. 
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4.3.2 Hierarchical Control Architectures 

One of the best known hierarchical architectures for real-time control was 

suggested by Albus et aI at the Centre for Manufacturing Engineering, NBS Wash

ington [9]. Their approach involves an open hierarchy of modules in defined layers. 

NBS have looked at the theory and practise of hierarchical control over the last 

decade. Their work covers factory models previously discussed in section 4.2.2 and 

includes the implementation of real-time machine controllers conforming to these 

models, based on finite state techniques [20,21]. 

In the NBS architecture high level goals are decomposed through a succes

sion of sub-goals with progressively simpler commands at the lower levels. The 

bottom level interfaces with the sensors and actuators. Each control level is a sepa

rate process with a limited scope of responsibility. Each level performs the generic 

control function of sampling its inputs and generating appropriate outputs. See fig

ure 4.4. The input is characterised by three types of data, a command from the next 

higher level, process data from the same level and status feedback from the next 

lower level. The outputs are of three types, a command to the next lower level, a re

quest for data at the same level and a status feedback to the next higher level. 

command in PRE·PROCESS POST ·PROCESS 

DECISION I 
c:ommand in command ou, 

.ansorl 
world model 
feedback in 

sensorl 
world modal 
reQuast oul 

GENERIC ....:::...... 
CONTROL -7 

LEVEL 

sensorl 
world model 
feedback n I.il sensorl 

world mOdel 
"QUIltSI

OUI 

command oul ltatus In 

INPUT 
DATA 

DECISION 
PROCESS 

PROCESS 

I 

Figure 4.4. Generic control level in NBS computational hierarchy. Source: A1bus. 

,talus Oul 

OUTPUT 
CATA 

The basic command and control structure is a tree in which each module 

has a single supervisor and one or more subordinate modules. As illustrated in fig-
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ure 4.5 the computational "chain" of command from the bottom to the top of the or

ganisational tree can be further segmented into three hierarchies: 

(1) goal, or task decomposition (H) 

(2) feedback processing (G) 

(3) world model (M) 

At all levels in the system the H, G and M modules are executed on a repet

itive clock based cycle in order to ensure that the response of the system is deter

ministic. This model has been implemented at NBS [21] and adopted by Philips for 

their ClMPHONY factory integration project [22]. Hormann suggests a critical 

point in the implementation of real-time control systems using this architecture is the 

communication overhead within or between levels of the hierarchy [23]. Also since 

finite state tables contain no sequence information it is difficult to implement se

quential tasks using the NBS control system [21]. 

Lent [24] has developed the concept of dataflow driven control system 

aimed at the machine tool market. This has similarities to the NBS implementation 

philosophy. The control program is split into processes, each of which operates like 

a finite state machine. The execution of a specific process is triggered uncondition

ally as soon as any of its input data changes in value. The operation of such a system 

has a strong analogy to hardwired logic circuitry. It offers an efficient implementa

tion method for machine controllers of relatively fixed configuration. 

4.3.3 Distributed Control Architectures 

To overcome the disadvantages of a purely hierarchical system, Paul [25] 

has proposed a control system consisting of a distributed network of sensing, action 

and reasoning agents working in their own domains with a coordinator which inte

grates local knowledge. Shin [26] has considered the communication requirements 

for five classes of industrial process in the context of multi-robot systems. These 

range from independent to tightly coupled processes. Modular control systems for 

multi-robot or multi-actuator systems have been considered by several research 

groups [27, 28, 29] and such systems are now seeing initial commercial exposure 

[3~, 31]. The concept of splitting problem representation by division into separate 

processing tasks is one well accepted and used commercially. 
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Taylor has been engaged in the real-time requirements for control systems 

at IBM [32]. His system consists of an interactive programming tool connected 

through shared memory to a multi-processor real-time system that performs time

critical operations. A major feature of this system architecture is the ability to con

figure the system to control a wide variety of sensor-based programmable automa

tion equipment. The behaviour of the real-time system is determined through data 

flow graphs which are initialised and manipulated by application programs. The 

building blocks for these data-flow graphs are real-time application subroutines 

known as verbs which include device I/O, control laws and trajectory planners. See 

figure 4.6. Once defined verbs can be used or combined to form compound verbs 

and may be used to describe serial motion expressed as a graph. Taylor finds that 

such programs map more naturally onto graphs than onto conventional textural pro

grams [33]. See also section 4.5.5 which discusses function chart programming . 
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Figure 4.6. Example of Taylor's data flow graphs. Source: Taylor. 
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A quite different approach is taken by Bharu [34], in his research using a 

neural network structure for the implementation of a robot control system which cur

rently consists of 19 processors. The approach called Control using Action Oriented 

Schemas (CAOS) aims to obtain intelligent control by simulating the functions of 

the biological nervous system. The main limitation associated with systems based 

on neural networks is their relatively simple structure compared to the biological 

nervous system which currently limits their capabilities to simple tasks [22]. 

Advanced work has been done on distributed fault tolerant industrial pro

cess control. PEARL [35] is a highly fault tolerant distributed system but Shin [26] 

reports that the results of this research may be difficult to apply where tight synchro

nisation of devices is required in for example many motion control applications. 

Mars [36] is a distributed fault-tolerant system offering deterministic performance. 

The Mars project started in 1980 at the Technische Universitat Berlin. The fIrst 

prototype appeared in 1984 and demonstrated the fundamental concepts of Mars. 

The second academic prototype developed at the Technische Universitat Wien in 

Vienna has been functional since 1988. The main feature of Mars is deterministic 

performance under a specifIed peak load [37]. Its main industrial applications in

clude rolling mills in which the controller system imposes hard deadlines and the 

system is capable of supporting tight motion synchronisation. In the UK, Holding 

[38] has similar research interests in the design of fault tolerant distributed systems 

and the control of high speed machine drives. 

The implementation of distributed computing environments for real-time 

machine control is heavily related to the provision of a suitable operating system. 

Meglos, an AT&T research environment for robotics and general machine control 

[39], MARS mentioned above, and TRON [40] a new Japanese operating system de

signed to enable the integration of real-time devices appear particularly signifIcant in 

this respect. See also section 6.9.5. 

4.4 STRUCTURED SYSTEM DEVELOPMENT 

4.4.1 Introduction 

This section focuses on generalised approaches to the development of con

trol system software. From their origin in computer science many and varied meth

ods and associated software tools are currently used for the design and analysis of 

business and real-time systems software [42]. Such methods are widely used for 
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large embedded control systems although as yet rarely applied to the implementation 

of industrial machine control systems. A major drawback to the wider utilisation of 

these methods is that they are often confusing to untrained users. 

In the field of software engineering, development methodologies have 

evolved initially for structured programming and more recently for systems defini

tion, design, implementation and management in order to support the various phases 

in a control systems life cycle. The automation of such structured development 

methodologies in the form of CASE tools is currently the focus of extensive research 

activity [41]. See section 4.4.4. 

4.4.2 System Life Cycle 

The phases in a system life cycle are those it must pass through to achieve 

its goal. The structured development of any control system typically follows a series 

of sequential phases covering its definition, refinement, installation, run time activ

ity, maintenance and modification [42]. Interestingly ICAM, ISO and CIMOSA em

body the concept of the system life cycle into their factory reference models [18]. 

From a systems engineering perspective the role for a life cycle is to pro

vide structure and order to the process of developing a system through time. Most 

approaches adopt a series of stages through which the system moves, and a set of 

tools that facilitate this movement. The term tool is used very widely in this context 

to include the overall concept and general architecture for the system to be im

plemented, documentation systems, project management systems, reference models 

and recognised standards. The tools are any entities which assist the project through 

its realisation stages [43]. The number of life cycle stages and the terms used to de

scribe them vary but a generalised set based on the suggestions of [44] and [18] are: 

Requirements Expression 

Requirements Analysis 

Design 

Implementation 

Validation or Test 

Installation 
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Operation and Maintenance 

Enhancement and Management of Change 

Traditional system development proceeds in a step-wise fashion from 

problem to analysis, then design, implementation etc. Based on the experience of 

many real-time systems developers the main problem with conventional approaches 

to software development is that they are too rigid [45]. In development there is 

complex interaction and overlap between the various stages. As in other fields of 

engineering the specification is inextricably intertwined with the nature of the final 

implementation [46]. 

McMenamin and Palmer [47] have developed a modelling strategy which 

clearly distinguishes the essence of a system from its implementation as follows: 

The essential model describes what a system must do and what data it 

must store regardless of the technology used to implement the system. 

The implementation model describes a system as it is actually realised 

by a particular technology. 

Based on the work of McMenamin and Palmer, Ward-MelIor [46] advocate 

clear separation of the essential and implementation models of a system during the 

design phase. See figure 4.7. The major benefit of this approach lies in its resolu

tion of the common confusion between implementation dependence and level of de

tail. The spiral arrow in figure 4.7 suggests another feature of the Ward-MelIor es

sential/implementation model distinction, namely that the sequence of construction 

is independent of model content [46]. Thus as each successive level of essential de

tails is defined, the corresponding details of the implementation may be filled in and 

soon. 

The assumption that the specification can be fixed at an early stage in the 

development process is very rarely achieved even when the best practices are fol

lowed [16]. There is inevitably a limited appreciation of the fmal problem at the on

set of a project and necessary enhancements are costly to achieve. Glad [42] pro

vides typical figures for the distribution of effort in the software engineering of real

time control systems. See figure 4.8. 
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Figure 4.7. Relationship of essential and implementation models. Source: Ward-Mellor. 
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Figure 4.8. Distribution of effort in the software life cycle. Source: Glad. 
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4.4.3 Methods and Tools for System Design and Analysis 

The methods used are numerous and varied but have been categories by 

Frost [44] into five major groups - CORE, Yourdon, Jackson, Mascot and HOOD. 

The situation is complicated by the large number of variations on these basic meth

ods. For example there are two major variations on the Yourdon style of structured 

analysis for real-time systems [48] Ward-Melior and HartIey, and many others which 

are only applicable to non-real-time design. These methodologies cover the re

quirements expression, requirements analysis and design stages of the system life 

cycle. See figure 4.9. 

Figure 4.9. Method coverage. 

Mascot (Modular Approach to Software Construction, Operation and Test) 

was originally developed in the seventies at the RSRE. There are two major defini

tions, Mascot 2 (1983) and Mascot 3 (1987). Each of them may be used with an as

sociated real-time kernel onto which the software can be directly mapped [49, 50]. 

Mascot 2 is a simple design methodology which has limitations [44]. It is however 

relatively easy to understand and is well matched to modelling the communication 

mechanisms provided by most real-time operating systems. 
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HOOD is an Object Oriented Design (OOD) tool which was developed for 

the European Space Agency. OOD is a concept which is now attracting a lot of in

terest in the field of software engineering [44]. Many software developers are look

ing for an effective way of redesigning reusable software components. OOD is re

garded as one of the most promising solutions and the concepts also appear partic

ularly applicable to machine control. 

4.4.4 Computer Aided Systems Engineering 

Modelling methodologies provide guidance for building system models. 

However during a systems life cycle these models will require frequent modification 

and change. Models constructed by hand require enormous effort to construct and 

even more effort to change. Change is however inherent in a system's life cycle and 

must be made as easy as possible. 

This need has led to the development of software tools that automate some 

of the model building methodologies used in business and real-time systems. In the 

Computer Aided Systems Engineering (CASE) philosophy the computer provides a 

development environment to enable the building of system models [51, 52]. 

The development environment needs to provide a range of tools appropriate 

to the different participants and stages in a system's life cycle. For machine control 

system development participants might include managers, manufacturing systems 

engineers, software and hardware engineers etc. To be considered as a consistent 

environment the tools must provide a common user interface, use a common 

database and provide configuration management capability. 

CASE systems are now available from a number of vendors [52, 53]. 

HOOD [54] for example is a CASE environment developed for the European Space 

Agency providing object oriented design facilities targeted at Ada programming. 

There are unfortunately no standards for CASE. Each system includes or 

omits whatever it wishes based on its own standards and each vendor would like its 

implementation accepted as the standard. In the US the Software Engineering In

stitute at Carnegie-Mellon and the Centre for Advanced Information Management 

(CAlM) at Auburn University have emerged to provide CASE guidance. These 

bodies are working closely with the International Standards Organisation (ISO) and 

United States of America Standards Institute (USASI) to establish standards for all 

aspects of information engineering [52]. 
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4.5 APPLICATION PROGRAMMING METHODS 

4.5.1 Introduction 

Programming languages for industrial machine control systems are evolving 

along multiple paths driven by regional influences, controlled machine architectures, 

industrial usage and software technology. 

Well documented work has been carried out by many working parties on 

defining programming methods and in particular language requirements for various 

categories of flexible machine [55, 56, 57, 58]. The capabilities of alternative pro

gramming languages have in turn been evaluated by various research groups [59, 60, 

61,62]. These languages are typically machine specific or based on extensions to an 

existing general purpose programming language [63]. 

The capabilities of existing machine programming systems obviously vary 

widely as do opinions about their effectiveness. Common criticisms however in

clude difficulties in describing the application problem effectively and severe limi

tations when trying to control external devices not supported by high level functions 

in the particular language. 

It seems likely that no single language will be capable of providing a practi

cal answer to all industrial machine control problems. An alternative is a coherent 

environment capable of supporting multiple methods of problem representation. 

4.5.2 The Nature of Machine Operations 

Machine operations typically involve the execution of predefmed sequences 

of actions, or in continuous process control, continuously maintaining predefined in

put/output relationships. Various approaches have been adopted to define these ac

tivities [58, 62, 64]. 

In most machines several distinct activities need to occur simultaneously 

and a machines operation can usually be naturally split into a number of application 

tasks [65]. Each task has its particular requirements and the most natural method of 

representing this activity to the programmer will therefore vary. See figure 4.10. 
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Figure 4.10. Modularising a control problem into concurrent tasks. Source: Notte. 

Satisfying the requirements for machine control in a responsive factory en

vironment involves the programming of many complex and varied concurrent tasks. 

For example the operation of a single machine may involve sequential and combina· 

tional binary logic, motion control, management infonnation collection and process 

diagnostics. The nature of such a complex application is also likely to change as 

more is learned about the system and product requirements. 

4.5.3 Programming Environment 

Benedick [66] states that a good programming technique offers the capabil· 

ity of designing the control system from the top down and developing it from the 

bottom up. This is especially useful when designing and developing industrial con· 

trol systems where many technical disciplines are commonly involved. 

It has been recognised by Volz [57] that software engineers have come to 

realise that design environments and programming languages go hand in hand. A 

future control system design environment should include management tools to sup· 

port multiple'designs, source level debugging tools, a consistent and easy to learn 

interface, and freedom from machine specific details. 
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Figure 4.11. Environment for robot programming. Source: Volz. 

It is considered extremely important by the IEEE robot programming lan

guage working group [57] that programming systems are based on some standard 

general purpose programming language with full support for software engineering. 

See section 4.4.4. The working party's concept of a "staircase" structured program

ming environment is depicted in figure 4.11. Different programming levels are pro

vided in a similar manner to those suggested by Taylor at IBM [67]. Each level is 

built upon the totality of the levels below it, and the programs written at one level 

may utilise the commands from any lower level. This feature allows programming 

languages to be built upon and evolve from a standard system programming lan

guage and operating system. The operator can interface with and reprogram the 

system at all levels and a common world model is suggested for system wide infor

mation. 

Several researchers including Taylor [67] at IBM and Haynes [21] at NBS 

have used combinations of graphical and textural programming methods for machine 

control. The International EIectro-technical Committee (IEC) [58] has looked at 

textural and graphical languages and supports the concept of connectivity of pro

gramming languages. See figure 4.12. Basic textual and graphic programming lan-
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guages may be used to define function blocks which may in turn define action blocks 

and translation conditions that are the elements of program execution. 

Programmable Control Program 

Sequential 
Function Chmt 

Transitions 

Action Block Direct Action 
Transition 
Conditions 

Function 
Blocks Function!: 

Expressions 

- Structured Text 

Instructions 

- Instruction List 

Figure 4.12. Hierarchy of IEC industrial control program elements. 

One important aim is to mask the complexity of very sophisticated lower 

level languages from the higher level users. People with varying programming skills 

and backgrounds must be able to cooperate in the multi-disciplinary creation of a 

control system's structure and application programs. 

4.5.4 Problem Description Languages 

Problem Description Languages (PDLs) are widely used whenever non 

computer specialists need to work with computers. Some common examples of 

PDLs include spreadsheets, database languages and the programming languages 

found on programmable controllers. See table 4.2. What distinguishes problem de-
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scription languages from general purpose programming languages is that the PDL al

ready contains a model for a particular kind of problem [68]. 

Language Application Internal Model 

Spreadsheet Matrix Office Filing 
Calculations System 

Ladder Diagram Discrete Control Relay Panel 

Finite State Logic Any Event Driven Set of State 
System Diagrams 

Table 4.2. EXllIIlples of problem description languages. 

PDLs are efficient because they try to minimise the demands placed on the 

programmer. Since a panicular model is already built into the language the pro

grammer only needs to supply the information about that particular instance of the 

general problem. In lower level procedural languages both the problem data and the 

structure of the problem must be supplied by the programmer [66]. 

Lower level languages are versatile and can be applied to many different 

kinds of problem. PDLs are problem type specific and there must be a close match 

between the PDL used (Le. its internal model) and the problem to be solved if it is to 

be an efficient programming method. In contrast low level languages can be used 

for almost any purpose but programming efficiency is relatively poor. 

A number of problem description oriented systems have emerged for ma

chine control. 

4.5.4.1 Relay Ladder Programming 

All ladder diagram programming systems share a common internal model; 

the relay panel. If the programmers problem is to replace an electro-mechanical re

lay panel with an electronic controller with no moving parts and which can be easily 

"rewired" from a keyboard, then the internal model of a ladder program provides an 

excellent match provided that single bit binary state changes can adequately model 

the application. The difficulty often experienced with using ladder diagrams for 

more "advanced" programming applications is due to the poor match which often 

exists between the problem and the internal model of the relay ladder diagram 

language [68]. 
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4.5.4.2 Finite State Diagrams 

State descriptions share a common model of a set of state diagrams or ta

bles. Using state logic the programmers job is to accurately define all possible states 

of a system. See table 4.3. Such methods have been extensively used at NBS [21]. 

Next 
Command Stale Feedback State Output Report 

C30 No New Command C30 Wait 

Fetch (A) C30 New Command C31 Reach to (A) 

• C31 Dlstanc. to A> Tl C31 Reach to (A) 

• C31 Distance to A«T1 C32 Grasp (A) 

• C31 A Not Vlsable C35 Search lor (A) 

• C32 Grasp Pressure < 12 
Grip Dist >T3 

C32 Grasp (A) 

• C32 Grasp Pressure ~ 12 
Grip Dlst > T3 

C33 Mo •• to (X) 

• C32 Grip Dlst « T3 C36 Sack Up (Y) Object 
Missing 

• C33 Distance to X>O C33 Mo •• to (X) 
• C33 Olstance to X=O C34 Release 
• C34 Grip Dlst <T4 C34 Releas. 
• C34 Grip Dlst ~ T4 C30 Wait R.port 

Fetch 
Done 

• C35 A Not Vls,bla C35 Search lor (A) 
• C35 A In Sight C31 R.ach to (A) 
• C35 S6arch Fail C30 Wait Raport 

Fetch 
Fall 

C36 Back Up Not Done C36 Sack Up (Y) 
• C36 Sack Up Done I C35 Search lor (A) 

Table 4.3. Finite state table. Source: A1bus. 

4.5.4.3 Programmable Transmission Systems 

Software clutches, gearboxes and cams are electric motor driven replace

ments for conventional mechanical transmission systems. They can be regarded in 

much the same manner as relay ladder logic acts as a replacement for conventional 

hardwired logic. Potential advantages include improved operational reliability, 

flexibility, precision, and design simplicity [69]. 

A programmable transmission system defines a series of mappings to inter

relate the drive motor positions in the system. See figure 4.13. The high level de-
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scription of these position relationships may be in tabular or graphical form and is 

the subject of current research by the Modular Systems Group at Loughborough. 

Input pinion 

Output 2 

Complete Traditional Mechanical Transmission System 

output 3 motor/encoder 

t v 

-v Input encoder 

Output 1 motor/encoder Output 2 motor/encoder 

C\ • t t 

Programmable Transmission System with Servo Motors 

Figure 4.13. Concept of a programmable transmission system. Source: Quin Systems. 
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4.5.5 Task Structure Description 

Model based methods for defining the task structures for machine opera

tions are gradually being introduced. Function charts are emerging as promising 

graphical environments which can support other methods of programming from 

within their structure. 

Continuous Function Charts (CFCs) provide graphical representations of 

closed loop control problems. Sequential Function Charts (SFCs) similarly provide 

an appropriate model for sequential control [70]. See figures 4.14 and 4.15. Brand! 

[71] of Texas Instruments suggests that a future control system design environment 

should combine sequence control described graphically by SFCs, with continuous 

control described graphically by CFCs. 

CFCs and SFCs provide a means of organising program segmentation and 

flow. Code segments must still be written in appropriate language(s). They provide 

a choice of languages which in turn may use an internal model if appropriate e.g. 

ladder logic, state tables, motion definition languages for programmable transmis

sions or other machine specific languages. Where control algorithms or structured 

data are required a general purpose textural language e.g. C, Pascal, Fortran may be 

used. Experts may therefore use the language in which they are most proficient pro

vided that a well defined interface exists between these different blocks of code. 

Initiated in France in the mid-1970s a joint industry and government effort 

undertook to define a new approach to logic states, steps and possible graphic repre

sentations of these ideas. Their work led to a French standard [72] for SFCs called 

Grafcet and there is hope for international adoption of this or a similar standard [70]. 

Other SFC programming languages are however emerging; for example a similar but 

different German national standard has been implemented by Siemens [73]. In the 

US no such programming language standard currently exists although Maxitron and 

Allen-Brad!ey are known to support function chart methods and Texas instruments 

have recently developed a similar programming environment called Applications 

Productivity Tool (APT) [74]. NEMA intends to adopt IEC standards for SFCs and 

CFCs which can be presented to ANSI for adoption as a national standard in the US. 

In concept a function chart environment should allow designers to use an 

appropriate description language for each separate piece of code, check the coher

ence of data as the design progresses, and automatically generate a fmal run-time 

program from this description. 
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Figure 4.14. Continuous fWlction chart. Source: Brandl. 
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Figure 4.15. Sequential fWlction chart. Source: Benediclc. 
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4.5.6 Grarcd Charts 

In order to explain the concept of function charts more fully this section de

scribes the basic elements of Grafcet programming. 

There are only three basic elements in Grafcet charts: Steps. Transitions and 

Flowlines. See figure 4.16. 

Name Initial Step Trans- Flow- Double Macro 
Step ition line Flow- Step 

line 

• 
Graphic [gJ d + I j 8 Element 

• 

Figure 4.16. Grafcet language elements. Source: Gonzalez. 

A step is used to define an action. The step is numbered and its principal 

function may be described via mnemonics on the programming screen. 

The transition is identified by the step number that leads to it and the step 

number that follows it and is also described by a mnemonic on the screen. Flowlines 

tie steps and translations together to form complete charts. See figure 4.17. 

During design a particular method of programming is associated with each 

step and the concept of "zoom" allows the nesting of code in the graphics environ

ment [70]. 
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Figure 4.17. The Grafcet progrnmming environment supports a hierarchy of languages. Source: 
Gonzalez. 

4.5.7 Future Trends in Programming 

If the programming of industrial control systems follows the trends in the 

business computing field, better problem description languages with more appropri

ate and more highly refined internal models will eventually replace the older lan

guages. The use of a standard base level operating system and system programming 

language also appear highly desirable goals. 

Function chart programming environments provide the opportunity for code 

reuse which currently very rarely occurs. A segmented structure approach gives a 

user the ability to define and store routines that are commonly used in their com

pany's applications. The resulting applications library becomes a valuable asset for 

future development There is also the potential for a third party packaged software 

market as seen in business computing. Third party software might include spe

cialised control algorithms, statistical routines, management information collection, 

diagnostics and external intelligent device interfaces to motion controllers, vision 
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systems etc. Such an approach might also allow multiple parties to collaborate on 

the same program. By using a graphic, process-defining, top down approach, a 

common "meeting ground" can potentially be created for the process or machine en

gineer and the control engineer; for the client and the systems house; and for the user 

and the original equipment manufacturer. 

There is a pressing need for the widespread adoption of a high level prob

lem description languages that permits the simple specification of any kind of pro

cess activity, that is easy to modify and self documenting. Lytle [62] maintains 

however that the current lEe attempts to standardise programming languages are so 

broad there are still no practical machine level implementation standards. 

4.6 CONCLUSIONS 

The acceptance of problem orientated approaches for real-time control sys

tems has been much slower than in the case of business systems. Typical reasons 

given for this disparity include [75], [76]: 

Real-time problems are usually more demanding. 

Applications are much more diverse. 

There is generally lower capital investment in new technology in 

what is considered a very traditional customer driven market sector. 

Users are often unaware of the potential of new methods. 

Recently, formal problem formulation techniques have been used for the 

development of real-time software and graphical problem description methods have 

been proposed. The application of these methods to industrial control has however 

been largely uncoordinated and unstandardised. 
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5 
A Methodology for Machine Control 

5.1 INTRODUCTION 

The remainder of this thesis relates to an evolving methodology termed 

UMC (Universal Machine Control), to facilitate the design and implementation of 

computer controlled manufacturing machines in a generalised manner. The objec

tives of the work are to offer not only more cost effective initial control system in

stallations, but moreover to provide a consistent method for both system configura

tion and the integration of additional functio~s as new requirements evolve. It is 

therefore seen as essential to create a methodology which allows the controller to 

develop over a period of time and to adapt to evolving requirements and technolo

gies. 

This chapter outlines the thinking of the author with regard to the overall 

aims, concepts and potential of the UMC methodology. Research activity over a 

four year period carried out principally by Mr Alan Booth and the author has centred 

on a proof of concept implementation of this methodology which is described in 

chapters seven and eight. These studies were undertaken under the guidance of Pro

fessor R.H. Weston. 

In a broader context the methodology described here can be naturally ex

tended to support a fresh approach to total machine design. This philosophy aims to 

integrate mechanism and controller design and to allow the modelling of their be

haviour in a consistent manner in order to determine the optimum combination of the 

two. Such extensions to the methodology are the topic of on going research by the 

Modular Systems Group at Loughborough [1]. 

5.2 REQUIREMENTS FOR A GENERALISED APPROACH TO 
MACHINE CONTROL 

As discussed in chapter four, manufacturing control systems are typically 

distributed systems that can be viewed and intuitively modelled as a hierarchy of in-
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teracting parts under separate control, cooperating to realise the function of the total 

system. Machines must logically be viewed as a part of such a hierarchy. 

A machine controller must respond to and serve both business objectives 

and real-time control objectives during its life cycle. Section 2.5 considered the nec

essary attributes which a machine control system should embody in order to effec

tively support an integrated manufacturing environment which is responsive to 

change. These attributes are summarised in table 5.1. A machine control system ful

filling these attributes would typically be complex and thus difficult to understand 

and specify as one integrated item. A model of such a system would however enable 

its representation as a number of co-operating parts that could be specified more 

easily. 

As discussed in chapters two and three, and considered in some detail by 

Thatcher [2], there are many common parts in different machine control systems. 

However the wide variations in specific machine requirements and the continual im

provements in enabling technology make the adoption of a standardised approach to 

machine control a difficult objective. A system model is therefore required to cater 

for real-time machines in the widest context. There is the need for a structure which 

can support the required functionality from reusable parts. To answer this need the 

UMC methodology has been evolved at Loughborough. 

LOCAL MACHINE/PROCESS RELATED 
REQUIREMENTS: 

GLOBAL MANUFACTURING RELATED 
REQUIREMENTS: 

DESIGN REQUIREMENTS: 

CONTROLLER ATTRIBUTES 

REAL-TIME CONTROL CAPABILITIES TO 
MAXIMISE MACHINE PERFORMANCE 

MAXIMISE CONTROL SYSTEM FUNCTIONAL 
VISIBILITY 

FUNCTIONAL FLEXI BILlTY 

PROBLEM ORIENTED OPERATOR 
INTERFACE 

MAXIMISE INFORMATION VISIBILITY 

EFFECTIVE ARCHITECTURE AND SYSTEM 
BUILDING TOOLS 

Table 5.1. Controller attributes. 
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5.3 MODELLING TERMINOLOGY 

Discussion of control systems and their modelling is often hampered by the 

lack of standard terminology. In an effort to encourage consistency and avoid dupli

cation existing terminology has been adopted wherever it is considered appropriate 

from the CIMOSA [31. ISO [41. DEC/Philips [51. AUTOMAIL [61 and HOOD [71 

modelling studies. However the existing terminology used by these bodies is not 

considered consistent or completely appropriate to machine control systems. This 

section therefore defines the terms used in this thesis for describing the modelling 

and architecture of machine control systems. 

Model 

Reference 
Model 

Architecture 

Reference 
Architecture 

When designing any system there is always a Model. explic
itly defined on paper or implicitly in the mind of a developer 
as a starting point for the development process. 

If the system model is well known and used by many people 
who refer to the model when they discuss developments or 
standardisations that model is a Reference Model. A reference 
model thus provides a common framework for discussion. A 
reference model shows: 

a structure saying which parts may cooperate 

the tasks of the parts. which determine what should be 
done by a system part. so that its contribution to the 
complete system function is realised. 

Architecture is the art of designing and realising a complex 
system. Architecture is a powerful term. in being evocative of 
structure and style. The structure and interconnection of 
building blocks is the basis of architecture. 

A strong motive for enforcing a consistent architecture is to 
enable design reuse. This is based on the reuse of archi
tectural building blocks and frameworks. 

A Reference Architecture is developed based on a Reference 
Model. It describes the function of system parts. as opposed 
to how they operate internally. 

A Reference Architecture is composed of a set of generic 
guide-lines. constraints which provide a framework together 
with building blocks of defined generic types. 

It is important to put the consideration of architecture in the 
context of the control application being considered. For the 
reuse of control system building blocks to be worthwhile there 
must be common characteristics in the range of applications to 
be addressed by system users. Clearly there are big differ
ences across machine control applications but there are also 
many major commonalities. These commonalities can be ad
dressed by a Reference Architecture. 



Panial 
Models 

Panicular 
Model 

Design 

Aggregation 

System 
Build 

View 
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Panial Models contain sets of building blocks of the defined 
generic types becoming increasingly application and im
plementation specific. These building blocks confonn to the 
Reference Architecture but also meet the more specific re
quirements of a given category of machine function and/or 
implementation method. 

A Particular Model is unique to a specific machine and is 
composed of a specified set of building blocks for that ap
plication. 

The term Design generally denotes the activity of or result of 
creating something. A design is the description of how 
something is put together internally. In this context it is taken 
to refer to how an architectural building block operates inter
nally. 

Aggregation is the collection of parts into one body. In this 
context it is taken to refer to how architectural building blocks 
are combined to fonn a run time control system. 

System Build is the implementation of a Panicular Model in 
hardware and software. 

A View is a distinct aspect or dimension of a model ar
chitecture which may be considered independently (although 
it may be coupled to other views). 

5.4 MODELLING PHILOSOPHY 

A major reason for the use of system models of any type is the management 

of complexity. The human mind is capable of understanding a complex problem as 

long as it is presented in manageable parts. Hence the need for methodologies and 

tools to make the structuring and manipulation of systems manageable. Modular de

composition is one of the most commonly proposed systematic approaches to 

achieving problem simplification [8, 9, 10]. 

