
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Colour image representation by scalar variables

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© Hua Wang

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Wang, Hua. 2019. “Colour Image Representation by Scalar Variables”. figshare.
https://hdl.handle.net/2134/10477.

https://lboro.figshare.com/

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

DI<. rib III

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY

AUTHOR/FILING TITLE J

, \,...)"'~C- k 'i
---------- ----- ---- --:1----------------------- -- '

ACCESSION/COPY NO.

(NQQ.:r.~_tt~_'1 ________________ -' _ ,
VOL. NO. CLASS MARK

> ,

.'

'.
... ~:'., ,

~.". '. .:. 1

· .~

'.

COLOUR IMAGE REPRESENTATION BY
SCALAR VARIABLES

by

Hua Wang

A Doctoral Thesis

Submitled in partial fulfillment of the requirements for the award of the degree of

DOClOr of Philosophy of the University of Technology, Loughborough.

September, 1992

Supervisors: Mr. J. W. Burren and Professor J. W. R. Griffiths

DepartmenJ .()f .Electronic_ and I;lecn:ical.Engipeering, ,
" ,,', . " '" . I

· Loughborough University,
~ . ..'

(Visiting in the Rutherford Appleton Lap.) , .
• England.
,
L
· ,
i. __ ~

© by Hua Wang, 1992

Loughborough University
of Technc !ogy library

........... -_ .. 1_-
Date ~"~}.,
Class

~-.. , ,-
Acc.

~oo 25'111'1 No.

Abstract

Abstract

A number of studies have shown that it is possible to use a colour codebook, which has a limited

number of colours (typically 100-200), to replace the colour gamut and obtain a good quality re­

constructed colour image. Thus colour images can be displayed on less expensive devices retaining

high quality and can be stored in less space. However, a colour codebook is normally randomly

arranged and the coded image, which is referred to as the index image, has no structure. This pre­

vents the use of this kind of colour image representation in any further image processing.

The objective of the research described in this thesis is to explore the possibility of making the in­

dex image meaningful, that is, the index image can retain the structure existing in the original full

colour image, such as correlation and edges. In this way, a three band colour image represented by

colour vectors can be transfomled into a one band index image represented by scalar variables.

To achieve the scalar representation of colour images, the colour codebook must be ordered to sat­

isfy the following two conditions: (I) codewords representing similar colours must be close togeth­

er in the code book and (2) close code words in the codebook must represent similar colours. Some

effective methods are proposed for ordering the colour codebook. First, several grouping strategies

are suggested for grouping the code words representing similar colours together. Second, an order­

ing function is designed, which gives a quantity. measurement of the satisfaction of the two condi­

tions of an ordered codebook. The code book ordering is then iteratively refined by the ordering

function. Finally, techniques, such as artilicialcodeword insertion, are developed to refine the

code book ordering further.

A number of algorithms for colour codebook ordering have been tried to retain as much structure

Abstract

in the index image as possible. The efficiency of the algorithms for ordering a colour codebook has

been tested by applying some image processing techniques to the index image. A VQIDCf colour

image coding scheme has been developed to test the possibility of compressing and decompressing

the index image. Edge detection is applied to the index image to test how well the edges existing

in the original colour image can be retained in the index image.

Experiments demonstrate that the index image can retain a lot of structure existing in the original

colour image if the codebook is ordered by an appreciate ordering algorithm, such as the PNN­

based/ordering function method together with artificial codeword insertion. Then further image

processing techniques, such as image compression and edge detection, can be applied to the index

image. In this way, colour image processing can be realized by index image processing in the same

way as monochrome image processing. In this sense, a three-band colour image represented by co­

lour vectors is transformed into a single band index image represented by scalar variables.

ii

Acknowledgments

Acknowledgments

I would like to acknowledge the financial assistance received from the Chinese government and

the British council, which made this research possible. Acknowledgment also goes to the Ruther­

ford Appleton Lab which provided equipments for the research.

I would like to thank my supervisors Mr. J. W. Burren and Professor 1. W. R. Griffiths for their

guidance, encouragement and much invaluable advice and discussion throughout the research. Mr.

Burren also extensively reviewed this thesis, suggesting a lot of improvements, and teaching me

the art of best organizing technical material.

There are several people I would like to thank a lot. Among them are: Dr. L. Zhang, who helped

me in the design of the DCT board and provided much helpful advice in the research; Dr. M. K.

Carter, who helped me with the experimental colour images; Ms. J. Haswell, who helped me in

drawing the code book distribution in the RBG colour space.

My heartiest gratitude goes to my parents and my husband Min for their support and constant en­

couragement. Min also read the draft thesis and suggested many improvements.

III

Contents

Contents

Abstract

Acknowledgments iii

Contents iv

Chapter 1 : Introduction 1

1.1 Background 1

1.2 Research Objective 4

1.3 Thesis Organization 5

Chapter 2 : The Codebook Generation in Vector Quantization 8

2.1 Vector Quantization (VQ) 8

2.2 Review of the Codebook Generation in Image Vector Quantization 11

2.3 The Linde-Buzo-Gray (LBG) Algorithm 14

2.3.1 The Selection of an Initial Codebook 14

2.3.2 Codebook Generation by the LBG Algorithm 16

2.4 The Pairwise Nearest Neighbour (PNN) Algorithm 18

Chapter 3 : Colour Codebook Ordering 23

3.1 Colour Image Vector Quantization 23

3.2 Background for Colour Code book Ordering 24

3.3 Strategies for Colour Code book Ordering 33

3.3.1 Centroid Method 34

3.3.2 The PNN-Based Method 36

3.3.3 Summary 37

3.4 Code book Ordering Refinement 39

3.4.1 Ordering Function 39

3.4.2 Refinement of the Ordering by Reducing the Ordering Function 46

iv

Con/ems

3.5 Artificial Code word Insertion

3.6 Codeword Replacement

Chapter4 : Image Quality Evaluation

4.1 Human Visual System

4.2 Subjective Testing

4.2.1 Category-Judgement Method (Rating Scale Method)

4.2.2 Comparison Method

4.3 Objective Evaluation of Image Quality

Chapter 5 : Image Compression

5.1 Review of Image Compression

5.1.1 Predictive Coding

5.1.2 Transform Coding

5.1.3 Hybrid Coding

5.1.4 Vector Quantization (VQ)

5.1.5 Synthetic High Coding

5.1.6 Discussion

5.2 The Discrete Cosine Transfoml (DCT)

5.3 Conventional Colour Image Compression

5.4 The JPEG Still Picture Compression Standard

Chapter 6 : Experimental Hardware Environment

6.1 System Structure

6.2 The DCT Board

6.2.1 Transputer

6.2.2 The Inmos AI2l DCT Chip

6.2.3 The CY7C408A FIFO Chip

6.2.4 The DCT Board Design

6.3 The MicroEye TC Colour Image Capture and Framestore Board

6.4 Summary

v

48

50

52

52

59

59

60

61

64

64

66

66

70

70

72

72

73

75

76

82

82

85

86

88

90
93

100

102

ConteJ1lS

Chapter 7 : Experimental Results and Discussions

7.1 Experimental Images

7.2 Colour Code book

7.2.1 Colour Codebook Size

7.2.2 Colour Codebook Distribution in the ROB Colour Space

7.3 Comparison of Several Colour Codebook Ordering Strategies

7.3.1 By the Ordering Function

7.3.2 Edge Detection on the Index Image

7.3.3 The DCT Processing on the Index Image

7.3.4 Summary

Chapter 8 : Conclusions

Appendices

Appendix A The Inmos Transputer T222

Appendix B The CY7C408A FIFO Chip

Appendix C The Data In and Out Timing Diagrams of the FIFO

Appendix D The Program in the EPLD6IO

Bibliograph

vi

103

103

112

112

115

120

121

122

130

142

144

147

147

149

151
152

155

Chapter 1 Introduction

Chapter 1

Introduction

1.1 Background

Conventionally, the pixel in a colour image is represented by a colour vector which is composed

of the three colour components of the colour space used. For example, in the RGB colour space,

the colour vector is (r, g, b). The colour image then contains three band images corresponding to

the three colour components. This kind of vector representation of a colour image brings about

some problems in colour image processing. First, the amount of data in a full colour image is large

since there is three times the image infonmttion compared to a monochrome image. Normally, the

pixel in a full colour image is represented by 24 bits (about 16 million possible colours), 8 bits for

each colour component. For example, the amount of data in a 512 x 512 full colour image is 6

Megabits (Mbits). A wide band channel is required to transmit the data and a large memory to store

it. Second, the processing for colour images is more expensive than that for monochrome images,

such as full colour image digitizing and displaying.

Third, the processing of colour images is more complex than that for monochrome images. The

first step in colour image processing is normally to choose a proper colour space, in which the pro­

cessing can be efficiently carried out. The selection of the colour space depends on the application.

For example, since the RGB colour space corresponds directly with additive colour devices, such

as the displays of computers, it is often used for its easy processing and programming avoiding any

pre-transformation. The YUV colour space is used mainly in video communication systems. In the

-. --

Chapter 1 Introduction

YUV space, most energy is compacted on the Y component which is referred to as the luminance

component and less energy in the U and V components which are referred to as the chrominance

components. The HSV colour space is widely used in image analysis, since it approximates the per­

ceptual properties of Hue, Saturation and Value. After the colour space is chosen, the colour image

is transformed into the chosen colour space and then the processing techniques are applied to the

three image bands separately in the same way as they might be applied to a monochrome image.

For example, in the conventional edge detection for colour images [Robi77), first a proper colour

space which is the most suitable for colour edge extraction is chosen and then the edge detection

is performed on the individual components and finally the detected edges are suitably combined

depending on the definition of the colour space. In the conventional colour image compression

[Limb77] [Jain81], the colour image is firstly transfomled into a proper colour space which can

compact energy well, normally the YUV space, and then the compression techniques are applied

to the Y, U and V images separately. The processing complexity, the memory requirement and the

system expense are tripled compared with that of monochrome images. For example, if an image

compression technique, such as the DCT, is implemented by a hardware board, three such boards

are required for colour image compression processing, each of which is used for one band image.

Additionally, the independent processing on the three bands does not take into account the interac­

tion of the three colour components. For example, in the colour image compression, the correlation

among the three colour components is not employed. Furthermore, most image processing tech­

niques have been originally designed and developed for monochrome images and do not consider

the interaction among the three components when they are used in colour image processing. There­

fore, they are not as efficient when applied to colour images as to monochrome images. The large

amount of data, the complexity of the processing and the cost of the hardware involved make co­

lour imaging systems expensive and impractical for some applications.

Some previous work has been carried out on colour image quantization for full colour image dis­

play [Brau87] [Bala9l) [Gold 90] [Heck821 [Macd90j. Research in the field of the human visual

system shows that human eyes can only distinguish a relatively small number of colours from the

2

Chapler I IntroduClion

colour gamut. For example, experiments show that the eye can distinguish about 128 hues of green,

64 hues of red and 16 hues of blue [Helm90]. Additionally, for a colour image, only a finite number

of colours from the colour gamut are used [Pres91]. For a 512 x 512 colour image, the colours used

are, at most, about 256, 000 colours, i.e. a different colour for each pixel. For these reasons, it is

possible to use a limited number of colours to replace the colour gamut and achieve a very good

quality of colour image display which has no significant difference from the original full colour

image. That is to display a particular colour image by approximating the true colour of each pixel

in the image by a colour from a colour codebook. This process is referred to as colour quantization.

In colour quantization, a colour codebook is firstly generated by vector quantization algorithms.

The colour codebook contains a limited number of colours from the colour gamut. Next each 24

bit pixel of the colour image is mapped into the address of its closest mapped colour in the colour

code book. The newly fomled image is called an index image. When the index image is displayed,

the colour indicated by the address in the code book is displayed rather than the original colour. The

quality of the reconstructed colour image is acceptable for many applications if the colour code­

book is well generated. In this way, cheap display devices which can only display a small number

of colours at a time, typically less than 256, can be used to display good quality colour images and

less memory space is required to store the colour image to be displayed.

However, the index image generated in the above way is meaningless because the colour codebook

has no structure. The structure existing in the original full colour image, such as the correlation,

edges etc., cannot be retained in the index image by the unstructured colour codebook. Further im­

age processing techniques cannot be applied to the index image. Therefore, though the colour im­

age vector quantization can save a lot of colours in colour image representation, which is

particularly useful in colour image display and storage, it is not helpful in the colour image pro­

cessing.

3

Chapler I I nlrOdUClion

1.2 Research Objective

The objective of the research addressed in this thesis is to explore the possibility of making the in­

dex image meaningful. That is to structure the code book so that the index image can retain the

structure existing in the original full colour image and further image processing techniques can be

carried out on the index image. The meaningful index image is a one band image and can be pro­

cessed in a similar way to a monochrome image. In this sense, the original three-band colour image

represented by colour vectors can be transformed into a one-band index image represented by sca­

lar variables, which are the indexes of the mapped colours in the code book. Colour image process­

ing can then be realized by applying image processing techniques to the index image in similar way

as that in the monochrome image. To achieve the above objective, the research described in this

thesis has been carried out. The steps to be carried out are envisaged as follows.

