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In this work cadmium telluride thin film photovoltaic devices have successfully been produced 

using a novel closed-field magnetron sputtering technique. This technique offers the possibility of 

producing cells in an all-in-one vacuum process with the potential to provide a new lower cost 

production route. The sputtered cadmium telluride layers were characterised in detail using a 

range of advanced microscopy based techniques both in the as deposited and after the cadmium 

chloride treated state, a treatment that is necessary to produce a working cell. In the as deposited 

condition the cadmium telluride layer was seen to have a fine-grained columnar structure 

containing a high density of stacking faults. After the cadmium chloride treatment these grains 

recrystallized and the new grains were equiaxed with a much lower density of intragranular 

defects. Similar effects were also observed in samples prepared using close space sublimation. 

To understand this recrystallization behaviour during the cadmium chloride treatment, the key 

treatment parameters were systematically varied. Chemical analysis in Scanning Transmission 

Electron Microscopy (STEM) showed that chlorine travelled down the cadmium telluride grain 

boundaries and accumulated adjacent to the cadmium telluride/cadmium sulphide interface. This 

interface is where the cadmium telluride grains were found to recrystallise first during interrupted 

cadmium chloride treatments.   

The nature of the stacking faults was examined using High Resolution Transmission Electron 

Microscopy (HR-TEM). This showed that in localised regions up to one plane of atoms per 

sequence was missing based on the expected zinc blende structure. This changed the packing of 

the atoms such that a local change in crystal structure occurred. This local change in phase was 

successfully mapped using Electron Backscatter Diffraction in planar section produced using 

Focused Ion Beam milling. This was subsequently studied in more detail using Transmission 

Electron Backscatter Diffraction in the Scanning Electron Microscope, where the intra-granular 

arrangement of the phases was observed. 

HR-TEM was used to quantitatively measure the linear defects in the cadmium telluride layer 

after thermal annealing with and without the cadmium chloride present.  This showed that 

annealing alone resulted in only a modest reduction in the density of linear defects and grain 

recrysallisation only occurred in the presence of cadmium chloride. 

Cadmium magnesium telluride (CMT) was successfully grown epitaxially onto the cadmium 

telluride as an electron reflector layer to improve cell performance. During deposition the cell 

experienced high temperatures and this caused the stacking faults to return in a cell that had been 

previously cadmium chloride treated. This resulted in a reduction in cell efficiency, providing 

another link between linear defects and a degradation in cell performance. 
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1.1 Global Energy Demand 

The global energy demand stands today at approximately 16 terawatts and is expected is 

double over the next 30 years1. This is due to an increasing population which is expected to 

add an extra 2 billion people by 2040, according to UN predictions2. In addition the 

continued growth of developing countries will demand an increasing amount of energy for 

both industrial and domestic purposes.  

Figure  1.1a shows the world energy consumption prediction of energy sources from 2000 

until 2050 and extrapolated to 2100. Over the 50 years there is increasing proportion of 

energy provision from renewable energy sources and by 2050 it is predicted to account for 

the largest proportion of energy production. The demands for energy will almost triple in this 

50 year period, if the trend seen over the last two decades continues3. Most new energy 

demand will come in the form of electricity, as the world’s population increase and life styles 

change to a more energy dependent way. The ever increasing demand for energy is inevitably 

going to continue for the foreseeable future. Currently fossil fuels are the main source of this 

energy, however fossil fuel stocks are finite and are predicted to start to deplete over the next 

50 years4. Alternate energy sources are required; this has provided a strong motivation to 

develop more sustainable energy sources as well as improved energy production technologies 

as demonstrated in Figure  1.1b.  

  
Figure  1.1- a) World energy consumption predictions from 2000-2100 showing contributing energy sources, b) 
prediction of energy source (renewable/fossil fuels) and gains from improved efficiency of energy production5 

Fossil fuels currently dominate energy production. The use of coal is predicted to decrease 

with oil remaining constant, and gas increasing two fold5. However as there is an increase in 

demand for energy, renewable energy is predicted to fill the shortfall in energy production. 
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The largest predicted renewable contributors include biomass, wind and solar energies. The 

move to renewable resources is underpinned by a combination of political pressure to 

implement “greener” technologies, depletion of current energy sources4 and rising cost of 

current raw materials6. 

1.2 Factors Influencing Energy Production Routes 

The decision to move from traditional energy sources to renewable/sustainable sources is 

made at different levels in society. These include members of the public decisions to buy 

hybrid/electric cars or installing solar panels and government decisions for incentives such as 

feed-in tariffs for renewable energy production. Also international decisions have a major 

impact, such as a change in tax laws and emissions trading by providing economic incentives 

if a reduction of emission of pollutants is achieved.  

1.3 Renewable Energy Technologies  

There are several categories of renewable energy technologies harnessing energy from 

different sources; these include solar, wind, geothermal, hydro and biomass. A range of 

technologies are required to fulfil the energy requirements of the future. Historically the 

production of energy from renewable sources has had a higher cost than traditional sources 

(coal, oil and gas). However with improvement in technologies the cost of renewable energy 

production has decreased. This includes photovoltaic technologies, where the module price 

over the last 4 years has decreased three fold to less than £0.60/watt-peak7, rivalling the cost 

of fossil fuel energy production.  

1.4 Photovoltaics as a Source of Energy 

Of the renewable energy technologies, photovoltaics have the potential to play a key role in 

energy production over the next few decades as the non-renewable conventional sources start 

to deplete and increase in cost. Photovoltaic power plants are attractive as planning time is 

shorter than most other methods.   In addition, after installation, little maintenance is required 

resulting in an extremely low running cost, and a reasonable unit lifetime of approximately 

25 years can be expected8.  

Electromagnetic radiation is converted to electricity via the photovoltaic effect, where the sun 

is the source of the radiation. Different wavelengths of light will ultimately affect the amount 

of radiation which is converted into electricity. Therefore extensive work has been done to 

characterize the radiation from the sun in different locations, to allow modelling of the 
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radiation in the lab in order to calculate the efficiency of cells under the sun’s light using a 

light source other than the sun. 

At sea level the sun provides approximately 1 kW/m2, giving a 24 hour annual average of 0.2 

kW/m², with a power of 102,000 TW9. This powers the ecosystem and the environment, and 

helps sustains life on earth. The solar energy from the sun that reaches the earth’s surface is 

over 10,000 times the global energy demands10, but the distribution of this is not 

homogeneous due to the curvature of the earth and atmosphere. AM0 is reference to the 

radiation outside of the atmosphere, AM1 is reference to the radiation when the sun is 

directly overhead and passes through the atmosphere at its exact thickness. AM1.5 is 

reference to the radiation with a typical solar spectrum at sea level on a clear day, and is the 

standard usually used to characterise solar cells. The spectral irradiance under these 

conditions is illustrated in Figure  1.2. 

 
Figure  1.2 - Spectral irradiance of the AM1.5G standard spectrum11 

1.5 Photovoltaic Systems 

The two main photovoltaic technologies used now are silicon based and thin film devices. 

Silicon based systems are more widely used, accounting for 87% of all solar panels12.  These 

systems are more developed with cell efficiencies recorded at 25% for mono-crystalline 

devices13, whereas thin film photovoltaics are more novel and less developed and account for 

only 11% of the market14. Thin film devices therefore have a larger potential to be improved 

and become a main source of electricity production. This study will be based on further 
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understanding and development of low cost high efficiency thin film solar cells. 

1.6 Thin Film Solar Cells 

Thin film solar cell development has improved dramatically over the last 20 years, where 

cadmium telluride cells have reached an efficiency of 20.4% (recorded by First Solar/General 

Electric) and amorphous silicon has reached 14%13. The major advantages of thin films 

compared with silicon is their potential for lower cost and the increased geometric flexibility 

of the substrate. Thin film technologies include cadmium telluride, copper indium gallium 

diselenide, dye sensitised cells, gallium arsenide and amorphous silicon. Of these materials 

cadmium telluride has by far been the most successful with a 43% market share of all thin 

film technologies14. 

1.7 Project Motivation and Objectives for Cadmium Telluride Based Solar Cells 

Cadmium telluride is well known for its good photoelectric properties and is reaching 

upwards of 20% in lab efficiencies13, however this could still be improved and has the most 

potential for being a key producer of electricity in the future. Therefore it is the chosen 

material for this study. As only a 2 µm layer is required for almost full absorption of visible 

light, the material costs are considerably lower than other technologies, as well as a wide 

range of substrates can be used.  

The novel deposition technique close field pulse DC magnetron sputtering will be studied as 

it has many advantageous features such as low deposition temperatures with high deposition 

rates15, as well as uniformity and accuracy and has not been used in this way before. 

Magnetron sputtering also has the potential to be scaled up into an industrial in-line process, 

potentially mass producing solar cells in a continuous low cost process.  

Close space sublimated cadmium telluride solar cells will also be studied in detail, as it is the 

standard way to produce cells in industry. Focus is on the cadmium chloride treatment, by a 

systematic study to examine how the key process parameters used to produce the cells, 

affects the microstructure. This is a key part of the process which activates the cell and is not 

currently fully understood.   
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2.1 Introduction 

This chapter starts with a description of how cadmium telluride solar cells generate electricity 

from light energy (photons). This fundamental understanding is necessary to study the 

interrelationship between the microstructure and the electrical properties of the thin films. 

The material properties and fabrication procedures used to produce cells are examined, 

together with the characterization techniques used to study microstructural behaviour. A 

current literature review of characterization techniques used to study the cadmium telluride 

cell properties and the effects of the cadmium chloride properties is also included. A recent 

review detailing the properties of cadmium telluride and role of defects within the material is 

available in the literature and this topic will not be reproduced here16. 

2.2 The p-n Junction – Cadmium Telluride 

The basic structure of a solar cell is a p-n junction which is comprised of two layers; a p-type 

material and an n-type material. When these layers are illuminated a potential difference is 

created between the layers via the photovoltaic effect. The voltage causes a current which can 

be used to power electrical devices. A solar cell must have three main parts: 

1- A semiconductor which is sensitive to light 
2- A p-n junction which separates the electron hole pairs 
3- Electrical contacts on either side of the p-n junction to allow the generated current to 

be used for useful work 

A wide range of materials can be used for each of these parts of the cell; the majority of solar 

cells are mono or poly crystalline silicon. The p-n junction of a silicon based cell is known as 

a homo-junction as both the p-type and n-type material is silicon, but they are doped with 

impurities in order to form the p-n junction. Thin film p-n junctions include cadmium 

sulphide/cadmium telluride and cadmium sulphide/copper indium gallium diselenide. 

Understanding the main principals of photovoltaics and the physics behind the photovoltaic 

effect is fundamental to further develop solar cells. This includes the microstructural and 

electrical properties which are also interlinked.  

Figure  2.1 shows the band energy diagram for a p-type and n-type material, the Fermi level 

(EF) is shown in the p-type material to be closer to the valence band (VB) whereas in the n-

CHAPTER 2. BACKGROUND 
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type it is closer to the conduction band (CB). The conduction band (CB) is populated with free 

electrons and the valence band (VB) is populated with free holes.  

 
Figure  2.1– A schematic model of a p-n junction showing the energy band positions 17. 

This means when the p-type and n-type material are bought into contact they will form a p-n 

junction. The electrons will move from the n-type to the p-type material and the holes will 

move in the opposite direction as the donor level (ED) is higher in the n-type material and the 

acceptor level (EA) is lower in the p-type material. The carriers diffuse from the higher to the 

lower concentration, until there is a depleted region formed which is positive on the p-side 

due to a high concentration of ions and negative on the n-type side as there is an equally high 

concentration of holes. 

 
Figure  2.2– A schematic model showing a p-n junction with a depleted region and energy bands  

  
Figure 2.3 – A schematic model of a p-n junction at equilibrium showing the movement of electrons and holes17 

Once the concentration of the electrons and holes has built up on either side of the junction 

the diffusion will stop when the gradient of carriers is balanced. This causes the Fermi levels 

in the p and n type material to become equal and therefore the conduction and valence band is 
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forced to bend as shown in Figure  2.2 and Figure 2.3. Due to the build-up of charge on either 

side of the junction an electric field is formed, this is critical to the photovoltaic effect. There 

are two main types of p-n junction; this is due to the material or materials which are used to 

form the junction. A homojunction is made from the same material, but each side of the 

junction is doped with impurities. The main advantage of this type of junction is perfect band 

alignment and perfect lattice match across the junction. This has a positive effect on the cell’s 

electrical properties, and, ultimately the performance of the cell.  

The cadmium sulphide/cadmium telluride is a hetrojunction cell. This is shown in Figure  2.4 

which shows the difference in band energy states. The materials must be selected carefully to 

avoid lattice mismatch or the cells performance will be diminished although inter-diffusion of 

the materials during manufacture will reduce the lattice mismatch. In the cadmium 

sulphide/cadmium telluride cell, the cadmium sulphide is n-type as it has a wider band gap 

which allows for a larger current generation from the higher energy electromagnetic waves 

(photons).  

 
Figure  2.4– A schematic model of band diagram energies of a cadmium sulphide/cadmium telluride cell. 

Adapted from 17 

Essentially the two types of p-n junction work in the same way. Electricity is generated via 

the photovoltaic effect. First the electromagnetic radiation is absorbed by the semiconductor 

material and electron hole pairs are generated, which are the charge carriers. Next the 

electron hole pairs are separated at the junction, followed by the migration of the charge 

carriers to a junction where they are collected by the electrical contacts. The generation of 
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electron-hole pairs can only happen when the photon energy is greater than the band gap 

energy; this is shown in Figure  2.5. 

 
Figure  2.5– A schematic model of the photovoltaic effect showing the separation of the electron hole pair 

Absorbing semiconducting materials can have direct or indirect band gaps; they are 

distinguished by the k-vector from the maximum energy state of the valence band gap to the 

minimum energy state of the conduction band gap, in the Brillouin zone, shown in Figure  2.6. 

 
Figure  2.6 - A schematic model illustrating the difference between [A] an indirect band gap showing the 

electron cannot transfer from the valence band to the minimal energy conduction band without changing its 
momentum and [B] a direct band gap semiconductor material  

Cadmium telluride has a direct band gap; therefore the photons are absorbed within 2 µm, 

whereas an indirect band gap material such as silicon will need a much thicker width of 

approximately 200 µm to absorb all the radiation. Therefore direct band gap materials if they 

have a band gap close to the photon energy will be good photovoltaic materials; hence 

cadmium telluride, which has a band gap of 1.45 eV is close to the optimum for electron hole 

pair generation. Every photon which is absorbed and possesses energy higher than the band 

gap will cause the generation of one free electron and one free hole. To be able to create a 

voltage and a current to do external work the electron-hole pair must separate first and then 
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recombine. An electric field is generated due to the build-up of charge on either side of the p-

n junction; this favours the diffusion of electrons to the n-type side. The electrons generated 

at the n-type material which fall into the electron field will be forced ‘’downhill’’ across the 

p-n junction interface show in Figure  2.7.   

 
Figure  2.7– A schematic model of a p-n junction showing the influence of an electric field during charge 

separation26 

The hole generated will interact with the electric field and be forced into the p-type material. 

This means when the photon energy is absorbed, holes are influenced to the p-type material 

and electrons are encouraged to go the opposite way to the n-type material, causing them to 

separate. This movement caused by the electric field within the depleted zone is called drift; 

all these charge carriers contribute to the current generated. There are electron-hole pairs 

generated outside the junction, which are required to keep separated until they can travel to 

the junction. The time the electron hole pairs stay separated is called their lifetime. If they are 

close enough to travel to the junction within their lifetime, the electron-hole pair will 

contribute to the charge generated. The time they spend in their mobile state depends on the 

material. Whether the band gap is direct or indirect will influence the lifetime of the electron 

hole pair. Lifetime can also be effected by defects in the material, such as dislocations and 

impurities. Direct band gap materials inherently have a shorter carrier lifetime, however their 

absorption rate is much higher than the indirect materials, and therefore the absorber layer 

can be thinner (2 µm for cadmium telluride) and still have total absorption of the visible 

spectrum. The surface of the absorbing layer is the area where most of the charge carriers will 

be generated and it is important that the surface properties minimise the loss of free carriers.  

2.3 Electrical Characteristics of Solar Cells 

When a solar cell is not illuminated then it will act like a diode. A solar cell is very similar to 

a diode except it is composed of energy absorbing material and has a large area to collect the 

electromagnetic radiation (photons). Another main characteristic of a solar cell is that the 

junction is very close to the surface, in order to allow as many photons as possible to 
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penetrate through. As a solar cell has similar properties as a diode the current relationship of 

a solar cell can be expressed as: 

𝐼 = 𝐼𝑆[𝑒
𝑞𝑞
𝑛𝑞𝑇 − 1] 

where I is the cell current, 𝐼𝑆 is the reverse saturation current, V is the voltage across the cell, 

q is the electronic charge, n is the ideality factor, 𝑉𝑇 is the thermal voltage. 

The main performance characteristics of a solar cell are the short circuit current density Isc, 

open circuit voltage Voc, its fill factor FF and efficiency η. The cell reaches its maximum 

operating point at the Maximum Power Point (MPP), which takes place at VMPP and IM, this 

point is shown in Figure  2.8. 

 

 

𝐹𝐹 =  𝑃𝑀
𝑞𝑉𝑉 𝑋 𝐼𝐼𝑉

        𝐼 = 𝐼𝐿 − 𝐼𝐷 −  𝐼𝑆𝑆 

 

Figure  2.8- A model IV graph to illustrate the point of maximum power and a schematic model of the equivalent 
solar cell showing the electrical components involved 

The fill factor (FF) is described as the ratio of power available at the MPP against the open 

circuit voltage (Voc) and the short circuit current (Isc). In Figure 2.8 and the equation above, I 

is the output current, IL is the photo-generated current, ID is the diode current, Ish is the shunt 

current.  

Voc is defined as the open circuit voltage. This is the voltage measured across the cell 

terminals with an open circuit and I = 0.  

𝑉𝑂𝐶 =  
𝑘𝑘
𝑞

ln(
𝐼𝐿
𝐼0

+ 1) 

Isc is defined as the closed circuit current or short circuit current, IL is actual load which is: 
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𝐼𝑆𝐶 =  𝐼𝐿 

The efficiency of the cell η is the amount of electromagnetic radiation (photons) converted to 

electrical power, calculated as: 

𝜂 =
𝑃𝑉𝑜𝑜
𝑃𝑖𝑛

=
𝐹𝐹 𝑉𝑂𝐶  𝐼𝑆𝐶

𝑃𝑖𝑛
 

An alternative more accurate method of measuring the performance of a solar cell is by 

measuring the quantum efficiency (Q.E.). This means viewing the spectral response of the 

cell by measuring the efficiency over a range of wavelengths. Quantum efficiency is the 

measure of probability that a photon of a given wavelength will cause an electron to be 

generated for the photocurrent of the cell. This shows the effectiveness of the cell to produce 

an electronic charge from electromagnetic radiation with varying wavelengths. 

For a given wavelength (λ):  

𝑄.𝐸. (𝜆) =  
1
𝑞

 
ℎ𝑐
𝜆

 
𝐼𝑆𝐶(𝜆)
𝑃(𝜆)

 

λ is the electromagnetic wavelength, q is the unit charge, h is Plank’s constant, c is the speed 

of light, ISC(λ) is the short circuit current and P(λ) is the incident light power. 

2.4 Material Characteristics of a Cadmium Telluride Solar Cell 

Thin film solar cells are mainly composed of polycrystalline materials which often have 

randomly orientated grains, but can have preferred grain orientation depending on the 

manufacture route. In efficient commercially produced cadmium telluride cells the average 

grain size is of the order of several microns18. However in quantum mechanical terms the 

grain size is very large and therefore the band structure and absorption coefficient can be 

modelled similar to that of a single crystal material. The main effects of grain boundaries are 

on the transport and recombination properties of the semiconductor, however the cadmium 

sulphide/cadmium telluride interface and inter-diffusion at this interfaces also plays a large 

role. Grain boundaries produce trap states in the band gap due to the defects in and around the 

boundaries, due to the difference in crystal orientations between the adjacent grains. These 

traps can be seen as a “sheet” of charge impurities which pull the carriers from the areas 

around the boundary. Therefore in the n-type material the traps cause the surrounding 

electrons to move into the trap and this area becomes negatively charged, with the 
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surrounding areas becoming positively charged due to the depletion of electrons. This then 

causes an electrostatic force to build up a potential barrier, which in turn causes reduced 

majority carrier migration across this region. This causes band bending and results in the 

charge carriers moving to the grain boundaries where they will recombine. In the p-type 

material the holes will be drawn towards the traps at the grain boundaries and there will be a 

negative region around the boundaries and the boundary itself will be positively charged. 

Figure  2.9 shows the electric field formed by the build-up of holes at the grain boundary, 

resulting in the bending of the energy levels.  

 
Figure  2.9– A schematic model illustrating band bending showing the electric field and band gap profile at a 

grain boundary 

2.5 Cadmium Telluride Material Properties 

Cadmium telluride is a semiconducting material with a band gap of 1.44 eV which almost 

perfectly matches the photo conversion efficiency shown in Figure  2.10. As cadmium 

telluride has a direct band gap, complete absorption of visible light occurs within 2 µm of the 

material19. The maximum recorded laboratory efficiency of cadmium telluride produced is 

now over 20% for a small area device, although modular efficiencies are inherently lower13. 

 
 
 

Figure  2.10 - A graph showing the Shockley-Queisser theoretical maximum efficiencies for cadmium telluride. 
Adapted from20 
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Band Gap CdTe  1.44eV 

Theoretical max 𝐽𝑆𝐶   30.5 mA/𝑐𝑐2 

CdS/CdTe Maximum potential  1.1 V 

Theoretical 𝑉𝑂𝐶  1 V 

Theoretical  Maximum efficiency  ~30% 
Table  2.1 – A summary of the photovoltaic properties of cadmium 21,22 

Table  2.1 shows the properties of cadmium telluride semiconductor material; this shows that 

the efficiency can be almost doubled to the theoretical maximum of 30% calculated from the 

Shockley-Queisser limit shown in Figure  2.10. This has generated considerable research 

momentum to better understand the cadmium sulphide/cadmium telluride cell in terms of 

microstructure so to further improve the efficiency of the cell13. 

2.6  Cadmium Telluride Cell Structure 

Cadmium telluride can be deposited in a superstrate or substrate configuration. For a 

superstrate structure the p-n junction is illuminated through the glass. Therefore the glass 

must be as transparent as possible illustrated in Figure  2.11. The alternative is a substrate 

structure which consists of depositing the p-n junction onto a back contact, which can be the 

substrate. Alternatively the back contact can be deposited directly onto the glass, and the p-n 

junction therefore onto the back contact, and the p-n junction is illuminated directly.  

 
Figure  2.11 – A schematic model of a cadmium telluride cell structure in the superstrate and substrate 

configuration 

There is a large effect on the cell between the two configurations as there are different 

interfaces to consider. The superstrate configuration has been shown to give the best 

efficiencies. The glass used in the superstrate configuration is usually a few millimetres thick 

and as transparent as possible to allow as much light through so there is a trade-off between 

the strength of the glass and how transparent the glass is, as the thinner the glass, the more 
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light will be allowed to pass to the absorbing semiconductor. The transparent conducting 

oxide (TCO) is usually fluorine doped tin oxide (FTO) and this has a thickness of 

approximately 300 nm. FTO is used as it is very transparent over the visible spectrum and 

offers a low sheet resistance. It also forms a good Ohmic contact with the cadmium sulphide 

layer as it has an electron affinity below 4.5 eV and therefore results in good band alignment. 

Another commonly used material is indium doped tin oxide, which also possesses similar 

desirable properties. The cadmium sulphide n-type layer is often referred to as a window 

layer or buffer layer. Its thickness is minimised to let as much light pass through to the next 

layer, which is the absorbing layer, as possible. However the cadmium sulphide must be 

sufficiently thick that there is no possibility that the TCO comes into contact with the 

cadmium telluride layer. The TCO can often penetrate through the cadmium sulphide as it 

usually has a slightly rough surface. The cadmium telluride layer is the p-type material and 2 

µm is the optimum thickness, as it is the minimum thickness where a large majority of the 

photons which enter are absorbed. 

Irradiation of a cadmium sulphide/cadmium telluride cell is made more complicated due it 

being a layered device; therefore at each interface some of the incoming photons are reflected 

as shown in Figure  2.12. 

 
Figure  2.12– A schematic model of a cadmium telluride cell showing the interactions of light 

The transparent conducting oxide (TCO) is the front contact; this layer allows light to pass 

through as well as being electrically conducting and can therefore collect the charge. An 

intrinsic layer of tin oxide can be deposited between the fluorine doped tin oxide and the 

cadmium sulphide layer, to prevent possible shunting (due to any pin holes in the cadmium 

sulphide layer). This keeps the cadmium telluride from forming an electrical contact with the 

conducting oxide as the buffer layer is highly resistive. 

The cadmium telluride layer is the p-type absorber layer of the solar cell; it is also the 
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thickest and most important as its properties will greatly reflect the overall properties of the 

cell. The cadmium telluride layer can be deposited using a wide range of methods. These 

include high and low temperature methods and in vacuum and in air deposition techniques. 

High temperature techniques include close space sublimation (CSS) or close space vapour 

transport, which are both carried out above 500ºC. Sputtering is a low temperature process 

and layers can be deposited at temperatures as low as 200ºC. There are, however some 

disadvantages to this technique. As larger grains are preferable since they yield a higher 

efficiency, a post deposition process must be carried out to coarsen the grains. The higher 

temperature deposition techniques generally have large grains ranging from 5 to 10 µm, 

whereas the lower deposition techniques range from 100 nm to 500 nm. This large difference 

in grain size is due to the difference in mobility of the atoms at the growth surface. 

2.7 Cadmium Sulphide – The Window Layer 

The cadmium sulphide window layer is an n-type semiconductor which has a high energy 

band gap of 2.4 eV and a low absorption coefficient to allow the maximum amount of light to 

pass to the absorbing cadmium telluride layer23. Cadmium sulphide and cadmium telluride 

form a heterojunction as cadmium telluride is not easily doped to form a homo-junction 

device. Its high absorption will not allow much light to reach the junction therefore the best 

option is to have a window layer and form a heterojunction. Cadmium sulphide has a 

stoichiometric form usually with a hexagonal wurtzite structure23. There are many ways in 

which to deposit a thin cadmium sulphide layer. One of the most commonly used methods is 

chemical bath deposition (CBD)24, however there are many other successful methods with 

other advantages such as vacuum evaporation25, sputtering26, close spaced sublimation 

(CSS)27, close space vapour transport (CSVT)28, spray pyrolysis29 and metal organic 

chemical vapour deposition30. When depositing cadmium sulphide it is imperative that an 

optimum thickness is deposited. This is so that it completely isolates the cadmium telluride 

from the TCO, but also allows as much light as possible through as cadmium sulphide is not 

as photo generating as the cadmium telluride layer. The cadmium sulphide layer tends to 

absorb the lower wavelength electro-magnetic radiation from 300 nm to 550 nm31. 

2.8 Back Contact Properties 

The metal back contact is an important part of the cell, as it collects the charge, and if this is 

done inefficiently then the overall cell properties will be diminished. The back contact must 

have some key properties in order to be a good charge collector. The metal contact must form 
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an Ohmic contact with the cadmium telluride layer shown in Figure  2.13, therefore it needs a 

work function over 5.7 eV or a Schottky barrier will be created and this will cause a poor 

charge collecting contact.  

 

Figure  2.13 – Illustration to show the band energies at the cadmium telluride/metal interface before and after 
contact 

To prevent the formation of a Schottky barrier formation the cadmium telluride back surface 

is highly p doped using a chemical etch (usually bromine33-34) also a buffer layer which has a 

high carrier concentration is deposited. This causes the contact barrier to be lowered and 

therefore causes a quasi-Ohmic contact illustrated in Figure  2.14.    

 
Figure  2.14 – Illustration of a Schottky barrier and a tunnelling contact band diagram 

The diffusion of the metal contact is often an issue when using metals which rapidly diffuse 

to the cadmium sulphide/cadmium telluride interface as these often accumulate and diminish 

the cells electrical properties, and therefore its overall performance. Metals which are known 

for this include copper, silver, aluminium and nickel. Metals which are known to have a good 

Ohmic contact and do not diffuse to the interfaces are molybdenum and gold19.  

A good cadmium telluride cell provides a voltage of approximately 850 mV19; therefore each 

module must be divided into smaller cells in order to increase the total voltage. This is carried 
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out by a series of interconnects which cut the cell up and connect each smaller cell up in 

series. This is a very precise operation as to connect the cells in series the back contact of one 

cell must be connected to the TCO of the cell parallel to it34. 

2.9 Approaches to Increase Device Efficiencies  

The transparent conducting oxide (TCO) can be made from a range of materials. The two 

most common are fluorine doped tin oxide (FTO) and indium doped tin oxide (ITO), 

however there are many others which have been used with success.  

Novel materials have been used in order to reach higher efficiencies although these are not 

commercially available. It has proved to be somewhat successful using cadmium stannate 

𝑆𝑆𝐶2𝑆𝑆𝑆𝑆4 (CTO) as the TCO layer19. Transmittance measurements were taken of CTO and 

commercially available FTO for the same resistivity; these results clearly show that the CTO 

is more transparent than the FTO across most of the wavelengths. High resolution TEM was 

used to view any deformations such as twins or dislocations, however the CTO showed a 

high degree of perfection; whereas the commercial FTO has a high density of twins and 

dislocations. The equivalent transmittance comparing CTO to commercial FTO is shown in 

Figure  2.15.  

 
Figure  2.15 – Transmittance and absorbance spectra for CTO and FTO showing the variation in transmittance 

with wavelength19 

A tin oxide buffer layer is often implemented to prevent shorting between the TCO and 

cadmium telluride layers, which is usually composed of un-doped tin oxide35 as this layer is 

highly resistive. Novel materials have also proved successful for this application, such 

as 𝑍𝑆𝑆𝑆𝑆𝑆𝑥. CTO/ZTO/CdS/CdTe polycrystalline thin-film solar cell was produced by NREL 

(National Renewable Energy Laboratory, USA) with a confirmed total-area efficiency of 
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16.5%, Voc of 845.0 mV, Jsc of 25.88 mA/cm² and fill factor of 75.51% on an area of 1.032 

cm² 19. 

2.10 Microstructural Characterization of Cadmium Telluride Solar Cells 

The simplest way to characterize the device is to take one layer at a time and observe the 

optimum properties and characteristics of the layer according to the literature and try to 

mirror some of these properties.  

With relation to the substrate the most transparent material should be used. This is usually 

soda-lime glass, as it is commercially available. The substrate has little effect on the 

morphology of the rest of the cell and therefore is not usually characterized.  

The cadmium sulphide layer is generally 100 nm thick35. It has been shown that the 

hexagonal phase is  preferred in high efficiency cells36. As the layer is very thin, TEM is the 

main method of characterizing these layers37 but SEM is used for observing the surface 

structure38. TEM diffraction is also used to determine the crystal structure39 and high 

resolution EDX through a cross section to observe inter-diffusion at interfaces40. The 

cadmium telluride layer is much thicker than the cadmium sulphide layer and therefore a 

common technique to view its morphology is by fracture cross section SEM41. This is a fast 

method of getting a cross sectional image without extensive sample preparation. XRD is 

commonly used to analyse the cadmium telluride layers orientation, crystal size, stress and 

lattice spacing42.  

To measure the performance of the cell, the current – voltage (J-V) curve can be drawn, or 

the external quantum efficiency (EQE) can be calculated, which is the most accurate and 

detailed method to check the overall performance of the cell43.  

2.11 The Cadmium Chloride Treatment 

To produce efficient cadmium telluride solar cells, the deposited thin films in most cases are 

treated by applying cadmium chloride and annealing simultaneously17,40,44–51. The exact 

effects the treatment has on the thin films and reasons why it is required to produce devices 

with good efficiencies (>10%) is still much debated. The post deposition treatment is usually 

carried out to both high and low temperature deposited layers46; however the treatment has a 

different effect on each of the layers45. Cadmium chloride is the ‘catalyst’ of the treatment, in 

the high temperature layers52; the cadmium chloride reduces the structural defects and affects 

the grain boundaries19,38. In the layers with the smaller grains the cadmium chloride causes 
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re-crystallization resulting in larger crystal size17,19,32,40,44,46–49,52–54 although crystal texture is 

lower after the treatment33,46,55. The cadmium chloride treatment is an annealing treatment 

and usually takes place around 400˚C56, this treatment can also be carried out in vacuo or in 

air32, this treatment can increase the efficiency in most cases dramatically18,48,51,57,58. This is 

due to the improvement of the structural quality by a reduction in stacking faults and misfit 

dislocations34,37,38,59, which in turn improves the electronic characteristics of the cadmium 

telluride/cadmium sulphide layers. This is carried out in the recovery stage of 

recrystallization. CdS𝑥 𝑘𝑒1−𝑥 will form at the junction reducing the lattice mismatch between 

the cadmium telluride and the cadmium sulphide layers37,60,61, which is important to improve 

the electrical properties of the junction. The treatment provides a flux which reduces the grain 

boundary atomic diffusion barrier60. This results in grain coarsening; also increasing the 

inter-diffusion at the cadmium telluride/cadmium sulphide junction reducing lattice 

mismatch37. The cadmium chloride treatment is a post deposition treatment which therefore 

adds an extra processing step, therefore to treat the cadmium telluride/cadmium sulphide cell 

in-situ would be beneficial in reducing time and cost. The reaction between the cadmium 

chloride and the cadmium telluride is as follows46,59,62,63: 

                                   𝑆𝑆𝐶𝑘𝑒(𝐼) + 𝑆𝑆𝐶𝑆𝑆𝐶2(𝐼) +  𝑆2(𝑔) ⇔ 𝑘𝑒𝑆𝑆𝐶2(𝑔) + 2𝑆𝑆𝐶𝑆(𝑔)  

2.12 Stresses and Grain Size in Cadmium Telluride Films 

In physical vapour deposition and sputtered devices, the grains are smaller than the higher 

temperature techniques usually with a grain size of ~0.3 µm61 and 0.5 µm 

respectively[49,65]. Recrystallization and grain growth are notable changes which occur 

during the process, so that grains can grow to over a micron in diameter after the cadmium 

chloride treatment. A comparatively large grain size over 1 µm is typical in close spaced 

sublimated films22 and often little or no changes can be observed regarding recrystallization 

or grain growth at higher temperature depositions44. 

