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ABSTRACT 

The investi~ation is concerned with.various synchronous multiplexing 

and demultiplexing processes suitable for use with serial baseband 

data-transmission systems. The multiplexed signals are transmitted in 

orthogonal groups over a channel which introduces additive white Gaussian 

noise but no signal distortion. 

Techni~ues are considered for increasing both the capacity and tolerance 

to additive noise, when the number of multiplexed signals may vary with time, 

and may exceed the maximum number of orthogonal multiplexed signals. 

Several different multiplexing schemes have been proposed together with 

a variety of demultiplexing and detection processes. The optimum detection 

process is of limited practical value because of the very large number of 

se~uential operations re~uired when there are more than a few signals in a 

group. The more effective of the suboptimum detection processes achieve a 

tolerance to additive white Gaussian noise approaching that of the optimum 

detector but re~uire far fewer se~uential operations and can be implemented 

quite simply. 

The tolerances to noise of the various multiplexing and demultiplexing 

schemes have been assessed by computer simulation for different numbers of 

multiplexed signals. 
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A particular scheme utilising a ternary transmitted signal has been 

proposed, which shows a significant advantage over a conventional 

time-division multiplex system. A trade off exists between the number of 

signals multiplexed and the tolerance.to additive noise. The number of 

sienals multiplexed may exceed the maximum number of orthogonal multiplexed 

signals with a slowly deteriorating tolerance to noise. 

A hardware model has been constructed using this scheme. It is capable 

of
1
multiplexing and demultiplexing up to eight signals. The performance of 

the model agrees well with the results of the corresponding computer simulation 

tests. 

The theoretical aspect of the optimum multiplexing arrangement has been 

considered briefly. The different transmitted signals are here represented 

as points in n-dimensional Euclidean signal space, and are positioned in 

such a way as to maximise the minimum distance between these points. 
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GLOSSJI.RY OF SY!illOLS AND TERMS 

number of active channels multiplexed. 

number of sample values corresponding to a group of 

transmitted or received signal elements, 

n-component row vector whose components carry the transmitted 

element values of the transmitted group of signal elements. 

n-component row vector whose components are the sample values 

of the received group of signal elements , 

n-component row vector whose components are sample values 

of a Gaussian random variable with zero mean and variance 

two~sided power spectral density.of zero mean additive white 

Gaussian noise at the input to the receiver filter. 

magnitude (absolute value) of x, if xis a scalar, 

length (Euclidean norm) of X, if X is a vector, 

the components of X, if X is a T<>W ve.J-o-r-. 

the rows of X, if X is a matrix. 

the component of matrix A, located in the ith row and 

jth column. 

the ith row of the matrix A. 

the inverse of matrix A , 

the transpose of matrix A , 



X 

signs (A) the operator "signs" replaces each component of the vector A 

by ±1, the selected sign being the same as the component of A. 

A signal element is a unit component of a digitally-coded signal. 

Vectors are treated as matrices having one row or column. 
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CHAPTER 1 

INTRODUCTION 

1.1 Subject of Thesis 

This thesis is concerned with improving conventional multiplexing 

techni~ues with respect to their capacity and tolerance to additive white 

Gaussian noise. The multiplexed signals are transmitted over a common 

transmission path, from a single transmitter to a single receiver, and the 

demultiplexing of the signals is achieved in the detection process at the 

receiver. 

1.2 Conventional methods of multiplexing signals 

Multiplexers enable signals from several data sources to be 

transmitted simultaneously, but independently over a common transmission 

path from a single transmitter to a single receiver. Figure 1.1-1 shows 

a general multiplex system which consists of a multiplexer, the transmission 

path and a demultiplexer. The techni~ues of multiplexing involve coding 

the input data signals at the transmitter, corresponding to the independent 

channels in a manner which ensures non-interference, and allows the original 

data signals to be identified correctly at the receiver. In the demultiplexer 

an inverse operation is perform~d to separate the multiplexed data signals. 

Multiplexing is possible and of economic value because the data signals that 

are .. multiplexed re~uire a much narrower bandwidth than that of the common 

transmission path. 
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The most widely used methods o~ multiplexing signals are frequency-

division multiplex (FDM), and time-division· multiplex (TDM).l,IG-25 

Whereas only FDM may be applied to analogue signals, both FDM and TDM may 

be applied to digital signals. The important property of these multiplex 

methods is that the di~~erent signals are orthogonal, 

The two functions f(j,x) and ~(k,x) are orthogonal in the interval 

- ~ ~ x ~ ~ if the integral 

, 

f ~(j,x) • ~(k,x) dx 

-~ 

= 0 for j r k (l.l-1) 

for s=k 

They are orthogonal and normal, or orthonormal i~ the integral is equal to 

l ~or j = k. 

In an FDM system the total available ~e~uency bandwidth W is divided 

into narrow bands of bandwidth w, each being used by a separate channel 

corresponding to the data sources. Individual input data signals have 

exclusive use of a ~requency band. No in~erence is made as to the type of 

signals transmitted or to the methods o~ modulation and detection used. 

In a TDM system each interval o~ T seconds called an eletnent period, ~s 

divided into n discrete time slots o~ T seconds. Each input data signal is 

assigned a specific time slot, but has the total bandwidth VI available. 

The ~requency bands and time slots ~or these signals are shown in 

Figure 1.1-2. There are 11/w ~requency bands and T /T separate time slots in 

the ~requency-time space.allocated ton signals corresponding ton di~ferent 

channels or data sources. 

n 
VI T 

== :::: ;r T 
(l.l-2) 
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31-38 
In a code-division multiplex system (CD!1), the freQuency-time space 

.,.0. 

is not divided (in a;.dfio.el >ray) amongst the input data signals 

(Figure 1.1-2). A system >rhich separates the signals by coding is called 

a CDM system. Each independent channel has continuous, but not exclusive 

usage of the available band1-1idth, by employing a coded signal waveform which 

is repeated in each element period ofT seconds. 

The sampling theorem states that a signal waveform which is strictly 

band-limited to the frequency range 0 to W llz and which therefore has an 

infinite duration, can be completely specified by a kno1-1ledge of its values 

at sampling points regularly spaced at intervals of 1 
2W seconds over the 

whole of its infinite duration. 

In a practical situation when the <mveform is non-zero over the period 

1 T seconds ( T » 2W ) and zero at all points outside this interval, the 

<raveform can be completely specified by a knowledge of its values at the 

2WT sampling points which are spaced at 1 
2W seconds over the period T, 

The information conveyed in a period of T seconds is given by the value of 

n = 2WT sample values for that element period, and thus the detection of 

the received signals can be carried out entirely by operating upon the 2WT 

sample values per element period. 

These 2WT samples give the maximum number of orthogonal waveforms that 

may be represented in the timeT. An infinite number of sets of orthogonal 

functions exist, the simplest being a TDM system where the signals are 

rendered orthogonal by employing independent sample values corresponding to 

the different multiplexed signals. 
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In a CDM system, the individual data signals are first coded into a 

uni~uc combination of n pulses, given by the particular set of orthogonal 

functions used, these functions being the discrete codes. The coincident 

pulses belonging to the different data signals are in synchronism and all 

have the same width. They arc combined using various techni~ues to give the 
~'J-71 

resultant transmitted signal. 

Multiplex communications systems may be divided into two basic categories, 
21 

linear systems and non-linear systems. A multiplex system is linear or 

non-linear according to whether the transmitted signal is a linear function 

or not, of the individual signal codes. Conventional FDM and TDM systems 

fall into the category of linear multiplexing, whereas CDM systems may be 

either linear (Chapters 3 and 4) or non-lin:ear (Chapters 5 to 8). 

1.3 Limitations of existing systems 

32 
Systems of a conventional nature appear to exhibit hro limitations. 

Firstly, they are designed to multiplex up to a given maximum number of 

channels with a specified performance, which is by their nature independent 

of the number of channels in operation (active channels). In practice 

however, the maximum number of channels simultaneously used will rarely 

exceed 50% of the total number of channels, and on average the nurrilier of 
61 

active channels is typically between 10% and 35%. Thus a high percentage 

of the available capacity remains totally unused, and at present >Iith 

conventional FDM and TDM techni~ues, the system performance, in terms of 

tolerance to noise, does not improve with a reduced number of channels. 

By contrast a better multiplex system would provide a specified performance 

for an average number of active channels, improved performance for few active 

channels, and a degraded performance for more active channels. Thus the total 

available bandwidth would be usefully employed at a.ll times. 
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The second limitation evident "ith multiplex systems using sine\1aves 

and pulses for the channel carriers as in FDM and TDl-1, is that they are prone 

to disruption by interference, since unpredictable impulsive noise normally 
32 

occurs in forms similar to sine\1aves and pulses. Therefore systems are 

designed \1hose susceptibility to such interference is rendered tolerable 

by employing high signal/noise ratios and by including special additional 
17 

subsystems such as error correcting units. These make use of redundant 

information encoded into the transmitted signal to correct errors caused 

by additive noise. A better approach \10uld be to use carriers \1hich \1ere 

not readily simulated by interference, these using specially coded \1aveforms· 

-.;tlere the precautions outlined \1ith conventional systems \1ould be either 

automatically inbuilt or unnecessary. 

To summarise, a system is required to be inherently flexible as regards 

the maximum number of multiplexed channels, in \1hich a trade off should 

exist bet\1een the number of active channels and the toJ.erance to noise. 

The transmitted signal should be less sensitive to interference than 

existing conventionaJ. techniques. 



9 

CHAPTEH 2 

MULTIPLEXING SIGNALS FOR A BASEBAND.CHANNEL 

2.1 !4odel of the data transmission system 

The model of the data transmission system is shown in Figure 2.1-1. 

It is a synchronous serial baseband system, where the coder and multiplexer 

transmit a group of n binary or multilevel signal elements over an element 

period of nT seconds. This corresponds to the information presented 

synchronously to the coder and multiplexer of m active channels. 

The multiplexed signals are transmitted over a common channel, from a single 

transmitter to a single receiver and the demultiplexing is achieved in the 

detection process at the receiver. 

At the transmitter an element timing waveform having an element period 

of nT seconds, is fed from the coder and multiplexer to the data sources 

whose signals consist of binary element values and take the value ±1. 

They have fixed values over the element duration of nT seconds, and reach 

the coder and multiplexer in element synchronism. Only the m sources and 

destinations of data, which are actually in operation are shown in 

Figure 2.1-1. Over any given element period, the m received binary element 

values at the coder and multiplexer are stored. The coder converts each 

of the m binary element values to a sequence of n impulses. These n 

impulses form a code, which gives the codewords for the m channels present. 

Each codeword is used by a single channel only and they are thus referred 

to as channel carriers. The multiplexer then combines these code words, 

using linear and non-linear techniques, and transmits the resulting signal 
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over the transmission path. The transmitted signal consists of n signal 

elements or impulses forming a signal group, which is.transmitted ?Ver the 

element period of nT seconds, the duration of the input binary element 

values. 

At irregular intervals, new channels will start operation and channels 

already in operat1on will cease transmission, since the channels are 

completely independent of each other. During a transmission, each channel 

has a unique codeword associated with it, and that codeword remains 

unchanged and is used by that channel only. It is assumed that when a 

new channel starts operation its codeword is either selected at random 

from those not alr·eady in use, or that the channel has a codeword 

uniquely associated with it. Thus not only· does the number of channels 

in operation m, vary over the full range from 0 to n, where n is the 

maximum number of orthogonal code110rds for a transmitted group length of 

n digits over the element period of nT seconds, but for any given number of 

channels in operation at two .widely separate times, two different. sets of 

codewords will in general be in use. 

The transmission path is assumed to be a linear base band channel, 

which could include a modulator, bandpass channel and demodulator, 

and 'which introduces no signal delay, attenuation or distortion. The 

transmitter and receiver filters in Figure 2.1-1 are equivalent to all 

transmitter and receiver filters respectively, including any involved in 

modulation or demodulation. Thus the data signal at the output of the 

transmission path is an identical copy of that at the input. 
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Over some practical channels such as voice fre<J.uency channels using 

HF radio links, the most important type of noise introduced by the channel 

is additive noise, vhich can for practical purposes be taken to be 

additive vhite Gaussian noise. The difference betveen the tvo is sufficiently 

small not to introduce any serious discrepancies in the performance, in terms 

of tolerance to noise, vhen the noise actually present is taken to be 

vhite Gaussian noise. 

Over telephone circuits, ho;rever, the most important source of noise 
17 

is impulsive noise vhich sometimes resembles short bursts of Gaussian noise. 

It has been sho1m that, if one data transmission system has a better tolerance 

to additive vhite Gaussian noise than another, it vill also in general, have 
28 

a better tolerance to the additive noise over telephone circuits. 

It follovs therefore, that the relative tolerance of tvo systems to additive 

vhite Gaussian noise is a good measure of their relative tolerance to the 
17,28 

additive noise over telephone circuits. Furthermore, whereas Gaussian 

noise is easily produced in the laboratory and analysed theoretically, the 

impulsive noise over telephone circuits is not 

simulated accurately in t.he laboratory. Nor is it easy to 

achieve more than a 
17 

theoretical analysis to this noise. 

.For·these reasons, in the model of the data transmission system, it is 

assumed that additive vhite ·Gaussian noise is introduced at the output 

of the transmission path. The no~se has zero mean, and a tvo sided pover 

spectral density of a2. 

The receiver filter removes the noise components outside a .fre<J.uency 

band approx:.imately corresponding to the bandvidth of the received signal. 
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The impulse response h(t) of the transmitter and receiver filters in 

cascade, and hence the impulse response of the baseband channel, is assumed 

to be such that h(O) =land h(jT) = 0 for all non-zero integers of j, 

the delay introduced by the filters and transmission path being neglected, 

so that these are ~n fact non-physical. This impulse response is achieved 
1 

in a conventional manner by using the same transfer function ll~(f) for the 

transmitter and rec.eiver filters, where 

H(f) = 
for - 1 

< f < 
1 

T T 
(2.1-l) 

elsewhere 

The use of the same transfer function for the transmitter and 
7,29 

receiver filters is conventional and enables an easy comparison to be 

made with other systems. Alternative transfer functions 

are available, and some of thete make more efficient use 

for the filters 
29 

of band.ridth. 

If C(f) is the transfer function of the transmission path, then the 

channel transfer function expressed in terms of the transfer functions of 

the transmission path and filters is, 

Y(f) = H(f) C(f) (2.1-2) 

and the impulse response of the channel y(t) is given by the inverse 

Fourier transform of Y(f), that is, 

y(t) = F-l·{Y(f)} = f c(r) H(f) ej 211ft df (2.1-3) 
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When no signal distortion lS introduced by the transmission path, that is 

when C(f) = 1, 

"' 

y(t) = I H(f) ej21Tft df 
(2.1-4) 

-oo 

From Eqn. (2.1-1), 

1/T 

y(t) = ~T I ( ) j21Tft 1 + cos 11fT e df 

-1/T 

= ~T r (1 + ~ej1Tft + 1 -j1Tft) j21Tft df 2e e 

-1/T 

1/T 

= ~T I 
-1/T 

{ej1Tf2t + , j11f(2t+T) 
2e + ~ej11f(2t-T)} df 

ejnf2t j11f(2t+T) j11f(2t-T) 
~ T 1-"--;-;:::- + ~ .::e'-:-TOC:-:-::,-;- + ~ .::e-:-r::-::::.,--

jn2t jn(2t+T) jn(2t-T) 

+1/T 

= 

-:_1/T 

. 2t . 2t 
J7f- -J1Te T -e T 

jn( 2t +1) -jn(2t +1.) jn( 2t -1) -jn(2t -1) 
e T -e T e T -e T 

--------- + 
2 . 2t 
J"'f 

~ +~------------------
2jTI (2t +1) 

T 

sin 2t 
-----,11c=T'- + ~ 

2t 
·TIT 

2t .. 
sin n(T +l) 

n(2t +1) 
T . 

+ ~ 

2jn( 2t -1) 
T 

sin n(~-1) 
2t n(- -1) 
T (2.i-5) .. 
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Figures 2.1-2 and 2.1-3 show the transfer Function H(f) and impulse 

response y(t) respectively. 

Clearly, when C (f) = 1, 

y( 0) = 1 y(± ~) = ~ 

and y(± ~ iT) = 0 for i i 0 or ± 1 

(2.1-6) 

(2.1-7) 

The received signal r(t) at the output of the receiver filter is sampled 

at time instants t = iT, for all integers i. This assumes that the receiver 

has prior knowledge of the time of arrival of each signal element, that is, 

the receiver is in element synchronism with the received signal. 

Techniques for achieving correct element synchronism have been widely 

studied and will not be considered further.28 

The ith received element is sampled at time t = iT to give the sample 

value, 

or 

r(iT) 

r. 
1 

= s.y(O) 
1 

+ w(iT) 

= s. + w. 
1 1 

where r. = r(iT) and w. = w(iT), and it is assumed that C (f) = 1. 
1 1 

(2.1-8) 

(2.1-9) 

With additive white Gaussian noise having a two sided power spectral 

density of o2 at the input to the receiver· filter, the noise power spectral 

density at .the output of the receiver filter is, 

-. cr2 H(f) (2.1-10) 

so that the mean noise power is 
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l'T 

I I H(f) I df (2.1-11) 

- 00 

Thus w. in Eqn. 2.1-9 is- a sample value of a Gaussian random variable with 
l 

zero mean and variance a 2 . 

3 
From the Wiener-Kinchine Theorem, the autocorrelation function of the 

noise sienal w(t) at the output of th8 receiver filter ls, 

= 
J (2.1-12) 

- 00 

sin 2T sin TT(2T + 1) TT 'r a2 T 
sin TT( 2

T - 1 rr -= + 
., 

+ ~ 2 ----··-~---2T (~ + TT 
T 

TT 1) 
T 

TT ( ;T - 1) 

and from Eqn. 2.1-4, clearly 

d(O) = cr2 

and d(iT) = 0 

for any non zero integer i. Since the mean value of >r( iT) is zero, it 

follo>rs that the noise component >r(iT) is uncorrelated >rith the noise 

component >r(hT), >rhere the integer h f. i, so that the {>r.} are sample values 
l 

of statistically independent Gaussian random variables >rith zero mean and 

variance cr2, 

The detector samples the received signal n times per element period 

at _regular intervals of T seconds, the sampling instants being suitably 

phased >rith respect to the received data signal, such that, in the absence 

of noise, a transmitted impulse of value x gives a value x for the 



18 

corresponding received sample, and a value zero for all other received 

samples. 

1~1ile one store holds the n sample values for a detection process, 

another store is receiving the next n sample values, so that nT seconds 

are available for a detection process. In the detection· process, the 

m element values corresponding to the m channels multiplexed are detected 

simultaneously by operating on the corresponding n sample values. 

It is assumed that the detector has prior knowledge of the number of 

channels in use, m, and the codewords corresponding to these channels. 

This information must be fed to the receiver, possibly via a separate 

channel and updated immediately a channel ceases transmission, or transmission 

commences on a new channel. The techniques involved are not considered 
29,38 

here, but are briefly considered elsewhere. 

2.2 Outline of investigation 

The investigation is concerned with improving conventional multi-

plexing techniques with respect to their capacity and tolerances to 

additive white Gaussian noise. The multiplexed signals are transmitted 

over a common channel, from a single transmitter to a single receiver, 

and the demultiplexing is achieved in the detection process at the receiver. 

The primary aim of the investigation has been to obtain a better understanding 

of these. systems and hence to develop the most cost-effective arrangement. 

Since the various systems studied are all arrangements for processing sets 

of numerical values, these are computer like systems which are best 

simulated on a computer rather than tested on a practical model. The latter 

would simply be a special purpose digital computer with the appropriate 

analogue/digital converter interfaces. 
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Chapter 3 starts with a survey of linear multiplcxing systems in which 

the transmitted signal is a linear function of the individual channel 

codewords . The resultant transmitted signal is therefore multilevel. 

In particular, a system is described vhich employs a combination of time-

and code-division multiplexing, in \?hich the TDH signal elements are orthogonal 

as are the CDM signal elements, but simultaneously transmitted TDM and 

CDM signal elements are not orthogonal. This arrangement uses a non-linear 

combination of the linear sums of the TDM and CDM orthogonal set codewords 

to form the resultant transmitted signal. It is particularly vell suited 

to applications vhcre the number of multiplexed channels is typically a 

little greater than the maximum nQ~ber that may be orthogonally multiplexed 

using TDM alone. 

Chapter 4 develops the previous multiplexing arrangement and describes 

a system which combines non-linearly a TDM and two CDM sets of orthogonal 

signals. Up to three times as many channels may be multiplexed than is 

possible us2ng TDM alone. 

34 
Chapter 5 surveys non-linear multiplexing systems using Walsh functions 

for the channel codewords. These systems use a non-linear majority logic 
56-60 

multiplexing operation, and generate a resultant binary transmitted 

signal. 

Chapter 6 describes two non-linear multiplexing arrangements which 

overcome the disadvantages of proposed Walsh majority logic multiplexing 

systems. The first arrangement generates a multilevel transmitted 

signal, whereas the second user majority logic multiplexing resulting ln 

a' ternary transmitted' signai. The available bandwidth and power is well 

utilised for any number of' active channels. 
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Its performance compares favourably ;rith conventional TDH systems 

operating under the same conditions of transmitted signal energy and 

signalling rate. The number of channels multiplexed may exceed the maximum 

number of orthogonal channels with a slowly deteriorating tolerance to 

noise as the number of channels increases. 

Chapters 7 and 8 present various demultiplexing arrangements for use 

with the two multiplexing arrangements of the previous chapter. The optimum 

detection process, which minimises the probability of error in the detection 

of the m element values of a group, is of limited practical value because 

of the very large number of se~uential operations re~uired when there are 

more than a few signals in a group. The more effective of the suboptimum 

detection processes achieve a tolerance to additive white Gaussian noise 

approaching that of the optimum detector, but requires far fewer sequential 

operations and can be implemented quite easily. 

Chapter 9 describes a hardware model of the most attractive system, 

capable of multiplexing and demultiplexing up to eight channels. It was 

designed and constructed in order to focus attention on the practical 

realisation and economic aspects of a multiplex system that has 

hitherto been tested by computer simulation only. 

Chapter 10 considers briefly the theoretical aspect of the optimum 

multiplexing arrangement. This gives the lowest probability of error of 

any arrangement in the detection of the m element values, when used in 

conjunction with the optimum detection process. The different transmitted 

signals are here represented as points in n-dimensional Euclidean signal 

space, and are positioned in such a way as to maximise the ~~~e of 

these points. The overall complexity is demonstrated by a series of 

relatively simple examples. 
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CHAPTER 3 

LINEAR CODE-DIVISION MULTIPLEXING 

3.1 Introduction 

In recent years, the availability of inexpensive digital circuitry 

has focused considerable attention on the possibility of applying easily 

generated and manipulated binary functions to tasks exclusive to sinusoidal 

functions. Emphasis has been given to the use of Halsh functions as a basis 

for multiplexing various data sources for transmission over a common 
39 

channel. They were first described by Halsh in 1922, and simultaneously 

but independently, Rademacher presented a system of functions which were 

later shown to be a subset of Walsh functions. Little attention was devoted 

to Walsh functions from a engineering standpoint until in 1969 when Harmuth 
40 

published an article in the I.E.E.E. Spectrum which aroused much interest 

in the area, The possibility of replacing many tasks previously the domain 

of sinusoidal functions with an easily generated binary function, and 

the increasing availability of digital integrated circuits, was a contributing 

factor to the emergence recently of nine inte~national conferences on Walsh 

functions and their applications, in Washington and at the Hat field 

Polytechnic. 

41-46 
Walsh functions are a complete set of binary functions that are 

periodic and orthogonal. Figure 3.1-1 shows the first sixteen functions. 
46 

A mathematical definition has been given by Davidson, although many variations 

exist. The functions are defined over the interval 0 ~ 0 < 1 

where 0 is the normalised time variable. A popular symbo1 for a flLnction 

is, 
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VIal (k,e ) 

The parameter k is the order of the function, and is e~ual to one half 

the number of zero crossings in the interval 0 ( e < l, k is referred to 

as the se~uency, and is analagous to the frc~ucncy of circular functions, 

although the sign changes are not e~uidistant. lvalsh functions· are divided 
45 ,46 

into two groups called Sal and Cal functions, which correspond to the 

circular functions Sine and Cosine. However, the complete set can be 

described by a single function that includes the Sal and Cal functions. 

Figure 3.1-1 shows· a set of sixteen Walsh functions ordered in terms 

of their se~uency. Expressed as components ±1 they are by definition of 

length 2n, n = 1,2 Other ordering exist, and in particular, a 

set of Walsh functions set down in appropriate order as lines of a matrix 

constitute the best-known form of Hadamard matrix, namely one of order 

n 34 
m = 2 • 

Because Walsh functions are orthogonal it is possible to use them as 
42,46-48 

signal carriers for multiplexing systems like the circul'l.r functions. 
43,45,70 

However, being two values, they are very easily generated, and have 

considerable computational and advantages. Analogous to 

the amplitude, the fre~uency and the phase modulation associated with the 

conventional trigonometric f~~ctions, the information is e~ually contained 

in the amplitude, se~uency, and time position of the Walsh carriers. 

However, the orthogonality is only preserved if the Halsh 'runctions are 
54 

synchronised and are in phase. Similar to conventional demultiplexing 

techniques, information that is amplitude modulated on to a given Walsh 
• 
function, may be recovered by a process of correlation or matched filter 

I 0 ,2 7 
detection. This minimises the probability of error in the detection of 



24 

the individual channel element values by maximising the ratio of the energy 

level of the wanted signal, to the average energy level of the noise 

components. 

3.2 Linear multiplexing using Walsh functions 

Figure 3.2-1 shm<s a block diagram of the multiplex system using Halsh 

functions as the channel carriers. The m active input analogue signals are 

passed through sample and hold circuits S, and multiplied by the corresponding 

Walsh functions using analogue multipliers over an element period of nT 

seconds. The summation circuit E adds linearly the modulated codewords to 

form the resultant transmitted signal. The transmission path introduces 

additive white Gaussian noise, having a noise power spectral density cr2 

and zero mean. At the receiver, the demultiplexer consists of a process of 

correlation detection in which the received signal is multiplied by Walsh 

functions identical to those used in the multiplexer. Because the signal 

carriers are orthogonal, the received signals are extracted by integrating 

the resulting analogue signals. Interference from other channels having high 

fre~uency components.is thus suppressed. 

49 
This method was first described by Judge in 1962, and later by 

50 
Bagdasarjanzand Loretan, where they consider the cross talk generated 

by various parts of the system. A working system designed for 1024 channels 
51 

han been described by llubner of the 1'/est German Post Office. 

The main problem with these systems is that of cross talk caused by 
52,54 

inaccurate synchronisation, and realising sufficiently linear analogue 

multipliers. Synchronisation problems may be eased if Rademacher functions 

(s~uare waves) are used, the orthogonality of which is invariant with a 
55 

time shift. Another problem is the widespread development of conventional 

FDM systems causing a justifiable reluctance to change for even ~uite 

considerable technical gains. The advantage of this system over FDM is 
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the absence of a set of single sideband filters. The Walsh function 

multipliers replace these and because the functions are two valued the 

process is very easily implemented especially using integrated circuit 

technology. Also, Halsh function generation is much simpler than 

frequency synthesis. 

The position is different, however, for the Walsh multiplexing 
46,51 68 

of binary signals. ' The transmission of binary data for communication 

and computer purposes is beginning to impose its own requirements for 

which the equipment in service is as yet limited in 
. 16,20 

quality. 

