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SYNOPSIS

The continuing developments in aircraft electrical power
supply systems have been accompanied by a progressive narrowing
of the transient and the steady-state voltage regulation limits
within which the system must operate. The performance of a system
1s satisfactory only when it meets the conditions of the relevant
performance specification, for example MIL-G-21480A (AS), as laid
down by the aircraft manufacturer.

The most important of the specified requirements is the
transient performance when the load change represents a significant
percentage of the rating of the generator set. Most airborne
electronic equipment is sensitive to the large voltage and (possibly)
%requency changes which occur and which may result in damage to
semiconductor devices, dropout of relays, introduction of spurious
signals into computers and communication systems, etc. For these,
and many other reasons, it is important to be able to predict accu-
rately the maximum over and under voltages likely to be experienced
by the supply system. Such a process requires an accurate model to be
formulated for-the system and for a technique to be developed for the
efficient use of the model. The primary component of the power sys-
tem is the generator unit, and this thesis is conceirned with the
modelling in state-variable form of the 3-stage generator unit found
on board aircraft and the automatic voltage regulator with which it
is invariably fitted. While the work described relates generally to
a unit of about 40 KVA rating at 400 Hz, the methods of analysis
described are quite general and can immediately be applied to other
similar systems. Theoretical techniques for determining‘the ryb
- generator phase model parameters from the dqo and design parameters
are given in the thesis, to enable the system transient response to
be predicted before the system is actually built. By this means,
the manufacturer is able to consider whether his designs need modifi-
cations to meet the relevant performance specifications before the. .
system is actually buiit, which clearly represents a{qonsiderab]e'
saving in both finance and in time.



The modelling techniques presented in the tHesis could, if
des1red be extended to include the constant-speed drive of the
genera? un1t by again modelling this in a state-variable form to
give d1fferent1a1 equations that can be numerically integrated on
a digital computer in the same way as are the equations of the
electrical system.

The majority of loads applied to an aircraft generator are
passive and can normally be represented by an equivalent series
resistor and inductor. Many comparisons between the measured and
theoretical voltage transients experienced by a typical aircraft
generator for loads up to 1.5 p.u. are given in this thesis and it
is established convincingly that the model developed provides an
accurate prediction of the system performance.

An important active load fréquently.found on board an aircraft
is the induction motor; and a complete induction motor/synchronous
generator model was accordingly developed for the study of the
switching transients experienced when the stationary motor is applied
directly to the regulated generator. The generator model described i
includes the permanent magnet pilot exciter, with its rectified
output being controlled and fed to the main exciter field and enables
both the steady state and the transient performance o+ the overall
system to be predicted for many of the operating conditions experienced
by an actual aircraft system.
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LIST OF PRINCIPAL SYMBOLS #

o §

automatic voltage regulator

fundamental fkeqﬁeﬁcy compdnenE of current in
phase with voitage.(r.m.S)

fundamental frequency component of current in
quadrature with voltage (r.m.s)

airgap flux density (T)

peak value of airgap flux density (T)

ratio of the fundamental to the actual value of
field form at pole centre

normalised saturation polynomial obtained from
open-circuit characteristic

normalised saturation polynomials for use in

" phase model analysis

ratio of the amplitude of the fundamental airgap

flux density produced by the d-axis armature
current to that which would be produced with a
uniform airgap equal to the effective airgap
over the pole centre

as for Cd]’ but with the m.m.f. centred on the quad-
rature axis ‘

the ratio of average to the max imum value of field
form. (The field form is the wave of flux density
due to field only).

phase voltage (r.m.s)
1nsféntaneous d-axis voltage

open circuit d.c. output voltage of rectifier



Eq d.c. output voltage of rectifier on load

AEd effective d.c. voltdrop due to commutation reactance XC

Ef field winding voltage

E(N) new value of E

E(O) old value of E

f frequency

FdS m.m.f. due to armature current in the d-axis

Fqs m.m.f. due to armature current in the g-axis

. d(LVV)

Vv dt

c d(Lvu)

vu dt

I] JA]2 + B]2

Ip total direct axis current in the d-axis referred to

' the generator field current

Iy " neutral current

Ip exciter phése current {r.m.s)

i1, current in branch or winding v

K ratio of the 3rd-harmonic " to the fundamental

' component in the space distribution of armature m.m.f.

KaD . coefficient of coupling between tﬁe armature phase with
its axis lined in the d-axis and the d-axis damper win-
dings '

Kyr ' coefficient of coupling between the armature phase with .
'its axis 1ined in the d-axis and the field windings

KaQ ‘ ' coefffcient of couinng between the armature phase with

its axis lined in the g-axis and the q-axis damper windings
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vv
Loy
vu
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vi-

31n nb U.b
nb sin Cl.b

current gain of the rectifier equal to (d.c. output
current/r.m.s. value of fundamental frequency component)

open circuit gain of the exciter (Eae/Efe)

field winding breadth factor,
1TC-[

Th

coefficient of coupling between the field and the d-
axis damper windings
open circuit gain of the geqerator (Eag/Efg)

the voltage gain of the rectifier equal to (d.c.
output voltage/a.c. phase voltage (r.m.s)

armature phase winding factor

axial Tength of PMG magnet

_axiaT length of generator rotor

leakage inductance of armature phase winding

d- and g-axis armature phase self inductance coeffi-
cients of the generator respectively

the self inductance of induction motor stator and rotor
phase windings respectively

inductance of load connected to phase or winding v

self inductance of winding v (secant value)

*incremental self inductance of winding v

mutual inductance between v and u windings (secant
value)

“incremental mutual inductance between v and u windings

no. of phases

stator to rotor phase mutual inductance coefficient
of induction motor
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¢- and g-axis armature phase to phase mutual indué-
tance coefficients of the generator respective]y*

armature phase to d- and q-axis damper winding mutua1
inductance coefficients respectively

d-axis armature phase to field winding mutual induc-
tance coefficient

stator phase to phase mutual inductance of the induc-
tion motor

rotor phase to phase mutual inductance of the induc-
tion motor

no. of turns per phase
no. of damper bars
no. of turns per pole of field winding

no. of poles

d

dt
permanent magnet generator

resistance of phase winding

equivalent single damper bar resistance inc]ud{ng end
ring effect in the d- and g-axis respectively

resistance of d- and g-axis damper windingsreferred to
stator side

resistance of the.]Oad applied to the rectifier
reactance load factor (= X./Ry)

field winding resistance referred to stator side
field winding resistance

statdr phase'winding resistance of induction motor .
rotor phase wihding resistance of induction motor
resistance of wihding v

resistance of the load connected to ' winding v
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Laplace operator r
armature time constant

open circuit transient. time constant
short circuit transient tiﬁe constant
d- and g-axis damper winding time constants respectively
transient time constant on load

time constants of the a.v.r. feedback circuit

time constants of the a.v.r. voltage sensing circuit

time constants of the a.v.r. (state variable model)

forward voltage drop across rectifier

voltage of branch or winding v
phase (v} voltage

d- and q-axis armature reaction synchronous reactances

respectively

commutation reactance
d- and g-axis synchronous reactances respectively
d-axis transient reactance

d-axis self reactance of equivalent single circuit
damper winding '

d-axis leakage reactance of equivalent single circuit
damper winding

- self reactance of the field windiné referred to stator

side

leakage reactance of the field winding referred to

stator side

armature phase Teakage reactance

q-aiis leakage reactance of equiva]ent~sing]e circuit
damper winding '



Q> "aQ

*Lpd**Laq

Abed’Abeq

ix

q-axis self reactance of equivalent single circuit
damper winding

impedance qf branch or winding v

commutation angle

delay angle

power factor angle

flux per pole

small difference between two quantities (< 1072)

flux linkages in the d- and g-axis respectively

specific permeance of the airgap
armature phase leakage permeance

specific permeance for field leakage due to pole body
and tip

d- and g-axis equivalent single circuit damper winding'é

Teakage permeance

d- and g-axis equivalent single bar leakage permeance
including end ring effects

pole pitch

S.I. units are used throughout the thesis except in Chapter 9,

where formulae in imperial units are given.

formulae are an extension, are based on imperial units and also

because the manufacturers in the U.K. and U.S.A. still work in

imperial units.

This is because the
classical works by Kilgore 68 and Talaat 58 -, of which the derived



Subscript notation for Tensors:

[X.4] rectifier diode network tensor
[Xel exciter network tensor
[X-m] tensor for a connected network with varying topology

assuming all branches in conduction
[ % S tensor for a connected network with no change in topology
or for a network with varying topology at a particular

instance in time

f X #] primitive network tensor

[ X om] primitive jnduction motor tensor
[ X ps ] primitive a.c. supply tensor

[ ]t transpose of a tensor

Subcript notation for a branch or winding of network

e,k exciter

g generator
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CHAPTER 1
INTROBUCTION

1

The use of analogue computers for the solution of transient
problems in a.c. power systems has been a subject of interest
for ﬁény years_l‘B-. "The techniques developed have been found to
be generally adequate when the equations for the system can be
linearised, or where saturation in the generators can be represen-
ted approximately by the open-circuit characteristic of these
machines. However, one significant limitation which often arises
is the extent to which the various saturation and non-linear func-
tions of the automatic voltage regulator and the exciter-rectifier
system can be simulated.

This limitation has largely been overcome by the use of
digital computing facilities, as this enables the solution of the
overall equations to be obtained at each small step by computing
the values of the non-linear functions. The Jdigital computer ena-
bles very much more accurate predictions of the response of non- _
linear systems to be obtained than is possible by the-use of analogue
computers, asAthe latter reiies heavily on the extent to which non-
Tinear functions can be simulated using electronic hardware. The
digital computer can therefore be u-od to predict the performance
of a regulated generator by solving the differential equations using
a numerical integration method and computing the values of non-
linear functions at each time step. |

.Recent developments in the application of the coupled circuit
approach to the solution of synchronous machine transient prob1emé
has evoked considerable interest in the use of_numerica1 techniques
for the solution of the differential equations involved. Although
the basic form of these equations maybewritten down in terms of the
inductances and resistances of the machine windings, their solution
has constituted historically one of the major problems of machine
analysis. Considerable attention was paid to the problem by Park .
who by using the work of Blondel and of Doherty and Nickle
produced a transformation leading to the now familiar d-q statement
of the machine equations. Although modelling in this form enables



algebraic solutions to be obta1ned in many transient stud1es

the comparatively recent deve]opment of high-power, d1g1ta1
computing facilities has brought about a revival of intefest in
the numerical solution of the basic or phase mb@e1 form of the
equations as opposed to the algebraic development leading to the
d-q equations. As discussed in Chapter 2 of this thesis the use
of the basic equations eliminates the various simplifying assump-
tions introduced by the d-q model and, for exampie, enabies the
inclusion of the higher-order spatial harmonics of the inductances
inevitably present in a real machine. It also makes simpler the
simulation of certain unbalanced fault and load conditions, which
require considerable mathematical manipulation 9-12  in an alge-
braic solution developed from the d-q equations.

The effects of highér harmonics in the spatial variations on
the airgap m.m.f. and the permeance on the machine inductances are
included in the generator model, by the useof inductance variations’
measured on a typical aircraft generator. Nonlinearities in the
inductances due to saturation in the iron structures of . the machine
are measured, using the ballistic techniques described by Jones 13 .
Barton and Dunf1e]d14' and Snider and Smith®® . These nethods
enable the inductahces .of the armature and the field windinga of the
main generator to be readily measured, independent]y'of any short-
circuited damper windings and of eddy currents existing in various
parts of the iron structure.

The overall model developed in this thesis for the 3-stage '
generator and its associated automatic'voltage regulator is based on
individual models for the various elements comprising the generator-
unit, with these being produced piecemeal before assembly into an
overal] package. The equations are framed in such a way as to
facilitate consideration of the performance of the regulated gene-
rator in isolation, as is frequently found on board aircraft, and to
~deal with the impact conditions which arise when a stationary induc-

tion motor is switched directly to the generator.

16-1.
‘In the thesis the tensor methods of Kron 9 are used to

obtain the gverall differentia1.equations for both a bkush]ess~excir'



tation system and a synchronous—ggnerator/induction-motor_combination.
One reason for using Kron's techn?que 1s.that it enables ﬁhe equa-
tions for the inter-connected geé%rator unit to be obtainqd easily
from thg individual equations fof%he elements which comprfse it;

and in particular it copes efffcfent]} with the varying topology

of the connected network as the ﬁ%ttern of diode “conduction

changes. The overall unit model also includes a permanent magnet
generator, which is usually the first stage of the generating

unit.

A linearised form of tﬁe transfer function of the exciter-
rectifier-generator is developed in this thesis to show the effect
of parameter variations on the operation of the brushless excitation
system and the necessary conditions for optimising the power output
of the exciter-rectifier. ' |

Theoretical formulae are derived to enable the phase model
parameters to be calculated from design data and the corresponding
d-q parameters, so that the mathematical models derived can be used
to investigate the performance of the system at a design stage.

This would enable designs to be modified, if necessary, before the
generator unit and/or the automatic voltage regutator are bhuilt.
Areas of further research into the aircraft electrical power :ystem,
where the system models described in the thesis can be used are clso
discussed. -

Throughout the thesis, the mathematical models developed for
the power system are verified by considerable experimental work,
and the good agreement obtained between computed and experimental
results gives a high degree of confidence both in thé methods of

mathematical modelTing described and in the models developed.

The details of the 2130 3-stage generator unit used for the
work described in this thesis are given in Appendix (Al).



CHAPTER 2

PHASQ MODEL OF A SYNCHRONQUS GENERATOR

2.1 Introduction

The standard 3-stage power generating unit for modern airdraft
consists of the main generator, an exciter for supplying the field
currents for the main generator via a rotating 3-phase rectifier
bridge and a permanent magnet pilot exciter. This chapter deals
with the modelling of the main generator, which has a 3-phase arma-
ture winding on the stator and the field winding, together with the
damper windings, on the salient-pole rotor.

In order to determine both the transient and the steady state
performance of the generator, a mathematical model is developed in
the form of a set of simultaneous differential equations that fully
describe the generator behaviour. The form-these equations take
depends on the choice of the reference frame in which they are
written. The most commonly used is the dqo frame which has the
important advantage over other frames that it contains only invariant
coefficients. The use of this frame therefore results in a consi-
derable reduction in computing time over the phase model during the
numerical integration of the equations. However there are a number
of disadvanfages with this model which limit its use. These are:

1)  The simplifying assumptions that result in the time invariant
coefficients assume a sinusoidal flux density distribution in
the air-gap and neglect any hérmonics produced by the non-sinu-
soidal distribution of the windings of the actual machine and the
effects of the slots. '

2) It is necessary to use a symmetrical cbmponent transformatioh,
which increases considerably the computing time, when unbalanced
load conditions are considered.

3) A'major'assumptioh in the development of this model, which
is not true of the actual machine, is that the airgap permeance
of the salient pole rotor machine is sinusoidal. This results



in the 2nd-harmonic coefficients of the armature phase self-
inductance and the phase-to-pﬁ%se mutual inductance bei;g
equal. While this assumption ‘s reasonable at points under
the pole faces, it is dubious at points in the interpolar
space .of the machine.

To overcome the inherent disadvantages of the dgo reference
frame, the phase model is increasingly coming intc use. The main
disadvantage with this model is the need to assemble and to invert
a time varying inductance tensor at each stage of the numerical solu-
tion of the machine differential equations, although this problem is
now substantially overcome by the use ofa modern high-speed digital
computer. The phase model developed and described in this chapter
was used for the subsequent transient analysis of a generator, follo-
wing the application and rejection of load, as described in Chapter 5.
It is readily possible with this model to include the effects of
magnetic saturation on individual windings of the machine which results
in a more accurate transient prediction than is possible with the dqo
model, which generai1y assumes . the effect of saturation on the direct
axis armature reactance as given by the open circuit characteristic of
the generator.

2.2 The Phase Model of a Synchronous Generator

The modeliing of a synchronous generator in phase quantities
20-23 with the effects of
magnetic saturation in the generator and harmonics in the spatial

has been studied by a number of authors

variation of the inductances of the generator being included in the
‘work of Snider 23 |

(:A 3-phase synchronous generator, with stationary armature
windings and rotating field, d aﬁd q damper windings is represented
by the model shown in Figure 2.1.) The neutral point of the armature
phases is brought out to a terminal (N) as shown. If the load and the
phase inductances and resistances of the individual phéses are com- -
bined, the machine can be considered to be short-circuited and the
corresponding differential equations in tensor form are given in
- Figure 2.2. In short form, these are:



V] = [Z1(1]1 = (L1{pI] + [R][I] | . i

Since the 1nductances are time variant, the general form of equa-

rd

tion 2.1 is T
. i

V] = [L1[pI] + [R + 6][I] o 2.2

where

, 9[L] d(I4)

(6= g 1= 5 (. @ LR TeP IR 2.3

If the generator is driven at constant speed, %% = constant = w.
Therefore

[G] = ‘M‘ ‘h‘) 2.4

Equation 2.2 in state-variable form is

p1] = (1™ (V] - (R + 6] [1]] | 2.5

Equation 2.5 may be solved by a numerical integration method to give
a new machine current vector [I] at each time step.

The phase voltages are obtained from

Ven = Ry Ao+ Ly pip)
Yoy = - Ry g+ Ly piy) - 2.6
Von = 7 Ry T+ Ly pip)

* 1. 1is given by equation 2.21.

d §=0



The total neuiral current is given by : :

V%

iy =it 1y + ib 2.7

and
iN =j _+1 +1i_=20 2.8
Y

This constraint can be included in the differential equations of
Figure 2.2, by obtaining'a current transformation tensor [C] rela-
ting the 4-wire and 3-wire connections. Thus

[ir iy ib 1F iD iQ]t = [C][ir iy iF 1D 'iQ]t 2.9(a)
where
[C] = (1 0 0 0 0
0 1 0 0 -0
-1 -1 0 0 0 2.9(b)
0 0 1 0 0
0 0 1 0
0 0 0 0 1

- .2 . .
Using the impedance transformation 3 , the impedance for a 3-wire
connection is

121 = (€1 [211C] o 20

This gives the operational differential equations in tensor form for the
3-wire connection, as illustrated in Figure 2.3.



2.3 Generator Inductance Coefficients

The inductance coefficients forming the [L] and [G] tensors in
equations 2.2 and 2.3 are in general dependenf on rotor position,
and they have to be calculated at each step .of the numerical inte-
gration of the equations. It is assumed in the development of the
model that there is saturation in the direct axis, dependent on the
total direct axis magnetisation m.m.f, and no saturation in the
quadrature axis due to the large airgap or interpolar spaces.

The inductances are therefore defined in terms of their direct and
quadrature axis components, with the direct axis alone affected by
the saturation,

2.3.1 Self Inductances

a) . The self inductance of the r phase of the generator armature,
. 23
L

is
rr

K . K .
Loy = Lp (cos 6, + x cos 38.)2 + Lg (sin o, - 3 sin 38.)% 2.11

and the self inddctances of the y and b phases Lyy and Lyp are
2n

. . . . 4
obtained by substituting o, ( ='o. - =) and 6y (=8 - ﬁ;)
respectively in equation 2.11,

b} The self inductance of the field winding LFF is angle independent.
¢) The self inductances of the d and q axes damper windings LDD and

LQQ respectively are angle independent.

2.3.2 Mutual inductances

a) The mutual inductance between the r and y phases of the armature -
is |

- K , K
Lry-” MD (cos,er + 5 cos 39r)(cos By + 3 cos 3ay)

- & sin ) 2.12

: K. .
+ MQ,(S1n 8. - 3 sin 3er)(s1n ey



b)

d)

The mutual inductance between the r and 5 phases Lrb is obtained

by substituting 8y for ey in equation 2.12 and the mutual induc- w
tance between the y and b phases Lyb is obtained by substituting

ey for 0. and 8y for ey in equation 2.12.

The mutual inductance between the r phase of the armature and
the field winding is

- K
LrF = MF (cos er + 3 cos 38r) 2.13

and the mutual inductances between the y and b phases and the
field winding LyF and LbF are obtained by substituting ey and
By, respectively for 0. in equation 2.13.

The mutual inductance between the r phase of the armature and
the D-damper winding is

_ K
LrD = MDD (cos 8. + 3 COS 39r) 2.14

and the mutual inductances between the y and b phases and the
D-damper winding are.obtained by substituting ey and eb respec-
tively for er in equation 2.14.

The mutual inductance between the r phase of the armature and
the Q-damper winding is

Leg = Mg (sin e, - ljr sin 30 ) . 2.15

~and the mutual inductances between the y and b phases and the

Q-damper winding are obtained by substituting ey and 6, respec-
tively for er in equation 2.15,

The mutual inductance between the field and the D-damper windings
Lep is angle independent. '
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2.3.3 Inductances Forming the [G] Tensor

The rotational inductance tensor [G] is given by equation 2.4.

It is found in practice that the term %%%lT . "HTQ_ is small com-

pared with w. agg] and can be neglected. = This results in a consi-

derable saving in computing time as the [L] and [G] tensors are

calculated at each time step during the numerical integration of the
differential equations. The rotational inductance Grr from er is

G =uw EEE[
rr Ber

- w[2 Ly (cos 8, +-§ cqs-Ser)(sin 8. + Ksin 3er)
. . K .
-2 LQ (sin 8, - 3 sin 3§r)(cos 8, - K cos 3er)] 2.16

The rotational. inductances ny.and be corresponding to Lyy and Lbb

are obtained by substituting ey and 8, respectively for 8, in equa-

tion 2.16.
The rotational inductance Gry from Lry s

. - _ . . . - -K- .
Gry‘- w [MD {(sin 8. + K sin 39r)(cos ey + 3 Cos 38y)

K .
+ (cos 8. + 3 COS 36r)(s1n qy-+‘K sin ?ey)}

. K .
- MQ {(cos 6 - K co§,3er)(s1n ey 3 sin 36y)

+(sin 6. < 3 sin 3er) (cos ey - K cos 36¥?}] _ 2.17

The rotational inductance Grb corresponding to Lrb is obtained by
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substituting ab for er in equation 2.17. The rotational inductance
Gyb corresponding to Lyb is obtained by substituting ey for 0. and
0, for ey in equation 2.17 respectively. : :

The rotational inductance GrF from LrF is

GrF = -y [MF (sin 6. + K sin 39r)] 2.18

and the rotational inductances GyF and GbF corresponding to LyF and
LbF are obtained by substituting ey and 8y respectively for 0. in
equation 2.18.

The rotational inductance GrD from LrD is

GrD = o [My (sin 8. + K sin 3er)] 2.19

and the rotational inductances GyD and GbD corresponding to LyD
and LbD are obtained by substituting ey and O respectively for

8. in equation 2.19.

The rotational inductance Gr from LrQ is

Q

GrQ = -w [MQQ (cos 6. - K cos 3er)] : 2.20

and the rotational inductances GyQ and GbQ corresponding to LyQ
and LbQ are obtained by substituting'ey and 8y, respectively for
6. in equation 2.20.

2.4 Effect of Magnetic Saturation on [L] and [G] Tensors

As already stated, saturation effects in the direct axis onTy
are considered, and saturation in the direct axis is regarded as
due to the resultant m.m.f. along this axis. Since the saturation
characteristic of a generator is usually given in terms of its exci-
tation, the effective direct axjs current is calculated
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with reference to the field current as

N N
s D . p . - .
Id = ip + ﬂ;-. g+ - (1r cose,, + 1yC059y + 1bcosab) 2.21

N
where (_Q) is the effective D-axis damper/field turns ratio and
F
N
(NE) is the effective armature phase/field turns ratio. The effec-
F
tive turns ratios are determined experimentally as discussed in

reference 24,

The direct-axis inductances coefficient are

L
Ly = ——MEE—-Z 2.22 from equation 2.11
K
(1 +3)
Br—
L
MD = Y ' 2.23 from equation 2.12
1. K K
("2"" '3‘)“ +:_3') o -
: =
L r _
Me = —T— 2.24 from equation 2.13
(1+3) 6, =0
r
. LPD _ ' :
My = ——— 2.25 from equation 2.14
DD K
(1 +3)
_er;o

The quadrature axis inductance coefficients are

L ,
LQ =T 2.26 from - equation 2.11
K :

(143
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Hy = ry 2.27 from eguation 2.11
(- 3+ 501+ 5
3 g = 7/2
r
Lg
MQQ = et 2.28 from equation 2.15
(1 +%) 8 = m/2
r - m/

where K is the ratio of the 3rd harmonic component to the fundamental
component in the space distribution of armature mmf.

A Fourier Analysis of the spatial variation of the unsaturated

values of r phase self inductance was used to obtain the numerical value of

% . The variation of inductance expressed as a function of I, for

different level of saturation were obtained from measurements given in
Figures 2.5 to 2.9. The diract axis inductance coefficients as a func-
tion of Id are:

L. =3.90x 10°%. ¢ H. 2.29

D rr

2 2

| B} : - -3
where Crr = 1.0 4+ 0.03276 x 10 Id_' 0.1793 x 10 Id

+ 0.05591 x 1070 1d3 +0.16575 x 107/ I

- 0.100198 x 1072 1d5 —

N - o o |
My = 3.76 x 107, €. H. o 2.30

where . = 1.0 - 0,307 %1073 I, - 0.09366 1073 12

- 0.38951 x 1077 1,3 + 0.102251 x 107 1}

10 12

d + ...

- 0.48634 x 10~
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e -3
Mg = 2.07 x 1077, C o H. 23

-1 2

where CrF = 1.0 + 0.051726 x 10 d

I, - 0.44545 x 1073 |

-4 .3

-7 .4
147 - 0.26889 x 107" 1

+ 0.056198 x 10

-10

+ 0.401556 x 10 + ...

3

LFF = 11.5 x 10 ~. CFF H. 2.32

-1 2 I 2

where CFF = 1.0 + 0.0430171 % 10 d

I4 - 0.040181 x 107

3 4

- 0.016353 x 1078 I,

+ 0.045945 x 1074 I

+0.01305 x 10710 1.5 . y
Due to the close proximity of the effective d-axis damper winding

to the field winding, it is found in practice that the following approxi-
mations can be used.

Y0 = G- Cop T G Cpp = Cpp 2.33
Therefore
o -4 L -4

Mop = 141 x 1074 ¢ = 141 x 1074 ¢ H. - 2.34

Lo = 1.07 x 1074, ¢ = 1.07 x 10°%. ¢ H 2.35
op =1 - Cpp = 1. - Cpp H. :

. l A : . . .

Ly =©.710 x 1073 Con = 1710 x 1073, o H. © 2.3
pp = O /=1 + Cpp B - :
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To include the saturation characteristics in the computer
program, polyromial equations which give a good fit to.the
measured results were obtained. It was found that a 5th order poly-
nomial curve fit was within 2% error of the measured results and
hence was regarded -as describing the meésured saturation characteristic.

.The effect of saturation on the [G] tensor is to introduce
" d(1g) afL) .
additional terms of the form % (?KTE))' [t was found by com-
parison of the predicted voltage transients for application and
rejection of load that neglecting these additional terms does not
significantly affect the results. The quadrature-axis coefficients
of inductances were found to be

. Ly =2.30 1074 H. 2.37
My = 2.12 x 1074 H. 2.38
M..= 2.45 x 10°% H. - 2.39
Qo ~ :
L.=3.25 x 1074 H. 2.40
aq” 3-25 % | |

2.5 Determination of Phase Model Parameters of the 2130 Generator

Some of the parameters of the model can be directly determined
from measurements at the terminals of the generator.

These are:

a) The resistances of the armature phase and field windings.
b) The self inductances of the armature phase and field windings..
¢} The phase to phase and phase to field mutuat inductances.

The parameters that have to be measured by indirect methods such
as an a.c. test are:

a) The effective self inductances of the d- and g-axis damper
windings. | '

T
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b) The effective mutual inductance between the phase winding and
the d-axis damper winding {and the q-axis damper winding).

c) The effective mutual inductance between the field and the
d-axis damper winding.

d) The effective resistances of the damper windings.

