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ADbmtTCraoact

The problem of tracking radar targets in the 1ow-anzie
region ‘where conventional monopulse radars face difficulties
due to the presence of multipath wavee is considered in this
theeis. The emphasis of the presentation is mainly directed
towards finding a new simple closed-form solution to the
coherent multipath problem over a smqoth surface. Ancther
céncern is to improve the performance of the
threa-subapertureo‘maximum—likelihood éatinator when the two
receivéd signals are in-phase or anti-phase at the centre of
the array.

The multiﬁath phenomenon and its modelling for smobth
and rough surfaces are discussed and simulation results
obtained foﬁ different surfaces, subsequently the following
are treated:

First, a& new four-subapertures technigque to improve the
in-phage and anti-phase performance of the maximum likelihood
estimator above is derived and simulation results are shown.
Then, an improved version of this technique 1is 15troduced as
a partlof the new algorithm.

Second, a new three-subapertures trigonometric solution
to solve the coherent multipath problem 1is derived anad
demonstrated by simulation results. This new method is
simpler than the maximum likelihood estimator above and very
similar in its estimation accuracy.

Third, the performance of the maximum entropy method ia

tested for the coherent multipath problem by using the




three-subapertures arrangement of a linear array. $1nally
the performances of <the above three methods and the normal
ahaﬁe monopulse radar are teated and compared for different
surfaces when the coherent and noncoherent muitipath exist
together. Simulation results show that the performances of
the maximum entropy method and phase monopulse are much
better than the othere when the target is low-flying over a

rough surface.
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LIST OF SYNBOLS

SwW.2 Swerling casge 2 for the type of echo gignal
(fluctuating ampiitude)
SW. 5 Swerling cape 5 for the type of echo signal

{nonfluctuating amplitude)

P(6) estimated power in the anzglar'direction 9

Q covarianée matrix

s(8) staerigz vector

Rg the reflection ccefficient for the horizontal linear

polarization from a smooth surface.
Ry the reflection coefficient for the veftical linear

polarization from a smooth surface.

Y the grazing angle
Ye the critical grazing angle
{
A the wave length . igw;
o the conductivity of the medium 1n;ﬁh9{g>
D divergence factor
R the distance between the radar and the target
G the zroﬁnd range'
d interelement (or entersubaperture) spacing
de correlation distance
RV reflection coefficient for both linear

polarizations from a curved earth.
E¢ complex dielectric constant of the medium

€1l relative dielectric constant

£o free space dielectrice constant
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3SA-MLE
ASA-MLE
35A-TRM
4SA-TRM
3&4SA-TRM

35A-MEM

Qh.v

the slant range between the receiving antenna and
the reflection point on the surface.

the e&lant range between the target and the

reflection point on the surface.

the radii of curvaturé

three-subapertures maximum likelihood estimator -
four-subapertures maximum l1ikelihood techﬁique
three-aub;pertures trigonometric solution method
four—subapertureﬁ trigonometric solution technique
mutual 384 subaperture trigonometric solution tech.

three—subapertures'maximum entropy method |

(horizontal and vertical polarization)

the phase associated with the reflection coefficient
radar height |

surface height difference
the approximate path difference between the direct

target height |
and indirect ways at the receiving point.

the phase Aifference between the tﬁo gignale

at the array's centre.

the phase associated with the direct signal

at the array's centre.

the phaege associated with the reflectéd gignal
at the array'’'s centre, |

the'bhase of the direct signal at ref,. boint

the phagse of the reflected gignal at ref. point

the phase of the direct signal at point 1

the phagse of the reflected signal at point 1

the change in V¥
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E the total received field strength.
E, ~ airect field strength (|ag|)

6 path difference between the direct wave and .

reflected one,.

Res reflection coefficient for same sense circular
polarization.
Reco reflection cocefficient for opposite sensze

circular'polariza;ion.

de ' circular polarization phase

a: _ rme deviation of the surface heighte

Gé wight ngise«varianee

o noise variance in genral

Re gpecular reflection component from a rough surface

Ra diffuse reflection component from a rough surface

Pg ﬁpecular gdcattering coefficient from a raézh
'surface.

Pq diffuse ecattevring coefficient from a rough

| surface.

Bo " rme surface slopes

Gt ‘trﬁnsmittinz antenna gain

Gr receiving antenna gain.

Y3 grazing angle assocliated Qith path r,

Yo grazing angle éssociated with path r,

a’ bistatic scattering coefficient from y; and v,

Pe clutter reflected power |

Pt transmitted power

Pr recejived powsr from the direct path

Gg target elevation angle

9, image elgvation angle
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Wk, i
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the bisecting angle of the two gources

the angular distance from the bigector angle
gpecular reflection point

projection of r, on the.zround

projection of r, on the ground

diffused power contributing area

the y axis value of the gliastening surface boundry
the x axis Btapt point of the integration

the % axis end point of the integration

roughnese factor

rouzhn;ea facter at local grazing angle Yi and vy
respectively.

gpecular reflection agsociated with Y3 ever rough
surface.

apecular reflection assocciated with Yé over rough
surface, .

integration step length on the x axis

patch value of the diffused power from a surface
complex amplitudes of the direct gignal and ite
ccherent multipath.

the real and imaginary parts of a,

the real and imaginary parts éf as

subaperture gaine in the direction of the target
and its image.

the output of the m-th Bubapérture

integers

the relative strenétﬁ of the two received signals

the coeffecients represent the phase progresggion

along the array for each angle of arrival.
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CM,m the m-th parameter of the all-pole filter
Py the ocutput power of the all-pole filter
S/N signal-to-noise ratio calculated for the direct

gignal only ams received by the main beam of the

array.
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Chapter 1

Introcdduvuction

This thesis addresses the tracking problem of a
low-flying target over different types of surfaces, The main
effort 1is directed toward finding &a new simple method to
egtimate the anéle of arrival of the target in the presence
of a strong specular multipath component. Additionally, the
aséociated problem with in-phase and anti-phase signalsa ie
‘ihvestizated;

-In thia chapter we will introduce the reader to the
low-flying target tracking problem, review the previous
research, and give an ocutline of the theéis with a summary of

the contributions.

1-1 The tracking problem of a low-flying target

The classical form of tracking radar 1is pelated to a
s?atem which folliows the path of a single target and measures
1ts position in a ziven coordinate s&stem. Usually, the same
svstem provides information about the speed of the target
which can be used to estimate ite future position.

Various aingleA target tracking methods have been
daeveaelcoped and used in the past few decades, Thesae methods

are mainly based on either simultaneous or sequential lobing




techniques which require a minimum number of echo pulses to
extract the reguired error signals to drive the servo-control
system foward the target's position. These methods are very
sengitive to fluctuations in the amplitude of the received
gsignal (pulse to pulse nﬁplitude fluctuations). Thﬁa. a new
system which depends on the basis of one pulse to extract the
required error signals was found. Thise monopulse system 1is
basically of two types, an amplitude-combarison monopulse and
phase-comparison monopulse {studied in chapter 6). Detailed
analyels of this system can be found in many reference books
[1-1.2.3].‘ It is'shOQn that the monopulse seystem provide an
optimum tracking performance as long as Jugt one target  is
presentad within the main lobe of the antenna's pattern. The
problem arises when two (or more} signals caused by closely
spaced targets.(or by a low-flying target with multipath)
fall within the main-beam paftern where the trackinz system
starte to behave erratically 1in the vertical plane and
frequently loses track. One obvious solution to this problem
is to increase the resolving power of the antenna by
increaging the frequency or the dimensionas of the radar
antenna. Thie ‘"solution 18 not always possible practically
because of physical and environment limitations,

The main reason for the erratic performance of the
tracking radar in following the path of a low-flying target
can be related to the following three factors {1-4]:

a- specular multipath reflection component

b- Aaiffuse multipath reflection component

C— energy or cldtter reflected on the sea surface from

the same range cell as the target.




The contribution of each term above depends on the state of
the sea (or the under-lying surface in general) as will be
shown next chapter.. ' Figure 1-1 shows the behaviour of a
tracking radar in following a low-flying target witﬁ constant
amplitude and decreasing elngfion angle, It ¢can be seen
from the first zoné (zone A) that when the elevation angle is
high and the beam‘ i well abové the surface, the tracking
accuracy is the optimum obtainable from the eystem {(as, when
one target exists). For a smaller elevation angle, where
some reflected energy starts to enter through tbe aide lobes,
thé antenna ghows' weak oscillation around a mean value (Zone
B). After thét the oscillation increases rapidly due to the
increase 1in the strength of the reflected signal (mainly
specular multipath) making the radar ' lose track altogether.
Figure 1-2 shows the gquilibrium positione for a curved earth
with a specular reflection coeffecient lese than one. It can
be seen that the eqﬁilibrium positiopa about the true target
are continuous while it breaks up into series of ioops about
the image. When the reflection coefficient 1ias one {(over a
Qmooth. flat surface) then the radar will track the target or
ite image by Jumping from one to the other occasiocnally.
Many clagasical solutions have beén suggested to‘solve this

problem ag will be s2hown in the next section.

1-2 Clasegic solutions of the multipath problem

In theory, there are many solutions for overcoming the

multipath problem in a tracking radar but most of them are

not practical, like the increase of the operating ffequency
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or apearture's 1enctﬁ .mentioned above, Here, a brief
description is made of each solution and ite vulnerability to
multipath.

1-2.1 Sereeningt This can be done by placing a fence in front
of and below the antenna to intercept the reflection from the
surface. It is found that the multipath problem is replaced
by a diffraction problem from the tobp edge of the fence due

to 11lumination by the main beam [1-5].

1-2.2 Polarization: By using vertical polarization the
reflected signals in the vicinity of the Brewster anzle-can
be reduced, but 'this 1is not aprlicable for 1low elevation
angles. While the use of circular polarization in reducing
rain clutter is widely recognized, it has no real advantages
in reducing the surface reflection because 1t doeeg not
reverse its sense for angles less than Brewster angle [1-4],

{1-6].

1-2.3 Time of arrival: fheoreticaly. a time lag due to the
differgnce in the propagation paths of the direct and
reflected signals can be used to separate them. This time
lag 1is very small in practice (aspecially for very low
elevation angle) which makes it impossible to separate the
two.éiznals [1-4}.

1-2.4 Doppler frequency: Sometimes the two signals differ in

frequgncy. Thie difference iz very small in practice, and
sometimes does not exist. However, to resolve the direct
from the reflected signals oh the 4basis' of frequency would
requirg.exceptional ~oppler resoclution [1-4].

From the above four solutions it 1is .concludgd that

separation of the direct signal from its apeéular multipath

by Bimple fiiterinz is not possible.




1*2.5‘ Off-axisg tracker: In thiege case the beam 1ig tilted

upward from horizontal by about 9.7 of a beamwidth, then the

reflected signal from the target imaze under the surface is

attenuated by being appreciably closer to the first null of
the beam and further off boresizht than the gsignal from the
.true target. This method reduces the elevation angle error
to acceptable accuracy [1-7].

1-2.6 Double null tracker: This  tracker is based on

generatinz an antenna pattern which forces the .difference
function beam to have two svmmeﬁricallv located nullsbabout
the.horizon. The‘aecond null (the extra null) 1s always
maintained in the diréction of the 1mdce target [1-12].

1-2.7 Freguency d{bersity: Thie method 1g usuaslly uged to

redﬁce the glint of a target. But, as can be seen from
figure 1-1, the angle errors due to gpecular multipath at low
elevation angle are cyclical. Thise is due to  constructive
and destructive interference between the two received
signals. In changing the operating frequeﬁcy the phase
relationship between these two .siznals will change
accordingly and thus, the angle errors can be averaged by
operating the trackinz_rada¥ over a wide band of freguenciles.
The main disadvantage of this mefhod is the need for a large

bandwidth [2-41.

1-2.8 The complex 1ndic&ted'ang1e: The normal monopulse uses
only the in-phase {(or anti-phase) component of the difference
signai, but 1in the presence of multipath additional

quadrature compohents do eXxXlast along with the in-phasge

component. A complex angle error-signal can be derived from




these two components, and a spiral can be drawn 1in the
complex plane with the elevation angle acting as a parameter

- .
{1-8,9]}. One of the main disadvantages of this method 1s the
gmbicuity problem due to the overlxbinz turns of the epiral.
As the antenna height increases (in terms of wavelengths),
the number of the turns increasesg creating more ambiguities.
Also, this method 1a sensitive to surface roughness and the
1ﬁprovement obtained over a rough surface is very marginal
{1-10,121].

These are some of the well-known classical.ﬁolutions to
thie problem. Hoﬁever. due to the growing adaptive array
antenna technoloév. new high—resolution algorithme are

propcesaed and some of these algorithms will be reviewed in the

coming section.

1-3 Modern high-rescluticon algorithms

N During the last few years a great number* of high
regolution alzprithms_for multiple target direction finding
hﬁSb sppeared in the literature. These algorithms arise from
different fileldse of application such as radar, sonar,
seismology, and radio astronomy. The  common factor 'amonz
them 18 the use of a spatially distributed array of sensors
which samples the wavefield 1in the propagation medium.
Nickel [1-13) classified .these algorithms into four
categories (linear prediction‘methods. Capon~type algorithms,
Projection-type Algorithms. and parametric target model

fitting), and analysed their possible use in phased array




radar to improve the spectfal or angular resclution. The
first three categories can also be listed under a more
general term called the spectpal estimation techniques. An
excellent review of the application of these techniques in
the frequency doméin ia shown by Kay and Marple {1-14), and a
good survey of the array signal processing sapplicationg can
be found in many reference books like Hudson fi1-15], Clarke
f1-16]. Haykin [1;17]. Childers [1-18]}, Monzingo {1-19], and

a paper by Gabriel [1-286].

1-3.1 The linear prediction methods:

The most popular method in this category i1is the
maximum entropy method (or the autoresreesiVe model fitting)
where the gpatially sampled data, from the equsl;y spaced
linear array, is assumed to be stationary. Burg's method is
one of the different ways tolgalculape the filter coefficient
(or the reduced form of the covgriance-matrix)'in order to
get the angular power spectrum. The use of thisg method in
radar, 88 a way to solve the multipath problem associated
with a low-flying target, was first reported by Evans [1-21)
where he Bhows.alresult‘from & fieldltest which demonstrates
that the method works well, but he did not mention the scale
of the surface . rcughness. However tﬁis méthod has many
problems such as line splitting, high sidelobes, and Dbest
filter length defermination [1-1#]. In general, fully
coherent multipath (or coherent.sources) with fixed phase and

amplitude relations ¢an not be reaolved; as will be Been in

chapter 6.




1~3.2 Capon-type algorithms

These methods take the following gerieral form:
P(B)=(S*(6) @~V 8(6))"V . ,v real

Where, * represents the complex conjugate transpose, Q 1s the
array covariance matrix, P(O) is the estimated power in the
angular direction ©, and S(©) the corresponding steering
vector. When v=1, the above equation represents fhe maximum
likelihood method.of Capon [1-13]. Griffiths {1-22] gives a
z§od summary of the coQariance'matrix properties, and Mather
[1-23] shsws simulation presults for different methods.
Gabriel (1-24] discussed the use of spectral estimation
techniquesg for radar target traékinz and detection in the
presence of interfering sources. He found <that the maximum
1ikelihood method and the sidelobe canceller failed-to rasolve
twe partially correleted (952) sourcesg with half~beamwidth
angular agpacing and 10 &B signal-te-noise ratio; Evans

[(1-25] and White [1-26] show the performance of the maximum

‘likelihood metﬁod in locating a low-flying target over a

smooth surface where specular multipath dominates. They

found that ‘this method falils completely over all values of

" phage difference between the two received gignals, while the

maximum-entropy method eucceeds when the two signals are in
rhage quadrature. Thus, the method cannot be used to solve

fully coherent targets in general. Basides, a minimum number

of snapshots (twice the number-of array elements) are always
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required in order to get esatisfactory resolution [(1-13].
Thus, the successful use of these types of algorithme i1in a
monopulse-baééd' tracking -system 1is highly unlikely or

impeogaible in practice.

1-3.3 Projection-type algorithms

The general scan pattern of thesgse methods 1is8 given

{1-13) by:

L
p(e)=1/[s*(©) PL s5(8)]

where, éﬂa)is the estimated power in the angular diréc;ion o,
the noise space PL-I-XX*. and the matrix X formed by a Bet of
orthogonal vectors (x1,0.ve0000,xM) describes the signal
space, where M reprasenta‘ the number of targets. If the
columne of X représent the eigenvectore corresponding to the
lérzest eigenvalues of the aestimated covariance matrix, then
the multiple asignal classification method (Mugic) would
result. This method was first found and analysed by Schmidt
ii1-27). It ig cabable of producing an estimate which
contaiﬁs extremely narrow peake at s8ignal directiocons,
egpecially for 2mall number of data vector, i.e in the order
of the array elements. Gabriel {1-24] showse that this method
could resolve partially correlated signals (952) with sharp
peaks, when the maximum likelihood method faiied. However
for the case of fully correlated signale, guch as the
apecular muitigath problem, this method fails too [1-13].

In general, one concludes that the resolution of two
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coherent gources or equivalent radar targets i1s ~more
aifficult for -any of the above three categories of spectral
estimation technique, because the two coherent sources
produce nenstationary fieids in the space domain. However,
Gabriel [1-28] shows that a sgolution 18 pessible whenever
sufficient relative motion or "Doppler cycles'" are available.

The single enapshot case (monopulse) is the most
difficuit one to solve satisfactorily, because it 18 =a
constant-phage coherent case even 1f the twc sourcesg are not
nominally coherenf. A solution is esometimes poﬁsible by
usiﬁz a small mé;inz subaperture ‘alonc the asingle snapshot
data aamp;e. This synthetic movement of the aubaperture is
very similar to the action which occurs in Burg'as technique

of the maximum entropy method [1~-28].

1-3.4 Parametric target model fitting

In prineiple, these are the only methode which can
resolve the fully cocherent multipath problem or équiv#lent
closely spaéed targete on the basis of one snapshot. Even so
they have attracted little attention in the literature. The
unknown parsametere of the received field, such as angular
directiona, amplitudes, ‘and phases are basicsally determined
by selecting the model which offers the best fit for the
collected data. For radar applications, the most convenient
model is the point target approach with constant amplitude

and phase, The optimization procedure inveolves the

minimigation of the mean-squared error between the collected
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data and the agsumed model for increasing ndmber of targets
(etarting with 1 and progressing to any possible maximum
number of targets) in general, but for two targets only for
the c¢oherent multipath problem of concern. The minimization
cah be done by using séme gradient algérithm or by search on
a finite net of parameter values [1-13].

Recent publications on the use of this category 1in
golving the specular multipath problem associated with a
low-flying target are shown by Reilly et.al. [1-29], snd
Haykin {1-30]}. The bekt-—known cloged-form algorithm so far
is the maximum 11#911hood estimator by Cantrell et.al. [1-31]
and its modified vers ion by Gordon [1-32]1. A linear, equally
spaced array, divided intc three equal subapertures, is used
{explained in chapter 3 in detail).

The_common drawback of these algorithms 1s the massive
computer load needed in processing. However, for the
specular multipath case this load is as low as for the linear
prediection algorithms [1-13}, and for the cloéed-form
solution of Cantrell's fype above the load is even less.
Also, this load can be reduced very much for the symmetric

target-image carse (l.e. when the target and its image are

i

symmetrically located about the centre of the elevation

antenna beam) in comparison with the nonsymmetric case. The

first case 1e usually applicable for a short range 1ow-f1yiﬁz
target over a plane surface whefe the effects of the surface
curvature, and the rays bending toward the surfﬁce {due to a
variation 1n- atmosphere density with altitude) are

negligable, and vise versa for the second case ii1-33).
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The concept of an all digital processing radar aystem
is described by Gabriel [1-24]. A conventional receiver is
usad prior to the digitizing stage for each element of the
receiving array then the basgeband 1ﬁ-phase and quadrature
video outputs are appliedr tce sample and hold circgits
followed by analogue to digital converters. The snapshots
are taken according to Nyquist 'samplinz rate corresponding

the bandwidth of the basgeband video.

1-4 Thesis cutline anéﬁcontributiona

Chapter 2 ie devoted to a brief survey of the multipath
problem for a low-flying target over smooth. and rough
surfaces respectively. Simulation resuits for diffused power
distributions for a given radar-target geometry and different
surface roudmésses and slopes are shown.

Chapter 3 1s focused on the study of the closed-form
maximum —likelihood egtimator where a linear array of three
subapertures is used. A new phase eatimation, four
subapertures technique to improve the in-phase and anti-phase
(Just anti-phase for the symmetric casa) erroneous
performance 1g derived and gimulation resgults are shown.
Alsc, an amplitude comparison four subapertures technique to
solve the anti-phase problem for the symmetric case is
discuseed. This teghnique depends on the fact that the
amplitude of the composite output at the array centre is

minimum whenever the two received signals are in phase

opposition sand vice veraa,
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Chapter 4 demonstrates a new closed-form method to

solve the specular multipath problem iI1in which a aimple
trigonometric aolutioh is derived and simulation results are
sahown and compared with their correspondents for the maximum
likelihood estimator discussed in chapter 3 (the same array
is used). Also, & new method to .detect the occurrénce .of
in-phage and anti-phase c¢onditions of the tw§ coherent

sources is shown and new three and four subapertures

techniqges are introduced with extensive gimulation results.

Chapter 5 briefly discusses the performances of the
maximum entropy . method for gpectral estimation (Bprz'a
method)} ana phaee-cqmparieon mohopulse radar over a smooth
surface.

Chapter 6 ig devoted to a study of the performancesg of
the above-mentiond methods in tracking a low-flying target
over a rough surface. Simu;ation resulte show the effects of
the surface roughness parameter, surface slopes, and the
array beamwidth. The effecte of the off-axis angle on the
performance of the phase monopulse radar is shown too.

| Chapter 7 includes diﬁcussion and recommendationes for

further work.

The bagic contributions of thie theais can be

summarised by the following:

1- A new closed-form high resolution method to golve

the sgpecular multipath problem associated with a

low-flying target over a gmooth surface is found.
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15.

New four-subapertures techniques to improve the
performances of the maximum —-likelihood and the
trigonometric methods when the twoe received signals
from the target and ite image are in-phase or
anti-phase are derived and validated.

The performances of thé cloged-form maximum iikelihood
estimator, the trigonometric method, the maximum
entropy method, and the phase-comparison monopulse
radar are studied and compared for a low-flying
target over a rough surface. The effects of surface

roughness, surface aslopes, and array beamwidth = are

shown,
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Chapter 2

Surface rr™wflection— & surrwvey

2.1 Introduction:

The elevatisn anéle estimatién of a low-flying target
depends on the amplitude and sapatial dietribution of the
target enefzy (the reflected power from the i1lluminated
target) forward Bcatter?d from the surface between the radar
and the target. In particular, the reflection properties of
a surface are frequency dependent, so that for long wave-
lengths, tﬁe gurface ie considered ae being perfectly smooyh}
and for short wav ‘1encths. it i1a considered to be rough.
wWhen the surfaée is emooth the specular reflection target
energy is approximated simply by the targef-imaza model,

which obeys the laws of geometrical optics [2-23., [2-10]. In

practice, however, mogt oOf the surfaces in nature are
irregular for microwave frequenciea, producing another
component (diffuse ascattering) which reaches the radar from

an extended area lying between the target and the radar
"glistening surface" [2-2), [2-5]. Many factors would affect
the reflection from a rough surface other than freguency

(2-4}, like elevation angle, polarization, surface curvature,
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wind speed and direction, water vapour..........etc,
Extensive desgcriptions of multipath phenomen? are given
in several standard texts [(2-1,5}. Many papers are found to
address this problem over the sea, but few r(results are
availlable for over-land operation. Katzin [2-7,8] developed
-a theory in which the .elemental scatterars are taken to be
the .small_ patghea‘ or "facets" of the sea surface which
overlie the main large-gcale wave pattern. At low grazing
anzlés the destructiﬁe interference between direct and
specular . reflected waves gives prise to the so-called
"oeritical anzle“.and spiky apearancesg of the sea scatterers.
Mretik and Smith [2-14) gave particular attention to the
effects of target motion, .which permit rejection of
multipatﬁ components falling outside the radar tracker's
passband. Twersgky {2-15) studied the reflection from a rough
surfaca.‘showine‘ thatlwhén the grazing angle approcaches zZero
the reflectioﬁ coefficients. approacheg unity. Court [2-1¢]
used the optical analogy to study the radar-coverage in
elevaﬁion over the gea gurface. Beard and Katz {2-12] used a
vector presentation of the total received field over a calm
ccean. By interpreting pradtical -dafa according to thie
model, it haes been possiﬁle tc relate the surface roughness
to the sea state. Katz [2-6] extendéd the vector model to
include eircular polarization. ﬁarton {2-91, [2-1Sj
developed &a theory for low-angle tracking over the surface
depending on the rough surface scattering theory.: A detailea
model of the diffuse scattering is produced, which takes care

of surface roughness, apikiness, masking, ' geometrical
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correction factor........ .. 0ete, and which agree with
éxperimentalldata in [2-17].

The refraction of electromagnetic waves at-low angles
of elevation is known to be troublesome, especially at or
near the horizen where an error in measuring the elevation
angle 4ie introduced {2-18].- This phenomenon 18 not of
interest in thie study and a homogeneous atmosphere 1ig
conaidered (for more detall about refraction and deffraction,
see references [2-3], {2-18]).

In this chapteﬁ. it ie intended to give a brief survey
of the multipath groblem for a low-flying target over the sea
gurface, to be uged in later chaptera to evaluate various

algorithm's perforﬁancea.

2.2 Reflection from a smooth surface:

Specular reflection takee place only over a emooth,
plane surface, where the lawa of gecmetrical optics are
valid. The reflection coefficient is normally defined as the
ratio of the reflected wave amplitqde to the dinecident wave
amplitude, and the <¢lasaical fopmulas for 1t are the

following [2-1].

sein (y) - V/ €ec - cos? (¥) _
RoP= ' (2-1)

sin {(y) + / €c - cos? (y)
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e sin {y) - J/ ec - cos? (v) '
RoV= (2-2)
: €ec sin (y) =+ J/ €c - cos? (v

Whera, RoDM and RoY are the reflection coefficiente for the

‘horizontal and vertical linear polarizations respectively; vy

is the grazing angle of incident and eq i the complex

dielectriec constant of the medium given by [2—1].”[2—3].
€e = €4- F €3 (2-3)

92'—'— 68 N o : (2-4)

where, i is the wave _length of_ the incident wave; o is the
conductivity of the medium in—-SS/m: _el;e/eo is the relative
dielectric constant of the medium (eé ia the free space
dielectric constant). Fizure 2-1, shows the geomatry of the
reflection from a smooth sﬁrf&ce.

In the abové paragraph the 2913?1§ft£92_13 referred to
88 being horizontal when the electric field vector §f the
incident wave 1is porizontal {parallel! to .the plane of
incidence ﬁ“."’b- Ce ) énd vertical when the electric
fielﬁ vectér ie lyinz in. the vértical plane contéininz the
incident and reflected rays,

The valué ;f Ec aepends on the electfical properties of
the medium, which depends on toc many factors to be discused
in this research (for more information, see ref;[E-S]i. in
practice e ia_much larger thén unity, which allows us to
introduce an approximation to éﬁuﬁtions‘(2-1) and (2-2) above

which become as follows:
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ein (y) - / €c
RoP= (2-5)

sin (y) + 4 €ec

v/ €c 8in (y) - 1
RoV= {2-6)
J eec sin (y) + 1

Figuree 2-2 and 2-3, show the reflection coefficients
for both ground and sea as a function of the grazing angle of
the 4incident wave [2-3]}. 1In figure 2-2 different types of
ground {(according to soll-water mixture) are shown at a
frequency of 8 GHZ, and in figure 2-3 the reflection from fhe
sea surface for féequencies of 188 MHZ, 1 GHZ and 3 GHZ.
When the grazing angle is zero the values of RoP and RoY are
'eqﬁal to -1. The amp;itude of Rol' then decreases gradually
with incresse of the grazing eangle from 8¢ to 98° with its
‘phase staying cqnstant (¢ =180°). The value of RoV is more
complicated, where the amplitude value of RoY decreases
rapiadly with increasing value of Yy til11 1f reaches a minimum
when v =sin~1 (1/ec) as shown from (2-6). This grazing angle
is callea the psgggqlsreygter_ggth and 1ts value depends on
the electrical properties of the surface and it is more
pronounced in the case of ground than for sea. When the
grazing angle iﬁcreases beyond the Brewster anglé the
ampliitude of Rév increases again till ite value becomes equal
to Rol' at y=92°. The phase of RoV changes from 188° at small
grazing anﬁles to zero for large grazing angles with the
changeover occuginz around fhg Brewster angle, For a grazing
angle in the neighbourhood of one degree, both Rol anda RoV

modull are nearly one and their phases lage are nearly 189°.
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A circularly polarized wave conslists of the aum of a
horizontal and vertical component, egqusal in amplitudes (if
not, an ellipticall& pqlarized wave occure), and out of phase
by ¢80 ‘dezrees. The reflection of thié wave over a smooth
surface can be easily calculated from equations (2-1) and

(2-2), and given in [2-6] by:

s N 2 2 1/2
Res = —— [RoV + RoP +2 RoVRol cos(dh- 2V)) (2-7)
2
Rov ‘ Rol
$c =sin-14 - [ein (8V)« .-gin($h)) {(2-8)
2 Res RoV

where Rcs and ®c are the reflection coefficlent and the phaaé
for c¢ircular polarization, when the receiving antenna is
circularly polarized in the same sense aas the treansmitting
source. The reflection coefficient for opposite sense

clircular polarization ia given {2-61 by:

1 2 2 1/2
Rco = —— [RoY + RoP® - 2 RoYRoP cos(9h-4V)] (2-9)
2
Figure 2-4 shows the reflection coefficient for

éircular polarization from a smooth surface as akfunction of
the grazing angle for C-band. Rol and RoY are drawn as a
dashed line for compariscn only.