The input binary signals are assigned to individual channels in the multiplex 

system. For n channels in operation, because of the linear summation of 

the Walsh codewords, the resultant transmitted signal has n+l, amplitude 

levels. Such a system, therefore, would require the provision of extensive 

regenerative repeaters to deal with multi-amplitude signals. These systems 

give very low probability of error in the received data signals, for they 

are not susceptible to a pulse type disturbance, because the individual 

channel signal energies are spread over the entire element period. 

The next section discusses in detail, an interesting system for the, 

combination of a TDH and a digital CDH system. 

. .··' 
3.3 System Al 

35 
This arrangement, proposed by Clark, is capable of extending a 

conventional binary TDM system with additional channels using CDM 

codewords, such that the overall tolerance to additive white Gaussian' 

noise of the system is only degraded slightly by the addition of a few 

extra channels. 
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The arrangement uses a combination of TDM and CDM, ln which the TDM 

signal elements are orthogonal as are the CDl1 elements, but simultaneously 

transmitted TDM and CDM elements are not orthogonal. vlith this 

arrangement, up to twice as many channels may be multiplexed, for a 

given transmission path and signal element rate per channel, than is 

possible with orthogonal multiplexing using either ~'DH or CDM alone. 

The transmitted signal elements are arranged in separate groups, which 

are transmitted sequentially, and there is no intersymbol interference 

between elements in different groups. At any particular time, the total 

number of channels may have any value from 0 to 2n, where n is the maximum 

number of orthogonal TDH or CDM channels. If a group of m elements contain 

u elements from different .TDM channels and v elements from different CDH 

channels, then clearly u ~ n , v :( n and u + v =m 

The TDM codewords which are used as the signal carriers for the n 

TDM channels are given by the rows. {A.} of ann x n identity matrix. 
l 

The complete set of n TDM codewords will be referred to as the orthogonal 

set A. If the ith codeword, from the set of n codewords corresponding 

to the ith TDM channel is given by 
n 
l: 

j=i 
a .. o ( t - jT), it may be 
lJ 

represented by the n-component row vector, 

A. = 0 
l 

0 a.. 0 
ll 

whose i th component is aii = 1 • 

0 

The CDI1 codewords which are used as the signal carriers for the 

(3.3-1) 

different channels are given by the rm1s {B.} of an n x n Hadamard matrix. l 

F'or -the particular case •There a codeword or signal element contains 16 

components, that is n = 16, the matrix B i.s shown in Figure 3.3-l. 

The complete set of CDN codewords wjlJ. be referred to as the orthogonal 

set B. If the ith cod.eword from the set of n CDM codewords is given by 
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l: 

j=l 
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b .. 8 (t - jT), it can be represented by the n-component row vector, 
lJ 

B. 
l 

= b: 
ln 

(3.3-2) 

The element value of the signal element 1n the ith of the n channels 

whose code>mrds belong to the orthogonal set A, is x. = ±1 
l 

when a 

signal is present in this channel, or x. = 0 when no signal is present. 
l 

Similarly, .the element value of the signal element in the ith of then 

channels whose codewords belong to the orthogonal set B, is y. = ±l 
l 

when a signal is present in this channel, or y. = 0 when no signal is 
l 

present. Let X and Y be the n-component row vectors with ith components 

x. and y. respectively. 
l l 

It is assumed that the u{x.}, v{y.} for the m active channels are 
1 .l 

statistically independent and e~ually likely to have either binary value. 

7.he u{x.}, v{y.} are not necessarily the first u and v of the n{x.} 
l . l l 

n{y.}, but may be any of the n{x.}, n{y.}. 
l· l l 

The coder and multiplexer combine the m codewords for the two 

orthogonal sets over the period 0 to nT seconds. 

The orthogonal set A and set B codewords, {A.} and {B.} , are 
l l 

multiplied by the corresponding binary element values. {x.} and {y.} , 
l l 

i 1 - - n, so that each codeword given by (3.3-1) and (3.3-2) is binary 

antipodal. The orthoe;onal set A codewords are added linearly to give, 

XA (3.3-3) 

and the orthogonal set B added to g1ve, 

YB ( 3 .3..:4) 
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The n components of the signal vector YB for the orthogonal set B are 

mutliplied by a scalar, whose value is positive and e(lual to c, and 

determines the level of the vector YB to give, 

cYB (3.3-5) 

The n components of the vector XA are now combined non-linearly with 

then components of the vector cYB as follows. For each j, if the jth 

component of X.l\ is negative, then the sign of' the jth component of cYB is 

reversed. The jth components are now added linearly to give the jth 

component of the transmitted signal S. 

S = XA + signs(XA) (cYB) (3.3-6) 

where the operator "signs" replaces each term of the vector XA by ±1 

corresponding to the sign of the components of XA. For components of XA 

e(lual to zero, then the operator "signs" on those components gives a value 

+1. 

The non-linear combination described may be regarded as a process 

of amplitude modulation, the components of XA being modulated or 

systematically altered respectively by the coincident components of eYE. 

The reason for using a non-linear combination rather than a linear one, lies 

in.the detection process, which is now capable of detecting the orthogonal 

set B element values without prior knowledge of the orthogonal set A element 

values. Error extension effects are thus minimised and the probability of 

error is reduced relative to linear coding. 

In the model of the system (Figure 2.1-l), white Gaussian noise with a 

two sided power spectral density of o2 is added to the data signal at the 

output of the tra.nsmission path, giving the Gaussian waveform w(t) added to 

the data signal at the output of the receiver filter, as described in 
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Section 2.1. 

The signal at the output of the receiver filter over the duration of 

a single group of coincident signal elemer,ts is sampled at regular time 

intervals of T seconds to give the n components of the received data 

signal vector R. 

R = S + W (3.3-7) 

where S and Ware n-component vectors, and for the particular receiver 

filter in use, the {w.} are sample values of statistically independent 
~ 

Gaussian random variables with zero mean and variance cr~ 

From E~ns. (3.3-6) and (3.3-7) 

R = XA + signs(XA) {cYB) + W (3.3-8) 

The detection process uses two separate sets of correlation detectors 

matched to the orthogonal sets A and B. These minimise the probability of 

error in the detection of the individual channel element values by 

maximising the ratio of the energy level of the wanted signal, to the 

average energy level of the noise components. 

In general, the ith element value p., corresponding to the orthogonal 
~ 

set Z (any orthogonal set) is detected by feeding Q (the set of n sample 

values of the input signal to the correlation detectors) to the correlation 

detector matched to Z .• The correlation detector multiplies the jth 
~ 

component of Q by the jth component of Z., for j = 1 _ _ n , and adds the 
~ 

pr~ducts to give the output signal. The ith element value is detected 

from the sign of the output signal. 



P· 1 
= 

n 
sign ~ 

j=l 
g_.z .. 

J 1J 

where g_. and z. are the jth components of the rou vectors Q and Z.; 
J 1Z 1 

Using matrix rotation, 

P. = signs (QZT) 
1 
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(3.3-9) 

(3.3-10) 

where the operator "signs" replaces each term of the vector QZT by ±1 

corresponding to the sign of the components of QZT. 

Figure 3.3-2. shows a block diagram of the demultiplexing and detection 

process which operates in an iterative fashion, thus saving hard>rare and 

reducing complexity. For convenience the process is divided into the first 

and subsequent cycles, as the first detection cycle differs slightly from 

the follouing cycles >rhich are identical. In the first cycle of the 

iterative process, the detector determines the binary element values 
I 

{x.} for the orthogonal set A from the signs of the components of R. 
1 

I 

This is because the matrix A is an identity matrix. Let X be the 
I 

n-component row vector with components {x.} 
1 

I 

X = signs (RAT) 

= signs (R) 

and for those channels not in operations, the corresponding element 
I 

values {x.} are set to zero. 
1 

From Eg_n. ·(3.3-8), 

I 

X = s1gns (XA + signs(XA) (cYB) + W) 

(3.3-11) 

(3.3-12) 
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If the ith component of the second term of Eg_n. (3.3-12) due to 

orthogonal set B is of greater magnitude and of opposite sign tothe first 
I 

term a temporary error will be made in the ith component of X • 

This may be corrected in the second cycle of the iterative process, when 

the value of this second term (Eg_n. 3.3-12) is estimated from the detected 

element values for the orthogonal set B, determined in the first cycle. 

If the ith component of the noise term W is of greater magnitude and of 

opposite sign to the first term, then a permanent error will occur which 

cannot be corrected. This is because the magnitude and sign of the noise 

components {w.} of the vector Ware unknown. In general, both second and 
~ 

third terms of Eg_n. (3.3-12) contribute interference in the detection of the 
I 

ith comp0nent of X • 

The signs of all {r.} which contain received elements of the 
~ 

orthogonal set A are now made positive, so that each of these becomes the 

corresponding lril . The value of l is then subtracted from each of these 

{lr. 1}. The remaining {r.} contain no elements of set A and are left 
~ ~ 

' unchanged. The resulting n-component vector R ~s fed to the correlation 

detectors matched to the codewords B. of the received elements of the 
~ 

. I 

orthogonal set B. The element values in this set {y.} are detected from 
~ 

the signs of the corresponding correlation detec~or output signals to give 
I I 

then components {y.} of the vector Y . 
~ 

I 
y = (3.3-13) 

and for those channels not in operation, the corresponding elem·ent values 
I 

{y.} are set to zero. 
~ 
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In the second cycle of the iterative detection process, the detected 
I 

binary element values {y } for the orthogonal set B ·are used to generate 

the corresponding codewordo, which are then added together to give the 

detected value of the sum of the received elements in set B. This is 

identical to that performed in the multiplexing process (Eqn. 3.3-5), only 

now the detected element values {y:} are used. Let this be the n-component 
l 

vector D, with components {d.} ~<here, 
l 

I' 

D = cy B (3.3-14) 

Referring to Eqn. (3.3-6) in which XA is an n-component vector with 

components equal to ±1, it is clear that if the ith component of cYB is 

more negative than -1, then the ith component of S ~<ill be of opposite sign 

to that of the ith component of XA. An incorrect detection in the ith 
I 

component of X will have occurred in the first cycle of the iterative process, 

I 

The orthogonal set A element values {x.} ·are redetected from the sign 
l 

of the corresponding components. {r.} , except when d. is more negative than 
l l 

I 

-1 when the component x. is detected as -sign (r.). 
l l 

The sign of each r. that contains a received element in set A is now 
l 

made positive, except for the {r.} whose corresponding {d.} are more 
l l 

negative than -1. The signs of these.{r.} are made negative. 
l 

The 

remaining {r.} are left unchanged as before. The value of +1 is then 
l 

subtracted from each of the resultant components containing an element of set 
I 

A. The n-component vector R obtained from the operation is fed to the 

correlation detectors matched to the set B codewords, to give the n-component 
I . 

vector Y , the detected binary element values for the orthogonal set. B. 

I 
y = (3.3-15) 



and for those channels not in operation, y. is set to zero. 
1 

The cycle may be repeated as often as required.· The most frequent 

cause of non-unique detectability of the detected element values occurs 

when c takes certain values. If the ith component of the n-component vector 

cYB at the transmitter is -1, exact cancellation between the ith component 

of the sum of the two vectors XA and cYB, will occur, ;,het her the value of 

the ith component of XA is +l or -1. 

Exact ce.ncellation betveen the ith digits of the SU!l'.3 of the set elements 

may occur if'fi/c (;,here c .;,fii) is an integer value. IfFic = k is even, 

then k, lt + 2, k + 4 n channels in operation may cause exact 

cancellation and non-unique cletectability. If Jii;c = k is odd then 

k, k + 2, k + 4 ___ n-1 channels in operation may cause cancellation and 

non-unique detectability. 

3.4 Computer simulation tests 

The relative performances, in the prescence of additive white 

Gaussian noise, of the various systems discussed, have been compared by 

computer simulation. All the programs have been ;,ritten in FORTRAN IV 

and run on the ICI, 1904A computer at Loughborough University of Technology. 

Appendix A2 shows a selection of programs for the more important systems. 

· Figure 3.4-1 shows a flow diagram of the computer simulation model 

for a single test of m active channels. The total number of signal groups 

transmitted' t, and the number of active channels are first selected. 

For every signal group transmitted, a random selection is made of the m 

codewords from the total number of codewords available, which are stored 

permanently for easy access in the multiplexer and demultiplexer. 
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The detector is assumed to have prior knowledge of the m codewords selected 

The data element values are ±l and are statistically independent and e~ually 

likely to take either value. 

The variance cr2 of the additive white Gaussian noise samples 

introduced into the transmission path, is adjusted to obtain a given 

error probability per channel. The demultiplexer operates on the received 

n sample values given by the vector R, to give the m detected element values. 

These are compared with the corresponding multiplexed element values and 

the number of errors counted (differences in sign). The test proceeds 

1 for t transmitted signal groups, after which the error probability per 

channel p (for active channels) is calculated from, 

p = e 
m t (3.4-1) 

where e is the total number of errors counted for the test of m active 

channels. Finally, a print-out is obtained of the relevant test details. 

Another test commences with a different number of active channels, and the 

computer simulation program finishes when all the different number of 

channel tests are completed. 

In a practical system, error probabilities of 1 in 10
5 

or less may be 

expected. It is not possible to test systems with such low error 

probabilities because, for a reasonable estimate of the error rate, some 

20 to 30 errors must be obtained in a computer simulation.test. 

This implies a very large number of trials. A compromise is therefore 

necessary between the error probability per channel, for 20 to 30 errors, 

and the computer time necessary. For all system arrangements tested, an 

error probability per channel of 0.003 has been chosen which for a total 

of 30 errors was found to give an acceptable computer run time even for 
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detection processes that require a vast number of sequential operations. 

Tests with different numbers of active channels naturally require a 

different number of transmitted signal groups for the given error 

probability per channel and for a total of about 30 errors. 

For each system tested, the performance, in terms of tolerance to noise 

has been compared with a conventional binary TDM system (with components 

of amplitude ±1), with the same transmission rate and error probability per 

channel of 0.003. The average energy per component of the transmitted 

signal for each system has been normalised to unity so that it has the same 

average energy as a component in the TDM system. In this way a true 

comparison can be made. 

A measure of the tolerance of a system to additive ;1hite Gaussian 

noise, is given by the ratio of the noise variance cr2 for the system under 

test, to the noise variance criml for a conventional binary TDM system 

under the prescribed conditions. Expressed in decibels, the noise level 

relative to a binary TDM system is given by 

10 log
10 

(3.4-2) 

For the multiplexing of more channels than may be multiplexed 

orthogonally, an interesting comparison is made with a conventional 

quaternary TDM system, having the same error probability per channel and 

average energy per component of the transmitted signal. It should be 

pointed out that the error probability per channel now corresponds to the 

worst case error probability per channel, where two bits of information 

are conveyed by one component of the transmitted signal. If the four 

possible amplitude levels of the quaternary TDM signal are 3a,a, -a, -3a, 

th th t . 2 en e average energy per componen ~s 5a . 
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If the average energy per component is now set to unity, this represents 

a reduction in the average energy per bit df information of 1/5, or 

expressed in dB, a reduction of almost 7 dB. ~1us the tolerance to noise 

of a quaternary TDM system with the same average energy per component of 

the transmitted signal as a binary TDM system, is 7 dB lower than the 

corresponding binary TDM system. 

3.5 Confidence limits 

Because a compromise has by necessity been accepted between the 

available computer time and the number of errors obtained for a given error 

probability, the question naturally arises as to the confidence level of 

the results. 

For a given value of the average element error probability per channel, 

p, the number of errors e obtained in a simulation test is given by 

e =R.pm (3.5-1) 

where R. is the total number of signal g~oups transmitted in a test with m 

active channels. 

It has been shown that if .the errors are statistically independent, 

e > 30, p <<1, and if an accuracy of no better than 20% is required for the 

confidence limits, then it can be assumed that e has a Gaussian probability 

density with a mean \1 = e and a standard deviation n = le . 

For a given value of P> 0, the 95% confidence limits for the value of p 
38 

are approximately, 
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± 2n p (3.5-2) 
ll 

± 2 p (3.5-3) 

re 

where the limits are expressed as deviation from the given value of p. 

Where the number of errors is less than 30, the 95% confidence limits are 

estimated from the results of reference (30) 

In any test with orthogonal groups of signals, there may be a degree 

of dependence between the individual element errors of a group in a 

detection process. The result of this dependence is to reduce the number 

of independent errors obtained in a test and so to widen the confidence 

limits. Thus e in E~n. (3.5-1) does not represent the effective number of 

errors and therefore is only an indication as to the confidence limits. 

When this occurs, a series of tests may be performed for a given number of 

active channels. Let the total number of errors counted for each test be 

e
1 

, e
2 

_ _ er' for r successive tests. The mean ll and standard 
80 

deviation n of the total number of errors counted are given by, 

1 
ll = r 

r 
l: 

i=l· 
e. 

l. 

2 (e. - l!) 
l. 

, 
) ~ 

(Bessel's formulae) 

(3.5-4) 

(3.5-5) 

The 95% confidence limits in the value of error probability is now given 

by E~n. (3.5-2). 
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3.6 Results of computer simulation tests 

The tests simulate the multiplexing and demultiplexing of 16 channels 

from the orthogonal set A, and between 0 and 16 channels from the 

orthogonal set B. For each test the value of c, the level of the set B 

signal elements >Tas adjusted to give the same error probability per 

channel for sets A and B, at the end of the second detection cycle. 

The variance of the additive white Gaussian noise samples was simultaneously 

adjusted to give an error probability of 0.003 for both sets at the end of 

the second cycle, subsequent cycles being found to give no significant 

improvement in the total number of errors counted. For each test 1000 

signal groups ~<ere transmitted. 

Figure 3.6-1 gives the noise level for an error probability per 

channel of 0.003 expressed in decibels relative to a binary TDJ.I system, for 

0 to 16 active channels in set B. Also sho>Tn is the relative noise level of 

the corresponding quaternary TDJ.I system. Both binary and quaternary TDH 

systems have the same average energy per component of the transmitted signal, 

the same transmission rate, and the same error probability per channel as 

the system under test, as explained in Section 3.4. 

This system is more attractive in terms of tolerance to additive white 

Gaussian noise than conventional quaternary TDM, >Then the orthogonal set 

A is at maximum capacity, and when there are up to 7 active channels from 

the orthogonal set B. For a greater number of active channels in set B 

the tolerance to noise decreases rapidly. 

The confidence limits of Eqn. (3,5-3) may be applied to each test >There 

approximately 50 errors were counted for the orthogonal set A. Rather 

fewer errors were counted for the set B, the number depending on the number 

of active channels in set B. 1-Iowever, because the additive white Gaussian 

noise affects the number of errors counted for each set equally, it is 
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reasonable to accept 50 errors as an indication to the confidence limits 

for an error probability per channel of 0.003. The 95% confidence limits 

are therefore 0.003 ± 0.00085, or expressed in decibels, +0.30 and -0.35 

on the measured value of relative noise level of Figure 3.6-1. 

Non-unig_ue detectability caused by cancellation of coincident 

components of the orthogonal sets A and B is examined by an alternative 

approach. The level of the set B signal elements c, is maintained at a 

constant level, as is the noise variance o2 of the additive white Gaussian 

noise samples, for a varying number of active channels in set B. 

Figures 3.6-2 and 3.6-3 show the error probability per channel, at 

the end of the first and second cycles of the iterative detection process. 

The parameters associated with the different graphs are as below. 

GRAPH c a 

lA lB 0.4 0.125 

2A 2B 0.4 0.0 

3A 3B 0.3636 ·o.125 

4A 4B 0.3636 0.0 

The letters A and B against a graph indicate the orthogonal set to 

"hich the value of p apply. The error probability for the set B channels 

remain approximately constant, regardless of the number of channels in 

set B. Thus, to simplify Figure 3.6-2 and 3.6-3, the graphs plotted for 

.18 to f8 sho" in each case a constant value of p, which 2s its average 

value determined over the range 1 to 16 channels in set B. Under noiseless 
. ' . 

conditions, the first detection cycle produces a considerable error 

probability, but for certain conditions is reduced to z~ro in the second 

detection cycle. When c = 0.4 a good tolerance to noise is obtained for 
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an odd number of channels in set B. However, exact cancellation described 

causing non-uniCJ.ue detectability occurs in the set A channels, even under 

noiseless conditions for m even and ~ 10. For c = 0.3636 a good tolerance 

to noise is obtained for an even number of channels in set B, but causes 

non-uniCJ.ue detectability for m odd and~ 11. Graph 2A and 4A of 

Figure 3.6-3 shows this clearly. 

35 
More detailed tests show that the error probability per channel 

of set B is unchanged if the number of channels in set A is reduced. 

3.7 Assessment of System Al 

The non-linear multiplexing arrangement of system Al described, is 

most suitable when the number of multiplcxed channels is a little over the 

maximum number that may be multiplexed orthogonally. In particular, with 

a suitable choice of signal level for the set B, uniCJ.ue detectability 

can be ensured for up to twice as many channels as may be multiplexed 

orthogonally. The arrangement gains an advantage in tolerance to 

additive white Gaussian noise over the corresponding conventional CJ.Uaternary 

TDM system where the transmitted signal has the same average energy per 

component, and the same transmission rate as the system Al. 

The significance of the system is that the tolerance to additive white 

Gaussian noise gradually decreases as the number of channels in set B 

increases. A trade-off exists between the number of additional multiplexed 

channels and the tolerance to noise. 
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CHAPTER 4 

DEVELOPMENTS OF SYSTEH Al 

4.1 System A2 

This is a modification of System Al, in which the most frea.uent 

cause of non-unio.ue detectability of the detected element values occurs 

when the value of c, determining the level of the signal elements of set 

B, takes certain values. System A2 introduces a simple and effective 

non-linearity into the multiplexing method to overcome this. 

From Eo.n. (3.3-6) the n-component transmitted signal vector S is given by, 

S = XA + signs(XA) (cYB) (4.1-l) 

The channel element values {x.} and· {y.} are given by then components 
. 1 1 

of the vectors X and Y whose ith components are ±1, or 0 for those channels 

not in operation. The matrix A is an identity matrix whose rows are the 

codewords of the orthogonal set A. The components of XA are therefore ±l 

or 0. 

If the value of c is.such that the ith component of cYB is -1, 

then if the ith component of XA = ±l; exact cancellation will occur, and 

the information conveyed by the ith channel of the orthogonal set A will be 

completely obliterated. 

When this occurs, the ith component of S, given by Eo.n. (4.1-l) is 

now modified to take the value ±k, the selected sign being the same as that 
I 

of the ith component of XA. Let the n-component vector S be the modified 

transmitted signal. 
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If s. = 0 

} 
(4.1-2) 

~ I 

s. = k (XA) ith 
~ 

and (XA) ith = ±l 

otherwise s. = s. 
~ l 

1<here the ith component of XA is denoted by (XA) ith 

Errors in the detected element values are also caused by components 

of the transmitted signal taking small values, whose signs are easily 

corrupted by the additive >~hite Gaussian noise introduced into the 

transmission path. If the modulus of the ith component of s. is less than 
l 

a value g, then this component is now modified to take the value ±g, the 

St:lt:..: Lt:U. Q.igu Ut:.iug LlH:: ::.a.mt: a::; Ll1at. of the ith component of s .. 
l 

I s.l 
I 

if " g s. = s. 
l ~ ~ 

I s.l 
I 

< g s. = g sign ( s. ) 
l ~ ~ 

For simplification the value g is assumed e~ual to k and the 

two non-linearities are combined. 

\ if 

and 

if 

s. = 
~. 

I s.l < 
l 

0 

= 

k 

otherwise 

±l 
} I 

s. 
l 

I 

s. 
l 

I 

s. 
l 

= 

= 

= 

k (XA) ith 

k sign (s.) 
~ 

s. 
l 

(4.1-3) 

(4.1-4) 
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Increasing the value of k should increase the tolerance to noise of 

the orthogonal set A element values, but because the orthogonal set B 

element values are detected from all n components of the received data 

signal, the orthogonal set B error probability should remain reasonably 

constant for small values of k. For k larger, the error probability for 

the orthogonal set B is expected to increase, due to excessive interference 

from residual components introduced by the non-linearities, and not removed 

with the detection of the orthogonal set A element values. 

4.2 Results of computer simulation tests 

The tests applied here to System A2 are identical to those for 

System Al. Figure 4. 2-1 shows the error probability per channel, at the 

end of the second detection cycle, as the number of channels in the 

orthogonal set B is increased from l to 16. The parameters associated with 

the different graphs are as below. 

Graph c (J k 

lA lB 0.4 0.125 Unmodified 
system Al 

2A 2B 0.4 0.125 0.2 

3A 3B 'o.4 0.125 0.3 

4A 4B 0.4 0.125 0.4 

5A 5B 0.4 0.0 Unmodified 
system Al 

6A 6B 0.4 o.o 0.3 
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System A2. Second detection cycle. Error probability 

per channel, for a varying number of active channels 

in set B. 

noiseless conditions 
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Computer simulation results show that the error probability per 

channel for the orthogonal set B, remains approximat·ely constant regardless 

of the number of channels in set B. Thus for simplification, the curves 

lB to 6B are shmrn as a constant value, the average value of error 

probability taken for all l to 16 channels in set B. The curves lA and 

5A refer to system Al and are shown here for comparison. 

Increasing the value of k decreases significantly the error probability 

in set A, whilst the error probability in set B only increases marginally, 

because these element values are detected from all n compo!'.ents of the 

received data signal. A value of k = 0.3 results in approximately equal 

error probabilities for the sets A and B.· The error probability per channel 

in set A is then reduced to about one tenth of its previous value. 

Figure 4.2-2 gives the noise level for an error probability per 

channel of 0.003 at the end of the second detection cycle, expressed in 

decibels relative to a binary TDI4 system, for .0 to 16 active channels in 

set B, and for k having a value 0.3. Also shown is the relative noise 

level of the corresponding quaternary TDI4 system, with the same average 

energy per component of the transmitted signal, the same transmission rate, 

and the same error probability per channel as the system under test, as 

expiained in Section 3.4. The relative noise level curve for system Al is 

shown for comparison. For more than five active channels from the orthogonal 

set B, the non-linearities of System A2 introduced give an advantage of 

about 0.6 dB over system Al. For up to 9 active channels in set B the 

system is lUCre attractive in terms of tolerance to additive white Gaussian 

noise than conventional quaternary TDI4. 
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4.3 Assessment of System A2 

By modifyin~ the multiplexing arran~ement of system Al slightly, the 

error probability is reduced by a si~nif'icant amount, 1-1ith only a 
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relatively trivial increase in equipment complexity. Additionally, under 

noiseless conditions, unique detect ability is ensured for any number of 

channels in the orthogonal set B, irrespective of the value of c determining 

the level of the set B signal elements. vfuen there are up to 50% more 

channels than may be multiplexed orthogonally, the system A2 has a greater 

tolerance to noise over the corresponding conventional quaternary TDM system. 

4.4 System A3 

Systems Al and A2 are arrangements involving a non-linear combination 

of two sets of orthogonal signals. The TDM elements are orthogonal as are 

the CDM elements, but simultaneously transmitted TDM and CDM elements are 

not orthogonal. With this system, up to twice as many channels may be 

multiplexed, for a given transmission path and signal element rate per 

channel, than is possible with orthogonal multiplexing using TDM or CDM 

alone. 

The techniques used in System Al are now extended to System A3, 

involving three sets of orthogonal signals, a TDM set and two CDM sets. 