First, an appropriate colour code book is generated. A good quality colour codebook should repre­

sent the original full colour image and give a good quality reconstructed colour image using a min­

imum number of codewords. The Pairwise Nearest Neighbour (PNN) algorithm [Equi89] and the

Linde-Buzo-Gray (LBG) algorithm [Lind80] are chosen to generate the colour codebook, where

the PNN algorithm is used to generate an initial colour code book and the LBG algorithm is used

to refine the initial code book.

Second, the colour code book is ordered. The codebook generated in the above way is normally ran­

domly arranged. The codewords which are close in the codebook do not normally represent similar

colours and similar colours may be far apart in the codebook. Using this randomly arranged code­

book in the colour image vector quantization results in a meaningless index image. In order to re­

tain as much structure in the index image as possible, it is desirable to order the colour codebook

to satisfy the following two ordering conditions as far as possible: (I) codewords representing sim­

ilar colours must be close together in the code book and (2) close code words in the codebook must

represent similar colours. The colour codebook ordering is carried out in the RGB colour space.

The first reason is for its simple processing. Because the image data captured and stored in the

4

Chapter I Introduction

framestore are normally in the RGB colour space, there is no pre-processing on the image data re­

quired before the ordering and the image vector quantization. The other reason for this is that it is

easy to approximately determine the colour appearance of a codeword by the Red, Green, Blue tris­

timulous values though it may not be exact. For example, if the Red component of a codeword is

much bigger than the Green and the Blue components, the codeword represents a reddish colour.

The information about the approximate colour appearance of a codeword is very useful in the code­

word rough classification and is taken advantage of in the design of the colour codebook ordering

algorithms.

Several ordering methods for colour codebook ordering, such as the centroid method, the PNN­

based method etc., are proposed and tested. These methods can group the codewords representing

similar colours together in the codebook. An ordering function, which provides a quantitative mea­

sure of how well the arrangement of the colour codewords conforms with the two ordering condi­

tions, is designed and it is used to iteratively refine the colour codebook ordering by reducing the

ordering function value. Next techniques, such as artificial codeword insertion etc., are developed

for the further refinement of the colour code book ordering.

Finally, the 24 bit colour image is vector quanti zed by the ordered colour codebook into an 8 bit

meaningful index image and the index image is tested to determine whether the structure existing

in the original colour image is retained. The test is implemented by applying two image processing

techniques, namely, the image compression and the edge detection, to the index image. If the re­

sults of the image processing on the index image are satisfactory, it indicates that the index image

can retain most of the structure and the ordering techniques designed are effective.

1.3 Thesis Organization

The research addressed in this thesis is to explore the possibility of representing colour images by

5

Chapter 1 1 ntroduclion

scalar variables. To realize. the scalar representation of colour images, it is crucial to generate a high

quality colour code book and structure the codebook to satisfy the two ordering conditions as far as

possible. The colour codebook generation and ordering will be discussed in chapter 2 and chapter

3. In chapter 2, a number of algorithms for the codebook generation are introduced. Two algo­

rithms, namely, the PNN algorithm and the LBG algorithm, are especially discussed because they

are used in the later experiments. Chapter 3 mainly deals with the colour codebook ordering. In this

chapter, the background, the possibility, the necessity and the difficulties of the colour codebook

ordering are analyzed. The two ordering conditions which the codebook ordering should satisfy are

presented. Then some efficient colour codebook ordering strategies, such as the PNN-based meth­

od, the ordering function, the artificial code word insertion etc., are proposed.

Chapter 4 is about image quality evaluation. It begins with the basic knowledge of the human vi­

sual system, which is used in image quality evaluation and is helpful in the design of the colour

codebook ordering algorithms. Two image quality evaluation techniques, namely, the objective and

the subjective, are discussed.

In chapter 5, image compression techniques are discussed. Since image compression processing is

an important test method for the colour codebook ordering in the later experiments, the compres­

sion techniques are discussed in detail. First, image compression techniques are reviewed. Then

the discrete cosine transform which is used in the test is especially discussed. As a comparison for

the colour image compression on the index image, the conventional colour image compression is

discussed. Finally, a still image compression standard is briefly introduced.

Chapter 6 describes the experimental hardware environment on which all the experiments are car­

ried out. The experimental hardware system is mainly composed of an IBM PC, a B004 Transputer

board, a MicroEye TC colour image capture and frames tore board and a Dcr board. The Dcr

board which is designed to implement the Dcr processing with high precision and speed, is par­

ticularly discussed in this chapter.

6

Chapter 1 Introduction

Chapter 7 describes the experiments for testing the colour codebook ordering techniques and dis­

cusses the experimental results. In the tests, the ordering techniques presented in chapter 3 are com­

pared in three ways: (I) computing the ordering function on the ordered codebook, (2) applying

edge detection to the index image and (3) applying the DCT image compression to the index image.

Finally, chapter 8 concludes the thesis by discussing the experimental results and the possible fu­

ture work.

7

Chapter 2 The Codebook Generation in VeclOr Quantization

Chapter 2

The Codebook Generation in Vector Quantization

The vector quantization technique is employed to approximate the colours used in colour images

by a colour codebook, which is a small set of colours from the colour gamut. In this chapter, vector

quantization is first briefly introduced. Since the final coding quality in vector quantization depends

strongly on the codebook, in the remaining part of this chapter we focus on the discussion of the

algorithms for the codebook generation, especially the LBG algorithm (§ 2.2) and the PNN algo­

rithm (§ 2.3). The PNN algorithm and the LBG algorithm are used to generate the colour codebook

in the experiments addressed in this thesis.

2.1 Vector Quantization

Vector quantization [Gray84] [Nasr88] is to approximate the vectors to be coded by the vectors

from a codebook which is a small sample set of vectors representing the vectors to be coded. Before

vector quantization, the data to be coded is decomposed into vectors. For example, the vectors for

monochrome images can be small, spatially contiguous, non-overlapping square blocks of pixels.

The vectors for colour images can be the three colour components or their transform primaries.

Thereafter, a code book is generated from the vectors to be coded and a vector in the codebook is

referred to as a codeword. Vector quantization contains two mappings, the encoder and the decoder.

The encoder maps each image vector into its closest codeword, and the index of the mapped code-

8

Chapler 2 The Codebook Generation in Veclor Quanlizalion

word in the codebook represents the vector as the final code. The decoder maps the index into the

corresponding codeword in the codebook. The block diagram of vector quantization is shown in

figure 2.1. Here. ci is the ith codeword in the code book. Ne is the number of codewords in the code­

book and n is the number of the vector dimensions.

o~ginal
k Image form image x

closest mapping codes
vector

Encoder codebook

c;.i = O • ...• Nc-I

code k ck reconstructed
table look up

image vector

Decoder

code book

C i' l = O •...• Nc-I

Figure 2.1 The block diagram of vector quantization

The closest matching in the encoder is realized by a minimum distortion rule. For an image vector

x. its closest code word ck is the code word which can introduce the minimum distortion when it rep­

resents vector x. i.e. choose codeword ck to map image vector x so that d(x. ck) :5 d(x. Cj) for j = O.

I. 2 •...• Ne-I. and. where d(x. Cj) denotes the distortion introduced in replacing the original vector

x by codeword ck. Ideally. the distortion measure should be mathematically tractable and subjec­

tively meaningful. so that the quantitative distortion values correspond to perceived quality. The

most common distortion measure used in image VQ is the mean squared error (MSE). which cor­

responds to the square of the Euc1idean distance between two vectors as follows:

9

Chapter 2 The Codebook Generation in Vector Quantization

d(x, c) (2.1)

The MSE is widely used because of its simplicity, though it does not necessarily correlate well with

perceived quality. In practical applications, the weighted MSE may be more useful and it is given

as:

(2.2)

where Wj is the weight factor applied to thejth vector component difference.

The codebook plays an important role in vector quantization because it determines the quality of

the coding. Once the codebook is generated, vector quantization is a straightforward process of

looking up the codebook to find the closest mapping from the input vector to the codeword. Code­

books are typically generated from a training set of image vectors. A local codebook is generated

when the training set is the image to be coded. A local code book can be a very good codebook but

it must be regenerated for different images. This is a computational intensive task and cannot usu­

ally be performed in real time. Additionally, a local codebook must be transmitted to the receiver

or stored as overhead information. A global code book can be generated by using several images as

a training set. If the images to be encoded belong to the same class of imagery (in terms of detail,

resolution, image feature, colour etc.), a global code book can produce good performance. But if

the images to be encoded differ greatly, the performance of a global codebook may be substantially

degraded. In such a case, the global codebook should be developed using as large and diverse a

training set as possible to achieve reasonable average performance.

The algorithms usually used to generate the code book are the Linde-Buzo-Gray (LBG) algorithm

[LindSO] and the Pairwise Nearest Neighbour (PNN) algorithm [EquiS9], both of which will be

discussed in detail in the following two sections. Vector quantization is normally discussed in the

IQ

Chapler 2 The Codebook Generation in VeclOr Quanlizalion

literature in the context of data compression, which will be discussed in chapter 5.

2.2 Review of Codebook Generation in Image Vector Quantization

Codebook generation is a process in which a set of vector representatives with the same dimensions

as the image vectors is selected. The code book can represent images with a good quality and the

size of the codebook is much smaller than that of the input vector space. In the example of colour

images, if each colour component is represented by 8 bits, there are about 17 million possible co­

lours in the colour space, while the number of colours in a codebook is normally less than 256.

Consequently, using the small size codebook to represent the original image will introduce distor­

tion in the reconstructed image. A good quality code book can approximate the image well with

small distortion in the reconstructed colour image lIsing minimum number of codewords, or a giv­

en number of code words in some applications. The quality of the codebook is mainly dependent

on the codebook generation algorithms. The performance of the codebook generation algorithm is

measured by the algorithm complexity and the quality of the resulting codebook. In the research

discussed in this thesis, the quality of the codebook is taken as the most important consideration.

In 1980, Linde et al. ILind80] proposed a codebook generation algorithm, which is referred to as

the Linde-Buzo-Gray (LBG) algorithm. It is derived from the clustering technique. In the LBG al­

gorithm, an initial code book is first generated from a set of training vectors and then the codebook

is iteratively refined by minimizing the distortion introduced in quantizing the training vectors by

the code book. Since the proposition of the LBG algorithm, it is almost exclusively used in the im­

age vector quantization. One reason for this is that it is the first formal algorithm which is proposed

for vector quantization. Secondly, it is simple to implement and the performance is quite satisfac­

tory. Furthermore, it does not require any knowledge of the statistics of the input vectors. However,

it suffers from several defects. First it depends on the initial codebook, so it can only produce a

codebook locally optimum to the initial codebook. Secondly, its execution time is uncertain, be-

11

Chapler 2 The Codebook Generation in Veclor Quanlizalion

cause the iteration times cannot be detemlined in advance. Experiments show that its computation

is very intensive and grows quickly as the size of the code book gets larger, as the size of the training

set gets larger, and as the vector dimension increases. Finally, the size of the codebook must be de­

cided in advance and the size of the codebook is normally heuristically determined rather than by

the requirements of the image. Thus it is possible that the size of the code book is sometimes un­

necessarily large, which wastes a lot of system resources, or sometimes too small to produce a good

quality of the reconstructed image.

Some researchers have proposed that a code book can be generated by pattern recognition "cluster­

ing" techniques. These techniques, however, suffer from some defects. First they cannot specify

how many clusters will result ahead of the processing. Second, many typical clustering algorithms

are not less complicated than the LBG algorithm. Finally the cluster points are generated to classify

the points rather than to minimize the reconstructed distortion.

In 1989, Equitz [Equi89] presented a new method for code book generation, which is known as the

Pairwise Nearest Neighbour (PNN) algorithm. It works in a different way from the LBG algorithm.

In the LBG algorithm, the size of the codebook stays the same in each iteration, while in the PNN

algorithm the size will be reduced by one after each iteration. In the PNN algorithm, the codebook

is generated by grouping the training vectors into clusters. The initial clusters are the training vec­

tors and each cluster contains one training vector. There are NI initial clusters. Then two close clus­

ters are merged into one cluster and the number of the clusters is reduced by one. This merging

process is repeated until the desired number of codewords is achieved or the distortion is within

the acceptable limit. The collection of the centroids of each cluster is then used as the codebook.

The PNN algorithm has some advantages over the LBG algorithm. First it is independent of the

selection of an initial codebook. Second, it is not necessary to determine the size of the codebook

before the codebook generation. Therefore, it is possible to minimize the number of codewords

needed subject to a maximum allowable distortion or to minimize the distortion subject to prede­

termined number of codewords. The PNN algorithm can also be used to generate an initial code­

book for the LBG algorithm, which can achieve better performance than either algorithm

12

Chapler 2 The Codebook Generalion in Vector Quanlizalion

separately and make the LBG algorithm converge after less iteration times.

