

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

1.3 L L :z I~ IVo: ~ .2:::> 6 bO S-y I ~ 6

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

. LIBRARY
AUTHOR/FILING TITLE

: _k.fi.f':l_fLIL.,1 __ H _______________ ___________ _

---------------------------- ---- --- ----- - - ------
i ACCESSION/COPY NO.

: --VOL:NO~------- -i-~A~S'tMai~L--------- --------

. (O~j

/
":1, .. "'1 1,",rl

(

ro.OCT
30· .

This book was bound by

Badminton Press

!

18 Half Croft, Syston, Leicester, LE? 8LD
Telephone: Leicester (05331 602918.

o ~y 1989

- 5.....u1l 1991

CPU CACHE DUAL PROCESSOR DISTRIBUTED

COMPUTATION SYSTEM WITHIN BROAD'CAST

TYPE LOCAL AREA NETWORKS

BY

PETER H. KAMAU

B. Eng. (Hons.) Sheffield University

M. Sc. Essex University

A Doctoral Thesis

submitted in partial fulfilment of the

requirements for the award of Doctor of

Philosophy of the Loughborough University

Supervisors:

of Technology.

SEPTEMBER 1985

Dr. M.E. Woodward, B.Sc., Ph.D.

Mr. J.E. Cooling, B.Sc.

of the

Department of Electronic & Electrical Engineering

© by P.H. Kamau, 1985

, .~ .

--PlC. &S

o I 0 0 't D (01

In memory of my mother Njeri, and to my wife

Alice Mwithaga and daughters Njeri and Wambui for

their patience, sacrifice and emotional support

throughout the duration of my studies at

Loughborough University.

ACKNOWLEDGEMENTS

I would like to thank Professor I.R. Smith, my director of

research and Head of the Department of Electronic and Electrical Engineering,

for providing the research facilities.

I would also like to express my deepest gratitude to my supervisors,

Dr. M.E. Woodward and Mr. J.E. Cooling for their guidance, support and

encouragement. Many thanks too must go to the staff of the Computer

Centre of Loughborough University of Technology.

I am very grateful to my sponsor, The Association of Commonwealth

Universities for the financial support and to my employer, The University

of Nairobi for granting me study leave to enable me to pursue this research

programme.

Finally, I would like to thank Mrs. Ashwell for the trouble and care

she took in typing this thesis.

SYNOPSIS

OVer the last few years computer hardware has continued to become

smaller, cheaper, faster and more numerous. computer software too has

continued to become more efficient and powerful. The result has therefore

been an availability of increasingly versatile microcomputers whose power

rival that of minicomputers and many of the earlier generations of mainframe

computers. At the same time, computers and communications have merged,

with the result that computing power has become cheaper than communication.

As the computation becomes cheaper and the machines become faster, the

desire to solve larger and more complex problems will continue to increase.

This research programme is set up with the above as background.

The aim of this research is to investigate some aspects of distributed

computation and how this can be achieved in wideband broadcast-type

communication channels, such as the ethernet, within a Local Area Network

(LAN) • In such a type of LAN efficient channel protocols based on Carrier

Sense Multiple Access with Collision Detection may be employed since the

round-trip propagation delay is small.

The specific method of distributing a computation employed in this

research is that of the CPU cache dual processor distributed computation.

In such a CPU cache dual processor distributed computation system a smaller

computer may decide to share some of its computational workload with a

larger and more powerful computer existing within the same LAN. Further-

more, several such small computers with a CPU cache may exist in the same

LAN. Hence, whether the smaller computers decide to share or not to

share their computational workload with the large and more powerful

..

, ,

computer will also depend on the workload at the large computer.

In this research, both theoretical and experimental (simulation)

methods of analysing the CPU cache dual processor distributed computation

system to determine some of the important performance measures have been

employed. Some of these performance measures that are relevant to the

CPU cache system are scheduling time, CPU utilization, CPU throughput,

CPU queueing time, input-output handling and the average channel delay.

These performance measures are then used to characterise the computational

workload at the large computer in order to determine the system capability

for distributed computation withi.n the LAM.

i

CONTENTS

CHAPTER 1 : INTRODUCTION

1. 1 COMPUTER TECHNOLOGY TRENt>

1. 2 1. C. TECHNOLOGY TREND

1.3 DISTRIBUTED COMPUTATION

1.3.1 Reconfigurable Distributed Computation

1.3.1.1 Multiprocessor Systems

1.3.1.2 Data Flow Systems

1.3.2 Non-Reconfigurable Distributed Computation

1.3.2.1 The Hierarchical Model

1.3.2.2 The User-Server Model

1.3.2.3 The Pool Processor Model

1.3.2.4 The CPU Cache Model

1. 4 SMALL AND LARGE COMPUTERS

1.4.1 The Microcomputer

1.4.1.1 The 4040 4-bit Microprocessor

1.4.1.2 The 8080/8085 8-bit Microprocessor

1.4.1.3 The Z-80 8-bit Microprocessor

1.4.1.4 The M6800 8-bit Microprocessor

1.4.1.5 The 16-bit Microprocessors

1.4.2 The Minicomputer

1.4.2.1 The PDP-8 Minicomputer

1.4.2.2 The PDP-ll Minicomputer

1.4.3 The Mainframe Computers

1.5 THIS THESIS

1.6 ORGANISATION OF THE THESIS

PAGE

1

1

2

5

7

7

8

10

16

18

18

20

25

28

30

30

30

33

33

35

35

35

38

39

42

ii

PAGE

CHAPTER 2 : NETWORK ORGANISATION 44

2.1 INTRODUCTION 44

2.2 THE NETWORK STRUCTURE 44

2.2.1 The Network Topology 44

2.2.1.1 Point-to-point Channels 45

2.2.1.2 Broadcast Channels 46

2.2.1.2.1 The Bus Topology 50

2.2.1.2.2 The Tree Topology 50

2.2.1.2.3 The Ring Topology 51

2.2.1.2.4 The Satellite and

Radio Topology 52

2.2.2 The OSI Network Architecture 52

2.2.2.1 Layer 1 55

2.2.2.2 Layer 2 55

2.2.2.3 Layer 3 56

2.2.2.4 Layer 4 56

2.2.2.5 Layer 5 57

2.2.2.6 Layer 6 57

2.2.2.7 Layer 7 58

2.3 NETWORK CLASSIFICATIONS 58

2.3.1 Local Networks 60

2.3.1.1 The CSLN Network 60

2.3.1.2 The HSLN Network 60

2.3.1.3 The LAN Network 61

2.4 NETWORK ACCESS PROTOCOLS 68

2.4.1 Pure ALOHA Technique 70

2.4.2 Slotted ALOHA Technique 72

iii

2.4.3 CSMA Techniques

2.4.3.1 Non-Persistent CSMA Protocol

2.4.3.2 I-Persistent CSMA Protocol

2.4.3.3 P-Persistent CSMA Protocol

2.4.4 CSMA-CD Protocols

2.5 NETWORK SWITCHING AND ROUTING

2.5.1 Circuit Switched Networks

2.5.2 Message Switched Networks

2.5.3 Packet Switched Networks

2.5.3.1 LAN Packet Format Ethernet

2.5.3.2 LAN Packet Format The IEEE

Standard

2.5.3.2.1 The LLC Layer

2.5.3.2.2 The MAC Layer

2.5.3.2.3 The Physical Layer

CHAPTER 3 : PROGRAM STRUCTURE AND PARTITIONING

3.1 INTRODUCTION

3.2 PROGRAMMING LANGUAGE

3.2.1 The Machine Language

3.2.2 The Assembly Language

3.2.3 The High-Level Languages

3.3 PROGRAM STRUCTURE

3.3.1 Program Modules

3.3.1.1 Structured Programs

3.3.1.2 Top-Down Design

802

3.3.1.3 Subroutines and Pascal Procedures

PAGE

73

74

74

75

75

77

78

78

79

80

82

85

85

85

88

88

89

90

90

92

94

96

99

104

105

iv

3.3.2 Inter Module Organisation

3.3.2.1 Module and Intermodule Times

3.3.2.2 The Intermodule Graph

3.4 PARTITIONING ALGORITHMS

3.4.1 The Max-Flow Min-Cut Scheduler Algorithm

PAGE

III

113

114

li8

119

3.4.2 The Enumerative Scheduler Algorithm 139

3.4.3 The Shortest Tree Scheduler Algorithm 140

3.4.4 Module Scheduling Time 144

3.4.5 Time Performance Comparison of the Max-flow

Min-Cut and the Enumerative Schedulers

3.5 THE MODULE INTERACTION ENVIRONMENT

3.5.1 Module Language Features

3.5.2 A Link-Edit-Time Preprocessor

3.5.2.1 Scanning the Input

3.5.2.2 New Object Modules

3.5.2.3 Static Variables

3.5.3 The Run-Time Environment

146

151

~3

154

~4

155

155

157

3.5.3.1 The Dual Processor Run-Time Monitor 157

3.5.3.2 The Intermodule Call Resolution 158

3.5.3.3 Module Movements 160

3.5.3.4 Statistics, Measurements, and Debugging 160

CHAPTER 4 : COMPUTATION TIME

4.1 INTRODUCTION

4.2 PRINCIPLES OF COMPUTATION

4.2.1 Computation

4.2.2 Instruction Times

162

162

164

164

170

v

4.2.3 Benchmark Programs

4.2.4 System Performance Measures

4.2.5 Memory Size

4.3 ALGORITHMS AND COMPUTATION

4.3.1 Computational Complexity

4.3.1.1 Average and Worst-Case Complexity

PAGE

174

175

176

176

179

180

4.3.1.1.1 Average Time Complexity 181

4.3.1.1.2 Worst-Case Time Complexity 182

4.3.1.1.3 Space Complexity

4.3.2 Asymptotic Computation Complexity

4.4 A TIME-DELAY TRANSFORM VIEW OF COMPUTATION

4.4.1 The Z-Domain Operations

4.4.2 Execution Time for Structured Programs

4.5 PDF CHARACTERISATION OF COMPUTATION

4.6 MARKOVIAN CHARACTERISATION OF COMPUTATION

4.6.1 The Markov Process

4.6.2 The Exponential Distribution

4.6.3 The Exponential Service Stages

4.6.4 The Poisson Process

CHAPTER 5 : LAN DELAY PERFORMANCE

5.1 INTRODUCTION

5.2 RANDOM CHANNEL ACCESS PERFORMANCE

5.2.1 Channel Propagation Delay

5.2.2 Throughput Performance of Random Channels

5.2.3 Delay Performance for Random Channels

184

185

187

188

191

201

204

205

2~

207

207

209

209

211

2U

213

215

vi

5.3 CSMA-CD BASED PERFORMANCE

5.3.1 Heavy Traffic Performance Channel Model

PAGE

218

220

5.3.1.1 Channel Utilization and Throughput 222

5.3.1.2 Number Involved in a Collision 224

5.3.2 Queueing Theoretic Channel Model

5.3.2.1 Collision Arbitration Algorithm

5.3.2.2 Throughput and Delay Performance

5.3.2.3 Performance Observations

5.3.2.3.1 Constant Packet Time

5.3.2.3.2 Random Packet Time

5.3.2.3.3 More General Packet

Time Distributions

CHAPTER 6 : DISTRIBUTED COMPUTATION MODEL

6.1 INTRODUCTION

6.2 ANALYTICAL MODEL

6.2.1 The Sink Processor

6.2.2 The Sink Processor Model

6.2.2.1 The System Arrival Rate

6.2.2.2 The System Service Rate

6.2.2.3 The System Queueing Discipline

6.2.3 The System Performance Model

6.2.3.1 Open Networks

6.2.3.2 Closed Networks

6.2.3.3 The Time-Shared Model Performance

6.2.3.4 Computational Algorithms

228

229

229

237

238

243

247

255

255

257

257

259

261

262

262

265

267

267

273

284

vii

6.3 SIMULATION EXPERIMENTATION

6.3.1 Simulation Model

6.3.2 Simulation Performance Estimates

6.3.3 Simulation Language

6.4 MODULE BEHAVIOUR

CHAPTER 7 : CONCLUSIONS AND FUTURE WORK

7.1 INTRODUCTION

7.2 REVIEW OF RESULTS

7.3 SUGGESTIONS FOR FUTURE WORK

APPENDICES PASCAL PROGRAMS

Appendix A Max-Flow Min-Cut Module Scheduling

Appendix B Enumerative Module Scheduling

Appendix C Channel Delay Performance

Appendix D . Module Movement

Appendix E System Performance

REFERENCES

PAGE

308

309

310

317

329

339

339

341

346

347

351

353

360

366

387

1

c~pnR 1

INTRODUCTION

1.1 COMPUTER TECHNOLOGY TREND

Ever since 1945 when the first vacuum tube computer'was built

there has been a series of radical technological breakthroughs in electronics

and computer hardware. with each major technological breakthrough a new

and more powerful generation of computers based on the new electronic

devices replace the previous generation of computers that were built using

the older generation of electronic devices.

The first generation computers of the 1940s used tens of thousands of

electronic valves, cost millions of pounds and were bulky enough to fill

a large room (ref. l.ll. Such computers included EDSAC, EDVAC, LEO and

UNIVAC 1. The second generation computers of the 1950s soon replaced the

first generation computers and these used transistors in their hardware.

These were still expensive but were less bulky and included such computers

as the ATLAS and the IBM 7000 series of computers. They were soon to be

replaced in the 1960s and early 1970s by yet more powerful and more compact

third generation computers which were built using the then technology of

small scale integration (SSIl and medium scale integration (MSI). Examples

of these include the ICL1900 series and the IBM360 series computers.

The computers of the late 1970s and early 1980s are essentially the

fourth generation computers and these are built using the sophisticated

microelectronic technology of Large Scale Integration (LSI) and the very

large scale integration (VLSI) in which hundreds of thousands of electronic

components can be packed on one single integrated circuit (IC) measuring

only a few millimetres square. Because of this VLSI technology and mass

production, relatively small but quite powerful computers can be produced

abundantly and cheaply.

2

Despite their small size, power and the sophisticated microelectronic

technology on which they are based, today's fourth generation computers

are essentially the same model computer as the first generation computers

in that they are all based on the John von Neumann model of computation

(ref. 1. 2). In the Von Neumann model of a computer the computer program

instructions are executed strictly sequentially and.hence there is little

opportunity to employ the large numbers of processors, which can be

achieved with VLSI technology, to gain great processing speed if the computer

program instructions are inherently parallel. The fifth generation

computers of the future will most probably be essentially non Von Neumann

and hence very powerful and very fast (ref. 1.3, 1.4).

1. 2 I. C. TECHNOLOGY TREND

A computer is a complex system incorporating diverse technologies.

Typically, electronic technology is used for the computation, magnetic

for long-term storage, and electromechanical for input and output. The

evolution of computer structures usually correlates with that of the

available technology. The electronic technology has been the most dominant

factor in the evolution of computers. Among the technology dimensions

are the generation, component complexity and date.

The transistor and the integrated circuit (I.C.) have had a profound

impact on the structure of computers. Further, the proliferation of the

computer structures built from these technologies has provided enough data

pOints that several interesting digital IC generations and trends can

be discerned as shown in fig. 1.1 and fig. 1.2 (ref. 1.5, 1.6).

One of the dominant features in the design of digital rcs has been

the collection of basic logic primitives (AND, OR, NAND, etc.) and sequential

circuit components (flip-flops, registers, etc.) to build a single rc.

Fig. 1.1

Fig. 1.2

r

s
, •• nl.I10'

S"\lCh"f<j

,..~, ,.,
1'1", 'Iop

"'"'9.,,"
Go,.

o,t o

l""t.e
.od
.... ,.,o'¥

3

..,"
"U

IIv con, ... ,

~"'dO ~ ...
H,· ... "''''.

Sequ ,,~

G,

'CA
~PL"

c ...
RAM ,,,,,,,..-.Q'
RAM "'o<th.,..".I.,1
SWR AM ", __ ,..'

"0.
PROM

IAIllOU
CCO

,!-, ~"::~~~:~'" • e '··
"PC _"('VII"O"

'--"(,..,!"~'~,~".~, "...!:,;:::"\".... ~ -I. .. ' ,;,;e
CQm"""""1I ".bd "'"

TII,,"
....... ·",0"

Mull""

J1 h.,

Generations of Digital I.C. Functions

I"
2601(

I

I, -:: 161(

e
I

0"

R I(
I

I
I

, , ,
E
8

16

4

l ___ _

j
-'

/0 t, Ht

1~)uO El!j~ ")10 19'~ !')HO

Rate of Increase of the Component Count per I.C.

4

Further levels of integration led to the emergence of the SSI, MSI, LSI

and the VLSI. In this way great reductions in size of component modules

was possible. But this had the inherent drawback that the component

modules contained a wide variety of functions and were thus specialized.

Without well defined functions such as addition, multiplication, etc.,

the semiconductor technology cannot provide high density products in

high volume because there are few large-scale, general-purpose universal

functions. These problems have so far been reduced by the two methods

of customizing LSI logic: programmable logic arrays (PLA) and the gate

density.

Gate density has increased from about 12 in the SSI to hundreds of

thousands in the VLSI. AS the densities began to approach 100 gates,

the construction of complete arithmetic units on a single chip le became

possible (e.g. the TTL SN 74181 ALU unit) (ref. 1.5, 1.6, 1.7). In the

1980s Ies may be expected to reach a packing density of one million gates

on a single chip and perhaps ten million gates by the 1990s. A gate

is built with from 2 to 6 or more transistors. Z8000 microprocessor chip

has been estimated to have 5833 gates and 17,500 transistors (ref. 1.8).

The four major packing densities that have been expected to characterise

the design and production of le chips is as shown below, (ref. 1.9, 1.10)

le chips Number of electronic Period (approx.)
devices (roughly)

LSI 50,000 1977-1984

VLSl 100,000 1979-1987

VVLSl 1,000,000 1985-1995

VVVLSl 10,000,000 199x-20Xl

These values assume that the device count will continue to grow, roughly

doubling every 12 to 18 months as has been the case for over 20 years.

A typical small computer might be built with from 1 to 100 or 1000

IC chips, a medium-size computer from 2000 to 7000 and a large computer

from 10,000 to 100,000 or even more.

1.3 DISTRIBUTED COMPUTATION

A Multicomputer is a system with more than one computer.

computer networks can be configured so that:

a) Each computer works on a separate problem

Multi-

b) Each can multiprogram several problems, possibly including interactive

terminal-based users and some background programs

c) All can work on the same problem, but essentially by first sub

dividing that problem into smaller problem pieces so that each can

work separately.

d) All can work on the same problem, with increasingly' closer co

ordination and interconnection.

In a distributed computation environment a single user problem (or

task) is considered to be composed of many smaller subproblem pieces which

are then distributed to and processed by two or more different computers

or processors configured in a network. Such a mode of distribution of

a computation can be seen to cover a wide spectrum ranging from the

loosely coupled load and resource sharing networks such as the ARPANET

(ref. 1.11, 1.12, 1.13) in which interaction is infrequent to the very

tightly coupled multiprocessors and data flow computers in which inter-

action is on an instruction by instruction basis. Thus, there is a

continuum from processors sharing a COmmon memory (the tightly coupled

6

multiprocessors) to processors communicating via pre-established message-

passing protocols but cooperating on one task. One of the major dis-

advantages of such message-passing protocol systems is that they are very

slow and it may take them thousands of times longer to send a piece of

data to a processor than it takes that processor to execute an instruction

or to process that data.

The general-purpose single-CPU serial computers on which the loosely

coupled computer networks are based execute a program one instruction

after the other, in strict serial fashion. With today's technology

it takes them about l~s to fetch and then execute a single instruction.

The fastest such computers can take 10 ns. It can be expected that even

faster cryogenic computers will easily execute instructions within 10

to lOO ps range (ref. 1.14). But then there will no longer be any

possibility of still further speeds since the absolute limit of the speed

of-light barrier will have been reached (light travels at about one foot

per nanosecond). But even at these instruction execution speeds, there

are still many problems where even the fastest single-CPU serial computers

are hopelessly slow. Such problems include:-

a) Image processing

b) The perceptual recognition of and interaction with objects in motion

c) Handling and accessing of very large bodies of information

d) The modelling of 3-D masses of matter in order to predict weather,

earthquake, or other large scale phenomena.

e) Modelling and development of intelligent thinking systems

Hence, the trend for computer design will be increasingly toward large

configurable arrays and networks of many computers, all working tightly

together in a parallel-serial fashion (ref. 1.15, 1.16).

7

Distributed Computation can be considered to be a form of mapping

of the problem structure to the computer network structure. In this way

it may be characterised into two main categories: reconfigurable and non

reconfigurable computation.

1. 3.1 Reconfigurable Distributed Computation

Reconfigurable distributed computation includes the tightly coupled

multiprocessors and data flow computer architectures in which the mode

of computation can be described as fine grain. In general, the multi-

processors and the data flow networks can be considered to be distinct

subcategories within the tightly coupled computation.

1.3.1.1 Multiprocessor Systems

A multiprocessor is a system with more than one processor. In a

multiprocessor environment multiple processes are resident in the primary

memory, all in stages of computation, and also intercommunicate via the

shared memory. The main purpose of the multiprocessor configuration is

to improve not only the individual program performance but also the system

throughput by exploiting the parallelism inherent in problems and their

algorithms. Four major configurations of processors can be identified

(ref. 1.17, 1.18, 1.19, 1.20, 1.21):

a) The single-instruction single-data stream (SISD). This is the

traditional single-CPU serial computer arrangement which has only

one processor working on one set of data and executing instructions

strictly according to the Von Neumann model.

b) The multiple-instruction single-data stream (MISD) system in which
\

the processors are pipelined. In such a pipeline, each of a number

of processors continually executes the same instruction as data flows

through the pipeline, each processor executing a different step in

the longer sequence of instructions.

8

c) The single-instruction multiple-data stream (SIMD) system in which

the processors can.be arranged in an array. In such an array. all

the processors execute the same instruction, each on a different set

of data.

d) The multiple-instruction multiple-data stream (MIMD) system in which

each of the different processors executes a different sequence of

instructions on a different set of data.

A single instruction means that the SIMD systems are highly synchronised

and hence virtually all contention among the processors is eliminated.

on the other hand, a single data stream means that the MISD systems

load instructions only once for very efficient pipelining. The efficient

operation of these systems is under the supervision of the control unit.

The SISD and SIMD systems have a single control unit while the MIMD systems

usually have a control unit for each processor. In this way the parallelism

inherent in the problem and its algorithm can be mapped to the configuration

of the processors.

1.3.1.2 Data Flow Systems

The concept of the data flow computation systems has come about because

of the evolution of the VVLSI and VVVLSI technology in which many Ie chips,

each with hundreds of thousands of processors, can be re con figured as

demanded by the algorithm that defines the problem to be solved, (ref. 1.15,

1.16) • The main aim here is to develop such multicomputer architectures

that put large numbers of processors into appropriately coordinated

interaction with one another, in such a way that they all cooperate and

work efficiently together to solve a single problem. In this way these

reconfigurable multi computer networks will mirror the algorithms' information

flow, much like the way the raw materials flow through. assembly lines to

9

facilitate the production of a single finished product. Different algorithms

will call for different re configurations of the processors. Thus, the

aim is to design the algorithm, program, language and computer in a single

integrated architectural exercise so that:-

a) The algoritrun will mirror the flow of information through the network

of processors

b) This flow will in turn determine the structure that the set of

processors should take to efficiently effect the algorithm

c) This structure in turn will determine the architecture of the network

of processors that executes the program.

d) The operating system will then either choose the appropriate architecture,

or it will actually form and reconfigure that architecture out of the

large general-purpose network of the hundreds of thousands of processors

or individual devices at its disposal.

In this way the flow graph that represents the algorithm's flow of

information through the structure of processors (ref. 1.22, 1.23, 1.24)

that transform the input information into the solution to be output is

mapped into the physical processor-memory graph structure that will

execute those processes (i.e. isomorphic hardware networks).

Hence the data flow model for reconfigurable distributed computation

is a paradigm for highly distributed computation in which the interaction

during the computation is very fine grain. This mode of interaction is

not based on the conventional Von Neumann model of computation in which

the speed of the instruction processing is dependent on the operation of

the program counter and thus not limited by the basic instruction cycle.

In a fine grain model of computation each-node of the data flow graph may

represent one machine instruction or a small group of such instructions.

10

If each node corresponds to a single'machine instruction then it can be

seen that the collection of the processors in fact are configured to run

a single program and the interaction of the processors is on an instruction

by instruction basis.

A major characteristic of the data flow model of distributed com

putation is that there are no variables and no memory locations in which

to store the results (ref. 1.15). Instead values and partial results

are represented by packets that are transmitted between the processing

elements. Each processing unit carries out some function on the values

at its input and produces an output result. Thus each function depends

strictly on its inputs, and not on any global variables. As soon as

the input packets have arrived, each processing unit may begin its compu-

tation. Hence there is no program counter and· no explicit artificially

forced sequencing of computation, other than that implicit in one calculation

depending on the result of a previous one. As a simple example, consider

the evaluation of the expression (X+Y)/(A.(B+l)). A tree algorithmic

representation might be as shown in fig. 1.3. In this way the parallelism

inherent in a problem can be automatically mapped onto the configuration

of the processors, and great speed of computation can be achieved. In

large and complex problems even greater speeds of computation can be

achieved because of the possibility of the presence of many unrelated

expressions which can be done in parallel.

1.3.2 Non-Reconfigurable Distributed Computation

Non-reconfigurable computation is based on the processing speed

and power of the traditional general-purpose single-CPU serial computers.

The organisation of such computers is as shown in fig. 1.4. The computer's

single processor accesses a single memory, and inputs and outputs to and

11

DIVIDE

ADD MULTIPLY

ADD

Fig. 1.3 A Tree Representation

Cloclt

Jtor

12

~---------------------------,
I I
I
I
I

I
Conlrol t-lI~ I • I

I
I

.1
I

('tllltrtll
(\lI1lhll!III' Arlthm\'!h: I I • l hllll

I - ,
• ("Inlr,)' hu .. I

I • In,lru.:lmn hu, I
___________________________ J

CcnU .. , 1'f(J":l'S'Ul~ \lnll

:,~t="""""" D,IIJ bu,
O.IIJ
[Ill'

IlJIJ bu,
~

• ~1"'1II,'r)' .1

(a) Organisation of a small computer

Microprocessor

I

l

A,,~--~--------~--,
AO~~-------------------'

cpu

0,

Do

DOlt.,!

DA(!dress

CJc"""o'
Output
dt'v,!.:!'

(b) A Typical a-bit Microcomputer Structure

Fig. 1.4 Characteristics of Small Computers

Input
,ll'~ "',,

13

from the outside world. The CPU comprises the arithmetic and logic unit,

ALU, which is often made up of a whole set of simple special purpose

processors, the control unit; CU, together with its high-speed registers.

More specialized hardware such as for floating point arithmetic capability

are sometimes added to improve the speed performance of the computer.

Often there are several input/output (IO) devices, and a hierarchy of

successively slower and larger memories. 'But the computation is done

by the single CPU, using data and programs stored in its main memory.

The consideration of such autonom~ and interconnected computers

sharing a single computation as described above imply the existence of

a computer network. Computer networks can be considered to have emerged

from the convergence of computer and telecommunication technologies,

fig.l.5 and 1.6: two technologies with quite distinct histories and

traditions.

As a consequence of the computers becoming smaller, cheaper and more

numerous the need to interconnect them together into networks (ref. 1.25)

has continued to increase. Today's microcomputers have processing

speeds, instruction sets and memory management capabilities comparable to

many medium power minicomputers. The small computers tend to have less

complex software while the larger and more powerful computers are usually

multi-accessed, time-shared, multiprogrammed and have large and complex

software. The software of these large mainframe-like computers is often

written in an exotic language, is machine dependent or is embedded in a

complex web of libraries and thus requiring special system calls and other

non-portable environmental features. They also tend to have very

specialised hardware. Hence part of the reason for the need for the

computers to internetwork arises because of the prospects for resource

14

COMPUTING

- I O'N CO.,r TC,,,110:.I<.

-- Oflif.C W()rk~.I;I"(JII~;
... Improved OllicfJ rrOdul.l'i

lJl~j'rltlul(:d f ' roo!'i';rnq
f'h:w T r;III' ,ITI'·.~;IC)/\ 1 (!f.hnolfJUY

.- ~i(Jptll:ihr :If:d C{Jrn"'lIrllC;ltlon~
PHJIfJO,IS

.- .

TRANSMISSION TECHNOLOGY

.. - Oigilisahon
~ r'1f.flJa~,f:d (~ilnrl'lllCl'tl

. - '.nh;tno!d INrdc: f'H:CI SCrVlC(~~
- . I ()C,II I\le,1 Nf~IW(jfk'j
... ~)'cJf(~d Proqra!n ~~WII(.hHHJ

~ .1!(.f' ,pr(J[.f ~,.,.or -- Mixed Media Transmission INrOIlMA nON

r C(,t:'l')I{l(JY - Oplir..JI r.hll..'

~
TECHNOLOGY

- Sdl(:tlllc

- C:II.lc Tf:'(~\w;,on

MEDIA CONVERGENCE
-_. IIIUI. ilc::.olllll(JJl 1''':llli~ Procc'isrng

f.1txcd d;rt1. If)xl. qr:lptllC:i, video

PROOUCT CONVERGENCE

- Mulllpl/rpO~A! \Nwk';t,I!I{Jfl~;
.. - OOClHncrll Hr',1r!f:r"l'llllllt:r

STANDARDISATION
.. - [;r:iY ;Hld Uflll!)! III l~q1Jlplllell'

<l'\:lC~l:!",Cr-,1 tlnd ,1";C.c~.,j

-- Illfcrc()nn~r:llon
~ Inlnrworl<lnq ht:I'.'If~L'n applicalions,

~>I~rvu:c!;

- . Open Systems Working

Fig. 1.5 Convergence of Computing and Telecommunications

IS

T er.hnOIO~jlr.:11
Inftucllt:C5

(nr:'.u~1 !Il) (ne'iullln.)

r
Expansion 01 Communtcatlon- r based Systems and Services

-- [}I',ffIIIUll'd C()mf)llhnq

-- On-hne Inlotmahc,n Services
-- Oflu:l! AlIlo:n;.I,f;lI

t Nf~W and Improved
Communication SfHVICCS

0rc;,:e a NI~cd fo~ PutJlIc Networks
Prlvafe N(!I ork5

- I or.al Are."' N/-Iwork ...

...
Standards. Prolocols. C Ilcsull In:)

tVctllll~r.lu'I!'5 10 Support ... -- WIUIWTlCI1I L0nnccll(Jn

-- Inlcrr.:cnn',:c::OI1 ~ nc::;ullln)+- lf1crt..·a~cd

- inICf(.omrrlUrllc.lllr)n tw!wccn oppOrlurHltes
U~f." ;'Ppur:;l!IQIIS lor

InlcrcomrnUnlc:tllon ,r

r{Have Impacts On: (Result In·)

t , Com.lraincd 8y:) .. ~ New Application
_ :;OC1cly at l:lfgC Opnorlunllir!!; PI! regulatory
- corporate electroniC mill! powels

strucllJf()S - lun(J$ tl.lflslcr - privacy and datJ
- worktllCJ - Inlornl,ltlon ~crvICC··· regu!;llion

cnVlfU11 !11t.'slt - domC~ltC service!; - allLtudcs and

-- the hWl1e - inter -o! rFl!li~;;lhon.ll pollcics 01 eqUIp-
ment supphers

-- .1bthty 01 U~;C'~'
to :1';'~tn1t!;I!f~

Fig. 1.6 Computing and Communications Interdependencies

16

sharing, load sharing and to distribute the computing power existing within

the network. The ARPA network (ref. 1.11, 1.12, 1.13) is the largest

long-haul computer network in existence and it interconnects hundreds of

computers geographically distributed across several continents. Another

major factor which has contributed to the idea of computer networking is

that the cost of the computation has progressively continued to fall over

the last decade and has fallen to the point where the cost of the computation

is cheaper than the cost of the communication facilities. From this it

can be seen that the effect of computer networks is to reduce the effect

of geography and distance. However, in a distributed computation environ-

ment it is necessary that the total delay in the communication network be

very small. Fortunately, in a wideband broadcast-type LAN considered

in this thesis very small delay can be achieved.

Several non-reconfigurable models of distributed computation are now

examined.

1.3.2.1 The Hierarchical Model

In the hierarchical distributed computation model the computers in

the network are functionally arranged hierarchically as shown in fig. 1.7.

This is a logical arrangement in siatuations where the distribution of

the entire computation is structured hierarchically. At the lowest level

small microcomputers execute certain low level functions locally, such as

computations and transactions, and then pass the results up to the next

level of more powerful computers such as minicomputers. Some or even all

the computations and transactions eventually reach the highest level of

large mainframe-like computers which in turn may have access to on-line

files or data-bases. This top level computer performs its own type of

processing on its own transactions using the data and results from the lower

computation levels.

of detail.

In this way each level processes a different level

17

.. .. •

i

Fig. 1. 7 Hiearchical Oomputation Model

Central Large Computer
(Topmost Level)

Minicomputers

Microcomputers
(lowest level)

18

A factory complex such as for production or process control may support

such a hierarchical structure. The many monitoring instruments and

sensors taking readings in an industrial or chemical process may be under

the control of microcomputers. Minicomputers in turn analyse data and

supervise the performance of the microcomputer by setting switches, operating

the relays, adjusting the valves and regulating temperature and speed. Thus,

the minicomputers control the process and also provide very fast response

to critical changes. The highest level mainframe computer uses data and

computation results from the minicomputers to enable it to perform high

level functions such as process optimization, quality control, planning,

management control and general data processing.

1.3.2.2 The User-Server Model

In the user-server computation model each individual computer in the

network has enough computing power to serve the local site. This adequate

computing power may be provided by a personal minicomputer with limited

local disk storage. In such a set-up (ref. 1.26) specialized high quality

or mass storage facilities may be located elsewhere on the network as

·shown in fig. 1.8. In this way it is possible to achieve resource sharing

of large disk servers, file servers, data-base servers, expensive or unique

high resolution phototypesetter, high quality printers or graphics

facilities which may be centrally located due to economy of scale.

1.3.2.3 The Pool Processor Model

Computing requirements tend to be very bursty in nature. In such a

bursty computation environment a relatively short but intensive period

during which the computer is in use is usually followed by a relatively

long period when the computing power is idle. In order to reduce this

expensive CPU idle time, it may be found necessary to pool the processors

in a central area and provide the various geographically distributed

Powerful
Dedicated
Personal
Computers

Fig. 1.8

19

LAN

Communications

Subnet

•
•

User-Server Computation Model

1

2

•
•
•

m

Expensive
Peripherals and
Data Base

20

users with non-intelligent terminals (ref. 1.27). Thus instead of

providing each user with enough computing power, the computing power is

centralized and accessed by any user who requests it as shown in fig. 1.9.

In this way diverse and specialized CPU can be shared. In addition to

pooling just the processors, other expensive or special high quality

peripherals and data base could also be pooled (ref. 1.28). But the major

disadvantage encountered in the pooled resource models such as the pooled

processor and the user-server models is the complexity of the scheduling

algorithm needed (ref. 1.29), to determine the properties of the computation

such as floating point or memory requirements, and also the possibility of

deadlock.

1.3.2.4 The CPU Cache Model

In the CPU cache model of distributed computation a smaller computer

decides to share its workload with an existing more powerful and centrally

located computer in the network. Such a situation can easily obtain in

an organisation whose workload exceeds the capacity of the largest existing

CPU. CPU cache in this context is used analogously with the memory cache

in which there are two levels of the main memory: a small fast memory and

a large slow memory. In such a set up the cache algorithm attempts to

keep the most heavily used data in the fast memory, to reduce the memory

access time. Many such users with a CPU cache problem and existing

within a geographically small area may be connected to several existing

powerful computers in the same network, as shown in fig. 1.10.

The CPU cache model·of distributed computation is about halfway that

of the user-server model in which each user has enough local computing

power capability provided by a personal minicomputer and the pool processor

model in which each user has limited local processing capability (ref. 1.30).

3

User
Terminals

Fig. 1.9

21

• • •

Poo1.Processor Computation Model

1

2

•
•
•

m

Poolof Processors
and Data-Base

Smaller computers
(Source Processors]

•

22

Fig. 1.10 CPU Cache Computation Model

1

2

•
•
•

m

Larger Computers
(Sink Processors)

23

In the CPU cache model each user has a small general-purpose computer which

is capable of running a wide variety of user programs completely in a

stand-alone mode. Such a definition of these smaller computers include the

a-bit and l6-bit microcomputers and some minicomputers. Even though they

are relatively small, these smaller computers may still have versatile

architecture and powerful instruction sets to support massive computational

power such as floating-point capability, input/output devices such as

high-speed printers, plotters, microfilm recorders and magnetic tapes as

shown in fig. 1.11.

Hence in the CPU cache model the workload of the smaller computer is

effectively partitioned into two portions and processed thus by the two

computers. The decision to run a particular portion of the computation

on one computer or the other is based on the relative suitability of the

two machines and may depend on such factors as:

a) The relative processing costs of the two machines

b) The communication bandwidth between the two machines

c) The current workload

The current workload at the large computer is a very dominant factor in

the decision where to run a particular computation. When the workload

at the large computer is light then it can be expected that a large

portion of the partitioned workload is sent to run there because the machine

there is faster.

This thesis is based on the CPU cache model of distributed computation.

The CPU cache model is based on the relative performance of the computers

sharing the workload. This relative performance has so far been dis-

tinguished by the terms small and large computers.

large are now further clarified.

The terms small and

24

Local
Bulk
Storage

Local Local Link to
Memory CPU Sink CPU

Local
Display Local
Processors Peripheral

Fig. loll Small Computer and Peripherals

25

1. 4 SMALL AND LARGE COMPUTERS

On the one hand the distinction between the small and large computers

to explain the existence of a CPU cache is not obvious. The adjectives

small and large are relative terms. A computer can be small physically

but quite powerful in terms of its instruction set capability. Micro-

computers may be described as small computers but their software may enable

them to outperform many older generation computers which are physically ,
large. Hence the level of technology is an important factor in this

classification. But many factors need to be taken into account to

facilitate a valid distinction between the small and large computers.

One can classify computers into the four main categories shown in table 1.1.

On the other hand the level of technology achieved makes this

classification even more difficult (ref. 1.5). When an improved basic

technology becomes available to the computer designers, there are four

paths that the designs can take to incorporate the technology:

a) Use the newer technology to build a lower cost system with the

same per"formance and thereby attract new applications

b) Hold the cost constant and use the technological improvement to get

an increase in performance. This approach provides a growth in

performance and quality at a constant price.

c) Push the design to the limits of the new technology, thereby increasing

both performance and cost. In this approach the new technology is

used to build the most powerful machines possible and thus enabling

previously unsolved problems to be solved and in so doing advance the

state of the art.

d) Find a completely new structure using the computer as a basic

architype (e.g. the calculator) so that the design can be considered

to be off the evolutionary path.

T)rh.:.1i numl:'oo.:r
llf ~'h p.:r \hlrJ

S~'~J

RC4uir('d u'<r
unJ~p.t~ndlng

llf m .. .:hinc

T~ rt ... · .• 1 h(~h·
1.: .. '..:1 l.'Il~U"~'"

T}f"I,;,J1

rr~'~r;lfllm,"~

m.:lh,,,,h

ryr i..:.
" arrlh;.lli.>u,

C':'Sf

Pr~nmmahlf'

('.I"ulotlur

D..:Jh.:.ltc:J

Vt'r~ .. I,.w

Ver~

limited

IL\SU:
tlltr!c:lIl ... nt1
III h.lrJI,I,arc

~1.tnu.llI~

fh'lIl
J",'yt-. •. lfd

(';.i.:ur,di,'n ..

26

I),.oJkateJ "t

I:c"cral rufl'\"~
SI,·" 11.) fJ"
E\lcn .. j"c

I'L "
p., SC", I.

A, .. cmt-ol)
1;tI1h!u..t~C:

1)\'''1'':\' .:,lnlhll

:\,:ct1unting
Rerl.to.:..:m ... nl
,If Jit,:II.t1 11.t:J..:

' ·f} I., h,I"14

'IInl
computrr

11-,\1

Gener:,1
J1urpo\c

Fa"

Fair II'
'iuh .. tanti,,1

n.-\SI'
FnRTR_"~
AI.GOl.

A'!Iocmt-') I'f

hl.:h.\ ,·,
lan!!uat:..:

Phlt-km ".'h'il1~
Pw.:c:,lnlrl,1
[)C\I":C ':"lIlr,,1

1.\1" h' medium

'1idl·
,'on'pull"

~'lfi':;&h:J ,Ir
~(,I1~r.ll f1U1(1\'''t,'

F""
Limit.:J

·\I.GOI.
B.\SI(.
'-:OR fR ·\S
<..'0 !to I.
lli,;h-k\d
1.ln~u.I~~·

S,'hin~ I.u):~·

rn,I-"-kl1l'
S~ ,t':llI, ~"'IIII,'I

Table 1.1 Comparison of Typical Characteristics of Computer Classes

'DOI! 8080 IWIS HOH6

Number of 66 111 113 133
InstructIons

Number 01 4 5 5 9
flags

Maximum 161< bytes &4K bytes 64K bytes tM bytes
memory Ill.

1:0 ports 8 input 256 input 256 input 64K input
24 output 256 output 256 output 64K output

Number ot 18 40 40 40
pins

4.ddress bus ,. 16 18 IS'
WldlM

Data bus ,. 8 , 18'
width

Data types 8-blt unsIgned 8--bit unsigned 8-bll unSlgn&d a·bit unsIgned
IS-bil cnSlgned IS-till un,.gnCd 8-bit signeod
(limIted) (hm1ted) I&bil uns'gneod

16·bit signed
Packed BeD Picked BCD Packed BCD

(limited) (l.m1teCI) Unpacked eeo
A::Idress,ng Reglstert Memory dIrect MemOl)' direct Memory dHeCI

modes ImmedIate (I,m'ted) (lim't~) Memory mJ,r"cl
Memory Indlroel Memol)'lOdIH"CI RegIster

(limited) (IIm.ted) ImmedIate
Re<Jlsler : RegIster: IndC)(109
ImmedIate Immed .• te

'ntroductlon 1972 1974 1976 1978
date

• Addl",.I""" dlt, bus rnun,pl •• ~'

: Mf!o o')' Cl" W Idd,nM<l.t. S~',ll caW' Dy u1'''9 'IO'Sle''''

Table 1.2 Comparison of Typical Features of Microcomputers

27

An examination of the use of new technology for constant cost and

constant performance over a period of time leads to an economic view·that

computer classes can be distinguished by cost and grouped into the

following four main categories:

a) Programmable calculators (or monolithic microcomputers)

b) Microcomputers

c) Minicomputers

d) Maxicomputers (or mainframe computers)

as shown in fig. 1.12. Hence, the measure used to define a new class

is cost, whereas the measure used to define an established class is

performance. This is primarily because once a new class has become

established in the market, the users become familiar with what computers

and what class can be used for their application, and hence tend to

characterise that class on a performance basis. The characterisation of

existing classes on a performance basis is important because at each new

technology time, performance increases by one category, and the mini

computer performance becomes available on a microcomputer, for example.

Hence by considering the effect of technology upon the computer classes

using new technology for constant cost and constant performance the

following conclusions may be drawn:

a) The cost declines and this creates new classes of computers

b) The new classes become the established classes

c) The established classes become encroached upon.

Computer types can also be classified on the basis of their bytes of

virtual address space. Several computer space dimensions are roughly

correlated with the number of bytes in the virtual address.

virtual address usually means:

A larger

28

a) Wider instruction words to hold larger virtual addresses. These

wider words imply wider memories and data paths, higher CPU-Memory

bandwidth, and larger instruction sets

b) Usually, more f~nctionality of the instruction set processor,

represented by an ability to support more data-type in hardware

c) Higher costs due to (a)

d) Higher performance to gain economies of scale.

Fig. 1.13 shows this relationship of bytes in the virtual address space

over a period of time.

From this discussion it may be seen that the CPU cache model of

distributed computation can be used in the sharing of a computation between

a variety of computers, such as:

a) Microcomputers and minicomputers

b) Microcomputers and mainframe computers

c) Minicomputers and mainframe computers

d) 8-bit microcomputers and l6-bit microcomputers

From (d) it may be expected that a mild form of a CPU cache relationship

may exist between computers in the same class such as one mainframe computer

and another.

A few characteristics of the various computers classes, with the

exception of the monolithic microcomputers, that may exhibit a CPU cache

are examined below. Monolithic microcomputers (e.g. TMSlOOO) are primarily

single-chip systems incorporating the processor, program ROM, variable RAM,

and sometimes dedicated input/output.

1.4.1 The Microcomputer

Very many different microcomputers have been manufactured. Their

processing power is primarily determined by the microprocessor on which they

are based. They have external RAM and ROM chips and are usually faster

29

,.---------------------- --'--- .

"'

Fig. 1.12 computer Class as a Function of Price

,. -- r------l
, I

• " '11780
lO

f------If------Ir--I: :':. ---
;

i ,.
!
l .""'" .. 10 • E "ct-otlt

"
... .. I.!

! -
~ .. ' .
f

·r-... -.,-,O-,~_·T .. -,,----r:-',,:,-,,·"' ,~,~
_L _____ L__ j

... ~) ... , " .. ' ~h"" .. '~ m ••• .x I~" M,,,,

""''' .
. .1

' ... 19!JI(l 1<)1,,) ,91., I ~h"1

J

Fig. 1.13 Computer Class as a Function of Virtual Address Space

30

than the monolithic microcomputers, since the off-chip placement of

memory and input/output (IO) frees gates for more complex instructions and

wider data paths. Some of the important features of these microprocessors

around which the microcomputers are built are briefly examined.

1.4.1.1 The 4040 4-bit microprocessor

The important features of the 4040 processors include

a) 24 registers

b) 4-bit words with 12-bit addresses

c) Use of 2's complement and BCD arithmetic

d) Acceptance of programs written in machine and assembly language

1.4.1.2 The 8080/8085 8-bit microprocessor

The 8080 and 8085 are N-channel MOS, Fig. 1.14, and share the same

machine and assembly language. Their other important features include

a) 10 principal registers, including one accumulator

b) 8-bit words with 16-bit addresses

c) 5 flags to show the CPU status

d) Use of 2's complement and BCD arithmetic

e) Acceptance of programs written in machine language, assembly language,

BASIC, PASCAL, and PL/M (a subset of PL/l)

f) III and 113 instructions respectively

g) Clock frequency is between 1 and 4 MHz

1.4.1.3 The z-80 8-bit microprocessor

The Z-80 is an N-channel MOS microprocessor, fig. 1.15.

includes all the 8080 instructions as a subset and has:-

a) 22 principal registers including two accumulators

bl 8-bit words with 16-bit addresses

cl 6 flags to show CPU status

The Z-80

-5 V

.. 12 V

-5 V

~

Oock ~,

Inputs 07

31

8080/8085· A"
Addrrss bus

1161
Program counter 1161 Aa

Accumulator
(81

General purpose reg.

I B ISI I I
c (Sd

0 0 -0 7

I 0 ISII E (SJ I

I H (SI I L (SJ I
I Stack pointer (16J I
I Status Isd

I ALU (SJ I
-The 8085 has on-chip system controller and clock- generating capabilities,
uses d single. 5·V supply and has more bus control functions dnd interrupt
cdpabllities.

Fig. 1.14 The 8080/8085 Microprocessor

32

-5 V
Z-80 "

~;. 'Add;~s;i'
I I

/% b Z,,/,

Program Counter 1161
'~ U5 ~'/,/.'/
;/; 1161)-",/

'*
'~.-, . ," '-' ~~ ..

v

Accumulator Accumulator

I A 181 I I A' 181 I
I Status 181 I I Status 181 I A " ~ V/;Oa't'a ~S'%/~ k General·purpose General-purpose !"<" 181 ii':

I B IBII I c 181
1 I B' 181 I I C' 181 I .',/', ././'".,.<<<

~ .
Cloc

I D 181 1 I E 181 I I D' 181 I I E' 181 I

I H 181 I I L 181 I I H' 18J I I L' 181 I

I I nde. registl"f X 1161 I

I I ndel(register Y 1161 1
A "-

I Stack Pointer 1161 I /;-; C~~trol: " "0 bus 113J~;~

I IV 161 I " v

I MRC 1611

I ALU 161
1

Fig. 1.15 The Z-80 Microprocessor

33

d) Use of 2'9 complement and BCD arithmetic

e) Acceptance of programs written in machine language, assembly language,

BASIC, PASCAL, PL/M

f) 158 different instructions

g) Clock frequency of 2.5 MHz

1.4.1.4 The M6800 8-bit microprocessor

The Motorolla 6800 microprocessor resembles the 8080/8085 in many

respects, fig. 1.16. Its important architectural features include

a) 6 principal registers including 2 accumulators

b) 8-bit words with 16-bit addresses

c) 6 flags to show CPU status

d) Use of 2's complement and BCD arithmetic

e) Acceptance of programs written in machine language, assembly language,

BASIC, PASCAL, MPL (a subset of PL/l)

f) 72 types of instructions

g) Clock frequency of 1 MHz

1.4.1.5 The 16-bit microprocessors

The 16-bit microprocessors have evolved in direct competition with

the well-established minicomputer classes. Some typical 16-bit micro-

processors are the Intel 8086, Z-8000, M68000 and the Texas Instruments

TMS99oo. The main advantages of the 16-bit microprocessors come from

the fact that with 16-bit word size, more powerful instructions can be

written which allow for much efficient way to perform powerful computational

tasks. Most of the present 16-bit microprocessors have instruction sets

which are built around specific microcomputer instruction sets, thus

allowing the user to take advantage of all the existing software available

for a specific minicomputer. The main disadvantage with the 16-bit

microprocessors is that more than 40 pins are used on the microprocessor

34

'sv 6800 A"

Program Counter (161 I :
Clocks

Aa

0, Accumulator
A rSI

0,

Accumulator
B ISI

OO~O1

I ndell register X (161 I
Stack Pointer (161 I
Status rSI

ALU rSI

Fig. 1.16 The 6800 Microprocessor

35

package unless bus multiplexing is used. However multiplexing of bus

information increases the system complexity, as far as parts counts is

concerned, and this may slow down the speed of operation of the overall

system. Tables 1.2, 1.3, 1.4 and 1.5 show a comparison of some of the

important features of Intel microprocessors (ref. 1.5).

1.4.2 The Minicomputer

Many different types of minicomputers have been manufactured. Two

of the more popular minicomputers are briefly examined.

1.4.2.1 The pop-8 Minicomputer

POp-8 is one of the earliest minicomputers and is widely available.

The most important features include

a) One accumulator

b) l2-bit words

c) Separate buses for memory and I/O

d) Use of 2's complement arithmetic

e) Acceptance of programs written in machine language, assembly language,

FORTRAN, BASIC, PASCAL

1.4.2.2 The POP-ll Minicomputer

POP-ll is one of the most popular computers.

important features include:

a) 8 or 16 registers

Some of its most

b) 16-bit words divided into two 8-bit bytes that can be individually

addressed and manipulated. Some models have 32-bit words.

c) A single bus (Unibus) for operations with both memory and I/O devices

d) A processor status register that keeps track of four types of

conditions.

e) Use of 2's complement arithmetic

f) Acceptance of programs written in machine language, assembly language,

BASIC, FORTRAN, PASCAL

36

I/OOIl HOOO (2 .ull:;) ."Io.. .. fi (H Mild

register·registe, 12.5 2 025
Ir.nsfer

jump 25 S 0.87S
reglster-Immediat. 20 3.5 0.5

operation
subroutine call 28 9 2.5
Increment (16-bit) 50 2.5 0.25

addition (IS·bit) 75 5 0.375
transfer 1 t 6-bit, 25 2 0.25

All h/TMI .1'8 g n In microMConGs.

Table 1.3 Comparison of Typical Microcomputer Performance

,,,,,," 8081J

SI'. con P-ch.nnel N-channel
gale enhancement enhancement
technologY' load device load davlca

Clock 0.5-08 MHz 2-3 MHz
rale

Min gated"'.yt 30 ns! 1SnU
Fa .. Ft '" t

Typical speed- lOO pi '0 p/
power product

Approlllmale number 2,000 '.500
of transistors"

Average transistor 8.' 7,5
denSity (mll~
per tranSlslor)

• FaSleslln ... er1er 1101'1(1'00 IVlllabl. ,,"Ito .. ors,-c ... process,ng
: lln~ar·mode e"h.neemenl IGlld

Hn8.'S

N-channel
depletion
IOld deVICe

3·5 MHz

5 n.
10 pj

6,500

5,7

~ Th,s.s 29 000 1'.ns'Slors If III ROM Ind PLA IVI,I.ble pl.cemenl ','es Ire counted
c GJI~ IIKlU'~IIt'nt ca" be "!oma'e' by d1v'd'"Q by 3

Scalpd
N-channel
(HMOS)
depletion
load deVice

5-8 MHz

3 ns

2 pj

20.000~

25

Table 1.4 Comparison of Typical Microcomputer Technology

37

--------------,---:--::-:---;--::-:---;---;-:-�;---;R'~·:,.---;F:,,:,,~h:,IUJ"7.~.I;::.-;_--~,"~,~.I'--~";; .. ::,,,' .. ,.. Itl . ..: /"'0" 1 .. ,,' .\' .. " 1 \1 .. , •••• .1.. I",," _ ~ ,.
Mllo4 'tt''''' ""~ " 111Il0l' 1'()1I".~C' ,.'..., 7.~ ,,"',. .'WCIW'" /.-"f,tUI

TKf'nolOQ'I'
.... ~Olp!.,.~ _
""''''0:110" I,m. 1 '
~a-oa,1'I .odll' ,Ootl)

....... """"" memo", .. ,. ,..,...,
~.p,t.I.w.

Stac. ~'l'
"'.""el'on "". ft.,'H,
s..c ,,,,tr,,,eIIOll-M.
~.

""-'tnOel 01 .!)(I no
"""'. v.'a·typH

~os PMQS PMCS
16 18 24

'1~ 7~ 42
.. a 2 ...
41(16K 1541(

" , "
1-2 ,..J 1-2

4S M 38

1nl.,. Inl"98' lilt...,.,
MC ,

19~1 1971 1973

.... WOS 05 CMOS
'0 -0 21,40

, , .
• • •
~I(1541(~I(

, "
In AA... !" AAM
I-J 1--3

12 IH &I

In,,,,,,,. 1nleo-. In,.,
~.c'".., a.<;.maj

....,..
,
• ...
"

'"

:
,,7S

,
• ...
7(2 .. ,.,
,." ..
"

171 ~.-e.

"" ..
HtTS

t4MOS tiMOS

" ..
OlS 015 . "
'1\1 "'"

HI 16
III R .. U,t In RAM
,.... 2-6

24 '0

'"'erg". Inl.-;l",
oo.;,tn.t d m.,
2~ I "" {II 1 ... ,."

lSE .,.~
1971 '98C

"M'" .,
o ~)

" '"
"

,,,,~.,,

.1.'C,·~.'

.1 ., •••. ,~

Table 1.5 Characteristics of Various Microprocessors

\I,'rt/""I "I"I;ul.'

PUI'ICtled paper ear.1

Magnetic card

~O\I"g·t1ead,

II('rp~ d,.sk

/-"11"""""
Permanenl,
arch'val

Secondary.
archival

Secondary,
atch,val

Secondary

M(,y'''g-tlead CI'SI(pack Secondary,
1.les swapping

F''leoj'''ead disk Secondary,
IlIes swapping

On ... M ~econdary.

(wr,Ie- once)
130,.1,", .:::or~ m~m')r,

t1'9h See-lid. Corl' or

·Hti"·ftl", It\~"!or)
tr'-'(>~;a:{'~ '''CUI!

I~OS ""(lmoryt
1"I!l'g' .llea ClfCU.t

(bipolar mernory)

Int.:-g, .. Hed Clrcu,t
!::on:e"!f ad"r(>SS"'~let

swapping
Secondary,
swapping

SE"COnCl.lf'Y,
swappmg

Secondary

Promary and or
., ... condary
S","olPP,ng

rr.mary

Pwnary.
processor
state

Pnmary, ('ache

qcaa 0,1', Proces~cr
,ns!r ... ctlon·set
del,nl',on

.-\r,·,·,t;f

1111'/',.",
Random
',n •• t

Llne.r •
constant
cyclic

Linear

Cychc

Linear ..
cyclic

CycliC

CYCliC

CYCliC

CycliC

Random

R.lndom

Random

Random

Conten',
rAndom

. Random

.\tn,wf\' ~j:,' .\lI't"c'rYl'n/orm.ul!". -------------------,\I"cI"lc'
_\i:t' .\Iadult-sl
thih) C"''''I,,,,,'r

(500 - 1.(00)' \,' - 2
card; - , ,000
card,'unl'

3 ,~ 10" 1 _"

7 ..- 10' 1 '·16

10' -. 10' 1 - 2

- 16

10' - 10" 1 - 40

(1 5) IQ' 10

(1 5) tQl 1 - to

10' .. 10' '0

10'~ 10'1 10

'0' 8

'0' '0' 16

10' Ill' 20

10' '0' 20

2 ,,'0" 2

jI - 5) 'l(tar

'-\"c·,',ff
tim('
{.t f

IQI' - 10'

10' - 100

100 - 10'

10 I - 10'

10' . 100

to'-tO"

10' 10'

10' - to l

10' 10'

10 100

(2 to)· 10'

1)(1111

rill,'
(/Ijf.\/~ I

10'

0.4 >(to'

2 ... to J ~

2 .. 10 '

1 5 .. 10 ••
5 ~ '0 '

0.4 ", 10" 2)(.10',
4 K to 5

Il)' 106+10'

to' ~ 10'

10" 10'

10" 10·

to' 10'

10' 10'

10" 10'

3 "'0 t •

3 "K".10.5
10 I 10.

101 ... to'

ID l ~ iO •

5,.,. 10·i ...
5 ~ 10·1

0.':2 0.0..,

(02 21' 10' 10' !Cl"

11) 1 J 1

10' - 10.... 10" 10'

·10"1 10'

Table 1.6 Some Memory Characteristics

38

1.4.3 The Mainframe Computers

There are many different types of computers which fall under this

category, sOme of which are powerful dedicated computers. All of these

large and very powerful general purpose computers are very expensive and

they also tend to be the largest machines that can be built in a given

technology at a given time. Their major characteristic is the possession

of a large virtual-address space: in excess of 16 Mh. They also have

a rich set of data-types. OVer the years the scientific data-types have

progressed from short-word to long-word fixed point scalars, to floating-

point scalars and finally to vectors and arrays. They have high-performance

CPU and some of them support instruction pipe lining and instruction

prefetch capability. Examples of these types of computers include the

IBM System/360, VAX-ll, GRAY-I, CDC 6600, STARAN and Illiac IV •
•

Since early 1960's, a number of parallel developments in computer

architecture and software evolved, all seeking to make more efficient use

of these expensive hardware installations. These developments sought not

only to increase the number of tasks completed per unit of time but also

to increase the efficiency of the hardware usage on single tasks. The

four major system-level concepts that served as focal point for these

developments were:

a) Multiprogramming

b) Timesharing

c) Virtual memory

d) Virtual machine

Another important consideration 'for these mainframe computers is the

size of their memory and their memory hierarchy management. Usually

the fastest, and most expensive, technology is used in the registers in

39

the CPU. Ideally one would like to execute programs as if all data

existed in the CPU registers (mainly semiconductor). When more data

are required, slower, larger, and lower-cost storage such as the primary

memory (mainly semiconductor, magnetic core) is added. Larger program

and data storage and medium-term storage can be provided by the secondary

memory (mainly magnetic: drum, disk, tape). Finally tertiary memory

(magnetic tape) provides archival and long-term storage. An important

performance measure for memory is the memory access time, table 1.6. It

has also been estimated that the CPU performance is very closely matched

to the size of the computer memory (ref. 1.31, 1.32).

1.5 THIS THESIS

This thesis is primarily an analytical investigation into some

aspects of measures of performance in a distributed computation environ

ment and how this can be achieved in a wideband broadcast-type Local

Area Computer Network (LAN). Hence the thesis can logically be considered

to consist of two main parts: the pure communication aspects and the pure

computation aspects.

By distributing a computation in this respect is meant the use of

two or more autonomous computers which are interconnected by communication

links to solve a single problem. Hence this thesis is based primarily

on the processing performance of the traditional general-purpose single-CPu

serial computer. As was explained previously, this traditional single-

processor computer is only one of a potentially infinite number of

possible computers: those with 1, 2, 3 ••. n processors con figured in all

possible ways. The thesis specifically addresses itself to that mode of

distributed computation in which two autonomous computers and inter

connected by communication links are used to solve a single problem by

40

partitioning the problem into two portions and sharing it between themselves.