It has been considered, to investigate whether the advantages of qystem Al 

apply to the multiplexing of an additional CDM orthogonal set. 

System A3 is capable of multiplexing up to three times the maximum number 

of channels than is possible with orthogonal multiplexing using.TDM or 

CDM alone, for a given transmission path and signal element rate per channel. 

At any time, the total number of channels m, may take any value from 0 to 

3n, where n is the maximum number of orthogonal TDM or CD~! elements. 



The TDM codewords which are used as the signal carriers for the n 

TDM channels are given by the rows {A.} of ann x n identity matrix. 
J. 

The complete set of n TDM codewords ,.rill be referred to as the orthogonal 

set A. If the ith codeword, from the set of n codewords, corresponding 

to the ith TDM channel is given by 
n 
E 

j=l 
a .. o(t-jT), 

l.J 

represented by the n-component row vector, 

it may be 
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A. = 0 
J. 

0 a .. 0 
J.l. 

0 (4.4-1) 

where the ith component aji = 1 . 

The two sets of CDM codewords which are used as the remaining channel 

carriers are given by the rows {B.} and {C.} of n x n matrices Band C, 
J. J. 

and are referred to as the orthogonal sets Band C. The set C was 

originally chosen as a 16 x 16 Hadamard matrix (as in System Al), and the 

set B vas therefore chosen as a Hadamard matri.x with four non-zero components. 

In this way it was thought that by suitable choice of signal levels for the 

elements of sets B and C, the interference between the sets would be 

minimised. However, because of the particular multiplexing method used, 

the set C codewords are modified, such that the individual elements of the 

orthogonal set C are contained in all 16 components of the transmitted 

signal. The matrices Band Care shown in Figure 4.1-1. As explained in 

Section 3.1, Walsh functions could be used, but these are only an alternative 

ordering of the rows of a Hadamard matrix. 

If the ith codeword from the orthogonal set B of n CD!1 codewords is 
n 

given by E b .. o(t-jT) 
j=l l.J . 

it may be represented by the n-component row 

vector, 

B. = b. (4.4-2) 
J. J.n 



B = ~ 

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

1 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 -1 . -1 0. 0 0 0 0 0 0 0 0 0 0 0 

1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 

0 0 0 0 1 -1 1 -1 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0 

0 0 0 0 1 -1 -1 1 0 0 0 0 0 0 0 0 

o o· o o o o o o 1 1 1 1 o o o o 

0 0 0 0 0 0 0 0 1 -1 1 -1 0 0 0 0 

0 0 0 0 0 0 0 0 1 1 -1 -1 0 0 0 0 

0 0 0 0 . 0 0 0 0 1 -1 -1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 

0 c 0. 0 0 0 0 0 0 0 0 0 1 1 -1 -J. 

0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 

c = ~ 

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 

1 0 0 0 -1 0 0 0 1 0 0 0 -1 0 0 0 

0 1 0 0 0 -,1 0 0 0 1 0 0 0 -1 0 0 

0 0 1 0 0 0 -1 0 0 0 1 0 0 0 -1 0 

0 0 0 1 0 0 0 -1 0 0 0 1 0 0 0 -1 

1 0 0 0 1 0 0 0 -1 0 0 0 -,1 0 . 0 0 

0 1 0 0 0 1 0 0 0 -1 0 0 0 -1 0 0 

0 0 1 0 0 0 1 0 0 0 -1 0 0 0 -1 0 

0 0 0 1 0 0 0 1 0 0 0 -1 0 0 0 -1 

1 0 0 0 -1 0 0 0 -1 0 0 0 1 0 0 0 

0 1 0 0 0 -1 0 0 0 -1 0 0 0 1 0 0 

0 0 1 0 0 0 -1 0 0 0 -1 0 0 0 1. 0 

0 0 0 1 0 0 0 -1 0 0 0 -1 0 0 0 1 

Figure 4.4~1 The orthogonal matrices B and C 



Similarly, the ith codevord from the orthogonal set C may be represented by 

the n-component row vector, 

c. 
1 

= (4.4-3) 

The element value of the signal element in the ith of the n channels 

whose codewords belong to the orthogonal set A, is x. = ±1 when a 
1 

signal is present in this channel, or x. = 0 
1 

when no signal is present. 

Similarly, the element value of the signal element in the ith of the n 

channels vhose codewords belong to the orthogonal set B, is y. = ±1 
1 

when a signal is present in this channel, or y. = 0 
1 

when no signal is 

present. Similarly, for the orthogonal set C, z. = ±l 
1 

when the ith 

signal is present, or z. = 0 
1 

when no signal is present. Let X, Y and Z 

be then-component row vectors with ith components xi, yi and zi 

respectively. 

It is assumed that the {x.}, {y.} and {z.} for the active channels 
1 1 1 

are statistically independent and equally likely to have either binary value. 

The {x.}, {y.} 'and {z.} for the active channels are not necessarily the first 
1 1 1 

of the n{x.}, n{y.} and n{z.}, but may be any of the n{x.}, n{y.} and n{z.}. 
1 l l. 1 l. l. 

The operations involved in the multiplexing and demultiplexing processes 

are basically identical to those of System Al. The signal elements for 

different orthogonal sets are combined non-linearly so that the element 

values of a particular set may be detected without prior knowledge of element 

values previously detected. Thus if an element value is detected in error, 

due to the additive white Gaussian noise introduced, the cancellation of the 

signal elements from that set from the received data signal, does not affect 

the detection of other element values, as would occur with a linear coding 

scheme. The probability of correct detection of the element values is thus 



increased. 

The coder and multiplexer combine the m channel codewords from the 

three orthogonal sets over the period 0 to n'r to give the resultant 

transmitted signal which may be represented as an n-component row vector. 

The orthogonal set codewords {C.} are multiplied by the corresponding 
l 

binary element values {z.} so that each codeword given by EQn. (4.4-3) lS 
l 

binary antipodal. The codewords are added linearly to g1v~ the 

n-component vector ZC, vhich is multiplied by a scaling factor, whose value 

is positive and eQual to h, and determines the level of the vector ZC 

to give, 

hZC 

The n components of the vector hZC are nmr combined non-linearly with 

the element values {y.} of set B as follows. For each j, j = l __ n, 
l 

if the jth component of Y is negative, then the sign of the jth component 

'of hZC is reversed. The jth components are now added linearly to give, 

Y + signs(Y) (hZC) (4.4-5) 

where the operator "signs" replaces each term of the vector Y by ±l 

corresponding to the sign of the components of Y. 

The orthogonal set B codewords. {B.} are multiplied by the components 
l 

given by (4.4-5), and the elements are then added linearly The resulting 

... 

n-component vector is multiplied by a scaling factor, whose value is positive 

and equal to f, and determines the level of the signal elements of set B to 

give; 

f(Y + signs(Y) (hZC) B (4.4-6) 



The n components of the vector given by (4.4-6) are now combined 

non-linearly with the element values {x.} as follows. For each 
1 

j,j=l __ n, if the jth component of X is negative, then the sign of 

the jth component of (4.4-6) is reversed. The jth components are added 

linearly to give, 
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X+ signs(X) f(Y + signs(Y) (hZC) ) B (4.4-7) 

The orthogonal set A codewords {A.} would now logically be multiplied 
1 

by then-components given by (4.4-7), but as the matrix A is an identity 

matrix, this operation becomes unnecessary, and (1!.4-7) gives the 

n-component transmitted signal vector S. 

S = X + signs(X) f(Y + signs(Y) (hZC) ) B (4.4-8) 

In the model of the system (Figure 2.1-1), white Gaussian noise with 

a two sided power spectral density of o2 is added to the data signal at 

the output of the transmission path, giving the Gaussian waveform w(t) 

added to the data signal at the output of the receiver filter. This has 

·been described in detail 1n Section 2 .1. 

The signal at the output of the receiver filter over the duration of 

a single group of coincident signal elements is sampled at regular time 

intervals ofT seconds to give the n components of the received data signal. 

R = S + W (4.4-9) 

where S and Ware n-component vectors, and the. {w.} are sample values of 
. 1 

statistically independent Gaussian random variables ><ith zero mean and 

variance o2 as before. From Eqn, (4.4-8) and Eqn. (4.4-9), 
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R = X + signs(X) f(Y + signs(Y) (hZC) ) B + W (4.4-10) 

The detection process uses thr<ee separate sets of correlation 

detectors matched to the orthogonal sets A, B and C, and operates in a 

similar fashion to System Al. Figure 4, 4-2 shows a block diagram of the 

iterative detection process which is divided for convenience into the first 

and subsequent cycles, the first cycle differing slightly from the following 

·cycles. 

In the first cycle of the iterativ<= process, the detector determines the 
I I 

binary element values {x.} of the vector X for the orthogonal set A from 
~ 

the signs of the corresponding components {r.} of R, 
~ 

I 

X = signs (R) (4.4-11) 

and for those channels not in operation, the corresponding element values 
I 

{x.} are set to zero. 
~ 

The signs of all {r.} which contain received elements of the orthogonal 
~ 

set A are now made positive, so that each of these becomes the corresponding 

lr.l . The value of 1 is then subtracted from each of these {lr. IJ. 
~ ~ 

These operations remove components due to the orthogonal set A from the received 

data signal, and require no prior knowledge of the actual element values 

of set A. Thus, it remains valid even for incorrectly detected element values. 

The remaining {r.} contain no elements of the set A and are left unchanged. 
~ 

I 

The resulting n-component vector R is fed to the correlation detectors 

matched to the codewords B., of the received elements of the orthogonal set 
~ 

. I 

B. ·The element values in this set {y.}, are detected from the signs of 
~ 

the corre~ponding correlation detector output signals to give the n components 
I I 

{y. } of the vector Y • 
~ 
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(4.4-12) 

and for those channels not in operation, the corresponding element values 
I 

{y.} are set to zero. 
l 

The correlation detector output signals are multiplied by the scalar 

-1 
f thereby offsetting the amplitude scaling in the multiplexer. Let the 

" resultant n-component vector be R • 

11 11 

(4.4-13) 

The signs of all component {r.} of the vector R which contain received 
l 

elements of the orthogonal set B are now made positive, so that each of these 

" become·s the corresponding lr·l· 
l 

The value of l is subtracted from each of 
11 

these. {lr.IJ. The components due to the orthogonal set Bare thus removed 
l 

from the received signal and without prior knowledge of the element values of 
11 

the set B. The remaining {r.} contain no elements of the set B and are 
l 

Ill 

left unchanged. The resulting n-component vector R is fed to the 

correlation detectors matched to the codewords C. of the received elements 
l 

I 

of the orthogonal set C. The element values in the set {z.} are detected 
l 

from the signs of the corresponding correlation detector output signals to 
I I 

give then components {z.} of the vector Z • 
l 

(4.4-14) 

and for those channels not in operation, the corresponding element values 
I 

{z.} are set to zero. 
l 



In the second cycle of the iterative detection .process, new estimates 

are made of the detected element values, and those incorrectly detected 

initially may now, to some extent, be corrected. Under noiseless conditions 

all incorrectly detected element values are corrected in this second cycle. 

The reason for incorrectly detected element values in the first cycle 

can be seen by referring to Eqn. (4.4-8), that is, 

S = X + signs(X) f (Y + signs(Y) (hZC) ) B 

For those channels in operation for the orthogonal sets A and B, the 

corresponding components of the vectors X and Y have the value ±1. 

If then, the ith component of the term f(Y + signs(Y) (hZC) ) B has a 

value more negative than -1, irrespective of whether the ith component of 

X is ±1, the sign of the ith component of S will be of opposite sign to the 

ith component of X (provided the ith channel of the orthogonal set A is in 

operation). Because the element values of the orthogonal set A are detected 

from the signs of the received data signal R, where R = S + W from 
I 

Eqn. (4.4-9), an incorrect detection in the ith component of X will occur. 

Similarly, if the ith component of the term (hZC) is more negative than 

-1, then, irrespective of whether the ith component of Y is ±1, the sign 

of ~he ith component of 

to ith component of Y. 

Y + signs (Y) (hZC) will be of opposite sign 
I 

In the detection of the ith element value y. 
~ 

and incorrect detection will occur. 

In th~ second cycle of the detection process, the element values 
I I I 

{x.), {y.) and {z.) are again detected, but the vectors 
~ ]. l . 

f(Y + signs (Y) (hZC)) B and (hZC) are examined for components more negative 

than -1, by rcconptituting these vectors from the element values previously 

detected. 



I 

The detected binary element values {z.} for the orthogonal set C are 
]. 

first used to generate the n-component vector D vith components {d.}. 
]. 
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I 

D = hZ C (4.4-15) 

If the ith component d. is more negative than -1, then the component y. 
l ]. 

will.have been incorrectly detected and its sign is now changed. 

I I 

The detected binary element values {z.} and {y.} for the orthogonal 
]. ]. 

I 

sets C and B are now used to generate the n-component vector D with 
I 

components {d.} 
]. 

I I t I 

D = f(Y + signs(Y ) (hZ C) ) B 

I 

(4.4-16) 

If the ith component d. 
]. 

is more negative than -1, then the component 
I 

x. will have been incorrectly detected in the first cycle. 
]. 

The second cycle continues as follows, using the same principle as the 

first cycle of the iterative detection process. The orthogonal set A 
I 

element values {x.} are redctected from the signs of the corresponding 
]. 

I 

components of R, except when d. is more negative than -1, when the 
]. 

I 

component xi is detected as -sign (ri). 

I 

X = signs(R) (4.4-17) 

I I 

If d. < -1 then x. is set to' -sign (r.), and for those channels not in 
]. ]. ]. 

I 

operation the corresponding element values {x.} are set to zero. 
l 

The sign of each r. that contains a received element in set A is now 
]. 

I 

made positiv,e, except for the {r.} vhose corresponding {d.} are more negative 
]. ]. 

than -1. The signs of these· {r·} arc made negative. The remaining. {r.} 
l ]. 

are left unchant>cd as before. The value of -1 is then subtracted from eacl1 



of the resultant components containing an element in set A. The n-component 
I 

vector R obtained from this operation is fed to the correlation detectors 
I 

matched to the set B codewords. The element values in this set {y.} 
~ 

I 

of the vector Y are detected from the signs of the corresponding 

correlation detector output signals, except >~hen d. is more negative than 
~ 

I 

-1, >~hen the component y. is detected of opposite sign to the detector 
~ 

output. 

(4.4-18) 

'· I T . 
If di < -1 set yi = -sign (R B )ith 

I T . ' ( I T) where the ith component of R B ~s denoted by R B ith. For those 
I 

channels not in operation, the corresponding element values {y.} are set 
~ 

to zero. 

The correlation detector output signals are multiplied by the scalar 

-1 
f thereby offsetting the amplitude scaling in the multiplexer. 

11 

Let the resultant n-component vector be R , 

11 

(4.4-19) 

The signs of all {r.} which. contain received elements of the orthogonal 
~ 

set- B are now made positive, so that each of these becomes the corresponding 
11 

lr · I · l 

11 

The value of 1 is subtracted from each of these {lr. !}. 
~ 

11 

The remaining {r.} contain no elements of the set Band are left unchanged. 
~ 

Ill 

The resulting n-component vector R is fed to the correlation detectors 

matched to the codewords {C.} , of the received elements of the orthogonal 
~ 

set C. The element values in this set {z~} are detected from the signs of 
~ 

the corresponding-correlation detector output signals to give the n components 
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{z.} of the vector Z , 
~ 
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(4.4-20) 

and for those channels not in operation, the corresponding element values 
I 

{z.} are set to zero. 
~ 

This second cycle of the iterative detection process may nm< be repeated 

as often as required using the most recently detected binary element values 

to obtain new estimates of these binary element values. In practice, 

little or no advantage is gained with more than two cycles, especially at 

high signal/noise ratios (low probability of error). 

4.5 Results of computer simulation tests· 

The tests simulate the multiplexing and demultiplexing of 16 channels 

from the orthogonal set A, and between 0 and 16 channels from each of the 

orthogonal sets B and C. Set C channels are not used until all channels 

from the orthogonal set Bare in operation. The codewords used in the 

sets B and C are chosen at random from the available codewords for 

every group transmitted, and the detector has prior knowledge of those 

chosen. After each cycle of the iterative detection process, the number of 

element values in error are counted separately for the sets A, B and C, and. 

at the end of the test, the error probability per channel for each set is 

calculated. For all tests 500 groups were transmitted. 

For every test the value of f and h, the levels of the set B and set C 

signal elements respectively, were adjusted to give the same error 

probability per channel for each of the three orthogonal sets. The variance 

of the additive white Gaussian noise samples was simultaneously adjusted 

to give an error probability per channel of 0.003 for each set at the end 

of the third cycle of the iterative detection process. Subsequent cycles 
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were found to give no improve; tent. 

Figure 4.5-1 gives the noise level for an error probability per channel 

of 0.003 expressed in decibels relative to a binary TD!-1 system with the same 

average energy per component of the transmitted signal, the same transmission 

rate, and the same error. probability per channel as the system under test, 

for 0 to 16 active channels in the sets B and C. Also shown are the relative 

noise levels of the corresponding quaternary and 8-level bipolar TDH 

systems for the same conditions as a binary TDH system, and as explained 

in Section 3.4 . 

With the orthogonal set A at maximum capacity, for up to 10 channels 

in set ll, the system is more attractive in terms of tolerance to additive 

white Gaussian noise than conventional quaternary TDH. The system is 

also more attractive than 8-levcl TDM, when the sets A and B are fully 

occupied and there are up to about 7 channels in the orthogonal set C. 

Figure !1.5-1 shows that a trade-off exists between the number of active 

channels, and the tolerance to additive white Gaussian noise. 

The confidence limits of Eqn. (3.5-3) may be applied to each test where 

approximately 25 errors were counted for the orthogonal set A. Rather fewer 

errors were counted for the sets B and C, the n~~ber depending on the number 

of active channels in the sets •. However, because the additive white 

Gaussian noise affects the number of errors counted for each set equally, 

it is reasonable to accept 25 errors as an indication to the confidence 

limits for an average error probability per channel of 0.003. The 95% 

confidence limits are therefore 0.003 ± 0.0012, or expressed in 'decibels 

+0.37 and -0.49 on the measured value of relative noise level of Figure 4.5-1. 
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4.6 Assessment of System A3 

The non-linear arrangement of System A3 described, capable of multi-

plexing up to three times the maximum number of orthogonal channels, is 

most suitable when there are up to about 50% more channels than may be 

multiplexed by conventional means, whether it be binary or quaternary TDM. 

A trade-off exists between the number of active channels and the tolerance 

to additive 1<hite Gaussian noise. 

4. 7 System A4 

Systems Al and A3 are arraneernents involving a non-linear combination of 

two and three sets of orthogonal signals respectively. The TDM elements are 

orthogonal as are the TDM elements, but simultaneously transmitted TDM and 

CDM elements are not orthogonal. As explained previously, a trade-off exists 

between the number of channels in operation and the tolerance to additive 

white Gaussian noise. System A4 is an extension using the same techniques 

whereby up to five times as many channels may be multiplexed, for a given 

transmission path and signal element rate per channel, than is possible with 

orthogonal multiplexing using TDM or CDM alone. 

The transmitted signal elements are arranged in separate groups 

comprising a single TDM orthogonal set and four CDM orthogonal sets, 

At any time the total number of channels m may take any value from 0 to 5n, 

where n is the maximum number of orthogonal TDH or CDM elements. 

The TDM codewords which are used as the signal carriers for the n TDM 

channels are given by the rows {A.} of ann x n identity matrix as before. 
~ 

The complete set of n TDM codewords will be referred to as the orthogonal 

set A. 
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The four sets of CDM code1wrds are g1ven by the rows {B.}, {C.}, {D.} 
l l l 

and {E.} of n x n matrices, B,C,D and E, which are sbmm in Figure 4.7-l 
l. 

for the particular case where a code1<ord contains 16 components, These 

particular sets of codewords are used, so that after multiplexing, the 

components corresponding to each element value of the various sets present 

in the resultant transmitted signal, interfere minimally. In the resultant 

transmitted signal, the orthogonal set A element values correspond to l 

non-zero component, the orthogonal set B element values correspond to 2 

non-zero components, the orthogonal set C to 4 non-zero components, the 

orthogonal set D to 8 non-zero components and the orthogonal set E to 16 

non-zero components. 

To avoid any unnecessary confusion, it is sufficient to say that the 

multiplexing and demultiplexing arrangements are identical to System A3, 

where only three orthogonal sets are combined. The detected element values 

for each set are detected sequentially for each cycle.of the iterative 

detection process and error correction is performed by reconstituting 

various signals from the detected element values of the previous cycle. 

This system has not been computer simulated due to the immense 

complexity involved with five orthogonal sets, However, the performance 

of this arrangement may be extrapolated from the results of System A3 

shown in Figure 4.5-l. It is clear that although a trade-off exists 

between the number of channels in operation and the tolerance to additive 

white Gaussian noise, the incorporation of additional orthogonal sets only 

reduces· the relative advantage over conventional multilevel TDM·systems, 

having the same average energy per component of the transmitted signal. 

When there are more than 3 times the maximum number of channels that may 

be multiplexed orthogonally, there is little or no advantage in using this 

system. System A4 therefore remains only an interesting extension using 
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the basic techniques of Systems Al and A3. 

4.8 Correlative coding scheme suitable for hardware implementation 

The multiplexing arrangement of System A3 previously described is 

obviously complicated. This technique produces the identical transmitted 

signal vector but in a different manner, and could be easily implemented 

with digital integrated circuits. 

The TDM code<~ords <~hich are used as the signal carriers for the n 

TDM channels are given by the rows {A.} of ann x n identity matrix as 
l 

before. They may.be represented by then-component row vector, 

72 

A. = 0 
l. 

0 a.. 0 ll 0 (J+ .8-l) 

<~hose ith component is aii = 1 . 

The two sets of CDH codewords <~hich are used as the remaining channel 

carriers are given by the rows {B.} and {D.} of n x n matrices Band D. 
l l 

The matrix D differs from the matrix C used in System A3; because the 

individual set codewords are multiplied by the element values of that set 

only, and then added linearly. In System A3 the codewords of the orthogonal 

set B are multiplied by a non-linear combination of the element values from 

the orthogonal set B, and the signal elements from the orthogonal set C. 

It should be noted, however, that D = BC. The ith codewords from the 

orthoe;onal sets B and D a.re glven ):Jy the vectors, 

B. 
l 

= 

= 

b. ln 

c. 
ll1 

(4.8-2) 

(4.8-3) 
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and are shown in Figure 4.8-1 for the particular case where n = 16. 

The element value of the signal element in the ith of the n channels 

whose codewords belong to the orthogonal set A, is x. = ±1 when a signal 
J. 

is present, or x. = 0 when no signal is present. Similarly, the element 
J. 

value of the signal element in the ith of the n channels whose codcwords 

belong to the orthogonal set B, is y. = ±1 when a signal is present, or 
J. 

y. = 0 when no signal is present. Similarly, for the orthogonal set D, 
J. 

z. = ±1 when the ith signal is present, or z. = 0 when no signal is 
J. J. 

present. Let X,Y and Z be the n-component row vectors with ith components 

x., y. and z. respectively. 
J. J. J. 

At the transmitter, the coder and multiplexer combine the codewords 

from the three orthogonal sets over the period 0 to nT, to give the 

resultant transmitted signal. Each complete set of codewords forming an 

n x n matrix is modified, by sign changes of the components, according to 

the element values of lower order sets, ;rhere set A is of lowest order. 

The signal elements so formed are multiplied by the coincident element 

values of the corresponding sets, and added linearly to form the transmitted 

signal. 

The orthogonal set A codewords {A.} are multiplied by the corresponding 
J. 

binary element values {x.}, so that each codeword given by Eqn. (4.8-1) is 
J. 

binary antipodal. The codewords are added linearly to give the n-component 

vector~ 

XA (4.8-4) 
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The components of the orthogonal set B codewords are modified by the 

ortho(lonal set A element values as follovs. If the jth element value of 

the orthogonal set A, x. is negative, then the components of the jth 
J 

colum.n of matrix B are changed in. sign. Let this give the modified n x n 

' ' matrix B of the set B elements. These elements {B.} are multiplied by 
l 

"15 

the corresponding binary element values {y.}, vhich are then added linearly 
l 

to give the n-component vector, 

' YB (4.8-5). 

The components of the orthogonal set D codevords are modified by 

both the orthogonal sets A and B element values as follows. If the jth 

element value of the orthogonal set A, x. is negative, then the components 
J 

of the jth column of matrix D are changed in sign. Let this give the 

' modified n x n matrix D . If the jth component of the orthogonal set B, 
. ' 

y. is negative, then the components of matrix D are changed in sign, 
J 

where the components are identified by the number j in the matrix M 

shovn in Figure 4.8-2. For example, if then the components 
1 I t t 1 t 

d31 , d32 , d33 , d
3

4 , d71 , d72 etc. are changed in sign. Let this give 

11 " 
the· modified n x n matrix D of the set D elements. These elements {D.} 

l 

are ~ultiplied by the corresponding binary element values {z.}, and are 
l 

added linearly to give the n-component vector, 

" ZD (4.8-6) 

' The vector YB (4.8-5) is multiplied by a scalar f to determine the 

" level of the signal elements of the orthogonal set B. Similarly, ZD 

(4.8-6) is multip1ied by the scalar g. 



The n components of each of the three signal elements for the three 

orthogonal sets are added linearly, to give the n-component resultant 

transmitted signal vector, 

I 11 

S = XA + fYB + gZD (4.8-7) 

The multiplexing of System A4 involving five orthogonal sets of 

signals may be similarly simplified using this technique. Different orthogonal 

matrices are used, whose rows are codewords used as the channel carriers. 

The matrix modifications depend on the lower order set element values, and 

involve changes in sign only. 



CHAPTER 5 

NON-LINEAR CODE-DIVISION WJLTIPLEXING 

5.1 Introduction 

Tne techniQue of multiplexing is usually·based on the orthogonality 

of the channel carriers. The waveforms of the carriers assigned to each 

of the channels are such that, if and are the carriers 

assigned to channels i and j respectively, if i;ij' then over the period 

0 to T, 
T 

j (5.1-1) 

0 

This condition is met in FDM and TDM systems by the use of 

non-overlapping bands in the freQuency and time domains respectively. 

Section 3.1 introduces linear code-division multiplexing systems in which 

different channels are assigned orthogonal codes which are multiplied by 

the corresponding analogue signals. The demultiplexer recovers the data 

for each channel by correlating the received signal with locally ge;nerated 

codewords, the correlation coefficients being proportional to the multiplexed 

analogue signals. 

For binary data signals, such a process is wasteful, which enables the 

data to be recovered correctly in both sign and magnitude, at least in the 

absence of noise. Only the sisn, for binary data is in reality necessary, 

and the presence of other channels may be allowed to corrupt the magnitude 



of the received data signal. A non-linear code-division multiplex system 

1s one in which the transmitted signal is not a linear function of the 

individual signal codes. 

56 
Titsworth in 1962 proposed a system in which the codewords, multiplied 

by the corresponding element values are added linearly as before, only no1·r, 

the components of the transmitted signal are binary bipolar equal to ±l, the 

sign corresponding to that of the components of the vector previously 
57 

obtained by the linear addition of the codewords. Barrett and Karran 

have developed a similar system which employs pseudo-random noise carriers 

as the codewords, and correlation detection at the receiver. Such systems 

are no~< known as majority multiplex systems, from the prominent work in 

this field by Gordon and Barrett of the Hatfield Polytechnic. 