2.5.1T Measurement of Resistances

A Kg[xin bridge was used to measure the armature phase resis-
tances and the field winding. The ambient temperature during the
measurements was 259C,

The mean of the three phase resistances was measured as 0.0323q
and the field resistance as 0.129q. Since the effect of 400 Hz
currents is to increase the effective phase resistance to approximaté]y
twice the d.c. value 25 , the armature phase resistance was assumed
to be 0.0646qa for caiculation purposes.

2.5.2 Measurement of Self-Inductance of the Gener~tor Phase
Winding

.a} The angular variation of the self inductance of the armature
phases were measured using the bridge circuit described in
Appendix A2, For these measu;;ménES, nqﬂpigsngrrent_wag_gpp1ied_
EEuthe field winding, so that a measurement of the secant induc-
tances was obtained. It is necessary in this test for the
'armature‘cur}ent to be such as to give an inductance value corres-
ponding to the linear region of the B/H curve. If too high a value
is used, the measured inductances will include the effects of satu-._
ration. The angular variation of the self inductance of phases r,
y-and b is shown jﬁ Figure 2.4,

b)  The incremental inductance of the r phase winding (L}r) when situa-
ted along and in the d axis was measured for different bias field
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currents from 0 to 120A by reversing the:armature phase current

using the bridge circuit described in Appendix A2. The resylts

obtained are shown in Figure 2.5. The secant value of the self

inductance corresponding to a given field current was calculated
from -

I .
= .
Ly = T, of Lo, d Ig .2.41

as discussed in Appendix A2. The variations in er the secant
“inductance for the same range of the field current are also
shown in Figure 2.5.

2.5.3 Measurement of the Self-Inductance of the Field Winding

The secant self-inductance of the field winding were measured
for different values of field current from 0 to 120A. to give the
results shown in Figure 2.6. There was found to be no discernible
effect due to variation in permeance caused by the armature slots as |
the angular position had no effect on the measured value of the induc-
tance.

2.5. 4 Measurement of Phase-to-Phase Mutual Inductance

a) The angular variation of the r-phase to y-phase secant mutual
inductance was measured using the bridge circuit of Appendix a4,
The results obtained are showh in Figure 2.7.

b)  The incremental mutual inductance between the r and ¥ phases
was measured with the phase r along the d axis, for different
bias field currents from 0 to 120A. The results are as shown
in Figure 2.8,.together with the secant values of the induc-
tance calculated from

If_

oy |
Lry--I—]: oj Ly dlg | 2.42



2.5.5 Measurenent of Armature Phage to Fje]d Mutual Induc-
tance - A

a) The angular variation of the field to armature y-phase mutual
inductance was measured using the method described in Appendix
A3 Tor different electrical angles 6.. The procedure was
repeated for y and b phases and the results obtained are shown
in Figure 2.9.

b} With the r;phase of the armature lying along the d-axis, the
r-phase armature to the field mutual inductance was measured
for reversal cf the field current of up to 120A. The resuits
obtained are shown in Figure 2.10.

2.5.6 A.C. Measurement of Generator Parameters

Prescott and El1-Kharashi have shown26 that the effective
damper parameters of a generator may be obtained indirectly by
measuring the transient and subtransient inductances, Lgand L in
the d-axis and Lé and La in the g-axis, using a ballistic or flux-
meter method. This method does not however give the damper circuit
time constants or the effective damper circuit resistances.

It is possible using the a.c. tests described by Snider and
Smith-zg’ to obtain the full parameters for use in the phase model
analysis. This method forms the basis of tests performed on the
2130 generator*, Figure 2.11 shows two coupled coils with resistances .
of Rl; RZ’ self-inductances of L1], L22 and a mutual inductance of M12.
If coil 2 is short-circuited and the effective resistance and induc-
tance of the-circuit are measured at the terminals of coil 1, the

effective resistance Re and inductance Le of coil 2 are respectively:

2 2 .
e =M R _
©ORE Hully - 2.43

* Details of the 2130 generator are given in Appehdix Al
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and
-2 M2 L
L, = ——1E % : 2.44
R2 + w L22
L L -
.. 22 e
giving (=) = - 2.45
RZ Re
R.{R?Z +w? Ly )
and M., =‘//e 2 22 2.46
2R
w- R
If R1e and L]e are respectively the resistance and inductance

measured at the input to coil 1 (with coil 2 short circuited)
as shown in Figure 2.12

R = R = R-I 2.47

2.48

a) Measurement of Armature Phase to D-Axis Damper Winding Parameters

An armature phase of the generator was aligned with the d-axis
and excited from a variab]e-frequéncy'voltage source as shown in.
Figure 2.13. The input voltage,. -current and power were measured for
frequencies from 50 Hz to 600 Hz to determine the variation in the
damper parameters with frequency. In terms of the armature phase
winding and the d-axis damper circuit, equations 2.45 and 2.46 become

respectively
bop Le \
.~ "R 49
DD e .
| R (RL +of LL). |
MDD =\/e QD pb” . | "2 50
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which gives

M2 R Lnp 2
ﬁQE =84 R, (ﬁgg) 2.51
D w? DD
and
2
oMy Moo, Rop
KaD = = e (ﬁ——q.(t-) 2.52
Ly V4, BD DD

where La is the self-inductance of the armature phEse in the d-axis.
The variation of the d-axis damper time constant (ﬁggj as a function
of frgquency is shown in Figure 2.14 together with the variations

in (ﬁ%%) and the coupling coefficient KaD between the armature phase

and the d-damper circuit. It is found from measurements of Figure

M3 7 7

2.14 that (-QE) decreases from 8 x 107" to 5.5 x 10” " as the fre-

R
quency rises from'50 Hz to 600 Hz. The results of Figure 2.14 also

make clear the frequency dependence of the damper winding time con-
L

stant (ﬁgg). The coefficient of coupling between the windings KaD
DD .

however remains constant. It is evident from the results that if the in-

ductances are considered - 10 be constant over this frequency range,

the change in the damper winding time constant (R%g) is due to the

change in RDD with frequency.

b)  Measurement of Armature Phase to Q-Axis'Damper Winding Parameters’

An armature phase of the generator was aligned with the g-axis
and the test repeated as for the d-axis damper windings. In terms of -
the armature phase winding and the g-axis damper- circuit, equations
2.45 and 2.46 become,

L L - A
RQ_Q=_R_E-- . - - 2.53
Q- e - '
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R (RZ + w? L2 ) .
and Myq = / QS Q 2.54
© Wty
giving
M .2 R L
ﬁg‘ =L R, (ﬁgg)z 2.55
QQ w? QQ
and
MZ
- .1 /oy 00) 2.56

K - (
Q" T R L

where La is the self-inductance of the armature phase in the g-axis.
It was not possible to measure the g-axis damper parameters accu-
rately at frequencies less than 300 Hz due to the small excitation
voltage {less than 1 V) requthd to C1rcu1ate 10 A in the phase
winding. The variation of ( ), and | gg) as a function of

frequency are shown 1n F1gure 2 15. It is seen from the measurements
QQ)

R
QQ
300 Hz to 600 Hz, while the coefficient of coupling between the arma-

ture phase and the g-axis damper winding remains constant. If it is
assumed that the inductance of the damperwinding does not change with
frequency, the results confirm the dependence of the damper winding
resistance on frequency

that both (RQQ) and ( decrease as the f.equency is increased from
Q

It is clear from consideration of Figures 2.14 and 2.15 that the
coupling coefficient between the armature phase and the equivalent
q-axis damper winding is greater than that between the armature.
and the equivalent d-axis damper winding. The g-axis damper winding
time constant (at 400 Hz) is nearly three times that of d-axis

damper winding time constant. The reasons for this are discussed
in reference 27,.
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c). Measurement of Field wgnding to D-Axis Damper Winding Para-
meters .

The parameters of the field to d-axis damper winding were
measured using the same basic arrangement as used for the armature
phése to d-axis damper winding. However, for this test instead of
varying the frequency, the field current was vafied, to obtain the
dependence of the results of a.c. measurement on the magnitude of
the exciting current, as shown in Figure 2.16.

2.6 Design Parameters of 2130 3-Stage Generator Unit

The design parameters of 2130 generator unit, supplied by the
manufacturers, are given in Appendix-Al. Appendix Al also includes
photographs showing the construction of the 2130 generator unit and
the unit when connected to the constant-speed drive for the transient
load studies discussed in Chapter 5. The dgo design parameters can
be used to calculate the phase model parameters as discussed in
Chapter 9.

2.7 Predictions of Saturated 3*eady-State Inductances of 2130 Main
Generator Using Finite-Elemeint Field Solutions

As a part of co]laborative programmes on the modelling of aircraft
generating systems, G.E.C. (Stafford) have developed a finite element
numerical method of pkedicting the saturated steady-state inductances
of the main generator. The basic approach to the prediction of the
inductances consists of first evaluating the f]uk distribution in
the machine, taking into account the geométry and the magnetic satu-
ration of the iron structure forming the rotor and stator of the
‘generator. The inductances are then obtained from the flux Tinking
the appropriate windings 28'30-.
inductances L ., L . L,  and those predicted by ‘the finite method
are given in Figures 2.5, 2.6 and 2.10respectively. The results

show that the finite element predictions are close to the measured

Comparison between the measured

results, with the small differences being attributable to uncertain-
ties over the airdap used for predictions and the actual airgaﬁ of
the machineé. The airgap used for predictions was 0.030 inches while
the measured airgap was 0.035 inches. '
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52.8 Conclusion

The phase model of the synchronous generator has become
‘widely used in recent year‘szo‘23 with the availability of fast
digital computing facilities. Methods of measuring the phase model
parameters are discussed in this chapter, with reference to the
2130 main generator. The measured parameters are used in Chapter

5 to predict the load switching transients experienced by the
actual machine,
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Figure 2.1 3-PHASE GENERATOR ON LOAD (4-WIRE CONNECTION)




'(Rr+er). _ery erb erF erD erQ
(Ry+pLy) Plyb Plyr Plyp PLyq
(Ry*pLy,) Plpr Plyp Plpg
| (Rrr +PLleg) [ Plpp 0
Symmetrical
about leading diagonal
) . (Rpp +pLDD 0
where Ly =t o+ Lo r =R TRy ’
L = L L » = R + R
y yy yL Y yy yL
Ly = Lo+ LpLe b = Rop + Rl
FIGURE 2.2 4-Wire Load Connection

Tensor Equations for

G
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R +R + R, + pL ) A _—_—
Fob b Pl = bpe) | Plbyg = Lyp) | PlLyg = byg)
p(L. + L -2L) | -P(Ly +.Lyb + Lry)
R +R
b : . p(LyF = LbF) p(LyD - LbD) p(LyQ = LbQ)
) +p(Ly + Lb - ZLyb)
‘Symmetrical about | R~ + pL pL 0
leading diagonal FF i FD
RDD + pLDD 0
Raa * Phoo

FIGURE 2.3 Tensor Equations for 3-Wire Load Connection
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Figure 2,12 TWO MAGNETICALLY CQUPLED CIRCUITS
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CHAPTER 3

MODELLING OF A BRUSHLESS EXCITATION SYSTEM
ON A DIGITAL COMPUTER

The term brushless excitation is applied to a synchronous
machine excitation system in which the rectifier diodes rotating
on the shaft replace the commutator of the classical d.c.
excitation system. Since this system dispenses with brushes
or rubbing contacts of any kind and results in practically main-
tenance free operation, it is universally adopted on the genera-.
tor units on modern aircraft. The brushless excitation system
has come into being since the sixties 31’34 » with the develop-
ment of simple, robust, efficient and highly reliable semicon-
ductor rectifiers (diodes or thyristors). Since the semiconduc-
tor rectifier is the heart of the brushless excitation system,
it is very important to be able to predict the diode current
and reverse voltages, both during normal Toading and under recti-
fier or generator fault conditions. The faults which have the
most detrimental effects are a short circuit at the main genera-
tor terminals and'asynchrohous running off the infinite bus,
which could be due to a fault in the rectifier systém. When ‘
the generator is running asynchronously'Bq'B? at slip frequency,
a voltage is induced in the field winding and although the corres-
ponding current can flow fhrough the bridge diodes without hin- -
drance during‘the positive half wave, the negative half wave is
blocked and the induced voltage appears at the rectifier termi-
nals.

During a short circuit at the terminals of the main generator
.the field current has superimposed on it a d.c. component, which
decays with the transient time constant Té, and the generator
frequency component which decays with the armature time constant
T.. For normal aircraft generators, Té > Ta, and the field current

a
remains positive throughout the transient period. It is important
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to consider the rectifier current during short circuit, to ensure
proper selection of the rectifier current rating. The other

feature of the rectifier duty is the voltage peaks which are .
superposed on the actual blocking voltage, and which occur at

the end of each commutation period due to a sudden collapse

of the current resulting from the decay of the charges in the
siticon junction. The magnitude of the voltage peaks depend on

the Toad, the characteristics of the rectifier, and the induc-

tance of the circuit and they are effectively damped out by the

use of capacitors 3 in any practical system. The model of the
brushless excitation system described here is based on considering
the rectifier as an ideal switch (discussed in Section 3.1).

The capacitors which are normally connected across the rectifier
diodes are neglected in the model so as to minimise the number

of state variables, and hence reduce the computing time which

would otherwise become excessive. The model of the brushless
excitation system developed, using tensor methods, is shown to be
able to predict all the characteristics of the system. This method
of modelling the system on the digital computer has many advantages
over the analytical methods described in recent papers by Frank11h38
where he considers the analysis of a generator with a bridge recti-
fier output. This type of analytical method results in very cum-
befsome expressions for the operation of the synchronous generator,
since the rectifier load will have three separate modes of operation.
Section 3.1 describes the tensor method for the analysis of elec-
trica] circuits which is extended to model the complete brushless
excitation system in Sections 3.2 to 3.5. ' '

3.1 Tensor Method of Analysis of Electrical Circuits

Kron's method of analysing electrical networks using a Matrix-
Tensor approach are well known ;6'19 [t is known 39 that the
use of this approach reduces the time required for éblving complicated
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networks,_as a digital computer can be easily programmed to assemble
and to solve automatically the networkgéquations. This feature-is
of particular importance when the network connections are changing
(varying topology), for example when it includes thyristors or
diodes. - Under these situations, .the classical method of solving
the network by obtaining differential equations for each diff-_ _
erent state or topology may lead to a large number of d1fferen-
tial equat1ons 1041 which would be cumbersome to handle with
any errors in programming difficult to isolate. Kron's method
provides a logical approach for solving such problems on a digital
computer, and as it handles logically any changes in topology and
produces the relevant differential equations at each stage of the
solution, also readily handle abnormal load or fault conditions.
The differential equations at each stage of the solution can be
solved by the numerical integration techniques given in Appendix
(A6).

The following steps are required for setting up the equations
of an electrical network.

1. Estab]ish the primitive mesh network and the parameters

(i.e. I, Z, V), belonging to each branch.

a) If a branch consists of an impressed voltage only, it is

' rgpresented as a branch with zero impedance.

b) If a branch consists of an impedance only, it is repre-

~sented as a branch with zero voltage

;) The impedance tensor [Zp] of the primitive network is
found. This contains a number of both rows and columns -
equal to the number of branches 6f the network, with the
main diagonal elements being self-impedance terms and the
off diagonal elements mutual impedance terms.

d} The impressed voltage tensor has as many e]ements as there
are branches in the network. , :

e) The currents Ip fiowing in the branches are the variables
with the [Ip] tensor having as many elements as there are
branches in the network.
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2. Form a transformation tensor [C] relating the primitive negwork ,

to the actual network. i

a) Assume In independent currents for the actual network?
This number will be given by (B+1) - N, ,

where B is the number of branches and N the number of;nodes
A
of the network.

b) The transformation tensor [C] is obtained by writing the
branch currents Ip in terms of I

(1) = (€101, 3.1

3. The voltage tensor for the actual network is
Vol .= [C1y- DVl 3.2
where [C]t is the transpose of [C].
4, The impedance tensor for the actual network is
[Zn] = [C]t . [Zp]_. [C] _ 3.3
5. The voitage equation of the actual network is

'[v;ll'_= [z, .. (1,1 _ 3.4

This gives [I ] = [21]T] . [V;] which is solved to obtain [I,]
The branch current [Ip] can be obtained by using equation 3.1.

The ,differential equations'describing the transients in a linear
electrical hetwork are of the form

-

(V] = [LI[PI MR 1L 1 + (L 1(1 ] 3.5
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A solution for the independent currents In as a function of time is
obtained by denoting [p[n] by [Gn] and arranging .the equation 3.5

in the form
PI ] = (17" €1v,] - (R T + [6,].) (1,3 3.6

Equation 3.6 is suitable for solution by a numerical integration
method.” The value of In is obtained at a succession of time steps
t, t +H, t +2H etc. (where H is the time step length), with the
corresponding branch currents being calculated using equation 3.1.

In electrical networks of changing topology, it is necessary

to obtain the transformation tensor [C]'at each step in time., The
'steps describing the setting up of the [Zp], [Ip], [Vp] tensors are
as above, except that instead of obtaining [C] directly as described
above, a transformation tensor [C]] is obtained relating the primi-
tive network currents [Ip] to {In] where [In} are the independent
currents of the actual network when all the thyristors and or

diodes are conducting. Depending on the state of the system (voltage
across the diodes/thyristors, current through the diodes/thyristors,
the presence or absence of thyristors trigger pulses), a transfor-
mation tensor [C,] is defined relating the independent currents (1]
to the actual currents that are permitted to flow in the network.

If we denote the permissible currents by [Im]

(1] = [C,]. [1] - | R
Therefore
LY =[G 11T = (6141650 [T, = [C].(T,] 3.8




44

where [C] = [Cy].1Cy] . 3.9

[Zp] = [Cly- [Z51-0€) 3.10
or

(Z,] = [Coly- [Z,]-1C,] 3.11

[Vl = [C14-[V)) 3.12
or

V.3 = (Cply-[Vy] o33
and

(PI) = (L7 (V] - (R ] + [6.1}-[1 1) 3.14

Cquation 3.14 is solved by a numerical integration method to obtain
[Im].[In] and hence [Ip] are obtained using equations 3.7 and 3.8
respectively.

Instead of starting with branches forming a primitive network,
it is possible to start with Vol [Zn], [1,] as describing the
primitive network for an electrical network with diodes and/or
thyristors as branches. The following exahp]e illustrates the
establishment of the equations of a network. -A1though a simple
circuit is used, the approach is howevér of universal application.
The advantages become apparent for medium and large networks, for
example an exciter-rectifier-generator system,

‘If the network of Figure 3.1(a) is considered, the primitive
mesh network is found by inspection as given in Figure 3.1(b). The
primitive voltage, -impedance and current tensors are:



el =

If the independent currents of the network are chosen as In1’ Inzr

3.15(a)

(%) =

45

olofojo
0 |z, [z,5] 0
0 |Z,,l2, | 0
0fo0]o |z

In3 as shown in Figure 3.1(c), the transformation tensor [C] is
obtained, using equation 3.1, as

. “ &

3= "1 1|
11 | o | o

fo 11 o

v 1 0 0 1

The voltage, current and impedance tensors are

SR [f:}t'[vp]'s v+,
V) -V,
Y
[Z,] = [C1 [Z,] (€] = | Z, Zys 0
13, | 24 0
0 Z,

3.16

and the independent currents In'are found by solving equation 3.4.

3.15(c}
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The branch currents Ip are obtained by using equation 3.1. If the

network is now considered with a switch (S) in branch 2 as shown in
Figure 3.2(a), then, with S closed, the equations above still apply
and [C]] is given by

[C;] = 1 1 1 3.18
1 0 0
0 1 0
0 0 1

With S open, the transformation matrix'[cz] relating the currents In
to the new independent currents I, is

(1.1 = [€111] _ 3.20(a)
where [CR] = .0 o-f 3.20(b)
1 0
o | 1

The voltage and impedance tenSOFS'for the new network given in Figure
3.2(a) are ' ‘

V'] = (€] [V] = {Vy = Vg _ 3.2
7
AR CARICANCARSIAI T 3.22
0 -24

. . i . a—
Pt
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If instead of S, a diode D is in branch 2, as shown in Figure 3.2(b),
the qheration of D can be consjdered as a switch which automatically
opens_or closes dependent on the state of the circuit. The diode
switches ON (equivalent to S closed) if the voltage across it VD
exceeds the forward volt drop VFD characteristic of the diode.

The diode switches OFF as soon as the diode current drops to zero.
(The reverse current which flows for a short time to redistribute
the charges in the diode and brings it back to the blocking state

is neglected in the analysis). The computer can be programmed to
check the diode current or reverse voltage at each step of calcu-
lation and to determine the point of discontinuity. It can also

be programmed to produce the transformation tensor for the next

step of calculation.” When the diode is OFF, the voltage across it -
can be computed by summing the voltages around the network given in
'Figure 3.7(c) in which all the diodes are conducting. Willian|42
has shown that, by choosing the diode currents as the independent
currents of the network, the voltages across the diode in the OFF
state cah be easily obtained from

[Vl = [V] - [£,1.11,] | 3.23

If the independent current (17> I,o etc) do not flow in the diode
the corresponding voltage in [V] is zero. If an independent current
does flow in the diode, the corresponding voltage in [V] is VFD for
the diode in the forward conductionor negative when the diode is not
conduﬁting. | A '

3.2 Thé Phase Model Analysis of 3 Brushless Excitation System for a
Synchronous Generator

The brushless exc1tat1on system used on the aircraft generator 2130
cons1sts of a 3-phase exciter feeding the main generator field winding
vig a 3-phase full wave rectifier, as shown in Figure 3.3." The exciter
output and hence the main generator output is controlled by the exciter
field current. A phase model analysis for the: exciter similar to that
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used for the main generator can be used. However, since the exciter does not
have damper cirguits, it can adequately be rebresented by a 4 x 4

tensor instead of a 6 x 6 tensor required for the generator. The

phase model can be further simplified by neglecting terms of the

order 3 and higher in the Fourier expressions for the self and

mutual inductances of the exciter windings. The resultant [Le] and [G,]
tensors for the exciter.are then as given by equations 3.28 and 3.29.
respectively. The performance of the exciter is defined by:

Vol = [L1-[PL] + [R1-{L] + (67 -{L] 3.24
where
1 = o ISR
0 I
3.25 b 3.26
0 I
VeE i

[R,] = | R o | o 0

aa

3.27
0 Rbb 0 0
0 0 RCC 0

"FFE

The primitive voltage, current and impedance tensors for the exciter-
rectifier-generator system of Figure 3.4 are given by equations 3.30,
3.31 and 3.33 respectively. - '




. [Le] =

Ay *+ A, cos 28 - B, + -B_ + C{“jcos (8)
B, cos (26-27/3)} B, cos (26-4m/3) )
: —_B0 + Ao + ' - Bo + Cl cos (8-2n/3)
'BZ cos (28 - 2n/3) A, cos (26-41/3) B, cos (26) ..
- BO + - BO + | AO + C] cos (8-41%]32 o
B, cos (26 - 41/3) B, cos 26 A, cos (26 -2u/3)
C, cos (8) -~ €, cos (e-21/3) Cy cos (8- 4n/3) L rre

3.28

bt



[Ge] =

2 Az sin (26)

2 B, sin (20- 2n/3)

- 2 B, sin (26- 4n/3)

2

- C, sin {8)

1

2 B, sin (28-2n/3)

- 2 A, sin (20- 4n/3)

2

2B, sin (26)

- C] sin (6~ 21/3)

2 B, sin (20- 4m/3)

2 B, sin (20)

-2 A2 sin {(26- 2u/3)

- ¢y sin (6~ 4m/3)

C1 sin (8)

C1 sin (8- 2n/3)

C, sin (8- 4m/3)

3.29

0s
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V) =

o|loljlo|lololojo|lol o
b

==

3.30 I 3.31

-
m
-
m

OiJO o (=] o o
—

where
[Vpl= [Zpl{Ip] . 3.32
The number of independent currents depend§ on the type of connection

of the ]oad,'with Figure 3.5 showing a 4-wire connection and Figure,
3.6 a 3-wire connection with the independent currents being as shown.
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3.2.1 E}citer-Rectifier—Generator Model with 4-wire Load
Connection )

The transformation tensor, [C,] for the 4-wire connection

is obtained by inspection of Figures 3.3 and 3.5 as

M

}) (€1 = 1
1
]
11 1]1
1
1
-1 -1
-1 -1
111 ] 1 3.34
1
1
1
1
1
1
L;] S1p-1 |- -1
The current tensor [In] for the ?-wire network is
(T = Uy 120 T30 Y40 50 T6n 70 Tan Ton Tion T1anly 3035
and the voltage and impedance tensors [Vn] and [Zn] are
V1=[00000V00000], N 3.36(a)
[z 1= [c]t.[zp].[c] | ©3.36(b)

‘respectively.
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To detgrmine[!n]by numerical integration, it is first .necessary to obtain

(L), [R1, [G,] where [G ] =-§% L1 = g% _ cg [L]. Thus

(L] = [Cq]y- IL)]-1Cy) 3.37(a)
R, = (€1, [Rpl. [c,1 3.37(b)
(6,1 = [Cq],- [Gb}. (€] 3.37(¢c)

The individual [L], [R] and [G] tensors for the loaded generator,

exciter and rectifier system are:

gl = | L Tley | ten { 5r | Lro | b
Lyr Ly Lyb LyF LyD LyQ
LofbotL e | La L
br | “by | "b bF | "bD | "bQ 3.38
Ler I Lry | Le | rr fbep | ©
Lor {toy | 'ob | Lor [ top | ©
L |
Lor fley flan | O | O | Lo
where Lr = er + LrL
L= + L
Y yy yL
Lb = Ly Ll
[Le] = Laa | Lab ac | Larr
Loa | Lob | toe | LoFe 3.39
-Lca ch Lcc LcFE
Lega| Lren| brec bFre




[Ld] = 0, since diode inductances are Zero.
[Rg] = | R, 0 0 0
0 Ry 0 0 0
0 0 0 0 0
0o | 0 e | 0| 0
0 0 0 RDD 0
0 0 0 0 Rog
where
Rr - Rrr * RrL
Ry = Ryy + RyL
R, = Rbb + RbL
[Rel = | Rya 0 0 0
0 Rbb 0 0
0 0 RCC 0
i 0 | Repg
[R4] = 0 (The primitive network assumes all diodes are
conducting). '
[GQ] B Grr Gry Grb GrF GrD rQ
G G
1 Sr | By | % | BF | S | B
Sor | Gy | Gp | GF | G0 | Bbo
Gep | Gy | Gy | O 0 0
6 | Coy | Gpb | O 0 0
n
[ Sor | Sqy | S| O O[O

55

3.40

3.41

3.42

3.43
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[Gé] = Gaa Gab Gac GaFE
Gba | Gpb | Spc | CpeE
Gca Gcb Gcc GcFE
Gepa | GFep | Sppe | O
[Gd]_ = 0
Therefore [L ] = [Cl]t [Lg] 0
0 [Le]
0 0
Rod'= €]y |Rg) | O
0 R,
0 0
0 [Geq
0 0

[C

[C

[c

]

1]

- 3.44

3.45

3.46

3.47

3.48

Even though the diode resistances and inductances are considered

zero, .the transformation tensor [C]] takes account of the conduction

paths of the diodes. Since the primitive tensors [Zp] ,[Lp], [Gp}
and [Rp] contain many null off-diagonal e]ements, the impedance

transformation can be simplified as given in Appendix A3,
network impedance matrices [Z,],[L,1, (5,1, [R,] for a