The application of modular decomposition to industrial machines is de

picted in figure 5.1. The principle behind the creation of a Reference Architecture is 

that specific manufacturing machines can be considered as a sub-set of the general 

manufacturing machine. At the lowest level of decomposition of the general ma

chine is assumed to be a set of modular building blocks which can then be combined 

in appropriate hierarchies to create any required machine and associated controller. 

This concept has been applied at LUT in the UMC approach to machine 

control which is summarised in the schematic shown in figure 5.2. The functionality 

of any particular machine controller can be composed from reusable building blocks 

from a larger family of modules for the general machine controller. 
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Figure 5.1. Concepts behind the UMC modelling methodology. 
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Figure 5.2. The UMC approach to the creation of particular machine controllers. 
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5.5 UMC REFERENCE MODEL 

5.5.1 Introduction 

The basis of any reference architecture must be a model providing a com

mon framework for discussion. The UMC Reference Model is very simple in both 

concept and structure. 

5.5.2 Reference Model Levels 

The UMC Reference Model explicitly defines only three hierarchical levels 

Machine, Task and Handler. See figure 5.3. 

5.5.2.1 Machine Level 

Any required machine is "driven" (i.e. initiated, referenced, modified and 

removed) by the Machine Level which provides a single processing and information 

interface to the level above in the manufacturing systems environment. 

5.5.2.2 Task Level 

Since the design of particular machines (and hence Particular Models) is 

seen as very application dependent, the application task structure is deliberately not 

explicitly defined. The Task Level therefore supports the concept of multiple tasks 

which can be arranged both hierarchically and heterarchically in a user defined man

ner as determined by the requirements of individual applications. Machines may 

thus have a complex internal structure of control tasks to support the specific device 

control required in a very flexible manner. 

5.5.2.3 Handler Level 

The Handler Level provides isolation between the internal unified UMC 

system representation and the external device controllers, thus restricting the impact 

of changes. A handler provides a means of translating device specific information 

flows into a standard form for each class of machine I/O device. This requires de

fined types of handler to cater for generic classes of I/O device. 
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Manufacturing Systems 

D .------- =-----, 

M NE 

DDDD 
External Device Controllers 

Figure 5.3. Hierarchical levels in the UMC Reference Model. 

5.5.3 Reference Model Views 

Two distinct views can be identified within the UMC Reference Model. 

These views enable the operation of the system to be separated from its data re

quirements aiding reusability. See figure 5.4 

The process view is a representation of the operation of the system in terms 

of a set of concurrent activities. This view is composed of the machine, task and 

handler processes. 

The information view is composed of a set of information modules con

taining structured data. These modules each consist of structures and substructures 

composed of individual data items. All functional processes have potential access to 

this global information structure. The information view describes the underlying in

formation requirements of the system. It is composed of machine, task and handler 

information modules. 

Both the process and information views of the model are initiated, indexed 

and referenced from the machine level. This is to enable the structure and content of 
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particular control system models to be maintained at all times during development 

and at run time. 

Process View 

Information View 

Figure 5.4. Reference Model process and information views. 

5.6 UMC REFERENCE ARCHITECTURE 

5.6.1 Introduction 

The Reference Architecture takes the Reference Model and adds to it the 

definition of the building blocks and the allowable I/O between them. It is important 

to note that the Reference Architecture describes what the system building blocks do 

as opposed to how they operate internally. See figure 5.5. The Reference Architec

ture thus defines the content of the information and processing views. 
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REFERENCE 
ARCHITECTURE, 

~..:e, 
Ofl/ro,t. 

e~ 

GENERIC APPROACH TO MACHINE CONTROL?' , 

Figure 5.5. Derivation of the Reference Architecture. 

5.6.2 Reference Architecture Building Blocks 

UMC 
Modules 

UMC 
Component 

At the lowest level in the decomposition of the UMC Model 
are Modules. The Reference Architecture is composed of 
UMC Modules. These are identifiable items of software. 
UMC modules may contain activity programs (process code) 
or information (global structured data). See figure 5.6. 

The term Component is used to describe an associated set of 
UMC Modules at Machine, Task or Handler Level which em
bodies the required behaviour for that level. 

UMC components are composed of program modules (for 
processes) and information modules (containing structured 
data) together with defined interface mechanisms. The num
ber of modules and their types is dependent on the required 
behaviour of the component. All machine components (and in 
turn all modules) are referenced from the machine configura
tion module which holds the configuration information for a 
Particular Machine. See figure 5.7. 
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The top level component in the UMC Architecture. the 
Machine component is composed of a machine configuration 
module and associated program modules. The machine 
infonnation module describes the Particular Model of a given 
machine at run time. Machine processes map the particular 
machine control model onto its target hardware. allow dy
namic modification of its operation or structure and enable its 
removal. See figure 5.8. 

Tasks are application specific components in the UMC Ref
erence Architecture. They consist of user defined program 
and associated infonnation modules. Complete applications 
can be divided into concurrent tasks with defined synchroni
sation and information access mechanisms. See figure 5.9. 

Handlers provide a unifonn software view of I/O devices to 
UMC tasks. Each Handler integrates a specific external I/O 
device into the system. communicating with it via an imple
mentation specific device driver. The UMC Reference Ar
chitecture defines specific types of handler for given types of 
I/O device. See figure 5.10. 

5.6.3 Reference Architecture Communication 

The permitted communication paths are illustrated schematically in figure 

5.11. 

Machine 
To Above 

Tasks To 
Global 
Infonnation 
View 

Task To 
Task 

Task To 
Handler 

Handler 
To Device 

Unified manner with defined instruction sets dependent on the 
chosen model for the manufacturing systems environment. 

Consistent information access control mechanisms to any 
global data within the run time system. 

Defined infonnation transfer and synchronisation mecha
nisms. Design of Particular Model effects specific use. 

Defined in a unified manner using generic instruction sets. 
Communication mechanism is device independent. Note par
ticular devices many not be able to support all the capabilities 
of a generic device type. 

Device specific communication fonnats and instruction sets. 
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Figure 5.6. Symbolic representation ofUMC modules. 

Component 
Modules 

no) 
execute 

[ run lime 
communlcaflon 
mechanism 

Figure 5.7. Symbolic representation ofUMC components both during storage and at run time. 
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Dynamic 
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Figure 5.8. The concepts of machine aggregation, dynamic modification and removal. 
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Figure 5.9. Multiple concurrent run time tasks. 
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Figure 5.10. Handlers integrating specific devices of defmed types in a consistent manner. 
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Figure 5.11. Reference Architecture communication paths. 
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5.7 SCOPE OF UMC REFERENCE MODEL AND ARCHITECTURE 

The aim of using a Reference Model is to identify the essential parts, con

straints and information sources required to describe a machine controller. The Ref

erence Architecture defines the behaviour of each component of the Reference 

Model. 

The UMC Methodology endeavours to be applicable to the widest possible 

range of industrial machine and process control applications. In order to encompass 

such varied manufacturing operations (with all kinds of applications related technol

ogy and performance requirements) it is obvious that UMC cannot provide a 

Reference Model catering for all the details of each panicular implementation. It is 

intended that the Reference Model and resultant Architecture will rather govern a 

system's inherent characteristics providing information visibility and consistent in

terfaces with other elements in the manufacturing system. Therefore in addition to 

the Reference Model and derived Architecture the UMC methodology must guide 

machine controller vendors and users through the stages of a control systems life 

cycle. See figure 5.2. It is important to provide: 

methods for the description of particular machine controller func

tional requirements in terms of Reference Architecture modules and 

tools for the aggregation of these requirements into a run time 

machine controller. 

5.S PARTIAL AND PARTICULAR MODELS 

The Reference Architecture is applied by including aspects specific to a 

particular class of machine including specific input and output devices, modes of op

eration and finally application specific requirements. The UMC machine control 

system development methodology must thus support models at different levels of 

specificity; the UMC Reference Model, libraries of modules termed Partial Models 

and Particular Implementation Models for each specific system. See figure 5.12. 

The concept of models at different levels of specificity is explained by Parunak [111 

and was discussed in section 4.2.3. 
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Partial 
Models 

Particular 
Models 

Figure 5.12. UMC modelling levels. 

Partial Models are stored as a library of modules for given class(es) of 

machine which may be progressively extended. The generic modules in the Ref

erence Architecture guide the creation of sufficient Partial architectural modules to 

serve the needs of a given class of machine and associated control devices. These 

modules exhibit function and/or implementation dependences but are not yet specific 

to a particular application. 

Particular Models relate to a specific machine and are unique to that ma

chine. An appropriate set of Partial control system modules are finally selected of

fering the functionality for a given application in a Particular Model which will be 

unique to that machine. It should be noted however that Particular Models are ex

pected to evolve during a machines life cycle and are easily modified and/or ex

tended. 
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The UMC framework thus contains three increasingly more application and 

implementation specific modelling levels which are:-

Reference Model 
and derived 
Reference 
Architecture 

Partial 
Models 

Particular 
Models 

The generic level containing the basic constructs used to form 
components conforming to the Reference Architecture. 

The Partial Model level can be seen as a library containing 
sets of modules conforming to the given generic types which 
cater for a given class of machine, task or device. 

Each Particular Model contains the specific UMC components 
for a particular application. Mapping this Particular Model 
onto its target environment results in the aggregation of all the 
specified and selected modules which satisfy the requirements 
for the real-time control of a specific machine. 

The Reference Architecture itself is adaptable to change. If a new compo

nent type is required (e.g. a new type of Machine, Task, or Handler), new generic 

types can be added to the Reference Model and a new Reference Architecture de

fined. Partial and in turn Particular variants of this new component can then be cre

ated in a consistent manner. The more specific UMC component modules are thus 

derived from more general entities. Figures 5.13 and 5.14 illustrate the modelling 

dimensions provided by the UMC methodology. 

More Specific 
Models 

UMC 
MODELLING 
DIMENSIONS 

Figure 5.13. Dimensions of the UMC methodology. 
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Figure 5.14. UMC modelling framework. 

5.9 UMC IMPLEMENTATION CONSIDERATIONS 

5.9.1 Requirements 

Model 
Views 

The implementation of Particular UMC control systems obviously requires 

the initial implementation of appropriate development and run time environment(s). 

Tools within these environments must consistently support the design and run time 

aspects of the UMC methodology including the provision of: 

- An extensible set of Reference Architecture guide-lines and constraints that 

govern how modules can be combined. 

- Mechanisms for interconnecting Reference Architecture Components. 

- Reuse libraries for UMC components with powerful search and retrieval 

mechanisms. 
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- Methods for assimilating new components into the reuse libraries (e.g. the 

creation of new types of Machines. Tasks and Handlers). 

- Configurations of components for particular applications (i.e. the creation of 

Particular Models). 

- The aggregation of Particular Models in target environment(s) for run time 

use or simulation. 

Maintaining existing Particular Models; maintenance. diagnostics. 

modification etc. 

5.9.2 Development and Target Environments 

UMC methodology must encompass and support the stages in a control 

system's life cycle from conception through design and implementation to mainte

nance and modification. Consistent development and run time target environments 

are required to support this life cycle. See figure 5.15. These environments can be 

categorised as follows: 

The development environment needs to provide support for the design and 

modification of machine control systems which is an on going activity for 

controller manufacturers. system builders and users. Within this environment 

many modelling techniques and associated tools will be applicable for the 

support of the Reference Architecture and the development of Partial and 

Particular control system models. Different sets of tools will be appropriate 

to each class of user. The development environment has at its core a data 

base holding libraries of Reference. Partial and Particular modules. 

The target environment. This is the target implementation environment for a 

Particular Model. It must support the real-time control requirements of a 

particular system. The adequate implementation of real-time target systems 

is therefore a critical part of the UMC methodology. The target environment 

consists of the physical control structure which may be distributed and a suit

able software environment which supports the implementation of the 

Particular Architecture on the chosen hardware. 

These two environments will be used interactively during a machine's life 

cycle and fully consistent development and target environments are therefore re

quired by the UMC methodology. In some cases the same hardware may be utilised 
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for both development and target environments with appropriate software modules. 

Program and infonnation modules will thus be interchanged between these environ

ments during a controller's life cycle to enable its creation and subsequent support 

for diagnostics, maintenance and expansion. 

Load a 
Particular 
Machine 

DESIGN AND DEVELOPMENT 
ENVIRONMENT 

RUN-TIME 
ENVIRONMENT 

Figure 5.15. Schematic ofUMC development and target environments. 
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S.10 SUMMARY 

The UMC methodology aims to facilitate the design and implementation of 

computer controlled manufacturing machines in a generalised manner. 

The UMC Reference Model provides a common framework for the discus

sion of machine control problems. The motive for using a model is the management 

of complexity. The Reference Architecture takes the Reference Model and defines 

the modular building blocks of which it is composed and how they fit together. A 

major motive for enforcing a consistent architecture is to enable design reuse. 

The UMC Reference Model does not provide all the details of particular 

implementations or applications. It allows the description of progressively more ap

plication/implementation specific Partial and Particular Models from associated 

reuse libraries of UMC modules. Particular Models are used for the creation of run 

time control systems. 

The next chapter looks at the selection of suitable enabling technology and 

chapter seven then describes the implementation of the UMC methodology using 

selected hardware and software. 
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6 
Enabling Technology and the Role of Standards 

6.1 INTRODUCTION 

The previous chapter has described the essential features of a generic ap

proach to machine control UMC which has been conceived at Loughborough Uni

versity. This chapter aims to assess the capabilities of currently available technology 

and the role of standards in enabling an implementation of UMC. It is argued that 

the next generation of machine controllers should be based on a consistent set of in

dustry standards. 

In reviewing enabling technology it has been possible to suggest where ex

isting standards are appropriate and where new standards are required. Chapter 

seven goes on to describe a proof of concept implementation of UMC using selected 

hardware and software. 

6.2 THE NEED FOR STANDARDS 

The role of standards in the lifecycle of a complex control device such as a 

machine controller is to facilitate the system design and development processes. 

Two categories of standards are commonly recognised. 

Firstly de facto standards derived from accepted practice. This type of 

standard is prevalent in most areas of computing and control. Such standards be

come established simply because something is achieved in a manner which has been 

widely accepted by a large group of users. Examples include RS-232 serial commu

nications between computers, the dominance of the MSDOS/PCDOS operating sys

tem, the use of relay ladder logic for the programming of PLCs etc. Often de facto 

standards are evolved by a single manufacturer or user. 

A second class of standards can be viewed as those derived by a group of 

interested parties (often in the guise of a standards committee, body or institute, with 

representation from users, vendors and researchers in the relevant field) who ideally 

would begin their standardisation activity by conducting basic research into the re-
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quirements of the problem being addressed. Thus standards from within this class 

originate from the derivation of a basic reference model that defines a generic ap

proach to a problem which can then be addressed by appropriate implementation 

standards. Examples of this type of approach include the ISO Open Systems Inter

connect (OSI) Model [I], the manufacturing reference models discussed in section 

4.2.2 and the UMC reference model proposed in chapter five. Reference models 

therefore have a role in encouraging the adoption and standardisation of appropriate 

enabling technology. 

In the context of aiding reference model implementation it has been per

ceived by Sauter and White [2] that standards if widely adopted can provide the fol

lowing benefits: 

The user can concentrate on solving the real problem rather than be

ing burdened by technical details. 

The user can employ components from multiple sources and be as

sured that they will integrate if they conform to the same standards. 

The technology used to implement systems can be determined more 

by the problem than by the need to integrate with non-standard de

vices. 

Users can be easily moved from one project to the next and can more 

easily perform system maintenance. 

Applications can be moved from one project to another. 

Appropriate standards can enable the reconfiguration of existing sys

tems and also the progressive addition of new technology. 

Standards common to, and understood by both user and vendor are 

key to the successful implementation of a system to meet the real 

problem. 

There are also potential drawbacks to the adopting standards. The use of 

standards may result in additional overheads, reducing overall system performance. 

Inappropriate standards may also restrain improvements in enabling technology and 

therefore become obsolete. 
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6.3 THE IMPLEMENTATION DOMAIN 

The development process related to any system can be conveniently cate

gorised within two domains; the essential problem domain and the implementation 

domain [3]. See also section 4.4.2. The essential problem domain is where a user 

applies his expertise to the solution of a problem and generates innovative ideas free 

from implementation considerations. The role of the UMC Architecture is seen as 

central to this activity. The implementation domain addresses the capabilities of the 

technology that is required to enable the practical implementation of the specified 

system. For the realisation of a practical UMC system this enabling technology in

cludes the creation or selection of processing hardware, communications and infor

mation services, operating systems, programming languages, system component 

packaging and so forth. 

6.4 IMPLEMENTATION REQUIREMENTS 

Implementation of the UMC Architecture requires the creation of config

urable and expandable physical and functional control structures in the form of elec

tronic hardware and software. 

Creating the necessary physical structure requires the use of modular hard

ware with suitable bus systems and/or networks to achieve interaction between the 

application processes involved. 

The creation of the required processing functions and communication ser

vices which facilitate meaningful information transfer between these processes (and 

with external devices outside the UMC system boundary) is fulfIlled by the system 

software. The concurrent activities carried out by a given machine controller wiIJ 

typically require the operation of many concurrent computer software and hardware 

based processes. As discussed in section 5.6.3 a UMC machine controller must be 

capable of communicating with interface devices (typically for sensing and actua

tion) within its scope of control, with its peers and with higher level manufacturing 

control elements. These processes may be distributed across several processors. 

Standards are needed to define how these processors should interact. Here the term 

interaction is used to delineate the need for: 

(1) the sharing ofinformation resources in a meaningful manner, 
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(2) the co-ordination, supervision and control of concurrently operating 

activities to achieve the desired goals and, 

(3) the communication services required to facilitate (I) and (2). 

The physical structure and performance requirements of a given machine 

obviously strongly influences the configuration of its control system hardware [2]. 

Hardware configuration includes: 

the selection of processor(s) with appropriate power, distribution and 

inter-relationships, 

selection of sensor and actuator interfacing devices, 

consideration of communication distances and required rates of data 

exchange, 

methods of representing, storing and accessing information, 

environmental factors etc. 

As discussed in chapter 3 many current industrial machine controllers most 

notably PLCs have adopted proprietary bus systems, communication protocols and 

hardware architectures unique to each controller type but there has recently been a 

progressive shift towards more open standards [4], [5]. Integration has become 

recognised as an important issue. Without standard interconnections, the creation of 

an environment to support every type/brand of unit controller (offering appropriate 

interfaces to the myriad of control devices and associated computer equipment) 

seems an unattainable goal. 

Standards have a vital role to play in information engineering which en

compasses the representation, access, storage and management of information [6]. 

The expression and decomposition of the actions also needs to be achieved in a con

sistent manner and future standardisation of CASE tools is likely to have significant 

impact on this issue. See section 4.4.4. 

The remainder of this chapter focuses on the choice and selection of en

abling technology for the proof of conceptUMC system implementation described in 

chapter seven. 
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6.5 PROCESSING HARDWARE 

Today most machine control system hardware is packaged in the fonn of 

circuit board level products. These are usually categorised by the fonn of intercon

nection bus which they employ to enable their integration into complete control sys

tems by the addition of suitable peripherals. See section 6.6. 

In board level control systems. currently two processor families predomi

nate the Motorola 6S0xO and the Intel SOxS6 although the choice is almost limitless 

[14], [7]. The selection of processing hardware is currently often dictated by the 

chosen operating system environment since currently most operating system imple

mentations are hardware specific being at least partially coded in assembler language 

in order to achieve adequate real-time perfonnance [S]. The emergence of the new 

generations of more powerful reduced- and complex-instruction-set computer (RISC 

and CISC) processors will allow portable operating system implementations based 

on C as the development language [9]. See section 6.S. 

6.6 BUS SYSTEMS AND NETWORKS 

6.6.1 Introduction 

Buses and networks are used for a wide variety of control system communi

cation needs ranging from integrated circuit interconnection on the same board up to 

local area networks connecting systems within the same factory. 

The wide variety of open architecture bus and network systems now avail

able and the multitude of applications to which they are put makes their classifica

tion difficult. They may however be broadly categorised according to their range and 

speed [10]. Figure 6.1 shows the application areas for a number of major intercon

nects which are applicable to machine control. 

Parallel backplane bus systems generally fulfil the needs of integrating 

master processor(s) with interface devices to fonn tightly coupled "local" control 

configurations [15]. In such configurations the hardware elements are typically 

physically located within a metre of one another and are able to communicate at raw 

data rates greater than 1 Mbit per second [10]. See figure 6.2. These local con

trollers may then require connection with other distributed devices at the same, 
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higher or lower levels in the manufacturing system. Communication may be 

achieved with a variety of serial bus or network systems. See figure 6.3. 
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Figure 6.3. Typical physical fonn for the interconnection of local control configurations. 

6.6.2 Parallel Bus Standards 

Machine controllers commonly require the capability to interface in a con

sistent manner to a wide range of sensor and actuator interface devices which may 

themselves possess local processing capabilities e.g. motion controllers or vision 

systems. The emergence of open architecture parallel bus standards has provided the 

opportunity for multiple vendors to supply a range of solutions to meet such needs in 

a compatible manner. 

When computers were first introduced they were generally manufactured 

with all their processing, memory and interface devices directly attached to an inter

nal processor specific bus system in a dedicated manner. This approach made it dif

ficult if not impossible to connect devices made by other manufacturers. The Digital 

Equipment Corporation (DEC) played an important role in overcoming this restric

tion through the implementation of backplane bus systems in their computers. The 

introduction of the PDP-ll and Unibus with memory mapped I/O brought to the 

microprocessor industry the concept of using a well defined bus as a standard digital 

interface for microprocessor based products and peripherals [11]. All microcom-
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puter parallel bus standards today tend to be variations on the same theme providing 

a mechanical and electrical specification (in terms of connector dimensions, topol

ogy, signal levels etc.) and a corresponding set of protocols. 

A standard bus allows a variety of board level devices from multiple ven

dors to be put together to meet the requirements of a particular application. Board 

level computer systems are now well established and standardisation has allowed 

widespread hardware compatibility. The choice of bus systems is still a bewildering 

one with many competing standards [12]. A wide variety of both intelligent and pas

sive interface devices are available at the board level e.g. motion controllers (see 

section 3.3.6), image processing systems and other I/O devices of almost every con

ceivable type [13], [14]. Industrial control system builders are utilising these bus 

standards to achieve hardware compatibility within their equipment [15]. The ma

chine controller designer may thus quickly access new technologies without having 

to develop the hardware himself. This modus operandi has made a significant im

pact on the automation of complex manufacturing operations [15]. 

A standard bus for machine control must meet many requirements. The 

following requirements are commonly suggested [16], [17]: 

Support for 16 and 32 bit processors to enable the efficient imple

mentation of high level languages and standard operating systems in 

real-time applications. 

Support for multiple processors. Communication with LAN s, intelli

gent control devices, human interface functions etc. often requires the 

support of dedicated processors on the same backplane. 

Efficient inter-processor communications. 

Support for multiple interrupt sources. Many machine control func

tions tend to be interrupt driven. 

Good noise immunity, good mechanical support for boards, connec

tors design to withstand shock, repeated insertions and a harsh envi

ronment, support for different board sizes. 

There are many 8-bit and 16-bit bus systems which are widely established 

[18], [19], [20]. The most widely utilised of these are G64bus, STDbus, STEbus, 

Multibus I and IBM-PCbus although they all fail to meet one or more of the re

quirements presented above. 
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There are currently five 32-bit busses which are being standardised by the 

IEEE in the US namely VMEbus, Multibus 11, Futurebus, Fastbus and Nubus [21], 

[17]. Of these VMEbus (IEEE P1014, IEC 821) currently has the widest vendor and 

product suppon of all the 32 bit buses [22]. VMEbus adequately meets the require

ments for an industrial bus. Its single height variant is both compact and cost effec

tive for the majority of industrial applications [23] and can be utilised as an I/O bus 

on complex full 32 bit double height VME processing systems. 

6.6.3 Network Standards 

Network standards are intimately related to the achievement of effective 

manufacturing integration. Their scope therefore encompasses not only intercon

nection issues but issues of high level protocols, including information representa

tion, storage and access [24]. Detailed evaluation of this field is beyond the scope of 

this thesis and the aim of this section is to highlight emerging standards which are 

considered likely to have a significant impact on machine controller inter

connection. 

Various solutions are now commercially available to enable communication 

between distributed devices at the upper levels of a manufacturing hierarchy and 

have attained relatively high degrees of standardisation. The MAP and TOP stan

dards are notable examples for factory and office communications respectively. The 

most important feature of these standards is the adoption of vendor independent 

open communication using the ISO-OSI seven layer model [1]. 

The specification and development of MAP represents a major step forward 

in communication standards within the industrial environment [25]. MAP 3.0 on

wards includes RS-511, the standard for Manufacturing Message Services (MMS). 

RS-511 provides a basic set of functions for communicating with any programmable 

device on the factory floor. Companion standards then define the communications 

with a specific device (such as a PLC, CNC or robot) [26] which are regarded as 

specific classes of machine. Controllers created using the UMC methodology could 

use such a messaging service perhaps together with the more application related in

formation services provided by AUTOMAIL [27]. See section 10.2. 

The MAP and TOP standards are however optimised for the requirements 

prevailing at the upper levels of the manufacturing hierarchy, e.g. user-friendly, non

time-critical transfer of large quantities of data over long distances. Standard solu

tions for transferring information between distributed devices at lower levels have so 
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far been lacking despite evident demand for the standardisation of sensory interfaces, 

for example on machine tools, robots and special purpose machines [28]. 

There have been efforts particularly in the process industries to defme a 

lower level network than carrier-band MAP. See figure 6.4. The Field Instrumenta

tion Bus (or nfieldbusn) aims to specify the communication link between intelligent 

sensors and actuators close to a process, and machine or process controllers. The 

primary requirements for this bus are reliability and low cost [29]. 

MAP - Broadband 

Fieldbus 

MAP - Carrier
band 

Figure 6.4. Classification of manufacturing networks. 

In the context of machine control two main types of application for fieldbus 

systems would appear to exist in the manufacturing sector: 

(1) Small closed loop systems used to link intelligent I/O devices to ma

chine controllers. See figure 6.5. 

(2) The mutual interlinking of machine control systems and their connec

tion to higher level cell or line controllers. See figure 6.4. 
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Figure 6.5. Fieldbus in a local control loop. 

The creation of fieldbus is still in its infancy and will become meaningful 

only if accompanied by appropriate standardisation of physical media, communica

tion protocols etc. Working parties have been formed in ISA SP-50 [30] and IEC 

WG6 of TC65C [31] to define these requirements. Intel's Bitbus [32] which already 

has a wide user base and a separate proposal by Rosemount [2] are being considered 

as candidates for the fieldbus standard. MIL-SID-1553 originally defined as a sen

sor network for military aircraft is another candidate for this low-level sensor net

work [33]. Industrially many vendor specific systems are however in widespread 

use for example Bitbus, Arcnet [34] and Topaz [35]. 

6.7 CONTROL SYSTEM SOFTWARE 

Control system software has traditionally been written in the form of spe

cific solutions to specific problems [4]. Typically a controller implemented in this 

manner will be completely tied to the hardware on which it was first written with no 

portability and no obvious upgrade path. The system software will (particularly after 

the inevitable bug fixes and enhancements) invariably be untransferrable, unreadable 

and largely undocumented [36]. This type of dedicated software can be observed in 
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the majority of current robot controls, PLCs, process controls, CNC controls, assem

bly and packaging machines for example. 

In contrast to the dedicated approach described above the UMC methodol

ogy (see chapter five) takes a generic approach to machine control through the use of 

a reference architecture and requires a modular real-time software environment to 

support its implementation. While the concept of modular hardware is now well es

tablished, the technology to support modular software solutions has only recently be

come available [15]. UMC seeks to develop new applications quickly and ease the 

migration of existing software onto new hardware platforms, as required. Standard 

programming languages and operating system environments can help to achieve 

these goals. 

The author perceives three important needs which have to be satisfied for 

the efficient generation of standardised real-time software: 

(1) A standard real-time operating system for the target machine con

troller(s) with the required features and adequate efficiency. The op

erating system needs to support software modularity and hardware in

dependence allowing applications software to be moved easily to dif

ferent manufacturers' hardware as technology progressively improves. 

(2) A standardised programming language which is efficient for system 

programming and which is able to fully support all the features of the 

chosen operating system. 

(3) A standardised system development environment with software tools 

designed specifically to support the selected target operating system 

and programming language. 

6.8 REAL-TIME OPERATING SYSTEMS FOR MACHINE CONTROL 

6.8.1 Introduction 

Machine controllers are usually classified as examples of real-time em

bedded microprocessor systems [37]. Such embedded systems contain microproces

sors programmed to carry out control functions but they are not in themselves re

garded primarily as computers. Indeed the user of an embedded system need not 

even be aware that a microprocessor lies within the device. 
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The traditional approach to creating embedded real-time systems has been 

to use assembly language to implement monolithic designs on early eight bit micro

processors such as the Zilog Z80 [38]. The low performance and small address 

space of eight bit microprocessors usually required non-modular, non-portable as

sembler language based implementations which were costly to design, code and test, 

and difficult to maintain. 

As embedded systems including industrial machine controllers became 

more complex, new development methods had to be considered to help the system 

designer. With progressive improvements in processing power there was a migration 

away from assembler language to more productive high level languages. As hard

ware costs continued to decrease and processing power improved, applications 

evolved from single thread control loops towards more complete systems with many 

tasks and external interrupts. With software costs rising dramatically real-time oper

ating systems were developed offering the promise of enabling more productive 

methods for system design and implementation [49]. 

From the point of view of a control system manufacturer or system builder 

an operating system can cost a great deal of money and very often the uninitiated 

user has no real picture of its function. An operating system must be learned and 

understood before it can be used and there is complete reliance on the company sup

plying it for support. These negative statements are made at the outset of this dis

cussion as they may provide part of the reason for the initially slow uptake of real

time operating systems for industrial control. 

The benefits gained from using an operating system are very important but 

initially not so obvious. An operating system can potentially provide a "virtual", 

hardware independent environment which offers a set of built-in functions or system 

calls closely related to the system programmers requirements [39] as illustrated in 

figure 6.6. 

Real-time operating systems now include provision for high level lan

guages, modern software development techniques and portability. These features 

can be exploited to enable the implementation of the UMC Architecture. Factors of 

particular significance include adequate provision for modularity, multiple tasks and 

adequate response to real-time events. 
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Figure 6.6. Relationship between hardware and software in enabling the implementation ofUMC. 

6.8.1.1 Modularity 

In view of the desire to provide extendible and reconfigurable control sys

tems in a standardised manner there is the need for an operating system which is in

herently modular. Modular software is for example needed to support both applica

tions programs and device interfaces enabling these items to be added or removed 

from a system at will, without the need to reconfigure the system software each time 

modifications are made [15]. 

6.8.1.2 Multi-Tasking 

In simple computer operating systems for example MSDOS, there is a 

unique CPU/memory/code combination for each process [39]. There are however 

compelling reasons for introducing a more flexible relationship between processes 

and the hardware resources which run them. A rigid allocation of a process to 

CPU/memory implies that no new processes can be introduced into a system without 

altering the controller's physical configuration. In machine control applications this 
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is usually a serious limitation. Most applications would naturally be best split into 

many processing activities as discussed in section 4.5.2. The size of each process is 

typically too small however to justify its own individual processor/memory (except 

in the case of low level processor intensive tasks, for example closed loop motion 

control). Multi-tasking allows many processes to share the same processor. For 

real-time operation different priorities are usually associated with different tasks de

pending on their relative processing requirements. 

6.8.1.3 Response to Events 

A real-time computer system must respond to events that occur in the pro

cess being controlled. Machine control requires a response to real-time events which 

must be both fast and predictable. 