In the field of the research in the colour image display and storage, some techniques are developed

for colour codebook generation. Heckbert [Heck82] presented an algorithm to generate the colour

codebook either by choosing the colours occurring with the highest frequency from the colour his­

togram of a colour image as the initial codebook, or by first choosing the colours which represent

an equal number of pixels in the original colour images and then applying the LBG algorithm on

the initial colour codebook. Braudaway [Brau87] proposed a procedure for optimum choice of a

small number of colours from a large colour palette for colour images. He first generates an initial

code book and then refines the code book by the LBG algorithm. [n the initial code book generation,

the colour space is divided into a set of several equal size cubes, then the cube containing the big­

gest number of training vectors is chosen and the centroid of the vectors in the chosen cube is used

as a code word. Thereafter, the number of vectors in each cube is modified so that the number of

the chosen cube is set to zero. The above process is repeated until the required number of code­

words is obtained or all cubes contain no vector. Balasubramanian et a!. [Bala91] made some im­

provements to the PNN algorithm by considering the features of the human visual system. The

basic idea is that, since the human visual system is more tolerant to quantization noise in high ac­

tivity regions, the activity measure is designed to signify whether a colour is high activity or low

activity in a colour image. Then the activity measure in each cluster is computed. The distance be­

tween two clusters is weighted according to the activity measure, where the weight is big if the ac­

tivity measure is small and vice versa. In this way, more codewords are used to quantize low

activity regions and less codewords are used for high activity regions.

Though the algorithms discussed above, especially the LBG algorithm and the PNN algorithm, are

quite efficient for codebook generation, there are some problems associated with them. First, there

is no technique which can generate an optimum codebook. The LBG algorithm, for example, can

only generate a codebook locally optimum to an initial codebook. The PNN algorithm cannot gen­

erate an optimum codebook either. Additionally, the code book generation is a quite time consum­

ing process. Though some work has been done to speed up the codebook generation by sacrificing

13

Chapter 2 The Codebook Generation in Vector Quantization

the quality of the codebook or by using a larger memory, it is still a time consuming process. Fi­

nally, the distortion measure used in vector quantization is normally the mean squared error for its

simplicity, but this is not a good measure of colour difference in all regions of colour space.

2.3 The Linde-Buzo-Gray (LBG) Algorithm

The LBG algorithm [Lind80] is composed of two parts, the initial code book generation and the ini­

tial codebook refinement. In subsection 2.3.1, several techniques for initial codebook generation

are introduced. Then in subsection 2.3.2, the LBG algorithm is described.

2.3.1 The Selection of an Initial Codebook

The initial codebook is a crucial factor to decide the final code book generated by the LBG algo­

rithm, because the codebook is generated by iteratively refining an initial codebook. The codebook

generated by the LBG algorithm is locally optimum to the initial codebook. There may be several

locally optimum codebooks but many of these optimum codebooks may have poor performance.

It is, therefore, important to begin with a good initial codebook in the LBG algorithm. Several tech­

niques have been proposed to generate the initial code book. One simple technique is to select the

initial codebook randomly from the training vectors. The initial codebook generated in this way

may not be well separated and is then not typical to represent the training vectors. A better ap­

proach is to choose Ne uniformly spaced vectors in the training set as an initial codebook, i.e. YI>

Yk+!, Y2k+! , ... , Y(Ne·!)k+l, where Yi is the ith training vector and Ne is the size of the codebook. The

uniform selection depends on the statistics of the training set. The random and uniform selections

are easy to perform but usually require more LBG iterations to reach convergence. Alternatively,

the initial code book can be selected according to the histogram of the training vectors. This method

can generate a good quality initial codebook but it is more complicated and needs more computa-

14

Chapter 2 The Codebook Generation in Vector Quantization

tion. In the following part of this subsection, two more sophisticated methods for generating good

quality initial codebooks are discussed. They are the split method and the cube method. The later

method is used especially for colour code book generation. The PNN algorithm is, of course, also

an effective way to generate a good quality initial code book. It will be discussed in detail in section

2.4.

The split method [Lind80] begins with one vector, normally the centroid of the entire training vec­

tors, as a temporary initial codebook. Each vector in the temporary codebook is split into its two

close vectors, i.e. split each vector Cj into Cj + E and Cj - E, where E is a fiKed perturbation vector.

After the splitting process, the size of the code book is doubled. If the required number of code­

words is obtained, the splitting process halts and the temporary codebook is the resulting initial

codebook. Otherwise, use the temporary code book to vector quantize the training vectors. Then

each temporary codeword is replaced by the centroid of all the training vectors which are quantized

by it. The splitting process is repeated on the newly formed temporary code book in the above way.

The size of the initial codebook generated in this way is a power of 2, i.e. 1,2,4,8, ... , 2M.

The cube selection method [Brau87] has been proposed for generating an initial colour codebook.

This is motivated by the idea of displaying high quality colour images on less eKpensive device

which can only display a few colours at a time. It is applied to the RGB colour space and suppose

each colour component is represented by 8 bits. First, it partitions the colour space into equal 32 x

32 x 32 small cubes. This is achieved by dividing R, G, B into 32 uniform regions each, and each

cube is assigned a count to signify the number of training vectors contained inside the cube. The

cube which has the biggest count is chosen. Then the centroid of the vectors contained in the cho­

sen cube is selected as a codeword and added to the initial codebook. Thereafter, the count of each

cube is modified by a reduction function, which sets the count of the chosen cube to zero and re­

duces the counts in those cubes which are close to the chosen cube. The reduction degree is deter­

mined by the distance to the chosen cube, i.e. the smaller the distance the bigger the reduction. The

aim of the cube count reduction is to select the colours which are well separated in the training set.

The above process is repeated until the desired number of colours are obtained or the counts of ail

15

Chapter 2 The Codebook Generation in Vector Quantization

cubes are zero. This method is simple to implement and takes into account the colour distribution

of the training vectors.

2.3.2 Codebook Generation by the LBG Algorithm

The LBG algorithm [Lind80] generates the code book by iteratively refining an initial codebook un­

der the minimum distortion rule from a training set, so that the code book can best represent the

training set. It uses a long training set, whi~h is statistically representative of the data to be quan­

tized and is normally composed of image vectors from one or several images in the image vector

quantization. Suppose the training set is T = [Yi; i= 0,1,00', NI - I). An initial codebook AO = [c~,

i =0, 1, 2,00', Ne - 1) is generated by the algorithms discussed in the last section or the PNN algo­

rithm discussed in the next section. Then the training vectors are partitioned into Ne groups in the

way such that those training vectors which are vector quantized by the same temporary codeword

are placed in the same group. Then the average distortion Dm (see equation 2.4) introduced by the

quantization is computed. If the fractional change in the average distortion from the previous iter­

ation is smaller than a positive small quantity E, that is,

Dm_I-Dm
D $E (2.3)

m-I

then the codebook generation process halts. Otherwise, the temporary code book is replaced by the

collection of the centroids of the vectors in each group and the above process is repeated.

The steps in the LBG algorithm are described as follows:

I. Initialization: generate a Ne-level initial codebook, Ao = [c ~, i=O, 1, 2,00', Ne - 1);

choose a small positive quantity for the algorithm termination; set the initial average

distortion DO to a large number, i.e. Do = 00; and set the iteration counter m to I.

16

Chapler 2 The Codebook Genera/ion in Veclor Quanlizalion

2. Partition the training vectors by the following steps: first map each training vector to

the nearest codeword in the temperate codebook, then those vectors which are encoded

by the same code word are put in the same partition group. That is, P(T) = (Si, i = 1, ... ,

Ne - I): If yE Si, then d(y, cr) $ dry, c;), for all k, k = 0, 1,2, ... , Ne-I.

3. Compute the average distortion introduced in the partition as:

Dm=N1I minm d(Yj'cr)
N -1 { }

I
. Cl EA",
}=o

(2.4)

4. If the fractional change in the average distortion from the previous iteration is less than

the small quantity £, see Eq.(2.3), then the convergence has been achieved and the al­

gorithm halts. Otherwise, go to step 5 to repeat the process.

5. Update the temporary code book by the collection of the centroids of the vectors in each

partition group. Replace m by m+ I, go back to step I.

It is possible that a partition group may be empty during the training set partitioning. An arbitrary

vector is assigned as a centroid of the empty group and the algorithm continues. Alternative rules

are possible. For instance, the group Si is removed and then the algorithm continues with a (Ne-l)­

level codebook. Alternatively, assign Si the ith centroid from the previous iteration. In practice, a

simple alternative is that, if the codebook generated by the algorithm has an empty group, simply

retry the algorithm with a different initial codebook.

The convergence of the LBG algorithm has been demonstrated by a lot of experiments. In the

above algorithm, if the threshold £ is set too small, the convergence may take many iterations. An

alternative termination criterion can be a predeternlined maximum number of iterations. Then the

algorithm halls when the number of iteration exceeds the predetermined number.

For each iteration in the LBG codebook generation, there are two processes: a partition process of

complexity O(NlNen), where n is the number of the vector dimension, and a centroid computation

process of complexity O(Nen). As the centroid computation complexity is much smaller than the

17

Chapter 2 The Codebook Generation in Vector Quantization

partition complexity, it can be ignored. If the algorithm iterates I times, then the computation com­

plexity of the code book generation is O(lNlNcn). The computation is proportion to the size of the

training set, the size of the codebook, the vector dimension and the iteration times of the algorithm.

A fast version of the LBG algorithm [Chen91] has been proposed. It reduces computational com­

plexity at the price of memory space. Because the LBG algorithm spends most of the time in the

full search for the nearest neighbour in the codebook in the partition, the time saving can be

achieved by just partial search rather than full search. It is known that the Euclidean distance sat­

isfies the triangle inequality, i.e. d (x, z) S; d (x,y) + d (y, z) for any vector y. Suppose cl, c2 are

two codewords, using the triangle inequality, it is easy to obtain the result: if d(cI, c2) > 2d(y, cl)

then d(y, c2) > d(y, cl)' In this case, the distance d(y, c2) is not necessary to compute in the search

for y's nearest neighbour in the codebook. The condition is called the elimination condition, since

if it is true, the computation of d(y, c2) can be eliminated. For squared error distortion measure, the

elimination condition is d(cI' c2) > 4d(y, Cl)' The above result can be used in the LBG algorithm

to speed up the nearest neighbour search in the training set partition. At the beginning, a table

showing the distance between any pair of codewords is built. The search for the training vector y's

nearest neighbour works in the following way. First compute a distance between the training vector

y and a codeword, use the eliminate condition to eliminate all unnecessary distortion computation

and confine the further searching to the remaining codewords. This eliminate and confine process

is repeated until x's nearest neighbour is found or no remaining codewords are left.

2.4 The Pairwise Nearest Neighbour (PNN) Algorithm

The code book generation is actually a process in which the training set is first grouped into clusters

and then each cluster is represented by a codeword which can introduce minimum distortion. The

main difference among the codebook generation algorithms lies in the way of grouping the training

vectors. The LBG algorithm, for example, groups the vectors of the training set by quantizing each

18

Chapter 2 The Codebook Generation in Vector Quantization

vector in the training set using a temperate code book, that is, those vectors which have the same

nearest codeword are put in the same group. While the PNN algorithm discussed below groups the

training vectors by putting close vectors in a group so that in each group the variance of the vectors

is small.

The PNN algorithm [Equi89) begins with a separate cluster for each vector in the training set and

merges two clusters at a time until the desired code book size is achieved. Two clusters, which are

merged at any stage of the iteration, are the closest clusters among the current clusters in terms of

a distortion measure so that the error introduced by replacing the two vectors with a single vector

is minimized. The new cluster is represented by the centroid of the two vectors. An example in fig­

ure 2.2 illustrates the process of the first merge. It begins with a training set having six 2-dimen­

sional vectors and each vector is considered as a cluster. The two components of each vector are

represented as x and y coordinates on the graph. Each cluster centroid is represented in the diagram

by a small empty circle and each cluster centroid has a number beside to signify the number of vec­

tors inside the cluster. The first merge is to merge the two closest clusters and represent them by

their centroid. The new cluster centroid has a number "2" beside it, signifying that it has two train­

ing vectors. After the first merging, there are five clusters. In the PNN algorithm, the squared error

or the weighted squared error distortion measure is used as the error distortion and distance mea­

surements, as shown in Eq.(2.6).

At each merging, choosing merging candidate clusters should consider not only the distance be­

tween the two clusters but also the minimum error introduced by the merge, that is, few training

vectors are affected in each time merging. Given K clusters, it is always possible to optimally move

to K-J clusters by merging the two clusters, which results the best trade-off between merging close

clusters and affecting few training vectors. If the members of a cluster can be approximated by their

centroid, then this step-by-step optimal merge will lead to a good overall clustering. Considering

the example in figure 2.3, which represents a typical merge in the PNN algorithm. In the merge,

the two clusters containing four and one training vectors are merged, rather than the two clusters

containing four and one hundred training vectors, though the later two clusters appear "closer".