The .
4 -wire

load connection are as given by equations 3.49, 3.50, 3.5] and
3.52, respectively.
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er Zry Zrb D er 0 ZPF ZrF ZFF 0 0
Z 7 Z 0
Zyr Zyy Zyb ZyD ZyQ 0 yF yF yF 0
Zor | Zoy | Zob | %0 | S| 0 | %bF Loe Zyg | O 0
Zor{ Loy | Zob | Zon| © 0 | Zpp Ine Inp| O 0
0 0 o | o 0
Zor | Zoy | Zob{ © | Zoof ©
ol ofofo] o] zg “Zare | hore o |"Zare | “Zbre
*tLepe | *oere e |t ere
2otz Yz 1z 1 o | “%are | Zrp* Lppt Zee | ZaaZac | G lac
Fr Fy Fb D 1+7 +7 -7 7. -7 -7
cFE aa ac ab Tac
'an+zcc 'Zcb+zcc “Leatlec 'Zcb+zéc
Lore | Zppt Lept Zer ! ZoatZhe | Zob~Zbe
Zeed fry ) frn | Zen | O | 42 Zha b | Zob7Ibe T |-z,41
CFE 1 7 4z -, +Z +Z ebee
ca ccC cb Tcc cc
Zev | Zey | Zrn | %D | © 0 | Zgr Lee Iep | O 0
o | o 0 0 0' 'ZaFE Zaa'zac Zab'zaC' 0 Zaa-zac Zab"zac
+chE 'an+zcc 'Zcb+zcc 'an+zcc 'Zcb+zcc
ololololo “Tore | Zbabe | Zob~Zoe . Zoa~Zoe | ZobZbe
+ZcFE, Teatlec _Z¢p+zcc Leatlee | Leptlec

3.49
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Lr Lry rb rD LrQ 0 LrF LrF LrF 0 0
) )
Lyr y yb LyD LyQ 0 LyF LyF LyF 0 q
Lor [ Loy Y | o0 |tog| © Lor Lf | LbF 0 0
bor | Loy | ton | ton | O | © LoF Lor LoF 0 0
0 0 0 0
LQP qu % 0 LQQ 0 ' 0
-L -t -L -L
aFE bFE aFE bFE
0 0 0 0 0 LFFE 0
*ere ere A L
L1y . 0 “Lare | LeF Lep Ler Laa~lac | Lablac
Fr| "Fy | "Fb | sLo L {4, -L
'LcFE aa ac ab "ac -Lca+LCc -Lca+LCc
Leatlee | Lteptlec
C L oo fTherE Ler i Lha-tbe | Lobtbe
Fr| "Fy| "Fb {"FD FF
*LerE +Lba'Lbc +Lbb‘]‘bc Leatlee 'ch+Lcci
'Lca+Lcc “Leptlec
Ler | bey l ben B | O | O Lep S 0
Lare Laatac Lab~Lac Laa~Lac Lab'Lac
ololo]ol]o o -
' +LcF_E 'Lca+Lcc_ 'ch+Lcc ' Leatlee | Lepttec
. - . -L L, _-L L, -L L,_-L L, -L
o Lol ol ol |TFE | "ba™bc | "™ bc| o | “ba™bc| “bb™be
*ere -Lca+Lcc _ch+Lcc 'Lca+Lcc 'ch+Lcc

3.50
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[Gn] = | Gr Gry Grp Grp GrQ 0 Crp GrF Gr'F 0 B
J 0 G G 0
Gyr ny Gyb GyD Gyu GyF , ¥F yF 0
Gor [ Bby | b 1660 | g O SpF Sr | GoF 0 0
GDP GDy GDb 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0
GQr Q GQb 0 0
“G5FE ~GprE e ~Gyre
0 0 0 0 0 0 0 .
+Berg *Gerp Berg *Gerg
5 8 8 0 0 “Garp Gaa-Gac Glab'Gac 0 GIaa'Gac Gab'Gac
Fr | "Fy | "Fb
6o |"8catOec | BeptBcc 'Gca+Gcc 'Gcb+Gcc
o te 1o 1ol o Fe %a%c | b Oc | 4 | Gba®bc| Ghpfh
Fr | °Fy | “Fb '
g {~Gca*Gec | Gep™ce Geatbiec thb+Gcc
G |Gry [Spp | O | Of O 0 0 0 0 0
'GaFE Gaa %ac | GabGac GaaGac GIab'Gac
o [0 |0|o0fo | 0
R T Gopthec 'Gca+Gcc “Gepthiec
-G, G..-G 6. -G 1 6 -G G, -G
0 0 0 0 0 bFE| “ba “bc bb “bc 0 ba bc bb “bc
+GcFE 7Gca+Gcc 'Gcb+Gcc 'Gca+Gcc 'Gcb+Gcc
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3.2.2 Exciter-Rectifier-Generator Model with 3-wire Load
Connection :

Since there is now no neutral current in the generator,
there are only two independent armature currents instead of
threé. The impedance connected to each armature phaée is the
impedance between the line and the star point of the load. The
primitive voltage, current and impedance tensors are as for the
4-wire connection, ‘as the primitive tensors are independent of
the connection of the system branches.

The transformation ténsor [C1] is obtained by writing the
branch currents Ip of Figure 3.3 in terms of the independent currents
In for the 3-wire load connection shown in Figure 3.6 as

[C'l] .= 1

11 ]
1
]
-1 -1
-1 -1
T - 3.53
1
1
1-
1

=1 1-1 -1 -1 -

The voltage matrix [V 1 and [Z,] for the 3-wire load connection
are '
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V]= 00000 Vg 000 0 0] 3.54

FE

and

with [Zn] as given by equation 3.55 the corresponding matrices
[Ln]' [Gn] and [Rn1 are given by equations 3.56, 3.57 and 3.58

respectively.

3.3 Differential Equations for Exciter-Rectifier-Generator Phase
Model

Having obtained the current, voltage and impedance tensors
for both the 4-wire and 3-wire Toad connections, it is now necessary
to obtain the operational current, voltage and impedance matrices
depending on the diodes that are conducting at a'particu1ar instant
in time.

Consider the 4-wire connection of Figure 3.5 showing the indepen-
dent currents In. If diodes 1, 2 and 6 are conducting, the operational

currents Im are as shown in Figure 3.7. The transformation tensor
[C,) relating I to I, is

(c0= | | | i B I NP (%

! (€230 24]

3.59

The operational voltage and impedance tensors corresponding to diodes
1, 2 and 6 conducting are found using equations 3.13 and 3.11 res-.

pectively.using the transformation tensor [C2] given by equation
(3.59). : '
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The operational currents [Im] are obtained by numerical integration
of equation 3.14,

3.3.1 Calculation of Diode Currents

Having obtained [Im] and [pIm] at a particular instant in
time using equation 3.14, the diode currents and voltages are
calculated as follows:

[1,] = [Co1(1] 3.60(a),  [pI,] = [CoI(pPI ] 3.60(b)

The diode currents are

Im = I,
Ipo = Igq
Ipz = Igy
Ing = Lion
Ips = Ii1n

IDG - '(I7n * ISn * Ign + I10n +'Inn)

3.3.2 Calculation of Diode Voltages

3

The diode voltages are found by computing the mesh-sum voltages
{V], for the indepehdent current network by the application of
Kirchhoff's Laws. Thus

0= [Z,101,1 - [V,] + (V]
or
V1= Vi) - [L ORI Y - (IR + [G 131 ] | 3.62

and, as diode D6 appears in the last five meshes, the voltage across
D6, also appears in these meshes. Hence the form of {v] is-
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]

M= v - 0
v, 0
v, 0
v, 0
's ° 3.63
Vg 0
Y7 o116
Vs Vp27Vps
Vg Yp3-Vps
Y10 Vpa~Vpe
| Yps~Vps

As diodgs D1, D2 and D6 are assumed to be in forward conductidn,
Voo V
of the diode (which is assumed to be negligible compared with other

D2 and VD6 are equal to the forward volt drop Vep characteristjc

voltages in the system). Therefore the diode voitages are obtained
from equation 3.65 as:

Vpy = Vy = 0

Vg, = Vg = 0

Vo3 = Vg - - | 3.64
Vs = Vy0

Vos = V1

However, the way in which the currents and voltages in the lower
1imbs of the diode bridge have been defined as shown in Figure 3.3,
are in fact in opposite direction to that necessary for testing for
turning on or turning off. Hence VDd’ VDS’ VDG and ID4’ IDS’ ID6
are reversed in direction for this purpose.
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" 3.4 Comparison Between the Measured and Predicted Results

A computer program was prepared to assemble and solve the
differential equations of the brushless excitation system
described in Sections 3.2 and 3.3. The computer program flow
chart is shown in Figure 3.8. The differential equations were
numerically integrated on the digital computer using the Runge-
Kutta 4th-order method described in Appendix A6 . It was not
possible to measure the exciter phase current, the diode reverse
voltages, the diode forward currents of the rectifier bridge and
the generator field current as the exciter armature windings, the
bridge rectifier and the generator field windings are mounted on
the rotor shaft which is rotating at 12000 rpm. To be able to
measure these parameters, it would be necessary to bring out the
exciter armature windfng output terminals and the generator field
winding terminals to an external bridge rectifier via slip rings.
Due to the very compact assembly of the generator unit, as shown
by photographs of the unit in Appendix {Al), it was not possible to
do this. Therefore, the predicted exciter phase current, diode
forward current and reverse voltage waveforms are compared with the
measured waveforms of a similar aircraft generator unit reported in
roference 43 , These waveforms are reproduced here to show that
the predicted waveforms are very similar to the measured waveforms.
The predicted waveforms under steady state conditions using the
computer program, for a 1 p.u. 0l75 p.f., 3-phase star connected
balanced load, applied to the generator terminals with a constant
10V exciter field voltage are given in Figures 3.9 to 3.15,

Figures 3.9(a) and 3.9(b) provide a comparison between the
predicted and measured exciter field current waveforms. Similarly
Figures 3.10(a) and 3.10(b) provide a comparison between the pre-
dicted and measured exciter phase currents. Figures 3.11 and 3.12{a)
show the predicted reverse voltage across the diode and the forward
conduction current respectively for the diode D] of the bridge
rectifier. Figure 3.12(b) shows the measured reverse voltage and

- forward current waveforms. It can be seen that the predicted and
measured forward current waveforms of the diode are identical.
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The measured reverse voltage across the diode is displayed as a
pdsitive voltage while thé;predicted reverse voltage is consi-
dered to be negative. It can be seen that when either one of the
reverse voltage waveforms is inverted, the predicted and measured
reverse voltage across the diode are identical.

Figures 3.13(a) and 3.13(b) provide a comparison between the
predicted and the measured generator field voltage waveforms.
It can be seen from the comparisonof waveforms of the generafor
field voltage, that they are identical except for small spikes in
the measured voltage waveform, which can also be seen on the measured
reverse voltage across the diode in Figure 3.12(b). These spikes
are due to non-ideal behaviour of the diodes of the bridge recti-
fier. The diodes allow a reverse current flow to redistribute
the charges in the p-n junction of the diode before it assumes
the blocking state. The sudden collapse of this reverse current
results in v61tages being induced in the windings of the machine
due to the inductances of the c¢ircuit and hence appearing as spikes
in the reverse voltage across the non-conducting diodes of the
bridge and in the voltage applied to the generator field winding.
Figures 3.14 and 3.15 show the predicted generator field current and
the load phase current. The erciter field current and the Toad phase
current were measured to be 1.23+ and 94.2A (rms) respectively.
The predicted exciter field current and the load phase current are
1.3A and 95.5A (rms) respectively. It can be seen that the input
output currents, which are the measurable quantities, are accurately
predicted. ’

The computer program is élso able to predict the transient
behaviour as it determines the state of the circuit and the relevant
differential equations at each step during the numerical integration
on the digital computer. For example, the predicted transients
following a step change from 10V to 25V in exciter field voltage
are given in Figures 3.16 to. 3.22. It can be seen from the exci-
ter field current and the genmerator field voltage transients of
Figures'3.16 and 3.20*respectfve1y that the response of the exciter
is fast due to the changes in the exciter field voltage. The genera-
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tor field current build up as shown in Figure 3.21, is much
slower, with 1 p.u. 0.75 p.f. loall connected to the generator,
compared.to the exciter field current. Since the exciter phase
current and the diode forward conduction current depend on the
generator field current, it can be seen from Figures 3.17 and
3.19 respectively that the build up of these currents are
directly dependent on the build up of generator field current.
The consequence of the fast rise in the exciter field current

is also to increase the reverse Vo]tages across the diodes of the
rectifier bridge as shown in Figure 3.18.

3.5 Conclusion

This chapter has described the application of Kron's tensor
methods for the‘ana1ysis of electrical networks with varying
topology. The methods were applied to the digital computer analysis
of a brushless excitation system. Close agreement between the pre-
dicted and measured results on a similar system was obtained as
discussed in Section 3.4, showing that the model developed using
the tensor methods can be used for both design and system study
purposes 1in predicting the steady state and transient characteris-
tics of the brushless excitation system.

Since the model of the brusﬁ]ess excitation system predicts the
voltage spikes across the diodes of the rectifier bridge accurately
both during the steady state operation and during transients, (as .
shown in Figures 3.11 and 3.18 respectively)}, the model enables the
diodes of correct reverse voltage rating to be. selected.

For radio interference studies etc. a more detailed charac-
teristic of the diode to account for the nonlinear behaviour of the
diode in forward conduction and the reverse current flow until the
diode assumes the blocking state can be programmed, but_for general
purpose system mode]s; the diodes can be assumed to be ideal without
any loss of accuracy in predicting the behaviour of‘the system.



72

Figure 3.1(2) EXAMPLE NETWORK
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CHAPTER 4
MODELLING OF AN AUTOMATIC VOLTAGE REGULATOR

4.1 Introduction

An automatic voitage regulator (a.v.r) forms an important part
of any electrical generating system and it is necessary that its
performance can be accurately predicted when a model of the elec-
trical system is obtained for system studies. This chapter
describes two methods of modelling the a.v.r. used on aircraft
power systems. The first of these is the state variable method
based on the actual components used in the a.v.r, with the state
variables being the voltages across any capacitors present in the
circuit and the current through any inductors which may be present.
The second method is a transfer function analysis, based on
obtaining the transfer functions of the individual networks which
form the a.v.r. and then representing the voltage regulator in

block formb’l+ for subsequent analytical purposes.

Both models result in differential equations that can be solved
on a digital computer using any suitable numerical-integration method.
3oth the models were used for the transient analysis of the regulated
generator unit described in Chapter 5.

4.2 Description of Automatic Voltage Regulator

The automatic voltage regulator designed for use with the 2130
generator unit is shown in Figure 4.1 in block diagram form, with
the circuit diagram of the actual components being given in Figures
4.2 and 4.3. The exciter field voltage supply is obtained from
the 3-phase full-wave rectified output of the permanent-magnet-
generator pilot exciter. '

The effective voltage applied to the exciter field -winding
is controlled by the power transistor QI, which has-a zener
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diode iDI across its terminals to prevent transient peak voltages
from damaging the transistor as i1t switches from ON to OFF. The
switching frequency and the ON to OFF time ratio of QI is con-
trolled in turn by the automatic voltage regulator. The free-

wheel diode D13 enables the exciter field current to continue to
flow when transistor QI syitches QFF. Capacitor C6 is for smoothing
purposes and inductor L6 is to prevent the QI from effectively
shortcircuiting the d.c. supply when it switches ON, as the diode

D]3 is not in its blocking state when QI 1is OFF.

Resistor R] in parallel with L6 forms a path for the current
| _in the inductor when QI switches OFF. Inductors L4 and L5 are for
- smoothing the effective voltage applied to the exciter field
winding. ‘ '

4.3 State Variable Analysis of Automatic Voltage Regulator

4.3.1 Voltage Sensing Circuit

The high-phase take-over circuit forming part of the voltage
sensing circuit and shown in Figure 4.4(a), limits the maximum genera-
tor voltage to 125V r.m.s. (line to neutral) under line-to-line or
line-to-neutral or line-to-earth faults. For normal load conditions,

" the voltage sensing circuit shown in Figure 4.4(a) consisting of
components R10, Ri1, R12, C13, C14 is operational, and the voltage

¥V applied to this network -at any instant is equal to.the maximum
(positive) voltage of the phases, depending on the values of VA,'VB,
VC at that instant and assuming the diode volt drop to be negligible.
Hence if VA > VB’ VA > VC’ the voltage applied to the voltage sensing ‘
circuit V equals VA' (Diode D] is in forward conduction and diodes

02 and D3 are reverse biased). The voltage sensing circuit can be
represented as in Figure 4.4(b) for which

Ryy Ijg = Vq3 + V=0 _ 4.1 a

--613 V]3 - IH + I]0 =0 | 4.1 b

: d
where V3 Z_Ef (VI3)
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"Iy Ry - g Ryp v Vg3 = 0 (e = Byq Ryp - Vqp # Vy3 = 0)
4.1c

"l Vg - Lt Iy =0 - , 4.

- V]4 + R]2 112 =0 4.1e

On this basis, the circuit can be represented by the flow
diagram of Figure 4.4(c), which is particularly useful when
analysing the circuit with the aid of an analogue computer.

The differential equations describing the behaviour of the circuit
are, by inspection

"3 - (g + Toli+ Tg Vi3] | Ty2| M
= + 4.2
Vg o |~ Tl Via 0
vthere:
]
T, = o 4.3
8 Ryp Ty
Ty =TT 4.4
1 413
Ry1 Cyg
T = R ]c + T, 4.6
12 C1a
T = — b 4.7
12° R To
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4,3.2 Amplifier Circuit of A.V.R.

The performance of the a.v.r. amplifier stages can be deter-
mined by considering Figure 4.5(a), where only the power stages,
the output voltage of the voltage sensing circuit and the ref-
erence -voltage are considered. The operational amplifier Al is
of the inverting type, so that when VX <Vy, VA = +5VY, and when
VX>-VY, VA = OV. The operating sequence is as follows:

When Vx < VY’ VA = 5V, Q1 switches ON which switches ON
QZ’ 03 and hence QI, the power transistor. When szva, VA = 0V,
Q] switches OFF, which in turn switches OFF Q2 and 03. 04 switches
ON and hence QI is switched OFF. The switching frequency and the
ON/OFF time ratio of transistor QI both depend on the voltages V

and VY'

X

The output voltage V14’ of the vo]tagg seﬁsing circuit is
connected to the (-) input terminal of the operational ampiifier
Ay as shown in Figure 4.5(a) via an emitter follower circuit and
resistor RA' Similarly the reference voltage VR’ which is the
voltage across zener diode Zp is connected to the (=) input
terminal of the operational amplifier A] as shown in Figure 4.5{a)
via an emitter follower circuit and resistor Rg. The advantages
of the emitter follower circuits are high input impedance, near
‘unity gain, low output impedance and no phase shift, which eli-
minates any interactive effect of connecting the voltage sensing
circuit output voltage V]4, the reference voltage output VR and _
the negative feedback voltage to the (-) summing terminal of the
operational amplifier on the voltage sensing circuit or the ref-
erence-voltage circuit. The output voltage V]4 of the voltage
sensing circuit and the reference voltage Vp can be represented as
a voltage source VE]’ with the resistor R1'in series as shown in
Figure 4.5(b)

With Ry = Ry = 10 Kq

then Vg, = ———

and RI = 5 Kq.
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The reverse voltage drop across the, zener diode ZR is 6.2V.
Therefore the reference voltage VR is -6.2 V. The output from
the voltage sensing circuit (V14) can be approximate to a d.c.
voltage plus a 3rd-harmonic of the generator frequency introduced
by the half-wave rectifier. Thus V].4 = V1 + VZ Sin (3wt).

VI4 is adjusted by the resistance potentiometer SIT 1 shown in
Figure 4.4(a), depending on the required output voltage of the
generator. The approximate values of V1 and V2 obtained from the
analysis of the voltage sensing circuit of Figure 4.4(b) with the
rated generator voltage are:

V1 = 6.3V
and
Vz = (0,20 V
Therefore
Voo = -6.2 + 6.3 + 0.20 Sin (3wt)
El V4

0.05 + 0.10 Sin (3wt) 4.8

During transients, on application or rejection of load, the feedback
circuits shown in Figure 4.3 affect the voltage VE] and therefore
equation 4?8 for VE1 does not apply. For transient analysis, it is
necessary to solve the differential equations derived for the system
given,in Sections 4.3.1, 4.3.3 and 4.4.2. Under steady state conditions,
equation 4.8 for VE] apply and the voltage appiied to the exciter

field winding is shown in Figure 4.5(c). The time delay between -

the operational amplifier Al and the a.v.r oUtput VFE is negligibly
small when compared with the time constants of the feedback circuits
and also those of the exciter and the generator. The operational ampli-
fier Al and the gain stages of the a.v.r. formed by transistors Q], 02, _
Q3, 04 and QI can be represented by one amplifier (A), shown in Figure
4.6(a), whose output_depends on Vy and VY'

4.3.3 Feedbalk Circuit of A.V.R.
The feedback circuit of the a.v.r. consists of a 'Totempole

Pair' Q5 and Q6 transistor circuit feeding an RC network, as shown in
"Figure 4.3. The voltage applied to-the RC network depends on-the
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switching frequency and the ON/OFF time ratio of the power transistor
QI. . When QI is ON, Q6 switches ON and the RC network is effectively
connected to the d.c. supply (minus the volt drop in the zener diode
D2 and the volt drop across@b ). When QI switches OFF, Q6 switches
OFF and Q5 switches ON, and the voltage applied to the RC network q
is effectively zero. Since the switching of the power transistor
determines the voltage applied to the exciter field winding, the
voltage applied to the RC-feedback network is also approximately

of the same magnitude, as the forward volt drop in the zener diode

ZD1 is only some 5% of the d.c. voltage. The performance of the
feedback circuit can be determined by considering the simplified
circuit shown in Figure 4.6(a), where the amplifier A represents

the switching action of the operational amplifier AI and its

switching power amplifier stages. If the d.c. supply voltage is

VDC’ the performance of the amplifier A can be represented by

Vo = Voo 4.9(2)

Vy > Vs Vg =0 | 4.9(b)

Figure 4.6(a) can be further simplified for analytical purposes
to thet given in Figure 4.6(b). The equations for the feedback
circuit given in Figure 4.6(b) are

Rg Tg = ¥y = Vgt V51 =0 ~4.10(a)
-C, 02 t1g=0 | 4.10(b)
{CG i - ogg) V-1, I 0 o  4.10(c)
Ry Iy - Vg + Uy =0 - 4.10(d)

The feedback network and the amplifier switching actions can be
represented by the flow diagram of Figure 4.6{c), from which the
differential equations for the feedback circuit follow by inspection
as '
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Vs T T Yl [T | O Y
- + 4.11
vy T3l T | Y9l [Ty T2l Y
o .|
Where T-l = T2 = T5 = C—Z—ﬁg - . 4.]2
S
T, = Tg = ope 4.13
7 Rg
1,1 .1 1
T, = (o + o) 4.14
47 ¢ W TRy TR
T, = e 4.15
7 Ry

The above differential equations can be solved by a
numerical integration method, with the voltage V0 being obtained
at each step of integration by calculating VX, VY and V, =V, - V

27 % " Yy
If V, <0, V) =V | | 4.162
If V;>0, V =0 4.16b

4.3.4 'Computation of Transient Response of A.V.R. on a
Digital Computer .

A computer program for obtaining the transient response of the
a.v.r. is given in Appendix A7 . As the output voitage (VFE) of
- the a.v.r. depends on the absolute value of (VX - VY) it is
necessary to use a small steplength to ensure an accurate response
characteristic. ﬂ '
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4.4 Transfer Function Analysis of Automatic Voltage Regulator

The T.E.E.E. Committee Report “"Computer Representation of
Excitation Systems“i{S 1ists a number of different types of
excitation systems in use today. The recommended computer repre-
sentation of a rotating rectifier system (brushless} is given in
Figure 4.7. The most difficult part in this representation is
the determination of the effective gain of the a.v.r., as this is
a nonlinear function of the error signal (Vx - VY) input to the
power amplifier stage. Having determined the effective gain of
the power amplifier stages either by measurement or by the state
variable analysis discussed in Appendix A7 , it is possible to
represent the a.v.r. in terms of transfer functions for each of
its constituent 'blocks’.

4.4.1 Transfer Function Representation of Voltage Sensing
Circuit

It is shown in Appendix A8 that for the voltage sensing
circuit siiown in Figure 4.4(a)

Ke:

v
el ¢ Ry 14 p oy 417
T e R?

where:
Ky = 4.0475 x 1072
fR] TR, = 0.64754 x 1078 s%
TR +TR, = 1.76631 x 1070 s
‘-TﬁTlTRE - 1.544306 x 10° 57
TR +TR,, 3 ' B

’ W = 2.72772 x 10 . S
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in which

VS is the mean value of the output voltage of the voltage sensing

[4

circuit.

VT is the peak line to neutral voltage of the generator under
balanced load conditions.

4.4.2 Transfer Function Representation of A.V.R. Feedback
Circuits

It is shown in Appendix A8 that the transfer function for the
negative feedback path is

Ve s Kg- 4.18

Vg (T sTE (T +5T,)

where: - .
. -3
KF = 0.5 x 10
Ty + Tpp = 26.9 x 1073
T T, : 157 x 1078 2
1 3 2
= 6.8 x 10 3
"F1 TR
T-.4T
e <8863 x 1070 57
F1 'F2

It is shown in Appendix A8 that the transfer function for the
-positive feedback path is

Vp2 K (1 +sTyy) 49
Ve (0 # ST 0T+ 5T,) :




-

=Ze

e

F1

-

Fi

F2

<l

F2

1 o 0 0 v, Veg
(Tp1*Tgo) |
- 0 0 0 v v

1 Tre ' : i
0 0 1 0 VEy ‘1
) ] (Te1+TE) 0 v

| T | T e F1 Te1Ted ©
0 0 0 ! Ve
0 0 0 s l—— ;l—T——
. "1 T2 F2 F1'F2

4.20

i.e. [pX] = [AJ[X] + [B][V]
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where:

Ky = 1.08393 x 1073

T..=15.0 x 1073 s

IR
Tf'flr“ = 7.4395 §°2

F1 'F2

K, T

1Tl B
= 111.592 x 10 s

"E1 Tr2

The computer representation of the a.v.r. used with the 2130
generator is shown in Figure 4.1. A fall in the generator terminal
voltage results in the error signal VE] becoming more negative and
hence in an increase in the output voltage of the amplifier applied
to the exciter field winding. Having obtained all the required
transfe? functions describing the behaviour of the a.v.r., the
differential equations for solution by use of a digital computer
are obtained as in equation 4.20.

Additional equaticnz which are required to be solved together with the
differential equations 4.20 are

Y+
Vst VRer(g) R
7 Ve Ve 4.21
. \:'S . - ' -
Voo =+ Uy -V, L | 4.22
v i
__DbC E2
v o
o _'DC . 1 . : -
Vep == . A T, 5;77:7;221 | R 4.24

Equations 4.21 to 4.24 are derived in Appendix A7
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Equation 4.21 gives the error signal VEZ’ which is input to
the nonlinearipower amplifier, as shown in Figure 4.1. The
output voltage VFE of the nonlinear power amplifier as a function
of VE2 is given by equation 4,23,

- It was found from the solution of the state variable model
differential equations that the size of the time step required
to maintain the accuracy in the output voltage VO’ due to switching
action of amplifier A, was of the order of 2 x 1075 sec. This
is approximately 40 steps per cycle of the 3rd-harmonic of genera-
tor frequency. The time step required for the same accuracy in
prediction of VO using the transfer function model differential
equations is of the order of 1 x 107" sec, which is 25 steps per
cycle of generator frequency. This difference in time steps
required is because the state variable model calculates absolute
values of ON and OFF time of the a.v.r. output, while the transfer
function model calculates mean voltage output of the a.v.r. as
given by equation 4.23.

The advantage of using a transfer function computer represen-
tation of the a.v.r. over the state variable method is that the
time step reaquired for numerical integration is increased from
about 2.0 % 1075s to 1 x 107%s, resulting in a reduction of
computing time by a factor of 5. This is important when the a.v.r.
exciter and the generator differential equations are solved toge-
ther, to obtain the transient response following the application or
rejection of load. To study unbalanced load conditions, it is
necessary to use a state variable representation of the a.v.r.,
as this takes into account variations of all the'generator terminal
voltages at every instant of time. The state variable and transfer
function models of the a.v.r. were used for the transient analysis
of the regulated generator unit described in Chapter 5.
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CHAPTER 5
MODELLING OF A REGULATED 3-STAGE GENERATOR UNIT

The a.c. exciter and rectifier supplying field current to the
main machine of a 3-stage generator play an important part in
determining the overall generator response, in conjunction of
course with the automatic voltage regulator. This makes it clearly
important to use a model of the exciter and rectifier system which
exhibits all the characteristics of the actual system units during
both steady state and transient conditions.