6.8.2 Development and Target Environments 

A typical programming environment for control system design and imple

mentation consists of two parts; an "office" based development environment and in

dustrially packaged target machine controller(s) as illustrated in figure 6.7. The 

development environment may employ the same real-time operating system as the 

target system allowing direct code development or may use a non-real-time system 

programming environment typically MSDOS, UNIX or VMS [60]. In either case the 

development environment will offer software tools for communication, remote 

debugging and supervision of real-time processes on the remote target system(s). 

Real-time executives (sometimes referred to simply as real-time kernels) 

are similar to real-time operating systems except that they are designed only for em

bedded use and are thus supplied with a set of development tools for use in a non

real-time host environment. 

Many alternative development and target environments now exist and may 

be used in different combinations as figure 6.8 illustrates for a few notable examples. 

Real-time operating systems and executives may be produced by computer hardware 

manufacturers specifically for their own hardware or developed by a software sys

tems company for one or sometimes a range of processor families. 
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Figure 6.7. Schematic of development and target environments. 

Figure 6.8. Possible combinations of development and target operating system environments. 
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6.8.3 Real-Time Operating Systems 

Real-time operating systems provide a set of functions and utilities to sup

port both embedded target and system programming activities. Real-time operating 

systems offer sufficient capabilities to provide a complete environment for program 

development and a reduced version of this environment is then employed on the run 

time target machine. 

In the United States DEC's Y AX and MicroY AX computers have attained a 

dominant position in major industrial applications. Y AXELN is a real-time operat

ing system developed by DEC specifically for its own computers [40]. Similarly 

Intel offer RMX II.3 for its range of 80286 and 80386 microprocessors [41]. 

OS-9 [42] and OS-9000 [43], Uniflex [50] and PDOS [44] for example are 

established products from independent vendors with a wide user base and many third 

party suppliers of software. These operating systems have been ported mainly to the 

Motorola 680xO family of processors although they are coded predominantly in C 

and designed to enable portability. 

TRON is a potentially very significant operating system standard under de

velopment in Japan. It is known to be a portable, real-time operating system with 

extensive user and device interfacing capabilities. Although targeted at both office 

and control environments TRON has as yet seen little practical application outside 

Japan [45]. 

Several UNIX "compatible" real-time operating environments have become 

available in recent years either in the form of complete operating systems for exam

ple Regulus [46] or real-time executives with UNIX like functionality [50]. 

6.8.4 Real-Time Executives 

YRTX [47], pSOS [48] and C Executive [49] are well known real-time ex

ecutives. Real-time executives or kernels are essentially run time only environments 

which utilise a large non-real-time environment (typically MSDOS, UNIX or YMS) 

for development support [50]. Real-time executives are thus supported by cross de

velopment facilities, cross-compilers etc. Prototype software modules may however 

often be executed on the host machine before cross compilation to one of a range of 

target environments [51]. Since they manage fewer functions, real-time executives 
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generally perform somewhat faster than real-time operating systems when used in 

appropriate applications [50]. 

6.8.5 Distributed Real·Time Systems 

An increasing number of operating systems are now emerging offering 

varying degrees of capability to support a distributed operating environment. This 

may be localised multi-processor operation on a parallel backplane or operation over 

a network in a physically distributed manner to serve the needs of large distributed 

machines or process control applications. 

The level of support and transparency provided by distributed operating 

systems varies widely. Meglos a distributed environment for robotics used for re

search at AT &T Bell Laboratories [52] and Mars an experimental distributed real

time process control operating system environment [53], provide comprehensive fa

cilities which are completely transparent. OS-9 for example provides more limited 

facilities of file transfer, remote login, virtual terminals and the remote execution of 

processes [54]. A fully distributed variant of the OS-9 operating system may how

ever emerge in the future [55]. Distributed variants of UNIX are now available for 

example D-NIX and BiiN [62]. 

6.9 SYSTEM PROGRAMMING LANGUAGES 

As discussed in section 4.5.3 the use of a standard system programming 

language is considered highly desirable. The practical choice for a system pro

gramming language is intimately related to the selected operating system. Such a 

language is required for the implementation of the UMC Reference Architecture. As 

illustrated in figure 6.6 this system software programming is distinct from the pro

gramming of run time applications tasks although the same programming language 

might be used in both cases depending on functional requirements. See chapter 

seven. 

C [56] has now almost become a de facto standard for system software and 

is the preferred language of most software houses [10]. Its adoption has enabled the 

transfer of software packages between computers of widely differing types. It offers 

the required features for system programming and has the great strength of being 

highly standardised with libraries of functions handling operating system and device 

dependent features. Other newer languages notably Ada [57], [58] and Modula-2 
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[59] may offer advantages in terms of productivity but currently have neither the 

maturity nor widespread acceptance of C as a standard system programming lan

guage [10]. The specification of Ada for use in U.S. military systems will however 

exert a strong influence for its more widespread adoption in the future [62]. 

6.10 OPERATING SYSTEM STANDARDISATION 

6.10.1 Introduction 

Effective standards for operating systems have been slow to emerge [2]. A 

few operating systems have dominated particular market sectors because of the pre

dominance of certain computer hardware vendors notably mM and DEC. 

Whether used for system development or run time use any "standard" oper

ating system should be capable of being ported to different types of processor in or

der to effectively exploit the rapid developments in hardware technology [60]. In 

embedded machine control systems the need to achieve adequate real-time perfor

mance has been a serious obstacle to the adoption of portable methods of operating 

system implementation since portability is generally achieved at the expense of some 

operating efficiency [l0]. 

The goal of offering a more standardised approach has recently focused at

tention on the operating system UNIX as a development environment, the system 

programming language C and UNIX "compatible" real-time operating systems for 

the target machine controllers themselves. 

6.10.2 UNIX as a Standard Development Environment 

UNIX is a powerful multiuser, multi-tasking operating system for develop

ing software. UNIX offers several attractions in the search for appropriate standard 

system software [61]. It is available for a wide variety of computers, it is portable, it 

provides a good development environment and has well structured support for com

puter networking. UNIX is now a de facto standard for many system programmers 

[62]. Users can take advantage of an extensive set of utilities supporting program 

development and system to system communication. In 1989 there were over 15,000 

commercially available applications available under UNIX [63]. 
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Unfortunately many different variants of UNIX currently exist although 

there are efforts both in the US (fusr/group and IEEE P1OO3) and Europe (XJOpen) 

towards defining a common operating system standard based on UNIX System V, 

release 4. This process has however been complicated by the Open Software 

Foundation which is working to promote AIX from an IBM-only version of UNIX as 

a portable standard [62]. 

In the longer term the IEEE POSIX (Portable Operating System Interface 

for Computing Environments) standard seeks to defme a UNIX-style software inter

face that operating systems should present and thus provides a fmu technical basis 

for building UNIX-type operating systems [64]. The underlying notion of the 

POSIX standard is that any program designed to use the standard interface will run 

under any operating system that presents that interface. The standard defines differ

ent levels of conformance. "Strictly conforming" applications will use only the fa

cilities described in the POSIX standard and the ANSI C language [65]. 

6.10.3 Real-Time UNIX 

In its standard form UNIX is unsuitable for use in real-time target systems 

and does not provide a practical or cost effective operating system for machine con

trol [66]. There are however obvious attractions to providing a single consistent en

vironment for both development and run time use. This is particularly applicable to 

the iterative development cycles which evolving industrial machine control systems 

are likely to require. 

The following list presents some of the problems which currently make 

UNIX unsuitable as a target environment for machine controllers: 

Writing Device Drivers. It is very difficulty to write device drivers 

for UNIX. (This also applies to most other operating systems. 

POSIX seeks to overcome this problem [65]). 

Real-Time Response. Many processes within a machine controller 

need to be executed within a guaranteed amount of time. UNIX does 

not however provide a known maximum time to activation. 

System Resources. A machine control system of the UMC type might 

typically be expected to have between 10 and 100 concurrent pro

cesses. UNIX is very inefficient both in terms of system resources 
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and time when supporting a large number of relatively simple 

processes. 

Provision of an Interrupt Mechanism. There is no provision for pre

emptive hardware interrupts to allow a rapid response to external 

events. 

Event Management. Mechanisms are needed to support the manage

ment of multiple events. There is no event management mechanism 

in most current versions of UNIX. 

A number of working parties are now trying to address these problems. A 

real-time subcommittee of /user/group [67] and a real-time group at General Motors 

[68] are cooperating on defining the necessary extensions to UNIX. AT&T has also 

begun to address some of these problems and System V release 2 onwards adds mes

sages, semaphores and shared memory which are all needed in machine control ap

plications [69]. 

The POSIX standards activity includes a subcommittee for real-time UNIX. 

Draft standards were expected by early 1990 [62]. It is intended that the POSIX 

standards will also include the best features from distributed and parallel versions of 

UNIX [70]. The fact that GM have chosen UNIX as the standard operating system 

for the factory floor means that there will be a large market force to correct the 

deficiencies of UNIX in the real-time environment [71]. 

6.11 DATA BASE MANAGEMENT SYSTEMS 

In addition to their primary control function modern machine control sys

tems are facing increasing requirements for information storage and retrieval. Not 

only do machine controllers require local real-time information processing capabili

ties but they must also be able to effectively exchange information with other sys

tems in the manufacturing environment. The management of complexity and change 

are key issues which have led to increased requirements for information storage and 

retrieval. For example: 

The potential complexity of distributedlreconfigurable control sys

tems demands extensive data base management capabilities to docu

ment and support the system lifecycle e.g. machine description, con

figuration and modification. See section 5.9. 
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At run time increasing emphasis is now being placed on product 

quality and process improvement. Accurate product related informa

tion is critical in order to implement more flexible pro

cesses/machines able to run multiple product variants and switch 

products quickly. 

The three traditional data base structures commonly used to implement in

formation systems are hierarchical, network, and relational. Hierarchical and net

work data base structures are dermed at the time of data base definition. This results 

in low data redundancy and very fast access time. The drawback with these configu

rations is that modifying the structure later can be very cumbersome [72]. Relational 

data bases, on the other hand are built from straight linear files which are related 

through key fields. This allows configurability by adding or modifying data base 

relationships. Although it involves substantial overheads, the relational approach is 

generally adopted where an extendible centralised information resource is required 

[73]. Performance limitations can however often restrict their use in real-time appli

cations [74]. 

Normally associated software known as the Data Base Management System 

(DBMS) allows the applications user to access information with minimum effort and 

technical knowledge. The DBMS is a complex software system which constructs, 

expands and maintains the data base and is of key importance [75]. 

Access to an information resource from application specific programs is 

commonly achieved by the use of a query language. SQL (Structured Query 

Language) is the most common query language and has been accepted as a reference 

product by ANSI (American National Standard Institute) [76]. 

The information capabilities of most current machine control systems have 

been based on proprietary data structures and proprietary data managements systems. 

There are now many attractions in integrating machine control systems with more 

standardised data management systems, utilising products like EMPRESS, 

INFORMIX, ORACLE and INGRES. The benefits of such an approach include: 

The reliability of a standard proven product once established. 

Faster development time using a standard product with standard de

velopment tools rather than developing a new, proprietary data base 

manager. 
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The need to interface with third party systems. SQL for example pro

vides a de facto standard application and user interface to data. 

The creation of standard software tools and applications like report 

generators and statistical analysis packages which can be used with 

standard data base management products. 

6.12 HUMAN INTERFACES 

Efficient control system design and development requires a very flexible 

user interface. Windowing systems, now offer appropriate interfacing capabilities 

for the multitasking development and target environments currently being utilised. 

See section 6.S. Examples of proprietary windowing environments include products 

from SUN [77], Microsoft [7S], and Digital Research [79]. The most notable 

emerging standard in this field is the MIT X-Window system which is designed for 

controlling windows and graphics on intelligent terminals, PCs and workstations. 

X-Windows sits between the operating system and the application programs 

and defines how application programs can communicate with the user in a graphical 

and visual way. X-Windows is not in itself a user interface but it allows the devel

oper to produce such interfaces to a system. One of the main reasons for the ac

ceptance of X-Windows as a standard is that it is hardware independent [SO]. 

The use of a standard interface for the target machine operator has gener

ally received little attention by machine control system designers. The operator is 

currently often faced with a bewildering variety of displays and controls. Each ven

dor has a different approach to displaying information to the operator and obtaining 

input. As yet little research has been done regarding the most effective way of 

communicating with factory personnel [SI], [82]. 

6.13 SELECTED ENABLING TECHNOLOGY 

6.13.1 Introduction 

The machine control system research at LUT has spanned about six years 

and over this period enabling technology has progressively evolved. The flexible 

manner in which the UMC development and target environments have been able to 
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incorporate technological improvements illustrates one of the strengths of adopting a 

generic approach to control. 

6.13.2 System Hardware 

The use of appropriate hardware and communications standards has enabled 

the utilisation of physical system components from a variety of sources. Processing 

hardware as been obtained predominantly from Syntel Microsystems [83] with Intel

ligent Motion and I/O controllers from Quin systems1, [84], Galil Motion Control 

[85] and Martonair [86]. 

The initial development and target environments were G64bus based sys

tems utilising Motorola MC68008 processing hardware. These systems have been 

progressively supplemented by more powerful VMEbus systems with MC68020 

processors and cross-development facilities. 

As networking standards have emerged and been supported by suitable 

hardware and operating system vendors a distributed computing environment has 

been evolved at Loughborough for UMC research. See figure 6.9. From initial point 

to point RS-232 links, Topaz and Ethernet based communications have been 

adopted. These facilities have enabled the interconnection of develop

ment/supervisory and target machine environments for me transfer, remote process 

execution and debug as illustrated in figure 6.7. See also section 6.13.4. 

6.13.3 Real-Time Operating System 

The real-time operating system selected for UMC machine control research 

at Loughborough is OS-9. It incorporates many features of UNIX such as, multi

tasking, a hierarchical me structure, a "shell" user interface, utility programmes, 

resident assemblers, Iinkers, debuggers, and a number of high level languages in

cluding a Berkeley compatible C compiler [87]. Unlike standard UNIX however 

OS-9 executes in real-time and is fully ROMable [88]. 

lQuin Systems specialise in the development of computer control systems for high speed machines 
and are the major collaborator on the research grant. 
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-
6.13.4 Development Environment 

OS-9 is a self hosting real-time environment since the same environment 

can be used for both code development and real-time control. See section 6.8.2 and 

figure 6.8. OS-9 can also be used with a UNIX, VMS or MS-DOS/OS-2 host envi

ronment by utilising the UniBridgeNMS-V AX/PCBridge communications and de

velopment packages [89]. 

The control system research environment at LUT has evolved from a single 

OS-9 machine, to a distributed system of host and target OS-9 computers linked with 

network communications. Greater flexibility has been provided through the avail

ability of cross development facilities in both MS/PC-DOS and UNIX environments. 

The importance of these links is very significant in the long term since they enable 

the integration of support tools, including data base managements systems, CASE 

and advanced user programming methods such as Grafcet, with the core real-time 

capabilities ofUMC. 

6.13.5 Data Base Management 

UMC development environment requires a central information base. A 

simple custom approach has been adopted at Loughborough in the proof of concept 

implementation of UMC. See section 7.6. Although this simple custom data base 

system has been effectively created, for more extensive usage a standardised Data 

Base Management System (DBMS) is considered necessary [90]. A standard DBMS 

interface is therefore to be adopted for UMC system development and run time sup

port. The data base !NGRES and its associated SQL library are currently being 

evaluated [91]. 

6.14 SUMMARY 

With the emergence of standards for modular hardware and recent advances 

in real-time software environments suitable technology currently exists to allow the 

implementation of the UMC methodology. A proof of concept implementation of 

UMC using selected enabling technology is described in chapters seven and eight. 

The ideal of a standard "tool box" which provides an open and consistent 

approach encompassing all aspects of control system creation is however still largely 

unrealised. For many aspects of machine control systems effective industry stan-
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dards for enabling technology have yet to fully emerge. In particular there are cur

rently no effective standards for real-time operating systems and system program

ming languages although a real-time variant of UNIX and the programming lan

guage C (or a close variant of it such as ANSI C) will perhaps become effective 

standards. There is also a severe lack of effective applications related standards for 

machine control which the UMC reference model may help to stimulate. Standard 

information models are also not yet available which can adequately describe man

ufacturing systems (including programmable/configurable machines) and their inter-

relationship with product models. 



ENABLING TECHNOLOGY AND 1HE ROLE OF STANDARDS 144 

Chapter 6: References 

1 Zimmennan, H "OSI Reference Model - The OSI model of architecture for 
open system interconnection", IEEE Trans. Commun. Vol28, April 1980, pp 
425-432. 

2 Sauter J. A. and White J. F. "The Role of Standards in the Development of 
Workstation Controllers", Sixth Annual Control Eng. Conf., Rosemount, n, 
May 19-21,1987, pp 98-107. 

3 Ward P. T. and MelIor S. J. "Structured Design for Real Time Systems", Vol 
I, Section I, YOUluon Press, 1985, pp 3-39. 

4 Hauser, N. "PLC or VMEbus: An open question?", Microsystem Design, 
March 1990, pp 8-9. 

5 Anon. "Series 90 PLCs now available", Automation, April 1990, MBC Pub
lications, pp 3-5. 

6 Banks, D., "Systems thinking, systems practice", Microsystems Design, 
February 1990, pp 16-17. 

7 Anon. "G-64 Board Directory", A directory of all processing boards available 
for the G-64/G-96 bus system, G-64 Only, Vol2, No I, Gespac Publications, 
1986. 

8 Smith D. "A Close Couple", Microsystem Design, April 1989, p 15. 

9 Fischer W. "Real-Time Computing Demands Standards", Computer Design, 
October 1988, p 79. 

10 Anon. "Technology Focus, Bus Systems and Networks", Electronic Engi
neering March 1983, pp 117-128. 

11 Stone H. S., "Microprocessor Interfacing", Addison-Wesley, 1982. 

12 Liebennan, D. "The open-architecture bus world: too many choices?", Com
puter Design, October 1988, p 77. 

13 Anon. "The OS-9 Sourcebook", Hardware Systems and Products, Microware 
Systems Corporation, Des Moines Iowa 50322,1988, pp 5-148. 

14 Anon. "The STEbus IEEEl000 Product Guide", Issue 5, Techpress Publish
ing, 1989. 

15 Webb, M., "Building Sophisticated Motion Control Systems with a High
Level Computer Language", Seminar - What's New in Electric Motion Con
trol, Drives and Controls Conf., Coventry, 10 March 1988, pp Fl - F6. 

16 Titus J. "Industrial Busses", Eng. Design News, February 1987, pp 114-126. 

17 Curran M. "The search for a better expansion bus", BUSCON/88-EAST, 
Computer Design, October 1988, p 88. 



ENABLING TECHNOLOGY AND TIIE ROLE OF STANDARDS 145 

18 Pabouctsidis C. "Using the G-64 Bus in Midrange Industrial Applications", 
G-64 Only, February-March 1986, pp 7-14. 

19 Marks P. "Which Bus?", Microsystem Design, Iuly-August 1987, pp 10-11. 

20 PrtakL. "The 'work-a-day' PC", Microsystem Design, May 1989, pp 10-11. 

21 Borrill, P. L. "Microstandards Special Feature: A Comparison of 32-Bit 
Buses", IEEE Micro, December 1985, pp 71-79. 

22 Pri-Tal, S. "VMEbus gears up for 1990s computing", BUSCON/88-EAST, 
Computer Design, October 1988, p 84. 

23 Hunt D. and Hodson K. "The case for single height VME", Microsystem De
sign, April 1987. 

24 MacKinnon, D. et aI., "An Introduction to Open Systems Interconnection", 
Freeman, Oxford, 1990. 

25 Weston R. H. "Industrial Computer Networks and the Role of MAP, Part 1 ", 
Microprocessors and Microsystems, VoI10, No 7, September 1986, pp 363-
370. 

26 Anon. "ISO 9506-N Manufacturing Message Service: A core specification, 
together with a set of companion standards for specific application use. N u
merical Control companion standard, Robot companion standard, PLC com
panion standard, Process control companion standard", 1988. 

27 Weston, R. H. et aI., "The Need for a Generic Framework for Systems Inte
gration", NATO AST series book on "Advanced Information Technology for 
Industrial Materials Flow Systems", Springer Veriag, 1989, pp 279-306. 

28 Pfeifer T. and Komischke M. "Low-level communication systems for sen
sors", Proc. 3rd CIM Europe Conf., pp 39-46, May 1987. 

29 Kochar V. "Network solutions for sensors", Automation, November 1987, pp 
45-48. 

30 Anon., "ISA SP50", Instrument Society of America, Standards and Practices 
Working Group 50, PO Box 12277, Research Triangle Park, NC 27707, 
USA. 

31 Anon., "IEC/TC65C/WG6", International Electro-technical Commission, 
Technical Committee 65 Industrial Process Measurement and Control; Sub 
Committee 65C Digital Data Communications for Measurement and Control 
Systems; Working Group 6 Inter-Sub-System Communication. 

32 Rant J., "Intel and Industrial Automation", The Bitbus Architecture, Solu
tions, Intel Publications, September-October 1985, pp 2-5. 

33 Ledamun D. and Goodwin M. "Exploring the possibilities of the 1553B data 
bus", Electronic Engineering, March 1983, pp 147-152. 



ENABLING TECHNOLOGY AND THE ROLE OF STANDARDS 146 

34 Anon. "ARCNET Factory LAN Primer", Contemporary Control Systems 
Inc., 2500 Wisconsin Avenue, Downers Grove, lllinois USA 60515, April 
1988. 

35 Anon. "Topaz - A guide to industrial local area networking", Syntel Micro
systems, Huddersfield HDl 3PG. 

36 Glad, A. S. "Software Engineering Guide for Real-Time Systems Develop
ment", Sixth Annual Control Eng. Conf., Rosemount, n, May 19-21, 1987, 
pp 188-199. 

37 Foulger, R. "Choosing Languages for Realtime Embedded Microprocessor 
Systems", National Computing Centre, Oxford Rd, Manchester, 1981. 

38 Os borne, A. "Introduction to Microprocessors", McGraw-Hill, Berkeley, 
1978. 

39 Allworth, S.T., Introduction to Real-Time Software Design", Springer-Ver
lag, New York, 1981. 

40 Shapiro, S. F. "Robotic systems learn through experience", Computer Design, 
November 1988, pp 54-68. 

41 Willis T., "What Makes Up Real-Time?", Seventh Annual Control Eng. 
Conf., May 1988, Section IX, pp 1-11. 

42 Smith D. "Real-Time ROMable OS-9 and the VMEbus", Microsystem De
sign, June 1987. 

43 Anon. "OS-9000 Real-Time Operating System, Product Code: OS NANA 
NASL, Microware Systems, Des Moines, Iowa 50322, September 1989. 

44 Roper P. "Gespac 68000 PDOS An Overview", G-64 Only, Spring 1987, 
Gespac Publications, pp 9-11. 

45 Sakamura K. "TRON Project 1988: Open Architecture Computer Systems," 
Proc. Fifth TRON Project Symp., Springer-Verlag, Tokyo, 1988. 

46 Anon. "Regulus Real-Time UNIX", Alcyon Corporation, 6888 Nancy Ridge 
Drive, San Diego, CA 92121. 

47 Anon. "VRTX - Versatile Real-Time Executive", Product Description 
HRI#02701, Hunter Ready, 445 Sherman Ave., Palo Alto, CA 94306-0803. 

48 Hudson J. "pSOS Real-Time Operating Systems", Technical Report 43, Unit
C Ltd., Worthing, Sussex, BN14 8NT. 

49 McMahon, S et al. "C Executive - not just another real-time kernel", Real 
Time Systems Ltd., PO Box 70, Viking House, Douglas, Isle of Man. 

50 Falk H. "Developers target UNIX and Ada with real-time kernels", Computer 
Design, April 1988, pp 55-56. 



ENABLING TECHNOLOGY AND THE ROLE OF STANDARDS 147 

51 Wison R. "Real-Time Executives take on the Newest Processors", Computer 
Design, February 1989, pp 88-105. 

52 Gaglianello R. D. and Katseff H. D. "A Distributed Computing Environment 
for Robotics", IEEE Publication CH2282/86-0000-1890$0l.OO, 1986. 

53 Kopetz H., et al. "Distributed Fault-Tolerant Real-Time Systems: The Mars 
Approach", IEEE Micro, February 1989, pp 25-40. 

54 Anon. "The OS-9 Catalog", Microware Systems, Des Moines, Iowa 50322, 
2nd Edition, September 1989. 

55 Dibble, P. "OS-9 MP - The Multi-Processor OS-9", Proc. of European OS-9 
Conference, Vivaway Ltd,John Street, Luton, LU1 21E, 1987. 

56 Kernighan, B. W. and Ritchie, D. M. "The C Programming Language", Pren
tice-Hall, 1978. 

57 Anon. "Reference manual for the Ada programming language", United States 
Department of Defense, July 1982. 

58 Volz, R. et al. "Using Ada as a programming language for robot-based manu
facturing cells", IEEE Transactions on Systems Man and Cybernetics, Vo1 
14, No 6, 1984, pp 863-878. 

59 Wirth, N. "Programming in Modula-2", 2nd edition, Springer-Verlag, 1982. 

60 East, I. "Computer Architecture and Organisation", Chapter 10 - Survey of 
contemporary processor architecture, Pitman, 1990. 

61 Howard A. "UNIX all round", Computerised Manufacturing, April 1989, pp 
33-34. 

62 Falk, H. "UNIX rivalries cloud developers' choices", Computer Design, 
March 1989, pp 49-54. 

63 Stuart P. "UNIX bell tolls for corporates", Computer Equipment, March 
1990,p 17. 

64 Singh I. M. "Will The Real Real-Time UNIX Please Stand Up?", Automa
tion, April 1989, pp 34-36. 

65 Anon. "IEEE Standard Portable Operating System for Computer Environ
ments (IEEE Std. 1(03), Institute of Electrical and Electronics Engineers 
Inc., New York,NY, 1989. 

66 Adelin F. "Linking UNIX to a real-time operating system", Microsystem De
sign, September 1987, pp 1O-1l. 

67 Corwin B. and Schermerhorn L. "/usr/group & P1003.4 Realtirne Working 
Groups", Seventh Annual Control Eng. Conf., May 1988, Section IX, pp 24-
29. 



ENABLING TECHNOLOGY AND TIlE ROLE OF STANDARDS 148 

68 Fong K. L. "General Motors Real-Time Computer Systems Requirements 
Survey Report", Seventh Annual Control Eng. Conf., May 1988, Section IX, 
pp 16-23. 

69 Anon. "System V Interface Definition", AT&T, Volumes 1 and 2,1989. 

70 Grey G. "Towards Multi-Processor UNIX", Microsystem Design, July
August 1989, pp 10-11. 

71 Weingart J. "GM Demands UNIX in its Future Buys", Computer Systems 
News, April 1986, P 1. 

72 Gillenson, M.L., "Databases Step by Step", John Wiley, New York, 1984, pp 
194-196. 

73 Palmer, L.B., "Using dBASE for DCS Configuration", Seventh Annual Con
trol Eng. Conf., May 1988, Section XIX, pp 1-4. 

74 Ruckman, RP., "Data Base Requirements in Process Control Systems", Sev
enth Annual Control Eng. Conf., May 1988, Section XIX, pp 8-16. 

75 Vail, P.S., "Computer Integrated Manufacture", Chapter 9: Design of the 
Data Base", PWS-KENT, 1988, pp 181-210. 

76 Anon. ANSI/SQL, "ANSI American National Standards Standard Database 
Language SQL", New York: American Standards Institute Inc., 1986. 

77 Anon., "Sun's Software Overview", BEI25-0nSK, Sun Microsystems Inc., 
Mountain View, CA 94043, 1987. 

78 Anon., "Microsoft Windows - User's Guide", Version 2, Microsoft 
Corporation, 1987. 

79 Anon., "GEM!3 User's Guide", Digital Research, Monterey California 93942, 
December 1987. 

80 Anon., "What is the MIT X-Window System?", Amarante, AIM Business 
Centre, Welham Green, Hertfordshire, 1990. 

81 McCready, A. K., "User Interfacing to Process Computer Systems", Standard 
Handbook of Industrial Automation, Chapman and Hall, 1986, pp 424-432. 

82 Dallimonti, R "Challenge for the 80s: Making Man-Machine Interfaces More 
Effective", Control Engineering, January 1982, pp 22-60. 

83 Anon., "A Guide to Microsystem Design", Syntel Microsystems, Hudders
field HDl 3PG. 

84 Anon, "DSC-l Intelligent Motion Controller", Quin Systems Ltd, Oaklands 
Park, Wokingham, Berkshire. 

85 Anon, "DMC-200 Two-Axis Multibus DC Motor Controller", Galil Motion 
Control, Mountain View, CA 94043. 



ENABLING TECHNOLOGY AND TIIE ROLE OF STANDARDS 149 

86 Anon,. "Programmable Position Controllers MES38", No. 5.6.191-1, Issue 1, 
January 1986, Norgren Martonair, Eastern Avenue, Lichfield, Staffordshire. 

87 Anon., "Microware 68000 C Compiler", Microware Systems Corporation, 
Des Moines, Iowa 50322. 

88 Dibble, P., "OS-9 Insights: An Advanced Programmers Guide to OS-
9/68000", Microware Systems Corporation, Des Moines, Iowa, November 
1988. 

89 Anon., "The OS-9 Catalog", Microwate Systems Corporation, Des Moines, 
Iowa, 2nd. Edition, 1989. 

90 Prieto, F et al. "Information Management in Manufacturing", Pree. 5th CIM 
Europe Conference, May 1989, pp 389-398. 

91 Anon, "INORES/ESQL Reference Manual", INORES Relational Technol
ogy, Alameda, California 94501, 1990. 



7 
Proof of Concept Implementation of UMC 

7.1 INTRODUCTION 

This chapter discusses a proof of concept implementation of the UMC 

methodology targeted at the control of modular distributed manipulators. An indus

trially representative evaluation environment has been constructed at the University. 

This consists of a reconfigurable modular machine for demonstrating printed circuit 

board handling. 

The potential for the UMC methodology is seen as very broad and consid

eration has been given to the achievement of adequate real-time performance for a 

wide range of possible applications. The ability to accommodate change is key to 

the potential of UMC as a generalised approach to control. Although currently of

fering relatively modest features it is important to recognise the inherently extendible 

manner in which the methodology has been implemented. This represents a signifi

cant step towards proving the concept of using an "open" control architecture for 

manufacturing machines. 

The operating system OS-9 provides the core services for the present im

plementation of the UMC Reference Architecture. See appendix A. The implemen

tation consists of: 

a reconfigurable real-time target control system environment con

forming to the UMC Reference Architecture, and 

development tools to enable the required UMC machines and associ

ated applications tasks to be described and configured. 

7.2 MANIPULATOR AND MACHINE CONTROL TERMINOLOGY 

The UMC philosophy encourages the design of machines with optimised 

mechanical structure and without redundant degrees of freedom. The terminology 

introduced here relates to the implementation of configurable machines and their as

sociated control systems and extends the set of definitions provided in chapter five. 
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7.2.1 Machine Configuration 

Conventional 
Robot 

Modular 
Robot 

Modular 
Distributed 
Manipulator 

Manufacturing 
Machine 

Any robot (usually pedestal mounted) which is available only 
in one or at most a few configurations of serial kinematic 
chain. 

A robot having any number of axes all mechanically coupled 
in a serial kinematic chain and constructed from a family of 
modular elements 

A robotic device constructed from a family of modular ele
ments or axes which are not necessarily all mechanically cou
pled. (Le. A number of serial kinematic chains may exist). 

Any automatic machine used in an automated production fa
cility which obviously includes each of the above machine 
configurations. 

7.2.2 Universal Machine Control 

Machine 

Task 

Handler 

Axis 

Axis 
Group 

Port 

Event 

A UMC machine consists of a user definable set of concurrent 
tasks and interface handlers for real-time control. 