5.2 Gordon and Barrett 

A system has been proposed which exhibits a trade-off between the number 
58-60 

of active channels and the tolerance to additive white Gaussian noise. 

Two prototypes have been built using different methods of channel simulation, 

but the multiplexing and demultiplexing techniques are identical. Figure 

5.2-1 shmrs a block diagram of the majority multiplex system. The Walsh 

functions used as the signal carriers for the different channels are given by 

n-l (n-l)x(n-1) matrix A, the component row vector {A.} , forming an 
l 

which consists of the first n Halsh functions with the first row and 

column omitted. For the particular case where a codeword contains 7 components, 

the matrix A is as below, and is the truncated form of an 8x8 matrix of the 

first 8 Walsh functions. 
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of an individual signal 

a.. they can be represented 
~J 

a· i(n-1) 

The element value of the signal clement in the ith of the n-1 

channels x., of the n-1 component row vector X, is 
~ 

when 

so 

(5.2-l) 

a signal is present in this channel, or x. = 0 
~ 

when no signal is present. 

The multiplexer multiplies the codewords {A.} by the binary element 
. ~ 

values {x.} to give the corresponding signal elements, which are added 
. ~ 

linearly to give the n-1 component vector XA. The ith component si of 

the resultant transmitted signal vector S is given by ±1, the selected sign 

being the same as that of the ith component of XA, so that the transmitted 

signal vector corresponding to the m coincident signal elements is the 

n-1 component vector, 

S = signs (XA) (5.2-2) 
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where the operator "signs" replaces each term of the vector XA by ±1 

corresponding to the sign of the components of XA. For an even number of 

active channels, the ith component of XA may equal zero, for which the 

operator signs cannot be applied. The multiplexing scheme is therefore 

only valid for an odd number of active channels. 

Two prototypes have been constructed and tested with different channel 
58 

simulators. In the first, white Gaussian noise is added to the transmitted 

signal, which is passed through an active 4th order Buttervorth low-pass filter, 

with a 3 dB point of 2KHz. 'rhe transmission rate is 2.4 kilobits/sec. 

The input of the demultiplexer slices the received signal, recovering the 

binary vaveform. 

59 
The second prototype channel simulator uses a digital random-error 

generator vhich introduces digital binary errors into the transmitted 

signal stream vith a given probability of error. The generator 

incorporates a set of random number generators, with bases of 10, 5 and 2. 

Each generator produces a random number for each component of the data signal. 

If the set of random numbers fits a prescribed set of conditions, an error 

is introduced into the data stream. By varying the set of conditions it 

is possible to introduce digital binary errors into the data signal vith 

any probability vhich may be expressed in terms of the numbers 10, 5 and 2. 

For instance, error probabilities of 1 in 2, or 1 in 2x107 , or 1 in 5Xl0
4 

may be introduced. 

The demultiplexer correlates the received binaryn-1 component 

signal vector R with the identical truncated Walsh functions used in the 

multiplexing process. The correlation detector multiplies the jth component 

of R by the jth component of Ai for j = 1 - _ n-J. and adds the product 

to give the output signal (correlation coefficient) for each of the m 
I I 

channels. The detected element values { x. } of th0 vector X are given 
~ 
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by the signa of these output signals. 

(5.2-3) 

A block diagram of the experimental arrangement is shown in Figure 5. 2-2. 

The results for the first prototype using the additive white Gaussian 

noise channel simulator are shown in Figure 5.2-3. Also shown are the 

theoretical curves for the error probability per channel against a variation 

of signal/noise ratio for different nt@bers of active channels. The 

signal/noise ratio was measured at the output of the channel simulator, the 

signal and noise energies being measured separately using a thermocouple 

arrangement. An attenuator feeding the thermocouple was used to measure 

the quantities, the attenuator being adjusted until the thermocouple gave 

a standard reading. In this way the relative energies of the signal and 

noise may be measured accurately. The error rates were measured by counting 

a large number of errors, typically between 500 and 20,000, to obtain 

statistically significant results. For seven active channels, the 

arrangement gives a performance approaching that of a conventional binary 

TDM ~ystem, having the same average energy per component of the transmitted 

signal, and the same transmission rate. At high signal/noise ratios, with 

one active channel only, the tolerance to noise increases by about 7~ dB 

relative to 1 active channel. 

The results using the digital random error-generator channel simulator 

of the second prototype are sho'm in Figure 5.2-4. Experimental and 

theoretical curves show- the detect cod element value error probability per 

channel against the transmission error probability for different numbers of 

active channels. For less than the maximum number of channels in operation, 

a significant reduction in the element value error probability per channel 
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is obtained compared to the introduced digital binary errors in the data 

signal. For example, for one active channel, the element value error 

probability per channel is about 10-6 for a digital binary error probability 

-2 in the data signal of 10 

The advantages of this system are twofold. 1</hen the system is not 

operated at maximum capacity, the data is redundantly encoded, and a 

considerable measure of error correction takes place without additional 

circuitry, this correction taking place quite automatically as a result of 

the encoding and correlation detection in the demultiplexing process. 

Thus a trade-off exists between the number of channels in operation at any 

time and the tolerance to additive white Gaussian noise of the data signal. 

The second advantaGe is that the transmitted signal is binary, <·Thich 

simplifies the design of any repeater equipment that may exist. 

However, there are several disadvantaGes. The coding scheme is 

only valid for a codeword length n-1 of 7 or 3 components, accommodating a 
62 

maximum capacity of 7 and 3 channels only. It has been shown that there 

are no matrices which provide any improvement over this, and it is merely 

fortuitous that the >lalsh matrix majority multiplexinG scheme works at all. 

As explained, only an odd number of active channels may be multiplexed. 

For an even number of active channels, a dummy siGnal representing an 

additional channel must be introduced. 

An extension to Gordon and Barrett's majority multiplexing scheme has 
63 

been proposed by Hashim to enable more than 7 channels to be simultaneously 

multiplexed. The total number of channels must be a multiple of 3 or 7. 

Different groups of codewords are interleaved, each group using majority 

multiplexing independently of the others. For a few channels in operation 

only, each channel may use several code<mrds, one from each independent group, 



the element values being detected from the sum of the. correlation detector 

outputs for each group. 

Gordon and Darrett have more recently proposed a group multiplexing 

system by concatenation, in which the outputs of several independent 

multiplexers form the input to another multiplexer. In this <lay, larger, 

more powerful error correcting groups are formed. The results are given 

in reference (61). 



CHAPTER 6 

A CODE-DIVISION MULTIPLEX SYSTEM USING AN 

ADAPTIVE WALSH FUNCTION CODI!lG SCHEME 

6.1 Introduction 

From the previously discussed proposed systems, three factors appear 

significant in an arrangement that uses the available power and bandwidth 

optimally to give the best possible tolerance to noise. 

88 

a) A conventional binary TDH system whose individual channels occupy 

one component of the transmitted signal group only, and whose 

element values are statistically independent, is .considered optimum 

when all channels are in operation and the system is used at 

maximum capacity. For this condition no alternative arrangement 

will give a superior tolerance to additive white Gaussian noise. 

b) A CDM system whose individual channels are assigned reference 

carriers with components spread over the entire element period, 

is optimum for the particular case when one channel only is in 

operation. The transmitted signal is binary antipodal, and the 

selected channel has exclusive use of the entire bandwidth. 

c) For a good tolerance to noise performance, e~uality is necessary 

between the peak component energy and the average transmitted 

energy. This is because the transmitted energy per component 

increases with the s~uare of the component amplitude, ;;hereas 

the tolerance to noise increases linearly. 1'hus large peak energies 
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are not beneficial. Also, for transmitted signal components of 

equal amplitude, additional orthogonal sets of signals may be added 

in a similar fashion to multilevel ~'DM, where the components of 

an additional orthoe;onal set are added to the previous orthogonal 

set at half the amplitude. 

An optimum multiplexing arrangement would generate a transmitted sie;nal 

similar to a CDM codeword and TDH, for minimum and maximum capacities 

respectively, and changing gradually from one arrangement to the other as 

the number of channels increases. The utilisation of available power could 

then be· optimum (best possible arrangement) at all times. 

A necessary requirement is also a demultiplexing arrangement whose 

operation is uncomplicated, fast and whose performance matches up to the 

optimum detection process. This detector minimises the probability of error 

(that is, the probability of one or more element errors) in the detection of 

the element values of a group. 

The following two closely related multiplexing arrangements C and D, 

fulfil the conditions previously outlined. These arrangements use an adaptive 

coding scheme, such that the transmitted signal automatically adjusts itself 

to the number of multiplexed channels. In so doing, the tolerance to 

additive white Gaussian noise of the transmitted signal over the 

communication link is improved, relative to the corresponding TDM system, 

for any number of channels. The technique is capable of multiplexing any 

number of signals, quasi -orthogonally, up to the maximum number of signal 

elements over an element period of nT seconds. The number of signals 

multiplexed may exceed the maximum number of orthogonal multiplexed signals 

using a multilevel transmitted signal, in which the tolerance to noise 

deteriorates slowly as the number of channels increases. Thus, a trade-off 

exists between the number of channels transmitted and the tolerance to 
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additive noise. 

6.2 The mu1tip1exing arransement C 

The mu1tip1exins procedure is based on a non-linear combination of Walsh 

functions which are used as the signal carriers for the different channels. 

The Vlalsh functions are given by then-component row vectors {A.}, forming 
~ 

the reus of the n x n matrix A. For the particular case where a code•10rd 

or signal element contains 8 components, the matrix A is as belm;. 

1 1 1 1 1 1 1 1 

1 1 1 1 -1 -1 -1 -1 

1 1 -1 -1 -1 -1 1 1 

1 1 -1 -1 1 1 -1 -1 

A= 1 -1 -1 1 1 -1 -1 1 

1 -1 -1 1 -1 1 1 -1 

1 -1 1 -1 -1 1 -1 1 

1 -1 1 -1 1 -1 1 -1 

If the component values of the carriers of an individual signal element 
n 

in the ith channel are given by U a .• , 
j=l 1J 

they can be represented by the 

n-component vector, 

A. 
1 

= a. 1n 
(6.2-1) 

The element value of the signal element in the ith of the n channels 

xi, of the n-compo~ent vector X, is x. = ±1 when a signal is present in 
1 

this channel, or x. = 0 when no sisnal is present. 
1 



It is assumed that the m{x.} for the m channels. in use are 
~ 

statistically independent and equally likely to have either binary value. 

These {x.} are not necessarily the first m of the n{x.}, but may be any of 
~ ~ 

the n{x.}. 
~ 

The coder and multiplexer (Figure 2.1-l) combine the codewords of the 

different channels as follmrs. For each integer j in the range l to n, 

if x. = ±l, set a .. to zero for each i # j, and leave a .. unchanged. 
J ~J JJ 

For x. = 0, leave a .. unchanged for each i. The modified matrix of 
J ~J 

t 

codewords is given by A . 

t 

The modified codewords {A.} are now multiplied by the binary element 
~ 

values {x.} to give the corresponding signal elements, which are added 
~ 

t 
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linearly to give the n-component vector XA • This is the transmitted signal 

vector corresponding to the m coincident signal elements, and is given by 

the n components s. of the vector S. 
~ 

t 

S = XA (6.2-2) 

The transmitted signal components are multilevel, whose amplitude may take 

any integer value up to i:m. The vector S may be considered to contain two 

types of components, "independent" and "grey" components. An independent 

components. is one which depends only on the element value of the signal in 
1 

the ith channel, so that s. has no component from any 
~ 

other channels. A grey component is dependent on the element valu.es of the 

signals in all the channels in use. For two channels in operation, when 

n = 8, there are two independent components and six grey components, ;-rhcreas 

for 8 channels in use, there arc no grey components at all. 
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In the model of the system, white Gaussian noisE: with two sided pover 

spectral density cr2 is added to the transmitted signal at the output of the 

transmission path, giving the Gaussian waveform w(t) added to the transmitted 

signal at the output of the receiver filter. 

The signal at the output of the receiver filter over the duration of 

a single group of coincident signal elements, is sampled at regular time 

intervals ofT seconds to give the n-component receiver vector, 

(6.2-3) 

vhere Sand Ware n-component vectors, and the {w.} are sample values of 
. ' 1 

statistically independent Gaussian random variables with zero mean and 

variance cr 2 • 

From Eqns. (6.2-2) and (6.2-3), 

I 

R=XA +W 

6.3 The multiplexing arrangement D 

(6.2-4) 

·This arrangement is similar to the multiplexing arrangement C, only 

now the multiplexing includes a non-linear majority logic multiplexing 

operation. 

The channel carriers are given by the rows of the n x n Walsh function 

matrix A, and the channel element values by the components {x.} of the 
1 

n-component vector X, as in Section 6.2 • 



The coder and multiplexer combine the code•rords 'of the different 

channels as before. For each integer j in tho range 1 to n, if 

x. = ±1, set a .. to zero for each i # j, 
J 1J 

and leave a .. unchanged. 
JJ 

For x. = o, leave a .. unchanged for each i. 
J 1J 

The modifiedmatrix of 
I 

codewordn is given by A . 
I 

The modified codewords {A.} are now multiplied by the binary element 
1 

values {x.} to give the corresponding signal elements, which are added 
1 

I 

linearly to give the n-component vector XA . The ith component s. of the 
1 

resultant transmitted signal vector S is given by ±1, the selected sign 
I 

being the same as that of the ith component of XA , so that the transmitted 

signal vector corresponding to the m coincident signal elements is the 

n-component vector, 

I 

S = signs (XA ) (6.3-1) 

I 

where the operator "signs" replaces each term of the vector XA by ±1. 

I 

corresponding to the sign of the components of XA • However, if the ith 
I 

component of XA is zero, then the ith component of S, s. is set to zero. 
l 

The transmitted signal so formed is ternary. From E~ns. (6.3-1) and 

(6.2-3), 

I 

R = signs(XA ) + W (6.3-2) 
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6.4 The multiplexing of more channels than 1nay be multiplexed orthogonally 

The multiplexing arrangements C and D may be extended to the 

multiplexing of more than the maximum number of channels that may be 

multiplexed orthogonally, by dividing the total number of channels into 



distinct sets. The follm1ing coding scheme applies eg_ually to the 

arrangements C and D, although arrangement C reg_uires a rather more 

·complicated demultiplexing process. 

Let the set A contain n channels, where n is the maximum number of 

orthogonal channels ( eg_ual to the number of signal elements) , over an element 

period of nT seconds, and the set Ban additional m channels, where m~ n. 

Each set of channel element values {x·.} and {y.} for the sets A and B 
1 1 

respectively, are multiplexed completely separately using the same set of 

Walsh function codewords, to form two n-component vectors S ~nd S for A " - B' 

the sets A and B. The multiplexing of a single set has been described in 

sections 6.2 and 6.3. The vector SB is multiplied by a scalar whose value 

is positive and eg_ual to c, and determines the level of the signal ele~nents 

The n components of the vector SA are now combined non-linearly with 

the n components of the vector cSB as follows. For each integer 

j, j = 1 __ n, if the jth component of SA is negative, then the sign of 

the jth component of cSB is reversed. The jth components are now added 

linearly to give the jth component of the transmitted signal S. 

(6.4-1) 

The reason for using a non-linear operation, rather than a linear one, 

lies in the detection process, in which the set B clement values may now 

be detected without prior knowledge of the detected element values of set A. 

Thus, errors in the detection of the element values of set A do not affect 

the detection of the set B element values as would occur with a linear 

coding scheme. The probability of correct detection of the element values 

is thus increased. 
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· As in Section 6.2 the received n-component vector ls, 

R = S + H (6.h-2) 

At the rece~vcr the two sets of signal elements arc separated, and 

demultiplexed independently as a set of 1 to n channels only. The 

demultiplexing processes vary in complexity and performance and are described 

in Chapters 7 and 8. 

Because the individual components of the vectors SA and SB are ±l or 

0 for arrangement D, and multilevel for arrangement C, two different 

techni~ues are used for the separation of the set A and set B signals. 

TI1e demultiplexing of the received signals for arrangement C is 

performed using an iterative process of two cycles sho>.'ll in Figure 6.4-l. 

In the first cycle the set A signals are demultiplexed and detected from the 

n components {r i} of the vector R. TI1e set B signals are demultiplexed and 
I 

detected from the n-component vector R , whose ith component is, 

r. = /r./ - l 
~ ~ 

(6.4-3) 

1'his operation effectively nullifies the non-linear "sisns" ope!'ation 

in the multiplexing of the two vectors SA and SB (E~n. 6.!1-1), where each 
I I 

component of SA is ±l. TI1e element values {x.} and {y.} are detected for 
l ~ 

the sets A and B respectively. 

In the second cycle of the iterative detection process, new estimates 

are made of the detected element values. Under noiseless conditions, 

element values detected incorrectly in the first cycle are now corrected. 

The reason for incorrectly detected element values in the first cycle can 

be seen by referrinG to E~n. ( 6. 4-1), that is, 
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For n channels in set A, the components of SA are independent, and 

the information corresponding to the ith channel is contained in the ith 

component of SA alone. If the ith component of the term cSB has a value 

more negative than -1, then, irrespective of whether the ith component 

of SA is ±1, the sign of the ith component of S will be of opposite sign 

to the ith component of SA. 

In the second cycle, the element values are again detected, but the 

vector cSB is examined for components more negative than -1, by 

' ' reconstituting the vector cSB from the element values {yi} of the vector Y 

previously obtained for set B. Let D be the n-component vector equal to 

" 

' " = cY A (6.4-4) 

where the matrix A corresponds to the modified matrix of codewords for the 

' element values {yi}. 

The set A element 

negative than -1, ;rh en 

' values {x.} remain 
]. 

' the component x. is 
]. 

unchanged, except ;rhen d. lS more 
]. 

' detected as -x. . 
l 

The sign of each r. is no;r made positive, except for the {r.} 
]. ]. 

;rhose corresponding. {d.} are more negative than -1. The signs of these {r.} 
]. ]. 

are made negative. The value of 1 is subtracted from each of the components 

' 
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to give the ne;r n-component vector R , ;rhich is used for the detection of the 

set B element values. 

Under noisy conditions some error correction takes place 
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depending on the noise components of the vector VI. 

The separation of the t<ro sets of signals for the multiplexing 

arrangement D is performed in a single operation, shown in Figure G .!1-2. 

The set A element values are demultiplexed and detected from the n components 

{r.} of the vector R. The set B element values are demultiplexed and detected 
1 

I 

from the n-component vector R , "hose ith component is, 

r. = lr-1 - l 
1 1 

i=l __ n (6.4-5) 

The actual demultiplexing processes vary in complexity and performance and 

are described in Chapter 8. Not only does majority multiplexing at the 

transmitter (arrangement D) produce a relatively simple transmitted signal, 

that is ternary, but the separation of the signal sets is comparatively 

trivial. 

For arrangements C and D, "hen t"o sets both containing n channels are 

in operation, an additional third set of signals may be incorporated using 

the same principle as for t;ro sets. The separations of more than two .. sets 

also follows similar lines, where each individual set is demultiplexed 

completely separately. 
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CHAPTER 7 

DETECTION PROCESSES FOR THE HULTIPLEXING ARRA!WEMENT C 

7.1 Detection process l 

A usefUl upper performance bound to a system is provided by the 

optimum detection process. It has been shown that when the transmitted 

signal elements are statistically independent and e~ually likely to take 

either binary value, the detector which minimises the probability of error 

(that is the probability of one or more element errors) in the detection of 

m elements of a.group, is the detector that determines which of the 2m 

possible transmitted signal vectors is at the minimum distance from the 

lOO 

received·vector R,. in then-dimensional Euclidean vector space containing 
11,26,38 

R. The detector knows the exact positions of each possible transmitted 

signal in the vector space. At high signal/noise ratios, this detection 

process also minimises the probability of error in the detection of any one 

of the m elements in a group corresponding to the m channels in operation. 

The detection process cannot be implemented by a linear network 

followed by the appropriate decision thresholds, but is best performed by 

an iterative process as follows. The receiver generates in turn the vectors 

{ S} vhere 
I 

S = XA from E~n. (6.2-2), corresponding to the different 

combinations of the element values {x.} of the m signal elements 'in a group. 
l 

The receiver has prior knowledge of which m out of the n channels are in 

operation. 1'he components of R are stored throughout the detection process 

for a group of n s~gnal elements. m The first vector S from the 2 possible 

vectors is subtracted from the received vector R. The components of the 
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difference vector are squared and added, to give the square of the distance 

bet\feen the vector R and the generated vector S. 

n 
E 

j=l 
(r. 

J 

2 s.) 
J 

(7.1-1) 

1fhere d is the distance bet\fcen the vectors R and S. In the first subtraction 

process, the distance measure d2 , together 1fith the associated vector X 

are stored. In subsequent subtraction processes no action is taken, unless 

the value of d2 is smaller than that stored. 
2 1-lhen this occurs, the ne\f d 

together 1fith the associated vector X, replace those stored. Thus, at the 

end of the detection process, the receiver has the vector X which minimises 

the distance bet>reen S and R and takes this. vector X to give the detected 
I 

element values {x.} of the m multiplexed channels in the received group. 
~ 

Since the separate operations in the detection process are carried out 

sequentially, they can be performed by a simple piece of equipment. 

Ho1fever, because of the very large number of sequential operations required 

1fhen there are more than a fe>r multiplexed channels in a group, this process 

is of limited value. 

The n-dimensional vector space may be divided into 2m decision 

regions separated by decision boundaries. These decision boundaries are 

hyperplanes >rhich perpendicularly bisect the .lines joining the different 

signal vectors {S} in the n-dimensional vector space containing the received 

vector R. The distance of any signal point to a decision boundary is half 

the distance between the t>ro signal points separate'd by the decision boundary. 

Figure 7.1-1. sho>rs the particular case >There the t>ro dimensional vector space 

is divided into four decision regions corresponding to four possible 

transmitted signals sl to s4. 

From Eqn. (6.2-3) R = S + W 
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Decision regions and decision boundaries 

for the optimum detection process, for 

four possible transmitted signals in 

two dimensional vector space. 
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where W is the n-component no1se vector whose project'ion on to any direction 

of the n-dimensional vector space is a sample value of a Gaussian random 

variable with zero mean and variance o2 • The probability of error in the 

detection of S. from R may be deduced •dth the aid of the following diagram. 
l 

s
1 

, 8
2 

o-------~---:--· _d ______ o 
. I 

Decision boundary 

vlhen Si ( = s
1 

or s
2

) is received in the presence of the noise vector 

W, it is wrongly detected if R is on the opposite side of the decision 

boundary to 8. . The probability of this occurrins is that the orthosonal 
l 

projection of W on to a line joining s1 and s2 has a value greater than d 

in the direction from S. to the decision boundary. Noise components in 
l 

directions parallel to the decision boundary cannot produce errors, nor do 

they affect the error probability. Thus, the probability of an error in the 

detection of S. , whether 
l 

p = j 
00 

d 

00 

i = 1 or 2 is, 

1 

hrro 2 

2 
exp (;:z) dw 

= ~~ exp dw 

>rh ere Q (u) = 

= 

00 

j 
u 

d/o 

1 

I2TI 

Q (3.) 
0 

exp 
2 

-x ) (-
2 

dx 

(7.1-2) 

(7.1-3) 
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d is the distance from sl and 82 to the decision boundary .. ~'he Q function, 

or variaton of the element error probability with d/cr has been widely 

tabulated and is shown in Appendix Al. The result applies for any value of 

n, so lone; as the Gaussian noise sample of zero mean and variance a2 are 

statistically independent. 

In the general case whc"rc ), deeision boundaries exist, the total 

probability of error is ,;,a....u..Jc.y the swn of the k individual probabilities 

of errot•, dUe to the "'JG.rlous Uisto..nces to the decision boundary. 

k 
l: 

i=l 

d. 
Q (2..) 

(J 
(7 .1-4) 

At high signal/noise ratios 1dth additive white Gaussian noise, even a very 

small. increase in the distanc c to a decision boundary produces a considerable 

reduction in the corresponding probability of error (Appendix Al). Thus, the 

probability cf error is effectively determined by the nearest decision 

boundary, the remaining boundaries having in comparison a very small effect 

on the probability of error, 

fk 'fr""><';.~ u:;;·pex· bound is given by the value of pi for the smallest di. 

Let the m11umum value of d. be d, and the corresponding value of p. be p. 
l 1 

Then at high signal/noise ratios, the average element error probability is 

equal to the probability of error and is approximately equal to, 

(7.1-5) 

7.2 Computer simulation tests 

A genei·al description of the computer tests performed and the confidence 

limits relating to the ·results obtained have been given in Sections 3.4 and 

3,5. In particular, these tests, for systems Cl, C2 and Dl to D4 simulate 

the multiplexing and demultiplexing of between 1 and 8 channels. Between 
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10000 and 1500 signal groups are transmitted for 1 to 8 active channels, 

such that about 30 errors are obtained for an error probability of 0.003 

per channel. For every test the variance of the additive vhite Gaussian 

noise samples a2 , introduced into the transmission path 1;as adjusted to give 

an error probability per channel of 0.003. 

From (3.5-3), the 95% confidence limits in the value of pare given by, 

± 2 

re 
p (7.2-1) 

vhere the limits are expressed as deviation from the given value of element 

value error probability per channel p, and e is the total number of errors 

counted. Table 7.2-1 sun~arises the test details and shows the 95% confidence 

limits, expressed as deviation from the value of p, and also expressed in 

decibels as deviation from the given value of noise level obtained. These 

results apply to all systems Cl to D4. 

For each system, the noise level expressed in decibels for the same 

given error probability of 0.003 is compared relative to a conventional 

binary TDM system (with components ot: amplitude ±1), having the same 

transmission rate. For systems Cl and C2, the transmitted signal is 

multilevel. The average energy per component of the transmitted signal has 
?),.on.. a-e.-ro 

been nor:nctlised to unity, so that it has the same average energy as alcomponent 

in the TDM system. For systems Dl to D4, the transmitted signal components 

are given by ±1 or 0. 

7.3 Results of computer simulcttion tests t:or System Cl 

The results of computer simulation tests (outlined in Section 7.2) 

for System Cl are sho1m in Figure 7 .3-1. Although as discussed in Section 6.1, 



Number of Total no. Total no. Error 95% confidence limits 

active of groups of errors probability 
channels transmitted counted per channel expressed as of a expressed 

m e p deviation from in dB as deviation 
the given value from the given 
of P value of a 

l lOOOO 30 0.003 ± O.OOll 

2 5000 30 0.003 ± O.OOll 

3 3000 27 0.003 ± O.OOl2 

All approximately 
4 2500 30 0.003 ± O.OOll + 0.35 

- 0.45 
5 2000 30 0.003 ± O.OOll 

6 l500 27 0.003 ± 0.00l2 

7 l500 3l 0.003 ± O.OOll 

8 l500 36 0.003 ± O.OOlO 

Table 7.2-l Summary of test details and 95% confidence limits 
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System Cl 

Binary TDM 

2 3 4 5 6 7 8 

Number of active channels 

System Cl. Noise level for an error probability 

per channel of 0.003, express0d in dB relative to 

a binary TDM system for a varying number of active 

channels. 
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the multiplexing arrangement is optimum for l and 8 channels ln operation, 

its performance is inferior to that of a conventional binary TDH system for 

6 or 7 active channels. 