A phase model of the exciter, similar to that of the main
generator described in Chapter 3, would provide a very accurate
model of the system. However, due to the complexity of this model,
a large amount of computer memory and computing time would be
required'for its numerical solution, and it is therefore clearly
impracticable to investigate on this basis the transient analysis
of a regulated generator over a large number of cycles unless a
large digital computer is available. In this Chapter, a simplified
model of an exciter rectifier is presented, which includes most of
the characteristics of the practical exciter-rectifier system and
which is adequate for the overall transient analysis of a 3-stage
generator.. The results obtained when this simplified model is
used with the phase model of the.generator (discussed in Chapter
2) and the a.v.r. (discussed in Chapter 4) in predicting the e
trans1ent performance of the 2130 requlated generator system are S~
given in Section 5.6 of this chapter.

The operation of the rectifier circuits and the effect of line
reactance on its modes of operation are well known “© . Some
early attempts at expressing the effect of the rectifier load in
terms of the effective a.c. impedance and its power factor are
given in references 47-49, Gayek 43 described a method of
calculating the steady-state operating pointlof the exciter-recti-=
fier, which is now the standard method used by manufacturers. It is
shown in this Chapter how the steady-state operational equations of
the rectifier can be extended to predict the transient performance
of the requlated system
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5.1 Synchronous Machine with a Rectifier Load

The rectifier presents a very unfavourable load to the
exciter as the resulting armature currents are of ;ectangu1ar
or trapezoidal waveform-50 . This results in undesirable harmonic
m.m.f's being produced in the airgap of the excitér, with corres-
ponding e.m.f's generated in the field and damper windings and in
the iron core of the field windings. The additional losses produced
reduce the power output available from a given frame size of the
exciter, and for this reason there are generally no damper windingé
on the exciter 2

If idealised diode operation is considered, the current trans-
fer from one phase to the next occurs as soon as the voltage genera-
ted in the second phase exceeds that in the first. Figure 5.1(a)
shows an idealised circuit model of an exciter and Figures é.](b)
and 5.1(c) show respectively the phase voltages and the corresponding
armature currents with a 3-phase rectifier load and a completely
smoothed load current. When the d-axis is positioned between
6 = 300 and & = 909, phases a and b are conducting and the resul-
tant m.m.f. is shown in Figure 5.2(b). When 8 = 909, diode
comnutation takes place, with phase ¢ taking over from phase b
between 6 = 902 and 8 = 150°. Phases a and c are now conducting
and the resultant fixed m.m.f. is shown in Figure 5.2(c). The axis
of the armature m.m.f. thus jumps 60° each time diode commutation
occurs and 1ags the d-axis by 600 to 120°- The jumps in the arma-
ture m.m.f, induces e.m.f's in the field winding (and damper windings
if present). The 6th-harmonic ripple current seen in the field
current of an exciter is due to this phenomenon.

5.2 Modes of Operation of the Rectifier on Load
" 5.2.1 Ideal Operation of -the 3-Phase Rectifier

If the a.c. source reactance Xc is zero and the load resistance
Rd is in series with a Targe smoothing inductance L, as shown in
Figure 5.3, the rectifier waveforms are as shown in Figure 5.4.
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If the voit drop in the rectifiers is neglected, the mean
d.c. output voitage is

= lw

do Vo E =234 E 5.1

where E is the r.m.s. phase voltage.

The mean diode current is

I, = 3 I 5.2

=v2 1.
=/ 1=08181 5.3

The r.m.s. values of the in phase and quadrature components of the
harnionic currents in the phase windingsof:the exciter are by Fourier

Analysis
;.2/2 nm '
An = I . cos (77 | 5.4(a)
B, = 0 5.4(b)

" so0 that the fundamental frequency r.m.s. current in the phase winding

is

B
Ay =

1 =0.781 .. ' 5.5
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5.2.2 Actual Operation of the 3-Phase Rectifier

The idealising assumption of no source reactance is of course
far from realized in a brushless generator situation, when the
presence of a source reactance XC prevents the instantaneous trans-
fer of current from one rectifier to another.

During commutation both rectifiers in one side of the bridge
are conducting, and with the resultant circuit conditions as shown
in Figures 5.5(a) and 5.5(b) the source sees effectively a line to
line short circuit.

The voltage of a pair of short circuited rectifier terminals
is the mean of the corresponding two phase voltages and the commu-
tation is dependent on a reactance load factor RLF defined as

I Xc
d
Xc
ol where Rd_is the load resistance 5.7
d . .

The rectifier opekates'in thrée distinct modes 52 depending on the
value of RLF. The commutation angle {a) and the delay angle (),
which are both dependent on value of RLF, determine the mode of
operation of the rectifier. The effect of « and u is to reduce the
output voltage by an amount AEd from its ideal value, Edo’ where

The three modes of'operation of the rectifier and the corresponding
relationships between the commutation angle a, delay angie yu, E, Ed,
AEd etc. are summarised in Tab]e 5.1. The waveforms of the rectifier

for operation in modes I, IT and III are shown in Figures 5.6(a), 5.6(b)

and 5.6(c) respectively.
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The relationship between the a.c. phase current I_ (r.m.s) and
the d.c. load current I in terms of a and p is 52

. (%)1. A3 (@) 5.9(a)

where:

[sin p.[2 + cos{u + 2a)] - pufl + 2 cosacos {u+ a)]
[cos o - cOS (n +0)]*

fa,u) ='£F ]

5.9(b)

Fourier Analysis of the exciter phase currents gives the fundamental
frequency components as

Ay =T hy () o 5.10(a)

By = L hy (au) - | | 5.10(b)
where: .

hy = % C%) [cos a + cos (u +a)] 5.10(c)

_ 1 sin 2 (u + o) - sin(a) - 2u
2 =7 (7)1 2[cos o - ¢cos (p + a)] ]

5.10(d)
where Il’ the r.m.s. of the fundamental frequency current, is

[

= JRA BT | 5.11
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The effective a.c. load power factor angle ¢ is

B,
) 5.12
A

¢ = tan~! (

The effective per phase a.c. voltage E (r.m.s) in terms of the d.c.
voltage Ed is

E = Ed. h3 (o, 1) 5.13(a)

. o 2
where: h3 =I5 [TT-E(_)—S-_{J] ‘ Mode 1 5]3([))
hy = e Mode I1I 5.13(c)

9{cos (a + 300)|

hy = 2T Mode III 5.13(d)

91T - sin {u - 309))

The equivalent a.c. load impedance per phase as seen by the exciter
is '

£

7 = 5.14
5

If Z is represented as an equivalent .series-connected resistance R
and reactance X then

=
i

L cos ¢ E 5.15(a)

Zsing . - | 5.15(b)

>
It
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" 5.3 Steady State Operation of Exciter-Rectifier System

If the exciter is represented as a voltage behind’ the commuta-
tion reactance Xc, as shown in Figure 5.3, the steady-state:perfor-
mance of the exciter/rectifier can be obtained using the performance
equations of Table 5.1. The characteristics of the exciter-rectifier
system are given in Figures 5.7 and 5.8 as follows:

Figure 5.7(a) shows the variation of « and p with RLF.

Figure 5.7(b) shows the f(a,u) variation with RLF.

Figure 5.7(c) shows how the components of the fundamental
frequency armature currents A], B], vary with
RLF.

Figure 5.8(a) shows the effect of RLF on the d.c. output
vo1fage Ed

Figure 5.8(b} shows the regulation characteristic of the
rectifier operating in modes I, II and III,
by considering ZA to represent the volt drop
from the ideal d.c. output voltage Edo' ZA
represents the loss of voltage due
to commutation.

5.4 Transient Performance of Exciter on Load

As the frequency of operation of the exciter is 2} x the funda-
mental frequency of the generator*, the exciter response is much
faster than the generator response and chaﬁgeS‘jn the exciter field
~current are much more rapid than in the corresponding generator
field current. This enables the exciter phasor diagram shown in
Figure'5.9 to be used as the basis of a transient analysis.

* The frequency of operation of the generator is 400 Hz and that'
of the exciter is 1000 Hz.
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5.4.1 Application of a Steady State Exciter Model to Generator
Transient Conditions

Any sudden change in the generator load forces a ghdden change
in the generator field current. The magnitude of the ¢hange is a
function of the load impedance and its power factor, tdgether with
the generator reactances.

When the generator field current increases on the application
of load, the exciter armature current increases accordingly. If
the generator field current increases sufficiently, it may present
an effectively short-circuited load to the exciter, and -force the
rectifier to operate in Mode [II. If the exciter is unable to
meet the field current demanded by the generator, the rectifier
acts as a short-circuit path to both the generator field current
and the exciter armature current so that these currents become
mutually independent S . The increase in the exciter armature
current is reflected in an increase in its field current in the same
way as in the generator. This increase is seen by the exciter-recti-
fier as an effective reduction in its load resistance Rd' This
increases RLF and hence, depending on the value of RLF, for;es the
exciter-rectifier system to operate in either mode II or mode III.
When load is removed from the generator, the decrease in field current
is seen as-an effective increase in Rd. This results in a shift of
operation of the exciter rectifier to mode I as RLF is effectively
reduced.

A steady-state model of the exciter-rectifier system can be used
to analyse the rectifier-exciter-generator system during a transient
process, if the exciter field transient time constant and the changes
in the rectifier mode of operation are calculated during the step—by-stép
solution of the generator differential equations. The exciter transient
time constant takes into account the a.c. load impedance as seen by
the exciter, and the changes in the mode of operation of the rectifier
takes into account the response of the exciter-rectifier system to
changes in field currént. The step-by-step changes in the exciter
vector diagram are calculated iteratively at each step of the solu-
tion of the generator differential equations on the digital computer.
Since the phasor diagram is based on steady-state conditions, the
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changes in the exciter armature current are not reflected into
the exciter field winding.

The exciter transient time constant on load is given by

-t

[R %+ (x4 +X )(xq + X )]

R e e
Td% = po [RLZ PP YORPTEY 5.16
e Qe
where: Tdb = ;EE? R RL = Rp. + R
Lepp ¢ Self inductance of the exciter field winding
RFE : Resistanﬁe of the exciter field winding
xde . Exciter direct-axis transient reactance
xde : Exciter.direct-axis synchronous reactaﬁce
qu : Exciter quadrature-axis synchronous reactance
X -+ is the egciter load reactance per phase
R : 15 the exciter load resistance per phase
Rp N phe exciter phasg winding resistance

5.5 [Iterative Method of Calculating Exciter-Rectifier Transient
"Response .

The iterative method used to calculate the exciter-rectifier
response is shown by the flow diagram of Figure 5.10. The self-
inductance of the exciter field winding is dependent on the satura-
tion of the field flux path, which is in turn determined by the total
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d-axis current (IFFE - Id), where I-cc is the exciter field current
and Id|is the d-axis component of the exFiter armature currents.
Similarly the gain KE defined as the per-phase opgn-circuit voltage
of the exciter per-unit exciter field current is dependent on the
d-axis saturation level, so that

rre = T (Tppe - 1) 5.17

Ke = f, (IFFE - Idp 5.18

Thg function f] was obﬁained by measuring the secant inductance of

the exciter field winding for different values of field current.
Similarly, the function f2 was obtained by measuring the secant value
of the mutual inductance between the armature phase in the d-axis

and the field winding for different values of figld current. Functions

f] and f2 are given in Appendix A9,

Referring to Figure 5.10, the output phase voltages of the
generator are used to determine the exciter field voltage VFFE’
using either of the two models of the automatic voltage regulator
(a.v.ﬁ) described in Chapter 4. Subscripts (0) refers to the values
of the parameters at time T and (N) to their values at time T = T+H,
where H is the time step used for successive numerical integration
of the generator equations.

IFFE(N) is obtained by numerical integration Qf

Vere - Repg. I
_Vere " Rere- Ippe
A 1 5.19
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R2 + (x) +X)(x..+X)
ELF = L de e : 5.20

RZ+ (xge * X)(xqe + X)

Since the rectifiers are in practice far from idéa], there is
always a voltdrop during forward conduction. This is accounted
for by subtracting VR’ the rectifier voltdrop, from the effective
d.c. output voltage Ed to obtain the generator field voltage VFg

5.6 Comparison of the Measured and Predicted Transients Following
Application (and Rejection) of Generator Loads

5.6.1 Load Application Tests on 2130 Generator Unit Without
a.v.r.

In order to test the exciter-rectifier-generator model, the
field of the main exciter was supplied from a 12V battery in place
of the a.v.r. The exciter field current was adjusted to give
rated open-circuit voltage of the generator of 115V r.m.s.

(162 Vpeak). Figure 5.11 shows a comparison between the measured
phase voltage peaks and the predicted values, following the appli-
cation of a 40 kVA zero p.f. lagging load. Similarly Figure 5.12
shows a comparison of the measured and predicted phase voltage peaks
on application of a 60 kVA 0.75 p.f. lagging load. The close agree-
ment evident in both figures between measured and predictéd results
shows that the exciter-rectifier-generator model can with confidence
be used as the basis for further investigations.

5.6.2 Load Application and Reaect1on Tests on 2130 Generator
Including a.v,r.

The load application and rejection -transients were predicted
using the two models of the a.v.r. described in Chapter 4. The
transients predicted by using the transfer function model of a.v.r.
are called Model I and those predicted using the state variable model
are called Model 2. The phase model of the generator (described in
Chapter 2) and the exciter-rectifier model described in this chapter
were used for both Model 1 and Model 2 predictions. '
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Figures 5.13 and 5.14 show respectively comparisons between
both the measured and predicted phase voltages and the exciter
field current transients following the application of a 40 kVA
unity p.f. load. Figures 5.15 and 5.16 show comparisons between
both the measured and predicted phase voltages and the exciter
field current transients following rejection of the same load.
Similarly, Figures 5.17 to 5.20 show comparisons between both the
measured and predicted phase voltages and the exciter field current
transients on application and rejection of a 40 kVA zero p.f. lagging
load.

Figures 5.21 to 5.24 show comparisons between the measured
and predicted phase voltages and exciter field current transients
on apptltication and rejection of a 60 kVA unity p.f. load. Simi-
larly Figures 5.25 to 5.28 show comparisons between both the measured
and predicted phase voltages and the exciter field current transients
on application and rejection of a 60 kVA 0.75 p.f. lagging load.

5.7 Discussion and Conclusion

The resuits of the tests performed show that the exciter- ’}
generator model developed predicts the voltage transient accurately |
following the application of different loads, as confirmed by tests |

f
using a 12V battery to supply the exciter field current. The !

results of Figures 5.13 to 5.28 show that it is possible, using )
the models of a.v.r. described in Chapter 4 and the excitér—rectifier-'
model described in this Chapter (and the generator model described in
Chapter 2) to predict accurately the tranéient voltage output of

the generatok following the application or rejection of a balanced
3-phase load. Unbalanced load conditions were not considered in

the present investigation, but the phase model of the generator,
together with the state-variable model of the a.v.r., would be
expected to provide results of the same accuracy as those presented
for balanced loads as the a.v.r. responds to actual. phase voltages

in the state-variable model, while the transfer function model calcu-
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lates the effective phase voltage on the assumption that a

balanced 3-phase léad is applied to the generator.

5.7.1 Exciter Field Current Transient

It is found that transient currents are induced in the exciter
field winding following the application and rejection of a load at
the generator terminals. The model described in this chapter shows
the exciter field current response due to the action of the a.v.r.
and hence for accurate prediction of the exciter field current
transient, the transient current induced due to the Toad changes
at the generator terminals would have to be added to the transient
current due to the action of a.v.r. "There is a 6th-harmonic ripple
current on the d.c. level of the exciter field current, as discussed
in Chapter 3. The measured results of the exciter field current
transients show bands marked I signifying the magnitude of this
-ripple current. '

Having discussed some of the relevant points which may limit -
the accuraéy of pradiction of the exciter field current transient, !
it is nevertheluss cleay from the results obtained by test that I
these do not significanfly affect the generator voltage transients.
The steady state exciter field current, the voltage dip (or rise) '
and settling time following both the application and rejeétion of

I

a load are accurately predicted.



TABLE 5.1  SUMMARY OF PERFORMANCE EQUATIONS FOR 3-PHASE FULL WAVE BRIDGE RECTIFIER

Quantity Mode I Mode II Mode III
" 0 to 60° 600 " 60 to 1200
o 0 0 to 30° 300
1.X
d’c VB 6 ., 3/7 W2
E 0 to T I to T . to l/?
Cdte 0 to & Tto X T to o
Ed 9 9 3 3 -
36 m By d § cos (a + 309) d 917 - sin (u - 30V} d
E I Idxc] 3 2v3 E 2v3 E
do Eq d 3 cos (« + 30Y) d 31T - sin (- 30Y))°d
3 2v3 2v3
AE 4 7 La¥c [vcos (o 73007 ~11Eq T —=m w307 B
'] _ g IdxC
X m Ed - -
€os u T
1.3 _d¢
T Ed
- I.X
tan {a + 300) - /'T?r'g_g B}
d
9 ldfe |
11 Ed
sin (y - 300) - - Y
‘ 9 “dc + ]
m E

gel
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Figure 5.2(a) DIRECTION OF M.M.F, DUE TQ EXCITER PHASE CURRENTS
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NUMERICAL INTEGRATION OF GENERATOR EQUATIONS
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CHAPTER 6
THE TRANSFER FUNCTION OF A BRUSHLESS EXCITATION SYSTEM

6.1 Introduction

The modelling of the 3-stage generator unit and the automatic
voltage regulator {a.v.r) have been discussed in detail in Chapter 5.
It is possible, as shown by the results of the load application and
rejection test predictions, that the model of the system is able td-
predict accurately the response of the exciter, rectifier and the
a.v.r. However, from the machine designers viewpoint, this is not
an immediately useful exercise, as it does not easily enable him to
relate the transient behaviour to the magnitude and power factor of
the load change, and the parameters of the main generator and the
exciter-rectifier, to arrive at an optimum design for the system.

The system model is thus more of an accurate analytical tool than

. a design tool as far as the exciter-rectifier-generator is concerned.
(The a.v.r. deéign could be optimised by varying the state variables
and feedback time constants to obtain a specific transient response !
on application or rejection of load using the complete model of the
system). In this chapter, the transfer function of a synchronous
generator is derived which is then used to obtain the complete
pxciter-rectifier-generator transfer function. The transfer function
of the generator is shown to give aclear insight into the effects

of varying the parameters of generator and the load.

6.1.1 The Transfer Function of a Synchronous Generator

When a balanced 3-phase load is app]ied‘tb the terminals of a
synchronous generator, it is found that thedamper circuits affect
only the first cycle or so of the transients, as the time constants
of the damper circuits are very much smaller than the transient time
~constant of the generator. If the effects of the damper windings are
neglected, the generator voltage equation§55 are:

ey = - wq - rid * iy po 4 ‘ 6.1a
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' eq = wd - r1q - wq pe

If thefurther assumption is made that the speed of the rotor

does not change on application or rejection of
6.1 reduce to:

&4 = = ¥q = Mg

eq = wd - riq

d i b >
Uy an wq are given by

bq = G(p) €rd " Xd(P) id

Vg = - xq(p)‘1q
with
. (p] = Tgo Xd P+ X4
d’ Tﬂo p + 1
10 o _ffd
do ~ Znf
xq(p) = X

load, equations

where ecis Xeeys Fey are the field winding voltage, reactance

and resistance when referred. to the armature d-axis winding.
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Also

X
_ .ad 1
G{p) ey = () ey 6.5

"edd T FTgo P

Substituting values of Vg wq from equation 6.3 into equation 6.2 gives

eq = xq(p) iq - rid 6.6a
e = G(p) egy - x4(P) 1y - riq 6.6b
When the armature is on open circuii, id = iq = 0. Therefore:
eq =0 6.7a
ey = G(p) ey 6.7b

Under steady-state conditions:

'e =e = - €sd | 6.8

If the armature terminals are short—circuited'whi]e maintaining the
excitation voltage erq CONstant,

0 =x(p) i, - riy ‘ ‘ 6.9a

0 = €0 xq(P) iy - fi | : 6.9b
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Substituting xq(p) and xd(p) from equations 6.4 into equations
6.9a and b gives

)

2 )
A B T LT , 6.10a
qo X T +p Tyl d )
q 0 .
Xq Xq + r?
where T = T (§a~25—1~F7) 6.10b

The Laplace transform for a short circuit of the armature terminals
-e

. qo

is —

, when equation 6.10a becomes

e X (1 +s Tdb)

1d(s) = : qrz .
5 Bgxg ) ey

which gives

T ]

. : Xg = . do -t/T
i,(t) = g 1+ (= - 1 dz 6.12
'u(t) eqo (X4 xq + rz) th+ (sz ) e °23
and from equation 6.9a
. ro. oy ' _
1q(t) = i——1d(t) . 6.13

q

Using the transformation equation 57

‘[j]abg - [Cjt Ii]dqo
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gives the peak value of armature current as

) J//2(i 2 4§ 2) i
N d q '’ _ /2 .
i = x -/{;3-22 i 6.14

where Zq = quz + r2

Substituting for id(t) from equation 6.12 into equation 6.14

gives
. _f2. 98
1a = (j) 6.15

X4 xq + rZ)

under steady state condition.
If instead of short circuiting the generator, a 3-phase balanced
load of reactance X and resistance R per phase is applied

Z e
=/(2) 9z qo . 6.16a

where I signifies the summation of the respective impedances,

fe. Z f:Ja(xq +X)2°+ (r + R)2 6.16b
X4E = X4+ X . o - | 6.16¢
xqz = xq + X | 6.16d
re = +R o | 6.16e
Xgn =xj *X 616
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The transient time constant on load is gi&en by

Xgp * Ty’
. . qz dz
T42 = To ( . 2) 6.16g
qz Xdz L

In terms of the actual field voltage Ef and resistance Rf

k .
//h;(P i 6.17

_“‘“fd

PN,k
where (-—NiK—i) is the effective field to armature phase turns
W

ratio 58 .

Substituting equation 6.17 into equation 6.8 and the result of
this into equation 6.16a gives

227
9z - 6.18
dz %qz ¥ "z )

Ea _x
F? go (x

where Z = YR? + X2, theload impedance per phase and Kgo is- the
open circuit gain of the synchronous generator given by

/s P Ne kf)

. _ 'I .
Ko = T fad R RS | o-19

f

It can be seen from equation 6.18 that the gain of the generator -

is reduced from its open circuit value of Kg by a factor

(Z Zqz/(xdz qz tr, ), a load impedance factor which is dependent
on both load magnitude and the load power factor. The transient time

constanf'Td ' given in equat1on 6. 16915 also a function of the load
impedance and the Toad power factor
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6.1.2 The Transfer Function of a Brushless Excitation
System

The operation of an a.c. exciter - with a full wave rectifier
supplying power to a highly inductive load, was discussed in Chapter
5. It was shown that the mode of operation of the exciter recti-
fier system is dependent on the reactance factor given by I XC/Ed ,
which if the volt drop across the rectifier is neglected,is very
nearly equal to XC/Rf,where )(C is the commutation reactance of the
exciter and Rf, the resistance of the main generator field winding.

The mode of operation of the exciter-rectifier under steady state
condition is independent of the loading on the main generator as
long as XC and R;’remain constant. It was also shown in Chapter 5
that the rectifier load on the exciter gave rise to non-sinusoidal
current flow in the armature windings of the exciter, which can be
Fourier analysed to give the in phase and quadrature components of
the fundamental-frequency current. The rectifier load therefore
presents to the exciter ', a load whose magnitude and -

power factor are dependent on the reactance load factor, If it

is assumed that the voltage generated in the phase windings of

the exciter is of fundamental frequency, the power flow from

the exciter to the generator field winding is associated with the
fundamental component of the armature phase current and its phase
angle. ,Therefore considering only the fundamental frequency component
of curreht and voltages in the exciter phase windings:

6.20

where Eae is the r.m.s. voltage across the effective phase load
impedance Z, given by

Z =R +3iX = KR24+x2 ) : 6.21a
e e e e )

e

Cx Rf, depends on the'copper losses in the. generator field winding
and the temperature of the oil spray used for cooling the windings.
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Also

Xdex X4a + Xe 6.21b

xqez = xqe + Xe 6.21c

Fop = To * Ry ' 6.21d
= 2 2
and quz quez + reE 6.21e

Also, the open-circuit gain the exciter as given by Keo is

ade (Pe Nfe kfe) 1

(NKJe " Rea 6.22

Y2 x
Keo )

It is shown in Aphendix A10 that the total power supplied
to the effective a.c. load equals the d.c. power supplied to the
generator field winding. '

The exciter transient time constant is given by:

X o Xt 42
' eL “del L
=T (-3 € )

doe 6.23

T,
dze +p 2

xqe}: *desx er

If I(V is the gain of the fuli-wave ré;tifier; defined as the ratio
of the d.c. output voltage of the rectifier to the a.c. effective
Toad voltage per phase Eae’ the gain of the exciter-rectifier
system is;:
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E 7 7
ooy & qer K 6.24

E eo v
fe (xdez xqe}: * rﬁz)

The overall gain of the exciter-rectifier-generator system
is therefore

Ea _ Ze quz Z Zqz i
Es. Keo Kv K 0 =6
fe 9 +r

-
(xdez xqez ez ) (xdz xqz z

6.25

The overall exciter-rectifier-generator transfer function is
obtained by including the transient time constants of the generator
and the exciter from equations 6.16g and 6.23. This gives

Ea(S)' B e ' 6.26
rel®) (14 5Ty )00 + 5(T4,)¢)

It is found from the detailed model of the exciter-rectifier-
generator discussed in Chapter 5 that themode of operation of the
rectifier and hence K, is not constant {as is under steady-state
condition) during the transient following the application or rejec-
tion of a large generator load. Therefore use of equation 6.26 to
obtain the transient response of the system for large load transients
is grossly in error. However when small-loads are applied to or
taken from the terminals of the generator, the mode of operation
" of the rectifier is not substantially altered, and therefore under
these conditions equation 6.26 can be used with confidence to predict
the transient response. '

Furthermore equation 6.26 can be used to study the transient
response of the generdtor with or without load, following a change
in the exciter field voltage, as under this condition the mode of
operation of the rectifier does not change substantially from that
during steady-state operational condition. The gain of the exciter-
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rectifier-generator as given by equation 6.25 is very useful, as
the effect of the changes in the generator loading can be easily
seen as changes in the load impedance factor (Z Z /( X dg q +r 2))
of the generator. ‘Assuming the resistance of the generator f1e1d
winding remains constant (constant temperature of the field winding),
the a.c. load as seen by the exciter remains constant, and hence
(Z, quz/(xdez Xgez * rezz)) in equation 6.25 is also constant.
Therefore the simplified form of this equation

Ea = qz X constant 6.27

2
fe (xdZ qu +rs )

can be used to calculate the exciter field voltage for different
loads applied at the generator terminals. Comparison between the
measured and the calculated exciter field current for different
steady-state loads applied at the generator terminals while main-
taining rated terminal voltage are given in Table 6.1,

Load applied to the |- Measured Value Calculated Value of
generator terminals of I_ , A I.. . A
fe fe
(p.u)
Open circuit . 0.848 0.872
1 p.u. 0.75 p.f. 1.915 1.99%
1.5 p.u. 0.75 p.f. 2.760 ' 2.630
TABLE 6.1

Comparison of measured and predicted values of the exciter field
current given in TaB]e 6.1 shows that equations 6.25 and 6.27 can
be used to predict the exciter field current accurately over a w1de
range of va]ues of generator loads.
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6.2 The Effect of Changing the Reactance Load Factor and the

Generator Field Winding Resistance on the Performance of
the Exciter-Rectifier

6.2.1 The Effect of Changing the Reactance Load Factor

The performance of the exciter-rectifier for different values
of the reactance ioad factor (Xc/Rf) were obtained using the
rectifier operation equations of Chapter 5. The results obtained
are as given in Table 6.2.