Tasks are user defined processes describing the application of 
a UMC machine. 

A handler is an interface used to control and monitor a UMC 
machine related device. Two types of handlers, Axis Handlers 
and Port Handlers are currently implemented. 

An axis is a programmably positioned mechanical system with 
one degree of freedom. Any axis forming part of a UMC ma
chine is controlled via an Axis Handler. 

UMC axes can be grouped together in order to achieve collec
tive movement in many degrees of freedom (typically as part 
of a distributed manipulator). The axes of an axis group need 
not be mechanically coupled (Le. may belong to separate 
kinematic chains). Theoretically there is no restriction on the 
number of axes in a group and any individual axis may be part 
of more than one axis group of a machine. 

A UMC port is any binary I/O device controlled via a port 
handler. Ports are divided into I/O channels. The configura
tion and number of channels is related to the specification of 
the I/O device which might typically be a PLC or intelligent 
I/O board. 

Events are user defined flags employed within UMC to coor
dinate the concurrent application tasks in a machine. 
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7.3 IMPLEMENTATION PHILOSOPHY 

7.3.1 Introduction 

UMC aims to provide enhanced machine controller functionality and re

duced lifecycle costs through the adoption of an open approach. 

During machine build UMC seeks to provide sufficient computational 

power to support the functional requirements of each machine to be controlled in an 

optimised manner. A goal is to offer an approach which can provide a cost effective 

solution to diverse control requirements and which does not compromise the control 

system enhancement. 

7.3.2 Ensuring Adequate Real-Time Performance 

The speed of response required to adequately cater for events which occur 

in real-time is an important fundamental consideration in control system design. It is 

also important to consider the relative amounts of code which are typically associ

ated with the implementation of different controller functions. Whilst these factors 

are obviously application dependent and generalisations must always be considered 

with care, Lent [I] has considered the relationship between response requirements 

and code size for a typical machine controller used for discrete parts manufacture. 

See figure 7.1. In general terms the larger and less time critical functions require the 

most frequent and extensive modification since they are predominantly applications 

related. The more time critical code typically represents a relatively small percent

age of the total code, which is less frequently changed. Many of these more time 

critical functions may therefore be conveniently embedded in dedicated device con

trollers, offering cost effective state of the art performance at the time of installation. 

However due to ad hoc implementation methods these devices generally restrict the 

future flexibility of control systems and hinder their reconfiguration. See section 3.4 

for an assessment of current machine control methods. 

As discussed conceptually in sections 5.6 and 5.7 UMC allows for the use 

of intelligent device controllers in a wen defined manner through the use of device 

handlers at the boundary of the UMC environment. 
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7.3.3 External Device Handlers 

In the purest environment the device controller interface could be standard 
• 

by design. However practicality dictates that a diversity of controller implementa-

tions must be accommodated at some level. 

The lowest level in the UMC hierarchy is therefore formed from external 

device interfaces termed handlers, as illustrated in figure 7.2. 

When using currently available device technology, control methods are in

variably device specific. Typical examples are, motion and intelligent I/O con

trollers which support a wide variety of unstandardised programming methods, 

communication protocols and computer interfaces [2]. See figures 7.3 and 7.4 also 

section 3.3.6. The UMC handler enables the utilisation of these devices, which are 

seen as vital components in state of the art machine control systems, in a consistent 

manner without restricting their performance. 

Response 
Time 
[msl 

10000 

1000 

100 

10 

1.0 

0.1 

TIME CRITICAl 
MACHINE CONTROl 
FUNCTIONS 

Often Embedded 
In Oedicaled 
Device ConlroUers 

5% 10% 20% 50% Code Size 100% 

Figure 7.1. Typical relationship between response requirements and code size for a machine 
controller. 
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device 
specific 
110 
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~
MACHINE 

TASK 

HANDLER 

--nnn 

Figure 7.2. The role of device handlers within UMC. 

MESSAGES 
commands 

information 

CONNECT 

MECHANISM 

data protocol 

connect medium 

(eg RS232, RS422, 
G64, VME, Fieldbus) 

motion 

ontroller 

linear 
module 

l
ACluator System: 1 
transmission, guideway, 

feedback sensor(s). 

Figure 7.3. Motion control device interaction. 
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MESSAGES 
commands 
information 

CONNECT 

MECHANISM 

data protocol 

connect medium 

(eg RS232, RS422, 

G64, VME, Fieldbus) 

machine 

1/0 

processing 

PLC 

Figure 7.4. Intelligent I/O control device interaction. 

on/off drives, 

Interlocks, 

tools, displays. 

Binary Inputs: 

limit switches, 

Interlocks, 

quantised 

feedback. 

Handlers are required to provide a well defined mechanism for making ex

ternal devices appear consistent within the UMC system. An appropriate interface 

needs to be provided for each type of device so that both old and new control com

ponents of widely varying complexity can be integrated together and programmed in 

an efficient manner. Compatibility with current systems and vendors' future systems 

is the dominant feature required by users [3]. Handlers unify the logical appearance 

of each type of control device, enabling consistent command sets to be used for all 

axes of motion or all binary I/O ports. A given device may obviously only be able to 

support a subset of the available UMC control commands depending on its capabili

ties [4]. See section 7.8. Each handler describes the control capabilities, hardware 

interface and communication protocols for an individual external device. Once cre

ated a given handler can be reused each time that device recurs on the same or sub

sequent machines. 

7.3.4 Determining the System Boundary 

It is important to consider at the outset of any control system implementa

tion the position of the system boundary. An appropriate system boundary must be 
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chosen. The position of this system boundary, fonned by the UMC handlers, will 

typically vary with changes in both application requirements (speed of response etc.) 

and the capabilities of the available enabling technology (processing power etc.). 

The UMC architecture neither prescribes nor precludes that different parts 

of a given application are implemented internally or externally to the UMC system 

boundary as illustrated in figure 7.5. The potential also exists for more than one 

UMC machine to be executed within a single operating system environment [5]. See 

figure 7.6. 

The performance capabilities of any selected processing hardware and asso

ciated operating system are obviously finite. The combined perfonnance capabilities 

of a particular UMC machine controller will depend on the processing power of the 

UMC system itself together with the capabilities of intelligent device controllers out

side the UMC system boundary. As suggested in figure 7.5 there may be many ac

ceptable combinations of processing elements and their selection requires careful 

consideration. 

Manufacturing Control System 

IJ 
~-

Increase In Task 
and Handler Processes 

Processing Capacity 
of UMC System 
Increased 

Reduced External Device 
Requirements 

Manufacturing Control System 

~ 

-__ iJ 

Figure 7.5. Variation in UMC system boundary with changes in processing power. 
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Manufacturing 
Control 
System 

MACHINE 1 

Manufacturing 
Control 
System 

MACHINE 2 

Figure 7.6. Multiple UMC machines in a single operating system environment. 
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.-
7.3.5 Modular Distributed Manipulators 

7.3.5.1 Introduction 

A major advantage sighted for the use of robotic manipulators for automa

tion in preference to task-specific hardware is their flexibility [6]. In theory, a 

robot's task can be changed simply by loading a new program into its controller. 

However in practice this is rarely the case. Each conventional robot has a specific 

configuration that supports a limited range of capabilities, appropriate only to the 

particular application for which it was designed. The concept of modular distributed 

manipulators is to create robots with different optimised configurations for each 

manufacturing task based on specific task requirements. 

The design and application of modular distributed manipulators and the re

quirements for their effective control both at axis and supervisory levels have been 

the focus of research by the Modular Systems Group at Loughborough for many 

years [7], [8], [9], [10]. The inherent concepts of configurablity and machine opti

misation within UMC stem from the requirements for the control of modular dis

tributed manipulator systems and the provision of machines capable of providing an 

inherently flexible and responsive approach to manufacturing. See also section 2.5 

and the paper in appendix B.1 which reviews a study of application areas for modu

lar robots undertaken by the author. 

The chosen application for the initial proof of concept implementation of 

UMC was a distributed manipulator system for printed circuit board handling and as

sembly illustrated in figure 7.7. The facility which uses industrial hardware wher

ever possible, has been configured to provide a realistic environment for practical 

control system evaluation. 

The system consists of modular actuators and tooling to transport printed 

circuit boards between pallets and work piece fixtures. The demonstrator extends 

the concept of modularity throughout the machine's mechanical hardware and con

trol systems. The mechanical modules are mounted on a modular extruded section 

aluminium framework which is also reconfigurable. 

The modular manipulator system can be summarised as follows: 

Conveyor 
System 

Three electric conveyors with transfer cylinders for pallet 
handling. 



Pallet 
Transportation 

PCB 
Handling 

pCB 
Registration 

Component 
Insertion 

Pick and 
Place 

system. 

Pneumatic seNO actuated rodless cylinder with pal

let/carrier location tooling. 
pneumatic seNO activated ganttY module with electric 
geNO activated vertical module and programmable pCB 

gripper. 
Electric seNO actuated slideway and twO axis stepper mo

tor positioned pCB registration fixture· 
Four electric seNO actuated modules with interchangeable 

tooling. 
TwO geNO actuated modules and tooling for reject PCBs. 

Pick and Place 
pes 
Handling 

component InsertiOn 

Figure 7.7. LUf distributed manipulator demonsttator. 
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7.3.5.2 Demonstrator Control System Configuration 

A typical target system hardware configuration is illustrated in figure 7.8. 

The system comprises of a single supervisory processor which supports the UMC 

environment, together with a set of intelligent slave device controllers. A review of 

the selected development and target system hardware is provided in section 6.14. 

The position of the system boundary follows generally accepted practice for 

high performance multi-axis motion control systems. The control of binary I/O ports 

and axes of motion is assigned to dedicated processing hardware controlled via UMC 

handlers with the remainder of the application programmed as a series of concurrent 

tasks within the UMC environment. See figure 7.15. 

Figure 7.8. Schematic of system hardware. 

The UMC device handlers are interrupt driven and the devices do not re

quire polling. The UMC system thus executes in a predominantly event driven man

ner within the system boundary. Each process may typically spend a large percent

age of its time waiting. The handlers initiate and monitor the activity of continuous 

or discontinuous processes beneath them implemented outside the UMC system 

boundary. 
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7.3.5.3 User Defined Machine Structure 

The distributed manipulator illustrated in figure 7.7 is divided into a series 

of user defined axis groups with associated I/O channels. Each axis group is pro

grammed and controlled from a separate task process and the movements of the axis 

group are performed between named locations. It should be noted that axes may be 

shared between tasks to simplify the programming of applications. Figure 7.9 il

lustrates the axis groups typically used for printed circuit board handling applications 

at Loughborough. These groupings are however user defined and can be changed as 

required. See section 7.7 for details of task implementation. 

TASKS: AXIS GROUPS: 
Component insertion ..... ~ l z r (V) 

PCB Load •••• '(V) W (X) Y Z 
PCB Reject ••••. p q (V) 

Operation Monitor .•..• _ 
Pallet Hand •.•... (l<) 

N.B. Shared axes 
indicated by 
bracke'-. 

Figure 7.9. Division of the LUT distributed manipulator into axis groups. 

7.4 IMPLEMENTATION OVERVIEW 

7.4.1 Introduction 

The UMC architecture described in chapter five consists of a number of hi

erarchicallayers. Each UMC machine is essentially a set of components (concurrent 
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processes and associated information modules) which are created in a defined man

ner on the target computer. A UMC machine is created on the target computer by a 

machine loader program which interprets the information contained in the machine 

information module. The design and implementation of the machine loader is de

scribed in detail in chapter eight. 

The UMC Machine information module provides an overall machine con

troller definition and is the root for creation of or references to all other program and 

information modules which make up a complete UMC controller. See figure 7.10. 

7.4.2 UMC Machine Development Cycle 

As discused in chapter five, (see in particular figures 5.1 and 5.2), the UMC 

environment has been designed and implemented to enable applications to be devel

oped in stages allowing progressive testing and verification. The task program mod

ules forming an application can be written and tested individually and then combined 

together in a very flexible manner. The state of events and inputs can be manipu

lated via user utilities and simulated handlers can be used in place of physical inter

face devices and their associated external hardware. See section 7.8. 

At run time a UMC control system is composed of a set of memory resident 

modules which each contain either programs or information. A corresponding set of 

information and program files are used for system definition prior to run time. These 

files of defined types form a library of machine, task, axis and port components. See 

figure 7.11. 

The user is required to edit a machine information module edit file in order 

to describe the structure of the machine he wishes to create. Device handlers and 

applications tasks then need to be written and selected as necessary. These describe 

the devices to be controlled and the concurrent operations the machine is required to 

perform. There will obviously be an iterative cycle in order to extend and refine the 

machine description and task programs as a given application develops. Sub-sets of 

a given machine can be selected for evaluation and test at any time using options 

provided by the machine loader. See chapter eight. 
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Figure 7.10. Schematic of machine infonnation module structure. 
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0 • 
• • 
• • 
0 • 
• • 
• • 
• Header defines • 
o structure of • 
• Information • • 
• Modules 0 

0 

• • 

UMCTASK 
(OR HANDLER) 
PROGRAMS 

Figure 7.11. Schematic of UMC development stages. 

Note 1: Location Modules are referenced via the Machine Module - Task Sub-Structure. 
Note 2: Task Modules are normally created dynamically by the machine loader (ml) and not via the 

module editor. 
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7.5 COMPONENTS OF THE UMC ARCHITECTURE 

7.5.1 Introduction 

In simplistic terms the components of the UMC Architecture each consist of 

a process and one or more uniquely associated information modules of a standard 

format determined by template(s). See figure 7.11. The lower levels of control may 

be distributed on external hardware via handlers. 

OS-9 memory modules are used to implement the building blocks of any 

UMC controller. Appropriate sets of these modules may contain programs or data to 

support the required functions for each UMC component Appendix A.2 provides a 

more detailed description of OS-9 memory modules. 

7.5.2 Program Modules 

Each UMC process executes the code contained in an OS-9 program mod

ule. See appendix A.2. Program modules are created using conventional OS-9 edi

tors, compilers, interpreters and utilities as appropriate [11]. 

UMC Handlers, tasks, utilities, editors etc. are all loaded as program mod

ules prior to their execution. Program modules are re-entrant and can therefore, if 

appropriate, be shared by more than one process on a machine. 

7.5.3 Information Modules 

The speed requirements for real-time control do not allow the use of disc 

files for interprocess communication or information retrieval. At run time a UMC 

machine controller therefore uses information modules held in memory to allow the 

buffered exchange of information between the processes forming the control system. 

See appendix A.7.1 which describes OS-9 data modules. 

Currently five types of UMC information module are defined and these are 

used in various numbers and combinations to support the information requirements 

of a given machine controller. The module types are machine, task, task location, 

axis handler and port handler. 
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7.5.4 Information Module Structure 

Each type of UMC infonnation module has a predefined revisable structure 

composed of fields which contain data in one of a number of fonnats. Currently the 

field types supported are characters (one byte), integers (four bytes), floats ( four 

bytes) and thirty two character strings (thirty two bytes) [12]. 

The fonnat of each type of UMC infonnation module is defined by a tem

plate with associated sub-structures for repeated sets of elements. Figure 7. I 1 illus

trates the templates and sub-structures associated with a machine infonnation mod

ule. These templates and substructures are editable and this importantly enables the 

UMC infonnation structures to be modified in a defined manner. A template editor, 

Booth [12], generates the templates and substructures which define the data 

structure for each type of UMC infonnation module. Module editors support the 

creation and maintenance of the infonnation module contents. Matching header 

files, also generated by the template editor enable infonnation access from any UMC 

process to each type of UMC infonnation module. An appropriate set of header files 

must be included in each UMC task or handler program depending on the types of 

infonnation module to be accessed. Appendix D lists the headers required for ma

chine infonnation module access. 

7.5.5 UMC Components 

Any UMC machine controller will be composed of a single machine infor

mation module and a variable number of other modules. Figure 7.12 illustrates the 

module combinations typically used to fonn the run time components of UMC con

trollers. The run time machine controller uses these components in a simple struc

ture composed of three layers, Machine, Task and Handler. 
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Figure 7.12. Module combinations used to fono the components of a UMC run time system. 
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7.6 DESCRIBING A UMC MACHINE 

7.6.1 Introduction 

As explained in the Implementation Overview, section 7.4.2, it is important 

to appreciate that a set of memory modules are used at UMC run time while an 

equivalent set of files are used for machine and process description. 

UMC machines are currently described by a library of edit files manipu

lated via a set of custom written editors [5]. There is current research by the Modu

lar System Group to enable the use of an emerging industry standard data base man

agement system for UMC machine description and storage in the future. See section 

6.12. 

The UMC file library is used in conjunction with machine loading and un

loading utilities to enable control system retrieval at load time and saving after use. 

Figures 7.11 and 7.13 illustrate UMC machine description and retrieval 

schematically. The information structure is predefined by template files. The con

tents of the information structure is in turn described by edit files. 

The machine information module (or its corresponding edit file) lies at the 

root of the machine controller structure. It defines the combination of other modules 

which a particular "instance" of the UMC machine requires. These modules collec

tively describe each axis or I/O handler, applications tasks and their I/O paths, axis 

location data, global events of significance and the logical relationship between 

tasks, axis and port handlers, and events. 

7.6.2 Associating Machine Entities with Tasks 

A defined subset of a machine's axes, ports and events can be associated 

with each task. The required associations are defined in the machine module edit 

file. See figure 7.14. Each task is allocated a unique task link bit in the task link bit 

field. The corresponding bit is then set in the task link field of every UMC entity (ie. 

axis, port, event etc.) to be associated with that task. 

The task link bits are interpreted by the machine loader at run time to create 

the necessary machine structure. See chapter eight. A task cannot reference any 

UMC entity which it has not been associated with via link bits. See section 7.7.4.1. 
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Figure 7.13. Schematic of machine module structure. 
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Figure 7.14. Concept of task link bits for associating tasks with UMC entities. 
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7.6.3 Information Module Editors 

Editors allow both the "off line" creation and modification of the disk based 

edit files and the "on line" modification of information modules contents at machine 

run time [5]. These editors fulfil the following functions: 

Template Editor for templates and sub-structures, 

Module Editor for machine, and device handler module files, 

Task Location Editor for the on line editing of location module files, and 

Parameter Tuning Editor to support the interactive optimisation of control 

loop gains (in axis information modules) which usually contain values spe

cific to the mechanism being controlled. 

7.7 UMC TASK IMPLEMENTATION 

7.7.1 Introduction 

The task structure is entirely user defined. The number and type of tasks 

are defined by entries in the machine information module. 

The most common and obvious purpose for tasks is the control of mechani

cal and electrical hardware via handlers. Tasks can also control other task programs, 

extract information from the system and report it, provide facilities for recovery from 

or control of failure situations etc. The multi-tasking nature of the system allows 

control, diagnostics and monitoring logic to be naturally separated. This allows the 

visualisation and programming of complex applications to be simplified. Figure 

7.15 illustrates the division of the Loughborough PCB hanc,lling application into 

multiple tasks. 

Due to the predominantly event driven nature of UMC, task programs need 

not be a great overhead on the processing power of the system. Typically most pro

cesses will be in a sleeping state when action is not required and will be awakened 

by events or signals generated by other tasks or handlers when their action is re

quired. See appendix A.6, OS-9 process management. 



PROOF OF CONCEPT IMPLEMENTATION OF UMC 172 

Figure 7.15. Schematic of typical task structure for the PCB handling application. 
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7.7.2 Task Information Modules 

Task information modules provide applications task related information. 

Currently task information modules are by default created automatically by the ma

chine loader and contain only a small amount of data. An optional location module 

can also be associated with each task (to store position data for axis group motion 

control) as required by the application. 

7.7.3 Task Program Modules 

Task programming is currently accomplished in either Microware Basic or 

C using standard system editors to generate the program code with appropriate com

pilers and interpreters as required [13], [14]. Appendix C contains the listing of an 

example task program written in Basic. UMC Release 1 provides extensive exam

ples of C task programs [5]. 

Task programs can in principle be generated in any high or low levellan

guage allowing the most appropriate programming method to be selected for each 

task. It is however necessary for "hooks" into the UMC system to be provided for a 

given language to be fully integrated into the UMC system's facilities. These 

"hooks" are provided in the form of subroutine or function libraries. 

The C program function libraries contain relocatable code which can be 

linked to the task programs. The same C source functions are used to create Basic 

subroutines modules which can be called from a task program written in Basic. See 

chapter eight. 

7.7.4 UMC Library Functions for Tasks 

There are currently several C function libraries and a more limited set of 

Basic subroutines which may be called by task programs in order to access UMC 

system facilities. These function libraries cover handler communication, linking 

functions, information module usage, event usage etc. [5]. 

7.7.4.1 Linking 

UMC tasks need to reference various UMC entities, (events, axes, ports, lo

cations etc.) for control purposes. These entities are initially referenced via mean-
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ingful names using link functions. This serves to ensure that the entity referenced 

does exist and is associated with the particular task. The link functions return num

bers which are used thereafter by the task for efficient access or control of that en

tity. See example program in appendix C. 

7.7.4.2 Event Usage 

Significant events which occur globally are managed by means of an event 

system. Events of interest can be given meaningful names and after linking their 

values are then manipulated from UMC task processes. UMC events are typically 

used for task coordination and synchronisation [15]. Figure 7.16 illustrates this use 

of events with extracts from Basic task programs. 

Events are also be used to provide the capability for tasks to wait for a 

change of state in a binary input or for an analogue input to reach a set value. This 

feature is incorporated within the handler programs and is implemented in a manner 

which is transparent to the user. It is possible to wait for all inputs to the UMC sys

tem in this manner which enables the I/O system to be integrated into task programs 

in a very natural manner. 

7.7.4.3 Handler Usage 

Device handlers provide a device independent interface to task processes 

within UMC via a neutral command set appropriate for each supported class of de

vice. Thus device communication is achieved via a defined but extendible library of 

instructions which are common to all implemented handlers of a given type. Axis 

and binary I/O port handlers have currently been implemented. See section 7.8. The 

program extracts shown in figure 7.16 include handler motion command calls. 

"SmoveO" is a multi-axis straight line move to a named location. 



RUN look(groupl) 
IF groupl.ev_value=HALT THEN 

PRINT "tasK-l - Waiting for event 'groupl'" 
RUN wait(groupl,l,2) 

ELSE 
PRINT "task_l - Starting SYNC" 
REM sync moves in both tasks using events: 
RUN signal(start2) 
RUN smove(position2,FAST) 
RUN wait(finish2) 
RUN signal(start2) 
RUN smove(position3,FAST) 
RUN wait(finish2) 
RUN signal(start2) ________ ~ 
RUN smove(position2,FAST) 

PROCEDURE task_2 

REM 
RUN 
RUN 
RUN 

RUN wait(finish2)."~ __ ~ 

ENDIF ~ ENDLOOP 
END LOOP 

'----

RUN 
RUN 
RUN 
RUN 
RUN 
RUN 

ENDIF 
END LOOP 

ENDLOOP 

sync moves in both tasks 
wait(start2) 
smove(position3,FAST) 
signal(finish2) 
wait(start2) 
smove(positionl,FAST) 
signal(finish2) 
wait(start2) 
smove(positionU, FAST) 
signal(finish2) 

Figure 7.16. Task program interaction using events. 

using events: 



PROOF OF CONCEPT IMPLEMENTATION OF UMC 176 

7.7.4.4 Information Module Usage 

As explained in section 7.5.3, infonnation modules provide repositories for 

infonnation exchange between different levels in the control architecture. Functions 

have been written by Booth [12] to allow the reading and writing of individual fields 

within the infonnation modules. The read and write functions perfonn data type 

checking and also contain code to prevent possible infonnation corruption due to the 

simultaneous reading and writing of data by different processes. This is achieved by 

the use of binary events which control access to each infonnation module. 

7.7.5 Task to Operator Communications 

Due to the configurable nature of the UMC control system it is necessary to 

provide more flexible methods for user interfacing than those nonnally offered by 

conventional controllers. 

Traditional controllers are largely predefined in their fonn and usually have 

user interfaces of fixed configuration. See section 3.4. In the UMC system the user 

interface configuration is defined in software and has a hardware independent repre

sentation. 

In common with UNIX each OS-9 process used within UMC has three stan

dard I/O paths, standard input, standard output and standard error [16]. These paths 

are all by default directed to the interface device on which the parent forking process 

is running but it is possible to redirect them. The redirection of these interface paths 

are defined for each UMC task in the machine infonnation module. The UMC 

machine loader program includes code to redirect the standard paths to any ap

propriate I/O device specified in the machine infonnation module. See chapter 

eight. 

The capabilities of user interface devices have progressively improved 

during the duration of the research. Initially only simple serial devices, chiefly ter

minals, were available for user I/O paths. Tenninals do not however lend them

selves to being shared by multiple processes, particularly with respect to input. It 

was necessary to employ a tenninal for each task during system testing which was 

not an elegant solution particularly when a large number of tasks were running. 

Windowing systems now offer a more elegant solution to this problem. Each task or 

handler can have its own window supporting its own set of standard paths with the 

operator being able to select the desired window as required. IBM PC and Sun 
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workstation windowing systems are currently being evaluated for this purpose [17], 

[18]. The Sun solution is achieved by means of a network bridge between the OS-9 

system running the UMC software and the Sun UNIX based environment [19]. 

7.S UMC HANDLER IMPLEMENTATION 

The implementation of handlers at LUT has been researched extensively by 

Booth [5] and others [4], [20]. This section seeks to provide only a brief overview of 

handler implementation. 

The handler modules are concerned with the machine specific I/O devices 

for example, axes of motion, analogue or digital inputs or outputs etc. These may be 

of virtually any type and degree of intelligence. 

The handler programs are device specific but may be shared if multiple de

vices of the same hardware type are used. A handler program is made up of three 

main parts, code common to all handlers, code common to handlers of a specific 

type and, code specific to a particular hardware device. See figure 7.17. 

Since OS-9 uses re-entrant code a single handler program and a single de

vice driver can be shared by all handler processes of the same type. Each of these 

processes will have a unique information module associated with it that will contain 

the device specific information including a unique device descriptor for each physi

cal hardware interface. See appendix AA, OS-9 I/O management 

As illustrated in figure 7.18 each handler information module defines the 

physical parameters of the external device (e.g. length, maximum speed, maximum 

acceleration for an axis of motion). It also holds transient information to support 

handler to task communication at run time. 
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Figure 7.17. Handler structure and implementation within OS·9. 
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Figure 7.18. Handler infonnation module schematic. 
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The use of handlers makes UMC applications tasks independent of the de

vice hardware. The hardware thus becomes virtual and can be changed or reconfig

ured at will. If real hardware is not available during system design it is a simple 

matter to substitute handlers which simulate the real hardware for system develop

ment allowing extensive offline debugging. 

7.9 UMC MACHINE RUN TIME 

7.9.1 Introduction 

The run time system includes software to load, run, modify and unload ma

chines in whole or part. During system development it also allows the teaching of 

axis locations, the tuning of drive systems, the control of events, and the simulation 

of axis and port I/O devices [5]. 

7.9.2 Machine Loading and Unloading 

At run time the machine loader must initially be executed as the first UMC 

process on the target machine controller. This utility program requires a machine in

fonnation file name as an argument and creates the run-time controller as defmed by 

the machine infonnation module fonned. See figure 7.19. The loader creates the 

specified handler and task modules and associated events and initiates all the re

quired processes. Having done this the loader currently dies. The operation of the 

loader is detailed in chapter eight. 

The task processes link to the UMC entities (currently axes, ports, events 

and locations) they wish to use and call UMC control functions or subroutines as ap

propriate. See section 7.7.4. An unloader utility allows the modules associated with 

a UMC machine to be partially or fully removed in a consistent manner. 

In the future the machine loader, modification utilities and unloader may be 

integrated together to provide a consistent interface for communications with other 

machines and with high levels in the manufacturing systems architecture. See chap

ter nine. 



MACHINE LOADING: 

Machine Information 
Module is loaded 
first. 

Machine Process and 
Information structure _ .. ~ .. ;, 
is described by ~

the contents of the 
Machine Information 
Module. 

MACHINE UNLOADING: 

Termination of Processes 
and removal of 
Program and Information 
Modules. 
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Figure 7.19. Concepts of machine load and unload. 
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7.10 SUMMARY 

This chapter has described an implementation of the UMC reference archi

tecture to enable the construction of machine controllers in a generalised manner. 

Tools have been created to allow the description of required machines and their run 

time control. Sufficient UMC components have been produced to control a target 

application involving the use of distributed manipulators for discrete parts handling. 

The capabilities of the UMC system are however inherently expandable. 

The current system has been implemented using the OS-9 real-time operat

ing system which offers suitable features and performance as detailed in Appendix 

A. Chapter eight details the design and implementation of selected UMC modules 

by the author. 
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8 
Implementation of Selected UMC Elements 

8.1 INTRODUCTION 

This chapter provides an in-depth discussion of UMC implementation 

methods and documents the design of selected elements of the run time system 

which have been created by the author1. The discussions reflect the state of the 

UMC system up to September 1990. This is obviously subject to change as the 

scope and capabilities of the UMC software are progressively enhanced [1]. 

8.2 RUN TIME MACHINE IMPLEMENTATION 

8.2.1 Introduction 

As discussed briefly in section 7.9 the run time creation of every UMC ma

chine involves a sequence of load and link operations, before the applications related 

UMC control operations can occur. This section reviews these operations as a pre

cursor to discussion of UMC system programs. 

8.2.2 Machine Creation Cycle 

Before UMC machine creation, the chosen target system should consist of 

appropriate control hardware to support the UMC machine to be created and loaded. 

For example physical device interfaces should exist which are appropriate to the 

particular device handlers specified in the machine information module. 

At system run time the machine loader (ml), a UMC machine level utility, is 

the first program to be executed. See figure 8.1. 

lComplete source code listings are not included in this thesis although they may be available by 
arrangement with the Modular Systems Group. 
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Proprietary 
Hardware 

Figure 8.1. Initial state ofUMC run time system. Note that for simplicity only one external device is 
shown. 

The loader's initial action is to create a machine information module in 

memory. A set of specified task and device handler related program and infor

mation modules are then created together with their associated events. These mod

ules form the memory resident software components of the UMC run time machine 

controller. Module cross referencing is achieved via the writing of suitable pointers 

into the information module headers. For example each task information module 

contains pointers to its associated machine and location information modules. See 

figure 8.2. Task and device handler processes are initiated through execution of ap

propriate program modules. The current loader then dies. 

The processes created by the machiite loader execute concurrently. The 

task processes link to their associated information modules by name and then estab

lish "links" with the UMC entities2 they wish to control or access i.e. axes, ports, 

events and locations. See figure 8.3. 

2The term entity is used in this thesis to describe any elements of the UMC system which are linked 
to applications related tasks. The term component has been previously used in other UMC docu
mentation for such elements. 
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After linking, subsequent communication between UMC entities and tasks 

is achieved via pointer and offset values. These numerical values are returned by the 

link functions and their use increases UMC system run time efficiency. 

Proprietary 
Hardware 

Figure 8.2. State ofUMC run time system after loading. Note that for simplicity only one task, one 
handler and one associated external device are shown. 
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OS-9 System Boundary 

Proprietary 
Hardware 

Figure 8.3. State ofUMC run time system after linking. Note that inter-process communication and 
infonnation module access are indicated by arrows. 
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8.2.3 Information Module Access 

Sections 7.5.3 and 7.5.4 provided an overview of the role of information 

modules within the UMC architecture. This section considers the information access 

mechanism in more detail. 

Although the data structure of the UMC system need not be understood by 

application programmers, UMC system programming requires extensive data ma

nipulation. System programs including the machine load utility and UMC task 

linking and control functions must manipulate data within a number of different in

formation modules. 

Each UMC information module contains two "classes" of data structure. 