Stress reduction in cadmium telluride thin films has been observed in low temperature 

deposited films using XRD63. A reduction was observed after the cells was annealed at a 

temperature of 350°C reducing further when the temperature was raised to 400°C65. 

It has been found that although the treatment does not have an effect on the grain size, it is 

still used to improve device characteristics such as Voc and the fill factor66. Some evidence of 

small grain elimination was observed, and it is believed that the cadmium chloride treatment 

acts as a fluxing agent to increase the atomic mobility of cadmium and telluride atoms52. 



20 
 

2.13 Characterisation of Cadmium Chloride Treated Cells 

Extensive studies of the effect of cadmium chloride on the properties of cadmium telluride 

have been carried out; however there are some gaps in characterisation of the microstructure. 

Therefore the full mechanism of the recrystallization process during the treatment taking 

place in the cadmium telluride and its buffer layer is not yet known.  

TEM has been used in various ways to study crystallographic and elemental characteristics67, 

high resolution TEM has been carried out on the cadmium sulphide/cadmium telluride 

interface in order to study the difference in orientation and phase along with their Fourier 

transformations[39,69]. Energy filtered TEM has been used to view the concentration 

distribution of certain elements across grain boundaries and EDX used in conjunction with 

analytical TEM to produce elemental maps of samples40. Transmission spectra are often 

plotted to compare treated and untreated cells, as well as to see the change in optical band gap 

of the samples by plotting (αhν)2 vs. hν69 where α is and hv is the photon energy. 

Photoluminescence is traditionally used to study the actively radiative intrinsic and extrinsic 

electron hole defect levels within the band gap to study the defect structure and 

distribution34,70. High resolution TEM imaging has been used in conjunction with TEM 

diffraction to show the crystal orientation38. 

XRD is a commonly used technique for studying the effect of cadmium chloride on the bulk 

crystallographic properties of the sample52,54,59,71. It has also been used to see the change in 

stress levels in the layers by using the lattice spacing change as well as crystal size change55.  

AFM can be used to see the change in surface roughness of the samples, as well as showing 

the grain size on the top surface38. 

SIMS and Auger spectroscopy have been used to do depth profiling to view the change in 

concentration through the layers, therefore showing any inter-diffusion 53,59 to examine the 

change in performance properties the standard tests are current voltage curves and EQE 

measurements to give the device efficiency58.    

Studies have used EDX mapping in conjunction with TEM to show the diffusion of chlorine 

during the annealing treatment. It was shown that the chlorine diffused along the grain 

boundaries as there was higher concentrations there, with EFTEM to verify this40. 

Several electrical effects have been detected as a result of the cadmium chloride process. 

These include interdiffusion between the cadmium telluride/cadmium sulphide interface, a 
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change in current transport mechanism, lower surface resistivity and an increase in the 

minority carrier lifetime22. 

Interdiffusion of cadmium sulphide into the cadmium telluride layer forms an interfacial layer 

which is believed to be responsible for lowering the interfacial defect density and hence 

improving the device efficiency22. It is suggested that this is because it reduces the 

recombination within the device72. A decrease in the diode ideality factor is proposed, 

whereby there is a reduction in the interface state density33. The interdiffusion has also been 

seen to causes a reduction in the cadmium sulphide layer thickness52.  

A change in the current transport mechanism is another effect from the activation process. 

Prior to treatment, the transport is by tunnelling/interface recombination whereas after it is 

dominated by junction recombination33.  

The cadmium chloride treatment effects on the resistance of the cadmium telluride have been 

shown to reduce the film resistance due to the addition of chlorine during the treatment. The 

series resistance of the film was also seen to decrease with an increase in annealing 

temperature58. This could be due to the reduction of defects which cause carriers sinks in the 

cadmium telluride grains73. It has been shown that series resistance increases when the cells 

are annealed above 400°C without cadmium chloride being present and above 450°C with 

cadmium chloride74. An improvement in spectral response was recorded during quantum 

efficiency measurements for a cadmium telluride film which had undergone a 400°C anneal74. 

Studies have shown no major changes in the structural properties of the close spaced 

sublimation cell after a cadmium chloride treatment44, but a significant increase in the 

minority carrier lifetime. The value increased dramatically after the cadmium chloride 

treatment was carried out at 400°C. The increase in carrier lifetime was attributed to the 

elimination of deep defect levels during the treatment54.  

2.14 Theory of Cadmium Chloride Heat Treatment to Date 

It is understood that cadmium chloride heat treatment causes the recrystallization of cadmium 

telluride and cadmium sulphide, however its mechanism is not clearly understood, although 

the highest efficiency cells have been produced with this treatment. Studies have given an 

insight into the physical affect and what happens precisely during the annealing treatment44; 

however this also will depend on the treatment process as well as the deposition technique, as 

the starting structure has an effect on the final structure. 
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It has been noted that during the recrystallization, grain size increases71, and a passivation of 

the grain boundaries occurs to allow inter-diffusion to occur more easily72. It has been shown 

that sulphur diffuses to the cadmium telluride/cadmium sulphide interface during the 

recrystallization as chlorine diffuses along the grain boundaries. A tellurium chloride phase is 

formed at the grain boundary in a gaseous phase40 which favours the growth of the cadmium 

telluride grains as it enhances the mobility of cadmium and tellurium atoms, which leads to a 

more random arrangement after recrystallization44. After the treatment the cadmium sulphide 

layer should have a homogeneous contact with the chlorine once it diffuses down the 

cadmium telluride boundaries40.  

2.15 Theory of Defects in Cadmium Telluride 

Cadmium telluride has been seen to exist as both zinc-blende cubic and hexagonal phases. It 

has been seen that due to the low energy difference between the two phases, they can both 

form within the same grain. This can only be the case when the atomic stacking sequence 

changes from AaBaCcAaBbCc (zinc blende) to AaBbAaBa (hexagonal). This change in 

atomic structure gives rise to a large density of stacking faults within the cadmium telluride 

grains37,77.  

Point defects are defects within a crystal lattice which affects the structure at a localised site. 

These can be intrinsic point defects or extrinsic. Intrinsic defects can occur in pure materials 

(no external atoms/ions needed). These are due to an atom missing in the lattice or an extra 

atom occupying an interstitial site in which an atom usually does not sit. Extrinsic point 

defects are due to external atoms which are impurities in the lattice, sitting in a location not 

usually occupied by atoms or displacing atoms from the lattice structure.  

Defects can often form at interfaces between two materials due to the change in atomic 

spacing, cadmium telluride and cadmium sulphide have a 10% lattice mismatch, which can 

induce stacking defects. 

Grain Boundaries are considered defects, high or low angle boundaries will affect the 

material properties, such as conductivity. High angle boundaries will give larger diffusion 

paths, promoting segregation or increase diffusion.  

Stacking Faults occur in cadmium telluride due to their low formation energy. These can be 

Extrinsic, intrinsic or twin boundaries shown in Figure 2.16. They occur when there is a 

change in the stacking sequence. For a cubic material a perfect stacking structure can be 
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written as AaBbCcAaBbCc…If an extrinsic stacking fault appears the stacking sequence will 

include an extra plane of atom: AaBbCc|C|AaBbCc. Intrinsic stacking faults occur when an 

atomic plane is missing from the sequence: AaBbC||AaBbCc.  Twin boundaries occur when 

either side of the twin boundary mirrors each other: AaBb|Cc|bBaA. 

A     Extrinsic Stacking Fault 

 

 

 

 

 

      Extra Plane                    

B     Intrinsic Stacking Fault  C    Twin Boundary  <111> 

Figure 2.16 – Schematics of defect types in cadmium telluride material 

A study has been carried out using cathodoluminescence (CL) to see the effect of defects 

within cadmium telluride. CL carried out in a SEM at 50 to 300 K, with electron beams from 

5 to 30 kV. CL was collected with a semi-parabolic mirror attached to an optical guide38,75. 

Looking at high temperature and low temperature deposition, the higher temperature cells 

showed larger grains (2-5 µm), due to higher surface mobility during deposition60. This 

improved the electrical properties, but recombination is still dominant and a high density of 

planar faults was observed as stacking faults and lamellar twins, with similar density75. After 

the cadmium chloride treatment the samples grain growth was observed to increase with 

annealing temperature38.  

2.16 Project Objectives 

The main objectives of this project are to evaluate a new DC magnetron sputtering deposition 

technique which promises an all-in-one cadmium telluride cell production route, and to fully 

understand the effects of the post deposition treatment on microstructure and electrical 

properties.  

To achieve these objectives Chapter 3 describes the experimental methodologies, Chapter 4 

focuses on characterisation of sputter depositions of cadmium telluride and cadmium 

sulphide, and the effects of the cadmium chloride treatment. The TCO layer will be studied in 

Chapter 5 as its morphology will highly influence the morphology following layer 

Plane Missing 
 Twin Boundary 
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depositions. The cadmium chloride treatment will be examined in Chapter 6 in detail on close 

spaced sublimated cells by comparing devices before and after the treatment. Chapter 7 will 

then systematically vary the treatment parameters to further develop the understanding of the 

cadmium chloride treatment to gain a better understanding of the mechanisms involved. 

Chapter 8 examines structural defects within the cadmium telluride grains using the novel 

technique of high resolution transmission back-scatter electron diffraction. Chapter 9 will 

examine cadmium magnesium telluride depositions on cadmium telluride cells to act as an 

electron reflector. Throughout the chapters thin films will be characterized using EDX, TEM, 

SEM, XRD, XPS, SIMS and other techniques which prove useful.  
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3.1 Introduction 

This investigation of cadmium telluride thin film solar cells incorporates depositing and 

processing thin film cadmium telluride and its constituting layers as well as characterising the 

microstructural, physical and chemical properties together with the cell performance 

properties. 

The layers investigated were deposited using a number of techniques including sputtering, 

closed space sublimation, chemical bath deposition and electro-deposition. Various 

experiments were carried out in this investigation so the depositions were performed under a 

range of conditions to better understand certain aspects of cadmium telluride thin film solar 

cells. A large part of this study is in optimisation of the cadmium chloride annealing 

treatment of the cadmium telluride/cadmium sulphide cell which was also carried out using 

different methods and parameters that are specified in this chapter. 

3.2 Processing Samples – Deposition Methods 

3.2.1 Magnetron Sputtered Solar Cells 

One of the main objectives of this project is to produce cadmium telluride solar cells in one 

in-line vacuum process. This means the cell will only be put in vacuum once, which will 

improve the efficiency of the manufacture in terms of both time and cost. Using magnetron 

sputtering for this application is novel and in this initial study simpler and more established 

deposition techniques were used for the other layers of the cell such as chemical bath 

deposition (CBD) for the cadmium sulphide layer. Only cadmium telluride was initially 

deposited via magnetron sputtering.  

The magnetron sputtering configuration used in this study was initially developed for wear 

resistant coatings by Teer76 and more recently for precision optical coatings64. The 

configuration links magnetic field lines between the magnetrons by reversing the polarity of 

adjacent magnetrons.  The magnetrons are also unbalanced to further intensify the field and 

increase the ion current density in the plasma.  Using this arrangement, the deposition volume 

in which the substrates are located is surrounded by linking magnetic field lines.  This traps 

the plasma region, prevents losses of ionizing electrons, and results in significant plasma 

enhancement.   The closed magnetic field system produces dense coatings due to the high ion 

CHAPTER 3. EXPERIMENTAL METHODOLOGIES 
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current density.   The deposition energy is determined by the induced voltage on the substrate 

carrier which is typically in the range 25 V to 50 V.  This combination of high ion current 

density and low ion energy produce ideal conditions for thin film growth.  

The rotating substrate holder is in the form of a vertical drum which is normally faceted to 

accept flat substrates as shown in Figure  3.1. This arrangement enables the creation of high 

ion current densities ~5 mA/cm2 and the revolving drum64, mounted on an insulator, is 

allowed to electrically float to the plasma potential.   This plasma does not require a substrate 

bias voltage to sustain high plasma densities.  The key advantage of the process is that no 

separate ion source, plasma source or microwave ion source is required. Nor is it necessary to 

partition the working vacuum chamber into deposition and reaction zones. This simplifies the 

system, reduces cost, and improves reliability. It also makes it economical to scale the 

technology to virtually any batch size.  Although the closed field configuration is used in this 

study within a batch system, the format can also be used in “in-line” or “roll to roll” 

configurations.  

 

 

 
 

Figure  3.1 – A photograph of the closed field magnetron sputtering system with positions for 4 linear 
magnetrons and a faceted drum-based substrate holder and corresponding illustration of the CFM 650 designed 

by Applied Multilayers (CFM650, SCT Inc). 

The system is also fitted with a rotating shutter to expose the substrates to the appropriate 

target with fine interface control. The shutter is also used to enable targets to be conditioned 

without exposure to the substrate. The system initially had four targets and for this study 

cadmium telluride, cadmium sulphide and indium doped tin oxide were used. The substrates 

Substrate – maximum size 20 cm x 20 cm  

Rotating drum 
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were either 1 mm soda lime glass or TEC glass from Pilkington (TEC7,8, 10 and 15), which 

had a transparent conducting oxide (TCO) previously deposited. The substrates were 

typically 5 cm x 5 cm in size and were cleaned with distilled water and then methanol and 

dried with nitrogen gas to remove any debris from the surface onto which the layers were 

deposited. Some substrates had cadmium sulphide previously deposited onto them using 

chemical bath deposition; these then had a cadmium telluride layer of varying thickness 

sputtered onto them.  

Configurations include: Pilkington TEC glass / chemical bath deposited cadmium sulphide / 

sputtered cadmium telluride, Pilkington TEC glass / sputtered cadmium sulphide / sputtered 

cadmium telluride and 1 mm soda lime glass / sputtered indium doped tin oxide / sputtered 

cadmium sulphide / sputtered cadmium telluride. The cadmium telluride was deposited as a 

dual layer in some samples by stopping the deposition and then restarting it. Some layers 

were slightly plasma etched by biasing the sample inside the sputter coater before the next 

layer was deposited. 

For the sputtered samples copper/gold back contacts were deposited using an Emitech 

k575XD Turbo sputter coater. Less than 5 nm of copper was deposited followed by 50 nm of 

gold which provided a back contact with sufficient conductivity.  

3.2.2 Closed Space Sublimated Solar Cells 

The thin film cadmium telluride cells that were deposited using close-spaced sublimation 

were fabricated at Colorado State University (CSU). They were deposited on NSG-Pilkington 

TEC10 fluorine doped tin oxide (FTO) coated on 3 mm soda lime glass in a superstrate 

configuration. The layers were deposited in an all in one vacuum process held  2 mm above 

graphite boats and the substrate was passed though different chambers at a vacuum of over 5 

Pa. The boats were heated to temperatures ranging from approximately 620ºC for cadmium 

sulphide to 550ºC for cadmium telluride and 430ºC for cadmium chloride, which then 

sublimed onto the inverted substrate. After all the cadmium sulphide and cadmium telluride 

layers were deposited respectively via close-spaced sublimation, a sample was then removed 

and not processed further. Another sample underwent a previously optimized cadmium 

chloride treatment (examined in Chapter 6). The treatment was carried out in vacuum 

following the layer deposition. Cadmium chloride was sublimated at a thickness of 3 µm and 

then the sample was heated for 8 minutes at 400ºC in a 2% oxygen atmosphere, causing the 

cadmium chloride layer to evaporate off. This was followed by a copper doping process by 
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sublimating copper chloride onto the cadmium telluride layer77. The efficiency of this cell 

was measured to be 11.8%; this is taken as a benchmark sample to which other treatment 

conditions and methods can be compared.  

 

 
Figure  3.2- a) A schematic diagram and b) photograph of the closed space sublimation system  

Figure  3.2 shows the close space sublimation system that was used, which is located at 

Colorado State University (CSU). Figure  3.2a shows how the glass substrate passes through 

different deposition stations under one vacuum system. The first is to clean the substrate 

before it moves to the cadmium sulphide area, then directly into the cadmium telluride 

station. A schematic of a station is shown in Figure  3.3. After this it moves onto the cadmium 

chloride area where it is also annealed. After this a back contacted is applied by spraying the 

electrode using a thin carbon in acrylic (Acheson EB 003) followed by about 50 µm of nickel 

in acrylic (Acheson electrodag 550).  

This system was used to deposit a range of samples, including the optimised sample with and 

without the cadmium chloride treatment. Cadmium chloride was sublimated so as to achieve 

2 µm thick layers. The devices were then annealed for times ranging from 2 s to 600 s at 

B) 

A) 
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400ºC in a 2% oxygen 98% nitrogen atmosphere causing the cadmium chloride layer to 

evaporate. Varying the time of the cadmium chloride treatment in a series of steps from 2 s 

through to 120 s which is regarded as the optimum time, was undertaken to examine how the 

cadmium telluride microstructure and electrical performance changes with treatment time. 

Samples over 120 s, treatment time are expected to be “over treated” as they have undergone 

a longer anneal time than the optimised sample.  

The system also allowed for a change in treatment temperature, so samples were treated 

either side of the optimum 400ºC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure  3.3 - A schematic diagram of a single graphite boat within the closed space sublimation deposition 
system 

3.2.3 Chemical Bath Deposition (CBD) of Cadmium Sulphide 

Chemical bath deposition (CBD) of cadmium sulphide is a fairly mature and a robust process 

and consequently high quality buffer layers with good electrical and optical properties can 

easily be deposited. This allows the cadmium telluride layer to be studied in isolation from 

the cadmium sulphide layer, which was always deposited using the standard process.  

3.2.4 Transparent Conducting Oxides 

The glass coated transparent conducting oxide was either bought from Pilkington or the TCO 

was sputtered in-house. There are a variety of transparent conducting oxides available from 

Pilkington; these are TEC7, TEC8 and TEC15, which are commonly used in photovoltaic 

applications. The main difference between the three types are the thickness, the grain size and 

the surface roughness. The TEC glass was obtained from Pilkington are fluorine doped tin 

oxide (FTO), the dimensions are 300 mm by 300 mm sheets with a glass thickness of 3 mm. 

Heater 

Graphite top plate 

Substrate 

 

Plasma 

Graphite Crucible  

Heater 

Vapour Feed 
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The sheets were scribed with a diamond tip blade and then fractured using rubber pliers. The 

TCO layers of the TEC7 and TEC8 are approximately 700 nm thick and the TEC15 is 

approximately 350 nm. 

3.2.5 Gold/Copper Back Contact 

The gold/copper back contact is sputtered using a vacuum sputter coater with two targets; 

therefore the copper and gold can be deposited in the same vacuum chamber. It is standard 

for only a few nanometres of copper to be deposited and after the copper, 50 – 100 nm of 

gold.  

3.3 Cadmium Chloride Treatment 

3.3.1 Solution Based Cadmium Chloride Treatment 

The first method to carry out the cadmium chloride treatment was using wet chemistry based 

techniques. This involved dissolving pure cadmium chloride in methanol and diluting it to a 

range of concentrations, from a saturated solution to 6% of the saturated solution. Once the 

different concentrations of cadmium chloride were formulated the cells were placed on a hot 

plate and the solution dropped onto the surface using a pipette. Then the hot plate was raised 

to a temperature of 420˚C and left for a time of 30 minutes. There are three main variables, 

the concentration of the cadmium chloride solution, the temperature of the hot plate and the 

hold time at the maximum temperature. There are also various ways that the cadmium 

chloride solution could be applied to the surface of the sample; the most simple was just 

dripping it on the surface of the sample before heating it. As the solution base was methanol 

the solution was seen to evaporate from the surface quickly and therefore on some treatment 

runs more solution was applied to the surface. Another method was immersing the sample 

completely in the solution and waiting five minutes for it to penetrate all the way through, 

then heating it.  

There was also some concern with the heating method as the hot plate heats from below 

though the glass, therefore a temperature gradient is expected.  

Safety was a significant issue as cadmium chloride is very toxic and harmful, therefore all 

work was carried out in a fume cupboard, and gloves and a face mask was used when 

handling anything that could come into contact with the cadmium chloride solution. To 

prevent any contamination in the laboratory, the fume cupboard and hot plate and all 
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equipment was only used for the treatment and all excess waste was disposed of via 

determined procedures. 

3.3.2 Vapour Based Cadmium Chloride Treatment 

Due to inadequacies with the liquid based techniques for the annealing based treatment a 

vapour based technique was carried out as it had many advantages over the liquid based 

treatment, mainly greater control over the processing conditions. 

Similar cadmium chloride treatment processes have been used by other research groups, 

[34,35,36]. The samples were washed with DI water then with isopropanol and dried with a 

nitrogen gun in order to remove contamination and residue on the surface which may prevent 

full contact of the cadmium chloride vapour on the surface of the cadmium telluride cell. The 

heat furnace used was a Lenton split tube furnace with independent temperature controllers 

for two zones meaning that the sample and source can be put at different temperatures. The 

layout is shown in Figure  3.4 . 

Figure  3.4- A schematic diagram of the tube for cadmium chloride vapour transport treatment 

The sample was placed in one zone of the tube and cadmium chloride pellets were put in a 

crucible and placed in the other zone. The crucible was weighed before and after the 

treatment. The heating method was programmed to a Step-Dwell–Reset code meaning the 

furnace tried to achieve the set target temperature as quickly as possible then stayed at the 

target temperature for the set time. Once the treatment was over the substrate was allowed to 

cool to room temperature. The tube was put under vacuum and nitrogen was used as a carrier 

gas which carried the cadmium chloride vapour over the cadmium telluride sample. After the 

treatment the sample was etched by dipping it in a 0.1% bromine-methanol solution to 

remove any oxides formed during the annealing, and then a copper/gold back contact was 

deposited using an Emitech k575XD Turbo sputter coater. Less than 10 nm of copper was 

deposited followed by 400 nm of gold. Once this was done the sample was heated in a 
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furnace in air at 150oC for 30 minutes. The temperature of the substrate was varied in the 

300ºC to 500ºC range and the temperature of the cadmium chloride pellets were varied in the 

400ºC to 600ºC range. 

3.3.3 Cadmium Chloride Deposition via Evaporation 

Cadmium chloride was evaporated using a bell jar, at various thicknesses onto untreated close 

spaced sublimated samples which had not previously undergone any post deposition 

treatments. The sample was then removed and annealed in air either on a hot plate or in an 

oven for different times and temperatures.  

3.4 Annealing Treatment without Cadmium Chloride 

Close spaced sublimated samples were annealed post deposition at various temperatures and 

times to observe any recrystallization or any change in microstructural defects in the 

cadmium telluride layer. The samples were heated in a standard laboratory oven which was 

preheated to the desired temperature and then cooled to room temperature by removing the 

sample and placing it on a ceramic brick.  

3.5 Characterization 

3.5.1 Current-Voltage Measurements (J-V) 

To measure the solar cell’s performance properties, current-voltage measurements were taken 

as well as external quantum efficiency (EQE) readings. This was done to the complete cells 

which had both front and back contacts. Usually each stack had a large number of individual 

contacts of a few millimetres square in order to generate a large number of readings from 

only one sample. There are many advantages to this as on a 5 cm x 5 cm stack, 30 individual 

cells can be produced; this will give a better indication of the average efficiencies. For an I-V 

curve measurement the sample is placed in a holder which is illuminated by a xenon short-arc 

lamp at standard test conditions STC (AM 1.5G, 1000 W/m², 25˚C). The current-voltage 

measurements give enough information to solve the equation: 

𝐼 = 𝐼𝑂[𝑒
𝑞𝑞
𝑛𝑞𝑇 − 1] 

Where: I = output current, 𝐼𝑂 = dark saturation current, q = elementary charge, V=voltage, n 

= diode ideality factor,  𝑉𝑇 = thermal voltage. 

However this is the ideal case and in reality there are further considerations. Therefore the 

external quantum efficiency (EQE) will be measured to see the reaction of the cell with 
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respect to the wavelength of the incoming photons.  

3.5.2 Spectrophotometer Transmission Measurements 

A Varian Cary 5000 spectrophotometer was used to measure the optical transmission in the 

range 175 – 3300 nm through the cadmium sulphide and the transparent conducting oxide 

(TCO).  

3.6 Microstructural Characterization 

3.6.1 Scanning Electron Microscopy 

3.6.1.1 Preparing samples for SEM 

Sample preparation is very important if good results are to be recorded. This means the 

sample must be fairly flat and the samples must be conductive. As the surface is imaged, the 

samples must be clean. Isopropanol was used to clean the sample and then nitrogen was used 

to dry it to minimise surface residuals. The size of the samples is also limited due to the size 

of the chamber; the ideal size is 1 cm² as many samples can be placed into the SEM at one 

time. The samples were cut with a glass cutter and mounted onto SEM aluminium stubs with 

silver electrodag. As cadmium telluride is not conductive enough to fully dissipate the 

incoming primary electrons, there was a charge build up on the surface and the images 

collected were distorted. To overcome this charge an extremely thin layer of palladium-gold 

was deposited onto the surface using an Emitech SC7640 sputter coater for 60 seconds at a 

current of 20 mA. This allowed the charge to dissipate without affecting the surface 

morphology of the sample. This allowed for clear undistorted micrographs to be taken of the 

surface of the cadmium telluride, cadmium sulphide or the TCOs.  

3.6.1.2 Field Emission Gun-Scanning Electron Microscope 

A Leo 1530VP Field Emission Gun Scanning Electron Microscope (FEG-SEM) was used for 

microstructural analysis of the cadmium telluride solar cell stacks, as well as the individual 

layers which make up a cell. The FEG-SEM was generally used to look at the surface of the 

depositions using an in-lens detector, which requires a short working distance as it detects 

low energy secondary electrons coming from the surface of the sample. A high acceleration 

voltage of 20 kV with an aperture of 30 µm was used. Energy Dispersive X-ray (EDX) 

analysis was also carried out in the FEG-SEM using a 20 kV acceleration voltage and 60 µm 

aperture to give both qualitative and qualitative chemical analysis.  
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3.6.1.3 Fracture Cross Section (SEM) 

Taking SEM fracture cross sections is a fast and easy technique which was regularly used to 

view the microstructure of the treated cells in cross-section. The samples were fractured using 

a glass cutter and mounted on SEM stubs at 90º. However it is hard to quantify the grain size 

from the SEM image as they are not clearly shown due to topography in the fracture section. 

Therefore TEM is a much better technique for grain size measurements.  

3.6.2 TEM Sample Preparation using a Focussed Ion Beam 

In TEM the quality of samples prepared is normally reflected in the quality and integrity of 

the results obtained. High quality TEM samples were prepared using an FEI Nova 600 

Nanolab dual-beam system where, a standard insitu liftout procedure was used.  

 
 

  

   
Figure  3.5– SEM and FIB induced SE micrographs taken at various stages of the in-situ TEM lift-out procedure 

A) shows a SEM image of the platinum layer deposited onto the surface; B) show the trench formation; C) 
shows the sample after the cleaning cross section; D) shows the omniprobe attached to the TEM sample with the 

U-shape cut; E) shows the TEM sample attached to the probe and the copper grid; F) shows the final thinned 
sample.  

This involved depositing a layer of platinum onto the sample surface above the area to be 

analysed, using the ion beam with a current of 0.5 nA. A typical area of 20 µm by 2 µm was 

covered, with a thickness of 2 µm. An SEM image showing the sample after it is deposited is 

shown in Figure  3.5a. If the top 50 nm of the sample is required for analysis then a layer of 

electron beam deposited platinum (using a voltage of 5 kV and current of 1.1 nA) was 

deposited before the ion beam platinum. Electron beam platinum has the advantage that it 

 5 µm   5 µm  

 5 µm   5 µm   5 µm  
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does not implant ions into the sample surface, however the deposition of platinum with the 

electron beam is too slow to use for the whole platinum layer thickness. Two staircase 

trenches are then cut either side of the platinum layer which are approximately 25 µm x 15 

µm, the depth depends on the sample etching rate, but it is usually of the order of less than 10 

µm using an ion beam current of 20 nA shown in Figure  3.5b. After the formation of the 

trenches a few micrometers from the platinum, a cleaning cross section is used at the lower 

current of 7 nA to clean up to the platinum, leaving a sample of approximately 1 micrometer 

thick shown in Figure  3.5c. Once this is done the sample is tilted to 7º and a U-shaped cut is 

formed leaving a small uncut part to support the sample shown in Figure  3.5d. The 

omniprobe is then inserted and welded onto the platinum protective layer, with platinum at 50 

pA shown in Figure  3.5d and the final support of the TEM sample to the bulk sample is 

disconnected using 1 nA beam. Once this is done the sample should be free and lifted out on 

the needle by lowering the stage. The next step is to attach the TEM sample to a copper grid 

and detach it from the omniprobe, using a platinum weld at 50 pA and ion beam at 1 nA 

respectively shown in Figure  3.5e.  

Once the sample is attached to the copper grid it can be further thinned down to 

approximately 100 nm as shown in Figure  3.5f. This is achieved by milling the sample with 

the ion beam starting at 1 nA with the sample tilted 0.7º either side of 52º. The sample is 

milled until it is 500 nm thick. The ion beam current is then reduced to 0.5 nA and the end 10 

µm of the sample is milled each side until the sample is 200 nm thick. The current is further 

reduced to 0.3 nA and the end 5 µm is thinned to 150 nm. Finally the last 5 µm of the sample 

is  thinned using a 100 pA current until the thickness is ~100 nm. 

3.6.3 Transmission Electron Microscopy (TEM) 

TEM was carried out using a Jeol JEM 2000FX equipped with an Oxford Instruments 30 

mm2 EDX detector and a Gatan Erlangshen ES500W digital camera above the phosphor 

screen. The TEM provides a more clear view of the grain structure than most other electron 

based techniques as the electrons are passing through the sample and being detected the other 

side giving a small interaction volume. As the sample is ultra-thin EDX can also be carried at 

a higher resolution; therefore the detection of any inter-diffusion between layers is possible. 

The TEM samples dimensions are relatively small in comparison to SEM samples. A normal 

size would be 5 µm - 10 µm in length. This means that the location where the sample must be 
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extracted from must be chosen with care. If a sample is not homogenous several TEM 

samples must be produced at different locations to be able to see any variation.  

3.6.3.1 Stacking Fault Characterization in TEM 

  
Figure  3.6 – Bright field TEM micrographs showing the effect of orientation on the visibility of stacking faults, 

[a] shows the grain not at a low order zone axis [b] shows the same grain tilted to the [011] zone axis 
(convergent beam diffraction patterns for these orientations are inset). 

The stacking fault density was measured by counting how many stacking faults intersect a 1 

micron line orthogonal to the stacking faults. For each sample 10 grains were measured and 

an average calculated. As the visibility of stacking faults changes with grain orientation, a 

double tilt holder was used in the TEM. The grain was tilted to the [110] zone axis prior to 

analysis by moving the Kikuchi pattern into the centre as shown in Figure  3.6a. In 

Figure  3.6a the grain shows almost no signs of stacking faults and when the Kikuchi pattern 

is collected from the grain, no zone axis was in the centre. The sample was then tilted until 

the [110] axis is centred.  The electron beam is then directed along the (111) plane which 

makes the stacking faults visible as shown in Figure  3.6b. This exercise was performed for 

each grain to measure stacking fault density.  

3.6.3.2 High Resolution Transmission Electron Microscopy (HRTEM) 

High Resolution Transmission Electron Microscopy (HRTEM) was also carried out using a 

FEI Tecnai F20 (S)TEM. When the samples were prepared they underwent an extra step, a 

low voltage FIB clean-up of each side of the sample. The voltage of the ion beam was 

reduced to 5 kV and the current to 70 pA and the sample was tilted 2º each side of 52º (in-

line with ion beam) and milled with the ion beam for 2 minutes. This reduces the amount of 

ion implantation and beam damage for better lattice imaging. HRTEM can be a useful 

technique for characterizing defects within the lattice of cadmium telluride and cadmium 

sulphide grains. Providing the sample is prepared well and the orientation of the sample is at 

    0.5 µm   .  
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the correct zone axis, a resolution of 0.2 nm can be obtained. This gives atomic resolution 

images so that stacking sequences can be interpreted and defects characterised as twin 

boundaries, intrinsic stacking faults or extrinsic stacking faults. Lattice spacing can be 

measured from the atomic resolution images using software to characterise the image. 