It is clear from the curves that Ffor low-altitude
targets, the character of the received signal wili depend
strongly on the sense of the receiving antenna polarization
circularity with respect to the tranemitted one.

The discussion of the specular reflection £rom a smooth
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surface in this sgection can be ueed to represent actual
surface refleétivities in at leart the following areas [2-3]:
a: Flat desert surfaces |

-b= Flat surface covered‘by enow

I Sea or lakes surfaces with negligable wave helghtsa

. 2.3 The divergence factor

The reflection coefficiente in (2-1) and (2-2) are
"wvalid only in the case when the smooth surface is plane. In

pfactice they can‘be uged for short range paths, between a
target and a padar. If the reflection ie occuring from a
curved earth (see fia; 2-5), a. new factor, the a¢c called
divepzeﬁce factor tD) must be 1ntrodu§ed. and the reflaction

h
coefficients for both linear polarizations becoms R -

Rohﬂ D. Accepting that the target and antenna helights are
very small in comparison with the earth's radius and that the
total multipath length 18 approximately egual to the ground
range G, the divergence factor is given by [2-2] as follow:

b rl r‘z -1r2 2 I‘l rz -17/2

D = [1+ 1 (1 ] (2-19)
a{r, + rz ) sin (v) b{ry + rs }

In practice, the earth is considered to be spherical

with‘(asb) and if the grazing angle is very small, then D may

be given by!
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2r ry -1z
D = [ 1+ ' ] ' (2-11)
a{ry + ry) sin(y)

where, r; and vy, are the slant ranges of the receiving
antenna and the target from the point of reflection on the
surface respectively, a and b are the radii of curvature of
the intersectiona of the surface of the ‘egrth and two
vertical planes perpendicular to the direction of -

propagation.

2.4 Preenel zone:

Duel to the phasge relationshipa among the reflected
fiald vectors from a smooth i1liluminated surface between the
tranemitter (tarze?) and receiver (radar), most of the
indirect or reflected energy will cancel, except_that from a
comparatively small elliptical patch of the esurface which
combines with the diréct field energy at the receiving point.
This elliptical reflection area is called the Fresnel zone.
The dimensions of these 2zones and their locations are very
important in the radar siting problem, A simplified

calculation-of the zones are given in [2-1,2] by:

The centre of the ellipses

2 hr(ht - hr)
1+ -
e} n G
Xon = - - _ (2-12)
2 (hg + hy)?
1+

n A\G
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The gemimajor axis

2 6,
1+
a n i
Xln~ (2-13)
2 (hy +hp)?2 '
1+
n G

The asemiminor axis

2 64
(1+ )
/n A\ G n i
Yina= J____ - (2-14)
2 (ht +h,)?
i+ —————n e
n x @

assuming that h,, hy and 6, are all much smaller than Gi: h,
and h,, are the heights of .the target and the radar
respectively, G 1ls the ground range, 6, is the approximate
path  difference between the direct and indirect waves at the
receiving pocint ziveﬁ by:

2 hy h,

o = (2-15)
G

(2-16)

Equation (2-16) shows that the successive zones are in
phase oppeeition, so the energy from adjscent zZones tendes to

cancel Dbut, becauge the excitation amplitude decreasges from
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zone to zone, not completely. Thia explainsg the argument
behind considering the first Fresnel gzone as the main

contributer to the reflected energy at the receiving point.

2.5 The Rayleigh Criterion:

In practice a sgurface may be smooth for some
wavelengthas and rough for othera, or for a given wavélencth
it may be either smooth or rough for different valuea of the
grazing angle. Thus, the first step in studying the surface
acattering 1s to‘determine the type of the surface depending
on the two given parameters. Rayleiéh suggested a simple
formula, which depends on messuring the phase difference (¥)
between twc parallel rays encountered on a surface with

height difference (h) at grazing angle vy [2-2}.

¥ = < gin () . (2-17)

1e ¥ =2 {or very small), the two reflected rays will be
1n?phase and the surface 1s smooth. If ¥ = 1806. the two -
reflaected rays will be in phase opposition and cancei out in
thie direction. But, according to the 1§w of ‘“energy
congervation™ they <¢an not be lost and must be scattered in
other directions and the gurface 1is prough. By taking the
middle value c¢f the phase difference (?:990) between thege

two extremes, and substituting it in (2-17), the smooth

gurface condition "Rayleigh Criterion" can be given by:
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A
h € —— (2-18)
8 ain (vy) :
‘ -1 A
vye = gin (——) . : (2-19)

8 n
The right-hand part of equation t2-19). ehowe that
there are two ways to make the surface sppears to be smooth,
(a): by making the value h/\ véry emall (h/X > e); (b); by
taking a very small grazing angle (y -+ @).

Obviously, msat of the real surfacés in nature are
neither smooth  nor roﬁzh. Various theoretical and
expe?imantal investigatione ghow the field gcattered by a
rough surface to be the sum of specular and diffuse

components. Table 2-1, showeg the c¢critical angle +vyec, above

which the surface appears rough at different wave length, and

sea states. When y iB greater than twice +yec, the specular
component from the aurface becomesg negligable and the main

gource of scattering is the diffuse one [2-5]. “wWhen the

grazing angle 1e& leas than the critical angle, the apecular

reflection coefficient will be the dominant term.
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Table 2-1

Maximum angles for specular reflection at different

radar frequencies and sea state [from,

2-

51.

Sea Statef Descrip- iWave Rme Height Critical Angle, (deg)
Number | tion of |height {m)

sea (m) A=2.7m| l=2.1m [1-0.03m

1 Smooth (8-9.3 | 8-8.0865 >u5 | >6 >1.8

2 Slight 2.3-1 @.2865-2.21 12-45|1.8-6 é.5-1.8

3 Moderate |1-1.5 9.21-8.32 8-12 1.2-1.8|8.3-2.5

4 Rough 1.5-2.5 B.SZ—B.SH 5-8 6.7-1.2@8.2-82.3

s Very
rough 2.5-4 9.54-0.86 3-5 a.4-02.710.12-0.2
Hich 4-6 0.86—1.3 2-3 ¢.e9-0.12

0- 3""9. u
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2-6 Multipath interference

The radar antenna feceives the reflected wave and the
direct wave simultaneously. When the reflection takes place
over a smooth, plane surface, and assuming a homogeneous
atmospherea, the treatment is simple. From figure 2-1, the
amplitude of the total field at the radar antenna is given

[2-2], [2-17] by:

E = Eo J{;+|Rh'W?+uth'Vlcos&ﬂ.S ¥) {(2-20)

where,¥ 18 the total phaga shift between the two waves glven
by
é
¥=2 1 0—m + & (2-21)
k -
where, ¢ 1g the rhage  aggociated with the reflection
coefficient, and 4 is the path length diffference between the

direct wave and the reflected wave, which can be calculated

from figure 2-1 asg follow:

6§ = 2 hy, in (y) _ (2-22)
hr‘+ht .
sin (y)= —muu-—o for small v (2-23)
aQ

2 hy (hy +hg) 2 Dy hy :
6 = - _ (2-24)
G G

Assuming in equation (z2-24), hp.<<hy. Eo is the direct fielda




strength, RNV 3

of the surface,
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g the amplitude of the‘reflection coefficient

From eqguation (2-28) E can take any value

between a maximum and a minimum according to the value of ¥

{when the radar
‘a function of
horizentally or
angle (legs than

‘will occur when:

2 hy b,

A G
and the maximum

4 hg hy

A G

Thue the
smooth, plane

coverage of the

f2-12), (2-181.

is etationed in the same position , ¥ will be
the target position). Assuming ¢=7, for
vertically polarized wavee at small grazing

the Brewster angle), the minimum value of E

.k 1g an integer (2-25)

value at

2 k + 1 (2-26)

pregence of a gpecular multipatﬁJ over a

gurface causes the eontinuous elevation

beam t¢ break up 1into a lobed structure




2-7 Rough surfaces:

Various experimental and theoretical investigations of
the rough surface have proved that the, scattered field (wave)
can be represented by the sum of two components, a specular
component and a diffuse co@popentiz-zl. {z-41, [2-9], [2-12].
[2-13]. The corresponding reflection coefficients are
deu;gnated Rs and Ra respectively. The characteriastics of
the specular reflection component Rs is the same ag that from
a smooth surface with the following restriction:

a- The amplitude éf the reflection coefficient is,sﬁallerr
than fhat for a smocoth surface,

b- The reflection coefficient fluctuates.
Re = p, D Ro : (2-27)

wheretp, 18 the apecular scattering coefficient from a
rough éurface given (2-5] by:
4 HAah

R*=expl-( "ein (v))*] (2-28)

N .
and op is the rme deviation of the surface heights,.

The fluctuation of Rsa in any given model of a rough
surface'can be considered to be the result of adding together
a constant field and a zeroc mean random fleld whose real and
imaginary parts are normally ,distributed. with different
variances in cenefal(for detall,see [2-2]),

The power from the target which reaches the rough

surface and is not reflected gpecularly or absorbed, will be
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gcattered in other directions. Pért of this power will reach
the radar from an extended region “cl;steninz surface" from
the neighbourhood of the tdrzet to the neighbourhocod of the
radar. Thie is called the diffuse reflection component. The
basie scattering eiements are the small facets which overlie
the main large-scale wave pattern or swell. The rmg slope of
the small surface facets is given by B_,=2 o,/d,. where 4, is
the correlafion distance [2-2]. The dAiffusely scattered power

from a rough surface is given [2-2] by:
Ra = py D Ro ' (2-29)

where pgy is‘ the rms value of the diffuse scattering
coefficient and D isa the divergence factor which c¢can be
neglected in the case of low-elevation targets because of its
small effect on diffuse scattering [2-13]). Common practice
among engineers is to express p, as a eimple function of
(onSin(y). N} as shown 1in ficure 2-6, which was &rawﬁ from
practical .data ([(2-5]. Since vy varies widely over the
gliatening sufface. using figure 2-6 might lead to an error.
Besides Barton {2-9], showed that figure 2-6 18 not aceur;te.
and the valuesg of Pa énown are smaller than the real values.
This is because the antenna uaed in collecting the data was
very directive and part of the scattering surface 1ie not
accounted for.

For low-flying targets the grazing aengle vy is emall in
comparisdn with the rms suréace slopea‘ Bo (fof gea and land

Bo is typically 0.85-0.25 rad.). For suech casesn, the theory
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by Spizzichine [2-2] predicted that the diffused power will
be concentrated near tﬂe ende of the glistening surface at A
and B as shown 1in figure 2-7-b. A simple diffuse reflection
model has sometimes been used, where the total diffuse power
i dividead betweén a foreground component{(juet in.front of the
radar antenna at A} and a horizon component (3ﬁ;t mufront‘of
and below the target, at B). The value of the diffuse and
specular component isa ‘taken, according té the surface
roughness and zrazinc'anzle. from fizUretz-G.A.Fcr long range
targets the horizon component for this gimple diffuge model
may lie behiﬁd the horizon raﬁze with a curved earth. So,
thise sgimple model cannot accurately represent the diffuse
scgtterinz. In order to get a more accurate model for a
low-flying target, and 1in order to adopt the glistening
‘Burfaee theory to partially rough surfaces, Barton [2-13]
introduced a roughnegs factor (Fd) which would account for
removal of reflected diffuse power by specular reflection at

either'zraéine angle y, or yp a8 shown in figure 2-7-a.

2-7.1 Diffuse reflection model for low-flying target:

In this model, tﬁe‘target is congidered to be an active
tranamitteb. with non-directional anténpa. 1lluminating the
radar and the surrounding rough surface (pg=9). The received
power from the direct pafh {Pr} ie given [2-13] by:

Pt Gt Gr )%

Pr= ' (2-33)
(4 WyZ R?

and the clutter-reflectéd power Pc is given by
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h‘cot(ZBo) . h, cot(2B )

()

Figure 2-7: (a) The diffuse reflection from a glistening surface,

(b) The glistening surface (top view).




Pt Gt Gr A\? [ O de
Pc-j;Pe - j {2-31)

(8 mM)* ry* rp?

where Gt and Gr are the gains of the tranamitting and
receiving antennag and . o is the bistatic scattering
coefficient from y, and Y. The integration in (2-31) ie
over the area within the resgolution c¢ell formed by the
receiving beam and the transmitted waveform, alsc the gailns
Gt and Gr are consi&erad to be constant over the 3-dB
beamwidth; The contriﬁution of the small-area of tbe surface

0
(where r,,r,, 0, and the antenna gain are constant) is given

by

are RZ fe]
d%’= = ds , (2~32)
Pr (r1 rp2? 4 T

Agsume that all the dAiffuse power come Ffrom within the
glistening surface, with apscot’(Bo). for B8 <B, and zerco

when 8>8,. Besides, for 1low-flying target condition aesume

glistening surface boundry 1is then gi#en by the following,

from [2-13]).

{2-33)

0,<Bp<<1, hr<ht<<R, ry; =~ X3, rp = X». The coordinate of the
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and it extends from xa=nr/za° to Xp= R - h./2B8,. The total

diffuse power is given by:

Xy
1 RZ ds i R y dx
%* = = ' a (2-34)
AT 80 X% K2 2 T 8, (R-%X)2 X2
Xa

When the tarzef is at lbw—altitude and 1ong range, for which
the glistening sufface extendg beyond the horizon range,
aquation (2-34) beconiee ar follows [2-13].

Xb |

p2 = _ (2-35)

Also, fhe following approximation can be made: O:= he/R and
w*iet.Bo- |

In equation (2-34) the surface is considered to be
completeiy rough. In zenergi. a frgction of the power
incident on the gurface will contributg to the diffuae
scattering -component but most of it for the gpeacular
component (especially when the target is very low over the
surface). One method of scaling the diffuee term in (2-34)
is by multiplying it by a rouzhnéss factor ?d.

4 1 ay sin(y)'

Fais 1- p?=l - expl -( )2 ] (2-36)
| X '

Barton [2—13].:used separate rduﬁhnese factors'Fdl and

Fdz corresponding to. 1oc§1 grazing anglesg Y1 and- Yyp

agsoclated with esch area within the glistening surface.
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PAaZ=Fd, Fd,= J/fl- PZay}(1- pZan) (2-37)

Here, pgq and p,, are the specular reflection coefficient for
both paths associated with ry and r, respectively, see figure
2-1. FA4? becomeas zero wherever Pg) Or pyp equal one (smooth
surface case). By including the roughness factor (Fd42) in
equation (2-34), the diffuse gcattering éoefficient is given
(2-23] by:
' >y _ _
R2 FA? Y d4dx

z . (2-38)
2 W B%, |} (R-X)Z X7 -

X,

N

This roughness factor accounts for the specular powef
at low-elevation angles and the horizon effect for a' round
earth. Also, no shadowing or masking correcfion factor is
required unless very epeéial circumestances exist such aeg a -
huzé obetacle interupting the path [2-13] ......etc.

Inrorder to meef‘the-;aw of enargy cqnservation. Barton
f2-9) noticed that a geometrical 'correcfion fgcfor isrheeded
when yy <28, to tage account of the golld angle of the diffuse
reflection being no longer reduced in proportion to yv,;. The
aeffect of the new factor would be to reduce the horizon
diffuse power cdmponent by qne*third to two-thirde for that
given in equation (2-34).

Barton [2-13],considebed two typlical low-angle tracking
cases, The glietening aurface dimensions were calculated
from (2-33), and Apﬁi_ Qalues were calculated for AX=500m
through the region from the specular reflection point to the
horizon. Table 2-2 shows complete degeriptions for both

cases. The diffuse power distribution over the ground range
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Table 2-2: Typical paths for evaluation the diffuse reflection,

from [(2-13].

Case (A) Case (B)
Description of bafh Short range Long range
target target
Range: R _(km) 10 _ >>10
Heights: hy {m) 105 | >>1@5
hp (m) 5 s

Elevation: 8, (raq) 2.01 8.01
Surface slope: 8, (rad) 9.1 8.1
Ground rangest X, (m) 25 25
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and the effect of the roughness factor for moderate sea
(op=57) ana rouch sea {op=20)) are shown in figures
(2-8-a,b), {(2-9-a,b) for short range and long range target
respectivel&. From the curves, the foreground component is
slightly affected by the roughnese factor but the largest
horizon éomponents are zradﬁaliy reduced, Also..by compgrinz
fligure (2-8-a,b) with figure (2-9-a,b), the difference
between short ranges and long onesa in the‘horiéon region, ie
small in both' roughness casgee. In both 1f the foreground
component 1s'exe1uded. Pa will 1ie between 8.1 and 9.2, and
most of this diffused power will originates arround the
specular reflection point rather than at hdrizon.

Figuree (2-10-a) and (2-19-b) sﬁow the diffuse power
distribution in eleQation_ for bqfh short and long rﬁnge
targets for a completely rough surface and for the two
-rouzhneés factore mentioned earlier. .  The diffused power from
a region at range X will ammér at angle (-h,/X) relative to
the radar's antenna (for large h, the modification for

curved-earth must be considered). The short range case has a

relatively big horizon component for rough surface{pg=8). but

the long range case lacks th;s term.l The forezroﬁnd term for
the short range case is sémewhat- smaller than that for the
long range, |

Further simulation of this target's diffpée'réflectiqn
model for different éurfacé réuehnesses._ rms alopes,
elevdtion angle, and.radar—tarset zeoﬁetry hae been cérried
cut. The results are shown 1in appendix A2, tables 1 to 7,

" which will be used in chapter 6 to study the performances of
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Figure 2=8: Diffused power distribution over a short ground range
( a ): rough surface f%—o.O).
{ b ): effect of roughness factor for medium and rough surface
(after sarton 2-13 ),
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Figure 2-9: Diffused power distribution over a long ground range
( a ): rough surface (PS=O.O)

( ® ): effect of roughness factors for meaium and rough surface

(after Barton [2-_13_] ).
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(a)
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- - . 2
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Figure 2-10: Diffused power distribution in elevation for completely
rough, medium, and rough surface.

{ a ): short range target.

{ b ): long range target,

From '[2-13] .
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.aome high resoclution algorithms in the presence of diffuse

and specular multipaths.

2-7.2 The slopes:

The rme slope of fhg facetg overlying the large-scale
pattern (B,) is a very complicated funation of the wina épegd
and direction over the aeé. Its reduction would naﬁrow thé
gliﬁteninz surface and move 4its  1limite farther from the
terminala (A'& B), a8 can be seen from equation {(2-33). but
the net increase in the diffuse power ie very small, and

vice-versa [(2-13}.

2-7.3 The elevation angleé

The elevation angle hag a big effect on the sgurface
behaviour as shown in equation (2-19). When the elevation
angle of the target decreases, the hdrizon ‘coﬁponent of Rd
wﬂich. to s§me axtent depends on tﬁe zlistﬁning surface
widthe, decreagsesg and the value of Re increases making the

surface lookt smoother, and vice versa.

-~

-2-8 Depolarization:

Depolarization 18 the change of the reflected wave
polarization from that of the 1incident one. So far, it 1s
implicitly accepted that the reflected wave polarization is

identical to that of the incident. Hare we discuss in brief

the'ektent to which this assumption is correct.
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On the basis of theoretical work, Backmann [2-2] proved
that , when the incident wave is purely 1linearly polarized
(veftically or horizontally), the reflected wave in the plane
of incidence 18 not depoclarized (specular reflection case),
and, when tﬁe 'sinnal is s8secattered out of the plane of
1ncidence. it ie strongly depolarized {(diffuse scatterins'
case). Also in {2-4), a description of an experiment over the
water surface 1ig given where a pure 1linear polarization
(vertical and horizontal) is transmitted. The received cross
polarized scattered field isg shown to be on the order of 25
‘dB  below that éf the incident field (no mention of the
surface roughnese is made)}. Aleso, the same experiment showed

‘ that the signals arriviné from directions other than the

gpecular reflection direction (Diffusely egcattered field)

were highly depolarized.
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APPENDIX A2

(includes tables 1 to 7)

Table 1: The range distribution of the diffused power for

B°=B.B5. h,=5m, h.=285m, R=108km, and o, /7=5.

X Xp ppL A4 ra’ -h,/X
(m) {(m) Gp/ =5 ah/ﬁ=5 {(radg.)
50 250 8.41 8.3788  ~mme—e—ee
250 750 ' @.137 @.8720  -2.0100@0
750 12590 2.851 2.0146 -0.0050080
1250 1750 2.034 8.0067 -8.283333
1750 2258 8.027 8.0041 -9.202500 .
2250 2758 8.e24 2.0029 -2.002008
2750 3258 0.022 0.0023 -8.0081666
3258 3750 8.022 2.0019 -8. 802428
3756 4250 8. 022 2.2017 -2.801250
4258 4750 2.023 ¢.28016 = -0.001111
4750 5250 a.024 2.0815 -9.901009
5258 5750 2.9026 2.8015 -2.208909
5758 6250 2.029 2.8015  -90.800833
6250 6750 2.033 2.0215 ~2.002769
6750 7250 8.238 . 8.0016 -2.000714
7258 7750 o.041  @.00817 -9.0808666
7750 8000 2.813 2.0005 -9.900634
Total horizon component: a¢g= @.56, AédFJQ R.18¢9

] z
Total forground component: Ap,= 2.4%, Ap%Fd: 2.37




s0

The range distribution of the diffused power for

Table 2:
Boéo.zo. h,=5m, hy=285m, R=10Km, and op/A=5.

Xy Xp s api Fa’ ~hpn/X

(m) {(m) Oy /A=5 IR/ =5 (rad.)

12.5 250 e.4490 ‘8. 4008 = —e———meem
250 758 8.0346 2.2181 ~-8.08108000
750 1250 5.8229 9.0037 -2.205000
1250 1750 2.0087 2.0017 -2.083333
1750 2250  ©.0070 0.2010 -8.202500
2250 2758 @.0862 . @.ees7 -9.902000
2750 3250 8.0058 0.0006 -9.821666
525@ 3750 2.98057 2.0005 -8.001428
3750 4259 2.0058 @.eael -2.001250
4250 4750 8.8061 2. 0804 -9.9001111
4750 5250 2.0866 . e.0004 -9.001000
5250 5750 0.0074 - 9.8004 -8.9808909
5750 6250  ©0.0085 0.0008 -0.000833
6250 6758 9.@8103 . e.o0005 -2.000769
6750 7250 8.0129 8.08005 -9.00@714
7250 7750 2.08172 8. 0007 -2. 200666
7750 8258  2.8250 0. 2009 -2.0006304
8250 8750 e.0411  @.0015 ' -2.000625
8750 9250 8.0826 2.0028 -2.000588

Total horizon component AﬁZ: 9,366, Aﬁ;rdﬁ 2.8373

2
Total forgreund component:\Ap%: 2.4489, AﬁSFd= 8.400
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Table 3: The range distribution of the diffused power for

‘B°=0.1. hp=5m, hy=205m, Rzlﬂkm. and oy, /\=5,20.

Xa  Xp ap sp4ra ~hp/X
{m) - (m) Op/A=5 Op/ A=5 ah/k=za | (rad,)
25 | 258 P. 517 2.3700  ©.4170 ——*5—-4-
250 750 2.869  ©9.0362 0.0691. -0.010000
758 1250 8.025 8.9074 9.8230 -0.005000
1250 1750 8.817  ©.803% 9.0123  -B.883333
1750 2258 la.axu 9.0021 ©.0080 -0.002500
2250 2750  ©.012 2.2015 = @.0058 -0.0082000
2750 3256. @.011 2.0812 ©.0046 -8.001666
3250 3750 8.011 9.2810 9.093§ -0, 001428
3758 2250 9.0811 " 9.8009 ©.8035 -9.081250
4250 4750 2.012 8.0008 2.99833 -9.08021111
4758 5250 8.9213 ¢.0008 ©.8832 -0.001000
5258 5750 e.214 2.0008  0.0032 ~2. 200909
5758 6250 2.016 @.0008 ©.9034 -0.000833
6250 675¢  9.019 9.2089 @.2038 -2.000769
6750 ‘7250 e.p824 8.2011  B8.2044 -8.00071U4
7250 7750 0.832 ©.001.3 ©.8053 -8,008666
7750 8250 e.ou4 ©.0017 ' 0.0069 -8.2008634
sésa 8750 9.061 °.2023 2. o094 ;a.aqaszs
8750 8975 9.028 2.8018 ©.004¢ -0.000580

Total horizon component : Agy= @.433

z
Total forground component: Ap,y= 9.417
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Table 4: The range distribution of the Aiffused power for

B,=0.85, hp,=5m, hy=185m, R=10km, and op/\=5.

Xg - Xp ApGy AfyFa’ ~hp/X%
(m) (m) Op/A=5 Op/ =5 (raa.)
50 5890 .454 0.2350 ——m—---o-o
5890 1000 2.045 8.8116 -0.006666
1080 1500 2.024 2.08039 -0.000000
1509 20a9 9.017 0.0021 -0.992857
2009 2500  @.014 8.2014 -9.p02222
2500 3000 2.013 2.0011 . -8.801818
3000 3580 2.012 8.8089 -2.801538
3508 a000 9.012 2.90008 -9.901333
seee 4500 2.812 .e.eaaa ~9.001176
4500 5000 9.013 ¢.0008 -8.0201052
5020 5580 o.0i4 2.0008 -0.0080952
5520 6000 ?.016 2. 2008 -2.080869
6000 6500 ¢.018 8.0009 7a.oeesab
6500 7800 e.0822 2.0010 -2.000748
7020 7500 2.028 0.9012 -2.200689
7500 800 ' 2.038 2.92015 -Q.bae6u5
8020 8500 2.0854 - @.p020 - ~-2.000606
8see 9200 0.870 0.0925 -9.0008578
Tof&l horizon component: Ap%: @.42, AptF;é a.e34
Total forground componentt Ap§= b.us. A&;FJ; 9.235
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Table 5;: The range distribution of the diffused power for

B,=90.20, hp=5m. hy=105m, R=18km, and op,/A=5.

Xq Xp Ap’y ApyFa” —h.r/x‘
{m) (m) T/ A=5 O/ A=5 {rad.)
12.5 580 8.4778@ 8.2529 = —-—-—---- '
.509 1000 2.0115 ®.08029 -2.006666
1000 1500 9.2060 0.8289 . _o.e0u000
1500 ‘zeaﬁ 2.0843 8.0005 -8. 882857
2000 2500  9.08036 2.e004 ~0.002222
2500 30008 2, 0032 0.06003 . -8.921818
3600 3500 | 8.00831 @.0002 -2.001538
3502 4008 a.aéaa _ 2.00802 -9;051333
T-T.T. 4500 9.0032‘ ‘é.aaaz -0.001176
4500 5000 0.0833 9.0002 = -8.001052
Seeo 5500 8.0036 0.8002 -0.0808952
5588 6000 2.0041 2.0802 . -@.,000869
6002 6500 0.0048 2.0082 ~2.000800
‘6559 7000 @, 00860 @.08003 -2.000740
7000 7500 2.0077 ©.2003  -0.000689
| fseﬂ 8200 p.0108 : 9.0004 -0.000645
8oee 8500 2.08167 2.0006 -0.088606
8588 9020 8.0311 ' a.§e11 -9.0008579
9000 9500  ©.0840 0.0028 . -0.0p2540
9500 9740 9.1150 @.080837 . -3.900519
Total horizon component ; Aﬁ2= @.323, ApZFdL 8.0156

L
Total forground component: Ap%: 8.477, AﬁLFd= 8.2529
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Table 6: The range distribution of the diffusad power for

Bo=0.1, hp=5m, hg=185m, R=10km, ana o,/ A=5,20.

Xa Xp Ap; : Api‘,?dz -n?/x
(m) (m) op/A=5 op/A=5 op/A=20 {(raqa.)
25 500 ‘2.4678 @.2478 8.4677 W ——-mmm—-
500 ' 1800 9.0229 2.0058 ©@.0222 -0.006666
1800 15082 2.9120 @.0019 ©8.8095 -0.004000
1520 2000 ©.2087 ©.8019 ©0.8055 -@.002857

- 2800 2500 '3.3975 @.00287  ©.0837 -0.002222
2500 3008 8.0065 2.0006 ©9.0028 -0.001818

3008 = 3580 8.0862 2.0005 ©.0023 -2.801538
3500 4o00 .0061 0.0004 ©.0020 -0.021333
koo 4500 9.0063 9.0004 g.0018 -6.08061176
4500 58008 2.0067 2.0004 ©.0017 -8.0801852
50080 5560  9.90073 2.0008 ©.8017 -0.080952
5508 6000 ¢.0082 @.e004 9.6617 -2.000869
6808 6500 2.0097 2.0005 ©.8019 -0.200800
6580 . 7200 2.2118 2.0005 ©.0022 ~é.eaa7ua
7000 7500 8.0153 0.0006 0.0026 —a.adbéag
7500 8eon " 9.8211 2.0008 9.0034 -0.000645
8008 = 85080 8.0324 9.0012 o.0049 —e.éaaée6
8500 9000 2.0578 2.0020 2.0082 -9.208570
9000 9588 8.1285 é.qaho 9.0173 -0.8@0542

Total horizon component Ad%: 8.3732

Total forground component: AH;= 2.4678
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Table 7: The range distribution of the diffused power for

Bo=8.1, hp=5m, h¢=10088m, R=10@km, and o/ A=5,28.