Information module headers which appear only once and repeated groups of data 

fields termed information sub-structures. See figure 8.4. 

C functions provided by Booth [2] (within the mmlib.llibrary) enable the 

individual data fields in information modules to be accessed. The current imple

mentation supports four types of data field, character (one byte), integer (four bytes), 

float (four bytes) and string (32 bytes). 

The location of UMC information within a given module is expressed rela

tive to the beginning of the user data area. This should not be confused with the OS-

9 data module header which is located at the top of all OS-9 modules [3]. See figure 

8.4. 

A library of offset functions are provided (the offset.llibrary) which calcu

late the required offsets from the beginning of the. UMC data area to given data 

fields. These offset values are then used in conjunction with the data access func

tions contained in mmlib.l [2] to obtain specific information. 

In each program which is to access a particular information module type, 

the names of a corresponding set of C header files must be included. These header 

file names are of the form tem*.h for templates which describe the information mod

ule header structure and sub*.h for information module substructures where * is a 

character string. In order to provide an example appendix D lists the header files 

which enable machine module access from UMC programs. 
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Figures 8.5 and 8.6 list the current machine and task infonnation module 

contents. These contents are of course subject to change. For complete details refer 

to the latest UM C release notes [2]. 

The data field names are indicated in figures 8.5 and 8.6 by hyphenated 

italic text3. These names subsequently appear in the same fonn within the main text 

of this thesis to aid the reader. 

DATA MODULE HEADER 

USER DATA AREA 

CRC CHECK VALUE 

Figure 8.4. Schematic of UMC information module organisation. 

3Note some of these fields are not directly editable by the user. 
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MACHINE INFORMATION MODULE HEAOER: 
Module-Type-ldentifica#on-strlng 
7he-Number-Of-Machine-Axes 
The-Number-Of-Machinf1-Ports 
7he-Numbsr-Of-Machine-Events 
NODE FOR REPEATED AXIS INFORMATION SUBSTRUCTURES 
NODE FOR REPEATED PORT INFORMATION SUBSTRUCTURES 
NODE FOR REPEATED EVENT INFORMATION SUBSTRUCTURES 
NODE FOR REPEATED TASK INFORMATION SUBSTRUCTURES 

AXIS SUBSTRUCTURE 1: 
Axis-Name-String 
Axis-Edit-File-Name 
Axis-Task-Link-Bits 

AXIS SUBSTRUCTURE L: 

PORT SUBSTRUCTURE 1: 
Port-Name-String 
pon-Edit-File-Name 
Port-Task-Link-Bits 

PORT SUBSTRUCTURE M: 

EVENT SUBSTRUCTURE 1: 
Event-Name-String 
Event-Task-Link-Bits 

EVENT SUBSTRUCTURE N: 

TASK SUBSTRUCTURE 1: 
Task-Name-String 
Task-Process-File-Name 
Task-Program-File-Name (If Required) 
Task-Standard-Input-Path 
Task-Standard-Output-Path 
Task-Standard-Error-Path 
Axis-Group-Loca#on-File (If Required) 
Task-Link-Bit 
Task-Process-lden6ftca6on (Entered At Run nme) 

TASK SUBSTRUCTURE P: 

Figure 8.5. Machine infonnation module contents. 
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TASK INFORMATION MODULE HEADER: 
Module- Type-ldentifica~on-String 
UniqUB-Task-ldentification-Number _ 
Machine-Information-Module-Pointer 
Axis-Group-Loca~on-Module-Pointer (Optional) 
Task-Process-lden~fica~on-Number 
C-Subrou#ne-Static-Storage 
The-Number-Of-AXBs-Associated-With-This-Task 
The-Number-Of-Ports-Associated-With-This-Task 
The-Number-Of-Events-Associated-With-This-Task 
NODE FOR REPEATED AXIS INFORMATION SUBSTRUCTURES 
NODE FOR REPEATED PORT INFORMATION SUBSTRUCTURES 
NODE FOR REPEATED EVENT INFORMATION SUBSTRUCTURES 

AXIS SUBSTRUCTURE 1: 
Machine-Axis-Number 
Handler-Module-Pointer 

AXIS SUBSTRUCTURE L: 

PORT SUBSTRUCTURE 1: 
Machine-Part-Number 
Handler-Module-Pointsr 

PORT SUBSTRUCTURE M: 

EVENT SUBSTRUCTURE 1: 
Machine-Event-Number 
Event-lden#fica#on-Number 

EVENT SUBSTRUCTURE N: 

Figure 8_6. Task infonnation module contents. 

8.3 MACHINE LOADER 

8.3.1 Introduction 

This section seeks to provide an overview of the operation of the machine 

loader program (m!). The machine loader described here reflects the author's version 

(source code ref. m189.c - last modified 19-4-89) plus subsequent modifications by 

Booth [3]. chiefly to allow the loading of multiple machines. A debug version of the 

machine loader (ml d) has also been created by the author_ This version prints mes

sages as it proceeds to provide user diagnostics. 
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8.3.2 Machine Loader Program Description 

The following text provides an outline description of the machine loader's 

operation. The bracketed numbers reference the structured design charts illustrated 

in figures 8.7and 8.8. 

(1) Process Command Line Arguments: 

The machine loader command line has the following syntax: 

ml [<opts>] <machine name> [<opts>] {<task names> [<opts>]} 

The machine name is the name of the machine information module edit file 

to be searched for. The specification of optional task names by the user allows the 

partial loading of a machine. In such cases only the named tasks, if valid, will be 

created together with their associated UMC entities. 

Options (opts): 

-c 

-i 

-/ 

Don't Load Entities. If set, no axes, ports or events will be 

created 

Display Load Information. This flag causes a table showing 

machine related information to be displayed. 

Load Tasks From Edit Files. If set, task modules are created 

from edit files. Task modules are normally created directly 

from information in the machine module. 

-p Don't Pass Task Argwnents. This flag suppresses the passing 

of any argument string when a task is created. This string is 

optionally specified in the machines module's task sub-struc

ture Task-Program-File-Name field. If set, program data files 

associated with tasks written in Microware Basic will not be 

loaded. See figure 8.5. 

-m Set Machine Nwnber. Supports the creation of multiple ma

chines. The machine number defaults to zero if the flag is not 

used [3]. 



c 

B B 

Figure 8.7. Structured design chart for machine loader. -'f 



B c 

For tld! talk For ea task 7 

Else If link 
bits match 7.3 '_od 7.4 7.S 7.1 7.1 7.1 7.2 

Figure 8.8. Structured design charts for machine loader. 
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(2) Open Error File: 

A UMC specific error message file has been implemented. This has al

lowed the OS-9 error reporting system to be extended with UMC specific error codes 

and associated messages. 

(3) Create Machine Module: 

The machine information module is created from its disk based edit file. 

(4) Evaluate Number of Tasks to be Created: 

The number of tasks required by the user is evaluated. If no tasks are ex

plicitly stated as arguments on the command line then all the tasks specified in the 

machine module will be created. If a list of tasks is explicitly stated by the user then 

only these tasks ( and their associated axes, ports and events) will be created. 

(5) Task Information to Internal Data Structure: 

For each task to be loaded the Task-Name-String, Task-link-Bit and the 

Task-Substructure-Number are read and placed in an internal data structure local to 

ml. See figure 8.5. The loader then references this structure during the subsequent 

stages of machine creation. 

(6) Create All UMC Entities: 

The number of UMC entities required for each named task are counted for 

each entity type. i.e. For axes, ports and events. 

For each entity type and for each entity node number, the unique Task-link

Bit is cross referenced against the Task-Link-Bits of each entity. See section 7.6.2. 

In each case where a match occurs the entity is loaded or created as appropriate. The 

events are created using the Ev$creat OS-9 system call [171. The axis and port in

formation modules are created from edit files. The loader then reads the Handler

Process-Name from each axis or port information module and forks the handler 

process. 

(7) Task Creation: 

The following operations are performed for each task in turn: 

(7.1) The user defined standard I/O paths are read from the machine module for 

each task. See section 7.7.5 and also figure 8.5, Task-Standard-InputIOutputIError 
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fields. These standard paths are redirected as specified typically to terminals or win

dows for output, and keyboard(s) for input. This involves duplicating the standard 

I/O paths before forking each task process and then subsequently replacing the origi

nal paths. See [4] and [5]. Recent additions by Booth provide support for task redi

rection to an Internet host machine [6]. This enables a UNIX based workstation and 

its associated windowing environment to be used as a remote user interface. 

Each task is created using the OS-9 exec() function with the redirected paths [15]. 

An optional argument string may be passed to the forked task process. This allows 

the referencing of a program file when a Microware Basic process is forked [7J. 

(7.2) A task control event is created for each task forked. This is a global flag 

which prevents task execution until machine loading is complete. 

(7.3) For each task an information module is created. Its contents are derived from 

machine module information fields or may optionally be loaded from a disk based 

edit file. 

(7.4) If specified, an associated axis group location module will be loaded for each 

task which includes axes of motion. 

(7.5) The task information module header is accessed and the Machine and Axis

Group-Location-Module-Pointers and the Task-Process-Identification-Number fields 

are filled in. The task C-Subroutine-Static-Storage field is initialised to zero. See 

figure 8.6. 

(8) Copy Entity Information to Task Modules: 

At this stage the appropriate UMC modules are resident in memory. The 

cross referencing between task processes and their associated information modules 

must now be achieved. 

For each entity type and for each required entity, the <Entity>-Task-Link

Bits are read and compared with the unique Task-Link-Bit of each task. If a bit 

match occurs this indicates that the task wishes to access or control this UMC entity. 

NB. This algorithm reuses the code described in section (6). Each time a match ex

ists, the entity number (Le. the event, axis, port substructure number) is copied from 

the machine module to the appropriate task module entity substructure number field 

(e.g. Machine-Axis-Number). See figures 8.5 and 8.6. 
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(9) Tidy Up: 

Loading is now complete. The task control event(s) can be cleared and the 

loader dies. 

8.3.3 Naming Conventions 

Information module naming conventions have not been discussed in the 

above description of the machine loaders operation. These conventions were signifi

cantly modified by Booth in August 1990 to provide for the creation of multiple 

. UMC machines within a single operating system environment [3]. See figure 7.6. 

The current information module naming convention is as follows: 

machine module mXXmac 

task module mXXtakZZ 

location module mXXlocZZ 

axis module mXXaxWW 

port module MXXptyy 

task control event mXXctlZZ c 

Where xx is the machine number, ZZ is the machine task number, yy is the 

machine port number and wwis the machine axis number. 'm' is currently fixed at 

zero until multiple machines are fully supported. 

8.4 MODULAR APPROACHES TO TASK PROGRAMMING 

8.4.1 Introduction 

This section reviews modular programming methods as a precursor to dis

cussion of UMC task program implementation. 

Modular program design is the subject of exhaustive discussion in the field 

of computer science [8], [9]. Recent general purpose programming languages for 

example C, Pascal and Modula-2 permit the writing of programs in a modular man-
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ner [10]. Languages such as C++ provide further support for object oriented ap

proaches to programming [11]. 

Whichever language is adopted conventional program modules are essen

tially separate pieces of code which are combined by the language or a suitable link 

editor to form a single program which can be loaded and executed. As modification 

becomes necessary, only files which contain changes need to be recompiled although 

all files must be checked before final program creation [3]. If the modules used to 

build a program are written in a generalised and well defined manner, they can be 

progressively collected until subsequent programs can be built largely from existing 

modules. Most current programming systems support static modularity, where a 

number of separately identifiable source code segments are compiled to form one 

large executable program. In a mUlti-processing environment however such an ap

proach often wastes memory and individual program structure is fixed with no op

portunity for dynamic reconfiguration. 

8.4.2 OS-9 Subroutine Modules 

As discussed in section 7.5 memory modules are central to the overall de

sign of OS-9. Memory modules are separate reserved areas of system memory 

which may contain either programs or data. A subroutine module is a particular type 

of program module which contains user defined subroutine code which may be 

called from main program modules [3]. 

Puckett and Dibble [12], have advocated the use of subroutine modules as a 

powerful method to enable software reuse, efficient memory utilisation and dynamic 

program reconfiguration. The use of OS-9 subroutine modules is now considered in 

relation to the modular construction of programs. 

Subroutine modules offer dynamic modularity for program segments. OS-9 

subroutine modules are initiated simply by including appropriate procedure calls in a 

main program module. If several processes are running at the same time not only 

can re-entrant subroutine modules be shared between processes but they can be 

loaded and unloaded dynamically. This saves memory and offers a high degree of 

operational flexibility. Subroutine modules are bound in memory only while they 

are actually executing. If code modifications are necessary only the subroutine 

modules containing changes need to be recompiled and linked. The old modules 

must of course be replaced with the new versions, in the appropriate executable di

rectory on disk or loaded into system memory, but that is the entire extent of the 
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change [3]. Modules in an executing program can thus be replaced without stopping 

the program.· This is potentially a very powerful method for dYllamically modifying· 

application code. Subroutine modules no longer required can be removed, again 

while processes are running. 

8.4.3 Applying Subroutine Modules to UMC 

Although they have not as yet been widely adopted, as explained in section 

8.4.2, there are powerful arguments for the use of subroutine modules, particularly 

with regard to dynamic configurability, efficient use of memory and potential code 

reuse. Both Microware Basic I-code and object code subroutines have been created 

and used by the author. Section 8.5.2 will discuss the implementation of subroutine 

modules for UMC specific functions. 

Microware Basic I-code and 68000 assembler are the only fully supported 

subroutine languages. Basic I-code subroutines are not adequate for UMC purposes 

because Basic does not fully support the OS-9 system calls which are required to im

plement UMC specific functions. Unfortunately no programming tools are currently 

available from Microware to specifically support subroutine program development in 

C. This makes their current use relatively complex. 

8.4.4 OS-9 Trap Library Modules 

Another method to enable modular program construction and code sharing 

between programs at run time is to utilise the TrapLib (Trap Library) module type 

[3]. Trap modules act as libraries containing globally-accessible collections of ser

vices and their principal role is to achieve memory conservation. In contrast each 

subroutine module usually provides only a single service or function. Traplib mod

ules are distinguished from subroutines by their access method which is incompati

ble with Microware Basic procedure calls. Typically accessed from C programs, 

trap modules are easier, although less efficient to use than subroutine modules [3]. 

They are extensively used by Microware for both maths and I/O functions in order to 

conserve memory. 
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8.5 MICROWARE BASIC TASK PROGRAMS 

8.5.1 Introduction 

It is obviously desirable to simplify the writing of user application tasks as 

much as possible. One approach to this is to write task programs in an existing. pro

ductive. general purpose programming language such as Basic. This section reviews 

the work of the author to enable the creation of UMC task programs in Microware 

Basic via embedded UMC specific subroutines. 

Microware Basic is an unusual language since it is a hybrid which is 

claimed to combine the best features of Basic and Pascal [14]. Microware Basic 

provides its own development environment as illustrated in figure 8.9. This incorpo

rates an interactive compiler which provides extensive symbolic debugging capabili

ties. The Microware Basic compiler output is an intermediate code (I-code) that is 

then interpreted at run time. Execution is fast in comparison to most Basic language 

implementations although of course slower than native machine code execution [7]. 

A serious limitation of the current version of Microware Basic is that it does not 

directly support OS-9 signal or event system calls which are required for UMC im

plementation [13]. Complete details of Microware Basic are provided by the user 

manual [7]. 

As discussed in section 7.7.3 UMC currently supports task programs written 

in Microware Basic and C. C is the base level implementation language for UMC 

and support all its capabilities. UMC Version One release notes provide fuIl docu

mentation of these functions [2]. Basic currently supports a subset of UMC task in

structions which could readily be extended if a complete implementation is required. 

The UMC specific Microware Basic language extensions have been achieved 

through the use of subroutine modules. 
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Figure 8.9. Microware basic environment operating modes. 

8.5.2 Task Subroutine Module Implementation 

8.5.2.1 Introduction 

For the reasons mentioned in section 8.4 the use of subroutine modules is a 

very attractive concept. The major purpose of the subroutine modules implemented 

by the author has been to provide a method of embedding UMC entity linking and 

control capabilities into Microware Basic in as transparent a manner as possible. 

8.5.2.2 Microware Basic Procedure Calls 

A Microware Basic program is composed of a series of procedures which 

are initiated by RUN statements [14]. If the procedure named by a RUN statement 

cannot be found within the workspace, Basic will determine if it has been loaded 

outside the workspace. If it is not found there Basic will try to find a disk file having 

the same name in the current execution directory, load it and run it. In each case 

Basic checks to see if the called procedure is Microware Basic source code, a 
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. Microware Basic I-code module or a 68000 machine language module and executes 

it accordingly. See figure 8.10. This provides a very flexible approach to program 

development. 

Figure 8.10. Basic program module types. 

Machine language subroutines may be called in the same manner as a 

Microware Basic procedure using a RUN statement. Only pointers to each parameter 

are passed as arguments to a subroutine, all variables being called-by-reference and a 

function may not return a value as in C [7]. 

When Microware Basic calls a machine language subroutine the arguments 

are passed via registers dO and dl with the remaining arguments pushed onto the 

stack. Microware Basic then executes a jsr instruction to the entry point of the new 

subroutine module [7]. See figure 8.1 I. 
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8.5.2.3 C Subroutine Creation 

Assembler subroutines can be readily created as described above. However 

for UMC the requirement was to utilise subroutines compiled from C source code4. 

Normally a C program is not compiled as a root program section (psect). but is 

linked with the previously assembled me cstart.r. Cstart.a is a short piece of assem

bler code which sets up the arguments and some of the global variable space for a C 

program when it is forked [15]. Unfortunately the creation of subroutine modules is 

incompatible with the function of the cstart.a code. The solution to this problem 

was to create a new subroutine specific root psect. This has been named umcstart.a 

and is listed in appendix E.1. This program was assembled to produce a relocatable 

object me umcstart.r which could then be linked to compiled C programs. The pro

grams created can then be loaded into memory as re-entrant subroutine modules. 

It is important to appreciate that cstart provides a number of important 

functions for C programs. especially with regard to global static storage and support 

for high-level C I/O functions. The C code written within subroutines must therefore 

be restricted to simple I/O and memory manipulation unless additional support is 

provided. Assembler code within umcstart.a and a simple C output library written 

by the author provide the required functions to support UMC subroutine im

plementation. See appendix E. 

Within umcstart.a assembler code is provided for: 

(1) Dummy stack checking for standard library functions (true stack 

checking is normally provided by cstart) and declaring global static 

storage. E.g. for the variable errno which is automatically created as 

part of any C program to enable error reporting [16]. 

(2) Changing the static storage provision to a unique area (provided 

within the header of the task information module) for each task pro

cess calling the subroutine and restoring the processor registers to 

their original state before returning to the Basic calling procedure. 

(3) Reporting error codes back to Basic since the methods used for call

ing functions and reporting errors are not directly compatible between 

C and Microware Basic. 

4The creation of subroutine modules from C source code and their integration within UMC is largely 
undocumented elsewhere and is therefore described in detail. 
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Figure 8.11. Microware basic subroutine call. 
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8.5.2.4 Provision of Static Storage 

The Microware implementation of C on the Motorola 68000 processor uses 

the a6 register to store the base address for global and static variables. This base ad

dress is passed to a C program when it is forked and never changed by C code. Thus 

when the subroutine is called the contents of the a6 register must be saved and its 

value changed to address a specified area for C subroutine program static storage. In 

order to make the provision for this static storage external to the Basic user task pro

gram a 28 byte field for C-Subroutine-Static-Storage is reserved in the header of 

each task information module. See figure 8.6. Note that subroutine program mod

ules must not contain static storage internally in order to allow them to be shared. 

8.5.2.5 Returning from C Subroutines 

A subroutine returns to the original calling program by executing an rts in

struction. The called function must restore the registers to the values they contained 

when the function was called. The only exceptions are data registers dO, which 

originally contained the parameter count and dJ, which is used for returning error 

code values [7]. 

Subroutine modules return error status by setting the carry bit of the proces

sor condition code register and by setting the low order word of data register dJ to 

the appropriate error code. C uses errno, a static variable, to hold error numbers. 

Therefore if an error occurs the value in errno must be coped to dJ and the carry bit 

set before performing an rts instruction to return to Basic. 

8.5.3 UMC Subroutine Specification 

8.5.3.1 UMC Data Types 

A set of UMC specific data types must be defined at the start of each 

Microware Basic task program to be used for control purposes. See example pro

grams in appendix C. These are of the following form: 
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Data Type 

axis structure: 

port structure: 

event structure: 

location structure: 

Structure 

32 character name string, 

axis module pointer, 

axis number 

32 character name string, 

port module pointer, 

port number 

32 character name string, 

event module pointer, 

event number 

event value 

32 character name string, 

location module pointer, 

location number 

N.B. All other variables used in UMC subroutine calls are of data type 

integer. 

8.5.3.2 Subroutine Call Syntax and Description 

The following subroutines have currently been implemented and tested 

from Microware Basic: 

setup() 

Creates a communication path for communication to a Microware Basic task 

from axis and port handlers. Similar to the C function open _caller() [2]. 

link3vent(<event structure» 

Links to a specified event. Corresponds to a C function with the same name 

[2]. 

link_axis( <.axis structure» 

Links to a specified axis. Corre;ponds to a C function with the same name 

[2]. 
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link-port(<port structure» 

Links to a specified port. Corresponds to a C function with the same name 

[2]. 

link_Iocation(<location structure» 

Links to a specified location. Corresponds to a C function with the same 

name [2]. 

smove«location structure>,<percentage speed» 

Straight line move instruction. Moves with a trapezoidal velocity profile to 

an absolute location. Velocity and acceleration are specified as percentages 

of the allowable maxima in the axis data modules. Corresponds to the C 

function movelsp() [2]. 

look«event structure» 

Updates the event structure with the current value of the event. Similar to the 

C function read _ event() [2]. 

signal( <event structure>, «.flap}) 

Signals the specified event. This subroutine calls the OS-9 standard library 

function _ev_signal() [17]. N.B. The signal increment applied is determined 

by the machine loader when the event is created. This increment is currently 

set to one. This subroutine is similar to the C function signal_ event() [2]. 

wait«event structure>, (<min>, <max>}) 

Waits for a specified event. Min and max are optional parameters which de

termine the ev_min and ev_max values waited for by the OS-9 3v_wait() 
function called by this subroutine [17]. If not specified these values are both 

set to one by the subroutine. This default case caters for the most common 

application of events which is as simple binary semaphores [18]. This sub

routine is similar to the C function wait event() [2]. 

output(<port structure>, <channel no.>, <new state» 

Sets the port channel to a specified output value. Similar to the C function 

setoutput() [2]. 
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setdownO 

Closes down task to handler communication. Similar to the C function 

closehandler() [2]. 

The example Microware Basic programs listed in appendix C provide more 

complete details of variable definition and procedure call formats. Appendix E.3 

provides a source code listing of an example subroutine wait(). 

8.5.4 Task Program Structure 

The example UMC task programs listed in appendix C are of the following 

general form: 

(1) UMC specific type declarations to support the current entity types i.e. 

axes, ports, events and locations. 

(2) UMC variable declarations for the particular instances of the entities 

to be accessed or controlled from the task. 

(3) User variable declarations. These are application related. 

Microware Basic is a general purpose programming language and any 

of its inherent features can be used as required by the particular 

application. 

(4) UMC set-up and link statements. These are UMC specific. Set-up is 

associated with handler initialisation. See Booth [2]. Linking estab

lishes a direct numerical reference to each UMC entity after initial 

referencing by name. Linking is discussed more fully in section 8.6. 

(5) Main program code then follows with access to UMC entities 

achieved via procedure calls to subroutine modules. Compiled from 

C source code, these UMC specific subroutines support event, port, 

axis and axis location access and control. 

8.5.5 Limitations of Microware Basic for UMC Task Programming 

With the addition of UMC specific subroutines, Basic provides a productive 

environment for task programming. The approach is however currently limited in 
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. certain respects and these limitations can only be effectively overcome through 

modification to the language source code. 

Given the availability of source code for Microware Basic it is likely that 

the following enhancements could be implemented: 

The Microware Basic interrupt handler could be modified to support 

the receiving of user defined signals. The current lack of this facility 

restricts the methods used for task to handler communication. 

Subroutine static storage could become internal to the calling process. 

Currently space in task data modules has to be allocated for this static 

storage. 

UMC specific functions could be defined within the Microware Basic 

language. This would allow the provision of syntax checking, re

served words etc. 

The potential exists to fully automate UMC entity linking so that it is 

unseen by the user. 

It is interesting to note that Seiko Instruments have recently obtained a 

source code licence from Microware and are known to have implemented similar 

language modifications for robotic applicationsS. Source code for Microware Basic 

could now be obtained although it is considered prohibitively expensive for research 

use at $40,000. More importantly however a general purpose language such as 

Microware Basic is no longer considered to be the preferred task program envi

ronment. 

Microware Basic is not an industry standard language for control. Although 

it is a superset of ANSI Basic [7], in common with many similar languages, its best 

features are non standard and its implementation is operating system dependent [19]. 

Section 9.3.2 considers further shortcomings which can occur in utilising a general 

purpose high level programming language in industrial control applications. Due to 

such factors the author considers that it will be better to devote future effort into in

tegrating emerging industry standard, problem oriented programming environments 

into UMC. See section 4.5. 

Spar further details contact David West, Microware Systems Corporation, Des Moines, Iowa. 
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8.6 UMC ENTITY LINKING FROM MICROWARE BASIC 

8.6.1 Introduction 

This section documents the implementation of UMC entity linking from 

Microware Basic. The entity linking subroutines described have been coded in C 

and compiled and linked to form a subroutine module for use with Microware Basic. 

Similar operations are performed by a set of C functions coded by Booth for use with 

C task programs [2]. 

As discussed in section 8.2.2 linking is performed by the task processes 

once loading is complete. Link calls enable initial reference to be made to a UMC 

entity via a meaningful name. If the entity is found to be valid a number is returned 

to enable future reference to the entity. 

A single subroutine program module coded in C is used for linking all 

UMC entities, i.e. for axes ports, events and locations, from Basic task programs. 

This subroutine is not called directly from the Basic task program. The procedure 

call in the Basic task program initially calls a very short I-code subroutine module 

specific to the type of entity to be linked i.e. axis, port, event or location. This 1-

code subroutine sets up the appropriate parameters and in turn calls the common 

linking subroutine. See figure 8.12. 

The calls to the I-code subroutines are described in section 8.5.3.2. (The 

source code for the common link subroutine described here is link_cp89.c - last 

modified 17-4-89.) 
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Figure 8.12. Implementation of linking from basic. 

8.6.2 Linker Description 

The following text provides an outline description of link subroutine opera

tion. The bracketed numbers reference the structured design chart illustrated in fig

ure 8.13. The hyphenated italic text references the data field names in the machine 

and task information modules illustrated in figures 8.5 and 8.6. 

(1) Link To Task Information Module: 

The linker first links to its own task information module and a pointer to the 

beginning of the UMC data area is returned. 

(2) Change Static Storage: 

The tinker then immediately changes the program base address to the C

Subroutine-Stanc-Storage area reserved in the task information module header. See 

figure 8.6. 



Eisa 

If valid Else 

Figure 8.13. Structured design chan for UMC entity linking. 
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(3) . Check Entity Name Is Valid: 

For the entity type requesting linking a search is made of the entries in the 

machine module to check that the entity name is valid. The machine module is ref

erenced via the Machine-Information-Module-Pointer in the task information 

module header. 

(4) Check Entity Is Allocated To This Task: 

This confIrms that the specifIed entity has been allocated to this task by the 

machine loader (m/). Each task information module references a subset of the total 

UMC machine entities which are required to support the particular task process. 

(5) Link Entity: 

If the entity is found to be valid linking will take place. Linking simply in

volves the return of a UMC module pointer and the entity number to the calling 

program. 

(6) Return Values: 

The entity number and UMC information base address are returned to the 

calling I-code subroutine. This subroutine in turn passes the parameters back to the 

main task program to enable future entity access. 

N.B. Location modules are referenced via an additional Axis-Group

Location-Module-Pointer placed in the task module header. See fIgure 8.6. The 

method employed is as described above except that during stages (3) and (4) the lo

cation module (not the machine module) is searched and if a matching location name 

is found this is returned as the entity number along with the UMC location module 

base address. 

8.7 EVENT UTILITIES 

As discussed briefly in section 7.7.4.2 events are the main method of syn

chronising and coordinating concurrent task programs, both with each other and with 

external changes of state. Events may also be used to pass numerical values between 

tasks. 

Section 7.4.2 has considered the UMC machine development cycle from a 

user programming perspective. The recommended approach is that the task program 
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modules fonning an application can be written and tested individually and then 

combined together in a very flexible manner. To assist in task debugging a set of 

utilities have been created by the author to allow the user to manipulate, create and 

observe events. The syntax and function of these utilities are briefly described here, 

more complete details are provided in the UMC release notes [2]. 

Event Deletion: 

Syntax: edel <eventname> 

Delete any named event. This utility first unlinks the event "eventname" 

successively until its link count is zero and then deletes the event. 

Event Information: 

Syntax: einfo [<options>] 

Displays event infonnation. The display provides the identification number, 

name, value, wait and signal increments, and use count for user task related 

events. An optional -a flag allows all system events to be optionally 

displayed. 

Event Setting: 

Syntax: eset <eventname> <value> 

Simply sets the value of an event. 

Event Pulse: 

Syntax: epulse <eventname> <value> 

Pulses the named event to the stated value. The first process waiting for the 

event will be activated. This enables a series of processes initially all in a 

waiting state to be queued and released by a single named event 
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Event Signal: . 

Syntax: esignal <eventname> 

Enables the user to signal that an event has occurred. The named event will 

have its signal increment applied to its value. The fIrst process waiting for 

the event will be activated if there is a queue of processes waiting for the 

event. 

Event Wait: 

Syntax: ewait <eventname> 

This utility simply waits for the named event to occur, infonns the user and 

then tenninates. 

8.8 SUMMARY 

This chapter has detailed the design, structure and coding of selected ele

ments of UMC run time software created by the author. The complete proof of con

cept UMC system, reviewed in chapter seven, was coded predominantly by Mr. Alan 

Booth and the author with contributions from Goh [20] and Wright [21]. This work 

culminated in the release of UMC version one in January 1990 [2]. A critical evalu

ation of the perfonnance and industrial potential of the current UMC implementation 

is provided in chapter nine. 
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9 
UMC Evaluation and Industrial Potential 

9.1 INTRODUCTION 

The Modular Systems Group at Loughborough have written a considerable 

amount of software in order to enable the principles of UMC to be tested and 

demonstrated. Many of the concepts embodied in the UMC approach have been de

rived in an iterative manner. Initial versions of the software have been created based 

on the requirements presented in chapter five, tested and subsequently enhanced 

through utilising the machine hardware installed at the University. 

This chapter considers the capabilities of the current implementation of 

UMC, its perceived advantages, limitations, industrial potential and possible routes 

to its exploitation. 

9.2 MACHINE ARCHITECTURE 

9.2.1 Introduction 

The current implementation of UMC enables an outline specification of the 

required system configuration to be entered directly by the user into a simple data 

base. Machine controller description is therefore largely self documenting. 

The current data base package is custom written as described in chapter 

seven. In view of the need for standardisation and the wider potential of the UMC 

approach as part of a more comprehensive machine design and life cycle environ

ment the use of standard data base management system is seen as essential in the 

future. See chapter ten. 

9.2.2 Configurablity and Component Reuse 

Machine controller functionality is defined in a modular fashion and com

mon software components, for example device handlers, diagnostic tasks, user inter-
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face tasks etc. can be reused many times. Changes in machine structure can there

fore be made at any point in the design/life cycle with little penalty because the vari

ous controller software components are essentially independent. 