19

Chapter 2 The Codebook Generation in Vector Quantization

y

1

o

1

o

1

o 1
o

1
o

1

o

x

y

1
o

1
o

Figure 2.2 First merge in the PNN algorithm

2

o

1

o

1
o

x

This is because the larger error will be introduced to each training vectors in the later case.

y Y
4

0 8 8
0 5 0

100 0 100
0 ~

0

1
0 7 7

0 0

x x

Figure 2.3 Typical merge in the PNN algorithm

The pair of clusters which will introduce the least error after the merge can be calculated as follows,

where the squared error is used as the distortion measure and the following notations are used:

Cj = ith cluster of training vectors

Cij = cluster fomled by merging ith andjth clusters

nj = number of training vectors in ith cluster Cj

20

Chapter 2 The Codebook Gener!Jlion in Vector Quantization

nij = number of training vectors in cluster Cij

Y i = centroid (mean) of the training vectors in ith cluster Ci

Yij = centroid (mean) of the training vectors in cluster Cij

d? = average squared error between Yi and the training vectors in cluster Ci

di/ = average squared error between Yij and the training vectors in cluster Cij

After the merge of two clusters, the distortion introduced is,

It can be proven [Equi89) that,

2 2 n·n· 2
n·d·+n·d·+ I} IY-YI
II }} n.+n. I }

I }

(2.6)

The relation in Eq.(2.6) is interpreted as the squared error introduced by merging the ith cluster Ci

and thejth cluster Cj. The PNN algorithm is to choose two clusters which can minimize the squared

error introduced after their merging. It can be seen that, after a merging process, only factors nk

and Yk for the kth cluster, k=O, I, ... , (Ne-I), are required to be kept track. In fact Ck can be consid­

ered to be a vector of weight nk at the centroid of the kth cluster. In this way, the distortion intro­

duced by merging two clusters can be considered a weighted distance between the two centroids.

There are two possible termination criteria for the merging. The first one is that the algorithm stops

when a predetermined number of clusters is obtained. Alternatively, it stops when the average error

introduced by the merging is smaller than a predetermined appropriate threshold. The first termi­

nation criterion is often used, especially when the PNN algorithm is used as an initial codebook

generator for the LBG algorithm. The second temlination criterion is very useful when the PNN

algorithm is used to generate minimum number of codewords to give an acceptable distortion, such

as selecting the minimum number of colours to display high quality colour images. These termina­

tion criteria correspond relatively to minimizing distortion, subject to a predetermined size of the

21

Chapler 2 The Codebook Generalion in Vector QuanliZalion

code book, and to minimizing the size of the eodebook, subject to a distortion constraint.

The above process can be summed up as the following steps, where the squared error in Eq.C2.6)

is used as the error distortion measure:

1. Initialization: begin with Ne clusters and each cluster contains one codeword corre­

sponding to a training vector and here Ne is equal to Nt.

2. Search two clusters Cj and Cj which have the nearest weighted distance, i.e.

njjd~ ~ nk,d;,for all k and t, where i '" j and k "# t, then merge these two clusters into

one cluster and compute the centroid vector and the size of the newly formed cluster.

3. If the temlination criterion is met, the algorithm halts and the collection of the centroids

of each cluster is selected as the codebook. Otherwise, the number of clusters is re­

duced by one and go back to step two to repeat the merging process.

A fast version of the PNN algorithm is also proposed in lEqui89]. This speeds execution at the ex­

pense of codebook quality. In the PNN algorithm, most time is consumed in the search for the clos­

est pairs of centroids among the current clusters. The complexity of each merge is on the order of

OCNtlogNt). The speed-up can be achieved if at each step two sub-optimal pairs of clusters rather

than the absolute closest pair of clusters are merged as long as close clusters will be merged even­

tually. The approach to accomplish this speed-up is to use a k-d tree to partition the clusters into

disjoint small sets, so that the search for the closest pair of clusters is confined to small sets. In this

way, tremendous computational saving is achieved at the price of the sUb-optimum quality of the

codebook. The complexity of the fast PNN algorithm is on the order of OCNt), that is, its complex­

ity is linear in the size of the training set.

22

Chapter 3 Colour Codebook Ordering

Chapter 3

Colour Codebook Ordering

Chapter 2 discussed the codebook generation techniques, such as the LBO algorithm, and the PNN

algorithm. Though these techniques can generate a good quality colour codebook for colour image

vector quantization, the codebook is normally randomly arranged. Using this randomly arranged

colour codebook in vector quantization, the index image has no structure and no further image pro­

cessing techniques can be applied to the index image.

This chapter proposes some effective techniques which can order the colour codebook so that the

index image can retain as much structure as possible. Section 3.2 introduces some methods which

can roughly order the colour codebook. Sections 3.3, 3.4 and 3.5 present some strategies for refin­

ing the colour code book ordering.

3.1 Colour Image Vector Quantization

Colour image vector quantization is to approximate the colours used in a full colour image by a

colour code book, which contains only a few number of colours, typically less than 256. That is to

use a small number of colours to replace the colour gamut and obtain a good quality reconstructed

colour image. In colour image vector quantization, the image vector is formed by the three colour

components, such as (r, g, b) in the ROB colour space. The colour codebook is then a set of colours

23

Chapler 3 Colour Code book Ordering

which are the representatives of the colours used in a colour image. The colour codebook can be

generated by the PNN algorithm and the LBG algorithm, both of which have been discussed in the

previous chapter. The encoder in colour image vector quantization maps each image vector to its

closest codeword in the colour code book and the index of the mapped codeword becomes the pixel

value. The coded image is referred to as the index image. The decoder maps each pix~l in the index

image to its corresponding codeword in the colour code book. The reconstructed colour image is

then represented by the colours in the colour codebook.

3.2 Background for Colour Code book Ordering

The colour codebook generated by the algorithms discussed in the last chapter is normally random·

ly arranged. The index of a given code word only indicates the codeword location in the codebook

and the indexes of the codewords are independent of one another. The locations of the codewords

in the colour codebook are not necessarily correlated with their locations in colour space. This

means that, the codewords which have close index values, do not necessarily represent close co­

lours in colour space and the codewords which represent close colours do not necessarily have

close index values. The codewords are used separately in colour image vector quantization without

any consideration of their relationship, such as the colour likeness or difference they represent. As

a result, there is no structure in the index image because the pixels in the index image are unrelated

data. On one hand, adjacent pixels in the index image do not retain the correlation existing in the

original full colour image. On the other hand, the change of the adjacent pixel values in the index

image does not give any information of the colour change in the original colour image and cannot

indicate the edges existing in the original colour image. Whereas in a black and white image, for

example, the value of a pixel represents the luminance intensity and the change of adjacent pixel

values indicates the change of their luminance. There exists structure, such as correlation, edges

etc., in a meaningful black and white image. Therefore, the image processing techniques, which

can be applied, for example, to the black and white image, cannot be applied to the index image.

24

Chapler 3 Colour Codebook Ordering

The goal of the colour codebook ordering is to structure the codebook so that the index image can

retain as much of the structure existing in the original colour image as possible. This may be pos­

sible for two reasons. First, since a typical colour image, especially a natural colour image, uses

only a relatively small number of colours in the colour gamut, the size of the codebook is normally

rather small, typically lOO to 256. Second, the colours represented by a typical colour codebook

are normally distributed in the form of clusters rather than uniformly in colour space. If the colours

of a colour codebook are distributed uniformly in colour space, then colour codebook ordering is

impossible. This is because in this case the ordering is equivalent to the space transformation from

a three dimensional space to a one dimensional space.

It is possible to retain most of the structure existing in the original full colour image in the index

image as long as the codebook is ordered in an appropriate way. In a typical colour image, there is

a lot of colour correlation. This means that, in most parts of the colour image, adjacent pixels rep­

resent the same or similar colours. If the codewords which represent similar colours in colour space

are put close in the codebook, then the colour correlation in the original full colour image can be .

retained in the index image. On the other hand, in a typical colour image, there are edges which are

the boundaries between two regions with distinct properties. The edge is represented by the chang­

es of properties, such as luminance, or chrominance or both, between adjacent pixels, and the

change at edges of objects in the image may be gradual or abrupt. The edges existing in the original

colour image can be retained in the index image, if the code words which have big distance in co­

lour space are put far away in the codebook and the bigger the distance is, the farther away they

are in the codebook. U sing a colour code book ordered in this way, the index image can retain most

of the structure existing in the colour image. The values of the pixels in the index image here not

only indicate the indexes of the corresponding codewords in the colour codebook, but also can be

used to describe most of the structure existing in the original full colour image. The ordered colour

code book makes the index image have a similar meaning to that of the original colour image. Con­

sequently, image processing techniques can be applied to the index image.

25

Chapter 3 Colour Codebook Ordering

It can be concluded from the above discussion that an orderedcodebook should satisfY'lhefollowo

ing two conditions so that the, index image can, retain most of the structure:

<1> If d(cj, Cj) is small, then li - jl is small

i,j=O; 1,2,,,.,Nc -l,andi.oj :

<2>.If li - jl is small, then d(cj, Cj) is,small

i, j = 0, 1,2,:", Nc- 1, and i.oj

..

\0. .1

where i and j are the indexes of code words in the colour codebook, Cj and Cj are the ith

and thejth codewords respectively, Ne is the'size of the colour codebook, dO is the colour

distance of two codewords in colour space. A small value of d(cj, Cj) means that the code­

words Cj andcj represent close'colours. Here, we suppose that the codewords which are

close in colour space represents similar colours: Normally, the Euclidean distance be­

tween twocodewords is used to roughly compute their colour difference. It should be not"

ed that the Euclidean distance does not always conform with the perceived 'colour

difference. t. .'

. _ .' 1

The above two conditions are referred to as the two ordering conditions and they should be satisfied' " ,

by the colour codewords arrangement as far as possible so that more 'structure can be retained in

the index image. The first condition requires thatothe codewords which are'close in colour space

should be put close in the codebook. If it is not met, i.e. the codewords which represent close co­

lours are put far away in the codebook, two problems will be caused. First, the colour correlation

or colour redundancy in the original colour image cannot be re'tained in the index image, Second,

the index image may have some incorrect edges which do not.exist in !he original colour image.

The second condition requires that the code words which are close in the codebook should be close

in colour space. If this condition is not met, i.e"the,codewords which'are close in the codebook are

far away in colour space, two problems will be caused. First, some edges existing in the original

colour image cannot be retained in the index image: Second"the reconstructed colour image is very

vulnerable to any errors in the index image, Even a slight distortion of the pixel value in'the index

26

I

Chapler 3 Colour Codebook Ordering

image will probably result in a poor quality reconstructed colour image. Though. in practice. it is

not feasible to order the colour code book to satisfy the two ordering conditions completely. it is

desirable to satisfy the two conditions as far as possible.

While the description of the colour codebook ordering is concise. it is a difficult and challenging

job to order a colour codebook to satisfy the two ordering conditions as far as possible. In the re­

maining part of this section. six typical difficulties associated with the colour codebook ordering

are discussed as follows:

1. To any point in colour space. there are more than two points which have the same dis­

tance from it. whereas to a given codeword in a colour code book. there are at most two

code words which are located at the same distance from it. This is because colour space

is three dimensional while the code book is one dimensional. In colour space. all the

points on the surface of a sphere have the same distance from the centered point. If the

diameter of the sphere is very short. all these points on the surface are close to the cen­

tered point. But it is impossible to make sure that all these close points are put adjacent

or close to the centered point in the codebook. Though in practice. not all the points on

the surface of the sphere will exist in a colour code book. the case that a codeword has

several codewords which have the same short distance from it often happens in a colour

codebook. For example. the codewords which represent white. grey or dark. normally

have several code words which are at similar short distances from them. A codeword

which has the same distance from more than one codeword is referred to as a junction

codeword. Junction codewords. especially the codewords representing white. grey and

dark. can be separated from the other codewords and are processed in different ways.

2. The Mean Squared Error (MSE) is not a precise measurement for determining the dif­

ference of colour codewords. Since a codeword is a three dimension vector. which is

composed of magnitude and direction. the MSE only computes the magnitude differ­

ence of two codewords and does not take into account their direction difference. For

27

Chapter 3 Colour Codebook Ordering

example, suppose there are four codewords, C = (r, g, b), cl = (r + tl, g, b), c2 = (r, g+

tl, b), c3 = (r, g, b + tl), where tl is a small positive quantity. Though the MSE values

of codewords C and cl> codewords C and c2, codewords C and c3 are the same, code­

words cl, c2' c3 are different from codeword C in different colour components and they

represent colours which may look quite different. So the MSE only gives the magnitude

change of two codewords but does not indicate how they change. Additionally, when

the MSE is very big, it makes little sense to compare the difference of colour code­

words. For example, suppose the MSE distance between codewords Cj and Cj' and code­

words Cj and ck are both very big, there is no point in comparing these two distances to

conclude the result that Cj is closer to Cj or closer to ck, especially when Cj, Cj and ck

represent quite different colours. Finally, the MSE used as a colour difference measure­

ment is not subjectively meaningful. The value of the MSE does not necessarily con­

fonn with the perceived colour difference. The same MSE values may have different

perceived colour difference. Therefore, the MSE does not exactly indicate whether two

codewords are close or far away, or which code word is closer to a given codeword.