0.90105

Xa Xp Bp Mgy Fa’ ~hp/%
(m) (m) O/ A=5 On/A=5 0Op/A=20 (rad.)
25 500 ¢.460830 2.230800 a.a599é --------
500 1000 2.02000 2.00463 0.01947 -0.006666
1800 1500 8.008948 2.80135 @.e8755 -0,.924000
1500 22820 8.02615 0.00063 ©.00398 -B.002857
2080 2520 0.080456 @.20036 @.00235 -0.802222
25e@ 30080 8.008363 2.00024 ©0.00157 -0.021818
3200 3500 2.20302 2.00017 0.08112 ;8.061538
3508 4008 2.00259 @.00212 0.00084 -2.001333
4eee 4500 0.20228 9.94E-5 ©.00066 -8.801176
tsee  s0@0 2.02203 7.98E-5 @.00053 . -2.801052
5000  55@0 2.020184 6.57E-5 0.00843 -0@.0808952
5500 6000 2.00169 5.51E-5 @.00036 -0.0808869
6000 6500 6.20156 L,78E-5 ©.00031 -9.000300
é658@ 7080 ¢,008145% 4.07E-5 ©.20027 -2.220740
7002 7508 0.080136 3.56E-5 e;uaezs -2.,200689
7500 8000 2.80128 3.15E-5 6[50021 -0.0808645
éaae 8508 @.00121 2.81E-5 0.00018 -0.000606
8508  9o0@ 2.80115 2.53E~-5 ©@.80016 -0,00057@
9980 9520 0.00110 2.29E-5 ©.00015 -92.0808542
9502 10000 2.09E-5 0.00013 -0.000512

I _ ' | | | |
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Chapter 3
The Maximum Likelihood

Estimatonr

3-1 Introducticn

The difficulty 1in tracking i1ow-flying targets using

conventional tracking methods arises from the presence of a

strong surface reflection (specular multipath), white [3-1}

discussed this problem in consliderable detall. Starting with
a éla&sical maximum likelihood Qnalysis of two closgely spaced
targets, he developeada two teghniques which are capable of
dealing with this problem. In a more recent paper, Cantrell et
al. [3-2] studied the problem by applying a closed form of
the maximum likelihood estimator to an array divided equally
into three subapertures (3SA-MLE). They have shown that the
use of this technique gives a performance for ;esolution of
close ¢cherant sources (targets) very near to the optimum
obtainable from the aperture were all the elements sampled

individually, the loss mounting to one or two dBs equivalent

SNR. The anag with the technique 1ie that this good

performance is only obhtainable for esocurces which are cloge to
Quadrature at the array centre and the ﬁErformanpe
deter;orates rapidly if the relative source phases approach @

or T. The best solution to this problem is to use four
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subapertures bpt the cost involved in this are considerable
since the closed form solution for the 3ISA-MLE is excegsively
complex. Mopover it 18 deeirable to keep the saimple
processing of [3-2)] if at all poss;ple.

The technidue which has been evolved to handle} this
situation 1&g to divide the aperture inte four groups but use
these subapertures in two sets of three, one at each end of
the array. The reason for this 1is that 1if the two siznalé
are in-phase or anti-phase at the centre of one of the sets
they c#nnot be so phased at the centre of theA other 1f the
source bearings -are different and one or other of the sets
will give an acceptable performance, To usge this'technique a
method for determining which‘ of the sets has the best chance
of resblvinc the éources must be found and thieg aseemed
impossible until, a8 & result of simuiations it was found
that if the.sources are actually in—phase or antl-phase at
the set phase centre and the complex amplitudes of the
scurceeg are computed within the Cantrell-type algorithm then
the relative phase will be 1indicated correctly. Thus by
proceageing both of the gets and selecting the one which has
the most promising i1ndicated signal phases a good performance
might be e;pected.

The ‘main purpose of this chapter is to explore this
posaeaibility in detail, starting with a complete study of the
3SA-MLE for differeﬁt values of pg, S/N. and angular distance
between the two targets. The effaect of the tarzét's type and

the accuracy in estimating the phage difference between the

two signals 18 presented in detail.
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3-2 The maximum likelihood formulation for two

target and three subapertures

In order to keep our discuesioﬁlBelf—contained. and to
‘make it easier to introduce some new remarks about solving
the problem of inphase and anf14phase slignals, we briefly
review the three subapertures method by Cantrell et al.[3—2].
In this method a 21 element, equally spaced 1linear array
(elemanta spacing 1is X2/2) 1e divided equally Iinte three
gubapertures (eaéh' of 7 élements). Assuming a uniform
amplitude weighting 18 used, the aubaperture pattern can be

approximated by:
@(6-8,)=(a/) [sin(MIRA/N) 1/ (ARA/N) (3-1)

where d is the subaperture spacing as shown in figure 3-1, Gp
is the pointing angle of the beams relative to the
horizon, and R=8in(8)-81in(6,).

In the presence of & coherent multipath (specular
reflection)} the output signals S84+ 82 and S4 from the three

subapertures can be represented by:
S4= a1 Gy exp (+3J2Z4) + a; G, exp (+325) + ny

Sp= a3 Gy + 87 G2 + ny (3-2)

S3= 8) Gy exp (-323) + ap G exp (-323) + ng
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Figure 3-1 : The geometry of the three-gubapertures array
and two sourcee (target and 1ite image),

R = E



Gy= G(6y - ©p) (3-3)

Gp= G(Op - O,) , - o (3-4)

‘z1=_2;n a 8¢/ S - (3-5)

Z,= 2 1 4 6,/% | | . (3-6)
where:

- Bin(6y) =~ Oy and 8in(6,) =« @, for émall angles is’
assumed in (3-5) ana (3-6) reaspectively.

- Gy and G, are the sgubaperture gainsg in the direction
of the tarsef and the apecuiar multipath‘reépectivéiy.

- 8y and a; are the éomplex amplitudes of theldifect
signal and its coherent multipath respectively (as=pg &3).

- 6, anda 6, ;are the target anda multipath angles
measured from the horizon. | |

- The reference phase center is taken At the centre of
.the array {(at fﬁe~m1ddle aubaperture).

- Ny, ny and nj are the Gaussian complex noise samples
with zero mean and varlatice of a%

In order to present (3-2) in a vector form we make the

following simplification:

Ay = ay Gy | . . where i=1,2




and the vector form

S = WA + N
. ] E T (a, ]
8, Wii o W12 Ay
S = Bz » W = le w22 . A=
3| : w31 W32 | Ap
T .
N = [nl l’lz n3]
Where T represgsente the trénspoae. and the coefficients Wi

represent . the phase progression along the array for each

angle of arrival at the center of each subaperture.

wis = exp [d(2-k) 24) . - ‘ (3-7)

k = 1,2,3 and 1i=1,2

where in the matrix W the first column cantains the phase
progression of the first source (target), and the second
column represents the phase progreggion for the second gource

{(Bspecular multipath),

wy = exp (32 T a 6,/2) - ' ‘ (3-8)

-

exp (32 T @ 8,/\) (3-9)

z
N
[




Since 0,, 0,, w3 and w; are related to each other
through (3-8) and (3-9). then solving for the begt estimate
of w; and wy; is sufficient. |

Knowing that the cqmplex po;se vector N is a Gaussian
random process, theﬁ minimizing the square error is

equivaleﬁt to maximizing the likelihood function {[3-2}.

L=(s-~WwaA*(s-war ' (3-18)
where * repregents the complex conjugate tranepose. If W is
known, then the value of A which minimizes (3-10) is given by
(3-2] as follow:

A= (Wrwlws ' (3-11)

by expanding the term in {(3-11) we get:

-~ - ;2 = » 12 o J R —
Al 2w1-w1w2—w2 2W2-W2W1—W1 51
: K % * :
A= =1/G z-wth-wzwl 2-Wy Wy -WoWy g2 (5_42)
x 2 2 x
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* x 2x2 22
G=9-(3+2W Wa+2Wow  +W W+ W Wp ) (3-13)

L can be written as follow from ([(3-2].

3 .
L=(1/02) L g2 (3-14)
k=1 '
. k-1 » k-1
fk= Sk"'(wl) Ay - (Wz) Az (3-15)

by saubstituting (3-12) 1into (3-1&) and ‘(3—15). then the

square error c¢an be reduced to the followinz. s8imple
expression.
L=18, - (w1+w2) Sy + wWiwWso SSF/(2+|wl+w2F) ) {3-16)

Figure 3-2 shows the combining network which produce L and
figure 3-3 shows the combined three subaperture beam pattern
asgoclated with 1it. Ae c¢can be geen from figure 3-3, two

nulle are produced in the direction of Bt and & (this 1=

r
;1milar to the normal monopulse performance 1in case one
target is present). Coneequently, if the valueg of Wy and wy
which make L small can be determined then two nulls will be
produced at both angles of arrival, et ang er.

Close examination of L will .éhow that its denominator
represents the noise power output from the combining network
in the absence of signal, while 1its numerator represents the
signal output power in the absence of noise.

’In order to simplify the diséussion. iet us represent

the direct angle 6, and the multipath one 6 in terms of a

r
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L =TTz +lwy+ woi?) ¥

M =8,-(W + W, )85 +WoWsS,

Eizure 3-2 : Circult implementation of the three-subapertures

MLE and two sources,
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angle of arrival {radians)

Figure 3—3 : The antenna paf’rerh for the circuit implementation
in figure 3—2 of the BSA—MLE, where the two nulls

at F0.04 radians represent the angular positions

of the two sources
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bisecting angle (GB) and an angular distance angle (6p) from

the bisector.

8,= ©g + Op (3-17)

er= eB - en (3_18)
consequently %
|
Wlﬂ WB WD ’ l (3_19) |
* . T . |

and the square error L becomes ag follow:

o= 2 2 * 2
L= Sl-*WB(‘WD*WD)SZ"'WB Sal /(2+IWD+WD|) (3-21)

The problem is to minimize L with respect to the

following conatrainte:

x

Wgwg=1 ' (3-22)
*x

Gordon [3-3] introduces additiqnal constralints by considering
the reflection coefficient.of the aﬁrface to be lese than one.
The purpose of this is to improve the algorithm pérformance
whén the twe signals are inphase and. the aignal ‘to—néise
ratio is maximum.

" In the following, the MLE sgolution for the two targets

and three aubapertures geomatry 1s shown for the symmetric

and nonsymmetric cases reapectiv_\élly.
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3~2.1 Symmetric case sclution;

In this case wp 1 known a priori and the critical

ik

points of wp (the pointas of zero slope of L gatisfying the

condition wDJ;=1) are given by the following from {3-2]:

wp = 1 (3-24)

wp = -1 - (3-25)

: 2 o
wp = V/2 3 3/ 1 -~ (v/2) ) ‘ . (3-26)

where V 18 any root to the following equation which satisfies

the condition
V2

vZ + 20(2- [Ry2)/(ReR{)IV - 2 =0 (3-27)

and Ri is given by:
- 2 . :
Rt- (Sl +* WB Sa)/WBSZ (3-28)
The value of L wmust be evsluated for each critical

point of wp and the one providing the abasolute minimum value

of L gives the best estimate of the anzle of arrival.
8,= M2 T 1
¢= [A(2 d)) tan [Im(wpwg)/Re(wpwg)] (3-29)

There are two special cases which occur with

probability zero. The first occurs when S>=0 and the




o8

minimum value of L is attained at both values wp=1 and wp=-1.
The gecond special case occurs when the imaginary part of Ry
is zero, the real part_is 1qsé than two, S, is8 not zero, and
L can be made zero by setting V = Ry - Thias case occurs when
there i1ig no noise added to the received signals. 'uore
details of the minimization process for the function L is

given in [3-2] and appendix A3,

3-2.2 The nonsymmetric csee solution:

In this case wg and wn are not Known and we have to

egtimate both of them. The molution is given in [3-2]'by:

| ' * *

U = (|s3|%|sl|%/1 Sp83-515;5) - (3-30)
when the absolute value of U is less than or equal to two,

then the values of wp and wg Which minimize L subject to the

* * .
constpaints waD=1 and waB=1 are ag follow:

wg ={u|/U (3-31)

‘ / 2
ulrz) ¢ 3/ 1-lulsa \ (3-32)

Yp

when the absolute value of U 1sg bigger than tweo then the

solution will be:

(3-33)
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and wy is one of the following quartic equation roots

4 b) *
aWg-agWp+oWy-o=0 : (3-34)
where:
* %*
[= S 153 . : (3"36)

A detalled discussion is given | in appendix B3 and a
simulation result. for the symmetriec and nonsymmetric casges
are shown in a later section to QemonStrate the performance
of this algorithm (3SA-MLE) according to S/R, reflection
coafficient, and the nonaymmetry c¢ondition. Also, 1its
performance in the presence of diffuse multipath is‘simuléted,'

aceording to the theory given in chapter 2; and compared with

other algorithms performancesg in chapter 6.
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3-3 The four subapertures technique

Simulation results in figurese 3-8, 3-14, and reference
[3-2) have shown that the good performance of the 3SA-MLE is
only obtainable when the phase difference (¥) between the two
coherent sources (target and imaze).at the centre of the
aperture is clomse <to quadrature (7/4 te 31/4) and declinee
very rapldiy when T approaches @ or T (only T 1in the
eymmetriec casge). It ie shown in figure 3-8 that: the
performance acdurac& is very high when ?:Blror the symmetric
cage} however thig condition 18 not always possible'and the
genaeral case 1is the nonsymmetric_ ohe. One way of improving
the performénce at ¥ equai zerc or 1 at the array centre is
to change theaé values to others as close as possible to
Qquadrature whére the best egtimate of the angle occufs. This
ia done by dividing the array into four subarrays
{subapertures) usinzrthem in two sets of three, one at each
end of the array as shown in figure 3-4. The first set (AP1l)
outputs are 8,, 52. and 8,3; and the second set (AP2) outputse
.are sé. 83. and ey, The -idea .behind dividing the aperfure
inte two .separate sets 1n processing is to enable us tp
compare between the vaiues of ¥ at the centre of each get and
chose the one cl@ser to gquadrature, This 18 done by
processing both sets of apertures aecordinz to the 35A-MLE by
éantfell et al.{3-2] in parallel." The worat pberformance of
the.four subaperturea technigue (4SA-MLE) 18 when Y equals 0
or N At the centre of the four éubapertures where the phase

difference at the centre of both sets is equal.' In the
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Figure 3-4 : The geometry of four-zubapertures array divided

into two sets of three {AP1 & APZ2).
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following, a mathematlical and operational analysis for the
four subaperturesg technique ig carried out.

Let us assume that the phase centre is at the middle of
the four subapertures array. The output of each-subaperture

is given by the following:

8,=8,Gy expl[i(5/2 -m)Z,]+8,G, exp[I(5/2 -m)Z,] (3-37)
where m=1,4
By applying the 3SA-MLE solution in section 3-2 on both of

APl and AP2 separately we get.

for AP1
3 3
- - - — % 7 -
1 1
* A A
S = 32 F) A = y W = (wl.) IWZ)
-] A \ah twk
2
|73 ] 2] | " _

and the cost function L ¢an be calculated according to (3-14)

and (3-1%) and given by:

" , 2 . 2
L= |8 -wg(wp+wples+wpSy | /(2+|wp+wp|) (3-38)

and for AP2
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1 1
s — - */2 » /1
55 | Ay ] Gy) )]
% !
S = -] 3 ' A = . W = Wl Wz
3 E/
L - L .

and the coet function L is as 1in (3-38) except that s,. 83,

‘and 8, must replace g,, 8, and 8, respectively and ig given

* 5 2 x 2
L=|32-w5(wD+wD)s3+wBsu1 sC2+|wpswp|) (3-39)

where the symmetric and nonsymmetric gources case:;, studles

for APl and AP2 are the gsame as in 3-2.1 and 3-2.2 and will

not be repeated here, The phase difference k 4 cﬁlculation
procedure at <the centres of APl and AP2 c¢can be done as
follows:

a- Minimize the cost function L in (3-~38) for AP1 and in
(3-39) for AP2 indépendently according to the constraints
given 1n sgecticon 3-2 for the case of interest (i.e
symmetﬁic or nonsymmetric} and chose the absolute
minimum which gives the best angle estimate for each
set.

b- The valﬁes of w; and w; can be calculated fbr each set
independently from the corresponding Wy and wp through

" (3-19) and (3-28) respectively. .

¢c- The valueg of al_and a; for both of APl and AP2 can be
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easily calculatéd by substituting the estimated values

of w; and w, in any two of the input equations in (3-37)
d~ The calculated values of‘al and ap; for both of AP1_and

Afa are compiex variables which can be répreaenfed by

amplitude and phase ag follows:

aj=ayn+day 4= [a,] exp(3¥,) o (3-40)

agmagp+dagg= [ap| exp(3¥y) |  (3-41)

where the subscripte r and J§ are to represent the real and
iméeinary parts of a4y &nd a, respectively; also ¥, and\?z are
~the asaocciated phases. By calculating the phase differeneé

‘(T=?1—T2) for both of LAfl and AP2 at their local centres
separﬁtely and conaiderinz the clogest one to qﬁadraturé (the
closest to Bain the symmetric-caée). then the corresponding
aperture (i.e AP1 or AP2) would give the best angle estimate.

Figures 3-5 and 3-6 show i1llustrating block diagram for
" these procedures for the aymmetrié and. nons&mmetric cases

reepéctively.

In fact, i1t is not necessary to go th;oqzh the previous
lenefhy proéessinz-to the end 1f the target and 1its 1maze are
symmetric, and a simpler method of soiutibn doese exist. For
the Bymmetric case our main concern 1s when the two coherent
signaia are in phase opposition at thé centre of thé aperture
where déstructive‘ interference takes place and the overall
signal amplitude at the .central subapertufe is very small
(especially when the émplitudes of the tworsizﬁgls are c¢iose)

in comparison with that of the other two subapertures at 1its
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4-subopertures

Samp 1l Ing network For the Tnputs.Fﬁom the
four-subopertures

O

Calculotion of 8, ond O, Calculcotion of 6y and O,
according to the BSA MLE according to the 3SA-MLE
from set AP1 from set APZ2
Calculate a , a, , . and Calculate a, , a;, . and’
¢ from set APl ond limit ’ ¢y from set AP2 and |limit
¥y to o~ 180 ¢ to o~ 180
DAP1= ¢ St gn=DAP1-DAP2 | DAP2= y
e — .

The accurate angle
| estimate is from APQ

The accurate angle
estimate is from AP1

STOP

Fig. 3-5 : Block diogram represents the four-subapertures
processing technique for the symmetric cose.
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'H—subcpertures

‘Samp | ing network for the inputs from the

four—subopertures

A SN

Calculotion of 6
‘according to the 3SA-MLE
from set AP1

Calculation of 6
according to the 35A- MLE
from set APZ2

‘

[

Calculaote a,, a,, p ., oand
y from set Aﬁ} ondStimit
¥ to 2~ 18@ '

Calculate a, ., a, , p '

ond
¢ from 3et AP2 and>timit

¥ to O 18

The accurate angle
estimote Is from AP1

Fig. 3-6

STOP

The accurate angle
estimate is from APZ2

: Block didgram represents the four-subapertures

processing technique for the nonsymmetric cose,
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gides. So, .by comparing the amplitude of the central
subaperture of APl ( |32| ) with that of‘ the central
subaperture of Afa (Issl) and considgrinﬁ the aperture (i.e
APl or AP2) which glves the hi:hqr amplitude then it would be
the one which gives better angle estimation too. Figure 3-7
showe & block diagram presentation for this case which saves
- much unnecessary work load. |

A new simpie procedure to find out whether the two
cohgrenf signals from the target and its image aré.in-phase
or phase opposition 18 shown 1in chapter a'ag # part of new

gsimple trigonometric method to epolve the multiﬁath problenm.

3~-3.1 The phase shift formulation

The geometry of a linear -array and two scurces iaes shown
in figure 3-21. The elements spacing 1is a half wavelength
and the. phase reference 1is taken at the edge élément for
convenience. By movinclsloné the array the rhase aifference
between the two incildent signals (¥) will change .as a
function of O, and 6, and the distance moved {(the distance
moved is ni/2 ; wﬁere’n-l.": and N isg tﬁe number of elements
in the array). The change in ¥ can easily _be‘ found by
calculating the phase lag fog eﬁ&h source as follows!

For the firgt gource:

Ye1=¥Yio+2W{nX/2)81n(6¢) /N . | (3-42)

For the second source:




78

4-subapertures

Samp! ing network for the inputs from the
four-subapertures

— T~

A;}C( Calculate the absoilute values

of 5, and S3 seporately. AP2
No Yes
\w
4 ' . 1
The accuraote angle The occurate angle
est imote is from set APl est imote Is from set AP2
Y
STOP
Fig. 37 : Block diagraom represents the FOur?subopertures

processing technique for the symmetric case using
the omplitudes comparison method.
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¥p1=¥ng+20(nh/2)8in(0,)/ 2 : (3-43)

where ¥,, and Y., are the reference phases for the first and
second source respectively and ¥Yiq. ¥Ypy are the new ones.
By subtracting (3-43) from (3-42) and making the proper

cancellationg we get the new phase difference;
th—?r1=TtB—Trg+nﬁ[sin(Gt)—Bin(er)] .(3”““)
and the change in the value of ¥ ;a AY

A¥=¥yy~¥r1-¥eo+¥rg (3-45)

A¥=nTI(04-0,) - ' (3-86)

by replacing the values of et ana ©, by equivelents from

(3-17) and (3-18) regpectively we zet-the following.
'A¥=2nTie ' (3-87)

where sin(et)=et.and sin(eé)aer are aggumed in (37#6) for
small 1ncidence angles. |

One can Bee from (3-47) that AY depende on two factors,
the angular distance from the bisector 6 and the distance
moved along the array in terms of the element number, Table
3-1-shows the values of.AW ag a function of n for.different
valueg of GD. In thie table, the valuesg of QD are taken as
.5, ©.25, ©.12% BW (BW is the.three dBs beaﬁwidths of the 21

elements linear array mentioned above).
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By closely examining the four subapertures techﬁique
for the nonsymmetric sourceg casge {(the general case)
according to table 3-1, one can asee that 1if ¥ 1is @ or H at
the middle of the array then a good resgolution can be
expected 1if B is close to 9.5 BW and deteriorates when 8p
gete amallepr, If Y i8 @ or N at the middle of APl or AP2
then the resoclution is closge to optimum when O, ie close <to
2.5 BW and good when 1t is ©.25 BW and deterioratea for
smaller values of ©p. If ¥ is 2 or TN at the centexr of the
external aedge subaperture of AP1 or AP2 then the resolution
is good for GD clése to B.s_or @.125 ﬁw and close to optiﬁum
whgn Op 18 close to ©.25 BW., Similar results can be easily
shoﬁn for the symmetric case. However, fheae improvements

are obvious in the simulation resgulte in the next section.

Table 3-1

The phase shift re lationship as a function of n and Op.

n AY (radians)

6p=0.5BW eD=e.g53w Op=8.125BW
3.5 gf?236 @.4618 9;2399
7.8 © 1.8u72 8.9236 . @.u618
14 3.6945 1.8472 @.9236
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3-4 Simulation results and discuseion

All the gimulatiocns have been made using three (or
four) esubapertures of seven elements each, interelement
spacing being X\/2. Gaussian noise of zero mean and o2
variance was added to the aignalas and one thousand trials
were made to find the average errors 1in the angle estimation
at each gliven phasé.difference. The root mean_ square (RMS)

error wasg calculated ag follows:

A
error, =6.-98,

A\
errorz;er-er

E(errori +error§)

RMS angle-of-arrival errors

2 X number of‘trials
A A
where Gt and er are the estimated angles of arrival for the
direct signal and its coherent multipath. The error has also
been normalized to the 3dB beamwidth of the: whole array

calculated as follows [3-4]:
3dB beamwidth (BW) = 182/N (in degrees)

where, N 1s the number of elements in the array (interelement

spacing 1e MN/2). The aignal to noilse ratié (S/N) 1is

calculated for the direct signal only., as received by the
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main beam of the whole array and defined from [3-2] ae
follows.
For three-subapertureé:

- (S/N) dB = 19 log [(3(G1l°1l)2 )/(20?)]
and for four-subapertures:
(S/N) 4B = 18 log [(4(ay |y} £ ) (207)]

There are two practical methods for sgeparating the direct
angle bearing from the coherent multipath one. The first ie
by calculating the amplitudes of the two eignals, where the

angle asgociated with the higher amplitude represents the

direct angle of arrival and the one assocliated with the

smaller Amplitude represente the multipath angle of arrival;
This method adds extra unnecessary load to the ayatem, alsce
it-ia very critical when the two signale amplitudes are very
closa, The other way is to separate the two angles according
to their sign, 1.e the positive angle repregents the direct
angle of arrival and the negative aﬁzle repregsents the
multipath one (in casé of confusion, the most positive one
relative to the horizon is taken to be thel direct angle and
the opposite for the multipath one). This hethod dependé on
the fact that the target is slways'above the surface and has
the higher angle above the horizon. In the simulation
performed for this study of a low—flyiﬁz target over a smooth

surface, the gecond method wae chosen, gince it is8 more

likely to be used in a practical system.
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The target: . model used in this simulation is Swerling
cage 5 type (SW.5), where the amplitude of the received
gignal is céngtant from pulse to pﬁlse {from anap-ghot to
san&p-shot,1in the case that one snap-shot per pulse 1ig takeﬁ).
For ‘comparison, a gignal with a fluctuating amplitude
according to Swerling case 2 target type (SW.2) 1is
congidered too, where the ampiitude of the received signal
chahzes randomly from pulse te¢ pulse. It is generated in
gimulation by taking the real and imaginary parts of the two
signals from a Gausslan sequence with zero mean and given
variance [3-5]. A noisy signal is zenerated using (3-2) for
- the 3SA-MLE and,(3#37) for the  ﬂSA-MLE according to - the
target's modele above, and the golutions were computed far
the eymmetric and nonsymmetric casges for the three aﬂd four
subapertures methods. The phase difference (¥) ie always
taken to be_multiples of 22.5 degrees in the range from ﬂoto
1802 From now on the absolute value of the sgpecular
reflection will be refered fo as pg. |

A histogram of simulation results is used to demonstrate
the performance of the 3SA~-MLE and 4SA-MLE at some cases,
where the rms angle-of-arrival (+beamwidth) is divided into

29 zones of accuracy, from 2.0-€.085, ......,.08.9-0.95, >@.95,

3-4.1 The symmetric cage goluticon

Figure 3-8 shows the simulation results of the 3SA-MLE

for a target with ©p=0, S/N=30 dB, Pg=02.9 + and

QD=B.5.B.25.0.125 BW, using SW. 5 target’ type
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Figure3-8 : RMS error of symmetric 2SA—MLE as a function
of phase difference between the two signals for

eB=0.0, S/N‘=30 dB, @,:0‘.9., For comparison,

SW.2 fargef's type is shown
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(nonfluctuating amplitude). For comparison the corresponding
regult is ahown for SW.2 target . type (fluctuating
amplitude) only .for the case 6,=0.25 BW. In comparing the
solution using SW.5 target's type to that uasing SW.2, we fina
that the‘first ie much more accurate than the gecond over all
valuesa of ¥ with average rms angle-of-arrival error
enhancement of @.06. The rms error is larger when ¥=180 and
very amall when ?=aﬁ also it 1increases when 8p decreases.
Cantrel et.al. [3-2] 8how that the resolution obtained is
very cloee to the optimum obtainable from the array were all
elements - sampled‘ individually and it producqa gmaller error
than the corresponding Cremer-Rao bounde (this 12 because the
MLE is . slightly biasseda). . Figure 3-9 presents the S/N
performance for SW.5 egignal’. type with GB=B.‘ GD=B.5 BW,

Pg=9.9, and S/N= 38,20,10 dB. In general, one cohcludes

that the rms error increases as the S/N decreases. Figure

3-1# vpresents the performance with different values of pgy
(1.e with different relative power between the two coherent
sources); whebe -'GB=B. Bp=02.25 BW, S/N=30 dB, andq
Pg=@.9,2.5,0.1. In -general, when Pg decreases the
performance gets better when the absolufe value of ¥ 13 close

: ' o
to the out of phase casge (generally when Y>90, depends on pg)

"and a little worse elsawhere, The improvement at‘T=18€ is

very substantial where the rms error drops from 8.24 to Jjust
2.866 when p, changes from 0.9 to @.1. ~he main reagon
behind this improvement 1s that when the two signals are

anti-phase (or close) and their re;ativé amplitudeg are close

(such as when pg=08.9) then . destructive interference occurs,
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leading to very low S/N, But when the relative amplitudes are
not close (such as when pg=0.5 or ©.31) then the degtructive
interference is less pronounced,leading to higher S/N and in
turn to better accuracy. The increase in the rme error at
emall Y when pga=8.5,8.1 is very emall where it rises from
©.028 at p,=0.9 to 0.853 at pg=d.1 which is very negligible
in comparison with the improvement obtained when ¥ is close

o o
to 1808 (generally Y >6@).

'Before discussing the new four-subaperturee method
results , we examine .tha case of the 1imaginary angle[3-3] -
cccurrence (1;e .when ©.=0,) and the accuracy 1in eatimating
the phase differene from the estimated angles of arrival of
the target and its coherent multipath. Table 3-2 shows
computer simulation results for the frequency of occurrences
of the imazi%ary ansle‘ (Im-ang) and when the absoclute error
of the estimated value of ¥ 1is greater than a given value
{agaumed here to be 1G°) from its true one (ph-div), in 1000
trials forl95=ﬂ. S/N=38 dB. ps=B.9; and GD=B.5.G?25.B.125 BW
for SW.S5 target's type (and SW.2 target': type just at
6p=3.25 BW for comparison). The imaginary angle occurrence

. L+ ]
is zero over all values of ¥ when 6D=0.5 BW except at ¥=180

where 1t occures'203 times which might explains the bad
performance at this point. When GD decreageg the Im-—-ang
occurrence  lincreases over all values of b 4 leadiﬁt to
degradation 1in the angle estimation accuracy as shown 1in
figure 3-8. The estimated value of ¥ 1is worat when the two

signals are close to phasge oppoagition as can be geen from the

table {(mainly becsuse of the decrease in the S/N) with one
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Table 3-2 The 1ma¢1nary angle and erroneocusg estimated phase
difference (>1d’deviation from the true value) occurrences in
the gym@etric 3SA-MLE for ©g=0, S/N=30 dB, Pg=8.9,
©p=0.5,0.25,8.125 BW, for 1@6@ trials at each phase shown.
For comparison the results for SW,2 target's type i1e shown when

OD =ﬂ', 25 BW.