UMC controllers are thus inherently configurable so that they can be easily 

custom.ised to provide only the minimum functionality consistent with achieving the 

required task in an efficient manner. This approach enables wide variations in sys

tem size to be accommodated efficiently and allows simple systems to be imple

mented cost effectively whilst still offering a logical method for expansion. 

9.2.3 Staged System Development 

UMC control system development can occur in stages with the primary 

system tasks created and tested first Each task program can be tested as it is gener

ated by triggering the events that control its operation and utilising dummy device 

handlers as necessary. In this way a prototype can grow progressively into the final 

system. As each additional component is introduced its effect can be directly ob

served. 

9.2.4 Dynamic Reconfiguration 

Changes in UMC configuration can be carried out dynamically without in

terrupting a machine's operation. In a limited manner machine components and even 

complete machines can be loaded and unloaded dynamically while the remainder of 

the system is running. Future extensions to UMC are expected to progressively in

crease the facilities for dynamic reconfiguration [1]. 

9.2.5 Information and Event Visibility 

A memory resident information structure is inherent in every UMC con

troller. This provides a distinct information view of UMC and the extraction of 

management or diagnostic information from any desired part of the control structure 

is therefore easily achieved. 

In a similar manner the state of significant events can be monitored via the 

globally visible event system. This facility can provide valuable timing data for 

trend analysis, machine optimisation etc. 
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The UMC approach thus inherently allows for the provision of diagnostics, 

reporting and error checking etc. Reusable task program· modules could be specifi

cally developed in the future to fulfil these functions. 

9.3 TASK DESCRIPTION 

9.3.1 Introduction 

UMC is capable of supporting extensive multi-tasking at application pro

gram level. The use of multiple tasks allows the simultaneous supervision of differ

ent subsets of a machine's motion or binary I/O devices in a very flexible manner. 

Separate tasks can be employed for diagnostics, data collection, user interfaces etc. 

This leads to reduced individual task complexity through a division of the total 

problem into a set of distinct program modules and provides inherent potential for 

extendability, configurability and reuse. 

9.3.2 Language Usage 

To date software has been written to support the creation of UMC task pro

gram modules in the Microware Basic and C languages. C forms the UMC system 

implementation language and is thus the base level for applications programming. 

Microware Basic is a very high level general purpose programming language to 

which UMC specific C subroutine modules have been added. With its interactive 

debugging facilities but more restricted language capabilities, Basic provides a po

tentially more productive, although less versatile, programming environment than C 

[2]. 

Following analysis and practical evaluation neither of these general purpose 

programming languages is seen as a preferred solution for the task programming of 

UMC. As Bristol suggests [3] general purpose languages such as C and Basic have 

developed without the type of user interface and the ease of use required for indus

trial machine control. 

Both Basic and C mix quite different computational functions freely. For 

example declarations can, in principle be mixed with computational statements and 

I/O functions. Most recognised analysis and design methods however totally sepa

rate these functions [4]. A well engineered language ought to visibly separate differ

ent functions while integrating their effect in a well-meshed environment. 
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Microware Basic and C emphasise the use of structured programming

building blocks: through the provision of sequence. if-the-else. loop and case state

ments. However in common with most general purpose programming languages 

there is no means for making the program structure stand out. It is difficult to sepa

rate program structure and function or to view a program interactively at different 

levels of granularity or hierarchy. 

These limitations are compounded in the case of the UMC system by the 

need to visualise the interaction of concurrent task programs. 

9.3.3 User Defined Task Structure 

The UMC task structure is entirely user defined which although providing 

many potential benefits requires careful consideration and a disciplined desigu ap

proach to avoid poor application structure and inefficiency. The very flexibility pro

vided by task concurrency unfortunately often causes problems with application vis

ualisation. Software description. modelling and design tools are however emerging 

which if properly integrated into the UMC system could significantly improve task 

program structure and visualisation. 

It is likely that a block structured. concurrent function description environ

ment for example Grafcet. may best meet the needs of UMC in a standardised man

ner. It provides a graphical method for concurrent task description which aids appli

cation visualisation and will enable the transparent integration of existing UMC 

function libraries. See section 4.5. 

CASE tools could also significantly aid application development and ensure 

a disciplined design approach providing consistency through the provision of appro

priate modelling techniques and data dictionaries [5]. [6]. See section 4.4 and 

chapter ten. 

9.4 INTERFACING 

9.4.1 External Device Control 

Handlers have currently been implemented to enable the interfacing of mo

tion and binary I/O devices in a unified manner. Different types of motion control 

hardware employing different power media have been extensively tested on the Uni-
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. versity demonstrator system. Local parallel bus and remote serial interfaces have so 

far been implemented [7]. Networked handlers are the subject of cUrrent research 

and will be based on emerging fieldbus standards [8]. 

Handlers allow local, remote and even simulated devices to be controlled in 

an interchangeable manner. Controlled devices can thus be distributed as required to 

cater for the varying physical needs of each application be it chemical plant, a pack

aging machine, an assembly manipulator etc. 

9.4.2 Motion Control 

The system provides a novel, flexible method for multi-axis motion de

scription. Any subset of a machine's axes can be associated together as a group. The 

group can be controlled to move between named multi-axis locations from its as

sociated task program. Once defined groups may be extended simply by editing the 

associated location information module without the need for task program revision. 

The current UMC axis handlers provide point to point motion control with 

the option of defined velocity profiles when these are supported by the motion con

trol devices used. The UMC system does not currently allow for precise synchroni

sation of multi-axis movement. Only relatively close co-ordination of the start of 

moves is available. Thereafter moves are currently executed under the control of the 

individual motion controllers in an unsynchronised manner. Task level motion in

structions are therefore at present restricted to point to point commands [7]. 

Interpolation, contouring and programmable transmission capabilities are 

not currently available and need to be incorporated into the system in the future al

though the provision for the addition of such capabilities is intrinsic in the UMC ap

proach. The addition of programmable transmission capabilities originally devel

oped by Quin Systems [9] is the subject of current research. 

9.4.3 Manufacturing Interface 

Network communications currently allow machine creation and monitoring 

from a remote OS-9 or UNIX based development environment. A consistent run 

time manufacturing systems interface to UMC machine controllers has however yet 

to be implemented. Current research is expected to enable the machine module to be 

used as a shared information repository for communications with other machines and 

with higher levels in the manufacturing systems architecture. 
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9.5 REAL TIME PERFORMANCE 

9.5.1 Introduction 

It must be appreciated that the dynamics of the UMC system are not 

loop/scan time related as in a PLC, but are related to the operating system and con

trol software overhead. The interrupt driven I/O system, process time slicing etc. 

mean that while it might be theoretically possible to calculate worst case response 

times [10], in practise system loading is not generally deterministic in nature. This 

fact affects the manner in which the UMC system should be applied to certain appli

cations. 

9.5.2 Application Suitability 

In non-time-critical applications, for example control of the LUT assembly 

demonstrator, the computational time required between move or binary I/O instruc

tions is negligible, typically much less than 0.1 second, relative to the time required 

for manipulator motion. This type of application which is not subject to strict dead

lines consists predominantly of what will be termed soft real-time tasks. See figure 

9.1. Such tasks are well suited to implementation within the UMC system boundary. 

It is important to appreciate that the input system is interrupt driven and that task 

priorities can be dynamically adjusted in order to ensure that a rapid response can 

still be provided to failure conditions etc [11]. 

Certain applications include tasks where deterministic performance is an 

absolute requirement. These will be termed hard real-time tasks. E.g. control loop 

closure or failure monitoring. As illustrated in figure 9.1 such tasks must be 

periodically scheduled and must terminate before a given deadline. 

Provision for hard real time tasks within the UMC system boundary does 

not currently exist. The introduction of alarm functions in the latest release of OS-9 

[12] does however now provide the basis for their implementation. Using the current 

implementation platform the performance available using such an approach would 

however be limited. Alarms make use of the standard OS-9 system clock which 

usually has a period of 10 msec. Processes requiring more frequent scheduling could 

therefore certainly not be effectively controlled without operating system modifica

tion. 
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@I) EJHARD REAL-TIME TASKS - PERIODIC ACTIVATION 

• ISOFT REAL-TIME TASKS - PRIORITY BASED ACTIVATION 

Figure 9.1. Process time slicing for hard and soft real-time tasks. 



UMC EVALUATION AND INDUSTRIAL POTENTIAL 226 

Performance limitations within the UMC system boundary need not how

ever be a limiting factor on overall control system performance. The use of intelli

gent I/O devices supervised via the UMC handlers is the intended philosophy for 

time critical hard real-time processes beyond the performance capabilities of the 

UMC environment. For example, in the case of high speed synchronised drives, a 

dedicated motion controller would typically be utilised for each axis of motion. Pre

calculated position demand profiles may be stored in motion controller local memory 

and drive synchronisation is achieved heterarchically via a common clock [9]. In 

this supervisory role the UMC system performs device set-up, monitoring and ad

justments via appropriate handler functions. The UMC system's rapid interrupt re

sponse can thus be exploited for monitoring and error correction without incurring a 

large processing overhead. See appendix A.S. The performance limit of external 

devices interfaced to UMC via handlers is typically due to either their local I/O con

troller or drive system bandwidth limitations [13]. As advances occur in state of the 

art external device performance these can be rapidly and consistently interfaced to 

the UMC system via the implementation of appropriate handlers. 

9.5.3 Performance 

Wright [14] has performed some limited I/O performance evaluation of the 

current UMC implementation UMC but a thorough study is yet to be completed. 

There is obviously a progressive deterioration in system performance as the number 

of task and handler processes is increased. This need not be a limiting factor pro

vided that a correct assessment is made of where the system boundary should be po

sitioned with appropriate use of internally or externally implemented processes. See 

section 7.3. 

The optimisation of task priorities would enable best use to be made of 

available processing power within the UMC environment. In order to achieve this 

the future development of additional software tools is required to enable system per

formance data to be collected. 

The use of a faster supervisory processor and even more significantly a par

allel processing environment could be used to up rate UMC system performance as 

and when it is required [15], [16]. 



UMC BV ALUA TION AND INDUSTRIAL POTENTIAL 227 

9.6 PORTABILITY 

The UMC software has been written to run under the OS-9/68000 operating 

system. Many features of OS-9 particularly those for interprocess communication 

have been utilised. See appendix A. Several similar real-time operating systems are 

now available as discussed in section 6.9. It would be possible to rewrite the UMC 

software to suit other operating systems but this would obviously be a considerable 

task. The software has been developed on Syntel computers using the Motorola 

MC68000 family of processors but could be ported to other computers using the OS-

9 or OS-9000 operating systems with little effort. The code has been written in C 

with the use of OS-9 and UNIX compatible function libraries. See section 6.14. 

9.7 INDUSTRIAL POTENTIAL 

9.7.1 Introduction 

The features so far discussed in this chapter have been demonstrated in a 

working system within the University. The next step must be critical evaluation to 

detennine both the industrial acceptability of the approach and its run time 

perfonnance. 

9.7.2 Advantages 

Several major advantages should accrue from the use of UMC as a result of 

standardisation allowing a consistent approach to a wide range of problems. 

A tried, tested and well documented library of UMC control system compo

nents can be used repeatedly and additional modules can be progressively added to 

this library. As the automation marketplace is vast, the repeated use of these modu

lar components should facilitate low unit costs and high levels of support and relia

bility. These attributes which are common in well established business software 

products should be established and utilised in the field of industrial machine control. 

The inherent UMC property of extendability should present a clear advan

tage over most currently available approaches. System functionality can be progres

sively extended with new application areas being addressed by the addition of ap

propriate components. Support and diagnostic modules can be incorporated to serve 

the requirements of system builders, manufacturing engineers, shopfloor workers, 
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maintenance engineers etc. The appropriate support modules being included to suit 

the level of user interface required. 

The hierarchical nature of the reference architecture can also provide im

portant advantages when compared with the flat architectures typical of piecemeal 

system implementations [17]. There is a natural hierarchy in machine control prob

lems and a growing need to extend this hierarchy both upwards to encompass factory 

control and information systems and downwards to include low level machine com

ponents such as mechanical modules, sensors and actuators. It is important to allow 

specific expertise and methods to be brought to bear on the problem at each level in 

a well defined manner. UMC inherently provides hierarchical problem segmentation 

in the form of UMC components whilst as the same time providing an architecture 

for the effective integration of these components. Currently the situation all to often 

arises where required control technology and methods exist in isolated implementa

tions which cannot be effectively combined. 

The use of a hierarchical data model provides the ability to configure, pro

gram and monitor control systems with varying degrees of sophistication in a con

sistent manner. It also allows inherent system wide information visibility which is 

illustrated schematically in figure 9.2. 

It is during the reuse and modification of existing controllers or the devel

opment of subsequent machines that the value of the UMC approach is likely to 

emerge most strongly. These aspects are obviously difficult to quantify effectively 

until a wide base of control system manufacturers, system builders and users has 

been established. 
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9.7.3 Cost Implications 

It is important to consider the likely cost implications of the UMC method

ology in comparison with more conventional control approaches. Clearly many as

sumptions must to be made in order to make such a comparison and any findings 

must be treated with extreme caution until verified by industrial trials. 

Peck [18] has looked at the advantages of modularity in robot application 

software and his evaluation of the effects of a modular approach on the effort ex

pended for each phase of the software development cycle is presented in figure 9.3. 

The results assume the implementation of all modules from scratch with no reuse of 

existing software modules and the author anticipates that similar cost trends might 

emerge for initial UMC software development. 

Project Time (in %) 
60 ,------------------------------------------------, 

50 1-........................................................................................................................ , 

40 

30 1-...................... . 

20 1-......................................... . 

10 1-................ . 

o 
REO. SPEC. DESIGN CODE IMPLEMENT 

Phases of Development 
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Efficient. Non- • Modular. Structured 
Modular Method Approach 

Figure 9.3. Effects of a modular approach on the effort expended for each phase of the software 
development cycle. Source: Peck. 

Peck maintains that the additional cost incurred by using a modular ap

proach during design is more than offset by the reduced manpower cost during the 

coding and implementation phases. As illustrated in figure 9.3 it is during the im

plementation/debug phase of the software development cycle that the major immedi-
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ate benefits of modularity are realised. This phase represents lost manufacturing 

output since it involves the use of physical machine hardware and cannot be per

formed offline. Camp [19] states that a modular approach can reduce implementa

tion costs by between twenty five and fifty per cent in computer systems and similar 

savings might reasonably be expected in a UMC implemented control system. 

In the longer term the potential for the reuse of software components to ex

tend a current machine or create new ones from an established UMC component li

brary is likely to offer even greater potential but is difficult to quantify. 

Weston [17] has considered the possible cost implications assuming that 

widespread acceptance of UMC has been achieved and that consequently a large 

number ofUMC components conforming to the reference architecture are available. 

When such a situation is reached system builders or manufacturers would be able to 

select components from various sources to produce the machine control systems they 

require. Figure 9.4 illustrates the relative cost trends which might then emerge. Fig

ure 9.5 tries to show graphically the potential of UMC to provide greater functional

ity in comparison with traditional controller types. Functionality in this context 

means the provision of desired features notably, extendability, reusability, informa

tion visibility and reconfigurability. It is considered vital to convey the meaning and 

potential value of these attributes to control system users. 
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Figure 9.4. Relative engineering costs of conventional and open reference architecture approaches to 
machine control in a mature environment. Source: Weston. 
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9.7.4 Acceptance 

The advantages of lhe generalised approach on which UMC is based seems 

compelling and indeed a number of groups are adopting similar methodologies in 

various sectors of lhe CIM arena. Available information on these systems was pre

sented in chapter four. 

Given that such generalised approaches have significant potential it is im

portant to consider why lhey are not already widely used commercially. This is a 

complex issue but can perhaps best be answered wilh reference to implementation 

issues and the need for an acceptance of lhe approach by vendors and users. 

As described in chapter seven and appendix B the LUT PCB assembly ma

nipulator has provided a practical demonstration of lhe UMC concepts. It provides a 

very important tool for lhe awareness and education of visiting industrialists. We 

have attempted to use lhis demonstration system to enable potential users to grasp 

lhe underlying concepts and potential of lhe UMC approach. This is seen as a major 
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hurdle in what is a very conservative, customer driven sector of the controls market 

place [20]. See also section 3.4. 

The evidence from a number of open days has revealed that the UMC ap

proach is not a readily understood method and needs careful presentation and docu

mentation. Users were found to be generally unaware of the potential for more ef

fective problem oriented approaches to control See chapter four. 

Vendors have a vested interest in their own distinct products. At present 

closed CIM systems are difficult to customise and maintain [21]. This is inefficient 

and wasteful but usually ensures never-ending vendor involvement keeping current 

systems up to date and consistent. An open systems approach may not be viewed to 

be in the vendors interest if specific vendor involvement is no longer guaranteed. An 

emerging standard could also be seen as a threat with vendor selection then being 

made predominantly on a cost/performance basis. This effect has been observed in 

other software fields most notably the recent attempts at operating system 

standardisation [22]. 

9.7.5 Exploitation 

Having established a proof of concept implementation of UMC, both the 

conceptual completeness of the architecture and its general applicability now require 

evaluation. A number of research and industrial studies are currently being consid

ered to enable the evaluation of UMC in the control of certain classes of industrial 

machine. It should be possible to generalise the fmdings of these case studies and 

revise andlor extend the architecture as necessary. 

Categories of machine under consideration include: 

(1) Parts handling, assembly, inspection machines involving se

quential motions of concurrent axis groups. This type of ap

plication could be achieved using the currently implemented 

UMC components with relatively few additions. A beta-test 

release of UMC version 1 is being evaluated by Quin Systems 

for this type of usage [7]. 

(2) Synchronous machines typically employed in packaging or 

forming applications. Current research aims to add the func

tionality provided by the Quin Programmable Transmission 

System (PTS) to UMC. An SERC-DTI High Speed Machin-
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ery research programme has been approved to enable the in

dustrial evaluation of UMC when applied to this category of 

machine [23]. 

(3) Applications involving profiling or interpolation, for example 

machine tools, fettling, cloth cutting. The development of 

new handlers capable of interpolation is required although this 

is closely related to the provision for synchronous machine 

control. See section ii). 

(4) Process control systems. This field has not so far been ad

dressed by UMC. Analogue I/O port handlers have yet to be 

implemented although provision exist for these devices. The 

implementation of closed loop control within the UMC en

vironment using sample data techniques also requires re

search. The sampling requirements of process control system 

are however usually relatively modest, with periods typically 

greater than lOO msec [24]. This means there is potential in 

this application area for the coding of hard real-time tasks 

within the UMC environment. See section 9.5. 

(5) Mixed systems. There are a significant number of applica

tions which require a mix of the above capabilities either 

within one machine or across adjacent machines. The ability 

to mix functions in a consistent manner with the opportunity 

for common monitoring and diagnostic approaches across all 

machines has great potential in helping to contain the ever in

creasing complexity of CIM systems. This of course requires 

the development of an effective manufacturing systems inter

face and the establishment of a mature set of task and handler 

components. 

To achieve commercially viable UMC products a considerable amount of 

work remains to be done in order to package the UMC software. The word 

"package" here refers to the provision of software customised to suit a chosen set of 

control and mechanical hardware together with the necessary documentation. 

Adequate resources are needed to ensure the proper development of a reli

able and maintainable software product. As the first stage in the process of commer

cialisation version 1 of UMC has been released to Quin Systems for their evaluation 
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[7]. Additions to this package will be required for particular application areas as 

they emerge. The final packaging chosen must be the result of a commercial as

sessment of the market carried out by appropriate vendors. 

9.8 SUMMARY 

The feasibility and value of adopting a generalised approach to machine 

control has been demonstrated although its industrial utilisation is yet to be achieved. 

Based on the requirements presented in sections 2.5 and 5.2, the current im

plementation of UMC demonstrates a number of significant advantages over con

ventional control systems; particularly with regard to configurability and reusability. 

Some limitations exist in the current UMC software due to the need for additional 

function modules which have not yet been implemented. There are also a number of 

intrinsic characteristics, notably the user defined task structure, inherent information 

structure and intelligent device interface handlers, which affect the methods which 

need to be adopted for the effective utilisation of UMC. 

A "standardised" control approach such as UMC can only evolve over a 

considerable period of time. For the UMC methodology to become industrially es

tablished, as the programmable controller is today, will require acceptance of the ap

proach followed by the progressive creation of a considerable base of software con

forming to the methodology. It is only at such a mature stage that the major advan

tages of UMC namely component reuse and system extendability will have most im

pact. Exploitation is therefore probably best achieved in "targeted" stages, address

ing initially the application areas where ease of configurability and integration will 

have the most impact. 

Chapter ten looks at the UMC approach in a broader context as part of a 

framework for complete machine design and life cycle support. 
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10 
Future Extensions to the UMC Methodology 

10.1 INTRODUCTION 

The basic premise of the UMC methodology is that many machine applica

tions have broadly overlapping requirements which can be effectively catered for by 

a generalised approach. UMC currently enables the implementation of machine 

controllers in a generalised manner. In a broader context the UMC methodology 

could be naturally extended to create a framework capable of supporting a gen

eralised approach to total machine design with proper provision for manufacturing 

systems integration. 

10.2 INTEGRATION OF UMC MACHINES WITHIN A COMPLETE 
MANUFACTURING SYSTEM 

10.2.1 Introduction 

The concept of integrating computer based devices and machines to im

prove the efficiency of manufacturing is widely accepted. What is less generally 

agreed is what integration means in practice and how it can best be achieved [1]. 

10.2.2 Device Integration 

The integration of specific proprietary building elements within the 

generalised UMC machine control architecture has been achieved through the cre

ation of device handlers. These handlers currently enable proprietary Axis and bi

nary I/O Port devices to have a unified appearance within the UMC environment. 

As discussed in section 9.4.1 handlers allow local, remote and even simulated de

vices to be controlled interchangeably. The types of handler could now be extended 

to encompass other devices for example visions systems, tactile sensors etc. This 

would enable much greater I/O functionality to be achieved in a consistent manner. 

The concept of integrating advanced motion, and sensing functions in an open con

trol architecture based on extensions to the UMC methodology has formed the basis 
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of a recent ESPRIT proposal. This research application, which suggests a gener

alised approach to processing, manipulation, mobility and perception, has been made 

by the Modular Systems Group in collaboration with other industrial and academic 

partners from Britain, France and Gennany [2]. 

10.2.3 Machine Integration 

As discused in section 9.4.3 although network communication currently al

lows the creation and monitoring of UMC machines, a consistent run time manufac

turing systems interface has yet to be implemented. Indeed the existence of an inter

connection facility is only the flISt step towards integration. Weston considers that 

applications control and infonnation support are additionally required before integra

tion is truly achieved [1]. See figure 10.1. 
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Figure 10.1. Interconnect, control and information support Source: Weston. 

It is anticipated that it will be possible to embody many of the results from 

research carried out by the Systems Integration Group at Loughborough in the im

plementation of a UMC manufacturing systems interface. The work of this research 

group has resulted in the creation of AUTOMAIL (AUTOMAtion Integration Lan-
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guage) [3]. This consists of a distributed system application language and a set of 

configuration, management, and debugging tools specifically targeted at the integra

tion of manufacturing machines. AUTOMAIL is capable of supporting activities 

such as machine synchronisation, program downloads and management data re

trieval. Like UMC which it complements, AUTOMAIL does not seek to impose any 

particular application structure but provides a supporting set of communication, ap

plication and infonnation integration services [1]. It enables "soft" integration be

tween manufacturing entities (typically application processes). Application pro

cesses only require knowledge of how to utilise the integration services and do not 

need to be aware of the other processes in the complete manufacturing system. 

Association between processes is driven by a data model with enables configurabiI

ity (ie. responsiveness to change). See figure 10.2. 

10.3 A MACHINE LIFE CYCLE ENVmONMENT 

10.3.1 Introduction 

Whilst run time control has a major role to play in the creation of advanced 

industrial machines it must not be treated in isolation. UMC should therefore be 

viewed as a partially implemented computational framework to support the design 

and life cycle requirements of machine systems in a manufacturing environment. 

The capabilities of this framework could be extended to encompass machine design, 

simulation, work planning, monitoring, diagnostics etc., in addition to the machine 

control system description and run time support facilities provided by the current 

UMC implementation. See figure 10.3. 

The ability to integrate mechanism and controller design would allow the 

modelling of their behaviour in a consistent manner in order to determine the opti

mum combination of the two for each particular application. 
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Figure 10.2. Example usage of AUTOMAIL and UMC concepts. 
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Figure 10.3. The expected features of a mature UMC envirorunent. 
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10.3.2 Information Requirements 

The infonnation required for the different aspects of a machine's life cycle 

could be combined into one shared unified model for each machine in the fonn of a 

centralised knowledge base and machine library. Such a unified machine infonna

tion base would contain both generalised process knowledge and machine specific 

infonnation relating to machine and control system design, simulation, monitoring, 

diagnostics etc. Using structured decomposition ( see section 504), generic knowl

edge in any of these spheres might be captured in a suitable fonn and then utilised to 

create particular machine instances. 

To create a total machine model will require a far more comprehensive in- . 

fonnation architecture than that currently provided by UMC. The current UMC Ref

erence Architecture describes the control system components and the method of ar

rangement of these entities to form a hierarchical run time structure. See chapters 

five and seven. The extended architecture would need to possess the capability to 

inherit standard design, mechanical, electronic, diagnostic and control components in 

the creation of new machines. 

The design of a given machine should ideally involve as many interested 

parties as is practical. However these individuals invariably come from different 

disciplines and often have difficulty in acting together effectively. A common in

fonnation base which all parties can understand and contribute to in their own tenns 

would have many attractions. The vision is to create a single, common machine 

model which can be understood by all interested parties and maintained by ordinary 

plant personnel in a consistent manner. Process engineers, equipment operators, 

maintenance technicians would utilise a range of interfaces appropriate to their indi

vidual requirements. As illustrated in figure 1004, each user would be provided with 

a customised view of the infonnation base appropriate to their sphere of know ledge. 

A database consisting of appropriate data models, utilising standard infor

mation storage and retrieval mechanisms would be required to fonn the core of the 

necessary infonnation architecture. Interfaces would need to be provided between 

the database and the UMC related processes, e.g. modelling packages, machine load

ers, editors etc. 
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The provision of an appropriate and maintainable centralised database is 

thus crucial to the long term success of the UMC approach and is currently under in

vestigation by the Modular Systems Group at Loughborough [4]. As discussed in 

section 6.12, of the three traditional database structures, hierarchical, network, and 

relational, the relational approach appears to offer the best fit as an extendible cen

tralised data resource for UMC. The choice will however require careful considera

tion since this data resource forms the hub of the implementation. It should be noted 

that the CAD industry has found relational databases to be inadequate in certain re

spects and they are now turning to object oriented database technology [5]. 

10.4 MACHINE DESIGN AND LIFE CYCLE SUPPORT TOOLS 

The design and realisation of modem computer controlled machines is be

coming increasingly demanding and multi-disciplinary in nature. Each aspect of 

machine design (physical structure, dynamics, kinematics, drive systems, interface 

systems, control systems etc.) requires a distinct discipline. Mechanical, electrical, 

electronic and computing skills must however all be combined effectively in order to 

achieve design success. Typically the performance of the final machine is difficult 

to predict and design shortcomings are often revealed too late due to misconceptions 

between members of the design team. This at best leads to a very conservative ap

proach to design both in terms of cost and machine performance. 

After installation, maintenance and modification are on-going activities 

which require consistent support throughout a machine's life cycle. Design require

ments may change, modifications and additions may be needed and should be 

catered for with minimum disruption to the existing system. 

UMC aims to address these machine design and life cycle issues through 

the progressive provision of appropriate software tools. Figure 10.3 illustrates the 

expected features of a mature UMC environment Suitable tools which could fulfil 

some aspects of a machine design and life cycle environment are considered in the 

following sections. 
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10.5 COMPUTER AIDED SYSTEMS ENGINEERING 

If the original system specification or design is wrong, incomplete or am

biguous, then even the most thorough implementation will never overcome these de

ficiencies. A precise and comprehensive design specification can however provide 

an agreed target against which achievements can be measured. Most design 

methodologies are unfortunately extremely laborious to implement manually. 

As discussed in section 4.4 CASE tools essentially automate the techniques 

which all good system developers should already use but which invariably prove to 

be too time consuming. 

The potential exists to provide a CASE environment from which the final 

run time machine could be monitored and its performance compared directly against 

its original design specification. Virtual Software Factory (VSF) for example is a 

tool kit which enables the creation of user defined conceptual models, validation 

rules and graphics/text documents, thus providing automated support for any system 

design methodology [61. Products such as the (VSF) could be used for the creation 

of a UMC CASE environment. 

10.6 MACHINE LOGIC DESCRIPTION 

The need for improved task programming was discussed in section 9.3. The 

use of function charts, for example Grafcet, could provide an effective graphical 

means of concurrent applications task visualisation and description. Grafcet also 

provides the capability to enable successful functions to be stored and recalled for 

use in other program modules. A function block typically contains a small number 

of program statements, sensibly grouped together to initiate an action or to attain a 

particular program state. See section 4.5. 

In the broader context of total machine design there is a need for a common 

method of task logic description which can be utilised both for run time control of 

the physical machine and to drive machine models during simulation. The actual 

program functions called and the executing environments will obviously be different 

in each case [71. 
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10.7 MACHINE MODELLING 

10.7.1 Introduction 

Logical and geometric modelling tools can be employed to create, compare 

and evaluate machine designs. Studies are currently in progress to add manipulator 

and mechanism design capabilities to UMC. 

The analysis performed by these modelling tools may be numerical as well 

as visual giving the designer the opportunity to make comparative judgements on 

alternative designs. Since machine design invariably requires iteration the UMC 

strategy allows the designers to return to the aggregation phase and to specify new 

component combinations based on modelling and/or run time results until an accept

able degree of optimisation is achieved. See fignre 10.5. 

10.7.2 Distributed Manipulator Modelling 

Distributed manipulators allow the potential for tremendous design freedom 

but this can in itself cause problems of inadequate design visualisation. The creation 

of effective kinematic solid modelling tools is therefore of vital importance. See 

figure 10.6. Constructing a three dimensional solid model and displaying the actions 

of a machine greatly improves the certainty that a design is correct [7]. 

Research into the geometric modelling of user defined rotary or linear axis 

groups is being conducted in collaboration with BYG Systems who produce a suc

cessful robotic modelling and simulation package called GRASP [8]. A geometric 

modeller based on GRASP allows the user to describe each manipulator element 

from simple shapes. Alternatively machine elements may be extracted from existing 

libraries. Figures 10.7 and 10.8 illustrate the modelling of selected axes groups from 

the LUT demonstrator system using GRASP. 
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Figure 10.5. Iterative design optimisation. 
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Figure 10.6. Kinematic design tools. 

Figure 10.7. PCB handling axis group. 
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Figure 10.8. Complete LUT manipulator. 

10.7.3 Mechanism Modelling 

CAMLINKS is a commercial mechanism modelling package which is cur

rently being evaluated for possible inclusion in the UMC environment [9]. It pro

vides two dimensional mechanism design and analysis with facilities for animation. 

A complementary program called MOTION enables the design of motion profiles in 

either linear of angular coordinates. MOTION is capable of generating location data 

for programmable transmission systems. See section 4.5.4.3. 

10.8 SUMMARY 

The establishment of the UMC Reference Architecture for run time control 

has been an essential fust step in creating a generalised approach to industrial ma

chines. Run time control must not however be treated in isolation. The capabilities 

of UMC should now be progressively extended to encompass the design and life cy

cle requirements of machine systems in a broader manner. 
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11 
Conclusions 

Pursuing the global aim of defining and demonstrating control methods for 

next generation machines has involved many facets of study. In particular the author 

has: 

Evaluated the role of machine control systems in a responsive manu

facturing environment 

Advanced the use of problem oriented approaches to machine control 

system software. 