Hence the CPU cache model of distributed computation is used. In a CPU

cache environment (ref. 1.30, 1.33, 1.34) a smaller computer shares its

computational workload with a larger computer existing in its neighbourhood

with the express aim of speeding up the computation to reduce the total

time that the smaller computer would have taken to solve the same problem

on its own, as was explained previously. Furthermore, an arbitrary number

of such smaller computers are assumed to exist in the same LAN as the

larger computer as illustrated in Fig. 1.17. But, despite their co-

existence in the same LAN the smaller computers do not partition and

share any computation among themselves. The only permitted mode of

partitioning and sharing of the computational workload is that between the

smaller computers and the larger computer in the LAN. Moreover, it is

up to the smaller computers to gauge and to decide the size of the portion

of their computational workload to process themselves and how much portion

to schedule to the larger computer. Furthermore it is left to the

smaller computers to decide for themselves whether or not it is worth

. apportioning for scheduling and assigning any of their computational

workload to the larger computer. In order to facilitate the smaller

computers to reach a reasonable decision as to how much of their work-load

to share with the larger computer the latter, at intervals, reports to the

former an estimate of the computational workload back logged at the larger

computer. In this way the smaller computer will be encouraged to go

ahead and schedule some of its computational workload to the larger computer

if the backlog workload there is small and vice versa if the workload is

large. It is possible that in the majority of cases the smaller computer

has little or no workload at all to share with the larger computer in

41

~ ~
~----------~----------------------~~----------.... ----------------------~
~~ ________________ ~,,~ ____________ ~J

source processors Communication channel sink processor

Fig. 1.17 Computer Interconnection and Layout

42

the LAN. In this case the workload at the larger computer will be low

for most of the time, in which case any smaller computer apportioning its

workload to the larger computer can expect to get it run there reasonably

fast. On the other hand it may be expected that at certain other times

the smaller computers have appreciable workloads and need to share some

of it with the larger computer and thus increasing the backlog computational

workload there too. In this case the smaller computers can expect

that shared workload at the larger computer to run considerably slower.

Hence the backlog computational workload at the larger computer is a

critical factor in this mode of distributed computation.

It can be expected that as the smaller computers get faster, cheaper

and more abundant programmers are going to continue to want to solve

problems of increasingly larger size. The simultaneous existence of some

form of a "computer centre" in the neighbourhood will then set the situation

right for the CPU cache mode of distributed computation within the

LAN. Such a situation can easily obtain in such environments as

al The University

bl Factory complex

cl Research Laboratories

1.6 ORGANISATION OF THE THESIS

Chapter two will attempt to present the overall picture concerning

the topology of the network of computers in the LAN. It will also examine

how the various computers in the LAN communicate with one another in general

and the various protocols involved. It will also define the main

. characteristics of the type of LAN on which this thesis is based.

Chapter three will examine the characteristics and organisation of a

problem for distributed computation. It will also examine how the

43

problem can be partitioned as well as the partitioning algorithms used.

Chapter four will examine the characteristics and principles of

computation. It will look at what constitutes a computation and the

expression of a computation in terms of time. It will also examine

computation probabilistically and will look at how the computation can be

characterised by probability distribution or density functions.

Chapter five will address itself to the characteristics of the LAN

with a view to examining channel delay performance and will determine the

mean channel delay experienced by the channel packets.

Chapter six will examine and present the computational model used to

characterise distributed computation. Its main aim is to characterise

the workload at the large and more powerful computer in the LAN as this

is a critical factor in distributed computation. It will also present

the theoretical and experimental (simulation) results obtained.

Finally, chapter seven will briefly review the results and make

suggestions for possible future developments.

44

CHAPTER 2

NETWORK ORGANISATION

2.1 INTRODUCTION

The design and o~ganisational issues of computer networks are very

broad and cover many diverse and interrelated areas such as the

computer hardware organisation, computer software organisation,

communications processor hardware and software, network topology and

network protocols, (ref. 2.1, 2.2). Other major operational issues

such as the routing procedures, flow control, congestion control and

communication switching procedures also have to be resolved in order to

facilitate a smoothly operating network. This chapter examines some

of these main organisational features of a computer network with the

aim of presenting the basic format of this thesis.

2.2 THE NETWORK STRUCTURE

Modern computer networks are designed in a highly structured

way. A structured design facilitates the network to be flexible and

to grow in size or in quality of the service it provides simply by

adding on another facility or a software sophistication without the need

to disrupt the existing layout. In a computer network this layout

can be either the network hardware or the network software which

together determine the kinds of services or applications the network

may support.

The two main issues of the network structure are its topology and

architecture.

2.2.1 The Network Topology

In a computer communication network there exists a collection -of

machines (the computers) (ref. 2.8), which are capable of running user

45

programs. These machines are sometimes referred to as the network-

users or the network-stations or just users. These network-users are

connected together by means of the communication subnet whose job it

is to carry data from one network-user to another. The communications

subjet itself can be considered to consist of two basic components:

a) the communication switches

b) the communication channels

The communication switches may themselves be small processors of

varying degrees of complexity. All traffic to and from a network-user

must go through its communication switch. All the communication

switches are in turn interconnected by means of the transmission

channels. The way in which the communication channels interconnect

the communication switches define the topology of the network. /
(

Communication within the communication subnet can take on two

basic forms: point-to-point or broadcast (ref. 2.11, 2.12, 2.13,

2.14).

2.2.1.1 Point-to-point channels

In a point-to-point communications subnet (ref. 2.7), the network

contains many communication links each one of which interconnects a

pair of network-users. If two network-users not sharing a link wish

to communicate, they must do so indirectly via other intermediate network-

users. When a message is sent from one network-user to another via

one or more intermediate users, the message is received at each

intermediate user in its entirety, stored there temporarily until the

required output line is free, and then forwarded. Hence point-to-point

channels are also variously known as store-and-forward channels.

46

Some of the network topologies that support point-to-point communi-

cations subnet are (ref. 2.14):

a) star network

b) loop network

c) hierarchical tree network

d) mesh network

These are illustrated in fig. 2.1.

Point-to-point communications subnet is generally not used for

local networks but has been used for long-haul computer communication

networks such as ARPA (ref. 2.3,2.10), SITA (ref. 2.4, 2.5) and TYMNET

(ref. 2.6).

2.2.1.2 Broadcast channels

In a broadcast-type communications subnet (ref. 2.10), a single

communication channel is shared by all the network-users. Inherent in

such a topology is the fact that messages transmitted by any network-user

will be received by all the other users in the network. Messages must

therefore carry some identification indicating to which network-user the

message is intended for. Network-users receiving messages not intended

for them must ignore and not interfere with them. Because all users

share a common transmission link, one and only one network-user is allowed

to gain access and to transmit into the channel at anyone time. Hence

some form of a channel access control must be exercised to determine which

network-user may transmit next. Centralized or distributed channel access

control schemes can be used. In the event of a simultaneous channel

access some collision arbitration mechanism must be employed to resolve

the conflict.

Some of the network topologies that support broadcast-type communi

cations subnets are shown in fig. 2.2, and described below.

47

(a) star topology 'tb) loop topology

(c) hierarchical tree topology (d) mesh topology

Fig. 2.1 Point-to-point network topologies

49

(a) The bus topology

(b) The broadcast tree topology

49

(c) The ring topology

o

(d) Satellite or radio topology

Fig. 2.2 Multi-point Network Topology

50

2.2.1.2.1 The Bus TopologY

In the bus network (ref. 2.16) all network-users attach, through the

appropriate hardware interfacing, directly to a linear (passive) transmission

channel. At anyone time just one network-user is allowed to be the bus-

master and can transmit its messages (ref. 2.15). During this time all

the other users are prohibited from sending their messages but must listen

to the transmissions in progress. The twisted-pair and the coaxial cable

are two of the most common transmission channels employed in the bus

communications subnet. Hence the bus communications subnet can support

wideband communication. The coaxial cable can support baseband or broadband

communication (ref. 2.17, 2.18, 2.21). In the baseband bus communications

subnet digital signalling and bidirectional transmission are used. In

this way the entire channel bandwidth is utilized by the signal. The bus

communications subnet can support a signal transmission speed of up to about

50 Mbps, a maximll' distance of about 25 km, and can also support several

hundred network-users depending on the size of the network and the

transmission speed. The broadband bus communications subnet (ref. 2.19,

2.20) uses analog signalling and unidirectional transmission so that

frequency division multiplexing (FDM) can be used and considerably longer

distances can be covered. If the size of the network is small, the

broadcast bus topology is appropriate.

2.2.1.2.2 The Tree Topology

The tree topology is a slight generalization of the bus topology.

The transmission channel is a branching passive cable without any closed

loops. Just like the bus topology, baseband and broadband communication

can be supported by the tree communications subnet topology (ref. 2.19,

2.20, 2.21). Most of the characteristics cited above for the ·bus topology

51

also apply to the tree topology.

2.2.1.2.3 The Ring Topology

In the ring topology (ref. 2.22, 2.23, 2.24, 2.25), network-users are

attached to the transmission channel via repeaters, each of which is

connected to two others by unidirectional transmission links to form a

single closed path. Since multiple users share the ring, control is

needed to determine at what time each user may insert its message. Like

in the bus and the tree topologies this control can be achieved in a

distributed rather than in a centralized way. Each user has enough

channel access logic that controls transmission and reception of messages

in the subnet.

Transmission in the ring subnet is unidirectional so that the message

bits are transmitted sequentially, bit by bit, around the ring from one

repeater to the next. Each repeater in turn regenerates and retransmits

each bit. In this way each individual bit of the message propagates

around the ring separately, not waiting for the rest of the message to

which it belongs. Thus each bit may travel round the entire ring within

a few bit times, usually before the complete message has been transmitted.

This characteristic behaviour of the broadcast ring topology differs from

that of the loop point-to-point topology in that in the loop topology each

user message is not re transmitted until the entire message has been received.

In the ring network each link between the network users may therefore have

a different message on it at anyone time.

Twisted-pair, baseband coaxial cable and the optical fibre can be

used as the links of the transmission channel in the ring topology, and

either analog or digital signalling can be used. A transmission speed of

52

up to 10 Mbps, a maximum distance of a few kilometers and a few tens of

users can be supported on the ring communications subnet.

2.2.1.2.4 The Satellite and Radio Topology

In the satellite (ref. 2.45) or ground radio (ref. 2.26, 2.27),

topology each network user has an aerial by means of which it can transmit

and receive. The satellite network consists of a set of ground stations

and·a communications satellite in a synchronous orbit. The ground stations

transmit data to the satellite, which then broadcasts the transmission

back down to all the ground stations. In this way all the network users

can hear the output of the satellite and also possibly some of the trans

missions of the other network users to the satellite.

Because of the nature of the satellite network communications subnet,

the transmission frequency ranges are high and hence there is a potential

for high transmission data rates (ref. 2.28). However, the satellite

subnet has a long round-trip propagation delay of about half a second

(ref. 2.13) and hence is more suitable for long-haul networks. The long

haul ARPA network (ref. 2.27) has satellite links in its communications

subnet.

2.2.2 The OSI Network Architecture

In many computer networks different types of computers exist in the

network. Yet orderly communication between the various heterogenous

computers in the network (ref. 2.29, 2.30, 2.31, 2.32), is a major goal.

In general these computer communications aspects can be considered from

the point of view of the hardware and software. Both the computer and the

communications hardware are reasonably standard and present fewer problems.

But the architectures of the communications process for each computer in

the network needs to be fairly standard too in order to facilitate proper

53

communication among the various heterogenous computers. The model of

such an architecture which forms the framework for defining standards for

linking the many heterogenous computers in a network is the Open Systems

Interconnection (OSI) (ref. 2.33, 2.34).

The OSI model partitions the software for the communications function

into a structured set of seven layers as shown in fig. 2.3. Such a

structured and layered organisation also reduces the design complexity.

The purpose of each layer is to perform a related subset of the functions

required to communicate with processes in the other layers. By so doing

each layer offers certain services to the higher layers, shielding those

layers from the details of how the offered services are actually implemented.

In this way, each layer performs a specific collection of properly defined

functions and is also so defined that changes in one layer do not provoke

serious changes in the adjacent layers.

In the OSI model layer n on one user machine must carry out its

communication with layer n on another user machine in the network strictly

according to the layer n protocols. Only at the lowest layer (layer 1)

does direct physical communication between the corresponding users take

place. All the other higher layers must establish and carry out virtual

communication. By so doing each higher layer passes data and control

information to the layer immediately below or above it until the lowest or

the highest layer is reached depending on the direction of the communication

process. The entities comprising the corresponding layers on the two

different user machines are called peer processes. The protocols for the

peer processes define such things as the data formats and signal levels,

control information for proper coordination and error handling, and also

54

USER
-)

USER

X
7: APPLICATI . ..; 7:APPLICATION Protocol -------

.

interface t
6:PRESENTATI

5:SESSION

4:TRANSPORT

3 :NE'IWORK

2: DATA LINK

1: PHYSICAL

------- -... 6:PRESENTATIO

$

--------.~ 5: SESSION

~ .

----- ---• J;I 4: TRANSPORT

X
---- - -- ~ 3:NE'IWORK

1
-?> 2:DATA LINK

$

--------.l:J 1: PHYSICAL

Hi = Header encapsulation for the i th layer

Ti = Trailer encapsulation for the i th layer

Fig. 2.3 The OSI Model Protocol and Data Encapsulation and Decapsulation

55

speed matching and sequencing.

The seven OSI model layers and their functions are as fo11ows:-

2.2.2.1 Layer 1

Layer 1 is the Physical layer. (ref. 2.35,2.36, 2.37). This layer

is mainly concerned with the transmission of the raw unstructured bit stream

over the physical transmission link. It is also concerned with the

setting of such parameters as the signal voltage swing and the bit duration

as well as dealing with the general issues pertaining to the

a) mechanical: connector pin configuration and pin arrangement

b) electrical: voltage swing, voltage change timing, transmission

data rates, maximum transmission distance

c) functional: connector pin signal functions and interpretation

d) procedural: the sequence of events to be performed following

the reception of a signal

characteristics necessary to establish, maintain and deactivate the

physical link. RS-232-C is the most COmmon standard in use. It can be

used to connect a digital device to a modem which in turn connects to a

voice-grade telephone line (ref. 2.38).

2.2.2.2 Layer 2

Layer 2 is the Data Link layer (refs. 2.39, 2.40, 2.41). Its main

purpose is to take the raw transmission facility and to transform it into

a line that is free of transmission errors to the higher Network Layer

above it. The input data stream is broken up into blocks of data (data

frames) and then transmitting these data frames sequentia11y to the higher

Network Layer. It also processes such functions as frame acknowledgements.

The Data Link layer shares many of its characteristics with the existing

56

bit-oriented protocols such as the HDLC (ref. 2.109, 2.111).

2.2.2.3 Layer 3

Layer 3 is the Network layer (refs. 2.42, 2.43, 2.44, 2.45, 2.46,

2.47, 2.48). Its main function is to control the operation of the

communications subnet. It handles data in the form of packets. The

packets may traverse the communications subnet either independently

(datagram) or through a preestablished logical route (virtual circuit)

and hence it is the work of the Network layer to govern the routing of

the packets and also to deal with the issues of the flow and congestion

control within the subnet. In this way it is the responsibility of this

layer to provide for the transparent transfer of data between the transport

entities. By so doing it relieves the higher layers above it, which

provide end-to-end protocol, of the need to know anything about the under-

lying communications subnet. For terminals operating in the packet

switching mode on public data networks the CCITT X-25 provides an interface

between the data terminal equipment and the data circuit-terminating equip~

ment. (ref. 2.49, 2.75, 2.76).

2.2.2.4 Layer 4

Layer 4 is the Transport layer (refs. 2.7, 2.50, 2.151). Its main

function is to accept data from the Session layer above it, split the data

up into smaller units and pass these to the Network layer below it. It

-'
is also the responsibility of this layer to ensure that these smaller

data units arrive reliably at the other end. In this way the Transport

layer has to provide also the end-to-end error recovery and flow control.

It is also the function of this layer to specify such details as the type

of service (datagram or virtual circuit) and the grade of service (error

and loss levels, minimum delay, priority, and security). All this is

57

done in the most efficient way possible and in a way that isolates the

Session layer above it from the inevitable changes in the hardware technology.

Layers 4, 5, 6 and 7 of the OSI model provide end-to-end protocols and are

not concerned with the details of the underlying communications subnet

(ref. 2.52).

2.2.2.5 Layer 5

Layer 5 is the Session layer (refs. 2.7, 2.51, 2.52). The Session

layer is the user's interface to the network. It provides a means for

establishing, managing and terminating a connection (Session) with another

process on another machine. In 'a distributed computation environment, it

is also necessary that the Session layer manage the run-time environment.

These are basically the routines that handle the interprocess communications

and also monitoring the network for vital statistics relating to the
.

interprocess calls at run-time during each computation session. Hence,

the Session layer must make decisions, at run-time, concerning the location

and movement of the various subproblems for computation as the workload in

one machine changes, as well as the overall practicability of the network

to support distributed computation. In this way the overall supervision

and management of the distributed computation process is done by the Layer 5

protocols.

2.2.2.6 Layer '6

Layer 6 is the Presentation layer (ref. 2.53, 2.54, 2.55, 2.56, 2-57).

The Presentation layer performs certain transformations on the data. It

performs functions that are requested often enough to warrant a general

solution and standardized application for them. Such functions can

often be performed by special library routines that may be called by the

58

user. Examples of such transformations on data that may be performed

by this layer are encryption, text compression and reformating (ref. 2.57,

2.58).

2.2.2.7 Layer 7

Layer 7 is the Application layer (ref. 2.59, 2.60, 2.61). The

general content of the services provided by the Application layer is

largely left to the individual user. When two user processes· on different

machines communicate, they alone determine the set of allowed messages and

the action taken upon receipt of each. The boundary between the

Presentation layer and the Application layer separates the domain of network

designers from the domain of network users.

The Application layer defines the applications that can be run in

a distributed environment. Such applications include the electronic mail,

a transaction server, a file transfer protocol, and a job manipulation

protocol such as the distribution of a computation. In a distributed

computation environment a job scheduler has to be employed to partition

the workload of one machine for distributing and sharing the workload

with the various machines in the network so as to take maximum advantage

of the resources of the network.

2.3 NETWORK CLASSIFICATIONS

Distributed processing can in general be characterised as a spectrum

of activities which vary in the degree of their decentralization. At one

extreme is remote networking in which one finds loose interconnection of

previously isolated, widely separated, and rather large computing machines.

These are the long-haul networks. A good example of a long-haul network

is the ARPA network (ref. 1.12). At the other extreme is multiprocessing

59

in which one finds the construction of previously monolithic and serial

computing systems from increasingly numerous and smaller systems computing

in parallel such as the SIMD and MIMD structures (ref. 1.4, 1.5). Near

the middle of this spectrum is local networking (ref. 2.62, 2.63, 2.64,

2.65, 2.66, 2.67, 2.68) in which one finds the interconnection of computers

to gain the resource sharing of computer networking and the parallelism

and speed of multiprocessing. This characterisation can be viewed in

terms of the distance of separation in metres (m) and the physical size

of the network as follows:

Separation Distance Physical Size Classification

less than 0.1 m circuit board Data Flow Machine

0.1 ·m to 1.0 m system Multiprocessors

loOm to 10 m Room)
)

10 m to 100 m Building) Local Networks
)

100 m to lkm Campus)

J
lkm to 10 km City)

10 km to 100 km Country)
)

100 km to 1000 km Continent) Long-haul network
)

greater than 1000 km Planet)

Another characterisation that has been used to classify networks in

a distributed processing environment is the product of the distance of

separation and the data transmission rate. This product, now estimated

at about 1 Gigabit-metre per second, is also sometimes taken as an

indication of the level of the communication technology. This classification

is as follows:

Classification Separation Distance Bit-rate

Long-haul networks greater than 10 km less than 0.1 Mbps

Local networks 10 km - 0.1 km 0.1 - 10 Mbps

Multiprocessing less than 0.1 km greater than 10 Mbps

60

2.3.1· Local Networks

In general terms a local network is a communications network that

provides interconnection of a variety of data communicating devices .within a

geographically small area such as a University campus or a factory complex

(ref. 2.63, 2.67~.2.69, 2.70). Some of the major characteristics of a

local network are:

a) a diameter of not more than a few kilometers

b) ownership by a single organisation

c) a data transmission rate exceeding 1 Mbps

d)
-8 -11 low transmission error rates (10 to 10).

Such a characterisation of local networks is quite general. By

using such a definition of a local network three different and distinct

types of local networks can be identified (ref. 2.71, 2.72): the CSLN

network (ref. 2.73), the HSLN network (ref. 2.74) and the LAN network

(ref. 2.47, 2.~4), as described below.

2.3.1.1 The CSLN network

The CSLN is a circuit-switched local network (ref. 2.38, 2.86) that

accommodates the characteristics of local network explained earlier.

An example of a CSLN network is the Computerised Branch Exchange (CBX)

(ref. 2.73, 2.77, 2.79). In the CSLN, the network-users are connected

in a star topology to the main centrally located switching unit which

establishes a dedicated path between any two users on the network. In

this way hundreds or thousands of network-users can be thus interconnected .

within a relatively small geographical area (about 1 km), but the data

transmission speed is usually low (9.6 to 64 kbps) (ref. 2.b7).

2.3.1.2 The HSLN network

The HSLN is a high-speed packet-switched local network (ref. 2.74)

with all the characteristfcs of the local networks defined earlier. The

61

HSLN have been described as characteristically computer-room networks

(ref. 2.63) which connect a few relatively expensive high speed mainframe

computers and other mass storage or high speed data processing peripherals

of large organisations such as large companies or research laboratories.

The network-users in the HSLN local networks aim to obtain high end-to-end

throughput at high data transmission speeds (about 50 Mbps) using wideband

coaxial cable bus topology within a relatively small geographical area

(less than 1 km).

2.3.1.3 The LAN network

The LAN are local area packet-switched networks that too share all

the characteristics of local networks defined earlier. LANs can support

mainframe computers, minicomputers, microcomputers and other terminal and

peripheral devices (ref. 2.47, 2.67, 2.69). BUS or tree topologies using

coaxial cables or ring network topology using twisted-pair, coaxial cable

or optical fibre links (ref. 2.82, 2.83) can be used in LANs. Data

transmission rate on LANs can average between 1 and 20 Mbps. Several

hundred network-users can be supported on a LAN. A considerable amount

of research has been directed to the study of LANs (ref. 2.68, 2.69, 2.47)

and a draft IEEE 802 LAN standard (ref. 2.80) has been developed. Both

baseband and broadband cable systems can be implemented on LANs (ref. 2.19,

2.21) and utilizing the entire bandwidth of the transmission channel.

One of the most well-known LAN network was based on baseband coaxial

cable bus topology and was called the Ethernet System (ref. 2.68, 2.69,

2. Sl) • An Ethernet is a branching broadcast communication network for

carrying digital data packets among its locally distributed network-users.

The packet transport mechanism provided by Ethernet has been used to build

networks which can be viewed as either local computer networks or loosely

62

coupled multiprocessors. The Ethernet's shared communication facility,

its ether, is a passive broadcast transmission medium with no central

control. Coordination of access to the ether for packet broadcast is

distributed among the contending network-users using a controlled statistical

arbitration. switching of packets to their destinations on the ether is

distributed also among the receiving network-users using packet address

recognition. Because of its flexibility, the ether can simply be added

on and extended to accommodate more network-users as shown in fig. 2.4.

The baseband coaxial cable system on which the ethernet is based was a

special 50 - ohm cable rather than the standard 75 - ohm cable because

the digital signals on the 50 - ohm cable suffer less intense reflections

from the insertion capacitance of the taps, and also provides better

immunity against low-frequency electromagnetic noise. Figs. 2.5, 2.6,

2.7 and 2.8 show the organisation of an ethernet communication network

(ref. 2.68, 2.81).

The main components of an ethernet computer communication network

include:

a) 50-ohm terminators

b) 50-ohm coaxial cable

c) Tap

d) Transceiver

e) Transceiver cable

f) Controller interface

g) Controller

h) Computer

The computers attach to the transmission cable by means of

a tap. The distance between the taps is designed to ensure that reflections

between adjacent taps do not add in phase. The transceiver taps into the

63

Fig. 2.4 The Ether

64

Computer

r-------------~~--------Controller
Interface

r
Cable Terminator

coaxial
cable v!ap

(

Fig. 2.5 Ethernet network

Applications

Software

{ Software

Microcode

Hardware

.

--V • [\ •
Transceiver

I ,"0'""'0' 0' '"",

~ Transceiver Cable

Transceiver

Tap

coaxial cable (, '" If

'-.J
Fig. 2.6 Ethernet Connection

65

To Controller

Transmit Data Collision Receive Data + Power
" 'I' I~ 1\ Supply ~

--"-
, ffi , ... ~

--,
Collision
Detector

-

I I DC-to-DC
Isolation Transformers inverter

.

.

...-
"'

--,
Guard
circuit

Irans mitt\
/ L~eceiver

Coaxial cable
'T'~" / ------- -- - - -- - --- ------------ 7 \

------- - - -- -~-----------------

Fig. 2.7 Ethernet Transceiver

Gr
iso

ound
lati

66

16-bit Processor bus

J " I ~

....... t--
, iI

.,
=;; FIFO buffer ~

Control

f? and
.... (16 words) status
;' I~ i ~

I \ ~ , j

... ~ Shift Register

4
~ CRC -

... ,

It

Phase Phase
decoder Encoder

II'

Receive Data

\ if
Transmit

Data Collision

Fig. 2.8 Ethernet Controller Hardware

67

coaxial cable and facilitates the transmission and reception of digital

signals to and from the transmission channel. All the electronics necessary

to recognise the presence of valid digital signals on the transmission

channel and the detection of invalid collision signals on the channel are

contained in the transceiver. The transmission data may be Manchester

encoded (ref. 2.80). This coding scheme has the property that it has a

transition in every bit cell and has a 50% duty cycle. The bits are

phase-encoded in the controller before being passed to the transceiver.

The first half of a bit cell contains the complement of the bit while the

second half contains the bit itself. In this way, there is a transition

in the middle of the bit cell: a positive edge corresponding to a "1"

and a negative edge corresponds to a "0". The voltage levels· transmitted

into the cable are 3 volts for "on" and 0 volts for "off". Carrier is

detected by the presence of these transitions on the cable. The detection

of valid and invalid digital signals on the transmission channel is a

basic requirement in broadcast networks that employ carrier-sense multiple-

access with collision detection (CSMA-CD) protocol. The transceiver

connects to the controller via a four-pair transceiver cable and interface.

The interface may be used to implement serial-parallel or parallel-serial

data format. The controller contains the main hardware and software

necessary to facilitate .communication in the LAN communications subnet.

Some of the controller functions include the detection and processing of

the collision signal, the implementation of the packet retransmission

strategy, enabling and disabling the transceiver, and managing the exchange

of packets to and from the communication channel. The 50 - ohm cable

terminators 'mop up' signals and prevent sustained signal reflections

from the ends of the transmission cable.

68

The number of cable taps, the coaxial cable length, the transmission

bit rate together with the electrical characteristics of the ethernet

components have all to be taken into account to determine the physical

size of the ethernet LAN network. A prototype bus topology ethernet

communication network operating at 3 Mbps, connecting up to 255 computers,
I

which span over a linear distance of 1 km was one of the earlier such LAN

networks (ref. 2.68, 2.81).

A repeater can be used to extend the size of an ethernet network

(ref. 2.26, 2.68, 2.84, 2.91). Such a repeater consists of two transceivers

joined together and connected· to two different segments of the coaxial

cable as shown in fig. 2.9. It allows digital signals to pass in both

directions between the two cable segments, amplifying and regenerating the

signals as they traverse through the network but without buffering the

signals. Despite the repeaters, the service provided by the ethernet

LAN is transparent to the users in the network.

2.4 NETWORK ACCESS PROTOCOLS

The purpose of the communications subnet is to transport data between

the network-users quickly and reliably. For this to be accomplished one

of the major decisions to be made is how the various contending users in
I

the network should gain access to the communications subnet. These

decisions define the set of rules that must be implemented in order to

queue and multiplex the ready users in the network who have data to transmit.

The method used to accomplish such multiplexing depends very much on the

nature of the users, the topology of the network and the switching mechanism

to be used.

69

~
I
I

~

(1'\
V

-

-
c

-
I

computer

Controller
repeater Tnt-oy"~~,

Transceiver

Transcei r I
1"1 ,
'-J ---I m

Coaxial Cable

Tenninator

Fig. 2.9 A 2-segment Ethernet Network

70

The two main forms of multiplexing are the time division multiplexing

(TDM) and the frequency division multiplexing (FOM) (ref. 2.108), as shown

in fig. 2.10. In the type of network considered in this thesis FOM

type multiplexing is not employed. TOM can be either synchronous or

asynchronous. Synchronous TOM can be used with the circuit-switched

Local networks (ref. 2.85, 2.87). Both synchronous TOM and FOM

techniques of allocating access to the communications subnet are sub

stantially wasteful of bandWidth, especially if the network-users require

the services of the subnet infrequently. This is more so for computer

communication networks in which the mode of data transmission in the subnet

is bursty. Bursty data transmission (ref. 2.88) is characterised by a

low duty cycle. In such a mode of data transmission asynchronous TOM is

more efficient in the utilization of the communication subnet resource.

Asynchronous TDM may further be subdivided into either random or controlled

modes of channel access. Controlled access techniques can be further

categorised depending on whether the control is centralized, in which case

polling and reservation techniques can be used, or whether the control is

distributed in which case token passing and reservation techniques can be

used (ref. 2.74, 2.89, 2.90). Random access techniques are quite suitable

for LANs. Various channel access techniques such as the pure ALOHA,

slotted ALOHA, slotted ring, register insertion, CSMA and CSMA-CD can all

be considered under random access (ref. 2.85, 2.88, 2.92, 2.93, 2.102).

2.4.1 Pure ALOHA Technique

Pure ALOHA channel access technique is the earliest random access

protocol and was developed for UHF ground-based packet radio broadcasting

networks (ref. 2.94). It is applicable to any broadcast communication

subnet. In the pure ALOHA system, whenever a network-user is ready with

a packet to transmit the user just proceeds and does so. In this way

71

CB'

(onlroUed A.:\'u,

CSMAiCO Resitter Insertion

Fig. 2.10 Network Access Schemes

72

each user transmits the packets in an uncoordinated fashion and at times

which are completely independent of packet transmission times of the other

ready users. A consequence of this uncoordinated use of the communications

subnet is that packets from different sources may be transmitted at the

same time and therefore be involved in a collision, thereby destroying

each other, and hence cannot be recognised at their destination. After

-transmitting the packet in a pure ALOHA fashion each user must listen for

a length of time equal to the maximum round-trip propagation delay time

of the network. If the user gets an acknowledgement during that period

of time then the packet crossed the communications subnet safely; other

wise the user must assume that the packet was lost or damaged in transit

and must retransmit the packet again. In such pure ALOHA networks the

number of collisions rise very rapidly with increasing channel load and

the maximum theoretical channel utilization is only about 18%.

2.4.2 Slotted ALOHA Technique

Slotted ALOHA (ref. 2.95) was a modification of the pure ALOHA

system to improve the theoretical channel utilization and throughput of

the pure ALOHA. In slotted ALOHA channel time is organised into uniform

time slots of length equal to the packet transmission time. All network

users are provided with a system synchronised clock which indicates the

beginning of each transmission time slot. Users must transmit their

packet only at the beginning of a time slot. In this way collisions may

still occur but now the amount of channel time wasted per collision is

halved to one transmission segment compared with the possible maximum of

two segments of the pure ALOHA. By so doing the theoretical maximum

channel utilization is doubled to about 37%.

73

Both pure and slotted ALOHA systems are inherently unstable under

heavy channel load (ref. 2.96, 2.97, 2.107). In an unstable ALOHA system

excessive traffic leads to more collisions which in turn leads to more

retransmission and thus eventually useful throughput reduces to almost

zero even though the channel is fully loaded.

2.4.3 CSMA Techniques

Both pure and slotted ALOHA techniques are reasonably suitable for

UHF ground-based packet radio and satellite broadcast topologies in which

the propagation delay between the network users is significant in comparison

with the packet transmission time. In broadcast LANs employing bus and

tree topologies the propagation delay is very small compared with the

packet transmission time. For this reason CSMA protocol (ref. 2.92)

can be used. CSMA protocol has also been used for ground packet radio

networks (ref. 2.98, 2.99). In a CSMA protocol a ready user wishing to

transmit a packet must first listen to the transmission channel for any

on-going transmissions in progress. If the transmission channel is

silent then the ready user may transmit; otherwise the channel is busy

with the transmissions of another user and hence the ready user must defer

his transmission. for some period of time before attempting to transmit

again. A successful ready user must wait for a reasonable period of

time for an acknowledgement, taking into account the maximum round-trip

propagation delay, and consider also that the acknowledging user must

too contend for the transmission channel in order to respond. In this

way much higher channel utilization than that obtained by slotted ALOHA

can be achieved using CSMA. The maximum channel utilization that can

be achieved depends on the packet transmission time and the propagation

delay of the communication subnet.

74

With CSMA two algorithms have been used to specify how a ready user

must behave upon finding the transmission channel busy. These two

algorithms are the non-persistent and the p-persistent protocols (ref.

2.99, 2.100).

2.4.3.1 Non-persistent CSMA Protocol

In the non-persistent CSMA protocol a ready user must exercise the

following steps:

Step 1

Step 2

If the channel is sensed silent, then transmit the packet.

If the channel is sensed busy, then wait an amount of time

determined from a specified probability distribution (random

retransmission delay) and repeat step 1.

In this way the probability of collisions is greatly reduced. But

random retransmission times may introduce unnecessary delay in the

network when there are few to moderate numbers of ready users and the

collisions are few and far between.

2.4.3.2 1 - persistent CSMA Protocol

One way to improve the channel delay performance of a non-persistent

CSMA protocol is to use the I-persistent CSMA protocol (ref. 2.100). In

a I-persistent CSMA protocol a ready user must exercise the following

rules:

Step 1

Step 2

Step 3

If the channel is sensed silent, then with probability one

transmit the packet.

If the channel is sensed busy, then continue to listen to the

channel until it is sensed silent; in which case, with

probability one transmit the packet.

If there is a collision, wait a random amount of time and repeat

step 1.

With the I-persistent CSMA protocol it is possible for collisions

75

to build up quickly and thus reduce the channel utilization and throughput.

2.4.3.3 p - persistent CSMA Protocol

The p-persistent CSMA protocol (ref. 2.100) attempts to reduce the

build-up of collisions and hence improve the channel delay performance of

the l-persistent protocol. In the p-persistent CSMA protocol a ready

user must obey the following rules:

Step 1 : If the channel is sensed silent, then with probability p

Step 2

transmit the packet, and with probability (l-p) defer transmission

for one time unit. The time unit is usually equal to the

maximum propagation delay.

If the channel is sensed busy, then continue to listen until

the channel is sensed silent and repeat step 1.

Step 3 : If the transmission is delayed on time unit, then repeat step 1.

The p-persistent CSMA protocol can be made adaptive by choosing

appropriate values of p. If the number of ready users in the network is

small, considerably high values of p can be used. This would have the

net effect that the performance is very nearly like that of the l-persistent

CSMA protocol. On the other hand if the number of ready users is high

the value of p can be reduced to keep the number of collisions and the

time delay in the channel to a desired minimum. This can be achieved

by making the product of the number of ready users and p less than one.

2.4.4 CSMA-CD Protocols

Pure CSMA protocols are sometimes referred to as listen before talk

(LBT) protocols (ref. 2.103). CS MA-CD protocols on the other hand are

referred to as listen while talk (LWT) protocols (ref. 2.104, 2.105).

The CSMA-CD protocols are particularly suitable for bus or tree broadcast

LAN topologies (ref. 2.101. The CSMA-CD protocol is a modification of

the pure CSMA protocol. In the CSMA protocol, when two ready users are

76

involved in a collision the transmission channel remains unusable for the

entire duration of the transmission of both damaged packets. This wasted

bandwidth can be quite considerable if the packets are long compared to

the channel round-trip propagation delay. The CSMA-CD protocol attempts

to reduce this wasted channel bandwidth by requiring each successful

ready user to continue to listen to its own transmission and exercise

the following rules:

a) If a collision is detected during transmission, immediately back-off

and cease transmitting the packet, and transmit a jamming signal

briefly to let all other users know that there has been a collision.

b) After transmitting the jamming signal, wait a random amount of time

before attempting to retransmit the packet.

After a collision, the colliding ready users need to exercise a

packet retransmission algorithm. Both the I-persistent and the p-persistent

algorithms can be used with CSMA-CD. But the I-persistent algorithm is

found to be more suitable for CSMA-CD protocol because the users involved

in a collision using this protocol back-off a random amount of time

(ref. 2.104). Binary exponential back-off algorithm has also been

used (ref. 2.68) in ethernets to maintain stability. In the binary

exponential back-off algorithm a ready user may attempt to retransmit

the packet repeatedly in the face of repeated collisions, but after each

collision the mean value of the retransmission delay is doubled. Eventually

after sixteen unsuccessful retransmission attempts, the ready user must

give up and report an error.

Many advantages have been attributed to the CSMA-CD protocol

(ref. 2.68, 2.104). The IEEE 802 CSMA-CD standard has been developed

(ref. 2.80) and is very close to that of the ethernet.

77

Some of the advantages of the CSMA-CD protocol are:

a) It uses a simple algorithm.

b) It is widely accepted.

c) It provides a fair access to the transmission channel.

d) It provides good delay and throughput performance at low and

medium channel load.

But its main disadvantages include:,

a) It exhibits complex collision detection hardware and software.

b) It exhibits poor performance under heavy load.

c) It exhibits a bias for long transmission.

d) It exhibits poor error faults diagnostic problems.

e) It specifies a requirement for a minimum packet size.

The random channel access pro to cols based on the CSMA have been a

subject of intense research (refs. 2.68, 2.98, 2.100, 2.106, 2.107).

2.5 NETWORK SWITCHING AND ROUTING

As has been explained earlier all the users in the network connect

to and share the communications subnet. The purpose of 'the subnet is to

provide the necessary switching and transmission techniques to transport

data from a ready user to any other user in the network. It is the

primary function of the switching to provide the ready users access to all

the others in the network. The type of switching employed is controlled

by the user by specifying the data destination address to the switching

mechanism which in turn routes the data to the specified destination.

Three different types of switching mechanism can be used: circuit

switching, message switching and packet switching.

78

2.5.1 Circuit Switched Networks

The main characteristic of circuit switching (ref. 2.38, 2.86,

2.110) is that a dedicated communication path needs to be established

between the two users in the network. Hence in circuit-switched networks

a physical connection between the two users is necessary. One or more

links in the physical communication path may need to be thus established

in the subnet. Communication by means of circuit switching involves

three distinct procedures:

a) An end-to-end circuit establishment.

b) Data transfer.

c) Circuit disconnection.

Thus, the end-to-end circuit establishment has to be done before data can

be transferred. If the data transmission is bursty, then circuit switching

can be inefficient and wasteful of channel capacity. Also the end-to-end

circuit establishment may involve long delay in computer communication

networks and hence interactive traffic may be cumbersome.

2.5.2 Message Switched Networks

In message-switched networks (ref. 2.112) it is not necessary to

establish a dedicated physical path between any two users in the network.

A ready user wishing to send a message to any other user in the network

only needs to append a destination address to the message. In this

context, a message is a large block of data and may consist of many tens

of thousands of bits. The message is routed link by link through the

network by the intermediate users. At each of these intermediate users

the message is received in its entirety and may be temporarily stored

before being transmitted along the next link, in the path, in a store-and-

forward fashion. In this way detailed routing algorithms are needed by

79

each user to avoid congestion and to ensure safe arrival of the messages.

The main disadvantage of the message-switched networks is that very long

message transmission delay may be encountered and hence is not very suitable

for interactive computer communication traffic.

2.5.3 Packet Switched Networks

Packet switching attempts to combine the advantages of message and

circuit switching. Packet switched networks (ref. 2.28, 2.113) are

essentially similar to message switched networks. The main difference

is that in packet-switched networks packets rather than messages are the

units of data transmitted across the communications subnet. The packets

are smaller units of data with up to a few thousand bits. Messages much

longer than the packets have to be broken down and reorganised into several

packets. This method of breaking down larger message blocks into several

smaller packets for transmission has a profound effect on the network

delay performance and transmission channel utilization and throughput

is enhanced and is also more efficient in moderate to heavy traffic.

Both datagram and virtual circuit (ref. 2.115) packet switching can be

employed in packet-switched networks.

The various switching techniques have been used quite effectively

in various network topologies of the communications subnet (ref. 2.93, 2.114).

This thesis is primarily concerned with packet-switched LAM networks.

In packet-switched LAMs there is no necessity for intermediate switching

and hence the issues of complex routing techniques do not play an important

part. Also, for the correct functioning of packet-switched computer

LAM networks the network architecture layers 1, 2 and 3 are necessary

(ref. 2.101, 2.116).

80

2.5.3.1 LAN Packet Format : Ethernet

The basic prototype ethernet packet format (ref. 2.68) is shown in

fig. 2.11. The packet format begins with a packet of synchronisation

bit pattern of length one bit and whose leading edge enables the controller

interface of the receiving user to detect the start of the packet and to

acquire bit phase. Next follows two 8-bit fields which define the

destination and source addresses respectively. This is then followed by

a 16-bit word to identify the type of packet. .Next follows several 16-bit

words of data which in turn are followed by the 16-bit cyclic redundancy

check (CRC) pattern.

The broadcast packets are copied into the memory of each network-user

under the 'control of an address filter which can be implemented in microcode.

On receiving the first word of the packet the microcode compares the

destination user field against the address supplied by the software and

then copies the packet into memory only if the addresses are equal. It

is also necessary for the software to set the address filter to be selective

to enable the user to copy selected packets received into its memory.

This is useful for network monitoring and feedback especially in a

distributed computation environment considered in this thesis. Such

feedback mechanism is necessary for use by the larger and more powerful

computer to announce to every user in the network the amount of york load

existing at the large computer. The knowledge by the smaller computers of

the workload at the larger computer will in turn enable them to decide

better whether or not to share any computation with the larger computer.

Hence with this feedback capability the workload in the network can adjust

itself and be more uniformly distributed.

In a distributed computation environment the main commodities exchanged

between the smaller computers and the more powerful large computer in

the network are:

SY DA SA

SY = Synchronisation (1 bit)

DA = Destination Address (8 bits)

SA = Source Address (8 bits)

PT = Packet Type (16 bits)

D = Data (0 - 4000 bits)

TR = CRC

Fig. 2.11 Packet Format

81

PT D TR

82

a) the program modules

b) the intermodule parameters and other data

c) the results of the computation.

The smaller computers partition and transport the program modules to the

more powerful large computers for processing. During module processing

there will be interaction between the large and the small computers when

intermodule parameters and other data will be organised into packets

and transported across the communications subnet, fig.2.12(a). In such

an environment it is possible to simplify further the format for the

network packets. Fig. 2.12(b) shows the format of the packets transported

from the small computers to the large computers, while fig. 2.12(c) shows

the format of the packets transported from the large computers to the small

computers. The packet format in a distributed computation environment

has the extra two 8-bit fields to identify the program and program module.

From this it can be seen that the module packets may contain thousands of

bits. But large packets enable the communication channel to be utilized

more efficiently.

2.5.3.2 LAN Packet Format: The IEEE 802 Standard

IEEE has produced a draft IEEE 802 standard for LANs (ref. 2.80).

These standards are in the form of the 3-1ayer network communications

architecture and with tree-like expansion capability, fig. 2.13. The

three layers are derived from the lowest two layers (the data link layer

and the physical layer) of the OS! reference model as they apply to the

specific characteristics of communication within LAN. The two main

characteristics pertaining to communications within LANs are:

a) data are transmitted in addressed packets.

b) there is no intermediate switching and hence routing is not necessary.

83

SY DA SA PN MN D TR

(a) Basic Module Packet Format

SY 0 SA PN MN D TR

(b) Source-to-sink packet format

.

SY 1 DA PN MN D TR

(c) Sink-topsource packet format

PN = Program Number (8 bits)

MN = Module Number (8 bits)

Fig. 2.12 Module Packet Formats

I
I I

('unh:nlllln
Illk"""'J""inj!

'\'·~·I·'~ln).:
'\~~""'III'i

I("S~I"'(III

j
I

lJu~ "us

~11l~k·~h;lnnd

I " .. ,,'h..l,hJ I

I
Str;lI~ht

M..LIl,'h,' .. k"
fn,'oo.lllll

S().U 1·1~'I.d
,'"bIt

Fig. 2.13

~IHlhdlJnnd Mullll'hannd
tl'>rwJhJlhlt I htu:uIl1JIHI,

I I
~flnl" "IIt>m1ina:. !lun bm .. ,),

amrhhl4k .. t'ot.:Ul.Jin,:

nlOJulallonf alllf'lilui.k·

\ ... 'h~.Ir·)llkh.anJ muJulJllon/
phase-shift k ... ying

10 Mhll\/s 16 ~flllt 1.5-1-1 .\Ihlts/s ,4 or h MlIlI
S Mbils/~ (6 MIII.I
IOMllib/'II~MIfI)
~O Mllih/s 112 Mill)
10 Mbib/!oI6 Mil,)

IEEE 802 LAN Standard

SIll~II'·~h-lnnd
l!rnll;,'''q ·,hill·

1o:,,) ... J hruaubJ/U.II

I
I I

I·ha)~·
"h.l\l,'·',: nh,'I,'O I

t.:onlmuuus
e"I,IHIIIl" t'nI,'Olhnl: 7HI 7S·n coa.\loIll,'oIbl,'

I,'Gaxiail,'ablC'

5 or 10 Mhlts,.s

SIIl):k·,hJllm:1
I ha....:hantll

I
IM(en'nlial
Manl,;ht'loh:'r

t'n,'O\Jmll:
ISO~1

., "'I)lcd'Pair

lA Mhlbls

I

KIIlt!

SII1~""III"lln\'1
Ih ... ,dl.UHII

I
Il,H"'h'nlloil
M .. ndu:,h',
enl.:uJlOj

7S·n
foa\j,J1 rabic

.a ~Ihlh:~
:0 ~Ihlh!)
.aU Mhll\.:'

85

These two characteristics lead to the three LAM layers: the Logical Link

Control (LLC) layer, the Medium Access Control (MAC) layer and the Physical

layer.

2.5.3.2.1 The LLC Layer

The functions of the LLC layer include

a) To provide one or more Service Access Points (SAP). A SAP is a

logical interface for the connection and exchange of data between

two adjacent layers.

b) To assemble data into frames with address and CRC fields for

transmission.

c) To disassemble frame and perform address recognition and CRC validation

on reception.

2.5.3.2.2 The MAC Layer

The main function of the MAC layer is primarily to manage communication

over the link and to exercise the CSMA-CD channel access protocols.

2.5.3.2.3 The Physical Layer

As in the OSI model, the functions of the LAM Physical layer include

a) Encoding and decoding of signals.

b) Preamble generation and removal for synchronisation.

c) Bit transmission and reception.

Fig. 2.14 shows the communication architecture as it applies to LAMs.

The frame format for the IEEE 802 draft standard are the basis for the LLC,

MAC and the Physical layer functionality as shown in fig. 2.15.

Higher
Layers

LLC

MAC

Physical

Fig. 2.14

86

I
I I
~------- ----- --- - - - ~
I I
I I

Communications

Subnet

LAN Communication Architecture

Higher
Layers

LLC

MAC

Physical

87

LLC frame format

DSAP DATA

MAC frame format

PA SFD DA SA

DSAP = Destination Service Access Point (8 bits)

SSAP = Source Service Access Point (8 bits)

Control = Control (8 bits)

PA = Preamble (8 bits)

SFD = Start Frame Delimiter (1 bit)

DA = Destination Address (2 - 6 bits) .

SA = Source Address (2 - 6 bits)

length = length (2 bits)

LLC = LLC (0 - 1500 bits)

FCS = Frame Check Sequence (4 bits)

Fig. 2.15 IEEE 802 Frame Formats

LLC PAD FCS

88

CHAPTER 3

PROGRAM STRUCTURE AND PARTITIONING

3.1 INTRODUCTION

If a computer system'~ hardware provides both capabilities and

limitations, then programs provide the flexibility. General-purpose

computers are programmable and are designed to solve a variety of different

types of problems. Every program that runs on the computer directs

the vast power of the computer towards solving a particular problem.

The fact that a computer is programmable is the most important element

in computer design and is probably the most important legacy of Von Neumann

(ref. 3.1). The major problem in developing programs for a general-

purpose computer is to bridge the gap between the nature of real user

problems and the way the computers solves the problems (ref. 3.13).

This gap has continued to be bridged by the development of better and more

problem-oriented languages that both the programmer and the computer can

understand. In this way the programmer can write more and better programs

and hence spend more time thinking about problems and less time worrying

about details that, although important to the computer, are largely

irrelevant to the solution of a problem. One of the recent developments

in such languages is the introduction of the concept of structured

programming (ref. 3.2, 3.3). By the use of structured programming large

and very complex problems can be simplified and tackled.

This chapter examines how a problem can be expressed as a structured

program and how such a program which is a candidate for distributed

computation within a LAN is organised into smaller program modules. It

also examines how, once the program has been organised into modules, a

partitioning algorithm can be applied in order to schedule the modules

and distribute the computation between different processors.

89

3.2 PROGRAMMING LANGUAGES

A program is a series of instructions that cause a computer to

perform a particular task. Programmable general-purpose computers have

been and can be programmed in three different types of languages:

machine language, assembly language and high-level languages. Large

computers generally use the high-level programming languages such as

FORTRAN, PL/l, ALGOL, BASIC and PASCAL and the smaller computers have

increasingly continued to adopt such high-level languages instead of the

machine and assembly languages (ref. 3.4, 3.5). High-level languages

are easier to write because they are problem-oriented rather than

machine-oriented. Each statement in a high-level language performs a

recognizable function and it will generally correspond to many assembly

language instructions. A common estimate is that a programmer can write

a program about ten times as fast in a high-level language as compared

to an assembly language (ref. 3.6). But one of the major drawbacks in

the use of high-level languages on the smaller computers is that they

need translators or compilers to translate or compile the source programs

written in the high-level language into the object machine language

program which the computer can execute. High-level languages do not

generally produce very efficient machine language programs. The translator,

are generally slow and compilers tend to be expensive and use a large

amount of computer memory. While most assemblers occupy from about 2K

to 16K bytes of memory, compilers occupy from about 4K to 64K bytes

(ref. 3.6). So the amount of overhead involved in using the compiler

is rather large. But good compilers generally speed up the program

execution time. Applications that are better suited to high-level

languages are those that require large memories. Hence a large program

90

will greatly enhance the advantages of high-level languages. With the

falling cost of the memory chips and the increasing use and efficiency of

high-level languages the few disadvantages of using these high-level

languages on the smaller computers will no longer be very significant.

Some of the major characteristics of the three types of programming

languages referred to above are now briefly examined.

3.2.1 The Machine Language

Virtually no one programs in machine language. Its use cannot be

justified considering the low cost of an assembler and the increase in

programming speed an assembler provides. The main difficulties associated

wi th programming in the machine language are:

a) The programs are long, tiresome, confusing and difficult to write.

b) These binary machine language object programs are difficult to

understand or debug.

c) The programs are difficult to enter since each bit must be

entered individually.

d) The programs do not describe the problem which the computer is to

perform in anything resembling a familiar human-readable format.

e) The prograJJllOOr tends to make many careless errors that are difficult

to locate.

3.2.2 The Assembly Language

One way to achieve programming improvement is to assign a name to

each instruction code by the use of mnemonics. Such an instruction

mnemonic should describe in some way what the instruction does. Assembly

language uses such instruction mnemonics and hexadecimal numbers and thus

greatly improves the programming effort. The source assembly language

91

is converted into the object machine language by the assembler program.

Both the smaller and the large computers can employ assembler programs,

but the smaller computers generally have much simpler assemblers than do

the larger computers (ref. ,3.7). Some of the main features of using

the assembly language and assembler programs are:

a) They allow the programmer to assign names to memory locations,

input and output devices and even to sequences of instructions.

b) They convert data or addresses from various number systems such as

the decimal and the hexadecimal into binary and also converting

characters into their ASCII or EBCDIC binary codes.

c) They perform some arithmetic as part of the assembly process.

d) They help in directing the loader program where in the memory certain

parts of the program or data should be stored.

e) They enable the programme to assign areas of memory as temporary

data storage and to store fixed data in areas of program memory.

f) They provide the information required to include standard programs

from the program libraries, or programs written at some other time,

in the current program.

g) They allow the programmer to control the format of the program

listing and the input and output devices used.

However, programming in assembly language is still a tedious and time-

consuming job. This is made even more difficult by the fact that the

programmer must have a detailed knowledge of the particular computer to

be used. Also, assembly language programs are not very portable. The

other main important features that favour the use of the assembly language

are that they are suitable for:

92

a) Short to moderate size programs.

b) Applications where the memory cost is a major factor.

c) Real-time control applications.

d) Limited data processing.

e) High-volume applications.

f) Applications requiring more input/output (I/O), or control than

computation.

3.2.3 The High-Level Languages

The solution to many of the difficulties associated with assembly

language programs have been largely overcome by the use of high-level

or procedure-oriented languages, because they are more problem-oriented

and less machine-dependent (ref. 3.5, 3.8, 3.9), as mentioned earlier.

The main advantages of using these languages are that

a) They provide a more convenient description of the problems and

tasks.

b) They provide more efficient program coding.

c) They enable easier documentation.

d) They provide standard syntax.

e) They are less dependent on the organisation of a particular computer.

f) They are portable.

g) They enable the provision of library routines and other programs.

h) They are flexible and can be modified to handle structured data and

control.

But they also have the disadvantages in that

a) They require special rules.

b) They tend to require extensive hardware and software support.

93

c) They tend to be tuned to a particular application.

d) They have a tendency to be inefficient.

e) They exhibit a difficulty in optimizing code to meet speed and

memory requirements.

f) They show an inability to use special features of a computer

conveniently.

However, they tend to be quite suitable for

a) Long programs.

b) Applications requiring large memories.

c) Low-volume applications requiring long programs.

d) More computation than input/output, (I/O), or control environment.

e) Compatibility with similar applications using larger computers.

f) Availability of specific programs in a high-level language which can

be used in the application.

Many other factors in the decision concerning the particular programming

language to use are also important and need to be taken into account.

But a trade-off of the various factors involved has to be weighed carefully.

If the hardware, for example, is the largest factor or if the speed is

critical, then, for some applications, assembly language should be favoured.

But limitations in hardware may mean a major software development and

support in exchange for the lower memory costs and higher execution speeds.

On the other hand, if software is the major factor in an application, then

the high-level language should be favoured. But because of the continuing

developments in the microelectronic technology and in computer software,

the future can be expected to continue to favour the use of high-level

languages (ref. 3.5), and also because

a) Programs can always be expected to continue to add more features

and hence will grow larger.

94

b) Hardware and memory are becoming less expensive.

c) Memory chips are becoming available in larger sizes, at lower "per

bit-, cost.

d) More versatile compilers are becoming available.

e) More suitable and more efficient high-level languages are being

developed.

f) More standardization of high-level languages can be expected to

occur.

g) Software and programmers are becoming more expensive.

h) More and more specific program packages for libraries will continue

to be written and stored in a data-base environment.

i) The general tendency now is for decentralization and hence more

standardization.

3.3 PROGRAM STRUCTURE

The final program structure of a program which is run in a distributed

computation environment within LAN is only a part of a larger program

design, or problem-solving, process. A problem has first to undergo a

problem-solving phase before it can be coded and run on a computer.

Program design is the stage in which the problem definition is formulated

as a program (ref. 3.8, 3.9). If the program is small and simple, this

stage may require relatively little effort. But if the program is large

or more complex, the program designer has to consider more elaborate

methods. In general, the problem-solving process may be divided into

four phases:

a) Defining the problem.

b) Analysing and developing an algorithm to solve the problem.

c) Implementing the solution through the design and development of a

computer program.

95

dl Debugging, testing, documenting, and maintaining the program over time.

In the problem definition phase some of the important factors to

take into account are

al The specification of the output: i.e., precisely what is to be output

by the program.

bl Information needed to solve the problem: i.e., what data must be

available to produce the required output.

cl The specification of the processes needed to solve the problem:

i.e. the formulae and sequence of actions to be used to solve the

problem.

Once the problem has been defined, it is then necessary to develop

an algorithm to solve the problem. An algorithm is a logical sequence"

of unambiguous operations that, when carried out, lead to the solution

of the problem specified. An algorithm is essential in the solution of

a problem using a computer. Two or more algorithms may exist for the

solution of one problem. Hence, it is also necessary to determine and

choose the most efficient algorithm. An "algorithm may be efficient in

the time taken to execute it on the computer or it may be efficient in

terms of its storage in the computer memory.

ways of representing algorithms are by means of

al Flowchart.

bl Pseudocode.

Two of the most common

Thus, algorithms can be carried to the desired level of detail. Flow-

charting is the oldest and better-known method of analysing and developing

algorithms and it has the basic advantage that it provides the programmer

with a pictorial representation of the entire program structure. But,

96

one of the major drawbacks of flowcharting is that it allows for un-

structured design (ref. 3.10). The lines and arrows of the flowchart,

backtracking and looping all over the chart are the antithesis of good

structured design principles. Hence, the pseudocode is becoming

increasingly popular in the structured design of large or complex programs

(ref. 3.11, 3.12). Also, with the pseudocode design method it is easier

to employ the following programming methods which provide a unified approach

to the program design process:

a) structured programming

b) Top-Down design

c) Modular programming

3.3.1 Program Modules

Once programs become large and complex, the method of flowcharting is

no longer a satisfactory program design tool as mentioned above. However,

the problem-definition phase and the flowchart can be used together to give

a good idea as to how the program structure can be organised into reasonably

sized sub-tasks or program modules (ref. 3.14, 3.15, 3.39). The division

of the entire program into such modules is called modular programming.

The major aim of modular programming is how to organise the program

into modules 'and how to put the modules together. A program module is

basically an autonomous program unit that performs a well-defined task

necessary to the completion of the larger program (ref. 3.16).

advantages of modular programming are:

The main

a) A single module is easier to write, debug and test than the entire

program.

b) A module is likely to be used in many places within the same program

and in other programs, particularly if it is reasonably general

97

and performs a common task. In this way, a library of standard

modules can be built and used in a resource sharing, data-base, or

distributed computation environment.

c) Through modular programming, the programmer can divide tasks, use

previously written programs, and thus simplify his task and shorten

the time to solve his problem.

d) It is easier to introduce changes into one module rather than into

the entire program.

e) It is easier to isolate and locate errors in modules than in the

entire program.

f) Through modular programming, it is easier to build a better picture

of how much progress has been made and how much work is left.

g) It is possible to use modules written in a different programming

language.

h) High quality modules written by specialists in particular fields

can be resource shared.

The main disadvantages of modular programming on the other hand, include

a) If the modules are written by many different people or if they have

undergone many changes over a long period of time, fitting the

modules together can be a major problem.

b) If the modules are many they will require very careful documentation

since they may affect other parts of the program, such as the

global variables and data structures used by all- the modules.

c) Testing and debugging modules separately may be a difficult exercise,

since other modules may produce the data used by the modules being

debugged and still other modules may use the results. This may

necessitate writing of the special driver programs just to produce

sample data to test the modules. This driver program requires

98

extra programming effort that adds nothing to the original exercise.

d) The original programs may be difficult to modularize. If it is

then modularized poorly, integration will be difficult since most

of the resulting errors and changes will involve several modules.

e) In some cases modular programs may require extra processing time

and memory, especially if the separate modules repeat functions.

Considering the above advantages and disadvantages for organizing

the program into program modules it can be seen that important considerations

should include restricting the amount of information shared by the modules,

limiting design decisions that are subject to change to a single module

and also restricting the access of one module to another (ref. 3.15,

3.16). A major drawback in modular programming is that there are no

proven, systematic methods for modularizing programs. But a few principles

for modularizing programs can be identified (ref. 3.15, 3.16, 3.17),

because they lead to a realization of better and more autonomous modules:

a) Modules should be distinct and should perform one logically coherent

b)

task and'nothing more. A good rule of thumb is that: if it takes

more than one sentence to describe what a module does, then the module

does too much.