Phase @.5 BW @.25 BW @.125 BW
Im-ang.{ Ph-div, IM-ang: Ph-div, IM-ang.| Ph-div.
SW.5 |SW.5 | SW.5|sw.2 | sw.5[sw.2 |sw.5 |sw.s
2.0 | @ | e 2 45 18 | 195 | 122 213
22.5| @ 2 ) 47 | 35 | 269 | 134 a3i
4s.0| o | @ 1 51 t20| 376 | 154 638
67.5| @ 1 _ 1 61 229 | 451 | 184 718
9.0 @ 1 11 81 312 | s2z2 | 225 792
112.5| o 5 5 | 99 366 611 | 263 |- 813
135.0| @ 5 40 | 172 | 395 613 | 296 821
157.5| @ 11 179 | 284 | 4as| 649 | as@7 826
180.8 | 203 2 422 | 416 18 | 181 | u82 112
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exception at w-18a° where the imaginary angle occurs very
frequently. The reason behind this exception is that when
an imaginary angle occurs a test ig carried out to find
whether the two signals are close to‘in-phaae or anti-phase
conditiona, The-test condition ¢S that whenever Jthe two
gignsls are anti-phase at the centre of the array, then|S,|<|s,|
nnd‘82‘<\51\(the oppoeite oceurse when the two gignals are )
in phase agreement at the array'e centre). Thus, depending
on th;.above conditiones the value of Y 18 set to either Boor
180° whenever the imazin;ry angle occurs, leading to high
accuracy in estimaéinz the value of -¥Y when the two signals
are anti-phase 1in partiocular, = - . The
frequency of occurrence of ph-div increases aa O) decreasges,
as can be seen from the _table. In comparing with the SW.2
targefj type for Bp=9.25 BW,one concluden thatlthe frequeﬁhy
of  ocaourrences of the imaginary angle and the erronecus
values of the egtimated ¥ is much higher for éhe'aécond type,
This.~ explains the 1increase 1in the rms error. shown in
figure 3-8. In figure 3-11 a 'histozram is shown for both
types where the rma eprror of phe SW. S tarzetﬂ.‘type i8 shown
to be within the range 2-8.05 for 78 7 of the time end
0.65—9.1 for 18 7, , while for the second targé&“_type it
drops to 55 4 and 24 ¥ respectively. Besides, one can see the
frequent occurrence of tﬁe imaginary - angle in the second
case., In conclusion} the bigger the angular seperation, gnd

the dmaller the phase difference between the two targets, the

better the accuracy in estimating the value of ¥, and less

the occurrence of imaginary angles.
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According to the discussion above and the block diagram
in figure 3-5 a computer simulation 1is carried out to
determine the effectiveness of the USA-MLE in improving the
parformance of the symmetric case of the 3SA-MLE when the two
targets aré in (or cloee to) phase opposition. Figure 3-12
shows the simulation reaﬁlts of the symmetric 4SA-MLE for
€p=0, pg=0.9 . S/N=30 4B, and ©p=8.5,0.25,8.125 BW, uaing
SW.5 target's type. For comparison 3SA-MLE ie shown only for
Op=0.25 BW (27 elemeﬁts are used 1naﬁed of 28 for the USA-MLE.
to ba able to divide inte three—equal—subaper&dres). In
comparing each cdrve with its correspondent in figure 3-8
{kéaping in mind that we use just 5/& of the total array's
elements in the four-suabapertures method, while the rmsa
error is normalized to 3dB beamwidth of the whole array) one
can see a big reduction in the rmse error when ¥ is closexié
185,1n general and in particular when BD ie large where the
accuracy 1increases sharply. A little degredation at small
valueg of ¥ 18 shown mainly related to the normalization
method and the lower S/N per subaperture (1.2 dB leas), and
the deviation of the new chosen value of ¥ from Gi In
compéfint the result of 3SA-MLE (using 27 e;ements) with its
correspondent USA-MLE onesg (using 28 elements) for Op=0.25 BW
as shown on the same figure, a big improvement 1ieg shown whén
¥ 48 close to anti-phase condition and a little dezredﬁtion
elsewhere (rms error 1nc§eases by 9.018 at ?=5). The main
reason for this degredatiocon is the higher S/N per subaperture

for the 3SA-MLE case (=1 dB) .in comparison with the 4SA-MLE

ones. Figure 3-13 ghowsg a histogram of results for 90=5.25 BW
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Pa=92.9, " S/N=38 aB, BB=B. and ?:186’fo? the 35A~-MLE and the
HSA—MLE..where the rms error (;beamwidth) apears to be within
the range #-8,1 for 52 7 of the time for the 4SA-MLE, while
"1t dropse to 29 z for the 3SA-MLE. A;so. one cﬁn gee the hicﬁ
occurrence of imazinﬁrv and erronecus anglee (uu"z of'tiﬁe)
for the BEA—MLE 1n.comparison with fhat of the USA-MLE ones
(9 2 of time)

In <the abdve four-subaperture method - we used_ the
estimated phase difference to decide whicﬁ set gives the_best
angle eatimation. This technique regquired parallel processing
for two gsets of tﬁree subapertures (AP1I ana AP2), which
double the rproceasinz 1oad- and incresses the cost of the
system as we have seen in 8gection 3-3 where a gimpler esyetem
which was suggested depending on aﬁplitude comparison of the
input elignals from the two subaperturqs 15 the middle of fhe
four-subapertures' array. Here, figure 3-14 ghows the
gimulation results for the 8SA-MLE (amplitude comparison
method) according to the block diagram shown in figure 3-7
for Op=@, B/N=38 4B, pg=0.9. and 8p=0.5,98.25,0.125 BW. ‘In
comparing these results with their correspoﬁdehts in figure
3-12 one can see that‘the rme error ils the same for all
values of Y when ©p5=0.5,0.25 BW with the ekeeption at ¥=18a
where this method shows very little increase in the rms error
(rme error increasges by 2.283 for GD=G.5 BW. and 9.22 for
©p=0.25 BW). When 6p=0.125 BW this method appears to work

. -] L-J
better than the previous one when ¥ >92 and worse when ¥ <9o@.

Both methode shows the same accuracy when T=ﬂ°or 185:
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3~-4.2 The nonaymmetric case solution

Figure 3-15 shows the simulation results of the 3SA-MLE
for a target with ©g=0, Pg=®.9, S/N=3@ daB, ana
Op=R.5,2.25,0.125  BW, uging SwW.5 target’ type (for
comparison the corresponding results are shown for the SW.2
target type only when ©6p=0.25 BW). iﬁ comparing the
sclutions, one finde that the rms error increasses as Op
decreases, and the woﬁst astimation oc¢ccure when the two
sources are in-phase or anti-phase (?-6’ or 18;).or close td
either as can be aéen from the curves, The besf accuracy 1is
obtained when the.two sourceg are in phase quadrature _for
all values of GD;-except when Op,=0.125 BW where the optimum
accuracy is obtalned at W=11§i The accuracy obtained when
GD=9.25 BW for the SW.5 target type is much higher than t&ht
for‘the SW.2 target type, where the rms error increases by
@.27 for the second at ngéi Cantrell et.al. [3-2] show that
the resolution obtained 1is very close to . the optimum
obtainable frém the game array were all the elements sampled
1ndividualiy and 1t produces .smaller rms eprror than that of
the correspondihc Cramer-Rao lbouhds [3F6.7]. Figure 3-16
shows the S/ﬁ performance of the 3SA-MLE for Og=@, 6p=8.5 BW,
Pg=2.9. ana S/N=30,20,18 dB, where the rmg error ig sghown
to increase as the S/N decreases over all values of Y.
Figure '3—17 rregents the performance of the 3SA-MLE for
different values of the specular reflection coefficient for

©5=0, Bp=0.25 BW, S/N=30 dB, and pg=08.9,9.5,0.1. In general,

when p, decreageg the rme error increases, egpecially when o,
-3 8
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is very small (©.1). In fiéure 3-18 the rme error in
estimating the direct angle and the multipath one are
calculated separately for pg=0.1. S/N=38 daB, 6p=8.25 BW,
GB=B. where the rmg error for the' firat 18 ghown to be mueh
less that for the Becénd over all valuez of Y¥.  The average
rme error for the firet is about 0.2 in comparison  with 6.38
fof the second over all values of ¥, . The reaeon is the
indi#idual S/N of each source which i very high for the
first in' comparigson with the seéond which provideas a shallow
null (mihimum L) in the pattern leading to higher error.

A8 we have Béen from the resgults above, the performance
of the noneymmetric 3SA-MLE is very poor when the target and
its céherent multipath are in-phase or anti-phase. In
section 3-3 ﬁ new AUSA-MLE method i=s 1ntroducéd to solve thie
problem and 1improve the pgfformance'in‘these two regions.
Before_showinz the‘ simulation results for this method we
examine the case of the imaginary sngle occurrence and ‘the
aécuracy obtained 1n.eat1mat1nz the phase difference ¥ from
the eatimated angles of arrival of the two sources. Table
3-3 shows computer simulation resulte for the frequency of
occurrences of the 1imaginery angle (Im-ang) and when the
abéolute error of the estimated value of Y is greater éhan a
given value (taken here to be 1;) from ite truelone {(ph-div),
for GB=0. S/N=30 dB8 , .ps=ﬂ.9. and GD=0.5.B.25.B.125 BEW for
SW.5 tarzet;a'type {and SW.2 target's type Just when Op=2.25
BW for comparieon). The 1masinary angle occuﬁrence ia zero
over all values of ¥ when 6p=0.5 BW, except at ?=186’whepe it

occurs 482 times out of 1080, which might explain the bad
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Table -3—3 The imaginary angle and erroneous estimated pﬁase
di fference (>1; deviation from the true value) occurrences in
the nonsymmetric 3SA-MLE for Opg=0, s8/N=30 dB, Pg=0.9,
BD=B.5.G.25.B.125 BW, for 1800 trials at each phase ghown.
For comparison the resulte for SW.2 target's type is shown when

eD=ﬂ . 25 BW.

Phase 2.5 BW ' @.25 BW ' 2.125 BW
Im-ang.| Ph-div. IM-ang Ph-aiv. IM-ang. Ph-div.
SW.5 SW.5 SW.5|SW.2 SW.5|sw.2 | sw.5 SW.5
2.0 ] 753 2 8 . 741} 819 9 886
22.5| o o 2 9 128 817 | 33 683
45.8 | @ "] 2 11 133 | 399 60 614
67.5 1. @ 1 ] 24 221 | 455 99 ‘ 667
9.0 a 2 1 45 - 314 522 157 735
112.5 ] 5 9 75 365 | 572 224 801
135.0 o 11 35 169 438 | 606 298 842
157.5 "] e 195 | 287 hin | 632 Loz 856
180.0 4oz 1 I 397} 388 23 164 385 143
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performance at thie point. When &, decreasea the imaginary
angle occurrence increases over all values of ¥ aeg can be
seen from the table, The occurrence of the imaginary angle
at ¥=98 is the smallest, but it does noct mean that the
egtimated angle is accurgte. in fact it is very erroneous as
can be seen from figure 3-15. The estimated value of ¥ ia
the worat when the two sources'are in phase agreement, while
it 18 very accurate when they are in phase opposition as can
be geen from table 3-3. The reason beyond this high accuracy
{when W=185) is that , when an imaginary angle occurs a test
is carrieda out t; find whether the two signals are cloge to
in-phage ' or anti-phase conditions dependinz on the asame
facta gxplained in. gection 3-4.1. Also, thie explains the
Eoor estimation of the value of ¥ when its true value is
zero and where the imaginary angle occurrence is very smaii.
The frequency of occurrence of the 1m§ginary anzle_and the
erroneous values of the estimated ¥ for the SW.2 target type
is-hicher than that for SW.5 type ag can be seen from the
table for ©p=0.25 BW.

According to the above discussion and the blqck
diagram in figure 3-6 & computer simulation is carried out to
~ express the effectiveness of the 4SA-MLE method to improve
the nonsymmetric case of the 3SA-MLE performance when T=5 or

185. Figure 3-19 eghows these reéults for Oy=8, S/N=30 dAaB.

pe=0.9, Op= 8.5, ©.25, 8.125 BW, using SW.5 target's type.

For comparison 3ISA-MLE 18 8shown only for SD=E.25 BW (27

elements are used insted of 28). By comparing each curve

with its correspondent in figure 3-15 (keeping in mind that
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we use Jjuat 3/4 of the total elements of the array for the
4SA-MLE method, while the rms error is normalized fo the 3d4B
beamwidth of the whole array) one can gee a large reduction
in the rms error for ©p=0.5, @.25 BW when ¥Y-a or 18; (onr
close to any of them) and onl& a very small increase when ¥
;s clcse to quadrature (mainly related to smaller S/N per
subaperture, the 3dB normalizaticn, and the deviation of the
new choéen value of ¥ from the éuadrature). The rme error
appears to be worse for Op=0.125 BW, which ie mainlyrrelated
to the lnaccurate estimation of the phase difference ¥ which
. the performance of the new method depends oﬁ. In comparing
the 3SA-MLE (27 elements) and the 4SA-MLE one for Op=8.25 EW
a big improvement can be 8een when th; phase difference
between the‘ two sources 1is close to Boor 186’and a little
degredation when it ie close to 'quédrature for . the same
reascnsg explained above. Figure 3-22 ehowe a histogram of
results for OD=9.25 BW, Og=8, pg=0.9, S/N=30 aB, anda ?:Btlaé
for‘ the three and four sﬁbapertures method, where the rms
error (+beamwidth) for the first is within the range 0-0.1
for 18 2 of the time when -T=a°and 8 7 when W=18;;-wh11e it
rises to U5 Z and 44 2 for the second regpectively. Thus,
one can conclude that the four—subspertgres method for
solving the in-phase and anti-phage problem (Jjust thé
anti-phase for the symmetric case) is very effective, but it
doces introduce extra woﬁk load in the nonsymmetric solution

case, Therefore a new way 18 needed to reduce this work

load, if poseible, which will be ghown age a part of =a hnew

algorithm in the next chapter.
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APPENDIX A3

The Critical Peointg For The Symmetric Solution

Let £(X,¥) be an analytic function in the twoe variables
X,¥ and consider finding the extreme values of f(wD.wg).
Where wp varies subject to the constraint wag =1

wp = exp(i8) . wp = exp(-10)

where 6 is a variable.

By taking the derivativg of £ with regpect to B we get:
(8/80) € (wp, wh)= D£/3wp (Awp/dO)+{3£/3up; (awl/a0) -
. . *

By 8¢6lving equatiocn (A3-1), the eritical points of f(wD.db)

aubject to the c¢onstraint waB =1 ¢an be found:

1 *‘3 a * .
Wp.Bf/3Wp. ~wp AL/AWp: =0 : (A3-2)
Now, let us apply (A3-2) to the coest functien L in (3-21) .

wp BL/Bwp ' -wp BL/3wp. =0 (A3-3)

(wD—JB)_aL/BV-=G +« Where V=wD+wg ‘ (A3-4)
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and Wg ia known for the Bymmetric‘caae.
From (A3-4) the critical pointsg are given by the valueg of

Wp . w; which obey the following twoe relations

Wp = Wp | (A3-5)

opr aL/3av = @ (A3-6)

The relation in (A3-5) is poseible only in case wD=J5=¥1

and by proceeding in (A3-5) we find.

OL/3V=V+2VA-2=0
where:

A=(2- [R)/(Re-ED

Re(Sy+w§ S3)/wgs,

By solving V=wD+dB = wD+1/wD for wp we get

wp=v/2 33/ 1-(v/2)° (A3-7)
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APPENDIX B3

The Critical Points For The Nonsymmetric Solution

The cogt funection L to be minimized is given by the .

following:
2 2
L= [S)-q4f +[Sz-a,f +|S3-a3] (B3-1)
wheret
*k » K
A = Al(wl)*AZ(WZ) N k=1,2,3 (B3-2)

Let us consider making the value of L equal zero with reasal

anglesa,making the following assumptions:

-1
p=(wy+ws) | (B3-3)

if lwll=[w2|= 1, we ;et

. * » i
B/M=(Wy+wp) /(W awp) = wywy (B3-4)
From (B3-2) and (B3-4) we find
-+
Qo=Hdy +Ha3 (B3-5)

However, L can be made to vanish to zero by putting q1=Sl.'

q3=83 ana

qA;=S, =ﬁ§l+p53 (B3-6)
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to sgolve (B3-6) for uy, we take ite

following two equations
*
- Bo=HS, +pS4
* %

*
S*2='p81+p53

Equations (B3-7) and (B3-8) represent a

*
and | solving for y

2 2
u=(5,8%-5,5%)/([s5f - |ss ) =10

the rooteg of the following equation:

B=(w-w ) (w-5 ) = wz-(l/p)w+ﬂ7p

(B3-9)

2
Wy = (1+j//;'p|—1)/2p

Wy = (1-3 u|p12-1)/zp

conjugate and the

(B3-7)

{B3-8)

1inear syatem in

where U 18 shown in (3-32}. On realising that W, and w, are

(B3-9)

the values of w; and w; can be calculated from py by aolving

(B3-10)

(83-11)

Ag one can see from (B3-10) and (B3-11) the absolute values

of wW; and wp are equsal to ohe only 1if u >1/2 (or

equivalentliy, |U|>2).

The wvalues of wg and wp can be obtained eagily from the

next two aquations:
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2 *
WB=W1W2 . WD=W1w2

Now, let us looKk at the case when u<i,/2. The proof for
finding the values of wy; and w, which minimize the cost
function L is too lengthy and the result are given in [3-2].
The Qalue of L ism minimizgd when w;=w, or equivalently when

wp=1. In this case the cost funetion 1is reduced to

‘ 2 2
L=1/6 81-2W332+W333l
1} . . *
and the explicit presentation of L ag a function of wg and wg
ia given by:

| 2 * * ® ﬂg*
L=1/6 (S -2wgSy+WpS3 ) (81 -2wgS,+wpSs)
and according to appendix A3 the critical values of Wp
subject to the given constraints are the soluticn to the
following equation

wg(3L/3wg) -wg (3L /Bwg) =2 (B3-12)

straightforward calculation shows that (B3-12) reduces to the

form given in (3-34).
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Chapter U4
The Trigonometiric High

Resolution NMethod

4-1 Introduction

The tracking éf a low-flying target in the presence of
strong reflection from the underlying smooth sﬁrface‘ is a
problem area of considerable interest in radar. The simplest
closed-form solution go far 19 the three—subaperture maximum
likelihobd method discussed in the previous chepter, which it
involves the solution of a  quartic equation for the
nonsymmetric éase and a guadratic equation for'the symmetric
case. Also, a‘new fbur-subapertures technique (which depends
on estimating the value of the phase difference between the
two. scurces at the array centre) to 1mprove‘the performance
accouracy when thé two sources are closgse to an in-phase or
~anti-phase condition is presented wifh extensive discussion
and simulation results.

In thig c¢hapter . a new | simple three-subapertures
. trigonometric method {38A~-TRM} to =solve the -coherent
multipath problem is presented. It has a similar performance
to the 3SA-MLE in zenergl and 1is simpler~ in practical
implementation. A simple new procedure to find out wﬁether

the two coherent slgnals are close to an in-phage or
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anti-phase condition ise derived and applied to the
four~subapertures technique discussed in the previous
chapter. The advantages of this procedure in saving time and
reducing work 1load are discussed and simulation results are
shown. Additionally, new fﬁ%ee;“_and four subapertures
techniques (symm. and nonsymm, , S&HSAQTRM) improve the
performance of thisg algorithm when Tszo or 180. These
preserve the accuracy obtainable when using the full
aperfure. divided into three-subapertures only, both when ¥
is close to gquadrature and when ¥ 1ig close to zero for the
nonsymmetric and Qymmetric case; respectiviy. Simulation
results are shown.

| The overali emphasis will be mainly on comparing the

performance of this new method {(3SA-TRM) with the 3SA-MLE

method and showing its advantages.

4-2 Trigonometric solution formulation

Asgume the same 1l1inear array, divideda into three-
subapertures, usged in the previocus chaptér (section 3-2) with
the same rgdaf—tareet gecmetry and 1ite associated angular
relations shown 1n figure 3-1. Thé outputs of the three-
subapertures will be the same asB those shown ;n egquation

(3-2) and are repeated here for convenlence as follows:

Sl= BlGl exp(*.‘lzl)-'-asz exD(""dzz)+n1 (a"l)
82= 8161 + 82G2 +* nz ’ (4-2)

S4= a,G, exb(fﬂzl)+3232 exb(-322)+n3 {b-3)




The description of each term in the above aquations is ghown

in chapter 3 and will not be repeated here,.

The nolse terms (n,, n,, n3) in the above equations
will now be neglected and a solution for 8y and ©p found.
Taking the sum of equatien {(4-1) and.(a-3) and dividing by

equation (4-2) gives:

31433 .
= 2[a1G; cos(2))+a,G; c08(Z,)]1/(81G,+8,G5) (4-4)
S2

‘Then by subtracting equation (4-3) from (4-1) and dividing by

(4~-2) we get the following:

8,-S3 ‘
3 = J2{a,G; 8in(2,)+a5Gy 8in(Z;)]1/(a;G,+a5G,) (4-5)

S,

By gubsgtituting the values of Z4 and Z; into equations (4-4)
and (4-5) by their equivalents in terms of O and Bp (see,
equations (3-5), (3-6), (3-17), (3-18) in chap.3) and after

simplification we get:

Si+53
= 2cos(wOp) coa(wdp)-28in(wlg) ein(wlp)i((a,G6;-25G5)/
(31G1+82G2)] _(a_6)
S;~S3
= Jz{sin(wOB) cog(wlp )+coa(whg) Bin(web)i(alsl-aan)/
s .
2

where w=2ﬂd/ki
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In equations (4-6) and (4-7) there is an identical underlined
term which simplifies as follows:
Tre= (3161—3262 )/(81614&2(32)

{1+ |ag| 65 exp (¥5-¥) ) fay) €11} . (4-8)
letting the phase difference ¥=¥,-¥,, and K=(|azlG2/‘al‘Gl)
givasg:

Ter=[(1-K2)-312K 8in(¥)1/[1+KZ24+2K coa(¥)] {(4-9)

Now substitute equation {(4~-9) into equations (4-6) and

(4-7) and find the real and imaginary parts.

= 2 cos(wOg) cos(wOp)-2 2in(wlg) sin(wBp){[(1-K* )
s,
-32K Bin(T)]/(1+KQ+2K coa(Y))} (4-10)
814-8 2
Real (- )=2 cos(wBOg) coe(wBp)-2 8in(wBg) sin(wBp)[(1-K”)
82 '
/(1+K2+2K cos(¥))] (4-11)
31+S 2
Imag )= 4K sin(¥) [sin(wBg) ein(wbp)]/[1+K"+2K cos(¥)]
Sz
(4-12)
$1-S3
= 32 8in(wOp) cos(wOp)+32 coa(wlp) sin(wop){[(1-K?)
Sy ) ‘

32K 8in(¥)]1/[1+K2+2K cos(¥)]} (4-13)
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real (——=—) = 4K sin(V¥Y) [cos(wes) 8in(wlp)1/{1+4K" +2K coa(¥)])
S2
(4-14)
S,-8 9
Imag (———)= 28in(wly) coe(wOp)+2(1-K"){coa(wbg)} sin(wlp}3l/
S2
[1+k2+2K cos(¥)] (4-15)

Carefully examining eguations (4-12) and (4-14) it 1s
geen that there 12 only o¢ne difference: in equation (4-12) we
have sin(w8g) insted of cos(wOg) in (4-14)., Dividing these

two equations glves:

4
p= (1/W) tan {Imag [(S1+S3)/Sp)/Real ((S;3-S3)/5p1)  (4-16)

From equatipﬁ {4-16) -1t can be seen that the
calculation of ©p is independent of the phase difference (Y¥)
between the direct signal and its coherent multipath except
at VY=0.¢ or 18¢° where - the undetermined eolution occure
(65=taﬁd{ﬂ/a); in caee no noise exiet).

Inspecting the sasecond term of equation (4-11), 1t is
seeﬁ to involve the multiplication of two ginés for emall
angles (Op, Op) and the value of (1—K2 ) whieh ie very esmall
when the specular reflection coefficient of the samooth

surface 1ig large. Therefore, 1its effect on the equation isg

vaery smsall and (4-11) can be approximated by:

Real [(Sl+83)/82] = 2 coa(wbp) cos(weé) {4-17)
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On substituting the value of 8y from equation (4-16) in
equation (L-17) the angle ©p can be calculated easily and in
turn Gt & er the angleg of arrival in the elevation plane for

the direct eignal and its coherent multipﬁth.
-4 .
Op= (1/w) coe (Real [(5;+54)/8,) /2 cos(wOg)} (4-18)

When noise is present the solutions are perfurbed but -
if the saignale can, a8 i8 normally the case, 8till be
repregented ag the sum of two plane waves then the preceding
golution continues. to give the beet maximum 1ikelihood
bearing estimates as will bg ghown Afroﬁ the simulation
resulte in the coming section.

Now, let us investigate the sgolutione for the symmetric
and nonsymmetric casee separately according to thelr
definitions in c¢hapter 3. The phase differenée (¥) status
indicator and ‘the four-subabertures technique will be

discussed too.

4-2.1 The symmetric case solution

In this casge the tarzet and its image are symmetriéally
located about the centre of the elevation pattern o¢f the
antenna and ©g 1g Known (for a broad-side beam from a
vertical array ©Og=2). To calculate 6, substitute the known

value of '93 in equation (4-18). When 6pz=0 then B¢= ©p and

8,=-6p and from equation (4-18) we get:
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Op= (1/wW) coéleeal {51+85)/8;31} (4-19)

In comparing this simple equation, where ©p can be
easlly calculated from a look-up table, with its equivalent
of the 3SA-MLE method (in chap.3) in which a quadratice
equation 18 required to be solved , one concludes that this
method is simpler to implement in practieal sysfem and it is=s

'faster in calculation.

4-2.2 The nonsymmetric case solution

In this case 85 ie not known a priocri unlike the
symmetric case above and it has to be estimated from equation
(4-16)., It can be meen that the value of 6 doeg not depena
6n,the reflection coefficient 6f the surface except when
p,éa.ﬂ. where the undetermined golution of (8/8) occurs.
A;so. ©p does. not theoretically depend on the phase
daifference between the two signale (no qoise being added to
the signals) except when the phage difference isg either zero
or 180 degrees when the undetermined scluticn of (@/0) occurs
aeain.‘ Besides, the calculation of Op from (4-18) sh@ws that
it depends on O and by looking at the sgecond term of
equation (&—11)-one finds that ©p depenas on the reflection
coefficient of the surface through K and the estimate of GD
"becomes biased when the absolute value of Pg 2ets very small.

In comparing this simple nonsymmetric solution, which

involves 'findinc the values of GB and GD from a looK-up
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table, with its equivalent of the 3S5A-MLE method which
involvegs the sclution of a quartic equation, one easlly
concludes that this method is simpler to implement in a real
sysgtem and it 12 faster in execution. The performance
accuracy of thies method (symmetric and noneymmetric cases) is
fouﬁd to be similar to that of the 3SA-MLE in general with

some exXtra advantages as will be seen in the next section.

4-2.3 The phase difference gtatus indicator

When the dir;ct signal and its coherent multipath are
'1n-phase‘ (T=J} or anti-phase (?=18;) at the centré of the
array the accuracy 1n estimating the elevation angle is found
to be poor (Juat when T;ISBofor‘the symmetric case) as will
be shown from the simulation resulte in the next section.
Therefore, it‘is very useful to be able to decide 1f the two
si:nalé laré actually 1n—phﬁse or anti-phase in order to
detect 'zross error in estimating the angle and 1f all
possible tc avoid it. A 31mplé techhique can be used from
equation (4-14) by looking at t;e value of the real part of
{(Sl-ss)/SZ]. Thieg value approaches zero whenever ?:e’or 1BB°
(the eame can be seen from equation {4-12) but 4{ita use 18
limited to the non-zero values of ©Og). In practice, the
abeclute value of the numerator of equation (4-14) must be
used only to avoid the effect of cos(¥) in the denominator,
where 1ts change of sign 1leads to undesirable changes in the
denominator over§11 value, The absolute .value of the

. [-] . -] .
denominator is largest when Y¥=8 ( or multiples of 368 ) and
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. & o '
smallest when ¥=182 (or 180 + multiples of 365 )., for a
given values of p,, O, ana O, while the abgolute value of
o &
the numerator the largest when WY=90 (or 90 + multiples of
. .
182) and smallest whenever v-0" or 18¢ { or multiples of
[ ]
180).
Thise method will be used in a four-sgubaperture
technique {(4SA-TRM) similar to that discussed in chapter 3

and in a new mutual three and four-gubapertures technigue

{3845A-TRM)} to get the optimum pcoesgible eatimation accuracy.

4-2.4 The four-subapertures techniques

In the previous chapter we discussed the
four-subapertures - techniqQue to golve the in-phase and
anti-phase eatimatién accuracy problem with the 3SA-MLE.
This technique depends on estimating the phage difference
value (¥) from the estimated asngles of arrivals (see.secfion
3-3). The procedure was lengthy in processing and costly in
terms of practical implementation, also it gacrifices some
accuracy when ¥ is cloee to quadrature (cloge to zero for the
symmetric case) by not using all of the available elements in
the array. This method can be equally applied here by
following the same steps eghown in sBection 3-3, the only
difference ie tﬁat‘the estimation pf 8, ana 8, must be dqﬁe
by using 3SA-TRM insted 3SA-MLE.

In the above sub-section a new method is shown which
allow ug to choose the best apertgre set (AP1 or AP2, see

figure 3-4 1in chap.3) right from the atart and before the
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bearing estimation process begine. Figure #-1 showe & block
diagram of the four-subapertures proceesing technique using
the new in-phase and anti~phase procedure (4SA-TRM) which can
be sumarizéd by the following steps:

a- Calculate the absolute valuea (sysl and sys2) of the
numeratorg of the real parta of (81-83)/82 and
(SZ‘SR)/Sa respectively.

b- Compare syel with eys2 and choose the‘apertufe {AP1
or AP2) aassociated with the higher in value.

e- Continue estimation of the values of 8, and 6, by
using the éSA—TRM method with samples input from.the
chogen aperture in step b.