3. The distribution of codewords in colour space nonnally is not linear but quite compli­

cated. One typical example is shown in figure 3.1 (a). It can be seen that there is a junc­

tion which is composed of three close code words, namely cS, c6' and CID' Based on the

two ordering conditions, in the codebook, codewords Cl, c2' c3, c4 and Cs should be

close together; codewords c6, c7, Cs and c9 should be close together; codewords CID,

clI and cI2 should be close together and codewords cS, c6' and clO should also be close

together. Three possible kinds of ordering are illustrated in figures 3.1(b), 3.1(c) and

3.1 (d). In the ordering of figure 3.1 (b), in the codebook the codewords are in the order:

Cl c2 c3 c4 Cs c6 c7 Cs c9 clO cll c12' In this ordering, though codeword Cs is very close

to codeword clO' they are not close in the codebook, while codewords c9 and clO are

far away but they are adjacent in the codebook. In the ordering of figure 3.1 (c), in the

codebook the codewords are in the order: Cl c2 c3 c4 Cs CID cll cI2 c6 c7 Cs eg. This

ordering is similar to the ordering in figure 3.1(b) but also has the problem that code-

2S

Chapter 3 Colour Codebook Ordering

Figure 3.1(a) Figure 3.1(b)

Figure 3.1(c) Figure 3.1 (d)

Figure 3.1 An illustration of code book ordering

Figure 3.1 (a): the distribution of codewords; Figure 3.1(b), figure 3.1 (c)

and figure 3.1 (d): three different kinds of ordering

word Cs is very close to codeword c6 but they are not close in the codebook, while code­

words c12 and c9 are far away but they are adjacent in the codebook. In the ordering of

figure 3.1 (d), in the codebook the code words are in the order: cl c2 c3 c4 clO c12 cll Cs

c6 c7 Cs c9' In this ordering, code word c4 and codeword c6 are very close, but they are

not close in the code book. This example shows that due to the complicated distribution

29

Chapter 3 Colour Codebook Ordering

of colour codewords in colour space, codebook ordering which completely satisfies the

two ordering conditions is sometimes impossible. Some strategies, like artificial code­

word insertion and replacement, are developed to improve the ordering and they are

discussed below.

4. Colour codebook ordering involves colour perception. In the colourcodebook ordering,

it is required that the codewords which represent close colours are put close in the code­

book and the codewords which are close in the codebook should represent close co­

lours. But colour perception is subjective and relative. The appearance of a colour to

the human eye changes as the background against which the colour is viewed changes.

What we see does not necessarily match the colour tristimulous values) of the colour.

A well known example is that, when several squares with identical colour tristimulous

values are put on a background which varies in colour and intensity, these squares can

look different. The other simple example is that green colour looks greener when it is

close to red and red colour looks redder when it is close to green. Colour perception

depends on many factors, such as light sources, the viewing environment, the back­

ground, the response of the eye and the brain. Additionally, in the two ordering condi­

tions, we use the small distance between two code words in colour space to approximate

the case that they represent close colours. But the close codewords in colour space, in

the sense of small distance between them, may not look close. For example, codewords

representing white, light green, light pink, light blue may be close in colour space, but

they look different. This is especially so when they are put close together. Furthermore,

some colours may look similar when they are viewed separately, but they look different

when they are put together. All these features of colour perception make colour code­

book ordering more complicated.

5. The second ordering condition cannot always be satisfied. A colourcodebook normally

I. The amount of the three primary colours (blue, green and rcd) that form the colour being examined or
matched. A tristimulous colourimeter can analyze a colour and indicates the amounts present of its constitute
primary colours.

30

Chap/er 3 Colour Code book Ordering

contains more than one cluster, each of which represents quite different colours. The

codewords in the same cluster are close together in colour space while the codewords

in different clusters are far away. If the first ordering condition is satisfied, that is, the

codewords in the same cluster are put close in the codebook, then the codewords in the

jointing position between two adjacent clusters cannot satisfy the second condition. For

example, consider two adjacent clusters, the last codeword of the first cluster and the

first codeword of the second cluster are far away in colour space but they are adjacent

in the colour codebook. This problem cannot be solved by the ordering itself and other

strategies must be introduced, sllch as artificial codeword insertion.

6. The selection of a proper threshold is very hard. Many thresholds used in colour code­

book ordering are predetermined heuristically. One example is the definition of close

and far away of two colour codewords in colour space. Two heuristic thresholds T and

t are selected in advance. When the distance between two colour codewords is bigger

than threshold T, then they are said to be far away and when the distance between two

colour codewords is smaller than threshold t, then they are said to be close. The cor­

rectness of the decision whether two colollr codewords are close or far away is depen­

dent on the right selection of the two thresholds, which cannot be deduced from some

formulas. The improper selection of these thresholds will give poor results and will

eventually affect the final colollr codebook ordering. Making decisions by thresholds

is far from an exact science and can only be made on a "try-it-and-see-how-it-work"

approach.

There is no function which can give an exact quantitative evaluation of the colour codebook order­

ing. The judgement on colour code book ordering is based on how well the arrangement of the code­

words satisfies the two ordering conditions. There is not such a function which can provide an exact

evaluation of the codebook ordering becallse of the existence of the junction codewords in a colour

codebook. A junction codeword is close to several code words and these close codewords may be

put in different clusters. According to the two ordering conditions, the junction code word should

31

Chapter 3 Colour Codebook Ordering

be put close to all these clusters. But in a linear codebook, the clusters which are close in colour

space cannot always be put close together. In a certain ordering, the junction codeword is close to

some clusters but far away from the others. Therefore, different arrangements of the junction code­

words may have the same function values. The function value cannot indicate which of the clusters

is the best one to which the junction codeword should be close.

In this case, the quality of colour code book ordering depends on the colour image being coded. In

the example shown in figure 3.1, if any region of the colour image to be coded is vector quantized

either by codewords cl> c2, c3, c4 and cS, or codewords c6, c7, Cs and c9, or codewords clO, cll and

c12, rather than by codewords cs' c6 and clO mixed, then the ordering illustrated in figure 3.1(b),

figure 3.1(c) and figure 3.1(d) are all good, though they do not completely meet the two ordering

conditions. This is because the problems caused by the disagreement of the two ordering conditions

do not exist in the index image. However, if some regions in the colour image are vector quantized

by codewords Cl' c2, c3, c4, cS, c6' c7 and c9 mixed or codewords clO' cll and cI2 mixed, then the

first ordering shown in figure 3.1 (b) is better than the other two kinds of ordering shown in figures

3.I(c) and 3.I(d).

Normally, the colour code book ordering is tested by checking the index image. If much of the

structure existing in the original colour image can be retained in the index image, then the ordering

is good. The test can also be realized by applying further image processing techniques to the index

image, such as image compression, edge detection etc., and then checking the reconstructed colour

image or the processed index image.

The remaining sections of this chapter deal with the techniques for colour codebook ordering. Sec­

tion 3.3 proposes some methods for colour codebook ordering. In these methods, codewords are

firstly grouped into clusters, in each of which codewords are close in colour space. Then the code­

words in each cluster are ordered and finally the clusters are ordered. In section 3.4, an ordering

function which can roughly measure the degree of colour code book ordering is presented. The

function can also be used to refine the ordering. The final two sections describe two techniques,

32

Chapler 3 C%ur Code book Ordering

namely artificial codeword insertion and code word replacement, which can be used to refine the

ordering further.

3.3 Strategies for Colour Codebook Ordering

In this section, two algorithms for the first stage of colour codebook ordering are proposed. They

are both based on the fact that the code words used for a typical colour image are distributed in the

form of clusters rather than uniformly in colour space. Therefore, the colour codewords can be

firstly divided into several disjoint clusters, each of which contains codewords representing similar

colours. Then the codebook is ordered by ordering the clusters and the codewords in each cluster.

It can be seen that these methods are composed of three processing steps, namely, generatin'g clus­

ters, ordering clusters and ordering codewords in each cluster. Cluster generation is a key step in

the ordering and will be discussed in detail in the next two subsections, §3.3.1 and §3.3.2. The clus­

ters can be ordered in the decreasing or increasing order of the magnitude of Y of the cluster cen­

troid. Alternatively, the clusters can be ordered by the following steps: (I) choose the cluster with

the biggest luminance value Y as the first ordered cluster; (2) find the cluster in which a codeword

is the closest to the centroid of the just ordered cluster as the next ordered cluster; and (3) repeat

step 2 on the un processed clusters until all the clusters are ordered. Finally, the code words in each

cluster are ordered. The ordering of codewords in each cluster can be realized by first finding the

codeword which is the closest to the last code word in the preceding cluster, then ordering the re­

maining codewords in the cluster according to their closeness to the codeword just ordered. The

first codeword chosen in this way can smooth the joint place of two adjacent clusters. An alterna­

tive way is to choose the brightest code word in each cluster as the first codeword.

33

Chapter 3 Colour Code book Ordering

3.3.1 Centroid Method

The centroid method is a simple method for clustering the codewords. Each cluster is formed by

the following steps: at the beginning, a seed codeword is chosen as a one codeword initial cluster;

then the codeword which is the closest to the cluster centroid is selected, if the codeword is close

to the cluster centroid, then it is appended to the cluster and this process is repeated until no close

codeword can be appended to the cluster. Figure 3.2 illustrates the procedure for the formation of

a cluster. Let codeword cl be the seed codeword and it is the initial cluster centroid. Since code·

word c3 is the closest codeword to the current cluster centroid, i.e. code word cl> and it is also very

close to the current cluster centroid, it is appended to the cluster. The cluster now contains two

codewords Cl and c3 and the cluster centroid is the centroid of code words Cl and c3. Likewise,

code words c2, c4, cs' c6 and c7 are appended to the cluster successively. The number inside the pa­

rentheses indicates the appending order of the codeword to the cluster. For example, the number

beside codeword Cs indicates it is the third code word to be appended to the cluster. Note that this

method is dependent on the selection of the seed codeword and different clusters may be resulted

from choosing different seed code words. The seed codeword is normally chosen by some features,

such as the biggest luminance value Y, for the reason of simplicity.

o 0\·

0;>

Figure 3.2 An illustration of a cluster fom1ation

A specific algorithm for ordering a colour code book by the centroid method is proposed. The fol-

34

Chapter 3 COlOUT Code book Ordering

lowing notations in the algorithm are used:

A: a set of unprocessed codewords which is initialized to be the colour codebook

Cj: a codeword in A

Cj: a set of codewords in the ith cluster

nj: number of codewords in cluster Cj

Cj : the centroid of cluster Cj and is given as:
I -

I
" r L.J c· ,

Cj = CjE c i (3.1)

The algorithm is given as follows:

I. Find the codeword with the biggest Y, where Y is the luminance of the codeword,

and take this codeword as the first member of cluster Cl and continue with steps 2,

3 and 4 to form cluster Cl.

2. Search for codeword Cj in A, which is the closest to cluster centroid cj , that is,

3. If codeword Cj is not close to the cluster centroid, that is, d(cj, Cj) > T, where T is a

positive appropriate threshold, then the formation of this cluster is completed and go

to step 5 to form a new cluster, otherwise, add codeword Cj to cluster Cj and remove

code word Cj from A, that is,

C j = C j + {Cj}

A=A-{cj}

Then compute the new centroid of cluster Cj, see Eq.(3.1).

4. If there is no unprocessed codeword, that is, A = 0, the algorithm halts, otherwise

go back to step 2.

5. Codeword Cj is then used as the seed codeword of a new cluster Cj+ I, and codeword

Cj is removed from A, i.e. A = A - {Cj}' If all the code words are processed, that is A

35

Chapler 3 Colour Codebook Ordering

= 0, the algorithm halts, otherwise go back to step 2.

Actually, it can be seen from the above algorithm that, during the process of the clustering, clusters

have been ordered, because the seed codeword of a cluster is the closest codeword to the centroid

of the preceding ordered cluster. The codewords within each cluster can be ordered by the magni­

tudes of the Y of the codewords.

3.3.2 The PNN-Based Method

The Pairwise Nearest Neighbour (PNN) algorithm, see section 2.4, is an effective method to group

data into clusters and it can be used as a way for generating clusters in colour code book ordering.

After the clusters are formed, the clusters and the codewords in each cluster can be ordered in the

same way as that discussed in the last subsection.

The PNN-based code book ordering algorithm is described as follows:

1. Initialization: begin with N clusters, each of which contains one codeword, that is to

set AD (N) , here N is equal to the number of codewords Ne in the codebook.

2. Search two clusters Cj and Cj which have the nearest weighted distance, i.e.

nijd~ S; nkld~Jor all k and t, where i ~ j and k ~ t, then merge these two clusters into

one cluster and compute the centroid vector and the size of the newly formed cluster,

wherenijd~ is the same as that defined in Eq.(2.6).

3. If the termination criterion is met, the algorithm halts. Otherwise the number of clus­

ters is reduced by one and go back to step 2 to repeat the merging process.

Two termination criteria can be used. First, when the number of clusters is equal to a pre-deter­

mined number, then the algorithm halts. Alternatively, compute the distance between the two cen-

36

Chapler 3 COIOUT Code book Ordering

troids of the clusters to be merged, if the distance is bigger than a pre-determined threshold, then

the algorithm halts.

3.3.3 Summary

The above two methods for colour codebook ordering are both based on the fact that the codewords

used for a typical colour image are not uniformly distributed in colour space, but in the form of

clusters. Colour code book ordering can then be achieved by grouping codewords into clusters, or­

dering clusters, and ordering codewords in each cluster. The two methods are different in the way

of grouping code words. The centroid method is to form the cluster by appending codewords to a

cluster while the PNN-based method is to form the clusters by iteratively merging two close clus­

ters. The centroid method is simple and straightforward. The main process in it is to find the code­

word to be appended. The PNN-based method makes use of the existing algorithm developed for

the codebook generation in vector quantization, see section 2.4.