The changes in the voltage gain KV and the current gain Kc
with changes in (Xc/Rf) are given in Figure 6.1. The current gain
KC is defined as

K = d.c. output current of the rectifier 6.28
¢ r.m.s. value of the fundamental frequency current

It can be seen that as (xc/Rf) increases and the operation moves

into modes II and IIl, there is a sharp fall in Kv' ‘Accompanying
tiis shift is an increase in the effective power factor angle be

of the load as shown in Figure 6.2, due to the increase in the reac-
itive cemponent Xe compared with the resistive component Re. The
terms X /P and R /Rf are also shown asa function of reactance lcad .
factor 1n Flgure 6.2 to show this increase in the reactive component
X compared with the resistive component R

6.2.2 The Effect of Chang1ng the Generator Field Nlnd1ng
Resistance

The optimum operating point of the excifer;rectifier system
is when it is delivering maximum power to the generator field winding
per unit exciter field current. Under this condition, the generator
. field winding m.m.f. and hence the flux density in the generator air-
gap is maximum. This can be proved as follows. |

The resistance of the generator field winding Rf is
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6.29

|

kel

o
—h
p—

where p is the resistivity of copper, Le is the mean length of
turn, P the number of poles, Nf the number of turns per pole, ag
the cross-section area of conductor and Af the total copper cross-
section area of the coil of the generator field winding.

If I is the generator field winding current, Pf the total
power supplied to the generator field winding is

plfP )
£ Re = —— (Ne 1g)

o
I}
—
]
3
n

o )
cons tant x (Nf If) ‘ 6.30

It can be seen from equation 5.30 that Nf If, the m.m.f. of the
generator field winding per pol2 is maximum when Pf is maximum.

The optimum operating point of the exciter-rectifier system of
the 2130 generator unit was found by varying the resistance of the.

generator field winding while maintaining constant the parameters

Xde’ X Xde . XC of the exciter.

ge’

In terms of the exciter field current, the generator field
current 1is : -

L 2 (Pe Nfe kfe) o Zqex K¢
3 (N K) * “ade”
w'e

: } 6.31
Ife

: +
Xdes xqez . ex

and tﬁe output power of the exciter-rectifier Pf is
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f If 6.32

As Rf is decreased from the nominal 1.161 cohms to 0.00926 ohms,

the mode of operation of the exciter-rectifier changes from mode I
to mode II and III. The variations of Xe, Re’ If/Ife’ Ef/Ife and
Pf/Ifez with the resuiting changes in XC/Rf are shown in Figure 6.3,
and the important intermediate results of the calculations are

given in Tables 6.3(a) and 6.3(b).

It will be seen from both Figures 6.1 and 6.3 that the maxi-
mum voltage gain KV and the maximum power transfer to the generator
field windings per unit exciter field current (Pf/Ifez) are obtained
by operation of the exciter-rectifier in mode I.

6.3 Discussion and Comments

The transfer function of the complete exciter-rectifier-
generator system is derived in terms of the parameters of the system
that are usually available from the manufacturers. -A useful advan-
tage of an apprecach using the transfer functions is that it enables
the effect of a Tucd applizd to the generator terminals to be iden-
tified with the correspondiing exciter field current required to
maintain rated output voltage. The lcad impedance factor of the
generator can be used to determine the effect of both the Toad and
the load power factor on the gain of the generator. The effect of
the rectifier load on the exciter is reduced to an effective a.c. .
Toad applied to its terminals, which is a function of the reactance
load factor. This enables the rectifier load to be represented in the
same form as the generator. ‘

The effect of changing the operation of the exciter-rectifier
system by changing the reactance load factor and the main generator
field ,resistance are invéstigated to show that there is an optimum,
operating point for the exciter-rectifier system used on the 3-stage

“generator unit in mode I.
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The transfer function of 'the exciter-rectifier-generator
system is used to predict the exciter field current for a wide
range of loads applied to the generator, as given in Table 6.1.
It is shown that the predictions are very close to the actual
values of exciter field current obtained from tests on the
system. '



X 4
C A e
Mode TQ? o | u cbe KV Kc E ﬁ;
{RLF)

I 0 0 0 0 2.34 1.2825 0 0.5483
Boundary 1 w9 0 60 -39.3° | 1.7544 | 1.3236 0.333 |  0.7545
?‘I’H’I“I‘?W /3 30 60 - -59.90 | 1.0129 1.4837 1.309 1.4648

111 4.862 - 30 90 -77.5° [ .6 271 1.518 7.636 5.593

111 o 30 120 . -900 0 1.600 e w0

Table 6.2

THE EFFECT OF RLF ON EXCITER-RECTIFIER CHARACTERISTICS

g9l
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Re X /Re a W Mode |X /R Xe |Re/Re
1.161 |0.0388 0o | 21.80 I {0.142010.166 |0.5528 | 0.6418
0.775 0.0582 0 | 26.50 I |0.1764|0.1365 |0.555 | 0.4296
0.387 |0.1163 0 | 36.90 I |0.2550| 0.09865{0.5613 | 0.2172
0.129 }0.349] 0 | 600 I-11 |0.4779|0.0616 [0.5839 | 0.0753
Boundary
0.0430 {1.0472 | 30 | 60° I1-111 [1.2673 ) 0.0545 {0.7346 | 0.0316
Boundary
0.00926|4.8618 | 30 | 900 III |5.46 | 0.0506 [1.2115{ 0.0112
Table 6.3(2) EFFECT OF VARYING GENERATOR FIELD RESISTANCE ON
EXCITER-RECTIFIER CHARACTERISTICS
& M Le/lge Ee/lfe Pellee’
0 21.80 14.90. 17.30 258
0 26.50 19.50 115.09 294
0 36.90 27.49 10.64 292
0 609 37.02 4.78 177
30 600 4456 1.92 86
30 900 " 47.05 0.436 20.5

T~ble 6.3(b) EFFECT OF VARYING GENERATOR FIELD RESISTANGE ON
EXCITER-RECTIFIER CHARACTERISTICS
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CHAPTER 7

INDUCTION MOTOR AS AN IMPACT LOAD APPLIED
TO THE REGULATED GENERATOR UNIT

The study of induction motors as an impact load on a
regulated 3-stage generator unit is very important in the aircraft
situation as there are numerous induction motors used to drive
air conditioning fans, cooling fans for electronic equipment,
pumps etc. Due to the large starting current of an induction
motor compared with its full load current, it is important to be
able to predict the voltage gip and the settling time when an
induction motor is applied to the terminals of the regulated
generator unit. A phase model of the induction motor is derived
in this chapter and Kron's tensor methods are used to obtain the
resultant voltage, impedance and current tensors when the motor
is connected to the generator. The characteristics of induction
motors switched on to an infinite bus supply and as a load applied
to the regulated generator unit are both discussed.

7.1 Modelling of the Induction Motor in Phase Quantities

A number of authors 59-61 have derived and used a phase model
analysis to study the transients an induction motor experiences when
started.direct-on-1ine with either simultaneous or non-simultaneous
switching. Further, the induction motor/synchronous generator combi- -
nation model in phase quantities has been described by Snider and’
Smith 62 o '

The phase model representation of the induction motor is shown
-in Figure 7.1 with corresponding primitive branch network represen-
tation being given in Figure 7.2. The voltage tensor [me] and the
current tensor [Ipm] for the primitive network of the motor by inspec-
tion are: ' '

[Vy Vp Y3 0 0 0], 7.1

1)

Dm]
[Ipm] i} [Il .13 la Ib Ic]t - 7.2
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The impedance tensors [me], [Rpm]’ [me], [Gpm] for the primitive
network of the motor are given by equations 7.3, 7.4, 7.5 and
7.6 respectively

Zpad =t Z01) Z12 VA3 0 Ba [ 2 | Z1c
vt Zoo | Z23 | Zoa | Zab | Zoc
I31] Z32 {233 | I35 {Z3p | Z3¢ )
7.3
Za] Za2 Za3 Zaa Zab Zac
1| %2 | %3 | %ba | Zob | Zbe
Zc] Zc2 Zc3 an Zcb ch
Rt =[ R | 0 o o [o]o
0 R 10 Lo oo
0 o | Rgl 0 o | o
7.4
0 0 |0 | Rgfo | o
0 0 |0 |0 | R |0
0 o [ oo o | g




L g M Mcoso Mcos(6-21/3) | Mcos(6+2n/3)
-MS LS -MS | Mcos(e.+2n/3) Mcos(8) Mcos{0-2n/3)
=M, M, Le Mcos(6-2m/3) | Mcos(6+2n/3) Mcose

Mcosb Mcos(8+21/3) | Mcos(8-2r/3) Ly M Mo
Mcos(@-‘Zﬁ/B) | Moose " Mcos(8+21/3) Mg Lo Mg
Mcos(8+2m/3) Mcos (6-2m/3) Mcos® -MR Mo Ln

7.5

€Ll



it

-Msin(e-2n/3)

0 0 0 -Msing -Msin{6-2n/3) -Msin(©+2n/3)
0 0 -0 -Msin{@+2n/3) | -Msing -Msin{e-27/3)
0 0 - 0 -Msin{6-2n/3) | -Msin(8+27n/3) -Msing
~Msin6 Msin(e+25/3) |  -Msin(e-2n/3) 0 0 0
-Msin(8-2n/3) -Msin® -Msin(g+2n/3) 0 0 0
—Msin{o+2n/3) Msing 0 0 0

7.6
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If the voltage source has a source impedance as shown in
Figure 7.3, the primitive branch network representation of the
source is as in Figure 7.4 and the corresponding volitage,
current, impedance tensors are

el = [Vg Yy Vg, 7.7
[Ips] = tp 1y Igly
1
(Zpsl =| 2 0 0
0 ZY 0 7.9
0 0 | I

The primitive voltage, current and impedance tensors for the
composite network of Figures 7.3 and 7.5 are given by equations
7.10, 7.11 and 7.12 respectively.

[V)] = [V Vy V5 000000 | 7.10
(1] = g Iy Ig Iy 1, I3 1 Ty Tely, 7.11
(2] = | [2,] 0
7.12
0 (2]
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Similarly g .
k1= | L) | o
7.13
[0] (L)
G = 0 0
(6] [0] [0] -
01 | [Gyp]
Ryl = | Ryl | [0]
7.15
01 | Ry

Since the actual number of independent currents [In}dependson the inter-
connection of the branches, the voltage, current and impedance

tensors are transformed to obtain the corresponding tensors for

the connected network before they are used for numerical integra-

tion (as discussed in Chapter 3). For the 3-wire connection of

Figure 7.5 the transformétion_tensor'[C] is .

_[Ip] = [C][In] ' : _ 7.16



where

€] =

177

1 0 0 0
0 1 0 0
-1 -1 0 0
1 0 0 0
0 1 0 0
-1 -1 0 0
0 0 1 0
0 0 0 1
0 0 -1 ~1

The impedance tensor [Zn] for the connected network is

[z ]

1]

(€], (7] [C]

Z

rR*Zp Lgtlio7lap | 413723, L1y L3
Ly | 43t Lotz | T4t
“Ly3ti33
Log+lo L3 | Lyt 4527134 Zop L3y
logtlsy | *Lyp iz “Lyetlze | “Ipctlae

~Ly3*i33 |

Za]'zc] Lao7le2 Zaa'zca Zab'zcb
_Za3+zc3 _Za3+zc3 -zac+zcc 'Zac+zcc
Zh172c1 Zh2c2 Zha " ca ZhpZeb
"Zb3+zc3 _Zb3+zc3 _Zbc+ztc -Zbc+zcc
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The [Ln], [Gn], [Rn] tensors are obtained by substituting values
of L, G, R in place of Z in equation 7.17. The voltage tensor

[VJ is

7.18

The differential equation of the interconnected network, in a
form suitable for numerical integration, to obtain [In] is

L) = 17 (1] ~(0R] + (8,1} (L1, 1) 7.19

ATl the branch currents of the network of Figure 7.5 can be found
using equation 7.16 at each time step during numerical integration
of equation 7.19. '

If the neutral df—the.supp1y is connected to the star point
~ of the generator stator winding, the iqdependent currents are as
shown in Figure 7.3, and the transformation tensor [C] is

(€1 =

7.20

ofj-jo|lojoloc|o|o
—lo|loje|o|lolojo

olololo|~|ojo|—=|(o

1
—
1
—_

Olo|lojo|o|—m|Oolo]|—

olo|lol— |l — |0 |O
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The corresponding impedance tensor [Z ] given by [Cl¢ [Zp][C] . }

is {
{
[Znd =} Rty | fi 213 | hathic| fiwhe
25 Lytloy | Iyg Loa~loc | Ton~Ipe
I3 Z3; Zgtlzs | Z35723¢ | Z3p~I3
2a]-zd ZaZ_ZCZ za3'Zc3 Zaa'zca Zab_zcb
“Lyctlee "Zac+zcc
Zor %1 ] Zo27Ze2 ) %373 ZhaZea | Zab b
“Lpetlee | “Tpctiec

7.21

The phase model parameters for the induction motor were obtained
from the corresponding equivalent circuit parameters as discussed

in Appendix A1l . The detajls of the induction motor used for
modelling are also given in Appendix A1l . A flow diagram of the
computer program for the direct-on-line starting of induction motors
is given in Figure 7.6, '

As a 3-phase 400 Hz supply.was not available for testing
direct-on-line starting conditions, the predicted results are
civen mére]y to illustrate that the model developed can be used
satisfactorily to study induction motor transients. The inertia
of the induction motor rotor was reduced to 1/4 of the actual .
inertia to enable the complete induction motor transient period
to be studied without excessive computing time. To simulate the
characteristics of the induction motor on load, a fan with the
mechanical load torque proportional to the square of the rotational
speed was applied to the induction motor shaft. The equations of the
simulated load torqué of the fan and the electromagnetic torque of
the induction motor are given in Appendix Al2 . Figures 7.7 to 7.11
show the induction motor transient characteristics under no load

condition and with the fan load when switched on to a balanced 3-phase
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supply. Figure 7.7 shows the transient torque v/s slip charac-
teristics of the induction motor and the fan load. Figure 7.8
shows the induction motor speed build up under no load condition
and with the fan load. Figure 7.9 shows the transient torque ?
v/s time characteristic of the induction motor under no load ’
condition and with the fan load. Figures 7.10 and 7.11 show the
transient induction motor stator phase current I1 and the rotor
phase current Ia respectively. The induction motor transients
under unbalanced supply voltages and non-simultaneous switching
on to the supply can also be studied using the computer program
described by the flow diagram given in Figure 7.6,

7.2 Modelling of Induction Motor/Synchrbnous Generator Combi-
nation

A schematic representation of the induction motor when connec-
ted to the synchronous generator is shown in Figure 7.12, based on
the phase model of the synchronous generator given in Chapter 1
and on the induction motor equations 7.1 to 7.6. Inspection of
Figure 7.12 enables the primftive network tensors [Vp], [Ip}, [Zp]
for the synchronous-generator/induction motor combinaticn to be
written down as

H

[V [VF cooogoo000OO 0]t 7.22

[1 I IB I1 I, 13 Ia Ib_I 7.23

Y 1y

ol = Up IpIg Ig
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Fr | Zro| Zrq| Zrr | Gyl Zre
=0
Lor [ Zon| Zoo} Zor | Zov| Zos
=0
foF | “on | “00 | Zor | Zav| Zos
=0|=20
Zor | Zro| Zro| R ZrY! Zrs
ove | Bvo| v | BvR) vy s
Zer | Zap) Zaq| Zer | Zev| Zss i
Il L2 43 ba | Zp | e
Lo 1 Zo2 | Zo3| Boa | Zon | Zoc
2311 2321 Z33| 233 | Z3p | Z3c
Za] ZaZ Za3 2aa Zab ac
Zov{ 202 Zb3| Zha | Zob | Zbe
Zc] Zc2 z an Zcb ce

c3

7.24
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The transformation tensor [C] for the generator-induction motor
combination is

€i=( 1| o oo |o 0 0
o |1 o |[o ]o 0 0
o fo |1 ]0o o 0 0
o | o o |1 {o 0 0
o | o {o | o |1 0 0
o jJo fo -1 ] o 0 7.25
o | o o |1 |o 0 0
o | o o | o |- 0 0
o | o o |1 {1 0 0
o} o o |o |o 1 0
o J]o o .o |o 0 1
o jo oo o |1 |-

The impedance tensor for the connected network [Z.] is
~ given by [C]t [Zp][C], and the resultant inductance tensor
[Lh] and resistance tensor [Rn] as obtained by this technique
. are given by equations 7.26 and 7.27 respectively. The [Gn]

d
tensor may be found from = [L 1.



Ler Lep 0 Ler-Lrg Ley-Leg 0 0
Lep Loo 0 " Lor-lps Loy~Lps 0 0
0 0 Lg FQR'LQB Lor~Los 0 0 ‘
[L.1 = : _ _ a4 . _ _
n} Lep~2lpgtegg [y ley-tre™tes | L3a~l1a L3p-Lip 7.26
“rtre | for7tos | fortes | L, L ~LoyLyatl WL L Ly L
- 1172L13t 33 15t327 3t a3 1¢h3c 1c7bac
o Ley-laytra*lep |Lyy-2lgy*ap L3a*loc Lap*lac
“rv7tes | tovThos | boves Ly mlomeleotlon | #Lan-2L 4L L -L Lo L
127L3p7Lyattaz|thop2lpatl g 2a"l3c 2b"l3¢
L -2t L, -L
. aa ac ab "ac
0 0 0 bsahiattichae Faattectaatae | L oa
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R = Rep | O 0 0 0 . 0 0
[
0 RDD 0 0 0 0 )
0
0 Rag 0 0 0 0
R_+R
o o o BB R, 0 0
+R{+R4
R,+R
0 0 | Rg#Ry | Lo O 0
+R2+R3
0 0 0 0 Ra+RC Rc
0 0 0 0 RC Rb+Rc

7.27

also [Vy] = [C]. [V,

o - 0000 0] 7.28

The differential equations.of the generator/induction motor
combination in the form for solution by a numerical integration
method are.the same as equation 7.19, provided that. the correct
voltage, current and impedance tensors derived for the combination
are used.
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7.3 Induction Motor as an Impact Load Applied to the Regulated
" 3-Stage Generator Unit

A block diagram for the fegu]ated 3-stage generator unit with
an induction motor load is given in Figure 7.13. The method of
analysis s very similar to that discussed in Chapter 5, where
the model of the regulated generator unit was derived for a passive
load comprising an inductance in series with a resistor. A flow
diagram of the program used for calculating the transients on
sudden application of the induction motor load to the regulated
3-stage generator is given in Figure 7.14.

The steps in the solution of the transients at each time inter-
val are:

a) The numerical solution of the differential equation 7.19
together with the electro-mechanical equations of the induc-
tion motor given in Appendix AlZ2

b) The calculation of the generator terminal voltage for use in
deriving the automatic voltage regulator response.

¢) The soluti.. ot tha differential equations for the a.v.r.
discussed in Chapter &, to obtain the voltage appliied to the
‘exciter field winding.

d) The solution of the exciter differential equations and the
rectifier response to give the new value of the main generator
field voltage. '

Figure-7.15 shows a comparison between the measured and the
predicfed phase voltage transient on application of the induction
" motor load, for the correct value of rotor inertia. Figure 7.16
shows a comparison between the measured and the predicted phase
currents of the machines and Figure 7.17 shows the transient
electromagnetic torque of the induction motor. [t was not possible
to measure the transient torque on the motor shaft as the special
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equipment that is required w?s nof‘availab]e. Howevér, since the
phase voltage and currents can be fairly accurately predicted,

it is felt that the resultant torque predictions are close to

the actual values. Figure 7.18 shows the generator field current
transient, which is useful to the system design engineer as it

shows the effective responseof the regulator, and the exciter

when the induction motor is switched on to the generator terminals. .
- Figure 7.19 shows a comparison between the measured and predicted
exciter field current transients.

7.4 Conclusion and Discussions

The phase model of the induction motor described in this
chapter can be used to predict the transients when the motor is
switched on to a 3-phase supply. The transient characteristics
of the induction motor when switched on to a 3-phase supply,
under no load and a simulated fan load condition are given to
illustrate the usefulness of a phase model of the motor for such
studies. The phase mo&els of the induction motor, and the
synchronous generator described in Chapter 2, are cumbined using
Kron's tensor methods to obtain the differential ecuaiions for a
synchronous-generator/induction—motor combination which aire sub-
~ sequently used in a study of the transients following application
of the induction motor as an impact load to the regulated generator
unit. Close agreement between the measured and predicted transients
for the regulated generator unit is obtained, therefore the model of
the regulated generator/induction-motor combination can be used
with confidence to predict the voltage dip and the settling time
of the generator terminal voltages, and the transient currents of
the -machines. The'predicted transient oscillatory torque of the
induction motor is useful for mechanical design of the induction
motor/load coupling. The regulated generator/induction-motor model
can also be used to adjust.the parameters of the a.v.r. for design
purposes, to maintain the maximum voltage dip and the settling time
of the generator terminal voltages within a specified Timit when the
induction motor is applied to‘the generator terminals.
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CHAPTER 8

THE MATHEMATICAL MODELLING OF
PERMANENT MAGNET GENERATORS

This chapter is concerned with the mathematical modelling
of the permanent magnet generator (PMG) used on the 3-stage
generator unit. The PMG supplies the power need of the automatic voi-
tage regulator (a.v.r) and the other electronic circuits forming
the generator control unit, as well as supplying field current to
the main exciter,

Since the PMG is the prime source of electrical power in the
unit, it is necessary to know its characteristics both during
steady-state operation and following the application of a Toad.

The electronic circuits in the a.v.r. and the exciter field wind-

ing both require a d.c. voltage supply, which is obtained from

. full-wave rectification of the PMG output. The mathematical model
of the PMG with its output rectifier was therefore developed as
described in this chapter, to obtain a complete :~del for the first-
stage of the generator unit. The PMG is situai.:u at the non-drive
end of the generator, as shown in photograph Al.1 (Appendix 1),
adjacent to the main stage. Full design details are given in
Appendix (A1) and the constructional details are given in Figure
8.1. The mathematical modelling of the PMG is an extension of the
main generator model discussed in Chapter 2 to include the charac-
teristics of the rotor magnets. The three armature phase windings
are shown in Figure 8.2(;nd the rotor is represented as a rotating
"magnet which induces voltages in the armature windings as it rotates:>

8.1 Calculation of Open Circuit Voltage of PMG from Tests at

~ Standstill ,

‘ (The open-circuit voltage output of the PMG can be calculated °
from the measurement of the permanent magnet rotor flux Iinking a
phase winding.i)Since the fluxmeter measures the change in flux
tinkage of a winding connected to it, it was connected across phase A
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of the PMG and the rotor magnet turned from 98° to -240° electri-
cal (2 pole pitches} to get the change in £1ux linkages with phase
A over a cycle of PMG output. The results of the measurement are
shown in Figure 8.3. ’

The open circuit voltage output of a phase winding is

Vop = 4.44 £ NS

Substituting the value of N $ from Figure 8.2 and for f gives

V. =35V

ph

or after rectification assuming no volt-drop in the diodes

Vbc = 2.34 Vph = 82,0V
It was found that the d.c. output voltage of the PMG with

a full-wave rectifier and 1cad resistor of 100 ohms when running

at 12,000 rpm was 79.5V. (ﬁence measurements of the total flux

linkages with the phase winding can be used to determine the open

circuit voltage wjthout the need for regecion b rated speed;)

8.2 Measurement of the PMG Inductances

The self inductance of the armature phase was measured at
different electrical angles (ea) by applying an alternating voltage
to the terminals and measuring the input power and current. 'As

“there is neither a field nor any damper windings on the magnet rotor,
the inductance measured is that of the phase winding.

Similarly, the mutual inductance between the phases was meaéured
by applying an alternating current of frequency w to phase A and
measuring the voltage VBN induced in phase B. The mutual inductance
Lab between phases A and B is

V - .
_ BN 1 ,
ab T T, cw _ o8

The angular variations of the armature phase A self inductsnce Lag and the
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mutual inductance L. 2re shown in Figure 8.4.

To obtain a simplified inductance tensor [LABC]’ harmonic
inductance terms of the order 46 and abovg were neglected,
resulting in equation 8.2 (see overleaf).

The corresponding rotational inductance tensor [GABC] is
given by equation 8.3 (see overleaf),

. d
where [GABC] = It [LABC] 8.4

8.3 Model of the PMG on Rectifier Load

The differential equations for the PMG on a rectifier load
are obtained in a similar way to that discussed in Chapter 3.
The primitive mesh network for Figure 8.5a are given in Figure
8.5b, with the corresponding equations being

where . . ‘
V] = [E, Ey £, 0000000, . 8.6
(o) = [0 Iy Io 1) Iny Ipp Ing Ipg Ipg lpgly 8.7

and [Zp] is given by equation 8.8 (page 209.

Figure 8.6 shows the independent current variables of the
network (assuming all diodes conducting). The transformation
_tensor [C]] relating the independent CUfrents to the primitive
mesh currents is

(L) = (G0 89



laged =] Laa Lab .Lac =| A, *+ A, cos (20,) -B, + B, cos‘(zea'- 2m/3) | -B, + B, cos (26, - 4m/3)
| Lba l'bb Lbc —B0 +'82 cos (26a -2n/3) | - AO + A2 cos (Zaa - 4n/3) -Bo + 32 cos (2ea)
_Lca | ch Lcc -B0 + 82 cos (26a - 47/3) -B0 + 82 cos (Zea) ‘i‘!go + A2 cos (Zea - 2n/3)
8.2
G, a Gab- G, .. 2R, w sin (20,) -2 B, w sin (26, - 2n/3) -2 B, w sin (26, - 4n/3)
Goa | G | Ghe -2, w sin (26~ 2m/3) -2 A, w Sin (20, - 4;r/3) -2 B, m sin (26,)
Gca ,'(‘;cb Gcc -282 w sin (2.8a - 4%/c) -2 82 w sin (2ea) -2 AZ w Sin (:29a - 27n/3)

8.3.

80¢
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where
‘[c1] - | - 0 0 -1 0
C -] 0 0 -1
1 1 0 1 i
! 1 1 1 0 0
1 0 0 0 0
8.10
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
-1 -1 -1 -1 -1
and
[In] = [I1 12 13 14 15]t 8.11
The ‘'voltage tensor [vﬁ] is
Vol =[Gl V1 : 8.12

and the impedance tensor [Zn] is given by equation 8,13 (sée
overleaf). The resultant equation for the network is

V] = (231, S 8.14

Since the rectifier diodes are not all conducting at any ﬁarticu1ar
instant, equation 8.14 cannot be used to obtain the required network
currents. A transformation tensor [CZ] is therefore obtained as

described in Chapter 3, relating the independent currents I n to

the actual currents T m flowing in the network. The transformation
tensor [Cz] depends on the state of the system at any particular instant -
in time (i.e. the voltage across a diode or the current flowing

through it). -



Zaa'zzac+zcc zab'zac'zbc Zaa-zzac"'zcc Zab'zac'zbc

+ZL + ch + ZL _+ ch
Zan Zac Lhe Zyp=2Lpc* e Zab T Zac be-ZZbc+ch
+ ch + ZL + ZL + ch

ZL ZL 0 0
Zaa;zzacﬂcc Zab“zac'zbc Zaa'zzac+zcc Zab'zac'zbc
+ ZCC + ZCC

Zab_zac'zbc be'zzbc+zcc Zab'zbc-zac be'zzbc+zcc
f Zee t L,
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(.1 = (C100,] 8.15

Therefore, following the method of analysis of Chapter 3

(L) = [€q10C,1 ) 8.16
and if [C] = [C{][C,] 8.17
(Zg] = €1 [Z,10C ) 8.18
V] = [C1¢ (V] 89

The resulting differential equation is

-1 '
[PIp] = [yl (V] - ((Ry) + (6131 1) 8.20

where p = 3%

Equation 8.20 may be numerically integrated to obtain [I]m and hence
[I]n and [I]p. The diode currents are calculated at each time step
from [I]p and the corresponding diode voltages are obtained from

v =1, -, m, 8.21

where the [V] tensor takes the form

= Y1 = Vis
Yoo~ Vps
o3~ Vps| 8.22
You = Ve
Ty -

D6
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If D6 is conducting, Vpc s zero and all the other diode voltages
can be obtained from [V]. Similarly if D6 is not conducting,

but some other diode, say D2 is, VDZ is zero and V.. can be

D6
calculated from [V], which enables the voltages across all the

other diodes to be calculated.