The theoretical performance has been evaluated using an entirely 

separate computer program. This program calculates the distance in 

n-dimensional Euclidcan vector space between each possible transmitted signal 

vector, and all other possible 2m transmitted signal vectors for a given 

number of active channels m. The average number of signals at various 

distances is calculated. Using Eg_n. (7.1-4), the variance of' the additive 

white Gaussian noise samples cr 2 is calculated for an error probability per 

channel of 0.003, and from this the relative noise level· compared to a 

conventional binary TDH system with the same average energy per component of' 

the transmitted signal. 

Table 7.3-1 shows the theoretical and computer simulation results, 

together with the 95% confidence limits expressed in decibels as deviation 

from the relative noise level corresponding to the given value of cr. 

The results lying outside the confidence limits are explained by the degree 

of dependence between the individual element errors in a group in the detection 

process. The effect of this dependence is to reduce the number of independent 

errors obtained in a test, and hence the confidence limits should be rather 

wider than the simplified theory gives (Section 3.5). 

The multiplexing and demultiplexing arrangements for more channels than 

may be multiplexed orthogonally has been described in Section 6.4. Computer 

simulation results for such a system using the optimum detection process 

. are. shown in Figure 7. 3-2. Also shown is the relative noise level of the 

corresponding quaternary TDH system. Both binary and quaternary TDH systems 

have the same average energy per component of the transmitted signal, the 



Number of 
active 

channels 

1 
. 

2 

3 

4 

5 

6 

7 

8 

Table 7.3-1 

Noise level for an error probability per channel 
of 0.003, expressed in dB relative to a binary 95% confidence limits 
TDM system. of cr, expressed in dB 

as deviation from the 
given value of cr 

Theoretical Computer simulation 

9.05 9.05 

6.08 6.07 

4.o4 3.99 
All approximately 

2.53 2.58 + 0.35 

0.55 
- 0.45 

0.49 

-0.08 -0.49 

-o.46 -2.37 

o.oo 0.00 

System Cl. Theoretical and computer simulation results 
1-' 
0 
\0 
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Noise level for an error probability per channel of 

0.003 expressed in decibels relative to a binary 

TDM system for a varying number of active channels. 
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same transmission rate and the silllle error probability per channel as 

explained in Section 3.4. Channels in the second set are not used until the 

first set channels are all in operation. 

7.4 Detection process 2 

The process of correlation or matched filter detection J.s well 

established in the field of orthogonal signal elements, and like the 

optimum detection process, at hich signal/noise ratios, mlnlmJ.ses the error 

probability per channel of the individual recieved elements. The detection 

maximises the ratio of the energy level of the wanted signal, to the 

average energy level of the noise components. The received signal vector R 

is fed to a set of correlation detectors matched to the orthogonal codewords, 

and the correlation coefficients obtained give the sign of the received data 

in each channel. A modification of this standard technique using an iterative 

process enables quasi-orthogonal signal elements of the multiplexing 

arrangement C to be detected. 

The receiver has prior knowledge of which m out of the n possible channels 

are in operation. Then-component codewords {A.} corresponding to those 
l 

m channels are modified appropriately, as was performed in the multiplexing 

process, as follows. For each codeword A., for each integer j in the range 
l. 

1 to n, if x. = ±1, 
J 

set a .. to zero for each 
l.J i f. j' 

unchanged. For x. = 0, leave 
J 

a .. unchanged 
lJ 

for each i. 

the modified matrix of codewords 
I 

given by A • 

and leave a .. 
JJ 

This results in 
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In the first cycle of the iterative process, the n-component received 

signal vector R is fed to the m correlation detectors matched to the 
1 

codevords {A.} for those m channels in operation. A sinGle element value 
l 

1 

x. is detected from the sign of the correlation coefficient having the largest 
l 

1 

modulus. The other r:1-1 cler.-;ent values {x.} rer:1ain undetected. The 
l 

1 

n cor:1poncnts of tbe codeword A. corresponding to the detected element value 
l 

1 

x. are multiplied by x., and subtracted from the n components of the 
l l 

rcceivecl signal vector R, to give the modified n-component received signal 
1 

vector R • 

In the second cycle of the iterative detection process, the modified 

received signal vector R is fed to the m-1 correlation detectors matched to 
1 

the m-1 codevords {A.}, for the m-1 undetected element values. A second 
l 

1 

element value x. is detected from the sign of the correlation coefficient 
l 

ha vine; the lare;est modulus. 
1 

The other m-2 element values {x.} remain 
l 

1 

undetected. The n components of the codeword A. corresponding to the 
l 

1 1 

previously detected element value x. are multiplied by x., and subtracted 
l l 

1 

from the n components of tl::e modified received signal vector R , to give a 

" ne" modified received signal vector R • 

Subse<J.uent cycles follm-r using one fe1ler correlation detectors in each 

cycle until all m element values are detected. In this way, those sienal 

elements of the transmitted signal which receive the least interchannel 

interference are detected first, and 1lhen cancelled from the received. signal, 

enable other clement values to be detected with a lo1;er probability of error. 
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7.5 Results of computer simulation tests for System C2 

This system, using the previously described demultiplexing arrangement, 

has been tested by computer simulation under identical conditions to 

System Cl (outlined in Section 7.2). The results for both Systems Cl and 

C2 are shown in Figure 7. 5-l. There is negligible difference between the 

performance for the correlation and cancellation technique and the optimum 

detection process. The confidence limits are given in Table 7.2-1 

7.6 Assessment of Systems Cl an'd C2 

Detection process 2, using a correlation and cancellation technique, 

shows that a performance equal to the optimum m~y be achieved using very 

simple iterative equipment. Only m sequential operations are required 

m . compared to 2 for the opt~mum detector. However, even the optimum 

performance is below that of the corresponding conventional binary TDM 

system for the same transmission rate, and with the same average energy per 

component of the transmitted signal, for 6 or 7 active channels. The number 

of channels may exceed the maximum number of orthogonal multiplexed channels 

using a second set of signals. Even with the optimum detection process, the 

performance with 8 channels in the first set and between 4 and 7 channels ~n 

the second set, yields a very inferior performance compared to the 

corresponding quaternary TDM system, with· the same average energy per component 

of the transmitted signal. The separation of the two signal sets described 

in Section 6.4 is obviously fairly complicated, and for these reasons the 

multiplexing arrangement C is not further investigated. 
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Figure 7, 5-l 

2 3 4 5 6 7 8 

Number of active channels 

System C2, Noise level for an error probability 

per channel of 0.003, expressed in dB relative to 

a binary TDM system, for a varying number of active 

channels. 
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CJIAPT£'R 8 

DETECTION PROCESSES FOil THE lillLTIPLEXU!G ARRANGEMENT D 

8.1 Detection process 1 

The optimum detection process described in Section 7.1, gives an upper 

performance bound to a system irrespective qf the multiplexing arrangement. 

This detector minimises the probability of error (that is the probability 

of one or more element errors) in the detection of the m elements 

group, by determinint~ which of the 2m possible transmitted signal 

{S} is at the minimum distance from the received vector R, in the 

n-dimensional Euclidean vector space containing R. System Dl uses 

optimum detection process for the multiplexing arrangement D. 

8.2 Ilesults of computer simulation tests for System Dl 

in n 

vectors 

this 

The results of computer simulation tests (outlined in Section 7.2) 

are shmm in Figure 8.2-1. The transmitted signal amplitude is given 

by ±1 or 0, so that it has the same maximum energy per component of the 

transmitted signal as a conventional binary TDM system with components eq_ual 

to ±1. For. 2,4 or 6 channels in operation, zero components in the transmitted 

signal cause a degradation of the system performance as shown in Figure 

8.2-1, due to the reduced average energy per component of the transmitted 

signal. 
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System Dl 
The optimum detection process 

Binary TDH 

2 3 4 5 6 7 8 

Number of active channels 

System Dl. Noise level for an error probability 

per channel of 0.003, expressed in dB relative to 

a binary TDH system, for a varying number of active 

channels. 
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The theoretical optimum performance has been cal:culated by considerinG 

the distances in a-dimensional Euclidean vector space, between the 2m 

sie;nal vectors for m active channels, as described in Section 7 .2. 

Assuming independent errors, the 95% confidence limits in the value 

of p are given by, 

± 2 

re 
p (8.2-l) 

where the limits are expressed as deviation from the given value of element 

value error probability per channel p, and e is the total number of errors 

counted. In a test with orthogonal or quasi-orthogonal groups of signals 

there may be a degree of dependence between the individual element errors of 

a group in the detection process. The result of this dependence is to reduce 

the number of independent errors obtained in a test and so to widen the 

confidence limits. Thus e of (8.2-l) does not represent the effective 

number of errors, and therefore eives only an indication as to the confidence 

limits. To assess the degree of dependence between errors of the same 

received signal group, additional tests have been performed. Each 

individual test with m active channels was repeated several times using 

different random noise sequences. If the total number of errors counted 

for -each test is el, e2 --er, for r successive tests, then the mean 

~ and standard deviation n of the total number of errors counted are 
80 

given by, 

~ 

11 

= 

= ( 

l r 
E 

r i=l 

l 
r-l 

e. 
l 

(8.2-2) 

r 
2 1 

E (e. - p) )2 
i=l l 

(8.2-3) 
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From (3.5-2) the 95% confidence limits in the value of pare given by, 

± 2n 
)J 

p (8.2-4) 

where the limits are expressed as deviation from the given value of element 

value error probability per channel p. For one and eight active channels 

the signals are independent and the confidence limits given by (8.2-l) 

and (8.2-4) should agree. For several active channels some divergence is 

expected. 

Table 8.2-1 summarises the theoretical and computer simulation results 

together with the confidence limits assuming independent and dependent errors. 

The confidence limits are expressed in decibels, as deviation from the value 

of a, expressed in decibels relative to a conventional binary TDH system, 

with components ±1, and having the same transmission rate and error 

probability per channel. 

Figure 8.2-2 shows theoretical curves of error probability per channel 

against signal/noise ratio expressed in decibels, for different numbers of 

multiplexed signals. For eight channels in operation the individual signal 

components are independent and equally likely to take either binary value, 

giving the familiar Q function curve (Appendix Al). Fewer channels in 

operation correspond to an appropriate sideways shift of this curve. 

Additional computer simulation tests, besides those for an error probability 

per channel of 0.003 give good agreement with the corresponding theoretical 

curves. 

The number of signals multiplexed may exceed the maximum number of 

orthogonal multiplexed signals as described in Section 6.4. Computer 

simulation results· for the multiplexing of two signal sets and using the 

optimum detection process, are shown in Figure 8.2-3. Also shown are the 



Noise level for an error probability 95% confidence limits of o 

Number of 
per channel of 0.003, expressed in dB expressed in dB as deviation 

active 
relative to a binary TDM system from the given value of o 

channels 2 211 Theoretical Computer simulation Independent -P Dependent -p 
errors re errors 

).1 

1 9.03 9.05 + 0.39 
- 0.51 

2 3.97 4.05 + 0. 52 
- 0.78 

3 5.03 4.40 + 0,62 
- 1.08 

4 2.29 2.38 All approximately + 0.37 
- 0.50 

+ 0.35 
5 1.34 1.10 - 0.45 + 0.47 

- 0.68 

6 0.92 1.12 + 0.42 
- 0.55 

7 0.27 0.37 + 0.50 
- 0.81 

8 0.00 0.00 + 0.32 
- 0.41 

Table 8.2-1 System Dl. Theoretical and computer simulation results 



Signal/noise in dB 

Figure 8.2-2 System Dl. Theoretical error probability per 

channel against signal}noise ratio in decibels, 

for different numbers of multiplexed channels. 
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Binary TDH 

Second set 

of signals 

.Quaternary TDH 
- L_ ______ ____::,_ 

1 2 6 8 10 12 14 16 

Total number of active channels 

System Dl. The multiplexing of two signal sets. 

Noise level for an error probability per channel of 

0.003, expressed in dB relative to a binary TDH system, 

for a varying number of channels. The average energy 

per component of the transmitted signal is here 

normalised to unity. 
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corresponding Tml systems. Both binary and quaternary TD:-1 systems here have 

the same average enere;y per component (equal to unity) of the transmitted 

signal, the same transmission rate and the same error probability per channel 

of 0.003 as explained in Section 3.11. The average energy per component of 

the transmitted signal of the system under test has been normalised to unity 

(Figure 8.2-3 only), so that it has the same averae;e enere;y as a component 

in the TDM systems. Channels in the second set are not used until the first 

set channels are all in operation. 

8.3 Detection process 2 

The optimum detection process (Section· 7 .1) uses all possible transmitted 

signal vectors {S} in the detection of the m multiplexed element values in a 

group. '!'he iterative detection process involves a vast number of sequential 

operations ( 2m) ~<hich becomes impractical for values of m greater than about 

8 to 10. 

This null-zone detection process, Gystem D2, requires substantially 

fe~<er sequential operations by applying the optimum detection process to a 

carefully selected subset of the total nmnber of possible transmitted signal 

vect·ors. 

_ The n-component transmitted signal vector S is composed of m binary 

independent components, and n-m ternary grey components, for m active channels. 

An independent component s. is one \·lhich depends only on the element value of 
~ 

the signal in the ith channel so that s. = x. a .. , 
~ ~ ll 

s. has no.component 
~ 

from any other channels. Ho~<cver, in the detection of xi, all the e;rey 

components are a contributine; factor. 
I 

The ith detected element value x. 
~ 

may be detected from the ith component of the received signal vector R alone, 

and is given by, 
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' x. =a .. sign (r.) 
1. 11. l 

(8.3-l) 

and provided the received component r. is not corrupted in sign, correct 
~ 

detection results. 

Consider a single received component r. of the vector R \There 
~ 

r.=s.+IL, 
1 ~ ~ 

and w. is a Gaussian noise sample 
~ 

o2 • Figure 8.3-l (a) sho>1s the signal plus noise 

of zero mean and variance 
\ 

probability density 

functions, for a single component s. >1hich may take either binary value ±1 
~ 

and are equiprobable. The probability of receiving r i given s~ is Je.<vo.tk 

£1-om the curve 

+ 
frr,m si and si, 

error g1. ven by, 

P(r./s:). vlith a single decision boundary equidistant 
~ J. 

s. is detected from the sign of r. >rith a probability of 
~ ~ 

2 
a= b = !00. exp 

l 
(- ~02 ) dr 

12·rrcr2 

l 

= (8.3-2) 

and >1ill yield the best estimate of s. provided no additional information 
~ 

from other components is available. 

Figure 8.3-l (b) sho>1s the sarae probability density functions, but 

with. tiw symmetrical decision boundaries or threshold levels separated by a 

null-zone of width 2d. If the ith received signal component of the vector R, 

+ 
ri' is greater than +d, then si is detected as si' >1ith as small an error 

probability-as is required, depending on the value of threshold level d. 

et = s = 

= 

j 
l+d 

1 

12ncr2 

2 
exp (;~z) dr 

(8.3-3) 
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In this detection process, if Jr. J ~ d then x. is detected from the ith 
l l 

component of' R, 

I 

x. =a .. sicn (r.) 
~ J.l J. 

(8.3-4) 

For those components. Jr.J < d, an uncertainty exists as to whether s. or 
l l 

s: was transmitted and the optimum detection process is applied to both 
l 

combinations. 

The receiver generates in turn each of the vectors {S} where 
I 

S = signs (XA) from Eqn. (6.3-1), corresponding to the different combinations 

of element values, of the undetected signal elements (Jr.J<d) 
l 

in 

a group of received sicnals, the detected element values (jr.J ;. d) 
l 

remaining unchanged. The distances bet>reen the vectors {S} and the received 

signal vector R are calculated iteratively as for the optimum detection 

process, and that having the minimum distance gives the detected element 
I 

values {x.} of the m signal elements in the received group. 
l 

The value of threshold level d is selected such that the probability of 
I 

incorrectly detecting x., when 
l 

Jr.J;.d, 
l 

is very small. This probability 

is Cl. = s (Eqn. 8.3-3). As d increases so this probability decreases but 

the number of sequential operations required in the optimum detection process 

increases. 

Thus the null-zone detector judiciously selects a small volume of the 

n-dimensional Euclidean vector space, having a very high probability of 

containing the vector R. The optimum detection process is then applied to 

these vectors {S} contained in this volume only. 

Referring to Figure 8.3-l(b), the probability of detecting s. as s. 
l l 

+ . . 
when s. vras transml. tted J.G a, where, 

l 



et = 

+ The probability of r. falling in the null-zone given s. or s. is 
1 1 1 

JdJ.;l 
I 1-d 

p ~ Q(-)-et 
(J 

JdJ~l 
I d-1 

p =1-Q(--)-a 
(J 

d-1 
~1-Q(--) 

(J 
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(8.3-5) 

(8.3-6) 

The number of se<J.uential operations re<J.uired in the optimum detection 

process is, 

(8.3-7) 

where each term of the binomial expansion corresponds to the probability of 

one, two •••• components of the received sie;nal falling in the null-zone. 

For example, suppose the probability of s. being detected incorrectly 
1 

-6 
et by the null-zone is to be 1 x 10 From ECJ.n. (8.3-5) 

1 X 10-
6 = Q ( l + d ) 

(J 

Suppose now that the additive white Gaussian noise samples have variance 0.09 

(a= 0.3), then, the threshold level is, 

d = 4.72 (J -1 = 0.41 

From ECJ.n. (8.3-6), the probability of a received component r. falling in the 
~ 

null-zone, Jr.J < 0.41 is, 
~ 

p = 

= 

Q(l-d) 
(J 

Q ( 0. 59 ) 
0.3 

!\( 0.025 
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If there are six channels in operation say, instead of performing 

26 = 64 sequential operations using the optimum detection process, this 

null-zone detector ;wuld require on average, from Eqn. (8.3-7), 0.28 

sequential operations. A phenomenal saving in time for no significant 

degradation in the detector performance. 

At maximum capacity with all n channels ~n operation, there are no grey 

components in the transmitted signal vector, and no advantage is gained by 

using the optimum detector. The element values are given by the signs of 

the received components of R from Eqn. (8.3-!d. 

8.4 Results of computer simulation tests for System D2 

The results of computer simulation tests (outlined in Section 7.2) are 

shmm in Figure 8.4-1, for different values of cr, which determines the 

threshold level d, and the subsequent number of sequential operations required 

in the detection of the m element values of a signal group. For a= 10-6, 

the majority of the received components {r.} of the received signal vector 
~ 

R fall within the null-zone. Those independent components of R falling 

outs.ide the null-zone are detected ;rith a very lo;r probability of error, 

whilst those ;rithin cause the detector to consider both the +ve and the -ve 

possibilities of element values in the ensuing optimum detection process. 

Consequently, a comparatively large number of sequential operations are 

required. For 
_,, 

a = 10 , more components {r.} lie outside the null-zone, 
~ 

producing a·reduction in the number of sequential operations required. 

Figure 8.4-2 sho;rs the average number of sequential operations required for 

the various values of a, for different numbers of active channels, the 

results being obtained from computer simulation tests. Figure 8.4-3 shmrs 

theoretical curves for the number of sequential operations required for 
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various noise levels using E~n. (8.3-7) and for 
-6 

et ~ 10 . The corresponding 

computer simulation tests show good agreement. For 8 active channels the 

element values are given by the sicns of the received components of R. 

For all received components {r.} of the received sicnal. vector R 
l 

lie within an infinitely wide null-zone, and the optimum detection process 

is applied to all independent components. The number of se~uential operations 

m is therefore 2 • 

8.5 Detection process 3 

This detection process examines the n-component received vector R 

from the aspect of minimisation of the channel noise vector W, where 

R = S + W 

Assuming that then-component transmitted vector S has components {s.} 
l 

1 

given by ±l, an estimate S of S >~hich minimises the length (Euclidean norm) 

of the noise vector W is given by, 

1 

S = signs (R) (8.5-l) 

>~here the ope,·ator "signs 11 replaces each term of the vector R by ±l, the 

selected sign being the same as that of the components of R. 

Provided S contains a valid combination of components {s.} corresponding to 
l 

the m channels in operation, the m element values {x.} associated >~ith this 
l 

estimate are accepted as the detected element values. A valid combination 
1 1 

check 1s made as follovs. The m element values {x.} of the vector X are 
l 

·given by the independent component of R, 

1 

x. = a .. sign (r.) 
l ll l 

1 
( 8. 5--2) - a .. S• .u l 
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and from these m element values, the detector generates an estimate of the 
11 

transmitted sienal vector. Let this be the n-component vector S • 

From EQn. (6.3-1), 

tl I I 

S = s1gns (X A ) 

I 

(8.5-3) 

where A a.re the modified codewords corresponding to the m active channels. 
11 

If the signs of the n components of S agree with the corresponding n 
I I 

components of S , then S is a valid combination and the m{x.} are accepted. 
1 

If however, any component signs disagree, the components of the estimated 
I 

vector S do not form a valid combination. A new estimate is made from R by 
1 I 

changing the sign of the component s. of S. corresponding to the smallest 
l 

value (modulus) r. of R. The length of the noise vector His thus increased 
1 

I 

by a minimum amount. From this new estimate S a new set of m element values 

arc given by ECJ.n. (8.5-2) and the detector proceeds as previously. 

I I 

If a valid combination of the components {s.} is not found, the estimate S 
l 

is changed again, such that the noise vector length is' increased by a minimum 

amount, by changing the sign of the component s. corresponding to the second 
l 

smallest component value r. of R. This. process continues until a valid 
1 

I 

combination of the {s.} is found. 
1 

Provided the noise vector length increases incrementally by a minimum 

amount, the detector minimises the probability of error in the detection of 

I 

the m element values of a group. However, modifying S such that the noise 

vector increases by a minimum amount involves time and eQuipment complexity 

approaching' that of the optimum dection process. As a compromise, the 

components of the received signal vector {r.} are assigned an order according. 
l 

I 

to their absolute value. The components of S are changed in sign, in a 

binary SOCJ.UCnce, the smallest weight corresponding to the smallest absolute 

value of r. • For example, if the assigned absolute value order of thP, 
1 
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components of R is, a,b,c,d __ n, then the component s. corresponding to 
1 

a is first changed, then b, follo;red by a and b, followed by d, etc. 

This does not increase the noise vector by a minimum amount ahrays, but is 

a fairly close approximation. 

Because components of the transmitted signal vector R may equal zero 

for an even number of active channels, Eqn. (8.5-1) is clearly only valid for 

" an odd number of active channels. For an even number, a component s. may equal 
1 

11 I 

zc:ro, in which case a comparison between S and S is only made fo:r those 
11 11 

components { s.} for which s. ~ ±1 . 
1 1 

8.6 Results of computer simulation tests for System D3 

The results of computer simulation tests (outlined in Section 7.2) are 

sho'm in Figure 8.6-1. For m~ 3,5,7 or 8, the detector gives optimum 

performance with very few sequential operations, on average between 1 and 2. 

For m ~ 2,4 or 6, zero components of the internally generated transmitted 

" signal S are omitted in the comparison process and well below the optimQ~ 

performance results. 

For m ~ 1, an error probability of 0.003 requires a laree value of 

additive white no1se. An average of 5 sequential operations are necessary, 

giving below optimum performance·, because of the approximate incrementation 

process of the minimum noise vector. For lower noise levels (lower error 

probability per channel) m ~ 1 gives optimum performance. 

8.7 Detection process 4 

Like the null-zone detection process, this detector applies the 

optimum detection process to a carefully selected subset of the total number 

of possible transmitted sienal vectors, thereby reducing the number of 

sequential operations required. The subset selection uses different criterie., 
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and relies on no more than t1w independent components of the n-component 

received vector R beinG corrupted in siGn. 

The equipment complexity is simplified by replacing the optimum 'distance' 

detection process by the optimu.'ll 'correlation' detection process. Again, this 

minimises the probability of error (that is the probability of one or more 

channel errors) in the detection of the m elements in a group. lne detector 

generates seq_uentiallJ' the most likely transmitted signal vectors {S} , 

correlating each one with the received vector R, and determining that vector 
I 

S corresponds .-Tith the largest correlation coefficient. The vector X 

of element values associated >Tith this S gives the m detected element values 
I 

{x.}. 
~ 

The detection process starts by making an initial estimate of the m 

I 

element values. Let this estimate be the n-component vector X , whose ith 

I 

component is xi, as is determined as follows. For each i, corresponding 

to a channel in operation, 

I 

x. =a .. s~gn (r.) 
~ l.l l 

(8.7-1) 

I 

so that x. is determined from the slgn of r. to give the initial detected 
~ ~ 

I 

values of {x.}. 
l 

I 

The detected element values {x.} are fed to a multiplexer, identical 
l 

I 

to the one used at the transmitter, to generate an n-component vector S , 

which is an estimate of the original transmitted signal. 

I 

The inner product of the vectors R and S is now formed by means of a 

correlator which multiplies the jth component of R by the jth component of 
I· 

S for j = 1 __ n, and adds the product to give the output signal c , 
0 

c 
0 

n 
= E 
j=l 

r.s. 
J J 



which is stored. 

I 

The first non-zero component of X is nmr changed in sign, and the 
I 

vector used as above to generate a ne~< n-component vector S . The inner product 

of this vector with R has the value c
1

. Its value is compared with c and 
0 

if larger, the value c
1 

is stored with the corresponding modified vector X 

I 

I 

The first non-zero component of X 1s now changed back in sign, and the 
I 

second non-zero component of X 1s now changed in sign, and the inner product 
I 

of S and R is formed as before to eive c 2 . This is compared with the 

previously stored value of c·, and if it is larger, it replaces c· and the 
l l 

I 

new vector X replaces that stored. 

This continues until all m non-zero components of the n-component vector 
I I 

X have been changed successively. The resultant stored vector X gives the 

estimate of the element values obtained in the first part of the detection 

process. 

I 

The stored vector X is now processed as was the first estimate X 

each component being changed in turn. At the end of this process, the 
I I 

resultant stored vector X gives the final detected values of the m{x.} 
l 

No improvement in tolerance to noise, at high signal/noise ratios has 

been found by repeating this process. 

The correlation proce'!S given by Eq_n. (8. 7-2) has been simplified for 

clarity, and is only valid when the components {sj} are± 1. 

However, for an even nu1nber of channels in operation, the grey components 

of S may contain zeros causing a decrease in the value of c .• 
]. 
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From Eqn. (7.1-1), the optimum detection process. yields the square of 

the distance bet>~ecn the n-component signal vector n, and the n-component 
I 

gencrG.t cd vector S • 

For a 

>~here 

given R 

n 
k = E 

j=l 

2 r. 
J 

d2 = 

= 

d2 = 

n 
E (r. 

j=ol J 

n 2 
E r. 

j=l J 

2 (k 1 + 2 

I 2 
- s.) 

J 
{8.7-3) 

12 
+ s. - 2r.s~ 

J J J 

n n 
E 

12 
- E r.s~) s. 

j=l J j=l J J 
(8.7-4) 

From Eqn. (8·7-2) the optimum correlation detection process yields the 

correlation coefficient, 

c. = 
l 

n 
E 

j=l 

I 
r.o. 

J J 
(8.7-5) 

Because both detection processes give optimum performance in terms of 

tolerance to additive white Gaussian noise, the vector S1corresponding to 

the minimum distance, 1s the same vector that corresponds to the maximum 

correlation coefficient. Ho>~ever, if no>~ the jth component of the n-componcnt 

vector S
1
is zero, c. will decrease by 

l 

I r .s .. 
J J 

The distance measure increases 

by r .s:, but also de"reases by ~ has there are no>~ only n-1 components of 
J J 

I S equal to ±1. Therefore, for d2 and c. to remain in proportion, the value of 
l 

~ must be a,dded to the value of ci obtained, for every zero component in 

I I 

the generated vector S. For the components of the vector S equal to ±1 or 0, 

llqn. (ll.'f-2) becomes, 



"· 1 

n 
= ); 

j=l 
r.s~ + ~ (!To. of zero cowpommts in 8

1
) 

J J 
(8.7-6) 

and the correlation process gives optimma performance despite the presence 

of zero components of the transmitted signal vector S. 