Both methods have the problem of choosing a suitable threshold for terminating the formation of

the clusters. In the centroid method, the temlination criterion used is that when the distance be­

tween the codeword to be appended and the centroid of the cluster being formed is bigger than a

pre-determined threshold, then the code word is not appended to the cluster and the formation of

this cluster is finished. A constant threshold is applied globally throughout the formation of all clus­

ters. However, a pre-determined constant threshold is not precise because clusters do not necessar­

ily have the same scattering, some of them may be closely compacted and some of them may be

loose. Therefore, the constant threshold may separate code words which should be in the same clus­

ter into different clusters. A variable threshold can be lIsed locally depending on the cluster scat­

tering but the variable threshold needs more computation.

In the PNN-based method, there are two ways for terminating the cluster formation. The first one

37

Chapler 3 Colour Codebook Ordering

is to use a pre-detennined cluster number and the second one is to use a pre-detennined distortion

threshold. Both of them have the following two problems. First, the pre-detennined factor should

be different for different images. Second, it can only be obtained heuristically and may not be very

exact.

The centroid method also has problems associated with the 'seed' codeword. The cluster fonnation

depends on the selection of the seed codeword. For example, suppose the codewords are distributed

in the fonn as shown in figure 3.3. If codeword A is chosen as the seed codeword, then codewords

B, C, D may be excluded from the cluster, while if the codeword B is chosen as the seed codeword,

all the codewords can be included in the cluster, and actually all these codewords are close to one

another. The improper selection of a seed code word will result in improper clustering, that is, some

codewords which are close to the codewords in a cluster and should be contained in that cluster are

excluded from the cluster.

o
C

o
o

o
o

o 0 D

B

Figure 3.3(a)

o

o
C 0 OD

B

Figure 3.3(b) Figure 3.3(c)

Figure 3.3 An illustration of a cluster formation by choosing different seed codewords

Figure 3.3(a) the distribution of the codewords; figure 3.3(b) codeword A is chosen as the

seed codeword; figure 3.3(c) codeword B is chosen as the seed codeword

The two methods order colour code book to a large extent but the ordering is not good enough. They

are used as the first step in colour codebook ordering. Improvements to the ordering can be

achieved by the techniques introduced in the next three sections.

38

Chapter 3 Colour Codebook Ordering

3.4 Codebook Ordering Refinement

3.4.1 Ordering Function

It is important to know how well a colour codebook is ordered. Though the ordered colour code­

book can be tested by examining whether the index image retains most of the structure existing in

the original full colour image or by applying some image processing techniques to the index image,

these kinds of test are not straightforward as they are applied to the index image rather than to the

colour code book. The ordered code book cannot be judged until the colour image is vector quan­

tized by it. It takes time and needs a lot of computation. Besides, the result of the test is rather

rough. First, the result is descriptive rather than quantitative. Second, not all the improvement on

the codebook ordering can be obviously reflected on the index image. This kind of testing may be

useful for making a final evaluation of the ordered code book but they are not very useful in the

process of codebook ordering.

The ordering function is designed to provide a functional description of an ordered colour code­

book. A colour codebook is said to be well ordered, if the arrangement of the codewords satisfies

the two ordering conditions, that is, close codewords in colour space are close in the code book and

far away codewords in colour space are far away in the codebook. The ordering function then de­

scribes the relationship between an ordered colour codebook and its agreement with the two order­

ing conditions. Ideally, the ordering function can provide correct evaluation of the ordered

code book and is easy to compute. The ordering function proposed below is an important reference

in evaluating an ordered code book and is easy to compute. Additionally, since the ordering func­

tion provides a quantitative measurement for colour code book ordering, it can be directly used in

optimizing the ordering system.

Before the presentation of the ordering function, the variables used in the function are discussed.

For each codeword, two variables are used to describe its relationship with the other codewords in

colour space and in the code book. In the RG B colour space, a codeword is represented by the three

39

Chapter 3 Colour Code book Ordering

colour components, namely Red, Green and Blue. Its relation with the other codewords can be de­

scribed by the Euclidean distance between them. Consider reference codeword ci' ci = (ri, gi' bi),

its relation with codeword Cj' Cj = (rj' gj' bj) in the RGB colour space is then:

(3.3)

In the codebook, a codeword is represented by its index and its relation with the other codewords

can be described by their index distances, i.e. their relative positions in the codebook. Consider

codewords ci, cj,where i and j are the indexes in the codebook, the index distance is:

d(i,j) = li - jl (3.4)

Since the colour distance d(ci' Cj) and the index distance dei, j) have different meanings and ranges,

they cannot be compared. Distance d(ci' Cj) is the Euclidean distance of two codewords and ranges

J 28 28 28 .
from ° to 2 '+ 2 ,+ 2 b, where Br' Bg and Bb are the numbers of bIts used to represent the

Red, Green and Blue components respectively. Distance dei, j) is the index distance of two code­

words in the code book and is a pseudo distance of two codewords. It ranges from ° to Ne-I, where

Ne is the number of code words in the code book.

In order to compare the two distances, one in colour space and one in the codebook, it is desirable

to make them have the identical meaning. The index distance between reference codeword ci with

the other codewords can be taken as a set of ordinal numbers, i.e. (d(i, j), j=O, 1, ... , N-I}, which

indicate the positional closeness of the codewords to the reference code word ci in the codebook.

The distance of reference code word ci with the other codewords in colour space can be transformed

into a similar pseudo distance. This can be realized by sorting the codewords in the increasing order

of the distances from the codewords to the reference code word ci' In this arrangement of the sort­

ing, it is likely that more than one codeword will have the same distance from the reference code­

word. In this case, they are ordered in a random way. It can be seen that reference codeword ci is

sorted as the first, and the closest code word to ci is the second and etc. In this way, to each code-

40

Chapter 3 COIOUT Code book Ordering

word, its position in this order is its ordinal number which indicates its closeness to the reference

code word in colour space. Therefore, each codeword Cj has two ordinal numbers to a given refer­

ence codeword Ci, one is in colour space denoted by I?) and the other is in the codebook space

denoted by I'fO . The ordinal number is also called close ordinal number.

One example is shown in figure 3.5 to explain these two close ordinal numbers. Suppose the code­

words are arranged in the codebook in the order ci Ci+ 1 Ci+2 Ci+3 ci+4' Let code word ci be the ref­

erence codeword. In the codebook, the close ordinal numbers of codewords ci ci+l ci+2 ci+3 ci+4 to

reference codeword ci are 0, 1,2,3,4 respectively, while in colour space, the close ordinal numbers

of codewords ci ci+1 ci+2 ci+3 ci+4 to reference codeword ci are 0, 2, 4, 3, 1 respectively, which is

decided by their distances from codeword ci'

o

Figure 6.4 An example of the two close ordinal numbers

The ordering function of codebook B, i.e. F(B), is then defined as the function of the two close or­

dinal numbers, namely, IfO and I'fO. It is the sum of the ordering function of all the codewords,

i.e. f(i), i = 0, 1,2, ... , Ne -I, where f(i) is the sum of the squared difference of the two ordinal num­

bers of all the code words to reference code word ci, that is:

N, -1

F (B) = L J(i) (3.5)
i = 0

41

Chapter 3 COIOUT Codebook Ordering

where tU) (3.6)

The ordering function F(B), designed in the above way. can be used to measure how good the or­

dering of a colour codebook is. If a codebook is well ordered. the two ordering conditions are well

satisfied. The first ordering condition is that close codewords in the codebook should be close in

colour space. This indicates that. to any reference codeword Cj. if codeword Cj has small r?) . it
should also have small I?) . In this case, ut) -I't» 2 is small. The second ordering condition is

that close code words in colour space should be close in the codebook. This means that. to any ref­

erence codeword Cj. if codeword Cj has small I?) . then it should have small I'}il . In this case.

u? -I'?)) 2 is small. Therefore. if the two ordering conditions are satisfied. the ordering func­

tion F(B) is small. Likewise. it is obvious that if ordering function F(B) is small. then the two or­

dering conditions are well satisfied. The extreme case is that the ordering function value is zero. In

this case. the two ordering conditions are satisfied by all the codewords. But in most cases. it is not

possible to order the codebook so that F(B) is zero or be very small because of the complex and

non-linear distribution of the codewords in colour space which has been discussed in section 3.1.

Since the value of It) ranges from 0 to Ne-I, it can be replaced by j. j=O. I. 2 •...• Ne - I. in Eq.(3.6).
Cl -(i)

Then in the function. I'j' is replaced by I j • which is defined as follows: suppose codeword ck

is the jth closest code word to reference codeword Cj in colour space. its ordinal number to reference
- (i)

code word Cj in the code book is Ij • i.e .. the index distance in the codebook between codeword ck

and Cj. The ordering function in Eq.(3.S) and Eq.(3.6) can be simplified as.

F (B) (3.7)

The amount of the computation in function F(B) is quite large and the computation complexity is

O(N~). For every codeword. the difference between the two close ordinal numbers is computed

42

Chapter 3 Colour Codebook Ordering

(Ne-I) times. However, much of the computation has no sense. When the close ordinal number in

colour space is verY large, it is not necessary that, only the two close ordinal numbers are the same,

(
-(i) V

that is, I j - j J = 0, the ordering is the best. In this case, as long as the close ordinal number

in the codebook is bigger than the close ordinal number in colour space, then the ordering is fine.

For example, for codeword Ci, suppose its jth closest codeword in colour space is Cj' and j is very

big, say 40. Then it is not important if Cj has a distance in the codebook that is large but different

from 40. Whatever the actual distance, the second ordering condition is met. Moreover, when the

close ordinal number in colour space is large, it does not make sense to use the close ordinal num­

ber to compare the colour difference. For example, suppose codeword Cj is the 86th closest to code­

word ci, and codeword ck is the 87th closest to code word ci in colour space, then it may not be cor­

rect to make the conclusion that codeword Cj is closer to codeword ci than codeword ck' In this case,

it is not very important to put code word ck a little closer to ci than Cj in the codebook to get better

(
-(i) V

ordering. Therefore, when j is large, I j - j J has little meaning and is not precise. Accordingly,

ordering function F(B) can be approximated by the following:

F (B)

N, - 1

= L t(i)
j::::: 0

N,-l n', (-(i))2
= L L Ij -j

j=Oj=o

(3.8)

where n'j is the number of the close codewords to reference codeword ci in colour space and

n' j ~ Ne - I. The number of close code words n' can be decided in the following: if codewords ck

and ck+l are the n' and (n' + I) th closet code words to reference codeword ci and they have the

relationship, D (c j' C k) ~ T, and D (c j ' C k + 1) > T, where T is a pre-determined threshold, then the

number of close codewords to reference code word ci is n' . In this way, to reference codeword Ci,

only its close codewords in colour space are considered in the computation of function fCi). This

means that only those codewords which have small close ordinal numbers in colour space to refer-

ence codeword ci are considered in the function.

The changed function Eq.(3.8) can describe how well the ordered codebook satisfies the first or­

dering condition, but it does not reflect how well the ordered codebook satisfies the second ordering

condition. The following example can explain this case. Suppose some codewords are distributed

43

Chapter 3 Colour Code book Ordering

in the way shown in figure 3.5. Now consider codeword Cj as the reference codeword. Suppose the

numbers beside the points are their close ordinal numbers in colour space to codeword Cj and the

numbers inside the brackets beside the points are their close ordinal numbers in the codebook to

codeword Cj. In this example, codeword Cj has a rather big distance from codeword Cj and its close

ordinal number in colour space to Cj is 40. On the other hand, it is very close to Cj in the codebook

and its close ordinal number in the codebook to q is I. The two close ordinal numbers are quite

different and the second ordering condition is not satisfied in this arrangement. However, in the

computation of the ordering function in Eq.(3.8), since Cj is not close to Cj in colour space, it is not

considered in the computation of f(i) and f(i) is very small, f(i) = I + I + I + I = 4. Obviously the

function is not exact in describing the ordering.

cj~O 40(1)

2(3) 0

1(2) 0

o 3(4)

o 4(5)

Figure 3.5 An example of the ordering function

To improve the ordering function so that the satisfaction of the second ordering condition is taken

into account, the codewords which have big close ordinal numbers in colour space but small close

ordinal numbers in the code book with reference to codeword Cj should be reflected in the function

f(i). Hence, the function f(i) can be modified as the following:

tU) (3.9)

where wk is a weight, n" is the number of those far away codewords which have big close ordinal

numbers in colour space to the reference codeword Cj but are located in the codebook between

44

•

Chapter 3 Colour Code book Ordering

codeword Cj and the jth closest code word to the reference codeword in colour space. Weight wk

can be constant, or a decreasing function against the close ordinal number in the codebook of the

far away codewords to reference code word Cj, that is the closer the far away code word from the

code word Cj, the bigger the weight is. The ordering function F(B) is now:

F(8) (3.10)

Using this function in Eq.(3.1O) to compute the above example, the result is f(i) = 4(w+ 1). Thus

fCi) can be very large when the weight is big.

One problem in the ordering function is that the MSE is not an exact distance measurement for co­

lours. It has been stressed in the first section of this chapter that since colour space is a three dimen­

sional space, the MSE on its own is not enough to tell the difference of two code words. For

example, suppose codeword Cw represents white colour, and codewords c" Cg, cb represent reddish,

greenish and bluish colours respectively and they have the relation: d(c", cr) = d(c", cg) = d(c"" cb).