If a non-conducting diode has a positive voltage across it,
or if the current through a conducting diode is negative, the
point of discontinuity is calculated by ﬁnterpolation and the
diode voltages and current variables are updated to this point.

A new transformation tensor {CZ] is computed relating the indepen-
dent currents [I ] to the actual currents [1,,] flowing in the net-
work, which depend on the diodes in ON (conducting) state. A

flow diagram for the PMG computer program is given in Fiqure 8.7.

8.4 Calculation of thé PMG Phase Voltages

It is evident from the recording of the open-circuit phase
winding voltage given in Figure 8.8, that it has an appreciabie
harmonic content. However to simplify the model of the PMG., if
will be assumed that the voltages generated in the phase windings
are sinusoida). 1t is found from comparison of the computed and
the measured d.c. output voltage of the PMG on rectifier Toad as
shown in Figure 8.9, that the contribution of the harmonic voltages
to the d.c. output voltage is less than 5% of that due .to the funda-

mental frequency voltage. Mainer 63

has derived the phasor dia-
gram for the PMG, for the steady-state analysis under balanced Toad
conditions. He has shown that a PMG can be regafded as equivalent to
a conventional alternator, with a constant field m.m.f., operating
in the triangie COD shown in Figure 8.10. (};;j§_fggggﬁjg;gngg}isg_ﬂ,
that point D is much closer to B than is shown in the figure, so that
| even when a short circuit is applied to the generator terminals and
removed, the recoil Tine remains the same as under normal operating
_conditipnﬁ) This was confirmed to be the case for the PMG investi-
gated, since when a low resistance load (less than 0.50/phase)
was applfed and rembved,_the output voltage recovered to its original
open-circuit vo1tage.aiwhen the Eﬂﬁ,is on load, and the ‘armature
m.m.f. has a demagnetising component, the operating point (determined



214

by the working permeance line and the recoil line) moves from E
towards B. The flux density in the magnet attributable to the
airgap flux (Bmg) decreases, while that attributdble to the
leakage flux (Bmz) increases as the operating point shifts from
E towards B. This fundamental characteristic of the PMG is used
in the phase model representation, in which the operating point of
the permanent magnet and the peak airgap flux.are calculated at
each time step by determining the demagnetising m.m.f. due to the
armature currents. The generated phase voltages are then calcu-
lated from the value of airgap flux density.

The demagnetising m.m.f. Fds in the d-axis due to the arma-
ture currents is '

ds = VK, (i, cos B, + 1, cos 8, + 1..cos ec) 8.23

The m.n.f. Fqs in the g-axis due to the armature currents
is

FqS

il

N K, (1a sin e, + iy sin 8y + i sin ec) 8.24

The demagnetising m.m-f. per pole is Fyo/Ps where P is the number
of poles. The airgap flux density is calculated from_the B/H
characteristic and the permeancédiines for Alcomax III using the
calculated demagnetising m.m.f.

The voltage generated in the armature phase is

_dx dé .
e =g - VK (G _ : R
Er.m.s =4.44 f N Kw ¢p 8.26
E=4fB NK.1.T 8.27

The instantaneous generated armature voltages are:
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gl = 4FNLKT. ég sin (e,)
Ep ég sin (o) 8.28
EC i Eg sin;kec)
where:
8, =8, - 2n/3
6. =8, - 4n/3

The voltage tensor [Vn] is calculated at each time step using equa-
tion 8.12 and the values of Ea’ Eb and Ec obtained from equation
8.28, and [Vm] is calculated using equation 8.19, for use in the
numerical integration of equation 8.20.

8.5 Comparison Between the Calculated and the Measured Performance
of PMG on Rectifier Load

The measured and predicted steady-state characteristics of the
PMG on a purely resistive load are given in Figure 8.9. Figure 8.17
shows the predicted phase voltage V following appiication of 58
{ the normal magnitude of load resistance for 2130 PMG and 0.625 @
resistive load. The corresponding measured voltage waveforms are
given in Fiqures 8.12(a), (b) respectively which also show the
measured armature phase current waveforms. The predicted phase .
current and the d.c. output current on application of the resistive
loads are given in Figures 8.13 and 8.14 respectively. The corres-
ponding measured wavefroms are giveﬁ in Figure 8.15(a) and (b) res-
pectively.

Predicted waveforms of the reverse voltage across diode D1
are given in Figure 8.16, with the corresponding measured waveforms
beiﬁg given in Figures 8.17 (a), (b). These figures also show the
diode currents and these may be compared with the predicted diode
current waveforms given in Figure 8.18.
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It is possible to predict the copper loss in the phase
windings (and the total copper loss in all the windings) as the
program calculates the winding currents at each tiTe steps, as
shown in Figure 8.19. The predicted resultant airgap flux
density as a fraction of the airgap flux density on no load,
on application of resistive loads, is given in Figure 8.20.

Comparison of measured and predicted results shows that the
phase model developed for the PMG predicts accurately all its
major characteristics. From the machine designer's point of view,
this enables him to choose the correct rectifiers, machine size
etc. to optimise the design. The data predicted by the program
is also useful to the engineer designing the a.v.r., as it can
predict the regulation of the d.c. output voltage on application
of a load. -

Since the settling time of the generator terminal voltage
following application or rejection of a load is of the order of
30 ms to 45 ms, it is found that the steady-state characteristics
of the -PMG are sufficiently accurate for studying the regulated
generator transients. It can be seen from the measured and pre-
dicted transient response . on application of a 5@ resistive Toad
that the PMG response is very fast, as it is essentially steady
state after 0.25 ms, or one-tenth of a generator cycle. If the
load resistance is very low {0.625 ohms), the PMG output achieves
steady state after 1 ms which is still very short when compared
with the settling time following application of a 1 p.u. load to
the main generator terminals. of the order of 30 ms.

8.6 Conclusion

The phase voltage waveform shown in Figure 8.8 clearly
implies an airgap flux density distribution of the form

B.g = Bg] coso + Bg2 cos (26 + ¢2) + Bg3 cos (38 + ¢3) +

8.29
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For accurate predictions of the harmonic content of the
output voltage and the contribution of the harmonic voltages
in the phase windings to the d.c. output voltage, it is necessary
to include the harmonic voltages induced‘in the phase windings.
I[f the ripple voltage on the d.c. output voltage for resistive
load of 5 ohms, shown in Figure 8.21(a) is compared with the
phase voltage of Figure 8.12(a), it can be seen that the ripple
voltage can be accurately predicted if the harmonic voltages in
the phase windings are taken into account.Similarly, comparison
of the ripple voltage for a resistive load of 0.625 ohms, shown
in Figure 8.21(b) with the phase voltage of Figure 8.12(b),
show that the ripple voltage is directly dependengrphase voltage
waveform. Comparison of the ripple voltages for the two resistive
loads (Figures 8.21(a) and (b))} and the corresponding phase voltages
(Figures 8.12(a) and (b)) show that they are load dependent, which
implies that the harmonic coefficients of equation 8.29 depend on
the armature reaction and therefore for a very accurate model, it
would be necessary to take this into account.

Close examination of the diode currents of Figure 8.17{a) and
(b) show that these do not assume the reverse blocking state untii
the charges have redistributed inside the diode. A reverse current
flows. immediately before the diode assumes the blocking state, and
a more accurate representation would necessitate consideration of
the switching characteristics of the diode 64 Depending on the
circuit parameters, the amount of charge stored in the diode, and
its commutation behaviour, the cessation of reverse recovery
current may be very abrupt, in which case_the diode.is said to
snap off, or chop; conversely, the reverse ﬁecovery current may
deérease from its peak value at a slower rate of change, in which
case the reverse recovery current is said to tail off. In the
former case the very high di/dt in the circuit induces large commu-
tation voltage transients across the inductances in the path of the
reverse recovery current. This requires a diode of a sufficient '
reverse voltage rating. On the other hand, fhe tail-off type of
commutation behaviour may iead to large peak energy dissipation
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in the diode as the device assumes reverse voltage simultaneously
with the flow of significant reverse current.

Comparison of the measured and predicted performance of PMG
on rectifier load discussed in Section 8.5.shows that the model
described in this chapter is adequate for most practical pur-
poses. For a study of ripple voltages, it would be necessary to
include the harmonic coefficients in the airgap flux density
given by equation 8.29. Since the large reverse voltages induced
during commutation of diodes gives radic frequency emission of
power to the surrounding, it would be necessary to include the
switching characteristics of the diode for radio interference
studies.
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Figure 8.8 OPEN CIRCUIT PHASE VOLTAGE OF P.M.G.
(showing appreciable harmonic content.)
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Figure 8.21(a)
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CHAPTER 9

CALCULATION, OF PHASE MODEL PARAMETERS
FROM dgo AND DESIGN PARAMETERS

It is generally found that the synchronous generator manu-
facturers are able to provide either the dgo parameters or the
design parameters of the machines they supply, thus in advance
of any facility for measuring phase model parameters, it is
useful to be able to determine these parameters from the parameters
provided by the manufacturers. If no such parameters are available
from the manufacturers, the test procedures by which the dgo para-
meters of a synchronous generator may be determined-are well

known (652

In this chapter, formulae for calculating the induc-
tance coefficients required for a phase model are derived in terms
of (a) the dgo parameters and (b} the design parameters of the
machine. The conditions under which the dgo to phase model trans-
formation holds, as well as the assumptions inherent in a dego
model, are also discussed. The final part of this chapter shows
how the normalised polynomials which account for the saturation

in the d-axis (discussed in Chapter 2} are obtained from the open-

circuit characteristic of the generator.

9.1 Relationship Between the dgo Model and the ryb-Phase Model
Equations

The transformation of the 3-phase (r, y, b) windings into the
two windings (d and q) along the direct and quadrature axes respectively
is well known 2/ . It is arranged that the m.m.f. along the d-axis
due to the currents in the r, y, b phases (with N turns per phase}
is equal to the corresponding m.m.f. due to a current id flowing
in the fictitious d-axis winding of Nd turns and the m.m.f. due .to
the 3-phase currents in the r,y, b phases in the g-axis is equal
to the m.m.f. due to é current iq in the fictitious g-axis winding
of Nq turns. There is complete freedom of choice for the ratio of
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Nd/N and Nq/N, since both Nd and Nq cag assume any value provided
appropriate adjustments dare made to idfand iq respectively. It is
assumed in the transformation equations presented here, as it
simplifies subsequently derived transformationsg?

_ _ /3

With a_3-wire load connection, there are only two independent
armature phase current variables, and in a dgo model id and iq
are sufficient to determine the three phase currents. With a

4-wire load connection there are three independent armature current
variables and three variables in the dgo model are necessary for

complete correspondence.

The third component involved is the zero-sequence, which
produces no fundamental component in the spatial distribution of
m.m.f. in the airgap. It can be shown 57 that the transformation
tensor [C] relating the dqo currents to the phase currents shown
in Figure 9.1 is:

g iq Tol¢ = (€10, i, il 9.2
where
| cos 8. cos (er - 120) ‘ cos (6, + 120)
[C]=/6§3 -sin .. fsin (er - 120) -sin (er + 120) 5.3

N o | 1 1
vz 7z 7z
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also
= ]
cos 8, -sin o, 7
-I : by .u * iy -I
[€1 = = [Cl; = %%3 cos (8. - 120) | -sin (er - 120) %
cos (6. + 120) | -sin (6, + 120) -}?

[, 1.y 1.b]t = [C1g [y iq 1.o]'c
[vq Y Volt = [C10ve vy %1t
and [%~ vy Vb]t = [C]t [vd vq Vo]t

9.4
9.5

9.6

9.7

To obtain the ryb to dgo transformation of the impedance tensor,

consider the following equation

[VrbeDQ]t N

(Zeyorng) Mrybroglt

0.8

If this equation is part1t1oned with ryb and FDQ components, it

can be wr1tten as:

|
(2,5 2]
|

[ZX]t E[ZFDQ} [I

[Iryb]t

Foglt

- Substituting equations 9.5 and 9.7 in 9.9 gives

T
b — e e ] = et — e e e e
Vepglt 2} 12l || [Trpg)

9.9
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also
Vgqolt [€] | (03] {[C]y DVgeely
= _ 9.11
(englt 01 | [} | gl
Substituting equation 9.10 into equation 9.11
[Vaqolt [C1Zp 1 (€] | [CTIZG]|  |[lggolt
= 9,12
Vepglt (21 [Cly Zepgd | |Urpglt

The transformation equations for the impedance tensor [Zryb] is

(Zlgqe = [C11Z 1000, 9.13

It can also be proved that?7 :

[z = [C1y [Z4gdlC1 _ 9.14

ryb]

9.2 Transformat1on of the Inductance Tensor [Lryb] to [quo]

The 1nductance tensor [L bJ can take a number of forms, with
the most comnon]y used [L b] be1ng given by equation 9.15. Snider
and Srmth23 defined the 1nductances of the windings in terms of their
its d-axis and q- ax1s ~components as discussed in Chapter 2. If it is
assumed™ that the 3 factor discussed in Chapter 2 1is neg]1g1b1e, the
[L ryb] tensor defined in terms of the d and g axis.components is

given by equation 9,16, Transformation of the inductance tensor [Lryb]

* The dgo model assumes the third harmonic component in the space
distribution of armature m.m.f. to be zero. Therefore it 1is
necessary to assume X is zero to be “able to derive the ryb para-

: - T ‘ .
meters from dgo parameters.
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g0 ) a 9 ) go Mecos(6,-120)| My cos(8 -120) Mygsin(®,-120)
+L92c052(er 600) +ngc052(e' °00) +L92c052(8r)
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ryb]

- 3 (M)

- (M +MQ)

£ (M My ) cos2(e, -60°) ‘3 (MD-MQ)c052(6r+60°)
- i (MpHhy) Lyt Ly-L - 3 (My*hy)
02+ 24 cos2(e -1209)
+ 3 (MD“Mq)CUSZ(Gr'GOO) + 3 (MM )cosZB
- 3 (MM = 1 (MM Lotk  Lo-L
.i (M) b (Mp#y) 02 Q, 02 Q cos2(6_+120°)

+ 5_(MD-MQ)c052(8r+60°)

+ 4 (MD-MQ)COSZBr

9.16

vre
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to ohtain [quo] as given by equation 9.17 is perforied as in Appendix
A3

Lol = [C1ILp 1 ICT 9.17
gives
[quo] = Ld 0 0
0 L 0
q
0 0 L0 .
= 1Ly 0 0
+ 3 (L)
Z ‘\"go g2
0 La] 0 9.18
i 3
t (Lgo-ng)
0 0 La1J

Therefore from equation (9.18)

. 3, :
Ld = LaI + (Lgo + ng) | 9.19(a)
_ 3 |
Ly Lyt (g - L) 9.19(b)
Ly = Ly 9.19(c)
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Manipulation of equations 9.19(a), (b) and (c) gives:

Lyo = = = A ' 9.20(a)

X, - X X, - X
_d _ "ad aqg 9.20(b)
Lg2 = 5 = T
where:
Xg = Xad T Xy ¢ T %aqg T %y
Xd = (.ULds xq - l'.lJqu X2 = U.}La-l

: .. D g . Db-"0
Ly t Lgo + ng cosez . = 7 + > cos 29, 9.21(a)
-1 Lgo + ng cos 2 (8 - 60°) = - 5(MD+MQ) + g(MD-MQ)coszfer - 60°)
Therefore . | 9.21(b)
L, - L
_. D Q ' -
Lz = —2— _ | 9.22(a)
: LD + LQ : o
Lyp + Lgo = —5— 9.;2(b)
3 Lgy = - bo(My o+ MQ) 9.22(c)
ng =3 (M - MQ) 9.22(d)
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Manipulation of equations 9.22(a) to 9.22{d) gives

2 Xg t Xq
2 X+ X
Ly = Lar* Lgo = Lz = —%r 9.22(F)
2 (xd - X )
Mp = Lgo * Lg2 = 3 9.22(g)
2 (x, = Xg } .
= - = 9
My = Lgo - Lg2 m 9.22(h)

If xad and Xaq are respectively the d-axis and g-axis reactances
of the armature phase winding due to flux in the airgap

9.23

where m is the number of phases. For a 3-phase machine therefore .

X + xl .
Ly = ﬂ—a—-— - 9.24(a)
X + Xg ’ :
Ly = —aq—m—* o 9.24(b)
Xad

MD = o | ‘ 9.24(C)
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MQ = _2.9.. ) . 9. 24'(d)

Therefore all the inductance coefficients for tensor [Lryb] can
be calculated using dgo parameters and equations 9.20, 9.22 and
9.24,

9.3 Calculation of the Inductance Coefficients of Lr b from
Design Parameters Y

Ta]aat58 has shown that the dqo parameters of a synchronous’
machine can be calculated from

Xad = X Ay Ca1 9.25(a)
xaq = XA qu 9.25(b)
: 2 .
where: X = 4 mfl (NKw) 2.25(c)
108 p '

Substitution of equatfons 9.25 into equation. 9.20 gives:

2 mL (N Kw)2 )
= A (C, - C 9.26

Substitution of equations 9.25 into equation 9.24 gives:

4L (N K,)? , |
L= — 2 C,,+L 9.27(a)
. 4L (N Kw)z' i
Ly = ————— A, C;y + Ly 9.27(bh)

T10% P a “ql
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4L (NK)?
My = ———— . C 9.27{c
D a0e e @ | te)
4L (NK)? |
M,z W 9.27(d)
Q T ]08 p a q-l . T vE
66-68

A number of authors have derived formulae for calculating

the leakage inductance La]’ which can be used to obtain the value
-of La] required in the calculation of L. and L,..

D Q

9.4 Calculation of Armature Phase to Field Mutual Inductance (M
and Self Inductance (LFF) of the Field Winding

2)

9.4.1 Caiculation of MF and LFF using dgo parameters

If the resistances of the winding of the generator are neglec-
ted, the transient d-axis reactance is given by

g =X - ) D.28

where M, is the mutual inductance between the d-axis winding and
the field winding. )

: N
Since T? = /(g as given by equation 9.1

Mar = /(g-MF : - 9.29

The d-axis open circuit transient time constant Tdb is given by

leo = _R___ ' - §.30
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Substituting equations 9.29 and 9.30 into equation 9.28 give:

X4
LS Ty Rep 9.31

Therefore MF and LFF can be calculated using equations 9.31 and
9.30 respectively.

9.4.2 Calculation of MF and LFF using design parameters

The self inductance of the field winding is given by68

NAplL wC. A

Lep = f [(—5-2) + ) 9.32

10°

The phase:to field winding mutual inductance MF is calculated
using equation 9.31

A Cf
2
S S S O B ) 9.33
d L ad - 4
Car (26, 2 + 529
xd.= Xg +Xgy 9.34
Therefore from equations 9.33 and 9.34
A, €
v a "1
X4 = X4 = X34 9.35

4
Substituting equation-9.35 and 9.32 into equatioh 9.31 gives:
Nf L (N Kw) Ay C1

M. = B 9.36
F 108 - ' |
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i . ai
9.5 The Effective Constants of the Damper Windings

An a.c. method for measuring the effective d- and g-axis
damper -wiridings for use in the phase-model analysis of synchro-
nous generators was discussed in Chapter 2. From the analysis of
the medsuremerit technique, it is apparent that the damper winding
parameters are not uniquely defined in value, i.e. the parameters
that are measured at the terminals of the phase winding (or field
winding) reflect the effect of the damper winding on the armature
(or field) winding. It is shown here that it is not necessary to
know the actual values of the damper winding inductances and resis-
tances (LDD’ RDD’ MDD’ LQQ’ MQQ etc) for its representation in the
phase model, provided the values chosen to represent the damper
windings give the same effect on the generator performance as the

actual damper windings in the machine. The coefficients of coupling

between the damper windings and the other windings of the machine
and the time constants of the damper windings completely account
for the effect of the damper windings on the machine performance.
Considering the two magnetically coupled windings (1) and (2)
shown in Figure 9.2 it follows that:

0=JuMy Iy +Ry Iy #dulyy I, - 9.3

~ It can be shown by manipulation of equations 9.37 and 9.38
that

1,2 Ry = : ‘ - - 9.38(a)
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12
where: A = p? (TQ;) 9.38(b)
M2
B = (—RE)2 9.38(c)
2
2 L22 2 sp2 2¢2 Mi 22
C=L% + (-Fg) (R +w?Ld)) + 2(_%_) (Ry- w? Ly (= )
| 9.38(d)
D =R,? 9.38(e)
L2
Let T, = T the time constant of the second winding 9.39(a)
2 .
and g = hF the coupling coefficient between the
qf==f§? piing
two windings 9.39(b)
Then if.
X7 = wlq , 9.39(c)
and Xpp = ulyp 9.39(d)

Substituting equations 9.39 into equations 9.38 and simplifying
gives ' '

2 2
| | V2 X K2 (oT,)
122 R2 = 9.40
R+ X3 + 2RyXqq(wTp)+(wT,)? (Rf+X]](1-K2)2)]

- - 2 - ]
Similarly 12 X22 is given by

. 2 2
2y X 2) |
2 "2z R+ X + 2Ry Xqq{uT, ) +uT5) 2R + X (1-K2)2) ]

K2 (wT

9.41
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It can be seen from equations 9.40 and 9.41 that the power dissi-
pated and the reactance vars in winding (2) are dependent on K
and T,2 and ipdependent of the absolute values of L22, M12 and
R,.
If winding (1) is considered to be the armature phase winding
and winding (2} as the short circuited damper winding, the effect
of the damping winding on the armature phase winding is dependént
on K and T2.

Once the coefficient of coupling KaD between the armature
phase winding (with its axis along the d-axis) and the d-axis
damper winding, and the d-axis damper winding time constant TDD
are obtained, the mutual inductance coefficient MDD’ together with
LDD and RDD can be calculated from equations 9.39(a) and 9.39(b)
by chqosing a value for any one of the three unknowns. Similarly
if the coefficient of coupling KaQ between the armature phase
winding (with its axis along the g-axis) and the g-axis damper
winding, and the g-axis damper winding time constant TQQ are obtained,
the mutual inductance coefficient qu, together with LQQ and RQQ can
be calculated from equations 9.39(a) and 9.39(b) by choosing a value
for any one of the three unknowns.

Fognulae for‘calculating KaD’ Top: KaQ and qu.from the d-q
-parametersg are derived in Section 9.6 which can be used te obtain
the damper winding parameters for the phase model. Alternatively, if
the design parameters of the generator are known, the formulae given
in Section 9.7 can be used to ca];u]ate K Ka and Ton.

aD® 'pp* faq Q

9.6 Calculation of the Constants of the Damper Windings from d-
and gq-Axi1s Reactances and Time Constants-

9.6.1 The coefficients of couplings in the d-axis

The d-axis equivalent circuit developed from the d-q model 69 is
shown in Figure 9.3. The corresponding equivalent circuit for the.phase
winding with its axis lined in the d-axis is shown in Figure 9.4. '

It can be shown that

Xag = B) %y = (B) (xg - %)) - 9.42(a)
(xg = %) (xg = %)

X 9.42(b)

1
—
1NN
o
—
>
[n ¥
]
>
o -
——t

2
Fo = @) Xpy °
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_ gy B - x)
D& m (x - xd

9.42(c)

The coefficient of coupling K,p between the phase and the d-axis
damper winding with the phase axis lined with the d-axis is

X
Kyp = ad 9.43

"(Rad * Xpp!d Rag + &)

Substituting for XAD and xDi from equations 9.42 into equétion
9.43 gives: '

1

ap (xd 2) m 9
o5 e+ )

9.44

Simi]arly’the coefficient of coupling K
the d-axis damper winding is

FD between the field and

Xy ,
Kep = a ' - 9.45

"Rad * #pp)Rad * Xey)

hence

_ ]
Ko = 7 (xa RO CEEN 9.46
(1+ - x‘)(x - x ) T}E'?"ETT

The coefficient of coupling between the phase and the field w1nd1ng
w1th the phase axis 11neda1ong the d-axis is:

k' Xad

aF = 9.47

/(Xad + X + X

P g ¥ )
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giving

9.48

X
. L
/1+- ﬁT)u Py

9.6.2 The Coefficient of Coupling in the g-axis

The g-axis equivalent circuit %or the d-q model 69 is shown
in Figure 9.5. The corresponding equivalent circuit for the phase
winding with its axis lined along the g-axis is shown in Figure 9.6.
It can be shown that

Xaq = (2) Xaq - ) (xg = %,) 9.49(a)
(x Mx3 = %) '
2 2 2
Xqq = (8) %qq = () —3 %, ) 9.49(b)

The coefficient of toup1ing I(aQ between the phase and the g-
-axis damper winding with the phase axis Tined along the g-axis is

Kag = aq . 9.50
Vxxaq ¥ XQJL)(Xaq tX

\

Substituting  for Xaq and XQR'from equations 9.49(a), (b) into

equation 9.50 gives

- 1 . 9.51
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9.6.3 The d-axis Damper Winding Time Constant

The d-axis damper winding time constant is determined using
the d-axis subtransient short-circuit time constant (TH) which
is given' - by

T = 1 xad xl XFQ
ad “2 ¥ %ad *re T X0 *Fe

9.52
d wRDd

(XDZ + X

By substituting for Xy and Xad> xFi, Xps, from equations 9.42,
RDd may be calculated from equation 9.52, once the value of T4
has been obtained from a short-circuit test on the generator'71

The d-axis damper winding time constant is then

Xad * xDz

TDD = *—ErTqi;“— - 9.53

9.6.4 The q-axis Damper Winding Time Conztant

. . : <o oas 0
The quadrature axis subtransient short circui’ iime constant”
is
1 X o X

™ = (x + aq R) ) - 9.54
q mRQq Qs xq

q’ in from equations 9.49, R

is calculated from equationg,5+ , once the value of Ta has been
65 ' :

By substituting for Xy xq and Xq

obtained by test on the generator

The g-axis damper winding time constant is then

9.55
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G,7 Calculat1on of the Constants of the Damper Windirgs from
Design Parameters .

Talaat 58 has derived formu]ae.for calculating the effective
damper winding reactances and resistances for distributed damper bars
in the poles of a rotor. This is the most widely used form of
construction of rotor for synchronous generators and was in fact
adopted on the experimental generator 2130. The design formulae
derived are for this type of damper windings, with the symbois
and units being the same as those used by Talaat.

9.7.1 The Coefficient of Coupling in the d-axis

The reactance of the d-axis damper windings referred to the
armature phase winding is

2 2)

%op = (@) %pp = ()X (4 Cqr * Apd) 9.56

where X is given by equat*on 9.25(c).