Modules are autonomous units of a program. They should receive

only data that are necessary to perform their specific task, and they

should perform their task in such a way that only those data values

that need changing are changed.

c) Modules should be relatively short, usually containing fewer than

about 100 lines of code.

d) Those modules that reference common data should be parts of the same

overall module.

99

e) In the case of two modules in which the first uses or depends on the

second, but not the reverse, such modules should be separate.

f) A module that is used by more than one other module should be part

of a different overall module from the others.

g) Two modules in which the first is used by many other modules and the

second is used by only a few other modules should be separate.

h) Two modules whose frequency of usage are significantly different

should be part of different modules.

i) The structure or organisation of related data should be hidden

within a single module.

Inherent in these principles of modu1arization is the fact that if

it is found difficult to modularize the program, then it is strong

indication that the problem itself is poorly defined, and hence a re-

definition is necessary. For example, too many special cases, each

requiring special handling, or the use of a large number of variables,

each requiring special processing, are problems that can be most efficiently

handled by redefining the problem. Simple tasks should not be modularized.

Once the task has been organised into distinct and logically separate

modules the methods of structured programming and top-down design can

be applied.

3.3.1.1 Structured Programs

One way of ensuring that the modules are distinct and logically

separate program units is accomplished by utilizing the recent design

methods of structured programming (ref. 3.2). Pascal is one of the more

recent block-structured and procedure-oriented high-level programming

language that is based on the concept of structured programming. In

such a structured programming environment both the data and control are

100

organised in a highly block-structured way.

Structured data are organised as abstract data types (ADT), (ref. 3.18),

which are defined by Pascal type definitions and the operations associated

with these ADT are defined by Pascal procedures and functions when the

final program is created. In this way the ADT can be thought of as a

mathematical model with a collection of operations defined on that model.

Sets of integers, together with the operations of union, intersection,

and set difference, is a simple example of ADT. ADTs are generalizations

of the primitive data types such as integer, real, boolean, etc. In

this way the ADT encapsulates a data type in the sense that the definition

of the Pascal type and all operations on that type can be localized to

one section of the program. Hence in a high-level language the significance

of an item of data is expressed in the type it belongs. By specifying

the type of a variable the programmer defines the set of values that can

be assumed by the variable. One of the main advantages of high-level

language over assembly languages is that the former provide types that

correspond to the concepts of their particular application area. Thus,

whereas an assembly language program has to manipulate items of data at

the bit-pattern level, a high-level language program manipulates atomic

items of data such as integers or reals.

languages data types can be user-defined.

Similarly, control is also structured.

In block-structured high-level

A structured program is

defined as a program with single-entry and single-exit control structures

of fig. 3.1. The simplest single-entry single-exit control structures

that have been found to be sufficiently powerful to construct any computer

program are:

a} Concatenation structure: This is a linear structure in which the

statements or elements of the structure are executed strictly sequenti

ally and consecutively, fig. 3.1(a}.

TRUE

(i) if-then-else

101

(a) Concatenation Control Structure

FALSE

A

• • • • •

(ii) case i of A, B, C •••
(b) Conditional Control Structure (If-then-else)

FALSE TRUE

(i) repeat-until (ii) Do-while

(c) Iteration Control Structures

Fig. 3.1 Basic Control Structures

N

FALSE

102

b) Conditional structure: This is a structure in which control branches

from a single point into two or more paths; then all paths merge

into a single point of exit, fig. 3.l(b).

c) Iteration structure: In this structure control repeatedly passes

through one or more inner structures and then finally exit to a

single point, fig. 3.l(c).

The following important features of structured programming are

prominent:

a) Each structure has a single-entry point and a single-exit point.

b) Only the three basic control structures, and possibiy a small number

of auxiliary structures are permitted.

c) The structures may be nested to any desired level of complexity so

that any program can, in turn, contain any of the structures.

The following are some of the main advantages of structured programming,

(ref. 3.2):

a) The number of the control structures is limited and hence it is easier

to standardize the terminology.

b) The sequence of the operations performed is simple to trace and hence

it is easier to debug.

c) The control structures can easily be used to form modules.

d) It has been shown that the given set of structures is complete and

hence all programs, irrespective of their complexity, can be written

in terms of the three structures.

e) The indented structured version of a program is partly self-documenting

and fairly easy to read.

f) Structured programs are easy to describe with program outlines.

g) Structured programming has been shown, in practice, to increase

programmer productivity.

103

h) Structured programming often makes the programmer aware of inconsistencie

or unlikely combination of inputs.

i) Structured programming allows the use of meaningful programmer

defined identifiers freely.

The main drawbacks associated with structured programming, however,

are as follows:

a) Only a few high-level languages (e.g. Pascal, PL/M) will directly

accept the structures. If the program is needed in the assembly

language format, the programmer has to go through an extra translation

stage to convert the structures into the assembly language. But

other high-level languages (e.g. Fortran, Basic, etc.) are slowly

adopting the principles of structured programming.

b) There is a likelihood that the structured programs will use more

memory and execute more slowly than their unstructured counterparts.

c) Limiting the control structures to just three basic forms may some-

times make some tasks very awkward to perform. The fact that the

three control structures are complete and that all programs can be

implemented with them does not necessarily mean that a given program

can be implemented with them effectively or conveniently.

d) Multiple nested control structures, such as the if-then-else, can

often be very difficult to read.

e) The program flow of control may not correspond with the program flow

of data and hence the control structures may handle data awkwardly.

Despite the disadvantages of structured programming mentioned above,

it is one of the few methods of systematizing program design.

found most useful in such situations as in the

a) Application in which memory usage is not critical.

It is

104

b) In applications involving large programs, perhaps exceeding 1000

instructions.

c) Low-volume applications in which the software development costs,

particularly testing and debugging, are important design factors.

d) Applications involving string manipulations, process control, or

other algorithms rather than in simple bit manipulations.

More and more high-level languages such as BASIC and FORTRAN are

incorporating the concepts of structured programming (ref. 3.19).

is mainly due to the recognition of the advantages to be gained by

This

implementing program design using structured programming. Also the

per-bit memory cost is decreasing and most of the drawbacks cited for

modular programming, as well as the structured programming, methods will

lessen in significance. As the cost of memory continues to decrease,

the average ,size of many microcomputer programs increase, and the cost of

software development continues to increase, structured programming, which

tends to decrease software development costs for larger programs but

use less memory, will become more valuable.

3.3.1.2 Top-Down Design'

Larger and more complex problems are most easily solved by breaking

them into smaller problems and then, if necessary, breaking these smaller

problems into even smaller subproblems pieces (ref. 3.20, 3.21). This

process of taking a problem and successively breaking it down into its

component parts is referred to as top-down design or stepwise refinement

and is fundamental in any problem solving process. In this way, the

original problem is solved in steps (ref. 3.17). Each step is essentially

a small refinement of how the problem is to be solved. This method of

problem solving by stepwise refinement is carried out until one arrives

105

at a program the meaning of whose steps are formally defined by a programming

language manual. Fig. 3.2 illustrates graphically this hiearchical

process of stepwise refinement, in that the solution to the original

problem P is accomplished by solving progressively smaller subproblems

(Pi' P2 , P3 , etc.) and, if necessary, solving even smaller and smaller

sub-subproblems (Pll , P2l , etc.) and (Plll , Pl12 , etc.), etc.

Hence, in the program design stage, several techniques can be used

to systematically specify and document the logic of the program. Modular

programming provides the programmer with the techniques of dividing the

total program into the smaller, distinct and logically separate program

modules. Structured programming provides a systematic way of defining

the logic of those modules, while.the top-down design facilitates a

systematic method for further refinement, integrating and testing them.

These three techniques provide a unified approach to program design or

problem solving process.

3.3.1.3 Subroutines and Pascal Procedures

Subroutines and Pascal procedures (and Pascal functions), like

program modules, are program units that perform well-defined tasks necessary

to the completion of a larger problem. In this context, program modules

on the one hand, and subroutines and procedures on the other hand, can be

used interchangeably and can be considered to be equivalent. However,

in some situations a program module may have more than one subroutine or

procedure. Hence subroutines, procedures or functions provide one of

the most powerful tools for solving complex problems.

Pascal procedures, an essential tool in programming, generalize

the concept of an operator. Instead of being limited to the built-in

loG

p

• •

. . .

. "

Fig. 3.2 Step-wise Refinement

107

operators of a programming language (like addition, sUbtraction, square

root, etc.), by using procedures a programmer is free to define his own

operators and apply them to operands that need not be basic types, (ref. 3.18)

An example of a procedure, on a module, used in this way is a matrix

multiplication routine, or a routine for the generation of random numbers.

One of the basic advantages ~f procedures is that they can be used to en

capsulate parts of an algorithm by localizing in one section of a program

all the statements relevant to a particular aspect of a program. An

example of such an encapsulation is the use of one procedure to read all

input and to check for its validity. The advantage of such encapsulation,

as mentioned earlier, is that one knows where to look to make changes to

the encapsulated aspect of the problem. For example if one wanted to

check that the inputs are nonnegative, one only needs to alter a few lines

of code, and these lines are known where they are.

basic 'format of a Pascal procedure.

Fig. 3.3 shows a

In order to encapsulate autonomous program modules it is necessary

for the high-level programming language to have enough capacity for

local variables (ref. 3.3, 3.18). Local variables are those variables

that have a value only in the module (procedure) and are otherwise unknown

outside the module. Pascal allows a liberal use of local variables in

both the function and procedure declarations. As mentioned earlier, the

procedures (and functions) are the building blocks of modules.

have the following basic characteristics:

a) They have a programmer-defined name.

Procedures

b) They have zero or more dummy variables, or formal parameter arguments.

c) They may return zero or more values.

d) They do not have type.

108

PROCEDURE A (. • • formal parameter list •••) ;

•. local parameters declared •••)

BEGIN (* procedure body *)

* main procedure body or Block *)

END (* A *)

Fig. 3.3 Pascal procedure Format

109

e) They have zero or more local variables

f) They are invoked simply by using, or mentioning, their name

in the program. When invoked in this way control is passed to

the called procedure, the called procedure is executed and then

control is passed back to the calling procedure, or function.

In this way control is passed back and forth as the procedures and

functions are executed.

g) Procedures and functions can be nested to any arbitrary depth.

A Pascal function on the other hand is a procedure that performs a

sUb-task and returns a single value via the function name. Functions

have similar characteristics to the procedures, but they have a type.

Pascal requires that the procedure (or function) definition to appear

prior to any statement that uses the procedure (or function). In this

case the function should be declared as the first executable statement

in a program. Other structured languages (e.g. BASIC-PLUS, CP-6 BASIC),

do not make such restrictions, so function declarations can appear anywhere

in the program.

One of the major advantages of the formal parameters or dummy

arguments is that they help to make the procedures and functions as general

as possible: the dummy argument list can be shortened or expanded as

needed. The dummy arguments are parameters that appear in the procedure

or function definition and have no values of their own. When the function

is invoked, the dummy arguments are replaced by the real arguments.

The real arguments must correspond in position, type, and number t~ the

dummy arguments. When the function (or procedure) is invoked the actual

values of the arguments are sent to it and the function (or procedure) is

110

then executed. The arguments are local to the function (or procedure)

and so when the function (or procedure) is executed the result of the

processing should not produce side-effects - i.e. the global variables

should not be changed after the procedure or function call and execution.

In general side-effects violate the essential concept of modular autonomy.

Any variable that appears in the list of dummy arguments is a local variable

and is only known within the segment of code constituting the function or

procedure block. The variables local to the function or procedure occupy

different memory locations even though they are declared similarly locally

in the procedure as globally in the main program. Anything done to a

local variable has no effect on a variable of the same name which appears

in the main program or in another procedure. Also local variables have

a value only while the function or procedure is being executed. As soon

as the procedure or the function block is exited, the values for all the

local variables disappear. In this way strict rules are imposed that

prohibit the appearance of side-effects in well-designed programs so that

the procedure or module should receive all its data via the argument list

and should perform its operations using no global variables. The main

errors associated with modules are typically those caused by incorrect

data flow between modules and by the inadvertent side-effects. Block-

structured programming languages like Pascal provide the mechanism to make

such a desirable rule possible. In this way too, large or complex programs

can be organised as consisting of a large number of relatively autonomous

modules (ref. 3.14, 3.16).

Thus the overall structure of a Pascal program is a set of procedure

and function blocks, some of which are nested within others to an arbitrary

III

level of nesting, as shown in fig. 3.4. The rules concerning the way

procedures can call each other are governed by the scope rules associated

with them (ref. 3.2). Hence a program or procedure named A can call

a procedure named B if:

a) B is declared in A

b) A is nested in some procedure C, and Band C are declared in the

same program or procedure, provided that the definition of C follows

that of B

c) A and B are both declared in C, provided that the definition of A

follows that of B

With respect to the global and local variables declared in procedures

A and B, the scope rules governing their use are that:

A variable V that can be referenced in a procedure A can also be

referenced in a procedure B, that is nested in A, unless there is

also a declaration of V in B.

In this way procedures (or modules) can be made as self-contained

as possible SO that each procedure and its variables can be understood

without reference to its containing procedures.

3.3.2 Inter Module Organisation

A modular program is organised as a collection of modules (or

procedures), as explained above. The total running time of such a

modular program will therefore depend, not only on the number of modules,

but also on how these modules are organised and the way they communicate

and interact with one another. It will also depend on the efficiency

of the modularization process and the way data flows between the collection

of modules.

PROGRAM A (input, output, •••)
(* comment *)

CONST (* constants declaration *

TYPE (* type declaration *)

VAR (* global variable declaration *)

PROCEDURE B ;
PROCEDURE D

BEGIN (* D *)

END; (* D *
BEGIN (* B *)

END;(*B*'
PROCEDURE C 1

PROCEDURE E
BEGIN (* E *)

END;(*E*
PROCEDURE F

BEGIN (* F *

END
BEGIN

(* F

* C *

END (* C *
PROCEDURE X ;

Fig. 3.4

PROCEDURE Y
PROCEDURE Z

BEGIN(*Z*)

END (* Z
BEGIN (* Y *

END 1 (* Y *
BEGIN(*X*)

END1(*X*)
BEGIN (* A *)

END (* A *)

Program Block Structure

113

3.3.2.1 Module and Intermodule Times

When a modular program is executed, control is passed back and forth

as the procedures that make up the program modules are processed. In

this way the computation of the original program is equivalent to the

sum of the running time of the individual modules. Hence, the computation

of each module represents a fraction of the computation of the original

program, i.e. the sum of the times of executing the statements comprising

the module. The running time of each program module (and of the original

program), will therefore depend on many factors, (ref. 3.2), some of which

are:

a) The amount of input to the module

b) The nature and speed of the instructions on the computer used to

execute the module

c) The quality of code generated by the compiler used to create the

object program

d) The complexity of the algorithm underlying the module.

Hence, if the running time of the modules are known, then it is

possible to estimate the running time of the modular program. Furthermore,

if the running time of the various modules on several different computers

is known, then it is possible to shorten the total running time of the

program by assigning the modules to the computers on which they run

faster. As has already been explained before, this is the basis of the

CPU cache model of distributed computation within LAM.

In the case in which the modules run on two or more computers, it is

necessary too to take into account the time involved in the modules

114

communicating with other modules across the interface. Such intermodule

communication time is effectively additional to the running time of the

individual modules. Hence, it is necessary to keep the intermodule

communication time to a minimum if the benefits of running a modular program

on two or more different computers are to be realised. But if the modules

are separate, logically distinct and relatively autonomous, as explained

earlier, the number of intermodule references can be kept to a minimum.

There are two methods by which procedures (or modules) can communicate

with other procedures (or the modules):

a)

b)

By means of the global variables. This assumes that global variables

are implicitly declared in some universal environment. Within this

environment is a subenvironment in which the modules are declared.

By means of the formal parameters. The formal parameters of the

procedure can be treated as local variables which are initialized

to the values of the actual parameters or they can serve as place

holders in the program, in which case, actual parameters are sub

stituted for every occurrence of the corresponding formal parameters.

If the actual parameters is an expression, then the corresponding

formal parameter is treated as a local variable initialized to the

value of the expression.

The intermodule communication time will principally be the time

required to transmit parameters and partial results across the interface.

3.3.2.2 The Intermodule Graph

The overall organisation of a modular program as a collection of

modules can be presented using graph-theoretic concepts (ref. 3.23).

Graph-theoretic concepts are often needed to represent arbitrary relation-

ships among data and other objects. A graph (ref. 3.24, 3.25), consists

115

of a set of vertices (or nodes) and a set of edges (or arcs) and can be

defined as follows:

A graph G = (V, E) consists of

a) a finite set V = (VI' V2 , V
3

, •••• Vn) whose elements are called

vertices, and

b) a subset E of the Cartesian product ExE, the elements of which are

called edges.

If the edges are ordered pairs (i, j) of vertices, then the graph is

said to be directed and i is called the tail and j the head of the edge

(i,j). If the edges (i,j) are unordered pairs of distinct vertices, then

the graph is said to be undirected. In a directed graph G = (V." El ,

if (i,j) is an edge in E, then vertices i and j are said to be adjacent

and the edge is said to be from i to j. The number of vertices adjacent

to i is called the degree of i. In an undirected graph G = (V,E),

if (i,j) is an edge in E, then it is assumed that (i,j) = (j,i), so that

(j,i) is one and the same edge. In this case j is adjacent to i if (i,jl

is in E and the degree of a vertex is the number of vertices adjacent to it.

Alternatively, the degree of a vertex may be defined as the number of

edges meeting at the vertex. A graph is said to be regular if all the

vertices of the graph have the same degree. In particular, if the degree

of each vertex is d, then the graph is regular of degree d. A graph is

said to be complete if each pair of distinct vertices are joined by exactly

one edge. Furthermore, two graphs G and H are said to be isomorphic if

H can be obtained from G by relabelling the vertices, such that there is

a one-to-one correspondence between the vertices of G and those of H,

in which case the number of edges joining any pair of vertices in G is

equal to the number of edges joining the corresponding pair of vertices

in H.

116

A path in a directed or undirected graph is a finite sequence of

In this case the

path is from i
l

to in' and is of length n-l, i.e. the number of edges it

contains. In general, there may be several paths between a given pair

of vertices. A path is said to be simple if all edges and all vertices

on the path, except possibly the first and the last vertices, are distinct.

A cycle is a simple path of length at least equal to 1 which begins and

ends at the same vertex. In an undirected graph, a cycle must be of

length at least equal to 3.

There are several common representations for a graph G = (V,E).

An n-node graph G = (V, E) has an Ilvll x Ilvll adjacency matrix A, whose

(ij)th element, A(i,j), is the weight of the edge (i,j). The adjacency

matrix representation is convenient for graph algorithms which frequen~ly

require to determine the presence of certain edges since the time to

determine whether an edge is present is fixed and independent ofllvl I and

I IEI I. However, the adjacency matrix representation has the disadvantage

that it requires I Ivl 12 storage even if a graph has only V edges.

In this way, an intermodule graph (or a program graph) can be

constructed. An intermodule graph consists of nodes (or vertices) which

represent the modules, and arcs (edges) which represent the intermodule

cross-references (ref. 3.23). The weights of the edges represent the

intermodule communication times. Fig. 3.5 shows how an undirected,

complete intermodule graph is constructed from the values of intermodule

communication times, (or adjacency matrix), in the case of a modular

program with three modules A, Band C. The intermodule graph of fig. 3.5

is complete and regular and hence the intermodule organisation is such that

Modules

A

B

C

Modules

A

o

8

7

B

8

o

9

C

7

9

o

117

(a) Intermodule Communication times (adjacency matrix)

A

B

C

(b) Intermodule graph (program graph)

Fig. 3.5 Intermodule Graph

118

any module can reference the other two modules. Hence, a general

intermodule organisation is assumed by the interconnection of fig. 3.5. In

many cases the intermodule organisation will not be so general and the

intermodule graph is then constrained to take on a different shape, such

as a tree. The final shape of an intermodule graph will be determined

by the precedence relations existing among the modules of the modular

program.

3.4 PARTITIONING ALGORITHMS

As explained earlier, this thesis is based on the CPU cache model of

distributing a computation within a LAN (ref. 3.26, 3.27). In a CPU

cache model two processors are involved in the computation of the single

modular program. These processors have so far been referred to as the

larger and more powerful processor, and the smaller processor respectively.

The terms sink and source processors will be used to refer to larger and

the smaller processors respectively, as these terms are also consistent

with the graph-theoretic concepts. In this context, some graph based

scheduling algorithms can be used to partition the modular program into

two so that one portion of the program is assigned to the source processor

while the other portion is assigned to the sink processor, whenever possible.

Once the modules have been identified and the module running time and

intermodule communication times specified, it is now necessary to run the

scheduler. The scheduler works out the module assignment to the processors

on the basis of the shortest processing time for the program. A basic

assumption in this is that the time to run the scheduler is small compared

to the total processing time of the program.

scheduling algorithms are now examined.

Three main graph-theoretic

119

3.4.1 The Max-Flow Min-Cut Scheduler Algorithm

The max-flow min-cut algorithm is based on the correspondence of the

concept of the amount of a maximum flow (ref. 3.28) and the value of the

minimum cut in a network. A network is a useful general concept which can

be used in solving a wide range of practical problems. In this

connection, a network can be thought of as a graph which carries some

additional information (ref. 3.29). Essentially, a network is a graph

in which each edge or arc is assigned a number, called its weight. Each

arc represents a possible channel for some kind of flow, and the weight

gives some information about the flow along it. This may be the capacity,

i.e. the maximum flow possible in that channel, it may be a length of the

channel, the cost of sending a commodity along it, or it may be some other

quantity. The relevant flow commodity in this case is the expected (or

the worst-case) processing time. Examples of networks which can be

modelled in this way are Railway networks, Road networks, Road maps,

Fluid distribution systems, Commercial networks, Electrical networks,

Communications networks, Computer networks, Software networks, etc. The

network problems which can be thus modelled (ref. 3.29) include

a) Maximum flow problems

b) Flow and potential problems

c) Transportation problems

d) Assignment problems

e) Scheduling problems

f) Location problems

In the maximum flow network problems, the capacity of each arc

represents the maximum flow possible along that arc. If the network is

120

a directed graph, then the direction of the arc represents the direction

of the flow. The characteristics of flow in a network can be explained

by the concept of a basic network of fig. 3.6. A basic network is a

directed graph which satisfies the following conditions:

a) It has exactly one source (5) node and one sink (T) node.

b) To each arc (i,j) of the basic network there is assigned a positive

number c(i,j) called the capacity of the arc (i,j).

Hence a flow in the basic network with source 5 and sink T is an

assignment of non-negative number f(i,j), called the flow along arc (i,jr,

to each arc (i,j) of the basic network, and satisfying the following

feasibility and flow conservation conditions, (ref. 3.28):

a) The flow along arc (i,j) does not exceed the capacity of the arc

(i,j), i.e.

f(i,j) If c(ioj)

for each arc (i,j) of the basic network:

(the feasibility condition)

b) For each vertex V, other than the 5 and T, the sum of the flows along

the arcs into V is equal to the sum of the flow along the arcs out of

V: (the flow conservation condition).

Furthermore,

a) The source has no inward arcs

b) The sink has no outward arcs

c) The outflow at the source must equal the inflow at the sink.

Hence, the major objective in the maximum flow problems.is to

maximise the total flow F in the network in which each arc (i,j) has

capacity ~(i,j). This, for a basic network with n vertices, including

121

A D
5

s T

4

Fig. 3.6 A flow network

122

the source node (vertex l) and sink node (vertex n), can be expressed as

n
Maximise F = E f(i,j}

j=l

subject to

n n
E f(i,j} - E f(j,i}

j=l j=l

and

o , f (i,j) , c(i,j}

F if i = 1

= 0 if i ~ 1 or n

-F if i = n

In a basic network an arc (i,j) is said to be saturated if f(i,j}=c(i,j} ,

and unsaturated if f(i,j} < c(i,j}. In the maximum flow problems the

objective is to find the largest possible (S,T) flow that the network can

support. This is accomplished by finding the flow-augmenting (S,T) paths

in the basic network. Such paths consist of

a} forward arcs - i.e. unsaturated arcs directed along the path.

b) backward arcs - i.e. arcs directed against the direction of the path

and carrying a non-zero flow.

In order to obtain a maximum (S,T) flow, a succession of such flow-

augmenting paths have to be found and then the flow along them increased

step by step until the flow can be increased no further. When there are

no more flow-augmenting paths left, the flow thus produced is the maximum

flow. An algorithm that is based on the idea of systematically locating

flow-augmenting paths along which the flow can be increased can be applied

to any basic network to find the maximum (S,T) flow.

The alternative method for determining whether or not a given flow is

a maximum flow is based on the concept of a cut, or a network bottleneck.

123

A cut in a network with source S and sink T is a set of arcs whose removal

separates the basic network into two graph components X and Y, one containing

the source S and the other containing the sink T, as illustrated in fig. 3.7.

The capacity of such a cut is equal to the sum of the capacities of those

arcs in the cut which are directed from X to Y. The cut with the smallest

possible capacity is called the minimum cut. The bottle-neck may consist

of a few arcs of small capacity through which the relevant commodity has to

flow. The connection between the minimum cut and the maximum amount of

flow in a network has been an important established result (ref. 3.28),

and forms the basis of the Max-flow min-cut theorem, which states that:

In any basic network, the value of the maximum flow is

equal to the capacity of the minimum cut.

The max-flow min-cut algorithm, (ref. 3.30), based on the above

theorem, can be used to determine the maximum feasible flow between a

given source S and sink T. The algorithm takes a weighted, directed

graph of input and determines the maximum (S,T) flow by building a layered

network from the source to the sink. The source node is put in layer zero.

Any node intermediate between the Sand T nodes and connected directly

with the S node by a flow-augmentable arc is put in layer 1. Any node

connected to a layer 1 node by a flow-augmentable arc is in turn put in

layer 2, etc. This process continues until the sink node has been

reached, and assigned a layer, when the process terminates. In this way,

the algorithm effectively labels each node by its distance from the source

node. For each layered (~T) path each node is inspected in turn to find

the potential flow increase it can handle. The intermediate layered

network node with the smallest potential (the reference node) and its

reference potential is determined so that an amount of flow equal to the

124

Cut

Fig. 3.7 The Cut

125

reference potential is pushed to the direction of the sink, or pulled from

the direction of the source. This process of building the layered network

and(S,T) paths, finding the reference node, and augmenting the flow

continues until it is not possible to build a layered network. When this

situation obtains, then the current flow is the maximum flow, and the set

of saturated arcs forms a cutset.

Fig. 3.8 incorporates a Pascal procedure (ref. 3.31, 3.34), to

carry out the max-flow min-cut algorithm. The body of the procedure

operates, as described above, by first trying to build a layered (S,T)

path (Function Layering_Possible, and Procedure Walk), then finding the

reference node (Procedure Find-Ref.Node), and finally by augmenting the

flow in both directions from the reference node (Procedure Push.Pull).

As explained above, the max-flow min-cut algorithm takes in a basic

network consisting of a weighted, directed graph, as input and determines

the maximum feasible flow between the source vertex S and the sink

vertex T. The basic network is constructed from the intermodule graph,

as follows (ref. 3.23, 3.26). TwO new nodes Sand T, representing the

source and sink, are added to the intermodule graph. An arc is drawn

from the source node S to each intermediate node (module) and is labelled

with a weight C(S,i) equal to the running time of that module at the sink

processor. Similarly an arc is drawn from T to each intermediate node

(module) and labelled with a weight C(i,T) equal to the running time of

that module at the source processor. If a module cannot run on either the

source or the sink processor the corresponding weights of the arcs joining

that module to the source or the sink processor is equal to infinity (00).

All that is left now is to input the resulting basic network to the max-flow

min-cut scheduler algorithm to determine the assignment of modules to the

two processors together with the expected processing time for that program.

\c»

Fig. 3.8 Flow-AUgmentation in Max-Flow Min-Cut Algorithm

1 pro~am distcomp (output)
2 const
3 n=5;
4 unscanned=-5
5 infinity=10000
6
7 type
8 node=l .. n
9 xnode=-n •. n

10 vector=array[node] of xnode ;
11 matrix=array[node,node] of· real
12 whichway=(push,pull)
13
14 var
15 i,s,t : node
16 j:node;
17 c,f : matrix;
18 x,y,flowleft :real
19 p: whichway
20 minimumcut real
21
22 procedure maxflow (s,t:node ;c:matrix ; var f:matrix) ;
23 var I'efnode: node; (*node wi th least excess capac i ty *)
24 minpotential :real; (*excess capacity of the ref node *)
25 layer :vector; (*the layered network is defined by this array *)
26 r : real ;
27 i ,J :node; (*indices *)
28
29 function min (x,y:real):real ;
30 (*determines the minimum amount of flow *)
31 begin
32 if x<y
33 then min :.=x
34 else min :=y
35 end ;
36
37 procedure walk (i:node) ;
38 (*traverse the layered network from t,inverting layer nurnbers.*)
39 var j:node; li :xnode ;
40 begin
41 layerCi] := -layerEi]
42 li :=layerEi] ;
43 for j:= 1 to n do
44 if <jOs) and (-layer[j]=!i-l) and «f[j,il<c[J,iJl or (f[i,J]>O

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

then walk (j)
end; (*walk *)

function layeringpossible boolean;
(*is it possible to build a layered network, if so build it *)

var i,j :node ;
k:O •. n ;
ernptylayer :boolean
begin

k :=0 (*k keeps track of layer being built *)
for i:= 1 to n do

layerEi] :=unscanned (*initialize each node *)
layer[s] :=k; (*source node is in layer 0 *)
writeln ('*' ,layer[s]:30) ;

repeat
k : =k+l (*now locate all nodes in layer k *)

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106

. 107
108
109
110
111
112
113
114

\c *)
115
116
117
118
119
120

127

emptylayer := true; (*an empty layer stops the algorithm *)
for i:= 1 to n do

if -layer[i] = k-l
then

(*i is in layer k-l ,its neighbors may be in layer k *)
for .i : = 1 to n do (*check each node adjacent to i *)
if Clayer[j]=unscanned) and ((f(i,j]<c[i,j]) or (f[j,i]>O»
then
,begin

layer[j] := -k ;
writeln ;
wrlteln (' *' ,-layer[j] :30)
writeln ;
emptylayer := false

end ;
until (layer[t] <> unscanned) or emptylayer
layeringpossible := not emptylayer ;
walk (t); (*prune off the dead ends *)
writeln ('layering is possible ',not emptylayer)

end; (*layeringpossible *)

procedure findrefnode (i:nodel
(*traverse the layered network from t, seeking the ref node *)
var j :node ;

1 i ,lj :xnode ;
incap, outcap : real
begin
li : = layer[1]
incap : =0
outcap := 0 ;
for j :=1 to n do

(*examine each node adjacent to i *)
begin
lj :=layer[j]
if Clj =li-l) and (j<>s) and ((f[j,i]<c[J,i]) or (f(i,j]>O»
then fi ndrefnode (J)

if Ij = li-l
then incap :=incap+ (c[j,i)-f(j,i])+f(i,j)

if IJ =li +1
then outcap :=outcap + (c[i,j)-f[i,j)+f[j,i)

end ;
if (i<>s) and (i<>t) and (min (incap,outcap)<minpotential)
then

(*node i has smaller potential than the current ref node *)
begin
minpotential := min (incap, outcap)
refnode := i

end ;
writeln ('the reference potential =', minpotential:6:2
writeln ('the reference node =', refnode:3) ;

end (*findrefnode *)

procedure pushpull (i :node , flowleft :real ; p : whichway)
(*augment the flow thro' i by pushing or pull ing ·minpot.ential units

var j, kl, k2, layersought : O .. n ;
begin
j := 0
while (flowleft >0) and (j<n) do

begin
J :=j+l ;

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

\csink*)
167
168
169
170
171
172
173
174
175
176
177
178
179
180

if p=push
then
begin
k1:=i

128

k2:=j ;
layersought:=layer[i]+1

end
else

begin
kl:=j

k2: = i ;
layersought :=layer[i]-l

end ;
r:=min (flowleft,C[kl,k2]-f[kl ,k2l+f[k2,kl]

(*amount of flow to move *)
if (r>O) and (layer[j]=layersought)
then
begin (*push/pull some flow to/from an adjacent layer *)
flowleft :=flowleft -r ;
f[kl,k2] :=f[k1,k2]+r-min(r,f[k2,kl])

(*augment positive flow *)
f[k2,k1] := f[k2,kl]-min (r,f[k2,k1])

(*push reverse flow backwards *)
if (j <>s) and (j<>t)
then pushpull (j,r,p)

end
end ;
writeln ('forward flow =' ,f[k1,k2]:6:2)
writeln ('reverse flow =' ,f(k2,k1]:6:2)
writeln ('flowleft =',flowleft:6:2)
writeln ('r=' ,r:6:2)
writeln
wri teln ;

end ; (*pushpull *)

begin (*maxflow *)
for i :=1 to n do
for j :=1 to n do
f(i,J] :=0 ; (*initialy no flow *)
f[s,t] :=c[s,t] (*if an s_t link exists, saturate it *)
minimumcut := 0 ;

while layeringpossible do (*assign nodes to layers *)
begin
minpotential := infinity ;
findrefnode (t) (*find the reference node *)
pushpull (refnode,minpotential,push) (*push flow towards the

pushpull (refnode,minpotential,pull)
minimumcut : = minimumcu·t + r ;

end ,

(*pull flow from source*)

writeln ('minimumcut =', minimumcut:6:2)

begin (*main program *)
s : =1
t :=5
c(1,1]:=0
c(1,2]:=6 ;
c(1,3]:=50 ;
0[1,4]:=6 ;
c[1,5]:=0;

129

181 c[2,11:=0
182 c[2,21:=0
183 c[2,31:=8
184 c[2,41:=7 ;
185 c[2,51:=10 ;
186 c[3,11:=0
187 c[3,21:=8
188 c[3,31:=0
189 c[3 ,41: =9 ;
190 c[3,51:=32 ;
191 c[4,ll:=0
192 c[4,21:=7
193 c[4,31:=9
194 c[4,41:=0
195 c[4,51:=21;
196 c[5,11:=0
197 c[5,21:=0
198 c[5,31:=0
199 c[5,41:=0
200 c[5,51:=0 ;
201 writeln ('***********************************') ;
202 writeln ('maximum flow _ minimum cut algorithm') ;
203 writeln ('***********************************') ;
204 wri teln;) •
205 maxflow (s,t,c,f)
206 end.

130

For the previous example of a program with three modules A, Band C,

fig. 3.9 shows the basic network, the assignment of modules to each

of the two processors and the expected processing time (equal to the value

of the minimum cut) of the program. Hence, the max-flow min-cut algorithm

determines both the minimum running time and the module assignment to

processors in a dual processor distributed computation environment.

As can be seen from fig. 3.9, the value of the minimum cut is equal

to 61 time units (milliseconds, seconds, minutes, hours, etc.). Hence,

the running time of the program whose modules are A, B and C in such a dual

processor distributed computation system is 61 time units. This time

represents the shortest possible time to run this program in such a

set up, and this is accomplished by having module B assigned to run at

the source processor and modules A and C assigned to run at the sink

processor. Had the program run at the source processor alone, the time

taken to process it would be 63 time units, while if it had run on the

sink processor alone it would have taken 62 time units. Hence, a time

of 2 time units are saved by running the program in such a dual processor

system. Similarly, a time equal to 1 time unit is saved by deciding not

to run the entire program at the sink processor. This saving in the

total processing time of the program assumes that the time overhead to

run the max-flow min-cut scheduler is negligible compared to the total

processing time. Also, another major assumption in this calculation is

that the sink processor is immediately available to run the portion of

the computation scheduled to it. This will not be always the case·.

The sink processor will most probably have a certain amount of workload

to process because it is time-shared, multiaccessed, and multiprogrammed

and hence the scheduled modules will be run in that time-shared and

multiprogrammed invironment. Under these circumstances it is necessary

131

T . S

A 6 10

B 50 32

C 6 21

(a) Module Running Time

MinlmUlll cut = 61
(b) Basic Network

(X) (Y)
(c) Graph components X and Y

Fig. 3.9 Two graph components

132

that the sink workload is not excessive if the benefits of distributing

a computation thus are to be realised. Furthermore, in such a dual

processor distributed computation system, the two modules A and C, which

are assigned to the sink processor, have to be assembled into packets,

queued for access to the transmission channel, and then transmitted via

the LAN communications subnet to the sink processor • Hence, the total

. channel time delay should also be negligible too in comparison with the

value of the minimum cut. These and other factors will be examined later.

It can be seen that according to the max-flow min-cut scheduling

algorithm, the prevailing simplified situation is as illustrated in fig. 3.10.

In fig. 3.10, R represents the set of all the modules assigned to process

at the source processor (the resident modules) and R represents the set

of all the modules assigned to run at the sink processor (the non-resident

modules). All the R modules have to be assembled into packets and

transmitted across the LAN communications subnet, to the sink processor.

These module packets are effectively queued up at each individual user

where they wait for channel access and eventual transmission to the sink

processor. In this way they must experience channel acquisition and

transmission delays across the interface. As mentioned above, it is

necessary that the total delay experienced by the module assigned the sink

processor, the time interval from when the scheduler is run to the time

they are available for processing there, is as small as possible and

in any case very small compared to the value of the minimum cut, T
MIN

•

With reference to fig. 3.10, it is necessary in a distributable computation

that:

TMIN « TS and TMIN « TT

where TS and TT are the run times (real time), of the program at the

source and sink processors respectively. Also, there are only three

s

TT

(sink time)

133

Min-cut

TMIN

Fig. 3.10 The 3 cut combinations

TS

(source time)

134

possible cases for the minimum cut. These three cases correspond to:

a) T - T in which case R is a null set and all modules are MIN - S'

resident and process at the source processor alone.

b) TMIN = TT' in which case R is a null set and all modules are non-

resident and process at the sink processor alone.

c) TMIN < TS ' and TMIN < TT' in which case Rand R are non-null module

sets and the computation is distributable.

It is also possible that TMIN = TS = TT. In this case no benefit

can be obtained in assigning any modules to the sink processor. In cases

a) and b) above, all the modules are processed at one local site. However

in case c), a distributed computation environment exists in which the

set R modules run at the source processor and the set R modules run at

the sink processor. In this mode of distributed computation the modules

are processed strictly sequentially and concurrent or parallel processing

is not assumed. Each module time is equal to the time to process that

module to its completion. Also, as the modules are processed at the two

sites, parameters and data are passed back and forth across the interface.

Each such intermedule communication involves organising the parameters

and data into packets for channel transmission. Hence, the channel

acquisition and transmission delay accounts for the longest part of the

intermodule communication time. It is therefore important to keep the

intermodule communication time as low as possible. This can be achieved

both by making the modules as autonomous as possible to reduce the number

of intermodule references, and by reducing the channel acquisition and

transmission delay. From fig. 3.10, it can be seen too, that the set of

modules assigned to the same processor incur zero intermodule communication

135

time. It can be seen that the main factors that contribute to the time

cost of each assignment are:

a) The amount of computation required by each module

b) The amount of data transmitted between each pair of modules

c) The speed of each processor

d) The speed of the communication channel separating each pair of

processors

The main objective in the dual processor distributed computation

environment is to obtain an assignment that minimises the sums of the

module execution times, RUN, and the intermodule communication times,

COMM, Le.

minimise E RUN(i) + E
i i

E COMM (i,j)
j+l

In the case of a distributable computation which is represented by modules

in a fully connected, complete intermodule graph, the value of the minimum

cut, TMIN, can be expressed by

where

n.T
S

= TS = time to process all modules at the source

nS+nT= n = total number of modules comprising the program

= number of modules assigned to source processor

= number of modules assigned to sink processor

= average number of packets per module transmitted to the

sink processor

= average number of times parameters and data are

transmitted across the interface

136

.TS = average processing time per module at the source processor

TT = average processing time per module at the sink processor

Tl = average intermodule communication time per module pair

T2 = average time to transmit intermodule parameters

k = a constant representing such factors as

a) time to run the scheduler

b) time to assemble/dissassemble the module packets

c) time to perform error detection.

Hence, for a given program with n modules, the value of the minimum

cut can be reduced by reducing n l , n2 , Tl , T2 , and k.

can be reduced by such factors as

a) Using a more efficient scheduler

b) Using long packets

c) Reducing the time to perform error detection

d) Using more autonomous modules

The value of k

The value of nl can be reduced by using long packets while the

values of n2 and Tl can also be reduced by designing autonomous and more

independent modules to minimise the number of the intermodule references.

The value of T2 can be reduced by minimising the average channel and

transmission delay. In a high speed LAN communications subnet, the

average channel and transmission delay under low traffic conditions can

be expected to be low. It can also be expected that not all the modules

will need data and parameters from every other module during the module

processing time. Hence, in the majority of situations, the program

graph will not be a fully connected graph. This too can result due to

strong module autonomy and the prevailing precedence relationships among

modules. The net effect of this is to reduce the number of intermodule

137

references and hence the intermodule communication times. Such strong

module autonomy will further have the result that the time interval between

the intermodule references will increase.

The time to run the max-flow min-cut scheduler will also depend on

the number of the augmented (SIT) flow paths in the basic network. The

number of these augmented (SlT) flow paths depend very strongly on the

weights capacities of the arcs in the basic network. It is the weight

capacities of these arcs which determine the arcs in the (S,T) paths

that saturate first. Also, the relative weights of the C(S,i) and

C(i,T) are important in determining how many (S,T) flow augmentations

a given basic network can support. If a program has n modules, then the

number of nodes in the basic network is (n+2). The number of nodes

in the program graph is also equal to n. Hence, in a fully connected

intermodule graph, the maximum number of the feasible (S,T) flow

1 augmentation paths scanned during a scheduler run is 2.n.(n+l) paths.

In the basic network of fig. 3.9, the number of these paths is 6, as shown

in fig. 3.11. But, as mentioned above, not all of these paths may be

scanned because of the fact that the intermodule graph is not fully connected

and also because of the relative and absolute values of the arc weights.

On the other hand, the minimum number of the (S,T) flow augmentations

paths is n. Hence, in an arbitrary intermodule graph with arbitrary

arc weights, the actual number of these paths will lie between nand

n 2' ,(n+1) •
n

These 2' (n+l) paths are also chosen from a very large number

of possible combinations of such (S,T) paths. By choosing the values

of the arc weights, it is possible to investigate how the value of the

minimum scheduling time, corresponding to the time taken to scan just

the minimal n paths, varies with the number of modules. These minimal

138

O~----~O~----~O
SAT

O~----~O~----~O
S B T

Qr----------'o}-------O
C T

O~----~O~----~O~------O
S B A T

O~----~O~----~O~------O
S BeT

O~----~O~-----40~~------~O~~ ------0
S B ACT

Fig. 3.11 6 (S~T) - flow augmentation paths

139

n (S,T) paths correspond to an assignment of all the n modules to either

one of the two processors and none to the other.

3.4.2 The Enumerative Scheduler Algorithm

The enumerative scheduler is also a graph-theoretic algorithm. Like

the max-flow min-cut scheduler it is based on the concept of the maximum

amount of flow of a commodity and the corresponding value of the minimum

cut. It takes in the basic network consisting of a weighted, directed

graph, as input and determines both the program processing time and the

module assignment to the processors, as explained earlier. It accomplishes

this by exhaustively enumerating all the possible (S,T) cuts in the

basic network and then searches and chooses the minimum cut in the(S,T)

cutset. By so doing it partitions into two the total number of modules

in the modular program so that some of them are assigned to the source

processor and the others are assigned to the sink processor. In this

way, it exhaustively takes into account the total number of combinations

of the partitions (ref. 3.32, 3.33). Hence, for a basic network with

n modules, the total number of partitions of the cuts is 2
n

, i.e. the

number of unordered selections

[:] + [:] + [:]+ [:) = 2
n

For large n, it can be seen that the total number of partitions is very

large. Hence, the algorithm exhibits the phenomenon of combinatorial

explosion and is therefore very inefficient for large values of n. In

this way, it can be expected that the module scheduling time increases

almost exponentially with the number of program modules. But, for small

values of n, the algorithm may be quite efficient and even performs faster

140

than the more efficient max-flow min-cut algorithm. Also, this algorithm

is not capable of taking advantage of a simplified nature of the inter

connections. within the intermodule graph and the scheduling for modules

in the case of a fully connected intermodule graph would be only marginally

different from that of an intermodule graph with much fewer number of edges.

3.4.3 The Shortest Tree Scheduler Algorithm

Bokhari (ref. 3.35) has analysed the problem of optimally

assigning the modules of a modular program over the processors of an

inhomogeneous distributed processor system using a shortest tree algorithm.

This algorithm too is graph-theoretic in nature. As before, the objective

is to assign the modules, whenever possible, to the processors on which

the modules execute most rapidly while taking into account the overhead of

interprocessor communication. The shortest tree algorithm aims to

minimise the sum of the execution and intermodule communication times for

arbitrarily connected distributed systems with an arbitrary number of

processors, provided that the interconnection pattern of the modules forms

a tree. A tree (ref. 3.36), is a connected graph which contains no cycles.

Programs that have a tree-like structure form an important class and

include programs written as a hierarchy of subroutines. This tree-like

structure is found to be quite suitable for large modular programs

(ref. 3.39). Also, the structured programming high-level languages such

as Pascal and PL/l tend to take the advantage of tree arrangements with

their nested block structures.

As explained earlier, the modules will transfer control to each

other at various times during the lifetime of the program in execution.

By drawing up a directed graph in which each mode represents a module and

in which there is an edge from node i to node j if and only if module i

141

calls module j during the program execution, the resulting intermodule

graph is called a calls graph. As mentioned above, the shortest tree

algorithm for optimal assignments assumes that such a calls graph of the

modular program is a directed tree. Such a directed tree is also invariably

called an invocation tree because it describes the way modules invoke

other modules during the execution of the program. An invocation tree

made up of four modules is shown in fig. 3.12 <.a). Should a module invoke

another module that is not coresident with it on the same processor,

this invocation would have to be transmitted across the LAN communications

subnet and thus incur an interprocessor communication time cost. This

time cost is dependent on the amount of data transmitted from one module to

the other.

earlier.

The cost of invoking a coresident module is zero, as explained

The cost of executing module i on processor j is denoted by c(i,j)

and equals the sum of the costs of the various periods of execution of the

module throughout the lifetime of the program. The minimum processing

time assignment over the distributed processor system minimises the sums

of the execution times and the intermodule communication times. Given the

invocation tree of a modular program, and the execution" and intermodule

communication times, an aSSignment graph may be drawn up, as shown in

fig.3.l2(b). An assignment graph has the following characteristics:

"a) It is a directed graph with weighted edges

b) It has one distinguished node called the source node, denoted by S

c) It has one or more sink (or terminal) nodes, denoted by Tl , T2 ,

T3 , etc., one for each leaf node of the invocation tree.

d) In addition to the source and sink nodes, there are pxn further

nodes in the assignment graph (for a modular program with n modules

l.4:.!

1

3

(a) Module Invocation Tree

11

c (21) +d (11)

T

(source processor)
and node

T1

Fig. 3.12

(b) Assignment graph

21

41

(c) Assignment tree
Shortest Tree Schedu1er

4

12

c (22) + d (22)

22

12

42

(sink processor)
and node

T2

143

and p processors). Each node is labelled with a pair of numbers

(i,j) which represents the assignment of module i to processor j.

e) Each layer of the assignment graph corresponds to a node of the

invocation tree (e.g. the layer comprising nodes (22) and (22) in

fig. 3.l2(b) correspond to node 2 of the invocation tree of fig. 3.l2(a»

f) Nodes in layers corresponding to nodes in the invocation tree having

outdegree greater than one are called forknodes.

forknodes is called a forkset.

Each layer of

In addition, the edges have weights on them according to the

following guidelines:

a) All edges incident on the sink nodes Tl , T2 , etc., have zero weights

on them.

b) The edges joining the source node S to nodes (11), (12), etc., have

weights C(ll), C(12), etc., which represent the time to execute

module 1 on each of the processors 1, 2, etc., in the distributed

processor system.

c) The edge joining node (i p) to node (j q) has weight equal to the sum

of the time-to-execute module j on processor q, i.e. C(j q), and

the intermodule ~ommunication time for assigning module i on

processor p, given that module j has been assigned to processor q.

Hence, to each assignment of the n modules to the p processors, there

corresponds some subset of nodes of the assignment graph. The subgraph

generated by these nodes together with the source and sink nodes, is called

an assignment tree, as shown in fig. 3.l2(c), and has the following

characteristics:

a) It is a tree

b) It connects the source node, S, to all the sink nodes, T
l

, T
2

, etc.

144

c) It contains one, and only one, node from each layer of the

assignment graph.

In this way, there is seen to be a one-to-one correspondence between

the assignment trees and module assignment. Furthermore, the weight of

each assignment tree, (i.e. the sum of the weights,of all edges forming it),

equals the total processing time of the corresponding assignment. To find

the minimum cost assignment, it is only necessary to find the minimum

weight assignment tree in the assignment graph.

3.4.4 Module Scheduling Time

As was explained earlier, the time taken to run a scheduler depends

on the number of nodes and edges in the basic network, in the case of the

enumerative and the max-flow min-cut algorithms. The time to run the

max-flow min-cut scheduler is proportioned to the number of the augmented

(S,T) flow paths, which in turn depend strongly on the relative weights

of_the various edges of the basic network. The number of edges in a fully

1 connected connected intermodule graph is equal to 2.n. (n-l). The basic

1 network formed from such an intermodule graph has 2.n. (n+3) edges. In

such a basic network the total number of all the possible (S,T) flow

augmention paths is

n
E

i=l

n!
(n-i)!

where n is the number of modules of the modular program, or the number of

nodes in the intermodule graph (ref. 3.37). In the case of the modular

program consisting of three modules A, B and C of fig. 3.9, the total

number of all the possible (S,T) paths are as shown in fig. 3.13. However,

not all these paths are scanned during the running of the max-flow min-cut

scheduler, as many of them are collapsed and deleted during the first

T
T

Fig. 3.13 Total possible scannable (S,T) paths

146

n searches of the algorithm. The maximum number of paths that can be

scanned is only

n
E

i=l

1
i = I.n. (n+l) ,

while the minimum number of such paths is n. 1 The I.n. (n+l) (S,T) flow

paths that are actually scanned in the case of the previous basic network

of fig. 3.9, are as shown in fig. 3.14.

The time to run the enumerative scheduler, on the other hand, strictly

depends on n, the number of nodes in the intermodule graph, and is

n proportional to 2 , the total number of cuts in the cutset, as shown in

fig. 3.15. Hence, by an appropriate choice of the values of the arc

weights in the basic network, it is possible to investigate how the value

of the minimum scheduling time varies with the number of modules of a

modular program.

3.4.5 Time Performance Comparison of the Max-flow Min-cut and the

Enumerative Schedulers

Fig. 3.16 shows how the minimal scheduling time varies with the

value of n in a dual processor system. These values are obtained by

using three different computers with different speed and processing

power capabilities. The arc weights were chosen in such a way that only

the minimal n (S,T) flow augmentation paths were searched and scanned in

order to completely accomplish module assignment to the processors.

Similarly fig. 3.17 shows how the value of the scheduling time varies with

n when the arc weights are slightly more randomized. In this case the

total number of the (S,T) flow paths may lie anywhere between the minimal

1 n and the maximum I.n. (n+l) during anyone scan. Three pairs of curves

147

A c

c

c

Fig. 3.14 Scanned (S,T) paths

Cllt

Number

1

2

3

4

5

6

7

8

s

Mod1l1e Assignment

None

All

B

A, B

B, C

A, C

A

C

I

f
11

:

S

A; Br C

6
8

\ \
\ \

__ ~\~"Y"""

4
'3

Fig. 3.15 The Enumerated Cuts

All ; A,

None

A, C

C

A

B

B, C

A, B

5 I 2

T

B, C

T

T

Vl
"0
C
o
()
QI
Vl

QI

E
f=
Ol
C

:J
"0
QI
.r:
()

U')

10000

Scheduling Time :seconds
versus

program modules

O.Ol-jh'~----,------.------.--------,
o

Fig. 3.16

20 40

program modules

Minimal Scheduling Time

60 80

Vl
"U
c
0
U .,
Vl

.,
E

i=
0>
s
:J

"U .,
u

VJ

10000

1000

lOO

10

0.1

0.01

Scheduling Time : seconds
versus

program modules

IiJ

,.l· .---• .--1!1

".../ :fj. .-------- . I [• -// ,/ ~------
" -/' {; ./-"t" ,. .

11····· .. ·, ",-/

If ,/
if; V ;f

-~

O.OOII+-------.-------.-------.-------~------~----~
o 10 20 30 40 50 60

program modules

Fig. 3.17 Randomized Scheduling Time

I-'
lJ1
0

151

are shown in the two figures: three curves for the enumerative scheduler

on the three computers and three other curves for the max-flow min-cut

scheduler on the three computers. The three computers used were:

a) An 8-bit microcomputer employing the Intel 8088 processor, with a

clock frequency of 8 MHz, and having a 1 Mb (Megabyte) memory.

This computer runs the CP/M-86 operating system.

b) A multiprogrammed, multiaccessed, and time-shared mainframe computer

with a virtual memory space of 2.75 Mb. This computer was the Prime

A computer of the computer centre of the University.

b) A faster and more powerful, multiprogrammed, multiaccessed, and time-

shared mainframe computer with a virtual memory space of 8 Mb. This

was the Multics computer of the computer centre of the University.

The scheduling time is the CPU time of the computers. Also, the two

scheduling algorithms were both coded in Pascal. From this comparison

it can be seen that the max-flow min-cut algorithm is more efficient than

the corresponding enumerative algorithm. Also, below a critical number of

modules, the enumerative scheduler performs faster than the max-flow

min-cut scheduler.

3.5 THE MODULE INTERACTION ENVIRONMENT

In the dual processor distributed computation environment of the type

considered herein, the source and the sink processorS are dissimilar.

For example, a specific processor may possess a hardware floating-point unit

and thus be able to carry out floating-point operations with a higher

speed than a processor without such a hardware facility. Similarly, other

processors may be able to perform byte manipulations more efficiently than

others. Alternatively, the distributed processors may be from the same

152

computer family, with varying computational power, but can execute the same

instruction set (for example, a system based on the PDP-ll family computers).

But, although the processors may be dissimilar, each program module is

able, in principle, to run on either of the two processors. This may be

achieved if, for example, all the modules are coded in a procedure-oriented

high-level language and separate object versions of these modules are made

available for each processor. Despite the dissimilarities, the major

goal of the dual processor system is to provide the programmer with easy

access and use of the two processors. In this way, the programmer is

provided with a set of more powerful tools to enable him to divide his

applications program between the source and the sink processors without

constant reference to the fact that he is working with two dissimilar

processors.

The most important facility in such an environment is that of module

allocation and reallocation (or movement) between the source and the sink

processors, whenever the need arises. Thus the application programmer

should be free to move, at run time, various pieces of the application

between the two processors. As a consequence of this module movement,

the dual processor system supports interprocessor module calls. Once a

module has been moved, say, from the sink processor to the source

processor, a mechanism is required which can trap calls to that module

and pass the required parameter information to the remote copy of the module.

Such a kind of mechanism can be thought of as being analogous to the high

level access methods supported by the operating systems in which all

hardware details, communications protocol, timing dependencies, etc., are

hidden from the user.

153

The dual processor system can affect the implementation of the

applications in the following three areas corresponding roughly to the

usual compilation, link-edit, and execute sequence (ref. 3.38, 3.40).

3.5.1 Module Language Features

A high-level language with translators and capable of generating the

code for both processors. Such a high-level language, as mentioned

earlier, should let the programmer disregard, as far as possible, the

differences in the hardware and operating system characteristics of the

two dissimilar processors. It should also provide the following general

features necessary for the dual processor environment:

a) Machine Transportability: There should be either two equivalent

compilers for the language for the sink processor and the source

processor, or one compiler capable of generating the code for both

machines. It is also desirable to have only one language which can

run on both machines.

b) Procedure Oriented: It is necessary that the language be procedure

oriented (but not necessarily block structured). A procedure oriented

language·provides a very natural mechanism for dividing an application

into modules which can be dynamically moved between the processors.

c) Symbol Table Output: If the module movement and the transfer of

module calls between the sink and source processors is to be supported,

then it is necessary that the compiler for the language retain complete

information about all the module symbols and module parameters defined

by the programmer for later use by the link-edit preprocessor.

From the above, it may be noted that the use of an assembly language

is not precluded, provided a sufficiently powerful assembler is available.

154

3.5.2 A Link-Edit-Time Preprocessor

This should be capable of setting up the information necessary for

reallocation of modules to either the sink or the source processors. After

all the modules of some application system have been. coded and compiled, so
'\

that some modules have been assigned to the source processor and the rest

to the sink processor, the following situation prevails, '(ref. 3.40):

a) A set of source object modules

b) A set of sink object modules

c) A set of symbol tables, one table for each module.

If all the modules are assigned to the source processor alone, so

that none processes at the sink'processor, then the next step would be

to invoke a link editor which would combine the various object modules into

a load module. The same situation would prevail if all the modules are

assigned to the sink processor alone. But in a dual processor distributed

computation environment, a new stage between compile and link edit is

introduced to accomplish the following twofold purpose:

a) To set up linkage information necessary for the dual processing run-

time environment to resolve intermodule calls across the communications

interface

b) To save from the compile stage sufficient symbol information so that

modules can be moved at run time from one processor to the other.

Thus, the link-edit preprocessor performs the following three

important functions:

3.5.2.1 Scanning The Input

To scan the three input streams corresponding to the object modules,

the object modules symbol table, and the user commands. The user commands

are analogous to the link-editor commands in that they specify attributes

155

of the object modules and characteristics to be assigned the final load

modules. In this case, the most important attributes are:

a) The initial locations, (source or sink), of the various modules

b) Whether or not the modules are eligible for being moved between the

processors, (reallocatable). A non-reallocatable module has a

module-to-processor weight equal to infinity in the basic network,

so that it can only process at one processor alone.

3.5.2.2 New Object Modules

In order to create a new object module for each module, the neW

object module is given the name of the original object module, and the

name of the original is altered in some unified fashion. For example, if

a module is represented by procedure A, and is declared reallocatable, then

the link-edit preprocessor creates a new module called A and renames

the original A to, say, A'.

to that shown in fig. 3.18.

The code in the new A is logically equivalent

This has the effect of routing all calls to

the original A from other modules (or procedures) in the application

system through the new version of A. In this way control is quickly passed

to the real A (now renamed A'), or to the dual processor run-time environment,

depending on the state of the "THE-LOcAL-SWITCH-IS-ON". The dual processor

run-time environment has control over whether a local version of A is called

or whether the call invokes a version of A in the remote processor.

3.5.2.3 Static Variables

The preprocessor is also changed with the responsibility of placing

in each new object module information from the symbol table about all

static variables and parameters for the reallocatable or remote module.

This information, (e.g. variable type, length, etc.), is used by the run

time environment.

156

PROCEDURE A (•) ;

(* the code for the new A *)

BEGIN (* A *)

IF THE-LOCAL-SWITCH-IS-ON (*a run-time environment bodean variable*)

THEN (* the module runs locally *)

BEGIN

A' (. • • • .)

END

ELSE (* the module runs at the remote site *)

BEGIN

A' (. • • •)

END

END (* A *

Fig. 3.18 The New Object Module

157

3.5.3 The Run-Time Environment

The main functions of the dual processor run-time environment is to

manage the routines that handle:

a) Interprocessor calls

b) Module movements

c) Taking measurements and statistics

d) Debugging facilities

e) I/O between the source and sink processors

The most,important aspect of this environment is that it is completely

transparent to the applications programmer. Such a situation is analogous

to that of an overlay supervisor in that while writing a program to be

placed in an overlay structure, the programmer does not need to worry

about whether the program will be in memory when it is called or the details

of how the program will be fetched from the secondary memory (ref. 3.40).

The above main functions of the run-time environment may be summarised

briefly in more detail as follows.

3.5.3.1 The Dual Processor Run-Time Monitor

When running under the dual processor environment, a user program is

controlled by a supervisory monitor. The main purpose of this monitor

is to accept, interpret and execute commands issued by the user during the

execution of the applications program. The monitor environment is entered

either by a direct call from the user program or by a pre-defined

asynchronous interrupt mechanism (e.g. an attention from the user's

terminal) . When the monitor is entered, the user's program is temporarily

halted, and the user is prompted for a command. Possible commands include

requests for module reallocation, statistics, and trace facilities.