Codeword Cw is a junction codeword for it has more than one codeword which has the same small

distance from it. Then the distance in this case does not indicate which codeword among code­

words c,' Cg, cb is closer to codeword Cwo Actually, it makes no sense to point out which is closer

to code word cw' because they represent different colours. One solution is to put them in four dif­

ferent clusters rather than in one cluster even though the distances between them are very small.

To realize this, before computing the distance, colour classification is roughly made. Every code­

word is marked by a classification mark, which is composed of three bits, e.g., mark" markg and

markb respectively. If there is no other colour component whose value is bigger than the Red com­

ponent value to a certain quantity, then mark, is set to be I, otherwise mark, is O. The same com­

putation is applied to markg and markb. For the achromatic colours, the three bits are all 1, that is

mark, = markg = markb = 1. In this way, the codewords are roughly classified. Before the distance

computation of two code words, their marks are compared. If the marks are different, then their dis­

tance is taken to be very big.

45

Chapter 3 Colour Code book Ordering

The ordering function F(B) is the summation of f(i), i=O, I, ... , Ne-I, and it describes the overall

ordering of a colour code book rather than local ordering. A small function value indicates that the

overall ordering is very good but cannot guarantee that all the codewords are in their optimum po­

sitions. It is likely that the function value is very small but some codewords may be not in their

optimum positions. Also, it is likely that several different orderings have the same ordering func­

tion value. The other problem associated with the ordering function is that the two close ordinal

numbers are slightly different. The close ordinal number in colour space is a monotonic variable

while the close ordinal number in the code book is not. A codeword may have two codewords which

have the same close ordinal numbers in the code book from it, one of which is on its right side and

one of which is on its left side. This brings some distortion to the result of comparing the two close

ordinal numbers.

3.4.2 Refinement of Colour Codebook Ordering by Reducing the Ordering Function

The colour code book ordering can be refined by reducing the ordering function value. On one side,

a small ordering function value indicates consistency between the close ordinal number in colour

space and its corresponding close ordinal number in the code book. Also consistency between the

two close ordinal numbers results in a small ordering function value. On the other side, if the two

close ordinal numbers are consistent, the two ordering conditions can be satisfied by the ordered

codebook and if the two ordering conditions are satisfied, the two close ordinal numbers are con­

sistent. Therefore, a small ordering function value indicates good satisfaction of the two ordering

conditions and good satisfaction of the two ordering conditions by the codebook corresponds to a

small ordering function value. The ordering refinement can be realized by reducing the ordering

function. To reduce the ordering function is to make the two close ordinal numbers more confonn­

able. The close ordinal number in colour space is fixed and cannot be changed, but the close ordinal

number in the codebook can be changed by modifying the codeword position in the codebook.

Therefore, the ordering function value can be reduced by adjusting the codeword arrangement in

46

Chapter 3 Colour Codebook Ordering

the code book.

The process of adjusting the codeword arrangement in a codebook is to adjust each codeword

position to the position where the maximwn reduction of the ordering function value can be

achieved so that the ordering function value of codebook ordering is reduced. This process is

repeated until the modification of codeword positions cannot bring any reduction of the order­

ing function value. That is, when the above process terminates, all the codewords in the code­

book are in their optimwn positions with respect to the current codebook ordering. There are

two important steps associated with the codeword position adjustment process. One is the

order that a codeword is chosen for the codeword position adjustment process. One simple

approach is to choose codewords in the order of the arrangement of the codewords in a code­

book. That is the codeword selection order conforms with the codeword index in the code­

book. In this case, for example, the first codeword to be processed is the first codeword in the

codebook and the second codeword to be processed is the second codeword in the codebook.

This kind of selection order is quite straightforward and very simple, but in this selection

order, the first codeword to be processed is not necessarily the codeword which can bring the

maximum reduction of the ordering function value. Since the ordering function can function­

ally descri be the codebook ordering, smaller ordering function values indicate better codebook

ordering and bigger reductions of the ordering function value mean that more refinement of

the codebook ordering has been achieved. Additionally, it is always hoped that, at each time,

the process of codeword position adjustment is carried out on a well ordered codebook. Alter­

natively, the codeword to be processed can be chosen in this way: always choose the codeword

which can bring the maximum reduction of the ordering function value. In this way, subse­

quent code word adj ustment can always be carried out on a better arrangement of codewords in

the codebook. The second method of codeword selection can achieve better performance in

code book ordering than the first one but needs more computation.

47(1)

Chapter 3 Colour Codebook Ordering

The second crucial step in the process of codeword position adjustment is how to find the opti­

mum position in the codebook where a codeword is to be moved to. An optimum position of a

codeword is the position where, when the codeword is put there, the ordering function value is

minimum. One simple way is to search exhaustively all the possible positions in the codebook.

In a codebook with Ne codewords, there are (Ne - 1) possible positions that a codeword can be

moved to. Then, to each codeword, the ordering function has to be computed (Ne - 1) times to

find the optimum position. This requires quite a large amount of computation. From the dis­

cussion about code book ordering in the last section, it can be seen that the refinement of code­

book ordering by the ordering function is carried out after the codebook has been initially

ordered by the centroid method or the PNN-based method discussed in section 3.3. The cen­

troid method and the PNN-based method both can group the codewords in a codebook into

several disjoint clusters, in each of which the codewords represent close colours. Therefore,

the process of searching for the optimum position for a codeword can be confined within the

positions within the cluster to which the processed codeword belongs or in its several close

clusters. In this way, the search range of positions can be reduced to a large extent.

47(2)

Chapler 3 Colour Code book Ordering

One way of minimizing the ordering function value is to adjust the position of the code word in the

codebook which has the biggest f(i) to the place where its new f(i) is a minimum. This process is

repeated until no reduction of the function value can be obtained. However, the codeword with the

biggest f(i) is not necessarily the code word which is in the most unsuitable position in the code­

book. The codeword which is in the most unsuitable position is the one which, when it is adjusted

to its optimum position, produces the biggest reduction in the function value. An alternative ap­

proach is to adjust all the codewords to their optimum positions. This is described in the following

algorithm. Suppose B is the codebook:

1. Compute the initial ordering function FO(B) on the codebook.

2. Change the place of code word Cj to its optimum place where the ordering function

F (B') is a minimum. This process is applied to all the codewords in the codebook.

3. If the ordering function on the changed codebook F (B') is equal to FO(B), the algo­

rithm halts, otherwise go back to step 2 and the code book is replaced by the changed

codebook B' and FO(B) is replaced by F (B').

There is a large amount of computation in the above processing because for any codeword there

are N possible changed positions in the code book and the ordering function had to be computed N

times to decide the best position. An alternative way is to change the codeword to the place where

f(i) is minimum rather than the ordering function F(B). The amount of the computation is then re­

duced at the price of the quality of the codebook ordering.

A further refinement can be achieved by adjusting several consecutive codewords at the same time

rather than only one codeword. Sometimes it is likely that a set of close codewords are grouped in

several clusters which are not adjacent in the code book and every code word is in its local optimum

position. Consider close codewords c) c2 c3 c4 Cs c6 c7 Cg. Suppose they are arranged in the code­

book as: C)'C2 c3 c4 x x x ... x x x Cs c6 c7 c8. where they are separated by some codewords and they

47

Chapter 3 Colour Code book Ordering

are all in their local optimum positions. Refining the ordering with the above method cannot adjust

them together. Since they are all in their local optimum positions, no codeword can be adjusted.

For example, if codeword cl is moved adjacent to code word cs' it will be far away from close code­

words c2 c3 c4, and this may not bring any function value reduction. One approach to this is to

move codewords cl c2 c3 c4 or Cs c6 c7 Cg at the same time. In this way, they can be adjusted to­

gether. To do this, the code book is first divided into several segments, in each of which codewords

are close together, then adjust the consecutive codewords in each segment to reduce the ordering

function value.

The codebook ordering refinement can be achieved by reducing the ordering function in the above

way but this does not necessarily generate the optimum ordering. The reason for this is that a code­

word or several consecutive codewords can only be adjusted to their local optimum places with

respect to the arrangement at that time, but the arrangement of the codewords at that time is not

necessarily the best one. The extent to which the code book ordering can be optimized by the or­

dering function depends on the correctness of the ordering function and the ability to exploit the

function to refine the ordering. Nevertheless, lIsing the ordering function defined above to refine

the ordering in the above way does put more close code words together and improve the ordering.

3.5 Artificial Codeword Insertion

After the codebook has been ordered and refined, there are still likely to be a number of rough plac­

es, particularly the joint positions of two adjacent clusters. One example is shown in figure 3.6.

Suppose codewords are distributed in the way of figure 3.6. Two clusters are fonned, one is {Cl>

c2, c3' c4, cS} and the other cluster is (c6, c7, cs' c9)' In the codebook, these codewords can be ar­

ranged in the order: Cl C2 C3 C4 Cs C6 C7 Cs C9' In this arrangement, the distance between code words

Cs and c6 is very big but they are adjacent in the codebook. This arrangement of codewords does

not satisfy the second ordering condition. This situation can be improved by inserting some "arti-

48

Chapter 3 Colour Code book Ordering

ficial codewords" between the two adjacent codewords which are far away in colour space, so that

they are located with some distance rather adjacent in the codebook to satisfy the second ordering

condition.

C s.· ".,. " .
o . ·c··'· .

0··· 9

Figure 3.6 An illustration of the artificial codeword insertion

An effective way of code word insertion is to insert some copies of those adjacent codewords which

are distant from each other in colour space. In the above example, artificial codewords are inserted

between codewords Cs and c6, that is: cl c2 c3 C4 Cs Cs··· Cs C6 C6'" C6 C7 Cs C9 cIO' The number of

the copies inserted depends on the distance of the two codewords in colour space. Normally, the

bigger the distance between two adjacent codewords, the more insertions are required. The joint

place of two adjacent clusters may need more insertions, especially the clusters in which code­

words represent achromatic colours. This is because the codewords in two different clusters nor­

mally represent different colours though sometimes the distance between the last codeword of the

first cluster and the first code word of the second cluster is small.

The indexes of artificial codewords are not used in the index image, but the artificial codewords

can enlarge the distance between the adjacent codewords which are distant in colour space. In this

way, the edges caused by the adjacent codewords which are far away in colour space can be re­

tained in the index image. Additionally, artificial codeword insertion is necessary and helpful when

there is some distortion in the index image and it can decrease the degradation generated by this

49

Chapter 3 Colour Codebook Ordering

distortion in the reconstructed colour image. For example, after the ocr processing on the index

image, the original index image cannot be recovered exactly. If there is no artificial codeword in­

sertion, any error of the index pixel which happens to be around the rough place may cause obvious

visual distortion on the final recovered colour image.

Though the insertion of some artificial codewords into the rough places can improve the codebook

ordering, it also introduces some problems in the ordering. If two close codewords are on the two

sides of the inserted place, the artificial codeword insertion will enlarge the distance between the

two close codewords in the codebook. For example, in figure 3.6 suppose the codewords are ar­

ranged in the order: Cl c2 c3 c4 Cs c6 c7 Cs c9' Since codewords Cs and c6 are adjacent in the code­

book but distant in colour space, artificial codewords are inserted between them. However, the

insertion also enlarges the distance between code words c3 and c6 which are close in colour space.

This is normally happened inside a cluster. Therefore, less artificial codewords are inserted be­

tween the codewords which are in the same cluster even though their distance may be large. Arti­

ficial code word insertion is used in the experiments discussed in chapter 7.

3.6 Codeword Replacement

Due to the complexity of the colour codeword distribution, sometimes there are still some similar

colour codewords which are far away in the codebook, no matter how the codebook is ordered.

This case often happens when the codewords which are around a junction codeword are ordered.

Suppose a set of codewords are distributed in the way shown in figure 3.7. One possible codeword

ordering is: Cl c2 c3 c4 Cs c6 c7 Cs c9 clO cII c12' Codeword c4 and codeword c9 are close in colour

space but they are not close in the codebook. This ordering can be improved by replacing codeword

c9 by one of its close vectors which is a little farther away from codeword c4' For example, code­

word c9 can be replaced by the centroid of codewords c9 and cIO'

50

Chapter 3

Cl 0

C2,0

.C3 0

. C4
o

Colour Codebook Ordering

Figure 3.7 An example of the codeword replacement

Codeword replacement can decrease the disagreement with the first ordering condition in the code­

book ordering, but it will change the code words. The changed codeword is not necessary a good

codeword for vector quantization and will degrade the quality of the reconstructed colour image.

Though the strategy of code word replacement can refine the ordering from the point of the view of

better satisfaction of the first ordering condition, care is needed to confine its application to specific

and special cases. This strategy has been tried in the experiments, but it is not used in the final code­

book ordering discussed in chapter 7.

51

Chapter 4 Image Quality Evaluation

Chapter 4

Image Quality Evaluation

Image quality is an important factor for evaluating most image processing systems. Since the

knowledge of the human visual system can be exploited in better understanding and designing the

techniques for image processing and image quality evaluation, the first section of this chapter dis­

cusses the human visual system, especially some characteristics and interesting visual phenomena

of both brightness and colour perception. The next two sections introduce some methods of sub­

jective (§ 4.2) and objective (§ 4.3) evaluation of image quality.