If XD is written as sum of themagnetising reactance (Xaj)
-and the leakage reactance XDQ’ then

%op = Xaq * Xy 9.57(a)
L2 | : |
where Xad = (ﬁ) X Ay Cd] . | | 9.57(b)
X o= (2) X2 9.57(c)
pe = W * ALpd :
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The leakage permeance ALDd of thejd-axis damper windings is 8

od T no (T - k) - 958

The coefficient of coupling between the d-axis damper winding
and the phase winding with the phase winding axis lined in the
d-axis is

X
K,p = ad 9.59

/(Xad + X ) (X g * XJL)

The leakage reactance of the phase winding is given by

X, = X Aaﬂ : 9.60

Substitutjng forllLDd from equation 9.58 into equation 9.57(c),
and for X_., X De, and X from equations 9.57(b), 9.57(c¢) and 9.60
respectively, into equat1on 9.59 give

. 1. . .
K., = g.61
D 2m A : k '
bed m
/H (1F))(1+2Cd A)

This formula is very useful as it gives the relationship between the
distribution of the damper bars and its effect on the coupling '
coefficient, which is a measure of the effectiveness of the damper
windings. ' '
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9.7.2 The Coefficient of Coupling in the g-axis

The reactance of the gq-axis damper winding referred to the
- armature phase winding is

_ 2 _ 2
%o = @ %gq = @ X (g S+ Agg) 9.62

writing XQQ as the sum of magnetising reactance xaq and the leakage

reactance XQE

XQQ = Xaq + XQ.Q, _ 9.63(&)
where
_ .2
Xaq = (ﬁ) X Aa Cq] .9.63(b)
and
' _ 42 L

The leakage permeance Aqu of the q-damper windings is 58

271 A

_ be . |
ALQq "E_TT:EE% , 9.64

The coefficient of coupling between the q-axis damper winding and
the armature phase winding lined in the g-axis is

. _
Ky = aq__. 9.65
. g * ¥q) Kag * %g)
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Substituting for ALQq from equation 9.64 into equation 9.63(c)
and for Xaq, XQ2 and Xq from .equations 9.63(b), 9.63(c) and 9.60
respectively into equation 9.65 give

]
K = 966
aQ DY A :
“/1‘ foyTT nbe?1+k AL )
a qt b b ql 5

9.7.3 The d-axis Damper Winding Time Constant

The referred value of the d-axis damper winding resistance to
the armature phase winding is 58

8 (N k)2

= r ' 9.67
o0 = P, (Tk bed

The d-axis damper wihding time constant TDD is
: X
DD
Ton = 9.68
1)) W RDD )

Substituting values of Xon and'RDD from equations 9.56 and 9.67 into
equation 9.68 gives

Ly (1K) 21 Ao

Top = = (03 Cqp * eEN ) 9.69

2n rbed 10
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9.7.4 The g-axis Damper Winding Time Constant

The va]ue,o% the gq-axis damper winding resistance referred

b .
to the armature phase winding is 58

8 (N k)? .
R.n = . r 9.70
Q@ P hy i1+kb§ beq

The g-axis damper winding time constant TQQ is

7. = 9.71

Substituting values of XQQ and RQQ from equations 9.62 and 9.70
into equation 9.71 gives

L hy (1+k,) 2T Ay
Ton = —ae— B2 (A C .+ 9, 9.72
W gmr,, 100 29 (TR
It‘q )

9.8 Determination of Saturation Characteristics for Use in Phase
Model Analysis from the Open Circuit Characteristic

It is very important to.be able to determine the normalised
rr’ Cry’ CFF’ ¢
account the effect of saturation in the d-axis {as discussed in
Chapter 2), if the saturation is to be included in the phase model.
~ The open-circuit characteristics of the generator (open-circuit

polynomials C DD? CrD’ CFD’ CrF which take into

voltage/field-current) is generally available from the manufacturers,
A typical open-circuit characteristic is given in Figure 9.7. Itwas

shown in Chapter 6, that the open-circuit phase voltage E .. o,

in terms of the field excitation voltage Ef is
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E

a _
E_f = KgO 9.73(3)

PN k

Ve f 1
where K =3 X4 (—g—7— N

9.73(b
K)f (b)

Expressing Ea in terms of the generator field current If,

k

Ve
E =
a _3_xad (‘-'W) If g.74

To take the effect of saturation into account, Xad is written as

Xad = *ado-Cad 9.75

where xado is the unsaturated value of xad and Cad is a normalised
polynomial of the form

= 2 3 '
Cad =1 + C] If + CZ If + C3 If + ... ‘ 9.76
J7 P Nf kf _ _
Since: - (- N Kw ) is constant, equation 9.74 can be written as

Xag - : 9.78

e PO
"
T
=

where A is a constant. The values of A Xad can be obtained from the
open circuit characteristic for different values of If The normalised

saturation function is obtained by dividing A X3d by . A Xado
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~

the unsaturated value of A Xad- The resultant normalised saturation
function when plotted as a function of If is as in Figure 9.8,

which can be represented as a polynomial of the form given by
equation 9.76. Once the normalised polynomial Cad is obtained,

the normalised polynomials for use in the phase model anmalysis can
be obtained as follows. It was shown in Section (9.6.1}, that the
d-axis magnetising reactance xad equals (2/3) Xad for a 3-phase
machine, whence multiplying both sides of equation 9.75 by 2/3
gives:

Xad = Xado Cad 9.79

LDo’ the unsaturated value of LD’ is, from equation 9.24(a),

X + %
_ "ado L
LDo = 9.80
Hence
A Ly _ Xad T %
re LDo Xado+x
)
(x— + C¢)
_ ado ad .
= 9.81
X, )
( + 1
Xado

MDO’ the unsaturated value of MD’ is, from equation 9.24(c),

X

_ "ado T
‘MDo = — 9.82
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Cry = =g = Cag 9.83

The reactance of the field winding, XCE is

XFF = xad + XFR 9.84
Therefore XEFQ? the unsaturated value of Xep is
Xpro = *ado T ¥R 9.85
Hence
C_ = * FF - Xado “ad * *rg
FE - Xepg Xago t ¥Ry
X '
Xado ad
= 9.86
Xre |
(e * 1)
Xado :
The reactance of the d-axis damper winding xp, is
9.87

XpD T *ad T *pe

Therefore XDDO’ the unsaturated value of Xpp is
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T Xpg 4.88

xDDU ado
Hence

- Xado Cad t Xy
0B xado * XDI

X
DL
( X3 do + Cad ) 9.89
- X
DL
( + 1)
xado

Since the magnetising reactances of the armature phase in the d-
aéjs, the field winding and the d-damper windings are equal
(basic d-q model assumption),

Cr‘D - CFD - CrF - Caq 9.20
i.e. My =Moo - Cop = Mopo-Cad ~9.91(a) '
| lTFD “lepo - Up T '-FDo'_CAd' | - 9°9‘(5)
Mo =M, L €= MG - - 9.91(c)

Fo' "ad : : ,

where MDDo’ LFDO and.MFo are the unsaturated values of MDD’ L

FD
and M :

F ’
,ng Xg g xdg are obtained from the dgo parameters from equations
9.42(a), {b), (c), hence all the normalised saturation polynomials
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for use din the phase model analysis can be calculated from the
upen-circuit characteristics presented here.

~ 9.9 Conclusion

3 Formulae are derived in this chapter which enable all the
parameters required for the phase model analysis to be derived
from the dgo and design parameters. It is shown that normalised
polynomials to include saturation in the phase model can also be
derived from the open-circuit characteristic of the generator.

The phase model parameters and the normalised polynomials
were calculated from the dgo parameters using the formulae
developed in this chapter for a 100 kW 0.8 p.f. 480V, 60 Hz
synchronous generator. It was found that realistic short circuit
current transients were predicted using the derived phase model
parameters. Since the generator was in the U.S.A., it would have
required considerable effort to obtain the phase model parameters
by measurements using the flux meter method as used for 2130
generators, while the dgo parameters and the open-circuit charac-
teristic were readily awiable from the manufacturer.

The generator parameters supp]ied by the manufacturer for
the 100 kW generator are given in Table 9.1 and the corresponding
.calculated phase model parameters are given in Table 9.2, Figures
9.9 and 9.10 show the predicted field current and r-phase current
transients respectively when a 3-phase short-circuit is applied to
the generator terminals. ' '
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Rating: 3-Phase, 100 kW, 018 p.f., 480V, 60 Hz
% 4.1200 ohms
xq; 2.2710 chms
Xy 0.1256 ohms
xa 0.2662 ohms
xa 0.1878 ohms
xa 0.1929 ohms
T 1.866 s
T 0.120 5.
T 0.035 s
Ron 0.03574  ohms at 20°C
Re 0.8556 ohms at 20°C

- TABLE 9.7: Generator Parampters Supplied by the Manufacturers
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Ly 7.40 x 10 H
Ly 4.13 x 1073 H
M, 7.06 x 1075 H
My 3.79 x 1073 ¢
M 0.10431 H

Moo 7.066 x 1073

Mg 3.794 x 1073

Ler 1.5965 H

Lo 0.1043 H

Lop 7.261 x 1073

Log 3.917 x 1073

Rop 2.622 x 1073

Rog 9.505 x 1073

Q- =

ohmns

ohms

TABLE 9.2

Calculated Phése Model Parameters for

the Generator,-

Based on Data Given in Table 9.1
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CHAPTER 10
: AREAS OF FURTHER RESEARCH

The mathematical models developed in. this thesis can be used
to investigate the following areas of interest related to elec-
trical systems on the aircraft

1. The effect of changes in the temperature inside the 3-stage
generator unit on the performance of the regulated generator.
Under no-load conditions, this temperature is typically
40°C, while under full load condition it could be in excess
of 120°C. The effective increase in the resistances of the
generator unit windings not oniy affécts the steady-state
operating point of the system, but also the transients on
application and rejection of load. Sollecito and Swann 3
investigated the effects of temperature changes by modelling
on an analogue computer. Similar investigatidns can also
be carried out using the mathematical models described in this
thesis,'on a digital computer.

2. There are often a number of regulated generator units operating
'in parallel on board an aircraft, when the proper sharing or
division of the load between the generator units is very impor-
tanf. The a.v.r. and other electrical systems are used to
ensure a proper division of reactive load between the units,
‘while the drive systems determine the division of real load-
between the units. Therefore a complete model of the electro-
mechanical system using the model of the regulated generator
unit described in this thesis could be developed for such
studies.

3. The optimisation of the transient response of the requlated .
generator unit can be investigated using the mode1 of the requ-
lated generator unit on the digital computer, ih place of the
analogue computer method 2 used in the past. Some work in this
direction is described by Kabriel who has derived formulae
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for predicting the gain; and time constants of the a.v.r. to
obtain different transient response.

The design of optimum excitation controller using the Matrix
Riccati Algorithm as applied to the turbogenerators is described
by Humpage and Smith 73 .
equation of the form

They used the synchronous generator

[VI= [LI[pI] + {[R] + [G]}[I]

to determine the optimum excitation controller. Since the
generator equation described in this thesis is of the same
form, the method can be extended to the 3-stage generator unit
to determine an optimum excitation controller which gives the
desired transienf response of the generator.

The effect of varying the a.v.r. parameters on the stability
of the generator was investigated by Grainger and Ahmari 74
using Lyapunov's first method. The method could be used to

investigate, the stability of the regulated n~nerator unit.

Additional areas of further research are discusse ' “here

applicable, in Chapters 2-9.
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CHAPTER 11
CONCLUSION

In this thesis, mathematical models of the 3-stage generator
unit and the automatic voltage regulator which form a primary
part of aniaircraft electrical power system have been described.

Starting with the phase model of the synchronous generator,
a phase model for a brushless excitation system has been developed
and used to predict accurately the exciter armature currents, the
rectifier diode currents, the reverse voltages across the diodes
etc. This model is suited for investigation in depth, the perfor-
mance of the exciter-rectifier system.

Two models for the automatic voltage regulator have been
described, and used to predict the transient response of the regu-
lated 3-stage generator. It was shown that both models predict
very nearly the same transient response, following the switching
of balanced 3-phase loads. The state-variable model of the AVR
can be used to investigate the transient response following
unbalanced load switching, as discussed in Chapter 5. A simplified
model of the exciter-rectifier. adequate for the system model, is
also described.

The transfer function of the excitec-rectifier generator system
was developed to show that .it can be used to predict the steady-state
exciter_fie?d current required when different loads are applied to the
generator terminals. The effect of operating the exciter-rectifier in
its different modes of operation is investigated, to show that, for
optimum d.c. power output,'it should be‘désigned to operate in Mode
1.- The phase model of the induction motor and the synchronous-
generator/induction-motor combination were developed to investigate
the direct-on-line switching of the induction motor and the effect
of the induction motor as an impact Toad applied.to the régu]ated
generator unit. The_hhase model of the permanent magnet generator
with the reﬁtifier load was developed tc investigate the performance
of the first stage of the 3-stage generator unit.
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At all stages of the thesis the theoretical work was
substantiated:by an extensive experimental investigation. It

™~

was shown that the mathematical models of the aircraft electrical
power system predict accurately the characteristics of the system.

- Theoretical methods for calculating the phase model parameters
from the design and the dgo parameters were described, together
with a method of obtaining the normalised polynomials to include
saturation in the d-axis from the open-circuit characteristic of
the generator, Theoretical formulae can be used in place of actual
measurements if it is not possible to do the measurements due to a
lack of test facilities, etc. The theoretical formulae were found
to predict all the inductance coefficients of 2130 main generator
within 5% error from those of the measured values. The formulae
were also used to predict the performance of a 100 kW-480V-60 Hz-
3-phase generator using the phase model of the generator. The
inductance coefficients and the normalised saturation polynomiais
were caiculated from the &QO parameters and the open-circuit charac-
teristic of the generator supplied by the manufacturers in the
USA.

Areas of further research in the modelling of the aircraft
electrical power gystems are discussed in Chapter 10.-
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APPENDIX Al

Al1.1 Construction of 2130 3-Stage Generator Unit

Photograph Ai.1 shows the 3-stage generator unit rotor and
stator detail . The stator on the left of the photograph shows
the main generator and pilot exciter phase windings. The rotor on
the right of the photograph shows the PMG rotor magnet, the main
generator rotor and the main exciter phase windings. The part of
the stator with the main exciter field windings is shown with the
rotor.

Al1.2 3-Stage Generator Unit Connected for Load Tests

Photograph A1.2 shows the 3-stage generator unit connected to
the d.c. drive via a gearbox. The cables connecting the generator
to the Toad via the current shunts and the transfer boards are also
shown. To maintain the temperature of the generator unit within
close limits, -0il spray cooling is used. The oil pump unit to cool
and circulate the oil can be seen in the background. Figure Al.3
shows the electrical circuit used for measuring &ho load application
and rejection transients discussed in Chapter 5. Photograph Al.4
shows the control station for the d.c. drive and the load selection
switches. The automatic voltage kegulator (a.v.r) is also shown
connected to the system.
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Photograph Al.Z2
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A1.3 Main Generator Design Parameters (based on 0.030" airgap)

Rating: 40 kVA 400 Hz. 115V (phase vo]taq;)

Parameter E

X4 1.6572 ohms '
xq 0.7813 ohms
X (4hﬁiaﬁx- 0.0670 ohms
xé 0.71429 ohms
xg 0.1313 ohms
xa 0.1184 ohms
Xoo g -y 0.1249 'ohms
Xy ?CA? 'f? 0.0193 ohms
Rph 0.0251 ohms at 20°C
RF 0.1197 ohms at 209C
Ry e s 0.0405 ohms at 20°C
R’ . 0.0257 ohms at 200C
O ’1)9'\["" 5 7
TA a7 e 0.00198 s. at 209C
Té T, el 0.01376 s. at 20°C
T - ©0.15957 5. at 200C
do TQ"‘(; D v L .
P 4
N 22
Kw Lo 0f7810
KG:stator 1.0474

Kg:rotor 434*;'L0w3

25
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Al.4 Main Exciter Design Parameters

Parameter

Xy 0.246 ohms

xq 0.184 ohms

X, 0.063 ohms

x2 0.046 ohms

‘xé 0.077 chms

Rph 0.0116 ohms at 20°C

Re 8.129 ohms at 20°C
¥ 0]

Tdo 0.03198 s . at 200C
P 10

N 18

LK 0.949

W

KG 1.0811
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A1.5 Permanent Magnet Generator (PMG):pesign Parameters

Pérameter -

X4 0.7662 ohms
xq 1.]574 ohms
Xg 0.2138 ohms
Rph 0.1471 ohms at 209C
Tan () 18.1789
Tan (B) 25.0671 .,
Tan (y) 85.8304
P 16 (Alcomax III)
N 64

0.8660
KG 1.1789
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APPENDIX A2

The bailistic techniques for measuring the inductances of the
windings of a machine in the presence of short-circuited windings
are well known.  Golding 75 used a bridge technique for measurement
of self-inductance. Snider and Smith 15 have shown that the method
can be extended to the measurement of inductances in the preésence
of other short-circuited coils, for example an explicit damper
winding on a synchronous machine rotor or the eddy current paths in
the iron and the solid poie tips of a generator rotor.

A Norma model 251F fluxmeter was used to measure the self and
mutual inductance between the armature-and field windings. This
consists of a D'Arsonval galvanometer, the movement of which is
measured by the deflection of the light spot on a glass screen
marked 1in scale divisions. The relationships between the voltage
V applied to the galvanometer for a time T and the distance x moved
by the 1ight spot is given by

T |
[ V.dt = c.x A2.1
0

where ¢ is the scale constant.

AZ.1 ‘Measurement'of Self-Inductance of a Coil

The bridge circuit used to measure. the §e1f~inductance of a

- ¢0il in the presence of other coupled coils is shown in Figure A2.1.
It consists of a test coil with winding resistance R2 and‘three
non-inductive resistances R1; R3, R4 connected as_shown. The resis-
tance R4 must be capable of taking the maximum test coil current._

Under balanced bridge conditions, the’vb]tage-\l-O applied to the
fluxmeter coil is zero and
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Ry
Ry

=

2 n2.2

4

if the test coil current I,is reversed . wusing the reversing switch
S, it can be shown‘15 .that the relationship between the inductance
of the coil L,,, the deflection x and the constant ¢ of the flux-

22°
meter is

R

2. C.X
Lin = (1 + 57). =
22 Ry " 2L,
AZ2.3

R

] C.X
= ]+—-—).

= 0+ g2) 7T,

i} Secant Self-inductance

In the absence of any external bias current (I]),the measure-
ments made by reversal of the current through the coil is termed the
secani inductance L,,.

i1)  Incremental Se1f—inducténce

The incremental selffindubtance is measured, with a constant bias
current (I]) in.coil (1), by reversing'a small current 12 in the test
coil. The inductances of any coupled coils and their mutuals have
no effect on the measurement of the self-inductance of the coil.

If the secant inductance L,, of the test coil (2) 1is plotted

against the current I, for different values of 12, a graph similar to

2
that shown in Figure A2.2(a) is obtained. If Yo the flux linkage of
coil (2) is plotted against 12, a graph similar to that shown in

figure A2.2(b) 1is obtained. The incremental inductance Lo, at any

current-I22 is given by the slope of this graph at 122.
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wz = L22 122 AZ .4
.9
L22 —-—Tgé A2 .5

The incremental inductance of the test coil can be measured for -
different values of bias current I] in coil (1). If the incremental

inductance Léz is plotted against I], a graph similar to figure AZ.2(c)

is obtained. If coil (1) is in the same axis as coil (2), the bias
current I] can be replaced by anequivalent. bias current 12 flowing
in test coil (2). As the quiescent point is established by the
total ampere turns in the axis of the coil (2)

NI = NI, A2.6(a)

The x-axis scale of Figure A2.2(c) can be changed to that of the
equivalent bias current Iz,by multiplying by the turns ratio between
coil (1) and the test-coil (2}. The secant inductance corresponding
to any current I,, can hence be found by

I
Ly = T fzz(géggq' dly
22 o 2
4 }22 dI | A2.7(a)
i} ' - 7(a).
T, o ‘ez b | o

—
]

or 9o = Area under Léz curve from I2 =0 to 12'5 122
1

22

T S | - A2.7(b)
22 122 -
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TEST CIRCUIT FOR MEASURING SELF INDUCTANCE OF -

A COIL (2) WITH SECANT INDUCTANCE L,, AND INCREMENTAL
INDUCTANCE L,

Figure A2.1
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L,, Secant Inductance

I

Figure A2.2(a} SECANT INDUCTANCE L, AS A FUNCTION CF I,

A C
e AB
| L=
o~ . ! CD
E I L2 % Ep
I l 122
> |
| B
1
1B
0 1, I

Figure A2.2(D) FLUX LINKAGE £6 A FUICTION OF I,
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2

Lzz, L2

L22

A
I

15, 22
Figure A2.2(c) SECANT INDUCTANCE L,, AND INCRIMENTAL INDUCTANCE L)

22
AS FUNCTIONS OF Il'l

2 .
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APPENDIX A3

MEASUREMENT OF MUTUAL INDUCTANCES BETWEEN TWO COILS

The circuit used to measure the mutual inductance between
coils 1 and 2 in the presence of other coupled coils is shown in
Figure A3.1. Coil 1 is connected to the fluxmeter via the resistance
Rc which is adjusted to give the required source resistance for the
fluxmeter. When the current 12 in coil 2 is reversed, the voltage
induced in coil 1 is given by ' )

d

di, di, |
hhetege * M a 731
Therefore
oo +12 ] 0 . .
[yydt =M, [ di, + M5 [ dig A3.2

If C is the constant of the fluxmetér and x the deflectiop of 1ight
spot, then

'_C.X
M.21 = A3.3

8

The vaiue of mutual inductance obtained in the absence of any bias
current is a secant value. The mutual inductance between two coils
1 and 2 can be measured for different values of 12 and plotted as
shown in Figure A3.2(a).

The mutual inductance between coils 1 and 2 can also be obtained

[+5] .

by réversing current’ in coil 1 and measuring the voltage integraT

V.dt across coil 2.
o 2
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_C.X
MZ] = ?ﬁ;_ A3.4

b

The mutual inductance between coils 1 and 2 can be measured for
different values of I, and piotted as shown in Figure A3.2(b).

As - - mutual inductance is reciprocal under the same level of
saturation?6 , the current ratio to produce the same saturation
level in the mutual flux path can be found from the ratio of I]
and I2 for the same value of mutual inductance. From Figures
A3.2(a) and A3.2(b), if I,; and I,, correspond to a muteal induc-
tance value, it follows that

NiLyg = Nalpgs 1T (Myoq = Mypq)-
N, I
1 Iy
A . A3.5
2 T

It is found that the ‘M, curve of Figure A3.2(b) is & close fit to
the My, curve of Figure A3,2(2) if the x-axis scale of Figure
A3.2(1b) Nis multiplied by a scaling factor equal to the turps

. 1,
- ratio ().
N
2
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R¢=R¢*Ry =30 ofims

Tigure A3,1 CIRCUIT FOR MEASURING MUTUAL INDUCTANCE BETWEEN TWO COTLS
IN PRESENCE OF OTHER CQUFPLED COILS

|
|
|
|
. |
|
L2 [,

Figure A3.2(a) MUTUAL INDUCTANCE Miz AS A FUNCTION OF I,
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|

10 I1

|
|
|
|
|
i

Figure A3.2(b) MUTUAL INDUCTANCE M_. AS A FUNCTIOI OF I,

21
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APPENDIX A4

Y MEASUREMENT OF MUTUAL INDUCTION BETWEEN
- TWO COILS HAVING A COMMON RESISTIVE PATH

. It is common practice in synchronous generators for the
phase windings to have their star point brought out via a single
copper wire of relatively small resistance. In these circumstances
no two phases of an armature winding are electrically isolated, and
if the arrangement shown in Figureal4,1is used to measure the
mutual inductance between any two phases a considerable error in
measurement is introduced by the voltage VR' There are two methods
of reducing the error due to VR.

i) Method (1

Consider switch SI ciosed and 32 open, to establish the
current I through coil. If 52 is closed and S] is open simultaneously,
the mutual inductance between windings 1 and 2 is given by

-]

v dt |
M2 = J_?__ = Al

If however there is a small time interval AT between closure of
switch 52 and opening of S1

[ V_dt + RI AT
=00

B} 4 C:x R : Ad.2
12 ) T .

M I

This introduces an error term RI AT, although it is possible to
minimise this by making AT as small as possible. .

If the ferromagnetic structure of the magnetic circuit -
exhibits a hysteresis effect, it is necessary to reverse the current I
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in order to obtain a more accurate value of M]Z' If S2 is closed
at t=0, followed by the reversal of current I after a time inter-
val AT,

[ Vv, dt = -RI AT +RI [ DT +2I M A4.3
] AT

fhe results show that the fluxmeter deflection is due to three
components, resulting in a continuous movement of the light spot
due to VR‘ Any attempt to measure the deflection due to 2I M
is always in error due to these additional components.

12

ii) Method (2)

The method that was used to measure the phases to phase mutual
inductance employs a bridge circuit shown in Figure A4,2. If this

is balanced such that under steady-state conditions VO is zero
and

Ry

Ry o
T : Ad.4

[#5]

The measurement consists of closing S1 to establish the current I
through coil 1. Take the deflection of 1ight spot position as zero
with I established. Then opén switch S1 and measure the deflection
(xi), and close S1 with supply reversed and measure the deflection
(%5).

It can be shown that

[
+ R3)

(Ry +R) Ly,
12 TR+ R TR,

Cxy =L M P4.5.

C.X2 = -1 M-IZ +-(-R+_—R]_)_ ) Ad.6
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If it is arrarged so th?t R2 >> R] and R3 >> R,:while still
maintaining balanced bifidge condition, adding equation A4.5
and A4.6 gives

R -p (x1'+ X2)
Mot RERY 4.7

Generally, if the resistance of the phase winding R1 is very
much greater than that of the wire used for bringing out the
star point (R}, the correction factor on the left hand side of
the eguation is small and under these circumstances

; -C (X + x,)

The bridge circuit described fully compensates for VR and steady-
state deflections are found using the fluxmeter. Any integrating
circuit can also be used with the bridge circuit in place of the

fluxmeter.
2



Figure AH4,1 MEASURING PHASE TO PHASE MUTUAL INDUCTANCE OF A
MACHINE WITH STAR CONNECTED FHASES
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g APPENDIX A5

A5.1 Computation of Operational Impedance Tensor [Zm]

sThe independent impedance tensors [L ], [6,], [R,] are compu-
ted at each step during the numerical integration. To save compu-
ting time [Ln] and [Gn] are computed from equations 3.50, 3.51 or
3.56, 3.57 instead of performing a [Cllt'[zp][cl] transformation
at each step. To save computing time when obtaining [Z ] = [C,],
[Zn][Cz], the following simplification to the actual multiplication
is made.

[Cg] = [Co11 [ Cop]
A5.1.
[C23) | [C4]
[Coly = | [C1]¢ | [Co3)¢
_ AS.2
{Crsr] [Coyal
L__ZZ t 24t
Let [Z,] = (247 [Z2,]
A5.3
(2o9n] | [Z225]
Then
(2] = | (€014 | (€31 [ [[Z470) (€114 (21901 - (€231 1217 JICo21+(Z; 21 [C24)

(Co21t [[Coq1t | [ [Zp171[Co1 1+ [Zppn] - [Co3] [ (257 J(Co01 412501 [Coy]

= | [A] | [B]
[C1 | (D] S A5.4




where

i

[A] = [C

+

[B] = [CZ]]t'{[Z]]n]'

+

[

[C1 = [c22]t'{[zl]n]'

-+

[b] = [sz]t-{[z]]n]-

+ [C

211t {lZ1qn1-

[C231¢ {22151

23)¢- Loy )

[Co41t- {LZp1p)-

2a1e- Lol

[Cy] +
(€] +

[Cos] ¢+
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(21241 [C2313
[Zp9n]- [Cp31}

[Zy2n]- [Coq]}

[C221- 125201+ [Coq1}

-+

[C,y]

+

[Cs0]

[C22] +

Referring to equation 3.59

t

[Cy5]
(Csq]

Therefore

[ly
(Cosly
Gy 1y

1]

(01

[0}
(1]

(0]
(0]
(0]

[Zy2n]- (G231
Zygn]- [€p31}

[Z12n]- €241}

A5.5

"A5.6

Substituting results of equations A5.6 into equations A5.5 gives

- [A] = [Z
(8]

11n!

(21950 1,,3

[C) = [Caq)¢-[14]

(0] = [C

243t [2290) - [C24]

A5.7
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Matrix [C24] is computed at each step and [Zm] is obtained using
equations A5.7.