158

3.5.3.2 The Intermodule Call Resolution

This is the basic function of the run-time environment, i.e. to

resolve calls between modules which were written as if they were to

run on the same machine, but which are in fact running on two separate

machines.

As a simple example, consider a modular program with two modules

A and B, B having been declared reallocatable and initially resident in

the sink processor. .The module (procedure) allocation would then be

as shown in fig. 3.19 (a), (the underlining indicates the copy of B

currently being used). If now A calls B, control passes from A to B

directly to B', the real copy of B, as shown in fig. 3.l9(b). If the

user now finds that the loading on the sink processor is unacceptably

high and hence requests that B be moved to the source processor, any

reference, to B' in B is changed to point to the dual processor environment

so that the next time A calls B, control is passed through this environment

to the remote copy of B, as shown in fig. 3.l9(c).

Passing control to the remote copy of B is only part of the problem.

Of more importance is the problem of providing the remote module with a

copy of the parameter list passed by module A. This is accomplished

by referring to the symbol table information which was stored in the new B

by the link-edit preprocessor. Using the information about the length

and type attributes of the parameters which B expects, the appropriate

variables are obtained, passed across the interface to the source processor,

and converted (if necessary) into equivalent source processor formats.

An appropriate list is then built in the source processor and passed to B',

the original satellite copy of B. Similarly, when B returns to A, any

159

Sink Processor

A

B

8'

(a) Initial module allocation

A" sink processor ,
\
\
\ ,
'~B ,

\
\
\

, 8' '~

(b) Intermodule referencing

sink processor

Source Processor

B

source processor

8

8'

source processor

8

- - - - --- - - - - - - - - - - - -+9'

9
1

(c) New module allocation

Fig. 3:19 Run-time Environment

160

modified parameters are passed back to the sink processor and modified

in the processor memory.

3.5.3.3 Module Movements

The mechanism for moving a module between processors is very similar

to that of resolving the interprocessor calls. The user first enters

the dual processor monitor and specifies the module to be moved.

monitor then calls the routine in charge of the module movement.

The

This

routine first marks the local copy of the module as inactive, and reference

to B' in B is replaced with a reference to the remote copy. The module

movement routine then calls its counterpart in the remote processor

and passes it the static variables which were declared in the module to be

moved. These variables are treated just like parameters, except that

instead of being placed in a parameter list for the remote module, they

are used to update the static environment of the remote module so as to

reflect the current state of the (now inactive) local module. The remote

copy of the module is then marked as active, control returns to the

monitor, and the user's program is restarted.

3.5.3.4 Statistics, Measurements, and Debugging

For the purposes of being able to vary the module to processor

assignment is the ability to measure the performance of the application

program as a function of this module allocation to processor.

way the user can be provided with such statistics as follows:-

a) The mean execution time for a given module

b) ~e paging rates

c) The amount of interprocessor data transfer

d) The mean delay for the interprocessor data transfer

e) The mean time between intermodule calls.

In this

~l

Using these figures, the user can modify module allocation so as to

optimize important parameters, such as

a) The total execution cost

b) The response time, etc.

Another important facility is the ability to imbed sophisticated

debugging tools into the system. Not only does the dual processor

system provide extensive symbol table information at run time, but a

natural module-level breakpoint system is built in. In this way, it is

possible to build in a mechanism which would dynamically check offered

parameter lists against those expected by the called modules. Errors of

this kind are a common source of bugs in large software systems.

4.1 INTRODUCTION

162

CHAPTER 4

COMPUTATION TIME

AS explained earlier, the view of distributed computation taken

in this thesis is that a single problem is solved by a number of single

CPU general-purpose serial computers that are spatially distributed within

a geographically small area. Specifically a CPU cache model of distributed

computation is employed. The computer's single processor accesses a

single memory, and inputs and outputs information to and from the external

source. The processor's ALU (arithmetic and logic unit), which is often

made up of a whole set of simple special-purpose processors, plus the CU

(the control unit), and high-speed registers, make up the single CPU.

In some cases, there may be several kinds of input. and output (I/O)

devices, and a hierarchy of progressively slower but larger memories.

But all the computation is performed by the single processor, using the

data and the program stored in its main memory. In some cases too, the

computer may have special-purpose hardware for several types of common

processes such as addition, floating-point multiplication, division,

string matching, input and output. Hence, the computer's single processor

is really a collection of a whole set of specific processors. Con-

sequently, the computational power and speed performance among these single

CPU general-purpose computers, will vary as widely as their specialized

hardware and their instruction set capabilities. Hence, it can be

e·xpected that the time taken to process a given computational task will

also vary widely among such computers. The time taken to complete a

given computational task too will depend not only on the particular

163

computer used but also on the nature of its underlying algorithm, (ref. 4.1,

4.2, 4.3).

This chapter briefly examines the principles of computation. It

attempts to find and assign a number to a given problem or subproblem that

represents the amount of computation time demanded by the problem or

subproblem. It attempts to examine briefly what constitutes a com-

putation, first with respect to the abstract Turing machine model.of

computation, and then examines the computer system software and hardware

implementation and capabilities of practical computers. From this

consideration it can be seen that, in order to assign a number representing

the computation time of a certain process, it is also necessary to examine

the collection many factors such as the

a) system software capabilities

b) system hardware capabilities

c) system implementation details

d) system memory capability and memory management

e) programming language efficiency and instruction set capability

f) programmer ability

g) the nature of the problem to be solved and the complexity of its

underlying algorithm

All these factors and more determine the basic instruction times and the

relative computational powers of the various existing computers. Further-

more, each instruction time will also be dependent on the nature of the

input and output. For certain combinations of input the instruction times

can be estimated by simple calculations whereas for the majority of cases

this can only be done probabilistically. Hence, from the variety of the

many factors that affect the instruction times, it may be seen that

164

. .i
probabilistic characterisation of computation is an important method of

determining the computation performance measures.

4.2 PRINCIPLES OF COMPUTATION

From the point of view of a computer's ability to execute an algorithm

(or a program), all modern general-purpose computers are the same

(ref. 4.1). What distinguishes between them most is mainly the time

taken to execute the given algorithm. What computers can and cannot

do can be examined with the aid of simpler abstract models of computers •.

4.2.1 Computation

Turing (ref. 4.4) and Post (ref. 4.5) independently proposed a very

simple kind of a computer. The computer they proposed was a suitably

powerful finite-state automaton (called a Turing Machine), possessing an

infinite memory (tape) and capable of doing anything that any other

computer might conceivably do, if given enough time. A number of other

identical formulations of such a computer have been used (ref. 4.6, 4.7,

4.8) • Fig. 4.1 shows Post's formulation of the basic structure of the

Turing machine. The basic structure of such a computer model has a read-

write head which is capable of looking at each tape-section of an arbitrarily

long (potentially infinite) tape with symbols on each tape-section. It

also has a set of internally stored instructions for reading and printing

symbols onto the tape, and has the capacity too for shifting the tape.

The model computer is also assumed to be capable of performing the following

basic actions:

a) Marking the current tape-section (assumed empty)

b) Erasing the mark in the current tape-section (assumed marked)

c) Moving to the next tape-section on the right

165

~ store for
internal instr uctions

Th e tape

. 'v'
x. X y Z K a 1 2

Tape symbols
Tape sections

Fig. 4.1 Turing Machine Model

166

d) Moving to the next tape-section on the left

e) Determining whether the current tape-section is marked or is not marked

The Turing machine is a very simple logical construction of a computer

that has been used to prove the generality and equivalence of all modern

general-purpose computers (ref. 4.1, 4.9, 4.l0), such that each can compute

anything, or carry out any algorithm, that any other can, if given enough

time. An infinite memory potentiality of the finite-state automaton

ensures that as much memory as is needed is available for whatever program

it is presented to execute. In this connection, an automaton is a machine

that responds unthinkingly to a stimulus, in accordance with pre-determined

rules, without any scope whatever for intuition or discretion, (ref.4.ll,

4.l2) • Its response will depend only on the stimulus which it receives

and the state in which it is in when it receives that stimulus. Such

finite-state machines proceed in separate and discrete steps from one to

another of a finite number of states. There is a direct relationship

between their basic structure and their behaviour. Given its initial

state and the input signals, it should be theoretically possible to deduce

the state it will be in at any particular instant.

is basically a finite-state machine and

To this end, a computer

a} it has no power of its own for direction and reacts to any

stimulus in exact accordance with the flow of its instructions,

b) although the number of its distinct states is very large, the ultimate

number of such states is finite.

Thus, a general-purpose computer can be very simple since all that

the Turing machine model of a computer does is to execute a sequence of

instructions from the following repertoire:

a} READ the current symbol

~} SHIFT to the next symbol

167

c) WRITE the current symbol onto the current memory (tape) location

d) IF the current symbol is C, THEN do instruction St' ELSE do

instruction S e

In this way, information is read from and written onto the tape

which serves as the system memory. The tape contains both the program

data and the program code. A computer modelled in this way is a stored-

program computer and the processor that executes sequences of these

instructions is an example of a finite-state automaton (ref. 4.9, 4.10).

One of the major sources of the computational power for such stored

program computers lies in the fact that the program is input to and stored

in the same memory that contains all other kinds of data. But the TUring

machine model computer executes very slowly because the instructions are

weak and low-level (ref. 4.17, 4.24). The two major factors that have

been used to improve computer capability in simplifying the program to a

much shorter sequence of much more powerful instructions, and in reducing

the time taken to execute a program are:

a) The processor can read, write and operate on a whole word

b) The processor is given the random access capability to immediately

fetch any of a rather longer number of such words.

The program code runs the computer. The first instruction is

loaded into the instruction register and decoded to determine '.the operation

to be performed, and the address where

a) The operands are to be fetched

b) The results are to be stored

c) The next instruction is to be found.

The operands are then fetched and processed, the results stored,

and the next instruction fetched and loaded into the instruction register.

168

This process continues until the "end" instruction is reached, at which

point there is no next instruction. The time to perform each instruction

is very short, ranging from several microseconds to a fraction of a

microsecond, depending on the instruction type and the hardware characteristic

of the CPU. The total execution time of the program or program module will

hence be the total sum of the instruction execution times of all the

various instructions constituting the program code. All modern computers

are general-purpose in that each can compute anything that any other

computer can compute, given enough time. But the larger computers are

capable of executing certain programs very much faster than the smaller

ones because they tend to have a variety of more specialized hardware

which may be more suitable for certain algorithms, (ref. 4.13, 4.14, 4.15).

In general, the computational power of these computers is achieved by

giving the computer

a) A set of instructions that includes the basic Turing machine functions

b) Enough amount of memory sufficient to handle the program to be

executed.

In this way, all modern computers will be millions of times faster

than the Turing machine model computer. They are also a lot more complex,

and having several kinds of I/O devices and successively faster memories.

Often, the I/O functions are handled by speCial I/O processors working

in parallel with the CPU. In SOme special cases, the next program

instruction is often fetched at the same time that the present instruction

is being executed. Several high-speed registers are usually employed to

store the current instruction, its operands, and its resulting output.

A larger cache memory of high-speed registers is often used to contain

instructions and data that will soon be needed. The CPU too may employ

169

special-purpose hardware for several types of processors such as addition,

floating-point multiplication, division, string matching, and I/O.

Hence, the computer as a piece of machinery is only capable of

performing only a small number of simple operations, i.e.:

a) Data or information storage

b) Data movement from one location in memory to another

c) Performing simple arithmetic operations

d) Performing simple logical operations

e) Interpreting instructions

f) Data or information input

g) Data or information output

h) Starting and stopping.

The computer solves all the problems presented to it, both simple

and complex, through combinations of the above primitive operations.

From this point of view, its purpose is to carry out instructions, (ref. 4.16)

These instructions are contained in the program statements which make up

the program. In almost all programming the program statements can be

classified according to the actions they perform.

belong to one of six classes:

a) Input

b) Output

c) Assignment

All such statements

d) Control (i.e. selection, branching, and repetition)

e) Termination

f) Comments

The two main types of data that the program acts upon are constants and

variables.

170

4.2.2 Instruction Times

In performing its computations a computer fetches an instruction

from a memory location, decodes the"instruction, and executes the instruction

as explained above. In high-speed computers, one of the main factors

limiting the speed of operation is the performance of the memory cycle

time. The time taken to complete an instruction is dependent upon

a) The type of an instruction - which is defined by the function digits

b) The exact location of the instruction and operand in the core or

fixed store - since this can affect the access time

c) Whether or not the operand address is to be modified

d) In the case of the floating-point accumulator orders, the actual

numbers themselves

e) Whether drum and/or tape transfers are taking place.

But obeying one instruction may be overlapped in time with some part of

other instructions. In this case the single most important parameter is

the performance of the processor. In the past, processor performance

has been measured in instructions per second. The number of instructions

per second can be estimated by using the time of a single representative

instruction, or by the average instruction execution time (assuming all

instructions to be equally likely). A more accurate measure is a weighted

average of instruction execution time using weights derived from a general

mix or from the intended application. The average instruction execution

time is sometimes chosen because of its obvious relationship with the

instruction stream throughput.

factors as

a) direct memory access

b) interrupt servicing

c) dynamic memory refreshing

But this method neglects such overhead

-.

171

The average instruction execution may be obtained by either benchmarking or

by calculation from instruction frequency and timing data (ref. 4.18, 4.19).

The latter has the advantage that it has freedom from the extraneous factors

noted above and from the normal clock rate variations found from machine to

machine of a given model. This method also allows for the calculation

of the change in average instruction execution time that would result

from some change in the implementation.

execution can be calculated from

In this way the average instruction

where

cl = the microcycle time

c 2 = the memory-read-pause time. (The memory-read-pause time is the period

of time during which the CPU clock is suspended during a memory read)

kl = the number of microcycles expected in a canonical instruction

k2 = the number of memory accesses expected in a canonical instruction

On the other hand, the typical instruction time for a simple operation,

such as ADD, can be estimated. Such a metric is an approximation for the

average instruction time and assumes that:

a) The machines have about the same Instruction Set Processor (ISP),

and hence there is little difference among instructions

b) A specific data-type will be used more heavily than another

c) A typical add time will be given (e.g. the operand is in a random

location in the primary memory cell rather than being cached or in

a fast register)

It is possible to determine the average instruction time by executing one

of every possible instruction. However, since the instruction used

depends so much upon the program data they interpret, this metric is not

172

very accurate. A better measure is to keep statistics about the use of

all programs and to give the average time based on the use of all programs.

Such a measure may be used to compare two different implementations of

the same architecture. Early attempts to make more accurate characterisa-

tions were based on weighing the instruction use (i.e. forming a typical

utilization U) according to task (e.g. floating-point versus indexing and

character handling) to give a better performance measure. Thus, instruction

mixes were developed which better evaluated performance. Studies of

frequency counts of instructions have been described by several authors.

The best known is the Gibson mix (ref. 4.20), developed at IBM in 1959.

Gibson divided the instructions of the IBM 704/650 computers into thirteen

classes and counted how many instructions of each class were executed.

His sample size was seventeen programs with approximately nine million

instructions. Similar studies have been carried out (ref. 4.17, 4.21)

as shown in Table 4.1.

For a given application, weighted average of the instruction execution

times may be determined by:

a) Preparing a table of frequencies of various types of instructions

based on experience in similar applications, or perhaps, on actual

counts if these are available

b) Obtain the total weighted execution time for a given instruction

type by multiplying the time required for the instruction by the

frequency count

c) Calculate the average execution time by summing overall instruction

types and dividing by the sum of the frequency counts.

Current ISPs designed for scientific applications have word lengths

ranging from 24 to 64 bits; the number of different instructions varies

from 70 to over 400; register structures span the area from one accumulator

173

.\Ia.:Jlin,'

tB.\I eoc 5 1360. e. vi
650fifU,Ci!MtllI'. J61XJ, U .. \la19, t PDP·W. C.\fC: rn,-,', DfC T{lr,JIIIII ur :lOW,

Cluh n.·U~frl retu/U n'~ltlts rnultf rcm/ts IIPr("luill

load. store 31.2 300 42 .• 22.4 <la. 1 34.0
Brlnel'l •• 16.6 38.3 282 33.7 17.7 16.0
Fixpomt add, SYbtract 8.1 '.2 12.4 19.0 10.2

1

Camp,," 3.8 1.2 12.5 7.0
F60aI1nQ add. subtract U 0.5 '.9 0.0 0.0
Floating ml.llliply 3.8 OS 2.6 0.0 0.0 33.0
Floating divide I.S 0.2 ,., 0.0 0.0
F,.point multiplV 0.8 0.' 1.1 0.0 0.0
FI"~OH'It divide 0.2 0.' 0.5 00 0.3
Sh,ftinO ••• 2.2 3.9 46 4.' '0
Leglcal , 6 0.5 '0 '3 '.9 S.O
M,!ocellaneous S.3 00 '.5 3.3 7.0 11.0
Indexing 18.0 13,4 0.0
Fullword 6.9 00
10 control 00 0.' 0.0
,.,terreglster transler SO 00 00

'U Mu, .. l/n,we.s.ry 01 M.aswchuMtt.

:CM'J ~ Car~o .. ·M.!IO" U",ye",'ty

Table 4.1 Percentage of Executed Instructions

174

plus a few index registers, through designs with 8 to 24 general or

specialized registers, to designs with up to 64 registers.

4.2.3 Benchmark Programs

A benchmark program (ref. 4.22), may also be used to characterise the

various performance measures of a computer. It may be the simple expression,

A:= B + C, composed of one statement and two operations (:=, +). The

statement execution rate is taken to be the actual computer performance

and reflects the highest performance for the three address machine, whereas

the conventional instructions per second measure may show different values.

A more subtle performance measure is the operation rate and this is found

to be more correlated with the true benchmark statement execution rate.

For example, in the case of the primary memory the operation rate may

be taken to be the information rate (the number of word accesses per

second) and this is found to be a better performance indicator than the

conventional instruction rate measure. Also, for the more unconventional

vector or array computers (e.g. ILLIAC IV, CDC STAR, CRAY-l) which have to

operate on at least 64 operands per instruction, instructions per second

would be a poor measure, (ref. 4.23).

A carefully designed standard benchmark gives the best performance

estimate because the benchmark is fairly understood and can be run on

several different machines. In this way specific benchmark programs

that reflect a particular type of workload can be used since whether a

standard benchmark is of much value in characterising performance depends on

the degree to which it is typical of the actual computer's use. A further

advantage of standard benchmarks is that they may be written in the high

level language to be used by the computer and hence they reflect the

application as well as characterising the language machine architecture.

175

One of the strongest advantages of the benchmark method is that it can

handle a total problem and integrate all features of the computer. The

main difficulty with benchmarks is that the result depends not only on the

type of the computer, but also on the exact configuration such as:

a) The number of words in the primary memory

b) The operating system characteristics.

Thus, although the benchmark performance number perhaps comes closest to

serving as an adequate single performance figure, it is weaker as a

parameter characterising the structure of the computer than one characterising

a contingent total system.

4.2.4. System Performance Measures

Hence, in order to measure the performance of a specific computer

it is necessary to know the ISP, the hardware performance, and the frequency

of use for the various instructions. The execution time T is the dot

product of the fractional utilization of each instruction (U
i

) and the

As mentioned earlier, the time (t
i

) to execute each instruction.

instruction utilization (U
i

) can be estimated by:

a) Defining a typical or average instruction

b) Using standard benchmarks to characterise the machine performance

c) Using a specific or unique benchmark when the actual use has not been

characterised in terms of the standard benchmark.

These quantities t. and U, are based entirely on measures which may also
l. l.

be computed automatically from a computer program during compiling.

Hence the compiler may be forced to give an estimate of the execution time

T of a module or a program.

176

4.2.5 Memory Size

The memory size in bytes, for. both the primary and the secondary memory

give memory capability of the computer. The memory transfer rates are

necessary as secondary performance measures, especially for memory inter-

ference when multiple processors are used. The primary memory transfer

rate also tracks the access rate available to the CPU for secondary

memory transfers and external interface transfers. For file systems,

which require multiple accesses to the secondary memory for single items,

the probabilistic measure of the access rate is necessary for a more

accurate performance estimate. Similarly, for multiprogrammed systems,

which use secondary memory to hold programs, the probabilistic measure of

program swapping rate may be required.

Other secondary CPU parameters include the number of data-types and

the context-switching rate. The number of data-types (such as the scientific

string, character, lists, vectors, etc.) in the CPU gives an indication

of performance when it is operated with a particular language. In the case

of multiprogramming systems, the time to switch from job to job is important.

In this case the process context-switching rate is an important attribute,

since most large computer systems operate with some form of multiprogramming.

4.3 ALGORITHMS AND COMPUTATION

The concept of an algorithm is fundamental in the solution of problems,

(ref. 4.1, 4.2). To determine what a computer can and cannot do, it

is necessary first to consider what can be accomplished by an algorithm.

An algorithm may be defined as a finite set of rules, which gives a sequence

of operations for solving a specific type of a problem. From such a

definition it can be seen that an algorithm possesses the following

properties, (ref. 4.36):

177

a) Finiteness: When an algorithm is mechanically executed, it must

terminate after a finite number of steps.

b) Definiteness: The actions to be carried out and the sequence of

steps to be executed for each step of the algorithm are

unambiguously defined.

c) Completeness: The rules of the algorithm are complete so that it can

solve all the problems of a particular type, and for

any input data, for which it is designed.

d) Effectiveness: All the operations used in the algorithm are basic

and are capable of being performed mechanically, and

without the necessity for any intuitive step

e) Input/output: An algorithm has certain precise inputs, or initial

data, and the outputs are generated in the intermediate

as well as the final steps of the algorithm.

If the algorithm forms an input into a machine, then the machine should

be capable of

a) Reading and interpreting the input and intermediate data

b) Carrying out primitive mechanical operations as demanded by the algorithm

c) Mechanically controlling the sequence of steps

d) storing the data

e) OUtputting the result

If a program is aimed at a particular problem, one can think of it

as searching for a solution to that problem. The search itself might

never end, and hence no solution can be found for that algorithm. In

this way it is possible to investigate whether or not there are some

problems for which there cannot be an algorithm, (ref. 4.25). Consequently,

178

in order to determine the computation time of a particular problem or

the computational capabilities of computers it is also necessary to examine

the efficiency of the underlying algorithm. Different problems or sub-

problems will require different algorithms and hence different execution

times. The more efficient the algorithm the shorter the time taken for

its computation, for a given size of the input. The underlying implication

is that algorithms and computation are inseparable. As was explained

earlier, one of the major goals in distributing a computation is to speed

up the given computation by using an interconnection of two or more computers

within a LAN. Hence, speeding up a given computation can be achieved

by designing and using better and more efficient algorithms to solve the

problem on the computers, or by using faster and faster computers. But

using better and more efficient algorithms can achieve a more dramatic

reduction in the computation time than using faster and faster computers,

(ref. 4.2).

To describe a problem as being solvable algorithmically implies, in

general, that there is a computer program that will produce the correct

answer for any input, if it is allowed to run long enough and if it is

also allowed as much storage space as it needs. In as much as algorithms

are essentially mechanical procedures requiring no intuition and capable of

being executed automatically by a machine, various mechanical models of

computation have been devised and investigated, (ref. 4.4,4.9).

Perhaps the most important motivation for devising formal methods of

computation is the desire to analyse the inherent computational difficulty

of various problems. One would like to prove lower bounds on the com-

putation time. In order to prove that there is no algorithm to perform

a given task in less than a certain amount of time, one needs a precise and

179

. highly stylized definition of what constitutes an algorithm. A Turing·

machine (ref. 4.4), model of computation is an example of such a definition.

By using a Turing machine model, one can prove that a particular function

requires a certain minimum amount of time to execute. Much of the emphasis

in the early work in this field (called the computability theory) was on

describing or characterising the nature of those problems that could be

solved a1gorithmica11y and on exhibiting the nature of some problems that

could not be. One of the important negative results was the proof of

the unso1vabi1ity of the "halting problem", (rei. 4.4, 4.10). The

halting problem is concerned with determining whether an arbitrary algorithm

(or computer program) will get into an infinite loop while working on a

given input. There cannot exist a computer program that solves this

problem. On the other hand, the knowledge that a given problem can

theoretically be solved on a computer is not sufficient to explain whether

it is practical to do so. In the majority of cases it is also necessary

to know more about how efficiently a given problem is solvable in a machine

than merely its solvability, and also about how effectively the algorithms

are converted into programs. This in turn leads to the consideration of

problems from the two main areas of study: the complexity of algorithms

and the correctness of programs. There are numerous problems with

practical applications that can theoretically be solved (i.e. for which

programs can be written), but for which the computation time and storage

requirements are much too great for those programs to be of practical use.

Consequently, the computation time and space requirements of a program

are of great importance.

4.3.1 Computational Complexity

Computational (or algorithmic) complexity refers to the computation

time and space requirements of a program. The analysis of the computation

180

time and space requirements of a program have become the subject of

theoretical study called computational complexity, (ref. 4.25). One

branch of the study of computational complexity aims at setting up a formal

and somewhat abstract theory of the complexity of computable functions

in which solving a problem is taken to be equivalent to computing a function

from the set of inputs to the set of outputs. In this way, axioms for

measures of complexity can be formulated, which are basic and general

enough so that either the number of instructions executed, or the number

of storage bits used by a program can be taken as the complexity measure.

Using such axioms, it is possible to prove the existence of arbitrarily

complex problems and of problems for which there is no best program.

Thus, the study of computational complexity facilitates the writing of

efficient algorithms to solve common problems and to provide the tools and

principles for analysing and improving algorithms.

4.3.1.1 Average and Worst-Case Complexity

Algorithms can be evaluated by a variety of criteria. But most often,

one is interested in the rate of growth of time (or space) required to

solve larger and larger instances of a given problem, (ref. 4.25, 4.27).

However, it is difficult to use the execution time (or word storage) as

a measure of complexity because it varies with the particular computer

used. one may instead count the number of instructions or statements

executed by a program, but this measure too has several of the other dis-

advantages of the execution time measure. Such a measure is highly

dependent on the programming language and on the programmer's style.

Instead one needs a method that is independent of:

a) The computer used

b) The programming language

181

c) The programmer's style and ability

d) The implementation details.

An important observation is that the amount of work done (complexi.ty)

usually depends on the size of the input. For example, solving·a

system of 20 linear equations in 20 unknowns generally requires more work

than solving a system of 2 linear equations in 2 unknowns. Another

important observation is that even if the inputs of only one size are

considered, the number of operations performed by an algorithm may depend

on the particular input. For example, solving a system of 20 linear

equations in 20 unknowns may not require much work if most of the coefficients

are zero. Hence, the amount of work done by an algorithm cannot be

described by a single number because the number of operations performed

cannot be the same for all inputs. For example, the size of the input

to solve a problem concerning a graph is dependent upon both the number of

vertices and edges in the graph.

4.3.1.1.1 Average Time Complexity

It is not always possible to enumerate the number of operations

performed by a particular algorithm on each input of size n. One possible

method of solution is to determine the average behaviour of the algorithm,

(ref. 4.25,4.28), by calculating the number of operations performed for

each input of size n and then take the average. Such a method may not

be accurate enough in practice because some inputs may occur much more

frequently than others. Instead, a weighted average is more likely to

give a more meaningful estimate. Such a weighted average may be estimated

as follows:·

Let S be the set of inputs of size n for the problem under consideration.
n

Let X be an element of S , and let P Lx-j be the probability that input X
n

occurs. Let N(X) be the number of basic operations performed by the

182

algorithm of input X. Then the average time complexity measure

A(n) is given by

A(n) =

where

l:
X in S

n

p[x] .N(X)

N(X) is to be estimated by careful examination and analysis of the

algorithm, but ptx] cannot be estimated analytically. The function p[x1

can only be determined by experience or from special information about the

application for which the algorithm is to be used; it may not be easy to

determine. Hence if p[X] is complicated, the estimation of A(n) is

difficult. Furthermore, if p[x1 depends on a particular application of

the algorithm, then the function A(n) describes the average behaviour of

the algorithm for only that particular application.

4.3.1.1.2 worst-Case Time Complexity

The alternative approach to describing the implementation-independent

behaviour of an algorithm is to calculate its worst case complexity,

(ref. 4.29), which may be defined simply as

Wen) = max N(X)
x in S

n

where

Wen) = the maximum number of the basic operations performed by the

algorithm on any input of size n.

Hence wen) can be estimated more readily than A(n) can. Wen) is more

valuable because it gives a simplified upper bound on the work done by

the algorithm. Furthermore, the worst-case analysis can be used to form

an estimate of the time limit for a particular implementation of an

algorithm. This may be an important consideration in real-time applications.

183

An important observation is that the input for which an algorithm

behaves worst depends on the particular algorithm, and not on the problem.

Also, the concepts of worst-case and average behaviour analysis is still

useful even if one chooses a different measure of work done, such as the

execution time or number of passes through a loop. Hence, the observation

that the amount of work done often depends on the size and properties

of the input would lead to the same analysis of worst-case and average

behaviour, no matter what measures were used.

The analysis of A(n) and wen) assumes that the total number of

operations· performed by an algorithm is proportional to the number of the

basic operations. Hence if an algorithm does N(X) basic operations for

an input of size X, then the total number of operations is at most k.N(X),

so that the actual execution time is k'.N(X) seconds, where k and k'

are constants which depend on the algorithm and the computer on which it is

implemented, but not on the input X. Consequently, if an algorithm does

Wen) (or A(n» basic operations, then it does at most k.W(n) (or k.A(n),

on average) operations in total and runs in at most k' .W(n) (or, on

average k'A(n» seconds in the worst-case (or on average). In an

exact comparison of two or more algorithms which are developed for a

given problem and which did approximately the same amount of work, then

one would need a very concise count of all the work done including book-

keeping. In this case, it would be necessary to quantify not only Wen)

and A(n) for the algorithms, but also the constants k and k'. However,

for many problems, some algorithms have been developed that are so much

better and more efficient than others that the actual values of k and k'

for each of them are· not very important. For example, if for one

algorithm W
l

(n) = 2n and for another W
2

(n) = n
2

, the latter will run

faster, in the worst case, for almost all values of the input size even

if it may do more bookkeeping per basic operation than the former.

Furthermore if kl = 2 and k2 = 15, then so long as n > 9, the second

algorithm does less work. This example illustrates the major difference

between the combinatorial explosive nature of the enumerative scheduler

algorithm and the relatively better performance of the max-flow min-cut

scheduler algorithm discussed in chapter three, and plotted in fig. 3.17.

4.3.1.1.3 Space Complexity

The performance measure of an algorithm or a program in terms of its

memory requirements can be analysed in a similar manner as the time

complexity performance measure (ref. 4.26, 4.29). The number of memory

cells used by a program, like the number of seconds required to execute

the program, depends on the particular implementation. A given program

will require storage space for the instructions, the constants, the variables,

and the input data it uses. It may also use some work-space for mani-

pulating the data and storing the information needed to carry out its

computations. Sometimes, the input data may be representable in several

abstract forms, some of which may require more space than others. In

the case in which the input is represented in these various forms such as

graphs, arrays, sets, or lists, then due consideration must be given for

the space required for the input ·itself as well as any extra space needed

for manipulations. For example, forming the union of two sets may require

only one or two operations if the sets are represented as linked lists,

but would require a larger number of operations, proportional to the

number of elements in one of the sets, if they are represented as arrays

and one must be copied into the other. Similarly the space requirements

would be affected. If the amount of space required depends on the

185

particular input, then worst-case and average behaviour analysis can be

employed.

4.3.2 Asymptotic Computation Complexity

With regard to the computational complexity of an algorithm, the

important performance measure of interest is the rate of growth of time

(or space) required to solve larger and larger instances of a given

problem (ref. 4.25). One would like to associate with a problem an

integer, called the size n of the problem, which is a measure of the

quantity of the input data. As explained above, the time needed by an

algorithm expressed as a function of the size of a problem is called the

time complexity of an algorithm. The limiting behaviour of the time

complexity as the size increases is called the asymptotic time complexity.

Space complexity and asymptotic space complexity are defined similarly.

It is the asymptotic complexity of an algorithm which ultimately

determines the size of problems that can be solved by the algorithm.

- 2
If an algorithm processes inputs of size n in time k.n for some constant k,

2
then the asymptotic time complexity of that algorithm is defined as o(n),

(ref. 4.30). More precisely, a function G(n) is said to be of asymptotic

time complexity O(F(n» if there exists a constant k such that

G(n) ~ k.F(n)

for all but a finite (possibly infinite) set of non-negative values of n.

In general, the asymptotic time (or space) complexity of a given algorithm

k n is either polynomial O(n » or exponential (O(k » bounded functions of

the input size, n. Exponential time complexity exhibits the phenomenon

of combinatorial explosion asymptotically and hence is generally inefficient.

Computations based on exponentially bounded algorithms can quickly get

beyond the capacity of any present or future serial computers because the

186

time to execute such an algorithm with a large input size can be very long

indeed, even if the time to execute a single basic operation is assumed

to be one microsecond. Consequently, it is the polynomial time complexity

of an algorithm that is of practical interest in the solution of problems.

With regard to their computational requirements, two functions fl (n)

and f
2

(n) are said to be polynomially related if there exists polynomials

Pl(n) and P2(n) such that

fl (n) ~ PI (f2 (n))

for all values of n. The asymptotic complexity performance measure is

implementation-independent.

The concept of the asymptotic time (and space) complexity of an

algorithm classifies problems according to the time (and space) required

to solve them. In this way "hard", Le. very time consuming, and

"not-so-hard" problems are distinguished. Polynomial bounded algorithms

3 such as O(n), say, can still be considered as having fairly low time

requirements. However, a class of problems for which no reasonably fast

algorithms have been developed exist. Many of these are optimization

problems, (ref. 4.25, 4.33), that arise quite frequently in certain

applications, such as

a) Job Scheduling problems

b) Graph Colouring problems

c) Bin packing problems

d) Hamiltonian circuit problems

e) Knapsack problems, etc.

None of the algorithms developed for the above problems are known to run

fast, or in a reasonable time. The class P is given to those problems

187

that include those with reasonably efficient algorithms. An algorithm

is said to be polynomial-bounded if its worst-case asymptotic complexity

is bounded by a polynomial function of the input size: i.e., if there

is a polynomial p such that for each input of size n the algorithm terminates

after at most p(n) steps. Hence P is the class of problems that are

polynomial-bounded. Although not every problem in P has an acceptably

efficient algorithm, if a problem is not in P it will be very difficult

and probably impossible in practice to solve. Thus, while the definition

of P is too broad to provide a criterion for problems with low time

requirements, it provides a useful criterion (not being in p) for problems

that require too much computation time. The list of problems shown to

be not in P has continued to grow over the years. To solve many of

these problems, approximation or heuristic algorithms are used (ref. 4.31,

4.32) • In many applications an approximate solution is good enough,

especially when the time which would otherwise be required to find the

optimal solution is considered. In some cases an algorithm for a complex

problem may be obtained by combining several algorithms for simpler problems

or subproblems (ref. 4.34). This collection of simpler algorithms may

all work on the same input or some may work on the output or intermediate

results of others. The complexity of the new algorithm may be bounded

by addition, multiplication, and composition of the complexities of its

constituent algorithms.· However, since polynomials are closed under

these operations, any algorithm built from a collection of several polynomial

bounded algorithms in various ways will also be polynomial-bounded.

4.4 A TIME-DELAY TRANSFORM VIEW OF COMPUTATION

In the design and analysis of computer algorithms and their programs

two of the main aims are to determine whether the ultimate program code is

a) correct - i.e. does what it is supposed to do

b) up to expected performance - i.e. runs fast enough.

188

These two main areas of analysis can be carried out in several ways

(ref. 4.35, 4.36). Correctly functioning programs can be determined by

thorough testing: either mathematically or through program execution.

Program performance, on the other hand, may be determined as was explained

earlier, or through a transform theory of software performance (ref. 4.37).

In both methods, performance estimates depend on the time-delay imposed

on the CPU operations and on the frequency of execution of these operations.

A model of time-delay behaviour in computer programs can be developed, and

then modified to incorporate the operation execution frequencies. In

this way, the time-delays and execution frequencies can be visualized as

forming a network of interacting parts when used to model computer programs.

4.4.1 The Z-Domain Operations

The execution of a program segment such as a program statement or

program module can be viewed as an action that imposes a time-delay on

a control signal as it sequences or flows through the program. Such

time-delay may be due to the time it takes the CPU to add two numbers

together, or to copy a value from one memory location to another, or to

compare two values and decide which operation to execute next. The total

time elapsed between the beginning of execution of a program, or program

module, and its termination will be the sum of the individual time-delays

in each segment of the program weighted by the number of times each segment

is executed. Hence, to obtain a quantitative measure of performance, a

performance formula can be developed, given the estimated frequency

and time-delay for each segment of the program. Such a performance

formula may be derived by applying a time-delay operator to the program.

This operator is related to the classical Z-transform of the feedback

control theory, (ref. (4.38).

189

The z-transform of a time-varying function get} may be defined as

G(z} = E
t=o

t
g (t) • z , for Izl< 1

in which the time-domain is the discrete-valued semi-infinite interval

(0 ,~) representing the time-delays which occur during the program

execution. The z-transform representation of a function is most useful

when applied to arbitrary functions in order to study the behaviour of the

function without knowing everything about the function in advance, such as

the program performance, and represents the weighted sum of the transformed

time-varying function.

AS mentioned above, a program segment, such as a program statement,

imposes a very small but simple unit time delay; this is just a spike

at time t say, in the time-domain, as shown in fig. 4.2, ,so that
0)

G(z} = E
t=o

t g(t}.z = E
t=o

t N .z
o

t
= N .z 0

o

where N is a constant representing the magnitude or height of the spike
o

at time t = to. For n such program segments, an ensemble of time-delays

can similarly be defined, so that

G(z} =
n
E

t=O

t
g (t) • z

t
= N .z 0

o

From the above, it may be deduced that

+ •••
t n-l

N lZ n-

a} A time-delay in the time-domain corresponds to a multiplication by

z in the z-domain.

b) The coefficients No' N
l

, ••• are magnitudes that, taken together, can

be thought of as constituting the probability density function

(pdf) defining the probability of a time-delay at time t.

Magnitude

N
o

(al single spike

Magnitude

N
n-l

" .. i'
I'

t
o

190

• "/I
, I'

Ob) An ensemble of spikes

Fig. 4.2 Unit time delay

time

.. • • "it ,
, time

t n-l

191

Hence, by letting

g(t) = p.d.f. of the time-delay parameter t then

'"
E g (t) = 1

t=O

so that, g(t) represents the instantaneous probability that a program

will incur a time-delay of t time-units. From such a definition, the

expected time delay T, is given by

'"
T = G' (1) = E t.g(t)

t=o

where G' (1) - ~z G (z) I
z=l

In this way an ensemble of time-delays corresponding to the average execution

time of the program module can be obtained. For arbitrary programs

a software network model of the program can be used to determine the

average execution time, (ref. 4.40)

4.4.2 Execution Time for Structured-Programs

The average execution time of a computer program can be estimated

by analysing its software network (ref. 4.39,4.40). A software network

is defined as a graph G = {Nodes, Arcs, Map} containing a set of Nodes,

a set of Arcs that interconnect the Nodes, and a Map function that defines

the connection pattern of the Nodes via the Arcs. The labelled arcs

represent the execution time of program segments, while the nodes represent

the state of the program prior to the execution of a segment. The state

of the program refers to the current point of control in the program's

overall flow of control. Hence, a state is a place between two or mOre

executable segments.

If ti represents the estimated time-delay associated with a control

signal propagating through arc i of a software network and p. represents
~

192

the estimated probability of arc i being selected when the program is

executed, then G =(t
i

, Pi) is the time-domain representation of the software

network, as shown in fig. 4.3(a). The time-domain representation of

the software network is transformed into the corresponding z-domain
ti

representation by relabelling the arcs from (ti , Pi) to (Pi.z), as

shown in fig. 4.3(b). Finally, the z-transform software network is

further simplified and reduced into a single arc whose weight is a single

expression representing the G(z) from which the overall performance

of the network G' (1) can be obtained, as explained earlier. The

reduction process is accomplished by a successive application of decomposition

rules. Only software networks of structured programs (the structured

networks) are reducible into a single final arc referred to above. Such

a structured network consists of concatenated or nested structured sub-

networks. In general, whether any arbitrary program which has not been

written according to the structured programming rules can be converted

into a structured program is yet unclear. However, such a conversion may

be achieved if some redundancy is introduced in the coding, or if extra

variables and control parameters are used (ref. 4.41, 4.42).

The basic structured networks are derived from the single-entry

single-exit components, (ref. 4.43), and are as follows:

a) Serial execution (Concatenation)

e.g. (i) read ;

(H) c:=a+b;

(iH) begin

x:=a

2 y:= x

end;

193

(al time-domain

(bl z-domain

Fig. 4.3 Software Network

194

b) Decision (or alternation),

e.g. (i) if x = 0

then x:=. x+l;

,(H) if x>O

then y:=true

else y:=false;

(Hi) case ld of ... end;

c) Looping (or Iteration)

repeat ••••• until p; e.g. (i)

(H)

(Hi)

for i:=start to finish do s

while a>b do

begin

end;

a:= a-b

writeln (b)

The decomposition rules for the basic structured networks is as shown

in fig. 4.4. In this way the average execution time of a structured

program or module may be determined.

The calculation of the average execution time of structured programs

and modules can further be simplified by the use of the Petri network model

of structured programs (ref. 4.40).

graph

A Petri network is a bipartite

G = {Places, Transitions, Arcs, Map}

where

Places _ Set of program states representing the beginning or end of an

action, e.g. begin, end, repeat, until, if, then, else, while,

for, etc.

(t
l

, I) z

(t
2

, I)

(a) Concatenation

(b) Decision

(c) Iteration

Fig.4.4 Reduction Rules

tl

z
t2

1

--
z

t
l
+t

2

tl
l-p.z

196

Transitions - Set of program actions representing operations, statements,

program segments, etc •

. Arcs _ set of control paths representing the flow of control from places

to transitions and from transitions to places.

Map _ The topology of the graph is determined by the connectivity of

places and transitions. Arcs only connect places to transitions

and transitions to places. Arcs are not allowed to connect places

to places or transitions to transitions.

A graph G = {X,E} is said to be a bipartite graph if its node set X can

be partitioned into two subsets Xl and X
2

such that every arc of G has

one endpoint in Xl and one endpoint in X2•

A structured program is composed of concatenated and nested D-

structured components. The D-structured components have single-entry

single-exit control structures as explained above. The Petri networks

of D-structured components simplify the analysis of structured programs.

Fig. 4.5 shows the format of a Petri network and figs. 4.6, 4.7 and 4.8

show the D-structured components in Petri network notation. In fig. 4.5

it can be seen that the flow through a network can be split by a forked

transition and merged by a place. These operations correspond to the

flow of control in a program or module. The places correspond to control

statements of a program, and the transitions correspond to executable

operations performed by a program or module.

The concatenation and nesting (looping) rules are the only composition

rules of structured programming (ref. 4.43). These two rules guarantee

programs that are reducible to a single-entry single-exit (or single

transition) structure. This reducibility facilitates the analysis of

any structured programs using its network model and the z-transform

197

Place 1 (P1)

----";.....-- Transition 1 (Tl)

p2

---r--- T2

P3

T3 ---,r-------~~------~~--

p4

T4

PG PS

TG ---;---TS

Fig. 4.5 Petri Network

t
n

Fig. 4.6

198

Begin

End

Concatenation Decomposition Rule

Begin

End

t o

199

IF

-tl pred -

p

l-p

(a) If-then Decomposition Rule

Case

t
n

of

(b) Case-of Decomposition Rule

Fig.4.7 Decision Decomposition Rules

IF

pred
then St

t
T= (tl+p t)

Case

test of •.

n
T=t + E Pi-ti

o i=l

(a)

Repeat

ti s

Do

b

200

--- --""T"""-_DO sb

T=n(tl+tb)

For-Do loop Decomposition Rule

Repeat

-- ---i,.......- body until test
tb---i-- body p tt+tb

(l-p)

Until

st

(b) Repeat-until Loop Decomposition Rule

While While

test
p -- T=

(l-p)

(c) While-Do Loop Decomposition Rule

Fig. 4.8 Iteration Decomposition Rules

201

performance formulae. The flow of control in programs and modules may

be concatenated and nested to any arbitrary depth. Many of the time-

consuming programs in scientific computation often involve repeated

evaluation of the same function on different argument sets.

4.5 PDF CHARACTERISATION OF COMPUTATION

So far it has been explained and shown how a performance formula can

be obtained and used to estimate the average or maximum processing time

of a program or module. But if such a method was to be employed in

a distributed computation· environment for every program or module which is

a candidate for distributed computation, the work and time involved in

obtaining the performance formula for every program or module would be

overwhelming. Hence simplified representations which will preclude

tractable solutions are preferable.

In modelling many resources of a computer system, one may be primarily

interested in the service times (computation times) of programs or program

modules which use the resources. In this context, the program's service

time will consist of the execution of the instructions and the amount of

time spent will be determined largely by the particular instruction

mix executed, the CPU times for those instructions, the I/O requirements

and memory management, if the system has virtual memory. If the resource

is a moving head disk, for example, then a program's service time will

consist of a positioning time and a transfer time, and the total time used

will be determined largely by the distance the arm must move, the mechanical

speed, and the total amount of information transferred. All of these

determining factors are measurable (or observable) and in a sense deterministic

But such an approach might be impractical. It may be found more appropriate

and more practical to characterise service times as random phenomena.

For CPU times, the instruction paths will usually depend heavily on

unpredictable data (ref. 4.44,4.45). In a virtual memory system, the

CPU times will also depend on memory management routines which may, in

turn, depend very heavily on the behaviour of the entire multiprogramming

set of programs (ref. 4.45). Hence, further simplifications may be

found necessary.

One simplification is to represent the processing times by

probability distribution functions (POF) - such as, the probability

distribution for CPU time used between I/O operations, the probability

distribution for the times between scheduler activations, or the

probability distribution for the times between page faults; and even then

to assume that successive timings are independent with the respective

distributions (ref. 4.49, 4.50). In this way, arbitrary probability

distributions may be defined and used for the CPU service times. But

even when arbitrary probability distributions are defined and used for

the service times, only the first and second moments are of the greatest

importance (ref. 4.51). These moments are defined as follows:

Let X be a random variable and pLx] be the probability of X, then the

mean value, or the first moment of X, when X is defined on a discrete

sample space, is defined as

Efxl = L x.Plx]
x

th and the n moment is similarly defined as

E[Xn] = L xn.p[x]
x

th th In general, the n central moment, (the mean value of the n power of

the difference between the service time and the mean value), is defined

203

as

EL(X-E[X]}1 = E (X-E[XJ}n.p[xJ
x

The first central moment is identically equal to zero. The second

central moment is the variance vlx] , and the square of the variance

is the standard deviation, cr •
x

The mean represents the service time

and the variance gives an indication of variability. A more direct

measure of this variability is called the coefficient of variation C ,
x

which is given by

C
x

=MxJ
ElX]

cr
x =--

E[X]

Processor service time distributions in general tend to be highly variable

and values of C of ten or more are not unusual (ref. 4.4S).
x

On the

other hand I/O service time distributions tend to be much less variable

and values of C much less than one are typical; (ref. 4.49). x

Similar definitions for the mean value, moments and variance apply

equally well when X is defined on a cntinuous sample space in which case

the corresponding PDF are continuous. If f (x) is the pdf (probability
x

density function) of the random variable x, then

E[X] == /XJ x.f (x).dx
_00 x

and

and

Arbitrary distributions can be defined thus, and from them the-moments

extracted.

4.6 MARKOVIAN CHARACTERISATION OF COMPUTATION

It was shown above how arbitrary PDFs may be defined and used to

characterise a program's performance measure such as the average service

time and service time variability. However, if arbitrary PDFs for

service times are used, once is still left overwhelmed with information

and the mathematical model becomes very difficult to characterise and

solve. For example, suppose one wishes to represent the time until

completion for a processing request arriving at the CPU when the CPU

is already busy processing a previous request. If one wishes to estimate

the probability distribution for this period of time, then one will need

to determine the distribution for the sum of the time for the request

plus the time until the CPU is given the request. This latter time will

depend on the time already spent on the work ahead of the arriving request.

From this, it can be seen that the solution becomes very involved and

difficult so that one can only hope for a solution under very restricted

conditions. Such a method of solution together with the inherent diffi-

culties appear to result into a paradox: on the one hand one wishes

to solve for the time dependent behaviour of the computing environment but

at the same time, on the other hand, one is not free to consider time in

the representation. of the system. However, the Markov process representa-

tion of the computing system allows the time to be considered in a

very controlled manner and thus overcome the apparent paradox.

Markov processes are extremely powerful tools which can be used to

provide accurate, yet mathematically tractable, models of computing systems

performance (ref. 4.52, 4.53). Performance models are often used to

estimate the performance of computing systems over a period of time.

205

This time period may be explicit for some performance measures and implicit

for others. The two most important performance measures, throughput

and response time, represent explicit and implicit time periods, respectively.

Throughput is measured in the amount of work (e.g. the number of programs)

handled during a time period. Though one might wish to estimate the

response time for an individual command (or the turnaround time for an

individual module), usually one will have to be content with an estimate of

the mean or some other measure of the response time distribution.

4.6.1 The Markov Process

A Markov process with a discrete state space is referred to as the

Markov chain, (ref. 4.54). The discrete-time Markov chain is defined

as follows:

A set of random variables {X } forms a Markov chain if the
n

probability that the next value is x 1 depends only upon the
n+

current value x and not upon any previous values.
n

analytically, the Markov property may be written as

PLX(t +1) = x llX(t n n+ n

p[X(t +1) = x lIX(t) = x J n n+ n n

Expressed

This represents a random sequence in which the time dependency extends

backward only one unit in time. Hence, the way in which the entire

past history affects the future of the process is completely summarised

in the current value of the process. Because of this, one is not free

to require that a specification of the random variable, that describes

how long the process remains in its current state before making a transition

to some other state, also be given as to how long the process has been in

its current state. This imposes a heavy constraint on the distribution

of time that the process may remain in a given state. In fact this

206

state time must be exponentially distributed. Thus the exponential

distribution is the continuous distribution which is memoryless. This

memorylessness is what makes the exponential distribution so important in

mathematical models for analysing computer systems and communication

networks. Similarly, in the discrete-time Markov chain, the process

may remain in the given state for a length of time that must be geometrically

distributed. The geometric distribution is the only discrete probability

mass function that is memoryless. The consideration of Markov processes

is central to the study of queueing theory.

4.6.2 The Exponential Distribution

The key to the Markov process representation is the negative

exponential distribution (ref. 4.54l.

with rate ~ is defined as

f (xl = x

o , x < 0

and the corresponding PDF as

F (xl =
x

o I X < 0

-I.IX
l-e , x ~ 0

from which Elx] =~, E[X
2

] = ~, vex]
1.1

The negative exponential pdf

1
=-andC =l.

2 x
1.1

The main importance of the negative exponential distribution comes

from its memorylessness. The memory le ss property is that if a random

variable is known to have the exponential distribution and that the value

of the random variable is at least some other value, then the distribution

for the remaining value of the variable has the same exponential distri-

bution as the total value. In this connection, if the CPU times of a

207

program between I/O activities are exponentia11y distributed and that the

CPU service offered so far is k seconds, say, then the remainder of the

current CPU time will have the same exponential distribution as the total

CPU time.

Service time distributions are often categorised by their variability,

relative to the exponential distribution. A class of distributions

with greater variability than the exponential is known as the hyperexponentia1

Similarly, the distributions with less variability than the exponential

are known as the hypoexponentia1.

4.6.3 Exponential Service Stages

Timings in computer systems do not always follow the negative

exponential distribution. But combinations of exponential service stages

can be used to approximate closer the actual service time distributions.

Hyperexponentia1 and hypoexponentia1 distributions can be thus derived,

(ref.4.54J. The method of exponential stages is both general and

compatible with Markov processes because the only memory introduced is the

distribution stage, and this additional memory is accommodated by refining

the state definition.

4.6.4 The Poisson Process

The Poisson process is important in modelling many important processes

in a computer system or a communication network (ref. 4.54). If the

times between events in a stream of events are independent and the durations

of the inter-event times have the negative exponential distribution, the

events can be shown to form a Poisson process, (ref. 4.51). Such events

could be the completion of service at a CPU, when the CPU is busy processing

or an arrival to the CPU for processing.

of a Poisson process are:

The two important properties

208

a) Occurrences of events during non-overlapping intervals of time

are independent

b) For a sufficiently small interval of time, 6t, the probability of

no events occurring during the interval is l-~.6t, the probability

of one event occurring during the interval is ~.6t, and the

probability of more than one event occurring during the interval is

negligibly small.

The first property gives the Poisson process a memory less property and is

equivalent to : events form a Poisson process and the inter-event times

are independent with identical exponential distributions.

209

CHAPTER 5

LAN DELAY PERFORMANCE

5.1 INTRODUCTION

In a distributed computation environment the total system delay

performance is an important design factor. One of the main components

of delay in such an environment is due to the scheduling time of modules

as has already been explained in earlier chapters. The other two major

components of delay are mainly due to the communications within the LAN

communications subnet and the computational delay at the sink processor

due to an increase of the computational workload there. This chapter

examines the communications component of the total delay experienced

by the module and the intermodule data packets acrOss the LAN communications

subnet interface.

A major aspect of most modern computer communications systems of the

type examined in this thesis is the sharing of resources.

main types of resources shared in such a system are

al Communications capacity

bl Storage capacity

cl Processing capacity

Some of the

However, many of the issues involved in the consideration of these

computer communication networks deal mainly with an equitable allocation

of these finite-capacity resources among the competitive demands for the

resources. These competitive demands for the resources almost always

lead to conflicts and hence a means of allocating the resources in a manner

that resolves this conflict is an important system design objective for

a smooth system operation. The main result of such competitive conflicting

demands for the resources is the time delay involved before the.resource

210

is finally allocated. In most cases, these competitive conflicting

demands arrive in an unpredictable fashion. Furthermore, the size of

these demands made upon the finite-capacity resources is also often un-

predictable. But, in a well designed system the resultant gains due to

the sharing more than compensate for the losses due to the conflicts.

If there are no conflicts for the resources, then performance analysis

is relatively straightforward. Hence, the unpredictable contention for

the resources often leads to the consideration of the system as a network

of queues or of queueing networks. In this way, both the computational

and communications models which principally examine these queues associated

with the resources and the interaction between the resources and their

queues can be formulated and examined. By the use of such models, it may

be possible to examine some important basic performance measures of the

resource sharing system, such as the

a) Resource utilization

b) Resource capacity

c) Resource cost

d) Resource efficiency

e) System response time and delay

Also, the important relationships and trade-off among the various

performance measures can be examined. For example, the consideration of

the resource efficiency (or throughput) may lead to the fomulation of

better or more efficient queueing disciplines or channel access protocols

which in turn may lead to an overall reduction of the system response

time. However, low delay performance is an important objective in computer

'communication and computation environments.

211

In the LAN communications subnet environment, the shared resource

is the common broQdcast transmission channel. AS explained in an earlier

chapter, various channel acquisition protocols can be employed within the

LAN communications subnet. But in a bursty communications environment

such as is supported by computer communication networks, random channel

acquisition protocols can be employed (ref. 5.1, 5.2), and CSMA-CD

protocols have been employed (ref. 5.3, 5.4, 5.5, 5.6).

5.2 RANDOM CHANNEL ACCESS PERFORMANCE

Random channels are characterised by the existence of many unco

ordinated network-users sharing a common communications channel such as

a coaxial cable network. As was explained in an earlier chapter, ALOHA

networks (ref. 5.1, 5.2), CSMA and CS MA-CD networks (ref. 5.3,5.5), fall

in this category. In ALOHA-like channel resource sharing networks

there is no predictable or scheduled time for any ready-user to transmit

and the ready-users broajcast their transmissions at random. Whenever

a network-user has a packet ready for transmission, the user just sends

it without any regard to the state of the channel. After transmitting

the packet, the user must wait for an acknowledgement for a length of time

equal to the maximum possible round-trip propagation delay on the network.

If.an acknowledgement is not forthcoming during that period of time, the

packet is assumed to have been destroyed through a collision and so the

user must re transmit the packet again. This process is repeated until

the packets safe arrival is acknowledged. The main motivation for

considering the ALOliA-like behaviour of random channels is that it gives

the minimum or lower-bound performance measure of such channels. Through-

put and channel delay performance for both pure and slotted ALOliA-like

2U

channels have been investigated (ref. 5.6, 5.7), and have been the basis

for further improvement of channel acquisition protocols (ref. 5.S, 5.9).

On the other hand, the maximum or upper-bound channel throughput and delay

performance measures are found to be dependent on the channel propagation

delay.

5.2.1 Channel Propagation Delay

The value of the propagation delay plays a major role in the overall

performance of the transmission channel (ref. 5.13). It is also a dominant

factor in characterising or distinguishing the various network types into

long-haul, local networks and multiprocessor systems. The importance

of the propagation delay on channel performance can be characterised by

the propagation delay parameter a which may be defined as

or

a = propagation delay
data transmission time

a =
(R./V)
(p/C)

where

R. = maximum length of the communication channel

V = propagation speed in the communication. channel,

(approx. 5 2 x 10 km/sec)

P = packet size in bits

C = peak transmission capacity (bit rate) in bits per second.

In slotted channels, the value of a is simply

where

T = maximum end-to-end propagation or half the slot size

b l = average packet transmission time.

213

The value of a is also important in giving an indication of an upper bound

on the channel utilization U. The variation of U and a can be estimated,

since

u = throughput
Data transmission rate

= p/(propagation delay + transmission time)
Data transmission rate

1
= -:-''-

1 + a

From this relationship it may be seen that high values of channel

util~ati.,n may be achieved by lising longer packets.

5.2.2 Throughput Performance of Random Channels

The lower-bound limiting throughput performance of the ALOHA-like

random channels have been derived (ref.5.l, 5.2, 5.6). These results

are derived by assuming that the population of the network-users

collectively forms an infinite source for the packets, and that this

input source forms an independent Poisson process. In a Poisson process

with rate A the probability that k packets are generated during a time

period t is given by the Poisson distribution (ref. 5.10, 5.11),

k -At
P (k) = A • e

k!

Such an assumption facilitates analytically tractable equations whose

results are found to agree reasonably well with the practical results.

Furthermore, such an infinite population model is found to closely

approximate a finite population model with about 50 or more users (ref. 5.12).

Also, packets are assumed to be of constant length and that the channel

is noise-free. In some cases, an exponential distribution for packet

214

sizes is found to give acceptable analytical results, (ref. 5.14). Hence

if the total traffic input (offered load) G to the communication subnet

is assumed to be an independent Poisson process generated by an infinite

population of network-users, the channel throughput S in a pure ALOHA-like

environment can be calculated by considering the average traffic on the

channel due to both the newly generated and the previously collided packets

waiting for channel reacquisition and retransmission. Hence,

Average offered traffic (packets/sec) = Average Carried Traffic

(packets/sec) + Average re transmitted traffic

(packets/sec)

or, normalising with respect to the average packet transmission time, then

G = S + G.P(packet involved in collision)

Since G is assumed to be generated from an independent Poisson process,

then

G = S + G.(l _ e-2 (1+a).G)

from which

-2 (l+a). G
S = G.e

where a = propagation parameter.

If a « 1, then

Similarly, for the slotted ALOHA-like channels (ref.5.2),

S = G.e-(l+a).G

or

-G
S = G.e if a « 1.

The improved throughput performance of the slotted channel can be

attributed to the vulnerability of the packets to collision, as shown in

215

fig. 5.1. Fig. 5.2 shows the variation of the channel throughput S

with G for a = 0.0001. From these results it can be seen that the maximum

throughput attainable in both the unslotted and slotted ALOHA-like channels

is S = e(~:~) and S = e(i+a) respectively, (ref. 5.2). It can be seen

that these values for channel throughput are very low and hence better

channel acquisition protocols are necessary. The CSMA and CSMA-CD

protocols can be used to achieve higher values of S, (ref. 5.8, 5.9).