The cholice in step b above leads to degredation in the
performance of the symmetfic case {(for ?<9;) where the best
estimate 18 obtainable when W=ef This price 1s neededa 1in
order to get better performance when ¥=180 ﬁy using this
technique unlese others are available. In fact another
technique is already discussed in chapter 3 which depends on
the amplitudes comparison principles and it is not going to
be repeated here,

'However. a new mutual three and four subapertures
technique {384SA-TRM) ia found to improve the performance of
all types of four-subapertures discuseed so far. This
feehnique dependa onh dividing the linear array into three and
four—agaubaperturesg in parallel ﬁith instantaneocug egampling as
shown in figure 4-2. The samples from the four—aub;pertures
"arranzement afe stored for possible use within the processiné

cycle 1if the in-phase dr anti-phase condition occurs (just
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Lh-subapertures

Samp |l ing network for the inputs from the
four—-subapertures

.

The absolute values of the
numenators of:

real ((51-55)/5p)=sysl

real ((S5p=5,)/53)=8sys2

yes
The accurate angle The accurate ongle
estimate is from set AP1 estimate is fFrom set AP2
Y
STOP
Fig. 4=1 : Block diogram represents the four-subaopertures

processing technique for the nonsymmetric and
symmetric cases.
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Linear array of 28 elements
O O O 0 O O .+ ¢ v v e 4« = « « 2 4 a2 = . .« 0O

1) 3—subapertures

A Y
Y A h-subapertures

v

Sampt ing network for the inputs from the
four—subaopertures and three-subapertures
individually.

____________ e e e T L

3 4 Y
The four—-subopertures form-
rulotion's aomples,

The three-subapertures form—
uulation's samples.,

3
The calculotion of

The obsolute volues of the
numerators of:

|51|.l52‘.|53|.

real_((Sl-Sa)/52)=sgsl

real ( (SE-SA)/53)=8982

|

i

Proceed tn wusing the L Stop II
3ISA-TRM I et indeedey mhee Dt
to estimate gy ond Op.
e A
The occurate angle The accurate angle
estimote is from AP1 estimote is from AP2

Fig. 4-2 : Block diogrom represents the combined three ond
four subapertures processing technique for the
nonsymmetric and symmetric coses,
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anti-phase for the symmetric case).. The absolute values of
S4. So, and S, from the three-gubapertureg arrangement
{(ingide the ddtgd box I, net to be mixed with the ones inside
the doted box II for the four-subapertures) are calculafed
and checked for possible in-phase or anti-phase occurrence
(Just anti-phage for the saymmetic casge), depending on the
fact that when the two received gighals are 1n-phase at the
arrey centre then lsll<|52'>lsal . and the oppoeite for
anti-phase signals. 1f .1t ie found that the two signals are
not close to in-phase or anti-phase {just anti-phase for the
symmetric case) then the solution will continue using the
3SA-TRM method with full array capacity ag shown in figure
h-2, dtherwiée‘the stored' sampleé from the four-subapertures
arrangement will be enabled and the four—-gubapertures
proceseing teéchnique (4SA-TRM) proceeds according to steps
a, b, and c-.listed earlier in this subsection, and as shown
ineide the doted box II in figure 4-2,

In fact there is easier way to implement the S&HSA—xRM
technique for the symmetriec case aoclution by using amplitude
comparison only. This can be done eagily by replacing the
dotted box II 1in fizure 4-2 by the dotted one.in figure U4-3
(keeping 1in mind that 8;, S,;, ang S3 in box I are different
frém those in box II). The four-subapertures amplitudes
comparison for the symmetric case 1ig discugsed in the
previous chapter and ngt going to bhe répeated.here. All the
techniques using four-subapertures are equally applied to
the 3ASA-MLE method discussed 1in chapter 3 and- vis wersa.
The next section presgsents the simulation results for the

3SA-TRM, USA-TRM, and 3&84SA-TRM with extended descuseion.
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Calcuiate the absolute values of
52 and 53

The accurate angte The accurate angle -
estimaote is from AP1 estimaote is from APZ2

Fig. 4-% : Bitock diagrom represents the combined three and
four subopertures processing technique for the
symmetric case (omp!litude comparison only).
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4~-3 Simulation results and discussion

R

All the simulations have been made using three (or
four)‘subaperfures of seven elemente each, except for the
mutual 384SA-TRM technique where the number of elements in
each subaperture for the three-subapertureg arrangement ies
nine insted of seven. Intereleﬁent epacing ia »\/2. Gaussian
" holse of zero mean and o2 variance was added to the signals
and one thousand trials were made to find fhe average errors
in thé angle estimation at each given phase différenge. The
rms error, 3d4B bea&width. and S/N were calculated as shown in

chapter 3 (sec.IS—R).

The target ' model used in this simulation is Swerling ,
caze 5 t&pe (SW.5), and for comparison purp&ses Swérlinz cage
2 (83w.2) térzet * type is umsed too. A noiay signal ie
generated for the 3SA-TRM ‘and 4SA-TRM according to the
target 3 modéla above and 1in the same way used for the
3SA-MLE and 4SA-MLE shown in chapter 3. The solutions were
computed for the symmetric and nonsymmetric cases for all the
techniques discusesed so far JIn this chapter. The phase
difference (¥Y) is alwaye taken to be multiples of 22.5
degrees in the range from 2’ to 180, A histogram of
‘simulation results is used to demonstrate the performance of
the 3SA-TRM and 4SA-TRM at some cases, where the rms

angle-of-arrival (+beamwidth} is divided into 28 zones of

accuracy, from 8.28-.085, .......0.9-8.95, >@.95.
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4-3.1 The symmetric case solution

Figure 4-4 shows the simulation results of the 3SA-TRM

for a target with Og=0, S/N=30 4B, pg=0.9 , and
8p=0.5,8.25,08.125 BW, using SwW.5 target type. For

comparison the corresponding result {ia shown for SW.2
target . type only for the case GD;G.25 BW. In comparing the
solution uging SW.5 target fype to that using SW.2, we find
that the first is much more accurate than thelsecond over all
values of ¥ with ;avérase rma angle~of-arrival error
enhancement of G.Bé.‘The rmg error 1is8 large when ?=180?and
very small when ?=eﬂ also it increases when 8 decreases. In
comparing these curves with  their correapondents 1in the
3SA-MLE in figure 3-8 (chap.3) one concludeg  that the
estimation accuracy obtainable is very much alike over all
valuee of ¥ and O with very small Qeviatioﬁs when ¥ ie close
to the antiphase condition (this 1i& more obviocus for SW.?2
target’' 3 type). Besgidesg, figure 4-5 showa a histogram of
simulation resulte for the symmetric 3SA-TRM for the above
two target's types, when Op=0.25 BW, Bp=2, S/N=3@ AB, pg=0.9.
¥Y=908 degrees, where the rms error of the SW.5 type is shown
to be within the range B.B—Q.és for 78 Z of the time and
2.05-9.1 for 18 2, while for the second target type 1t
drops to 63 2’ ’ and 31 2 respectively. In comparing these
résulfe with their correspondente in figure 3—11 {chap.3) one
can gee that the performance ig very much the same for thé
first while some improvement in sccuracy ies shown for the

gecond. Figure 4-6 preaentsz the S/N pefformance for SW.5
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0.5

Legend
B ©Op=0.25 BW, Swerling case 2

0 ©r=0.5 BW

. 0 ©p=o0.a25BW
0.4+ -

RMS angle of arrival error (beamwidths)

T U T
0 225 45 675 90 1125 135 1575 180
The phase difference between at and a2 (Deg.)

Figure 4—4 :RMS error of symmetric 3SA—TRM as a function
of phase difference between the two signals for
©g=0.0, S/N=30 dB, R=0.9. For comparison,
SW.2 target's type is shown
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target's type with Op=08, ©Op=0.5 BW, pgy=0.9, and S/N= 30,28,10

dB. In

ag the S/N decreasgses.
of figure 3-9 (chap.3) one

valuesg of ¥ except when ‘P=180°

Figure

- pg Where Op=08, 8p=08.25 BW, S/N=

general, one concludes that the rms error increases
In comparing these curves with those

can see slimilar accuracy over all

where some deviationse occurs.

4-7 presents the performance with different valueg of

39 dB. and PB=B.9.0.5.B.1. In

décreases the performance getg bettery when

general, when opg

the absolute value of ¥ 1is close to the out of phasge case
o i

(generally when ¥>98, depends on p,) and a 1little worse

elsewhere.

where the rmeg error drops

changes from 2.9 to 8.1.
in 3-182

figure {chap. 3}

results.

ig the same in both methods (3SA-TRM,

going to be repeated here {(see

Before discussging the
regults, let us examine the
occurrence {i.e when et=er}

the phase difference from the

the target and i1te c¢oherent

from

one

The main reason beyond this

N o
The {mprovement at ¥=18@ 18 very subatantial

.26 to just 0.065 when pg

In comparing these curves with those

can gee very much similar

o
improvement when ¥=180 -

3SA-MLE} and 1is not
sec.3-U4.1 in chap.3).
new four-subapertures method
case . of the imaginary angle

and the accuracy in estimating
estimated angles of arrival of

multipath. Table 64-1 ghowe

computer egimulation results for the frequency of occurrences

of the imaginary angle {(Im-ang) and when the absolute error

of the estimated value of ¥ 1s greater than a given value

2 . . .
(aesumed here to be 18 ) from its true one {(ph-div), in 1800

trials for GB=B. S/N=38@ aB, Pg=@.9, and 9D=B.5.B.25.B.;25 BW

SW.5

for target's type (and SW.2 target's type Just at
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Table U-1 The imaginary ahzlé and erronecus eatimated phase
difference (>15’deviation from the true value) occurrences in
the symmetric 3SA-TRM for GB=G. ~ S8/N=30@ dB, Pg=2.9.
9D=ﬂ.5,0.25,0.125 BW, for 1020 trials at each phase ghown.
For comp#rison.the results for SW.2 target's type ia shown wﬁen'

©p=0.25 BW.

Phase 2.5 BW ‘ @2.25 BW 2.125% BW
Im-ang. Ph-&iv. IM-ang : Ph-div. IM-ang. | Ph-div.
SW. 5 SW. 5 SW.5/SW.2 | sWw.5|sw.2 | sw.5 SW. 5
2.0 @ 2 ] 38 9 203 | 120 212
22.5| @ 2 2 42 36 | 258 | 132 bz5
45, @ @ ] 1 41 128 | 373 147 635
67.5| @ 1 1 58 | 227| sas | 179 ‘715
90.0 e 1 1 67 3108 | 525 217 787
112.5 "] 5 4 86 | 366| 685 253 810
135.2 | @ 5 37 | 148 386 | 616 | 287 818
157.5 @ | 6 156] 227 hez2 | 641 375 822
180.0 | 107 o 284 | 239 31 | 235 | 339 164




136

©p=8.25 BW for comparison). The imaginary angle occurrence
is zero over all values of ¥ when 8 =0.5 BW except at W:lBﬂo
where it occurs 187 times which might expieins the bad
performance at thie point. Wheh -GD decreases the Im-ang
occurrence increages over all valuese of ¥ leading to
degredation in the angle estimation accuracy as shown in
figure 4-4. The estimated value of ¥ ia worst when the two
gignale are close fo rhase cppoesition as can be seen from the
table (mainly because of the decrease in the S/N) with one
exception at ‘P=186o where the imaginary angle occurg very
frequently. The re;son behind thie exception ig that when an
imaginary angle occurs a test is carried. out to find whether
the two eignals are close to ;n—phaee opr ahti-phase
conditions depending on the fact that whenever the two
slignals are‘ anti-phagse at the centre of the array then
‘83|>‘32|<‘Sl‘and the oppeosite occcurs when the two signale are
in phase agreement at the array's centre. Thus, depending on
the above conditione the value of ¥ ig get to either @ or 18;
whenever the imaginary angle occcurs leédinz to high accuracy
in estimating the value of ¥ when the two signals are
anti-phase 1n particular and elsewhere in general. The
frequency of occurrence of ph-div increages as GD decreages
as can be seen from the table; In comparing with the SW.2
target 7 type for GD=B.25 BW one goncludes that‘the frequency
of occuﬁrences of . the imaginary angle and the errbneous
valueg of the estimated ¥ ie chh‘hizher for the second type
which explains the increase in the rms error éAown in fizurei

4-5, where a histogram is8 shown for both types. In comparing
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these results with those in table 3-2 (chap.3) one finds that
the imaginary angle occurrences using this method is slightly
less than that of using the 3SA-MLE, except at ¥=180 where 1t
becomeg much less. The phase estimation ig very much alike
in both methods over all values of O ana VY. Thug, one
concludes that using the four-subapertures techniques
discussed in chapter 3 (by following the same steps in figure
3-5 after replacing the 3SA-MLE by 3SA-TRM) will leads to
very much similar results and is not going to be repeated
here with the new trigonometric solution. 1In conclusion, the
bigger the anzulaf geperation, and the smaller the phase
difference between the two targets, the better the accuracy
in estimating the value of ¥, and the less the occurrence of
imaginary angles. ) : ,
According to the discussion in section 4-2 above and
the block diagram 1n.fizure 4-1 a computer aimulation 1is
carried out to determine the effectivenesg of the 4SA-TRM in
improving the performance of the symmetric’ case. of the
3S2A-TRM when the two tabceta are 1in {or c¢lose to) phase
obposition., = Figure #-8 shows the simulation results of the
symmetric U4SA-TRM for .95=0° Pg=®.9 . S/N=386 daB, and
©p=0.5,0.25,0.125 BW, using SW.5 target type. For comparison
3SA-TRM is shown only for GD=B.25 BW (27 elements are used
ineted of 28 for the 4SA-TRM to be able to divide 1into
tﬁree—equal-subapértures). In comparing each curve with its
correspondent in figure 4-4, keeﬁinz in mind that we use Just

3/4 of the total array's elementeg in the four-sguabapertures

method, while the rms error is normalized to 3cdB besmwidth of
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the whole array, one can see a biz reduction in the rms error
. o ‘

when ¥ is close to 188 1in general and in particular the

accuracy 1increaseg sharply when BD ie large. A little

degredation at asmall valuea of ¥ isg shown to be mainly

related to the normalization method and the lower S./N per

subaperture (1.2 dB 1less), and the comparison method used
where the best sclution is assumed to be at phase quadrature
and not at zero phase where the actual best solutiqn occurs
(see, sec. 4-2.3). In comparing the result of 3SA-TRM {(uasing
27‘ elementa) with 1t8 correspondent 4SA-TRM cnes (using 28
elements) for 6D=ﬂ;25 BW as sghown ¢on the sgame figure, a big
improvement is shown when ¥ 18 c¢lose to anti-ph#se condition
and a little degredation elsewhere, Rmeg error increases by
.82 at- ‘i’=0° and 1ia worst at Y=67.5° where 1t increases by
£.031. The main reason for this degredation is the higher
S/N per subaperture for the 35A-TRM case (=1 dB) in
comparison w1£h the USA-TRM ohes and the used comparilison
method. By comparing these results with those in figure 3-12
{chap.3) one can see that the performance of the 3SA-MLE is
slightly better for all values of ¥ exceﬁt when ©Op=0.125 BW
where this method shows aslightly higher accuracy when T>9ﬂ°1n
general. Figure 4-9 shows a histogram reéulta fof ©p=0.25
BW, po=0.9, S/N=3@ aB, Op=8, and ¥=18¢ fob the 3ISA-MLE and
the 4SA-TRM, where the rme error {(+beamwidth) appears to be
within the range ©¢-2.1 for 55 Z of the time for the U4SA-TRM,
while it dfops to 20 2 for the 3SA-TRM. Alsé. one can see
the high occurrence of 1m§zinary and erroneous angles (44 Z

of the time) for the 3SA-TRM in comparison with that of the
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4SA-TRM ones (28 7 of the times).

In the above four-subapertures technique we used the
comparison procedure, between sysl and sys2. to decide which
gset givea the best angle estimation. In fact the amplitude
comparieon technique discussed in the previous c¢chapter is
more accurate and efficlient for the symmetric case zolution.
However it 18 ptill not efficient enocugh for gome accuracy is
lost when the two signals are far from being antiphase, by
not being able to use all the available elements of the
array. As diecuqsea in section 4-2.4 a new 3@HSA—TRM
technique is possible which makes optimum solufion obtainable
cover all values of ¥ by making use of the full array whenever
peesible, Figure i-10 shows simulation resultas for the
symmetric 3&4SA-TRM according to the block diagram in figuré
u-é (in the dotted box I, Jjust the second comparison inquality
must be used which represent the anti-phase condition) for
63:6. S5/N=30 dAaB, pg=8.9., and 9D§B.5.0.25.B.125 BW, using SW.5
target's type. For comparison 3ISA-TRM performance 1e shown
ole for Op=08.25 BW (27 elements are used insted of 28). 1In
comparing each curve with i1ts corregpondent in figure U-8,
where the HASA-TRM technique 1es used only, one can.see that
the prms error is the same when ¥ close to anti-phase
condition (4SA-TRM tech. mainly chosen) while a big
improvement occurs for low values of V¥ where the choice of
the 35A-TRM is mainly occurs, By comparing the 3SA-TRM and
the 3&4SA-TRM performance for ©Op=0.25 BW, one can see a

negligible variation in accuracy when the value of V¥ is far

from the anti-phase condition (mainly related to the miasinz




142

0.5
Legend
W 3-5SAP.OD=0.25 BW
[0 3%4-SAP.Bn=0.5BW _
® 3&4-SAP.ON=0.25 BW
ot O 3&4-SAP.O9D=0.125 BW
@
=
2
2z
£
o
2 0.3
S’
| .
£
®
)
2z
c
o
5 0.2
K]
o
o
o
7]
=
o
0.1-
- ) ~Hl
- -8
, A —{3
85— —a—8—8"
0.0 -t T T 1 T T
0 22].5 45 67.5 90 12.5 135 157.5 = 130

The phase difference between al and a2 (Deg.)

Figurev4—1u :RMS error of symmetric 384SA-TRM as a function

of phase differencé between the two signals for
©p=0.0, S/N=30 dB, R=0.9. For comparison,
3SA-TRM is shown for GD_=O.25 BW




143

element) ana - a great 1mprovement 1in asaccuracy for the
3&USA-TRM over the 3SA-TRM when ¥ is close to 180 degrees.
Thus, ?v using this method one alwaysA can get the best
poegible solution in estimating the targets positions.
However ancther 3&4SA-TRM technique using a fully amplitude
compariéon Procedure is discuseed in section 4-2.4, wnefe ita
block diagram can be easily '6btained by replacing the doted
box II.in figure U4-2 by the one in figure 4-3. Simulation
results for this technique are shown in figure U4-11 for Op=0,
S/N=3@2 dB, p,=0.9, 6,=0.5,8.25,0.125 BW. For comparisdn the
symmetric 3SA-TRM ?eaulte are shown for 6p=0.25 BW only. In
comparing each curve with 1ita correspondent in figure 4-10
one can sgee ldentical performance for both techniﬁuea over
all values of ¥ ana ©Op.

In conclusion, by usging the 3&4SA-TRM technique an
optimum use of the array's elements can be used by having the
abllity to choose between three or four subapertures
performance according to the egtatus of the phase difference
between the two received signals. The esame can be easily

applied to the 3SA-MLE discussed 1in chap.3 and similar

results are expected.

4-3.2 The nonsymmetric cage solution

Figure 4-12 shows the simulation regults of the 3SA-TRM
for a  target with Og=0, Pe=8.9, S/N=38  dB, and
6p=0.5,0.25,2.125 BW, using SW.5 target . type (for

comparison the corresponding results is sghown for the SW.2
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target's type only when ©O,=0.25 BW). In comparing the
solutions, one finds that. the rms error increages as GD
decreagee, and the worst estimation occurs whén thae two
gources are in-phase or anti-phasge (¥=0"or 185) or close to
any of them as can ﬁe seen from the curves. The best
accuracy ias obtained when  the two aources are in phase
quadrature foer all values of GD. except when 6p=0.125 BW
where the optimum accuracy 18 obtained at ?=1léﬁ The
accuracy obtained when Bp=0.25 BW for the Sw.s target type i=s
much higher thén thﬁt for the SW.2 target type, where the rms
error incpeases by b.B? for the second at ¥=98. In comparing
these curves with their correspondents 1in the nonsymmetrice
3SA-MLE 1in figure 3-15 (chap.3) one can see that thisg method
shows better performance when ?=18ﬁ? while the 35A-MLE is
better when ¥=2, and both methods shows the same accuracy
when ¥ 18 c¢lose to quadrature. This methéd shows better
accuracy with SW.2 target's type over all values of ¥ except
at ?=a‘or 182 where the 3SA-MLE 1a.better. Figur 4-13 shows
the S/N performance of the 3SA-TRM for Oz=0, ©p=8.5 BW,
Pa=2.9, and S/N=3@,20,10'dB. where the rme error ieg shown
to increase as the.S/N decreases over all values of ¥, In
comparing these curves with the correspondents of the
nonsymmetric 3SA-MLE -1h figure 3-16 (chap.3) one concludes
that thisg method works better with low S/N (but not when ?=9°
or 185). where the rms error reduction rahzes to &.855 at
S/N=12 dB and ?=9ﬂ°as can be seen from the curves. Figure
4-14 Dresenté the performance oé the 3ISA-TRM for different

values of the specular reflection coefficient for ©p=0,
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Op=0.25 BW, S/N=30 dB, and pg=0.9,8.5,0.1. In zenerél. when
pg decreases the rme error increases especlally when pg is
very small (@.1). In comparing these curves with the
correspondente of the nonsymmefric'ssA-MLE in figure 3-17
(chap.3) one can esee that both methods shows bad performance
in general when p, i2 emall and this method 1s worsge when
Teaf Further investigations ghow the method works a8lightly
better than the 3IS5A-MLE method when SD=B.5 BW. Figure 4-15
sehowe the performance of the noneymmetric 3SA-TRM with
different values of the bisecting 'anzle {(the non symmetry
performance), for. ©p=0.5 BW, S/N=308 daB, pg=8.9, and
0p=0.0,0.25,0.5 BW. In comparing with the 3SA-MLE (the golid
line) we see that the 3SA-MLE method fails when ©Opg=0.34 BW
while this method 2till workes with very good accuracy untill
Op=2.5 BW. Further sgtudiee Aid eshow that thie algorithm
(3SA-TRM) will continue to work until one of the receivead
sizngls reaches fhe subaperture beam pattern at peint below
the 3'dB point, while thé 3SA-MLE method worke with very good
accuracy until ©p=0.3 BW.

Ag we have seen from the regults above, the performance
of the nonsymmetric 3SA-TRM 18 very poor when the target and
its coherent multipath are in-phase or anfi;phase. In
section 4-2.4 & new U4SA-TRM method 18 introduced to solve
this problem and improve the performance 1in these two
reglions. Before showing the simulation results for this
methqdlwe examine the case of the imaginary angle occurreﬁce
and the accuracy obtained in estimating the phase.difference'

¥ from the estimated angles of arrival of the two sources.
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Tahle 4-2 ghows computér simulation resulfs for the
frequency of occﬁrrences of the imaginary angle (Im-ang) and
when the absolute error of the esgtimated value of ¥ is
greater than a given value (taken here to be 153 from 1ite
true one (ph-div), for ©Opg=@, S/N=30 dB . .p3=a.9. anda
Op=0.5,08.25,08.125 BW for SW.5 target's type (and SW.2
target's type Just when ©Op=0.25 BW for comparison). The
imaginary angle occurrehnce ia zero over all valueg of Y when
©p=8.5 BW, except at ¥=180" and @ where it occcurs 128 ana 378
timee ocut of 18008 respectively, which might explain the bad
performance at -tﬂese two points. When GD decreageeg the
imaginary angle occurrence increasez over all values of ¥ as
can be seen from the table., The esgtimated value of ¥ is the
worat when the two soﬁrces are in phase agreament, while it
is very accurate when they #re in phase oppoeition for eD=a.5
BEW as c¢can be gseen from table 4-2. The reason ﬁehind this
high aécuracy {when wsiaé) ie that when an imaginary angle
ocecure a test is carried out to find whether the two signals
are c¢lose to in-phasge or.anti-phase conditione depending on
the_eame facte explained in chapter 3 (section 3—&.1){ The
frequency of occurrence of the 1imaginary angle and the
erronecus values of the estimated ¥ for the SW.2 target fype
is higher than that for SW.5 type in general as can be seen
from the table for Op=8.25 BW. In comparing these pregulte
with thdse of the noﬁsymmetric 38A-MLE in table 3-3 (chap.3)
one can sgsee similar results with soﬁe gxception at ¥=0 and

o
180 which can be read on the tables. Thus, from the above

discusseion one concludes that the phage comparison
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Table #d-2 The imaginary angle and erronecus egtimated phase
difference (>1J’deviation from the true value) occurrences in
the nonsymmetric 3ISA-TRM for Op=0, S/N=32 dB, Pg=2.9,
6D=B.5.B.25.B.125 BW, for 19008 trials at each phase ghown.
For comparison the resﬁlts-for SW.2 target's type is shown when

9D=B. 25 BW.

Phase 2.5 BwW 8.25 BW 2.125 BW

Im-ang. Ph-div. IM-ang Ph-div. IM-ahc. Ph-div.
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four-subapertures technique discuused 1in chapter 3 canrbe
egually appliéd here by following the stepg shown in figure
3-6 and replacing the 3SA-MLE b& ASA-TRM. Similar results
are expected as long a8 the three-sgsubapertures performance of
both metheda 1ig very much the same as we have already seen
from comparing so far,

According te the block diagram in figure 4-1 a computer
“8imulation is carried oﬁt to express the effectiveness of the
new 4SA-TRM method {(by comparing syel with sys2} to improve
the nonsymmetric case of the 3SA-TRM performance when ?=0°or
180. Figure U4-16 ;hows thege resultes for Oz=8, S/N=3@¢ daB,
Pe=B.9, ©Op=0.5,0.25,0.125 BW, using SW.5 target = type. For
comparison 3SA-TRM 1is shown only for Op=8.25 BW (27 elements
are used insted of 28). By comparing each curve with its
correspondent 1in figure #4-12 (keeping in mind that we use
Just 3/4 of the fotal elements of the array for the 4SA-MLE
method, while the prme error is norm#lized to the 3d4dB
beamwidth of the whole array) one can see a large reduction
in the rms error for ©p=8.5,2.25 BW when v=0" or 182 (or
cloge) and only a very 8mall increase when ¥ 1a close to
qu&drature. Thie 1is8 mainly related to emaller S/N per
asubaperture, the 3dB beamwidth normalization, and the
deviation of the new chosen value of ¥ from the quadrature in
terms of the new comparing meth&d between sysl and sysZ2 and -
its accuracy. In comparing the USA-TRM with the 3SA-TRM (27
elements) for Op=0.25 BW a big improvement can be geen when
the phase difference between the two sources is close to 0 or

o " .
180 and a little degredation when it ig close to quadrature
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for the same reason explained above. Figure h-l? ahowa a
histogram of results for ©p=0.25 BW, Op=0, pg=0.9, S/N=30 aB,
and W=£;18; for the 38SA-TRM and USA-TRM methods, where the
rms error (+beamwidth) for the first is within the range
2-9.1 for 38 Z of the time when T=d,and 20 Z when ?=18£:
while {t rises to 66 2 and 48 Z for fhe gecond regpectively.
Thus one c¢an conclude that the new four-subapertures method
for solving the 1in-phase and anti-phase problem by comparing
between sayel and s8ye2 (Just the anti-phase for the symmetric
case) is very effective, ana it reduceslthe needed work locad
and hardware in lcomparison with the Phase comparison
four-gubapertures technique discussed in chapter 3 " (the
4SA-MLE) but it 1s slightly worse for the asymmetric éase and
better for the nonsymmetric one.

Whatever improvement obtained by using the
fouf-subapertures. techniques (4SA-TRM) for the in-phase and
anti-phase signal cohditiona. further improvement | is
obtainable by using the nonsymmetric 3&4SA-TRM method.
Figure 4-2 shows thé block diagram of this mefhod and figure
4-18 Bhowe thé simulation resulte accordingly for ©p=0,
S/N=3@ 4B, p5=9;9. 9D=B.5. 2.25, 2.125 BW (the SSA—TRQ method
is shqwn using 27 elements on the same figure for 9D=B;25 BW
only for comparison purposes).- in comparinz‘rthese curves
with thosé of the 4SA-TRM in figure 4-16 one can éee a great
improvement in performance when ¥ 1s‘close to the quadrature
condition (352?<1ﬂg) and also for 9D=°{125 BW in particular
over all values of ¥ except at ‘i’=i‘l'p and 1882, Algo, by
comparing the 3SA-TRM and 3&4SA-TRM for Op=0.25 BW on figure

4-18 one can see that the two curves are very gimilar with
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Figure 4-18:RMS error of nonsymmetric 3&4SA—-TRM as a function
of phase difference between the two signals for
85=0.0, S/N=30 dB, R=0.9. For comparison,
3SA-TRM is shown for Op =0.25 BW
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negligible differences (mainly related <to the missing
element, 27 inetead of 28) over all values of ¥ except when
35;W>1u51 and a big improvement occurs when 363?>1ud{ The
main reason beyond this improvement 1is as explained for thé
symmetric case of the 3&4SA-TRM above,

The lessons learned from this chapter can be summarised

by the following points:

a- this trigonometric Bolutioﬁ (3SA-TRM) gives very
much the same resultas obtained by the 3S5A-MLE for
both symmetric and nonsymmetric cases.

b~ The BSA-TRM is faster in processing and simplar to
implement in a practical system.