3.6.3.3 Scanning Transmission Electron Microscopy (STEM) 

Scanning Transmission Electron Microscopy (STEM) was carried out in a FEI Tecnai F20 

S/TEM equipped with Gatan Bright and Dark field STEM detectors, Fischione High Angle 

Annular Dark Field (HAADF) STEM detector, Gatan Enfina Electron Energy Loss 

Spectrometer and an Oxford Instruments X-Max 80mm2 windowless energy-dispersive 

spectrometer (EDX). STEM imaging was performed at 200 kV with a camera length of 100 

mm and condenser aperture size of 70 µm using a spot size of 7. HAADF images were 

collected in conjunction with STEM bright field images. HAADF imaging gives a unique 

perspective as the higher the atomic weight of the material the more the electrons passing 

through the sample will be detected. Therefore the amount of signal collected will depend on 

the atomic weights of the sample, giving atomic weight contrast in the image. 

3.6.3.4 Energy Dispersive X-ray (EDX) in Scanning Transmission Electron Microscopy 

(STEM) 

The (S)TEM system is equipped with a Silicon Drift Detector (SDD) allowing high spatial 

resolution Energy Dispersive X-ray (EDX) measurements and chemical mapping. This was 

largely used for mapping diffusion of elements such as chlorine and sulphur in the cadmium 

telluride matrix. Point analysis is also useful as quantification of elements can be acquired 

with a sensitivity of ~0.5 at% for light elements such as chlorine. EDX spectra were collected 

for 120 seconds. Maps were collected using the largest condenser aperture (150 µm) with the 

largest spot size. This allowed for a high number of counts. The dead time was controlled by 

changing the process time; each frame took approximately 120 seconds to collect. Maps were 

collected from 10 minutes up to 1 hour with no discernible sample drift. 

3.6.4 X-Ray Diffraction (XRD) 

Bruker D2 and D8 XRD spectrometers were used to carry out all XRD measurements. XRD 

is a powerful non-destructive technique for the characterisation of crystalline samples. It is 

used to find information on crystallographic structures, phases, crystallinity, residual stress, 

orientations and also the average grain size can be determined from the data produced. Both 

the XRD systems used copper monochromatic X-rays with a 1.542 Å wavelength at 30 kV/10 
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mA. Typical scans were carried out from 20º - 90º using a dwell time of 0.1 second with a 

step size of 0.02º. High resolution scans of some peaks were carried out using a longer dwell 

time of up to 1 second. The samples are require to be flat and cut to a size of 2 cm x 2 cm. 

There are some constraints that there is no depth information and signal can come from up to 

2 µm into the sample, causing some issues for multi-layered devices. XRD also has a 

minimum spot size of 50 µm. A Bruker D2 was also used for longer scans of thinner films 

due to the faster collection rate than the Bruker D8.  

3.6.5 Electron Backscatter Diffraction (EBSD) 

Electron Backscatter Diffraction (EBSD) is a microstructural crystallographic technique 

which can be used to map grain orientation as well as phase identification, grain boundary 

angle information, grain defect information and grain size measurements. EBSD was carried 

out in the dual beam FEI Nova 600 nanolab using an ultra-high speed Hikari EBSD camera. 

The sample was tilted to 70º and a background signal subtracted to improve the Kikuchi 

patterns. An electron beam voltage of 20 kV was used with a nominal current of 24 nA. The 

collection rate of the Kikuchi patterns was 46 frames per second due to the slow scan speed 

required due to the small grain size of the material, which were indexed against a 

cubic/hexagonal cadmium telluride structure file. EBSD requires a very smooth surface for 

effective microstructural mapping. Therefore to analyse the surface of the cadmium telluride 

directly, a section of the surface was smoothed with a FIB using a beam current of 1 nA. The 

result of this sample preparation provides an adequately smooth surface for EBSD 

measurements to be obtained as shown in Figure  3.7. 

 
Figure  3.7- SEM image showing the area of analysis of treated cadmium telluride sample after being polished 

by a FIB. 
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3.6.6 Transmission Electron Backscatter Diffraction (T-EBSD) 

 

Figure  3.8- A schematic diagram of Transmission Electron Backscatter Diffraction hardware and sample 
position  

The resolution of Electron Backscatter Diffraction can be improved from tens of 

nanometres[20,21] to around 5 nanometres if an electron transparent film is produced and 

positioned at 20º to the horizontal. Kikuchi patterns can be produced and collected from 

transmitted electrons from the underside of the sample. This setup is shown in Figure  3.8. An 

electron beam voltage of 30 kV was used and a current of 6.9 nA. This increases the spatial 

resolution of EBSD which is advantageous for this study due to the small grain size and 

defects such as twins present in some of the samples.  

3.6.7 X-Ray Photoelectron Spectroscopy (XPS) 

A VG ESCALAB Mk 1 was use for surface analysis and a Thermo Scientific K-Alpha X-ray 

Photo-electron spectroscopy (XPS) system was used for depth profiling and surface and 

subsurface analysis, using standard relative sensitivity factors to calculate atomic 

concentrations. XPS is a quantitative technique and chemical information can be obtained 

from binding energy shifts. XPS possesses a very high surface sensitivity as the signal is 

generated from the top few atomic planes. This makes it a valuable technique for detecting 

surface contamination. The Thermo Scientific XPS was also equipped with an ion beam, 

allowing for a surface etch prior to analysis to remove any surface contamination giving 

detailed compositional information of the deposited films. Surface survey scans were carried 

out using an X-Ray spot size of 150 µm with a pass energy of 50 eV and a step size of 1 eV 

from 0 eV to 1350 eV. 10 scans were carried out and an average plotted. Higher resolution 

scans were also carried out looking at certain peaks. For this the range was reduced to only 
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scan 10 eV either side of the peak and the step size reduced to 0.1 eV. 10 passes were carried 

out for each scan, on average. For sub surface scans a 100 eV ion beam etch was carried out 

for 50 seconds prior to the analysis.  

3.6.7.1 XPS Depth Profile 

The Thermo Scientific XPS was also used to carry out depth profile measurements of 

cadmium telluride cells. This was done by taking snapshot scans of the binding energies of 

the elements of interest. The sample was then etched for 120 seconds using a low current ion 

beam as the sample was rotated for a more homogenous etch. The sample was then scanned 

again. This was done 300 times and an elemental depth profile was produced from the data. 

3.6.8 Secondary Ion Mass Spectroscopy (SIMS) 

Secondary Ion Mass Spectroscopy (SIMS) was carried out at Loughborough Surface 

Analysis (LSA) for elemental distribution of cadmium, tellurium, copper, oxygen, chlorine, 

tin and sulphur. A Cameca IMS 3F and 4F were used for SIMS depth profiling. The analysis 

was performed using Cs+ primary ion bombardment at 10 keV with a current of 1 μA with a 

spot size of 60 µm and negative secondary ion detection to optimise the sensitivity to chlorine. 

O2+ primary ion bombardment at 10 keV with a current of 20 μA with a spot size of 10 µm 

and positive secondary ion detection was used to optimise the sensitivity to copper. The 

chlorine data was quantified using an implanted reference sample of chlorine in cadmium 

telluride. No suitable reference sample was available with which to quantify the copper data. 
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4.1 Chapter Background and Aims 

A new magnetron sputtering strategy was introduced, for deposition of thin film cadmium 

telluride solar cells. It utilises a high plasma density (~5 mA.cm-2) to avoid or reduce high 

temperature processing. The technique uses magnetrons of opposing magnetic polarity to 

create a “closed field” in which the plasma density is enhanced without the need for high 

applied voltages. The configuration links magnetic field lines between the magnetrons by 

reversing the polarity of adjacent magnetrons. The magnetrons are also unbalanced to further 

intensify the field and increase the ion current density in the plasma.  Using this arrangement, 

the deposition volume in which the substrates are located is surrounded by linking magnetic 

field lines. This traps the plasma region, prevents losses of ionizing electrons, and results in 

significant plasma enhancement. The closed magnetic field system produces dense coatings 

due to the high ion current density. Magnetron sputtering has the advantage of producing 

uniform coatings over large areas with up to 1% thickness accuracy. This is essential if the 

absorber thickness is to be optimised.   Magnetron sputtering is also controllable with 

deposition rates comparable to closed space sublimation, and inherently cost effective.  

The chapter will follow the development of thin film depositions of cadmium sulphide and 

cadmium telluride by sputtering and compare them to chemical bath and close space 

sublimated films. Issues with continuous coverage of the thin films and the removal of 

inherent pinholes will be investigated. Optimisation and characterisation of the cadmium 

chloride processes for these devices is also undertaken. The treatment was done by solution 

processing, vapour transport and evaporation. Characterization includes identifying the 

crystal structure and grain morphology of the thin films and how it is affected by the 

cadmium chloride annealing heat treatment. 

The thin film cadmium sulphide/cadmium telluride cell is deposited in a superstrate 

configuration detailed in Chapter 3. 

CHAPTER 4. THE DEVELOPMENT OF CADMIUM TELLURIDE 

SOLAR CELLS DEPOSITED BY CLOSED FIELD MAGNETRON 

SPUTTERING 
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4.2 The Deposition of the Cadmium Sulphide Window Layer via Magnetron 

Sputtering  

Cadmium sulphide is the n-type window layer on which the p-type cadmium telluride is 

deposited forming a heterojunction. The cadmium sulphide typically possesses a 

stoichiometric chemistry and has a hexagonal wurtzite structure, but can also be cubic or a 

mixture of both these structures. It is an n-type semiconductor with a high energy band gap 

(2.4 eV) and low absorption coefficient to allow light to pass through to the absorbing 

cadmium telluride layer.  

Cadmium sulphide was initially deposited via chemical bath deposition (CBD) as this is a 

well-established technique for this deposition and is known to yield good properties for 

cadmium telluride solar cells24.  

4.2.1 Closed Field Magnetron Sputtered Film Properties 

4.2.1.1 Cadmium Sulphide Surface Morphology  

Cadmium sulphide was sputtered using close-field magnetron sputtering on glass and fluorine 

doped tin oxide as well as indium doped tin oxide (sputtered in house). Initial results were 

promising as uniform layers with good adhesion properties were produced, and the samples 

were characterized to determine the films morphological and crystallographic properties.  

 
Figure  4.1 – An inlens SEM surface image of sputter deposited cadmium sulphide on FTO coated glass 

Figure  4.1 shows the surface of the cadmium sulphide layer deposited onto TEC15 fluorine 

doped tin oxide (FTO)-coated glass. The image shows that the grains have a diameter of 

approximately 30 nm. It also reveals a uniform, pinhole free surface. The thickness of this 

 500nm 
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cadmium sulphide layer in this image was 250 nm. 

4.2.1.2 Cadmium Sulphide Growth Morphology 

Figure  4.2 shows a TEM image of the cadmium sulphide sputter coated on a glass substrate. 

The image shows that the film has a columnar through thickness thin grains. At the glass 

interface the grains are only several nanometres in diameter but as the grains grow up their 

diameter increases to approximately 100 nm. 

   

Figure  4.2 – A Bright Field TEM image of a cadmium sulphide sputtered sample with columnar grain structure 

4.2.1.3 Sputtered Cadmium Sulphide Crystallographic Properties 

 
Figure  4.3 - X-ray diffraction (XRD) graph of cadmium sulphide layers, which underwent different post 

deposition treatments 
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The sputter deposited cadmium sulphide is hexagonal as shown in the XRD spectrum in 

Figure  4.3. All the samples have a (101) hexagonal peak and annealing has no effect on the 

crystallography measured by XRD.  An advantage of sputter deposition is the accuracy and 

reproducibility with which this layer can be deposited since optimized layer thickness leads 

to maximum light transmission into the cadmium telluride absorber layer.  The cadmium 

sulphide layer tends to absorb the lower wavelength electro-magnetic radiation from 300 nm 

to 550 nm, so a thinner layer is more advantageous as more light will reach the cadmium 

telluride absorber. 

                     
Figure  4.4 – a) A Kikuchi pattern collected from the cadmium sulphide layer and b) after indexing against the 

hexagonal cadmium sulphide structure file  

Figure  4.4a shows a Kikuchi diffraction pattern collected in Transmission Electron 

Backscattered Diffraction (T-EBSD) from a cadmium sulphide grain. Figure  4.4b shows the 

Kikuchi pattern overlaid with the hexagonal miller indices, which indexed with a high 

confidence giving a clear indication that the grain is from an hexagonal phase. All Kikuchi 

patterns that were collected from various grains all index well to this hexagonal structure file. 

  
Figure  4.5 – a) Transmission Electron Backscatter Diffraction derived phase/confidence index map from a CdS 

sputtered sample b) IPF map of the sputtered cadmium sulphide layer 
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Figure  4.5a shows a high resolution T-EBSD derived phase/confidence index map from the 

cadmium sulphide sputtered sample shown in Figure  4.2. This map was collected over a 10 

µm area to look for any phase changes from grain to grain, as from literature it is known that 

cadmium sulphide often forms a cubic, hexagonal or a mixture of both phases24. However 

Figure  4.5a shows the sputtered cadmium sulphide film grains all possessed the hexagonal 

structure. As the sputtered cadmium sulphide possesses such small grains, conventional 

EBSD was not suitable but T-EBSD was able to produce a viable map due to its improved 

resolution capabilities. Figure  4.5 shows that reliable patterns are obtained within grains, 

however at grain boundaries lower CI and IQ values are obtained, as is expected.  

The inverse pole figure (IPF) map shown in Figure  4.5b shows crystal orientation of 

individual grains in relation to the growth direction of the sputtered cadmium sulphide 

sample. The maps show that the sputtered grains seem to have a preferred growth direction. 

4.2.2 Comparison of Closed Field Magnetron Sputtered and Chemical Bath Deposited 

Thin Film Cadmium Sulphide 

4.2.2.1 Surface Morphology 

  
Figure  4.6 –Inlens SEM images of a cadmium sulphide surface deposited on glass via CBD for a) 30 minutes b) 

90 minutes  

Cadmium sulphide was also deposited via CBD in order to give a benchmark as it is a well-

established technique for depositing the window layer for cadmium telluride solar 

cells[25,48,54,70]. The growth of CBD cadmium sulphide on glass is shown in Figure  4.6. 

The grains initially nucleate separately as shown by Figure  4.6a until they join together after 

a longer period of time (90 minutes) as shown in Figure  4.6b. The grains are seen to be fairly 

rounded and evenly dispersed except where there appears to be some surface contamination. 

This could possibly lead to pinholes in the layer as the cadmium sulphide is expected to be 

approximately 100 nm thick. Pinholes in the cadmium sulphide would be detrimental to the 
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cell, as it could lead to shunting of the cell if the cadmium telluride layer, which is deposited 

onto the cadmium sulphide, comes into contact with the underlying transparent conducting 

oxide. Therefore the substrate must undergo rigorous cleaning before the cadmium sulphide 

is deposited, as they have not been stored in vacuum prior to deposition. The grain size of the 

nucleating cadmium sulphide can be seen to be around 50 nm in diameter.  

Apart from the pinholes and areas with surface contamination the cadmium sulphide appears 

very smooth and complete with an estimated grain size of typically 100 nm as seen in 

Figure  4.7, indicating that the grains kept growing in diameter until they formed a compact 

layer. The cadmium sulphide deposited via CBD is well known to have desirable properties 

for cadmium telluride solar cells, from a morphological point of view this can be seen to be 

true for these samples. A fairly smooth and complete layer was seen to be forming. The only 

exception was due to surface contamination. If the substrate undergoes a better surface 

cleaning procedure a pinhole free cadmium sulphide layer can be achieved. An example 

shown in Figure  4.7 was plasma cleaned before deposition.  

 
Figure  4.7 – An inlens SEM image of cadmium sulphide deposited via CBD on glass after plasma cleaning 

4.2.2.2 Cadmium Sulphide Benchmark Crystallographic Sample Properties 

The crystallography of the benchmark CBD samples were investigated using XRD to 

reveal the phase of the material so it can be compared to the sputtered samples. The 

cadmium sulphide layer analysed was deposited for 90 minutes to form a thicker layer. 

Due to the penetration depth of the X-rays being up to 1 µm, the thicker layer will reduce 

the signal from the underlying substrate. The underlying substrate is usually fluorine doped 

tin oxide, which contained diffraction peaks in similar regions to that of cadmium sulphide. 
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Although a thicker layer of cadmium sulphide was deposited, a signal was still generated 

from the FTO substrate dwarfing the cadmium sulphide peak. To overcome this, the 

cadmium sulphide was deposited onto a glass substrate.  

 
 
 

 
Figure  4.8 - a) – An XRD spectra of a 90 minute deposition of cadmium sulphide on glass substrate overlaid 

with corresponding powder diffraction card (PDF card) number 00-001-0647peaks 

The XRD spectra of the cadmium sulphide deposited on a glass substrate is shown in 

Figure  4.8a. The amorphous structure of the glass substrate is shown by the broad shaped 

peak, however two sharper peaks can be seen protruding, relating the (111) reflector plane at 

26.5º and (220) plane at 43.9º which indexed to the cubic phase as shown by the powder 

diffraction file (PDF) number 00-001-0647 in Figure  4.8. The PDF in Figure  4.8 shows that 

the (111) and the (220) display the highest intensity and these peaks are the only ones clearly 

visible. The next highest intensity is the (311) diffraction plane at 51.2º which is just 

noticeable in Figure  4.8. As all the other intensities are much lower than the (111), (220) and 

(311) diffraction planes, they are not visible. The small grain size also causes peak 

broadening making the peaks harder to see.  

In conclusion, the benchmark cadmium sulphide can be seen to have a grain size of around 

(111) 

(220) 

(311) 
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100 nm, and display a cubic crystallographic structure.  

4.3 The Deposition of the Cadmium Telluride Absorber Layer via Magnetron 

Sputtering  

The cadmium telluride layer was deposited using close-field magnetron sputtering. The target 

was more resistive than the cadmium sulphide target and therefore more power was needed in 

order to sputter at a fast rate.  

The initial samples were of only a single layer of cadmium telluride deposited onto a soda-

lime glass substrate; the depositions were initially examined using a FEG-SEM which was 

used to image the surface. Figure  4.9 shows that the coating had a fairly smooth deposition; 

however it also showed a large amount of cracking. The initial cadmium telluride layers were 

deposited much thicker than the desired 2 µm, and since the stress in the layers is expected to 

increase with increasing film thickness, thinner coatings were produced. The cadmium 

telluride was deposited onto glass, reducing the thickness with each deposition in order to 

observe any change in the cracking of the layer. Any cracks in the cadmium telluride layer 

would cause shorting if a cell was constructed as the back contact (copper or gold) would 

diffuse down the cracks and make contact with the front contact so that no current or voltage 

would be observed. Therefore it was fundamental that no cracks were present in the cadmium 

telluride layer. The results showed that the cracking was reduced as the layer was thinned, 

until it was completely overcome, illustrated in Figure  4.10a. 

  
Figure  4.9 – Inlens SEM surface images of cracks in the cadmium telluride layer at a) low magnification, b) 

high magnification 
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4.3.1 Thin Film Cadmium Telluride Properties 

Figure  4.10a shows a surface image of the sputtered cadmium telluride layer, which has a 

thickness of approximately 2 µm. The layer appears uniform and smooth with a grain size of 

less than 100 nm. Film thickness control to 1% is possible with magnetron sputtering using 

time and power only, which is advantageous as this minimises the waste of the expensive 

materials. The smoothness of the film is shown in Figure  4.10b, which also displays the 

columnar morphology of the grains. A magnetron sputtering configuration that produces high 

argon plasma densities has been used to deposit each of the layers in a thin film cadmium 

sulphide/cadmium telluride photovoltaic stack. The SEM shows that sputter deposition of 

cadmium telluride results in highly compact layers and the morphology is dominated by 

columnar grain growth.  

 
Figure  4.10 - Inlens SEM image of the surface morphology of sputter deposited cadmium telluride and b) cross 
section SEM image of a thick cadmium telluride on FTO coated glass cell with thin through thickness columnar 

grains 

 
Figure  4.11 An XRD spectra of the sputtered cadmium telluride and overlaid with the corresponding powder 

diffraction file  
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Figure  4.11a shows the XRD spectra of the sputtered cadmium telluride film with a 

dominating (111) peak with room temperature depositions. The grain size is typically 50 nm 

in diameter and through thickness in a 2 µm thick coating. The cadmium telluride grain 

morphology follows that of the sputtered cadmium sulphide layer, which is also columnar 

with a grain size of ~30 nm in a thin film thickness of 100 nm.  

Magnetron sputtering with high plasma densities may be used to deposit all the layers in a 

cadmium telluride/cadmium sulphide photovoltaic stack. The study has also revealed that 

sputtering results in highly uniform thin film thicknesses both for individual layers and for 

multilayer stacked structures. This uniformity is important since it means that the cadmium 

telluride absorber thickness can be controlled accurately leading to potential cost reduction 

and the production of consistent device performance. 

4.3.2 The Effect of Argon Flow Rates on Thin film Cadmium Telluride 

The argon pressure (controlled by the gas flow rate) is well known to have an impact on the 

deposition rate and film properties. The gas flow rate is measures in standard cubic 

centimetres per minute (SCCM). At higher argon sputtering pressures the sputtered and 

reflected neutral atoms arriving at the substrate inherently have low energies. This is due to 

the increased number of collisions before arriving at the substrate. This causes the atoms 

arriving at the substrate to have a lower surface mobility. This in turn has a large effect on the 

growth kinetics of the depositing film, and therefore on its structural, morphological and 

crystallographic characteristics.  

At low argon flow rates the sputtered and reflected neutral atoms have much higher energies 

than the plasma gas between the target and substrate and arrive at the substrate with high 

energy due to undergoing fewer collisions before their arrival. Therefore the sputtered atoms 

in low argon pressure conditions have a high surface mobility when they arrive at the 

substrate. It is therefore essential that the sputtering pressure is carefully investigated to 

obtain viable thin films. The argon flow rate can be varied to alter the stress in the deposited 

film. At lower flow rates the film will be under compressive stress, whereas at a higher argon 

flow rates the films will have tensile stress15. So there is an optimum argon flow rate to 

achieve a maximum sputter rate, with unstressed films. The effect of argon flow rates on the 

films was investigated using TEM and XRD analysis. The sample conditions are shown in 

Table  4.1 with varying argon flow rates ranging from 20 sccm to 100 sccm, and with the 

sample P1 (20 sccm) also with and without a post deposition anneal at 400°C for 20 minutes.  
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Sample Sputter Tool Argon Flow 

P1 CdS(RT)/CdTe(RT) 20 sccm 

P1 post-annealed CdS(RT)/CdTe(RT) 20 sccm 

P2 CdS(RT)/CdTe(RT) 50 sccm 

P3 CdS(RT)/CdTe(RT) 70 sccm 

P4 CdS(RT)/CdTe(RT) 100 sccm 

Table  4.1- A summary of the sputtered sample deposition conditions with varying argon flow 

Figure  4.12 shows Bright-Field-STEM images of complete cross-sections through the 

cadmium telluride/cadmium sulphide layers deposited onto TEC10 TCO substrates, with 

varying argon flow rates during the cadmium telluride layer deposition. Figure  4.12a shows 

the cadmium telluride layer deposited at the lowest rate. The image shows a very dense 

cadmium telluride layer, with a grain size less than 10 nm. The underlying cadmium sulphide 

has a similar grain width to the cadmium telluride, as the grain boundaries follow on from the 

underlying layer. Due to the small grain size it is not clear that the thickness of the TEM 

samples is more than the grain thickness, therefore the TEM sample is made up of several 

grains in width. Linear defects are observed perpendicular to the growth direction. 

Figure  4.12b shows a sample with an argon deposition flow rates of 50 sccm. This appears 

less dense than the sample deposited with 20 sccm of argon and the grains appear to form in 

nodules, with pore channels between nodules. These form due to the roughness of the 

underlying TCO as the cadmium sulphide is very conformal. In the valleys of the TCO, the 

cadmium sulphide also has a valley directly above this point. The cadmium telluride therefore 

grows on this uneven surface, which causes pore channels forming at the minima. The 

samples at higher argon pressure shown in Figure  4.12c and Figure  4.12d also have pore 

channels at these points. The pore channels are thin voids which run between each nodule of 

the grain. If these samples were treated, it would allow diffusion along these channels. The 

samples deposited with 50, 70 and 100 sccm of argon all appear to have a similar grain size 

of ~20 nm. This indicates that the argon pressure has reached a critical point for maximum 

grain size, somewhere between 20 sccm and 50 sccm as the mobility of the arriving atoms are 

similar with an argon pressure above 50 sccm. The pore channels in the three samples 

deposited above 50 sccm of argon are between 100-150 nm apart. All the samples appear to 

have a very high density of stacking faults running perpendicular to the growth direction. 
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Figure  4.12 – BF-STEM images of cadmium telluride cells sputter deposited at varying argon flow rates of a) 

20 sccm, b) 50 sccm, c) 70 sccm and d) 100 sccm             
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The XRD plot in Figure  4.13 shows the (111) reflection for the cubic cadmium telluride 

phase, with the (111) reflection highlighted from the PDF ICCD database at 23.7771°.  The 

sample deposited with 20 sccm of argon shows the greatest peak shift, which corresponds to 

the highest film stress. This is also indicated by the dense films shown in Figure  4.12a. The 

other 3 samples show little signs of peak shift as they are not far from the PDF database 

angle. The sample deposited at 20 sccm also shows a much broader peak than the other 

samples. This is due to the smaller grain size. From the TEM images in Figure  4.12 it shows 

the sample deposited at 20 sccm has grains of less than 15 nm, whereas the other three 

samples all have similar grain sizes.  

 

 
Figure  4.13 – A XRD spectra of the (111) peak for the samples deposited at different argon pressures 

By use of the Scherrer equation the grain sizes of the four samples were calculated shown in 

Table 4.2 

𝜏 =
K𝜆

𝛽𝑐𝑐𝑐𝜃
 

where: 𝜏 = The calculated mean grain size, K = dimensionless shape factor (1 for columnar 

growth), 𝛽= the line broadening at half the maximum intensity (FWHM) and  𝜃 = the Bragg 

angle 

Reducing stress

Unstressed film 
23.7711º from PDF card 

 

Peak Shift 
 

2Ɵ 
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Table  4.2 – A table showing the scherrer equation parameters for each sample 

From the TEM image in Figure  4.12a it is hard to estimate a mean grain size due to the grain 

width being thinner than the width of the TEM sample. The XRD has shown a grain size of 

the three samples over 50 sccm of argon are similar ~29 nm, which correlates well with the 

TEM results. The sample deposited with the lowest gas flow at 20 sccm has a much smaller  

grain size of ~14 nm, which is also consistent with the TEM results.  

4.3.2.1 Annealing a Stressed Cadmium Telluride Thin Film 

  
Figure  4.14- A XRD spectra of the (111) peak for the sample deposited with 20 sccm of argon and then the same 

sample but annealed at 400°C for 20 minutes 

 

Sample Θ (degrees) 𝜷𝜷 𝝀𝝀 (nm) 𝝉𝝉 

1P 23.5 0.59 1.54056 14 nm 

2P 23.85 0.28 1.54056 29 nm 

3P 23.8 0.28 1.54056 29 nm 

4P 23.7 0.28 1.54056 29 nm 

1p annealed 23.7 0.34 1.54056 25 nm 

Unstressed film 
23.7711º from 
PDF card

         Peak Shift 

2Ɵ 
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Magnetron sputtered samples using low gas pressures are often under tensile stress due to the 

high mobility of the atoms during deposition. Annealing the sample post-deposition can often 

relief stress in the thin film15. In Figure  4.13 the sample deposited with a low gas pressure of 

20 sccm showed the largest peak shift away from the PDF reference point. After a 20 minute 

anneal the film showed a large reduction in peak shift shown in the XRD plot in Figure  4.14. 

The peak shift correlates to a change in lattice parameter, therefore is stress relieved as the 

lattice parameter has increased.  

4.3.3 The Effect of Deposition Temperature on Thin film Cadmium Telluride 

The temperature of the substrate during magnetron sputtering can also have a large impact on 

the deposited film and can control the morphology and crystal properties of the deposition. 

Stress can be induced in the thin film if the thermal expansion coefficient of the substrate and 

film are dissimilar. An increase in deposition temperature will also increase the surface 

mobility of the arriving atoms, ultimately altering the morphology of the deposition. The 

samples analysed in this section are summarised in Table  4.3. 

Table  4.3 - A summary of the sputtered sample deposition conditions with varying substrate and deposition 
temperatures 

Figure  4.15 shows the cells morphology after sputtering at 250ºC. It is immediately apparent 

that the cadmium telluride grain size has increased from the room temperature deposition 

from around 30 nm to over 250 nm, increasing almost 10 fold. Figure  4.15a shows the top of 

the cadmium telluride film. The grains are larger at the top of the coating compared with the 

bottom of the coating. All grains appear to be highly faulted perpendicular to the growth 

direction, with the stacking defects terminating at the grain boundaries. In both Figure  4.15a 

and Figure  4.15b showing the top and the bottom of the cadmium telluride layer respectfully, 

voids can be seen between some grains. These voids relate to the roughness of the FTO 

substrate, as the cadmium sulphide is conformal with the FTO. Where these is a dip in the 

FTO the cadmium sulphide also has a dip. This subsequently causes voids in the proceeding 

cadmium telluride film. The cadmium sulphide grain size is observed to be less than 2 nm in 

diameter shown in Figure  4.15b. The cadmium telluride in some cases appears to follow the 

Sample Substrate Sputter Tool Argon Flow Rate 
(Sccm) 

T250 3mm SLG/TEC10 CdS(RT)/CdTe(250ºC) 100 

T250i 1mm Glass ITO/CdS(RT)/CdTe(250ºC) 100 

T300 3mm SLG/TEC10 CdS(RT)/CdTe(300ºC) 100 

T400 3mm SLG/TEC10 CdS(RT)/CdTe(400ºC) 100 
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grain boundaries of the previous layer and this causes the cadmium telluride grains initially to 

have a smaller diameter at the cadmium sulphide interface. All layers appear columnar in 

nature including the FTO conductor. 

  
Figure  4.15 – BF-STEM images of sample T250 showing A) top of the cadmium telluride B) cadmium 

telluride/cadmium sulphide/FTO interface 

4.3.3.1 The Effect of the Substrate on Sputtered Thin Films 

  
Figure  4.16 – BF-STEM images of sample T250i showing A) top of the whole cell B) cadmium 

telluride/cadmium sulphide/ITO interface 

Figure  4.16 shows the cell deposited with the same conditions as Figure  4.15 but with a tin 

doped indium oxide (ITO) substrate, which is much smoother than the Pilkington FTO. 

Figure  4.16a shows the whole morphology of the cell with the pores still present between 

some grains. Figure  4.16b shows the ITO/cadmium sulphide/cadmium telluride interface, 

which shows the ITO is extremely smooth with mainly through-thickness columnar grains, 
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however there is an amorphous initial growth layer less than 50 nm in thickness. The ITO 

grains are ~ 200 nm in width. However the proceeding cadmium sulphide layer does not 

follow the grain boundaries of the ITO and possesses a similar grain size to Figure  4.15. The 

cadmium sulphide layer now is also very smooth. Due to the smoothness, the cadmium 

telluride initially appears dense but after ~300 nm the voids start appearing between grains. 

The cadmium telluride also follows some of the underlying cadmium sulphide grain 

boundaries, causing grains at the interface to be smaller.  The grains become larger with 

increasing distance from the cadmium sulphide interface. All cadmium telluride grains appear 

to have a very high density of linear defects throughout the film.  

The rest of the samples deposited at various temperatures were deposited onto Pilkington 

TEC10 FTO coated soda lime glass, as this is the main substrate used throughout this study, 

giving a better comparison.  

Figure  4.17 shows the morphology of the sample with the cadmium telluride deposited at 

300ºC. From Figure  4.17a the top of the cadmium telluride grains can be seen. They are 

~300-400 nm in width. All the grains appear highly faulted, with some thin voids running 

between grains. Figure  4.17b shows that in the cadmium telluride layer close to the cadmium 

sulphide interface wider voids between grains are observed. The grain growth between 

cadmium sulphide and cadmium telluride is related, as some grain boundaries are observed to 

continue between the layers.  

 Figure  4.17 - TEM images of sample T300 showing A) top of the cadmium telluride B) cadmium 
telluride/cadmium sulphide/FTO interface 
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Figure  4.18 shows the grain morphology of the sample with the cadmium telluride deposited 

at 400ºC. Figure  4.18a shows the whole cell. The cadmium telluride grain growth starts with 

smaller grains at the bottom of the film and reaches up to 500 - 600 nm in diameter at the top 

of the film. Figure  4.18b shows the cadmium sulphide/cadmium telluride interface. The thin 

cadmium sulphide has a grain size of less than 15 nm in diameter. This suggests that the 

cadmium telluride nucleates initially with smaller grains ~50-100 nm in diameter. 