5.2.3 Delay Performance for Random Channels

As explained earlier, the delay performance of the LAN communications

subnet plays a critical role in a distributed computation environment and

low values of delay are necessary. In the simple case in which the

network-users just transmit their packets in ALOHA-like fashion, the delay

performance can be estimated by considering all the major factors con-

tributing to the delay. The three main'components of delay are due to

the:

a) queueing delay

b) propagation delay

c) transmission delay

Even though the queueing delay for the newly generated packets is

zero, the dominant component of delay in the ALOHA-like channel acquisition

and transmission systems is due to the re transmission delay following a

collision. This can be estimated by first calculating the average

number of retransmissions per packet transmission time. This value is

. t G 1 h h dl . JUS S - ,so t at t e total e ay D is g1ven by

where ~ = average normalized delay for one transmission.

to

to

collision vulnerability per od
for slotted ALOHA = b (l+a)

b
l

(l+a)

b
l •

A m
t

collides with

216

start of C
b l (l+a)

to+b
l

(l+a)

Collision VUlnerability period for

pure ALOHA = 2bl (l+a)

C

b l (l+a)

B

collides
end of C

~
J
I
I
I

I
to+2 bl(l+a)

Fig. 5.1 collision Vulnerability Period for Packet C

~
ith

to+3bl (1+a)

-::J
Cl.
..c
Ol
::J
0
'-..c -
Cl>
t:
t:
0

..c
u

0.4

0.3

0.2

0.1

Channel Throughput
versus

Offered Channel Traffic

A

/ \
/ \
/ \
/ \
/ \
/ \

/ \
/, \

/; \
\
\

O.O~·~~~~ .. ~--~~,n'~'~'n~-.-rTTnm~-r.-rnTm--'-~·~
0.0001 0.001 0.01 0.1 10

offered channel traffic

Fig. 5~2 Channel Thr'oughput

L.g.nd
ll. 'yJ! Mina· .• p gop'
X u..a.wJ AIo£.II.I. .&.:..&..i,D.iJ

p fZe. -.:t.,"-.o"",-p.', QC.~.p. 000:1.

,,,,,,"~Q 'A'-..:I",A', .,/,.0. ooo;i,

218

The value of the average delay for one transmission depends on

the collision arbitration and retransmission algorithm that must be

observed by the colliding users and a uniform distribution of from

1 to R packet-retransmission times has been used as it is found to minimize

the number of repeated collisions, (ref. 5.12). From this consideration

a = R+l + 1 + 2~ + g
2

where g = time for receiver to generate the acknowledgement,

so that

D [2 (l+~) .G 1] (1 2 R+l) -= e - + a+g+--
bl 2 + a + 1

for the un slotted ALOHA-like channels, and

D [e (l+~).G _ 1] (1 + 2~ + g + R+21) + -23 (~+l) b
l

=

for the slotted ALOHA-like channel. Fig. 5.3 shows how the values of

D
~ varies with G for both types of channels and for R = 10 and R = 100.

1
These results show that the delay performance for such channels is both

poor and may exhibit instabilities, (ref. 5.3, 5.15). Furthermore,

figs. 5.2 and 5.3 show that a definite trade-off exists between Sand D,

so that the required low delay performance cannot be achieved simultaneously

with the desirable high values of throughput.

5.3 CSMA-CD BASED PERFORMANCE

A consequence of bursty transmission channel traffic in computer

communication environments is that among a large population of network-

users, only a small number of them have any data to transmit, at any

one time. These constitute the ready-users. In such an environment,

>-
0
(l)

""0

(l)

C
C
0
.c
u

""0
(l)
VI

0

E
'-
0
C

400

300

200

100

Normalized Channel Delay
versus

Offered Channel Traffic

.' .. ' .. ' .. '
.'

.... ','"
.'

, , ,

, , ,

• • , ..

• • • • • • • • • •

I<l • • • • • • • • • • • • • •

O~~~~~.---------.---------.--------.
o 2 3 4

offered channel traffic

Fig. 5.3 Normalized Channel Delay

Legend
b. 'VA[UOtu.· I. 10

X 'UI!l AlOH ... I. 100

o !.L.2'.!\.D_",!;,O .. H~ ~I.;.·lo_
~ i.LS!,np\;.ojl~ ,;.1.:.,,!.aJ

220

the performance of an access protocol for a broadcast-type network depends

mainly on how quickly anyone of the ready-users can be identified and

given sole access to the multi-shared communication channel resource.

A carrier sense multiple access with collision detection (CSMA-CD) channel

protocol requires that collisions in the channel be detected and that all

the users involved in the collision abort their transmissions quickly

(ref. 5.7, 5.8, 5.9). In addition, an adaptive random retransmission

algorithm is required to ensure a stable channel (ref. 5.15).

In almost all CSMA-CD environments, network-users are assumed to be

time synchronised so that, following each successful transmission, the

channel is slotted in time (ref. 5.2,5.16). In addition, the users

can only start transmission at the beginning of a time slot. In order to

implement the collision abort and the retransmission contention algorithm,

the minimum duration of a time slot is T = 2T, where T is the maximum

end-to-end propagation delay. Hence, within a time slot, if a collision

is detected and the colliding transmissions are aborted immediately,

the channel can be assumed to be free of any transmissions at the beginning

of the next time slot.

5.3.1 Heavy Traffic Performance Channel Model

A simplified model for the performance of a loaded channel can be

examined by considering alternating channel time periods (ref. 5 •. 7,5.16).

These alternating time periods can be identified as either the transmission

period during which the channel has been acquired for a successful packet

transmission, or the contention period during which the ready users

attempt to acquire control of the channel, as shown in fig. 5.4. As

mentioned earlier, the ready-users must defer to the passing traffic before

Idle
period

Transmission
period

Contention
period

______ -L ______________ -L ______________________ -L __ ~~~~ ____ ~~~ ____ _L ______________________ _L ____ ~ __ ~-tim

222

starting to transmit into the channel. Also, the channel time slots

are assumed to be time synchronised by the tail of the preceding channel

acquisition period. A slot will be empty when no ready-user chooses

to transmit into it and it will contain a collision if more than one ready-

users attempt to transmit into it. When only one ready-user transmits

into a slot, then the channel has been acquired for the duration of a packet.

5.3.1.1 Channel Utilization and Throughput

Channel utilization is the fraction of time the channel is carrying

uncorrupted packets. A set of formulae can be developed to characterise

the performance expected of the channel:

Let

P = number of bits in the packet

C = peak capacity in bits per second carried on the channel

T = time in seconds of a slot = 2T

T = maximum propagation delay between· two users in the network plus the

carrier detection time

k = the number of ready-users who are continuously queued to transmit a

packet. Either the enquiring user has a new packet immediately after

a successful transmission period or another user becomes ready:

k also happens to give the total offered load on the network.

Hence, a ready-user in the distributed queue attempts to transmit

into the current slot with probability 11k, or delays the transmission

with probability 1 - 1/k. The maximum probability, A, that exactly one

ready-user acquires the channel in the current slot is given by

1 k-1 k-1 1 (1 1 A = k.k. (1 - -) = - -)
k k

i.e. there are k ways in which one ready-user can choose to transmit

223

(with probability l/k) in the current slot while the remaining k-l ready-

users choose to defer (with probability 1 - l/k). Hence, A is characterised

by a geometric distribution.

From the value of A, the average waiting time can be calculated.

Let E(W) ~ the mean number of slots of waiting in a contention period

before a successful acquisition of the channel

The probability of not waiting at all is ~ A.

The probability of waiting one slot only is = A(l-A)

The probability of waiting i slots is = A(l-A)i, i.e. a geometric

distribution whose mean is E(W) •

When more than one user attempt to acquire the control.of the channel,

a collision occurs. Each of the colliding users must exercise a collision

arbitration algorithm such as the binary exponential backoff (ref. 5.16).

Hence

E(W) =

.,
E i (l-A) i.A ~

i=l

l-A
A

From this, channel utilization and throughput can be estimated since the

channel time is considered to be divided between the transmission and

contention periods. The packet transmission time is plc seconds and

this is the actual length of the transmission period. The mean time to

channel acquisition is E(W) .T and this is the length of the contention

period.

or

where a

Hence the maximum utilization S is

plc
S ~ --;:::--;;::-~:7::-;--;:;; ~ Plc + E(W).T

1
1 + E(W).T.

plc

1 1
S ~ -;---:~~;-:-:;- = -;---:-=-,;----,;-:-1 + 2a.E(W) 1 + 2a. 1 A

A

= propagation parameter ~

224

From the above analysis it can be seen that the values of the

channel utilization and throughput depend crucially 'on the values of T,

C, P and k. High values of S can be achieved if the packet size P is large,

for a given value of C, or if the value of a is small. It has been found

that (ref. 5.16), the value of'S approaches that of the slotted channel ALOHA

throughput, (lie), when the values of the packet sizes approach the slot

size. Figs. 5.5 and 5.6 show the variation of the channel utilization

with various values of k, P and a. Fig. 5.7 shows the variation of the

channel utilization with various values of the propagation delay parameter

a, and k.

5.3.1.2 Number Involved in a Collision

In order to exercise effectively some collision arbitration algorithms,

such as the binary exponential algorithm, which require that the colliding

users wait a random amount of time before attempting to retransmit,

following a collision, it is often necessary to keep a running estimate of

the number of ready-users in the system. One way to accomplish this is to

use a logically separate subchannel for Signalling the state changes.

The first contention slot following each successful packet transmission

may be set aside for some form of signalling.

be updated when

The running estimate should

a) a successful transmission occurs: estimate decremented

b) a new user becomes ready: estimate incremented.

It is easy to detect successful transmissions since all users listen to

the channel and hence can easily keep track of the number of successful

transmissions. The number of new users who become ready are more difficult

to detect but they can be estimated from the knowledge of the alternating

busy and idle periods of the channel state. When a collision occurs,

Channel utilization .
versus

no. of ready users

, f~-------------------------:
~ 0.' 11 __ __ :___~___-_____ __ :___-__________ :_______:_=

.§ 06 \

I
I

Qj I
c I
C 0.4 I
~ I
u \

\
0.2 1.-

-~--------------------------~

O-t'------"------.,------.,------.,-------"------.,
o 5 10 15 20 25 30

no. of ready users

Fig. 5.5 Channel Utilization

Legend
A a = 0.0001

X a = 0.001

o a = 0.01

i3 a = 0.05

lXa=O.l

)(a = 1.0 -----

'" '" V1

Chamel utilization
versus

ready users
propagation delay = 5 microsecs

chamel bit rale = 10 Mbps

------------~
0.9 '"--------~----------------__EI

c o 0.8
:;::
o
.~
:;::
;:, 0.7
cv
c
c
o
-5 0.6

0.5

, ----- -----

I
I

'. '-. ..•••.................•.....•.•.....•.....••.•..••.... ··········11

~.
-------------------------~

0.4 +-----r---..----r---r----.----,
o 50 100 150 200 250 300

no. of ready users

Fig. 5.6 Channel Utilization

IV
IV

'"
Legend

t;, P = 4096 bits

X P = 2048 bits ---
0 !:..=...lP3~ ~1!!.
!la P = 512~!!..
Xl ~.:=.~~~.P!t~.
~ ~~~..E.l!!_

c
0

:.::
0

.!::!
:.::

:::J

Qi
C
C
0
~
u

0.8

0.6

0.4

0.2

Channel Utilization
versus

a : ratio propag. delay to packet transm. time

O~-r~Trrrrr-."onnr-'~nT~-,-.onnrr--~~~
0.0001 0.001 0.01 0.1 1 10

a : ratio propag. delay to packet trans. time

Fig. 5.7 Channel Utilization

Legend
A k = 2

X k = 5

Ok = 10

Il!I k = 20

N
N,

228

all the users know that two or more users have collided.

To make an estimate of the average number of the new ready users

represented by the occurrence of each collision in a time slot, it can be

assumed that the number of users who become ready in each slot is generated

by a Poisson process, with rate A (ref. 5.11). From this assumption, the

probability that exactly k users were involved in a collision P(K),

conditioned on the fact that a collision occurred, can be calculated from

P(K) =
k -A

A .e

The value of A may be estimated from the average of two possible values

obtained by recording the fraction of the channel slots corresponding to

-A -A the probability of zero (e), or one, (A.e), user becoming ready in

a time slot. Knowing P(k), the mean value E(K) may be obtained, since

00

E(~) = E k.P(k)
k=l

=
-A

e
-A -A l-e -Ae

A = --.,.'-'---,-
l_e-A_A.e-A

00

E
k=l

However the mean E(k) will not be an integer, in general, but the nearest

integer value may be used as the estimate.

5.3.2 Queueing Theoretic Channel Model

The performance of CSMA-CD channels can be characterised and determined

by examining them using queueing models (ref. 5.8, 5.9, 5.12). In such

models, the source of the traffic to the broadcast channel is again assumed

to consist of an infinite population of network-users who collectively

229

form an independent Poisson process with an aggregate mean packet

generation rate of A packets per second. This also approximates a large

but finite population in which each user generates packets infrequently and

in which each packet can be transmitted in a time period much less than

the average time period between successive packets generated by a given

network-user. Furthermore, each user can store and attempt to transmit

at most one packet at a time. By carefully specifying the collision

arbitration algorithm, the throughput and channel delay performance may be

calculated.

5.3.2.1 Collision Arbitration Algorithm

A suitable collision arbitration algorithm, such as the binary

exponential backoff algorithm, is necessary to avoid collisions from building

up and hence introducing instability (ref. 5.3, 5.15). The CSMA-CD protocol

may be defined and specified by the following two possible courses of action

for the ready-users:

subalgorithm one (AI):

Following a successful transmission period, each ready-user transmits

with probability one into the next time slot.

subalgorithm two (A2):

Upon detection of a collision, each ready-user uses an adaptive algorithm

for selecting its transmission probability in the next time slot.

In subalgorithm A2, a suitable protocol is used so that the probability of

a successful transmission into the next time slot is equal to the slotted

ALOHA-like channel throughput S, (ref. 5.2).

5.3.2.2 Throughput and Delay Performance

The ready-users can be considered to form a distributed queue with

random order of service in the broadcast channel. The method of imbedded

230

Markov chain analysis (ref. 5.11, 5.17), can be used to derive the

equilibrium moment generating function of the distributed queue size.

From the moment generating function for the distributed queue size, the

important performance measure characterising the mean packet delay

experienced by the packet can be obtained. Under the assumptions of

poisson arrivals and that packets arrive and depart one at a time, the

moment generating function of the queue size obtained for the imbedded

points is valid for all points in time (ref. 5.17).

The transmission time of each packet is assumed to be an independent,

identically distributed random variable with the probability distribution

function (PDF) b(x) with mean b
l

, second moment b2 , and Laplace Transform ,
b(s), (ref. 5.18,5.19).

co -sx
b(s) = f e .b(x).dx

o

The snapshot of the channel, representing the busy and idle periods,

is shown in Fig. 5.8, from which the fundamental equation for the imbedded

Markov chain queueing system is

~+l = ~ + Un+l + Vn+l - 1

where

~ = the number of the ready-users left behind by the departure of the

nth successful transmission, C

Un+l

X n+l

V n+l

n

= the time from the departure of C to the beginning of the next
n

successful transmission.

= the number of new Poisson arrivals during the time period Yn+l

= the channel transmission time of Cn+l

= the number of new Poisson arrivals during the channel transmission

time, Xn+l

But Xn+l has PDF b(x).

channel sensed idle
by all users
(Cn departs)

th
n tranSffiiSln
ends

th
n transmissidn

I
I

Collisions
detected

Success
detected

st
(n+l) transmission

••• ______ ------------------~'----~~----------------~~~~ ______ L_ __ ------------L-------------------____________________ L_ ____ ~~~.t~~

+ T + +T+

) <
xn+l

)

1-
Vn+l

arrive
>

arrive
<

Fig. 5.8 Snapshot of the Channel

232

Let B(x) be the PDF for the period x 1 + T. n+ Hence, the Laplace Transform

B(s) of B(x) is given by

-ST B(s) = b(s).e

Y 1 is a random variable which is the sum of two independent time intervals,
n+

so that

where:

T = duration of the time slot, (2T)

In+l = the number of slots in an idle period immediately following the

departure of C
n

r = the number of slots in the contention period following a collision
n+l

until the next successful transmission

The slot containing the initial collision is included in r n+l • According

to the specification of subalgorithms Al and A2, it can be seen that I 1 n+

is non-zero only if ~ = o. Also, if there has been no collision when the

transmission period of C begins, then r 1 = o. n+l n+

Let Pj = the probability of j new ready-users arriving in a time slot

then

(AT) j -AT
p. = • e ,for j = 0, 1, 2, ••••

J j!

At the beginning of the next time slot each new arrival executes Al or A2

in exactly the same manner as all the other ready-users.

Hence,

and

P(I 1 = kiq
k-l = 0) = (l-po).po ,for k = 1, 2, •..

n+ n

P(r 1 = kicollision occurred) n+
k-l

= s. (l-S) ,for k = 1, 2, •••

233

It can be observed that the above conditioned probabilities are geometrically

distributed. The Laplace Transform, C(s), of the probability density

function (pdf) of a contention period, given that a collision occurred,

can be obtained. The z-Transform of a geometric series for the contention

slots is given by

or

""
L

k=l

""

k-l k
s. (l-S) .z for k = 1, 2, ...

L S(l_S)k-l.zk - S(l-S)-l, k = 0, 1, •••

or

k=O

S
l-S L-(~-s) .z - ~J

.,.-.,.,....:s"" • ..::J:_
= l-(1-S).Z

Hence, the Laplace Transform, C(s), is given by

-ST
C (s) = __ S=. e=-__

1- (l-S).e-sT

from which the first and second moments may be calculated.

value of C(s) is given by

_ ~ C(s) I T
ds s=O = S

and the second moment by

i I = T2 (1 + 2 (1$-2S)) -2 C(s) s=O
ds

The mean

As was mentioned above, the imbedded Markov chain characterisation of the

snapshot of the channel is given by the fundamental relation

(1)

234

in which Vn+l is an independent random variable with the Z·-Transform

B{A-AZ), (ref. 5.17, 5.20), while Un+l depends upon ~ in the following

manner as a consequence of Al and A2:

given

(i) ~ = 0, then

Un+l = [: + number
during the
period

Pl
:with probability -1--

-p
o

of arrivals)
contention·. :with probability

~ , j = 2, 3,
-Po

ii) ~ = 1, then Un+l = 0

iii) ~ ~ 2, then Un+l = number of arrivals during a contention period

(2)

Furthermore, given the occurrence of a collision, the number of new

arrivals during a contention period is an independent random variable with

the Z-Transform C{A-AZ), (ref. 5.17, 5.20).

- (A-h) • T
C (A - A z) = _....;s::.;.;.:e'--_..,.,.--:-..,.-_

l_{l_S).e-{A-AZ).T

The equilibrium queue probabilities are given by

Qk = £im P{~=k), k=O, 1, 2, •••
n-

The equilibrium queue probabilities Qk exist as long as the service rate

of the packets by the transmission channel exceeds the packet generation

rate by the network-users, so that

Defining the Z-transform Q{z) of the equilibrium queue size

Q{Z) = (3)

235

and considering equations (1) and (2) above, and taking limit as n~,

then the equilibrium moment generating function of the queue size can be

calculated. It can be noted from (3) that, (ref. 5.17, 5.9)

From (1)

so that

+ V -
n+l

Since the number of new arrivals during a contention period is an

independent random variable, then

in which, (ref. 5.17)

[V +lJ E z n = V(z)

and

V(z) = B(A-AZ)

Furthermore

E E
(all j) (all k)

J '+k-l
p[Un+l = j, ~ = k .zJ

(4)

After some algebraic manipulation of (4), a form of the Pollaczek-Khinchin

transform equation, (ref. 5.9, 5.17), for the equilibrium moment generating

function expressing the Z-transform for the number of the "customers"

in the system may be obtained as

Q(z) = B(A-AZ) .l~l.Z{l-C(A-AzfJ
Q;

+ __ r_ .z.(l-C (A-AZ» -
l-p l}'l

o

(5)

236

where

Qo

1 - A(bl + T + T/S)
=

AT[l=P - B(~).S]
0

(6)

and

Ql [1 Pl J = B(A) - l-p ·Qo
0

(7)

Q(z) also represents the total distribution for the total time spent in

the system for customer C (ref. 5.17), so that after further algebraic
n

manipulation of (5) and the application of Littl~s result (ref. 5.21),

the mean packet delay - i.e. the.time since arrival to the time of

departure, D, may be shown to be given by

where

_ - T T 1 - Po (~)
D - x + S + 2 - 2IB(A).S-(1-p) I' A + ST-3T

o

+ Ak'2 + 2x(T/S) + T2 (l+2 (1-S)/s2)]

2[1-i>l(x + T/S)}

x = b
l

+ T

and

2 2 x = b2 + 2b
l

• T + T

(8)

From the above analysis the channel assignment delay may also be

calculated - i.e. given that the channel is free and that there is at

least one ready user, the pdf of the time the above conditions are satisfied

to the start of the next successful transmission.

Let

d = random variable representing the channel assignment delay immediately
n

. th
prior to the·n transmission,

and

d = lim d
n

237

then

00

fQ ,[l-Pl/(l-p)] + 1: Q.J.S(l-S)k-l, for k = 1,2,3, •••
Loo i=2~'

(9)

from which the mean channel assignment delay, d, is given by

(10)

From (10) it can be seen that

(11)

represents the fraction of transmissions that incur zero assignment delay

in gaining channel access - i.e. fraction of transmissions that do not

encounter any collisions. Hence (11) represents the probability of zero

channel assignment delay.

5.3.2.3 Performance Observations

Let

Cl = ratio of carrier sense time to the mean packet transmission time

and

= channel throughput

= fraction of the channel time utilized by the packets under

equilibrium conditions

The requirement for A(; + T/S) <1 gives rise to the following upper bound

on the channel throughput.

238

since

and

- T A (x + s) <1

or

then

Ab
l

<
x + T/S

or

p < =
S

Sx + T

and using x = b
l

+ T and T = 2T, then the upper bound on the channel

throughput is given by

S
p < 2a + (l+a).S (12)

from which p ~ 1 if a «< 1

The performance of the queueing theoretic channel model may be

examined by considering specific channel service time distributions.

5.3.2.3.1 constant Packet Time

In the case in which the service time is a constant and equal to x

the Laplace transform of the service time distribution (packet transmission

time) is given by

B(s) = e-sx and b
2

= 0

so that
,

and
2'" 2
x = 2b

l
• T+T

239

Substituting these into (8) gives

= 1 + 7. 44a _ =.5.:...4..:.4",a:;..(,-,1=--.o:.6":";::.2;:.3a",p,-,)_-::: __ _
2

1 - p (1+6. 44a) + p (a+O.5)

2
p(l + 12.B7a + 53.37a)

2(1 p - 6.44ap)

+

(13)

(13) can be used to examine the performance of the channel model for the

normalized mean delay, D/b
l

, with the channel throughput p for various

, values of a. Hence the delay performance of the channel is principally

governed by the values of a and p and that for some values of p, the

delay experienced by the packets can be very high. Also, from (13) it

can be seen that if a=O, then, as expected

D
b

l
=

P
1 + 2(1-p) =

2-p
2(1-p)

which is the classical MIDll result.

D ~ b
1

(14)

If P is very low, then

so that the only delay experienced by the packets, from the time of

arrival to the time of departure, consists only of the packet transmission

and no waiting delay is experienced. Figs. 5.9, 5.10 and 5.11 show the

theoretical results expressed by equations (13), (10) and (11) respectively

for the case of the constant service time. The dashed curve in fig. 5.9

shows the result for the pure M/D/l system in which a=O, as shown in

equation (14).

In the case in which the packet 'sizes P, or the transmission time

bl for the packets is very large compared with the slot time, the condition

a=O can be approached. But in practice, a>O. The constant service time

distribution is quite appropriate in the case in which the traffic generated

lOO

>0-
0
ID
"U

ID
c
c
0
.!:
U

c
10 0

QI

E
"U
QI
.~
0

E
0
c

Fig. 5.9

0.2

Normalized mean channel delay
versus

channel throughput
--constant channel time--

0.4 0.6

channel throughput

Normalized Mean Channel Delay

0.8

Legend
6 11 = 0,1

X 0=0.05

o o=O.OH

~ Q::IO.OllS

XI Cl'" 0 006lS

X Cl =' 0.00019S

.. .J> !." .. ~.Pll_.,21~~'

'" ..,.
o

Mean channel assignment delay
versus

channel throughput
--constant channel time--

3

VI -0
VI 2.5

>-
0
<I>

""0 2 -c
Q)

E '" c "'" . S!' 1.5
VI
VI
0

Legend Qj
c '" 0=0.1
C
0 x 0 = 0.05 ..c
u 0 0= 0.025
C 0.5 0 181 0= 0.0125
Q)

E 1Il 0= 0.00625

~ 0 = 0.000195
o·

0 0.2 0.4 0.6 0.8

channel throughput

Fig. 5.10 Mean Channel Assignment Delay

_ 0.8
C
<1>

E
c
.~
Vl
Vl
Cl

Q)
C
C
Cl

0.6

r. 0.4 o
e
~
o 0.2

..c:i e
c..

Prob. of zero channel assignment delay
versus

channel throughput
--constant channel time--

O+--------.-------r-------,-----~_.----~~
o 0.2 0.4 0.6 0.8

channel throughput

Fig. 5.11 Probability of Zero Channel Assignment Delay

Legend
A a = 0.1

X a = 0.05

o a = 0.025

Il!I a = 0.0125

!I a = 0.00625

)(a = 0.000195

'" ...
'"

243

by the various network users appear to be connected to the channel at a

centralized location.

5.3.2.3.2 Random Packet Time

In the situation where the various network-users may be considered

to be scattered widely in a completely random manner within LAN, the module

and intermodule packet transmission time will also be completely random.

In this case the pdf for the packet transmission time may be described

by the negative exponential distribution, (ref. 5.14), with Laplace

transform

B(s) = 1

l+sx

substituting these values in (8), the expression for the delay becomes

D
b

l
=

1 + 7. 44a _ 5. 44a (l+p+ap) (1-2. 632ap) +
l-5.44ap(1+p+ap)

(1+6.44a+27.62a2)
p l-p (l+6.44a) (15)

As before (15) can be used to examine the performance of the channel model

for the variation of the normalized mean delay, D/bl , for various values of

a and p. If a=O, in (15), then, as expected

D/b ~ _1_
1 l-p

which gives the classical M/M/l performance.

(16)

In a high-speed channel

environment employing long packets the condition for small values of a

can be achieved. Figs. 5.12, 5.13 and 5.14 show corresponding results to

those of fig~ 5.9, 5.10 and 5.11.

Shoch and Hupp (ref. 5.22) have carried out an analysis of the

measured performance of an Ethernet LAN employing 120 directly connected

network-users. In this study it was found that under normal load the

>

" cv
-0
Qj

1000

c 100 c

" .r::
u
c
" cv
E
-0
cv
.~ 10

" E
o
c

Fig. 5.12

0.2

Normalized mean channel delay
versus

channel throughput
random channel time

0.4 0.6

channel throughput

Normalized Mean Channel Delay

0.8

Legend
A G '" 0.1

X Q. '" O.O~

o 11 = 0.015

181 a=O.OI15

lX Q '" 0.00615 * 11 '" 0.000195

• J_u:..· ... ~~Ll~=.I~

Mean channel assignment delay
versus

chann<;>1 throughput
random channel time

3

'" +-
0
Vi 2.5
>-
0
Qj
\J
+- 2
c
Q)

E
c
Cl 1.5

N

"" '"
V1

'" 0
Qj Legend
c t. 0=0.1 C
0 X 0=0.05 ..c
<.l
C

0 0=0.025
0 0.5 Il!I 0=0.0125 Q)

E !I 0-0.00625

~ a = 0.000195
0 I I

0 0.2 0.4 0.6 0.8

channel throughput

Fig. 5.13 Mean Channel Assignment Delay

.....
C
<I>

E
c
0'>
If)
If)

" <I>
C
C

"

0.8

0.6

.!: 0.4
u

e
<I>
N

"<-
o 0.2

.ci e
c..

Prob. of zero channel assignment delay
versus

channel throughput
random channel time

O-~,-------'--------.--------r----~-.----~=-'
o 0.2 0.4 0.6 0.8

channel throughput

Fig. 5.14 Probability of Zero Channel Assignment Delay

'" ...
'" Legend

D. Q = 0.1

X Q = 0.05

0 Q = 0.025

Ill! Q = 0.0125

IX Q = 0.00625

~ Q = 0.000195

247

system performs very well and with extremely low error rate (1 packet in

2 million) and also that the number of collisions in the channel are

very few (less than 0.03% of the packets were involved in collisions)

while the channel utilization and throughput remained high (99.18%).

Also only about 0.79% of the packets were delayed due to deference.

From this it can be seen that the channel delay performance, for low to

medium traffic, remains low and that collisions in the channel are

negligibly low. This low channel delay performance can also be seen from

the analytical results of figs. 5.9 and 5.12, which also show that the

value of a plays a dominant role in the overall performance of the

channel.

Fig. 5.15 shows both the experimental (simulation) and analytical

results of the channel delay performance. This comparative performance

is based on equation (16) in which the channel transmission time distribution

used is the negative exponential distribution.

5.3.2.3.3 More General Packet Time Distributions

The results for the performance measures of the channel derived above

were based on the constant and completely random packet transmission times

in the channel, respectively. These correspond to the values of the

coefficient of variation, C , of 0 and 1, respectively. x
Packet transmission

time distributions having the coefficient of variation less than or greater

than 1 which are better approximations may also be used to model the

channel performance. This can be done by employi~g exponential service

stages to model hypoexponential or hyperexponential service time

distributions.

Fig. 5.16 (a) shows how an arrangement of k exponential stages can be

connected in series (a k-stage Erlangian server) can be designed to match

a desired mean and standard deviation of a service time distribution

248

whose value of C is less than 1.
x

The Laplace Transform of such a

hypoexponential service time distribution is given by (ref. 5.17)

b(s) = [~.l!.....)k
s+1l

and the pdf by

k-l
b () = kll (kIlX)

x (k-l) : •
-Ilkx e , for x~ 0

from which, ~he mean service time is

1
E(X) = -

Il

and the variance

V(X)
1

=--2
k.1l

and the coefficient of variation

C
x

=
1

Ik

and in which Il is the rate of the exponential distribution, or

b =!.
1 Il

Similarly fig. 5.16 (b) shows a k-stage parallel server to match a

desired mean and standard deviation of a service time distribution whose

value of C is greater than 1.
x

Assuming that

the

k

E Pot = 1
i=l

service time pdf

k

is given by

b (x) E
--lJ .x

po i .Il •• e 1 , =
i=l

o l.

whose Laplace transform is

k
b (s) = E

i=l

for x;:O

30

>- 25 o
Q)

""0

Q)

c 20 c
o
.c
u

§ 15
Q)

E
" .~ 10
o
E
L.
o
c 5

Normalized Mo.:>an Channel Delay
versus

channel utilization

o
• ,

I
I

• • ,
• • • • • I

I ,
• ,
• • • I , ,

I

x
A
• • • • • • • • • •

I I

.......... --

..........

I
I
I ,
•

I ,

• ,
,

• I , , ,

.'

• •

• I

• I
I ,

• • • ,
• ,

O-r----------·'" -----------,r-----------r-----------r,----------~
o 0.2 0.4 0.6 0.8

channel utilization

Fig. 5.15 Normalized Mean Channel Delay

""'t,,", • .Q«~~\c.A'- VVI>\""'\£.', ol ... IQ. 0

...\ 1"I"t'\ .. '" ""\y.....\~ •• coL'II o.Q
S\.'M_'-'A~""''N, '(Vto.\,,","\J..~ ~~ o.o<o;)J,..

N
'"

>

)

Queue
(a)

r

(b)

Fig. 5.16

250

---- -------------- ,
I

I-~. _
I I , ,
L - - - - - - - - - - - -T ----------_J

service facility.

A k-stage Erlangian server

,. - ~ - - ----------, ,
I
I , ,
I
I
I
I
J
I
I
I

I L ______________________ __ ,

r service facility

k-stage parallel server

Stage Servers

251

so that the mean service time is

and second moment

2 E(x) = 2

so that

k Poi
2 E 2-

=
i=l).Ii._

r
~ ~]2

i=l Ili

- 1

in which

C
2

1 ~ x

Often the k-stage series-parallel branching Erlang server is used to

model the hypoexponential and hyperexponential service time distributions,

as shown in fig. 5.17. The Laplace transform of such a server may be

given by, (ref. 5.17)

k i
b(s) = PI + E b l ·b2 ••• b .• P·+l 0 IT

o i=l 1. 1. 'j=l

Having determined E(X), and Cx' the minimum mean delay D may be

estimated from

where, for A = Poisson arrival rate of packets

p = ~ =' Ab
Jl 1

and assuming that ~=O.

(17)

Fig. 5.18 shows a graphical performance for the normalized mean delay

for a system performance that may be characterised by equation (17) for

) I

i

252

i -:- - - -.;.. ---1
I p p P I

I

I _L _ _ _ _ _ ___ _

112 •.•. 1\:-).. Ilk I

--------------- - ---

t
Se'("'v;c..e

~""c:\;l'l

I
I
I

Pk1l.0=1
I

- - I

Fig. 5.17 Branching Erlang Server

25

Cl!

M/G/l Queueing Time : Branching Erlang Service
versus

Server utilization

E 20 r -
Cl
c

'Qj
::l
Cl!
::l
Cl
C
o
cv

15

]

10

1 o
E

/

g 'l~
o I r---------r[--------~[---------,[-------~

o 0.2 0.4 0.6 0.8

server utilization

Fig. 5.18 Branching Er1ang Service

legend
t::. ., .. u.~ ••• ",.;.", .. 0

X .' d ~ •• ,,;.:.~I. I

o 1' 4 ~ •• "hl.~I.'
181 ~''' d ••• "Id •• ' _ 10

Xl ., .. ~ •• d uo .. "hft' c 10

IV
Ul
W

254

various values of the squared coefficient of variation c 2•
x

Values of

2
C = 0 correspond to the constant packet transmission time expressed by x

2 equation (14) while C = 1 corresponds to the randomized packet transmission
x

time expressed by equation (16). The higher the value of C~, the

more variable the packet transmission time and the service time distribution

for the channel.

However, 'service time distributions that characterise the channel

transmission time for packets in the channel are generally found to be

2 less variable and hence C ~ 1, (ref. 5.14). x

255

CHAPTER 6

DISTRIBUTED COMPUTATION MODEL

6.1 INTRODUCTION

As was explained earlier, the total delay performance of a dual

processor CPU cache distributed computation system is an important design

objective. In such a distributed computation environment, the decision

to partition a given computation and run, the various program modules on

either of the two computers strictly depends on the values of the module

run times and intermodule communication times. Whereas the module

processing time at each of the source processors can be estimated reasonably

accurately, it is much more difficult to estimate the module processing time

at the sink processor. The module processing time at the sink processor

is dependent on many factors, but the main difficulty in trying to estimate

the running time there is because the sink is primarily a heavily shared

resource system. The operating system of such a heavily shared resource

attempts to provide high performance to the population of the network

udrtd (customers, jobs, modules) who attempt to share some of the following

service facilities:

a) Terminals and other I/O devices

b) The secondary memory

c) The primary memory

d) The CPU

e) The printers

f) The plotters

g) The readers

h) The punches

256

Hence the sink processor resource system is often time-shared, multi

accessed and multi-programmed and hence efficient resource management

capability is necessary if high performance is .to be provided. In a dual

processor CPU cache distributed computation environment incorporating

such a sink processor resource system, it is necessary that the system

response time is reasonably low so that the benefits of distributing the

computation thus can be realised. The sink processor system response time

will depend primarily on the number and the characteristics of the

particular resources needed by an arriving customer. It will also depend

on the amount of service demanded by the arriving customer. In the dual

processor CPU cache distributed computation system of the type examined

here, only the CPU and I/O service facilities are assumed to be dominant

in contributing to the sink processor system response time.

If the number of the system users is small, then it may be expected

that the system response time will be small. But, as the number of the

system users increases, the number of the competitive conflicting demands

will also tend to increase. As the number of these competitive and

conflicting demands for the system resources rises, the overall system

response time performance will also continue to degrade to a point whereby

the system can be considered to have saturated so that it can no longer

provide much benefit to the network-users in a distributed computation

CPU cache arrangement in which the overall aim is to attempt to reduce

the total computation time of a given computation. Hence a principal

objective in such a distributed computation arrangement is to characterise

and examine how the computational workload of the sink processor resource

system varies with the number of the competitive demands. As this workload

increases it may be expected that, with the aid of some form of an inherent

257

feedback mechanism, the number of users will be discouraged and decide

against having any of their computation process at the sink processor

system, whenever possible. Also, beyond certain computational workloads

at the sink processor, the source processors already with some portion of

their computation at the sink processor may be expected to withdraw some

or all of their scheduled modules, whenever possible.

This chapter examines the issues raised above. It attempts to examine

the computational component of the total system delay experienced by modules

processed in a dual processor CPU cache distributed computation environment.

It characterises the system performance in terms of the system response

time or load factor and it also examines the effect of the increasing

load factor on the decision by the source processors to partition and schedule

the modules for computation by the sink processor. Both the analytical

and the experimental (simulation) methods of system analysis are used

employing queueing-theoretic concepts.

6.2 ANALYTICAL MODEL

The analytical values for the overall performance of the distributed

computation system can be estimated by first examining and characterising

the sink processor.

6.2.1 The Sink processor

AS explained earlier, the sink processor in the dual processor CPU

cache distributed computation environment examined here is a multi~accessed,

time-shared and multi-programmed resource system (ref. 6.1), as shown in

fig. 6.1. The arriving modules and intermodule packets are first pre-

processed at the sink processor resource by the communications preprocessor

(packet disassembly, checked for transmission errors, packet identification,

Traffic

258

TCP PM

j I

I
I I
I

I
I I
I I I
I I
I

L _______

I I
I I
I
I I

I I
I I
I I
I I

I
I
1-------
I

CPU

0:1:

J
lOP

I

00

SM

... --,
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I L _____ _

CU fo------------ _" _____ -J

TCP = Traffic Communications Processor

PM = Primary Memory

lOP = Input/Output Processor

OI = Other Inputs

00 = Other Outputs

SM = Secondary Memory

CO = Control Unit

=~lOW path

-= control flow path

Fig. 6.1 The Sink Processor System

259

book-keeping) before being loaded into the memory for processing. In

this way this channel traffic communications preprocessor is an I/O device

that handles the arriving and departing channel traffic. Other I/O

devices process and handle the flow of data between the main memory and the

secondary devices. The operating system (or the supervisory program)

provides the control function by governing the activity and assignment of

the various resources of the sink processor system. It is the duty of

the supervisory program to resolve the numerous conflicting demands which

must arise when the many user programs and modules attempt to access and

use these various resources. Often the supervisory program gives each

user the impression of .having the whole sink system to themselves.

6.2.2 The Sink Processor Model

A time-shared computer system can be viewed as a collection of

resources and a population of users who compete at various times for the

allocation of these resources. The resulting competitive and conflicting

demands placed upon these resources are resolved by the resource scheduler.

In this study, the CPU is the most central resource in demand for allocation.

One general model for characterising such a central resource in a time-shared

system is the feedback queueing model, (ref. 6.2~6.3), shown in fig. 6.2,

and consists of a single resource (the CPU) and a system of queues that

holds the customers (service requests) waiting for attention by the CPU.

These queued requests are serviced by the CPU according to an operational

scheduling algorithm or queueing discipline. In this way, a newly arriving

request is placed in the system of queues and, when the CPU scheduling

algorithm finally permits, is given a turn in the CPU. The request spends

a period of time (the service quantum or time-slice) in the CPU. This

offered service quantum mayor may not be enough to satisfy the original

service request. If sufficient, the fully processed request departs from

New Arrivals

260

Cycled Arrivals

SOQ CPU

Service
facility

SOQ = system of queues

Fig. 6.2

New
arrivals

Fig. 6.3

The feedback queueing model

Cycled Arrivals

Single
Queue

The Round Robin System

Service
Facility

De partures

Departure

261

the system; else, the partially processed request re-enters the system of

queues and waits within this system of queues until the CPU scheduling

algorithm decides to offer a second quantum, and so on. Eventually, after

a sufficient number of visits to the CPU service facility, the request will

have gained enough service and will depart as a fully processed request.

In this way preferential treatment is fairly given to short request than to

long requests in that a time consuming request will require many visits

to the CPU service facility while a small request may require just a few

visits to satisfy the request fully. Hence the feedback model is a

highly preemptive resume priority queueing discipline (ref. 6.4, 6.5, 6.B).

As mentioned earlier, the allocation of resources to the unpredictable

competitive and conflicting demands, which form a queue in front of the

resources, often leads to the characterisation of the system in terms of

a network of queues or queueing networks. In such queueing networks, the

three main parameters necessary to characterise the system performance

are the arrival rate, the service rate and the resource scheduling algorithm

or the queueing diSCipline.

6.2.2.1 The System Arrival Rate

The average arrival rate A, or the inter-arrival time distribution

for the module and intermodule data to the sink processor CPU service

resource is an important system parameter. The input population to many

service facilities, especially the communication facilities, is often taken

to be an infinite source and that the arrival process is poisson (ref. 6.6).

The Poisson arrival process provides a good approximation when the nature

of the arrival process depends only in a negligible way upon the number of

~2

customers already in the system. The Poisson arrival assumption is

often made to simplify calculations but it is also found to produce results

that closely agree with measured values. However, in many cases, the

system performance can also be estimated in the case in which the input

population is finite (ref. 6.7). An inter-arrival time distribution for

characterising the average time taken by the users in generating the inter

module data requests during the processing time of the modules at both the

source and the sink processors is important in the calculation of the basic

system performance measures. In well designed or logically distinct

modules, the intermodule reference times may be expected to be few and

far between.

6.2.2.2 The System Service Rate

The average service rate ~, or the service time distribution of the

CPU service facility is also an important system performance parameter.

Factors pertaining to the service facility will in general be important

in determining when service may be available, how many customers may be

served at a time, and how long the service lasts. Statistical service-time

distributions may be specified for the service-times and the negative

exponential distribution gives a good approximation in many cases,

although branching Erlang distribution may be used if the service is high~y

variable (ref. 6.9, 6.10, 6.12). In many cases, it is the system equilibrium

behaviour that is needed, so that ~ > A.

6.2.2.3 The System Queueing Discipline

The queueing discipline or the scheduling algorithm is basically a

set of decision rules which relate to how a customer is selected for service

from the network of queues. The simplest and most obvious queueing

discipline consists of serving customers in order of arrivals, but there

263

are many other possibilities such as; (ref. 6.4, 6.11).

a) First Come First Serve (FCFS)

b) Last Come First Serve (LCFS)

c) Shortest Processing Time First (SPF)

d) Shortest Remaining Processing Time (SRPT)

e) Shortest Expected Processing Time (SEPT)

f) Shortest Expected Remaining Processing Time (SERPT)

g) Shortest Latency Time First (SLTF)

h) Shortest Seek Time First (SSTF)

The scheduling algorithm may also distinguish the arriving customers

according to priority groups so that preferential service is given according

to this pre-estab1ished internal (or external) priority among groups. Such

internal priority may be based on the order of arrival (e.g. LCFS) or on

the amount of processing required (Shortest Processing Time). In the case

of such priority queueing disciplines, preemptive or non-preemptive priority

may be employed depending on whether or not a customer in the process of

being served is liable to be ejected from service and returned to the

queue whenever a customer with a higher priority arrives in the queue.

When the queueing discipline involves preemption, three modes of service

may be distinguished depending on how the ejected customer resumes service

after having been preempted, (ref. 6.4,6.11):

a) Preemptive Resume, (PR), in wich service resumes from where it left off.

b) Preemptive Repeat without Resamp1ing, in which service is assumed

to start from scratch with the same total service time requirement as

the customer had upon his earlier visit.

c) Preemptive Repeat with Resampling, in which service is assumed to start

from scratch but with a new service time chosen on reentering service.

In this way, prioritized service may be offered at the sink service

facility according to the order of arrival (e.g. LCFSPR) or according to the

264

amount of service demanded (e.g. The Round Robin). The Round-Robin (RR)·

processor scheduling algorithm is one of the most widely used algorithms

in many multi-accessed time-shared computer systems, (ref. 6.4, 6.11). In

the RR scheduling algorithm, fig. 6.3, newly arriving customers join the

single queue and work their way up to the head of the queue for service in

a FCFS fashion, and then finally receive their quantum of service. When

that service quantum expires and if they need more service, then they return

to the tail of that same queue and repeat the cycle. The size of the

service quantum is important in that a very large quantum in the RR system

will make the queueing discipline approach the FCFS while an infinitesimally

small service quantum will make the RR performance approach the processor-

sharing (PS) system (ref. 6.11). In the PS system a customer makes an

infinite number of visits to the CPU service facility, each visit infinitely

quickly and each visit receiving infinitesimal service, until finally his

attained service equals his required service, at which time he departs.

Hence, the PS discipline cannot be actually implemented, but is valuable

in modelling RR scheduling. The PS is a reasonable representation of the

RR when the quantum is large with respect to the swapping overhead, and

small with respect to the average service time (ref. 6.11). Hence the PS

is the limiting case of the RR with zero overhead as the quantum goes to

zero. The FCFS discipline is often used in many situations in which the

service time distribution is exponentially distributed, while the PS (or RR)

is often used in those situations where the service time distribution is

arbitrary because the effects of high variability (C >1) in service times x

.is much less noticeable (ref. 6.10). The PS is often insensitive to all

distribution characteristics other than the mean and it gives the same

performance as the FCFS with exponential service times.

265

For I/O devices, service is often offered on a FCFS basis, SLTF

(for drum-like devices), or SSTF (for moving head disks), (ref. 6.13,

6.14), but preemption cannot be used.

Hence, depending on the complexity and nature of the operating system

at the sink processor system, the CPU service facility provides service

to the modules and intermodule data requests in a highly complicated manner,

and the system response time (or load factor) can be expected to be a

function of many variables. In many cases too, external priority may be

imposed on the system by the system administration.

6.2.3 The System Performance Model

From the point of view of the dual processor CPU cache distributed

computation environment a composite Markovian queueing network model

incorporating the characteristics of both the communication channel and

the sink processor system may be used to determine the system response

time. With respect to the scheduling and computation of the system modules

in such an environment, three main situations may prevail:

a) all modules run at the source processor and none runs at the sink

processor

b) all modules run at the sink processor and none runs at the

source processor

c) some modules run at" either "processor

By virtue of the nature of the computation in situation (a), no

distribution is involved and hence this does not contribute to the system

response time analysis. However, situations (b) and (c) are relevant

to the analysis of the distributed computation model because the overall

system performance depends on the sink. processor system. In situation (b),

the effects of the communication delay in the channel are not very

266

significant, if the communication channel ·is not very heavily loaded,

because the main component of channel delay is only apparent during the

sending of the modules to the sink processor system and there is no

intermodule communication time incurred during the processing time of the

modules. However, the processing of the modules there will increase the

prevailing computational workload there and hence the system response

time will increase. Situation (c) represents the true arrangement for

the CPU cache distributed computation system. In this case the com-

munication channel delay plays·a substantial role through the intermodule

communication interactions between the two sets of modules at the two

processors. Hence, only the source processors corresponding to situations

(b) and (c) need be taken into account in the modelling of the dual

processor CPU cache distributed computation system for the system response

time. This system response time may be defined as the time interval since

the sending of a computational request by the source (sink) processor

to when that request is received from the sink (source) processor in the

system. Hence the total system response time will involve both the

communication delay, as explained in the previous chapter, and the

computation delay. These two main components of the system delay can be

considered to be independent. The computation component of delay can be

obtained by characterising the sink processor system computation workload

or load factor.

The sink processor system can be modelled as a Markovian queueing

network, (ref. 6.7). Many Markovian queueing networks may be modelled

as open, closed or mixed networks, (ref. 6.15).

267

6.2.3.1 Open Networks

In open network models of queueing systems it is usually found

reasonable to assume that there is an infinite external source for the

customers (module packets, requests) arriving to the network (ref. 6.16,

6.17) • Exponential or other interarrival time distributions and various

queueing disciplines may then be employed to model the system performance,

(ref. 6.12). As well as having a source for the arriving customers, there

is also a sink for the departing customers. The assumption of the

infinite population of customers is a valid assumption in many communication

system models where the number of sources for the customers (module packets)

may be very large (ref. 6.16, 6.17), as was done in the analysis of the

communication channel delay. In such open networks the value of the queue

length and delay can range from zero to infinity and no restriction is

imposed on the network job (module) population. However, the infinite

source assumption is not usually reasonable in many computer system

models because, in this case, there is usually some finite resource which

acts as a bottleneck and thus limiting the total population of the customers

(modules) in the network. In a dual processor CPU cache distributed

computation system, the total population of modules may be limited by the

contention for the sink processor system memory. Furthermore, the total

population in such a system will be discouraged by a large computational

workload at the sink processor.

6.2.3.2 Closed Networks

In a clpsed network model, there is a constant number of jobs

(modules) at all times, (ref. 6.7, 6.9). The jobs (modules) neither enter

nor leave the closed network. The number of these jobs in a closed

network is called the job population. Hence, the total number of jobs

in the network must always equal the network population, the sum of the

queue lengths of all jobs in the network, (ref. 6.9).

268

A dual processor CPU cache distributed computation system can be modelled

as a multi-accessed, time-shared system as shown in fig. 6.4. The

system model shows a closed network model with job population N. In

this model the job population N refers to the number of source processors

that are involved in the distributed computation system as described by

the situations (b) and (c) above. During processing, a module processing

at the sink processor may be considered to interact with the relevant

source processor module during the intermodule communication. In this

way, the job population N may be taken to refer to the number of inter

module pairs involved in the intermodule communication during the computation

of one module at either processor. From time to time, intermodule

parameters and data are demanded by either processor in the dual processor

CPU cache distributed computation environment during the computation

process life-time. As explained earlier, the intermodule data traverses

the LAN communications subnet interface in the form of packets. It may

be assumed that the average time interval between the intermodule data

exchange and transfer is long enough to guarantee equilibrium system

performance, (ref. 6.7). Fig. 6.4 models the closed network with two

main queues which form in front of the two main resources, the communication

channel facility, and the computation (CPU) facility at the sink processor.

This is modelled as a feedback queueing system in which each intermodule

request can be considered to cycle through the various resources until the

request is satisfied and finally returns to its origin. The system

response time may be considered to be measured at point x. Fig. 6.5 models

the system with the sink processor system modelled as a central server,

(ref. 6.18), in which a request leaving the CPU may proceed to one of

Fig. 6.4

Source
Processors

System Model

x

Channel
Service
Facility

Channel
Queue

Channel
Queue

Channel
Service
Facility

Processor
Queue

Processor
Service
Facility

270

two I/O devices, and the request leaving the I/O device may, in turn,

either cycle back and return to the CPU for further processing, or it may

return back to the relevant source processor. Fig. 6.5 illustrates

also the concept of branching probabilities; the probability of a request

making a transition from queue i to queue j in a routing chain (ref. 6.18,

6.19,6.20).

Due to the nature of the dual processor CPU cache distributed

computation system, the network job population N is not truly constant

over all time. In general N will fluctuate with time as some of the

users complete their computations while some of the other users start

their computations at arbitrary times. However, it is preferable to

model the system as a closed network with a fixed job population N, and

analyse the behaviour of the model for different values of N (ref. 6.18).

In this way, the system performance measures such as the system response

time, load factor, throughput, and utilization may be determined as a

function of N. Such a method of analysis is equivalent to characterising

the system in terms of several equilibrium models: one for each value of N.

The alternative is to analyse just a single model which incorporates the

transient behaviour of the system with N. Such a method may be difficult

to analyse or it may yield results which are too cumbersome to be directly

or easily usable.

Figs. 6.4 and 6.5 show how the overall system performance may be

modelled as a chain network in which a job of any class i can become a

job of any other class j, possibly after making intermediate transitions

to other classes kl , k2 , ••• , with non-zero probability (ref. 6.19, 6.20).

Such queueing networks have product form solutions which render the

•

•

Source Processors

Channel
Service
Facility

Queue

Fig. 6.S System Model

Queue

Channel
Service
Facility

Queue

q = pLCPU/IO]

p

Queue Service
Facility

(l-q

272

queueing networks to be mathematically tractable (ref. 6.18, 6.21).

Most useful mathematically tractable queueing network models have product

form solution. Some open, closed and mixed networks have product form

solutions (ref. 6.15). But for closed networks, the product form solution

is more difficult conceptually and computationally than the one for

open networks, because of the stronger interactions between the various

queues due to the fixed number of jobs (ref. 6.9, 6.18). In a network

of N queues, the basic product form is expressed as (ref. 6.21, 6.22).

where the vectors have elements corresponding to the different routing

chains, and

rt-+- -+- -+- -+ PLK1 , K2 ••• ~J = the probability of Kl jobs at queue 1, K2 jobs at queue 2,

...
~ jobs at queue N,

XLKi]' for i = 1, 2, ••• N, is a factor determined from the probability

of K. jobs at queue i in isolation (in an M/M/l queue),
~ ...

N = vector of number of jobs in the routing chains,

and G [~] = normalization constant

For an N-node closed network with population n, the joint distribution

of finding customers in the various nodes is given by the product form

solution, .<ref. 6.22)

where the set of numbers {ri } satisfy the set of linear equations given

by

where

N

= E
j=l

273

= 1, 2, ... N

Pij = probability of a customer next proceeds to node j when he completes

service at node i

= the mean of the exponentially distributed service time of the ith

node which consists of a single queue served by m
i

servers, (each with

and the normalization

G[n] =

where k = (kl , k2' •• , kN) and A is the set of vectors k for which

and where

In closed rietworks, the queues must be considered collectively because

of the interactions between them. However, it is not necessary for a

computational algorithm to recognise the explicit product form, (ref. 6.23,

6.24) •

6.2.3.3 The Time-Shared Model Performance

The system performance may be analysed by considering fig. 6.4 in

which the N users (the source processors in the system) make unpredictable

demands upon the time-shared sink processor system. The model performance

can be described as follows: whenever a ready source processor user makes

a computational request for service at the sink processor, the request

274

proceeds to receive service according to the operational scheduling

algorithm there. During this time the source processor user is busy

processing own computational workload, wherever possible, and does

not generate any new requests. This request may be a demand for inter-

module data and parameters from the remote sink processor. Conversely,

the remote sink processor may demand intermodule data and parameters from

the source processor, in which case the source processor must suspend own

computation and service the interrupt for service. When finally that

request is completely serviced at the sink processor, the response is

retransmitted back over the communication interface to the respective

source processor. The time interval taken by each source processor in

generating each new request may be referred to the "intermodule data

request time". In this way alternating periods of intermodule data

request time and processing take place throughout the life-time of the

scheduled modules.

The performance of the model may be examined by assuming that the

intermodule data request time for each source processor is exponentially

distributed with mean b l seconds. If n + 00 as l/b
l

+ 0 so that n/b l =

a constant, then the system may be modelled as a Poisson arrival process,

with average rate l/bl , to characterise this finite population model with

n users. At the sink processor system, the processor scheduling algorithm

may be assumed to be PS, FCFS or LCFSPR. When the service time at the

sink processor is assumed to be exponentially distributed (rate ~), and

with FCFS scheduling algorithm, then this is a finite M/Mjl system in

which the probability of finding k customers (module requests) is given by,

(ref. 6.7, 6.25)

275

o , for k > n

where

pro] = [.~ [AI r . n!/(n-j)!]-1
~=o 11 ,

and

and 1/11 = b
2

= the mean value of the exponentially distributed service

time at the sink processor. From the memory less property of the exponential

distribution, it may be seen that the distribution for number in the system

must be independent of the scheduling algorithm of the sink processor.

By considering this model with exponential service time and examining the

rate at which jobs enter into and depart from the sink processor system

(CPU), the mean system response time T(n) of the system is given by,

(ref. 6.25)

where

T(n) = - b
1

P [oJ = __ -'-'" 1==--___ _
n
E (A

l
/lI)i. n!/(n-i)!

i=l

1
= ---;:-'-''-;----

~ [:21] i
i=l

n!
(n-i) :

(1)

From (1) it may be seen that the minimum value of T(n) = b
2

, and this

occurs when n = I, so that T(l) = b 2• Hence, normalizing (1) with respect

to this minimum value

276

T(n) n b l
T(l) = F(n) = 1 - proJ - b

2

then the behaviour of F(n) may be examined as a function of n.

(2)

Fig. 6.6

shows this variation of F(n) with n and it may be seen that F(n) rises

very slowly with n, at first, until a critical value of n is reached

when F(n) rises more rapidly and linearly with n, (ref. 6.25). In the

region where F(n) rises slowly with n, the number of the interacting

source processor users is small so that the periods when a customer needs

service may be thought of as the periods when the other system users

are doing their own processing and therefore not interfering with the one

who is being served at the sink processor system. on the other hand,

after the critical value of n, F(n) rises linearly with unity slope,

and the system behaviour may be considered to show some form of saturation,

(ref. 6.25, 6.26). The critical value of n, ns ' is given by (ref.6.25).

(3)

so that each user beyond n causes all other users to be delayed by an
s

amount of time equal to his entire processing time of b 2 seconds. The

linear relationship of F(n), beyond ns ' is given by

F(n) = n - (4)

since, for large n, p [0] = 0

By extrapolating this linear asymptote for F(n), in fig. 6.6, back to

meet the horizontal asymptote defined by

F (n) = 1 or F (1) = 1

it may be seen that the two asymptotes meet at the critical point defined

by the value of ns ' so that the linear asymptotic rise may be expressed

F(n)

1

o

1

Fig. 6.6

277

n=n
s

unity

Asymptotic behaviour of F (n) and T (n)

n

278

as, (ref. 6.25, 6.26)

F(n) = n - n + 1 (5)
s

As mentioned earlier, fig. 6.4 models the performance of just a

single CPU resource at the sink processor system. The analysis and

performance of both general Markovian open queueing networks (ref. 6.16,

6.17,6.22), and general Markovian closed networks (ref. 6.9, 6.24), have

been extensively studied. The analysis of the closed Markovian queueing

networks suitable for modelling the performance of multiple resource com-

puter systems in which each resource is modelled as a network node has

also been carried out and studied extensively (ref. 6.271. However,

when such analysis for the general Markovian open and closed network

models is used for characterising the multiple resource computer system

and if the product form solution must be retained, three basic limitations

are generally encountered (ref. 6.23).

a) the queue discipline is FCFS

b) all service time distributions are exponential

c) all customers are assumed to behave identically so that service

times and transition probabilities are drawn from the same

distribution for each.

However, the PS, and the LCFSPR scheduling algorithms at the CPU have been

shown to remOve some of these limitations in that they have a mean

conditional response time that is independent of the service time distri-

bution in both the open and closed networks (ref. 6.11, 6.24). Further-

more, the limitations have also been removed in the case in which different

classes of customers in a closed system are used, (ref. 6.18, 6.28),

and also in closed networks in which the different customers are allowed

279

different transition probabilities, as well as their own set of

exponentially distributed service times, (ref. 6.27).

Hence, by considering the time-shared system with n users sharing a

multiple resource sink processor system with N resources, the asymptotic

behaviour of such a closed system may be examined (ref. 6.25,6.26).

Arbitrary distributions of service at each node are permitted (ref. 6.25).

Let

1
= - = mean service time at node i

= the number of servers at node i

= rate at which jobs are generated by each of the n source

processor users. The mean intermodule data request time, b l ,

may be drawn from an arbitrary distribution.

T(n) = average response time to pass the sink processor multiple

resource system when there are n users in the system

Hence, the average cycle time, the sum of the average intermodule

data request time plus .. the average service time, is

T(n) + b
l

, seconds (6)

so that the system throughput, R(n), is given by

n
R(n) = T(n) + b

l
' customers/second (7)

If

N = average number of jobs in the multiple resource sink processor system

n = average number of intermodule data requests at the source processors

then, by the application of Little's result (ref. 6.29),

T(n) =
N

R(n) (8)

or, since

n = n + N

then

T(n) n =---R(n)
n

R(n)

280

(9)

Applying Little's result to the source processor yields

1
b =-=

1 Al

so that

n
R(n)

n
T(n) = R(n) - bl

(10)

(11)

If the relative utilization of the ith node is defined as ri/m
i

, and

by considering the limit as n +~, then an infinite queue will form at the

bottleneck node and saturate it (so that saturation value of the largest

relative utilization of the node becomes r /m) while only finite queues
s s

exist at the other nodes, (ref. 6.27, 6.25). The extent to which the

ith node creates this bottleneck effect (or saturation) is defined (ref. 6.24),

as being proportional to the rate of change of throughput with respect to

an increase in the service rate of that node: the throughput being defined

as the average number of jobs processed per unit time. Hence, by using

these arguments it can be shown that the asymptotic behaviour of the

system response time, T(n), is given by, (ref. 6.24, 6.25, 6.26. 6.30)

T(n) =
n.r s ---=- - bl , for n » ns '

ms' lJN• rN
(12)

in which lJN.rN is the relative number of visits a job makes to the Nth

node in passing through the rest of the network (the sink processor system).