¢~ The new four-subsapertures technique is simpler fhan
the one presented in chaptér 3 and savesg much time
in processing while it 2ives saimilar results with
few exceptions;

d- The new 3R4SA-TRM technigue for the symmetric and
nensymmetric cases 18 the most promising technique
for reducing the rms error in egstimating the angles
very significantly at ?sﬂo or 18; and presgerving
the accuracy obtainable by using 3SA-TRM elsewhere,

e~ The 384SA-TRM amplitude comparison technique for the
symmetric case is the most efficient one of all
presented technigques and vwvepry vi#bie for practical
implementation.

f~ All the technidues uged with the new method to sgolve

the in-phase and anti-phase problems are applicable

to the method mentioned in chapter 3 and vise-versa.
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Chapter 5
The Max>ximum Entropy» Mathodd
Arnxcl

Monopulse Radax

5-1 Introduction

Modern Bpeétral egtimation techniques for time-series
ag documented by Childers {[5-1], and the maximum entropy
method (MEM) 1in particular, have recently received much
attention 15 the 1literature because of theilr ability ¢to
resolve closely-gpaced spectral elemente. The MEM was first
‘suzzestéd by Burg [5-2] and later extensively 1investigated
and discuegsed in many papers and text books {5-3,5-4,5-51.
van de Boa [5-6] sahows that the MEM 1s equivalent to
least-squarea fitting of an all-pole (autoregressive) model
to lthe available data. Haykin and. Kegler [5;7] show the
complex form of the MEM and Andersen [6-8) gives a fast and
simple procedure to calculate the filter coefficients of
equal spaced data according to the Burg meéhod in [5-1]1. A
discussion about how to choose the order of the filter and
ita effect on the resulting performance is shown. in Kay et
al. ([5-9) and Childers [5-1]. McDonough [5-1@8)] shows that
the MEM spectral analysis usged in the processing of

time-series data is equally applicable to the wavenumber
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analysis of s8ignals received by a spatially distributed
linear array of sensors. Kesler and Haykin [5-11} show that
the MEM provides a rather ugeful method for obtaining a
ahort-germ estimate of the sBpectral density of radar clutter.
The advantageg and disadvantazés of this method are
inveastigated in the above references and many others and will
not be discuseed here again. |

In zenerél. time-series estimation techniques are only
applicable when the underlyinz proces is stationary. If it
is not, such as 1in the cage of a low-flying target over a
smooth surface Qhere the direct and reflected signals aré
coherent, ‘then the resulting wavenumber spectral estimate
Wwill not be meaningful wunless the two signals are in phase
quadrature [5-12]. Becauge this is not the case one can
conclude that these sorts of aizorithms are 1pappropriate for
solvinz.such probleﬁs. However EQans (5-13, 5-14] shows
resultas from a fleld teat on the performance of the MEM,
where it worked very well over an irregular surface, but he
did not discuss the scale of irregularities.

The purpose of this chapter ig to introduce thé MEM in
general and to show ite performsnée in =golving the specuiar
multipath problem by using the same three-subaperturea linear
array presented in the previous two chapteras. Also, a brief
look at the principleé and performance  of the
phase-comparison monopulse radar will be given. The effecf.of
the surface roughness . on - the performances of the
three-subapertures MLE, TRM, MEM, and the phase-comparison

monopulse radar will be discussed and compared in chapter 6,
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5-2 The maximum entropy formulation

The MEM spectrum estimate for wavenumber sgapectral

estimation can be given by the following equation [5-i4}.

M
") (5-1)

p(e)saf 7|1+ CM,m Z
m=1{

where, Z=ex§[dzﬂd 8in{9)/ N, M, m ig the m—fh parameter of the

is the

2
all-pole filter, M is the numbers of poles, Ooy

variance of the white nolse input, p(8) is the power density
in the angular difection 8, and 4 ie the subaperture spacing
as sghown in fizurelB-l (in chap.3), or fha .1nterelément
gpacing in case that 1individusl elements Aare considered.
Using the three subapertures technigque mentioned in the
previous two chaptereg, the above equation can be rewritten as
follows for the two pole-filter case.

2 . -2 /2
P(O)=0y /|1+4Cy 4 2+ Cp 5 2 (5-2}

There are two practical methode for locating the peak
position in the spectrum. The first is by calculating the
roote of the characteriéfic equation of the prediction error
filter-(the quadrature equation in the denominator of the
eqﬁation above for. the three subaperture case), then findins
the angles of the roots which correspond to each 1nc1dentA
plane waves. This method becomes:very lengthy and difficult
to solve when the number of poles is high. The other method

ise to find the wavgnunber apectrum and search for i1ites peakasa.
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In the simulnfion performed for thiep asatudy of a low-flying
target over asmooth surface (rough surface Iin the next
chapter), the ‘second method was chosen, gince it 1ig more

likely to be used in practical syetem,

5;2.1 Burg method [5-7]

To use the MEM gpectiral estimate above we need a
procedure to estimate itas parameters (CH.l' CN.Z'_ ce ey
CM.M) and there are geveral procedures to estimate theee from
N- data samples ‘[5—5.5—9]. Tbe. moat popular procedure is
known as the Burg method. Thies method depends on minimizing
the sum of the forward and backward prediction error power of
an all-pole gilter {pee figure 5-1), subject rto the
conatraint that al; the parametera {(from 1 to M} satisfy the
Levinson recursion (5-108) to ensure the gtabllity of the
filter {(the poles inside the unit cirecle) [5-9].

Assuming a wide gense étationary .process 'and_startinz.
with M=@¢, then the power P, is thg. autqqorrelation for zero

lag, and given by,

N
2
Py= (1/8)> 54| (5-3)

where Sy 1g the i—th sample from the 1-th element (or
subaperture) and N 1s the total number of elements or
subapertures, For M=1, then the length of the prediction
error filter is two and ther error power P, defined by the

average sum of the resulting ‘powers of the forward and




163

Cpam o « 1 - Forward
- Ml riltering
} f 1 ‘ :
I I '
| I :
1 ! |
[ | |
! ] :
I | !
1 H ,
- S. S. S. .S
51 52 3 N-2 °N-l (X
{ 1
! |
' | :
' | |
| | |
! } 1
* * *
filtering

Figure 5-1:The forward and backward filtering of N samples from

N subarray or N elements array,



164

/! I/
backward filtering (P2. and P,) respectively,

Po= (1/2) (Pp+Ph) | (5-8)
. N- » 2
Py=[1/(N-1)] 5 [S4.14C1184 (5-6)
=1
N-1
ph=[1/(N-1)] E ]si+c'llsi+1f (5-7)
=1

If the mean power P, 18 minimised by taking its partial
derivative with respect to Cy71 8and eetting it to zero,
(3P2/8011)=B. then the power at the output 1isg minimized

whenever C,, takes the following value,
N-1

*
- E Sy 8341

i=1
N-1 2 2
E (lSi I"‘Si"’ll)
i=1

and the real value of 92 is given by the following, from 1its

Cll= (5"'8)
equivalent correlation matrix.
2
‘Pa= (1-[cy4| )Py (5-9)
The above procedure can be extended to higher order

filters, where the parameter CMm for a filter of order M+l

can be defined by the folldwink general aguation:
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»
Cvm = M-1,m *CMm CM-1,M-m (5-10)

Where. m=1.2...-.-.M.

and the corregponding output power ia given by:
2 .
Puez = Py (1~ [Cpgy]) (5~11)

From the above eqﬁation and s8ince Cvmy < 1 ., one can
conclude  that 8.8<Py,j<Py, Which means that the error
decreases bQ inéreasinc the order of the filter. This 1is-
controlled by many factors which compromigse between high
resolution and fewer apurious peaks and there are ﬁanv
approaches and éuzgestions "in the literature for estimating
the filter order. One intuitive approach 1s to increase the
order until the calculated power of the predicetion error
reaches a minimum. Ulrych et. al. 1in {5-9) suggested an
order cholce within the range N/3 to N/2 for the case of a
ahort data sequence. For the three~subﬁperturea arrangement
of a'hlinear array with two incident plane waves (direct and
reflected signals) the minimum numbers of polaes must be two

which repregent the maximum order of the filter.

5-3 The phase-comparison monopulse

Various methods of preciesion single target tracking
have been_developed and uged in the pasast. These methods are

mainly based on either gimultaneousg or seguential lobing
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techniquaes which require a minimum number of echo pulses {at
least three puleges) to extract the error signals which are
normally used to actuate a servo-control system to poeition
the antenna. During the measurement time, the amplitudes of
the received echos must s8atay constant (non-fluctuating
amplitude) othérwise a Bevere degredatioh in.the tracking
accuracy might occur [5-1?, 5-161.

The amplitude fluctuations of the received echo pulses
will have no effect on the accuracy of the tracking syestem 1if
the angular ﬁeasuremgnt procedure depends on the bagis of
axtracting the erfor signals from one pulse rather thaﬁ‘ﬁany.
One of the most popular method is monopulse tracking which is
mainly divided into the following two t&pee: first, the
amplitude-comparison monoﬁulse which employe twe overlapping
antenna beams to obtain the angular error sasignal in one
plane, and the gecond 1 the phase-comparison monopulse (or
interferometer radar) wh;ch employs two parallel antenna
beams to obtainrfhg signal error in one plane (in both cases
the minimum number of beams required for elevation and
azimuth ankle tracking are three, but normally four beams are
used). Also, the phase and amplitude comparison monopulse
features caﬁ be used Jjointly in one system to provide angular
tracking in azimﬁth and elevafion by ueing only two beams
rather than minimum of three required for each type
individualy [5-15].

. The failure of the monopulse radar in tracking a
low-flying tarcef over a smbpth surface 1is very widely

studied in the 1literature (see chapter 1). In a comparison
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atudy between phase and amplitude procesgors for amplitude
moncpulse systems, Siﬁsky and Lew [5-17] have shown that
when the S/N is high the obtainable performance accuracies
are _comparable -for both processbrs except for target angles-
very close to boresight where the sécond outperformeg the
first by 3dB signal to noise ratio equivalent. Algso they
expect the phase processor monopulse to operate with hizher_
accuracy than the amplitude processor ©one in a noncohereﬁt
multipath environment.,

In figure 5-2 the geometry of two plane waves (l.e
direct ' aignal .and' ite coherent ﬁﬁltipath) aﬁd two
subapertures of a linear array are sghown, wheré the
separation between the centres of the two subapertures and
the distance from the array centre to the target are given by
d and R respectivély_ (R>>d).‘ The complex signal outpute of

the two subapertureg c¢an be given byi
S;= a5 Gy exp(IZy/2)+a, G, exp(J2,/2)+n, (5-12)
32= 31 Gl exv(—le/z)*'az Gz exp(-dzz/2)+n2 (5-13)

where the description of each term in the above two eguations
is siven in chapter 3. The phase reference is taken at the
middle of the arrsay. However, when the target i1isg high over
the surface 1i.e the multipath components are zero in the
above two equations, then the change 1in the phase of the
gignal (the phasgse 1lag) 1is given by AfL= Z, or by ite

equivalent from [5-151}:
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phase lag ‘___.-—\—
o]

suvaperture subaperture 2-subapertures

0O 0 0 o 00 ©0 0 o0 21 elements

phase reference

Figure 5-2 :The geometery of two plane waves and two-subapertures

of a linear array,




and the elevation angle ie ﬁiven b&:
| )
Oy=ein [APL 2\/(2Ta)] (5-15)

where the Géugsian noise components are excluded from the
calculations above, For small wvalues of the elevation angle
8in(6,)=0,.

Whgn specular multipath exists the above calculation of
the elevation ancie will be disturbed ., The extent of the
disturbance depends on ¥ and the specular reflection
coafficlient (Ps)- where high values og Pg lead to a complete
fallure in estimating ©O,. Thig problem can be better
understood by finding the general equation of the phase lag
ag a function of ¥ and 45+ Where ag as a function of p, and

the angular positions {through G, ana Gz) ia given by:
&3"[ (3262)/(31‘31)' ) & ] ) {5-16)

The associatedvphases with Sy and S; above can be given by

PL1 and PL2 resgpectively.

PL1=tadd{[Bin(Zi/2)+again(W+ 2,/21/
[coa(2y/2)+agcoa(¥+ 22/2]} {(5-17)

169
APL= 2Td 8in(8.)/) (5-18)
PL2=tan-%}-sin(Zl/2)+§Bsin{?— 2,/72))/

i

[cos(Z2,/2)+agcoa(¥- 22/2)]} (5—18).
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where the total phase lag 18 given by APL=PL1-PLZ, One
concludes that when VY-8 the values of PL1 and PL2 are equsl
with opposite sign. For a symmetric tgpzet-imaze cage and
ag=1 the values of PL1 and PL2 are zero when ¥=0 and infinity
when ?slad’(Phl and PL2 are very much noise dependent in
theee casges). The value of ¥ where the best angle
estimation_oecura is a function of the angular epacing
between tﬁe two s8sources and ag; (for further detall, see
(5-20]1). A semall value of p, leada to an 1mprovément in
accuracy over all Qalues af ¥ in general and the nonasymmetric
targe-image case would effect the target tracking acéuracy in
positive or negative #sense by decreasing or increasing the
" value of ag, resbectively. An approximate general equation of
the angular error (AO8,) normalized to the angular spacing
‘between the farzet and 1its image a8 a function of ¥ and ag
for a tracking radar is ziven‘in Skolnik [5-15]) as follows:

A8, (+angular Bbacinz)=[§;4as cos(?)]/[l+a§ +2 ag cos(¥)1}

However one method to-improve the performangg is to
tilt the beam up (the off-axis monapulse) in order to reduce
the reflected eignal etrength which d4in turn reduces 1its
damaging effect [5—;9]. The best beam tilt value 1@ the one
which directs the first null of the subaperture toward the
ihcominc gpecular multipath signal' reducing 4its wvalue to
zero. But, because we do not know the multipath direction,
this method is approximafe ‘and it does not always lead to

satisfactory rasulta.
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Simulation results for a low-flying target over a
smooth surfsace are shown 1in the next section and 1its
performances over different types of rough surfaces are shown

and compared with other methods in chap.6.

5-if Simulation results and discussgion

Simulations for thé MEM method and the phase-comparison
nonopulsé {in breif, phase monopulse) have been made using
the same 21 element linear array described in chapter 3.
This linear array'is divided into three equal subapertures
for thg MEM and twoc equal subapertures of ten elements each
(the element at the middle of the array is neglected) for the
phase monopulse. The S/N 18 always . taken to be 3@ dB
calculated for the direct signal only, as received by the
main beam of the whole array. The noisy signal for the phase
monopulse is generated according to equations (5-12) and
(5-13) above. and for the MEM according to equations (4-1),

(4-2), ana (4,3) in chapter 4.

5-4.1 The MEM results

These results are calculated for direct- and specular
multipath signale at elevation anglas of @.25 BW and 40.25 BW
regpectively. A three —-point fillter (two poles) is always
used and the parameters aﬁe‘ calculated according to the Buﬁc
method above. | Figure 5-3 ﬁnows the power spectrum for.
pPg=2.9 and different valuea of VY. When W-€ the two:sicnal

components coalesce into one peak (when pg=1i, then
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Legend

501 B Phase=0.0
O Phase=90
® Phase=180 _

)
L4,
1

Power spectrum (dB)

Angle (degrees)

Figure 5—3 :The MEM pbwer spectrum for specular multipath for
angle separation of 0.5 BW, S/N=30 dB, f; =0.9

and varying phase difference.
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theoretically the peak will be shown half-way between the two
gignals). When T=1862 twe peaks are shown but their
pogitions are highly bilased from.the real ones. The best
solution 1is when ?=90°where the nonatationary pfocess becomes
stationary [5-5], and two sharp peaks are shown which locate
fhe aﬁcular p&s;tions of the two signals with high accuracy.
Figure 5-4 Bhows the power sgspectrum for Pg=92.42, The only
peak when ¥=0" is biased toward the real position of' the
direct angle of arrival, also a _ bias toward the reﬁl
position of the direct angle is shown when W=1861 Fizure 5-6
showg the power sﬁectrum for pg=0.1, where the angular
position;of the direct signal 1is located more accurately than
for pg=@.45 (see fig. 5-4) when T=afor 182° . The specular
multipath directicon 1s bilased, with wide peake, as a direct
result of ite low signal power. Thus, gmaller values of pg
ziQe better accurscy in locating the direet angle of arrival.
Further studies show that these results are very similar to
those for sampling the 21 elements individually retaining the
the second order filter, despite the large reduction in
procezssing time. The only disadvantage here is the grating
locbes which can be avoilded in practice. The probiems
concerning the 1line Bplittinz. due to phase and noise
sensitivity; and the inaccurate indication of the source
powers still exist here. Figures 5-7 and 5-8 show the power
gspectrum for pg=0,9 and five different gnapshots to find

the effect of the Gausslian noise on the peak positiones at
W=95,for SW.S and Sw.z target types respectively. It can be
séen that the peaks are gharper and more accurate for the

firset than the second.
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Legend
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Figure 5—4 :The MEM power spectrum for specular multipath for
angle separation of 0.5 BW, S/N=30 dB, f =0.42

and varying phase difference.
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Legend
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Figure 5-6 :The MEM power spectrum for specular multipath for
angle separation of 0.5 BW, S/N=30 dB, £ =0.1

and varying phase difference.
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Figure 5—7 :The MEM power spectrum for specular multipath for

angle separation of 0.5 BW, S/N=30 dB, £ =0.9

and 5 different shap—shotse. sw,5 target's tﬁe
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Figure 5—8 :The MEM power spectrum for specular multipath for

angle separation of 0.5 BW, S/N=30 dB, £ =0.9

and 5 différenf snap—shotse, SW.2 target's type.
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From these results one can expect the methed to work
waell over a rough surface where the specular reflection 1s
very weak and widely diffused nultipath dominates.
Interesting simulation results for performance over varioﬁs

rough gurfacesg are presented in a coming chapter.

5-4.2 The phase monopulse results

The regults are computed for a direct sgignal from a .
target and its cohepent specular multipath . at elevation
angles of 8.5 BW ;nd ~-@8.5 Bw regpectively. The .rms error
{+beamwidth) 1s computed from 128 trials for every value
of ¥ shown. The phase difference {(¥) is taken in steps of
1ﬂ° degreas between Boand 186ﬁ A SW.5 target type is
considered unless coctherwise indicated.

Fizure 5-9 shows the rms error in estimating the angle
of arrival uging phase monopulge asg a function of ¥ for
Pg=9, 8.1, @.42, 2.9. For comparison the performﬁnee is
shown for a SW.2 target type at p,=8.8 only (the solid line)}
where the increase 1in the rms error is ehown to be very
significant over all values of ¥. The error increases as a
non-linear function of Pas+ Where it riges from 2.016 over all
values of ¥ for p,=8 to a minimum of 8.26 when ?=gd,for
Peg=0.9. The gamaller rmg error when ?=99°for all values of ag
tésted (except when ag=2.0) can be related to the discusion
in the previous section and noise effects. Fiiure 5-1Q2 shows
the off-axis perforﬁance for py,=90.9, and different values of
the tilt angle. In general, the rms error decreases as the

tilt angle increases. For an angle tilt of 1.5 BW
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Figure 5—9 :RMS error of Phase monopulse as a function
of phase difference between the two coherent

signals for angle separation of 1 BW,S/N=30dB,

and different values of specular multipath,
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Figure 5—10 : RMS error of Phase monopulse as a function
of phase difference between the two coherent
- signals for angle separation of 1 BW,S/N=30dB,

and different values of beam tilt.
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{equivalent to 2.75 of the 3dB beamwidth of each subaperture)
the lowest rms error is about .023 at ?-Qﬁ’and nigheat when
¥=0 or 182 where the rms errér rises to about 0.13.

The performance of phage-monopulse over different
rough surfaces._whére diffuse as well as specular multipath
exista, will be studied and compared with related methods in

chaptar 6.
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Chapter 6
Effect of Surface Roughness
on EFElevatilion Angle Estimation

i MNMultipath

6-1 Introduction

Much of tﬂe paBt work ([6-1,5] on improved ©radar
algorithms for low-flying targets has focused on the case of
a s8ingle gpecular reflection from a nominally smooth flat
refiectint surface. However in practice, when the reflected
gignal from a low-flying target propagates over thé surface
(sea or land) toward a low sited radar, the field incident on
the receiving array 1is composed of a free space component and
a component due to the reflection and diffraction from the
surface,. The latter consiste of a coherent part (specular
multipath) and noncoherent part (diffuse hultipath) as was
shown in chapter 2. Barton {6-9] developed a detailed model
which describes the diffused multipath power digtribution in
the four radar cordinates for a low-flying target ' and shows
that most of thé diffuse powér from a homogeneous, Gaussian
wave-height diastributed, surface will reach the receiving
array from the region within a glistening area (see chap.2).

Cantrell et al.([6-1] have discussged a three subaperture
maximum likelihood estimator (3SA—MLE) using a 1linear array

to solve the coherent multipath problem for both symmetric
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and nonsymmetric cases as was shown in chapter 3. A new

three-gubapertures trigonometric sclution (3SA-TRM) was found

and discussed in chapter . Also, the performances qf the
' maximum entropy methodl (uéinz three—suSapertures) and the
phase moncpulse were discussed in the previous chapter for
the specular multipath case and are expected to operate well
over a rough surface [6-6], [6-7].

In thie chapter the performance of the 35A-MLE,
3SA~TRM, ME”. and the phase monopulse ?adarr are tested and
compared 1in the presence of diffuse and gpecular reflection
environments. The 51ffused power model was discussed and
simulated 1n chapter 2. The same simulat;on regults for
different surfsace slopes and roughness have been used, In
general the results show, that fhe accuracy depends on three
factors: first, the slopes of the surface..where higher slope
values means less dézredation of the angle egtimation
accuracy; second, the_surface roughness, where the higher the
roughness the worst the accuracy; and third, the beaﬁwidth of
the array.v wheré the narrower the beam the better the angle
egstimation accuracy. When the surface 1g rough the best
obtainable aécuracy is shown to be from the maximum entropy

method and phase monopulse.

6-2 The composite multipath signal model

The compeeite output of the mtP  gubaperture in the
presence of specular and diffuse multipath over a rough
surface 1is given by Taha and Hudeon [6-8] by the following

general equation:

.



Swm= &) Gy expl(m-2) 291 + a3 Gy expli(m-2) 231+

Ng
+Z a(d) a(8) expl(m-2) 2(3)] +ny (6-1)
i=\
The gubscript m takes the wvaluea from 1 to 3 for the three
éubépertures arrangement.

The firast term in tﬁe equation represeﬁts. at the mt™h
elemenf. the direct eaignal, the second is the sapecular
multipath, the third representa the sum _Of the diffuse
reflectioﬁ scatter;rs. and the lasgt one represente the
complex Gaussian noise with zero mean and variance o<.
Alsgo, a(j) ie the complex amplitude (drawn from a Gaussian
distribution) of the 3tP diffuse reflection scatterer and
Z(J) 4its assoclated grazing angle with respect to the
horizon. Ns 1 the number of the diffuse gcatterers aeaumgd
within the glistening surface.. G(j)' is the subaperture
pattern response in the 3'N  angular direction which is
approx;mafed ag in équation {3~1) in chapter 3. The remaining
sy@bols are alsgso asg deséribed in chap#er_3. For the case of
the phase monopulse tTwo subaperture arrangementvequaticn

(6~1) becomes ag follows:

Sy= 89 G3 exp [(m-1.5) 2,] + a, G, exp{(m-1.5) 251 +

Ns )
+. E a{d) G(J) expl(m-1.5) Z(J)] +n, (6-2)
=1 '
where the subsecript m takes the values 1 and 2 only. The

deacriptions of the terms used are as for equation (6-1). In
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the above two .equations the phase centre is taken at the
middle element of the array. The number of the diffuge
reflection acatterers and their angular positions and powers
are computed in chapter 2 for different surfaces (appendix
A2, tables 1-7). Figure 6-1 shows a detailed radar target
geometry over a plane, fouzh surface where the dashed 1lines

represent aoma of the diffused power scatterers.

6-3 Simulation results and discueeion:

This secti&n presents the results of a computer
aimulation used to study and _compare the performances of the
above " mentioned methods in different multipath environments.
A linear array of 21 elementé equally spaced by a half
wave-length 18 used. This array 1s equally div;ded into
three subaperturee of 7 elements (or just two subaperturee of
18 elementas for the phasé monopulse) unless otherwise
specified. The signal to qoise ﬁatio used ie always 30d4B,
calculated as in chaspter 3. The bisecting angle (6g) and the
angular distance (9D$ are taken to be @8 and @.25 BwW (BW is
the 3dB beamwidth of the -whole arﬁay). unless ofherwise
gtated. The noisy signal model used i8 the one sgshown in
equation (6-1) for all the methods except the phdse monopulse
where equation (6—2).13 used insted. The numbey, and values,
'qf.the diffuse escatterers’ powers and angulﬁr poelitions are

calculated in chapter 2 (Appendix A2, tables 1 .to - 7) for

different surfaces and radar-target geometries and atrip

lengthsa. The foreground component of the diffuse power ie

divided among threa =acatterers where the power and angular
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pogition of each 18 computed for every value of Bo and op/A
given in table 6-1. The values of the specular reflection
coefficient can eaglly be found for each surface roughnesas
from equation (2-28) in chapter 2. The phase difference
between the direct and gpecularly reflected signals (¥) is
taken in ateﬁs of 22.50(10°for the phase monopulse case) from
00 to 1831 The direct angle of arrival rms errors are
averaged over 1002 trials for éaeh value of ¥ and normalized

to the 3dB beamwidth.

6-3.1 The maximum likelihood method:

Figures 6-2 and 6-3 demonstrate the performances of the
symmetric and nonsymmetric 3SA-MLE respectively over a
surface with 8,=0.1 and surface roughness parametep (op/N) of
2.8, 5, 20 . When op/A=28 the direct angle estim;tion
accuracy is almost the same at all values of ¥, showing large
degredation in accuracy for all phases in comparison with the
gmooth surface (ah/kfo, Pg=08.9). except at ¥=0’ or 182 (Just
laﬂofor the symmetric case) where improvement ocqurs, When
on/A=5, the rough surface éccuracy Aezradea #t all valueg of
Y in comparison with the,the_émooth one except at W=Gowhere
a little 1mproveﬁent occurs, for the nonsymmetric case ' only,
as8 can be 8ean from figure 6-3, Thus, in general, the
3SA-MLE performance degrades ag the surfaceA rouzﬁﬁeas
increases. Figurese 6-4 anad 5-5. praesent the symmetric and
nonﬁymmetric SSA-MLE ‘performances 6f a medium surface
roughnessa o/ A=5 and three different values of Bgp

(B,=0.05,2.1,8.2). The direct angle estimation accuracy
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Table 6-1: The range distribution of the foreground component
of the dAdiffused power for a target radar geometry

with hr=5m. ht=205m. R=128km and different surface

roughness.
op/A=5 on/A=20
Bo=0.2 Bo=0.1 ' Bo=0.05 | Bo=0.1
Power | Angle Power | Angle Power | Angle Power | Angle
p.18 ] -8. 4 8.2 -2.2 9.18 -g2.1 2.2 -2.2
.16 | -0.2 9.1‘. -2.1 g.12 | -@.05 8.14 | -9.1
¢.26 | -0.05 2.7 -2.825 a.a7 -8.025 2.a7 ~-@.0825
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0.4

Legend

B Roughness=0,0

[ Roughness=5

® Roughness=20 _ _
0.2

RMS angle of arrival error (beamwidths)
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0 22.5 45 67.5 30 112.5 135 157.5 180
The phase difference between 2, and a, {degrees)

Figure 6-2 :RMS error of symmetric 3SA-MIE as a function of phase

difference between the two coherent signals for 98=0°0

S/N-30 dB, ), =0.25 BW, B =0.1, and o/h/l':O, 5, 20

(wben 0, f=0.9).
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Legend
B Surface roughness = 0.0
O Surface roughness =5
@® Surface roughness = 20
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RMS angle of arrival error (beamwidths)
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The phase difference between ay and a, (degrees)
Figure 6-3 :RMS error of nonsymmeiric 3SA-MLE as a function of phase
difference between the two coherent signals for&a=0.0,
5/N-30 dB, 620,25 B¥, B =0.1, and &h/y =0.0, 5, 20

(when d/h/)\ = 0.0,“& = 0.9).




191

0.4
Be?fa-:jg -
Legend
B Beta=0.2
O Beta=0.1_ | ®
@ Beta = 0.05 /
/
/
/
/
/
0.2 l

RMS angle of arrival error (beamwidths)

0.0

T T T T T T T
0 22,5 45 67.5 90 12.5 135 157.5 180

The phase difference between a, and a, (degrees)

Figure 6-4 :R!S error of symmetiric 3SA-MLE as a function of phase

difference between the two coherent signa,ls‘ for 957-0.0

$/N-30 4B, G, =0.25 Bw,df,/l =5, and p;=o.2, 0.1, 0.05.
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The phase difference between a, and a, (degrees)

Figure 5-5 :RM: error of nonsymmetric 3SA-MLE as a function of phase

difference between the two coherent signals for 98 =0.0

S/R-30 dB, @, =0.25 BW, o’h/fs, and B<0.2, 0.1, 0.05.
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decreases as B° decreages over all values of ¥, exéept at
¥=18¢ where the opposite occurs for the nonsymmetric case and
at ¥=2 where the accuracy is slightly better for 8,=8.1 than
for B,=0.2. Figures 6-6 and 6-7 present the effect of the
aperture _beamwidth uséd on the acecuracy of the direct angle
estimation over a rough surface with o,/\=5, B,=0.85. Here &
linear array of U2 elements (\/2 spacing), equally divided
inteo three subaperture, is used in the simulation in order to
reduce the BW by half (from 9.0884 to 8.842 radians). One can
see from the curves, that the narrower the beém the better
‘the performance oéer all values of ¥ except at ¥=180 for the
'nonsymmetric case where a little decrease in accuracy ‘is
shown. Thq average improvement 1nrrms error at T=9; s about
.13 of a beamwidtha'for the nonsymmetric c¢ase and lesg than
8.1 for the symmetric case-over all valuees of ¥ which ia very
gubstantial. This improvement can be related to two factsgl
first theh 3SA-MLE works better at higher angular separation
'betWeen the two coherent gourcee (the angular distance 1is
2.5BW insted of ©.25BW for the 21 element array), and the
second, and more important. ia that the main foreground
component of the diffuse reflection is getting cfoser_to the
firat null of the subaperture beam patfern. greatly reducing

its effect.