8.8 Results of computer simulation tests for System D4 

The results of computer simulation tests (outlined in Section 7.2) 

are shown in Figure 8.8-1. For an error probability per channel of 0.003, 

optimum performance is obtained, except when m = 3. Occasionally all three 

independent components of the n-component received signal vector R are 

corrupted in sign, but a maximma of two components may be corrected only. 

For m = 1 or 2, then even if both independent components are corrupted in 

sign, both may be corrected and optimma performance results. 

For m = 4, 5 8, the reduced variance of the additive white Gaussian noise 

samples does not cause more than two independent components of R to be 

changed in sign, and again optimma performance results. At higher signal/ 

noise ratios m = 3 also gives optimma performance. 2m + 1 se~uential 

operations are re~uired irrespective of the additive white Gaussian noise 

level, which corresponds to the two sign changing processes of m independent 

components, plus another operation at the outset, when no components of 

the received vector R are changed in sign. Figure 8.8-2 sho;rs the performance 

of ·an identical system for a group lengt.h n = 16. The optimu.l"!l detection 

. 216 t. 1 . . . . . . . process re~u1res se~uen 1a operat1ons wh1ch 1s proh1b1t1ve both 1n 

practice and computer simulation tests. The results are sho;m relative to 

a conventional binary TDM system, with the same transmission rate and error 

·probability per channel, and has the same maximma enere;y per component of 

the transmitted signal. 
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8. 9 Assessment of the Systems Dl to D4 

System Dl using the optimwa detection process, indicates clearly the 

advantage of the multiplexing arrangement D in terms of additive w-hite 

Gaussian noise performance, in so much that irrespective of the number of 

channels in operation, the performance is ahrays equal or superior to that 

of the corresponding conventional TDJ1 system, having the se.me maximum energy 

per component of the transmitted signal. Regarding demultiplexing, the 

optimum detection process of System Dl requires 2m sequential operations 

which is prohibitive for m greater than about 8 to 10. System D3 is unsuitable 

due to non-optimum performance for 2,4 and 6 active channels. The demultiplexing 

arrangements of System D2 and D4 require far fewer sequential operations, 

but slightly greater equipment complexity for the subset selection of the 

possible transmitted signal vectors. System D2 requires a measure of the 

average noise vector length to determine the n1ul-zone detector threshold 

levels, whereas System D4 functions optimally at high signal/noise ratios, 

irrespective of the additive noise level. System D4 is therefore the best 

overall arrangement. 
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CHAPTER 9 

HARDY/ARE HODEL FOR SYSTEM D4 

9.1 Introduction 

A hard;rare model of System D4 has been designed and constructed in 

ordeT to focus attention on the practical realisation and economic aspects 

of a multiplex system that has hitherto been tested by computer simulation 

only. Also, from a personal viewpoint it was considered a valuable 

experience. 

Unlike computer simulation tests vhere computer time is severely 

limited, the hard.rare model enables a large number of errors to be 

counted, and measurements to be taken at hit>h signal/noise ratios 

(low probability of error). 

Figure 9.1-1 shows a simplified block diagram of the hardware model. 

The data signals consisting of binary clement values corresponding to the 

m active channels, arrive in element synchronism at the multiplexer where 

the. first n Halsh functions are generated. These are combined using the 

non-linear multiplexing arrangement D to form the resultant data signal 

which is transmitted over the duration of the following element period. 

Bandlimited white Gaussian noise is introduced into the transmitted path, 

and at the receiver input, the signal/noise ratio is measured, the signal 

and noise ener[>ies being measured separately with the other removed. 

The received signal is sampled n times per element period, and whilst one 

store holds the n samples for a detection process, another store is 

receiving the next n samples. The transmitted element values are 
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therefore delayed by bm clement periods before a comparison with the 

detected clement values. Discrepancies in si8n are counted for a 8iven 

number of transmitted signal 8roups. 

9.2 Description of' equipment 

A transmission rate of 21<00 bauds was chosen for compatability with 
16 

existin8 equipment using the local subsciber network, which gives an 

element rate of 300 bauds for each of the ei8ht individual data sources. 

Readily available 74 TTL series integrated circuits were chosen, there 

being no special circuit requirements in terms of speed or power consmnption. 

Before the detailed design, several arrangements varying in complexity and 

cost ~<ere investigated, the total estimated cost of the final arrangement 

being about £150. 

The hard~<are block diagram is shown in Figure 9.2-1, and detailed 

circuits are given in Appendix A3. Due to the lack of time, the hard <rare 

model transmission system (Figure 2.1-1) has by necessity, been simplified. 

The transmitter and receiver filters are omitted and the transmitted signal 

consists of square pulses to <rhich bandlimited Gaussian noise is added. This 

is sampled at regular intervals ofT seconds. In a practical system 

the received signal would be integrated over the interval of T seconds before 

sampling. The hard<rare model performance is therefore compared relative 

to the corresponding TDM system using sq_uare pulses. 

The element values corresponding to the eight multiplexed channels are 

generated in a pseudo random fashion, using a nine-stage shift register 

with modulo-2 addition feedback. The element values are thus changed each 
-··· 

element period. Alternatively, the element values may be selected manually, 

a particularly useful facility during the initial testing phase. The channels 

in operation are also selected manually. 
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The first eight Walsh functions, generated in the multiplexer by a diode 

matrix, are modulated by the channel element values using exclusive OR 

gates. The majority logic function is conveniently implemented \lith 

tri-state logic devices, w·hose summed outputs form an analoc.;ue sic;nal. 

A pair of voltage comparators determine <lhether the transmitted signal is 

±l or 0. 

White Gaussian \lideband noise from a commercial instrument is 

bandlimited to 15 KHz, and added via a precision potentiometer to the 

resultant transmitted signal. Because the analogue to digital converter 

used does for simplicity not contain a sample and hold circuit, any 

\lider band"flidth causes malfunctioning of the converter. 1Hth the 

potentiomcter set at maximum, the noise level is adjusted, such that the 

same reading is obtained as the transmitted signal, \/hen connected to 

a thermocouple type electronic voltmeter. The ratio of the signal and 

noise energies is thus 0 dB, \lhich may be accurately increased to any 

desired value with the precision potentiometer. 

The received signal passes to a ramp type analogue to digital 

converter giving a 4 bit output (3 bits+ sign), a total of 15 distinct 

levels. Computer simulation model tests using 2,3,4 and 5-bit converters 

on the received signal, sho\1 that at high signal/noise ratios, no 

significant advantage results \lith more than 4 bits. The received analogue 

signal is CJ.Uantised ttt the mid point of each received digit. Whilst one 

store holds eight 4-bit <lords for a detection process, another store is 

receiving the next eight \lords. 

Referring to Figure 9.2-1, the inverting unit estimates the m 

multiplexed clement values from the signs of the eight \lord samples. This 

first estimate is fed to a multiplexer, identical to the one used at the 

transmitter, to generate an eight component ternary signal ~<hich is an 



estimate of the oric;inal transmitted signal. 

The correlator forms the inner product of the estimated transmitted 

signal and that actually received, multiplying the corresponding components 

of each signal and adding the products to give the output signal c
0

• As 

explained in Section 8.7, a zero component of the estimated transmitted 

signal re~uires that the value ~ be added in place of the product term. 

The inverting unit now changes the sign of the first estimated element 

value, and the multiplexinc; and correlation procedure described generates 

another out put signal c 
1

. This is compared with the previous value c , 
0 

and if it is larger, replaces it, and the corresponding estimated element 

values are recorded in the inverting unit. 

The process is repeated until all estimated element values have been 

changed in sign. The largest value of c. stored, corresponds to the m 
~ 

element values obtained in the first part of the detection process. 

These estimated element values are now processed as were the first 

estimates, each component being changed in turn. At the end of this process, 

the resultant stored element values give the final detected element values. 

The transmitted element values, delayed by two element periods, are 

compared in sign with the detected element values, and the number of 

discrepancies counted using a commercial instrument. This proceeds for 

a given number of transmitted signal groups. 

9.3 Tests performed 

Prior to each test the Gaussian noise level was adjusted as described 

previously, to compare its energy with that of the transmitted signal using 

a thermocouple type instrument. With adclitive white Gaussian noise even a 

very small increase in the noise level produces a considerable increase in 
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the corresponding probability of error (Appendix 1!.1), and because of this, 

the level was checked regularly for possible drift. 1!. second source of 

error, the analogue to digital converter at the receiver input was also 

checl<ed at intervals. I''or a g1ven number of active channels, the noise 

level was adjusted in one dB steps to obtain an error probability/channel 

.of between 0.0001 and 0.01. The corresponding total number of errors 

counted 1m.s between 30 and 10000 for 100000 groups transmitted. 

The tests were repeated several times using different channel selections, 

and the total number of errors counted averaged. Figure 9.3-l shows the 

results obtained, of error probability/channel against signal/noise ratio 

in dB, for a varying number of multiplexed channels. Also shown is the 

performance of the corresponding binary TDM·system ~<hose maximum component 

energy is the same as that of the system under test. 

The overall system complexity has made an ey~austive testing of the 

equipment almost impossible. The digital circuitry was tested with 

given data selections and channels in operation, but without noise. 

The analogue transmission path and analogue to digital converter were 

checked regularly to prevent drifting. The confidence limits of the results 

are therefore uncertain, but ignoring inaccuracies due to the equipment, 

the 95% confidence limits are given by, 

2 
± p 

re 
(9.4-l) 

where the limits are expressed as deviation from the given value of error 

probability_p. The total number of errors counted in a test is e. 
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The confidence limits may be surrunarisccl as follovs, 

95% confidence limits expressed 
as deviation from the value of 
error probability. 

No. of 
active 
channels Probability of error/channel 

-2 -3 -4 
l X 10 l X 10 l X 10 

-

l ± .00063 ± .00020 ± .000063 

2 ± .00045 ± .00011; ± .00001;5 

3 ± .0003'7 ± .00012 ± .000037 

4 ± .00032 ± .00010 ± .000032 

5 ± .00028 ± .000090 ± .000028 

6 ± .00026 ± .000082 ± .000026 

7 ± .00024 ± .000076 ± .0000211 

8 ± .00022 ± .000071 ± .000022 

9.4 Harclvare model assessment 

Table 9.4-l compares the system performance of :-the theoretical 

optimum detection process, the computer simulation optimum detection process, 

detection process D4 and the detection process D4 vith a 4-bit a/cl 

converter, the harcl•mre model using detection process D4 vith a 4-bit 

a/cl converter. Good agreement is found between the performance of the 

hardware model and the corresponding computer simulation tests. 
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Noise level for an error ·probability per 
channel of 0.003, expressed in dB relative 
to a binary TDM system 

Theoretical Computer simulation Hardware model 
Number of 
active 
channels Optimum Optimum Detection Detection Detection 

detection detection process process process 
process process 

Dl Dl D4 D4 D4 

4-bit A/D 4-bit A/D 

1 9.03 9.05 9.05 8.93 8.70 

2 3.97 4.05 4.05 3.94 3.96 

3 5.03 4.40 3.82 3.72 3.71 

4 2.29 2.38 2.35 2.25 1.88 

5 1.34 1.10 1.10 1.10 1.32 

6 0.92 1.12 1.12 1.04 0.80 

7 0.27 0.37 0.37 0.39 0.12 

8 0.00 o.oo o.oo 0.00 0.00 

Table 9.4-1 Comparison of results, theoretical, computer 

simulation and hard>?are model. 



The Hardware Model f--' 
V1 
1\) 
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CHAPTER 10 

THE OPTIMUH 11UL'.riPLEXING ARRAl'lGE!·\ENT 

In the previous chapters, various multiplcxing arrangements have 

been proposed. Besides their simplicity as an attractive feature, 

demultiplexing processes have been developed which give a relatively good 

performance compared to the optimum detection process, which requires a 

vast number of sequential operations. 

It is therefore pertinent to ask whether an optimum multiplexing 

arrangement exists, which working in conjunction with the optimum detection 

process would yield the overall optimum multiplexing system giving the 

lo>~est possible probability of error in the detected element values. 

Operational complexity >~ould, by necessity, be unimportant at this stage. 

A simplified economically feasible practical system derived from the 

optimum system >~ould naturally entail a compromise bet>~een the reduced 

complexity and an inevitable, slightly inferior performance. 

The optimum detection process, applicable to any multiplexing 

arrangement, minimises the probability of error in the detection of the m 

' element values {xi} of the received signal elements in a group, selecting 

' ' the vector X , such that the corresponding transmitted vector S is at the 

minimum distance from the received vector R, in the n-dimensional Euclidean 

vector space containing these vectors. The detection process requires. 2m 

sequential operations. 

As stated in Section 7 .l, the n-dimensional vector space may be 

divided into 2m decision regions separated by decision boundaries, ><here 



these decision boundaries are hypcrplnnes which perpendicuarly bisect the 

lines joining the different signal vectors {S}. In the general case where 

k decision boundaries exist, the total probability of error p, is given by 

the sum of the k individual probabilities of error, due to the various 

distances {d.} to the decision boundaries. 
~ 

k 
p = E 

i=l 

d. 
Q (..2c) 

(J 
(10.1-l) 

At high signal/noise ratios with additive white Gaussian noise, even 

a very sr.1all increase in the distance to a decision boundary produces a 

considerable reduction in the corresponding probability of error. 

(Appendix Al). Thus the probability of error is effectively determined 

by the nearest decision boundary, the ~emaining boundaries having in 

comparison a very small effect on the prooability of error. 

The multiplexing problem is therefore concerned with positioning the 

2m possible transmitted vectors {S} in n-dimensional Euclidean vector 

space such that their proximity is maximised, and in particular, of utmost 

importance is the maximising of the minimum distance between the 2m vectors 

in the vector space, as this effectively determines the probability of 

error. 

It is assumed that the 

vector length, does not exceed m , that is, the signals lie on or 

within a hyperspherc of radius m The problem may be visualised as the 

packing of 2m hyperspheres into a hypersphere of radius m, ·such'that the 

packing density is maximised. The 2m hypersphere centres may lie on the cir-

cumference of the hypersphcre of radius m and indeed probably will, for n 

large (high dimensionality) >rhen a large proportion of the volume of a 

hypersphere lies n.ear the circumference. m The radius of the 2 hyperspheres 

gives the smallest distance d, which effectively determines the probability of 

error. 
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No directly relevant references have been found to this particular 

probl<em although related topics concerned >~ith the packing density of 
72-75 

spheres in n-dimensional spG,ce are of interest. 

An appreciation of the problem complexity in n-dimcnsional vector 

space is conveniently illustrated by considering several simple examples 

>There visual inspection offers an alternative approach to a mathematical 

analysis. 

T>ro data sources, producing four possible transmitted signal vectors 

may be positioned in three dimensional vector space as follo>Ts. 

The vectors are, 

z 

n H 0 y 

R -a ,0-- --- ------f) 
0 ) " 2. " 

/ 

" / 
/ " / ,_X 

/ / a / " ( -n " / 

0 ) 0----- / 

2 -0' 

( -R -R 0 

The distance to the nearest decision boundary separating the nearest 

vectors is H Solving Eqn. (10.1-l) for a total probability of 

error p gives 0 = 0. 329, or expressed as signal/noise 

ratio ln decibels, 9.66 dB. 

An alternative vector arrangement is, 

l l l 

l -1 -1 

-1 l -1 

-1 -1 l 

z 9 
I 

y : 
I 
I 9 ,_"]------ ------/-;) 

I .,"' I / 
I ,.."' "'"' 
1 --/~~--~~~------~/~--~x 
I ' / 
I ,.-· ,/'' 

,. ~ // 
k.'----- -U-- --y 

I 
I 
I 
I 
I 

I 
0 



where the minimum distance to a decision boundary is 1:2 The four 

equidistant vectors now form the vertices of a tetrahedron, which, 

offering the closest possible packing density, represents the optimum 

arrangement of four signal vectors in 3 dimensional vector space. 

The signal/noise ratio is 8.78 dB, for p = 1 X 10-4 , an advantage 

of almost 1 dB over the previous example. 

The tetrahedron structure provides the basis for an additional 

four vectors placed syrrJTietrically, perpendicular to the face centres of 

ti;c· tcetrahedron, forming a cube. 

z 

1 1 1 //y- ------:::::<? y 

1 1 -1 / I / 
/ / 

I ( ) 
/ I / 

1 -1 1 / / I S1------:-- y I 
( 1 -1 -1 I 

I I I 
( -1 1 1 

I X 

I 

( -1 1 -1 h-
I I 

-+-----;D 
( -1 -1 1 / 

I / 
/ / 

/ I / 

( ) 
/ / 

-1 -1 -1 / -tr" er--------

Each vector is surrounded by three other vectors having distances to 

the decision boundaries of 1. The signal/noise ratio is 11.41 dB, for 

-4 
p = 1 X 10 . This arrangement represents a three channel TDM system with 

all three channels active. Although s~~etrical and an obvious extension 

of the optimum tetrahedron arrangement, a higher packing density 1s 

obtained by rotating the last four vectors through 45° about the x axis ·as 

folle>rs, 



1 1 1 ) 

1 1 1 

( 1 1 1 ) 

( 1 1 1 

( -1 0 12 
-1 0 -12 
-1 12 0 

-1 -/2 0 ) 
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X 

Each vector row has two adjacent nearest vectors at distances to the 

decision boundaries of 1. The signal/noise ratio for 

decreases to 11.28 dB. 

-4 
p = 1 X 10 now 

A further subtle refinement fractionally adjusts the vector positions 

such that the minimum distance behrccn the vectors is increased slightly. 

More remote vectors, however, approach each other slightly, but with no 

significant effect on the probability of error.· The adjusted vectors 

given below, have been calculated by considering the highest packing density of 

eight spheres where four are rotated by 45° about one axis from the cubic 

structure. The vector positions are virtually identical to the model of the 

previous example. 

a b b 
where b j 4 ~ 12 

= 
a b -b 

a -b b 

( a -b -b a = 12 b 

( -a 0 c 

0 c = 12 b -a -c 

-a c 0 ) 

-a -c 0 ) 
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Each vector now has four adjacent nearest vectors at distances to the 

decision boundaries of 1.05, giving a signal/noise ratio of 11.27 dB, for 

-4 
p = 1 X 10 Although not conclusive, it appears that no alternative 

arrangement "ill give a better signal/noise ratio. A most important result 

is therefore, that a conventional TDM system, ><i th all channels in operation, 

~s not necessarily the optimum arrangement as intuition would have us 

believe. In particular, for three active channels in a three channel system, 

a multilevel arrangement gives an improved performance over a binary bipolar 

TDM system with the same average energy per component of the transmitted 

signal. 

To illustrate the dilemma further, 8 vectors, corresponding to three 

active channels are distributed in 8 dimensional vector space. A possible 

arrangement is the orthogonal rows that form a Hadamard matrix, 

1 1 1 1 1 1 1 1 

( 1 -1 1 -1 1 -1 1 -1 

( 1 1 -1 -1 1 1 -1 -1 ) 

( 1 -1 -1 1 1 -1 -1 1 

( 1 1 1 1 -1 -1 -1 -1 

( 1 -1 1 -1 -1 1 -1 1 

( 1 1 -1 -1 _, -1 1 l ~ 

( 1 -1 -1 1 -1 1 1 -1 

Each of the eight equidistant vectors is separated from the nearest 

decision boundary by a distance of 2. However, the first dimension components 

are all positive, indicating an uneven vector distribution in the 8 

dimensional hypersphere. 
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The following vectors form an alternative arrangement, 

1 1 1 1· 1 1 1 1 

( 1 -1 1 -1 1 -1 1 -1 

( 1 1 -1 -1 1 1 -1 -1 

1 -1 -1 1 1 -1 -1 1 

( -1 1 1 -1 -1 1 1 -1 

( -1 -1 1 1 -1 -1 1 1 

-1 1 -1 1 -1 1 -1 1 

-1 -1 -1 -1 -1 -1 -1 -1 

Each vector has six adjacent vectors at· a distance of 2, and another 

vector at a distance of 21:? to the decision boundary. Despite the 

marginal advantage of the arrangement, it clearly suggests that a 

re-arrangement exists, whereby the minimt~ distance of 2 is increased 

slightly, at the expense of the seventh vector at a distance of 21:? . 

The following vectors illustrate this. 

( a a a 

( a -a -a 

( -a a -a 

( -a -a a 

( 0 

0 

( 0 

( 0 

0 

0 

0 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

a a 

0 ~a ~a ) 

0 ~a ~a ) 

0 ~a ~a 

0 ~a ~a where a /if 
= J3f 

~ 2.14 
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All eight vectors are e<J.uidistant vith a distance to the decision 

boundaries of 2.14, \1hich is a siGnificant improvement. The first three 

dimensions have a tetrahedral structure, as do the fourth to sixth dimensions. 

The seventh and eighth dimensions increase the distance betveen the first and 

second Groups of four vectors. E<J.uidistant vectors are surely a guideline 

to the optimum arrangement, but misleadine;, as the uneven distribution problem 

has revealed in the first example of 8 dimensions. 

From the foree;oing it is evident that a non-mathematical intuitive 

approach may well be the only method for determininG the optimum arrangement 

of vectors in n-dimensional Euclidean vector space. It remains to be seen 

vhether mathematical analysis will yield conclusive results. An important 

result obtained from the positioning of 3 sie;nals (8 vectors) in 

3-dimensional vector space, is that a multilevel transmitted signal arrangement 

can give an improved performance over a binary bipolar TDM system vith the 

same average energy per component of the transmitted signal vhen used with 

all channels in operation. This may apply to higher dimensional arrangements. 

To conclude, it appears that the optimum multiplexing arrangement is undefined 

and may be approached only through specific examples. 

As a final note, the optimum theoretical method, in the sense of 

minimising the error probability, for transmitting data through a Gaussian 

channel, consists of vaiting until all data has been accumulated at the 

transmitted, and then sendinG a single vaveform to represent the entire 
25 

message. The optimum receiver in the presence of white noise consists of 

filters matched to each message vaveform. The disadvantage of this form 

of communication lies in the fact that transmitter and receiver complexity 

grmiS exponentially vi th message length. Thus, system designers usually 



restrict system complexity by not waiting for the entire message before 

transmission. Short portions of the messace are encoded systematically, 

and transmitted sequentially as they arrive, using relatively simple 

terminal equipment. 



CHAPTER 11 

Cm'iNENTS ON THE RESEAHCH PRO.JEC'l' 

11.1 Originality 

To the best of the Author's knowled.ge, the follm;ing chapters of 

this thesis are believed to be original. Developments of a multiplex 

system using a combination of time- and code-division multiplexing 

(Chapter 4). A code-division multiplex system using adaptive coding of 

Walsh functions (Chapter 6), and all detection processes other than the 

optimum detection process rel(l.ting to the multiplexing arrangements C 

and D (Chapters 7 and 8). The hardware model circuitry and tests 

performed (Chapter 9). Discussion on the design of an optimum multiplexing 

arrangement (Chapter 10). All computer simulation tests and computer 

programs. 

11.2 Suggestions for further investigations 

The research project has been concerned with various multiplexing and 

demultiplexine processes suitable for use in a synchronous serial baseband 

data-transmission system, where the signals are transmitted in orthogonal 

groups over a channel which introduces additive white Gaussian noise only • 

. From the foregoing theoretical work, further investigations appear 

promising in the following areas:-
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a) The multiplexing arrangement D (Section 6.3) achieves a useful 

performance over the corresponding TDJ.I system when used with the 

optimum detector. Various demultiplexing arrangements have been 

proposed with performances approaching that of the optimum 

detector, but an even further reduced operational complexity 

would be desirable. 

b) Considerable scope exists for developing multiplexing arrangements 

which need not necessarily be confined to a binary or ternary 

transmitted signal. Indeed, the optimrun multiplexing arrangement 

for a varying number of active channels would probably employ a 

multilcvel signal. 

c) In Chapter 10, the optimum multiplexing arrangement was briefly 

considered from the aspect of maximising the minim~~ distance in 

a-dimensional Euclidean vector space, bet~<een the possible 

transmitted signals represented as vectors in the vector space. 

This introduction indicates the problem complexity, and clearly 

forms the basis for a detailed theoretical investigation. 

d) The data-transmission system considered has for simplicity, 

introduced additive white Gaussian noise only into the transmission 

path. Over practical systems, distortion or intersymbol 

interference may be a significant factor, and although this has 

received wide attention for serial data-transmission, its effect 

on multiplexing arrangements, together ~<ith additive Gaussian 

noise, has yet to be investigated. 



CHAPTER 12 

CONCLUSIONS 

From the foregoing it is evident that considerable scope exists to 

investigate multiplex systems other than those based on conventional FDH 

and TDH techniques. 

The systems discussed provide advantages in keeping 1?ith the 

improvements suggested in Section 1.3. That 1s, they are inherently 

flexible, they have no \?ell defined overload characteristics, and are 

inherently less sensitive to interference than existing conventional 

techniques. 

System Al is particularly \?ell suited to applications \?here the 

number of multiplexed channels is typically a little greater than the maximum 

number orthogonally multiplexed using TDH. For up to 50% more channels, 

the system gains an advantage in tolerance to additive 1?hite Gaussian no1se 

over the corresponding quaternary TDH system, \?here this has the same 

average energy per component of the transmitted signal, the same transmission 

rate, and the same error probability per channel as System Al. 

This advantage decreases slo1?ly as the nmnber of channels increases. 

System A2 is identical to System Al except for a simple modification 

at the transmitter. This not only ensures unique detectability of the 

received element values, but has an advantage of up to 1 dB over System Al. 

System A3 extends the non-linear multiplexing tech~ique of System Al, for 

multiplexing three orthogonal signal sets. The results are a natural 



extension of those obtained for System Al. 

'I'he majority multiplex arraneement of Gordon and Barrett, al thoueh 

ingenious, has several disadvanta3cs. The coding scheme is only valid for 

a code1mrd length of 7 or 3 components, accommodatinG a max1mum capacity of 

7 and 3 channels only. It has been shown that there are no matrices which 

provide any improvement over this, and it is merely fortuitous that the 

Walsh matrix majority multiplexinr; scheme 1mrks at all. Also, and odd 

number of active channels only, may be multiplex.ed. 

An interestinG scheme is the mul tiplexing arrangement C, which 

generates a transmitted signal similar to a CDM codeword and TDM, for 

minimum and maximum capacities respectively, and gradually changes from one 

arrangement to the other as the number of channels increases. However, 

no more than the maximum number of orthogonal signals may be multiplexed 

satisfactorily. The detection process of System C2 achieves a performance 

equal to that of the optimum detector, System Cl, but with far fewer 

sequential operations. 

The rnultiplexing arrangement D, a majority multiplexed form of 

arrangement C, aGain generates a transmitted signal similar to CDM and TDM, 

for .minimu..m and maximum capacities respectively, only no>~, the transmitted 

signal is binary, or ternary for· an even number of active channels. 

The number of channels multiplexed may exceed the maximum number of 

orthogonal channels, with a slowly deteriorating tolerance to noise. 

System D3 only functions for an odd number of active channels. 

System D2 achieves a performance approaching System Dl, using the optimum 

detection process, but requires far fewer sequential operations. 

The detector, h01<ever, must determine the threshold detector levels from 

the average magnitude of the noise vector. At high signal/noise ratios, 



System D4 also achieves the optimum performance with a further reduced 

complexity, and is the best overall CDl1 arrangement c~msidcred. 