Hence the subscript N corresponds to the source processor node (node 1).

Furthermore, the average number of times a bottleneck node is visited for

each entry into the sink processor system, i.e. between each visit to the

281

source processor node, is given by, (ref. 6.25, 6.30)

\.I . r s s
(13)

When the bottleneck node is deeply saturated, so that n » ns ' the output

rate, R (n), from the saturated node is given by
s

1.1 .m s s
(14)

so that the output rate (throughput) of customers from the sink processor

system, is obtained from (13) and (14), as

1.1 .m
R(n) s s

=

[\.I .r J ii:. r:

ms • lJN • rN
(15) =

r
s

From (12), the asymptotic behaviour of T(n) may be examined, fig. 6.7,

and the linear asymptote of T(n) beyond the saturation value n = n s

has slope, given by

r
s for n » n

s

The minimum value of T(n) is

ns·rs - ms·rN

ms·I.IN·rN

(16)

(17)

Since, for n » n , each additional user causes all other users to be
s

delayed by his entire average service time, it may be seen that the

saturated system behaves like a deterministic system (ref. 6.25, 6.30).

Hence, by considering that

n = maximum number of perfectly scheduled jobs, in a deterministic
s

system, that cause no mutual interference

:n) =

T(n)

n .r -m .r
s s s N

ms ·].1N· r N

o

1

Fig. 6.7

282

slope =

, , ,
I

I
, I

, , , , / , , , , , , , , ,
, I' ",-"

, I' ,
" I ,/ ;'

I " ..,."
I " .,.,' -- -- -_ -- _ --- --!- - -- ____ -- -- - - - - P':: - - - - - - - - ..

n=n
s

ASymptotic behaviour of T(n) and F(n)

283

then, the horizontal asymptotic behaviour of T(n) may be estimated. The

value of ns may be estimated since, for each of the ms servers in the

saturated node, the maximum number of jobs that can be scheduled is equal

to the service required by a job in each cycle divided by the service time

spent by a job in the saturated node per cycle.

the m servers, then
s

so that,

n
s

ms
n =-

s r
s

Hence, considering all

(18)

(19)

From (18) the average cycle time (or the service time in a cycle, no

queueing since n=l) , is given by

or

N
1:

i=l

n .r
s s

(20)

Equating (6) and (20), then the horizontal asymptotic behaviour of T(n)

may be given by

(21)

In this way several linear asymptotes with different values of nand
s

slope may be obtained depending on which node saturates first (ref. 6.30,

6.25), as shown in fig. 6.7.

The performance analysis of more general open, closed and mixed

multiple resource networks of queues that permit different classes of

284

customers, routing chains, scheduling disciplines and general service

time distributions by the method of local balance in computer systems

have been extensively studied (ref. 6.22, 6.31, 6.10, 6.15). Most of

this study has concentrated on networks with product form solutions. In

the use of the local balance methods in the solution of these generalised

models, the Markovian characterisation of the service time distribution

of these networks is preserved by the use of stage-type servers (ref. 6.32).

Generalized queueing models for the multiprogrammed computer systems have

been solved similarly (ref. 6.7, 6.24, 6.32). The major goals of the

multiprogrammed computer systems are similar to that of the time-shared

multi-accessed systems in that a number of jobs are permitted to gain

simultaneous access to the resources of the system in such a way that

the CPU is allowed to be busy processing one job while various I/O peripheral

devices are processing some of the others concurrently. A central-

server model of a computer system permits the inclusion of a number of

peripheral devices. Fig. 6.5 shows a time-shared central-server model

with two peripheral I/O devices.

6.2.3.4 Computational Algorithms

The traditional approach to the solution of the general Markovian

queueing networks was to formulate a system,of algebraic equations (balance

equations) for the joint probability distribution of the vector-valued

system state, as explained earlier. But it was later found that for

certain types of networks, the solution of these balance equations is in

the form of a product of simple terms, and that these products could then

be normalized numerically to form a proper probability distribution,

(ref. 6.21, 6.22, 6.23). However, in the case of networks with closed

285

routing chains, this normalization was found to be computationally limited,

(ref. 6.24). But this difficulty was overcome by the use of computational

algorithms as it is not necessary for the computational algorithm to

recognize the explicit product form (ref. 6.23, 6.24).

types of computational algorithms are

a) The Convolution Algorithm, (ref. 6.24, 6.33)

b) The Mean Value Analysis Algorithm (ref. 6.34)

The four main

c) The Local Balance Algorithm for Normalizing Constants (ref. 6.23)

d) The Algorithm to Coalesce Computation of Normalizing Constants,

(ref. 6.23).

A number of criteria may then be employed in choosing a computational

algorithm for queueing network models. Such criteria include

a) generali ty

b) asymptotic computational complexity

c) asymptotic space complexity

d) numerical stability

e) implementation effort

All the four computational algorithm exhibit various advantages and dis-

advantages with respect to the above performance criteria. While the

performance of the Mean Value Analysis Algorithm (MVAA) may be shown to

be asymptotically equivalent to the others, its program implementation

is often simpler (ref. 6.34). The MVAA starts off by recognizing that

the joint distribution contains far too much detaii even in situations

in which much simpler quantities such as the mean queue sizes, mean

queueing times, mean resource utilization and throughput only are needed.

Hence the major goal in the application of MVAA computation algorithm

is to obtain the mean value performance measures associated with the

queueing system. The MVAA for a closed network such as the one modelled

by fig. 6.5 with a single routing chain and allowing a number of job

classes, can be sketched (ref. 6~23, 6.34).

Let

M = number of queues (nodes) in the network

C = number of job classes. The classes are partitioned among the

queues, with at least one class per queue

s = the set of classes belonging to queue m.
m

Queue m has FCFS scheduling

algorithm and exponential service time distribution, with mean b
m

at each of the classes

Pij = probability a job departing from class i next jOins class j

The value of the relative throughputs at each of the classes is

given by the set of linearly dependent equations

r. =
J

C
L r

j
•Pij

, for j
i=l

= 1, 2, ... C (22)

Hence, if R
j

is the throughput at class j, then the throughput at class k

is given by

Let

r = the relative throughput of queue m
m

r = m

N = job population in the network

(23)

(24)

L (n) = the mean queue length at queue m when there are n jobs in the
m

network

287

~(n) = the mean queueing time at queue m when there are n jobs in the

network

From fig. 6.5 it may be seen that the network may be modelled as

single server queues and infinite server queues. According to MVAA,

for networks with single server and infinite server queues, the various

system perform"ance measures may be determined from the mean values, and

without the need for considering the probabilities of the network

states or the marginal probabilities, (ref. 6.33, 6.34). For single

server queues, it may be shown that the mean queueing time Q (n) can
m

be defined recursively as follows, (ref. 6.34)

o (n) = b (1 + L (n-l» (25)
""In m m

while for the infinite server queues

Q (n)
m

b
m

(26)

Given the mean queueing time, the mean queue length may be obtained by

the application of Little's result, (ref. 6.29), and throughput. The

value of the throughput may be obtained by applying Little's result to

the mean cycle time. The mean cycle time defines the mean time between

visits to a queue, and is given by, (ref. 6.34)

so that

M
E

i=l
• Q. (n)

1

n = R (n).
M

E
m . i=1 rm

(27)

(28)

in which the job population n of the network is used as the queue length

in Little's result. From (28) the throughput is given by

R (n)
m

=
M
E

i=l

288

n
r.

(29)

1.

r
m

By using these recursive equations and the initial condition that

L (0) = 0, then for m = 1, 2, ••• M, the mean value system performance
m

measures may be calculated from the MVAA computation algorithm, which

may be sketched as follows, (ref. 6.33, 6.34)

For n = 1 to N

For tTl = 1 to M

If Queue m is single server

Then (* queue m is single server *)

Qm
(n) = b

m
(1 + L (n-l))

m

Else (* queue m is infinite server *)

(" end loop on m")

For m = 1 to M

R (n) n
= m M r.

E
1.

i=l
r
m

L (n) = R (n) • Q (n)
m m m

("end loop on m*)

(* end loop on n *)

From such a computational algorithm the queueing model performance

measures such as the mean throughput, queue lengths and queueing time may

be determined for each queue. Fig. 6.S is modelled with six queues and

the above computational algorithm may be used to determine the mean

performance measures. From the values of the mean queueing time Q (n)
m

289

and the mean cycle time, the system response time, T(n) may be obtained.

If q is the probability that a job returns to the CPU for more service

after leaving an I/O device, (i.e. pLCPU/IO]), then the number of the

CPU-I/O cycles has a geometric distribution, starting at one, with a

mean r
CPU

given by

1
r = -1- cycles CPU -q

The computational algorithm may be applied to the network model of

fig. 6.5 by letting

queue 1 = the infinite server queue

queue 2 = the single server transmission channel queue

queue 3 = the single server sink system CPU queue

queue 4 = the single server sink system I/O (floppy) disk queue

queue 5 = the single server sink system I/O (hard) disk queue

queue 6 = the single server transmission channel queue

Hence the mean system response time, T (n) , measured at point x, may

be calculated from

6
= E r. Q

i
(n) (30)

i=l 1.

If r l = 1, then

r
2 = 1

1
r3 = r cPU

=
l-q

P r
4 = l-q

l-p
rS = l-q

r6 = 1

290

T(n) is the mean time taken since the issue of a request by a source

processor to the time the response is finally obtained from the sink

processor system when there are n jobs in the network. An alternative

characterisation of T(n) is the sink processor system load factor F(n)

which may be defined similarly to (2) as a dimensionless quantity as

where

F(n) = T(n)
T (1)

6
T(l) = L ri.Qi (1)

i=l

(31)

so that the minimum value of F(n) is F(l) = 1.

Hence both T(n) and F(n) may be used to characterise the system

performance as the system workload varies. In a dual processor CPU

cache distributed computation system, it is necessary that T(n), (or F(n»

characterises the variation of this workload. A small value of T(n) or

F(n) means that distributed computation is feasible because the reserve

capacity of the crunching power of the sink processor system is still

available and also the effects of the intermodule communication times are

not too high. Hence the values of T(n) and F(n) contain both the

communications and the computational delay components of the system delay

performance. The communications component of delay was dealt with in

Chapter 5 and can be omitted from the model. Furthermore, these two

components of delay are largely independent. It was seen in Chapter 5

too that under low traffic conditions, the communications component of

delay is very small. Hence, the contributions to F(n) and T(n) from

queues 2 and 6 may be omitted in the computational algorithm so that

F(n) and T(n) characterise the computational workload only at the sink

VI
"0
C
o
U
QJ
VI

QJ

E
:;::
<li
VI
C
o
Cl.
VI

~
~

.£
VI

c
o
<li

E

20

15

10

5

Mean Sink Response Time
versus

interacting module !;loirs
b2 = 50 ms, p[CPu/iOi = 0 8

/

)<

/
/

// /
/ "

/ /'
// //

/ ,//
/' "

.,./' --' ~
~::~~::~:.~~~--~-~.~.~.----o-F I I-----r,----- "-------"
o 20 40 60 80 100

interacting module pairs

Fig. 6.8 Mean Sink Response Time

Legend
l:1 ~~ s.ec~!,ds

X ~1Q...!!;~

o ~~!~O~

'" '"

50

'-
.E 40
U

.E
"0
o
.2
'- 30
o
VI
VI
Q)
u e c.. 20

.::£
C
VI

C
o
Q)

::lE
10

Mean Sink Processor Load Factor
versus

interacting module 'pairs
b2 = 50 ms,p[cpu/ioJ 0.875

,/

//
/ ,)J

/ /
/ ...

/ /
/ ,I'

/ / / ,,'
/ /

/ ,I"

/ ,/
/ "

,/ ./
-" .' ..-= ••• -

o~~~~~--,,-----r-----.-----.
o 20 40 60 80 100

interacting module pairs

Fig. 6.9 Mean Sink processor Load Factor

Legend
fl bl = 5 sec.onds

X~I~~

o ~_S!~O~

IV
W
IV

C
o
U
o -u
o
o
\
o
III
III
(JJ

U
o
Cl.

.Y
C
v •

. '
~

15 -~

!
I

10 -~

Fig. 6.10

Mean Sink Processor Load Factor
versus

interacting module Fairs
b2 = 50 ms,P[cpujio 0_875

-,--,._._--,- -_ .• ,---_. ,--
2() 30

int'Jracling modui'! pairs

Mean Sink Processor Load Factor

/

40

IV
\0
W

40

Vl
"0
C
0
0
Q) 30
Vl

Q)

E
:;::
Q)
Vl 20 c
0
a.
Vl
Q)
'-
~ c
Vl 10
C
0
Q)

E

0
0

Fig. 6.11

20

t.4ean Sink Response r me
versus

in1erocting mexide pairs
b2 = 50 ms, P[CP<Vio) = 0.875

b3 = \0 ms, b4 = 5 ms

40 60

interacting module pairs

Mean Sink Response Time

80 100

Legend
I:l bl = 5 s.conds

X ~~C!!!!!
o ~J!~0.!l!!

'" ID ...

V>
-0
C
o
u
Cl>
V>

Cl>

E
+=

Cl>
V>
C
o
0-
V>

~
~
c
V>

c
Q
Cl>

E

14

12

10

8

6

4

2

Mean Sink Response Time
versus

interacting module pairs
b2 ::: 10 ms, p(cpu/io] ::: 0.875

O-·~I----------r---------.----------.----------.---------,

o 20 40 60 80 100

interacting module pairs

Fig. 6.12 Mean Sink Response Time

Legend
ll. bl - 5 sec.onds

X 2.!..!...1~~

o ~_S!~O~

IV
W
111

Vl
-0
C
o
U

400.

Q) 300
Vl

Q)

E
-+-
Q)
Vl
C
o
Q.
Vl

~
~
C
Vl

C
o
Q)

E

200

100

Mean Sink Response TIme
versus

interacting module pairs
b2 = 50 ms, p(cpu/io] = 0.875

- - - .----, =--.: ==-::::'.:':-? ~ •• ,
~ ~ - ,.:.:.:.:.---

o-·~:-.w~~--T-··~-~;~~~·~-~?¥··~·~·=··~·=·~.~=~~.~=.~~: .. ~~:.:~:.~--~------,-----------,
o 20 40 60 80 100

interacting module pairs

Fig. 6.13 Mean Sink Response Time

Legend
A bt"" 100 milliuc.6ndl

X ~o~~~
o u.:...!.o.!~"~6 .. n_" __
~ b I = so,. c.!,,,,_" __

!X H!, .. 12 .. '_·~!l\'~! _.
X ~"....!l.!!.~!!.. __

'" w

'"

Vl
"0
C
o
l)

80

Cl> 60
Vl

Cl>

E --Cl>

~ 40
o
Cl..
Vl

~
~
c
Vl 20
c
o
Cl>

E

20

Mean Sink Response TIme
versus

interacting module pairs
b2 = 100 ms, P[cpu/io] = 0.875

40 60

interacting module pairs

Fig. 6.14 Mean Sink Response 1'ime

80 100

Legend
A bl = 5 seconds

X~~~
o ~.]!~O~

Vl
"0
C
o
U
Cl>
Vl

Cl>

E -
Cl>
Vl
C
o
Cl.
Vl

~
~
C
Vl

C
o
Cl>

E

400

300

200

100

o I

o

Fig. 6.15

20

Mean Sink Response TIme
versus

interacting module -pairs
b2 = 500 ms, P[cpu/ioJ = 0.875

I
40 60

interacting module pairs

Mean Sink Response Time

I
80

I
100

Legend
A bl", 100 milliuLonds

X ~o~~~
o !?.!...:..!.:.':..'!;.0.r d_. __
~ to! = ~_O u'!.n_" __

XX H=.t!, ... q.!'Ht'l'!'._._
~ ~=~.!!.~:!!..--

40

V> -u
c
0
u
Q) 30
V>

Q)

E
:,::

Q)
V> 20 c
0
c..
V>
Q)
'-
~ c
'Vi 10
c
0
Q)

E

0
0 20

Fig. 6.16

Mean Sink Response Time
versus

interacting module pairs
bl = 10 seconds, P[cpufio]=O.875

40 60

interacting module pairs

Mean Sink Response Time

............. .. ~
80 100

Legend
II 1>1. !tOO mi'q",~o~'h

X "1'1100n ... __

o 101. ~O 'U.i!JI!~
181 b1. 19 mill!:.~

Xl u.:.\.!f'jU~' ... ::~S!. ••

V)

-0
C

50

o 40
u
<lI
V)

<lI

E 30 -<lI
V)

C
o
D-
V) 20
~
~
c
V)

~ a 10
<lI

E

Mean Sink Response Time
versus

interacting module pairs
b2 = 50 ms, p[cpu/iol = 0.9

/x
/ .8

//,,/'
/ '

/ ,,/
. //'
/ .'