6-3.2 The trigonometric golution method:

Figuree 6-8 and 6-9 show the performances of the
symmetric and nonsymmetric 3ISA-TRM respectively over a

surfaces with 8,=9.1 and surface roughness of 0.8, 5, and 20.
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- Legend
B 3dB beamwidth = 0.084 radians
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Figure 6-6 :RMS error of symmetric 3SA-MLE as a function of phase

difference between the two coherent signals for 98 =0.0

S/N=30 dB, @p 20.25 BW, B 20.05, dhA =5, (beamidtn

effect comparison),
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0.6
Legend |
B 3dB beamwidth = 0.084 radians
[ 3dB beamwidth = 0.042 radians ;3
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i |

Figure 6-7 :RMS error of nonsymmetric 3SA-MIE as a function of

phase difference between the itwo coherent signals for
Op=0-0, 5/N=30 dB, §=0.25 B, 8 =0.05, and {h/‘)\=5

(beamwidth effect comparison).
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When o),/A=20 the angle eatimation accuracy is almost the same
at all values of ¥, showing large degredation in accuracy for
all phases in comparieon with the smooth surface (op/\=0,
Pg=B.9). When op/A=5, the rough surface accuracy degrades at
all values of V¥ i1in comparison with the the amooth one,
except at T-laeowhere an improvement occurs for the symmetric
case only, as can be seen from figure 6—8; Thus, the 3SA-TRM
performance degradeg ag the surface roughnees increasesg. In
general, its performance is worst than that of the 3SA-MLE
method discussed in thea above subsection. especially for
Op/A=28, which c;n be related <to nature of the way each
method operates. Figures 6-12¢ and 6-11,  present the
symmetric and nonsymmgtric 38A-TEM performances of a medium
surface roughness o)/A=5% and three daifferent values of 8,
(B,=0.05,0.1,08.2). The angle estimation aeéuracy decreases
as B, decreases over all values of Y, except at ?=185’and
‘nonsymmetric performance where the accuracy is alightly
better for 6°=B.05 than for B°=E.1. the performaqce of éhe
symmetr;c cagse of this method is much better thaﬁ that of the
BSA—MLE above for Wnlad'fand B,=0.05. Figures 6-12 and 6-13
preaent the effect éf the aperture beamwidth used on the
aceuracy of angle estimatipn over a rough surface with
on/A=5, B,=8.05. Here a linear array.of 42 elements, a=s
above, is used in the simulation. One c¢an see from the
curveg, that the narrower the beam the better the performance
over all values of ¥. The average improvement in rms error at
?=96’ is about 2.18 of a beamwidth for the nonsymmetric case

and slightly less than .1 for the symmetric case over all
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Figure 6—8 :RMS error of symmetric 3SA~TRM as a function of

phase difference between the two coherent signals
ﬁw@h=03,smzsodaeb=ozsBw,g =0.1
and ¢k /=0, 5, 20.
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Figure 6— 2 :RMS error of nonsymmetric 35A—TRM as a function
of phase difference between the two coherent signals
.for9&=0.0, S/N= 30 dB,0,=0.25 BW,B =0.1, and
6k} =0.0,5, 20 (when /j,/xo,ﬁ =0.9).
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Figure 6-10 :RMS error of s'ymmetric 3SA-TRM as a function of

phase difference between -the two coherent signals
for G =0-0, S/N= 30 dB, 6, =0.25 Bw,d./l =5
qndé =0.2, 0.1, 0.05 '
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Figure 6—11:RMS error of nonsymmetric 3SA—TRM as a function
of phase difference between the two coherent signals
for G =0.0, S/N= 30 dB,, =0.25 BW, £hy=5 |
<:xr1dﬁv =0.2, 0.1, 0.05 '
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Figure 6~12ZRMS error of symmetric 3SA—TRM as a function of
phase difference between the two coherent signals
for B =0.0, S/N= 30 dB,8,,=0.25 BW, B =0.05
5{\/} =5, (beamwidth effect comparison).
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Figure 6—12:RMS error of nonsymmetric 3SA—TRM as a function
of phase difference between the two coherent signals

for §,=0.0, S/N= 30 dB,3,=0.25 BW, B =0.05, and
6 /A =5, (beamwidth effect comparison)
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values of ¥ which is very substantial. This improvement can
be related to the game reascons mentioned 1n the above

subgection.

6-3.3 The phase-comparigon monopulsge

Figure 6-14 shows the ﬁerformance of the phase
monopulse radar ovér_ a roﬁﬁh surfacer with fg,=8.1 ana
on/A=0.8, 5, 28. For a surface roughness of 20 (wheré
p3=e.9x15' 5 the obtainable agéuracy séems to be very good
over all values of b 4 whepe the rms error rises to about 2.835
only. This can. be related to the weak sgpecular multipath
component and the randomness of the diffuse one. For
dh/X=BQB or K, the lowest rme errodr 1s shown to be at ?:13;
and 116’respectively. This digplacement is due to the effect
of the diffusé multipath component which behaves 1like a
Gasussian noise. For a smooth or moderate surface case, the
~worst performance is ahown to be at Tzd’dnd 1861 The rms
aerror at ?=1859wdr3t than that at T=ﬂ.6:wh1ch generally 1ie a

consequence of the conetructive and destructive interference

between the two c¢oherent signals. Figure 6-15 showe the
performance over a  moderate gurface (oh/kes) for
BO=B.2, 9.1, @2.a5, The rms errop increases ag the surface

slope decreages where the best estimate 1s shown to be around

o : . :

¥=110. Figure 6-16 demonastratee the off-axis performance
over a moderate surface roughness (gp/A=5}) for  tilt
angle=9.0, 0.5, 1.8, 1.5 BW. The rms error decreaseg as the

tilt angle 1ncreases where the effect of the specularpr
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Figure 6-14 :RMS error of Phase monopulse as a function
of phase difference between the two coherent
signals for angle separation of 0.5 BW, S/N=30 dB,

B =04, fi:o.o, 5, 20 (when "-ii- =0, £=0.9).
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signals for angle separation of 0.5 BW, S/N=30 dB,
h =5, B=0.2, 0.1, 6.05.
}. °




206

0.4
Legend
W Tilt = 0.0 BW
O Tit=0.58W
® Tit=18W _
O Tilt=15BW_
0.3

o
N
t

\.\\E
[ ]
LU

RMS angle of arrival error (beamwidths)

Qo
-
]

N

f
f)’

0.0 T 1 Y ! T T !
0 20 40 60 80 100 120 140 160 180
The phase difference between al and a2 (Deg.)
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multipath component and the foreground component of the
aiffuse multipath are reduced (through .the antenna
directivity). The chosen value of the tilt angle must be
dcompromisex between the need to reduce the effect of the
multipath and the required S/N'to get a good accuracy. This
depends con the angular spacing between the target anada its

image where small spacing makes the avallable accuracy less.

6-3.40 The maximum entropy method:

|
|
A histozram.ie used to demonstrate the performance of
the three subaperturesg maximum entropy method (3SA-MEM) over
a rough surface, Qhere the angle of arrival is located by
searching for the peaks in the power spectrum. The rms error
Vof the direct angle of arrival k% beamwidth) is divided into
20 zonés of accuracy from 9.0-9.085, 9.85-8.1,..... 0.9-8.95,
»@.95% . The angle is changed in steps of B.Bf‘to ensure high
accuracy in locating the spectral peaks over all values of Y.
The three point filter coefficients are calcuiated according
to Burg's method ae in the prévious chapter. The main concern
15 here is to show this method's ability to perform properly
Vover a rough surfaée; Figure 6-17 shows thé simulation
results for a surface with 0y,/A=20 and B8,=0.1 where the
3SA-MEM (solild 1line) performed perfectly well over all
vélues of ¥. The rms error of the direct angle estimation in
beamwidthe 1s better than @.85, for 90 Z of the times while

9 7/ of cases fall in the range ©.85-8.1. On the same figure a

histogram for the same set of data 1is shown for the 3SA-MLE . ‘
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Figure 6-17:Histogram shows the performances of the 3SA~MEM and 3SA-MLE

for €,=0,0, ©6,=0.25 BV, S/N-30 4B, P,=0.1, and 4/,)520

for all values of phase differenc ().
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{dashed 1line), wheré its accuracy 1s seen to be much lesg
than that for tﬁa 3SA-MEM over all values of V¥, ‘One
concludes that the performance of the 3SA-MEM is much bettep
than fhat of the 3SA-MLE over a rough suﬁface when p, is very
small, Thé main  reason for thie accuracy 1is that in this
cage the 1nputrsigna1 will be dominated by a strong directly
reflected signal with only very weak coherent multipath
Plus widely distributed diffuse reflection. Theee diffuse
reflection scatteréra will generate poles well inside the
unit circle resulting in weak ﬁeaka. while the direct signal
will generate polés close to the unit circle creatinz very
.sharp peaks. Additionally, a histogram of simulation resulte
for a surface with o,/A=% has been obtained. It showe that
the 3I5A-MEM works much better than ¥he 3SA-MLE for ¥ close to
qﬁadrature and worse when ¥ 18  far from quadrature. Table
6-2 shows frequency results for this case at different values
of ¥ for both methods and figure 6-18 shows its hiastogram for
‘P=B°. 930. 1830cm1y. Fisureal6-19 and 6-20 show the power
spectrum for the roﬁzh surface case (0,/A=20, B,=0.1) where
the firgt shows three agpectra for ?=e.ai 961 185 while the
second shows three spectra for W=183°and three different sets

of noise, where the peak deviation caused by the noise 1is

obviocus.
Thus, in general, one concludes from the above
discussion that the phase moncopulse is the best for

estimating the angle of arrival of a low-flying target over a
rough surface. Also, the performance of the maximum entropy

over a rough aurface is very accurate, but slightly lesa than
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Table 6-2 :Histogram simulation results for the rma angle of
arrival error per beamwidths, freguency of
occurance out of 1908 triele for each value of Y,

for medium gurface with oh/}=5. Bo=0.1.

Phage Frequency of occurances for the shown
difference rmeg error bands.
{(degrees)
2.00-0.025 2.25-90.10 2.102-0.15
MLE MEM MLE MEM MLE MEM
2.2 119 2.8 132 v 223 626
45, @ 290 32 243 274 142 541
92.@ 425 701 249 219 142 39
135.0 280 18 253 149 175 487
180, 0 43 6.2 | 64 2.0 92 13
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Figure 6-18:Histogram shows the performance of the 3SA-PEM and 35A-MLE

for ©5=0.0, 6,=0.25 BW, S/N-30 dB,ﬂ=0.1, and (;,/’)55 at
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% =0.0°, 90°, 180°,
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Figure 6-19:The MEM power spectrum for a target flying low over a surface
wwith ﬁo;o.l. ¢t/ \=20, S/N-30 a8, 6,= 0-25 BW, O =-0.2% BW

end different values of phase difference.
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Figure 6-20:The MEM power spectrum for a low-flying target over a surface
with P =0.1, & /3 =20, S/N-30 4B, 6,=0.25 BW, B =-0.25 BW

¢-=180°, and three different snapshots.
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that of the phase monopdlae. A bilg degredation 1in the
performance of the 3SA-MLE and 3SA-TRM 1g shown over a rough
surface, even so, they offer the best angle estimate over a

emooth gurface casge,
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Chapter 7
. .
Concliuasions and Reaecommendatilions

o xr Furtheyx Worls

The thesisg has addressed the tracking problem of ai~

- 1ow—f1yiﬁz target 1n7 multipath environment, with
emphasig on c¢oherent multipath effects. The multipath
pPhenomencn énd ita modellinﬁ for smooth anq rough surfaces
are discussed, and simulation resulte are obtainea for
surfaces with différent‘ roughhness parameters. “An
investigation qf the best Khown closged-form eclution so'far.
the mggimum likeiihcod estimator which uses a linear array
divided equally inte three subapeftures.(ssA-ﬁLE). is carried
out. A new trigonometric solution, using ' the eame three
subaperturesg arrangement above (38A-TRM), to solve the
coherent multipath problem,or equivalently two closely spaced
targets, 1s derived and demonstrated by simulation resulte.
A comparison study between the above two algorithms (3SA-MLE,
35A-TRM) has been carbigd out too. The .snag with both of
them 1s that the good performance is only obtainable foﬁ

gources which are close to phase gquadrature at the array

centre and the performance deteriorates rapidly i¢ the

o -] .
relative gource rhase approachesg @.¢ or 18, Three
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techniques are developed to handle this situation 1n both
algorithms. They all depend on dividing the array into four
equal subapertures and using them in two set of three, one at
_ each end of the array. The reason for _this 1s that 1f the
two received signale are in-phase or anti-phase at the centre
of one of the sets they caﬁnot be so phased at the centre of
the other 1f the sources bearinge are different and one or
other of the sete will give an acceptable performance. The
techniques are different only in the method each one usesa to
determine the set which hag the besgt chance of solving for
the sources. The first technique is based on estimating the
phage difference between the two signale at the array centre
(chap.s; sec.3-3). The second 18 only applicable for the
symmetric target-image cese and baesed on the fact that when
the two signals are in phase opposiltion at rhe'array centre
the overall signal amplitude at the central gubaperture is
very egmall in comparison with that of the other subaperteres
on 1te s8ides (especially when the amplitudes of +the two
received signalg are close enough) and vice-versa. The third
{explained in detail 15 chap. it ag a part of new algorithm) is
bagsed on measuring the imaginary part of the sum (of the real
bert of the difference) of the oﬁtputs froﬁ the two
subapertures on.both eides of the array divided by the output
from the subaperture in the middle. Also, a new combined
three and four subaperture.techniques (S&QSA—TRM). using the
game principlee of beat gset determination explained ebove.
are derived and demonstrated by simulation. Additioenally,

the performances of the maximum entropy method (MEM) and the



217

phage-comparison monopulge radar (i.e. the interferometef
radar) are tested for the specular multipath problem by using
three and two subaperture arrangements of a linear array
respectively. The off-axis performance of the
phase-comparison monopulse radar 1as also tested.

The performanceg of the above four methods are tested
and compared for surfaces with different roughness
parameters, i.e. when epecular and diffuse reflections

componente exist together.

7-1 Conclusions

AB a resgult of this research, the followinz conclugions

on the tracking problem of a low-flying target can be drawn:

1. The saccuracy of the 3ISA-MLE and 3SA-TRM are quite
comparable when the two received signals are fully
coherent (smooth surface case) for both symmetric and

nonsymmetric target-image cases.

2. The 3$A—TRM hag some advantages over the 3SA—M;E in
respect of being easier to 1mplement in a hardware syastem
and being faster iﬁ performance, where it only involves
finding the arccosine of an angle from a look-up table

instead of the Quadratic equation solution of the 3SA-MLE,

3. The four subaperture techniques, based on the third method

above and introduced in chapter 4 (Sec. 4-2.3), are much
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petter than thg Phase eastimation based tgchniques
introduced in chapter 3 (Sec. 3-3), in terms of being both
faster in processing and cheaper for hardware
implementation by allowing the best aperture sub-set to be
chogen right from the start, before the bearing estimation

proceegs begins.

The amplitude comparison based four-sgsubapertures technique
to improve the performance of the éymmétric caseg of the
38SA-TRM and 3SA-MLE wﬁen-the two received Biznalg are in
phase oppogition 1s very efficient in terms of saving

times and implementation coets.

The composite three and four subaperture techniques 1i.e.
384SA-TRM and 3&USA-MLE, introduéed in chapter' 1 (Sec.
4-2.4) are superior to the ones in step 3 and step 4 above
in terms of offering higher accuracy when the two coherent
signale are far from beilng 1in-phase or anti-phase (duét

anti-phase for the eymmetric solution). In general, more:

- complicated combining (subgrouping) and sampling networks

are needed.

The MEM and the phasge-comparigon monopulsge are very
inaccurate when solving the coherent multipath problem
unliesg the specularly reflected signal 1e very weak in

comparison with the direct one, or the two signals are in

phase qQuadrature for the MEM.
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7. The phase-comparison monopulse seemsa to offer the best
elevation angle egtimation when the underlying surface ie
rough (specular reflection coefficient ie 1less than &.1),
followed‘by the maximum entropy method (Burg's method).
The performance of the 38A-MLE 18 erronecus, while the
3SA-TRM offers the worst performance. For the moderate
surface case the available accuracy varies accofdinz to
the surface rouzhness‘pﬁramefers. target-radar geometry,

and the algorithm in use,.

7-2 Recommendations for further work

Ag with many research problems, new questions always
arise during the course of reseach. The following is a list
of auggestions for future work which @ would enhance the

underetanding of this subject,

1. The effect of mismateh between the ~ subapertures of the
array on the performance accuracy of the 3SA-MLﬁ and
BSA—TRM‘ heeds to be investigated. In practice, this
problem can occur due to many reasons, such as corrosion,

dust, connection faults ...etc.

2. Thie thesis has only coneidered the case of estimating the
angle on the basis of one sgsnapshot {(one pulse). However,
multiple pulse integration can be usgsed to improve S/N in

general and to reduce the effect of the diffuse multipath

problem in particular. The integration time, i.e. the
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number of pulses to be integrated, depends on the pulse

repetition frequency, and the period of time for which
changes in the target parameters can be coneidered to be

negligable.

A more detaliled understanding of the 3SA-MLE and 3SA-TRM
methodas will be obtained through a hardware implementation
and evaluation of their performances in a real

environment.
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[rigonometric high-resolution method to resolve

wo close targets

. Taha, MSc
.E. Hudson, PhD, MIEE

dexing terms: Radar and radionavigation, Antennas {arrays)

Abstract: Three-subaperture methods for estimat-
ing the elevation angles of twe targets within the 3.
dB beamwidth for the main aperture of a linear
array are discussed and applied to the case of a
radar target in the presence of multipath over a
smooth surface. Sirnulation results and compari-
son with the three-subaperture maximum-
likelihood estimator by Cantrell et al are
presented. A four-subaperture technique to solve
the in-phase and antiphase signal cases 15 sug-
gested.,

Introduction

he difficulty of tracking a low-flying target over a
hooth surface (like the sea surface) arises from estimat-
the elevation angle in the presence of ¢coherent multi-
th. This problem has attracted the attention of many
earchers in the field of radar because of its importance
—6]. The simplest solution so far is given by Cantrell et
[2] and Gordon [3], who derived a formula for the
ximum-likelihood angle estimator (MLE} which
olves the solution of a quartic equation for the non-
metric case and a quadratic equation for the sym-
tric case (the target and its image located
mmetrically about the centre of the aperture pattern in
elevation plane).

In this paper we present a new method which has a

ilar performance to the MLE in general and is simpler
practical implementation. The emphasis will be on

paring the performance of this method with the
ximum-likelihood estimator [2] and showing its
vantages. A solution is suggested to solve the in-phase
d antiphase signal cases.

Formulation of three-subaperture method

ume we have a linear array of equally spaced {+'2)
ments and vniform amplitude weights for all elements.
dividing this array into three equal subarrays, the
n pattern of each subarray (subaperture) can be
roximated by the following equation from Reference

G(0 - 0,) = (d/2){[sin (ndu/2))/[ndu/i]} (1)

et S524F (E15), first received 17th September 1986 and in revised
18th May 1987

authors are with the Depariment of Electronic & Electrical Engin-
g. University of Technology. Loughborough, Leics. LEIt 3TU,

ted Kingdom
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where d is the subaperture spacing, /4 is the wavelength,
u = sin & — sin 8, and @, is the pointing angle.

Now assume that the subapertures’ signal are §,, S,
and S; as shown in Fig. 1. The clevation angles of arrival

51
d M direct signal
s L
— 8
z i . horizon
9p
d [ multipath signal
S3
J
Fig. 1 Three-subaperiure antenna geometry

for the target and its coherent multipath are ¢, and 0,,
which can be represented by the bisecting angle /5 and
the angular distance from the bisector @, as follows:

01 = 05 -+ BD (2)
0, =05 —0, | (3)

From now on 8, and 8, will be used instead of sin #, and
sin 8, , respectively, for the small angle assumption. Thus

Sy =a,G,e™ +a,G, e 4, (4)
S, =a,G, +a,G, + 1, (5)
Sy=a,G e+ a,Gye 0 4, (6)
where w nd// G, =GB, — 8,). G, = G, — 0,). and

a4y =4A, eJ"" is the complex dmp]nude of the direct s:gndl
a, = A,e®* is the complex amplitude of the multipath
signal; and 1y, ny and #y are complex Gaussian noises
with zero mean and ¢° variance for the real and imagin-
ary parts individually.

The noise terms will'now be neglected and a solution
for 85 and @, found. Taking the sum of egns. 4 and 6 and
dividing the results by eqn. 5 gives

S, +5,

S = 2{uy G, cos (wl)) + a, G, cos (wil,)]/ |

[ty Gy + @ Gy] (D)

= 2 cos (wily) cos (wllp) ~ 2 sin (wip) sin (wlp)

a, G, —a,G,
—_— 8
X [a, G, + a, G;] @
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Then, subtracting eqn. 6 from eqn. 4 and dividing by eqn.
5 gives the foliowing:

§*_.ST_2§A = j2[a, G, sin (w8,) + a, G, sin (w8,))/

. {a, GI +asz] (9)
ij{sin (wly) cos (why,) + cos (wlp) sin (W)
(11 Gl - az Gz
- = 10
x[axcl+asz]} (19
In eqgns. § and 10 the final bracketed term is identical,
and simpliﬁcs as follows:

_ﬂeﬂlﬁz—ﬂhl
=‘1th —a,0G, — ‘Alcl an
a,G, +a,0, 1+ 4,6, l@2=¢1)
4,6,

Letting the phase difference ¢ =¢, — ¢, and K =

A;G,/A, G, gives _

"L_u — K% — 2K sin ¢
T 1+ K?+ 2K cos ¢

Now we substitute eqn. 12 into eqns. 8 and 10 and find
“the real and imaginary parts:

{12)

5, ;- Ss = 2 cos (w8p) cos (wly) — 2 sin {wlg) sin (wip)
2

{1 — K% —j2K sin ¢ (13
I T+ KF+ 2K cos ¢

Re (5_13":_&) =2 cos (wB) cos (wh)p)
2

— 2 sin (wlj sin (wlp)

« 1 —K? (14
1+ K2+ 2K cos ¢ )
[m S‘ + SJ _ 4K Sin ¢
S, J t+K*+2Kcos¢
[sin (wg) sin (wbp)] (15)
Sl - S

3 = j2{sin (wig) cos {(wlip) + cos (wép)

. [l = K*) = j2K sin ¢
x sin (uﬂp]l: [T K5 2K cos ¢ {16)

S,

Re (s,‘ s_,) _ 4Ksin¢
S, / 1+K¥+2Kcosé¢

x [cos {wiig) sin (wil,}] (17)

S, —
Im (-—ls—sl) = 2 sin (WHB] Cos (W“!))

2 — K3
14+ K%+ 2K cos

3 [cos (n'fi.,,) sin (wlip)] (18)

Carefully examining eqns. 15 and 17, it is seen that there
is only one difference: in eqn. 15 we have sin (wfy)
instead of cos (wfl,) in eqn. 17. Dividing these two equa-
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tions gives

93=»lv tan~! [lm (S—':;:’Si)/Re (%)] (19)

From eqn. 19 it can be seen that the calculation of ¢, is
independent of the phase difference ¢ between the signal
and its coherent multipath, except at ¢ =0 and
¢ = 180° (we obtain the solution #; = tan~" (0/0). which
is undetermined).

Inspecting the second term of eqn. 14, it is seen 1o
involve the multiplication of two sines for small angles
(0, 0p) and the value {1 — K?), which is very small when
the reflection coefficient of the surface is large. Therefore,
its effect on the equation is very small and eqn. 14 can be
approximated by

5:.+8

Re (%3) =~ 2 cos (w8} cos (wl,) (20)
2

By substituting the value of 85 from egn. 19 into eqn. 20,

the angle 6, can be calculated and in turn ¢, and &,. the

angles of arrival in the clevation plane for the direct

signal and its multipath, respectively:

1 _ 5,+5
8, ~ — cos ! [Re (l_Sz—é)/z cos (w(),ﬁ]

When noise is present the solutions are perturbed. but
if the signals can, as is normally the case, still be rep-
resented as the sum of two plane waves, then the preced-
ing  solution continues to give the  best
maximum-likelihood bearing estimates.

We now investigate the symmetric and nonsymmetric
cases separately,

(21

2.1 Symmetric case solution

In this case the target and its image are symmetrically
located about the centre of the elevation antenna and
is known (for broadside beam 0z = 0). To calculate 0,
substitute the known value of 0, into eqn. 21.. When
0y = 0 (the beam is looking horizentally)} then ¢, = 8,
and 8, = — 0, and from egn. 21 we obtain

1 S
fp =—cos™! [Re (—Lss)i' o (22)
W S, -

2.2 Nonsymmetric case solution .

In this case (/5 is not known a priori as in the symmetric
case, and has to be estimated from eqn. 19. One can sce
that ¢; does not depend on the reflection coefficient of
the surface except when |p| = 0, where the undetermined
solution of {(0/0) occurs. Also, 8 does not theoretically
depend on the phase difference between the two signals
(no noise being added to the signals) except when the
phase difference is either 0" or 1807, when the undeter-
mined solution of (0/0) occurs again. In addition, the cal-
culation of 8 from’egn. 21 shows that #,, depends on ;.
and by looking at the second term of eqn. 14 one finds
that 6, depends on the reflection coefficient of the surface
|¢| through K, and the estimate of ¢, becomes biased
when | p| becomes very small,

Now, to show the performance of this method in com-
parison to the results of Cantrell ¢r al, [2]. a simulation
of the problem has been carried out according to the con-
ditions in Section 3. '

3 Simulation

All the simulations have been performed using three sub-
apertures of seven elements each. the interelement
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spacing being /2. Gaussian noise of zero mean and g2
variance was added to the signals, and 1000 trials were
carried out to find the average errors in the angle estima-
tion. The root-mean-square {RMS) error was calculated
as follows:

errorl = ¢, — 4,

error2 =9, — 6,

RMS angle of arrival error

~ Y. (terror1)? + (error2)?)
- 2 x number of trials

where 0, and 0, are the estimated angles of arrival for
the direct signal and its coherent multipath, respectively.
The error has zlso been normalised to the 3 dB beam-
width of the array, calculated as follows [7]:

102
3 dB beamwidth ~ % degrees

where N is the number of elements in the array
(interelement spacing = 4/2).

The signal/noise (SNR) is defined as follows, from Ref-
erence 2:

2 ‘
SNR = 10 log [ﬂ%] dB

Simulation results for the symmetric and nonsymmetric
cases are compared with those of Cantrell er al. [2] under
the same conditions in Section 3.1.

.1 Symmetric case simulation results
Fig. 2 shows the results for target elevation of 6, = 0.2
beamwidths and for phase differences from zero to 180°

03r

M5 angle of arrival error, beamwidths

0 1 L A

0 45 90 135 180

phase drfference between ay and a;, deg

i9. 2 RMS errer of symmetric case as o function of phase difference
erween signals .

Ho= 09,80, = 0, 1, = 0.2 beamwidths and SNR = 30 4B

olid Tine: new algorithm: broken hne: Cantrell ot al. method [2]

n steps of 22.5". The signal 'noise ratio is 30 dB, |p| = 0.9
nd g = 0. Comparing this curve (solid line) with the
ne from Reference 2 (broken line} one ¢an see that the
erformance is almost the same, with only a slight differ-
nce in accuracy when the phase difference between the
wo signals approaches 180", Fig. 3 shows the low SNR

rformance of the method (algorithm) when 6, = 0.5
camwidths, 8, =0. [p| =09 and SNR = 10 dB were

EE PROCEEDINGS, Vol 134, PLF, No. 6, OCTGBER 1987
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taken. Comparing this curve (soiid line) with the one
from Reference 2, we see that when the SNR is small the
performance of this algorithm is better. The high signal/

04

RMS angle of arnival error, beamwidths

o] X 1 1 —J
0 45 %0 135 180
phase difference between o) and qa; ,deg
Fig. 3  RMS error of symmetric case as ¢ function of phase difference

" berween signals

Ipi = 09,8, = 0., = 0.5 heamwidths and SNR = 10 dB
Solid line: new algorithm: broken line: Cantrell et uf. method [2}

noise ratio performance for both algorithms is essentially
the same.

. 3.2 Nonsymmetric case simulation results

Fig. 4 shows the results for a target elevation of 8, = 0.2

‘beamwidths and for phase differences from zero to 180°

075

050

025

RMS angle of arrival error, beamwidths

0 L 1 L 1
¢ 45 90 135 180

phase ditterence between a1 and oy, deg

Fig. 4  RMS error of nonsymmerric case as a function of phase differ-
ence between signaly

lp| =09, 8y = 0.8, = 0.2 beamwidihs and SNR = 0 dB
Solid line: new ulgarithm; hroken line = Cuntrell ef al. method [2]
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in steps of 22.5°. The SNR is 30dB, &3 =0 and | p| =

Comparing this curve with the one from Cantrell et al.
(MLE) [2] one can see that the performance is essentially
the same except when the phase is close to 0°, where the
MLE works better, or close to 180°, where this algorithm
{method) works better. Fig. 5 shows the performance of

075-

A

030

025

RMS angte of arrival error, beamwidths

0 R ; . .
0 45 30 135 - 180
‘ phase difference between ay and a;,deg’
Fig.5 RMS error of nonsymmetric case as a function of phase differ-

ence between signals

1p) =09.8; = 0, 8, = 0.5 beamwidths and SNR = 10dB
Solid line: new algorithm; broken line: Cantrell ¢r ul. method [2]

this algorithm for a small signal/noise ratio (10 dB} for an
elevation angle of fp= 0.5 beamwidths, 8, =0 and
|p] =09 as a function of the phase difference ¢. Com-
paring this curve with the one from Cantrell et al. [2], we
see it appears to have a smaller error. The high SNR
performance for both algorithms is essentialty the same.
Fig. 6 shows the performance with small reflection coeffi-
cient | p| at the surface. The value of the elevation angle
of 8p=0.5 beamwidths, 6, =0, SNR=30dB and
|p| = 0.1 were taken. Comparing this curve with the one
from Reference 2 we see that this algorithm has smaller
error. Fig. 7 shows the performance with relatively large
bisecting angle. An elevation angle of #, =0.5 beam-
widths, SNR =30 dB. |p| =09 and 8; =035 beam-
widths were taken. Comparing with the (MLE)
performance of Reference 2, we see that the MLE fails
when 0g = 0.35. beamwidths, where this algorithm still
works with very good accuracy. Further studies did show
that this algorithm will continue to work until one of the
received signals reaches the subaperature beam pattern at
a point below the 3 dB point, while the MLE algorithm
works with very good accuracy until 8, =0.3 beam-
widths of the main aperture.