Figure  4.18- BF-STEM images of sample T400 showing A) top of the cadmium telluride B)cadmium 
telluride/cadmium sulphide/FTO interface 

Varying the cadmium telluride deposition temperature has an effect on the microstructure of 

the film. With an increase in temperature grain growth is apparent up to ~600 nm. However 

the initial growth of the cadmium telluride film for all the samples is smaller than the top of 

the film due to a continuation of grain boundaries from the underlying cadmium sulphide. All 

samples possessed a high density of stacking defects within the cadmium telluride grains. 
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4.3.4 Comparison of Novel Sputtered Cadmium Telluride with Close-Spaced Sublimated 

Cells 

  
Figure  4.19 – A BF-STEM image of an untreated cadmium telluride solar cell deposited via closed space 
sublimation 

As the sputtering of cadmium telluride solar cells is a novel technique, a comparison to a 

more established process route is advantageous. Closed space sublimated (CSS) cells will be 

examined in depth in Chapters 6-8. Figure  4.19 shows the morphology of the optimum CSS 

device before the cadmium chloride treatment. Comparing this to the sputter deposited 

samples both the grain size of cadmium sulphide and cadmium telluride is larger. The 

cadmium sulphide has a grain size of ~100 nm compared to less than 10 nm in the sputtered 

samples. Subsequently the cadmium telluride film has larger grains of up to 1000 nm, 

compared to 15 - 500 nm in the sputtered samples. There is however a similarity in the 

growth morphology of the cadmium telluride layer as the initial nucleation of the film has 

smaller grains with larger grains developing growing out towards the top of the film. The 

cadmium telluride in both materials has a high density of linear stacking defects. 
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4.4 The Development of a Pin-Hole Free Cadmium Sulphide/Cadmium Telluride 

Thin Film Closed Field Sputtered Cell 

Figure  4.20a shows the formation of a pinhole in a sputtered cadmium telluride film. It 

appears much lighter in the image than the rest of the surface as the glass substrate below is 

charging during imaging. Figure  4.20b shows the pinhole to be approximately 2 µm in 

diameter which is more than enough to allow fast penetration of the metal back contact down 

to the TCO layer causing the cell to short circuit. Therefore all pinholes must be prevented 

from forming during deposition, so the cause must be identified and rectified.  

  
Figure  4.20 – An SEM image of a) pinhole on the surface of cadmium telluride layer with electron beam 

induced charging due to the glass substrate b) fracture cross section near a pinhole in the cadmium telluride 
layer  

In the initial stages of cell fabrication, chemical bath deposition (CBD) was used to deposit 

the cadmium sulphide layer. From literature documenting this well established process57, it 

was shown that the chance of achieving the optimum properties of a working cell increased. 

Therefore the cadmium telluride layer could be deposited via sputtering knowing that the 

cadmium sulphide layer is a good window layer with n-type properties. This illustrated that 

the cadmium telluride was the main variable in the performance of the cell. The formation of 

pin holes was observed, which is a common problem in thin films deposited via sputtering 

and many other deposition methods. The pin holes were seen to develop in the cadmium 

telluride layer when deposited onto the cadmium sulphide film deposited via CBD. The 

pinholes appeared less obvious when cadmium telluride was deposited directly onto a soda-

lime glass substrate.  
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4.4.1 Bi-Layer Structure Thin Film Cadmium Telluride 

To try to eliminate the pinholes, initially a bi-layer structure was deposited. The reason for 

this was that if the sputtering process was stopped, then restarted, the chance that two 

pinholes will directly line up is very low, giving a complete coverage of the substrate as 

demonstrated in the illustration shown in Figure  4.21. 

  

 

  

 

 

Figure  4.21  – Illustration of bi-layer cadmium telluride structure to eliminate through thickness pinholes 

This method eliminated the pinholes, however this also meant that the thickness of the 

cadmium telluride was less controlled, as well as introducing a new interface. This caused a 

discontinuity and was seen to impair the electrical properties of the cell. This could cause a 

loss of charge carries in this region, as shown in Figure  4.22b. As the second cadmium 

telluride layer did not continue growth from the original layers grains (non-epitaxial growth) 

and new grains nucleated. The method used to produce the bi-layer structure was to halt the 

initial deposition and mechanically rub the surface. After this the second layer of cadmium 

telluride was deposited. By taking a surface and fracture cross section micrograph using the 

SEM it was seen that there was a change in grain size of the second layer.  Grain size was 

seen to increase to over double the size from the first layer to the second cadmium telluride 

layer shown by the surface grains in Figure  4.22a and in cross section in Figure  4.22b. 

  
Figure  4.22 – Inlens SEM images of the cadmium telluride bi-layer structure a) surface and b) cross section  
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Mechanically rubbing the surface was seen to cause a large discontinuity, therefore a new 

process of etching the surface with a plasma in vacuum was attempted. This was seen to 

reduce the intensity of the discontinuity and width of the interface. However it still adversely 

affected the electrical properties. Therefore it was determined that the bi-layer structure was 

an inappropriate method of preventing pinhole formation. After a second layer of cadmium 

telluride film was deposited, fewer pinholes were seen. The likely reason for this was the first 

cadmium telluride film was deposited in vacuum and never exposed to air, therefore the 

second cadmium telluride layer was deposited onto a highly active and ultra clean surface.  

4.4.2 Surface Contamination and Pre-deposition TCO Surface Cleaning 

As the second layer of cadmium telluride in the bi-layer structure had less pin holes, an 

investigation of surface contaminants on the substrate was carried out. X-ray photoelectron 

spectroscopy (XPS) was used to examine the surface of the cadmium sulphide on fluorine 

doped tin oxide (FTO) and indium doped tin oxide (ITO) to look for any surface 

contamination which may be the cause of the occurrence of the pinholes. 

The results from the XPS spectra shown in Figure  4.23, summarised in Table  4.4 revealed 

that there were the expected elements present, however in the cadmium sulphide on 

ITO/glass substrate indium was present. This is unexpected as XPS generally penetrates only 

the top 5 nm of the sample, and the cadmium sulphide is expected to be at least 100 nm in 

thickness. This may be due to pinholes forming in the cadmium sulphide layer therefore 

allowing signal from the substrate. There is a large presence of carbon which is standard for 

any sample analysed via XPS as it is easily picked up from the atmosphere before the sample 

is tested. The presence of sodium can be due to contamination from handling the sample prior 

to the analysis. The conclusion of the XPS was that there was some contamination which 

could be responsible for pin holes and could have caused the surface of the cadmium sulphide 

to be less reactive in these areas.  

  
Figure  4.23 –XPS spectra of cadmium sulphide surface on a) FTO/Glass substrate b) ITO/Glass substrate 
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Sample 

     

Element (Peak) 

      

 

C 1s O 1s Cd 3d S 2p Na 1s In 3d 

  

 

B.E. at% B.E. at% B.E. at% B.E. at% B.E. at% B.E. at% 

Cadmium 

sulphide/FTO 285 31.7 531.8 16.2 405.2 29.2 161.7 22 1072 0.9 0 0 

Cadmium 

sulphide/ITO 285 25.7 531.4 17.2 405 30.9 161.6 24.7 0 0 444.5 1.5 

Table  4.4 - XPS quantification of cadmium sulphide surface looking for contamination 

Surface cleaning to remove any surface contamination of the substrate prior to deposition is 

therefore needed to produce a pin hole free layer. This will be examined in chapter 5 using 

plasma cleaning, ultrasonic bath and other techniques to find the best surface clean. 

4.5 Cadmium Chloride Treatment of Magnetron Sputtered Cadmium Telluride 

Thin Films 

After a cell was deposited using the sputter coater, a cadmium chloride treatment is needed in 

order to produce an efficient cell. This can be done using a variety of methods. In this section 

a simple wet chemistry based technique was initially used, then a more controlled vapour 

transport technique, and finally a well-established evaporation based method. The deposited 

cells were treated and then completed with a gold back contact and their performance tested 

and their microstructure analysed.  

4.5.1 Solution Based Cadmium Chloride Treatment of Cadmium Telluride Thin Films 

4.5.1.1 Initial Treatment Results using a Saturated Solution of Cadmium Chloride in 

Methanol 

Initially a wet chemistry based technique was established where a complete cell stack (3 mm 

glass/FTO/cadmium sulphide/cadmium telluride) without a back contact was dipped in a 

saturated solution of cadmium chloride dissolved in methanol and then air annealed at a set 

temperature for a given time. The initial experiment was carried out using a saturated solution 

of cadmium chloride, which was dipped in the solution for approximately 30 seconds, placed 

immediately onto a hot plate at 450˚C, left there for 30 minutes and then left to cool to room 

temperature. Once this was done the stack was washed with isopropanol and dried, then a 

back contact of gold was deposited to complete the cell. The surface of the cell looked 

uneven after observation using an optical microscope. It was seen that there was a large 
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amount of protrusions on the sample surface. This was studied in more detail using SEM.  

Figure  4.24 shows the cell which has been treated by the saturated cadmium chloride 

solution. There is a dramatic difference in the microstructure after the treatment. The grain 

structure is no longer seen to be columnar through thickness grains and instead they appear 

more equiaxed and rounded. This is similar to what has been reported in literature46. However 

the cadmium telluride layer was seen to contain a significant amount of large voids. The 

voids are observed throughout the layer but the voids are larger nearer the cadmium sulphide 

interface as seen in Figure  4.24. 

 
Figure  4.24 – An Inlens SEM image of a fracture cross section of cadmium telluride treated with a saturated 

solution of cadmium chloride in methanol 

 

4.5.1.2 Delamination of Thin Film Depositions during Cadmium Chloride Treatment  

Figure  4.25 shows a low magnification cross section of the cell treated with the saturated 

solution of cadmium chloride. A large amount of de-lamination of the cadmium telluride 

layer can be seen. This resulted in a poor p-n junction and cracking can also be seen which 

will lead to shorting once the back contact is deposited. The delamination and cracking of the 

cadmium telluride is most likely due to the stresses within the initial sputtered material, as it 

was deposited at a low temperature.  Once the cadmium chloride was applied and the cell was 

heated up, rapid recrystallization occurred. The sudden grain growth during recrystallization 

caused an increase in stress due to the introduction of voids which ultimately forced the 

cadmium telluride to buckle and delaminate. Due to the extent of the delamination no 

reasonable cell efficiency could be recorded. 
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Figure  4.25- An Inlens SEM image of a fracture cross section of cadmium telluride treated at full cadmium 

chloride concentration 

Figure  4.26a shows the surface of the cadmium telluride which has been treated with the 

saturated solution of cadmium chloride. It clearly shows an increase in grain size. The 

average grain size has visibly increased from 50-100 nm to 500 nm. Figure  4.26b shows the 

surface of the cadmium telluride that has delaminated. It can be seen that the cadmium 

telluride layer has cracked, leaving a gap which the gold back contact can easily migrate 

down and short the cell. 

  
Figure  4.26 –SEM images showing the a) surface of a cadmium chloride cell after treatment b) one of the 

bumps on the surface of the cadmium telluride 

 

Figure  4.27 shows EDX data and the corresponding SEM image illustrating where the spot 

analysis was carried out. The first area is where de-lamination had occurred and the top of the 

bump had broken off. This area indicated a larger amount of sulphur present and absence of 

tin, silicon or oxygen shown in Figure  4.27a and the EDX data in Figure  4.27c. Figure  4.27b 

also shows a point on the cadmium telluride that had not suffered delamination. This area 

only showed high concentrations of cadmium and tellurium in Figure  4.27c. Therefore it can 

be concluded that the de-lamination occurred between the cadmium sulphide/cadmium 

telluride interface.  
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Area Element At. % 
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 Cd 44 

 Te 36 

B S 1 

 Cd 45 

 Te 54 
Figure  4.27 - SEM images showing where the EDX spot analysis was carried out on a) within a delaminated 

area and b) cadmium telluride surface and c) corresponding EDX data  

4.5.1.3 Reduced Cadmium Chloride Solution Concentration Treatments 

After the initial cadmium chloride treatment was carried out at the maximum concentration 

(saturated solution), the treatment was found to be too aggressive due to the high 

concentration of the cadmium chloride solution. To combat this, the saturated solution of 

cadmium chloride was diluted using pure methanol. It was diluted by adding the same 

amount of methanol as the initial amount, therefore diluting it to 50%, then again to reduce 

the concentration to 33.3% and so forth.   

4.5.1.3.1 50% Saturated Solution of Cadmium Chloride in Methanol  

 
Figure  4.28 - An SEM image of a cross section of the cadmium telluride cell treated with a diluted solution of 

cadmium chloride 

Figure  4.28 shows a fracture cross section of a cadmium telluride cell treated with cadmium 

chloride at 50% concentration of the saturated solution. The treatment seems slightly less 

aggressive although de-lamination was present as shown in Figure  4.30. A good voltage was 

obtained as displayed in Table  4.5 but large amount of voids were also present seen in 

Figure  4.28.  
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Figure  4.29 shows an XRD plot of the sample treated by the 50% diluted saturated solution of 

cadmium chloride. The as-sputtered sample only showed a (111) cubic peak. After the 

treatment the XRD now shows (220), (311) and (411) peaks present. 

 

 

Figure  4.29 – XRD plot of the cadmium telluride cell treated with a diluted solution of cadmium chloride 

Figure  4.30 shows that the grain size of the cadmium telluride is between 0.5 µm and 2 µm. 

Large voids are also present in the sample. The cadmium sulphide layer is reduced in 

thickness possibly due to intermixing with the cadmium telluride. Delamination was also 

observed between the cadmium telluride and cadmium sulphide  

 
Figure  4.30 – BF-TEM image of a cross section view of the cadmium telluride layer treated at 50% diluted 

concentrated solution of cadmium chloride 
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The results yielded by this process were encouraging as the grain size was seen to greatly 

increase. However the performance properties were not as encouraging, despite the voltage 

produced showing an increase after the treatment in some of the samples displayed in 

Table  4.5. No current was produced by the samples due to the large amount of de-lamination 

and cracking of the cadmium telluride layer, as it was expected that the gold contacted the 

TCO through the gaps and caused the cell to short. The delamination was likely caused by 

stresses in the initial deposited cadmium telluride layer, due to the low sputter temperature 

and low argon pressure. Once the recrystallization started to occur, the film delaminated due 

to the formation of voids and grain growth. With the formation of voids there is a film 

expansion and the stress resulting from this caused the film buckle and de-laminate.  

4.5.1.3.2 33% Saturated Solution of Cadmium Chloride in Methanol  

Figure  4.31 shows a fracture cross section of a cadmium telluride cell treated with cadmium 

chloride at 33% concentration of the saturated solution. In the film treated with the 33% 

concentrated solution less delamination of the cadmium telluride has occurred compared with 

the saturated solution and 50% concentration solution of cadmium chloride. Figure  4.31 

shows that the bottom half of the cadmium telluride film has recrystallized whereas the top 

part has not. The cadmium chloride solution was applied on the surface, indicating that the 

cadmium chloride treatment initiates crystallization at the cadmium sulphide interface. This 

has not been previously reported and is likely the reason for the delamination of cadmium 

telluride thin films. The reduction in concentration of cadmium chloride has had a marked 

affect and the evidence shows that a certain amount of cadmium chloride is needed to 

recrystallize the whole cadmium telluride film. In this case a 33% concentration was not 

enough as only the bottom 1.2 µm of the 2 µm has recrystallized. 

 
Figure  4.31 – Inlens SEM cross sections of a cadmium telluride cell treated at 33% concentration, a) and b) are 

of the same sample 
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4.5.1.3.3 20% Saturated Solution of Cadmium Chloride in Methanol  

Figure  4.32 shows a fracture cross section of a cadmium telluride cell treated with cadmium 

chloride at 20% concentration of the saturated solution. The treatment can be seen to be much 

less aggressive than the previous solutions as only the bottom half of the cell shows signs of 

re-crystallization. The 20% solution is seen to undertreat the cell however the concentration 

of the solution will be reduced further in order to investigate how the recrystallization of the 

cadmium telluride is occurring. 

 

Figure  4.32 - SEM Cross section of the cadmium telluride cell treated at 20% of the saturated solution of 
cadmium chloride showing half the cell recrystallized  

4.5.1.3.4 14% Saturated Solution of Cadmium Chloride in Methanol  

Figure  4.33 shows a fracture cross section of a cadmium telluride cell treated with cadmium 

chloride at 14% concentration of the saturated solution. This cell shows only the bottom third 

of the cadmium telluride has been recrystallized as voids are seen in this region. The 

morphology of the top of the cadmium telluride layer appears columnar, again indicating that 

the recrystallization has initiated near or at the cadmium sulphide interface.  To investigate 

this in more detail a TEM sample of the 14% concentration treated cadmium telluride cell 

was prepared. Figure  4.34 shows a BF-STEM image of the cadmium telluride cell. The glass 

substrate, FTO, cadmium sulphide, cadmium telluride, gold contact and platinum layer are all 

visible. The main interest is within the cadmium telluride layer, as a distinct difference can be 

seen from the top of the layer to the bottom. The top surface of the cadmium telluride near 

the gold back contact has thin columnar grains similar to that seen in the untreated sample. 

The cadmium telluride grain morphology nearer the cadmium sulphide interface can be seen 

to be distinctively different, as more rounded equiaxed grains are present. Another significant 

difference is that the grains which are still columnar and not recrystallized can be seen to 

have a very high density of linear defects, whereas these are not present in the recrystallized 

grains. 
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Figure  4.33 - SEM Cross sections of the cadmium telluride layer treated at 14% concentrated solution of 

cadmium chloride 

 
Figure  4.34 - TEM Cross section of the cadmium telluride layer treated at 14% concentrated solution of 

cadmium chloride 

Figure  4.35 shows HAADF-STEM EDX chemical distribution maps for cadmium, tellurium 

and chlorine. The chloride map indicates some chlorine present at grain boundaries and 

around voids. 
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Figure  4.35 –STEM EDX chemical distribution maps for cadmium, tellurium and chlorine of the area 

highlighted in Figure  4.34 

Figure  4.36 shows an EDX spectra of the point highlighted in Figure  4.34 of the cadmium 

telluride cell treated using a low concentration of cadmium chloride. The point is located at a 

cadmium telluride grain boundary. 0.8 at% of chloride was detected, with cadmium at ~ 

50at% whereas tellurium dipped slightly to 49.2 at%. This suggests that chlorine diffuses 

down the cadmium telluride grain boundaries until reaching the cadmium sulphide interface.  

 
 

Figure  4.36 – An EDX spectra of the point highlighted in Figure  4.34 of the cadmium telluride cell treated using 
a low concentration of cadmium chloride 

 

4.5.1.3.5 Performance of Solution Treated Cadmium Telluride Cells 

On each sample three gold contacts were deposited making three cells for each sample, some 

shorted and this is indicated in Table  4.5 by a dash. 
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Ratio Concentration 

from Saturated 

Voltage Produced 

(mV) cell 1 

Voltage Produced 

(mV) cell 2 

Voltage Produced 

(mV) cell 3 

1:1 50% 579 282 249 

1:2 33% 40  - - 

1:4 20% 578 595 577 

1:6 14% 139 56 351 

1:8 11% 397 452 499 

1:10 9% 512 - - 

1:15 6% 427 - - 

1:20 4.5% 410 - - 

untreated 0% 442 430 66 

Table  4.5 – Summary of the voltage produced by the cells and the concentration of cadmium chloride solution 

Table  4.5 shows the obtained voltages from the cells treated at the various concentrations. 

The 50% concentrated solution treated cell and the 20% concentrated solution treated cell are 

the only two which showed an increase from the untreated cell. The 33% cell was shorted 

when the back contact was deposited, due to delamination and cracking of the cadmium 

telluride layer.  

4.5.1.4 Summary of the Solution Based Cadmium Chloride Treatment 

The solution treatment process had a lack of control of substrate temperature when annealing 

in air. As a hot plate is used the temperature of the hot plate can vary greatly from the sample 

as well as in the sample itself.  The heat source is coming from the bottom of the sample and 

therefore there will be a heat gradient through the sample as the only way the top of the 

sample will heat up is via heat conduction through the thickness of the sample.  

The distribution of the cadmium chloride solution over the surface of the samples was 

heterogeneous. A good treatment will give a homogeneous distribution of the cadmium 

chloride, however with a solution based treatment this was not possible. Once the samples 

were treated, even observing the sample surface by eye a variation in colour could be seen 

due to an uneven distribution of the cadmium chloride, this was having an effect on the 

microstructural changes between areas within the same sample.  

Due to these reasons using this method is not advisable to produce an efficient cell. Another 
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disadvantage is that it is a hard process to scale up as wet chemistry is used. To overcome 

these disadvantages a vapour transport method can be used, as it provides a homogeneous 

concentration and temperature since it is under vacuum and heated from all directions. 

4.5.2 Vapour Transport Based Cadmium Chloride Treatment of Cadmium Telluride Thin 

Films 

The vapour transport method is used to treat the cadmium telluride solar cell with cadmium 

chloride by heating the cell up in a tube furnace, along with cadmium chloride tablets in a 

crucible and using argon as the carrier gas.  

The main parameters that were varied were; the substrate temperature, cadmium chloride 

crucible temperature, ramp up time, anneal time and gas flow. 

A large amount of samples were produced with various treatment conditions and their cell 

efficiencies were measured. The highest recorded efficiency was measured at 1.11%; this 

sample was then characterized to examine its microstructure. 

  
Figure  4.37 – a) A SEM surface image of the sample with the highest cell efficiency treated by vapour transport 

b) A BF-TEM image of the cell treated via vapour transport 

Figure  4.37a shows the surface of the sample treated by vapour transport. The cadmium 

chloride source temperature was held at 590ºC and the cell was held at 420ºC, the ramped up 

time was 20 minutes and left at this anneal temperature for 120 minutes, with an argon gas 

flow rate of 25sccm. It was then left to cool down naturally. Figure  4.37 shows that there was 

still the formation of bubbles which crack on the surface. As this has occurred in both 

treatment methods it may be the properties of the initial deposited layers and not the 

treatment itself. The initial stress of the film can be controlled by varying the temperature and 

pressure when the layers are sputtered. The cell produced an efficiency of 1.11%. The current 

voltage graph is shown in Figure  4.38 and performance data in Table  4.6. 
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Voc 0.622mV 
Jsc 6.48mA/cm2 

fill 
factor 

28% 

Figure  4.38 – J-V curve for the cell with 1.11% efficiency treated via vapour transport  

To understand the performance data of the cells the microstructural and crystallographic 

properties were examined. Figure  4.37b illustrates that the sample had a radically changed 

microstructure from the as deposited sample. The grains increased from 50 to 100 nm to over 

1 µm near the surface and 0.5 µm near the cadmium sulphide/cadmium telluride interface. 

However large amounts of voids can be seen in the bulk of the cadmium telluride layer; 

however a p-n junction was formed, which may indicate why the cell worked even with voids 

in the cadmium telluride layer. 

Using the vapour transport method has not been very successful in terms of sample 

performance properties. This could be due to the initial film properties or the treatment itself. 

So far a wide range of temperatures and annealing times have been used but the same initial 

sample deposition parameters were always used. The cadmium chloride pellets used were not 

pure, therefore it would be highly recommended that pure pellets be used to see if any change 

in results could be achieved. 

4.5.3 Pre-Optimised Evaporated Cadmium Chloride Treatment of Cadmium Telluride 

Thin Films 

A sputtered cadmium telluride sample was sent to the Swiss Federal Laboratories for 

Materials Science and Technology where it was treated using an optimised cadmium chloride 

treatment. The results were encouraging as a highest efficiency of 5.8% was measured.  

Once the sample was returned it was analysed so it could be used as a benchmark sample.  

Figure  4.39 shows a cross section of the sample treated with a pre-optimized cadmium 

chloride treatment which was carried out by EMPA. The treatment involved evaporating the 

cadmium chloride as a layer onto the cadmium telluride, followed by annealing in air. The 

cross section in Figure  4.39 shows a large amount of voids through the layer, and the whole 
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cadmium telluride layer has been affected as the columnar morphology of the as deposited 

layer has been replaced by equiaxed grains throughout the layer. 

 
Figure  4.39 – Cross-section SEM image of a pre-optimized cadmium chloride treated cell 

Figure  4.40 shows that there are voids present and the bubble formation in the cadmium 

telluride layer, therefore it can be concluded that the properties of the initial deposited 

cadmium telluride layers is partly the cause of this. The voids seem less abundant in the cross 

section than some of the previous samples, however it is hard to tell the grain size from these 

images, therefore TEM samples were produced. 

  
Figure  4.40 – a) Low magnification surface SEM images of pre-optimized cadmium chloride treated cell b) 

higher magnification SEM surface image of pre-optimized cadmium chloride treated cell 

Figure  4.41 shows that voids are present however the grains are very large near the surface 

and slightly smaller near the junction. The cadmium telluride grains display a large density of 

voids however they have radically increased in size from the pre-treated sample. They have 

become more equixed and rounded compared to the columnar structure, indicating total 

recrystallization. The cadmium sulphide has changed dramatically and all the grains are seen 
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to be of similar size of around 250-500 nm. The larger voids are located near the cadmium 

sulphide/cadmium telluride interface and are over 1 µm in diameter; however near the surface 

they have a diameter of less than 0.5 µm.  

  
 

Figure  4.41–BF-TEM images of pre-optimized cadmium chloride treated cell 

Figure  4.42 shows a planar EBSD map of pre-optimized cadmium chloride treated cell. The 

scan was carried out on an ion beam smoothed surface described in Chapter 3. It was used to 

illustrate the micro orientation. It shows that there is a large degree of texture present. 

  

Figure  4.42 - EBSD Image of pre-optimized cadmium chloride treated cell 
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A Tecnai Osiris™ TEM was used (by FEI) for HADDF imaging and to provide chemical 

mapping for cadmium, sulphur, tellurium, chlorine and oxygen presence of pre-optimized 

cadmium chloride treated cell. This system has a high sensitivity for light elements. EDS 

chemical maps were obtained using ~1 nA beam current for a total acquisition time of 300 

seconds. The analyzed area was 800 x 800 pix, obtained with 500 µs dwell time and multiple 

frames. 

Figure  4.43 shows a HADDF image of the of pre-optimized cadmium chloride treated cell. A 

large amount of voids can be seen clearly as the black regions. Larger voids are seen closer to 

the cadmium sulphide interface with smaller voids visible nearer the surface. The gold back 

contact is seen as a bright layer above the cadmium telluride, with electron deposited 

platinum and ion beam deposited platinum above this. The cadmium sulphide layer is free of 

voids; however some small voids can be seen at the interface with the transparent conducting 

oxide.  

 
Figure  4.43 - STEM-HAADF Image of a pre-optimized cadmium chloride treated cell 
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Figure  4.44 – HAADF STEM image and corresponding EDX chemical distribution maps for cadmium, 

tellurium, sulphur, chlorine and oxygen of the treated sample (data courteous of FEI) 
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Figure  4.44 shows the chemical distribution maps for cadmium, tellurium, sulphur, chlorine 

and oxygen around the cadmium telluride/cadmium sulphide interface. The maps show that 

cadmium is present at highest concentration in the cadmium telluride film around the pores, 

which also contain increased levels of oxygen and chlorine. Limited sulphur diffusion can be 

seen into the cadmium telluride layer from the cadmium sulphide layer. No chlorine, 

tellurium or oxygen can be seen in the cadmium sulphide which indicates little intermixing. 

The results indicate that the cadmium chloride does diffuse down to near the cadmium 

sulphide interface, with some remaining around pores and grain boundaries. 

4.6 Comparison of the Closed Field Magnetron Sputtered Cells to Other Deposition 

Techniques 

As sputtering of cadmium telluride in this manner is a novel process the initial deposition is 

likely to vary from other established techniques. However after the cadmium chloride 

treatment a more standard cell should be produced with a similar microstructure to that of 

other techniques. 

4.6.1 Comparison of the Novel Closed Field Magnetron Sputtered Cells to Closed-Space 

Sublimated Benchmark Cells 

 
Figure  4.45 – A BF-STEM image of a treated CSS deposited cadmium telluride solar cell 

Figure  4.45 shows a BF-STEM image of a cadmium telluride cell with 13% efficiency 

deposited via closed space sublimation which has undergone an optimal cadmium chloride 

treatment. The microstructure has similar aspects to the novel sputtered treated cell shown in 
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Figure  4.41, as it has several twin boundaries in some grains. The grain size is of a similar 

magnitude; however no voids are present in the CSS cell. This could be the biggest 

contributor to the lower cell efficiency of the sputter deposited cell. 

4.7 Summary 

Cadmium telluride based solar cells were sputtered with close-field magnetron sputtering for 

the first time. Cadmium telluride cells were deposited at a high deposition rate, which formed 

small through thickness columnar grains. Working cells were produced after a cadmium 

chloride treatment. An evaporation based technique yielded the highest efficiency. The 

morphology of the grains changed to larger more equiaxed grains. By altering the amount of 

cadmium chloride present during the treatment, it has been discovered that recrystallization 

of sputtered cadmium telluride occurs during the treatment starting at the cadmium sulphide 

interface, as well as removal of stacking defects in post-recrystallized grains.        
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5.1 Introduction 

This chapter focuses on the transparent conducting oxides used in cadmium telluride based 

solar cells, as the properties of every layer is crucial for the devices to function well. The 

ideal transparent conducting oxide will have the highest possible transparency in the 

wavelength range that the absorbing cadmium telluride functions at. A high conductivity 

level is needed so that it can collect charge without losses. Another requirement, especially 

for cadmium telluride based solar cells, is to ensure a smooth surface to prevent any 

protrusion of the oxides grains through the thin cadmium sulphide that would result in 

shunting of the cell.  

The chapter will also focus on the morphology of the different TCO’s available and the 

surface chemistry, as this affects the subsequent layers (cadmium sulphide and cadmium 

telluride) morphology, especially grain size. This chapter also investigates the ability of 

various cleaning methods to remove surface contamination from the surface of the TCO. This 

is important as Chapter 4 has shown pinholes in cadmium sulphide and cadmium telluride are 

due to TCO surface contaminants. The materials investigated in this chapter are the various 

fluorine doped tin oxides from Pilkington as these are available and widely used. Indium 

doped tin oxide (ITO) was also used as it was sputtered using the same system as cadmium 

telluride. In addition ITO possesses the desired properties such as a high transparency and 

high conductivity. 

5.2 Background to Transparent Conducting Oxides 

Transparent conducting oxides are used in many common electrical devices, such as flat 

panel televisions and touch screen devices. The transparent conducting oxide is needed in 

cadmium telluride based solar cells for the electrical contact on the cadmium sulphide (n-

type) side of the cell, as light must pass through in order to reach the cadmium telluride 

absorbing layer. Transparent conducting oxides are metal oxides doped with an element or 

compound. A wide range of possible materials can be used including tin oxide, indium oxide, 

zinc oxide and cadmium oxide all with various dopants, as long as they have a carrier 

concentration of more than 1020 cm-3 with a band gap of approximately 3 eV 80. Apart from 

CHAPTER 5. ANALYSIS OF TRANSPARENT CONDUCTING 

OXIDES FOR CADMIUM TELLURIDE BASED SOLAR CELLS 
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the main properties required by a transparent conducting oxide, some secondary properties 

are also desirable, such as being chemically and thermally stable up to temperatures above 

the deposition temperatures of the proceeding layers. The deposition methods by which the 

material will be put down is also important, as this will impact the properties of the film, such 

as the maximum coating area, or film thickness control.  

5.3 Fluorine Doped Tin Oxide (FTO) TEC Glass 

Fluorine doped tin oxide (FTO) deposited by Pilkington branded as TEC glass, is available in 

different grades. Four FTO-TEC glass grades will be examined in this chapter; they are 

TEC7, TEC 8, TEC 10 and TEC 15. Each transparent conducting oxide has slightly different 

properties, but all are tin oxide, doped slightly with fluorine deposited using an atmospheric 

CVD process.   

  
 

  
Figure  5.1 – Inlens SEM images showing the surface morphology of a) TEC7, b) TEC8, c) TEC10 and d) 

TEC15 fluorine doped tin oxide TCO 

Figure  5.1a shows an SEM surface image of TEC7 and Figure  5.1b shows TEC8. The sheet 
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resistances for these are 7 Ω cm-2 and 8 Ω cm-2 respectively. The surface morphologies are 

only slightly different as TEC7 shows slightly larger grains which range from around 50 nm 

to 3000 nm in diameter. Some grains can be seen to protrude out, giving a higher surface 

roughness than the TEC8, those grains have a slightly smaller, more homogenous grain size 

with most of them around 200 nm, giving a lower surface roughness. As a thin layer of 

cadmium sulphide will be deposited onto the FTO any protruding grains will penetrate 

through the cadmium sulphide shorting the cell. 

Figure  5.1c shows SEM surface images of TEC10 and Figure  5.1d TEC15, the sheet 

resistance for these are 10 Ωcm-2 and 15 Ωcm-2 respectively. The surface morphologiess are 

only slightly different as TEC10 shows slightly larger grains. Comparing these to TEC7 and 

TEC8 the grain sizes are much smaller, at approximately 50-100 nm. This inherently gives a 

much smoother surface.  

5.4 Properties of Pilkington TEC15 TCO 

 
Figure  5.2 - The transmittance of TEC 15 fluorine doped tin oxide TCO 

The transmission of TEC15 is shown in Figure  5.2, which is transparent in the visible range 

(400 nm-700 nm) although at higher wavelengths the transmittance reduces due to high 

carrier absorption losses. In the visible range the transparency is on average above 80%.  