/ '
/ ,./

/ '
/ ,,/

/ '
/' ,,/ /.....-.

~~~~~e%:;~.~ .. ______ , 
O-F I 1--- I 

100 o 20 40 60 80 

interacting module pairs 

Fig. 6.17 Mean Sink Response 'rime 

Legend 
A bl = 5 sec.onds 

X~~o~ 
o ~.!!C_O~ 



VI 
-U 
C 
o 
U 

80 

Q) 60 
VI 

Q) 

Mean Sink Response Time 
versus 

interactina module pairs 
b2 = 50 ms, Plcpu/io] = 0.93334 

X 
/0 / ,. 

// / ",~ 

// 
E .... 
Q) 

~ 40 
o 
Cl. 
VI 

~ 
-'£ 
C 

VI 20 
c 
o 
Q) 

E 

/ ,." 
// 

/ ~" 
// / ,,' 

// 
/ ", 

// 
/ ", 

// 
~ .. ,'" . 

~~:::. :::;;.-
O-~ ,---------T,----------T'-----

o 20 40 60 

interacting module pairs 

Fig. 6.18 Mean Sink Response Time 

80 
, 

100 

Legend 
Cl. bl = 5 seconds 

X~I~~ 

o ~~!~O~ 

w o 
I-' 



Vl 
-0 
C 
o 
U 
QJ 
Vl 

QJ 

E 
:;: 
QJ 
Vl 
C 
o 
Cl. 
Vl 

~ 
~ 
c 
Vl 

c 
o 
QJ 

E 

100 

80 

60 

40 

20 

Mean Sink Response Time 
versus 

interacting module -pairs 
b2 = 50 ms, P[cpu/ioJ = 0.95 

~ /. 
/ " 

/./ 
/ .' 

/,/ 
/ .' 

/./ / ,. 
/,/ 

/ " 
/,/ 

/ .' 
/,/ 

/" /./ 
~/ 

O-·~~~·~·~-'----------rl---------rl---------rl---------'I 
o 20 40 60 80 100 

interacting module pairs 

Fig. 6.19 Mean Sink Response Time 

Leg~nd 
A bl = S 5econds 

X~l~o~. 

o ~.!!~O~ 

w o 
'" 



VI 
-0 
e 

100 

o 80 
<.) 
Q) 
VI 

Q) 

E 
+= 
Q) 
VI 
e 
o 
Q.. 
VI 

~ 
.::L
e 
VI 

e 
o 
Q) 

E 

60 

40 

20 

20 

Mean Sink Response Time 
versus 

interacting module pairs 
bl = 10 seconds, b2 = 50 ms 

40 60 

interacting module pairs 

Fig. 6.20 Mean Sink Response Time 

80 100 

Legend 
A plc.p"/iol:= 0.' 

X ~joJ '" o...!.!L,. 

o ~ol:2·.!.2.-
181 pr<.e".t!ol .. ~ . .!..U.ll 
Xl el<'J' .. u'l~':.o.;!~ ..... 

w o w 



12 

VI 
"U 
C 10 
o 
u 
CV 
VI 

CV 

E 
:;:: 

CV 
VI 
C 
o 
c.. 
VI 

~ 
~ . s 
VI 

c 
o 
CV 

E 

8 

6 

4 

2 

Meon Sink Response TIme 
versus 

bl 
b2 ::: 50 milliseconds, p(cpu/io):::0.875 

~ ...•.... 
". 

". ...... 
". 

". 

"-, 

"" , '\. '. '\. ~ ..... . 
G........, .............. . .......... . 

" ~~ ........... ~ ............. .. 
>E--- ~....... .. ~ .. ___ ............ !I 

--------=..-..::... --=.. .. .:.:...-_ ...... _ ...... ---
O~---,,----r----r----r----~---.----.----, 

o 2 4 6 8 

bl 
10 

Fig. 6.21 Mean Sink Response Time 

12 14 16 

Legend 
L\ N = I 
X N= 5 

ON = 10 

Il!I N = 20 

XI N = 30 -.................. . 



Mean Sink Response Time 
versus 

p[cpu I io] 
bl = 15 seconds, b2 = 50 ms 

25 i 
I 

GJ 
VI I I -0 
C 
0 20 • lJ I • <11 

I 
I 

VI 

I <11 

E • 15 I • :;:: 

I 
• 

<11 I VI 
c 
0 • I • 0.. 

/ 
• w 

0 VI 10 

I '" ~ 
~ • Legend .£ I • 
VI 

/ 
• 6N=1 

c 5 / 0 xN=1O <11 , ---I E / _./,' t. ON = 50 ------
181 N = ioo - .-

0 
0 0.2 0.4 0.6 0.8 

P[cpu/io] 

Fig. 6.22 Mean Sink Response Time 



-:l 
0.. 
..c 
en 
:l 

20 

15 

e \0 
..c -:l 
0.. 
<> 

CPU Throughput 
versus 

interacting module poirs 
bt = to seconds, b2 = 50 ms 

/''/- "/" - .".,.-" . I ## " .. I / , 

i/ :/: , / 
il"" " 
: I,' /' ! 1 I, 

i / 1/ .. : I' , 
i I ./, / 

1/:'/ " 
il:' / / 

1// / 
111/':, //// 

=/ ! I I 

5 11/: // 
",' / 
'/ 

• 

O~~----.--------.-------.------~-------, 
o 20 40 60 80 100 

interacting'module pairs 

Fig. 6.23 CPU Throughput 

Legend 
A P['p,,/io!" 0.00 

X ~Iol. o . .ll.....:, 
o ~ol:S·.!
O§ dGP"(j0J .. ~ . ..!.ll
XI flGJ'.lIjl~'! .. O .. !i' ...... 
X w~.!.!.l.:..!'.-!..UJ'! 
.. r..bt.'J'i!l~.P';'!!.u .. 



307 

processor system. Hence, it can be seen that the main factors that 

contribute to the computational workload and T(n) at the sink processor 

system are 

a) n: the network population 

b) 

c) 

b 
m 

q 

the·mean of the service time distributions 

which determines the computational requirements 

d) p: which determines the I/O requirements 

The values of b are the mean values of the exponential service time 
m 

distributions at the various system service facilities. Specifically, 

bl mOdels the mean time between intermodule references and its value 

is very critical to the overall system performance. 

Figs. 6.8 to 6.23 summarise the analytical performance result of 

the sink processor system as obtained by the use of the MVAA computational 

algorithm. They show how T(n) (or F(n)) varies with n for various values 

of b , p, and q. 
m These values also show how the bottleneck and saturation 

effects, discussed earlier, govern the behaviour of T(n) and F(n). In 

this way, the variations of T(n) and F(n) are characterised by the horizontal 

and the linear asymptotes so that T(n) and F(n) rise very slowly with n, 

at first, but after the critical value of n, (n ), is reached there is s . 

a sudden change of the linear asymptote slope. Hence, as long as n 
s 

is not reached, T(n) remains quite low and is approximately equal to 

T(l), but the actual value is only marginally higher, as given by (30). 

The other system performance measures such as the service facility mean 

throughput, queue lengths, and queueing time and resource utilizations 

for each queue or resource may be obtained from the MVAA computational 

algorithm. Fig. 6.21 shows the variation of the sink processor system 

CPU throughput as a function of n for various values of b , p, and q. 
m 



308 

This variation of the CPU throughput also shows the saturation and bottle-

.neck effects when n exceeds certain critical values (n ) and is also 
s 

seen to be strongly dependent on the values of p, q, and b . 
m 

From 

these results it may be seen that the behaviour of T(n) as predicted by 

equations (12) and (30) show great similarity, but the use of the 

computational algorithm may produce more information and with less effort 

than the use of the balance equation to the Markovian networks. Further-

more, the computation algorithm can form a simpler basis for simulation 

experimentation. 

6.3 SIMULATION EXPERIMENTATION 

Without measurement, it is ·difficult to have a true science. But, 

in the design and development of almost all systems, measurement is not 

possible. However, modelling becomes a necessary tool in such situations 

in order to estimate the system performance that may be expected from the 

complete system. Section 6.2 presented the analytic model of the dual 

processor CPU cache distributed computation system and some important 

system model performance measures such as the sink processor system 

response time and load factor were obtained. In such analytic models, 

many assumptions have to be made in order to obtain reasonable abstractions 

of the system performance to which probability theory can be used to 

obtain the equations that characterise system performance. The method 

of simulation experimentation can then be used to test the validity of 

these abstracted analytic models and to check whether the assumptions 

on which the models are based are valid or not. This section presents 

the simulation results of the model shown by fig. 6.5. 



309 

6.3.1 Simulation Model 

Simulation experiments can be classified as either clock-driven or 

event-driven. Event-driven simulation models for queueing systems can 

be quite conveniently described, (ref. 6.35). 

An event-driven· simulation model for a queueing system can be con

sidered as consisting of two basic phases, (ref. 6.35): 

a) data generation 

b) bookkeeping 

Data generation involves the production of inter-arrival and service 

times where needed throughout the queueing system experiment and taking 

the queueing discipline at each queue into account. These queueing 

times are generated from the relevant probability distributions. The 

negative exponential distribution has been used as the service time 

distribution in the various queues. This is accomplished by the use of 

the various random number generators (ref. 6.36), and these are usually 

available at most university computer centres (e.g. the NAG routines). 

On the other hand, the bookkeeping phase of the simulation model deals 

with updating the system queues when new events (arrivals and departures) 

occur, monitoring and recording the system states as they change, and 

keeping track of the various quantities such as the beginning and end of 

busy times, idle times, queue lengths, and waiting times from which 

the various performance measures such as the throughput, utilization, and 

response time may be estimated. In this way, each event may be described 

by the time it is expected to occur and by the actions that must follow. 

For queueing network models, the simulation program maintains a list of 

events ordered by their time of occurrence. 

through the following three basic steps; 

Hence, the program cycles 



310 

a) Select the event with the earliest time 

b) Set the simulated clock to this time 

c) Perform the action 

With FeFS queueing disciplines, the only events that need to be 

considered are the service completions. When the jobs are in the service 

facility, the simulation program does not need to take any action at all. 

However, when a job completes service the program must do all the book-

keeping and reassign the server to a waiting job, if there is one, mOve 

the job to the next queue and possibly initiate service for the job there. 

With exponential distributions for service time, the probability of two 

or more simultaneous events is negligible. However, with non-

exponential service time distributions, the probability of simultaneous 

events may occur frequently. (ref. 6.35). 

6.3.2 Simulation Performance Estimates 

As explained earlier, some of the most important basic performance 

estimates of a queueing model are the mean values of the resource utilization, 

resource throughput, queue length, and queueing time. From the mean 

queueing time, the system response time may be estimated. As in the 

analytic model of system behaviour, the simulation model assumes that the 

modelled system has attained equilibrium (ref. 6.37). 

Resource utilization (U) may be defined as the fraction of time the 

server is busy_ Hence, if the simulation experiment runs for time T, 

then U may be estimated by summing the individual busy times of the server 

and dividing this sum by T, so that 

U sum of busy times 
T 



311 

For m identical servers 

u sum of the busy times of the m servers 
m.T 

The running sum of the busy times can be conveniently accumulated by 

recording the difference between when the server becomes busy and when the 

server becomes idle, and adding all such sub-busy periods to the running 

sum, fig. 6.24 •. 

The resource throughput may be defined as the average number of jobs 

processed per unit of time. Hence, the throughput may be estimated simply 

by counting the number of jobs which get served at the particular resource 

and then dividing this by the length of the simulation run T, i.e. 

number served 
R = T 

The mean queue length may be obtained in a similar way to the busy 

times: i.e. by finding the accumulated area of fig. 6.25 and dividing 

by the length of the simulation run T. The area may be estimated by 

first recording the time at which the queue length changes, subtracting 

the previously recorded time, and multiplying this time difference by the 

previous queue length, and finally adding that subarea to the running sum 

of the area, i.e. 

Accumulated area 
L = T 

The mean queueing time may be obtained from the above values of· 

queue length and throughput by the application of Little's result (ref. 6.29), 

since the mean queueing time is equal to the mean queue length divided 

by the throughput, i.e. 

Q = Accumulated area 
number served 

The mean system response time may then be estimated by summing the 

mean queueing times at the various queues. 



312 

Busy 

Idle 

T 
Fig. 6.24 Busy periods' 

Queue length 

T 

Fig. 6.25 Number in the system 



313 

In many cases, simulation experiments can be constructed with 

arbitrary amount of detail so that they model the system behaviour as 

closely as possible. In this way, they can be made as general as possible. 

Besides being one of its greatest advantages, this generality of the 

simulation experimentation provides it with a severe liability because 

the simulation models are liable to become unwieldy due to excess detail. 

If the running of a simulation is viewed as an experiment which entails 

statistical behaviour, then the methods of statistical analysis may be 

employed to deal with the statistical variability of the simulation 

results, (ref. 6.38). The two main methods for statistical analysis of 

simulation results are the methods of independent replications and the 

regenerative method (ref. 6.39, 6.40, 6.38, 6.41). In both these methods, 

the primary aim is to analyse the statistical behaviour of the results 

by estimating the confidence interval (ref. 6.42, 6.43, 6.44), which may 

be estimated by obtaining the estimates of the mean and variance of the 

performance measures. Some typical confidence levels used in such simula-

tion analysis are the 90%, 95% or 99%. For example the 90% confidence 

level in the unit normal distribution defines the interval (-1.645, 

1.645), (rei. 6.43, 6.44). 

In the use of the method of independent replications in the statistical 

analysis of a simulation model, the aim is to repeat (replicate) the 

experiment many times and then use the average of these experimental values 

as the final estimate of the relevant performance measure. By making 

many such identical replications of the simulation runs, then it may be 

reasonably assumed that they obey the law of large numbers and that the 

central limit theorem (ref. 6.40), is applicable. If this is the case, 



314 

then it may be assumed that the average over the replications has a 

normal distribution, with a finite mean and a finite variance, so that 

the confidence level may be estimated (ref. 6.40, 6.43). In using these 

estimates for the mean and variance too, it is assumed that the simulation 

runs long enough to have attained equilibrium (ref. 6.37). 

On the other hand, the method of regeneration in the statistical 

analysis of simulation models exploits the specific behaviour of a Markov 

process (ref. 6.39, 6.42). Since the future behaviour of a Markov 

process is dependent only upon the current state of the process, then 

each time the process enters that state the process will have the same 

expected future behaviour. In this way, a Markov process regenerates 

each time it enters a specified regeneration state and produces re-

generation cycles between successive entrances to the state. A simulation 

model can take advantage of this regenerative phenomenon to estimate the 

confidence intervals for equilibrium behaviour if a regeneration state 

which is entered frequently enough can be identified. A more frequently 

entered state ensures short regeneration cycles. The main advantage of 

the regenerative method is that if the simulation is initialized in a 

regeneration state, then the simulation may be assumed to have been 

initialized in an equilibrium condition, so that observing the regeneration 

cycles is equivalent to observing periods of equilibrium behaviour 

(ref. 6.39, 6.42). Hence, besides recognizing the entrances to the 

regeneration states, the regeneration cycles which are of random length 

must be determined and used to estimate the confidence intervals, 

(ref. 6.43, 6.44). For many networks, and as long as no queue is saturated, 

the Markov state in which there are no jobs in the system is usually the 

most frequently occurring state and can be used as the regeneration state. 



315 

For a queue with exponential interarrival times, exponential service times, 

and having a FCFS single fired rate server, the queue length is geometrically 

distributed (ref. 6.30), so "that 

pen] = n 
(l-U).U , for n = 0, 1, 2, .••• 

where U is the utilization of the server, and since U < 1, then, 

PLO] = l-U, is the most probable queue length. This result also holds 

for PS and the LCFSPR with single fixed rate server and arbitrary service 

time distributions (ref. 6.30). 

Hence, if the number of replications, or the number of the regeneration 

cycles is large, and if the value of the performance measure for each of 

these simulation runs can be taken to be independent and identically 

distributed random variables, then the law of large numbers and the central 

limit theorem may be used to obtain the confidence interval (C.I.) The 

confidence interval is obtained by the use of the standard (unit) normal 

distribution given by (ref. 6.40) 

z 2 
F (z ) = r 0 _1_ -z /2 

.dt e z 0 -0> I2ir 

with density 

2 
1 

-z /2 
P (z ) 0 = e z 0 I2ir 

If 
-1 (a) inverse of F (z ) F = z z 0 

P [z " 
-1 

(a)] = F = a 
0 z 

so that 

P [0 " 
-1 

(a) J a - 0.5 z " F = 
0 z 

and 

pC _F-
l 

(a) "z "F-l (a)l = 2a - 1 
z 0 



316 

or, for 0 ~ c ~ 1, then 

p[ _F- l ({l+C)/2) 
z 

:; Z ;; F- l ({l+C)/2)] = C 
o Z 

If C = 0.9, then 

F~l (O.95) = 1.645 

so that 

p[ -1.645 ;; Z ;; 1.645J = 0.9 
o 

Hence for n independent and identically distributed random variables, 

each with mean m and variance 0
2 , then, if the sample mean is y and the 

2 n 

sample variance is ~ , then for n large enough y can be assumed to have 
n n 

In a normal distribution and {y -m).--- has the standard normal distribution, 
n 0 

so that 

or 

where 

d = F -1 ["(l+C) /2J 0 
Z In 

and 

[Yn - d, Yn + d] is a random interval called the confidence interval whose 

90% confidence level may be defined by C = 0.9. 

The sample variance, s2, of n independent and identically distributed 

random variables Xi is defined by, (ref. 6.40) 

2 
s = 

1 
n-l 

n 
E 

i=l 

n 
E 

i=l 

(x, 
1. 

/ _ n. y2) 
1. n 

which, for large n, may be used to estimate the variance of the performance 

measures .. 



317 

In the calculation of the queueing time performance measure a quotient 

of two averages x and w, (queue length and number served), is used, 
n n 

where xn is the average of the set of the random variables Vi' and wn 

th is the average of the set of random variables U
i

, during the i regeneration 

cycle. In this case the joint sample variance may be obtained from 

(ref. 

where 

and 

6.41, 

s2 

S2 
u 

S 
uv 

6.42, 6.43). 

2 2 2 
= S - 2.y .S 

u n uv + Y .S n v 

1 
=--n-l [ 

n 2 
E U. 

i=l' 1. 

[ 
n 2 
E Vi 

i-l 

2 ) - n.w 
n 

n. w.x ) 
n n 

- n.x~ ) 

from which the confidence interval estimate [Y - dJy + dJ may be 
n n 

obtained, where 

d 
F-l ((1+c)/2).s 

z =-=------
x .m 

n 

Hence, the simulation program must recognise that the ith regeneration 

2 
cycle has ended and maintain values of Ui , Vi' Ui.V

i
, U

i 
' for i = 1, 2, .•• n. 

6.3.3 Simulation Language 

Many programming languages are available for simulation. Some of 

the main examples of such languages are Basic, Fortran, Pascal, PLll, 

Coral 66, and APL. Among these languages, Fortran is the oldest and was 

the first high-level language to be introduced, and has continued to enjoy 



318 

wider acceptance over the years. It is simple to use, and its wide 

acceptance and dominance over the years has resulted in a great wea.lth 

of software and experience. In particular the GINO and NAG Library 

routines, which are available to computer centres of many universities, 

is a rich source of a variety of many efficiently coded, sophisticated 

and invaluable subroutines. Unfortunately, Fortran has many short-

comings such as cumbersome character handling, limited flexibility and 

in some cases, inefficient use of core store. More seriously, Fortran 

suffers from the so-called "spaghetti-code" problem in which the state-

ments in a program are convoluted, often with no discernible beginning 

or end. one reason for this is the use of the control "goto" and the 

statement label numbers which tend to spread out an algorithm. Some 

of these problems, however, have been removed by a recent version of 

structured Fortran. 

Pascal has been used for the simulation of the queueing models of 

fig. 6.5 (ref. 6.45, 6.46, 6.48). Besides being a simple language to 

use it has also quickly gained wide acceptance. One of the main 

advantages of Pascal is that it is a block-structured language and it 

is easy to implement the methods of top-down design with it as explained 

in an earlier chapter. As Pascal is implemented on both the Prime and 

Multics computers of the computer centre of the university, it is possible 

to use many of the existing NAG and GINO library routines such as the 

random number generators (ref. 6.47), and other routines used in the 

simulation of the queueing model. 

The results of the simulation are shown in figs. 6.26 to 6.35. 

These figures show the results of the various performance measures of the 

queueing model of the dual processor system. The comparison of the 



VI 
-0 
C 
o 
o 

40 

Q) 30 
VI 

Q) 

VI 
C 
o 
0.. 
VI 

~ 
~ 
c 
VI 

c 
o 
Q) 

E 

20 

10 

Mean Sink Response Time 
versus 

interacting module pairs 
b2 = 50 milliseconds, p(cpl.(io]=0.875 

20 40 60 80 

interacting module pairs 

Fig. 6.26 Mean Sink Response Time 

100 

Legend 
D. ••· .. ·'KS··'1t ""'UJ"sd 
X t.1:,T.lt.<V.i·_lJ'M"o&.·.L'L~_ 
o ""U !""Sit' h"prB' 
!81 L':.II. • .: .... '"'4J._.l.r'.II.1I.i..~ 
XI kf.'t··,·':l" .. b ..... ',,·1 * t.1:.'tu~Ilo·&._·~ .. la'i:r. 



Vl 
-0 
C 
o 
o 

20 

QJ 15 
Vl 

QJ 

E 
:;:: 

QJ 
Vl 
C 
o 
a. 
Vl 

~ 
~ 
c 
Vl 

C 
o 
QJ 

E 

10 

5 

Mean Sink Response Time 
versus 

interacting module pairs 
b2 = 50 milliseconds, P[cpu/io]=0.875 

O-+,-------.--------r-------.-------.--------r-------. 
o 10 20 30 40 50 60 

interacting module pairs 

Fig. 6.27 Mean Sink Response Time 

Legl'nd 
Cl. .! .. ) .•.• ~f! ,b .. ", ,.1 
X ~1:.~,J::~1·_!.!'&'14 .. ~:Lf' .. o .. !.!~ •••• ~1t a .... 'i))' 

181 t.':.'2.!t~Jl,~.4_'!r~I .. I.i:.a 
Xl ... n l!t'Cdt lit.",!!'¥' 
)E ~'=n.·..:·.:::.·lo~!.I_.::&' ... '1t1:, 

w 

'" o 



VI 
"0 
C 
o 
u 

40 

Q) 30 
VI 

Q) 

E 
:+= 

Q) 
VI 
C 
o 
0. 
VI 

tI:' 
..Y. 
C 
VI 

C 
o 
Q) 

E 

20 

10 

o , 
o 

Fig, 6,28 

Mean Sink Response Time 
versus 

interacting module pairs 
b2 = 50 milliseconds, p[cpu/ioJ=O,875 

20 40 60 80 

interacting module pairs 

Mean Sink Response Time 

I 
100 

;
,.~;,;: ., , , ... , , 

!.I~ _'~';" .. ~'.Io'.'.i.'''''''~" 
""",.,.c, , .••. ",,' 
tJ~""", ~at ...... ·,.;\Io·;'·': 10" .. 
"tp c"" ,',. t' t 

tJ" ..... · .. 101" .. · .. IioI .... • ... '" W' .. 

" , 
" 

d.\·k':f"h~Q= .e c;.C's: 
H '=- ~s 

W 
IV ..... 

... ..f~.fS" 

.. ...... fS 
~c.-ff 

.. ~ '(l s 



III 
"U 
C 
o 
o 

20 

Q) 15 
III 

Q) 

E 
:;:: 

Q) 
III 
C 
o 
0.. 
III 

~ 
~ 
C 
III 

C 
o 
Q) 

E 

10 

5 

o I 
o 

Fig. 6.29 

I 
10 

Mean Sink Response Time 
versus 

interacting module pairs 
b2 = 50 milliseconds, P[cpu/io]=o.875 

I I I 
20 30 40 50 60 

interacting module pairs 

Mean Sink Response Time 

i
L
.'.". ,,' " 

L'1l~·IJ"""~·"'''''''''''. ""':s,,t:! , '!tic 

U;.ltJlollor"'.'\i,· ... "'·.·,,"'. ",It, 'de' , nl", 

",,,\.1,,, "''' ...... W ... oIlo1. 

" 10\ ... \0 

'. 

w 
'" '" 

ckl s e":"f"h;"Q.. 'L ~<;.~s 
" .. ("''5 

- ~"fS 
~ e 30 . , .. ~. 
• f.s 



14 

2 

Mean Load Factor 
versus 

interacting module pairs 
b2=50 ms,p[cpu/ioFO.875 

o+------.-----.-----.-----.------~--__, 
o 10 20 30 40 50 60 

interacting module pairs 

Fig. 6.30 Mean Load Factor 

I
l.~!:~~ tI i" , , .! " 

~:J .... ,&,.a. .... .t1olo'.I/'Ioi'l.l ~ '" .. 
pI: , ,It r! ,.1 I. 

~:.I~._.&. .... _f.l~11oI1.I1.:1i • 
.... ,,' ,,1: 1 1., "" It 

... In ... ''a.r ... _ ........ IW~· .. W .. 

, " 
I." \0 " 

.... , ... l~~ 

'0 cl .. ' sc..:~\\M.. =- ~c.c S' 

'.. ~ ~s 
'-, .... -f'a.(!,. 
<. .... t's-
.... t. "C.~9 

-==- (''5 



-::J a. 
.!: 
Cl 
::J 
0 .... 

.!: -::J 
a. 
u 

25 

20 

15 

10 

5 

CPU Throughput 
versus 

interacting module pairs 
b2 = 50 milliseconds, P[cpu/io}=O.875 

04&-------,r--------.-------,r--------r------~ 

o 20 40 60 80 100 

interacting module pairs 

Fig. 6.31 CPU Throughput 

L.g.nd 
~ tt.! , .. 'c" 'h .... !!,,' 
X to':},., :,ar"' .. :J .. ~",LU' .. o .,_'9 ""ri' It.,c.I!:,' 

t8I t.1:.ll.taUI.~.1;,,·lr.l'.II.1, .. J. 
D tl_" lit .. " Ib",,!!u' 

)E t.1:,IL'I.I'.Ia.· ... ..;lI' .. '''n,:a. 

w 
IV ... 



25 

20 

~ 

::J 
Cl.. 15 .!: 
0> 
::J e 
.!: 
~ 

::J 10 
Cl.. 
U 

5 

10 

Fig. 6.32 

CPU Throughput 
versus 

interacting module pairs 
b2 = 50 milliseconds, P[cpu/iol=0.875 

i 
20 30 40 

int~racting module pairs 

CPU Throughput 

i 
50 

w 
I\) 

'" 

Legend 
/:l .'.~ ........ ,b ••.• C<", 

X LI:>.U:t.i,'_U'IoI'I.I.'J,t:.o' .. o U·U '''.'';1' Ib .. ··'n' 
!81 t.1:,11!.a:~4:. ;...i.r',lI'.lI' .... ,Q, 
XX .,.nlt .. ",· Ib .. ,,'''''' 

X t.t:,1l.·~"'L·j, Ji.r.a',I.tI,n" 

60 



c 
0 -0 

.t:l 
:;:: 
:l 
:l 
a. 
0 

0.8 

0.6 

0.4 

0.2 

CPU Utilization 
versus 

interacting module pairs 
b2 = 50 milliseconds, p(cpujio]=0.875 

O~------.--------.-------r-------.-------. 
o 20 40 60 80 100 

interacting module pairs 

Fig. 6,33 CPU Utilization 

Legend 

X
A U-?·"·SiC 'b· .. ·!!··, 

to':.'.: uU' ... • .. .J.,'IIl.'\I.-..l,':.,n.. o .,." .... s1' ! ... "tI.~. 

181 iV:.I!.\::,:I1o".&.~'.!.r'.:.'.a'.L':I. 
~ !r'." ... to .. ""ft""" 
7'I!i; t.':.I.I."HU •• ~ .. !.I' .. I ... IJ.t~ 

w 
N 
m 



c 
0 

+= 
0 

.t:! 
+= 
:I 
:I 
a. 
<) 

0.8 

0.6 

0.4 

0.2 

CPU Utilization 
versus 

interacting module pairs 
b2 = 50 milliseconds, P(cpu/io]=0.875 =--

O~-----'------'------r------r-----.------. 
o 10 20 30 40 50 60 

interacting modul~ pairs 

Fig. 6.34 CPU utilization 

legend 
l:l ~!.? .... ':/' Ib."'"i • ., 

X .. 1:.~."lU'1·..; IJIlI.'\1-J.L .... _ 
o u-'9 !:t,c1': [' .. ··n· .. 
181 t .. :.'t.v\:/l, ........ ,;,t'-.a' .. '.i. • .I:, 
Xl "_" 'Wc" . 'bt'·,!!,y' 
~ ~'~'L"'~D.""'..JlI' .. t .. 'i.rg, 

co 

'" .... 



C-
o -<) 
0 -""0 
0 
0 

~ 
C 
en 
c 
0 
Q) 

E 

25 

20 

15 

10 

5 

Mean Sink Load Factor 
versus 

cpu utilization 
b2 ::: 50 milliseconds,p[cpu/io):=0.875 

O~,-----------'r----------"------------Ir-----------ll------------' 
o 0.2 0.4 0.6 0.8 

cpu utilization 

Fig. 6.35 Mean Sink Load Factor 

w 

'" (Xl 

I
'·:·::: . " ,. . 

"'~.L, ............. '.&, ... J.,j",~", .. 
• ,,' 9' ! , ',,: cl .. 

~:.n. •• ", L' ... • .. t,;'. 1J\Ii '':" .. 
• '.,,' 0" d, cl 8'0'" 

"''II'IJ_ ~" .. 'i4·.IoI ... ·""" 



329 

theoretical and the simulation experiment are presented as well as the 

performance comparison of the simulation results for the various sink 

processor CPU scheduling algorithms. From these results it may be 

observed that the theoretical (solid lines) and the simulation (dashed 

lines) show close agreement for the range of values of b , P and q 
m 

(P [CPU/IO]) used. These results were obtained using the Prime and 

Multics Computers of the computer centre of the university. The Multics 

computer system also supports the Tellagraph graphics system (ref. 6.47), 

which were used for plotting the results. 

6.4 MODULE BEHAVIOUR 

The results of section 6.3 summarise the behaviour of the sink 

processor system as the computational workload there increases. This 

behaviour has been characterised by the sink processor system response 

time and load factor as shown by the theoretical results of figs. 6.8 to 

6.20, and the simulation results of figs. 6.26 to 6.30 and for the various 

queueing disciplines at the sink processor CPU of the time-shared central 

server model of fig. 6.S. AS was explained earlier, the sink processor 

system response time (or load factor) is the most important performance 

measure in the dual processor CPU cache distributed computation system in 

that it is the dominant factor in determining whether the system modules 

may be processable in the dual processor environment. The results show 

how the load factor (or system response time) performance measure is bounded 

by the two ideal asymptotes: a horizontal asymptote in which the load 

factor is largely insensitive to the number of users currently getting 

service at the sink processor system, and a linear asymptote in which the 

system load factor rises linearly at a constant slope and in which each 



330 

user delays all other users by an amount of time equal to his own processing 

time, as previously explained. From this behaviour of the system load 

factor it may be suspected that the benefits of the dual processor system 

are maximum in this horizontal region. However, as the system load 

factor approaches the linear asymptote, substantial delay is introduced 

in the system and hence it may be expected that the source processor users 

planning to partition and assign their modules to the sink processor will 

have to "think twice"; or are discouraged from apportioning any of their 

computation to the sink processor. Furthermore, because of the feedback 

nature of the system, it may be expected that those source processors 

already with modules at the sink processor may wish to recall some of their 

modules to process at "home" .. 

An alternative way of looking at the way the modules behave in the 

system is to examine the position of the minimum cut. The two extreme 

positions of the minimum cut, as explained in an earlier chapter, correspond 

to when all the modules are scheduled and assigned to either processor, 

i.e. 

a) all modules assigned to the source processor 

b) all modules assigned to the sink processor 

In the case in which all or some of the modules are assigned to the sink 

processor, it may be expected that the position of the minimum cut will 

approach case (a), perhaps gradually at first and then rapidly later, as 

the load factor increases beyond the critical value of n (n ). 
s 

Such 

module behaviour may be compared with a queueing arrival process with 

impatience. 

A dual processor CPU cache distributed computation system may be 

viewed as a queueing system with impatience because of the expected 



331 

reaction of the source processors and their modules in the feedback 

system. Impatient users may be described as either balking, reneging, 

or jockeying for a queue position (ref. 6.49, 6.50). If a customer 

(modules, user) decides not to join the queue upon arrival, then he is 

said to have balked. On the other hand, a customer may join the queue, 

but after waiting for a while lose patience and decide to leave, in 

which case he is said to have reneged. Both balking and ren"ging may 

be expected to exist in a dynamic dual processor CPU cache distributed 

computation system in which a feedback mechanism is present and used to 

control the system behaviour by broadcasting the level of the sink 

processor system load factor before, during, and after the module 

scheduling and assignment to processors. 

In practice, it may be expected that users become discouraged when 

the queue is long and may not wish to risk waiting. Such a queueing 

system may be modelled as a birth-death process with limited waiting room 

(ref.6.49), in which an arriving customer does not join the queue if he 

sees K ahead of him. If K is the greatest queue length at which an 
q 

arrival would not balk, then K is a random variable whose distribution 
q 

B(n) is the same for all the users, (ref. 6.49), so that 

Let 

B(n) = P[K ~nl q 

B(n-l) = the probability that the arrival refuses to join when n are in 

the queue. 

then 

B(n-l) defines the balking distribution, so that 

P Larrival joins the queue] P[K ~n] 
q 

= 1 - P rK <n] 
q 



Hence 

or 

Let 

or 

and 

then 

332 

1 - P[K <n] ; 1 - B(n-l), for n>-O, 
q 

B (n-l) 

G(n) 

G(n-l) 

A 
n 

; P LK <n1 
q 

; 1 - F(n) 

; 1 - F(n-l) 

; )..G(n-l) 

where Ai and Ui are state dependent birth and death rates, so that 

where 

and 

and 

LG(i-l) 
U 

n-l 
TI G(i-l), for n>l 

i;l 

Balking functions which are dependent on the value of the sink processor 

system load factor may be used to model the behaviour of the modules 

in the dual processor CPU cache distributed computation system. Fig. 6.36 



333 

characterises the queue lengths of a system with balking for various 

values of G(n), given by 

G(n) = 
1 

I for o~n~k 

o n>k 

where band c are constants. 

It shows how customers are discouraged from joining the queue as 

the value of k increases. Figs. 6.37, 6.38 and 6.39 show the simulation 

results in which the number of modules scheduled and assigned to the sink 

processor is observed as the load factor increases both uniformly, 

fig. 6.37 and fig. 6.38, and exponentially, fig. 6.39. As expected, it 

is seen that the source processors decide against having more modules 

process at the sink processor as the computational workload there increases. 

This module behaviour is due to the feedback mechanism of the system and 

is equivalent to the position of the minimum cut shifting further and 

further away from the source towards the sink, in the basic graph of the 

modular program, as shown in fig. 6.40. 



.Y-
e 
III 0.8 
0 .... .... 
e 
Cl> 

E 
e 0.6 
Cl 

'Vi 
III 
Cl 

Cl> 
'S 0.4 'U 
0 

E 
..... 
0 

..ci 0.2 
e 
a. 

0 
0 

Prob. of assigning modules to sink processor 
versus 

Number of jobs already at the sink processor 
___ different impatience functions __ _ 

'.\ 
V~\ 
~ .. \ 
\.'\ \ :\' \ :, '\ 
\' \ "-\\ .. "-

.~ ~ '" 
:..' \ "-\\ ". ' ......... 

: '-... """--'.,... -......~ 

.\ ....... ~ .... "-..... ...... 
............... - --...... - ...... .......... -

2 4 6 8 10 

number of jobs already at the sink processor. 

Fig. 6.36 Module Assignment 

Legend 
ll, power = 

X powe~.2 

o power.:,.~ 
181 power =_ ~ 
III I?~~~L:= ..•• ~ 

w 
w ... 



III 
Cl> 
:; 
"U 
o 

0.8 

E 0.6 
oX 
c 

'(ij 

'0 
c 0.4 
o :n e 

'>-

0.2 

, , , 

I. , , 
\ , , 
.\ 
., , 

L , , , 

Fraction of modules Scheduled to Sink 
versus 

increasing sink load 

, 
, , 
'1 , 
'.-, , . , 

O~---------.~~------r-~------~--------__ 
o 5 10 15 20 

increasing sink load 

Fig. 6.37 Fraction of Scheduled Modules 

w 
w 
Ul 

,,~~ \~\&J"""""od. -b.~'(V\.c..s 
'\."~""'~"'~o...~ ';"~o..l. 1\.'t'I'\.C.S' 
c-~Q. __ :""'\.__ \.~-\.v-......... ~ ~~ .. & 



III 
(1j 

:J 
-0 
0 
E 
~ 

.s 
III 

..... 
0 
C 
0 -u 
e ..... 

0.8 

0.6 

0.4 

0.2 

Fraction of modules scheduled to sink 
versus 

increasing sink load 

\ ...,..--, 

o -r ---r--'I~--'--' ~T"" I i , i , I I i I , I ,-TTl 

0.1 I 10 
increasing sink load 

Fig. 6.38 Fraction of Scheduled Modules 

100 

Legend 
l::l. hiah inl •• mod ';n,.. 

X~t~~., 

w 
w 
Cl' 



III 
Q) 

:; 
-0 
o 

0.8 

E 0.6 
~ 

.5 
III -o 
C 0.4 
o 

:on e - 0.2 

Fraction of modules Scheduled to Sink 
versus 

increasing sink load 

20 40 60 80 

increasing sink load 

Fig. 6.39 Fraction of Scheduled Modules 

100 

Legend 
A hlph int.rmod.timn 

X' !o .. lnl.rmod~'I. 

w 
w ...., 



s 

s 

Fig. 6.40 

.... 

2 

.. .. ... 

338 

... ... 
... 

Effect QL_TnCreasi ng T cad Factor on the I.oc.a.tion 
of the Minimum Cut 

T 

(b) 

T 

(d) 

T 

(e) 



339 

CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 INTRODUCTION 

The purpose of the research reported in this thesis is to 

investigate some aspects of performance in a distributed computation 

environment. In the type of distributed computation environment con-

sidered, the aim is to partition a single computation and assign the 

various portions of the computation to the various autonomous computers 

in the system. Various arrangements for distributed computation systems 

are available but this research was mainly concerned with the CPU cache 

system. A CPU cache system is primarily a dual processor distributed 

computation system in which the single computation is partitioned into two 

and assigned to the two autonomous computers in such a way that the 

total computation time of the problem is minimized. In order for the 

single computation to be partitioned and run thus, it is first organised 

in the form of program modules so that a module scheduler may then be 

used to partition and assign the program modules to the two processors 

using graph-theoretic concepts. 

The CPU cache dual processor distributed computation system examined 

in this research is one in which an arbitrary number of the various small, 

but autonomous, and relatively less powerful computers (source processors) 

existing in a relatively small geographical area (LAN) decide to share 

their computations with a much larger and relatively more powerful computer 

(sink processor) also existing within the same LAN. The source processors 

may be microcomputers or minicomputers while the sink processor is primarily 

a large multi-accessed time-shared computer. All the various computers 

in the network (network-users) are interconnected by a wideband broadcast-



340 

type bus topology communications subnet. Such a CPU cache dual processor 

distributed computation arrangement can exist in a LAN among network-users 

in a small factory complex or a research complex establishment. 

Hence the main goal of the CPU cache dual processor system as explained 

above is to partition and assign some of the computations of the individual 

source processors to the sink processor, whenever possible. The decision 

of the source processors to partition and assign any computation to the 

sink processor is dependent on the currently existing workload at the sink 

processor. If the computational workload at the sink processor is low 

then the source processors are encouraged to assign some portions of 

their computation to the sink processor, and conversely. The decision 

of the source processors whether to assign any of their computations to 

the sink processor is effected by the existence of an internal feedback 

mechanism which is built within the broadcast-type distributed computation 

system in such a way that the sink processor broadcasts back to all the 

source processors, at regular intervals, the up-to-date value of the 

load factor or computational workload currently existing at the sink 

processor. In this way the source processors can update the values of 

the module and intermodule run times at the sink processor. By so doing, 

the source processors can calculate and decide the fraction of their total 

computation to schedule and assign to the sink processor during the module 

scheduling time. 

Below we review briefly some of the main results of our investigation 

and we present suggestions for possible future development and further 

investigations. 



341 

7.2 REVIEW OF RESULTS 

We showed that the concept of the CPU cache can be extended to the 

case in which many small computers with a CPU cache problem can be organised 

to share the resources of the computational power of a large computer 

coexisting in the same LAN. We examined and characterised the main 

performance measures in such a CPU cache dual processor distributed 

computation system. In particular we showed and quantified the three 

main factors that dominate the overall performance of such a system, i.e. 

a) Module scheduling time 

b) LAN delay performance 

c) Computational workload at the sink 'processor 

With regard to the module scheduling time we showed that the 

asymptotic space and time complexity of the module scheduling algorithm 

is a major performance consideration. The performance of two very 

different module schedulers were examined in detail. It was shown that 

as the number of program modules increases beyond a critical number of 

modules, the performance of the polynomial complexity maxflow-mincut 

. module scheduling algorithm, at both the source processor (microcomputer) 

and sink processor (a .large mainframe computer), is far superior to the 

corresponding exponential complexity enumerative module scheduling algorithm. 

But even in this case the scheduling time can run into many seconds, and 

even hours, of CPU time at either processor if the number of modules is 

large. Hence an even more efficient and faster polynomial complexity 

module scheduler, preferably O(n), is necessary in the CPU cache dual 

processor distributed computation system to keep the module scheduling 

time to a minimum. For a large number of modules, it was shown that it 

may be worth while to consider transporting all the modules to the sink 



342 

processor, whenever possible, so that the module scheduling may be done 

at the sink processor in order to reduce the overall scheduling time of 

the modules. 

But the actual time taken to schedule the modules at either processor 

can be considered in both absolute and relative terms. A module scheduling 

time of one second may be both absolutely and relatively smaller than the 

module scheduling time of one hour, if the same module scheduler is 

employed to schedule ten modules. But if the value of the minimum cut 

has weights of ten seconds and ten hours respectively, then it may be 

seen that the use of a module scheduling time of one second is impractical 

compared to the other one. Hence, the absolute value of the module 

scheduling time cannot be taken in isolation and it may be found better 

to consider both the absolute and relative values of the scheduling time 

with respect to the value of the minimum cut. But the underlying assump-

tion is that the module scheduling time is much smaller than the value of 

the minimum cut. A further underlying assumption is that the overall 

computation time of the CPU cache dual processable computation may be 

considered to be quite long since it maY'be pointless to partition and 

distribute a computation which lasts just a few seconds to process com-

pletely at the source processor. Hence, a problem for solution in a dual 

processor arrangement is bounded from below by the minimum computation 

time at the source processor and also by the relative and absolute values 

of the module scheduling time. 

In a CPU cache dual processor distributed computation system it is 

necessary that, during the computation time, modules move freely between 

the two processors depending on the relative values of the computational 

workload at either processor. One way to accomplish this module movement 



343 

between the two processors is to keep running the module scheduler at 

regular intervals to determine whether the existing module assignment is 

acceptable. If the module assignment is found to be acceptable, then the 

modules continue with the same assignment, otherwise the scheduler must 

determine a new module assignment to the processors. In this case it 

is necessary that the module scheduling time is as small as possible, 

in absolute terms. With such a fast scheduler, and if the scheduling 

time is very small compared to the value of the minimum cut, dynamic 

module scheduling and assignment can be supported in the system. Also, 

with such a fast scheduler, and for a relatively few number of modules, 

all the cuts and module assignments may.be pre-determined and stored in 

some form of a look-up table. In such a case, all the run-time environ-

ment routines have to do is to modify and up-date the table, at regular 

intervals, as the computational wcrkload at the sink processor changes, 

and by so doing also determine the new module assignment. On the other 

hand, if the absolute module scheduling time is not small, or if the 

number of modules scheduled to the sink processor is large, then it is not 

possible to run the module scheduler very often. In this case, the 

scheduler may be run only once and the dynamic movement of the modules 

between the processors may be accomplished by examining the relative 

running times of the modules at the two processors so that those modules 

that are most affected by the increased load factor of the sink processor 

may now be moved to process at the respective source processor, and 

conversely if the load factor decreases. 

With regard to the LAN delay performance, it was shown that the module 

and intermodule packets experience small delay when the channel traffic is 

low to medium. Hence the communications component of delay in the CPU cache 



344 

dual processor distributed computation system is not very significant. 

Furthermore, due to the internal feedback mechanism of the dual processor 

system, the actual number of users contending for the channel may be 

expected to remain small, most of the time. 

Finally, the computational workload at the sink processor itself was 

characterised in terms of the sink processor system response time and load 

factor. The sink processor was considered to be a multi-accessed and 

time-shared and modelled as a central server time-shared resource system. 

The variation of the sink processor system response time and load factor 

was examined as the number of the source processors sending their computation 

to the sink processor increased. In particular, it was shown that the 

computational workload (or load factor) increased very slowly and gradually 

at first until a critical value of the number of source processors inter

acting with the sink processor was reached when the computational workload 

increased more rapidly. In the region of the load factor curve where 

the rate of rise of the computational workload with the number of source 

processors is slow and gradual the expected computational delay is very 

small and hence, in this region, the source processors derive maximum 

benefit from the computational crunching power of the sink processor 

system. In the deeply saturated region of the load factor, however, the 

expected delay for the modules scheduled and assigned to the sink processor 

system is substantial and it may be expected that the source processors 

will be discouraged from considering to assign much of their computation 

to the sink processor system to avoid long computational delay there. 

As explained earlier, the source processors are discouraged thus via the 

system feedback mechanism in which the level of the load factor is broadcast 



345 

back to all the source processors to let them know the volume of the 

computational workload there. Through such an internally built feedback 

mechamism, the source processors are constrained to schedule and do module 

assignment in the horizontal part of the load factor curve. As explained 

before, the load factor is a dimensionless quantity and represents a 

multiplication factor which the source processors must use to multiply 

the values of the module run times at the sink processor. As the load 

factor gradually increases with the computational workload, the feedback 

information forces the source processors to schedule and reassign their 

modules again so that fewer and fewer modules get assigned to the sink 

processor. This module behaviour due to this feedback is equivalent to 

the minimum-cut shifting further and further away from the source towards 

the sink, in the basic graph of the modular program, as explained before. 

A major assumption in the derivation of the results which characterise 

the computational workload at the sink processor is that, on average, the 

multitude of the source processors may be considered to be homogeneous 

with respect to their computational requirements. Hence, if the average 

intermodule data request time was relatively long compared to the average 

service time for the intermodule request then the load factor curve show a 

relatively long horizontal portion. A long average intermodule data 

request time can be considered to be consistent with well designed program 

modules which are relatively autonomous and logically distinct. From the 

overall computation point of view, it is necessary that the program 

modules remain as autonomous and logically distinct as possible. In 

the way in which the dual processor system is organised in this research 

it is possible to have some modules which are not processable by the source 

processor. This is because such modules may already be existing on the 



346 

sink processor system, such as in the form of NAG library routines, as 

explained earlier. In such. cases, it may be neither possible nor worth-

while to transport the routines from the sink processor because they 

may be implementation dependent and written in a different programming 

language. 

7.3 SUGGESTIONS FOR FUTURE WORK 

The following suggestions for future work along the lines of this 

research are now offered. 

(i) As explained earlier, the efficiency and speed of a module scheduling 

algorithm is very important. A fast polynomial complexity module scheduler 

algorithm can go a long way in reducing the module scheduling and assign

ment delay in a dynamic dual processor system. 

(ii) The minimum and maximum size of modules in terms of the computation 

time can give an indication as to whether a module is too small to be 

organised as a separate module. 

(iii) A study of intermodule relationships in terms of their computational 

precedence relationships among the modules is also important. 

(iv) The possibility of parallel execution of modules can also be 

investigated. 

(v) The component of computational delay due to the contention for the 

primary memory at the sink processor system can be investigated since the 

sink processor system is likely to support multiprogramming. 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
41j 

45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
'Od 
59 
60 

Appendix A Max-Flow Min-Cut Module Scheduling 

program sita (output) 

Simport 
'qmill (pll)' :qm!ll$ 

const 
n= 12 ; 
unscanned= -12 
infinity=10000 

type 
node=l 0 on 
xnode=-no on ; 
vector=array[node] of xnode ; 
matrix=array[node,node] of real 
whichway=(push,pull) 

var 
s,t : node 
c,f : matrix; 
initial,final,cputime real 
x : integer 

function qmlll (var x : integer) : real ;external 
procedure generate ( var c : matrix) 

var 
i,J,cost,runtime : integer 

begin 
for 1:=1 to n do 

for j:=l to n do 
if (i=j) or (i=t) or (j=s) or (I=s) 

then c [i ,J] : = 0 
for J:= (s+1) to (n-ll do 

end 

begin 

end 
i : = s+l 

while 

runtlme := 10 * j mod 61 
c[j,t] := runtime ; 
c[s,j] := 61 - 008*runtime 

(! <= (n-2» do 
begin 

end 

j := ! + 1 
while (j<= (n-1 » do 

begin 

end 

cost := i mod 11 
c[i,j] := cost 
c [j ,iJ : = cost 
j := J + 1 

i := i+ 1 

and (j=t) 

procedur'e maxflow (s,t:node ;c:matrix ; var f:matrix) ; 
vat" t"efnode: node; (-node wi th least excess capac i ty -) 
minpotential :real; (-excess capacity of the ref node *) 
1 ayer : vec tOt"; (-the layered network is defined by this array -) 
r : rC~'ll : 
i , j : node : 
minimumcut : 

(>indices *) 

real ; 



61 
62 
63 
64 
65 
66 
67 
-68 
69 
70 
71 
72 
73 
74 
75 
76 
77 

\c )} 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 

348 

function min (x,y:real):real ; 
(*determines the minimum amount of flow *) 
begin 
if x<y 
then min : =X 

else min :=y 
end ; 

procedure walk (i:node ) ; 
(*traverse the layered network from t,inverting layer numbers.*) 
var j:node; li :xnode ; 
begin 
layer[il := -layer[il 
li :=layer[il ; 
for j:= 1 to n do 
if (jOs) and (-layer[J]=!i-1) and «f[j,i]<c[j,il> or (f(i,j]>O 

then walk (j) 
end; (*walk *) 

function layeringpossible 
(*is It possible to build 

var i ,j :node ; 
k:O •• n ; 
emptylayer :boolean ; 
begin 

k :=0 
for i:= 1 

(*k keeps 
to n do 

boolean ; 
a layered network, if so build it *) 

track of layer being built *) 

layer[il :=unscanned; (*initialize each node *) 
layer[s] :=k; (*source node Is in layer 0 *) 

repeat 
k :=k+1; (*now locate all nodes in layer k *) 
empty layer := true; (*an empty layer stops the algorithm *) 
for i:= 1 to n do 

if -layer[il = k-l 
then 

(*i is in layer k-1 ,its neighbors may be in layer k *) 
for j := 1 to n do (*check each node adjacent to I *J 
if (layer[j]=unscanned) and «f[i,j]<c[i,j]) or (f[j,i]>O» 
then 

begin 
layer[j] := -k ; 
emptylayer := false 

end ; 
until (layer[t] <> unscanned ) or emptylayer 
layeringpossible := not emptylayer; 
walk (t); (*prune off the dead ends *) 

end; (*layeringpossible *) 

procedure findrefnode (i:node) 
(*traverse the layered network fr'om t, seeking the ref node *) 
var j :node ; 

1 i ,lj :xnode ; 
Incap, outcap : real 
begin 
li := layer[i] 
incap : =0 
outcap := 0 ; 
for j :=1 to n do 

(*examine each node adjacent to i *) 



121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 

\e *) 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 

349 

bel<in 
lj :=layer[j] 
if (lJ =li-1) and (j<>s) and «f[j,il<e[j,ij) or (f[i,jl>O» 
then findrefnode (j) 

if lj = li-1 
then ineap :=ineap + (e(J,il-f(J,i])+f(i,J] 

if lj =li+l 
then outeap :=outeap + (c(i,Jl-f(i,J])+f[J,i] 

end ; 
if (i<>s) and (i<>t) and (min (ineap,outeap)<minpotential) 
then 

(*node i has smaller potential than the current ref node *) 
bel<in 
minpotential := min (ineap, outcap) 
refnode := i 

end 
end (.findrefnode .) 

procedure pushpull (i :node ; flowleft :real ; p : whichway ) ; 
(.aul<ment the flow thro' i by pushinl< or pulling minpotential units 

var J, kl, k2, layersoul<ht : O •• n ; 
begin 
j : = 0 
while (flowleft >0) and (j<n) do 
begin 

j :=j+l ; 
if p=push 
then 

begin 
kl : = i 
k2:=J 
layersoul<ht:=layer[il+l 

end 
else 

begin 
kl:=j 

k2:=i; 
layersought :=layer(il-l 

end; 
r:=min (flowleft,e[k1 ,k21-nkl ,k21+f[k2,k11 

(.amount of flow to move .) 
if (r)O) and (layer[j]=layersought) 
then 

end 

begin (.push/pull some flow to/from an adjacent layer *) 
flowleft :=flowleft -r ; 
f(kl,k2l :=f(kl,k2l+r-rnin(r,f[k2,k1l) 

(.augment positive flow *) 
f[k2,k1l : = f(k2,k1l-min (r ,f[k2 ,k1 ] ) 

(.push reverse flow backwards .) 
if (j<>s) and (jOt) 
then pushpull (j,r,p) 

end 

end ;(*pushpull.) 

begin (.maxflow *) 
for i :=1 to n do 
for j :=1 to n do 
f[i,j] :=0 ; (*initialy no flow *) 
f(s,tl :=c[s,t] (*if an s_t link exists, saturate it *) 



161 
162 
163 
164 
165 
166 

\csink*) 
167 
166 
169 
190 
191 
192 
193 
194 
195 
196 
197 
196 
199 
200 
201 
202 
203 
204 
205 
206 

350 

minimumcut := 0 ; 
while layeringpossible do (*assign nodes to layers *) 

begin 
minpotential := infinity ; 
findrefnode (t) (*find the reference node *) 
pushpull (refnode,minpotential,push) (*push flow towards the 

pushpull (refnode,minpotential ,pull), (*pull flow from source*) 
minimumcut := minimumcut + r ; 

end 
writeln ('minimum cut = ',minimumcut:12:3) 

end (*maxflow*) 

begin (*main program *) 
wri teln (. maxflow_mincut schedul ing .) 
writeln Ct***************************t) 
S : =1 ; 
t : = n ; 
initial := 0 
final := 0 , 
initial := qmill(x) 
generate (c) 
maxflow (s,t,c,f) 
final := qmill(x) 
cputime := final -
writeln (. time = 

end. 

, 
initial ; 
• ,cputime:12:3) 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

351 

Appendix B Enumerative Module Scheduling 

proeram enumerate (output) 
Simport 

• qmill (pI 1 ). :qmill $ 

const 
n = 10 

var 
x : integer ; 
initial ,final ,cputime : real ; 

function qmill (var x : integer) 

procedure allcuts 
var 

i,j,ja,jb,k : integer , 
z,zz,s,t,best,total : integer 
out: array [1 •• n] of integer 
comp : array [1 •• n] of integer 
bout: array [1 .• n] of integer 
bcomp : array [1 •• n] of integer 

real 

tl array [1 •• n] of integer 
t2 array [1 •• n] of integer ; 
c array [1 •• n,l •• n] of integer 

function power integer 
var 

i ,answer 
begin 

integer 

end 

begin 

answer : = 1 
for i := 1 to n do 

answer := answer * 2 
power : = answer 

for s := 1 to n do 
tl[s] := 61 - 8 * s mod 61 

for s := 1 to n do 
t2[s] := 10 * s mod 61 

for s := 1 to n do 
for t := 1 to n do 

if s=t 
then c[s,t] .- 0 
else c[s,t] := s mod 11 

best := maxint 
for i := 0 to power do 

begin 
j : = i 
for ja := 1 to n do 

begin 
jb :" j div 2 
if j<> 2*Jb 

then 
begin 

external 

out[ja] := ja ; 
comp[Ja] : = 0 

end 
else 

begin 



\c) 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 

end ; 

352 

out[ja] := 0 
comp[ja) := ja 

end 
j : = jb 

end ; 
total := 0 
for z := 1 to n do 

begin 
if out[z) <> 0 

then 

end ; 

begin 

end 

total := total + t2[z] 
fOI' zz : = 1 to n do 

if comp[zz) <> 0 
then total:= total + c[z,zz 

else total := total + t2[z) 

if best>total 
then 

begin 

end 

best : = total 
for z := 1 to n do 

begin 

end 

bout(z) : = out[z] ; 
bcomp[z] := comp[z] 

writeln ('minimum cut = ',best) 
end 

begin (* main program *) 

end. 

writeln (' enumerated cuts as follows' ) 
writeln ('***************************') 
initial := 0 
final := 0 
initial := qmill(x) 
allcuts ; 
final := qmill (x) , 
cputime := final - initial 
writeln ('time = , ,cputime:12:3) 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

Appendix C Channel Delay Performance 

program approxchannel (output) 

Simport 
'g05ccf(fortran)':g05ccf 
'g05caf(fortran)' :g05caf ; 
'g05dbf(fortran)':g05dbf$ 

const 

type 

bl = 200 
a = 0.001 
nq = 1 

(* prop. delay = 5ys, P=5Kb, C=IMbps *) 

elementptr = Aelement 
"element = record 

end 

var 
clock : real 

time : real ; 
param : integer 
next : elementptr 

total length : integer 
i : integer ; 
first,last,avail : elementptr 
queues: array [1 •• nq] of 

record 
numberservers : integer 
meanservice : real 
length : integer 
timelengthchanged : real 
sumtimelength : real 
sumbusytime : real ; 
numbercompletions : integer 
bt real 
U : real 
nc : real 
btsq : real 
btxcl : real 
ncsq : real 
ncxcl : real 
Usq : real 
tlxcl real 
tlxnc : real 

end , 
run,numberevents,eventlimit,eventmax : integer 
noeventsduringcycles,numbercycles,nocycml : integer 
timecyclestarted,cyclelength, 

sumcl,sumclsq,varcl,dcl : real ; 
util,dutil,varbt,covarbtcl,vart : real 
tput,dtput,varnc,covarnccl : real 
ql,dql,vartl,covartlcl : real 
qt,dqt,covartlnc : real ; 
dummymeanvalue,negexpomean : real 
negexpotime : real 
meaninterarrival real 
vI ,v2 : integer 

procedure g05ccf ; external 



61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 

\est *) 
116 
117 
118 
119 
120 

354 

function e05caf ( var dummymeanvalue : real) : real; external 

function g05dbf (var negexpomean : real) : real ; external 

function min (v1 ,v2 : integer) : integer 
begin 

if v1<v2 
then 

min : = vl 
else 

min : = v2 
end (* min *) 

procedure insertevent (t : real ; q : integer) 

(* insertevent adds event at time t for param q to list *) 

var 
temp, n, 1 elementptr 

begin 
if avail = nil 

then 
new(temp) 

else (* previously used storage available *) 
begin 

temp : = avail 
avail := availA.next 

end 
tempA.time := t 
tempA • param : = q 
if first = nil 

then 
begin (* list was empty *) 

first := temp 

end 
else 

last : = temp ; 
tempA.next := nil 

if t<firstA.time 
then 

begin (* insert at beginning of list *) 
tempA.next := first 
first : = temp 

end 
else 

if t>=lastA.time 
then· 

begin (* insert at end of list *) 
lastA.next := temp 
last := temp 
tempA.next := nil 

end 
else 

begin (* insert somewhere in middle of li 

1 := first ; 
while t>=lA.nextA.time do 

1 : = 1 A • next 
tempA.next := lA.next 
lA.next := temp 



\c 

121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 

158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 

180 

355 

end 
end ; (* insertevent *) 

procedure removefirstevent (var t : real ; var q : integer) 
(* removefirstevent returns time t and param q of first event *) 

var 
temp 

begin 

elementptr 

if first = nil 
then 

end 

begin 
writeln (. removefirstevent --- empty list·) 
(* halt *) 

end 
else 

(* 

begin 

end 

t := first~.time 
q := first~.param 
temp : = first ; 
first := first~.next 
if first = nil 

then 
last : :: nil . , 

temp~.next : :: avail 
avail : :: temp 

removefirstevent *) 

procedure complete (q : integer) 
(* handles completion of a Job at queue q *) 

begin 
with queues(q] do 

begin (* statistics *) 
numbercompletions := numbercompletions + 1 
sumtimelength := sumtimelength+(clock-timelengthchanged)*length 

sumbusytime := sumbusytime + (clock-timelengthchanged)* 
min(length,numberservers) 

timelengthchanged := clock ; 
(* mechanics *) 

length := length - 1 
if length )= numberservers 

then 

end 

begin 
g05ccf 

end 

negexpotime := g05dbf(meanservice) ; 
insertevent (clock + a + negexpotime,q) 

end (* complete *) 

procedure arrive (q : integer) 
(* handles arrival of a Job at queue q *) 
begin 

with queues(q] do· 
begin 

(* statistics *) 
sumtimelength := sumtimelength+(clock-timelengthchanged) 

length 



181 
182 
183 
164 
185 
186 
167 
166 
169 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 

\cers ; 
220 
221 
222 
223 
224 
225 
226 
227 
228 

\c 

\c; 

\ens 

229 
230 

231 

232 
233 
234 
235 
236 
237 

end 

sumbusytime := sumbusytime + (clock-timelengthchanged)* 
min(length,numberservers) 

timelenQthchanged := clock 
(* mechanics *) 

length : = length + 1 ; 
if length <= numberservers 

then 
begin 

end 

g05ccf ; 
negexpotime := g05dbf(meanservice) 
insertevent (clock+a+negexpotime,q) 

end (* arrive *) 

function endcycle : boolean 
(* determines whether at end of regeneration cycle. If so, *) 
(* endcycle updates accumulators. *) 
var 

q : integer 
begin 

if (totallength = 0) and (numberevents>O) 
then 

begin 
endcycle := true ; 

. noeventsduringcycles := numberevents 
numbercycles := numbercycles + 1 
cyclelength := clock - timecyclestarted 
timecyclestarted := clock ; 

end 
else 

sumcl := sumcl + cyclelength 
sumclsq := sumclsq + sqr(cyclelength) 
for q := 1 to nq do 

with queues[q] do 
begin 

end 

sumtimelength := sumtimelength + 
(clock-timelengthehanged)*length ; 

sumbusytime := (sumbusytime + 
(clock-timelengthchanged)* 
min(length,numberservers»/numberserv 

timelengthchanged := clock 
bt := bt + sumbusytime ; 
tl := tl + sumtimelength ; 
nc :=nc + numbereompletions ; 
btsq := btsq + sqr(sumbusytime) 
btxcl := btxcl + sumbusytime*cyclelength 
sumbusytime := 0.0 
ncsq := ncsq + sqr(numbercompletions) ; 
ncxel := nexcl+numbereompletions*eyclelength 

tlsq := tlsq + 'sqr(sumtimelength) 
tlxcl := tlxel + sumtimelength*cyclelength 

tlxne := tlxnc+sumtimelength*numbercompletio 

numbercompletions := 0 
sumtimelength := 0.0 

238 end 
endcycle := false 

(* endcycle *) 
239 
240 begin 



241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 

357 

(* Initialization 
meaninterarrival := 
avail := nil 
eventllmit := 100 ; 
for run := 1 to 3 do 

*) 
0.00625 

begin 
first := nil 
last : = nil 
clock : = 0.0 
numberevents := 0 
numbercycles := 0 ; 
timecyclestarted := 0.0 
sumcl := 0.0 
sumclsq := 0.0 ; 
eventlimlt := 10*eventlimit 
eventmax := 2*eventlimit 
for i := 1 to nq do 

with queues[iJ do 
begin 

length := 0 ; 
timelengthchanged := 0.0 
sumtimelength := 0.0 
sumbusytime := 0.0 
numbercompletions := 0 
bt := 0.0 
tl := 0.0 
nc : = 0.0 ; 
btsq := 0.0 
btxcl := 0.0 
ncsq := 0.0 
ncxc1 : = 0.0 
tlsq := 0.0 

; 

'tlxcl : = 0.0 
tlxnc := 0.0 

. , 
; 

end ; 
queues[lJ.numberservers := 1 
queues[11.meanservice := 1.0/bl 
totallength : = 0 
g05ccf ; 
negexpotime := g05dbf(meaninterarrival) 
insertevent (negexpotime,O) 

(* run *) 
while (first<>nil) and (numberevents<eventmax) 

and 
((numberevents<eventlimlt) or not endcycle) 

do 
begin 

numberevents := numberevents + 
removefirstevent (clock,i) 
if i = 0 

then 
begin 

total length := totallength + 1 
arri ve (1 ) 

g05ccf 
negexpotime := g05dbf(meaninterarrival) 
insertevent (clock + negexpotime,O) 

end 
else 

begin 



\c, 

358 

301 complete(l) 
302 if i<>nq 
303 then 
304 arrive (i + 1) 
~5 el~ 

306 totallength := total length - 1 
3~ e~ 

308 end 
309 
310 (* print statistics *) 
311 writeln; 
312 writeln ('no. of events :' ,numberevents:8, 
313 simulated time :' ,clock:l0:3) 
314 writeln; 
315 writeln ('queue util tput queuelength queueingtime') 
316 if numbercycles>1 
317 then (* produce confi.· interval estimates *) 
318 begin 
319 cyclelength := sumcl/numbercycles 
320 nocycml : = numbercycles - 1 ; 
321 varcl := Csumclsq-sqr(sumcl)/numbercycles)/nocycml 
322 for 1 : = 1 to nq do 
323 with queues[il do 
324 if nc>O 
325 then 
326 begin 
327 uti! : = bt/sumcl 
328 varbt := (btsq-sqr(bt)/numbercycles)/ 
329 nocycml ; 
330 covarbtcl: = (btxcl-bUsumcl/numbercycles)/ 
331 nocycml 
332 duti 1: = 1 . 645*sqrt ( (varbt-2*uti hcovarbtcl 
333 +sqr(util)*varcl)/numbercycles)/ 
334 cyclelength 
335 tput : =. nc/sumcl 
336 varnc : = Cncsq-sqrCnc )/numbercycles)/ 
337 nocycml ; 
338 covarnccl: = Cncxcl-nc*sumcl/numbercycles)/ 
339 nocycml 
340 dtput: =1 .645*sqrtC Cvarnc-2*tput*covarnccl 
341 +sqr(tput)*varcl)/numbercycles)/ 
342 cyclelength 
343 ql : = tllsumcl 
344 vartl := (tlsq-sqr(tll/numbercycles)/ 
345 nocycml 
346 covartlcl : = (tlxcl-tl *sumcl /numbercycles)/ 
347 nocycml 
348 dql : = 1 .645*sqrt ( (vartl-2*ql*covartlcl 
349 +sqr(ql)*varcl)/numbercycles)/ 
350 cyclelength 
351 qt : = tllnc 
352 covartlnc: = (tlxnc-tl *nc/numbercycles)/ 
353 nocycml 
354 dqt: = 1 . 645*sqrt ( (vartl-2*qt*covartl nc 
355 +sqr(qt)*varnc)/numbercycles)/ 
356 (nc/cyclelength) 
357 writeln ('UPPER', 
358 util+dutil:12:3,tput+dtput:l1:3 

359 
360 

ql+dql:13:3,qt+dqt:14:3) 
writeln (i:5,util:12:3,tput:l1:3, 



361 
362 
363 

\c:3, 
364 
365 
366 
367 
368 
369 
370 
371 

\c 

\C; 

\c ; 

372 
373 

374 
375 
376 
377 
378 
379 
380 
381 
382 
383 
384 
385 
386 

387 
\cnc) ; 

388 
389 
390 
391 
392 
393 
394 

\c2:3, 
395 
396 
397 

\c3) ; 
398 
399 (* 
400 
401 
402 
403 
404 
405 
406 end 
407 end. 

end 

end 
writeln ; 

359 

ql : 13 : 3 ,qt: 14: 3 ) 
wrl teln (' LOIlER' , 

util-dutil:12:3,tput-dtput:11 

ql-dql:13:3,qt-dqt:14:3) 

wrlteln('no. of cycles :' ,numbercycles:8) 
If noeventsduringcycles<>numberevents 

then 
wrlteln ('no. of discarded events :', 

numberevents-noeventsdurlngcycles:8) 

writeln ('ave. no of events :', 
noeventsduringcycles/numbercycles:10:3) 

dcl:=1.645*sqrt(varcl/numbercycles) 
writeln ('ave. length :' ,cyclelength:10:3, 

C.!. : (' ,cyclelength-dcl:10:3,',', 
cyclelength+dcl: 10:3,' )' ) 

else (* produce point estimates only *) 
for i:= to nq do 

with queues[il do 
if numbercompletions+trunc(nc»O 

then 
begin 

end 

sumtimelength := sumtimelength + tl 
sumbusytime := sumbusytime+bt*numberservers 

numbercompletions:=numbercompletions+trunc( 

sumtimelength:=sumtimelength + 
(clock-timelengthchanged)*length 

sumbusytime := sumbusytlme + 
min(length,numberservers)* 
(clock-timelengthchanged) 

writeln (i:5, 
sumbusytime/(numberservers*clock):l 

numbercompletions/clock:l1:3, 
sumtlmelength/clock:13:3, 
sumtimelength/numbercompletions:14: 

put leftover events on avail list 
if first<>nil 

then 
begin 

end 

lastA.next := avail 
avail := first 



\cERN; 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

360 

Appendix 0 Module Movement 

PROGRAM sabini (output) 
CONST 

n=12 ; 
loopmax = 50 ; 
unscanned=-12 ; 
infinity=10000 

TYPE 
node=1 .. n ; 
xnode=-n .. n ; 
vector=array[node) or xnode ; 
matrix=array[node,nodel of real 
WhichWay=(push,pull) ; 
A5=ARRAY [1 •• 30) OF INTEGER 
cutset = array [1 .. 50) of real 

VAR 
i,s,t : node 
J:NODE; 
c,r : matrix 
x,y,FlowLert :real 
p: WhichWay 
B:A5 ; 
INT: INTEGER 
countone,counttwo,countzero integer 
loop : integer ; 
count,avem,avelinks : integer 
al ,pl ,p2 : real ; 
MinCut,avesource,avesink ,dodsn real 
parameter : integer ; 
MinimumCut : real 
ratio : real 
xX,yy : cutset ; 
nn,mode : integer 
mean,meanone,meantwo,meanthree REAL 

. , 

PROCEDURE TIMDAT (VAR M:A5 SOORT VAR N:INTEGER SfDRT) 
(* returns cpu and ilo time parameters *) 

PROCEDURE C1051n EXTERN 
(* the graph plotting device .. ) 

PROCEDURE DEVEND EXTERN, 
(* closes graph plotting routines *) 

EXTERN 

PROCEDURE GRAF (VAR xX,yy:cutset short; VAR nn,mode:integer short);EXT. 

(* graph plotting GINO routine *) 

PROCEDURE G05CCF ; EXTERN ; 
(* sets the generator G05CAF to non_repeatable initial state *) 

PROCEDURE G05CBF (VAR parameter : integer short) ; EXTERN 
(* sets the generator G05CAF to a repeatable initial state *) 

FUNCTION RAND1 (var lower,upper : integer) :integer ;EXTERN 
(* modified G05DYF returns an integer rrom a unirorm distribution *) 

FUNCTION G05DBF (VAR mean : REAL SOORT) REAL ; EXTERN 
(* returns a real no. rrom a neg. expo. distribution *) 



61 FUNCTION ChDe (pl,a1 : real) : real; 
62 (* The channel delay factor = normalized mean delay *) 
63 var 
64 X,Y,packet : real 
65 begin 
66 packet: = 0.1 
67 X := 1+7.44*al+ph(1 +12.87*a1+53.37*al*al )/(2-2*pl-12.88*Bhp 

\cl ) 

\c) 
68 

69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
\cm* ) 

101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 

ChDe := (X-Y)*packet 
end 

FUNCTION Load (p2 : real) : real ; 
(* The effect of loading due to higher usage *) 

var 
wait: real 

begin 
wait := 1.00 ; 
Load := wait/(I-p2) 

end 
(* straight M/M/l,FCFS queue *) 

PROCEDURE GENERATE ( var c : matrix) 
var 
~wer,uppe~integer 
,,1ol<,upP . integer 
cost : integer ; 
sinktime , sourcetime 
~f-:--peal-;--

begin 
for i:=1 to n do 

for J:=l to n do 

integer 

if (i=J) or (i=t) or (j=s) 
then c [i , j 1 : = 0 

&for J:= (s+l) to (n-l) 
begin 

or (i=s) and (j=t) 

do '" c,r:{ t- ., 
\;,)rr- " [\J •. J t.Jo ,,~ 

G05CCF -(~ ~ ~'J\,v'(.L 
- 7J ... \<0 ~ 

sourcetlme := ROUND (G05DBF(meanone) + 1 ) 
c[j,tl := sourcetime 
G05CCF ; ~3Q 
mean := meantwo*Load(p2) ; 

0,," 
'c< 

t'; 
i,.~ \' , 

sinktime:= ROUND (G05DBF(mean)+1);(*The PI strea/"l 

end 

.i--:-=----s+1-- ; 

c[s,j) .- sinktime 
end 

do s~ I while (i<=(n-2» 
begin 

j : = i + 1 ; :.-!)/ . -: l +-! \- l) h - \ cl..,., 

end 

while (j<= (n-l » do "W.,ocl.cu k,,,, 
begin 1'\'0 - '""" 

end 

cost := ROUND (G05DBF(meanthree) + 1 ) 
c[ i ,j 1 : = cost 
c [j ,iJ : = cost 
j-: = j +, t 

1':= i+ 

PROCEDURE MaxFlow (s,t:node ;c:matrix ; var f:matrix) ; 
var RefNode :node; (*node with least excess capacity *) 
MinPotential :real; (*excess capacity of the ref node *) 



362 

121 layer :vector; (*the layered network is defined by this array *) 
122 r : real ; 
123 Cut : cutset ; 
124 value: 1 •. maxint 
125 i,J :node; (*indices *) 
126 
127 FUNCTION Min (x,y:real):real ; 
128 (*determines the minimum amount of flow *) 
129 beliin 
130 if x<y 
131 then Min :=x 
132 else Min :=y 
133 end ; 
134 
135 PROCEDURE Walk (i:node ) ; 
136 (*traverse the layered network from t,inverting layer numbers.*) 
137 var J:node; li :xnode ; 
138 begin 
139 layer(i) := -layerCi) 
140 li :=layer(i) ; 
141 for j:= 1 to n do 
142 if (j<>s) and (-layer[j]=li-l) and ((f(j,i]<c(j,ij) or (f(i,j»O 

\c) ) 
143 then walk (j) 
144 end; (*walk *) 
145 
146 FUNCTION LayeringPossible boolean; 
147 (*Is it possible to build a layered network, If so build it *) 
148 var i,j :node ; 
149 k:O .. n ; 
150 EmptyLayer :boolean 
151 beliin 
152 k :=0; (*k keeps track of layer being built *) 
153 for i:= 1 to n do 
154 layer(i] :=unscanned; (*initialize each node *) 
155 layer(s) :=k; (*source node is in layer 0 *) 
156 . repeat 
157 k :=k+l; (*now locate all nodes in layer k *) 