Reviewed enabling technology in the context of open approaches to 

machine control, classifying and selecting technological methods and 

tools. 

Added to the understanding of the role of standards in enabling open 

approaches to machine control. 

Created a set of prototype programmable modular actuators of novel 

design together with associated reconfigurable mechanical and elec

trical interface hardware. 

Assessed and published fmdings concerning the industrial application 

of modular machines. 

The key conclusions from these studies, which have been considered in de

tail within the main body of the thesis, are presented in the following sections. 

11.1 THE ROLE OF MACHINE CONTROL SYSTEMS 

As product life cycles continue to fall, todays manufacturing environment 

needs to become more responsive to change. An important aspect of improving 

manufacturing responsiveness is the provision of more flexible production machin

ery and associated machine control systems. Future machine control systems must 

embody adequate real-time machine control and integration capabilities. This func-
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tionality needs to be provided in a flexible manner through the provision of appro

priate design, configuration and run time support environments. 

11.2 DEFICIENCIES IN CURRENT CONTROL METHODS 

Two factors are now having a major influence on control system 

requirements: 

Firstly the demands for higher manufacturing quality, greater produc

tivity and responsiveness have in turn demanded more sophisticated 

automation. 

Secondly hardware costs have dropped dramatically, function for 

function, while software implementation costs, being labour intensive 

continue to rise. 

Current machine controllers are generally unable to meet adequately the 

needs of flexible manufacturing, offering limited scope for system reconfiguration or 

extension and little opportunity for the reuse of software. There is now a need for 

more efficient engineering methods which can help to coordinate the efforts of the 

machine or process designer and the control system engineer. Generally speaking 

however the industrial control environment tends to be more conservative than the 

data processing and office automation environments. This results in slower rates of 

equipment replacement with software and hardware developments generally being 

proven in other fields before they are adopted on the shopfloor. 

11.3 PROBLEM ORIENTED APPROACHES TO CONTROL 

The exploitation of modem software methods now offers the possibility of 

maintaining a consistent approach to the control of diverse applications with widely 

differing machine complexity. The acceptance of problem orientated approaches for 

real-time control systems has however been much slower than in the case of business 

systems and the industrial application of these methods has been largely uncoordi

nated and unstandardised. Reasons for this disparity include: 

Real-time problems are usually more demanding. 

Applications are much more diverse. 
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There is generally lower capital investment in new technology in 

what is considered a very traditional customer driven market sector. 

Users are often unaware of the potential of new methods. 

11.4 THE UMC APPROACH 

The UMC approach transcends machine control and addresses issues in 

software engineering. Hierarchical models, multi-tasking and generic software, 

which are key features of UMC, are not unique concepts. A major contribution of 

this thesis has been in deriving new methods to combine these tools and to apply 

them in a usable manner in the context of real-time machine control. 

UMC is a generalised approach to machine control which enables software 

reuse. In order to design effective reusable system components of any type, one 

must understand how to decompose specific applications into potentially reusable 

components and how to arrange these components in an architecture to support reuse 

with minimal changes. The cntrent UMC reference architecture describes control 

system components and their arrangement to form hierarchical run time strllctUtes. 

The objectives of the work are to offer not only more cost effective initial 

control system installations, but moreover to provide a consistent method for both 

system reconfigUtation and the integration of additional functions as new require

ments evolve. It was therefore seen as essential to create a methodology which will 

allow control systems to develop over a period of time and to adapt to evolving 

requirements and technologies. 

11.5 THE ROLE OF STANDARDS 

With the emergence of standards for modular hardware and recent advances 

in real-time software environments, suitable technology cntrently exists to allow the 

implementation of the UMC methodology. The ideal of a standard "tool box" which 

provides an open and consistent approach encompassing all aspects of control sys

tem creation is however still largely unrealised. For many aspects of machine con

trol systems effective industry standards for enabling technology have yet to fully 

emerge. There is also a severe lack of effective applications related standards for 

machine control which the UMC reference model described in this thesis may help 

to stimulate. 
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11.6 IMPLEMENTATION OF UMC 

The implementation of the UMC reference architecture at Loughborough 

has enabled the construction of machine controllers in a generalised manner. Tools 

have been created to allow the description of required machines and their run time 

control. Sufficient UMC components have been produced to control target appli

cations involving the use of distributed manipulators for discrete parts handling. The 

capabilities of the UMC system are however inherently extendable. 

The Modular Systems Group at Loughborough has written a considerable 

amount of software in order to enable the principles of UMC to be tested and 

demonstrated. Many of the concepts embodied in the UMC approach have been de

rived in an iterative manner. Initial versions of the software have been created, 

tested and subsequently enhanced through utilising the industrially representative 

machine hardware installed at the University. 

The UMC software development process is potentially more efficient than 

more conventional methods, particularly in the long term since there is the opportu

nity for extensive software reuse across a wide spectrum of control system develop

ers and users. Libraries of machine components can be utilised by machine design

ers and programmers to reduce the great inefficiency of having to "re-invent the 

wheel" for each application, saving resources during machine design, control pro

gram coding and debug. The configurability inherent in the UMC approach means 

that installed systems can be very responsive to change, an essential attribute in the 

modern manufacturing environment. Frequent reconfiguration of the University 

based UMC machine demonstrator has partially substantiated this claim although 

such attributes can only be fully assessed through industrial evaluation. 

Adoption of the UMC approach has led to the formation of an excellent en

vironment for control system research at Loughborough University and has enabled 

further research activities to be identified. The Modular Systems Group are cur

rently engaged in SERC-DTI funded research aimed at significantly extending UMC 

functionality to encompass programmable transmission elements (e.g. software 

cams, gears and clutches) and more user friendly system configuration programming 

and diagnostic tools. These University based research programmes are comple

mented by initiatives aimed at establishing the commercial acceptance of the ap

proach and its industrial utilisation. In the first quarter of 1990 UMC version I, a 

software toolbox for control system builders, became available and is currently un

der evaluation by Quin Systems. The author's role in this work is as an SERC prin-
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cipal investigator with special interest in extending and enhancing the areas of 

knowledge described in this thesis. 

11.7 THEFUTUREOFUMC 

The potential for the UMC methodology is seen as very broad and consid

eration has been given to the achievement of adequate real-time performance for a 

wide range of possible applications. The ability to accommodate change is key to 

the potential of UMC as a generalised approach to control. Although currently of

fering relatively modest features it is important to recognise the inherently extend

able manner in which the methodology has been implemented. This represents a 

significant step towards proving the concept of using an "open" control architecture 

for manufacturing machines. 

The basic premise of the UMC methodology is that many machine applica

tions have broadly overlapping requirements which can be effectively catered for by 

a generalised approach. UMC currently enables the implementation of machine 

control systems in a generalised manner. In a broader context the UMC methodol

ogy could be naturally extended to create a framework capable of supporting a gen

eralised approach to total machine design with proper provision for manufacturing 

systems integration. 

It is expected that the scope of the UMC architecture will be progressively 

widened to encompass all aspects of the machine's life cycle. UMC should therefore 

be viewed as a partially implemented computational framework to support the design 

and life cycle requirements of machine systems in a manufacturing environment 

The author firmly believes that the concepts described in this thesis, if not 

their specific implementation at Loughborough University, will ultimately revolu

tionise machine control methods. 



Appendix A 
OS-9: The UMC Implementation Environment 

A.I INTRODUCTION 

The chosen operating system OS-9 provides the real-time environment for 

UMC implementation at a level above the physical computer hardware. See figure 

6.6. OS-9 is a system of re-entrant, position independent modules that allow easy 

system configuration and customising [1]. These features enable it to support con

trol applications of widely differing complexity in an efficient manner, an essential 

attribute for the implementation of UMC. 

OS-9 has enabled the creation of a standardised layered structure of mod

ules which provide the functionality specified by the UMC Reference Architecture. 

See section 5.6. The real-time operating system allows the dynamic configuration of 

the UMC system and supports its run time operation. 

A.2 MEMORY MODULES 

Memory modules are the foundation of OS-9 and key to the implementation 

of the UMC system. OS-9 enables the structural division of both programs and data 

into multiple modules. These modules form a consistent memory resident control 

system structure at run time. Each module whether it contains the operating system 

kernel, a file manager, UMC programs or UMC data uses a specific memory module 

format [2]. 

One of the fundamental principles of OS-9 is that it is a dynamic system. 

Modules can be added or deleted while the operating system is running, they are 

both re-entrant and position independent. Re-entrant modules optimise memory us

age since only one copy of a program needs to be loaded regardless of the number of 

processes using it. 

The implemented UMC structure is thus inherently reconfigurable. All 

UMC system components are constructed from sets of modules which are memory 

resident in the run time controller. 
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A.3 OPERATING SYSTEM SERVICES 

The nucleus of 05-9 is a position independent kernel which serves as a 

system administrator, supervisor and resource manager. The current UMC software 

development environment consists of the OS-9 kernel together with its associated 

"shell" user interface, other utilities and appropriate file managers_ A UMC target 

system controller typically contains a subset of the software modules used in the de

velopment environment with only the required services retained. 

The OS-9 kernel manages memory and processor time and offers a large 

number of system services. OS-9 system calls eliminate the need for users to write 

system management routines for memory, process I/O and file management and thus 

vastly reduce the effort required to implement the UMC system. 

A.4 I/O MANAGEMENT 

OS-9 features a modular, unified, hardware independent I/O system that can 

be expanded or customised. The I/O system utilises a UNIX-like path list notation to 

define I/O paths_ These features enable the physical configuration of UMC I/O de

vices to be easily changed while retaining a consistent software structure_ This en

ables a variety of external control devices, user interface devices and windowing en

vironments both locally and remotely located to be used interchangeably. 

I/O requests perfonn various I/O functions and are processed in 05-9 file 

managers and device drivers for a particular device. UMC handlers make use of 

standard OS-9 device drivers for device specific communication. UMC I/O can thus 

be easily customised by the addition of a new driver for a new class of I/O hardware 

(say a new motion or I/O controller), with accompanying descriptors for each in

stance of that device. 

I/O device drivers (in common with all other executable program modules) 

are re-entrant so one copy of a driver module can simultaneously support multiple 

devices that use identical I/O controller hardware. For example multiple motion 

controllers. 

Device descriptors are small non-executable modules that provide informa

tion that associates a specific I/O device with a logical name, a hardware controller, 

a device driver, a file manager and a set of initialisation parameters. One device de

scriptor module must exist for each I/O device in the system. For example each 
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physical motion controller or I/O device interface with the UMC supervisory 

processor system. 

A.S INTERRUPT HANDLING 

The OS-9 I/O system is interrupt driven and does not require polling [3]. 

To provide rapid response to events during operation of a real-system it is necessary 

to pre-empt the processor to service a time critical process. OS-9 provides extremely 

fast interrupt response. Sample system response times are shown in table A.I. 

OS-9 SYSTEM RESPONSE TIMES 

Task Switch 

Interrupt 

Change active tasks 

Time to reach first instruction 
of interrupt service routine 

55.1 + 1.5t' usec. 

11.1" usec. 

, - t represents the number of tasks in the active process queue, and "t"> 1 

" - Assumes only one driver on a particular interrupt vector 

All timings measured on a 20 MHz Motorola MC68020 microprocessor. 

Table A. I. Sample OS·9 system response times. Source: Microware. 

The UMC interfaces to I/O hardware are implemented in an entirely inter

rupt driven manner and thus make efficient use of the processing hardware. 

A.6 PROCESS MANAGEMENT 

OS-9 allows multiple processes to execute simultaneously through task 

switching facilities supplied by the kernel. Programs run as processes with each pro

cess having access to system resources by issuing appropriate service requests to 
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OS/9. All processes within the UMC system boundary are able to run concurrently 

in this manner. 

OS-9 features a UNIX-like task model that supervises the loading, initiali

sation and execution of each process while still allowing user configurable timeslic

ing. A prioritised round-robin scheduler is used to allocate CPU time for each pro

cess [4]. As illustrated in figure A.I, at any instant a process can be in one of three 

states: 

Active: 

Waiting: 

The process is active and ready for execution. 

The process is inactive until a child process terminates or a 

signal is received. 

Sleeping: The process is inactive for a specific period of time or until a 

signal is received. 

I Process at I 
head of the 

process 
queue 

Figure A.I. Process state diagram. 

Both the process state and the priority of a process can be defmed by the 

system software from within a UMC process or by user utilities at run time. This 

provides a method of "tuning" the response of a control system to improve its overall 
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efficiency. For example handler processes might be executed typically at a higher 

priority than application task processes. 

A typical UMC machine may involve many applications and system related 

processes. It is important to recognise however that activities within the UMC sys

tem boundary will be predominantly event driven and that often the majority of these 

tasks may be waiting for an appropriate event and thus consuming no CPU time. 

A.7 INTERPROCESS COMMUNICATIONS 

OS-9 provides four mechanisms for synchronisation and interprocess com

munication which have all been utilised for the implementation of UMC. They are: 

Data Modules, 

Pipes and Named Pipes, 

Events and Semaphores, and 

Signals. 

A.7.1 Data Modules 

Data modules are essentially areas of global memory. They are position in

dependent and globally available to all processes that lJave permission to access 

them [4]. They are used to create the run time memory resident data stmctures of the 

UMC system which are termed UMC information modules. 

The information view in the UMC system is constmcted from a series of in

formation modules. As discussed in section 5.5.3 this information stmcture largely 

mirrors the UMC process stmcture. UMC information modules contain stmctured 

data and access mechanisms have been implemented to provide security and error 

checking for UMC processes wishing to access this information [5]. 

A.7.2 Pipes and Named Pipes 

Pipes enable concurrently executing processes to communicate data via a 

first in first out (FIFO) serial device [6]. The output of one process is read as the in

put by the second process. Named pipes are utilised for buffered communications in 
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the UMC system for example between task and handler processes. They also pro

vide a versatile debugging aid since they can readily be "emptied" to a user display 

device during code development. 

A.7.3 Signals 

Signals are another mechanism provided by OS-9 to control the execution 

of multiple, asynchronous processes. Signals can only be sent between two pro

cesses at anyone time. A process may sequentially signal to multiple destinations 

and a single process may receive signals from more than one process. Signals pro

vide a very narrow buffered channel for processes to communicate. Signals are 

chiefly utilised in the implementation of UMC for task to handler communications in 

a similar manner to pipes. 

A.7.4 Events and Semaphores 

The OS-9 event system differs significantly from data modules, pipes and 

signals since events only pass control information as opposed to sharing or transfer

ring data between processes. Events do not transmit any information, although the 

processes using the event system obtain information about events. Events are data 

structures maintained by the system. The OS-9 event system is a mechanism for 

permitting processes to share common resources without interference, or for pro

viding sequencing and execution control of asynchronous processes [7]. 

They are used in by the UMC system processes to control information 

module access and by the UMC applications processes for general purpose task co

ordination via UMC function calls and utilities. 
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SUMMARY 
The paper describes a study of potential industrial 
applications where modular robots can be used in 
preference to conventional pedestal mounted robots 
and/or specially designed automatic machines. The study 
was conducted with reference to a particular family of 
pneumatically actuated robot modules. 

The paper also describes a modular robotic system 
which was designed to automate assembly processes in 
the manufacture of a family of egg coddlers. The 
manipulator comprises multi-axis groups of modules 
which operate concurrently to perform the assembly 
operations. Flexibility is incorporated through the use of 
a hierarchical control system architecture. 

INTRODUCTION 
The Department of Engineering Production at Lough
borough University of Technology (LUT) is engaged in 
research to design and produce robots of modular design 
which are pneumatically or electrically actuated.1.2 This 
work is sponsored by the U.K. Science & Engineering 
Research Council. 

Since late 1983, Martonair Ltd· of the U.K. have 
produced a range of single degree of freedom modular 
handling units which provide pneumatically actuated 
motion to preset mechanical end-stops. The units can be 
combined to demonstrate user defined kinematics. A 
three year programme of collaborative research between 
LUT and Martonair has evolved a complementary range 
of low cost servo controlled pneumatic modules based on 
Martonair mechanical hardware.3 Each servo module 
utilizes a microprocessor based single axis controller 
(SAC) to regulate its motion and provide point to point 
positioning capabilities which are comparable to those 
offered by electric and hydraulic servo drives (see Figure 
1). The SAC may be controlled digitally via either serial 
or parallel data lines. Commercial versions of the servo 
controlled positioning system became available in April 
1985. The servo modules are used wherever program
mable point to po.int positioning is required and the end 
stop units where positioning to two preset positions is 
adequate. 

Servo controlled and end stop single degree of 
freedom modules can be combined together in custom 
built configurations to suit a wide variety of applications. 
Combinations of these modular elements can fonn axis 
groups which function in a similar manner to 
conventional multi-axis robots or fonn the building 
elements of distributed manipulators, i.e. special flexibly 

automated equipment in which the axis modules are not 
necessarily coupled together mechanically but function in 
an integrated manner to perform given manufacturing 
operations. 

Preliminary investigations have been conducted into 
the necessary fonn and features of supervisory controls 
for multi-axis groups of modules to provide sequencing 
and user programming. Both at LUT and Martonair 
microcomputer and PLC based prototype supervisory 
controls have been constructed to assess the problems of 
providing appropriate flexibility and perfonnance/cost 
ratio over the range of potential industrial applications. 

Significant research and development work will 
continue at LUT but successful approaches must be 
based on adequate applications experience. This paper 
outlines the results of studies into the potential 
application areas for modular robotic systems. For 
chosen industrial applications it illustrates how pneuma
tic modular elements can be used to offer an automation 
tool to the manufacturing engineer representing an 

. intennediate approach between the use of dedicated 
specially designed non-programmable machines (hard 
automation) and conventional general purpose robots. 

OBJECTIVES 
The application studies have involved both LUT and 
Martonair personnel and have been directed towards 
accomplishing the following objectives: 
(i) to categorise potential application areas for the 

existing family of Martonair/LUT. modules 
(H) to evaluate the systems engineering requirements in 

applying modular elements to industrial applications 
(Hi) to assess the behaviour and capabilities of servo 

controlled pneumatic modules under representative 
conditions 

(iv) to investigate, for a range of applications, the 
requirements for sequencing and programming 
facilities 

(v) to improve the effectiveness of future research into 
modular systems by more accurately establishing the 
requirements of industrial applications. 

APPLICATIONS STUDY 
Here we concentrate on the findings of the application 
studies conducted by LUT personnel. The study began 
with a survey of possible modular robot users. Personal 
visits were then made to companies expressing 
applications interest and a number of tasks were 
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Fig. 1. Hardware elements of a programmable single axis. 

identified as being well matched to the capabilities of the 
LUT/Martonair system. 

1. User survey 
A preliminary list of possible modular robot users was 
established (including existing and potential robot end 
users and also original equipment manufacturers who 
might be interested in incorporating robot modules into 
their products or processing systems). 

Some fifty companies were contacted of which twelve 
were willing to take part in a survey and applications 
study. These companies were sent literature to explain 
the general capabilities of the present modular system 
and questionnaires to assess their requirements for 
flexible automated equipment. Personal visits were made 
to all the companies expressing applications interest. 

Time and resources limited the scope of the 
applications survey which could be undertaken at this 
stage. It is intended to distribute this questionnaire to all 
potential robot users with whom the Department of 
Engineering Production comes into contact in future. 
This will form a progressively expanding data base on' 
user requirements. 

Modular robots 

2 Questionnaire format 
The questions asked obtained information from the 
companies about 
(a) their products 
(b) the maleria1, handled 
(c) the operational requirements of their equipment 
(d) how they felt flexible automated machinery/robots 

could help them now and in the future 
Questions were carefully phrased in order not to lead to 
a specific answer and were in one of two forms, viz: 
(i) easy to answer multiple choice questions covering 

each major aspect of flexible automated equipment 
usage. design and future requirements . 

(ii) more general questions requiring brief written 
answers. 

3 Findings from questionnaire 
Of the fifty companies contacted, thirteen returned 
completed questionnaires and all but one of these had 
direct applications interest in the modular hardware. 

The response was poor from those companies without 
robotic experience, (the very companies who really need 
more facts about robot technology). Only one of the 
companies returning questionnaires had not considered 
the use of industrial robots in the past. Three quarters of 
the firms were already involved "in house" with robots in 
some form and all were actively considering their use in 
the future. 

Although the scale of the survey is limited, the results 
provide an interesting insight into potential user 
companies and their current production .problems. 

The most frequently stated reasons for considering or 
purchasing robots were 
(a) improved quality 
(b) reduced tedious/repetitive work 
(c) increased productivity 
(d) ensuring continuous production 
(e) to gain flexibility as opposed to a special purpose 

machine tool . 
(f) remove men from hostile environments 
Major areas of applications interest were quality control, 
machine loading/unloading and assembly. These were 
the major labour inten'sive repetitive tasks in the 
companies visited. Firms whose manufacturing processes 
involved significant paint spraying and/or welding 
requirements had generally already automated these 
tasks. 

Most of the firms used special purpose machinery for 
production. A third of these companies manufactured 
some of the equipment themselves and the rest usually 
bought in machines. designed to their specification. It was 
common to have commissioning and maintenance 
problems with special purpose machinery and about half 
the firms experienced long changeover times between 
product variants. Clearly there is a strong need for more 
flexible special purpose machinery. 

SELECflON OF APPLICATION 
For any proposed application of a robotic system, a 
matching process must be performed between the 
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functional capabilities of the modular elements and the 
immediate and potential tasks to be performed.4-6 This 
process was carried out in two stages, viz: 
(a) assessment of whether the present LUT/Martonair 

modular system' could technically perform the 
necessary task 

(b) a cost analysis to consider how the installation could 
be justified 

The range of possible applications for the present 
LUT/Martonair family of modules was obviously limited 
by the specification of the available modules e.g. stroke 
lengths, load bearing capabilities, positioning accuracy, 
dynamic characteristics, etc. and the- control system 
facilities. To assist the reader, typical performance 
figures for a single degree of freedom servo controlled 
module are listed below. 
(i) Positioning repeatability of 0.1 mm. 
(ii) Total positioning times of between 1 and 2 seconds 

for moves between 100 mm and 500 mm. 
(Hi) Peak speeds approaching 1 m/so 
(iv) Payload capabilities comparable with the equivalent 

end stop modular elements.7 

In each application the number of axes required and 
their configuration, either with or without mechanical 
coupling, can be optimised to suit the task. The 
redundant capabilities, often seen where conventional 
pedestal robots are employed, can be avoided. 

POTENTIAL APPLICATIONS FOR MODULAR 
SYSTEMS 
Possible application areas for modular robotic systems in 
the companies visited by LUT personnel ranged from 
simple support tasks for existing machinery or conven
tional robots (i.e. for parts feeding, inspection or as a 
form of flexible tooling) to complete specially configured 
systems (with a large number of distributed modular 
elements operating concurrently). There was a very wide 
variation in both the payloads and cycle times required. 

The LUT applications studies have been comple
mented by a parallel Martonair activity which has seen 
the introduction of module/SAC combinations in a range 
of relatively simple industrial applications involving 
either one or two servo controlled motions usually 
supervised by a programmable logic controller. Mar
tonair applications include for example a programmable 
bar stock feeder for a computer controlled saw, which 
utilises a single servo axis and a general pU1'Ose 
palletiser with two servo axes for the selection and 
replacement of items in an array.8.9 

Applications requiring more complex systems of 
distributed manipulators were selected for research and 
development at the university and two early application 
examples selected were an egg coddler assembly system 
for the Worcester Porcelain Company and a lawn mower 
bottom blade machine unload/assembly system for 
Oualcast Lawn Mowers Ltd. Axis groups to perform 
these tasks have been configured at the university and 
are currently being evaluated to assess the system 
capabilities and supervisory control requirements in each 
case. 
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The coddler assembly consists of a small ceramic pot 
with a threaded metal ring bonded to its lip. 
Approximately ,350,000 coddlers are manufactured per 
year in three sizes. The required cycle time is 
approximately 12 seconds per coddler. 

The mower bottom blade machine offload and 
assembly consists of unloading the blade from a CNC 
milling machine and then assembling it with a pair of end 
brackets. There are two types of end bracket and four 
variants of blade. Approximately 300,000 blade as
semblies are manufactured per year and a cycle time of 
21 seconds is required to match that obtained using a 
conventional CNC milling machine. 

Both of these chosen applications demonstrate 
concurrent operation of mechanically decoupled axis 
groups. 

Due to space limitations this paper will concentrate on 
describing the simpler coddler assembly system. 

CODDLER ASSEMBLY SYSTEM 
A schematic of the manipulator design is shown in Figure 
2. The major mechanical elements of the system are 
three servo axes, three end stop axes, two grippers, the 
ring dispensers and the adhesive applicator. It was 
pro:,osed that the final industrial system"would include 
the automatic conveyor loading and unloading of pallets. 

The system exploits programmable point to point 
positioning to load and unload the coddlers from their 
pallets at variable pitch to suit the three coddler sizes. 
Variable intermediate positions on the linear module axis 
C enables collection and adhesive application onto each 
of the three sizes of ring. 

The tasks carried out by the manipulator are listed 
below, the necessary servoed motions being indicated in 
each case. 
Task 1 Remove the coddler from pallet (Servo axes A 

and B) 
Task 2 Collect the appropriate metal ring (Servo axis C) 
Task 3 Apply an adhesive bead to the groove in the 

metal ring (Servo axis C) 
Task 4 Assemble the ring and coddler body (Servo axes 

Band C) 
Task 5 Replace the coddler assembly in the position 

from which it was removed (Servo axes A and B) 
Tasks 1 and 5 occur concurrently with tasks 2 and 3 with 
the restriction that the movements of axes Band Care 
co·ordinated at one point in their respective cycles to 
achieve task 4. 

System architecture and control requirements 
Figure 3 shows the control architecture of the .coddler 
assembly system. 

The control system has a modular mUltiprocessor 
structure with the control functions being distributed at 
two levels: 

(1) the upper supervisory level (LUT applications 
software runs on a SYNTEL 680 microcomputer and 
operating under OS-9/6&XXJ) carries out the general 
management of the system as well as co-ordinating the 
tasks defined in the applications programme. IO 
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Fig. 2. Schematic of the major mechanical elements in the coddler assembly system. Key: A. Band C. Programmably positioned 
axes; 1. Ring dispensers: 2. End stop unit for adhesive applicator; 3. End stop unit and coddler gripper: 4. Serve controlled gantry 
unit: 5. Serve controlled linear module with rotary wrist and ring gripper; 6. Pallet of coddlers: 7. Servo controlled cylinder. 
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(2) the lower, SAC level controls positioning of the 
servo axes to set-points defined by the supervisory 
computer. Information exchange between levels occurs 
through a standard hardware serial data link utilising 
software based communication protocols which were 
evolved for the commercially available SACs. ll 

Each serve controlled axis is based on standard end 
stop mechanical hardware. The addition of a position 
sensor and a proportional valve interfaced to a SAC 
allows closure of the position loop to be achieved, 
thereby forming a "programmable positioner" of the 
type which is now commercially available from 
Martonair (see Figure 1). The end stop axes are 
controlled by binary valves sequenced directly from the 
supervisor. 

CONCLUSIONS 
The existing family of Martonair/LUT pneumatic servo 
controlled modules provide low cost point to point 
positioning. They have adequate performance to satisfy a 
wide variety of tasks in systems ranging in configuration 
from single axes through axis groups to large distributed 
manipulators. 

There is tremendous potential for the use of 
distributed manipulators in industry. i.e. special purpose 
flexible automated machines composed of modular 
elements. In the design and development of any 
manipulator system it is of great importance to minimise 
the systems engineering content since this usually 
accounts for a very large part of the total installed cost. 
It is therefore vitally important that the elements in a 
modular system are as easy to integrate and reconfigure 
as possible both during initial build and for post 
installation modifications and extensions. 

In producing an easily reconfigurable modular system 
the design of the supervisory controller is of great 
importance since it must have the ability to produce and 
execute concurrent programs for each axis group and 
provide adequate teach facilities in systems of variable 
configuration. 12 The evolution of supervisory control 
hardware and software to satisfy these requirements is a 
major aim of the current research. 
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Faster cycle times and the ability to provide contour 
following would greatly extend the applications areas for 
modular systems. Research at LUT into electric servo 
drives aims to produce modular elements with these 
capabilities in the future. 
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This paper considers the u •• of dl.trlbuted programmable actu.tors for •••• mbly 
automation. The.e devlc.s bridge the gap In Industrial machln. .y.tem. betve.n 
dedicated "hard" automation and "general purpos." Industrial robot.. For exampl •• they 
offer the opportunity for optlmlslng the machine configuration Including the choice of 
drive system elements for each individual operation. Distributed machine systems. 
~hlch have been studied at Loughborough University for several years are used to 
Illu.trate the basic principles. The functlonaHtles of "multl-purpo.e" motion and 
supervisory controllers designed for electric and pneumatic drive systems are described 
togeth.r vlth • dlscus.lon of the performance characterl.tlcs of those drive type •• 
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INTRODUCTION 

Industrial automation is becoming progressively more widespread with the need to reduce 
product. costs through improved efficiency and better quality control. The automated 
machinery used in industry is extremely diverse both in form and function. The tasks 
performed can be stmple or complex and may either semi or fully automate manufacturing 
processes. These diverse requirements have led to an equally wide range of 
manufacturing machines and associated control systems with very little standardisation 
between them. Typical industrial sy.tems are difficult to maintain and modify and 
almost impossible to integrate together at any chosen level [11. If CIn is to be 
effectively achieved individual machine elements can no longer be regarded and 
evaluated as discrete items of plant but must be seen as vital pIeces in the 
"automation jigsaw", 

This paper is promoting the concept of modular machine systems. The concept of 
modularity is in itself not new and it has been applied in disciplines such as 
mechanical, electronic and software engineering for many years. However, no consistent 
approach across these disciplines has been apparent in the design of contemporary 
machinery [2]. A methodology is needed to integrate machine elements in a structured 
manner. The use of a modular design framework for machine configuration and control is 
developed with reference to the existing methods it could replace and the potential 
improvements it can provide. A modular demonstrator system has been developed which 
uses industrially representative hardware in a printed circuit board assembly 
application. 

CURRENT ASSEl11lLY !!ETHODS 

By nature assembly processes are extremely diverse including for example insertion, 
glue laying, press fits and spot welding. There are also wide variations in product 
variability and volume, typically ranging from high volume products with loW variation 
to small batch production of frequently modified items. A number of common elements 
can however be identified within most assembly systems. Generally they incorporate 
manipulators for component handling. feeder devices to support component flow and a 
control system to integrate its operation. The manipulators used in assembly systems 
can generally be classified in one of three categories [3J: 

(a) dedicated special purpose machine. where the manipulator is designed and built 
specifically for one task, 

(b) modular manipulators built as standard units and configured together in different 
ways to suit a wide range of tasks, and 

(c) general purpose manipulators of fixed configuration, i.e. conventional robots. 

A particular assembly system will usually include a number of manipulators which can be 
the same or a mixture of manipulator types. 

Hard automated machinery plays an essential role in the automated assembly of high 
volume products. Major companies specialise in the design and manufacture of such 
systems for example the Bodine Corporation (who produce cam operated long line assembly 
machines) and Bosch (who produce pneumatically actuated assembly machines). 

Where more flexible automation is needed in assembly then software controlled machines 
are required, typically SCARA and Prismatic robots of fixed configuration 'or modular 
elements combined in a user defined manner. 

Feeder devices come in numerous forms, they cover the functions of component storage, 
orientation and placement. These devices are usually dedicated to a single task. 

Control systems vary widely depending on the degree of flexibility required in the 
assembly system. They vary from a simple sequencer for co-ordinating the elements of a 
small dedicated machine to a complex mix of programmable logic controllers, robot 
controllers and supervisory computers on larger more flexible systems. 