Wavelength (nm)  

Tr
an

sm
is

si
on

 (%
) 



84 
 

  
Figure  5.3 – XPS depth profiles of a) cadmium telluride solar cell on TEC15 coated glass, b) fluorine 

concentration throughout the FTO 

 
The XPS depth profile in Figure  5.3a shows the TEC15 chemical profile. TEC15 is 

comprised of three layers which are shown by the change in elemental concentrations in the 

XPS depth profile analysis. The top layer shows tin and oxygen in a 2:1 ratio, indicating a 

chemical formula of 𝑆𝑆𝑆𝑆2 which is as expected. The XPS depth profile in Figure  5.3b shows 

the varying amount of fluorine dopant in the tin oxide layer. The average throughout the layer 

can be seen to be approximately 0.35at%. On the surface the concentration of fluorine 

appears slightly less than the bulk; however this is more likely due to etching unevenly.  

 

 

Figure  5.4 – An XPS broad survey scan surface scan of TEC15 showing atomic composition and corresponding 
atomic percentages 

The XPS surface survey scan shown in Figure  5.4 gives the atomic composition of the FTO 

after a 30 second etch was carried out to remove the majority of the carbon surface 

contamination. The tin oxygen ratio is 1:2 as expected with the amount of fluorine at 

~0.8%wt. which is more than that detected by the depth profile in Figure  5.3b. This could be 

due to the surface of the FTO containing a higher amount of fluorine than the bulk.  

 
 

  

  
            

A) B) 

 Name  Peak Binding 
energy 

Atomic 

% 

Sn3d 487.1 31.4 

O1s 531.2 55.1 

C1s 285.8 11.9 

F1s 685.3 0.8 
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Figure  5.5 – TEM image of TEC15 with cadmium sulphide and cadmium telluride deposited in a superstrate 

configuration  

Figure  5.5 shows a TEM image showing the FTO deposited onto a glass substrate with 

cadmium sulphide and cadmium telluride deposited onto the surface. The FTO layer has a 3 

layer structure deposited onto the soda lime glass substrate. The first layer is only tens of 

nanometres thick consisting of undoped tin oxide, then another thin layer of silica, followed 

by 400-500 nm of fluorine doped tin oxide. The slight doping of fluorine makes the tin oxide 

conductive with a sheet resistance of 15 Ωcm-2 (as measured by Pilkinton). The 

microstructure of the doped layer can be seen to be fairly columnar with the larger grains 

nearer the top surface reaching ~300 nm in width. The roughness of the FTO can be seen, 

particularly in the two highlighted areas in Figure 5.5 where the tin oxide grain almost 

protrudes through the cadmium sulphide. This shows that at least a 200 nm layer of cadmium 

sulphide is needed for total coverage of TEC15. The cadmium sulphide layer is contacting 

the FTO consistently without any voids larger than several nanometres.  

5.5 Microstructural Analysis of TEC10 TCO 

TEC10 is midway in the sheet resistance scale of the commercially available Pilkington TEC 

glass range. It has adequate sheet resistance for cadmium telluride based solar cells. The 

TEM image in Figure  5.6 shows the TEC10 FTO structure in cross section deposited onto a 

glass substrate with cadmium sulphide and cadmium telluride deposited onto the surface. The 

FTO layer has a 3 layer structure similar to the other TEC glasses, deposited onto the soda 

CdTe 

FTO 

Protrusions  

Glass 
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lime glass substrate. The first layer is only tens of nanometres thick consisting of undoped tin 

oxide which in this case has an inconsistent coverage of the underlying glass. The thin layer 

of silica is ~15 nm thick and conformal of the undoped tin oxide. The fluorine doped tin 

oxide is 450 nm thick. The microstructure of the FTO layer can be seen as columnar with 

through thickness grains. The grains coarsen as they reach the top surface reaching ~150 nm 

in width. The roughness of the FTO surface is much less apparent than the other TEC glasses 

which will allow for a much thinner cadmium sulphide window layer to be used without risk 

of protrusion of the tin oxide grains. The surface is much smoother and less jagged with some 

waviness. 

 
Figure  5.6 – BF-TEM image of TEC10 glass showing the three layer structure  

5.6 Microstructural Analysis of TEC7 TCO 

TEC7 is the best preforming TCO available commercially at Pilkington, therefore from an 

electrical performance point of view will be most ideal for cadmium telluride based solar 

cells.  

 
Figure  5.7 – BF-TEM image of TEC7 glass showing a high degree of surface roughness  
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Figure  5.1 and Figure  5.7 shows that TEC7 has a very high surface roughness. The surface of 

fluorine doped tin oxide layer can be seen as extremely jagged causing a non-conformal 

coating on its surface, with many large voids between the peaks. As a good contact is needed 

with the cadmium sulphide layer for electrical conductivity, the large amount of voids will 

reduce this, leading to a poor performance from the device.  

 
Figure  5.8 – XRD scans of TEC7, 8 and 15 

Figure  5.8 shows XRD plots of three of the TEC glasses, consistent with the hexagonal phase 

of tin oxide, suggesting that the fluorine is distributed within the tin oxide layer as an 

interstitial.   

5.7 Surface Cleaning of TEC Glass  

From Chapter 4 it has been found that surface contamination of the TCO can cause pinholes 

in the cadmium sulphide window layer and subsequently in the cadmium telluride absorber. 

Therefore XPS has been utilized to test various cleaning methods in order to determine the 

optimum procedure. XPS is the best analysis technique for examining surface contamination 

layers due to its high sensitivity as well as having an extremely shallow surface penetration 

depth (~5 nm). XPS also has a broad X-ray beam, therefore collecting data from a fairly large 

area (diameter of beam 150 µm).  

5.7.1 Cleaning Methods 

Several techniques were uses to clean the surface and some in conjunction with others. An 

untreated sample was analysed as a reference. 

• A sample underwent a 20 minute anneal on a belt furnace set to 600ºC.  
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• A sample was immersed in a 200 ml ultrasonic bath of soapy water for 50 minutes 

before being cleaned with deionised water and dried with nitrogen.  

• A sample was immersed in a 200 ml ultrasonic bath of isopropanol with 20 ml of 

deionized water for 50 minutes before being cleaned with deionised water and dried 

with nitrogen.  

• A sample underwent a plasma cleaning process using a Glen100-P AE Advanced 

Energy plasma cleaner at a pressure of 335 Torr with a gas flow of 20 sccm of oxygen 

and 30 sccm of argon at a power of 100 Watts. The total cleaning time was 5 minutes.  

• A sample underwent a standardised RCA c3 stage clean, firstly immersing the sample 

in a solution of 5 parts deionized water, 1 part ammonium hydroxide, 1 part hydrogen 

peroxide for 10 minutes at 70ºC to remove any organics/particles. Secondly the 

sample underwent ionic cleaning using a solution of 5 parts deionised water, 1 part 

hydrochloric acid, 1 part hydrogen peroxide at 70ºC for 10 minutes. Finally the 

sample is removed and cleaned with deionised water and dried with nitrogen.  

• A sample underwent a 4 step process consisting of isopropanol ultrasonic bath 

followed by the soapy water bath, followed by an anneal and finally plasma cleaning.  

All the samples were properly handled and transferred into the XPS vacuum chamber within 

30 minutes of being treated to avoid recontamination of the surface. 

Sample Description 
Untreated No surface clean 
Furnace Heated on a belt furnace at 600ºC 
IPA Ultrasonic bath using IPA 
Plasma Plasma cleaning cycle 
Soapy water Ultrasonic bath using soapy water 
RCA clean 3 step standard RCA clean procedure 
4 step process Ultrasonic bath using IPA then soapy water, 

annealed at 600ºC finally plasma cleaned 
Table  5.1 – Summary of TEC glass cleaning procedures 
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5.7.1.1 Surface Analysis of the Untreated TEC10 Sample  

  

  

Figure  5.9 –High resolution XPS scans of; a) carbon 1s; b) oxygen 1s; c) tin 3d and d) fluorine 1s peaks, for the 
untreated sample 

Figure  5.9 shows the high resolution XPS scans of the individual elements found on the FTO 

surface.  Figure  5.9a shows the carbon peak due to contamination from the atmosphere. 

However this is usual in most XPS scans unless a long etch is carried out. Figure  5.9b shows 

the oxygen peak where the larger peak corresponds to the peak from the tin oxide, however a 

smaller peak was fitted with a higher binding energy, likely due to a surface oxide 

contaminant. Figure  5.9c shows the tin 3d3 and 3d5 double peaks from the tin oxide. 

Figure  5.9d shows no fluorine is detectable unlike in Figure  5.4 as it underwent an ion etch in 

the XPS chamber to remove most contaminants from the surface. This shows the untreated 

sample had a significant amount of surface contamination and that no fluorine was detectable 

on the surface of the sample. 

5.7.1.2 Surface Analysis of the Annealed TEC10 Sample  

Figure  5.10 shows the high resolution XPS scans of the individual elements found on the 

FTO surface after the sample underwent a 20 minutes anneal on a belt furnace at 600ºC. The 

sample was annealed in order to evaporate off any volatile contaminants.  Figure  5.10a shows 

two carbon peaks one due to contamination from the atmosphere another possibly from the 

annealing process. Figure  5.10b shows the oxygen peaks where the larger peak corresponds 
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to the peak from the tin oxide. A smaller peak was fitted with a higher binding energy similar 

to the untreated sample but with a higher intensity which may be a result of annealing. 

Figure  5.10c shows the annealed sample had a significant amount of surface contamination 

and that no fluorine was detectable on the surface of the sample. 

  

  

Figure  5.10 – High resolution XPS scans of; a) carbon 1s; b) oxygen 1s; c) tin 3d and d) fluorine 1s peaks, for 
the annealed sample 

5.7.1.3 Surface Analysis of the TEC10 Sample Cleaned in a Ultrasonic Bath of Isopropanol  

Figure  5.11 shows high resolution XPS scans of the individual elements found on the FTO 

surface after undergoing an isopropanol ultrasonic bath clean.  Figure  5.11a shows two 

carbon peaks due to contamination from the atmosphere and residues from the IPA solution. 

Figure  5.11b shows the oxygen peak where the larger peak corresponds to the peak from the 

tin oxide and a smaller oxygen peak was fitted with a higher binding energy, likely due to a 

surface oxide contaminant. However it was less prominent than other samples indicating 

some oxide contaminant removal. Figure  5.11c shows the tin 3d3 and 3d5 double peaks from 

the tin oxide. Figure  5.11d shows no fluorine detectable on the surface of the sample, whereas 

a 0.8 atomic % could be detected if the sample undergoes a 30 seconds ion beam etch as 

demonstrated in Figure  5.4 
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Figure  5.11 – High resolution XPS scans of; a) carbon 1s; b) oxygen 1s; c) tin 3d and d) fluorine 1s peaks, for 

the IPA cleaned sample 

 

5.7.1.4 Surface Analysis of the TEC10 Sample after Soapy Water Ultrasonic Bath Cleaning  

  
 

  
Figure  5.12 – High resolution XPS scans of; a) carbon 1s; b) oxygen 1s; c) tin 3d and d) fluorine 1s peaks, for 

the soapy water cleaned sample 

Figure  5.12 shows similar results to the IPA sample, however there is less carbon 
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contamination as the soapy water did not contain any carbon containing elements, therefore 

less residue was detected on the surface. Figure  5.12d shows that no fluorine was detectable 

again, indicating this is not an ideal cleaning method. However it did remove some carbon 

contaminants as shown by the smaller peak in Figure  5.12a compared to the untreated 

sample. 

5.7.1.5 Surface Analysis of the TEC10 Sample which underwent a Plasma Clean 

   

  
Figure  5.13 – High resolution XPS scans of; a) carbon 1s; b) oxygen 1s; c) tin 3d and d) fluorine 1s peaks, for 

the plasma cleaned sample 

Figure  5.13 shows XPS scans of carbon, oxygen tin and fluorine for the sample which 

underwent a plasma cleaning treatment for 5 minutes. The carbon and oxygen peaks remain 

as shown in Figure  5.13a and Figure  5.13b, however Figure  5.13d clearly shows a fluorine 

peak giving a concentration of just over 1 at.%. So far only this treatment has been aggressive 

enough to give any fluorine readings. However some oxygen and carbon contamination 

remains on the surface.  

  
  

 
 

  

 
              

C1s Scan A

C1s Scan B

C1s Scan C
  

  
 

 

  

 
              

O1s Scan A

O1s Scan B

  
  

 
 

  

 
            

Sn3d3 Scan ASn3d3 Scan A

Sn3d5 Scan A

Sn3d3 Scan A

  
  

 
 

  

 
            

F1s Scan A

A) B) 

C) D) 



93 
 

5.7.1.6 Surface Analysis of the TEC10 Sample Cleaned using a Standard 3 Step RCA 

Cleaning  

  
 

  
Figure  5.14 – High resolution XPS scans of; a) carbon 1s; b) oxygen 1s; c) tin 3d and d) fluorine 1s peaks, for 

the RCA cleaned sample 

Figure  5.14 shows the XPS high resolution scans for the sample which underwent a RCA 

cleaning procedure. Carbon and oxygen contamination of the surface remains as shown in  

Figure  5.14a and Figure  5.14b. Figure  5.14d shows that no fluorine is detectable, suggesting 

that the surface contamination is still too thick to pick up any signal from the TCO materials. 

5.7.1.7 Surface Analysis of the TEC10 Sample Cleaned using a 4 stage Process  

As some of the cleaning methods had some success, combining these together to remove the 

difference constituents which make up the surface contamination may provide a cleaner 

surface. Therefore undergoing the two ultrasonic bath cleans could remove some carbon and 

oxides from the surface, followed by an anneal in a furnace to evaporate the remaining 

residue from the ultrasonic baths. Finally a plasma clean should help to remove any formed 

layers from the surface. 

Figure  5.15 shows the results of the XPS scan for the sample which underwent all four 

treatments in succession.  
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Figure  5.15 – The samples which underwent 4 stage cleaning process XPS high resolution scans of; a) carbon 

1s; b) oxygen 1s; c) tin 3d and d) fluorine 1s peaks 

Figure  5.15d clearly shows a fluorine peak with an atomic concentration of just over 1%. 

However Figure  5.15a still shows carbon contamination and Figure  5.15b shows some 

oxidation of the surface. Combining the treatments has not had the desired effect of removing 

all constituent surface contaminants. 

Overall the plasma cleaning appears to have the best results, therefore it is recommended that 

all substrates undergo at least a 5 minutes plasma clean before any thin film is deposited. 
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5.8 Development of Indium Doped Tin Oxide (ITO) Transparent Conductor  

  
Figure  5.16 –Inlens SEM; a) surface image of ITO on a glass substrate and b) cross section image of 

Glass/ITO/CdS/CdTe solar cell stack 

Figure  5.16a shows an SEM image of indium doped tin oxide deposited via close-field 

magnetron sputtering. The surface is very flat as most grains are of similar magnitude, around 

50 nm in diameter. Figure  5.16b shows a cross section of a complete cadmium telluride cell. 

The ITO layer can be seen to have a columnar structure, which is 600 nm thick. Above this a 

thin layer of cadmium sulphide can be seen with a thickness of 70 nm. This smooth interface 

demonstrates how flat the sputtered indium doped tin oxide layer is. This is advantageous as 

the films are very conformal, therefore any roughness in underlying films often leads to 

rougher depositions of the overlying films.  

5.9 Summary 

From the commercially available TEC glasses from Pilkington the most suitable substrate for 

the cadmium telluride based solar cells is TEC10. As the roughness of the FTO surface is 

much less apparent than the other TEC glasses, this will allow a much thinner cadmium 

sulphide window layer to be used without risk of protrusion of the tin oxide grains, and still 

providing an adequate sheet resistance of 10Ωcm-2.  

Indium doped tin oxide would make an ideal TCO for cadmium telluride based solar cell due 

to its excellent conductivity as well as a very low surface roughness allowing a cadmium 

sulphide layer of less than 100 nm to be used.  
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6.1 Chapter Scope 

This chapter will focus on the effects of the cadmium chloride treatment on close spaced 

sublimated cadmium telluride solar cells. The relationship between performance and 

microstructural properties will be investigated by means of extensive characterization of pre-

treated and post-treated closed space sublimated samples.  

The investigation of the cadmium chloride treatment is highlighted in this chapter as it is the 

most crucial and challenging step during the manufacture of high efficiency cadmium 

telluride solar cells.  

Much debate about the actual role of the cadmium chloride treatment in the processing of the 

solar cells is evident from the literature survey in Chapter 2. In industry it is taken as a “must 

do” processing step, although it is not known exactly what the process step is doing to the 

solar cell. The untreated solar cell is unusable commercially as cell efficiencies are often 

negligible. However after undergoing a cadmium chloride treatment the efficiencies can rival 

that of single crystal silicon solar cells. No extra layers are left on the sample after the 

treatment, therefore it is affecting the existing layers in the solar cell and altering them to 

form a working viable cell. Understanding what the treatment is doing to the cadmium 

telluride/cadmium sulphide p-n junction is therefore paramount to increasing the efficiency. 

The Shockley-Queisser limit for cadmium telluride solar cells is approximately 30% and so 

far the highest efficiencies of cadmium telluride based solar cells has reached ~20% so 

further significant increases are still possible. Understanding in detail the exact effects the 

cadmium chloride treatment is having on the as deposited cell stack is then important, to 

understand the desired microstructure for high efficiency cadmium telluride cells.  
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6.2 Experimental Processing  

The thin film cadmium telluride cells were deposited using close-spaced sublimation on 

NSG-Pilkington TEC10 fluorine doped tin oxide (FTO) coated on 3 mm soda lime glass in a 

superstrate configuration. 

The films were deposited in an all in one vacuum process. The substrate was passed through 

different chambers at 40 mTorr vacuum, held above graphite boats with no space between. 

The boats were heated to 650ºC with the different materials, which then sublimed onto the 

inverted substrate.  

Two samples were examined in this chapter, a treated and an untreated cadmium telluride cell. 

The treated sample underwent a previously optimized post deposition annealing cadmium 

chloride treatment. The treatment was carried out in vacuum. Following the layer deposition, 

cadmium chloride was sublimated to a thickness of ~3 µm, and then the sample was heated 

for 8 minutes at 400ºC in a 2% oxygen atmosphere, causing the cadmium chloride layer to 

evaporate. This was followed by a copper doping process by sublimating copper chloride 

onto the cadmium telluride layer77.  

6.2.1 Sample Performance  

The cell efficiencies were measured using standard J-V measurements shown in Figure  6.1. 

The treated sample recorded an efficiency of 11.8%. The second untreated cell was deposited 

using the same conditions but without the cadmium chloride treatment was measured to have 

a cell efficiency of just 0.1%. The electrical performance data is summarised in Table  6.1. 

These two circular small area devices of ~1 cm² area were then finished by applying a 

graphite paste back contact. Since the main difference in the processing of the two cells was 

the use of the cadmium chloride treatment, any difference in microstructure provides 

information on the changes which causes the better performance.  

Figure  6.1 shows how differently the two samples behave. The treated sample acts as it 

should giving a standard JV curve, however the untreated sample produces a JV plot of a 

straight line acting more as a resistor than a solar cell. 
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Figure  6.1 - Current-Voltage curve showing the cell performance of the treated and untreated cells 

Table  6.1 shows the breakdown of the factors affecting solar cell efficiencies. The treated 

sample preforms better in all aspects, as is expected. However the voltage increase after the 

treatment is only approximately 300 mV whereas the main improvement comes from the 

current. Before the treatment the current is negligible but after the treatment almost 22 

mA/cm2 is measured. 

 

 

 

 

 

 

Table  6.1 - Electrical performance values of the treated and untreated cells. 

Electrical Property Treated  Untreated  

Voc (V) 0.770 0.465 

Jsc (mA/cm2) -21.68 -0.92 

Fill Factor 0.71 0.23 

Efficiency (%) 11.77 0.10 
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6.3 Microstructural Characterization of Untreated and Treated Cadmium Telluride  

6.3.1 Grain Morphology 

Surface and fracture cross sections were examined using a FEG-SEM to provide details of the 

grain morphology of the cadmium telluride before and after the cadmium chloride treatment. 

No surface cleaning or preparation was use for the surface images shown in Figure  6.2. The 

micrographs compare the untreated and the cadmium chloride treated cadmium telluride 

surface.  These show that the cadmium chloride treatment causes little effect to the grain size 

or shape, however the grains are seen to be more coalesced after the treatment. The surface 

seems smoother after the treatment with less valleys. These changes on the surface most 

likely occur due to some recrystallization and grains reforming throughout the cadmium 

telluride layer as seen in Chapter 4. Cross sectional SEM images were taken to see if these 

changes happen throughout the stack.  

  
Figure  6.2 – Inlens SEM micrographs of the surface of an a) untreated and b) cadmium chloride treated 

cadmium telluride cell 

6.3.2 Cross-Section Analysis 

Figure  6.3 shows a fracture cross sectional image of the two samples. The fracture is mainly 

intergranular however there is a transgranular component which makes grain size harder to 

visualise. The fracture cross-section gives a good measure of the thickness of each layer and 

it can be seen that the thickness of the cadmium telluride in both samples is 2.2 µm. The main 

difference in the cadmium telluride layer between these two samples is the surface roughness. 

The untreated sample possesses large protruding boulder shaped grains, whereas the treated 

sample has a less rough surface which is evident in Figure  6.3. It also shows that the grains in 

the cadmium sulphide layer seem more defined and rounded, whereas in the untreated stack 

500nm 500nm 
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they are more square. Both samples show compact layers free of large voids. Figure  6.2 and 

Figure  6.3 indicates that the cadmium chloride treatment has an effect on both the cadmium 

telluride and the cadmium sulphide layers and more detailed characterization in the 

succeeding section will examine their changes in more detail. 

  
Figure  6.3 – Inlens SEM fracture cross section images of; a) Untreated CdTe cell; b) treated CdTe cell 

6.4 Cadmium Telluride Grain Characteristics 

6.4.1  Analysis of the Untreated Cadmium Telluride Cells using TEM  

Figure  6.4a shows a BF-STEM image through the cross section of the untreated cell. In 

Figure  6.4a the layers can be clearly distinguished due to their different morphologies. The 

transparent conducting oxide (TCO) is fluorine doped tin oxide (F:SnO2), which is deposited 

by Pilkington glass. It has a 3 layer structure but only the top of the 500 nm fluorine doped tin 

oxide is shown in Figure  6.4a, as is discussed in detail in Chapter 5. The grains of the tin 

oxide possesses a columnar morphology and the surface of the fluorine doped tin oxide can 

be seen as a jagged surface due to the shape of the grains which are fairly wide at the top. The 

jagged surface of the TCO can often cause shorting of the cell if the tip of the grain protrudes 

through the cadmium sulphide layer and contacts the cadmium telluride grains so the device 

will not function. In this cell the cadmium sulphide can be seen as fairly thick (around 200 

nm), and also appears very constant in thickness without pinholes or voids so shorting will 

not occur. The cadmium sulphide grains have a good contact with the TCO as no voids can 

be seen and are conformal absorbing the roughness of the tin oxide grains. The top surface of 

the cadmium sulphide grains is very flat, giving the grains a very square shape 200 nm by 

200 nm. From the TEM images in Figure  6.4a it can be seen that within the cadmium 

telluride grains there is an obvious structure of linear defects shown as parallel lines within 
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the cadmium telluride grains. Figure  6.4b shows a HRTEM image of one of the cadmium 

telluride grains from Figure  6.4a. A high density of defects are visible. 

  
Figure  6.4 – a) A BF-STEM micrograph of the untreated cadmium telluride cell in cross section; b) HRTEM 

micrograph of a untreated cadmium telluride grain tilted to the [110] zone axis 

The cadmium sulphide grains affect the geometry of the cadmium telluride grains deposited 

onto them. The morphology of the underlying cadmium sulphide grains impact the nucleation 

of the cadmium telluride as evidenced in Figure  6.4a and Figure  6.5a which shows that some 

grain boundaries continue from the cadmium sulphide to the cadmium telluride, which effects 

the grain size of the cadmium telluride. Some cadmium telluride grains grow over two 

cadmium sulphide grains giving a wider cadmium telluride grain. Due to this growth and the 

small cadmium sulphide grains, the cadmium telluride grains are smaller nearer the interface, 

as can be seen in the bottom half of the layer. Towards the top end of the cadmium telluride 

layer away from the interface with cadmium sulphide the grains become larger shown in 

Figure  6.4a. The cadmium sulphide grains are uneven at the top due to the roughness of the 

FTO giving the cadmium telluride layer a high degree of roughness shown in Figure  6.5a. 

The nature of the shape of the grains causes voids between the larger grains, usually halfway 

through the layer. Figure  6.5b shows a HRTEM image of the cadmium sulphide cadmium 

telluride interface. A schematic diagram of the layers is shown in Figure  6.6 highlighting the 

key aspects of the cells grain morphology.  
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Figure  6.5 – A) BF-STEM micrograph of the untreated in cross section showing the Glass/TCO/cadmium 
sulphide/cadmium telluride interface and b) HRTEM image of the cadmium sulphide/cadmium telluride 

interface 

 

 
Figure  6.6 – A schematic diagram showing the key aspects of the grain morphology of the layers within the 

untreated CSS deposited cell 

Stacking defects can be seen in almost all of the cadmium telluride grains of this sample 

where the defects extend from one side of the grain to the other. Within the same grain the 

lines are all parallel to one another, but between grains the angle varies. The defects observed 

have the properties of linear defects within the cadmium telluride lattice structure, as they are 

parallel in nature. Using TEM diffraction Figure  6.7b shows lines at the diffracting spots 

from a cadmium telluride grain containing a high density of defects shown in Figure  6.7a.  
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Figure  6.7 – a) BF-TEM image of highlighting a cadmium telluride grain b) corresponding diffraction pattern   

6.4.2 Cadmium Telluride Stacking Defect Analysis in the Untreated Cell 

  
Figure  6.8 – a) Image of a centred [1-10] Kikuchi pattern b) shows one grain of untreated samples tilted to the 

(111) plane 

The linear defects could be one of three types of faults within the cadmium telluride lattice. 

These are either stacking faults which could be intrinsic or extrinsic, as well as twin 

boundaries. The defects are shown in most grains; however some grains appear to show the 

stacking faults more clearly than others. This is due to the different orientation of each grain 

to the incident electron beam. If a grain was tilted to a certain orientation the defects would 

appear much more clearly. Indexing the zone axis which looks directly down the lattice plane 

containing the defects can be done by viewing the Kikuchi patterns. Using the double tilt 

holder, which enables the sample to be tilted around the α and β axes, grains were oriented 

with the correct Kikuchi pattern being centred. It was found that tilting so that the incident 

beam is parallel to the [110] zone axis shown in Figure  6.8a, the beam would be looking 

directly down the (111) plane on which the defects are seen to lie. 
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As the grains are all of different orientations, only one grain can be correctly oriented at one 

specific tilt to observing the stacking faults clearly. Therefore some grains which contain a 

large number of stacking faults appear hazy or clear of defects until that grain is properly 

oriented to view the defects along the (111) plane. Figure  6.8b shows that the tilt of the 

sample greatly affects the clarity of the defects within the cadmium telluride grains. The grain 

with the red marker clearly shows stacking faults and over 20 defects can be counted 

intersecting a half micron line perpendicular to the stacking faults. The grain with the blue 

marker shows a grain which has a hazy pattern, and no clear stacking faults can be seen 

within this grain in Figure  6.8b. However if the beam is then focused on this grain and the 

[110] zone axis is bought to the centre by tilting the sample around the α and β axes, the grain 

will reveal just as many defects as the grain highlighted by the red marker. The grain 

highlighted by the black marker in Figure  6.8b, appears free of stacking faults and only has 

some darker and lighter regions due to scattering. This grain again possesses a large density 

of stacking faults only revealed once the grain is correctly oriented.  

 
Figure  6.9 – a) HRTEM image of an untreated cadmium telluride grain with b) corresponding lattice spacing 

profile, c) FFT and d) HKL planes indicated 

Figure  6.9 shows a high resolution TEM image of an untreated cadmium telluride grain, this 

area has been imaged as it contained few defects, so that lattice spacing measurements and 

atomic planes could be calculated. The lattice spacing along the (011) plane was measured 

over 10 atoms and the average calculated, as 3.35 Å. It was checked by measuring the 

spacing from the FFT image, which gave a similar result. The theoretical atomic spacing for 

cadmium telluride was calculated using Equation 6.1.  

Line Profile

111001

011

54.7º

Lattice spacing from line profile = 3.35Å 
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Equation 6.1 - Theoretical atomic spacing for cadmium telluride 

The theoretical and measured atomic spacing have ~10% difference between them some of 

which could be due to residual strain within the layer. This strain may have been induced 

from rapid cooling after deposition as the films were sublimated at high temperatures and 

then allowed to cool.  

Figure  6.10a shows a HRTEM image of an untreated cadmium telluride grain in an area with 

several stacking fault defects. The defects can be seen to be a stacking fault as the atomic 

layers either side of the defect are seen to be in the same direction. The stacking fault can be 

characterized as an extrinsic stacking fault as there is an extra layer of atoms present, 

demonstrated by the schematic in Figure  6.10b. This extra layer of atoms disrupts the perfect 

lattice, which causes the movement of electrons to be impaired, and can cause recombination 

within the cadmium telluride layer, ultimately reducing the cell efficiency.  

  
Figure  6.10- a) HRTEM micrograph of an untreated cadmium telluride grain showing several stacking faults b) 

schematic of an extrinsic stacking fault in cadmium telluride 

Figure  6.11a shows an untreated cadmium telluride cell with a high resolution image taken 

within one of the cadmium telluride grains which shows a large number of linear defects. The 

lower resolution bright field image in Figure  6.11b shows some of the cadmium telluride 

grains have no defects within them, some grains show a number of defects and some appear 

hazy. This is due to the different orientation of the grains, which gives a misleading 

appearance, the grains have large densities of stacking faults but do not appear in some grains 

and a haze can be seen in others. Once a grain is oriented correctly to the [011] zone axis, it 
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will diffract strongly and the defects will be visible at a high enough magnification. The 

image in Figure  6.11a is at a high resolution correctly aligned to the appropriate zone axis 

and a large density of linear defects can be seen faulting along the (111) plane. This area is 

representative of most grains in an untreated cadmium telluride grain. Both twin boundaries 

and stacking faults are evident before the cadmium chloride treatment. Over 20 defects are 

observed within just a 30 nm area. The defect density is non-uniform since some areas 

contain a high density of faults whereas some areas contain less faults. However, the average 

cadmium telluride grain in the untreated material contains very high densities of defects per 

grain. The defects are also all parallel to each other as they favour forming along the (111) 

plane due to the lower formation energy needed40.  

  
 Figure  6.11 – a) HRTEM image of the untreated cell with b) corresponding BF-TEM image highlighting the 

area the HRTEM image was taken 

6.4.3 Analysis of the Treated Cadmium Telluride Cells using TEM 

Figure  6.12 shows a BF-STEM image of the cadmium chloride treated cell. The image shows 

the same layers as the treated sample however the morphology of some of the individual 

layers has changed. The TCO of TEC10 tin oxide appears identical to that of the untreated 

sample with columnar grains with a jagged surface, with an estimated roughness from peak to 

trough of approximately 30 nm. The cadmium sulphide, which is deposited directly onto this 

layer, shows some change although the grains are still single through thickness grains with an 

average size of 150 nm. There is less order and more variety in grain size as much smaller 

grains down to 50 nm can be seen, which were not present in the untreated cadmium sulphide 

layer. The shape of the grains is seen to be more rounded than the untreated cell on the top 

surface, as well as the sides between the grains. The TCO/cadmium sulphide interface is 

similar to that of the untreated cell with the triangle tips of the tin oxide grains protruding 

<111> 
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partially into the cadmium sulphide but not penetrating all the way. The cadmium 

sulphide/cadmium telluride interface is not as flat as before the chlorine treatment as more 

rounded grains are seen and as before the interface was very flat. Figure  6.12 shows cadmium 

sulphide grains at the interface with the rounded tops and the boundaries lower than the tops 

of the grains. This indicates a change in the cadmium sulphide which could be 

recrystallization or inter-diffusion with the surrounding layers. Another new feature at the 

cadmium sulphide/cadmium telluride interface is a new region of lighter material which is 

seen just above the cadmium sulphide layer and has appeared after the treatment. These can 

be seen spaced out every few microns all along the interface.  

 
Figure  6.12 – BF-STEM image of the treated in cross section showing the TCO/cadmium sulphide/cadmium 

telluride interface 

The cadmium telluride layer in Figure  6.12 can be seen to have changed clearly from the 

untreated cell as recrystallization has occurred during the cadmium chloride treatment 

process. The cadmium telluride grain morphology has changed in that the grains shape has 

become more equiaxed whereas the untreated sample had long thinner columnar grains. The 

grains are now covering more cadmium sulphide grains at the interface whereas before the 

chlorine treatment the cadmium telluride grains were seen to nucleate from one or two 
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cadmium sulphide grains. In Figure  6.12a single cadmium telluride grain can be seen 

contacting several cadmium sulphide grains. The other main observation is that all grains are 

free of defects apart from a few apparent twin boundaries seen by the parallel lines within 

grains along the cadmium telluride lattice plane. The surface of the cadmium telluride grains 

has become less rough after the treatment mainly due to the change in grain morphology as 

the tall thinner grains before the treatment had high peaks and caused deeper troughs between 

the grains which also led to some voids, whereas after the treatment the larger more square 

grains have less peaks and troughs between the grains giving a more smooth surface.  