An |magmary angle (i.e. when 8, = #,) occurs when
the value of #, in eqn. 21 is forced to zero. and would
“arise when the value of

[Re (é"——tﬁ) / 2 cos {wf),,)]
S;

is greater than one, basically because of bad estimation of
the value of 65 when ¢ =~ 0° or 180°. Computer simula-
tions have been carried out using the same data set on
this method and the MLE in Reference 2. Table 1 shows
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the frequency of occurence of the imaginary angle
(Im (angle)} and | p{| > 1 for 6, = 0, 6, = 0.5 beamwidths,
{p| =09 and SNR = 30 dB; |p| is calculated by repla-
cing the estimated values of §, and #, in two of the input

075

0.50

0.25

RMS angle of arrival error, beamwidths

% %5 0 T35 180

phase ditference between a; and as ,deg

Fig. 8 RMS error of nonsymmetric case as a function of phase differ-
ence between signals

ipl = 01,0, =08, = 0.5 beamwidths and SNR = 30 dB
Solid line: new algorithm: broken line: Cantrell er al. method [2]

1.00

07%

050

RMS angle of arnval error, heamwidths

025

% 5 30 135 180

phase ditference between q, and a, ,deg

Fig. 7 RMS error of nonsymmetric case as a function of phase differ-
ence between signals

|p} = 0.9, 8y = 0.35 beamwidths. §, = 0.5 beamwidths and SNR = 30 dB
Solid line: new algorithm; broken line: Cantrell ¢t al. method [2]
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Table 1: Frequency of occurrence in 1000 trials for 8, = 0,
8, = 0.5 beamwidths and SNR = 30 dB

Phase New method Cantreli ot af., MLE [2]
difference,
deg Im (angie) [|p|>1 Im (angle) lpl>1
0 399 123 0 492
225 0 255 0 255
45 0 59 0 59
67.5 0 10 0 10
20 V] 0 0 0
1125 0 1 0 1
135 0 1 0 1
157.5 0 12 ] 12
180 144 16 402 57

equations {eqns. 4 and 5). The significance of showing the

number of times |p|>1 is to indicate the accuracy
increase due to the information that |p| < 1, used by
Gordon [3] to improve the MLE performance at ¢ = 0°,

From Table 1 it can be concluded that an imaginary
angle occurs frequently in the new method at ¢ = (7,
while for the MLE it does not occur at all. However, its
occurence at ¢ = 180° is much smaller than that of the
MLE. This would explain the better performance of the
new method in comparison with the MLE at ¢ = 180°,
which is shown in Fig. 4. The imaginary angle never
occurs at ¢ =0° for the MLE, although this does not
mean that the estimated angle value is correct. The
improved MLE by Gordon [3] actually shows better
performance than both methods discussed above when
¢ = 0"

For the symmetric case, the imaginary angle occurs
when the value of @, in eqn. 22 is forced to zero, and
would arise when the value of [Re (S, + $,)/S,) is

reater than one, often due t0 small SNR at ¢ = 180°.

Simulation results on the same set of data show that

he imaginary angle occurs 107 times out of 1000 trials at

= 180° for the new method, in comparison with 203
imes for the MLE, but never occurs for other ¢ values in
ither method. The number of times that |[p] > 1 is the
ame for both methods: about 3.3%. :

In-phase and antiphase signals

hen the signal and its coherent multipath are in phase
¢ = 0) or antiphase (¢ = 180°) at the centre of the array,
he accuracy in estimating the elevation angle is poor in
he asymmetric method, so it is very useful to be able to

(E PROCEEDINGS, Vol. 134, P1. F, No. 6. OCTOBER 1987

220

decide if the two signals are actually in-phase or anti-
phase to detect a gross error in estimating the angle. A
simple technique can be used from egn. 17 by looking at
the value of the real part of (S, — S,)/S,. This value
approaches zero whenever the phase difference ¢ is close
to zero or 180° (the same can be seen from eqn. 15). One
solution to this problem is to use a four-subaperature
technique (three adjacent subaperatures at a time) so
that, when the phase is zero or 180° at the centre of the
first three subaperature group, it will not be so at the
other three. This technique will be discussed in a separate

paper.

b Discussion

A simple three-subaperture method to solve a coherent
multipath resolution problem is presented. Its accuracy is
comparable to that of Cantrell et al. [2], who applied the
maximum-likelihood angle estimator (MLE) to the same
three subapertures. The method has comparable per-
formance and appears to show some advantages over the
MLE [2] in respect of being easier to implement in a .
hardware system and being faster in performance, where
it involves finding the (cosine)™' of an angle from a
look-up table instead of the quadratic equation solution
in Reference 2,

A four-subaperture technique is suggested o solve the
in-phase and antiphase signal cases,
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EFFECT OF SURFACE ROUGHNESS ON HIGH RESOLUTION ELEVATION ANGLE ESTIMATE
IN MULTIPATH

A, Taha and J.E. Hudson
Dept. Electronic and Electrical Eng. University of Loughborough, U.K.

Much of the past work on improved radar algorithms for low flying targers
has focused on the case of a simple specular multipath reflection from a
nominally smooth, flat surface. However, in practice, diffuse multipath
reflection as well as specular reflection exist and one must consider both
when estimating the performance of any algorithm. So far, the maximum
likelihood estimator by Cantrell et al. (1} is the best known algorithm for
sclving the coherent multipath problem in radar. However, a new interest

in using the autoregressive/maximum entrophy method (AR/MEM) is shown in
literature (2).

In this paper, input data from an egually spaced linear array, divided into
three equal subapertures, is used to test the performance of the MLE and the
AR/MEM over varicus rough surface environments. The diffuse reflection model
by Barton (3) is used in these simulations and it is shown that the per-
formance accuracy of the MLE decreases both as the surface roughness
increases and when the surface rms slopes decreases. For a given radar-
target geometry, the narrower the beamwidth of the aperture the better is

the accuracy. The performance of the AR/MEM is shown to be much more
accurate than the MLE over a rough surface for all valueg of phase difference
between the direct signal and its coherent multipath. The performance of

the AR/MEM over a medium surface is better than the MLE when the two coherent
signals are close to phase guadrature and worse otherwise,
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EFFECT OF SURFACE ROUGHNESS ON HIGH RESOLUTION ELEVATION ANGLE ESTIMATE IN MULTIPATH

A. Taha and 3.E. Hudson

Dept. Electronic and Electrical Engineering, University of Loughborough, U.K.

INTRCDUCTION

Much of the past work (1)=-(5) on improved radar
algorithms for low-flying targets has focused on the
case of a single specular reflection from a nominally
smooth, £lat reflecting surface. However in practice,
when the reflected signal from a low~flying target
propagates over the surface (sea or land) towards a
low sited radar, the field incident of the receiving
array is composed of a free space component and a
ccmponent due te the reflection and diffraction from
-the surfage., The latter consists of a cchérent part
[specular multipath) and noncoherent part {(diffuse
multipath). Barton (6), (7) developed a detajled
model which describes the diffused multipath power
distribution in the four radar cordinates for a low-
flying target and it shows that most of the diffuse
power from the hocogeneous, Gaussian wave-height
distributed surface, will reach the receiving array
from the region within a glistening area. This
diffused power distribution 1s a complicated function
of the wave lengtn (&), elevaticn angle (0 ), rms
surface height {z_ ), rms surface slope (R F. and the
radar target geométry. Also, the value o? B, is a
complicated function of the wind speed and d?rection
etc.

Cantrell et al, (1) have discussed a three subaperture
maximum likelihcod estimater (MLE) using a linear
array to solve the coherent multipath problem for both
symmetric {when the direction ¢f the direct and the
¢pecular-multipach signals are symmetrically located
about the centre cf the array elevation pattern) and
nonsymmetric cases. Gerden (2) improved the perfor-
mance of this alzeorithz when the twe coherent signals
are in phase agreement by introducing nmew constraint
related to the Zact that the absolute value of the
specular reflecticn is less than one.

Also, there has zeen a controversy in the literature
between White {10} and Evans (9}, {ll) with regard to
the vtility of the maximum entropy method (MEM) in
the raZar multipath environment. Evans showed results
from field tescs =2 prove that the methed works well,
while Wnite disxisses the idea of using it in radar
and in the presence ¢f specular multipath in partic-
ular. '

In this payer =zrhe performance of the MLE and MEM are
tested in the presence ¢f diffuse and specular reflec-
tion environments. Barton's (&), (7) diffused power
nodel is calculated for different surface slopes and
roughness and used in sirmulation, The results show,
that the accurasy of the MLE depends on three factors:
first, the slores cf the surface, where higher slope
values means less degredation of the angle estimation
accuracy, second, the surface roughness, where the
higher the roughness the werst the accuracy, and third,
the beamwidt® ¢f the array, where the narrower the
beam the better the anyle estimation accuracy.

The paper is crganized as follows: the nhext secticn
presents the diffuse power model for a rough surface
used in simulations with comments on the effects of
some of the factors involved, followed by discussion
of the MLE and ¥EM, and, firally simulation results
and conclusions,

Diffuse Reflection Modél For Low-flying Target Over
Rough Surface

various experimental and theoretical investigations of
rough surfaces have proved that the scattered field
can be represented by the sum of two cormponents, a
specular component and a diffuse component. The
characteristics of the specular reflection component
are the same as that from a smooth surface with two
restrictions: first, the amplitude of the reflection
coefficient is smaller than that for a smooth surface,
and second, the reflection coefficjient fluctuates.
The specular scattering coefficient for a rough sur-
face is given (13) by

43 sin{3 )
p, =exp |- (—h—}_———t—)2 (L

where, ¢, is the rms deviation of the surface height.
The power from the target which reaches the rough
surface and is not reflected specularly or abscorbed,
will be scattered in other directions. Part of this
power will reach the receiving array of the radar
from an extended "glistening surface" region extending
from the neighborhood of the target to the neighbor-
hood of the radar. This is called the diffuse reflec-
tion compenent and the basic scattering elements are
small facets which overlie the main large-scale
pattern or swell, The rms slope of the small surface
facets is given by B¢ = 27 /de, where 4 is the
correlation distance” (14)." Common pracgi'ce among
engineers is to express the rms value of the diffuse
scattering coefficient (p,) as a simple function of
{a, sin(? )/} as shown in figure 1, which was drawn
from prac%ical data (13}. Barton {(7) showed however
that figure 1 is not accurate, and the values of p
shown are smaller than the real values because the
antenna used in collecting the experimental data was
very directive and part of the scattering surfacc was
not acccunted for.

For low-flying targets, the grazing angle (:} is small
in comparison with rms surface slopes (3,}. For such
cases the thecry by Spizzichino {1l4) predicted that
the diffused power will be concentrated near the ends
of the glistening surface and a simple diffuse
reflection model has sometimes been used, where the
total diffuse power Is divided between a foreground
cemponent {just in front of the radar antenna) and a
horizon component {just in front of and below the
target). The values of p, and p_ are taken,
according to the surfac¢e roughness and grazing angle
from figure 1, Feor long range targets the horinon
component for this simple model may 'lic behind the
horizon range with a curved earth so this simple

nmodel cannct accurately represent the diffuse scatter-
ing. In order to get a more accurate wadel for lowe
flying zarget, and to adapt the glistening surface
theory tc partialy rough surfaces, Barton (6} intro-
duced a roughness factor (F.) which would account for
removal of reflected diffusé power by specular reflec-’
tion at either grazing angle :, or Y, as shown in
figure 2. In this model, the éarget is considered to
be an active transmitter, with non-directional
antenna, illuminating the radar and the surrcunding
rough surface (p_=0). For low-flying conditions
assume that 0O <f <<1, h_<h_<«R, r1=x s rox,. The
curve of the glistening surface bounéary'is then given
by the following, from (6}
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and Fd-s‘dl Fdz-((1~psl)(l—p52)) (4}
and P_, and P g .are the specular reflection co-
efficients foE“the paths associated with r, and r,

respectively.

when the roughness facter F_ is included in equation
{3}, the new value of Pd is given by:

o2
a2 L B Fa ¥ & (5)
4= 3 7.2 '
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This roughness factor accounts for the specular power
at low=elevation angle and the horizon effect for a
round earth. No shadowing or masking correction factor
is reguired.

Bk simulation has been carried out to calculate the
aiffused power at a receivirg radar antenna of 5nm
height, created by the reflection from a target at

205m height and 10km range. The diffused power is
calcularted for a series of rectangular strips of 500m
extent in ® from x_ (the specular reflection peint} to
the end c¢f the glistening surface at . Figure 3-a
shows the range distribution of the discrete diffuse
power samples {Zp¢ )} with 2 = 0.1 for a completely
rough surface whifé figure 3-b shows the effect of

the surface roughness (c_/A=5,20}. The elevation

angle associated with each diffuse scatterer is cal-
calated from the centre of the strip concerned, relative
to the horizon (I __=-arctan(x/h }). The total fore-
ground diffuse powér component fthe component from

o o } which is not shown in flgure 3-a is calculated
te ke 0741 divided into three scatterers at angles
-0.%, -0.1, -0.04 radians and their associated power is
0.2, C.13, and 0,08 respectively. This procedure is
vepeated to calculate the range distributicon and the
surface roughness effect for the above target-radar
sesmetry for 3 =0.2, 0.05 (the curves are not shown
nere)., In general, by reducing the value of 8_, the
7iistening surface becomes narrower and its limits

mcve farther from the terminal and vis-versa, leading
te bigger values of p,. The results from these sim-
ulation will be used go study the performance of the
algcrithms in relation to different surface conditions
specified by 3@ and sh/\. '

»

The maximuam Likelihood Estimator

The maximum likelihood estimator using all the
“individual array elements (S) 1s very costly due tq
e large number of receivers reguired and the &iffi-
culty in getting a closed-form solution, Therefore we
use & simple, closed-form, three subapertures MLE
found by Cantrell et al. (1) in which a linear array
of equally spaced elenents (elements spacing is A/2}
is divided equally inte three subapertures as shown in
figure 2. The output of each subaperture in the
presence of specular and diffuse multipath over a rough
surface is given by the following

S, = A, exp[(n-Z)uﬂ + R, exp [(n-Z)uz'J
NS
+ I AL exp[(n-Z);(J}] + Nn {6)
3%l :

The first term in the above equation representghthe
n direct signal, the second represents the n
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specu%ﬁr multipath, the third represents the sum of
the n diffuse reflectioghscatterers, and the last
@ne, N _, represents the n cgmplex Gaussian noise
with zero mean and wvariance ¢”. &lso A =a Gl'

n2=a GZ' A(I)=a{l) G(I), ul=12ﬂd sin{ét)}l,

n -igﬂd sin(@ ) /A, bp(j)=i2nd sin{0(J}) /2, and (Gl‘ G
G%J)) are thersubaperture pattern responses in the
1,2 and J angular directions which can be approximated
by the following:

2!

sin nd(sin © - sin Bp)/l

x rd{sin & - sin GP)IX o

G(O-Op) =

where ©_ is the pointing direction of the beam. The
values and a, are the complex amplitudes ¢f the
direct and specilar multipath signals respectively:;
a(J} is the complex amplitude of the It aiffuse
reflection scatterer and ©(J) its asscciated grazing
angle with respect to the horizon; Ng is the number

of the diffuse scatterers assumed within the glistening
surface.

The three-subaperture MLE estimator is cbtained by
choosing the parameters AI'A2'Gt'®r to minimize the
cost function L (1}, (2).

3
= - -2 - TR TE
Lnil |Srl A exp En 2);1] A, exp [(n 23y (8)

By replacing the sines of Ot and 2, by their small
value approxiratiens and letting O¢=Cg+Zp 2¢=dp-%p
where, Og and Op are the bisecting angle and the
angular distance from the bisector respectively, then
L is given by (1). :

L= |5 -u (v i )s ep2 s, 27026y suti ) (0
1 'B'"'pD"p’T2"8B T3 ! D "o’

where, u_=i2-d3_/i, u_=127d42_/%. So, minimizing L
with respect tg .g and wp subject to the constraints
uBu§=l and ipip=l, the values of ugand up can be
related to u) and Ly, and the angle of arrival can ke
estimated. Tetailed discussion for the symmetric and
nonsymmetyic cases is presented in (l). This algorithm
is the best known one for solving the cokrerent multi-
path problem in radar. Here, the performance of this
algorithm will be tested in the presence of specular
and@ diffuse multipath from different surfaces, and
the results will be shown and discussed in the sirp-
lation secticn.

The Maximum Entropy Method.

In general, time-series spectral estimation technigues
are only applicable when the underlying process is
staticnary. If it is not, such as in the case of a
low-flying target cver a smooth surface where the
direct and reflected signals are coherent, then the
resulting wavenumber spectral estimate will not be
meaningful unless the two signals are in phase quad-
rature {10}, {(15). Because this is not always the
casé ong ¢an ¢onclude that these sorts of algorithms
are inappropriate for solving such problems. However,
Evans (%}, {ll} shows results from a field test on the
performance of the Autoregressive maximum entropy
method (AR/MEM}, where it worked very well over an
irregular surface, but he did not discuss the scale of
irregularities. The f£jilter c¢oefficients wore cal-
culated accerding to the Burg method (8). When the
surface is rough, the specular reflection coefficent

" ¢of the reflected field 1s a function of ¢ /) as we

have seen earlier. For example, when :h/f changes

from 5 to 20, the value of P, changes from 0.42 to
9x107% for an elevation angle of 0.021 radians. 1In
such environments, the overall received signal at the
array consists mainly from a strong direct field and

a relatively very small {depending on J, an v,/})
cocherent multipath plus widely distributed diffuse
scatterers within the glistening surface, As long as
the diffuse reflection scatterers have different phases
and amplitudes, uiing the subaperture techniques would




reduce their effect and increase the signal to nelse-
and-diffuse-power-interference ratic at the ocutput of
each subaperture. Hudson {12) shows that if the
socurces are known to lie close to the broadside of the
array, then using subaperture techniques are very
efficient numerically but cannot resolve the grating
lobes ambiguities if they occur. The AR/MEM for waven-
number spectral estimation can be given by the following
equation (8}, (l16).
2,,.4 -m 2
P(E)= Uﬁ/l 1;:1 a_Z i {10}
where, Z=exp(i2nd sin(2}/XN), a_ is the mth coefficiﬁnt
of the all-pele filter, M is tHe number of poles, o,
is the wariance of the white noise input, and 4 is
the subaperture spacing {or interelement spacing in
‘the case that individual elemernts are considered).
Using the three-subapertures technigue mentioned in
the previous section, the above equation can be written
as follows for two poles-filter case.

P2} = ci/[l—al 27l - A, 2212 . (11}

There are two practical methods for locating the peak
position of the spectrum. The first is by calculating
the roots of the characteristic eguation of the
preduction errer filter (the quadratic¢ equation in the
dencninator of the above egquaticn), then finding the
angles ©of the roots which correspond to each incident
plane waves. The other method is to find the wave-
number spectrum and search for its peaks. In the sim-
ulation performed for this study of a low-flying target
over a rough surface, the second method was chosen,
since it is more likely to be used in a practical
system,

Simulation Results

In this section we present the results of a computer

simulation used to study the performance of the MLE

in different nonsymmetric multipath environments, and

to compare it with the AR/MEM method over a rough sur~

face. For the results presented here, we used a linear
array of 21 elements equally spaced by a half wave-
length. This array is equally divided into three sub-
apertures of 7 elements, unless otherwise specified.

The signal to neoise ratioc used is always 30d4B, cal-

culated for the direct signal cnly, as received by the

nain beam of the whole array. The bisecting angle (9p)
and the angular distance (Zp) are taken to be O and
0.23 BW {BW is the 3dB beamwidth =f the whole array},

" unless otherwise stated, The nsisy signal model used
is the one shown in eguation &, where the number, and
values, of the diffuse reflection scatterers' power
and angular position are calculiated according to the
model discussed earlier and for the same radar-target
gecmetry and strip lerigth. The wvalue of the specular
reflection coefficient can easiliy ke found for each
surface roughness from eguation 1. The phase difference

.between the direct and specularly reflected signals (§)
is taken in steps of 22.3° frem ¢ to 180°. The direct
angle of arrival rms errors are averaged over 1000 trials
for each value of | and normalized to the 3ds beamwidth.

Figure 4, demonstrates the performance of the nen-
syrmetrie case of the MLE (1) cver a surface with

2,=0.1 and surface roughness parameter (op /2y of 0,5,

20 (see figure 3-a,b). When 7,. =20 the direct angle
estimation accuracy is almost the same at all values of
¢, showing large degredation in accuracy for all phases
in comparison with the smooth surface (o, /A=0, P =0.9),
except at ¢=0° or 180° where improvement occurs. Figure
7 shows a histogram for this case where the direct angle
of arrival rms error normalised to the beamwidth is
shown to be less than 0.1 for about 50% of the time.
When &, /3=5, the rough surface accuracy degrades at all
values of ¢ in comparison with the smooth one, except

at $=0° where a little improvement occurs, as can be
seen from the ¢urves. Thus, in general, the MLE per-

formance degrades as the surface roughness increases.
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Flgure 53, presents the nonsymmetric MLE performance of
a medium surface roughness 3h/).=5 and thre¢ different
values of By (25=0.05, 0.1, 0.2). The direct angle
estimation accuracy decreases as £5 decreases over all
values of ¢, except at ¢=180° where the cpposite
occurs and at ¢=0°, where the accuracy is better for
Bg=0.1l than for Byp=0.2. Figure 6, presents the effect
of the aperture beamwidth used on the accuracy of the
direct angle estimation over a rough surface with
ch/A=5, aazo.os. Here a linear array of 42 elements
(3/2 spacing), equally divided into three subapertures,
is used in the simulation in order to reduce the BW by
half {(from ©0.084 to 0.042 radians). . One can see from
the curves, that the narrower the beam the better the
performance over all values of ¢ except at :=180%whcre a
little decreas in accuracy is shown, The average improve-
ment in rms errer at ¢=90% is about 0.13 of a beamwidths
which is. very substantial, This improvement can be
related to two facts: first the MLE works better at
higher angular separation between the two coherent
sources (the angular distance is 0.5BW instead of
©0.25BW for the 21 element array), and the second, and
more important, is that the main foreground component
of the diffuse reflecticn is getting c¢clcser to the
first null of the subaperture beam pattern, greatly
reducing its effect. Seo to get the best perfcrmance,
one must use the narrowest possible beam to exclude
the effect of the main foreground comporent of the
diffuse reflection. Another way to reduce :the effect
of this compenent is by tilting the beam up to create
positive nonsymmetry in the target-image geometry.

A histogram is used to demonstrate the perfcrmance of
the AR/MEM over a rough surface, where the angle of
arrival is located by searching for the peaks in the
spectrum. The rms error of the direct angle of

arrival (+ beamsidth} is divided intc 20 zrues of
accuracy from 0.0-0.05, 0.05-0.1,....Q.% - 0.95,>0.95, -
The beam is scanned in steps of 0.0 to ensure high
accuracy in leocating the spectral peaks cver all values,
of ¢, The filter coefficients are calculated according
to Burg's method (8) after modification to cperate on
complex data from the three subapertures' outputs. For
the smooth surface case, the performance of the AR/MEN
as a function of ¢ has been well studied in the lit-
erature (9),(10),{l1) and its advantages and disadvant-
ages pointed out, s0 these are rot going to ke repeated
here where the main concern is about its ability to
perform properly over a rough surface. Figure 7 shows
the simulation results for a surface with Iy, /:=20, and
Ba=0.1 where the AR/MEM (selid line) pericrmed perfectly
well over all values of 2, The rms errcr of the direct
.angle estimdtion in beamwidths is better than 0,05,

for 90% of the time while 9% of cases fail in the range
0.05-0.1. On the same figure a histograw f:r the same
set of data is shown for the MLE (dashed line), wheke
its accuracy is seen to be much less than that for the
AR/MEM over all values of §., One concludes that the
perfoxrmance of the AR/MEM is much better =han the MLE
over rough surface when pg is very small. The main
reason for this accuracy is that in such case the in-
put signal will be dominated by a strong 3irectly
related signal with only wvery weak cohersnt multipath
plus widely distributed diffuse reflecticn. These
diffuse reflection scatterers will generate poles

well inside the unit circle resulting in weax peaks,
while the direct signal will generate poles close to
the wnit circle creating very sharp peaks.

Additionally, a histogram of simulation »es
surface with oy /2=5 has been obtained. It
the AR/MEM works much better than the MLE
t& quadrature and worse when ¢ is farx from guadrature.
Table 1 shows a histrogram results for this case at
different values of ¢ for both AR/MEM and MLE,
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TABLE 1. Histrogram simulation results for the rms angle of arrival error per beamwidths, frequency of occurance
out of 1000 trials for each value of ¢, for medium surface with o,/A=5, 3g=0.1.

exceptions for multipath phase=0° and 180°. It has
found that the aperture beamwidth has a great effect

in limiting the diffuse reflection effects and the
narrcwer the beam the better. The use of the AR/MEM to
locate a low-flying target over a rough surface is of
great potential and its accuracy ls superior to the
cver the range of all possible phase differences
the surface roughness is high i.e., the value of

s very small, pg=0.2 or less. Also, the AR/MEN
crms much better than the MIE when & is close to
rature phase over a medium rough surface (i.e.

«2) , but works badly when ¢ moves away from

ature toward O° or 180°,
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Figure 2. The radar target geometry over a reugh surface °

where the dashed linesrepresent some of the RMS direct angle-of-arrival error (beamwidths)
diffuse reflection scatterers. N

Figure 7. Histogram shows the performances of AR/HEH tethicd and
the MLE by Cantrel for 9'-0. 63-0.25 beaowidths S/N=30 4B,
8,01 and surface roughness ¢he20 for all phase 4ifferances.
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1000/21, 1000 s.,amples of the field with random noise statistics
were taken. Fig. | shows a graph of the RMS error of the
estimated bearing of one target normalised by the 3dB beam-

i UL width for target phase differences in the range 0 to 180°
SYMMETRIC TWO-TARGET MONOPULSE Errors for one target only are shown since #, = —f, and

ANGLE ESTIMATOR errors are always equal.

Discussion: The estimator clearly gives identical results to the

Indexing term: Radar "
Cantrell symmetric system except for possibly one trial at 180°

A simplified system for estimating the bearing difference of phase difference, and is therefore quite close to the Cramer-

two symmetrical targets in a l}vo-largie! ronopullse radar 11; Rao bound. The hardware is simplified since coherent

proposed. The technique requires only the envelope ampli- demodulators are not required: i

tudes of two RF signals to be measured, and the computa- applied to (s, + 5,) qu“'Cd, e;V"-lOFI’e D arements e

oyt very sl pp 0 (5, + 53) and s, are the only measurements. The
computation load amounts to a division and a cos™!; the

latter could be done rapidly by a look-up table. The variable
is effectively the phase difference between adjacent subarrays,
and the interval 0 to 99° will span one 3dB width of the main
aperture corresponding to target spacings of two 3 dB widths.
The algorithm cannot estimate signal amplitudes except for
the sum «, + px, or even allocate the p coefficient to a partic-
ular target, but this is not of great importance in tracking

ntroduction: Cantrell et al.' and Gordon? have discussed a applications.

hree-subaperture monopulse antenna for estimating the

irections of arrival of two coherent targets. In the special A. TAHA 14tk July 1986

ase of symmetric angles of arrival, relevant for low-angle J. E. HUDSON

racking over the sea, they give a formula for the maximum- Department of Electronic & Electrical Engineering

ikelihood direction estimator which involves the solution of a Unirersity of Loughborough '

vadratic equation. The purpose of this letter is to show that Loughborough, Leics, LE1] 3T U, United Kingdom
simpler algebraic solution exists which, although not preci-
ely maximum-likelihood, can be shown by simulation to have References

imilar performance in spite of a much reduced work load and
oes not require phase-coherent digitisation of the element

1 CANTRELL, B. H, GORDON, W. B, and TRUNK. G. V.. ‘Maximum
utputs. ‘ |Ike|lh00c'1 elevation angle estimates of radar targets using sub-
Consider a three-subaperture uniformly spaced antenna 5 g':;";‘):’s‘;’i’%ﬁ;m"sq (1198]]1.1\58;17. pp. 213-221 .
ith two signals symmetrically placed about broadside in the angle estimation’ ib'?;ovleos; j’:éss_“lgapﬂ'“;fll n;;ljhod for clevation
lane of interest. Neglecting the patterns of the subarrays T IR » PP- <

which can be included in the signals' amplitudes), the signals

eceived at the three elements in a single data snapshot are: 0:25

§,=1,0" + pr,e P

S5y =0y + p%; + My

5y = %8 4 prye? +ny 020

where p is the reflection coefficient of the (smooth) sea surface.
Suppose that the noises n, are all zero; then these equations
re trivially solved thus:

G115
S, + 53 = (%, + px;) 2 cos O

5y + 5, ‘
2cosfl=x = ——
o 010

In the presence of noise x can become complex-valued, and
or simplicity it is proposed to use the modulus taking
= cos ™! (| x|/2) as an estimator for ¢. :
005
Simulation results: The estimation procedure has been simu-~
tated using a 21-element array divided into three subarrays of
seven elements. Two sinusoidal signal target sources of
separation 0-2 beamwidths (relating to the whole array) and
o = 0-9 were placed symmetrically about broadside and, with 000
a beam SNR of 30dB corresponding to element SNRs of 0 225 45 675 g0 12-5 135 1575 180
055

Flg.. 1 RMS. hearing crror of each targer normalised by 3dB heamwidth
against relative target phases ’

Solid line = new algorithm broken line = Cantrell method
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