I Om InternatioNlI Conference on Assebmly Autometlon 
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GENEJW. PUllPOSE lIAJIIPULATORS 

The major advantage of general purpose robotic manipulators over task-specific hardware 
for automation i. their flexibility. In theory, a robot's task can be changed simply by 
loading a new program into its controller. However in practice this is rarely the 
case. Robot arms can be purchased In a variety of mechanical forms and each 
manipulator will demonstrate specific kinematic and dynamic properties sufficient to 
provide mechanical flexibility for a range of manufacturing tasks. However, having 
provided mechanical flexibility, mechanical optimisation is seldom achieved when 
accomplishing a given task. The manipulators potential flexibility is also seldom 
properly utilised since once tooled up with conventional feeding, fixing and processing 
eqUipment, the robot becomes part of a relatively inflexible machine which cannot deal 
with significant process or product variations. 

A fundamental problem exist., that of achieving a sufficiently high level of 
optimisation while maintaining acceptable flexibility in a cost effective manner. 
These problems have only been overcome when using conventional robot arms in a limited 
number of manufacturing application areas [4]. 

DISTRIBUTED nODULAR lIAJIIPULATORS 

The major factors that define a robots configuration are the link lengths, joint 
actuators and geometry of joint-link connections. Using manipulators with different 
configurations for each task, is possible when the task requirements are known 
beforehand [5]. Distributed manipulators utilise their degrees of freedom (ie. their 
axes of motion) along the production line where they are actually needed and provide as 
much - but no more - complexity than the various production tasks demand. 

Distributed robotics is now viewed by many engineers as the structural foundation of 
flexible manufacturing, whereas the idea of realising a machine to replace the man -
1.e. the general purpose robot, has been largely abandoned; firstly due to cost and 
technical snags but also because the automated factory based on this anthropomorpholls 
view is not the most efficient [6]. 

The Hodular System Group at Loughborough have worked for some eight years on deriving 
modular distributed manipulators and investigating their application in flexible 
manufacturing {7,8]. The reconfigurable modular manipulator system currently under 
research extends the concept of modularity throughout the entire machine to include not 
only the mechanical hardware, but also the electrical hardware and most importantly the 
machine control system. 

CURRENT PRACTICES IN IIACHINE CONTROL 

Currently two distinctly different approaches are commonly used when creating a 
computerised machine control system as depicted in Fig. 1. 

The first of these approaches (see Fig. 11) involves. creating a custom designed control 
system to accomplish a specific task. An array of conventional control systems of this 
type exist including robot controllers and computer controllers for various semi
dedicated and dedicated machines [4,9]. These custom controllers typically offer a 
wealth of features but are of fixed configuration and their realisation ties them to 
specific mechanical hardware. 

The second approach is embodied in various forms of "industrial controller" (including 
programmable logic controllers) which provide a degree of modularity and 
configurability [10]. Industrial controllers of this type (see Fig. lii) are available 
"off the shelf" and can be customised to control specifiC machines through selecting 
hardware modules and creating control software using either a symbolic (such as relay 
ladder diagrams) or high level programming language. Hany industrial controllers have 
evolved as replacements for relay and hard wired electronic controllers with new 

10th International Conference on AS$8bmlv Automation 

-485 -



APPENDIX B APPLICATIONS FOR DISTRIBUlED MANIPULATORS 273 

functions added over the years in a bottom-up manner. They typically exhibit a 
confused software structure and are difficult to reconflgure or integrate together. 

The philosophy embodied in industrial controllers is an excellent one, recognis1ng that 
there" are many common problems when controlling manufacturing machines and providing 
modules and configuration tools for creating specific machine control systems. 
Unfortunately current industrial controllers can exhibit major limitations where high 
levels of functionality are required (e.g. multi-axis motion control) or where products 
or~ process changes are frequent. With advances in computer technology since their 
conception in the early seventies, the time is now ripe for problem dominated 
approaches to the engineering of real-time process and machine control systems. Study 
of current control practices reveals the following clear trends [11): 

(a) the current ad-hoc development practices used for the implementation of machine 
controllers should be superceded; 

(b) the scope of development p~actices should be widened from focusing purely on 
implementation to encompass problem formulation and definition. 

A NEW nODULAR APPRO~CH TO HACHlNE CONTROL 

The nodular Systems Group at Loughborough has devised a family of software based 
machine control modules which can be arranged in a hierarchical manner (see Fig. 3). 
The philosophy behind the approach is one of decomposing the control functions required 
for many types of manufacturing machines. This decomposition has led to the 
specification and creation of control system modules to form a software library of 
building elements. For a particular machine, a controller can be configured based on 
an appropriate selection and aggregation of the library modules (see Fig. 4). The 
architecture illustrated can thus be a useful step towards creating modular and hence 
more generally applicable control systems. A key factor in enabling this development 
Is the application of a real time operating system, Hicroware 059/68000, to provide a 
"virtual machine" at a level above the physical computer hardware [12]. This virtual 
machine supports a structured device independent real time environment for control 
system design 113J. 

Software tools have been Implemented, using the programming language C, to support the 
creation and manipulation of system modules during controller development and at 
machine run time. System calls supported by OS9 are used to provide the required 
"bindings" between modules. To ensure the correct "fit" of the modules with each other 
(and with external devices) "templates" are used to enforce a standard data format. In 
its current implementation (see Fig. 3) the system consists of three levels: 

Ca) the machine module which contains the data relevent to the overall machine; 
Cb) the task modules (~hose number and type are defined in the machine module) support 

the concurrent use of multiple "applications programs" in the system. These 
application programs may be concerned with mechanism control or serve a general 
purpose programming function; 

(c) the component modules are concerned with machine specific I/O devices (e.g. axes 
of motion, analogue or digital inputs or outputs). 

Fig. 2 illustrates this modular approach where essentially a simple two-level physical 
control hierarchy is employed. The use of separate Single Axis Controllers (SACs) 
associated with each axis of motion, with their interactions organised and managed by 
the supervisory controller leads to a rational decoupling of control functionality and 
enables axis controllers to be produced as "standard" components. This heirarchically 
organised segmentation of the control problem can be more generally applied if the SACS 
embody sufficient functionality to control a variety of drive types. 

DRIVE SYSTEHS FOR ~SSEHBLY ~UTOnATION 

There are often ~ide variations in the force and pOSitioning requirements for each axis 
of motion in a given assembly machine. At Loughborough UniverSity we have been looking 
at the use of "mixed" drive technology on modular manipulator systems. The use of a 
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reference architecture concept. with seperate SACs for the major degrees of freedom, 
allow~ the easy mixing or substitution of different drive types. This gives the 
opportunity to optimise the cost/performance ratio for each axis of motion on a given 
machine. Hachines are typically powered either hydraulically, electrically or 
pneumatIcally or by some combination of these methods. 

Broadly speaking, hydraulIc drives provide a durable, reliable and safe form of high 
force or power actuator which possesses high stiffness and is backlash free. However, 
hyd~aulic systems are often bulky, noisy. expensive and are liable to oil leakage. 
Hydraulic drives are normally employed in application areas with power requirements 
higher than 10 kw. 

Conventionally pneumatic drives are widely employed for "bang-bang" control of 
repetitive operations such as pick and place movements in special purpose assembly 
machines and for other non-programmable motions for example simple robot end effectors. 
Pneumatic systems are comparatively cleaner and lighter than hydraulics, but are rather 
more difficult to apply with closed loop control because of their tendency to oscillate 
under high-inertia load and because of the compressibility of the gas medium. The 
severe inherent non-linearities introduced by the fluidic control medium can now be 
effectively suppressed by advanced digItal control techniques [14,15]. Recently 
pneumatic servo drIves have shown cost advantages in low to medium power application 
areas, but tuning problems still remain with present pneumatic control systems. 

Electric motors exhibit the best linearity and simplicity in system dynamics and are 
well understood theoretically. They hence offer currently the most mature and usable 
drive technology and are generally considered to be the most suitable for programmable 
positioning and velocity control in assembly applications. 

The majority of assembly operations require varying degrees of either motion or force 
control. Point-ta-paint positioning is a typical requirement for many assembly 
operatIons e.g. palletising, parts fitting, spot welding. All three drive technologies 
can now offer usable point to point positioning in appropriate application areas. 

Good velocity control can be relatively easily achieved with both electric and 
hydraulic systems and has been well documented [16]. Velocity control is more 
difficult to achieve with pneumatiC drives although pneumatics have a long standing 
history of being used to accomplish Simple open loop speed control tasks [17]. 

The authors would like to emphasise that servoed pneumatiC drives can exhibit some 
unique performance properties (not possessed by electric or hydraulic drives) which may 
be usefully employed in assembly applicatIons. Due to the existence of choked flow in 
the gas medium, the velOCity response of pneumatic drives can be insensitive to load 
and/or supply pressure variations. The compressibility of air does not always create 
control difficulties, it provides compliance which can be highly desirable in many 
force or hybrid control tasks which are common place in assembly. 

DISTRIBUTED nANIPULATOR DEnONSTRATOR 

A demonstrator system has been commissioned for materials handling applications in 
Printed Circuit Board (PCB) manufacture and assembly. The facility which uses 
industrialised .hardware wherever pOSSible, has been configured to provide a realistic 
environment for practical control system evaluation. The system, shown in Fig. 5, 
consists of modular actuators and tooling to transport PCBs between pallets and work 
piece fixtures. The demonstrator extends the concept of modularity throughout the 
machine mechanical hardware, electrical, electronic and control systems [2]. The 
mechanical modules are mounted on a modular extruded section aluminium framework which 
is also reconfigurable. The system implementation consists of up to twelve 
programmable axes of motion plus additIonal I/O controllers. Based on functional 
analysis of the application these elements are organised and controlled as five 
distinct groups (see Fig. 6). 

Group 1 Component Insertion: Four electric serv~ modules with interchangable tooling. 
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Group 2 peB Registration: Electric servo actuated slideway and two axis stepper motor 
positioned PCB registration fixture. 

Group 3 pea Handling: Pneumatic servo actuated gantry module with electric servo 
actuated vertical module and programmable pcb gripper. 

Group.4 Pallet Transportation: Pneumatic serve actuated rodless cylinder with 
pallet/carrier location tooling. 

Group 5 Pick and Place: Two electric serve actuated modules and tooling for odd form 
components. 

This rig makes use of "mixed" drive technology. Pneumatic actuators are used for 
simple binary devices such as end effectors and clamps. Serve pneumatic drives are 
used for the lower accuracy point to point peB handling (for position accuracy of up to 
0.1 mm). stepper motors are used for programmable fixtures where open loop control is 
acceptable. DC servo actuators are employed where velocity control is required and for 
component insertion ~here accuracies better than O.lmm are needed. 

CONCLUSIONS 

This paper highlights some of the limitations of conventional manipulators and control 
systems which are currently used for assembly automation. The use of distributed 
manipulators in conjunction ~ith modular control systems offer a potentially more 
efficient solution and could significantly extend the manufacturing areas in which 
automation can be justified. 

The modular systems group firmly believe, that the concepts described in this paper if 
not the specific implementation of those concepts evolved at Loughborough University 
will ultimately revolutionise machine control methods. 
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APPENDIX C.I EXAMPLE TASK PROGRAM: INSERT 

insert 
REM 
REM UMC DATA TYPE DECLARATIONS. DO NOT EDIT. 

PROCEDURE 
0000 
0006 
0036 
0070 
0074 
OOM 
OOCC 

REM -----------------------------------------------------
BASE 0 
TYPE AXIS=ax_name:STRING[32]; ax_modptr,ax_no:INTEGER 
TYPE PORT=pt_name:STRING[32]; pt_modptr,pt_no:INTEGER 
TYPE EVENT=ev_name:STRING[32]; 

OOFE 
ev_modptr,ev_no,ev_value:INTEGER 

TYPE LOCATION=loc_name:STRING[32]; 

012A REM -----------------------------------------------------
0164 REM 
016A REM 
0170 REM 
0176 REM UMC VARIABLE DECLERATIONS. 
0196 REM -----------------------------------------------------
0102 DIM axes:INTEGER 
01DE DIM axis_x,axis_w:AXIS 
01F2 DIM port1:PORT 
0200 DIM event1,event2,finish2,group1:EVENT 
0220 DIM pickup_U,pickup_D:LOCATION 
0234 DIM above_location(20):LOCATION 
024C DIM insert_location (20) :LOCATION 
0264 REM -----------------------------------------------------
02AO REM 
02A6 REM 
02AC REM USER VARIABLE DECLERATIONS. 
02CC REM -----------------------------------------------------
0308 DIM MIRROR,ALTERNATE,SYNC,EXIT:INTEGER 
0326 DIM SLOW,MEDIUM,FAST:INTEGER 
033E DIM HIGH,LOW:INTEGER 
0350 DIM count:INTEGER 
035C LET MIRROR=O 
036C 
037C 
038C 
039C 
03AC 
03BC 
03CC 
03DE 
03EE 
03FE 

LET 
LET 
LET 
LET 
LET 
LET 
LET 
LET 
LET 
REM 

ALTERNATE=l 
SYNC=2 
EXIT=3 
SLOW=5 
MEDIUM=40 
FAST=80 
HALT=O 
HIGH=l 
LOW=O 

0404 REM -----------------------------------------------------
0440 PAUSE "insert: setup next - (TRON if required)" 
046E REM 
0474 REM 
047A REM UMC COMPONENT SETUP AND LINK STATEMENTS. 
04A8 REM -----------------------------------------------------
04E4 REM 
04EA PRINT "insert: setup and link" 
0508 RUN setup(axes) 
0518 REM 
051E LET event1.ev_name="event1" 
0538 RUN link_event(event1) 



054S 
054E 
056S 
057S 
057E 
0596 
05A6 
05AC 
05C4 
05D4 
05DA 
05F6 
0606 
060C 
062S 
063S 
063E 
0660 
0676 
067C 
069E 
06B4 
06BA 
06DC 
06F2 
06FS 
071A 
0730 
0736 
075S 
076E 
0774 
0796 
07AC 
07B2 
07D4 
07EA 
07FO 
OS12 
OS2S 
OS2E 
OS50 
OS66 
OS6C 
OSSE 
OSA4 
OSAA 
OSBO 
OSD2 
OSES 
OSEE 
0910 
0926 
092C 
094E 
0964 
096A 
09SC 
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REM 
LET event2.ev_name-n event2 1t 

RUN link_event(event2) 
REM 
LET axis_x.ax_name=lIaxisl" 
RUN link_axis (axis_x) 
REM 
LET port1.pt_name="port1" 
RUN link-port(port1) 
REM 
LET pickup_U.loc_name="pickup_U" 
RUN link_location(pickup_U) 
REM 

LET pickup_D.loc_name="pickup_D" 
RUN link_location(pickup_D) 
REM 
LET insert_location (0) .1oc_name=="place_DO" 
RUN link_location(insert_location(O» 
REM 
LET insert_location (1) .loc_name="place_D1" 
RUN link_location(insert_location(l» 
REM 
LET insert_location (2) .loc_name="place_D2" 
RUN link_location(insert_location(2» 
REM 
LET insert_location (3) .loc_name="place_D3" 
RUN link_location(insert_location(3» 
REM 
LET insert_location(4) .loc_name="place_D4" 
RUN link_location(insert_location(4» 
REM 
LET insert_location(S).loc_name-IIplace_D5" 
RUN link_location(insert_location(5» 
REM 
LET insert_location (6) .loc_name="place_D6" 
RUN link_location(insert_location(6» 
REM 
LET insert_location (7) .loc_name="place_D7" 
RUN link_location(insert_location(7» 
REM 
LET insert_location(S).loc_name="place_DS" 
RUN link_location(insert_location(S» 
REM 
LET insert_location(9).loc_name="place_D9" 
RUN link_location(insert_location(9» 
REM 
REM 
LET above_location (0) .1oc_name="place_UO" 
RUN link_location(above_location(O» 
REM 
LET above_location (1) .loc_name="place_U1" 
RUN link_location(above_location(l» 
REM 
LET above_location (2) .loc_name="place_U2" 
RUN link_location(above_location(2» 
REM 
LET above_location (3) .loc_name="place_U3" 
RUN link_location(above_location(3» 



09A2 
09A8 
09CA 
09EO 
09E6 
OA08 
OA1E 
OA24 
0A46 
OASC 
OA62 
OA84 
OA9A 
OAAO 
OAC2 
OAD8 
OADE 
OBOO 
OB16 
OB1C 
OB22 
OB60 
OB66 
OB6C 
OB8C 
OBCA 
OBE8 
OCOS 
OC26 
OC46 
OCSE 
OC62 
OC7A 
OC8C 
OC92 
OC96 
OCA6 
OCCA 
OCCE 
OCDE 
OCE2 
OCF2 
OCF6 
OD16 
OD1A 
OD3A 
ODSA 
OD7E 
OD9C 
ODB4 
ODCC 
ODEA 
OE08 
OE26 
OE48 
OESS 
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REM 
LET above_location (4) .loc_name="place_U4" 
RUN link_location(above_location(4» 
REM 
LET above_location(S) .loc_name="place_US" 
RUN link_location(above_location(S» 
REM 
LET above_location (6) .loc_name="place_U6" 
RUN link_location(above_location(6» 
REM 
LET above_location (7) .loc_name-"place_U7" 
RUN link_location(above_location(7» 
REM 
LET above_location (8) .loc_name="place_US" 
RUN link_location(above_location(8» 
REM 
LET above_location (9) .loc_name="place_U9" 
RUN link_location(above_location(9» 
REM 
REM 
REM -----------------------------------------------------
REM 
REM 
REM START OF MAIN PROGRAM CODE. 
REM -----------------------------------------------------
PRINT "axis.ax_no - ",axis_x.ax_oo 
PRINT "event.ev_no = ",eventl.ev_no 
PRINT "port.pt_no = ",portl.pt_no 
FOR count=l TO 10 

RUN smove(location1,FAST) 
PAUSE 
RUN smove(location2,FAST) 

NEXT count 
REM 
PAUSE 
RUN look(event1) 
PRINT "value of eventl 
PAUSE 
RUN signal(eventl) 
PAUSE 
RUN wait (eventl) 
PAUSE 
RUN output(port1,1,HIGH) 
PAUSE 
RUN output (port1,1,LOW) 

",eventl.ev_value 

PAUSE "pick and place loop next" 
FOR n=O TO 9 

PAUSE "in pick and place loop" 
RUN smove(above-pickup,FAST) 
RUN smove(pickup,FAST) 
RUN smove(above_1ocation(n),FAST) 
RUN smove(insert_1ocation(n) ,FAST) 
RUN smove (above_location (n) ,FAST) 

NEXT n 
RUN setdown(axes) 
END 
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APPENDIX C.2 EXAMPLE BASIC LINK SUBROUTINE: LINK PORT 

PROCEDURE 
0000 
002C 
003A 
0050 
006E 
007A 
0090 
OOAO 
OOAE 
OOBC 
OOCA 
00D8 
OOEA 

linkyort 
TYPE PORT=p_name:STRING[32]: p_modptr,p_no:INTEGER 
PARAM p:PORT 
DIM cp_name:STRING[32] 
DIM cp_type,taskytr,cp_no,cp_ival:INTEGER 
DIM cp_fval:REAL 
REM initialise params 
cp_name-p.p_name 
cp_type-l 
taskytr=O 
cp_no=O 
cp_ival~O 

cp_fval-O. 
RUN 

LINK_CP(cp_type,cp_name,taskytr,cp_no,cp_ival,cp_fval) 
0122 p.p_modptr=taskytr 
0134 p.p_no=cp_no 
0146 END 
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Module Template Header: 

/* OFFSET TABLE: temmc.h */ 
/* 32 char string: generic machine name */ 

#define MC MOD TYPE 6 
/* integer: number of axes */ 

#define MC AXES 40 
/* integer: number of i/o ports */ 

#define MC PORTS 46 
/* integer: number of events */ 

#define MC EVENTS 52 
/* integer: number of tasks */ 

#define MC TASKS 58 
/* node: machine axes: */ 
/* node: machine ports: */ 
/* node: machine events: */ 
/* node: machine tasks: */ 

#define MODSIZE temmc 62 /* module size required */ 

#define SUBSIZE temmc 58 /* sub structure size */ 

Axis Sub·Structure Header: 

/* OFFSET TABLE: submcax.h */ 
/* node: axis parameter: */ 

/* 32 char string: axis name */ 
# define AX NAME 6 

/* 32 char-string: axis edit file name */ 
# define AX EDFILE 40 

/* integer: set axis task link bits */ 
# define AX TLINK 74 

#define MODSIZE submcax 78 /* module size required */ 

#define SUBSIZE submcax 74 /* sub structure size */ 

Port Sub·Structure Header: 

/* OFFSET TABLE: submcpt.h */ 
/* node: i/o port parameter: */ 

/* 32 char string: port name */ 
# define PT NAME 6 

/* 32 char-string: port edit file name */ 
# define PT EDFILE 40 

/* integer: set port task link bits */ 
# define PT TLINK 74 

#define MODSIZE_submcpt 78 /* module size required */ 

#define SUBSIZE_submcpt 74 /* sub structure size */ 
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Event Sub·Structure Header: 

/* OFFSET TABLE: submcev.h */ 
1* node: event parameter: *1 

1* 32 char string: event name *1 
~ define EV NAME 6 

1* integer: set event task link bits */ 
~ define EV TLINK 40 

~define MODSIZE submcev 44 1* module size required *1 

~define SUBSIZE submcev 40 1* sub structure size *1 

Task Sub·Structure Header: 

/* OFFSET TABLE: submctsk.h */ 
/* node: task parameter: *1 

1* 32 char string: task name *1 
~ define TSK NAME 6 

1* 32 char string: process file name *1 
~ define TSK PROCESS 40 

1* 32 char string: program file name *1 
~ define TSK PROGFILE 74 

1* 32 char string: std. input path *1 
~ define TSK IN 108 

1* 32 char string: std. output path *1 * define TSK OUT 142 
1* 32 char string: std. error path */ 

~ define TSK ERROR 176 
1* 32 char string: axis group locations file *1 

~ define TSK POSFILE 210 
1* integer:-set task link bits *1 

~ define TSK LBIT 244 
1* integer:-task process id *1 

~ define TSK PID 250 

~define MODSIZE submctsk 254 1* module size required *1 

~define SUBSIZE submctsk 250 /* sub structure size *1 
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APPENDIX E.1 C SUBROUTINE ROOT PSECT PROGRAM: 
UMCSTART.A 

************************************ 

* 
* umcstart.a - Startup routine for a C subroutine program. 
* Subroutine module to be called from Basic. 

* 
* Contents -

* 
* 
* 
* 
* 
* Note -

* 
* 
* 
* 
* 
* RH Apr'88 

* 

Dummy stack check. 
Declare errno. 
Changing static storage. 
Returning static storage. 
Reporting error codes back to basic. 

Currently 28 bytes of uninitialised static storage 
are available in UMC task modules for general use. 
It should NOT be assumed that these initially 
contain zeros. 

use <oskdefs.d> 

psect bstart_a, (Sbrtn«8)!Objct, (ReEnt«8) !O,O,O,bstart 

vsect 
errno: ds.l I global error holder 

ends 

bstart: bra main 

* 
* dummy stack checking 

* 
_stkcheck: 

stkchec: 
rts 

* 
* -pro«cmemory-ptr» cmemory-ptr is in dO, changes static storage 

* 
-pro: move.l a6,dl 

move.l dO,a6 
move.l dl,dO 
rts 

* 

save b_mem_add in d! 
put new address in a6 
transfer b_mem_add to dO for return 

* _epi«bmemory_address» bmemory_address is in dO, restores old 
storage 

* 
_epi: move.! dO,a6 restore old value of a6 
rts 

* 



APPENDIX E C SUBROUTINE SUPPORT PROGRAMS 288 

* _error_epi«bmemory_address», returns error + restores old 
storage 

* 
_error_epi: move.l 

move.l dO,a6 
ori fCarry,ccr 
rts 

* 

errno(a6),dl errno returned as error value 
restore old value of a6 
set carry to indicate error to basic 

* _error (init_errno), returns error + NO change to static storage 

* 
error: move.l dO,dl errno returned as error value 
ori fCarry,ccr set carry to indicate error to basic 
rts 

ends 
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APPENDIX E.2 C LIBRARY: SLm_S.C 

/* 

C Functions to support the subroutine modules written in C 
and called from microware basic only. 

These functions are for: 
Converting integers to ascii characters. 
Writing simple error path messages. 

RH Jun'88 

*/ 

/* _itoa() does int to ascii conversion with no static storage. 
calls lmodO */ 
char *lmod(str,arg,modn) 
char *str: 
int arg: 
int modn; 

int temp2; 
int templ; 
templ = arg % modn; 
temp2 - arg / modn; 
if (temp2) 

str=lmod(str,temp2,modn); 
*str++ = (templ > 9) ? (templ + 'a' - 10) 
return (str); 

char *_itoa(str,arg) 
char *str: 
long arg: 
( 

char *rtn=stri 
if (arg < 0) { 

arg = -arg: 
*str++ "'" I_I; 

if(arg <0) { 
strcpy(str,"2l47483648"); 
return (rtn) ; 

str lmod(str,arg,lO); 
*str ='\0': 
return (rtn) ; 

/* sends a message to standard error path */ 
int err_message(mess_str-9tr) 
char *mess_str-ptr; 
{ 

(templ + '0'); 

writeln(2,mess_str-9tr,strlen(mess_str-9tr»; 
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/* sends a message, an integer and a carriage return to standard 
error path */ 
int err_val(mess_str-ptr,arg) 
char *mess_str-ptr; 
int arg; 
{ 

char string_buf[12]; 
write1n(2,mess_str-ptr,str1en(mess_str-ptr»; 
write1n(2,strcat(_itoa(string_buf,arg),"\n"),13);/* upto 10 

digits + sign */ 
) 
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APPENDIX E.3 EXAMPLE C SUBROUTINE: WAIT_S.C 

/* 
wait.c wait/decrement subroutine for basic 

Basic calls will be of the fODn:-
TYPE SYS=static_store,event_id,port_ch:INTEGER; ioe_type: BYTE 
TYPE IOE=value:INTEGER; system:SYS 
DIM event1, event2:IOE 
RUN link_event("<machine_name>","<event name>", <event_struc» ---- 3 
params. 
RUN look«event_struc» ---- 1 param. 
RUN set,pulse,signal«event_struc>,«flag>}) flag = ALL or FIRST - 1 
or 2 paDn. 
RUN wait«event_struc>, «min>,<max>}) --- 1 or 3 params. 

RH April 89 min,max now both 1. 
*/ 

It include <errno.h> 
# include <strings.h> 

# include "/hO/umc/edfiles/temtsk.h" 
It include "/hO/umc/edfiles/subtskev.h" 

It define FALSE 0 

* define TRUE 1 
# define SIZE1 44 

* define SIZE2 4 /* int minimim wait 
iI define SIZE3 4 /* int maximum wait 

* define MIN_COUNT 1 /* in this case 
allowed */ 
iI define MAX_COUNT 3 

extern char *_itoa(); 

struct event 
{ 

/* template */ 

char ev_name[321; /* 32 */ 
int ev_modptri /* 4 */ 
int ev_no; /* 4 */ 
int ev_value; /* 4 */ 

value */ 
value */ 
only counts 

} ; /* 44 total size */ 

of 1 or 3 

main (cQunt, e_strucl, sizel, e_rnin2, size2, e_max3, size3) 
lnt count; 
struct event *e_strucl; 
long size1; 
int *e_min2i 
long size2; 
int *e_max3; 
long size3; 
( 

int init_errno; 
*/ 

int error, store, point; 

/* used until static storage is changed 
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int ev_min, ev_maxi 
applied */ 

/* range of vals. for which increment is 

*/ 
int bmem_add; 

int tskev_id; 
int offset; 

error - FALSE; 
store = FALSE; 
ev min 1; 
ev_max = 1; 

/* for A6, basic static storage address 

/* event id */ 
/* id offset */ 

/* initialise */ 
/* static storage flag */ 
/* default wait continue range values */ 

/* always check number of parameters passed first */ 
if (error == FALSE) 
{ 

tifdef DEBUG 
err_message ("wait: Debug - Parameter data received:\n"); 
err_vale" parameter count ~ ",count); 
err_val(1I size of 1st parameter ",sizel); 
err_vale" size of 2nd parameter ",size2); 
err_vale" size of 3rd parameter ",size3); 

ilendif 
if(count != MIN COUNT && count != MAX_COUNT) 

not 3 */ 
/* not 1 and 

*/ 

{ 

error = TRUE; 
init_errno = 56; 
err_message ("wait: 

/* return parameter error */ 
Error - Parameter count. \n ") ; 

/* check ALL parameters for size before changing static storage 

if (error == FALSE) 
{ 

if (sizel != SIZE1) 
{ 

error = TRUE; 
init_errno = 56; 
err_message ("wait: 

/* return parameter error */ 
Error - First parameter size.\nn); 

if (error -= FALSE && count == MAX_COUNT) 

if size2!= SIZE2) 

else 
{ 

error = TRUE; 
init_errno = 56; /* return parameter error */ 
err_message ("wait: Error - Second parameter size. \n"); 

if ( size3 != SIZE3) 
{ 



else 
( 
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error ... TRUE; 
init_errno - 56; 
err_messaqe("wait: 

ev max 

/* return parameter error */ 
Error - Third parame1;:.er size. \n"); 

1* change static storage base address USE WITH CARE *1 
if (error == FALSE) 
( 

bmem_add --pro(e_struc1->ev_modptr + TSK_STATIC); 
store = TRUE; 1* store old A6 contents in 

bmem_add *1 
Hfdef DEBUG 

err_val("wait: Debug - New static storage address om ", 

(e_struc1->ev_modptr + TSK_STATIC)); 
iendif 

I 
1* check event type - wait valid for inputs,outputs and 

internals. 
type internal if port no = O. *1 

/* check if min and max present or assume 1 and 1 , see above *1 
1* for a given input or output only certain values are sensible 

eg an. or dig. *1 
1* obtain event id from task module using *1 
1* wait for event with given id *1 
/* if error true then return error */ 

if (error =- FALSE) 
{ 

if «offset = tsk_event_os(e_struc1->ev_modptr, e_struc1->ev_no, 
EV_ID) ) 

== -1) 

err_message("wait: Error - Reading task event id 
offset.\n"); 

-1) 

error - TRUE; 

if(error == FALSE) 
{ 
if «tskev_id = rdmodi(e_struc1->ev_modptr, offset)) <= -1) 
{ 

I 
I 

err_message ("wait: Error - Reading task event id. \n"); 
error ... TRUE; 

1* wait for given event to be in range and return its value */ 
if (error == FALSE) 
{ 

if «e_struc1->ev_value 
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Ufdef DEBUG 
err_message ("wait: Debug - Event value of -1 returned. \n"); 
err_vale" ev_min - ",ev_min)i 
err_vale" ev_max - ",ev_max); 

#endif 
if «(errno >- 167) && (errno <- 170» 11 (ev_min > -1) 11 

(ev_max < -1» 
{ /* in case event value is -1 */ 

error = TRUE; /* make error check as good as possible 
*/ 

err_message ("wait: Error - Failed to wait for 
event.\n"); 

) 

if (error == FALSE) 
( 

Ufdef DEBUG 
err_message ("wait: Debug - Error flag ... FALSE\nn); 

fendif 

else 
{ 

if (store FALSE) 

Hfdef DEBUG 
err_message ("wait: Debug - Error static storage not 

changed. \n"); 
.endif 

_error(init_errno); 

else 
( 

are ok */ 
Hfdef DEBUG 

/* normal error reporting route if parameters passed 

err_message 
("wait: Debug - Error value in event static 

storage. \n ") ; 
fendif 
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