6.4.4 Characterization of Defects within the Treated Cadmium Telluride Grains 

Figure  6.13 shows a high resolution image of two twin boundaries terminating at a grain 

boundary in a treated cadmium telluride layer. The grain with the twin boundaries is oriented 

to show the (111) plane on which the defects lie, by positioning the grain along the [011] 

zone axis whereas the adjacent grain has a slightly different orientation. The two defects can 

be characterized as twin boundaries as the atomic layers alter direction by 60º either side of 

each boundary. Twin boundaries are known to be less detrimental to the electronic 

characteristics of the material than stacking faults, as the grains within the treated cadmium 

telluride layer have fewer defects remaining since most are seen as twins. The cell efficiency 

can be expected to be higher from a microstructural point of view. Figure  6.13 shows both 

twin boundaries terminating at a grain boundary and not continuing into the next grain, which 

is true for the majority of the defects in both the treated and untreated grains. As the grains 

extend across the entire grain width, cadmium chloride diffusion down the grain boundaries 

will have direct contact with all the edges of the defects within the grains, allowing for the 

shift of the entire lattice forming a more perfect structure. The grain boundary shown in this 

image also shows that the mis-orientation between the two grains is a low angle. As the 

image still shows the perfect lattice structure, different angle boundaries will allow different 

rates of cadmium chloride diffusion, which may promote the passivation of stacking faults in 

some grains before others. The twins in high resolution images can also be seen more clearly 

in the treated sample as all the stacking faults in the grains have all been passivated by the 

cadmium chloride treatment. Some twins remain in the cadmium telluride films as they 

would require much more energy to be removed. Once only few remain the distance between 

them becomes larger, as a stacking fault only requires the lattice to shift over by one atom to 

form a perfect lattice. So if an odd number of twins are present in an area before the treatment 

it is expected that one twin remains in this area due to all the atoms on one side of the twin 
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require to switch orientation by 60º to the <111> direction. Whereas if in an area an even 

number of twins are present before the treatment, only the layers of atoms between the two 

twins need to shift orientation in order for a perfect lattice to be formed. Effectively the twins 

can cancel each other out provided they are close enough.  

 
Figure  6.13 – HRTEM image of two twin boundaries terminating at a grain boundary in a treated cadmium 

telluride layer 
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6.4.5 Interdiffusion during the Cadmium Chloride Treatment 

Chemical distribution maps of the treated cadmium telluride cells show interdiffusion during 

the cadmium chloride annealing treatment. Figure  6.14 shows a STEM-HAADF image with 

corresponding chlorine and sulphur chemical maps. It reveals regions which are chlorine 

enriched. The enriched regions are within the cadmium sulphide layer and at the interface 

with the cadmium telluride layer. The enhanced signal at the surface is due to the background 

signal from the platinum layer (high atomic number) used in sample preparation. The effect 

can be observed in both the chlorine and sulphur maps. The cadmium chloride treatment is a 

post deposition treatment and is carried out by depositing a layer of cadmium chloride on the 

surface of the cadmium telluride and heating to 400ºC for 8 minutes.  This is the only source 

of chlorine in the process.  These observations indicate that the chlorine is transported 

through the cadmium telluride layer to the interface during the annealing process.   

 
Figure  6.14 - A HAADF STEM image and corresponding EDX chemical distribution maps of chlorine and 

cadmium from a cadmium chloride treated cadmium telluride cell  
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Figure  6.15 – a) STEM-HAADF image of the cadmium telluride/cadmium sulphide interface, b) corresponding 

EDX spectra at two points within and outside a chlorine rich region c) corresponding chlorine chemical 
distribution map, d) corresponding cadmium chemical distribution map of the treated cell. 

Figure  6.15a shows STEM- HAADF image of the cadmium telluride/cadmium sulphide 

interface. Figure  6.15b shows two EDX spectra each collected for 90 seconds. One was 

obtained from the chlorine rich region featured in Figure  6.15a and the other in the cadmium 

telluride layer. The spectra show a clear chlorine peak and lower cadmium and tellurium 

peaks in the chlorine rich area. Figure  6.15c and Figure  6.15d shows corresponding EDX 

elemental maps of the area in Figure  6.15a. This region is approximately 250 nm x 100 nm in 

size. The corresponding cadmium map shows depletion of cadmium in this area.  

6.4.6 Grain Boundary Segregation during the Cadmium Chloride Treatment 

TEM and EDX analysis was carried out in the region of grain boundaries.  Figure  6.16a 

shows a TEM image of a triple point grain boundary and Figure  6.16b provides EDX spectra 

from the boundary region and within the grain for comparison. The spectra show a slight 

chlorine peak at the grain boundary whereas no chlorine is detected from the point taken from 

within a grain. 
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Figure  6.16 – a) A HAADF STEM image of two triple point grain boundaries in the center of the cadmium 

telluride layer b) EDX spectra of two points highlighted 

   
Figure  6.17- a) BF-STEM image with corresponding EDX chemical distribution maps of b) chlorine c) sulphur 

Figure  6.17 provides EDX maps to show the location of chlorine and sulphur relative to the 

grain boundaries.  These analyses provide clear evidence for chlorine and sulphur segregation 

at the grain boundaries after the cadmium chloride treatment. The chemical map shows an 

increase in counts for both chlorine and sulphur along the boundaries. Sulphur is seen to 

diffuse into the grains further than the chlorine, also indicated by the EDX spectra in 

Figure  6.16b. 

   
Figure  6.18- a) shows BF-STEM image with corresponding chemical distribution maps of b) chlorine c) sulphur 

As most of the chlorine is observed in regions along the cadmium telluride/cadmium sulphide 

interface, the chlorine must diffuse from the top surface of the cadmium telluride to the 
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interface during the heat treatment and this is further confirmation that the likely route is 

from the surface through the grain boundaries to the interface. This is shown more clearly in 

Figure  6.18. Figure  6.18a shows a BF-STEM image of the cadmium telluride and cadmium 

sulphide layers and Figure  6.18b shows a chlorine chemical distribution map of the same 

area. The map shows a chlorine region at the interface with slight increase in intensity at 

grain boundaries, which is an indication of the diffusion path of the chlorine. Figure  6.18c 

shows a sulphur distribution map, indicating that sulphur is diffusing up during the cadmium 

chlorine treatment and initially along grain boundaries but more diffusion into the cadmium 

telluride grain is visible. 

6.5 Stacking Fault Removal via Cadmium Chloride Treatment Observation in TEM  

Through the use of TEM it has been discovered that the as-grown cadmium telluride grains 

have a very high density of linear defects. During the annealing cadmium chloride treatment, 

it appears that the cadmium telluride grains undergo recrystallization and rearrangement at 

the atomic scale to remove the large majority of defects present in the crystals. This is one of 

the key factors that produces a working cell, as before the cadmium chloride treatment when 

the cadmium telluride grains had a large density of defects, no photovoltaic device efficiency 

is recorded. After the treatment very few defects remain and they can be seen more clearly 

due to the reduction. The remaining defects appear to be twin boundaries as the contrast alters 

either side of the twin indicating a change in lattice direction, whereas a stacking fault will 

not. The removal of defects in particular stacking faults can therefore be seen as one of the 

most important roles of the cadmium chloride annealing treatment to the cell. From the 

literature stacking faults and other defects are known to act as electron sinks/recombination 

centres and prevent charge collection and inhibit the free movement of elections within the 

lattice. From the TEM images in Figure  6.4 the untreated sample, it can be seen if an electron 

hole pair is separated within a cadmium telluride grain, by an incoming photon, near the 

centre of the cadmium telluride layer, the electron/hole must travel through 1 µm of the 

cadmium telluride material passing over tens of stacking faults in the imperfect lattice. Every 

stacking fault within the cadmium telluride lattice will be a potential sink for the electron 

which will then recombine and not produce any charge. The treated cell in Figure  6.12 shows 

that many of the cadmium telluride grains have an almost perfect lattice structure, with only 

some twins present, which from literature are said to be less detrimental to the electronic 

properties of the material than stacking faults. 
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6.5.1 Morphological Changes during the Cadmium Chloride Treatment 

The high angle annular dark field (HAADF) detector detects the electrons which have been 

deflected the most, and have undergone elastic scattering. Therefore the heaviest elements 

will show up brightest in the images.  

Figure  6.19a displays a HAADF STEM image of the untreated stack. The thin columnar 

shape of the cadmium telluride grains can be seen clearly with a large amount of linear 

defects within the grains. The grains can be seen to be only several hundred nanometres in 

diameter but some are through thickness with the linear defects going across the width of the 

grains terminating at the boundaries. This indicates that as the grains grew from the cadmium 

sulphide the stacking sequence could be faulted as each monolayer was added. This is likely 

due to the low stacking fault energy of cadmium telluride40. 

  
Figure  6.19 – HAADF STEM image of a) untreated cell showing stacking faults b) Treated cell showing twin 

boundaries  

Figure  6.19b shows that the treated sample has a large density of twin boundaries. The layers 

can be seen clearly due to the difference in atomic weight between them. The gold back 

contact can be seen clearly as a thin layer between the platinum and the cadmium telluride as 

it has the highest atomic number. The cadmium telluride grains can be seen to range from a 

few hundred nanometres up to 2 µm in diameter. Most of the cadmium telluride grains have a 

large amount of twin boundaries within them which are seen as the parallel lines going from 

one side of the grain to the other always terminating at the grain boundaries. Between the 

twins there is a change in contrast due to the change in lattice direction by 60º. The cadmium 

sulphide layer has a large void above it and smaller voids under it after the treatment process. 

There is also a region of lighter elemental composition above the cadmium sulphide layer 

which is likely to be a chlorine rich area. The fluorine doped tin oxide is seen to have long 
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columnar grains which penetrate partly into the cadmium sulphide layer.  Figure  6.19b shows 

a high magnification HAADF image of the cadmium telluride/cadmium sulphide interface, 

voids can be seen to have appeared above and below the cadmium sulphide layer. HAADF 

imaging gives a different perspective so that the elements with the higher atomic number 

appear bright whereas voids appear dark. The image also shows an area of low atomic weight, 

which is indicated by the darker regions in the cadmium sulphide layer. These are most likely 

chlorine rich regions. The cell may have been slightly over treated, leaving some residual 

chlorine at the interface, which is seen to agglomerate, forming only in certain regions. These 

regions may be detrimental to the properties of the cell, as they obstruct the p-n junction. In 

one area of the cadmium sulphide, a grain is seen to be replaced by a chlorine rich particle, 

seen by the change in contrast of the grain. The void formation around the p-n junction will 

also have a negative effect on the cell properties as the contact area is reduced, limiting the 

electrical activity at the junction. The tin oxide grains can also be seen to clearly penetrate 

part way into the cadmium sulphide grains.  

6.6 Interdiffusion Investigation via Depth Profiling  

6.6.1 Depth Profiling using XPS for Chemical Distribution throughout the Cell 

 

 

Figure  6.20 – a) XPS composition depth profile (atomic percent against etch time (seconds)) of the treated 
cadmium telluride/cadmium sulphide cell, b) a chlorine composition depth profile of the cell 

XPS composition depth profile measurements shown in Figure  6.20 were carried out to 

examine the elemental distribution of the layers with depth after the cadmium chloride 

treatment and to examine the level the chlorine diffusion through the layers, over a larger area 

than can be measured in TEM. The XPS composition depth profile of the cadmium chloride 

treated sample revealed a constant level of chlorine as well as oxygen in the cadmium 

telluride.  Both of these elements were introduced during the cadmium chloride treatment. 

Etch Time 
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The chlorine concentration in the treated cell rises at the cadmium sulphide interface from 

0.15 at% to 0.3 at%. This is shown clearly in Figure  6.20b. 

6.6.2 Dynamic Secondary Ion Mass Spectrometry (SIMS) Depth profiles 

Dynamic secondary ion mass spectrometry (SIMS) was carried out on the treated sample. 

SIMS was non-quantitative apart from the chlorine in the cadmium telluride layer as a 

standard reference sample of chlorine in cadmium telluride matrix was obtained. Therefore 

the chlorine concentration can be calculated within the cadmium telluride layer only. 

Figure  6.21a shows the SIMS depth profile for caesium ions. The main elements of interest 

which ionise well with the positive caesium ions are chlorine, oxygen, sulphur and tellurium. 

Two chlorine isotopes were scanned for, 35 chlorine and 37 chlorine. It can be seen that at 

the surface, the concentration is around 0.4 at% which then drops down rapidly in the first 

several seconds of etch time to around 0.07 at%. After this in the bulk cadmium telluride the 

chlorine concentration increase very steadily from 0.07 at% to 0.08 at% until reaching the 

cadmium sulphide interface at which it peaks to its maximum concentration 0.7 at% ten times 

that within the bulk cadmium telluride. This reinforces the results seen in EDX and XPS, 

which indicate that the chlorine is diffusing down to the cadmium sulphide interface, where it 

builds-up. However some residue is remaining on the surface from the treatment. The sulphur 

concentration with depth can be seen to increase from the surface to the cadmium sulphide 

layer, increasing down the cadmium telluride layer toward the cadmium sulphide. This 

indicates that as the chlorine is diffusing down the sulphur is diffusing up. Indication of this 

has also been seen in EDX as sulphur has been observed at grain boundaries in Figure  6.18c. 

The oxygen profile shows that the largest amount is at the surface, which is most likely due to 

a thin oxide layer, then decreases though the cadmium telluride, which is due to oxygen 

diffusion effects, as it is further away from the surface where the source of oxygen is located. 

The oxygen then increases rapidly as only the tin oxide layer is penetrated.  
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Figure  6.21 – SIMS depth profile of the treated cadmium telluride cell using a) caesium ions b) oxygen ions  

Figure  6.21b shows the SIMS depth profile generated using positive oxygen ions. The 

elements of interest which are readily ionized by oxygen are sulphur, copper, tin, cadmium 

and tellurium. The sulphur which is also ionised by caesium ions follows the same pattern, 

only there is a slight drop of sulphur at the surface which then increases towards the cadmium 

sulphide due to sulphur diffusion upwards towards the top of the cell. The tellurium 

distribution is as expected apart from a decrease at the surface like the sulphur. The cadmium 

follows the same trend as the tellurium except within the cadmium sulphide, in which it 

increases whereas the tellurium decreases as is expected. The tin follows the expected 

distribution which is minimal through all the layers until the tin oxide layer is penetrated. 

Copper is of much interest and two isotopes were scanned for, 63 copper and 65 copper. They 

both follow each other with a ratio of 1:6 which is the correct ionisation rate between the two 

isotopes, therefore the possibility of any overlapping masses can be observed. The two 
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copper profiles follow each other well, indication no particles with similar masses were being 

detected as copper. The copper at the surface is of highest concentration, which may have 

impacted the ionisation rate of the other elements at the samples surface. The copper 

concentration decreases during the first quarter of the cadmium telluride layer. After this it 

drops to a negligible amount, and then peaks up again toward the cadmium sulphide interface.  

6.7  Investigation of Cadmium Telluride Grain Crystallography  

6.7.1 X-Ray Diffraction Comparison of Treated and Untreated Cadmium Telluride 

 
Figure  6.22 - XRD plot of the treated and untreated sample. 

The XRD analysis shown in Figure  6.22 was carried out to show the effect of the cadmium 

chloride treatment on the cadmium telluride layer. The XRD analysis shows that although the 

same peak positions are present, their relative intensities are different which is indicative of a 

change in the preferred orientation of grains in the two samples. The untreated XRD scan 

shows a broadening of the (220) peak. This is further investigated in chapter 8 by use of 

transmission electron backscatter diffraction (TEBSD).  
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6.7.2 Electron Backscatter Diffraction on Cadmium Telluride Solar Cells 

Electron back-scatter diffraction (EBSD) requires a very smooth surface for effective 

microstructural mapping.  Therefore to analyse the surface of the cadmium telluride directly a 

section of the surface was smoothed with a Focused Ion Beam. The result of this sample 

preparation is shown in Figure  6.23 and this provides an adequately smooth surface for 

EBSD. EBSD can provide a wide range of useful measurements and information, such as 

grain size and preferred orientation.  

 
Figure  6.23 - An SEM image of the area smoothed with the ion beam for EBSD analysis.  

6.7.3 Electron Backscatter Diffraction of the Untreated Cadmium Telluride 

Electron backscatter diffraction (EBSD) was carried out on the untreated cadmium telluride 

surface however the maps collected were of poor quality due to a large degree of misindexing 

of the Kikuchi patterns by the cubic phase file. This is further investigated in Chapter 8. 

 10 µm 
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6.7.4 Crystallographic and Grain Morphology of Treated Cadmium Telluride Thin Films  

 
Figure  6.24 –a) An EBSD derived image quality map with IPF and b) twin boundaries overlaid in blue of the 

cadmium chloride treated cadmium telluride layer, after FIB polishing 

Figure  6.24a shows an EBSD derived inverse pole figure/image quality composite map from 

the cadmium chloride treated cell.  The range of colours contained within this map suggests 

that the microstructure possesses none or only weakly preferred grain orientation, a 

conclusion which was confirmed with more detailed analysis of the EBSD data.  This map 

also shows that the microstructure contains a significant number of twin boundaries.  

Figure  6.24b shows the EBSD map of the twin boundary distribution, highlighting the 60º 
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angle boundaries. This shows there is a high amount of twins present within the treated 

sample. The vast majority of the twins can be seen running along the width of grains always 

terminating at grain boundaries. The untreated sample did not index well enough to be able to 

produce a twin boundary distribution map, possible due to the high density of stacking faults. 

However no twinning was observed in the untreated sample (although the high density of 

stacking faults may have obscured their detection). The average grain size calculated with 

EBSD for the cadmium chloride treated sample was ~0.9 µm, which is slightly smaller than 

most measurements for CSS grown thin films. 

6.7.5 Transmission Electron Backscatter Diffraction (TEBSD) for Twin Analysis 

Transmission electron backscatter diffraction was carried out in cross section of the cadmium 

telluride cells in order to characterize the grain boundaries and twin boundaries as it provided 

a higher spatial resolution than standard EBSD.  

Figure  6.25 shows a transmission electron backscatter diffraction derived image quality map 

of the treated cadmium telluride cell. All the subsequent layers can be seen.  

 

 
Figure  6.25 – Transmission electron backscatter diffraction maps of the treated cadmium telluride cell showing 

a) image quality b) image quality overlaid with inverse pole figure 

Figure  6.25b shows a transmission electron backscatter diffraction derived image quality 

overlaid with inverse pole figure map of the treated cadmium telluride cell, the colours 
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indicate a grain orientation. The cadmium telluride grains can be seen to have twins within 

them as orientation change can be seen by a change in colour, occurring within many of the 

grains. Most of the grains include the twins, as seen by the planar EBSD in Figure  6.24b. The 

grain structure can also be clearly seen by these maps as each grain is at a different 

orientation. The cadmium telluride layer does have through thickness grains as well as 

smaller grains nearer the cadmium sulphide interface. The cadmium sulphide grains index 

well to the hexagonal phase, which shows a fairly random orientation distribution. 

6.8  Summary 

The primary and unexpected observation is that the untreated cadmium telluride contains 

high densities of stacking faults and that these are completely removed by the cadmium 

chloride treatment. This important observation has not been reported previously. Stacking 

faults in the untreated material have been previously observed38,40,75 but the effect of their 

total removal during the cadmium chloride treatment has not been reported.  

Chlorine segregation has been observed directly at the cadmium telluride/cadmium sulphide 

interface, as well as segregation of chlorine at the grain boundaries.  This implies that the 

chlorine, probably in the form of cadmium chloride, penetrates the cadmium telluride layer 

during the annealing process and travels along the grain boundaries to the cadmium sulphide 

interface. XPS composition depth profiling shows a steady concentration of chlorine 

throughout the cadmium telluride of around 0.15 at% which then increases to 0.3% in the 

cadmium sulphide. During the cadmium chloride treatment recrystallization occurs, a process 

which removes the stacking faults. Chapter 7 investigates further by processing cells 

systematically under different conditions to confirm this interesting observation. Twins are 

however observed in the cadmium telluride layer after cadmium chloride treatment. 

The cadmium chloride treatment has other effects. Changes in other microstructural 

properties include grain size and orientation. Sulphur from the cadmium sulphide is also 

observed to have migrated into the cadmium telluride grain boundaries. The electrical 

performance of the cadmium telluride/cadmium sulphide solar cell is highly dependent on 

these changes.  Prior to the cadmium chloride treatment, an efficiency of 0.1 at% is measured 

but following the annealing/cadmium chloride treatment and the cell efficiency improves to 

11.77%.  

 

  



123 
 

7.1 Chapter Scope 

Cadmium telluride solar cells deposited via close space sublimation, before and after a pre-

optimised cadmium chloride treatment were studied in Chapter 6. This chapter will expand 

on this by studying the effects of cadmium chloride treatment on microstructure by varying 

the treatment parameters systematically.  

These include varying the deposition and anneal time from a very short time of 2 seconds and 

then increasing the time incrementally to the optimum treatment time, to produce a time-line 

of how the treatment initiates and recrystallizes the cell into a working device. This will be 

expanded further by “over treating” the cell to see what microstructurally is causing the drop 

in performance in these conditions.  

The next set of experiments varied the annealing temperature of the cadmium chloride 

treatment from slightly below to slightly above the optimum temperature to reveal what 

affect it has on the cell and why the optimum parameters are needed to be so precise. This 

revealed how the increase in temperature accelerated the diffusion of chlorine to the cadmium 

telluride interface and caused an increase in average grain size, whereas a lower treatment 

temperature had the opposite effect. 

The cadmium chlorine treatment consists of two constituents, the addition of cadmium 

chloride and the anneal. To investigate the role of each, the cells were subjected to only an 

anneal at a variety of temperatures and times to see the effect on the defects within the 

cadmium telluride grains, giving an insight into the role each constituent plays. 

7.2 Cadmium Chloride Assisted Re-Crystallization of Cadmium Telluride: The Effect 

of Treatment Time  

7.2.1 Introduction 

In the previous chapter the untreated and fully treated close-space sublimated cells were 

studied. This section will investigate the cadmium chloride process in more detail by taking 

snapshots through the process by analysing samples treated for varying times up to and over 

the optimised treatment time. This will reveal how the treatment process affects the cell on a 

CHAPTER 7. THE INVESTIGATION OF CADMIUM CHLORIDE 

ASSISTED RE-CRYSTALLIZATION OF CADMIUM TELLURIDE 
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microstructural level throughout the process. The initiation of the process will be examined 

and compared with results from sputtered samples. As shown in Chapter 4 the initial effects 

of the cadmium chloride treatment started at the cadmium sulphide interface, after enough 

concentration of chlorine was reached, recrystallization began moving upwards through the 

cadmium telluride layer. However the sputtered samples had a very different microstructure 

to the close space sublimated samples. 

  
Figure  7.1 – Schematic diagram showing grain boundary diffusion path comparison between sputtered and 

sublimated cadmium telluride grains 

Figure  7.1 shows a schematic diagram of the microstructure of sputtered and sublimated cells, 

the main difference being the morphology of the cadmium telluride grains. As sputtered 

grains are columnar and through thickness, they allow rapid diffusion of chlorine down the 

grain boundaries to the cadmium sulphide layer. Sputtered cadmium telluride has small 

grains giving more diffusion paths for the chlorine to migrate down. Close spaced sublimated 

cells have larger equiaxed grains, of which the majority are not through thickness, so the 

chlorine diffusion path is longer to reach the cadmium sulphide layer. Therefore it is likely 

that the recrystallization induced by the cadmium chloride treatment will be different in the 

sputtered and close space sublimated cells. 
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A key process step in the production of high efficiency cells is the activation annealing 

treatment using cadmium chloride. This annealing treatment causes a dramatic improvement 

in cell performance and is known to radically change the structural and electrical 

characteristics of the device as shown in Chapter 6. Cadmium chloride is observed to 

recrystallize the grains, which completely removes the stacking faults. This study will 

concentrate on varying the time of the cadmium chloride treatment in a series of steps from 2 

seconds through to 120 seconds, which is regarded as the optimum time.  Then increasing the 

time further to over-treat the sample, from 120 seconds to 600 seconds. As the annealing time 

is increased its effect on cell microstructure and the distribution of chlorine will be 

investigated, these observations will then be linked to the change in cell performance. This 

provides a further insight into the mechanisms by which the cadmium chloride treatment 

causes changes to the cadmium telluride microstructure and improves cell efficiency. This 

study on close spaced sublimated films provides further evidence that the recrystallization 

process initiates preferentially at the cadmium telluride/cadmium sulphide interface as seen in 

Chapter 4 for sputtered films. 

7.2.2 Sample Description with Varying Treatment Times 

The samples were deposited via close space sublimation similarly to the samples in Chapter 6. 

The treatment and anneal time are, however varied. Table  7.1 shows the sample list for the 

varying time treatments. 5 samples are under treated to give a time-line of the microstructural 

evolution during the cadmium chloride treatment and 2 over treated samples, which may 

exaggerate the treatment effects on the cell. The untreated and optimised treated samples 

were analysed in Chapter 6 and the results will not be reproduced in this chapter. 

Sample Description  Treatment time 

Undertreated  untreated 

Undertreated  2 second CdCl2 deposition and 2 second anneal 

Undertreated  5 second CdCl2 deposition and 5 second anneal 

Undertreated  10 second CdCl2 deposition and 10 second anneal 

Undertreated  30 second CdCl2 deposition and 30 second anneal 

Undertreated  60 second CdCl2 deposition and 60 second anneal 

Optimum  180 second CdCl2 deposition and 180 second anneal 

Over Treated  2 X180 second CdCl2 deposition and 360 second anneal 

Over Treated  4 X 150 second CdCl2 deposition and 600 second anneal 

Table  7.1 – Sample list showing treatment conditions for the samples studied in this section 
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7.2.3 Cadmium Chloride Treatment: Initiation and Under Treatment 

In this experiment the thin film cadmium telluride cell was treated and then annealed for 2 

seconds to allow determination of how and where the cadmium chloride activation process 

begins to recrystallize the material. As reported in Chapter 6 the grains in the untreated 

cadmium telluride layer contained high densities of linear defects, which were predominantly 

stacking faults. Figure  7.2a shows a BF-TEM image of the cell treated which was then 

annealed for 2 seconds. The cadmium sulphide is unaffected by the treatment. The cadmium 

telluride layer shows similar grain morphology to that of the untreated sample, with smaller 

grains at the cadmium sulphide interface and some through-thickness grains. The majority of 

the cadmium telluride grains have a high density of defects. However one grain ~ 500 nm in 

diameter at the cadmium sulphide interface is free of stacking faults, but exhibits several twin 

defects. This implies that the cadmium chloride has diffused to the cadmium sulphide 

interface and initiated the recrystallization of this cadmium telluride grain. The removal of 

stacking faults in a grain during activation appears to occur throughout the whole grain, 

leaving a grain with an almost perfect lattice with only twin defects remaining.  

  
Figure  7.2 – a) Shows BF-TEM image of the cadmium telluride cell treated for 2 seconds and annealed for 2 

seconds, b) HRTEM image of the cadmium sulphide/cadmium telluride interface after 2 seconds cadmium 
chloride treatment 

Diffusion of sulphur between the cadmium sulphide and cadmium telluride occurs as 

observed in Chapter 6. Figure  7.2b shows a high resolution image of the cadmium 

sulphide/cadmium telluride interface of the 2 seconds treated sample. The cadmium telluride 

grain has been orientated to the [011] zone axis.  

Figure  7.3a shows images of a cadmium telluride grain at the cadmium sulphide/cadmium 

telluride interface of the sample treated and annealed for 2 seconds. The grain located 
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adjacent to the cadmium sulphide interface has been recrystallized. The grain was tilted to the 

[011] zone axis for observation along the (111) plane to enable imaging of the lattice. The 

grain has a perfect lattice except for two areas shown in the high resolution images in 

Figure  7.3b and Figure  7.3c. One area has a number of twins and the second area only has 

one twin defect. This supports the observation that the stacking fault defects are removed 

from the whole grain instantaneously, as the surrounding grains still have high quantities of 

stacking faults. The process progresses grain by grain and adjacent grains still have high 

densities of stacking faults. These grains are directly in contact with the cadmium sulphide 

interface and recrystallize preferentially. The grains are ~500 nm in diameter. This suggests 

that the cadmium chloride has diffused to the interface and reached the concentration 

required for recrystallization and stacking fault removal. 

 

 

 

 

 

 

 

 

  
Figure  7.3 – a) A BF-TEM image with b) and c) corresponding HRTEM images of defects within the grain of 

the sample treated for 2 seconds 
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7.2.4 Cadmium Chloride Treatment: Partial Activation 

Figure  7.4a shows a bright field TEM image of the sample treated for 5 seconds. This shows 

some cadmium telluride grains have been recrystallized and the majority of defects removed. 

Most of these grains are located adjacent to the cadmium sulphide interface, which are the 

smaller grains. Most of the larger cadmium telluride grains have a high density of linear 

defects (stacking faults and twins) still present. This implies that the larger grains require 

more energy or cadmium chloride diffusion to recrystallize. The cadmium sulphide interface 

appears unaffected. Figure  7.4b shows the sample treated for 10 seconds. Several cadmium 

telluride grains along the cadmium sulphide interface are recrystallized and twin defects are 

visible.  

  
Figure  7.4 - BF-TEM images of samples treated for a) 5 seconds and b) 10 seconds 

Dynamic secondary ion mass spectrometry (SIMS) was carried out on the sample treated for 

30 seconds. The SIMS analysis was non-quantitative apart from for chlorine, as a reference 

sample of chlorine in cadmium telluride matrix was obtained; therefore the chlorine 

concentration can be accurately calculated within the cadmium telluride layer only. 

Figure  7.5a shows the SIMS depth profile for caesium ions, the main elements of interest 

which ionise well with the positive caesium ions are chlorine, oxygen, sulphur and tellurium. 

Two chlorine isotopes were scanned for, 35 Cl and 37 Cl. It can be seen that at the surface, 

the concentration is around 0.1 at% whereas the fully treated (120 seconds) sample in 

Chapter 6 had a concentration of 0.4 at%. The chlorine then drops down slightly in the first 

several seconds of etch time. After this in the bulk cadmium telluride the chlorine 

concentration increase very steadily from 0.05 at% until reaching the cadmium sulphide 

interface at which it peaks to its maximum concentration 0.25 at% five times that within the 

bulk cadmium telluride. The sulphur concentration with depth can be seen to increase from 
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the surface to the cadmium sulphide layer, and increased further toward the cadmium 

sulphide. The oxygen profile shows the largest amount at the surface and steadily decreases 

through the bulk of the cadmium telluride and then increases rapidly due to the tin oxide layer. 

Figure  7.5b shows the SIMS depth profile generated using positive oxygen ions. The 

elements of interest which are readily ionized by oxygen are sulphur, copper, tin, cadmium 

and tellurium. The sulphur which also ionises by oxygen ions follows the same pattern seen 

by the caesium which showed sulphur diffusing into the cadmium telluride from the cadmium 

sulphide layer. The cadmium and tellurium has constant amounts throughout the cadmium 

telluride film.  

 

          
Figure  7.5 - SIMS depth profile of the 30 second treated cadmium telluride cell using a) caesium ions b) oxygen 

ions 

Figure  7.6a shows a TEM image of the sample which has been treated for 30 seconds. It 

shows that many more of the grains have now been recrystallized. Stacking faults have been 

removed leaving only twin defects. Many of the larger cadmium telluride grains now show 
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no stacking faults. The cadmium sulphide/cadmium telluride interface has become rounded 

suggesting some diffusion has taken place.  Figure  7.6b is a TEM image of the device treated 

for 60 seconds showing further progression of these effects. 

  
Figure  7.6 - BF-TEM images of samples treated for (a) 30 seconds and (b) 60 seconds 

7.2.5 Cadmium Chloride Treatment: Optimum Activation 

Figure  7.7 shows a HAADF STEM image showing the device treated for 120 seconds and 

which has been found empirically to yield the most efficient cells (~13%) has a number of 

twin defects but no stacking faults. The size of the cadmium telluride grains ranges from ~0.5 

µm to 2 µm in diameter. The twin defects in the grains are observed as parallel lines going 

from one side of the grain to the other always terminating at the grain boundaries. There is a 

change in intensity in image between the twins due to the change in grain orientation of 60º. 

There is also a darker region above the cadmium sulphide layer which is a chlorine rich area 

as determined by EDX.   

 
Figure  7.7 – HAADF STEM image of optimum treated sample (120 seconds) 
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7.2.6 Cadmium Chloride Treatment: Over-Treatment 

Figure  7.8a shows a BF-STEM image of the cadmium telluride cell treated for 300 seconds. 

This process creates larger cadmium telluride grains with fewer defects. The interface has 

more regions containing chlorine observed as lighter areas and confirmed by EDX analysis in 

Figure  7.8b. Most of the chlorine which has travelled through the cadmium telluride is at the 

cadmium telluride/cadmium sulphide interface, however some is observed at the cadmium 

sulphide/FTO interface without diffusing further, showing the FTO acts as a block. 