158 EmptyLayer := true; (*an empty layer stops the algorithm *) 
159 for i:= 1 to n do 
160 if -layer(i) = k-1 
161 then 
162 (*i is in layer k-l ,its neighbors may be in layer k *) 
163 for j := 1 to n do (*check each node adjacent to i *) 
164 if (layer(j]=unscanned) and ((f(i,j)<c(i,j]) or (f[j,i]>O» 
165 then 
166 beliin 
167 layer[j) := -k ; 
168 EmptyLayer := false 
169 end ; 
170 until (layer[t) <> unscanned ) or EmptyLayer 
171 LayeringPossible := not EmptyLayer; 
172 Walk (t); (*prune off the dead ends *) 
173 end; (*LayeringPossible *) 
174 
175 PROCEDURE FindRefNode (i:node) 
176 (*traverse the layered network from t, seeking the ref node *) 
177 var J :node ; 
178 li ,lJ :xnode ; 
179 InCap, OutCap : real 
180 . begin 



181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 

\c * l 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 

1i := layer[i] 
InCap : =0 ; 
OutCap : = 0 ; 
for J :=1 to n do 

363 

(*examine each node adjacent to i *l 
begin 

1J :=1ayer[j] ; 
if (lJ =li-l land CJ<>sl and «f(J,i]<c[J,ill or (f[1,j]>O» 
then FindRefNode (jl 

if Ij = li-l 
then InCap :=InCap + (c[j,i]-f[j,i]l+f[i,j] 

if lj =11.+1 
then OutCap :=OutCap + (c[i ,j]-f[i ,jll+f(j,i] 

end; 
If (i<>s) and U<>t) and· (Min <InCap,OutCap) <MinPotential ) 
then 

(*node i has smaller potential than the current ref node *) 
begin 
MlnPotential := Min (InCap, OutCap) 
RefNode : = i 

end 
end (*FindRefNode *) 

PROCEDURE PushPull (i :node ; FlowLeft :real ; p : WhlchWay ) , 
(*Augment the flow thro' I by pushing or pulling MinPotential units 

var j, kl, k2, LayerSought : O •• n ; 
begin 
J : = 0 ; 

while (FlowLeft >0) and (j<n) do 
begin 

j :=j+l ; 
if p=push 
then 

begin 
kl:=i 
k2: =j ; 
LayerSought:=layer[i]+l 

end 
else 

begin 
kl:=j 

k2:=i ; 
LayerSought : = layer[ i J-l 

end ; 
r:=Min (FlowLeft,c[kl.k2]-f[kl,k2J+f[k2,kl] 

(*amount of flow to move *) 
if (r>O) and (layer[j]=LayerSought) 
then 

end 

begin (*push/pull some flow to/from an adjacent layer *l 
FlowLeft :=FlowLeft -r ; 
f[kl,k2] :=f(kl ,k2]+r-Min(r,f(k2,kl]) 

(*Augment positive flow *) 
f[k2.kl J := f(k2,kl]-Min (r,f[k2,kl]) 

(*push reverse flow backwards *) 
if (J<>s) and (jOt) 
then PushPul1 (J,r,p) 

end 

end ; (*PushPuII *) 



241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 

\csink*) 
252 
253 
254 

be~in (*maxflow *) 
for i :=1 to n do 
for J :=1 to n do 

364 

f[i,J] :=0 ; (*initialy no flow *) 
f[s,t] :=c[s,t) (*if an s_t link exists, saturate it *) 
MinimumCut := 0 ; 

while LayeringPossible do (*assign nodes to layers *) 
be~in 

MinPotential := infinity ; 
FindRefNode (t); (*find the reference node *) 
PushPull (RefNode,MinPotential,push) (*push flow towards the 

PushPull (RefNode,MinPotential,pull) 
Minimumeut := MinimumCut + r ; 

end 
end (*HaxFlow*) 

(*pull flow from source*) 

255 
256 
257 
258 
259 
260 

be~in (*main program *) 

261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 

\cs,ratio' ); 
282 

\c-- ----'); 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 

293 
294 
295 
296 
297 
298 
299 
300 

writeln ('***************************************') 
writeln ('****MAXFLOY ___ MINCUT SCHEDULING ****') , 
WRITELN (t***************************************,) 
YRI'IELN 
writeln ('a=0.005,T=20ys,bl=2ms,P=4000 bits,C=2Mbps') 
s : = 1 ; 
t := n ; 
pI := 0.00 
al : = 0.005 
meanone := 150 ; (* aye source time *) 
meantwo := 30 ; (* initial aye • sink time *) 
meanthree := 10 ; (* aye Intermod_ time *) 
,(*-for-countzero:=Y-to23 do --.. ) 

(*-begfh *) 

p2 := 0.00 
count : = 1 
writeln 
writeln 
writeln 
writeln 
writeln 
writeln 
writeln 
writeln 

; 
(' ---------------------------------, ) 

(' ethernet channel delay =' ,ChDe(pl,al ):7:3) 
(._--------------------------------,) ; 
; )v,h'~"~ 
; ~ut\ 

('count,avem,MinCut,avesource,avesink,dodsn,Load,link 

writeln (,----- ----- ----- --------- ------- ----- ----- ---

writeln 
writeln 
for countone := 1 to 50 do (* 50 graph points *) 

begin 
avem : = 0 

;l'finCut := 0.00 ; 
'avesource : = 0.00 
avesink : = 0.00 ij ~o 
for count two := 1 to loopmax do 

be~in (* average out and increase loading at sink 

GENERA'IE (c) ; 

MaxFlow (s,t,c,f) , 
,MinCut:= MinCut + MinimumCut 

for j := (s+l) to (n-l) do 

(
beginavesource := avesource + c[J,t] 

avesink := avesink + c[s,J) ; 
end ; 



301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 

\cratio:4:2) 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 

365 

for j := (s+l) 
if (J<>t) 

then 
end ; ((",,,,,\.\-,,-0 

to (n-l) do J 
and (f[s,j] = c[s,j]) 

avem : = avem + 1 ; 

)1 ...... 1. OIL 

AL..k ( 1(0 

avem := avem div ~Jopmax ~(* no. scheduled to sink *) 
MinCut:= MinCut/loopmax ; (* minimum cut *) 
avesource := avesource/loopmax ;(* ave. source time *) 
avesink := avesink/loopmax ;(* ave. sink time *) 
avelinks := avem * (n-2-avem) ;(* intermod links *) 
dodsn := avem/(n-2) ;(* degree of distribution *) 
ratio := avesink/avesource 
xx[count] := ratio 
yy[count] := avem ; 
write (count:4,avem:4,MinCut:4:2,avesource:9:2) 
writeln (avesink:9:2,dodsn:4:2,Load(p2):7:3,avelinks:4, 

count := count + 1 
p2 := p2 +0.0202 

end ; ( ,,~. II"\.,) 

~p~25--'- *) 

<~nd ; .) 

o,o'LO). 

~ 
I 0 I -I 

nn : = 50 --c~~_ 
mode := 0 
for countone := 

begin 
Cl051n 

1 to 3 do 

, 
CRAF (xx,yy,nn,mode) 
DEVEND 

end • 
~ 

INT: =28 ; 
TIMDAT (B,INT) 

BEGIN 

'\ 

I 
! 

WRlTELN 
WRITELN 
WRlTELN 
WRlTELN 
WRlTELN 
WRITELN 
WRITELN 

(' CPU SECONDS USED' ,B[7] ) 
('CPU TICKS USED ',B[8]); 
(' DISK SECONDS USED' ,B[9]) ; 
('DISK TICKS USED ',B[10]) 
('TICKS PER SECOND' ,B[11]) ; 

END 
340 end. 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

Appendix E System Performance 

program simulation (output) 
$import 

'g05ccf(fortran)' :g05ccf; 
'g05dbf(fortran)' :g05dbf; 
'g05caf (fortran)' :g05caf$ 

const 

type 

nq = 4 
nj=100; 
nn = 4 
nio = 2 
b1 = 5.0 
b2 = 0.05 
b3 = 0.22 
b4 = 0.019 

366 

event type = (completion,nodedeparture) 
jobptr = Ajobelement 
eventptr = Aeventelement 
eventelement = record 

kindofevent : event type 
time : t'eal 
job : jobptr 
next : eventptr 
previous : eventptr 

end 
jobelement = record 

, . 

end 
routingpointer = 
routingelement = 

currentnode : 1 •• nn 
request : real ; 
requestgranted : boolean 
subserver : integer 
next job : jobptr
tokenholder : jobptr 
parent : jobptr 
child jobptr 
event : eventptr 
, 

Aroutingelement 
record 

destination 
probabil i ty 
nextrouting 

1 •• nn 
real , 
routingpointet' 

end 
regenpointer -- Aregenelement 



46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 

var 

367 

regenelement = record 

end 

noderegen 
lengthregen 
nextregen 

i ! integer ; 
firstevent,lastevent,availevent 
clock : real ; 
queues: array [1 •• nq] of 

record 

1 •. nn ; 
! integer ; 
regenpointer 

eventptr 

discipline: (fcfs,lcfspr,ps) 
numberunits : integer ; 
numbersubservers : integer 
meansubservice : real 
firstinqueue : jobptr 
lastinqueue : Jobptr 
length : integer ; 
timelengthchanged : real 
sumtimelength : real 
sumbusytime : real 
numbercompletions : integer 
bt real 

end 

tl : real 
nc : real ; 
btsq : real 
btxcl : real 
ncsq : real 
ncxcl : real 
tlsq : real 
tlxcl real 
tlxnc : real 

responsetime : real ; 
run,numberevents,eventlimit,eventmax : integer ; 
noeventsduringcycles,numbercycles,nocycml : integer 
timecyclestarted,cyclelength,sumcl,sumclsq,varcl,dcl 
util,dutil,varbt,covarbtcl : real 
tput,dtput,varnc,covarnccl : real ; 
ql,qt,dql,vartl,covartlcl,dqt,covartlnc real 
availJob,tempjob : jobptr 
tempkind : event type 
firstt'egen,availregen : regenpointer 

real 



91 
92 
93 
94 
95 

\cion) 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 

368 

availrouting : routingpointer 
nodes: array (1 •. nnl of 

record 
kindofnode (class,allocate,release, 

fission,fus 

queue : integer 
lengthnode : integer 
fusionptr : jobptr ; 
routingptr : routingpointer ; 
childrouting : routingpointer 

end 
vI, v2 : ·integer ; 

dummymeanvalue,negexpomean real 

procedure g05ccf ; external 

function g05caf (var dummymeanvalue : real) : real; external 

function g05dbf (var negexpomean : real) : real; external 

function min (vI, v2 integer) : integer 
begin 

if vl<v2 
then min : = vI 
else min : = v2 

end 

procedure insertevent (k : event type ; t 
(* insertevent adds event of kind k at 
var 

temp, I : eventptr 
begin 

if availevent ; nil 
then new(temp) 
else 

; 

: real j : jobptr) 
time t for job j to 

begin (* previously used storage available *) 
temp := availevent ; 
availevent := availeventA.next 

end ; 
tempA.kindofevent := k 
tempA . time : = t 
tempA .job : = j 
jA.event := temp 
if firstevent ; nil 

; 
list *) 



136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 

\c *) 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 

369 

then 
begin (* list was empty *) 

firstevent := temp ; 
lastevent := temp 
temp~.next := nil ; 
temp~.previous := nil 

end 
else 

if t<firstevent~.time 
then 

begin (* insert at beginning of list *) 
temp~.next := firstevent 
tempA.previous := nil ; 
firsteventA.previous := temp 
firstevent := temp 

end 
else 

if t >= lasteventA.time 
then 

begin (* insert at end of list *) 
lastevent~.next := temp ; 
temp~.previous := lastevent 
lastevent := temp 
tempA.next := nil 

end 
else 

begin (* insert somewhere in middle of list 

end 

1 := firstevent ; 
while t >= lA.nextA.time do 

1 : = 1 A .next 
tempA.next := lA.next 
1 ~ • next : = temp· ; 
temp~.previous := 1 
.temp~.nextA.previous := temp 

end (* insertevent *) 

procedure updatepsqueue (q : integer ; t : real ; j : jobptr) 
(* subtl'acts t from request for jobs currently in queue q. *) 

(* then inserts J in the queue according to JA.request *) 
var 

temp : jobptr 
begin 

with queues [q] do 
begin 



181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 

\cst do 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 

370 

temp := firstinqueue 
while temp <> nil do 

begin 
tempA.request := tempA.request - t 
temp := tempA.nextjob 

end ; 
if jA.request < firstinqueueA.request 

then 

end 

begin 

end 
else 

jA.nextjob := firstinqueue 
firstinqueue := j 

if jA.request >= lastinqueueA.request 
then 

begin 

end 

lastinqueueA.nextjob := j 
jA.nextjob := nil 
lastinqueue := j ; 

else 
begin 

end 

temp := firstinqueue ; 
while jA.request >= tempA.nextjobA.reque 

temp := tempA.nextjob ; 
r .nextjob := tempA . next job 
tempA.nextjob := j 

end (* updatepsqueue *) 

procedure complete (var j : jobptr) 
(* handles completion of subserver for Job j. *) 
(* If service is complete, j remains unchanged *) 
(* otherwise j becomes nil *) 
var 

leng : integer 
1 : jobptr 
t : real 

begin 
with queues [nodes[jA.currentnode].queue] do 

begin 
if jA.subserver < numbersubservers 

then 
begin 



\cl ) 

\c; 

226 
227 

228 
229 
230 
231 

232 
\""",st, j ) ; 

233 
234 
235 
236 
237 
238 
239 

\c; 
240 

\cb 
241 

\cqueue,t,j); 
242 
243 
244 

\crunits) 
245 
246 
247 
248 
249 
250 
251 
252 

\clength 
253 
254 
255 
256 
257 
258 
259 

\c 

\cO) 

260 
261 

262 
263 
264 
265 
266 
267 

\ceueA.nextjob; 
268 
269 

\cl 
270 

end 
else 

371 

jA.subserver := jA.subserver + 1 
if (discipline in [fcfs,lcfsprl) or (length = 

then 
begin 

end 
else 

g05ccf ; 
jA.request:=g05dbf(meansubservice) 

insertevent (completion,clock+jA. req 

j : = nil 

begin (* discipline = ps *) 

end 

t : = r. request 
g05ccf ; 
jA.request:=g05dbf(meansubservice) 

firstinqueue := firstinqueue~.nextjo 

updatepsqueue(nodes[jA.currentnodel. 

insertevent (completion,clock + 
firstinqueueA.request * 
length/min(length,numbe 
, firstinqueue) 

J .- nil 

begin (* statistics *) 
numbercompletions :~ numbercompletions + 1 
sumtimelength := sumtimelength + 

(clock - timelengthchanged) * 

sumbusytime :~ sumbusytime + 
(clock - timelengthchanged)* 
min(length,numberunits) 

timelengthchanged :~ clock 
(* mechanics *) 

nodes[jA.currentnodel.lengthnode :' 
nodes [r . c urrentnode 1 .1 engthno(]e - 1 

length :~ length .. 1 
if (discipline in [fcfs,lcfsprll or (length, 

then 
begin 

if j ~ fil'stinqueue 
then 

begin 
firstinqueue : ~ fir'stinqu 

if firstinqueue ~ nil 
then lastinqueue :~ ni 

else 



271 
272 
273 

\cue 
274 
275 
276 
277 
278 
279 
280 
281 
282 

\c ; 
283 

\c; 
284 
285 
286 

\c 
287 

\c 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 

\cice) ; 
304 

\c true ; 
305 
306 

\cquest, 1 ) ; 
307 
308 
309 
310 
311 
312 
313 
314 
315 

else 

372 

end 
else 

begin 
leng : - 1 , 
1 := firstinque 

end 

begin 
1 :- firstinqueue 
leng : - 2 ; 
while j <>l~.nextjob do 

begin 
leng :- leng + 1 

1 := l~.nextjob 

end 
if jA.nextjob = nil 

then lastinqueue := 1 

lA.nextjob := j~.nextjob 

1 := lA.nextjob 
end ; 

if length >= numberunits 
then 

end 
end 

begin 
while leng < numberunits do 

begin 
1 : = 1 A .nextjob 
leng := leng + 1 

end ; 
if not lA.requestgranted 

then 
begin 

g05ccf 
l~.request:= 

g05dbf (meansubserv 

l~.requestgranted :-

end ; 
insertevent(completion,clock+lA.re 

begin (* discipline - ps *) 

t : = j~ . request 
firstinqueue := firstinqueueA.nextjob 
1 :- firstinqueue 
whi le 1 <> nil do 

begin 



316 
317 
318 
319 
320 

\cest * 
321 

\c i ts ) , 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 

373 

lh.request := lh.request - t 
1 : = 1 h .nextjob 

end ; 
insertevent (completion, 

clock + firstinqueue'.requ 

length/min(length,numberun 

first i nqueue ) 
end 

end 
end 

end (* complete *) 

procedure removeevent (e : eventptr ; var k : eventtype ; 
var t : real ; var J : jobptr) 

(* removeevent returns kind k , time t and job j of event 
var 

temp : eventptr 
begin 

if firstevent = nil 
then 

begin 

end 
else 

writeln ('Removevent --- empty list') 
(* halt *) 

if e • firstevent 
then 

begin 

end 
else 

k := firsteventh.kindofevent 
t := firsteventh.time 
j := firsteventh.job 
temp· : = f i rstevent ; 
firstevent := firsteventh.next 
if firstevent = nil 

then lastevent:= nil 
else firsteventh.previous:= nil 

temph.next :' availevent 
availevent := temp 

if e = lastevent 
then 

begin 
k := lasteventh.kindofevent 
t := lastevent'.time 

e *) 



361 
362 
363 
364 
365 
366 
367 
368 
369 
370 
371 
372 
373 
374 
375 
376 

\cfound' ); 
377 
378 
379 

\cnt *) 
380 
381 
382 
383 
384 

\crevious; 
385 

\cext 
386 
387 
388 
389 
390 
391 
392 
393 
394 
395 
396 
397 
398 
399 
400 
401 
402 
403 
404 
405 

end 

374 

J := lastevent~.job 
temp := lastevent ; 
lastevent := lastevent~.previous 
lastevent~.next := nil ; 
temp~.next := availevent 
availevent := temp 

else 
begin 

end 
end (* removeevent *) 

temp := firstevent 
while (temp <> e) and (temp <> nil) do 

temp := temp~.next 
if temp <> e 

then 
begin 

writeln('removeevent---event not 

(* halt ; *) 

end 
else (* e is between first and lasteve 

begin 

end 

k := temp~.kindofevent 
t : = temp~. time 
j := temp~.job ; 
temp~.next~.previous := temp~.p 

temp~.previous~.next := temp~.n 

temp~.next := availevent 
availevent := temp 

procedure arrive (var j : jobptr ; c : integer) ; 
(* handles arrival of a job j at class c. j becomes nil *) 
var 

dummykind : event type 
t : real ; 
dummy Job, temp : jobptr 
leng : integer 

begin 
jA.currentnode := c 
jA.subserver := 1 
j'.requestgranted .- false 
with queues[nodes[c].qllelle) do 

begin 
(* statistics *) 



\ch 

406 
407 

408 
409 

\cruni ts); 
410 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 

\c 

\c) 

421 
422 
423 
424 
425 
426 

427 
428 

\cest, j) 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 

\ct, 
439 

\cjob) 
440 

\cock ; 
441 
442 
443 
444 
445 

\c service*) 
446 
447 
448 

\c do 
449 
450 

\c 

375 

sumtimelength := sumtimelength + 
(clock - timelengthchanged) * lengt 

sumbusytime := sumbusytime + 
(clock-timelengthchanged)*min(length,numbe 

timelengthchanged := clock 
(* mechanics *) 
if (discipline = fcfs) or (firstinqueue = nil) 

then 
begin 

end 
else 

jA.nextjob := nil 
if firstinqueue = nil 

then firstinqueue := j 
else lastinqueueA.nextjob := j 

lastinqueue := j ; 
nodes[cJ.lengthnode := nodes[c].lengthnode + 1 

length := length + 1 
if length (= numberunits 

then 
begin 

end 

g05ccf 
jA.request := g05dbf (meansubservice 

jA.requestgranted := true 
insertevent(completion,clock+JA.requ 

if discipline = lcfspr 
then 

begin 
if length = numberunits 

then 
begin (* preempt last in queue *) 

removeevent (lastinqueueA.even 

end 
-else 

dummykind,t.dummy 

lastinqueue'.request := t - cl 

if length> numberunits 
then 

begin (* preempt last job in 

1 eng : = 1 
temp := firstinqueue 
while leng < numberunits 

begin 
leng : = leng t 1 



451 
\cxtJob ; 

452 
453 

\c, 
454 

\currvny job) ; 
455 

\cck 
456 
457 
458 
459 

\cgthnode+1; 
460 
461 
462 

\cce) ; 
463 
464 

\cequest,j) 
465 
466 
467 
468 

\c, 
469 

\cmyjob) 
470 
471 
472 
473 
474 
475 
476 

\c 1 
477 
478 
479 

\cength 
480 

end 

end 
J : = ni I 

376 

end 

temp := tempA. ne 

end 
removeevent (tempA.event 

durrvnykind,t,d 

tempA.request := t - clo 

end 
jA.nextJob := firstlnqueue 
firstinqueue := J ; 
nodes[c].lengthnode:=nodes[c].len 

length := length + 1 
g05ccf ; 
JA.request := g05dbf(rneansubservi 

JA.requestgranted := true 
insertevent(completion,clock+jA. r 

else (* discipline = ps *) 
begin 

end 

removeevent (firstinqueueA.event,durrvnykind,t 

dum 

t := firstinqueueA.request - (t - clock) * 
min (length,numberunlts)/Iength 

g05ccf ; 
J A.request:=g05dbf (meansubservlce) 
JA.requestgranted := true ; 
updatepsqueue (nodes[c].queue,t,J) 
nodes[c).lengthnode := nodes[c).lengthnode + 

length := length + 1 
insertevent (completion, 

clock+firstinqueueA.request * 1 

Imin (length,numberunits), firs 

(* ar-rive *) 

\ctinqueue) 
481 
482 
483 
484 
485 
486 
487 

procedure addregen (n,l : integer) 
(* initialises I jobs at node I. sets regeneration state descriptio 

\cn to *) 
488 (* have I jobs at node 1 *) 
489 var 
490 temp : regenpointer 
491 j : Jobptr 
492 i : integer 
493 begin 
494 for i : = to 1 do 
495 begin 



1196 
497 
498 
499 
500 
501 
502 
503 
504 
505 
506 
507 
508 
509 
510 
511 
512 
513 
514 
515 
516 
517 
518 
519 
520 
521 
522 

\ce 
523 
524 
525 
526 
527 
528 
529 
530 
531 
532 
533 
534 
535 
536 
537 
538 
539 
540 

if availjob = nil 
then newCj) 
else 

begin 

377 

j : = avalljob , 
avalljob : =availjob~ .nextjob 

end 
j~.tokenholder := nil 
j~.parent := nil 
r .child := nil 
arrive (j ,n) 

end ; 
if availregen = nil 

then newCtemp) 
else 

begin 
temp := availregen , 
availregen := availregen~.nextregen 

end ; 
temp~.noderegen := n 
temp~.lengthregen := 1 
temp~.nextregen := firstregen 
firstregen := temp 

end C* addregen *) 

function endcycle : boolean ; 
C* determines whether at at end of regeneration cycle. rf so,endcycl 

updates accumulators *) 
var 

result: boolean 
temp : jobptr 
l,q : integer ; 
rtemp : regenpointer 

begin 
if firstevent = nil 

then 
begin 

end 

writeln C'endcycle 
endcycle := false 

else 
begin 

event list empty' ) 

if firstevent~.kindofevent = completion 
then result:= true 
else result:= false 



\cs 

541 
542 
543 
544 
545 
546 
547 
548 
549 
550 
551 
552 
553 
554 
555 
556 
557 
558 
559 
560 
561 

562 
563 
564 

\c t i nqueue; 
565 

\c; 
566 

\csult and 
567 

\cnClength 
568 

\cruni ts» 
569 
570 
571 

\cubserver 
572 
573 
574 

\ct: =false; 
575 

\c 1 • 1 
576 

\c := 
577 

\cA,nextJob 
578 
579 
580 
581 
582 

\cue 

\c) 

583 
584 
585 

378 

rtemp := firstregen ; 
while result and (rtemp <> nil) do 

begin 
if nodes[rtempA,noderegen],lengthnode <> 

rtempA,lengthregen 
then result := false ; 

rtemp := rtempA,nextregen 
end 

if result 
then 

begin 
q : = 1 ; 
while result and (q<=nq) do 

begin 
with queues[q)·do 
if length > 0 

then 
if numbersubservers > 1 

then 
begin 

if discipline=fcf 

then 
begin 

temp: =firs 

1 : = 1 

while re 

do 
begin 

(l<=mi 

,numbe 

if tempA ,s 

end 

<>1 
then 

resul 

I : = 

temp 

temp 

end 
else 
begin 
temp:=firstinque 

1 : = 1 ; 
while resul t and 

Cl <=length 



586 
587 
588 

\cserver 
589 
590 
591 

\c false; 
592 

\c; 
593 

\cnextjob 
594 
595 
596 
597 
598 
599 
600 if 
601 
602 
603 
604 
605 
606 

\cin 
607 
608 
609 
610 
611 
612 
613 
614 
615 
616 
617 

\c 
618 
619 

\cted ; 
670 
621 
622 

\ch) 
623 
624 
625 
626 

\cgth + 
627 

\cnged h 

628 
629 

\c+ 
630 

379 

end 

end 
q := q + 1 

end 

do 
begin 
if tempA.sub 

<>1 
then 

result := 

I := I + 1 

temp:=tempA. 

end 

end ; 
numberevents = 0 
then 

if not result and 

else 

(r i ,'stevent A . klndofevent=completion) 
then 

begin 

end 
else 

wri t.pln (. en,\,ycle --- not ini tially 

regeneration state' ) 
(* halt ; *) 

endcycle := false 

if result 
then 

begin 
endcycle := true ; 
noeventsduringcycles : = numbenivents 

numbercycles := numbercycles + 1 ; 
cyclelength := clock - timecyclestar 

timecyclestarted :0 clock 
sumcl := sumcl , cyclelength 
sumclsq : = sumclsq + sqr (cyclelengt 

for q :0 1 to nq do 
with queues[q] do 

begin 
sumtimelength :=sumtimelen 

(cl ock-- t.i melengthcha 

length ; 
sumbusytime:=(sumbusytime 

(clock--timelengthchanged h 



631 
\el 

632 
633 

\e ; 
634 
635 

\e; 
636 

\ens • 
637 

\cytime) 
638 

639 
\e 

640 
641 

\cetions) 
642 

\cpletions* 
643 

\cth 
644 

\cength) ; 
645 

646 
\ength 

647 
\cngth* 

648 

end 
end (* endcycle *) 

380 

end 
else 

min(length.numbersubservers» 

end 

numbersubservers 
timelengthchanged :' clock 

bt := bt + sumbusytime ; 
. tl := tl + sumtimelength 

ne := ne + numbereompletio 

btsq := btsq + sqr (sumbus 

btxcl := btxcl+sumbusytime 

eyelelength 

sumbusytime := 0.0 ; 
nesq: =nesq+sqr (numbercompl 

ncxcl := ncxel + numbercom 

eycleleng 

tlsq:=tlsq + sqr (sumtimel 

tlxcl:=tlxcl+sumtimelength 

eyelele 

tlxne := tlxnc + sumtimele 

numbercompl 

numbereompletions := 0 
sumtimelength := 0.0 

endcycle := false 

\cetions 
649 
650 
651 
652 
653 
654 
655 
656 
657 
658 
659 
660 
661 
662 
663 
664 
665 
666 
667 
668 
669 
670 
671 
672 
673 
674 
675 

function nextnode (j : jobptr) : integer 
(* finds the next node for job j to go to *) 
var 

prob 
temp 

begin 
if 

real ; 
routingpointer 

(nodes[j~.currentnodel.kindofnode = fission) 
and 

(j~.parent <> nil) 
then 

temp := nodes[j~.currentnodel.childrouting 
else 

temp .- nodes[j~.currentnodel.routingptr 

if temp = nil 
then 

begin 
writeln ('nextnode---undefined routing from node' • 



676 
677 
678 
679 
680 
681 
682 
683 
684 
685 
686 
687 
688 
689 
690 
691 
692 
693 
694 
695 
696 

\ci ty p*) 
697 
698 
699 
700 
701 
702 
703 
704 
705 
706 
707 
708 
709 
710 
711 
712 
713 
714 
715 
716 
717 
718 
719 
720 

381 

r .currentnode) 
(* halt *) 

end ; 
if temp~.probability < 1.0 

then 
begin 

g05ccf 
prob : = g05caf· (dummymeanval ue) 
while (prob > temp~.probability) 

end 

and 
(temp~.nextrouting <> nil) do 
begin 

end 

prob := prob - temp~.probability 

temp := temp~.nextrouting 

nextnode := temp~.destination 
end (* next node *) 

procedure adddestination (i,J : integer; p : real; c boolean) ; 
(* adds destination node J to routing list for node i with probabil 

(* if c then routing is for child, otherwise parent *) 
var 

temp : routingpointer 
begin 

if availrouting = nil 
then 

new (temp) 
else 

begin 
temp := availrouting 
availrouting := availrouting~.nextrouting 

end ; 
temp~.probability := p 
temp~.destination := j 
if c 

then 
begin 

end 

temp~.nextrouting := nodes[i).childrouting 
nodes[i].childrouting := temp 

else 
begin 

temp~ • nextrouti ng : = nodes [i ) . rout i ngptr 
nodes[i).routingptr := temp 



721 
722 
723 
724 
725 
726 
727 
728 
729 
730 
731 
732 
733 
734 
735 
736 
737 
738 
739 
740 
741 
742 
743 
744 
745 
746 
747 
748 
749 
750 
751 
752 
753 
754 
755 
756 
757 
758 
759 
760 
761 
762 
763 
764 
765 

382 

end 
end (* adddestination *) 

begin (* main program *) 
(* initialization *) 
availevent := nil 
availjob := nil ; 
availrouting := nil 
availregen := nil 
eventlimit:= 100 
for run := 1 to 3 do 

begin 
firstevent := nil 
lastevent := nil 
clock := 0.0 
numberevents := 0 
firstregen :' nil 
numbercycles := 0 ; 
timecyclestarted := 0.0 
sumel := 0.0 
sumelsq : = 0.0 
eventlimit := eventlimit * 10 

eventmax := 2*eventlimit 
for i : = 1 t.o nq do 

with queues(il do 
begin 

discipline := fcfs ; 
numbersubservers := 1 
numberunits := 1 ; 
firstinqueue := nil 
lastinqueue := nil 
length := 0 
timelengthchanged := 0.0 
sumtimelength := 0.0 
sumbusytime := 0.0 
numbercompletions := 0 
bt : = 0.0 
tl := 0.0 
ne := 0.0 
btsq : = 0.0 
btxel := 0.0 
nesq := 0.0 
ncxel := 0.0 
tlsq := 0.0 
tIxel : = 0.0 



\c) ; 

383 

766 Uxnc := 0.0 
767 end 
768 for i : = 1 to nn do 
769 with nodes[il do 
770 begin 
771 kindofnode : = class 
772 queue : = i 
773 lengthnode : = 0 
774 routingptr : = nil 
775 fusionptr : = nil ; 
776 childrouting := nil 
777 end 
778 (* parameters specific to this model *) 
779 adddestination (1,2,1 .O,false) 
780 queues[l] .discipline := ps 
781 queues[11.numberunits := nj 
782 queues[l].meansubservice := b1 
783 adddestination (2,3,0.1,false) 
784 adddestination (2,4,0.9,false) 
785 queues[21.discipline := fcfs ; 
786 queues[2].meansubservice := b2 ; 
787 adddestination (3,1,O.125,false) 
788 adddestination (3,2,0.875,false) 
789 queues [3 ].meansubservice : = b3 ; 
790 adddestination (4,1,0.125,false) 
791 adddestination (4,2,0.875,false) 
792 queues[41.meansubservice := b4 
793 addregen (l,nJ) 
7911 (* run *) 

795 while (firstevent <> nil) and (numberevents<eventmax) 
796 and 
797 «numberevents < eventlimit) or (not endcycle» do 
798 begin 
799 removeevent (f i rstevent. ,t.empk i nd , clock, tempjob 

800 
801 
802 
803 
804 
805 
806 
807 
808 
809 
810 

if tempkind " completion 
then 

begin 
numberevents := numberevents + 1 
complete (tempjob) 

end 
while tempjob <> nil do 

begin 

end 

i := nextnode (tempjob) 
arrive (tempjob,i) 



811 
812 
813 
814 
815 
816 
817 
818 
819 
820 
821 
822 
823 

\ccml ; 
824 
825 
826 
827 
828 
829 
830 
831 

\cles)/ 
832 

\c; 

\ccml 

833 
834 

384 

; 
print statistics 

, 

end 
(* 

wri teln 
writeln ('number of events:' ,numberevents:8, 

simulated time :' ,clock:l0:3) 
writeln , 
writeln ('queue util thruput queuelength queuetime') 
if numbercycles > 1 

then (* produce confidence interval estimates *) 
begin 

cyclelength := surnel/numbercycles 
nocycml : = numbercycles - 1 
varel:" (sumclsq-sqr(sumcl)/numbercycles)/nocy 

responsetime := 0.0 
for i := 1 to nq do 

with queues[il do 
if nc > 0 

then 
begin 

util := bt/surnel 
val'bt: = (btsq-sqr (bt )/numbercyc 

nocycml 

covarbtcl:=(btxcl-bt*surnel/ 
numbercycles)/nocy 

835 dutil:=1.645*sqrt«varbt-2*util* 
836 covarbtcl+sqr(util)*v 

\carcl)/ 
837 

\cngth 
838 
839 

\cycles )/ 
840 

\c 
841 
842 

\cycml ; 
843 

\cput* 
844 

\carcl)/ 
845 

\cngth ; 
846 
847 

\cc1es )/ 

\c ; 

.\c1 

\c/ 

\ch 

.848 

849 
850 

851 
852 

853 

854 
855 

\crcycles)/ 

numbercycles)/cyclele 

tput := nc/surnel 
varnc := (ncsq-sqr(nc)/numberc 

nocycml 

covarnccl := (ncxcl-nc*surnel/ 
numbercycles)/noc 

dtput : = 1 .645*sqrt.( (varnc-2*t 

coval'nee 1 +sqr (tput) *v 

numbercycles)/cyclele 

ql : = tllsumcl 
vartl := (tlsq-sqr(tl)/numbercy 

nocycm1 

covartlcl: = (tlxcl ·tl *surnel/ 
numbercycles )/nocycm 

dql := 1 . 645*sqrt( (vartl··2*ql* 
covartlcl+sqr(ql)*varcl) 

numbercycles)/cyclelengt 

qt := tl/nc , 
covartlnc := (tlxnc-tl*nc/numbe 



856 
\cm1 ; 

857 
\covartlnc 

858 
\ccles)! 

859 
860 

\c3, 

\c3, 

861 
862 
863 
864 

865 
866 

\c2:3, 
867 
868 
869 
870 
871 
872 
873 
874 
875 
876 
877 
878 
879 
880 
881 
882 

\c*qt ; 
883 
884 
885. 
886 
887 
888 
889 
890 
891 

\c8) 

\c 

892 
893 

894 
895 
896 
897 
898 
899 
900 

end 

wrlteln 

385 

nocyc 

+sqr(qt)*varnc)!numbercy 

(nc/numbercycles) ; 
writeln ('UPPER' ,util+dutil:12: 

tput+dtput:11:3, 
ql +dql : 1 3 : 3 , 
qt+dqt:14:3) ; 

writeln (i:5,utll:12:3,tput:11: 

ql:13:3,qt:14:3) ; 
wrlteln ('LOWER' ,util - dutll:l 

If 1=2 

tput - dtput:ll:3, 
ql - dql: 13 : 3 , 
qt - dqt: 1 4 : 3 ) 

then 
responsetlme := 

responsetime+8*qt 
else 

if 1=3 
then 
responsetirne := 

responsetlme + 0.8*qt 
else 

If i = 4 
then 

responsetlme := responsetime + 7.2 

end 

wrlteln ('RESPONSE TIME =' ,responsetime:13:3) 
writeln 
writeln ('NUMBER OF CYCLES:' ,numbercycles:8) 
if noeventsduringcycles <> numberevents 

then 
wri teln (' NUMBER OF DISCARDED EVENTS:' , 

numberevents-noeventsduringcycles: 

wri te In ( , AVERAGE NUMBER OF EVENTS :', 
noeventsdurlngcycles!numbercycles:l0:3) 

dcl .: = 1 • 645*sqrt (varcl!numbercyc! es) 
writeln ('AVERAGE LENGTH :' ,cyclelength:l0:3, 

C.r. : (' ,cyclelength-dcl:l0:3,',', 
cyclelength+dcl:10:3,' )') 

else (* produce point estimates only *) 
responsetlme := 0.0 



901 
902 
903 
904 
905 
906 
907 

\cbservers; 
908 

\cnc (nc ); 
909 
910 

\cged)* 
911 
912 
913 

end 

386 

for i :- 1 to nq do 
with queues[il do 

if numbercompletions + trunc (nc) > 0 
then 

writeln , 

begin 

end 

sumtimelength := sumtimelength + tl ; 
sumbusytime := sumbusytime + bt*numbersu 

numbercompletions:=numbercompletions+tru 

sumtimelength := sumtimelength + 
(clock - timelengthchan 

length 
sumbusytime := sumbusytime + 

min(length,numbersubservers) 

(clock-timelengthchang 

writeln (i:5, 
sumbusytime/(numbersubservers*cloc 

if 1=2 
then 

numbercompletions/clock:13:3, 
sumtimelength/clock:13:3, 
sumtimelength/numbercompletions 

responsetime :=responsetime+8* 
sumtimelength/numbercompletions 

else 
if i=3 
then 

responsetime := responsetime + 
0.8*sumtimelength/numbercomple 

else 
if i =4 

then 
responsetime : - t'espons 

7.2*sumtimelength/numbercomp 

wrifeln ('responsetime -- ',responsetime:13:3) 
(* put leftovers on avail lists *) 

if first-event <> nil 
then 

begin 

end 

lastevent~.next := availevent 
availevent := firstevent 



387 

REFERENCES 

1.1 S. Rosen : "Electronic Computers : A Historical Survey" I Camp. Surv., 

Vol.l, No.l, March 1969, pp 7-36 

"'-1. 2 J. Backus : "Can Programming Be L-berated From the Von Neumann Style 

A Functional Snyle and Its Algebra of Programs", Comm. ACM 21, 1978, 

pp 613-641. 

,,1. 3 L. Uhr : "Algorithm-Structured Computer Arrays and Networks : 

Arch1tectures and Processes for Images, Percepts·, Models, Information", 

Academic Press, 1984 

"1.4 J.B. Dennis : "The Varieties of Data Flow Computers", First Int. 

Conf. Data Flow Comput., IEEE, 1979 

1.5 C.G. Bell, J.C. Mudge and J.E. M-Namara : "Computer Engineering 

A DEC View of Hardware Systems Design", Digital Press, Bedford, 

Mass., 1978 

1.6 L.G. Valiant "Universality Considerations in VLSI Circuits", IEEE 

Trans. Comput. 30, 1981, pp 135-140 

1. 7 D.P. Bhandarkar, J.E. Juliusen : "Semiconductor Technology, Trends 

and Implications", ACM Comp. Architecture News, Vol.7, No.l, 1978, 

pp 4-14 

1. 8 M. Shima : "Two Versions of 16-bit Chip Span Microprocessor, Mini

computer Needs", Electronics 21, pp 81-88, 1978 

1.9 I.E. Sutherland, C.A. Mead, T.E. Everhart : "Basic Limitations in 

Microcircuit Fabrication Technology", Rep. R-1956-ARPA, RAND Corp. ,1976 

1.10 T. Uehara, and W.M. Van Cleemput : "Optimal Layout of CMOS Functional 

Arrays", IEEE Trans. Comput. 30, 1981, pp 305-312 

1.11 H.Frank, I.T. Frisch and W. Chou : "Topological Considerations in 

the Design of the ARPA Computer Network", AFIPS Conf. Proc. 36, 

June 1970, pp 581-587 



388 

1.12 H. Frank and W. Chou : "Network Properties of the ARPA Computer 

Network", Networks, 4, John Wiley, 1974, pp 213-239 

1.13 L. Kleinrock, W.E. Nay10r and H. Opderbeck : "A Study of Line 

Overhead in the ARPA Network",Commun. ACM 19, No.1, Jan. 1976, 

pp 3-13 

""l..14 A.C. Yao : "The Entropic Limitations on VLSI Computation", Proc. 

13th Ann. Symp. Theory Comput., 1981, pp 308-311 

~1.15 J.B. Dennis, G.A. Boughton, C.K. Leung "Building Blocks for Data 

Flow Prototypes", Proc. 7th Ann. Symp. Comput. Archit., 1980, 

pp 1-8 

~.16 J.B. Dennis, K.K. Weng : "Applications of Data Flow Computations to 

the weather Problem", in "High Speed Computer and Algorithm 

Organisation", by D.J. Kuck, D.H. Lawrie and A.H.Sameh, 1977, 

pp 145-157, Academic Press, N.Y. 

'-1.17 Eli T. Fathi and Moshe Krieger "Multiple Microprocessor Systems 

What, Why and When", Computer, 1983 March, pp 23-31 

~.18 S.H. Fuller et al : "Multi-Microprocessors : An Overview and 

Working Examples", Proc. IEEE, Vol.6, No.2, Feb.1978, pp 216-218 

1.19 P.H. Enslow, Jr., : "Multiprocessor Organisation - A Survey", 

Computing Surveys, Vol. 9, No.l, March 1977, pp 103-129 

~.20 H.J. Siegel : "A Model of SIMD Machines and a Comparison of 

Various Interconnection Networks", IEEE Trans. Comput. 28, 1979, 

pp 907-917 

\21 M.J. Flynn : "Some Computer Organisations and Their Effectiveness", 

IEEE Trans. Comput. 21, 1972, pp 948-960 

\22 L. Uhr : "Parallel-Serial Production Systems with Many Working 

Memories", Proc. 5th Int. Joint Conf. Artificial Intelligence 1979c. 



389 

1. 23 L.D. Wittie : "Efficient Message Routing in Mega-Micro-Computer 

Networks", Proc. 3rd, Ann.Syrnp. Comput. Archit. 1976, 

\1.24 L.D. Wittie : "MICRONET : A Reconfigurable Microcomputer Network for 

Distributed Systems Research", Simulation 31, pp 145-153, 1978 

\ 1. 26 

\ 1.27 

M. Hahn and·P. Belanger : "Network Minimises Overhead of Small 

Computers", Electronics, August 1981 

D.D. Clark and L. Svobodova : "Design of Distributed Systems 

Supporting Local Autonomy", Compcon, Spring 1980, pp 438-444 

L.D. Wittie : "A Distributed Operating System for a Reconfigurable 

Network Computer", Proc. First Int. Coni. on Distrib. Comput. Syst., 

IEEE, 1979, pp 669-677 

'" 1. 28 S.M. Abraham and Y.K. Dalal : "Techniques for Decentralized 

Management of Distributed Systems", Compcon., Spring 1980, pp 430-437 

""1. 29 R. Smith: "The Contract Net Protocol : High Level Communication and 

. Control in a Distributed Problem Solver", Proc. First Int. Conf. 

Distrib. Comput. Syst. IEEE, 1979, pp 185-192 

,\1.30 H.S. Stone and S.H. Bokhari : "Control of Distributed Processes", 

Computer, Vol. 11, July 1978, pp 97-106 

1. 31 G.M. Amdahl : "The Si1ructure of system/360, Part III : processing 

unit Design Considerations", IBM Syst. J., Vo1.3, No.2, 1964, 

pp 144-164 

1.32 G.M. Amdahl : "Validity of the Single Processor Approach to Achieving 

Large Scale Computing Capabilities", Proc. AFIPS, Spring, Joint 

Conf. 30, 1967, pp 40-54 

~.33 H.S. Stone: "Multiprocessor Scheduling with the Aid of Network 

Flow Algorithms", IEEE Trans. Software Engineering, Vol. SE-3, 

\.34 

No.2, Jan. 1977, pp 85-93 

H.S. Stone: "Critical Load Factors in Two-Processor Distributed 

Systems", IEEE Trans. Software Engineering, Vol. SE-4, May 1978, pp254-25 



390 

2.1 M. Schwartz : "Computer-Communication Network Design and Analysis", 

Prentice-Hall, 1977. 

2.2 D.W. Davies and D.L.A. Barber ttCornmunication Networks for ComputersU 

John Wiley & Sons, 1973. 

2.3 H. Frank, LT. Frisch, and W. Chou : "Topological Considerations in 

the Design of the ARPA Computer Network", AFIPS Conf. Proc. 36, 

June 1970, pp. 581-587. 

2.4 G.I. Chretien, W.M. Konig and J.H. Rech : "The SITA Network, Summary 

Description", Computer-Communication Networks Conference, University 

of Sussex, Sept. 1973. 

2.5 D.W. Davies and D.L.A. Barber "Communication Networks for Computers" 

John Wiley & Sons, 1973. 

2.6 J.R. Harcharik : "TYMNET, Present and Future", IEEE Esscon Meeting, 

Washington, D.C., Sept.30, 1975. 

2.7 D. Walden and A.A. McKenzie : "The Evolution of Host-to-Host Protocol 

Technology", Computer, Vol.12, pp.29-38, Sept. 1979. 

2.8 C.A. Sunshine: "Interconnection of Computer Networks", Computer 

Networks, Vol.l, Jan.1977, pp.175-l95. 

2.9 A.K. Mok and S.A. Ward: "Distributed Broadcast Channel Access", 

Computer Networks, Vol.3, pp.327-335, Nov. 1979. 

2.10 J.M. McQuillan and D.C. Walden : "The ARPA Network Design Decisions", 

Computer Networks, Vol.l, August 1977, pp.243-289. 

~.ll E.D. Jensen, K.J. Thurber and G.M. Schneider: "A Review of Methods 

in Distributed Processor Interconnection" Proc. of the International 

Conference on Communications, 1976, pp.7-17-20 

2.12 M. Gien and H. Zimmerman : "Design Principles of Network Interconnection" 

Proc. of 6th Data Commun. Symposium, pp.109-l20, 1979. 



391 

M. Gerla and L. Kleinnock : "Topological Design of Distributed 

Computer Networks", IEEE Trans Commun., Vol. COMM-25, pp.48-60, 

Jan.1977b. 

2.14 H. Frank and W. Chon "Topological Optimization of Computer Networks", 

Proc. IEEE, Vol. 60, Nov. 1972, pp.1385-1397. 

2.15 B. Stuck: "Which Local Net Bus Access is Most Sensitive to Traffic 

Congestion?", Data Communications, Jan. 1983 

2.16 E.C. Luczak : "Global Bus Computer Communication Techniques", 

Proc. Computer Network Symposium, 1978. 

2.17 E. Cooper: "13 Often-Asked Questions About Broadband", Data 

Communications, April 1982. 

2.18 E. Cooper and P.K. Edholm : "Design Issues in Broadband Local Net

works", Data Communications, 1983. 

2.19 M.A. Dineson and J.J. Picazo : "Broa:dband Technology Magnifies 

Local Network Capability"; Data Communications, Feb. 1980. 

2.20 M.A. Dineson : "Broadband Local Networks Enhance Communication 

Design", EDN. March 1981. 

2.21. G.T. Hopkins and N.B. Meisner : "Choosing Between Broadband and 

Baseband Local Networks", Mini-Micro Systems, June 1982. 

2.22 J.H. Salter and D.D. Clark : "Why a Ring?", Proc. Seventh Data 

Communications Symposium, ACM, 1982. 

2.23 H. Salwen : "In Praise of Ring Architecture for Local Area Networks", 

Computer Design, March 1983. 

2.24 R.C. Dixon : "Ring Network Topology for Local Data Communications", 

Proceedings, COMPCON, Fall 82, IEEE 1982. 

2.25 P. Heywood : "The Cambridge Ring is Still Making the Rounds", 

Data Communications, July 1981. 

2.26 J .R. Rush : "Microwave Links Add Flexibility to Local Networks", 

Electronics, Jan.13, 1982. 



392 

2.27 H. Frank, LT. Frisch, and W. Chon : "Topological Considerations 

in the Design of the ARPA Computer Network", AFIPS Conf. Proc. 36, 

June 1970, pp.581-587. 

2.28 R. Binder: "A Dynamic Packet Switching System for Satellite Broadcast 

Channels", Proc. International Conf. on Communications, IEEE. 

2.29 A.M. Dahod 

March 1983. 

"Local Network Standards: No utopia", Data Communications, 

2.30 J. Day: "Terminal,. File Transfer, and Remote Job Protocols for 

Heterogenous Computer Networks", In "Protocols and Techniques for 

Data Communication Networks", by F.F. Kuo, Prentice-Hall, 1981. 

2.31 H.C. Folt : "Coming of Age: A Long-Awaited Standard for Heterogenous 

Nets", Data Communications, Jan. 1981. 

2.32 W. Myers : "Toward a Local Network Standard", IEEE Micro, Aug. 1982. 

2.33 E.E. Mier : "High-Level Protocols, Standards, and the OSI 

Reference Model", Data Communieations, July 1982. 

2.34 H: Zimmermann: "OSI Reference Model - The ISO Model of Architecture 

for Open Systems Interconnection", IEEE Trans. Commun. Vol. Com.28, 

pp.425-432, April 1980. 

2.35 H.U. Bertine : "Physical Level Protocols", IEEE Trans. Communications, 

April 1980. 

2.36 D.R. Doll : "Data Communications: Facilities, Networks, and System 

Design", N.Y., Wiley 1980. 

2.37 N.J.A. Sloane : "A Short Course on Error Correcting Codes", Berlin: 

Springer Verlag 1975. 

2.38 H.C. Fo1ts : " Procedures for Circuit-Switched Service in Synchronous 

Public Data Networks", IEEE Trans. Commun., vol. CDM-28, pp.489-496, 

April 1980a 



393 

2.39 S.W. Edge and A.J. Hinchley : "A Survey of End-to-End Retransmission 

Techniques", Computer Commun. Review, Vol.8, pp.1-18, Oct.1978. 

2.40 A. Bochmann, and C. Sunshine: "Formal Methods in Communication 

Protocol Design", IEEE Trans. Commun., Vol.COM-28, pp.6l2-624, 

April 1980 

2.41 E. Gelenbe, J. Labetoulle, and G. Pujolle : "Performance Evaluation 

of the HDLC Protocol", Computer Networks, vol. 2, pp. 409-415, 

Sept. 1978. 

2.42 L. Kleinrock, and M. Gerla : "Flow Control: A Comparative Survey", 

IEEE Trans. Commun., Vol. COM-28, pp.553-574, April 1980. 

2.43 M. Schwartz and T.E. Stern : "Routing Techniques Used in Compute 

Communication Networks", IEEE Trans. Commun., Vol. COM-28, pp.539-552, 

April 1980. 

2.44 J.M. McQuillan and D.C. Walden : "The ARPA Network Design Decisions" 

Computer Networks, Vol.l, pp.243-289, August 1977 

2.45 LM. Jacobs, R.Binder and E.V. Hoverstein , "General Purpose Packet 

Satellite Networks", Proc. IEEE, Vol.66, pp.l448-l467, Nov.l978. 

2.46 R.E. Kahn , "The Organisation of Computer Resources into a Packet 

Radio Network", IEEE Trans. Commun., Vol. COM-25, pp.l69-l78, Jan.l977 

2.47 0.0. Clark, K.T. pogran and D.P. Reed: "An Introduction to Local 

Area Networks", Proc. IEEE, Vol.66, pp.l497-l5l7, Nov.1978. 

2.48 K.J. Thurber, and H.A. Freeman: "Updated Bibliography on Local 

Computer Networks", Comput. Arch. News, Vol.8, pp.20-28, April 1980. 

2.49 A. Grant, D. Hutchison and W. Shepherd: "A Gateway for Linking 

Local Area Networks and X-25 Networks", Proc. SIGCOMM 83 Symposium, 

1983. 



394 

2.50 E. Eschenauer and V. Obozinski : "The Network Communication Manager: 

A Transport Station for the SGB Network", Computer Networks, Vol.2, 

pp.236-249, Sept. 1978. 

2.51 J.F. Shoch and L. Stewart : "Interconnecting Local Networks via the 

Packet Radio Network", Proc. Sixth Data Commun. Symp., pp.153-158, 

1979. 

2.52 W.B. Rauch-Hindin : "Upper-Level Network Protocols", Electron 

Design, March 3, 1983. 

2.53 J. Day: "Terminal Protocols", IEEE Trans. Commun. Vol.COM-28, 

pp.s8s-593, April 1980. 

2.54 W. Diffie and M.E. Hellman : "Privacy and Authentication", Proc. IEEE, 

Vol. 67, pp.397-427, March 1979. 

2.55 M. Gien : "A File Transfer Protocol (FTP)", Computer Networks, 

vol.2, pp.312-319, Sept. 1978. 

2.56 A. Lempel : "Cryptology in Transition", Computer Survey, Vol.ll, 

pp. 286-303, Dec. 1979. 

2.57 M. Gasser, and D.P. Sidhu : "A Multilevel Secure Local Area Network", 

Proc. IEEE Symposium on Security and Privacy, 1982. 

2.58 G.J. Popek and C.S. Kline: "Encryption and Secure Computer Networks", 

Computer Survey, Vol.ll, pp.331-3s6, Dec.1979. 

~.59 W.W. Chu and P.P. Chen : "Centralized and Distributed Data Base 

Systems", IEEE 1979, Calif. 

~.60 J.E. Donnelley "Components of a Network Operating System", Computer 

Networks, Vol.3, pp.389-399, Dec. 1979. 

2.61 J.B. Dennis : "The varieties of Data Flow Computers", First Int. 

Conf. Data Flow Comput., IEEE, pp.430-431, 1979. 



395 

2.62 W. Bux : "Lecal-Area Subnetwerks: A Perfermance Cemparisen", 

IEEE Trans. Cemmunicatiens, 1981. 

2.63 G.S. Christensen : "Links Between Cemputer-Reem Netwerks", 

Telecemmunicatiens, Feb. 1979. 

2.64 0.0. Clark, K.T. Pegran, and D.P. Reed: "An Intreductien te Lecal 

Area Netwerks", Preceedings .of the IEEE, Nev.1978. 

2.65 I.W. Cetten : "Technelegies fer Lecal Area Cemputer Netwerks" , 

Preceedings, Lecal Area Cemmunicatiens Netwerk Sympesium, 

1979. 

2.66 J.F. Hayes : "Lecal Distributien in Cemputer Cemmunicatiens", IEEE 

Communicatiens Magazine, March 1981. 

2.67 M. Killen : "The Micrecemputer Cennectien te Lecal Netwerks", 

Data Cemmunicatiens, March 1982. 

2.68 R.M. Metcalfe and D.R. Beggs : "Ethernet: Distributed packet switching 

fer Lecal Cemputer Netwerks", Cemmunicatiens .of the ACM, Ve1.l9, 

pp.395-404, July 1976. 

2.69 J.F. Shech, Y K. Dala and D.D. Redell : "Evelutien .of the Ethernet 

Lecal Cemputer Netwerk", Cemputer, August 1982. 

2.70 M. Marathe, and B. Hawe : "Predicted Capacity .of Ethernet in a 

University Envirenment", Proceedings, SOUTHCOM 82, 1982. 

2.71 W. Bux : "Local-Area Subnetworks: A Performance Comparison" I 

IEEE Trans. Cemmunicatiens, 1981. 

2.72 LW. Cetten : "Technelegies fer Lecal Area Cemputer Netwerks", 

Preceedings, Lecal Area Cemmunicatiens Netwerk Sympesium, 1979. 

2.73 G.M. Pfister and B.V. O'Brien : "Cemparing the CBX te the Lecal 

Netwerk - and the Winner Is?", Data Cemmunicatiens, July 1982. 



396 

2.74 W.W. Chu, W. Haller and K.K. Leung : "A Contention Based Channel 

Reservation Protocol for High Speed Local Networks", Proceedings, 

Seventh Conf. on Local Computer Networks, 1982. 

2.75 H.C. Folts : "X.25 Transaction-Oriented Features - Datagram and 

Fast Select", IEEE Trans. Commun. Vol. COM-28, pp. 496-500, 

April 1980b. 

2.76 H.C. Folts : "Status Report on New Standards for DTE/DCE Interface 

Protocols", Computer, Vol.12, pp.12-19, Sept. 1979. 

2.77 H.C. Fleming, and R.M. Hutchison, Jr. : "Low-Speed Data Transmission 

on the Switched Telecommunication Network", Bell Syst. Tech. J., 

pp. 1385-1406, April 1971. 

2.78 J.M. Kasson : "Survey of Digital PBX Design", IEEE Trans. 

Communications, July 1979. 

2.79 J .M. Kasson : "The Rolm Computerized Branch Exchange: An Advanced 

Digital PBX", Computer, June 1979, 

2.80 Institution of Electrical and Electronic Engineers: "IEEE Project 

802, Local Network Standards, Draft C", May 17, 1982. 

2.81 J.F. Shoch, and J.A. Hupp : "Measured Performance of an Ethernet 

Local Network", Communications of the ACM, Dec. 1980. 

2.82 E.G. Rawson and R.M. Metcalfe : "Fibernet: Multimode Optical 

Fibres for Local Computer Networks", IEEE Trans. Communications, 

July 1978. 

2.83 J.R. Jones : "Consider Fibre OptiCS for Local Network Designs", 

EDN, March 3, 1983. 

2.84 A. Sheltzer, R. Hinden and M. Brescia 

of Networks with Gateways". 

"Connecting Different Types 



397 

2.85 M.T. Liu, W. Hilal and B.H. Groomes : "Performance Evaluation of 

Channel Access Protocols for Local Computer Networks", Proceedings 

of COMPCON 82 Fall, 1982. 

2;86 A.E. Joel : "Circuit Switching: Unique Architecture and 

Applications", Computer, June, 1979. 

2.87 H.C. Folts : "Procedures for Circuit-Switched Service in Synchronous 

Public Data Networks", IEEE Trans. Commun., Vol. COM-28, pp.489-496, 

April 1980a. 

2.88 W.D. Farmer and E.E. Newhall : "An Experimental Distributed Switching 

System to Handle Bursty Computer Traffic", Proceedings, ACM Symposium 

on Problems in the Optimization of Data Communications, 1969. 

2.89 W. Rauch-Hindin : "IBM's Local Network SCheme", Data Communications, 

May 1982. 

2.90 J.W. Mark: "Global Scheduling Approach to Conflict-Free Multiaccess 

via a Data Bus", IEEE Trans. on Communications, Sept. 1978. 

2.91 H.H. Driver, H.L. Hopewell, J.F. Inquinto : "How the Gateway Regulates 

Information Flow", Data Communications, Sept. 1979. 

2.92 D.P. Heyman : "An Analysis of Carrier-Sense Multiple-Access Protocol", 

Bell Syst. Techn. J., October 1982. 

2.93 M. Steiglitz : "Local Network Access Tradeoffs", Computer Design, 

Oct. 1981. 

2.94 N. Abramson : "The ALOHA System - Another Alternative for Computer 

Communications", Proceedings, Fall Joint Computer Conference, 1970. 

2.95 L.G. Roberts : "ALOHA Packet System With and Without Slots and 

Capture", Computer Communications Review, April 1975. 

2.96 L. Kleinrock and S.S. Lam : "packet Switching in a Multiaccess 

Broadcast Channel: Performance Evaluation", IEEE Trans. Commun. 

Vol. COM-23, pp.410-423, April 1975. 



398 

2.97 S.S. Lam and L. Kleinrock : "Packet Switching in a Multiaccess 

Broadcast Channel: Dynamic Control Procedures", IEEE Trans. Commun., 

COM-23, pp.89l-904, Sept. 1975. 

2.98 L. Kleinrock and F.A. Tobagi : "Packet Switching in Radio Channels: 

Part I: Carrier-Sense Multiple-Access Modes and Their Throughput -

Delay Characteristics", IEEE Trans. Commun., Dec. 1975. 

2.99 L.Kleinrock and F.A. Tobagi : "Random Access Techniques for Data 

Transmission over Packet-Switched Radio Channels", Proceedings 

National Computer Conference, AFIPS Press, pp.187-20l, 1975. 

2.100 F.A. Tobagi : "Multiaccess Protocols in Packet Communication Systems", 

IEEE Trans. Commun. Vol. COM-28, pp.468-488,April 1980c. 

2.101 D.C. Wood, S.F. Holmgren, and A.P. Skelton : "A Cable-Bus Protocol 

Architecture", Proceedings, Sixth Data Communications Symposium, 

1979. 

2.102 A.K. Mok and S.A. Ward: "Distributed Broadcast Channel Access", 

Computer Networks, Vol.3, pp.327-335, Nov. 1979. 

2.103 L.W. Hansen and M.Schwartz : "An Assigned-Slot Listen-Before

Transmission Protocol for a Multiaccess Data Channel", IEEE Trans. 

Commun. Vol. COM-27, pp. 846 - 857, June 1979. 

2.104 S.S. Lam : "A Carrier Sense Multiple Access Protocol For Local 

Networks", Computer Networks, Vol. 4, pp. 21-32, Feb.1980. 

2.105 F.A. Tobagi and V.B. Hunt: "Performance Analysis of Carrier Sense 

Multiple Access with Collision Detection", Computer Networks, 

Nov. 1980. 

2.106 F.A. Tobagi "Distributions of Packet Delay and Interdeparture 

Time in Slotted ALOHA and Carrier Sbnse Multiple Access", Journal 

of the ACM, Oct. 1982. 



399 

2.107 A.B. Carleial and M.E. Hellman : "Bistable Behaviour of ALOHA-Type 

Systems", IEEE Trans. Commun. Vol. COM-23, pp.401-410, April 1975. 

2.108 J.I. Capetanakis : "Generalized TDMA: The Multi-Accessing Tree 

Protocol", IEEE Trans. Commun., Vol. COM-27, pp.1476-1484, oct.1979. 

2.109 D.E.Carlson: "Bit-oriented Data Link Control Procedures", IEEE 

Trans. Commun. April 1980. 

2.110 A.E. Joel : "Digital Switching - How It Has Developed", IEEE 

Trans. Commun. 1979. 

2.111 E. Geleribe, J.Labetoulle, and G.Pujolle : "Performance Evaluation 

of the HDLC Protocol", Computer Networks, Vol. 2, pp. 409-415, 

Sept. 1978. 

2.112 I. Chlamtac and W.R. Franta : "Message-Based Priority Access to 

Local Networks", Computer Communications, April 1980. 

2.113 V.G. Cerf and P.T. Kristein : "Issues in Packet-Network 

Interconnection", Proceedings of the IEEE, Nov. 1978. 

2.114 C.K. Miller and D.M. Thompson : "Making a Case for Token Passing 

in Local Networks", Data Communications, March 1982. 

2.115 L. Pouzin : "Virtual Circuits vs Datagrams - Technical and Political 

Problems", Proceedings of the National Computer Conference, 

pp.483-494, 1976. 

2.116 M. Graube : "Local Area Nets: A Pair of Standards", IEEE Spectrum, 

June 1982. 



3.1 

3.2 

3.3 

~3.4 

400 

J.von Newmann 

Press, 1959. 

"The Computer and the Brain", Yale University 

N. Wirth: "Systematic Programming An Introduction", Prentice 

Hall, 1973 

C.A.R. Hoare, O.J.Dahl and E.W. Dijkstra 

Academic Press, 1972 

"Structured Programming", 

W.F. Dalton : "Design Microcomputer Software like other Systems -

Systematically", Electronics, Jan.19 1978, pp 97-101 

3.5 M.J.Flyn: "Directions and Issues in Architecture and Language", 

Vol.13, pp 5-22, Oct.1980 

"Z.6 

\.7 

3.8 

3.9 

A.S. Tanenbaum "Implications of Structured Programming for Machine 

Architecture", Commun. ACM, Vol.2l, pp 237-246, March 1978 

J .R. Heath and S.M. Patel: "How to write a Universal Cross-Assembler", 

IEEE Micro, Vol.l, pp 45-66, August 1981 

D.E. Knuth : "The Art of Computer Programming, vol.l 

Algorithms", Addison-Wesley, 1967 

D. E. Knuth : " The Art of Computer Programming, Vol. 2 

Algorithms", Addison-Wesley, 1969 

Fundamental 

Seminumerical 

3.10 E. W. Dijkstra : " GOTO Statement Considered Harmful", Commun. ACM, 

Vol.ll, pp 147-148, March 1968 

3.11 N.Wirth and H. Weber: " EULER : A Generalization of ALGOL, and 

Its Formal Definition, Part I", COmm. ACM, vol.9, No.l, Jan.1966, 

pp 13-25 

3.12 N.Wirth and H.Weber : "EULER : A Generalization of ALGOL, and Its 

Formal Definition, Part U", Comm.ACM, vol.9, No.2, Feb.1966, 

pp 89-99 



401 

3.13 G. Morris: "Make Your Next Instrument Design Emphasize User Needs 

and wants", EDN, October 20, pp 100-105, 1978 

3.14 D. L. Parnas : "On the Criteria to be Used in Decomposing Systems 

into Modules", Commun. ACM, pp 1053-1058, Dec.1972 

""z.15 D. L. Parnas : "A Technique for the Specification of Software Modules 

with Examples", Commun. ACM, pp 330-376, May 1973 

~16 R.W. Ulrickson : "Software Modules are the Building Blocks", 

Electronic Design, pp 62-66, Feb.1977 

~.17 R.W. Ulrickson : "Solve Software Problems Step-by-Step", Electronic 

Design, pp 54-58, Jan.18, 1977 

3.18 A.V. Abo, J.E. Hopcroft, J.D.Ullman "Data StructUres and 

Algorithms", Addison-Wesley, 1983 

3.19 D.E. Knuth : "An Empirical Study of FORTRAN Programs", Software-

Practice and Experience, pp 105-133, 1971 

~20 N.Wirth: "Program Development by Stepwise Refinement", Commun.ACM, 

14, pp 221-227, 1971 

3.21 N. Wirth : "Algorithms + Data Structures = Programs", 

Prentice-Hall, 1975 

3.22 A.V.Aho, J.E.Hopcroft and J.D. Ullman : "The Design and AnalysiS of 

Computer Algorithms", Addison-Wesley, 1974 

~~.s. Stone: "Multiprocessor Scheduling with the Aid of Network Flow 

.... Algorithms", IEEE Trans. Software Eng., Vol.SE-3, No.2, 

pp 85-93, Jan.1977 

3.24 B. Carrl! "Graphs and Networks", Oxford, 1979 

3.25 F.Harary "Graph Theory", Addison-Wesley, 1969 

3.26 H.S.Stone and S.H. Bokhari ItControl of Distributed Processes", 

Computer, Vol.II, pp 97-106, July 1978 



402 

"'3.27 S. H. Bokhari : "Dual Processor Scheduling with Dynamic Reassignments", 

IEEE Trans. Software Eng., Vol.SE-5, pp 341-349, July 1979 

3.28 L.R. Ford and D.R. Fulkerson : "Flows in Networks", Prince ton 

University Press, 1962 

3.29 H.Frank and I.Frisch : "Communication, Transmission, and 

Transportation Networks", Addison-Wesley, 1971 

3.30 V.M. Malhotra, M.P. Kumar and S.W. Maheshwari : "An 0 (IvI
3

) 

Algorithm for Finding Maximum Flows in Networks", Inf.proc.Lett., 

Vol.7, pp 277-278, Oct. 1978 

3.31 A.S. Tanenbaum : "Computer Networks", Prentice-Hall, 1981 

3.32 E.L. Lawler : "Cutsets and Partitions of Hypergraphs", Networks 3, 

pp 275-285, July 1973 

3.33 M.B. Wells: "Elements of Combinatorial Computing", Pergamon, 

Oxford, 1971 B J.Edmonds and R.M.· Karp : "Theoretical Improvements in Algorithmic 

Efficiency for Network Flow Problems", J.Ass.Comput.Mech., 

Vol.19, pp 248-264, 1972 

~.35 H.Bokham: "A Shortest Tree Algorithm for Optimal Assignments 

Across Space and Time in a Distributed Processor System", IEEE 

Trans. Software Eng., Vol. SE-7, pp 587-589, Nov.1981 

3.36 A.C. Yao : "An 0 (IEI log log Ivl) Algorithm for Finding Minimum 

Spanning Trees", Inf. Processing Letters, Vol. 4, pp 21-23, 1975 

3.37 J. Edmonds : "Paths, Trees and Flowers", Canadian J. Math., Vol.17, 

pp 449-467, 1965 

3.38 A.Van Dam, G.Stabler and R. Harrington : "Intelligent Satellites for 

Interactive Graphics", Proc. IEEE, Vol.62, pp 83-92, April 1974 



403 

~.39 J.Turner : liThe structure of Modular Programs", Cornmun. ACM, Vol.23, 

pp 272-277, May 1980 

3.40 A.V. Abo and J.D. Ullman 

Addison-Wesley, 1978 

"Principles of Compiler Design", 



404 

REFERENCES 

4.1 J. Nievergelt and J.C. Farrar : "What machines can and cannot do", 

ACM Computing Surveys, Vol.4, pp 81-96, 1972 

4.2 A.V. Aho, J.E. Hopcroft and J.D. Ullman : "The Design and Analysis 

of Computer Algorithms", Addison-Wesley, 1974 

4.3 W.S. Brainerd and L.H. Landweber : "Theory of Computation", John 

WHey, 1974 

4.4 A.M. Turing : "On Computable numbers, with an application to the 

Entscheidungsproblem", Proc. London Math. Soc., Vol.42, pp 230-265 

4.5 E.L. Post: "Finite Combinatory Processes", J.Symbolic Logic, Vol.l, 

pp 103-105 

4.6 A. Church: "The Calculi of Lambda-conversion", Ann. Math., vol.6 

4.7 S.C. Kleene : "General Recursive Functions of Natural Numbers", 

Math. Ann., Vol.12, pp 340-353 

4.8 E.L. Post : "Formal reductions of the general combinatorial 

decision problems", Am.J. Math., Vol.65, pp 197-268 

4.9 C.E. Elgot and A. Robinson : "Random Access Stored Program Machines : 

An Approach to Programming Languages", J. ACM, Vol.ll, 1964, pp 365-399 

4.10 M. Minsky : "Computation, Finite and Infinite Machines", Prentice

Hall, 1967 

4.11 A. Gill: "Introduction to the Theory of Finite-state Machines", 

McGraw-Hill, 1962 

4.12 M. Arbib : "Theories of Abstract Automata", Prentice-Hall, 1969 

4.13 E.E. Swartzlander, B.K. Gilbert and I.S. Reed: "Inner product 

Computers", IEEE Trans. Comput., Vol. C-27, Jan.1978, pp 21-31 

4.14 E.E. Swartzlander and B.K. Gilbert' : "Arithmetic for Ultra-High-Speed 

Tomography", IEEE Trans. Comput., Vol. C-29, May 1980, pp 341-353 



405 

4.15 O.L. MacSor1ey : "High Speed Arittunetic in Binary Computers", 

Proc. IRE, Vo1.49, 1961, pp 67-91 

4.16 D.J. Kuck : "The Structure of Computers and Computation, Vol.1" , 

John Wiley, 1978 

4.17 A. Lunde : "Empirical Evaluation of Some Features of Instruction 

Set Processor Architectures", Comm. ACM, Vol. 20, No.3, 1977, 

pp 143-153 

4.18 J.C. Mudge : "Design Decisions Achieve Price/Performance Balance in 

Mid-range Minicomputers", Computer Design, Vol. 16, No. 3, August 1977, 

pp 87-95 

4.19 H.C. Lucas "Performance Evaluation and Monitoring", Comp. Surv., 

Vo1.3, No.3, 1971, pp 79-91 

4.20 J.C. Gibson : "The Gibson Mix", IBM Systems Development, N.Y., 1970 

4.21 E. Raiche1son and G. Collins : "A Method for Comparing the Internal 

Operating Speeds of Computers", COIlllll. ACM, Vel. 7, No.5, May 1964, 

pp 309-310. 

~.22 N. Bonwe11 : "Benctunarking 

John Wiley, 1975 

computer Evaluation and Measurement", 

~.23 R.M. Ke11er "Look Ahead Processors", Camp. Surv., Vol.7, No.4, 

Dec. 1975, pp 177-195 

4.24 S.A. Cook and R.A. Reckhow : "Time-Bounded Random Access Machines", 

J.Computer and System Sciences, Vo1.7, No.4, pp 354-375, 1973 

4.25 M.O. Rabin : "Complexity of Computations", Comm. ACM, vol.20, No.9, 

1977, pp 625-633 

4.26 A.V. Aho, J.E. Hopcroft, J.D. Ullman : "Time and Tape Complexity of 

Pushdown Automaton Languages", Information and Control, Vol.13, 

1968, pp 186-206 



406 

4.27 J.Hartmanis, P.M.Lewis II and R.E. Stearns : "Classification of 

Computations by Time and Memory Requirements", Proc. IFIP Congress 

65, Spartan, N.Y., pp 31-35, 1965 

4.28 R.L. Graham : "Bounds on Multiprocessing Timing Anomalies", SIAM 

Journal of Applied Math, Vol.17, No.2, pp 416-429, 1969 

\4.29 M.R. Garey, R.L. Graham and J.D. Ullman "Worst-case Analysis of 

Memory Allocation Algorithms", Proc. of the 4th Annual ACM Symposium 

on Theory of Computing, pp 143-150, 1972 

4.30 D.E. Knuth : "Big Omicron and Big Omega and Big Theta", SIGACT News, 

NO.2, pp 18-24, 1976 

4.31 D.S. Johnson : "Approximation Algorithm for Combinatorial Problems", 

Proceedings of the 5th Annual ACM Symposium on Theory of Computing, 

pp 38-49, 1973 

~.32 E. Horowitz and S. Sahni : "Computing Partitions with Applications 

to the Knapsack Problem", J. ACM, Vol.2l, No.2, pp 277-292, 1974 

4.33 R.V. Book: "Comparing Complexity Classes", J.Computer and System 

Sciences, 1974 

4.34 M. Davies : "Computability and unsolvability", McGraw-Hill, 1958 

4.35 S.L. Hantler and J.C. King : "An Introduction to Proving the Correct-

ness of Programs", ACM Computing Surveys, Vol.8, No.3, pp 331-353,1976 

4.36 D.E. Knuth, "The Art of Computer Programming, Vol. 1 : Fundamental 

Algorithms", Addison-Wesley, 1968 

4.37 M.H. Halstead : "Elements of Software Science", North Holland, 1977 

4.38 E.I. Jury: "Theory and Application of the Z-Transform Method", 

John Wiley, 1964 

\4.39 T. C. Wesselkamper : "Computer Program Schemata and the Processes 

They Generate", IEEE Trans. Soft. Eng. Vol.SE-8, No.4, July 1982, 

pp 412-419 



407 

4.40 J.L. Peterson : "Petri Net Theory and the Modelling of Systems", 

Prentice-Hall, 1981 

D.E. Knuth : "Structured Programming with GOTO Statements", ACM, 

Computing Surveys, Vol.6, pp 261-301, 1974 

'\.4.42 E.A. Ashcroft and Z. Manna: "The Translation of GOTO programs into 

WHILE programs, in Proceedings International Federation for 

Information Processing Congress, North-Holland, Amsterdam, 

pp 250-255, 1971 

4.43 C. Bohm and Y. Jocopini : "Flow Diagrams, Turing.Machines and 

Languages with Ohly Two Formation Rules", Comm. ACM, Vol.19, 

pp 366-371, 1966 

\'4.44 T.G. Price : "A Note on the Effect of the Central Processor Service 

Time Distribution on Processor Utilization in Multiprogrammed Computer 

Systems", J.ACM, Vo1.23, No.2, pp 342-346, April 1976 

,4.45 E.D. Lazowska : "The Use of Percentiles in Modelling CPU Service 

Time Distributions", in Computer Performance, K.M. Chandyand 

M.Reiser, North-Holland, 1977, pp 53-66 

~.46 R.M. Brown, J.C. Browne and K.M. Chandy : "Memory Mangement and 

Response Time", Comm. ACM, Vol.20, No.3, pp 153-165, March 1975 

~.47 W.Chiu, D.Dumont and R.Wood : "Performance Analysis of a Multi

programmed Computer System", IBM J. of Res. and Dev., Vol.19, No.3, 

pp 263-271, May 1975 

~48 D.P. Gaver : "Probability Models of Multiprogramming Computer 

Systems", J.ACM, Vol.14, No.3, pp 423-428, 1967 

~4.49 D.F.Towsley, J.C.Browne and K.M.Chandy, "Models for Parallel 

Processing Within Programs : Application to CPU-I/O and I/O-I/O 

OVerlap", Comm.ACM, Vol.21, No.10, pp 821-831, Oct.1978 



408 

4.50 T.J.Teorey and T.B. Pinkerton : "A Comparative Analysis of Disk 

Scheduling Policies", Comm. ACM, Vol.15, No. 3, pp 177-183, Dec .1975 

4.51 W.Faller: "An Introduction to Probability Theory and Its 

Applications", 3rd Ed., John Wiley, 1968 

4.52 W.J. Stewart : "A Comparison of Numerical Techniques in Markov 

Modelling", Comm.ACM, Vol.2l, pp 144-151, 1978 

4.53 V.L. Wallace and R.S. Rosenberg : "Markovian Models and Numerical 

Analysis of Computer System Behaviour", AFIPS Conf. Proc. 28, 

pp 141-148, 1966 

4.54 L. Kleinrock : "Queueing Systems Volume I Theory", John Wiley, 1975 



409 

5.1 N. Abramson : "The ALOHA System - Another Alternative for 

Computer Communications", Proc., Fall Joint Computer Conf., 1970 

5.2 L.G. Roberts : "ALOHA Packet System with and without slots and 

capture", Computer Communications Review, April 1975 

5.3 L. Kleinrock and S.S. Lam : "Packet Switching in a Multiaccess 

Broadcast Channel: Performance Evaluation", IEEE Trans. Commun., 

Vol. COM-23, pp 410-423, April 1975 

5.4 L.W. Hansen and M. Schwartz : "An assigned-slot Listen-Before

Transmission Protocol for a Multiaccess Data Channel", IEEE Trans. 

Commun., vol. COM-27, pp 846-857, June 1979 

5.5 F.A. Tobagi : "Multiaccess Protocols in Packet Communication 

Systems", IEEE Trans. Commun., Vol. COM-28, pp468-488, April 1980c. 

5.6 L.Kleinrock and F.A. Tobagi : "Packet Switching in Radio Channels; 

Part I: Carrier-sense Multiple-Access Modes and Their Throughput-Delay 

Characteristics", IEEE Trans. Commun., Dec.1975 

5.7 L.Kleinrock and F.A. Tobagi : "Random Access Techniques for Data 

Transmission over Packet-Switched Radio Channels", Proc. National 

Computer Conference, AFIPS Press, pp 187-201, 1975 

5.8 F.A. Tobagi and V.B. Hunt: "Performance Analysis of Carrier Sense 

Multiple Access with Collision Detection", Computer Networks, 

Nov. 1980. 

5.9 S. S. Lam : "A Carrier Sense Multiple Access Protocol for Local 

Networks", Computer Networks, vol. 4, pp 21-32, Feb.1980 

5.10 W. Feller: "An Introduction to Probability Theory and Its 

Applications", 3rd Edition, Vol.l, Wiley, 1968 

5.11 A. Papoulis : "Probability, Random Variables and Stochastic 

Processes", McGraw-Hill, 1965 



5.12 ·L. Kleinrock 

Wiley, 1976 

410 

"Queueing Systems, Vol. II computer Applications", 

5.13 B. Stuck: "Which Local Bus Access is Most Sensitive to Traffic 

Congestion", Data Communications, Jan.1983 

5.14 L. Kleinrock : "Communication Nets.", New York, Dover, 1964 

5.15 A.B. Carleial and M.E. Hel1man : "Bistable Behaviour of ALOHA-Type 

Systems", IEEE Trans. Commun., vol. COM-23, pp 401-410, April 1975 

5.16 R.M. Metcalfe and D.R. Boggs "Ethernet: Distributed Packet 

switching for Local Computer Networks", Comm-n. ACM, Vol.19, 

pp 395-404, July 1976 

5.17 L. Kleinrock : "Queueing Systems, Vol. 1: Theory," John Wiley, 1975 

5.18 D. V. Widder : "The Laplace Transform", Princeton Uni versi ty Press, 

Princeton, 1946 

5.19 G. Doetsch : "Guide to the Applications of Laplace Transforms," 

Van Nostrand, 1961 

5.20 E. I. Jury : "Theory and Applications of the Z-Transform Method" 

John Wiley, 1964 

5.21 J.D.C. Little: "A proof of the Queueing Formula L = AW", 

Operations Research, Vol.9, pp 383-387, 1961 

5.22 J.F. Shoch and J.A. Hupp : "Measured Performance of an Ethernet 

Local Network", Comm. ACM, Dec.1980 



411 

REFERENCES 

6.1 J.M. McKinney : "A survey of Analytical Time-Sharing Models", 

Computing Surveys, Vol. 1, pp 105-116, 1969 

6.2 L. Kleinrock and E.G. Coffman : "Some Feedback Queueing Models for 

Time-shared Systems", Proc. of the 5th International Teletraffic 

Congress, pp 91-92, June 1967 

6.3 E.G. Coffman and L. Kleinrock : "Feedback Queueing Models for Time

Shared Systems", JACM, Vol.1S, pp 549-576, 1968 

6.4 M. Greenberger : "The Priority Problem and Computer Time-sharing",. 

Management Science, Vol.12, pp 888-906, 1966 

6.5 W. Chang : "Single-server Queueing Processes in Computing Systems", 

IBM Syst. J., pp 36-71, 1970 

6.6 E. Fuchs, and P.E. Jackson : "Estimates of Distributions of Random 

Variables for Certain Computer Communications Traffic Models", 

Comm. ACM, Vol.13, pp 752-757, 1970 

6.7 I. Adivi and B. Avi-Itzhak : "A Time-sharing Queue with a Finite 

Number of Customers", J. ACM, Vol.16, pp 315-323, 1969 

6.8 I. Adivi : "Computer Time Sharing Queues with Priorities", J. ACM, 

Vol.16, pp 631-645, 1969. 

6.9 W.J. Gordon and G.F. Newell : "Closed Queueing Systems with Exponential 

Servers", Operations Research, vol.15, pp 254-265, 1967 

6.10 L. Kleinrock and G. Coffman : "Distribution 0- Attained Service in 

Time-shared Systems", J. of Computer System Science, Vol.l, 

pp 287-298, 1967 

\6.11 L. Kleinrock and R.R. Muntz : "Processor-sharing Queueing Models of 

Mixed Scheduling Disciplines for Time-shared Systems", J. ACM, 

Vol.19, pp 464-482, 1972 



412 

6.12 R.R.P. Jackson : "Queueing Systems with Phase Type Service", 

Operations Research, Vol.5, pp 109-120, 1954 

6.13 S.H. Fuller and F. Baskett : "An Analysis of Drum Storage units", 

JACM, Vol.22, pp 83-105, 1975 

6.14 T.J. Teorey and T.B. Pinkerton "A Comparative Analysis of Disk 

Scheduling Policies", Comm. ACM, Vol 15, pp 177-183, 1972 

6.15 F. Baskett, K.M. Chandy, R.R. Muntz and F. Palacios : "Open closed, 

and Mixed Networks of Queues with Different Classes of Customers", 

J ACM, Vol.22, pp 248-260, 1975 

6.16 J.R. Jackson : "Networks of waiting Lines", Operations Research 

Vol.5, pp 518-521, 1957 

6.17 J .R. Jackson : "Jobshop - Like Queueing Systems", Management 

Science, Vol.10, pp 131-142, 1963 

6.18 C.H. Sauer and K.M. Chandy : "Approximate Analysis of Central 

Server Models", IBM J. of Research and Development, Vol.19, 

pp 301-313, 1975 

6.19 W.M. Chow: "The Cycle Time Distribution of Exponential Central 

Server Models", AFIPS Conf. Proc. 43, 1978 

6.20 D.F. Towsley : "Queueing Network Models with State Dependent 

Routing", JACM, vol 27, pp 323-337, 1980 

6.21 K. M. Chandy, J. H. Howard and D. F. Towsley : "Product Form and 

Local Balance in Queueing Networks", JACM, Vol 24, pp 250-263, 1977 

6.22 K.M. Chandy : "The Analysis and Solutions for General Queueing 

Networks", Proc. 6th Annual Princeton Conf. on Ihformation science 

and Systems, pp 224-228, 1972 

6.23 K.M. Chandy and C.H. Sauer : "Computational Algorithms for Product 

Form Queueing Networks", Comm. ACM, Vol.10, 1980 



413 

6.24 J.P. Buzen : "Computational Algorithms for Closed Queueing Networks 

with Exponential Servers", Comm. ACM, vol.16, pp 327-531, 1973 
I 

6.25 A.A. Scheer : "An Analysis of Time-shared Computer Systems", 

MIT Press, 1967 

6.26 R.R. Muntz and J. Wong : "Asymptotic Properties of Closed Queueing 

Network Models", Proc. of 8th Ann. Conf. on Information Sciences and 

Systems, Princeton University, 1974 

6.27 F.R. Moore : "Computational Model of a Closed Queueing Network 

with Exponential Servers", IBM J. of Research and Development, 

pp 567-572, 1972 

6.28 M. Posner and B. Bernholtz : "Closed Finite Queueing Networks with 

Time Lags and with Several Classes of Units", Operations Research, 

Vol.16, pp 977-985, 1968 

~.29 J.D.C. Little: "A Proof of the Queueing Formula L = !,W", Operations 

Research, Vol.9, pp 383-387, 1961 

6.30 L. Kleinrock : "Queueing Systems, Vol. 2 Computer Applications", 

wiley, 1976 

6.31 H. Kebayashi : "Application of the Diffusion Approximation to 

Queueing Networks I: Equilibrium Queue Distributions", J. ACM, 

pp 316-328, 1974 

\ 6.32 D.P. Gaver and G.S. Shedler : "Processor Utilization in Multi-

programming Systems via Diffusion Approximations", Operations 

Research, Vol.21, pp 569-576, 1973 

6.33 M. Reiser and C.H. Sauer : "Queueing Network Models: Methods of 

Solution and Their Program Implementation", in "Current Trends in 

Programming Methodology, Vol.3 : Software Modelling and Its Impact 

on Performance", by K.M. Chandy and R.T. Yeh, Prentice-Hall, 1978 



414 

6.34 M. Reiser and S.S. Lavenberg : "Mean Value Analysis of Closed Multi

chain Queueing Networks", J. ACM, Vo1.27, pp 313-322, 1980 

6.35 G.S. Fishman "Principles of Discrete Event Simulation", Wiley, 1978· 

6.36 D.E. Knuth : "The Art of Computer Programming, Volume 2 : Semi

numerical Algorithms", Addison-Wesley, 1969 

6.37 M.A. Crane and D.L. Iglehart : "Simulating Stable Stochastic Systems 

II : Markov Chains", J. ACM, Vo1.21, pp 114-123, 1974 

6.38 G.S. Fishman and L.R. Moore : "Estimating the Mean of a Correlated 

Binary Sequence", J. ACM, Vol.26, pp 82-94, 1979 

6.39 M.A. Crane and A.J. Lemoine : "An Introduction to the Regenerative 

Method for Simulation Analysis", Springer-Verlag, 1977 

6.40 W. Feller : "An Introduction to Probability Theory and Its 

Implications", Wiley, 1968 

6.41 D.L. Iglehart and G.S. Shedler , "Regenerative Simulation of 

Response Times in Network of Queues", J ACM, Vol 25, pp 449-460, 1978 

6.42 S.S. Lavenberg and D.R. Slutz : "Introduction to Regenerative 

Simulation", IBM J.of Research and Development, Vol.19, pp 458-463,1975 

6.43 C.H. Sauer : "Confidence Intervals for Queueing Simulations of 

Computer Systems", Performance Evaluation Review, Vol.8, pp 45-55,1979 

6.44 P. Heidelberger and P.D. Welch: "A Spectral Method for Confidence 

Interval Generation and Run Length Control in Simulations", Comm. 

ACM, Vol.24, pp 233-245, 1981 

6.45 K. Jensen and N. Wirth : "PASCAL User Manual and Report", Springer

Verlag, 1974 

J 6.46 C.H. Sauer and K.M. Chandy 

Prentice-Hall, 1981 

"Computer Systems Performance Modelling", 



415 

6.47 Computer Centre Documentation, University of Loughborough 

J 6.48 W.R. Franta and K. Maly : "An Efficient Data structure for the 

Simulation Event Set", Comm. ACM, Vol.20, pp 596-602, 1977 

6.49 F.A. Haight : "Queueing with Balking, II", Biometrika, Vo1.47, 

pp 285-296, 1960 

6.50 C.J. Ancker and A.V. Garfarian : "Some Queueing Problems with 

Balking and Renezing, II", Operations Research, Vol.II, pp 88-100, 

1963. 