AS.Z Computation: of Independent Currents [In] from Computed Values

L

[Iﬁ] = [Cz][lm] can be written as

[Typdp =[G dCo0] | 1 Eqpl A5.8

~

(Tand| = |[Ca3lllCaql} {lIgp)

as [Cy] = [1]

[C22] = [0]
[C,3] = [01
equation A5.8 becomes
0 = |,
A5.9
[1,] [Coql- [1,] '

The independent currents [In]-are obtained by using equation A5.9

A5.3 Computation bf Diode Currents

Having obtairied [Izn],the'diode'currents [ID] are obtained
from equation A5.10




A5.4 Computation of the Voﬂtages Across the Diodes [V

‘o
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pl

.t
The computation of the.diode voltage is in two steps:

[VY] is compq}ed from [VX] where

VX1 = (V.1 -([R] + [61}. (1] - [L1, [PE,] A5.11
If
VX1 = [[vx))

[VX,]

[V¥] = [VX,] as [VX,) is £(V - ZI) around the diode conduc-
tion paths,

The diode voltages [VD] are found using values of [VY].
(The diode voltages in the lower limits are reversed for
test purposes).
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- APPENDIX 46
NUMERICAL METHODS FOR THE SOLUTION OF THE
DIFFERENTIAL EQUATIONS ON A DIGITAL COMPUTER

‘A Taylor Series expansion can be used in the solution of
many of the differential equations associated with electrical
systems. The solution of the differential equation of the form

y' = f(x,y), at the {(n+1)th point is given by

Y y
= 1 2 °n 3 _n A6.1
Yn+] _yn+hyn+h,z-!—+h -3-1.—+..

d Yn
where ya = X
o . d%y

y“ dxz )
s _ day
y“ dx3

This method is of Tittle practical value, due to the difficulty
of calculating the higher derivatives. The most generally used
numerical meithoc for solution of the differential equations, is
the fourth-order Runge Kutta method. . '

A6.1 Runge-Kutta Methods

The Runge-Kutta methods are based on the solution of the
differential equations by means of successive substitutions.
They approximate to the Taylor Series solution without requiring
the evaluation of any derivative beyond the first. The general
form of Runge-Kutta method is given in references 77-79

The fourth-order Runge-Kutta formula for solving the diff-
erential equation y' = f(x,y) is

VIR ‘ C 6.2
Yol Y = F (K] + 2|(2 + 2K3 + K4) N

where ‘
KI =-h.f (xn, yn) , 46.3
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_ 1 1
Ko = hof (x. + 5 h, y +4K) A6.5
3 ' n Tz ¥y tr R :
Kq = h.f (xn + h, Yq +-K3) A6.6

The fourth-order Runge-Kutta method was used for the solution of
most of the differential equations described in the thesis.

6i113%  and Ralston 8! have suggested methods for reducing the
memory space required and the truncation errors respectively, by
modifying the fourth-order Runge-Kutta sotution.

82,83 can also be used for the

Predictor-corrector methods
numerical solutions of differential equations, but because they
require a knowledge of previous points of the solution, they are
not self starting, and other methods (such as the Runge-Kutta
method)-have to be used to start the solution. They are therefore
not suitable for the solution of networks involving change of

topology in this thesis.
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APPENDIX A7

STATE VARIABLE MODEL OF AVR ‘
(DIGITAL COMPUTER PROGRAM)

A7.1:The digital computer program for obtaining the response
of the Automatic Voltage Regulator (AVR) to changes in the
terminal voltages of the generator is given on pages 316
to 319, The differential equations in the state variable
form, as discussed in Chapter 4 are used.



JUGHBOROUGH UNIVERSITY COMPUTER CENTRE]%EORGF 2L MK4p STRpAM B8 b

"JOR AVR4PLOT,ELPP,VVV3295
FORTRAN ,.PDS

JORCORE 45K

VOLUME 15000

RUN ++990
L X 2"
JRTRAN COMPILATION By #XFAT Mk SR DATE 19/03,79 TYIME 21/26/10
)001 SEND TO (ED,SEMICOMPUSED . AXXX)
)002 HUMP ON (ED,PROGRAM USER)
1003 WwORK (ED,WORKFILEUSER)
004 RUN
005
1006 LIBRARY (ED,SUBGROUPGINMDY
007 pROGRAM(MAVRY)
y008 ovTPUT 2=LPQ
Y009 COMPRESS INTEGER AND LOGICAL
010 TRACE 0
)011 END
)012 MASTER ANALYSIS
1013 CAVR TRANSIENT PERFORMANCE
1044 pIMENSION TTC1500),A1¢9500), A2(1500) A3C1500),A6¢(1500)
1015 pIMENSTON AS(1500),46¢1500),A7¢1500)
1016 r1=5,0E3
017 : 230 1E~6
1018 R33150,0¢3
1019 " r4a20.0E3
020 ' RAz4 ,TES
10219 R6a5, 1E3
022 €?=50,47E=0
1023 R8=R1+R3
1024 : R9aR5+R6
025 R10=75,0€3
1026 _ R11=24,3€3
1027 R12=5;11€3
) 028 £13=07033E=6
1029 : €14=0722"6
030 vPEAK=150.V
){ 51 vDC=60.0
032 - pI=3,14159
1053 , F=40070
034 : OMEGA=2wpl*f
)0 45 , H=1.666667E=5
036 ' Ti=1.0000"
057 - T184.0/(CZ*RB)
0358 ' : T2,75=T%
1039 v321,0/(c7*R8)
1040 vbz1,0/C7*C1,0/R641 n/R8+1 0/R9)y
041 T6=T3 .

042 : Y731,0/(c7*RG)



063 1821,0/(C13+R810) 317

044 1921,0/(c13%p11)

045 r10=1:0/¢C14aR1Y)

046 t71=170/¢(C14«R12)eT1N

048 TA=(Q 25

049 T820,050

0590 TC:O-OTS

059 t0=0.100

053 YZ4=070

054 vIX,Xv=0.0

055 X0, XYPV2X e VZXVIZXovisX,v00,VXX=0.0
056 v2,VZYV13:V14,V,v70,v20.V130,V140,U820,0
|05? M:o

058 700 cONTINUE

059 1F¢Y.GT,TL) GO TO 9%

060 ’ VASVPEAK+SINCOMEGA*T)Y

061 TX22 ,0%pt/ 5, 0/0MEGA

062 TV=4,0*P1/3.0/0MEGA

063 tF(T, LE, TX)Vve=0.0

064 TFCT.GT.TX)VBEVPEAK#GINC(OMEGA*CT~TX))
065 tFeT, LE.TY)IVvE=0,0

066 1FCT, 6T, TYIVC=VPEAK#SIN(OMEGA*(TnTY))
067 TF(VATGT VB)yaVA '

068 1FEVATLY VB)V=Va

069 ' 1F(VATEQ VB)Y=VA

070 ' 1F¢y, LE.vCdyave

071 VREF==6.5

072 vSa(VREF+V14)/2,0

073 " u8=(yS=v7=V2)/R8

074 vX2Vs=UZwR1Sy7*Re/Ro

07s 1FevXx,LY.0,0)V0=vpC

076 1FEVXTGE.0,0)V020.0

077 600 cONTINUE -

078 DV25mT14V2~T2*V7+T52yS

079 DV7==T3ayL=T4*VT7+TORyS+T72VQ
080 VI3 T8+ VIZaTo%y154TTey14+T12%y
081 ' . DY14=T10V13=T114v14

082 T MEM+1

083 - 1F(M_GE.S) GO TO 99

084 60 TO (100.101,102,103) .M
085 100 cONTINUE

086 pV21=H¥pye

5.1 ' pV7Z1=Hepy?

088 nV431=HxpV13

089 NYAFSELET VAR

070 : . v2zv20+Dpyel+0,5

091 : Vv/sy70+Dy/ 10,5

092 v13=v1304DV131#0,5

093 ‘ vi4=2y160+DVi45i%0.5

094 T=Y+0, 5N -

035 60 10 700

096 101 ¢ONTINUE

097 ) pvV22=H*pye

078 nV72=lhvpy/

079 hV132=HapV13

100 : nV142=HenVis

101 ' y2sy20+Dy22+a,5

102 yfey70+DyrE«0,5

103 : v13=v130+DV1i32+0,5

104 _ Vi4sv140+0VI42+0 .58



105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
1123
124
1125
11246
127
1128
129
130
134
1132
1133
11354
11 35
136
137
1138
1 39
140
141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

1155

1156
157
1158
1159
160
161
162
163
164
145
166

102

103

400

¢0 YO 600

CONTINUE 318
nV23=H*pvd
BV7Z3=H*py’/
nV433=HapV13
pVi43=H»pV14
v2av20+pyed
v7sv70+py73
viZ=y130+DV133
v14zv14640+0V143
TET+0,5%H

cU 10 700

CONTINUE

pV24=Hepye
pV?4=Hwpy?Z.
hVe34=H#»pV13
NATYLEI Y AR
pv20=(bv21+2 0«Dy22+2,04pV234DV24)/6_0
AVP0=¢DV71+2 02Dy72+2,040V7340V74)/6. 0
BVeI3o0=(by13142,040V132¢2_ 0epv1334DV134)/6.0
pVI40=(DV14142,020V14202 0wpV1434DV144)/6,0
ve0=v20+pVio
v70sy70«pV7Q
v130=v130*0v139Q
v140=V140*DVI40
x0=x0+1,000
vIX=syiXey

vOD=v0Q+y0
vAXzyXXeyX
NXax0/50.0
xNX=FLOAT(NX)
x12X0=XNX*50,0
véX=y2X+yéQ

Vi X=y7X+ey/Q
vi3x=v13x+v130
vIi4X=V14x+V140
1FCABS(X1),LT.1.0FE=6) Gn TO 400
a0 10 401

CONTINUE

JdzJu+

xYaXy+1.00

xX1=50,0

xVeviX/xxl
xV2zveX/xX1
XV7=v7X/xX1
xVA3=y13x/Xx1

XV 4av14%/ XX
xV0=zy00 /% X1
XVX=yXX/xX1

Ti2=7
TTLI4)=(TZ2+727) /2,0
AT Y =Xy
A2(JY=Xyl13
A3(JJ)=Xxvl4

A ISV

AS(JJ)=axyd

AGLJJI=XYX

Al Lyd)=xXyU

TZi=72¢2

WwRITEC(Z, 99?)xv.xv21xv? Xv13,Xv14,XVX, XVO XY
vEX,VZX, v 13X, V14X, V0N, VXX=0.0

vIix=0,0



167 401 ONTINUE

168 ' . vesy20 319

169 vi=y70

170 v13=v130

174 viasvi140

172 M=

173 1FCABS(T=-TA) LT.1,0E=-6) GO 71O 201
174 60 T0 60n

175 999 FORMAT(IHO ,12F10.5)

176 201 CONTINUE

177 VPEAK=164.5

178 a0 TO 600

179 99 CcONTINUE

180 cALL LU1I9S6

181 cALL UNITS(1,0)

182 cALL WINDUWC(2)

183 cALL DEVPAP(500,200,1)

184 cALL AX1gCA(3,10,0,,1.00,1)
185 cALL AXISCA¢3,10,0.,200_ ,2)
186 CALL AXIDRAC1,1,1)

187 CALL AXIDRA(=1,=1,2)

148 CALL GRAPOL(TT,A1,dJ)

189 cALL pICCLE .
190 cALL AXISCA(3,10,0..50,.2)
191 CALL AXIDRAC1,1,1)

192 CALL AXIDRA(Cet:=1,2)

193 CALL GRAPUL(TY,AZ2,JJ).

194 "~ CALL PICCLE .
198§ . cALL AXIsCA(3,10,0,.,10,.2)
196 CALL AXIDRA(1,1.,1)

197 CALL AXIDRA(=1,=1,2)

198 CALL GRAPOL(TT AZ,Jd U

179 tALL PlCCLE

Z00 CAEL AXIgCA(3,6, 0.060.,2)
201 CALL AXIDBRA(Y,1:1)

202 ' CALL AXIDRA(=1,=1,2)

203 “eALL GRAPDL(TT.AA i)

204 . cALL PICCLE

205 CCALL AXISCA<2.6.0.--60..2)
206 © cALL AXIDRA(Y 1.1

207 CALL AXIDRA(=1,=1,2)

208 ' CALL GRAPOL(TT,AS,dl)

209 CALL PICCLE

10 CALL AXISCA(2+10,=0,5,0. s,2>
211 ‘ A CALL AXIDRAC1,1.:1)

212 : CALL AXIDRA(=1,-1,2)

213 CALL GRAPOL(TT,As,dJ)

214 cAtLL PICCLE

215 CALL AXISCA(2,6,0.460,,2)
216 CALL AXIDRA(1+1,1)

217 ' CALL AXIDRA(=T,=1,2)

218 ) CALL GRAPOL(TT,A7,d 1)

219 CALL PICCLE

220 CALL DEVEND

één sTop

222 ' END

D OF SEGMENT, LENGTH 885, NAME ANALYSIS.
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A7.2 Calculation of non-linear gain of the AVR fOr use in transfer
function model of AVR

The digital computer program for obtaining the response of
the AVR to changes in the terminal voltage of the generator given
in Section A7.1 was used to obtain the effective non-linear gain
of the AVR. Figure A7.1 shows the change in the voltage applied
to the voltage sensing circuit following a step change in the
terminal voltage (phase voltage) of the generator from 150V
(peak) to 164.5 V (peak). Figures A7.2, A7.3., A7.%4 andA7.5 show
the corresponding changes in the state variables of the AVR.
Figure A7.6"shows the change in the voltage difference (VX - VY)
applied to the amplifier A and Figure A7.7 shows the corresponding
change in the output voltage (VO) of the amplifier, which is the
voltage applied to the exciter field winding.

It can be seen from Figures A7.6 and A7.7 that there is a
large change in the output voltage for smail changes in the voltage
difference (VX - VY) from 0 volts. Figure A7.8shows the output
voltage V,as a function of difference voltage Vx - VY for different
generator terminal voltage changes. When the terminal voltage is
far below the reference voltage (162 V- peak), the output volvage Vo
is 60V (i.e. the full rectified PMG voltage is applied to the exciter
field winding). When the terminal voltage is far above the reference
voltage, the output voltage Vo is zero, (i.e. the voltage applied to
the exciter field winding is zero). The output voltage Vo is any-
where between zero and full volts for small changes in the terminal
voltage (typically 1-2 V) about its reference'voltage.

Referring to Figure 4.1

V. + V
_ Vs * Vper(o)
Vgo = 7 v

] - A7
i1 Ve |

Differentiating equation A7.1,

. ‘.I .
U, ==+ 1

E2 5 Frt VFZ {as VREF(-) is constant)_ A7.2
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Since Vo is the voltage applied tg theex;iter field windiqg
(v :

FE)

VY =y . A7.3

and the difference voltage applied to the non-linear amplifier
is VEZ’ therefore -

A7 4

Since the shape of the Vo V/S (Vx - VY) graph is of the arctan
form, the approximate gain curve given in Figure A?.B was obtained
as

T Veo | |
VFE = — [?-T Atan (7T_)] A7.5

where Vpe rectified output voltage of PMG (= 60 V)

A 5.7735 x 1073 (constant)

Differentiating equation A7.5 gives

. v C .
VFE':""'“_—.A .VEZ.

1

2 2
A<+ VEZ

‘A?.6

Equations A7.1,A7.2,A7.5,A7.6 are used to obtain the effective
non-linear gain of AVR in the transfer function model of the AVR,
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< APPENDIX A8

TRANSFER FUNCTION ANALYSIS OF AVR

A8.1 Voltage SenQing Circuit

The effective voltage applied to the voltage sensing circuit
is as shown in Figure A8.1(a), and the transfer function of the

circuit may be deduced as:

v Z.Z
s _ 2"4
V;' Zj (Z2 + 23 + 24) + 22 (23 ¥ 24)

A8.1

where Vs is the mean output voltage of the voltage sensing cichitJ

and'Vm is the mean voltage applied to the voltage sensing circuit.

In terms of the individual components of this circuit

Us | 2 R

Vi RuoRaRyglyslyss® + Ryg(Ryy#R1IC 3 # Ryp(Ryg#R )0 1S + (Ryg R #Ry )
' A8.2

Substituting the values of resistances and capatitances given in
Figure 4.4(a)

v

s | 4.89417 x 1072 | 48.3
Y  (0.64756 x 107¢'s? + 1.76631 x" 1072 s + 1)

In terms of the peak line to neutral voltage VT’

Vs ' 4.0475 x 1072 S
7 A8. 4
T (0.64754 x 107 s2 + 1.76631 x 10~% s + 1)
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y
. as - = 0.827.
Vy

+ If the denominator of equation 8.3 is factorised this equation can
bhe written as

Vs KR A8.5
Vi (T +sTp 00T +sTp,0

where
Ke = 4.0475 x 1072 48.6(#)
ToqTap= 0.64758 x 107° 52 - - 28.6(b)
Toq+Tgo= 1.76631 x 1073 s | £8.6(c)

The peak value of the line to neutral voltage on application or
rejection of a balanced load js obtained from the instantaneous
values of phase volitages as

Vp = 5 (v cos(eg) +Vy cos(6p - 21/3) + Vg cos(8p + 21/3)]  48.7(¢)
2 . : o .

Vo = 3 (% sin(eg) + Yy sin{oy - 2w/3) + Vg sin(sy + 21/3)] AB.7(V)

Vi = .VDZ + VQ2 A8.7(c)

Use of equations AB.7 eliminates the need to include the varia-
tion of the individual phase voltage, és’VT.gives the envelope of
the peak Tine to neutral voltage as this changes in time.

A8.2 Negative Feedback Circuit

The mean voltage applied to the field winding 'is'VFE as shown
in Figure A8.2(#). The feedback RC-network can be represented as
in Figure A8.2(b).
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The values of the resistances are:

Rg = Rg + R6 = 4.7 x 105 + 5.1 x 103 = 4.7051 x 10%q

20 x 103q

x ~
It

pr=)
]

R] + R3 =5 x 103 + 150 x 103 = 0.155 x 108q

Since R9 >> R8 and R9 >> R4, the resistance Rg is effectively a
potential divider to give the positive feedback voltage VF2; also
since the input impedance of the operational amplifier is very
high (> 10%q) the corresponding current input is negligible. This
reduces the feedback circuit to that shown in Figure A8.2(c).

The resulting equations which apply for this simplified net-
work are

R

4
7 = A8.8
T+ R467)
)
FE .
V = ] . A8.9
(T+s R4C7)7 )
Vo, - ¥
A o 8.10
: ]
and _
: V-V
I, = ] X A8.11 .
Z+E—C~E+R3

Substituting for Z and V from equations A8.8 and A8.9 into equa;
tion 48,11 gives '
. VFE sC2 - vy sC2 (1 + sR4C7) 18,12
2
(RaR4CoC, s + (RgCo + RaCy + RyC,) s + 1

Since I1 +.12 = 0, as the current input to the operational amplifier
is negligible, addition of equation AB.10 and A8.12 gives
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R L 2 r -
1 (R3R4CZC7 s+ (R4C2-+R3C2-+R4C7) s + ]
' ' A8.13
!5 , Vy sCo(1 + sR,C,)
R 2
] [R3R4C2C7 s° + (R4C2 + RBCZ + R407)s + 1]
A Ve SCp
= = -
1 [(R3R4CZC7 st + (R4C2 + RoC, + R4C7) s + 1)
‘ ' A8.14

Onhultiplying both sides of equation A8.14 by R], substituting the
values ofthe components and then simplifying, it is found that

vy sC2R1 (1 + SReCy) - ) 6.45 x 107° Vys(s+ 106.4)

Fl
[RiR4CoC; 82 + (RyCy + RaCy + RyCo)s + 1]

® TS TBT.58)(s ¥ 133.05) < 'x

A8.15
_ - 0.5 x 107 3%
Vy-= Vey + Vegp- —— -
. (145.7 x 107% s2 + 26.9 x 1073 s + 1)
A8.16
Therefore .
V - V ) 0-5 X ]0-3 S A8.1?
F1 P (1457 x 1075 52 + 26.9 x 1073 s + 1)
Ve K- s o
fl_ F ' . A8.18
Vep (T +sT (T +5T,)
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where
KF = 0.5 x 10-% s-! : AB.19(=)
TeyTro = 145.7 x 107° s? 48.19(D)
To#Te, = 26,9 X 1077 s 48.19(c)

A8.3 Positive Feedback Circuit

The positive feedback voltage VF2 is obtained by calcula-
ting the voltage VC across capacitor C7 (referring to Figure

‘A8.2(e)). As Vx = 0 (virtual earth potential),.

y ] '
Ve = (o= + Ry)
C 1 sC 3
Z+§C_2+R3 Z
_ Veg (1 + sRyC,) )
(0T + sR4C7)' sC, . Ry T+ sR3C27

| {(1 + sR4C§T'+ sC2 ]

Vep (1 + sRoC,)

.= A8,20
[R4sC2 + {1 + sR4C7)(1 + sR3CZ)]
Therefore
| v 1 + sR,C,)
Ve - FE 372 A8.21
ra
(1 + s(R4C7 + R3C2 f R4CZ) + S R3R4CZC7)
. _R.A v 1 R .
hence: V., = (z—20 ) FE {1+ sRybp) -
Fe R +Re" (1 S(R.Co + R | 2R R.C
| (1 + s(RyCy + 3Cp + RQCZ) + 5T R, C-)

47277

AB,22
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Substituting the values of resistances and capacitances
in equation A8.22 and simplifying gives

Ve, _ Ky (T +sTy) 48.29
Veg (0 + 5T (01 + sTE,)

where K, = 1.084 x 107 _ AB.24(=)
Tgp = 0.0150 s A8.24(D)

and Tgy» Tp, are given in equations A8.19(a) and (D).
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Figure a8,2(») AVR AMPLIFIER AND FEEDBACK CIRCUITS

R
1:18 . r—3-1 H
. - C2
R
i‘ 1 Re
| I
V
Fl V
' FE | R
VE| -C :L 9
- 7
.

Figure A8.2(0) SIMPLIFICATION OF FEEDBACK CIRCUITS
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APPENDIX A9
SATURATION CHARACTERISTICS OF THE EXCITER

The effect of saturation due to exciter field current on the
self inductance LFFE of the exciter field winding is given in
Figure A9.1 . This is obtained by measuring the secant self-
inductance of the field winding as discussed in Chapter 2.
Similariy, the effect of saturation due to the exciter field
current on the gain KE of the exciter is obtained from measurement
of the secant mutual inductance between the armature phase and the .
field winding, as discussed in Chapter 2. This is given in Figure
A9.2 , The saturation characteristic of Figure A9.2 can also be
obtained from the open-circuit characteristic of the exciter, if
this is available. Comparison of the normalised polynomials C, and
02 show that these are very nearly equal, and they can therefore
both be obtained from the open-circuit characteristic of the exciter.
Therefore:

Lere = Lere(o)- O = 1 (Tppe ~ 1) 43.1
- . 49.2
Ke = Kggoy+ G2 = 2 (Tppe - Iy ?
= A9,
C} C2 . 9.3

where LFFE(O) and KE(O) are the unsaturated va1yes of the self-
inductance and gain of the exciter. ' '

From open-circuit characteristic of the exciter, the gain of
the exciter at any exciter field current is

PRI | o

where Eph is the exciter phase voltage (R.M.S). Hence values .
of K¢ can be calculated for different values of I, and a normalised
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polynomial obtained, expressing_l(E in terms of IFFE as given
by equation a9,2. '
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APPENDIX A10

RELATIONSHIP BETWEEN D.C. POWER QUTPUT AND
EFFECTIVE A.C. POWER SUPPLIED BY THE EXCITER

The d.c. power output Pdc of the exciter rectifier is

2
£2
p, =4

de R "F

1 A10,1
d d °d

The a.c. power Pac(f) supplied by the fundamental frequency
component of the armature phase current is

Pac(f) =3 E.I1 cos ¢

1l
[ #% ]
_
A
—
——
7
——
(@]
[=]
wr
R=d

It was found by the author that the value of the term in the

bracket F%éﬁ%%J@] was equal to unity when the values of cos ¢,

KV, KC were substituted, for different modes of operation of the
rectifier. This implies that the d.c. power supplied to the gener-
ator field winding by the exciter is ful]y_atcounted for by the
a.c. power suppliéd to the effective load impedance (R + j x per
phase), calculated on the basis of fundamental frequency component
of the exciter phase current. Therefore

Pac(f) = Pac
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APPENDIX A1l

211.1 Induction Motor Design Data

Input : 200V, 3 phase, 400 Hz

Output : 12 H.P. (nominal)

Stator : & pole, lap wound star connected
Rotor : Squirrel cage (aluminium die cast)

Al11.2 Calculation of Induction Motor Phase Model Parameters

The parameters of the equivalent circuit of the induction motor
given in Figure All,l were calculated from the locked rotor test
and the no load test to be

X], X2 = 0,487 g

Xm = 14.843 ¢q

RH ={0.1138 g at 209C ambient
‘ R22‘ =0.113 - o at 209C ambient

The corréspbnding phase model parameters as defined in Chapter 7
are:

a) Stator phase winding resistance (RS)

RS = 0.1138 o at 200 ambient

b) Stator phase winding self 1nductance(LS)
- = . . - -3
Lo = (X + 3 X). o = 4.131 x 1073 K

¢) Rotor phase winding self inductance (LR)

= = =3
Ly = (X, + 3 X.). ze = 4.131 X 1073 H
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d) Stator winding phase to phase mutual inductance (MS)
Mc = - 4 (2% ). obe = - 1.9686 x 10-3 H
S 2 \3 "m/ Tt .
e) Rotor winding phase to phase mutual inductance (MR)
Moo= -+ (2 X ). =le=-1.9686 x 10~3 H
R 2 '3 "m’'" 2uf .
f) The inductance coefficient of the stator phase winding to
the rotor phase winding mutual inductance
M=2x . 1. =39372 x 1073 H
3 "m" 2nf '
Rn X1
o——__ J}——n
| []Rzz/s
o 4——l

FIGURE A11.1 Induction motor equivalent circuit
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APPENDIX Al2

A12.1 Electromagnetic Torque Equation of Indiction Motor

The electromagnetic torque T of the 1nduct1on motor is
given by57

= (pole pairs). [I1¢ [G][I] A12.1

For the phase model of the induction motor discussed in Chapter 7,

[I1 in equation A12,1 1s equal to [I ] given by equation 7.2 and

[G] is equal to [G ]/La—) from equat10n 7.5.
Therefore

T, = (pole pairs) {{I 1,}{[6, /(393 L AL2.2

Al2.2 The Mechanical Load Torque Equation

Assuming the load torqué of the fan on the induction motor

shaft is proportional to the square of the rotational speed, the
mechanical load torque T  is given by

= 2
_ TL TF + KS w

A12.3

where TF is a constant 1oad torque due to friction etc. and KS
is a constant

Equations A12,2 and Al12.3 can be combined to give the diff-

erential equations Al2.4 suitable for numerical integration on the
~digital computer

o
—

po 0 1 1|8 0
- £ |

ALZ. L
puf 0 0)lw

1
J -J T
_ where J is the moment of inertia.
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APPENDIX A13

TRANSFORMATION OF [Lryb] TO [quo]

The inductance tensor [quo] is obtained from [Lryb] by
using the transformation [C] given in equation 9.3, Chapter 9.

[Lagol = [C1[Lyyp) (€] M3.1

Consider the general form of inductance tensor [Lryb] given by
equation A13.2, It can be shown that [quo] obtained from equation
A13.1using the general form of .inductance tensor [Lryb] is

L .
_ 2 1 -
[quo] = L]+ -+ L3 + L4 0 7z (LZ"L4) Cos 39r
0 T SV (L,-L,)Sin 38 |
' 1. 2 -3 -4 V2 ‘-2 4 r
1 e e I .
_ 72' (L2'L4) Cos 39\" 72 (LZ'L4)STH 36Y‘ L-l -2 L3

- A13.3

Equation A13,3shows that Ldéo is not time invariant as 6. is time
dependent, if the assumptions made in the dqo model are invalid
(i.e. if L, # L,). ' -

Comparing equations 9.15, Chaptef 9 and A13.2,

b A13.L

RS T go

Lp = L | A3.5




[t

ryb] =

.Ll + L2 cos ?er

. zn0
-L3 + L4 cos 2 (Br - 607)

0
-L3 + L4 cos 2 (er + 607)

-L, + L

0
3+ Ly cos 2 (o, - 60°)

L, + L, cos 2 (Br - 1200)

1 2

-L., + L, cos 29r

3 4

-L, + L

0
3 g ©0S 2 (er + 6Q )

-L3 + L4 cos ZBr

L, + L, cos 2 (8, +120°)

1 2

A13.2

Gt
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= ¢
I-3 - 2’ Lgo - A13.6

Ly = ng Al13.7

Substituting for L], L
A13.7 into equation A13.3qgives

2 Lé and Ly from equations A13.4 to

- 3 ‘
[quo] - Lotz (Lgo+L92) 0 0
Lo+ S(L L)
0 al’ 2'\-go g2 0
0 0 Lay

A13.8