Figure  7.8b also shows the chlorine travelling along grain boundaries and as well as building 

up at triple point grain boundary nodes. Figure  7.8c shows the sulphur chemical distribution 

map with no clear sign of further diffusion into the cadmium telluride. This is likely due to 

the EDX map taken over a large area, and sulphur only diffusing in small quantities. 

 

 

 
Figure  7.8 – a) BF-STEM images of 300 seconds treated sample with corresponding EDX chemical distribution 

maps for b) chlorine and c) sulphur 

Figure  7.9 shows an image from a cell over-treated for 600 seconds. The cadmium telluride 

grains are large with a grain size of up to ~3 µm. Fewer defects are visible. The cadmium 

sulphide interface has many regions with chlorine present. This was confirmed with XPS 

depth profiling in Figure  7.14. The optimized treated sample showed a peak concentration of 

0.3 at% of chlorine at the cadmium sulphide/cadmium telluride interface whereas the 600 
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second treated sample had a peak concentration of 3.4 at%. This build-up of chlorine rich 

regions is detrimental to the p-n junction and correlated to a decrease in efficiency to 8.3%.  

 
Figure  7.9 – BF-TEM image of the sample treated for 600 seconds 

7.3 Cadmium Chloride Assisted Re-Crystallization of Cadmium telluride:  The Effect 

of the Annealing Temperature  

7.3.1 Introduction 

The aim of this section is to apply advanced microstructural characterization techniques to 

study the effects of varying the cadmium chloride annealing temperature on the 

microstructure of cadmium telluride solar cells deposited by close spaced sublimation (CSS) 

and relate this to cell performance. A range of techniques has been used to observe the 

morphological changes to the microstructure as well as the chemical and crystallographic 

changes as a function of treatment parameters. Electrical tests that link the device 

performance with the microstructural properties of the cells have also been undertaken.  

7.3.2 Morphological Changes of the Cell with Treatment Temperature 

Three samples were studied. One underwent a previously optimized post deposition 

annealing cadmium chloride treatment. The treatment was carried out in vacuum following 

the cadmium telluride layer deposition. Cadmium chloride was sublimated at a thickness of 3 

µm, and then the sample was heated for 8 minutes at 400ºC in a 2% oxygen atmosphere, 

causing the cadmium chloride layer to evaporate off. This was followed by a copper doping 

process by sublimating copper chloride onto the cadmium telluride layer. The efficiency of 

this cell was measured to be 13%.  The second cell was deposited using the same conditions 

but annealing was carried out at a lower temperature of 381ºC. The third sample was 
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annealed above the optimum temperature to 429ºC. The efficiency of this cell was measured 

to be 7.7%. The circular, small area devices of ~1 cm² area were then finished for each 

sample by applying a graphite paste contact. The only difference between the samples is the 

annealing temperature, as they underwent the cadmium chloride treatment. Figure  7.7 shows 

a TEM image of the optimized treated cell, showing that the cadmium telluride grains are 

equiaxed and sized in the range 0.5 – 1 µm. Some twinning is evident by the change in signal 

intensity within the same grain. No voids can be seen between any of the grains or at the 

cadmium telluride/cadmium sulphide interface, although there are areas between the 

cadmium telluride and cadmium sulphide that are brighter and possibly caused by a build-up 

of cadmium chloride. No stacking faults are observed in this treated cell. Figure  7.10a shows 

a TEM cross section of the sample treated at 381ºC, a lower temperature than optimum. The 

grains are smaller near to the interface, indicating that the grains have not recrystallized fully. 

Figure  7.10b shows a TEM image of the cell treated above the optimized cadmium chloride 

treatment, the main difference observed is the increase in grain size as they are now sized in 

the range 1 – 2 µm. Some twinning is still observed within the cadmium telluride grains.  

  
Figure  7.10 – BF-TEM images of the cell after the cadmium chloride treatment at a) 381ºC b) 429ºC 

7.3.3 Crystallographic Changes of the Cadmium Telluride Thin Film with Treatment 

Temperature 

Figure  7.11 shows an EBSD derived inverse pole figure overlaid with the image quality (IQ) 

composite map from the cadmium chloride cell treated at 429ºC (higher than the optimum 

temperature) and at 381ºC (lower than optimum).   

Figure  7.11a shows texture maps and pole figures show a random orientation for the samples 

treated at higher temperatures. The sample treated at the lowest temperature had a different 

crystal texture shown in Figure  7.11b.  
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Figure  7.11 - EBSD derived IQ/IPF composite map of the cadmium telluride surface treated at a) 429ºC and b) 
381ºC after being polished by an ion beam.  

All the treated samples showed that the microstructures contain a significant number of twin 

boundaries. The EBSD data was used to calculate the amount of twinning in each of the 

samples. An EBSD map of the cadmium telluride layer treated at 391ºC with the 60º twin 

boundaries highlighted is shown in Figure  7.12a. 

The length of twin boundaries were calculated from the EBSD data and are shown in 

Figure  7.12b. The data shows as the temperature of the cadmium chloride treatment increases 

the length of twin boundaries per unit area decreases. The largest decrease in twin boundaries 

is between 391ºC and 400ºC (which is the optimum temperature).  

  
Figure  7.12 – a) An EBSD derived IQ map with twin boundaries highlighted in blue b) graph showing the 

length of twin boundaries per micron square 

From the EBSD data the average grain size can be calculated and is displayed in Figure  7.13. 

The sample treated at 381ºC had the smallest grain size with an average of 1210 nm as well 
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as the lowest standard deviation. The optimised treatment cell at 400ºC has an average 

cadmium telluride grain size of 1330 nm whereas the highest temperature treatment at 429ºC 

has a grain size of over 1500 nm. This indicates that an increasing treatment temperature 

results in an increase in grain size.   

 
Figure  7.13 - Grain size variation calculated from EBSD in microns as the treatment temperature increases. 

7.3.4 Change of Chlorine Concentration Build-up at the Interface using X-ray Photo-

Electron Spectroscopy  

X-ray Photo-electron spectroscopy was used to measure the chlorine concentration through 

the layers of the stack. The optimized sample contained a low concentration of chlorine 

throughout the cadmium telluride layer of 0.15 at% with a build up at the cadmium sulphide 

interface to a maximum of 0.75 at%.  This indicates that the chlorine has diffused through the 

cadmium telluride and builds up at the cadmium sulphide interface.  The sample treated at a 

lower temperature contained very low concentration close to the cadmium sulphide interface 

close to the XPS detection limit of ~0.1 at%. This sample also showed the least amount of 

recrystallization of the cadmium telluride grains, which is an indication that the amount of 

diffused chlorine is important. The sample treated at 429ºC had the highest concentration of 

chlorine (2.6 at%) at the cadmium sulphide interface, illustrated in Figure  7.14.  

 
Figure  7.14 - Chlorine concentration at cadmium sulphide/cadmium telluride interface at increasing annealing 

temperatures 
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7.3.5 Characterization of Defects in the Cadmium Telluride Grains 

High resolution TEM was used to examine defects in the cadmium telluride grains by tilting 

the grain to the [011] zone axis, along the (111) plane. As shown in Chapter 6 the untreated 

cadmium telluride grains had a high density of twins and stacking faults.  

The treated samples all possessed a much lower density of defects. The density of defects per 

grain was measured by drawing a line perpendicular to the defects and counting how many 

defects intersected the line. Since some defects occurred in close proximity to one another 

higher magnification images were required. Figure  7.15a shows a cadmium telluride grain 

from the sample treated at 391ºC.  It is strongly diffracting, more than the surrounding grains 

as it has been tilted to the (111) plane on which the defects lie. The two white arrows indicate 

the areas with defects the rest of the grain has a perfect lattice.  The two areas at which 

defects occur were then imaged in high resolution in order to resolve the density of linear 

defects present and if they were twins or stacking faults.  

Figure  7.15b shows area 1 from the grain identified in Figure  7.15b, the image clearly shows 

1 twin boundary present in the area. This can be characterized as a twin as the atom planes 

change direction across the defect. Either side of the twin boundary the grain is observed to 

have a perfect lattice with ordered spacing and direction of the atomic planes. Figure  7.15c 

shows Area 2 of the grain identified Figure  7.15a. The high resolution image shows a cluster 

of twin boundaries. Seven twins can be seen in this area.  
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Figure  7.15 – a) A BF-TEM image of a cadmium telluride grain oriented to look at the (111) plane and HRTEM 

images of b) area 1, c) area 2 

The average density of defects was calculated for each sample by analysing 5 grains per 

sample. The sample treated at the lowest temperature had an average of 9 defects per grain 

whereas the sample treated at the highest temperature had 12 defects on average; this 

however could be due to the larger grain size of the higher temperature samples. The number 

of defects varied slightly but the average for all the treatments was ~10 defects per grain. All 

grains analysed had at least 2 defects with a maximum of 20 defects in one grain. All treated 

samples showed a dramatic reduction in the defect density compared with the untreated 

sample. The defects in the untreated samples included both stacking faults and twins. The 

majority of the defects in the treated samples were twin boundaries.  

7.3.6 Performance Properties of the Cells  

Figure  7.16 shows the change in performance of the cells with change in the treatment 

temperature. A range of cells for each temperature were measured and the average efficiency 

calculated. The data indicates that the cells efficiency increases until 400ºC which is the 

optimum treatment temperature (consistent with industrial experience) and then decreases 
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from then as the temperature increases indicating that the cells are becoming over treated as 

the temperature increases the rate of recrystallization of the cadmium telluride layer. All 

treated cells recorded much higher cell efficiencies than the untreated sample.  

 
Figure  7.16 - Cell efficiencies corresponding to different cadmium chloride treatment temperatures 

7.3.7 Summary of Varying the Cadmium Chloride Treatment Temperature 

This study has shown that the temperature of the cadmium chloride treatment is critical to 

cell performance. When carried out at a lower temperature (381ºC) than optimum, the 

cadmium telluride grains were smaller than the optimum sample and had the largest amount 

of twins per unit area; this corresponds to a lower cell efficiency of ~7.7%. This sample also 

had the smallest grain size and highest density of defects. The optimised treated sample at 

400ºC had an efficiency of 13%. However the cell treated at a higher temperature, although 

exhibiting larger cadmium telluride grains, exhibited a lower cell efficiency indicating that a 

large grain size does not necessarily lead directly to high efficiency cells. The annealing 

temperature has a marked effect on the diffusion of chlorine to the cadmium sulphide 

interface; the sample treated at 429ºC was over-treated causing too much chlorine diffusion, 

which concentrated at the cadmium sulphide interface. All defects in the treated samples were 

characterised as twins. The untreated samples contained high densities of both twins and 

stacking faults.  
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7.4 The Effect of Annealing Treatments on Close Spaced Sublimated Cadmium 

Telluride Thin Film Solar Cells 

7.4.1 Introduction and Objectives of the Annealing Treatment without Cadmium 
Chloride 

It is well known that the cadmium chloride annealing treatment is an essential step in the 

manufacture of efficient thin film cadmium telluride solar cells. It has been observed that the 

combination of annealing at ~400ºC together with the addition of cadmium chloride at the 

surface induces re-crystallisation of the cadmium telluride layer and also affects the n-type 

cadmium sulphide.  

It has been found that the as-deposited films contain a high density of stacking faults which 

correspond to low cell efficiency. The cadmium chloride annealing treatment causes a 

significant increase in cell performance and is known to radically change the structural and 

electrical characteristics of the cell.  It consists of two parts, first the introduction of cadmium 

chloride onto the cadmium telluride surface and second, the heating of the device stack. The 

aim of this investigation is to determine the change in the microstructure of the cadmium 

telluride caused by annealing alone. This allowed us to distinguish the role of annealing 

during the cadmium chloride treatment. 

7.4.2 Sample Description for the Annealing Treatments 

The thin film cadmium telluride cells were deposited using close-spaced sublimation on 

NSG-Pilkington TEC10 fluorine doped tin oxide (FTO) coated on 3 mm soda lime glass in a 

superstrate configuration. The films were deposited by CSS in an all in one vacuum process. 

One sample underwent a previously optimized post deposition cadmium chloride annealing 

treatment. The treatment was carried out in vacuum following the layer deposition. Cadmium 

chloride was sublimated as a fairly thick layer and then the sample was heated for 8 minutes 

at 400ºC in a 2% oxygen atmosphere, causing the cadmium chloride layer to evaporate 

completely. This was followed by a copper doping process. The efficiency of this cell was 

measured to be 11.8%.  The rest of the samples were deposited using the same conditions but 

were not subjected to the cadmium chloride treatment. Some of the samples were instead 

annealed in air, at the same temperature as the cadmium chloride sample (400ºC) for 8, 10, 20 

and 30 minutes. Samples were also annealed for 8 minutes at 350ºC, 400ºC and 450ºC. The 

samples were then analysed using TEM to observe the effects of the treatments. 
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7.4.3 Methodology for Stacking Fault Density Measurements 

Stacking fault density was measured by counting how many stacking faults intersect a 1 

micron line orthogonal to the stacking faults. For each sample 10 grains were measured and 

an average calculated. As the visibility of stacking faults can change with grain orientation, a 

double tilt holder was used in the TEM. The grain was tilted to the [011] zone axis prior to 

analysis by moving the Kikuchi pattern into the centre. This exercise was performed for each 

grain to measure stacking fault density.  

7.4.4 Reference Cadmium Chloride treated and Untreated Cadmium Telluride Cells 

Chapter 6 has a detailed analysis of the untreated and cadmium chloride treated cells, the 

untreated cell possessed a high density of stacking faults whereas the treated sample had on 

average several defects per grain.  

7.4.5 Change in Defect Density with Treatment Time and Temperature   

The results shown in Figure  7.17a indicate that there is a slight decrease in stacking fault 

density as the annealing time increases. Figure  7.17b shows the relationship between 

treatment temperature and stacking fault density. A drop in stacking fault density is observed 

with an increase in annealing temperature; each sample was annealed for 8 minutes except 

the untreated sample. The cadmium chloride treated sample shows a much more dramatic 

effect on the stacking fault density.  In fact, stacking faults were completely removed and the 

line defects recorded were all twins. 

 

  
Figure  7.17 – A graph showing line defect density change with treatment a) time c) temperature  

Figure  7.18 shows the difference observed in TEM after different anneal times, Figure  7.18a 

shows the sample after 8 minutes of annealing treatment at 400ºC, which is the same time 

used in the cadmium chloride treatment.  It has an average line defect density of 41.6 whereas 

the treated sample has a density of only 2 (only twins).  
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Figure  7.18 – shows BF-TEM images indicating the change in stacking fault density for the samples annealed at 

a) 400ºC for 8 minutes b) 400ºC for 30 minutes 

7.4.6 Summary of Varying the Annealing Temperature and Time without the Presence of 

Cadmium Chloride 

In Chapter 6 it was observed that as-deposited cadmium telluride contains high densities of 

stacking faults in all the grains.  It was also observed that the stacking faults are completely 

removed by the recrystallization process established by the cadmium chloride treatment. 

Even though this process had only a small effect on to grain size, the efficiency of the cell 

was dramatically improved. Elemental analysis showed that chlorine, probably in the form of 

cadmium chloride, was present at the grain boundaries.  It was also present at the cadmium 

telluride/cadmium sulphide interface implying the movement of the cadmium chloride from 

the surface and through the cadmium telluride layer. 

This study has focused on the effect of the heat treatment part of the cadmium chloride 

treatment and in particular on its effect on stacking fault density. TEM has shown a variation 

in stacking fault density with annealing temperature and annealing time. Stacking faults 

observed within the cadmium telluride grains in TEM were partially removed during an 

anneal. This shows that the energy input during the anneal caused some stacking faults to be 

removed. However, in Chapter 6 it has been observed that almost a complete removal of 

stacking faults with annealing in combination with cadmium chloride.  

Microstructural changes are observed in the cadmium telluride caused by increasing the 

temperature in the range 350ºC to 450ºC. It was also observed that the changes were caused 

by increasing the annealing time from 8 to 30 minutes at an annealing temperature of 400ºC. 

A) B) 

CdTe 

 FTO  

 CdS  

500 nm 500 nm 
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In both experiments, the measurement of the stacking fault density has observed a reduction 

with increasing annealing temperature and annealing time. However, in neither case did the 

process eliminate the stacking faults or reduce the defect density anywhere close to that 

observed with the addition of cadmium chloride. Although the annealing temperature is 

important, it is clear that the cadmium chloride facilitates the cadmium telluride grains to 

completely recrystallize, removing most of the defects in the process. 

7.5 Chapter Summary 

This chapter has investigated the cadmium chloride assisted recrystallization of CSS 

cadmium telluride solar cells.  

By varying the cadmium chloride treatment time from 2 seconds up to the optimum time (120 

seconds), the time-line of the effects of the process has been observed. This showed the initial 

effects of the treatment take place within smaller cadmium telluride grain nearer the cadmium 

telluride/cadmium sulphide, recrystallizing them first and removing the majority of stacking 

defects. It was also observed that if a grain recrystallizes, the entire grain is usually affected. 

Increasing the treatment time up to 600 seconds, caused further grain recrystallization, as an 

increase in grain size has been observed, further removing stacking defects. Increasing the 

treatment temperature had a similar effect, as treating the cadmium telluride cell for a longer 

time, as a higher temperature accelerated the treatment effects. Some effects such as grain 

coarsening and further defect removal are seen as advantageous, which occurs when the 

cadmium telluride is subjected to either a higher treatment temperature or a longer treatment 

time. However deviating from the optimum time and temperature of the treatment, to a longer 

treatment time or a higher temperature, increases diffusion of chlorine down to the p-n 

junction, damaging the cell, leading to a drop in cell performance.  

By only annealing the cadmium telluride cell, a slight drop in stacking defects is observed; 

however without the presence of cadmium chloride the cadmium telluride grains do not 

recrystallize, leaving the majority of the initial stacking defects to remain. 
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8.1 Chapter Scope 

This chapter studies the microstructural and crystallographic characteristics of cadmium 

telluride thin film photovoltaic materials in detail. In Chapter 6 TEM revealed high densities 

of defects in cells deposited via close space sublimation in cadmium telluride before the 

cadmium chloride treatment. It has also been observed that on a focused ion beam smoothed 

planar section, EBSD maps showed signs of mis-indexing of the untreated cadmium telluride 

grains. The cadmium telluride grains recrystallized after the cadmium chloride treatment and 

possessed very different intra-granular defects than before the treatment. The crystallographic 

characteristics of the material before the treatment could not be studied with conventional 

EBSD as it had inadequate spatial resolution. To overcome this, the materials have been 

studied using Transmission Electron Backscatter Diffraction in the SEM (T-EBSD), which 

promises improved spatial resolution. 

8.2 Introduction  

In Chapter 6 the planar EBSD maps collected in untreated cadmium telluride samples were 

found to possess a significant amount of mis-indexed points in the middle of grains.  

Figure  8.1 compares EBSD derived maps collected from treated and untreated cadmium 

telluride planar surfaces. The image quality maps shows that high quality Kikuchi patterns 

are collected from both samples. A comparison of the inverse pole figure/image quality 

composite maps shows speckling within the grains in the untreated sample that is not present 

in the treated sample. A comparison of the confidence index/inverse pole figure composite 

maps shows that these intra granular speckles have a low confidence index and are 

consequently likely to be mis-indexed points. This behaviour is not observed in the treated 

samples. 

 

CHAPTER 8. INVESTIGATION OF LOCALIZED PHASE 

CHANGES IN THIN FILM CADMIUM TELLURIDE 

PHOTOVOLTAIC MATERIAL WITH HIGH LATTICE DEFECT 

DENSITIES 
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Figure  8.1 - EBSD derived IQ map of a) untreated and b) treated, IQ/IPF composite map of c) untreated and d) 

treated, and CI/IPF maps of e) untreated and f) treated cadmium telluride surface  

A) B) 

1  µm 1  µm 

1  µm 1  µm 

1  µm 1  µm 
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To investigate the observed mis-indexing, high quality Kikuchi patterns were collected from 

various regions in the treated and untreated samples, a selection of which are compared in 

Figure  8.2. It was found that some of the patterns in the untreated material did not index 

satisfactorily to the cubic cadmium telluride structure file. 

    

    
Figure  8.2 – Kikuchi patterns collected from a-d) untreated, e-h) treated cadmium telluride layer 

Figure  8.3 compares XRD scans for the treated and untreated samples. The main differences 

observed are the broad peaks located at 39.2º corresponding to the (110) hexagonal peak and 

42.7º corresponding to the (103) hexagonal peak in the untreated sample.  The position of 

these peaks is consistent with the main peaks expected in the hexagonal cadmium telluride 

phase. These peaks could be from a phase with a fine grain size with Scherrer line broadening 

causing the peaks to appear broad.  

 
Figure  8.3 – An XRD scan of a) untreated b) treated cadmium telluride layer 
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The XRD data in Figure  8.3 suggested that a hexagonal cadmium telluride phase is present in 

the untreated condition. To investigate this and map the phase distributions a planar EBSD 

map of this sample was collected using both cubic and hexagonal phase files and the maps 

are shown in Figure  8.4. These maps clearly show that in the untreated condition the material 

contains both cubic and hexagonal phases and high confidence index is achieved in all 

intragranular locations. Although this technique shows the distribution of phases, more 

spatial resolution is needed to study this interesting result in more detail to see how the 

phases are distributed within a grain. 

  
  

 
Figure  8.4 - EBSD derived a) IQ, b) IQ/phase composite and c) CI/Phase composite maps of the untreated 

cadmium telluride surface 
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8.3 Transmission Electron Back-Scatter Diffraction (TEBSD) as a Tool to better 

index Thin Film Cadmium Telluride Solar Cells 

Figure  8.5 shows a TEBSD image quality/inverse pole figure composite map of the untreated 

cadmium telluride cell. The grains show no clear preferred orientation and some evidence of 

twinning are observed.   

 
Figure  8.5 – A TEBSD IQ/IPF composite map of untreated cadmium telluride cell 

Figure  8.6 shows transmission electron back-scatter diffraction image quality/inverse pole 

figure maps of treated cadmium telluride cell. No hexagonal phase was observed in the 

treated condition. 

 
 

 
Figure  8.6 – A TEBSD IQ/IPF composite map of treated cadmium telluride cell 

CdTe 

CdS 

 
FTO 

  0.5 µm 

CdTe 

CdS 

 
FTO 

Twins 



148 
 

Figure  8.7 shows two Kikuchi patterns collected from different areas of nominally the same 

grain.  Figure  8.7a indexed to the cubic phase and Figure  8.7b indexed to the hexagonal phase. 

This shows that both the cubic and hexagonal phases coexist in the same grain.   

  
Figure  8.7 – Kikuchi patterns taken from different regions in the same cadmium telluride grain indexing to a) 

cubic, and b) hexagonal phase files 
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8.4 Embedded Hexagonal Phases Identified using Transmission Electron Back-

Scatter Diffraction 

Figure  8.8 is derived from a TEBSD scan of a cross section of untreated cadmium telluride 

indexed against both cubic and hexagonal phase structure files. Figure  8.8a shows the image 

quality map overlaid with phase. Within the untreated cadmium telluride some grains have 

formed bands of hexagonal material. These bands are usually in 20 - 100 nm thick and run 

across the width of the cadmium telluride grain approximately perpendicular to the growth 

direction.  

Figure  8.8b shows a TEBSD phase map overlaid with a confidence index map. The bands of 

hexagonal phase are seen to index with high confidence index to the hexagonal phase 

structure file indicating that the hexagonal phase is embedded within the cubic grains.  

 
 

 
  
Figure  8.8 – High resolution TEBSD derived maps showing the distribution of the two phases, showing the 
cubic phase in red and hexagonal phase in green overlaid with a) image quality and b) confidence index  
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8.5 Embedded Hexagonal Atomic Stacking in Untreated Cadmium Telluride Grains 

As seen from TEM results in Chapter 6, the main difference between the untreated and 

treated cadmium telluride cells is the high density of stacking faults within the untreated 

material. From TEBSD it has been shown that bands of hexagonal phase have formed within 

cubic cadmium telluride grains. Figure  8.9a shows a HRTEM image of the untreated 

cadmium telluride layer.  This shows a high density of defects within the grain. The defects 

consist of stacking faults and twins, however the distribution is non-homogeneous. Two 

distinct regions of stacking faults every 2 atomic planes for several atomic layers can be seen. 

The stacking in a perfect cubic lattice is AaBbCcAaBbCc… however as a plane is missing 

from every sequence the stacking sequence becomes AaBbAaBa… this is hexagonal wurtzite 

packing. The hexagonal regions have been marked in Figure  8.9a, which appear in bands and 

a schematic diagram of the buried hexagonal phase with cubic phases either side is shown in 

Figure  8.9b. This high density of stacking faults causes a shift from cubic material to 

hexagonal material. Therefore both phases are present within the same grain, as seen by 

TEBSD. This localized change of phase has been reported previously 38,75,81, however this is 

the first time this behaviour has been used to explain the micro-scale behaviour of these 

materials. 

 

 
 

 
 

Figure  8.9 – a) A HR-TEM micrograph of a untreated cadmium telluride grain with highlighted hexagonal 
stacking highlighted, b) schematic diagram of cubic and hexagonal stacked atomic layers 
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8.6 Summary 

TEBSD has been used to produce high resolution phase maps within the cadmium telluride 

layer in solar cell materials for the first time, showing hexagonal areas within cubic cadmium 

telluride grains. This phenomenon has been observed in cadmium telluride grains prior to the 

cadmium chloride treatment. Cadmium telluride grains after the cadmium chloride treatment 

have recrystallized, forming pure cubic grains.  

The hexagonal areas within the untreated cadmium telluride grains are shown using HRTEM 

to form due a high density of stacking faults; in areas which a plane of atoms is missing in 

every sequence.  
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9.1 Chapter Scope 

This chapter will focus on the development of an electron reflector layer for cadmium 

telluride based solar cells deposited via co-sublimation at Colorado State University. The 

electron reflector used is cadmium magnesium telluride, Cd1-xMgxTe (CMT). The CMT 

layer was deposited using different conditions as well as onto cadmium chloride treated and 

untreated cells, some samples undergoing post deposition treatments. The cells were studied 

using SEM, STEM/EDX, TEM, EBSD, SIMS and XPS to investigate whether the 

deposition/treatments could be modified to improve cell efficiency.  

9.2 Introduction 

As seen in Chapter 6 cadmium telluride material readily forms inter-granular defects which 

act as electron sinks. These defects can be reduced with use of a cadmium chloride treatment, 

but it is not possible to eliminate all defects and impurities entirely, as the cadmium chloride 

treatment itself induces impurities into the junction. Therefore to improve the efficiency of 

the cadmium telluride based solar cell, alternative ways of increasing the voltage or current of 

the device should can be considered. One way to increase the voltage of the cell is by use of 

an electron reflector layer, which can be introduced onto the cadmium telluride layer before 

the back contacted is deposited. The reason for the introduction of an electron reflector layer 

is to increase the voltage of the cell by reducing the recombination near the back contract as it 

acts as a conduction band barrier. This should increase the cell voltage by approximately 200 

mV which in-turn will increase the solar cell efficiency by a few percent. Cadmium 

magnesium telluride has a band gap of ~1.9 eV which is high enough to produce an increased 

voltage82. Cadmium telluride and cadmium magnesium telluride are both cubic and have 

similar lattice parameters, therefore the CMT layer could be deposited onto the cadmium 

telluride epitaxially. This will be desirable as the introduction of a new discontinuity between 

the two layers will likely reduce the cell’s performance.   

CHAPTER 9. MICROSTRUCTURAL ANALYSIS OF CADMIUM 

MAGNESIUM THIN FILMS FOR ELECTRON REFLECTOR 

APPLICATION FOR CADMIUM TELLURIDE SOLAR CELLS 
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9.2.1 Samples Analysed  

A range of CMT samples were deposited via co-sublimation by Colorado State University, 

varying the deposition conditions systematically to investigate the microstructural and 

chemical changes induced by the addition of the CMT layer, and its effects on the cadmium 

chloride treatment.  

• Initially a thick CMT was deposited onto an untreated cadmium telluride cell. A thick 

layer was produced to allow for easier analysis to determine if it grew epitaxially on 

the cadmium telluride layer.  

• CMT was deposited with three varying amounts of magnesium, to study its effects, as 

varying the magnesium content will alter the band gap of the material82. 

• A set of samples were produced with the CMT deposited before and after the 

cadmium chloride treatment to investigate how the CMT layer reacts. 

• A range of samples were produced to further understand how the CMT reacts to the 

cadmium chloride treatment and post deposition anneals, including undergoing a 

second cadmium chloride treatment. 

• A fourth set of two samples were deposited at a two temperatures (400°C and 470°C) 

as the higher temperature depositions of CMT caused detrimental effects to the 

cadmium telluride. 

The samples examined in this chapter are summarised in Table  9.1. 
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Sample description Temperature of 
CMT 

deposition 

CMT 
thickness 

Magnesium 
concentration 

CdS/CdTe/CMT/CdCl2 470°C 900 nm Medium 

CdS/CdTe/CMT 470°C 750 nm Low 

CdS/CdTe/CMT 470°C 750 nm Medium 

CdS/CdTe/CMT 470°C 750 nm High 

CdS/CdTe/CMT/CdCl2 470°C  200 nm Medium 

CdS/CdTe/CdCl2/CMT 470°C  200 nm Medium 

CdS/CdTe n/a  0 nm  n/a 

CdS/CdTe/CdCl2 n/a  0 nm  n/a 

CdS/CdTe/CdCl2/CMT 470°C  200 nm  Medium 

CdS/CdTe/CdCl2/CMT/post anneal 470°C 200 nm  Medium 

CdS/CdTe/CdCl2/CMT/post 
anneal/CdCl2 

470°C 200 nm  Medium 

CdS/CdTe/CdCl2/CMT/CdCl2 470°C 200 nm  Medium 

CdS/CdTe/CdCl2/CMT 470°C 200 nm  Medium 

CdS/CdTe/CdCl2/CMT 400°C 200 nm  Medium 

Table  9.1 – List of samples and descriptions and deposition conditions studied in this chapter 

Low magnesium content is up to 2 at%, medium is up to 20%, high is above 20 at%.  

9.3 Initial CMT Deposition 

Figure  9.1 shows a BF-TEM image of the 900 nm thick CMT layer deposited onto a 

cadmium telluride cell. The CMT layer appears slightly lighter than the cadmium telluride 

layer due to the different absorption between the two materials. In the larger grain highlighted 

in Figure  9.1 several twin boundaries pass from the cadmium telluride to the CMT layer. The 

twin boundaries appear uninterrupted suggesting epitaxial growth of the CMT. In Figure  9.1 

continuation of the cadmium telluride grain boundaries into the CMT is also observed. The 

CMT deposition also appears very conformal and follows the structure of the underlying 

cadmium telluride.  
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Figure  9.1 - A BF-TEM micrograph of an initial CMT deposition of 900 nm onto a cadmium telluride cell 

Figure  9.2 shows two diffraction points taken from the same grain but just above and below 

the cadmium telluride/CMT interface. They indicate epitaxial growth and cubic phase for 

both layers.  

 
Figure  9.2 – A HAADF-STEM image showing the two areas diffraction points were taken from, a) within the 

cadmium telluride layer and b) within the CMT layer 
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Electron Backscatter Diffraction can be used to map grain by grain orientation, which will be 

useful is showing epitaxial growth. This will need to be done in cross section to see the 

relationship between the cadmium telluride substrate and the CMT thin film. This will be 

carried out in transmission as an increase in spatial resolution will be achieved as shown in 

Chapter 8. 

Figure  9.3 is a T-EBSD derived inverse pole figure map of the same sample as was studied 

with TEM in Figure 9.2. It shows the cadmium telluride and adjacent CMT grain do have the 

same orientation as shown by grain 1 as this through thickness grain originates at the 

cadmium sulphide interface and extends through to the surface of the CMT layer passing 

through the cadmium telluride/CMT interface unaffected. The highlighted grain 2 in 

Figure  9.3 shows a twin boundary extending from the cadmium telluride layer to the top of 

the CMT similar to results seen in TEM image in Figure  9.1. The map in Figure  9.3 shows 

the CMT layer has grown epitaxially across the whole area.  

 
Figure  9.3 – A  T-EBSD inverse pole figure map of initial CMT deposition of 900 nm onto a cadmium telluride 

cell 

From these results there is clear evidence that the CMT layer is growing epitaxially onto the 

underlying cadmium telluride. This is an encouraging result for a working electron reflector 

layer as an introduction of a discontinuity will cause recombination, an effect which the 

electron reflector has been reported to reduce. Cadmium magnesium telluride has a cubic 

crystal structure the same as cadmium telluride with little difference in lattice spacing, which 

is the reason why it can grow epitaxially onto the cadmium telluride.  
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9.4 Effect of Magnesium Concentration on CMT 

9.4.1 Low Magnesium Containing CMT Electron Reflector 

Varying the concentration of magnesium in the CMT layer will ultimately change the band-

gap of the layer. This provides the opportunity to tune the band gap to a desired value. In this 

work a band gap of 1.8 eV is required for the film to function as an electron reflector. Three 

samples of varying magnesium concentration were studied to see the effect on the 

microstructure and behaviour of the layers using TEM and STEM/EDX.   