It is evident that the optimum multiplexing arrancement does not 

1GG 

lend itself to mathmnatical analysis. Its performance appears unclefined 

and may only be approached through specific examples. An important result 

obtained from the positioning of 3 signals (8 vectors) in 3-dimensional 

vector space, is that a multilevel transmitted signal arrangement can e;1ve 

an improved performance over a binary bipolar TDM system with the same 

average energy per component of the transmitted sie;nal when used 1<ith 

all channels in operation. 



APPENDIX Al 

ERROR PROBABILITY AND SIGNAL/NOISE RATIO 

Ylhen the sir;nal element values in a group are statistically independent 

and are e~ually likely to have the tvo possible values ±1, the probability 

of error in the detection of the ith element value of a group from Section 7.1 

is, 

d. 
= Q (--2:.) pi 0 

(Al-l) 

where o2 is the power spectral density of the additive white Gaussian no1se 

at the input to the receiver filter, and d. is the distance to the single 
1 

decision boundary in the detection of the ith element of the group of m. 

Let p. be e~ual top, and d. e~ual to d, so that, 
1 1 

(Al-2) 

The variation of the element error probability p with d/o is obtained from 

probability distribution tables and is sho>m in Figure Al-l. 

At high signal/noise ratios, that is >Then p has a value around 

it can be seen from Figure Al-l that for a given change in 

the error probability, the corresponding change in the signal/noise ratio 

is relatively small. For 

is 4.05 For 

-5 
p = 3 X 10 , the corresponding value of d/o 

a doubling of the error probability, the 

corresponding value of d/o is 3.85, a change in tolerance to noise of 0.34 dB. 
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At high signal/noise ratios even the doubling of the error probability 

produces a negligible change in the signal/noise ratio. On the other hand, 

a small change in signal/noise ratio produces a relatively large change in 

the element error probability. At high signal/noise ratio a· change of 1 dB 

approximately alters the element error probability by 10 times. 

Consider that there are two binary element values in a group having 

possible values ±1. From Eqn. (Al-l), 

and 

Assume nm1 that, the signal/noise ratio is high and furthermore, 

d
1

/cr = 3.0 and 

to d
1

/cr = 3.0 

-5 
is 3. 5 x 10 . 

lS 

d2 /cr = 4.0 (say). From Figure Al-l, p
1 

corresponding 

-3 
1.4 x 10 , . and p2 corresponding to d2/cr = 4.0 

Clearly, It therefore follows, that the 

average element value error probability in the detection of the two element 

values of the group is effectively given by p
1 

which corresponds to the 

smaller of the two distances d
1 

and d2 , providing that the signal/noise 

ratio is high. If there are m element values in a group, the average 

element value error probability, is approximately given by the p. of 
l 

Eqn.· (Al-l), which corresponds to the smallest value of d .• 
l 



APPENDIX A2 

COMPUTER Sil1ULA'riON PROGRJ\1·':8 

The following computer procrams are shown as typical examples of 

mul tiplexinc and demultiplexinc arrancements. For ccmpletcness, they 

are shown in their entirety, includinG control cards, document data and 

results. 

System Al 

System Dl (two orthogonal sets multiplexed) 

System D2 ( 11 11 11 11 ) 

1'70 



Corr:puter simulation progrc.m for Syste::1 1'.1 
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C0/1PACT 
rNrtJT 1 ::: CRO 
oUTpUT 2 = !.PO 
cOIIPI<r,SS JIJTHif:•< AI'I:J LOGICAl. 
Tki,CF. (I 

f: l'l[) 

1-11\ S TE R S Y S T[ t1 A \ 
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C C 0 11 PUT E R P R <Hdt Al-1 T i.J ~ 111\J l. ,\ TE S Y S T F. I 1 A 1 , T \J ll U R 1 H o <i U N t, I. Sl T;; 
C A TDII MID A G!J!\ •IF 16 ,;H,\Nilf.LS I:ACH, AilE CIJi.,Hl'JFD NUN-
C LIIJU\11 LY ANr DEHt; • l:l> IJS PIG co:·\Hi LAT IotJ Df: fECTJO.~ , 

C ;, A,\ , S tn, ~ 11 A T R I X 0 • L !U, N fJ l: L C 0 D 1: \I 0 •< D S - S FT A , S ET A 
C il A , N f> ::: N 0 0 11 CH ANi, 1: L;; ~ SET A , S 0 R 
C AD ~ LEVEL Or THE ~tT n CDDtWORD~ 
C S 0 " ~; TA IH> A R !1 [l f V L1 1 l 'I 'i 0 F T >H: ~ 11 ,q N F L N 0 I SI: S MIP L [ V A L U f. S 
C L a TOTAL Nil, UF G,IJUP~ TH,\NSMITTED 
C ZAtZH = CHAN~[L FL(MLNr VALUES TO BE MULT!PLEXl~ ~ SET A.s~l B 
C SA,Sil" I.INU 1? S\111 llf ;;ET CODEIJOi<O) ~ StT A•~F.T I\ 
C I{" Tf?Aii~f-1Ilirt> SJ<;N,\1. V[CTUR 
C A , 1\ ~ [> E TE C TL 0 E L [ 11 r. rn V •\ I. lJ E S - S F: T A , S ET B 

c. R s B - 11 E C tHJ s T R IJ r: TE , ) l. Hr EA R s IJ f1 o F :; f:T H c of> U.! () R o ' 
C RNL - RELATTVr NOI.oE !.[VEL IN PB 
C RSl • R[LAT!VE SIG,'AL lNERGV IN OB 
C EA1:: TOTAL NO, OF f:KRiJHS ~ S[l ,\,fiR<;T CYCL~ 
C P A 1 ·• A V E k A li L 1: R i? 0 i: P ~~ rJ 11 A fl! L! TY I C 11 MHI tL ~ ~ET A , F I p S f CV C Ll: 
C G n 58 A F (X) I N l T l/1 1.1 :_:!: ~ 1\ 11tH> 01·1 N Ill·\ B H GENE R ,\ T 0 I< 

C G05ALF(A,H) R.II,G, WIT~ GAUSS!AN ~1ST, MFAN A ST.DEV, B 
C G 0 ,'i AM ( Y ) f~ , 14 . IJ , "' ' Hi ll !H r 0 RI·\ D I S T , 11 F T lo H ~~ 0 A N [\ 1 
C GOSAU~(A,h) ~.N,G, WITH UNIFORM ~1ST. U~TWC~N A ANU 8 

Jr~ T E G E f! S t. 1\ ( 1 6 , ., ll l • :; £\ B < 1 6 , 1 o l , 7 A < 1 6 l • Z R ( 1 6 ) , S A ( 1 6 ) , S B ( 1 6 i 
! IH [ G [ f.( A ( 1 6 ) , 0 •. 1 i> ) , E A 1 , f' 8 1 , f. A 2 , E !l ? 
Oiri[fJSION 1{(16) ,kk'16) ,OP<H>) rRS0(16) 

C READ t\ATRIX OF con~WUNDS - SET A,SET R 
NLAp (1 1 10) IIS~AII,J),J~1,1b),J=1,16) 
REAn 11',11!) ((Si;B(!,J),J=1t16),J:::1,16) 

10 FllRIIAT (11>!0) 
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c 1·1 RI T L I)IJT puT T l Tl. [ I 

WklTE ((.,11) 
11 FDRIIAT (1ii1////,'4J:\, 1 SYSTU1 A11/45Xr'----··---·-'''' 

1r' AIIP G·\U'~'• NO OF KFL!\Tl'!E ~:0 nF f-R~S 
2 , 1 I' I( 011 A IJ I 1. I T Y r; 11 ANN E I. RE lA T t V F ' I ' CH A i< N f: I. S SET 

NU Uf' 
f.<l~i)H ' 

ll NUJ' 
3 , I s I: G 1w u I' s 1 :ot ~ 1: L • 1 c vr ?. c ., c 1 s r c y c L < 
/,,'2'1[) CYCU; sG,tlil::f\GY 1 / 1 (NAJUJil) <A~) (\DJ 
) , ' ( R l·l I ) n h !., B A 0 :i E T /'1 S f: r B S E T A 
(,I (f(S[:lDfl'/1) 

C f< E A D S Ei o F (i AT t. 
t•U ~00 I·IN"1, 11 
REr\1) (1,12) NA.:iH•Ail,SDrL 

12 F(IHII!\T (!.;0,7.f'li.UI{0) 
FA1 'f:G1 I F:il2 I Ef;h\1 
TSL=:Q,ll 

C T I! C f' f( il G I; A 11 N 0 \J R U,; S FUR L T RA i~ S fl I nE ll S I r, N !11. G R 0 U f' S 
DO 100 ll''1rl. 
CAI,I. RMillOM (Nft,,2i\) 

CAI.L I~ANDOfl (Nfl· 1.~) 

C f'ORI\,\TJON OF THE T'Jd<Si!ITTEf> Sl'UNAL p(J) 

DO 11 J::1,i6 
S[;(,I)=O 
oo 1 :; 1=1 ,16 
!F (7,1l(j)) 15,1:>,1L• 

1 :$ S IJ ( ,J ) = ~; ll (.I ) - S 11 H . I , J ) 

GO 10 15 
14 SB(Jl=SB(J)+SUB,lrJ) 
15 Cl11JTII•UE 

If (l.A<J)J 16r1l•1f 
16 SR<.Il=-SR(J) 
17 R(J)~ZA(J)~SO(J,•U.%5•AH 

C CAL. TOTAL Sl~NAL LNfRGY 
po 1a J=1,16 

1 8 T S b T SE+ R i J ) • R (,I ) 

C ADD 6AIJSSIAN NOISE IJf STD. DEV, SD 
oo 1'1 J:::1 ·16 

19 R(J)=RIJ)•GU5Ar~<U,O,sD) 

( L) 

sr. r fl 



C UETECT)ON Or Till M·.CtlVEn SIGNAL k(J)•NO!ii~ 
C F I I{ S T C VC I. E 
C c>EHCT sr.T A 

flu 2 r, J = 1 , 1 I> 

If (ACJI-0,U001. ~u.~J.~S 
?n IF (R(J)+IJ.U001 · ~<.~2.1.1 
21 I~ (GO~AA~Il)-0 )I 22,~3.23 
? (. ,\ ( .I ) "- 1 

GO TO t~4 

23 A(J)"+1 
~4 R~IJI=ABSiR(J)l·-1 

C 11 F H C T S ET R 
oo :'o J=1,1o 
QPCJl,U,O 
IF \ZHCJ)) 25,?,;,,;:~ 

?5 on 26 !:::,,,,, 
26 QP(Jl=OP(J)+ARC!I•SHI!(l,J) 

IF (OP(J)) Z?,2:i,t.\l 
27 n<.l)•-1 

(iO TO :'>0 
28 E\(J)=O 

GO TO :10 
~9 B(J)~"'1 
:;o CllliT!IIUE 

C COl!NT TOTAL HO OF cHKlJHS EA1,E81 
D\l ;~t, J:::1 •1 11 

IF (A(J)-lA(J)) l1 •12,31 
:~1 r;/11 o::EA1 ,.., 

J2 JF (R(J)-lH(Jl) S~.J4,53 

:;3 F.il1 =EB1 +1 
34 Cl!llTPJliE 

C f.ECON(> CYCLf: 

C R [ C 0 I<:; TR iJ C T ll S fl C J l f R 011 SET B AN ll H F. DE H C T S LT A 
JS=O 
DO 39 J::1,16 
RSH(J):=O,O 
oo:l7I=1.16 
IF (fl(!)) 3;,37,.56 

:15 HS[i(JI=KSb(J)-SJ:Il\l 1 J) 
GO TO ~S7 

3 6 R s l\ ( J ) = R s fl ( J ) + s ll!) ( l I J ) 
~7 CONTJ NUE 

IF (RSh(JI•(I,~~·AU+1) 3Ho39•59 
:ill A(J)::-4(,1) 

RRIJl=I-AL~(R(JJII-1 

IS" 1 
39 Ct)IJT JtllJE 

IF (IS) 4?,47,4<> 
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C DETF:CT SET B 
.:,n DO 1,6 ,1=1.11> 

(lP(J)~O,(J 

l F (ll' ( J l l 41 , t, " 1.1 
1,1 DO /,i'. 1"1 ,16 
1,?, Oi'(J)~Of'(,I)+~R(Jl~SfiBCJ,J) 

r f cor < J l 1 4 .l , 4 '• , 1,:, 
43 O(.l),.-1 

r,o 711 46 
/+/~ R(J)~O 

Gl) 1'0 46 

1,5 R(J),+1 
1,6 CUIIT!f•l!E 

C COUNT TOTAL NO OF ~RRO~S EA~,ER~ 

1,7 DO ~1 .!=1, 16 
!F (~CJ)-/4(J)I 4~·49,4K 

I,P, F.Ai!"E.\?+1 
49 I~ (R(J)·ZD(Jll )U,51,~0 
50 Ell(.;:El\~+1 

51 CONTINUE 

100 CONi I tJUE 

C CAL, I,VEHAGE EIUWH PHil~Ani Ll Tl ES ;>A1, p~1, PAi', 1'02 
PA1=EA1/FLOAT<L -~AI 
PAI=EA~/FLOAT!L•~AI 
IF (ND-EQ.Ol GO ru ~2 
PB1=ER1/FLOAT(L~NHl 

P 0 C.= E il 1./ F L 0 1\T < L • NU ) 

C CAL. RELAT!V~ NOJS': LEVEL IN DB 
52 RNL=ZO*AlllG101Si!fV,:;64) 

C CAL, AVERAGE SlG~A~ tLEMENT FN~~GV I TRANSMITTED CJMPllNENT 
AH,TSt/ < L•16l 

C C A L • H n 1\ T! V f' S I G IJ .'\ ~ 1: N E R G Y P E k C 0 11 P f).~ t N T I N {1 B 
RSf:10•ALilG10(A;.Er1,0) 

WklTr <2,53) NA.Nli,AB,SD,L,~NL,!;A1,EU1,£A(.,Ell2•PA1rf'lll,PAc. 
1Pil?.,HSF. 

:; 3 F 0 [I 11 AT ( I I, • I 4 I F d • j • '7 • :s I I 8 I F 'I . 2 ' I 5 ' I .5 , I I, I I 3 I F 9 • t, ' F ? • 4 • F 6 ... ' 

200 ClliiT l NUE 

1,/RIH <z~:,i,) 

sr. FOHflt\T c 1 ***Rfld*** • > 
STOr 
E 11 D 
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r SUIJRIJliTIHE RANpOM 'tl•E~ATtS A 16 COMPONENT V~CIO~ ~~ WHICH 
C '1.\ S ,u, F. IJ 11 F 11 T :; S I' ,. A f K AN D 0 11 Hl + 1 0 R -1 , 11>1 D ;> 0 ·' l Tl 0 N £ 0 
C I~MJDUIII.Y THRCiUGHLlll'l Tilr: V~CTOft, 

!F (N,\-8) 1U 1 1(J,11l 

10 on '11 J:<1.16 
11 ZI\C,il•li 

IF (Nft.) 12.2~.1.: 

12 DO 17 I "1 dU1 
13 f1"<iO~Mlf(1,0,16 'I'IY) 

!F (Zt•<II)J 15•1'••1.5 
14 !F (GO~AM(Y)-0.~) 16,1!i•15 
15 7.A<t1)=+1 

r,o ro ,., 
1 r, z,~ Cll) =~1 
17 CIJI'IT!Ntl[ 

GO TO 25 

1 ll D 0 ?. 1 ,I = 1 , 1 6 
IF (G05AAF1Yl-O.~I 20,1Y,19 

19 ZA(,J):;·+1 
~0 TO 21 

20 ZA(J):;~1 

21 cuwr r r;u~ 
IF (NA-16) ~2.2)·~~ 

2?. Dil zt, 1=1 ,16-NA 
?.3 M•I.O)!IHF C 1, 0,16. '1'19) 

IF <ZACI!)i 2'•,~.1,,;4 
2t. ZA(!I),.(I 

?.5 RETUHN 

END 

FIIH SH 



D>tCi!tiUJT 
1 u 

D,\l A 
0 

n 1 
) I) 

J l) 

0 () 
0 0 
0 (I 

(J l) 

0 l) 

i) (} 

1) 0 
,, 0 
() 0 
() 0 
0 0 
0 () 
1 1 
1 -1 
1 1 

-1 
1 1 
1 _, 

1 1 
1 ... , 

1 1 
1 -1 
1 1 
1 -1 

1 

(I 

1 
0 
0 
() 

0 
0 
0 
() 

0 
n 
0 
() 

0 
0 
1 , 

-1 
1 
1 

·1 
-1 

1 
1 _, 

-1 

1 
1 _, , 

1 ~ 1 
1 -1 -1 

16 0 o.ooo 
16 1 (),/30 
16 2 o.no 
1 6 3 0. I> ?H 
1 (, '· 0 • {> 0 4 
16 5 0.~64 
16 o o.:.r.~ 

16 7 o.~oo 
1 6 :) 0 • 1•l'' 
16 9 (),l,5il 
1(, 10 (),1.23 
16 11 0.426 
16 1?. 0. 1~0'• 
16 15 0,390 
16 11, Q,3!1> 
1/l 15 0,.561+ 
1.616 (),j61 

***1<: 

() 

() 

0 
0 
0 
() 

0 
(I 

ll 
(J 

(I 

(i 

-1 _, 
' I 
1 

-1 , 
•I 

1 

1 _, 
-1 

-1 
-1 

1 

0,36~ 

0,.120 
(!,~?(1 

l',244 
ll,217 

0,<'04 
!.i,192 
0,11'\2 
n. 1 r z 
P,16g 
0,1)0 

0. 1 ~ 2 
(). 1 46 
0,141 
{) • 1 i. 0 
0,1:\0 
0 1 1 3 0 

() 

0 
() 

0 
1 
{I 

0 
() 
(I 

{) 

0 
0 
() 

() 

0 
0 
1 
1 
1 

1 
-1 
-1 _, 
-1 

1 
1 
1 
1 _, 

ll 
ll 

ll 
I) 

u 
'1 

V 
1.) 

u 
\I 
(I 

ll 

lJ 
I) 

IJ 
I) 

1 
-1 ., 
-1 

"1 
1 

"1 
1 

1 

"1 
1 

-1 

-1 1 
... 1 ... 1 
•1 'I 
1 0 Q ' 
1 l) ()I 

1 {J 0 ,. 
1 0 0" 
1 0 0 ,, 

1 00 •· 
1 OOiJ 
1 0 ()' 
1 () 0. i 
1 0 0<' 
1 0 0 .' 
1 0 I) •; 

1 0 0 •: 
1 0 0 ' 
1 00 ,. 
1 00·.· 
1 0 0·' 

0 
0 
0 
() 

0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 

-1 

-1 
~1 

-1 
1 
1 , 
1 _, 

-1 

-1 

1 
1 

{) 

0 
0 
() 

() 

0 
0 
1 
l) 

0 
0 
0 
0 
0 
(I 

0 
1 _, _, 
1 

1 
1 

-1 

1 

-1 
1 
1 

-1 

(! 

0 
{J 
(l 

(I 

0 
() 

0 
1 
() 

0 
0 
() 

0 
0 
li 
1 
1 
1 

\ 
• I 

-1 _, 
-1 
-1 
-1 

-1 _, 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 

-1 
1 

-1 
1 

-1 
1 _, 

_, 
1 

-1 
1 

-1 
1 _, 
1 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
1 

-1 

-1 
1 
1 _, 

-1 

-1 
-1 

1 
1 _, 

-1 

1 
1 

[I 

() 

ll 
u 
{) 

I) 

0 
0 
\I 

ll 
0 
1 
(1 

() 

0 
{) 

1 
-1 _, 

1 
1 _, 

-1 
1 

-1 

1 
1 

_, 
1 
1 _, 

() 

0 
0 
0 
0 
(\ 

0 
0 
0 

0 
0 
() 

1 
0 
I) 

0 
1 
1 
1 

1 
-1 _, 
- 1 
-1 

-1 _, _, 
-1 

1 

1 
1 
1 
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0 \) 
0 \) 
0 I) 

0 \) 

0 u 
() V 
0 I) 

0 >) 
() •) 

0 0 
0 'J 
0 () 
0 <) 

1 V 
0 
0 tl 
1 1 

-1 1 1 _., 

- 1 - 1 
", -1 

1 • I 
-1 1 

1 1 _, _, 
1 -1 

-1 1 
1 1 
1 1 

-1 
1 

-1 
-1 
-1 

(J 

0 

I) 

0 

u 
i) 

0 
11 

(I 

1) 

\) 

I) 

u 
(I 

1 
1 _, 

-1 

1 

-1 
1 
1 _, 

-1 

1 , 
-1 , 
- 1 
"1 

1 



i\,0 0~ 

CnANNELS 
(~A) {N8) 

u 

1 

;6 

4 

( 

16 /;1 

I 6 1 V 

! 6 j 1 

MIP 
HT 8 
{AB) 

,-JO IS~
<50) 

u.ooo ,,,36;, 

0,780 ) ' 3 2 •. 

0,770 0.(.7. 

Q,6'18 ;,24-~ 

\1,604 

U,S64 

[) • 52 5 •' 19 .· , .. ' .. 

V~t.Y9 ·~.17i: 

0,458 (:,16;~ 

0,"3'16 ;:.~1 •. 

u. 3 61 '·'. 'J 3 ' 

!10 • F 
GROU_ S 

< L' 

1 ;ji_i 

1 u (} ,-

1 0 C:. 

1 t; n 

1 i) r_·. 

1 u ~-' . 

, (: (j 

RFL~TIVE 

NOlSl l,, 
(Riii~Dn 

-6 •- 02 

~o.~1 

-6.?? 

-7. 7(• 

e...,. ________ .,. 

i~O iiF E,;;RS 

1 CYC 2(YC 
A B A B 

!.() 0 ·-6 ,-. 
V 

4( 3 i.( 5 

-~7 1t.: 

4'1 1 5 •• <) 1 ~ 

)/ 40 1,8 4;) 

~Qk0R PRUBAGILITy f CHA•Ntl. 
lST CYCLE 2~0 C c F 

;) • (; '; 3 1 './ • . u ..: (I 

o.nt·j1 c o,:~!J 

!_!, ()!1J6 0 .. 0tJt9 0. f.•i~ 50 ( :0•.9 

_.., f· L 4. r I -,_· F 
:., (] • E \ ~ . .; G Y 

hSElpR 

~ (;. 1 5 

+u.37 

• t .• -41 

+\}.t.t .. 

+).5?. 

+ \,i. 1.9 

't '.' • 5 ') 

+U.)6. 
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Computer simulation program for System Dl 

J<lR THD'i, [, PbH1 ~?2 
FpSriLFS 1 
l,l.l F () R T Q tliJ , , I< 

.JOflCORf. 52K 
D il ~/IJ ?,2 
'lili~ '' 2.>0() 
* '!11· -t * 
DOCIJf.~Eril SOUPCF. 

c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
" ,, 
c 
c 
c 
c 
c 

L I H !-: 1\ ~ Y C f D , S 1J R ,; K U UP N ~ G F ) 
W (J R r; C Ul , IJ S F I\ f D S ; I l. F. 1 ) 
P o 0 li !lA I·\ ( T :1 n 1 l 
A fl N 0 R f\ i\ L fli N C T I '1 N S 
CV/Ii'ACl 
!NPUT 1 = CI:O 
QIJT PlJ'f 2 = LPO 
CUIIPRISS lNTEGE~ AND LOGICAL 
TRi\CE 0 
r: N D 

MASTEH SV:>TUI D'! 

CO/iPIJT[:R PRO(·.RAt-1 T11 Slt!Ut.ATE SYSTf:tl D1. TIJO O~l!IOG'JNAL CDfl 
SETS • OF 8 CHANNEc5 ~ACH ARE MULT!PLEXtD , AND nEi[CTED 
US I N (, THE 0 PT !11\H-1 i> EH CT I 0 IJ PR •J C F s :, . 

SAA,SRR = IIATR!X n, CHANNEL CQ!>EWORDS • SET A, SFT B 
IJ A 1 Nil = 11 0 0 I' C H A N :; t ~ S " S E T A r S f T tl 

AD = LEVEL or THl ,lT n CODEWO~D~ 
S D ~ S T AIJI> ,\ R /J 0 t V I,.; Tl 0 :; OF THE t; 11 A ~iN f:l N 0! > E ~,VI i>L t. VALUES 
l ~ TOTAL NO. OF G'UUPS TRANSM!TTE[> 
ZAtlll '" cHAivhF.l EL:Nt;fiT VALlJfS TO !if' I·ILILT!PLEXtD- ~ET ArS[I P, 

SA 1 S ll ~ Ll N fAR f,lJ f.! IH SET C 0 D l' fHl R D:, ~ SE T A , S t'f B 
R;:: Tf:,\NS~11TTED Sl!NAL VECTOR 
Arll" PEHCTf~ FLEI1ti<T VALl!ES- SET A· SET R 
RNL = HELATIV~ NO!"~ ~EVEL IN DB 
~SE ~ 1\[L/:..TIVt: SJ~;!J,fi,L [N[~GY IN r:n 
fA = TOTAL NO, OF :;K~OkS - SET A 
P A : r, V E 11 A G f: F K RI J 1{ i' k 0 t; A fl ) I. I l Y I CH AtJ NE L • S t T A 
G05nAFIX) INIT!ALI:t5 ~ANDOM NUMBE~ GENERATOk 
GQ5AtF(A,!l) H,N,b. WITH r..AUSS!AN fJ!ST. I·IEAN ~ ,;T,DEV, 8 
GQ5Ai\F(Y) R,I~.G. W'.TH IINJrORI·I DIST, BETWEFN ll r~ND 'I 

INTEGER SAAC8,8;1ZA(HJ,zB<8l,SA(8),SBC811AIK),B\8),XIKl 
!~TEGLR XA!256,Kl,XkC2~6,8)rtA.EB 
0 !11 E tJ S I 0 N R ( 8 > r k H< <i ) , X RA ( 2 56 , il l , X R R U 56 , Cl ) 

C.Al~ <.O)B.\F(1,0; 

R ~ ,\ [> ( 1 1 1 P ) ( ( S :; 1i ( I , J ) , J ~ 1 , o ) r l ::: 1 , 8 ) 
10 FllRilAT (HI5) 



w R l y I; ( {, I , 1 ) 
11 FORII,\T (1111 I I I I; 4!>X, 'SY~TE11 [) ·J ' i I. 'j X ' ' -- .... - ... - --- t I I r 

1 1 ' ,\11 P G ,\l): · S , IHl 0 F RE!.~TJVE ~0 nF ER~S 
z,'PRilRAUILJTY CHA~N~L qlLATIVF'/' CHANNEL~ SET 
3 , I s f~ ~ H 0 ups I j lJ 1 s r. I. ~ SETA SFTK SET A 
t,,'SI.:T fl :;l;,l:Nf:•{GY'/' (NA)C~,r;) <An! (SD) 
5,' (P.IJI)DG !;.A! (£:[',) (P,,) \PR) 

ur'<HSF)[Jn'll) 

[liJ :100 l~tHb1.16 

R t: ;\ D ( , I , .! ) ~j A • : ; H • A [; • s D I L 
1?. FU;!fiAT (2lor2r.o lHlp) 

F.l•, r:n~o 
TS["O,U 

179 

Nll ur • 
E 'R '-'" I 

ll Nut ' 

([.) 