Figure  9.4 shows a BF-TEM image. There is some indication of epitaxial growth of the CMT 

on the cadmium telluride as grain boundaries continue from the cadmium telluride into the 

CMT. As these samples are not cadmium chloride treated, the cadmium telluride grains 

possess a high density of defects (stacking faults and twins) as shown in Chapter 6. These 

defects can be seen to continue from into the CMT from the underlying layer. As the 

concentration of magnesium is low, little difference is seen between the cadmium telluride 

and CMT. High angle annular dark field (HAADF) imaging can be used to more clearly 

distinguish between the layers.  

 
Figure  9.4 - A BF-TEM micrograph of low concentration magnesium containing CMT deposition of 750 nm 

onto an untreated cadmium telluride cell 

Figure  9.5 shows a HAADF image which gives compositional contrast, and corresponding 

chemical maps. From the HAADF image it can be seen that the CMT is approximately 750 

nm thick and is conformal on the cadmium telluride layer. Therefore the CMT layer appears 

slightly darker than the cadmium telluride. A darker region extends from the cadmium 

telluride to the CMT; the chemical maps indicate that it is cadmium deficient and magnesium 
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rich. The grains in the CMT layer do appear to have varying concentrations of magnesium 

and cadmium.  

 
Figure  9.5- A HAADF STEM micrograph of low concentration magnesium containing CMT deposition of 750 

nm onto an untreated cadmium telluride cell and corresponding STEM/EDX chemical maps 

Figure  9.6 shows a higher magnification HAADF STEM image of the same low 

concentration magnesium containing CMT deposition as in Figure  9.5 and corresponding 

STEM/EDX chemical maps. The tellurium and oxygen maps in Figure  9.6 show no variation 

throughout the CMT and cadmium telluride. The cadmium chemical map however does show 

variation in the concentration from grain to grain, which corresponds inversely with changes 

in the magnesium concentration.  

Figure  9.6 also displays a line profile horizontally thought the CMT layer. The tellurium 

shown in green is constant and then decreases towards the left end of the sample, due to the 

inversed thinning of the TEM sample edge. The cadmium and magnesium concentrations 

fluctuate. As the cadmium concentration increases the magnesium is observed to decrease 

and vice-versa. This suggests the magnesium is displacing the cadmium.  

2 µm 
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Figure  9.6 - A HAADF STEM image of low concentration magnesium containing CMT deposition of 750 nm 

onto an untreated cadmium telluride cell and corresponding STEM/EDX chemical maps and a horizontal line 
scan. 

The chemical mapping has shown that the CMT has a non-homogenous chemical 

composition. To calculate the amount of magnesium in the CMT, point chemical analysis 

was carried out. 

 
Figure  9.7 – EDX point chemical analysis of two adjacent grains in the CMT layer of the low concentration 

magnesium sample 

Figure  9.7 shows EDX point chemical analysis of two adjacent grains in the CMT layer of 

the low concentration magnesium sample. The grain which is seen in the chemical maps 

indicates a higher concentration of magnesium and shows ~12 at%. However the grain which 

is directly beside this has less than 1 at% magnesium concentration. This will ultimately be 
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detrimental to the performance of the electron reflector as a variation in the concentration of 

magnesium will lead to a variation in the band-gap of the layer. 

Figure  9.8 shows EDX point chemical analysis of a magnesium rich region in the CMT layer 

and a point analysis just below the cadmium telluride/CMT interface of the low concentration 

magnesium sample. The magnesium rich area shows ~17 at% magnesium whereas the area 

just below the CMT layer shows no magnesium. This suggests that the magnesium is not 

diffusing into the cadmium telluride grains. 

To conclude, the CMT layer is non homogeneous in chemical composition, with a variation 

in magnesium and cadmium from grain to grain. In addition regions form at grain boundaries 

which are magnesium rich of up to 17 at%. However the CMT layer has grown epitaxially on 

an untreated cadmium telluride layer.  

 
Figure  9.8 - EDX point chemical analysis of a Mg rich region in the CMT layer and a point analysis just below 

the cadmium telluride/CMT interface of the low magnesium concentration sample 

9.4.2 Medium Magnesium Containing CMT Electron Reflector 

As the concentration of magnesium is directly linked to the band gap of the electron reflector, 

tuning the band gap to the optimum (~1.9 eV) should be achievable by this method. The low 

magnesium concentration sample showed discontinuity in the distribution of magnesium, so 

the effect of increasing its concentration was investigated. A chemical distribution map of the 

cell is shown in Figure  9.9. From the maps the CMT layer appears more homogeneous 
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chemically. However the maps clearly indicate a magnesium rich region, which again is 

formed at a grain boundary. This increase in magnesium also corresponds to a depletion of 

cadmium.  

 
Figure  9.9 - A HAADF STEM micrograph of medium concentration magnesium containing CMT deposition of 

750 nm onto an untreated cadmium telluride cell and corresponding STEM/EDX chemical maps 

Figure  9.10 shows EDX point chemical analysis of a region in the CMT layer and a point just 

below the cadmium telluride/CMT interface of the medium concentration magnesium sample. 

The CMT region has a magnesium concentration of ~1.9 at%, just below the CMT interface 

the cadmium telluride has ~0.1 at% of magnesium suggesting some intermixing between the 

CMT and the cadmium telluride.  

 
Figure  9.10 - EDX point chemical analysis of a region in the CMT layer and a point just below the cadmium 

telluride/CMT interface of the medium concentration magnesium sample 
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9.4.3 High Magnesium Containing CMT Electron Reflector 

Figure  9.11 shows a bright field TEM image of high concentration magnesium containing 

CMT deposition of 750 nm onto an untreated cadmium telluride cell. This indicates regions 

of varying composition at every CMT grain boundary, as the corresponding dark-field STEM 

image shows some voids and lighter elemental regions. Figure  9.12 displays a HAADF 

STEM micrograph of high concentration magnesium containing CMT deposition of 750 nm 

onto an untreated cadmium telluride cell and corresponding STEM/EDX chemical map. The 

maps show build-up of magnesium at every CMT grain boundary; this does not extend into 

the cadmium telluride. However the grain boundary areas are depleted of cadmium and 

contain an oxide. This is most likely magnesium oxide (MgO).  

 
Figure  9.11- BF and DF STEM micrographs of high concentration magnesium containing CMT deposition of 

750 nm onto an untreated cadmium telluride cell 

 
Figure  9.12 - A HAADF STEM micrograph of high concentration magnesium containing CMT deposition of 

750  nm onto an untreated cadmium telluride cell and corresponding STEM/EDX chemical maps 
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Figure  9.13 shows EDX point chemical analysis of a region in the CMT layer and a point just 

below the cadmium telluride/CMT interface of the medium concentration magnesium 

sample. No magnesium is seen just below the cadmium telluride/CMT interface, indicating 

no intermixing. The CMT contains a high amount of magnesium at ~30 at%.  

 
Figure  9.13 - EDX point chemical analysis of a region in the CMT layer and a point just below the cadmium 

telluride/CMT interface of the medium concentration magnesium sample 

In conclusion the content of magnesium can be varied; however segregation of magnesium to 

CMT grain boundaries is likely with an increase in concentration. Oxidation of this area is 

likely if the amount of magnesium is further increased.  

9.5 Effect of the Cadmium Chloride Treatment on CMT 

As the cadmium telluride and possibly the CMT will need to be cadmium chloride treated to 

remove linear defects (mainly stacking faults) from the grains, the behaviour of the CMT 

during the treatment is paramount. Therefore this section investigates a post CMT deposition 

cadmium chloride treatment. Two samples before and after the pre-optimized were analysed.  

The untreated cell with 200 nm CMT deposited onto the cadmium telluride grain is shown in 

a HAADF image in Figure  9.14. The CMT looks fairly conformal and evenly distributed over 

the surface. Some stacking faults can be seen within the cadmium telluride layer with some 

extending into the CMT layer. Therefore the CMT will need to be cadmium chloride treated 

as well to remove any stacking faults within it. In Chapter 6 it has been observed that the 

treatment causes chlorine diffusion down grain boundaries and diffusion of the cadmium 

sulphide into the cadmium telluride grains. The effect of the cadmium chloride treatment is 

not known, therefore STEM/EDX chemical distribution maps may provide an insight into 

any changes to the CMT layer during the treatment. 

2

1

2

Mg

Te
Cd

O

Cu

Spectrum Mg Cd Te

Area 1 30.3 21.3 48.4

Area 2 0 39.2 62.0

Energy [keV] 



164 
 

 
Figure  9.14 - A HAADF STEM image of CMT deposition of 200 nm onto an untreated cadmium telluride cell  

Figure  9.15 displays a HAADF STEM image of CMT deposition onto an untreated cadmium 

telluride cell and corresponding EDX chemical maps. The maps show the concentration of 

magnesium varying across the layer, but no areas of increase concentration can be seen which 

protrude into the grains below as seen previously.  

 
Figure  9.15 - A HAADF STEM micrograph of medium concentration magnesium containing CMT deposition of 

200 nm onto an untreated cadmium telluride cell and corresponding EDX chemical maps 

Figure  9.16 shows a HAADF STEM image of CMT deposition of 200 nm onto a cadmium 

telluride cell post-treated with cadmium chloride. It reveals that the CMT layer has almost 

totally migrated from the top of the cadmium telluride. A new layer has formed between the 

cadmium sulphide and the transparent conducting oxide. As well as the formation of a large 
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agglomeration of low atomic mass compound at the cadmium sulphide region. The cadmium 

telluride grains have recrystallized into much larger than usual through-thickness grains with 

a few twin boundaries passing through them from grain boundary to grain boundary. The 

cadmium telluride grains are approximately 1 µm – 2 µm in diameter which is considerably 

larger than a normally post-treated cell. This is possibly one of the effects of the magnesium 

on the recrystallization of the cadmium telluride. 

 
Figure  9.16- A HAADF STEM micrograph of CMT deposition of 200 nm onto a cadmium telluride cell post-

treated with cadmium chloride 

Figure  9.17 displays a HAADF STEM image of CMT deposited onto a cadmium telluride 

cell which was then post-treated with cadmium chloride. The corresponding EDX chemical 

distribution maps show the CMT layer is no longer present and only a small high magnesium 

containing particle is left on the top of the cadmium telluride layer. The large region with the 

low atomic number contains a large amount of chlorine and some cadmium, which has 

formed just above the cadmium sulphide layer at a cadmium telluride grain boundary. The 

layer formed below the cadmium sulphide also contains a large amount chlorine. The CMT 

layer appears to have increased the permeability of the cadmium telluride and cadmium 

sulphide and allowed more chlorine to diffuse through.  
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Figure  9.17- A HAADF STEM image of CMT deposition of 200 nm onto a cadmium telluride cell post-treated 

with cadmium chloride and corresponding STEM/EDX chemical maps 

Figure  9.18 shows a HAADF TEM micrograph of the cadmium telluride/cadmium sulphide 

interface of the post-CMT deposited cadmium chloride treated cell. From the EDX chemical 

distribution maps the layer containing chlorine under the cadmium sulphide also contains 

magnesium as does the large agglomeration above the cadmium sulphide. This shows that the 

CMT layer is diffusing along with the chlorine. Although the initial CMT deposition before 

the treatment looked more homogenous than previous samples due to a faster deposition rate, 

the layer has proved to be unstable during the annealing cadmium chloride treatment.  

 
Figure  9.18- A HAADF STEM image of CMT deposition of 200 nm onto a cadmium telluride cell post-treated 

with cadmium chloride corresponding STEM/EDX chemical maps of the cadmium sulphide interface 
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9.6 Effect of Deposition Temperature on CMT Electron Reflector Thin Film 

The CMT has been deposited at two temperatures, 400ºC and 470 ºC. Figure  9.19 shows 

SEM surface images of the CMT deposited onto the cadmium telluride cells. The CMT 

deposited at 400ºC shows some areas which have a less homogenous growth. This is shown 

by the build-up of material at certain points and less in others.  

  
Figure  9.19 – Inlens SEM surface images of CMT deposited at a) 400ºC and b) 470ºC 

Figure  9.20 shows a BF-STEM image of the sample deposited at 400ºC. From the image the 

surface shows similar findings to the SEM images in Figure  9.19, which is that the CMT has 

formed only in certain regions leaving large gaps in the layer. No signs of 

magnesium/chlorine diffusion to the cadmium sulphide/cadmium telluride interface is 

observed as shown in previous samples. 

 
Figure  9.20 - BF-STEM images of a) CMT deposition at 400°C onto a cadmium telluride cell and b) higher 

magnification image of the cadmium telluride/cadmium sulphide interface 
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Figure  9.21 - A BF-STEM image of CMT deposition at 400ºC onto a cadmium telluride cell and corresponding 

STEM/EDX chemical maps 

Figure  9.21 shows a BF-STEM image with corresponding EDX chemical distribution maps. 

The maps show that the magnesium has a non-homogenous thickness in some areas with a 

large build-up and in some areas with only a thin layer. The oxygen map also shows 

oxidation of the CMT area. Chlorine appears at the CMT/cadmium telluride interface in 

regions with less CMT coverage. Figure  9.22 shows EDX spectra of areas within the CMT 

region and within the bulk cadmium telluride. The spectra from the CMT area shows ~4 at% 

magnesium and no magnesium is detected within the cadmium telluride layer. The CMT 

region contains less than 1 at% oxygen, although measuring small amounts of light elements 

in multicomponent systems quantitatively using EDX in TEM is not possible. 

   
Figure  9.22- A BF-STEM image of CMT deposition at 400ºC onto a cadmium telluride cell and corresponding 

EDX spectra 
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Figure  9.23 shows a bright-Field TEM micrograph of CMT deposition at 400ºC with 

corresponding STEM/EDX chemical maps another area of the sample. The CMT area 

appears to have more oxygen than the cadmium telluride surface. The chlorine at the surface 

is again in areas with less CMT thickness. From the chemical maps, chlorine is seen to be left 

over from the cadmium chloride treatment causing a non-homogenous coverage. Due to the 

chlorine residue on the surface, an oxide layer has formed between the cadmium telluride 

layer and CMT. The oxide is likely to be cadmium oxide forming due to the high temperature 

during the CMT deposition. 

 
Figure  9.23 - A BF-STEM image of CMT deposition at 400ºC onto a cadmium telluride cell and corresponding 

STEM/EDX chemical maps 

Figure  9.24 and Figure  9.25 show bright field TEM images of the CMT sample deposition at 

470°C. In Figure  9.24 twin defects are seen to pass from the cadmium telluride into the CMT 

unaffected by the interface between the two layers. As the cadmium telluride has been 

cadmium chloride treated prior to the CMT film depositing, no stacking faults are expected 

within the cadmium telluride grains. However the TEM image shown in Figure  9.25 indicates 

that a high density of stacking faults are present, in the top three grains. The reason for the 

stacking faults could either be due to the CMT deposition layer or the high temperature of the 

deposition. As no stacking faults are observed in the sample deposited at 400ºC this would 

indicate that it is likely that the higher temperature causes stacking faults to re-appear in 

treated cadmium telluride grains. This reappearance of stacking faults also corresponds to a 

lower cell efficiency of 2.5% as shown in the JV data in Table  9.2. 
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Table  9.2 – JV data for cadmium telluride cells with samples with CMT deposited at different temperatures and 
a benchmark sample with no CMT 

 
Figure  9.24 - BF-STEM images of a) CMT deposition at 470°C onto a cadmium telluride cell and b) 

corresponding cadmium telluride/cadmium sulphide interface 

 
Figure  9.25 - A BF-TEM image of CMT deposition at 470°C onto a cadmium telluride cell 
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Figure  9.26 shows a HAADF TEM image of the cadmium telluride cell with the CMT 

deposited onto it. The CMT is observed to be uniformly thick and conformal. It indicates 

epitaxial growth as the grain boundaries of the cadmium telluride follow into the CMT layer. 

From the EDX chemical distribution maps in Figure 9.27 the concentration of magnesium is 

homogenous throughout the layer as well as the thickness. The oxygen map shows no 

oxidation of the CMT region and no chlorine. This is due to any chlorine residue on the 

surface of the cell evaporating off the cadmium telluride due to the higher temperature of the 

CMT deposition than the previous sample. As the chlorine evaporates off prior to deposition 

it does not cause oxidation or non-uniformity in the CMT film. Sulphur is observed to diffuse 

into the cadmium telluride grains from the cadmium sulphide which has been noted 

previously in Chapter 6. This occurrence is prior to the CMT deposition. 

         
Figure  9.26 - A HAADF-STEM image of CMT deposition at 470ºC onto a cadmium telluride cell  

 
Figure  9.27 - A BF-STEM image of CMT deposition at 470ºC and corresponding STEM/EDX chemical maps 
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In conclusion CMT films were deposited onto cadmium chloride treated cadmium telluride 

cells at different substrate temperatures 400ºC and 470ºC.  At the lower temperature the CMT 

coverage is non-uniform in thickness. At the higher temperature the deposited CMT is 

observed to be uniformly thick. Although the CMT has good properties at higher 

temperatures the underlying cell is damaged due to the reappearance of stacking faults and 

therefore cell efficiency is much lower. To overcome this, the next section will look into a 

secondary cadmium chloride treatment after the CMT deposition. 

9.7 The Effect of CMT and Cadmium Chloride on Cadmium Telluride Cells  

This section will focus on the range of samples going from the untreated cadmium telluride 

layer to a cell with CMT and a second cadmium chloride treatment. The CMT in all cases 

were deposited at 470ºC and as seen in the previous section stacking faults detrimental to the 

cells performance had been induced by the CMT and therefore a second treatment is needed 

to remove them again. Figure  9.28 shows SEM surface images for all the samples analyzed in 

this section with their corresponding treatments. The first two samples are the untreated cell 

cadmium telluride cell and the cadmium chloride treated cell, as both of these samples were 

examined extensively in Chapter 6 those results will not be repeated here. All the SEM 

images look to have a similar grain size of approximately 1 µm.  

 

Figure  9.28 – Inlens SEM surface images of the different cells examined in this section 
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9.7.1 Analysis of Sample with Cadmium Sulphide/Cadmium Telluride/Cadmium 

Chloride/CMT 

Figure  9.29 shows a TEM image of the cadmium chloride treated cadmium telluride cell with 

CMT deposited onto it. The CMT appears epitaxial as stacking faults can be seen to run from 

the cadmium telluride to the CMT. The CMT is conformal and homogenous in nature. The 

cadmium telluride/cadmium sulphide interface is unaffected by the deposition of CMT. 

Figure  9.30 shows a high resolution TEM image of the CMT/cadmium telluride interface. As 

the CMT and cadmium telluride both have a zinc-blende cubic crystal structure with a similar 

lattice parameter the interface is hard to see in TEM mode and therefore was located using 

the HAADF detector in the TEM. The image shows how clean and epitaxial the interface is 

with no discontinuity or defects at the interface. The stacking faults pass through the interface 

without being disrupted or deflected. The majority of stacking defects in cadmium telluride 

grains terminate at grain boundaries, as shown in Figure  9.30 where none of the stacking 

faults terminate at the interface, so it does not act as a grain boundary indicating there is 

epitaxial growth of the CMT. 

 
Figure  9.29 – BF-STEM images showing a) the whole cell with cadmium sulphide/cadmium telluride/cadmium 

chloride/CMT and b) the cadmium telluride/cadmium sulphide interface 
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Figure  9.30- HRTEM lattice image of CMT/ cadmium telluride interface indicated by the red line, with a large 

amount of uninterrupted stacking faults passing though 

Figure  9.31 shows a bright-field TEM image of the sample with CMT deposited onto the 

surface and corresponding EDX chemical distribution maps. The CMT thin film is conformal 

of the underlying cadmium telluride layer and the magnesium is homogenous throughout. No 

oxygen can be identified in the CMT. Some oxygen is located around a void at the cadmium 

sulphide interface. 

 
Figure  9.31 – BF-STEM image showing the sample with cadmium sulphide/cadmium telluride /cadmium 
chloride/CMT and corresponding EDX chemical distribution maps 
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9.7.2 Analysis of Sample with Cadmium Sulphide/Cadmium Telluride/Cadmium 

Chloride/CMT /Anneal 

Figure  9.32 shows a bright field TEM image and a HAADF image of a sample configuration 

similar to Figure  9.29, except it has undergone a further post-CMT deposition anneal at 

470°C. The CMT layer does not seem to have altered its morphology. From the HAADF 

image the CMT thin film appears similarly very conformal to the underlying cadmium 

telluride layer. This shows the CMT is not prone to diffusing or intermixing during high 

temperature anneals. Several voids are located within the cadmium sulphide layer. A large 

number of inter-granular defects remain within the cadmium telluride and CMT grains.  

 
Figure  9.32 - BF-STEM image showing a) the whole  sample with cadmium sulphide/cadmium telluride 

/cadmium chloride/CMT/Anneal and a) high magnification HAADF image of the CMT layer 

The chemical distribution maps for the sample with the post CMT deposition anneal is shown 

in Figure  9.33. The post deposition anneal has not affected the magnesium in the CMT layer 

as the maps shows a homogeneous continual coverage. No oxidation has been observed in the 

CMT  layer.  
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Figure  9.33 - BF-STEM image showing the sample with cadmium sulphide/cadmium telluride /cadmium 

chloride/CMT/anneal and corresponding EDX chemical distribution maps 

9.7.3 Analysis of Sample with Cadmium Sulphide/Cadmium Telluride/Cadmium 

Chloride/CMT /Anneal/Cadmium Chloride 

As seen in previous cadmium telluride cells which have CMT thin films deposited at 470°C 

to act as an electron reflector layer. The temperature has induced the reappearance of stacking 

faults in the underlying pre-cadmium chloride treated grains. As the initial cadmium chloride 

treatment removed the stacking faults from the cadmium telluride grains, a secondary 

treatment has been carried out after a 470ºC anneal to re-remove the stacking faults. 

 
Figure  9.34 - BF-STEM image showing a) the whole sample with cadmium sulphide/cadmium telluride 

/cadmium chloride//CMT/Anneal/cadmium chloride and b) cadmium telluride/cadmium sulphide interface 
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Figure  9.34 and Figure  9.35 show bright field and HAADF STEM images of the secondary 

cadmium chloride treatment after the CMT deposition and a 470ºC anneal. From the STEM 

images a large amount of chlorine regions are present not only at the cadmium sulphide 

interface but also at the cadmium telluride grain boundaries shown in Figure  9.36.  

 
Figure  9.35 - HAADF STEM images showing a) the whole sample with cadmium sulphide/cadmium telluride 

/cadmium chloride//CMT/Anneal/cadmium chloride and b) cadmium telluride/cadmium sulphide interface 

Figure  9.36 shows EDX chemical distribution maps of a cross section of the whole cell. The 

magnesium map shows a discontinuity mainly with a reduction of concentration around grain 

boundaries indicating magnesium is diffusing into the underlying cell during the secondary 

cadmium chloride treatment. The oxygen map shows a distinct layer at the top surface of the 

CMT. It is a continuous oxide layer only at the surface of the CMT. The sulphur map 

suggests some sulphur from the cadmium sulphide layer has diffused into the cadmium 

telluride layer. The chlorine distribution map clearly shows distinct areas high in chlorine and 

low in tellurium. All the chlorine rich regions are seen to be adjacent to cadmium telluride 

grain boundaries. Chlorine areas are also seen to build up at the cadmium sulphide/cadmium 

telluride interface, suggesting that the cadmium sulphide acts as a boundary not allowing 

chlorine to diffuse through.  

A) B) 



178 
 

 
Figure  9.36 - HAADF STEM image showing the sample with cadmium sulphide/cadmium telluride /cadmium 

chloride/CMT/anneal/cadmium chloride and corresponding EDX chemical distribution maps 

Figure  9.37 shows a higher magnification chemical distribution maps around the CMT layer. 

From the magnesium map it is clear that there is less magnesium concentrated at grain 

boundaries in the CMT. The most likely cause of the depletion in the magnesium in the grain 

boundary regions is, as the chlorine is diffusing down into the bulk of the cadmium telluride 

some of the magnesium is also diffusing. The oxide layer forming at the surface of the CMT 

is also seen to be not completely continuous in this map, with a reduction in similar areas to 

the magnesium indicating that the magnesium is oxidized to MgO. The sulphur map shows 

that sulphur is diffusing into the cadmium telluride during the cadmium chloride treatments 

and although at grain boundary regions the sulphur is not segregating to the boundaries but 

diffusing from the boundaries of the cadmium telluride grain into the bulk of the grains. The 

chlorine map clearly shows diffusion down the cadmium telluride grain boundaries from the 

surface during the treatment. It also forms regions ~25 nm in diameter rich in chlorine. This 

shows that the chlorine does not diffuse into cadmium telluride grains as the sulphur does but 

segregates only along the boundaries.  
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Figure  9.37- HAADF STEM image showing the sample with cadmium sulphide/cadmium telluride /cadmium 

chloride/CMT/Anneal/cadmium chloride and corresponding EDX chemical distribution maps 

In conclusion the secondary cadmium chloride treatment appears to have removed the 

stacking faults but has introduced a large amount of impurities into the cell, including 

chlorine and formation of an oxide layer. 

9.7.4 Analysis of Sample with Cadmium Sulphide/Cadmium Telluride/Cadmium 

Chloride/CMT /Cadmium Chloride 

This sample has undergone the same secondary cadmium chloride treatment but without the 

anneal prior to this. 

From Figure  9.38 which shows a BF-STEM image and high magnification HAADF image of 

the CMT layer, it is apparent that few defects are present. Twin boundaries still occur in some 

cadmium telluride grains. The HAADF image shows that the magnesium is again depleted at 

grain boundaries. Another observation is that without the anneal prior to the secondary 

treatment no chlorine regions are formed. This shows that the anneal inhibits faster diffusion 

of chlorine into the cadmium telluride.  
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Figure  9.38- a) BF-STEM image showing the sample with cadmium sulphide/cadmium telluride /cadmium 

chloride/CMT/cadmium chloride and b) corresponding high magnification HAADF image of the CMT layer 

Figure  9.39 show chemical distribution maps through the whole cell. The magnesium map 

shows clear discontinuity, with less magnesium at grain boundary regions in the CMT. The 

map also shows some magnesium at grain boundaries within the cadmium telluride layer. 

This shows that the magnesium loss in the CMT is due to the magnesium diffusing down the 

grain boundaries into the cell. No oxide layer is seen in the map in the CMT layer, indicating 

that the anneal is causing the oxide seen in the previous sample.  

 
Figure  9.39 - HAADF STEM image showing the sample with cadmium sulphide/cadmium telluride /cadmium 

chloride/CMT/cadmium chloride and corresponding EDX chemical distribution maps 
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9.8 Summary 

A CMT thin film was successfully deposited onto a cadmium telluride solar cell. The film 

layer is shown to grow epitaxially with the underlying cadmium telluride. To optimise the 

CMT layer the magnesium concentration was varied. A low concentration of magnesium 

produced layers with heterogeneous composition whereby higher concentrations of 

magnesium lead to oxidation of the CMT film. The intermediate concentration was found to 

provide layers with uniform thickness and reasonable chemical homogeneity. It was found 

that the CMT layer did not survive the cadmium chloride treatment. Subsequently the CMT 

layer was deposited after the cadmium chloride treatment.  

To optimise the CMT deposition after the cadmium chloride treatment the deposition 

temperature was varied. It was found that at a lower temperature a layer of varying thickness 

was produced. When a higher temperature was used the CMT layer was found to be 

homogeneous in thickness and composition, however the higher temperature deposition 

damaged the underlying cadmium telluride by inducing stacking faults. At the lower 

temperature cadmium chloride residue was detected in the areas with a thinner CMT 

deposition. At higher CMT deposition temperatures it was found the cadmium chloride 

residue evaporated before the CMT was deposited, therefore a uniform thickness layer 

formed.      
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10.1 Conclusions 

In this work cadmium telluride thin film photovoltaic devices have successfully been 

produced using a novel closed-field magnetron sputtering technique. This technique offers 

the possibility of producing cells in an all-in-one vacuum process with the potential to 

provide a new lower cost production route. The sputtered cadmium telluride possesses 

through thickness columnar grains. Cells with efficiencies up to 5.4% have been produced 

using this method after an optimised cadmium chloride treatment.  

Examining the microstructure of the sputtered cadmium telluride cells, which have undergone 

a cadmium chloride treatment has shown recrystallization of the cadmium telluride grains 

changing from a columnar to a equiaxed morphology. Varying the concentration of cadmium 

chloride during the treatment has shown that it is critical for enough chlorine to diffuse into 

the cadmium telluride layer in order for full recrystallization of the cadmium telluride. If an 

insufficient amount of cadmium chloride is present the cadmium telluride film will only 

partially recrystallize. By reducing the concentration of cadmium chloride during the 

treatment the initiation of the recrystallization has been captured. The recrystallization of the 

cadmium telluride is seen by grain shape change from columnar grains near the surface of the 

cadmium telluride to larger equaxied grains near the cadmium sulphide interface where the 

chlorine has built up. This shows a critical amount of chlorine is required within the cadmium 

telluride layer before recrystallization can occur, it also shows that the recrystallization of the 

cadmium telluride film initiates from the cadmium sulphide interface and up. The proportion 

of the cadmium telluride which recrystallized, is proportional to the amount of cadmium 

chloride present during treatment; by treating cells with a range of concentrations this has 

been shown. All recrystallized cadmium telluride grains revealed a dramatic decrease in 

stacking defects.  

Depositing cadmium telluride via close spaced sublimation with a carefully tuned cadmium 

chloride treatment is a more commonly used solar cells fabrication method. Analysing a cell 

before and after the cadmium chloride treatment has shown the role of the treatment. The 

main difference seen is the removal of detrimental stacking faults and the reduction of twin 

boundaries from within the cadmium telluride grains, similar observations to sputter 

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 
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deposited cells. All untreated cadmium telluride grains possess a large number of linear 

defects observed with HRTEM, of which the large majority extend across the width of the 

grain, terminating at grain boundary. Once the grain has recrystallized during the treatment 

up to several twin boundaries remained, but no detrimental stacking faults. As CSS deposited 

cadmium telluride grains are initially equiaxed and larger than sputtered cadmium telluride 

grains the recrystallization did not increase grain size or change the grain shape much. 

Therefore the point of initiation of the treatment was less pronounced, however by reducing 

the treatment time evidence that cadmium telluride grains nearer the cadmium sulphide 

interface recrystallized preferentially has been obtained. EDX, XPS and SIMS measurements 

of treated CSS cells have shown that a build-up of chlorine is seen at and above the cadmium 

sulphide layer, similar to sputtered films. The speed of diffusion of chlorine is increased with 

an increase in treatment temperature. Some desired effects are seen such as larger cadmium 

telluride grain and fewer defects. However a reduction in cell efficiency occurs due to much 

larger quantities of chlorine build-up at the cadmium telluride/cadmium sulphide interface 

than the optimised cell. Therefore this shows why the cadmium chloride treatment requires 

fine tuning and deviating from the optimum parameters causes significant reductions in cell 

efficiency. 

EBSD analysis of planar sections of the cadmium telluride layer prepared using the FIB has 

showed that the layer is composed of both the cubic zincblende and hexagonal wurizite 

structures before the cadmium chloride treatment, whereas only the cubic structure is present 

after the treatment. This result is consistent with XRD analysis performed on the materials. 

Transmission EBSD was used to examine the phase distribution within the grain in thin 

cross-section samples. This showed that both phases coexist within a grain. This hexagonal 

phase typically exists as bands of up to 50 nm in width running approximately parallel with 

the cadmium sulphide interface within the cubic cadmium telluride grains.  HRTEM of these 

areas has shown that they are highly faulted to an extent where there is a missing atomic 

plane after every 2 planes of atoms. This results in the stacking sequence changing from 

AaBbCcAaBbCc to AaBbAaB, which are the stacking sequences for the cubic zincblende 

and hexagonal wurizite structures respectively.  

Cadmium magnesium telluride (CMT) electron reflector thin films have been successfully 

deposited epitaxially onto cadmium telluride cells. When deposited onto a treated cadmium 

telluride cell at a temperature of 470ºC a film with uniform thickness and composition is 

formed, however cell efficiency drops. TEM analysis showed that stacking faults with a 
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similar density to before the cadmium chloride treatment were forming in grains towards the 

top of the cadmium telluride layer where the CMT was grown.  The presence of the stacking 

faults coincided with a significant reduction in measure cell efficiency. 

10.2 Suggested Further Work 

Stacking faults have been shown to have a detrimental effect on cell efficiencies. More work 

is needed to fully characterize the types of defect present and their effect on cell performance. 

Modelling the effect of the stacking faults on the performance of the devices and correlating 

this with the TEM results will further prove the detrimental effect of stacking faults in 

cadmium telluride solar cells.   

Modelling the energies of the line defects and the formation mechanism during depositions 

may help improve the untreated cadmium telluride films. Varying deposition parameters such 

at temperature/gas pressure/oxygen content and calculating the variation in defect densities 

may provide details of which parameters fabricate higher quality untreated cadmium telluride 

films. 

Further studies of the defects in the cadmium sulphide layers may provide an insight into 

other factors limiting device performance.   

To do this techniques such as Electron Beam Induced Current (EBIC) and 

Cathodoluminescence in the TEM provide the opportunity to study electrical effects at high 

spatial resolution.  In addition studying the atom positions directly near the linear defects 

using ultra-high resolution STEM is a highly desirable experiment to perform.   
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