C F 0 R 11 AT l 11 IJ CJF •\ I. L P • IS:. l f; lE T R /;!~ S , V Er. T (l R 5 X Rt. I fl N A , K ) , ;.: H ~ ( N >J b 1 •: l 
N !< 1\ ~ ~ * * N A 
NI~ !l ~ (. • *N 8 

DO :;1 r-1=1, 2 
I f { t1 , F q, 2 , !\till . '' 11 • H, 0) u 0 T 0 31 
IF (M,EQ,1 .A~D.,Y.EQ,1) ~0 TU 31 
l F (1.1_ Efl. 1) I·HJI)c;NNA 

I F ( 11 , F Q , ?. ) N N 0 '" ~ IJ ll 
IF it-1,t:Q,1) '10=/A 

! F (11, r:q, ?1 tiO~!.f\ 

DO 1.1 J::1,g 
13 X(J)=O 

D 0 3 0 K:: 1 • N iiO 

ou 15 .1=1,!<1!. 
x<n~x<Jl+?. 
iF (X(J)•1) 1G,~h,14 

11, X<J)=~1 

15 COIJTiillJE 

1 6 DO :) 0 J = 1 , 3 
R(J)=O.O 

rr (X(.J)) 1/,19,11! 
1'? R(J)=·SAA(JIJ) 

Gi! Ttl 13 
18 RCJj,+SAA(JIJ) 

GO rn ;n ,) 

19 ou (! 2 I "1 , 8 
n (X(l)) 20rt:2·'1 

?.0 R(J)=A(J)-SAA<I·JI 
r,U i(l 22 

21 R \ J ) " R ( J ) • S A 1\ ( I , J ) 

2?. COIJTINUE 

23 IF (R(J)) ?.4r2~i.~O 

24 RIJ)::-1 
r,o ro ?.? 

25 R(J)=O 
GO TO n 

?.6 R(.i)=+1 



27 IF (11-1) ?i\,~ii .. :\1 
;:il Xi\lt:rJl=:XI.r) 

XU•(K,Jl"ktJ) 
r,O 'fll 30 

2 'J X ll( ;~rei ) =X t J> 
X i< H ( K , J ) " I< ( ,I ) 

.>o f.I!'H l iJUE 
31 C<liJTI !JIJE 

If (NA.EQ.R) jy.,·r 

C TH£ PI<DI>f·!AI1 f(()lJ RU:.S F•IR I. TRAWii·IJrTf:n 5!G'-AL GRI)Ui'S 
DO i?OU NN::1, t. 
CALL RANDUN (liA,IIBrlArZOI 

C F 0 [( 11 A T ) ill~ 0 F T H F: T;c !\ N SIll T TE D S I G N A l r> ( J ) 
pO SI> ,J:::1,8 
S/1lj) ,Stl(.l)::() 

IF (ZAlJ)) 32,3;rll 
32 ~A(J)=-SAA(J,J) 

GO TO 58 
33 SAIJI~•SAA(J,JI 

G'l rn :sa 
3t, no :;1 1=1 ,p, 

IF (ZAIIII 3~·3/•l6 

35 SA(J)•SA(JI-SAAilrJ; 
GO TO 3'7 

36 SA<Jl•SACJI•SAA\I,Jl 
37 COiil!IHI( 
:':ll !F \SA(J)l 59,4,,1,1 
3? ~A(.!I=-1 

Gl! TO 4 2 
40 SAIJ)dJ 

GO TO 42 
41 SACJio:+1 

4~ !F (Nil) 56.~h,43 

1,3 IF (ZRCJII 1,4,1,,,,45 
44 Sii(JI=-SAA!J,J) 

GO TO 50 
45 SH(J)::+SAA(J,JI 

r,O TO :;o 
46 DU .t,9 l=1 rR 

Ir (Z~(!)) 47,4"•1•8 
47 SR(JI=~D(J)-SAA•IrJ) 

Gll TO '•9 
48 saCJI=SB(Jl+SAAii,J) 
1,') r.OI!'r! IIUE 
50 I~ (Sfi(J)) ;1,5r:,;.s 
~1 sr:c,ll,-1 

1.11 TO ~4 
~2 Sii(J)::O 

GO TO 51, 
53 Sh(J)::+.1 

51, IF (SA(JI) 55 1 Sn,!>6 
~;5 SIICJI,.,-Sfit.J) 
S6 RI.I)•SA(Jl•SR(J:•AH 
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C CA L , 1 () T ,\1, ' J G .'H\1~ :; I'J t R c; Y 
r..n SI" .1~1,;; 

)7 r:;c,~"T~>f:+R IJ) *i' C.• J 

C ,\[l[J <>i<LISS!AN NO!';F. Ur :;Tn. Df.V, Sfl 
DU 5K ,J::1,g 

'i8 R \,1) "il CJ )*GaS/oF • IU, •!, SD) 

C DE TE C 1jfl 11 (l F TIll R •_ C t 1 \! E D S l (, N ,<\L R (J ) t N 0 I!> I 

n <'~A-in 6J.~',l,J'>' 

:; 'l D 0 <• 2 ,J " 1. i1 
If- (f((J)) 60161d>l 

60 AIJ)=-SAAIJ,Jl 
Gu ·ro 62 

61 AIJ)=+SAA(J,Jl 
(, 2 C CJ 11 T I IHI E 

GU TO 6i) 

63 OPA•:1 OliOll 
f)O 66 K:::1, rJNf, 
oP~o.o 
[l () (, I, .I ~ 1. i\ 
X X~ X,,,\ ( K I •. 1 ) - k ( J ) 

61. ()1'7-IH'+XX*XX 
IF (OP-UPA) 65,nn,66 

65 OPA~OP 

fl A" K 
66 ClliJT !IJllf, 

DO 67 J;:1, N/1 
67 A(J)=XAIMA,Jl 

68 tf- (NR) 80,H0,6~ 

69 Af•ll;-:1/ An 
oo 70 ,1:::1 oil 

70 Rt<(Jl~CAflSIKIJl:·-1l•AA£l 

IF (NB-81 7~~71,f1 
-,, 00 74 J:::1 1 P, 

1 1- < n r< < J ' 1 12 1 7:, • r :s 
7?. n<n~-sAA<J,,,, 

r,O TO (1, 
73 ll(J)"+SAA(J 1 J) 
71, C !HiT J NU E 

Gel TO ~0 

i'5 Oi'A,101JOU 
no ?ll K=1 1 NNB 
oP~o.o 

DO "(6 J ::1, !l 
XXcXRR<KrJl-N~(JI 

76 Oi':-oP+XX*XX 
IF (OP·OPAI 77,JH,/H 

77 QP(l,flP 

r·W" K 
7iJ C!lrJTI NUE 

DO "(9 J =1 dJB 
'!() 0(.1\c~~~U'F- I) 



C t.OlJNT TOT!,~ r;o 01' ;_RHo,:s EA, EB 
.10 (lO 11'• J"1, ~ 

If IA(J)"i_.\(.J)l t\1.,;2,111 
r, 1 Et\:-:: F _!1. + 1 
32 Ir (HIJ)"7RIJll HJ,ii4,K3 
3~ Fil=i.8 ... 1 
.11,. r.o;~·r 1 tHJt. 

200 COl"! I ~U[ 

C CH , A V F. R ~ G E f' H R iJ R P f\0 I' A R I ~ I T V P A , P f\ 
PA=EA/FLOAT(L•~nl 

IF (NIJ.EU.!l) r;o ro i\5 
PR=EH/fLilAT(L*N~l 

C CAL. RELATIVE NOI~• LEVEL IN DH 
~5 RN~=20•ALUG10(S~/tl,~64) 

C C AL , R El. AT! V E S I G N 1\ ~ E i< ERG Y PE o C 011 P 0 N [ N l If~ ~ fi 
RSE=1 O•ALOG1 0 (A: U 1, 0) 

I F ( r/ ll l IH> , H 6 , 1\ ;.: 

~~~ WRITE IZ,R?) NA,N~,AB,SDolok~L.EA,PA•RSE 
~\? F01ltlt,T (!4,JI,,F.; •. S,i?,S,lll,f'I.?,IIl,Ft!0.'••i1X,F5·?/) 

GO TO 500 
:l/1 IF (NB.Eil.1) \IR:TE (2oWfl 
1\9 fllRriAT (/) 

IJ R I 1' f; ( 2 • 9 0 ) li A , N b • A B , S D • L , ~ N L • f: A , E fl • P A , P n , 11 S F 
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') 0 F ll f\ r It, T ( T I. , I t, , F ;.; , .:> , F '( , $ 1 I 8 , F Y • ?. , I ll , I o , f' 1 4 • t, , F 1 4 • t, , I X , 
1'+',Ft,.,2/) 

VJO r,Orq I I;U[ 

W~llf: <2,91) 
91 FllHIIAT (I ***I<B,i*''*') 

SlOp 
FIID 



~ LJ [i R 0 I Ji !IJ t. H A fJ '" l f·'l t: l A ' N lll I. 4 I 2 b ) 
C :itH;RD:JT!lof R;;~DI.HI ,,t;rlt;;,AHS TUtl il I;Ot\~I.HIE~I VFCTnR> lA 
C /1 f!IJ l.ll \Jil'll NA ld·ifJ 1<11 COI!PlltH'IHS St:T ll 1;NIJO:ILY TO"" OR ~1 

p 0 1 il ,I '" 1 , il 
10 z!•(.l)•i:t;(J);;:O 

~0 1:S J:;;1 •NA 

IF (GO)A/H(\')~0.:>) 11,11,12 
11 z,\<J),-1 

r,O TO 15 
12 z,~c!)~•1 

1:; CONT!fJIIE 

If' (rJ 1\ ) 1 4 ' 1 g ' 1 " 
11. oo 11 J=1.tW 

IF (GO~>•iAF('{)•IJ,:>I 15,1!>,16 
15 l.~(J)=-1 

r;o TO 17 
16 7.1<())=~1 

17 corn P•UE 

13 RLllJRil 
E tJ D 

FlNJSII 

D 0 C Uti f.tJT PATA 
1 1 1 1 1 1 
1 

_, , -1 
_, 

1 , _, _, 
1 , 

1 ~1 -1 1 1 
_, 

1 1 1 1 -1 n1 
1 n1 , -1 

_, , 
1 1 -1 -1 -·1 _, 
1 -1 -1 1 _, 

1 
1 0 0,0:\U 1 , U3t 1(101)0 
2 0 o,ouo 0.~80 5(1(1() 

:; 0 o.ouo (),604 3000 
4 0 0,000 0 ·'·i''f (~)()(\ 

5 0 O,QIJII 0,1.,.~ ?.00(1 
6 0 0 • 0 \I() 0. /,1 4 1 ~()I 1 

7 0 0, ()UI) O,:SilO 10100 
8 0 0,000 0,364 1)00 

il 1 0. 21'1 0,1.137 11)()1!(1 
g 2 (),1,,5;-: 0. !.:Ill 'iVOO 
8 3 0. 401 1 0,1/•1. .;uoo 
8 r. 0,1,6?. 0,22/ 2~(lf) 

8 5 0,4/l' 0,<-10 2000 
8 6 o,soo 0,<'01 1 ~ 00 
13 7 0,519 0. 19 5 1 ~ 0 1) 

8 3 0,51,0 0,1illl 1 ~ 00 

**** 

1 1 
1 ·1 

-1 -1 
-1 , 
-1 _, 
~1 1 

1 1 
1 -1 



sYsrUI P1 
..... _ ... ,.._, ... ..,.,.. ... 

~~o OF Af.1P ';.to. tj s :l • NO ''f. Rf'LAT1VF. rJ o OF E i;R:;> ER f<.O:.( PRORI,ill L I TY I C M A '> rj ;: L cf.•.f,ff\,'C 

C~ANNELS SOT [! :\O!Sr. G R<.lU ~; NllJSl ! .• ~) t: TA sn,, SET A SE T !) :, (:, • E ~~ f __ •• G -~ 
(,\A) (NU) (AR) < S D i (L) (RI~ L) D I) .; ;; -'1 ) ( t B J ( ;' A J ( p 'i ) (~!;[:'l.J 

1 u o,noo 'I • il 3:. 10 !i .-! .. \1. 0 5 ~;o :).00:30 ~' • u n 

i! u 0,000 0,53 5 -:~1 0 .. · 
'·' Q 5 :i r) o.o0:~o ~c 0~ 

5 V 0' ('00 i_:,6i)l., 311 (l '·, 40 ?.8 0~00:51 1). no 

4 u 0,000 i e 4 7~,' 7. !) i) c:.sa 31 ,) '00.11 -0.Q5 

!> V 0,000 :' • 1..1 :.; 2 (, ~-, ., . 1 I) 30 o . o rJ:I o ;) • 1) 1) 

6 u o.ooo :~-~. r~1 h 1 j ·J ' ' ; 2 ~.~ 7 1)~00~~(1 ... :, . 3 5 

., () 0,000 : . • 3 8 ' 
, :, i} ti- j 7 31 J, o.<3v t,~ • ~.~ ·.) 

1$ u 0,(i(1() !j. 3 6 i~ 1 ) ,) n .. 00 :56 ,). OOJIJ ll. 0 0 

1l 1 0' 2'19 '··' . 2 8'·' 10111•: -~:: .01\ I. '• 6 :-.o ~1.oo::S1 1). )051) t t: . 31 

/j ~ 0.432 ~~ 5 \) c' -:).()9 1 17 30 o.ro,?9 l) • 0 0 50 + !J • 4? '· . ~ ,) ' 

8 ~ u' 4(11) " 24,' :; :.~ il .. -5. 55 l r. ?.7 .).or.:s1 ·-~1 ~0()51) ~ ~.: . 67 

ll 4 0. '·62 o.?.2·;.- 2 ~f)·_. -(~ 10 61 :~ 1 ~1.00.51 0 . :) 0 .; 1 +U~ 7') 

1l ;:, 0,4'(0 ~·-, ~ ?. 1 2 (i r} ·J -I. 78 48 30 1),00:~o O.UOJn + J. ll9 

li 6 0' ~; 0 0 ,, . 2 () -, 1 )n ""5 
'' 6 

56 ?.7 ' u. () t) ~(- fJ :l ~ 0030 ~ IJ • 89 f-' 
00 .. -

~ ( n .519 t:• 0 1?. I 1 J {_l ' .... 5~S1 .)7 3/, 0 '0 0 51 n • i)0.50 + 1 ,, . 
y 1_, I 

8 ll 0 ' 5,0 ,,. . I h:--:. 1 ) (1 - ., l~ 36 ~6 i) • 0030 0. on .so + 1 . (; I~ ,, 



Computer simulation program for System D4 

JOfl Ti!D4, Cr IWH15;.>,'. 
fDSf!t,FS 1 
tttFORTr~~~u , , w 
JOBCORE 3;:K 
[H) ',.1 ~,J (! 2 
:Hf N , 1 i'lliJ 

DOCIIII~Ni St)lJr:cE 
I. l fi R ~ H Y ( 1: D , S lJ B ', P! liJ ;n; A G F ) 
WO~K(EDtU~EREDS•ILE1l 
pfi0GRAri(TH~4) 

Al:~()RMAL FUNCTJ!IN~ 

CllliPAI.T 
INPUT 1 ~ CRO 
OI!TpiJT 2 " l.PO 
C01\PRr:SS INHGEH ANi> LOGICAl 
TI<ACE 0 
r: N D 

C COIIPU'fr,R PROi;Rr,•·l TtJ S!llliLATE SYSTF.II p/,. TWO OP.THIIGliNH CDM 
C SETS , or 8 CHANNEL~ ~ACH AR~ 1\Ui.T!PLrX~O , A~D nEI~CT~D 
C US I N ~ A S U fl-oP T PIU I i (l 0 E eT! UN f' R DC r; SS 

C SA,\rSRB = IJAT~!X Or C~ft,NN~I. CODU.'O!\DS- SET A, Sf"T R 
C 1,1\,Nll ~ Nll OF CHAN'itl.S- Sf:T Ar SUR 
C AB = lFVtl. Of THf > E 1 H CODI:I·.'OKO:; 
C 5 p = STAND 1\ R r; fJ (V I., T J. 0:1 0 f T H f. CH A~ NE 1. N 0 IS E C: Al-l i> L ;: V A~ Ut S 
C l = TOTAL NU. OF G.;UUPS T~A~SHlTlfD 
C lAtZB a GHANHEL ELcM~NT VALUfS TO hE MULTJPllXED - SET ArS[I R 
C. SA , S ll ~ l. I I~ E /, R S U ~1 0 I 'ET C 0 DEW 0 p 0 :; - S f: T A , S F:T !l 
C R = TRANStijTTEP SI~NAL VECTOR 
C ,\,f; = Pf:TtCHO EIJ!icNT VAI.lJES - SFT Ar SU ll 
C f\IJ L " RE I.~. T ! V F N 0 1 ; t I, r: V E l !IJ !) B 
C RSc" '\f.LAT!Vr S!G:i.l\1. t:NERGY IN [J!l 

C EA = TOTAL NO. OF (HkO~S • SET A 
C PA ~ fiVEiU<ciE ci~RllH P~iPAB!LPY I CHANIH!.- SEr,A 
C GOSRAF(Xl !NlTIAll~~s ~A~OOM NIJMRER GEN~AATUk 

C GOSAlF(A,B) H.N,G, WITH GAUS~IAN DJST. MEAN A ST.DEV, b 
C G05AAF(Yl R,N.G, WITH LJNJFORM PlST, RETWEEN 0 AN~ 1 

INTEGER SAAI8•8:•lA(8)•ZBI8ltSAI8).SBCBI•Af8),8\Rl•XIHl 
JNTE~E~ XA(~56,rllrXh(2~6r8),EA,EO.JN18l 

DlHENSION H(8),\kld),XRA(25hr8l,XRR(~56,~l 

Cf, L !. G 0 5 !lliF ( 1 , ,: ! 
Rf',\fJ (1",1(1) ((S,\.i\ll,J),.J:::1,1i),J:::1,[l) 

1 0 F ll E flAT ( 8 I 5) 



'11 FtltilltH (,h1111// 1•:>i\, 1 SYSTU11li,'/I,)X,'-~··~--··--' 1 /' 

1 1 ' AIH' G A IJ:; ~~ , N 0 CH R F I A T J V f. t; 0 n F F'>. S 
2 1 

1 I' •\ 0 il fd.i l L l r Y / CH;\ I! N El. HE I. A f ! V E ' I ' C H Ari N f: l. •, ~ET 
3 1 ' S L (j lW UPS ri il I \ r L • S t: TA S F TB S t r A 
I,, ' ~; E T fi S G . l I< E R G Y ' I 1 

( N A ) ( 1: f< l ( A 8 ! ( S D! 
5 , ' ( il I~ l) ~ n ( , A ! ( r: b ) 
61' ( I~Srlilll 1 I f) 

D 0 50 0 rifHi = 1 , 1 6 
~l/1!\ (1112l NA.hti•~fi,Sfl,L 

U r:Ofdli\T (2IOII.f'O.Utl0) 
r A , UP o 
nrc~o.o 

( pI,) '· p f\ ) 

186 

NU U • ' 

f:>iRuK 1 

B ,<U j I 

I 

C fOI(t\ATJON Oi AL.I. P•.iS;llll[ TRAN.i, Vf:CTOI<S XRACNNA,K),pB('lNB••·> 

1 3 

Ni!•\~?.••I'A 
NNfi"~**NI1 

DO .11 t1::;, , ?. 
IF Ul . E ll. 7 • A! ID . , ! r; • E q , I) > 
I F ( f1 • E Cl , 1 • 1\ N ll , I Y , [ 'l , 1 ) 
p (!~,F{(,1) 

1 r (I~. Ell,?.) 

I F ( 1·1 • Ell , 1 l 
n (l·l.fQ.2) 
DD 1 5 J::1 .il 
X<J)=O 

00 1) J:::1 dJO 
X(J)~X<Jl+?. 

NNOccNNA 
N N Q ... fl!< R 

NO=:. A 
Nl.l,l:l' 

IF (X(.Il-'t) 11,H>,1i, 
,,, x<.J>~-1 

'I 5 C iHI Tl N U E 

i 6 [)0 :; 0 J:;1,il 

R<J)~o.o 
I f' (X(J)) , l' 1 <,> ' 1 i:j 

1 ., I~ ( ,I ) "- sA;\ ( ,I I ,I ) 
r,o ,. 0 23 

1 ll R I J ) ;; + sA ,, ( .I I .I ) 
c;o TO 23 

1 'i no '~ 2 J=1,il 
I F (X(!)) ?ll.22.~1 

20 R(J)=R(J)•SAA(l,J) 
GO TC) 2G 

21 R(J)=R<J>~sAA(I ,JJ 
22 CtlliT!NUE 

2:3 I F (R(J)) ;>~.,25,(.(> 

?. '· 
n<.J)~-1 

GO TO a 
75 R\J)=O 

r,o TO n 
26 fll-1)=+1 

HO TO 31 
(i 0 TO :~ 1 



27 P (t.\-1) ;,11i'i\1,:Y 
2!l Xil (~I ,I) ;;X (J) 

X 1·: ·\ ( I~ I ,! ) = ~ ( ,I ) 
GO ·~o 30 

7.9 Xl·cK•J)~X(.I) 

X~fi(K,,I)o:ii(J) 

:10 C0'J'I')~IUE 

31 cowr I''''E 

C. T H E i' P 0 G RA 11 N 0 1-1 f~ I I .. S F tJ 1i L TR f\ I> ~ H I TT r n 5 I (; N A l G R 0 U ! 'S 
oo zoo rlN"1 1 L 
CAI,L i<ANDOri (PL~,NB•/.J\1lnl 

C rn;wAT!ON OF Tlif T;,ANSttiTTED S!Gi-<I<L R(,Jl 
DO S6 J;:118 
SA (,I) I Sfl (,1) "0 
IF CZA(J)l S2~3~olJ 

~ 2 5 :, ( ,J l "-. S A,\ (J , J ) 
r,11 ro sa 

33 sA<J>=•SAA(J,J) 
GO TO .l8 

.H DO :;? !~1 ,g 
If (ZA(J)) 3)13f•S6 

35 SA(JI=SA(Jl·~AA· l1JJ 
r,U TO 37 

36 SAIJI=SA(J)+~AA(lrJ) 
3 7 C 0 11 T PJll E 
38 IF (SA(J)) 39,4·)•41 
39 SI1(JI~"1 

r,o ·ro '•?. 
40 S•\CJ)=U 

GO TO 4?. 
1,1 SA(JI=+1 

42 !F (NRI 5h,~6,4j 
1,3 !f' (Zf\(J)i 44,,,~,,~ 

44 SD(Jl=-SAACJ,JI 
GO TO ~0 

45 SB(JI=•5AA(J,J) 
GO TO 50 

46 DO 49 J::1rb 

IF (l.H (I)) 1;1, '•'', 4H 
47 SB(JI=SR(Jl•SAAI!,J) 

GO TO 49 
4/\ Sil(JI=Sf\(Ji+SAA.IrJ) 
1,9 r.utnl tJUl 
5 o !'F < s n < J 1 1 ~ 1 , ~ ,; • ~ s 
J1 Sfi(.Jl,-1 

c;o ro s;. 
5?. SH<J)c:U 

GO ·ro s 4 
53 SiiC,Il=•1 

56 IF CsA<Jll 55,50o~6 

:;s Sll(,l)co~Sfl(.l) 

56 R(J)=SA(J)+5R(J)*AB 
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C r:,\L, TOBI. $1GIJAI. U<tRiiY 
no ~il J=1,!l 

'i 7 T SE" T SF"' ii l .J ) ~ H ( ·' J 

C ,\DD (i,\IJS:;If\tJ IJiliSE ll~ OTO. DfV. Sll 
1)0 :lH ,l:t1 ,g 

)(l R(,l):oH(,i)"'G05r,F: \\1.\),SD) 

C 1J E H C T l 0 t J 0 F TH E >L C U V 1: n 5 I G tJ ,\l_ R Cl ) + N 0 l S L 
no 61 J=1r1J,~ 
IF (H(.I)) 59.60 .. o0 

59 A(J)=-SAA(.I,Jl 
GD TO 01 

60 ACJ),~SAA(.I,J) 

61 C 0 IJ T! N IJf: 

IF (NA-81 6~r74.f~ 

62 JN(1l~1 

JiH?.l"2 
J IJ ( :; l ~ I, 
JN(/,)~h 
JN(:il~16 

J'H6h5?. 
JN(7),1i4 
JN<<ll~1?.R 

OPI\~11lUOO 

DO 71 I ;:1, NA+1 
1('<1 

DO 64 ,I :::1 , Nti 
IF (A(J)) 61,,6~.65 

6:5 K"K•JN(Jl 
64 corn JIJttt: 

oP.:o,o 
D065J=1,il 
X X "X R ,\ < K , J ) - R C J ; 

65 OP=OP•XX•XX 
!F (OP-OPA) 66,rJ,67 

r,r, nP,\:::or 
tl"l-1 

67 IF (!-1) {,0,6'1,111 

61\ A<I-1)::-,\(1"1) 
69 IF (!-'1) ?0 1 '11,1'1 
70 A·(i)=-A(ll 
71 COIJTJIJUE 

IF (11) 74 I? I+, 72 
72 AOI):-A(Hl 
73 CONT Ill liE 
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74 IF (fiG) o~,9~,1· 

7 5 ;\ r\ !1 :..: 1 I !\ !l 
pU /6 -1=1.11 

7(, Hii\J),(f\IJS(I{(,I) :·1 l•AA£< 

D'l ?9 J=1 dJn 
IF (RH(J)) 77,?.;,(/:i 

77 R(J)=-~A~(J 1 ,11 
GO TO 79 

7() P,(,I)~+SAA(J 1 J) 
'? 9 C IHH I IIIJ f. 

OP;\~1 ooou 
O<l ii? [::1,"B+1 
K~1 

QO 82 J:z1 ,IJO 
IF (11(J)) g~,IJ1,<S1 

ll 1 K = K + .I fJ C J ) 
,",? COIIT!!WE 

OP"O,O 
00 3.1 ,1::1,R 
xx~xRn IK, J J~RR c.~ 1 

il3 01',\lP+):·x· XX 
tF (OP•OPA) 84,M5,H5 

il4 OPA:-:OP 
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APPENDIX A3 

CIRCUIT DIAGRAM FOR THE l!ARD'.·IARE HODEL OF SYSTE!1 Di+ 

The following detailed circuit diagrams are shown for the hardware 

model described in Chapter 9. 
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A3-l 

A3-2 

A3-3 

A3-4 

A3-5 

A3-6 

A3-7 

A3-8 

A3-9 

A3-l0 

A3-ll 

Flow diaeram for the complete system 

Control logic 1<avcforms 

System control and random data generator 

Multiplexer 

Transmission channel 

Demultiplexer control 

Analogue to digital converter 

Input store 

Inverting unit 

Correlator and comparator 

Display logic 
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Description of inteerated circuits 

71100 

7402 

7404 

7408 

7413 

7430 

7432 

7472 
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7486 
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Quad 2 input NAND 

Quad 2 input NOR 
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Quad 2 input AND 

·Dual 4 input NAND schmitt 

Eieht input NAND 

Quad 2 input OR 

Gatcd MS flip flop 

Dual JK MS flip flop 

Dual D flip flop 

4 bit binary full adder 

4 bit comparator 

Quad 2 input EX OR 

Decade counter 

4 bit binary counter 

4 bit shift register Pl/PO 

Tristate bus driver 

Differential comparator 

Operational amplifier 
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