4.1 Human Visual System

Since the human eye is one of the important end users to most image processing systems, under­

standing of the human visual system is helpful not only in the evaluation of processed images but

also in better understanding, designing and optimizing an image processing system. A typical ex­

ample is the visual communication system. Based on a knowledge of the human visual system, it

only represents and transmits information which can be perceived by human eyes to save transmis­

sion bandwidth and reduce the amount of required memory. The human visual system is a very

complicated system which contains the eye, the optic nerve and pan of the brain. Its properties de­

pend on many aspects, such as the physical characteristics of the eye and the characteristics of both

the eye and the brain. Though the human visual system is still far from completely understood, a

52

Chapter 4 Image Quality Evaluation

lot of useful experimental results have been obtained. In this section, first the structure of the hu­

man eye is briefly discussed. Since some results from the research on the visibility threshold are

helpful in image quality evaluation, next the visibility threshold for brightness will be discussed.

Finally, colour perception and some colour visual phenomena are discussed.

The human eye is a unit which converts visual information into nerve impulses for the brain to form

a perceived image. The main components in the eye [Gonz87] [Netr88] which play important roles

in visual perception are: cornea, lens, and retina. The cornea is a tough, transparent tissue that cov­

ers the anterior surface of the eye. The retina is the innermost membrane of the eye and covers the

posterior portion of the eye. Light from an external object is focused by the cornea and lens to form

an image of the object on the retina. The retina consists of a densely packed population of photore­

ceptors and some connecting nerve cells. The photoreceptors are translating the incoming light into

nervous impulses and are of two classes, namely cones and rods. The cones and rods play different

roles in visual perception. The cones are mainly located in the central part of the retina, which is

called the fovea and are responsible for spatial acuity and colour vision at normal daylight levels.

Cone vision is known as photic or bright-light vision. In contrast, the rods have a large area of dis­

tribution over the retinal surface. The rods are responsible for low light vision and provide a general

and overall picture of the viewed field. For example, an object which is viewed brightly coloured

in daylight appears colourless in moonlight because only rods are stimulated. Rod vision is known

as scotopic or dim-light vision.

In the neural presentation of an image, experiments indicate that there are five channels, two of

which are spatial frequency channels and three of which are colour coding channels [Gran79]. The

two spatial frequency channels contain a spatially low pass channel and a bandpass channel. The

spatially low pass channel carries information about the degree of contrast across the image, while

the bandpass channel carries edge information from the image. The three colour coding channels

contain one achromatic and two chromatic channels. It is known that cones are of three types which

. are sensitive to red, green and blue colours and are commonly known as red, green and blue cones.

Studies show that, in particular, the achromatic channel carries the information from the red and

53

Chapter 4 Image Quality Evaluation

green cones; one chromatic channel is a red/green channel by differencing data from the red and

green cones; and the other chromatic channel is a yellow/blue channel by differencing data from

the luminance channel (yellow = red + green) and the blue cones.

The visibility threShold of a stimulous is an important quantity in image quality evaluation, espe­

cially when the visibility of coding impairment is concerned. The visibility threshold of a stimulous

is defined as the magnitude of the stimulous at which it becomes just visible or just invisible

[Limb79] [Netr88]. If a threshold at which an impairment becomes just visible is known, then it is

possible to estimate the quality of images accurately by specifying whether the distortion reaches

the threshold. The visibility threshold of a stimulous depends on many factors. Two factors which

are directly used in image coding are discussed here, namely average background luminance level

against which the stimulous is presented, and luminance changes adjacent to the stimulous. These

two factors affect the visibility threshold in two aspects, spatial and temporal. Since the still image

is the main study object in the research discussed in this thesis, only the spatial aspect of those fac­

tors is considered. For simplicity, the two factors are assumed to be separable, though in reality they

are not independent.

Experiments for determining the dependence of the visibility threshold on a background with con­

stant luminance can be designed as shown in figure 4.1. The background luminance is denoted by

Lb' The area outside the background is called the surround area and has luminance Ls. The area

inside the inner circle is called the stimulous area and the luminance in the stimulous area is per­

turbed. The magnitude i'lL of the perturbation which is just visible is determined in the experi­

ments. Experiments show that the visibility threshold i'lL increases as the background luminance

Lb increases. This means that, when the background becomes brighter, the change of stimulous

which can be just perceived is larger. Experiments also illustrate that though the visibility threshold

depends on both the background luminance and the surround luminance, it has a stronger depen­

dence on the background luminance and a weaker dependence on the surround luminance, that is,

it is more dependent on the luminance of the close area than that of the relatively far away area. In

the special case, when the surround luminance and the background luminance are the same, the vis-

54

Chapter 4 Image Quality Evaluation

ibility threshold ~L increases almost linearly with background luminance Lb, i.e., the ratio &/Lb

is a constant. This is known as Weber's law and the quantity ~ULb is called the Weber ratio. The

Weber ratio and the surround luminance have the relation illustrated in figure 4.2. It can be seen

that the Weber ratio is nearly constant over a large range of the surround luminance. When the sur­

round luminance is very small, the Webber ratio decreases as the surround luminance increases and

when the surround luminance is very big, the Weber ratio increases as the surround luminance in­

creases. Weber's law demonstrates that high visibility thresholds will occur in the regions of a pic­

ture that are either very dark or very bright, while the lower threshold will occur in the medium to

dark-grey regions and the visibility threshold in this case is proportional to the background lumi­

nance. Therefore, applying Weber's law to image coding, the impairment is easier to perceive in

the medium to dark-grey regions but harder to perceive in very dark or very bright regions.

Surround
luminance Ls

Stimulous
area --+-\-+

Background
luminance Lb

Figure 4.1 Display for the experiments to determine the dependence of

the visibility threshold on the background and surround luminance

Experiments show that the visibility threshold is also affected by the luminance change which is

adjacent to the test stimulous. It is known that the visibility threshold is increased by a non-uniform

luminance background. This is referred to as spatial visual masking of the test stimulous by a non­

uniform background. A typical experiment for demonstrating the spatial masking is that a thin ver­

ticalline of light is presented at various locations relative to a vertical edge and the visibility thresh­

old of the line stimulous is measured. Some experimental results can be obtained. First, for the edge

of both low and high contrast, the visibility threshold rises as the edge is approached from either

55

Chapter 4 Image Quality Evaluation

2% ..uu"" ...• ______ ~

10-2

Ls (Ft. Lamberts)

Figure 4.2 The Weber ratio vs. the surround luminance

side; and second the visibility threshold is increased a little if the luminance transition in the back­

ground edge is small while the visibility threshold is increased significantly if the edge is very

sharp. The result regarding the spatial masking which can be used in the image coding is that dis­

tortion is harder to perceive in a non-uniform background than in a uniform background and is

much harder to perceive near big spatial detail than brief detail.

The results related to the visibility threshold discussed in the above can be employed in the design

of the function for image quality evaluation. Suppose the Weighted Mean Squared Error (WMSE)

is used as a rough indication of the quality of a processed image. The weights in the WMSE can be

designed according to the results obtained from the study on the visibility threshold. For example,

if the luminance value of a pixel is very large or very small, its weight in the WMSE computation

is set small. Additionally, for a pixel, the activities of its surrounding pixels are computed. If its

neighbouring pixels are very active, i.e. there are big spatial details around it, its weight in WMSE

computation is set small, otherwise the weight is set big.

Colour perception is more complex than brightness perception. It is known that the cones on the

retina are responsible for colour perception by means of light-sensitive chemicals called photo-pig­

ments within them. There are three different types of cones which are sensitive to three areas of the

56

Chapter 4 Image Quality Evaluation

visible spectrum, with peaks at approximately 445 (blue), 535 (green) and 570 (red) nanometers.

These three cones are commonly known as red, green and blue cones. Each type of receptor inte­

grates the energy in the light from an object at various wavelengths in proportion to their sensitivity

for that wavelength. The perception of a colour has three attributes, namely, brightness, hue and

saturation, which are generally used to distinguish one colour from the others. Brightness refers to

intensity and is the degree of bright or dim of an object appears to have. Hue is associated with the

dominant wavelength in a mixture of light waves and it is the attribute of visual sensation where a

stimulous appears to be a dominant colour, such as red, green, yellow, blue etc. Hue is a distinctive

characteristic of any chromatic colour that distinguishes it from the other hues. Saturation is the

attribute of a perceived colour that tells how different the colour is from an achromatic colour

(white or grey). Since each colour can be considered to have two components, chromatic and ach­

romatic, saturation can be characterized as the proportion of the chromatic and achromatic compo­

nents. The degree of colour saturation is inversely proportional to the amount of white light in the

colour. For example, the pure spectrum colours are fully saturated while colours, such as pink (red

and white) is less saturated. Hue and saturation together are called chromaticity.

Colour appearance is very complicated because colour is the perceptual experience of the human

observer. Though it has been studied for long time, a standard procedure for measuring colours

does not exist. The perceived appearance of a colour stimulous depends on many factors, such as

the background, the shape of the observed objects, the spectral power distribution of the source

light etc. Next, some experimental results are studied.

The appearance of a colour is dependent on the colour of its background [Gers85] [Macd90]. First,

the background colour appears to be subtracted from the foreground colour. For example, suppose

two identical size squares which have the same purple colour are viewed against a blue background

and a red background respectively. It can be observed that the foreground purple appears more as

a blue purple on the red background. Additionally, if the foreground and the background colours

are opposite each another, that is they exhibit a high degree of contrast in hue, such as blue and

orange, the foreground colour takes on the characteristic of the complement of the background co-

57

Chapter 4 Image Quality Evaluation

lour. For example, suppose the foreground colour is orange and the background colour is purple.

The foreground orange colour seems to be intensified. Also the lightness/darkness of the back­

ground colour affects the appearance of the foreground colour. A dark background makes the fore­

ground colour appear lighter than it is, while a light background makes the foreground colour

appear darker. The saturation of the background colour has the similar effect on the foreground co­

lour. A medium bright colour can appear more intense by being placed on a very dull background

and it can also appear less intense by being placed on a more intense or more vivid background.

Some other well-known effects are discussed in the followings.

The perceived colour of an area also depends on the size of the area. The colour of small area ap­

pears more saturated. Likewise, the colour of a patch affects its perceived area. The area of a satu­

rated colour appears larger than the area of a de-saturated colour.

It has been mentioned previously that the achromatic channel carries information which is the

summation from the red and green cones. Consequently, the visual system is most sensitive to the

center of the spectrum and the sensitivity decreases towards the spectral extremes. This means

small changes in the middle range of the spectrum (green) are easier to detect than those in the short

and long ranges of the spectrums (blue and red), that is blue and red must be of greater intensity

than green to be perceived.

The subjective feature of colour perception has been mentioned in chapter 3 related to colour code­

book ordering. In colour codebook ordering, it is required that the codewords which represent close

colours should be put close in the code book and the codewords which are also in the codebook

should represent close colours. However, because of the subjective feature of colour perception, it

is quite hard or impossible to decide exactly whether two codewords represent close colours, or

which code word represents the closest colour to the colour represented by the reference codeword,

just based on the tristimulous values of the code words. This makes the colour code book ordering

complicated and degrades the ordering algorithms for colour codebook ordering.

58

Chapter 4 Image Quality Evaluation

4.2 Subjective Testing

One way of testing image quality is to judge the quality by human beings. A group of observers

examine a set of images and make subjective decisions about the quality. The results of subjective

testing nonnally depend on the observers background, the motivation for examining the images

etc. There are two commonly used methods, namely the category-judgement method and the com­

parison method [Netr881.ln the research addressed in this thesis, the quality of the processed image

is not evaluated by the methods discussed below. They are evaluated by the MSE or the SNR and ,

visually tested by several people.

4.2.1 Category·Judgement Method (Rating Scale Method)

A panel of observers view an original image and a sequence of processed images, and assign each

processed image to one of several categories. The categories may be based either on overall quality

or on visibility of impairments as in table 4.1 (a) and Cb) respectively.

(a) Cb) Cc)

5 Excellent 5 Imperceptible 3 Much better

4 Good 4 Perceptible 2 Better

3 Fair 3 Slight annoying 1 Slight better

2 Poor 2 Annoying 0 Same

1 Bad Very annoying -I Slight worse

-2 Worse

-3 Much worse

Table 4.1 Quality and impairment ratings

S9

Chapter 4 Image Quality Evaluation

The subjective judgement depends upon many factors such as the highlight luminance, contrast ra­

tio, image size, viewing distance, experience and motivation of the observers, and the range of the

picture material etc. Many of the above variables and their effect on subjective assessment have

been studied in depth, and international standardization has been generated with recommendations

from the CCIR. Consequently, the results which are obtained from different observers at different

times can be compared.

The results of the category-judgment procedure are normally presented by computing a Mean

Opinion Score (MOS) defined as the function below (Eq.(4.1», where Cj is the numerical value cor­

responding to category i, nj is the number of judgements in that category and k is the number of

categories in the scale. The MOS value is used as the evaluation result for a processed image. Nor­

mally, the MOS values are quite consistent, provided appropriate observers are chosen and the

viewing conditions are proper.

MOS =

k

L, nici
i = 1

k

Inj
i = 1

(4.1)

Category judgement methods are popular in broadcast television for monitoring picture quality,

since they can be used for setting up and maintaining an appropriate grade of service.

4.2.2 Comparison Method

An alternative method for subjective quality measurement is the comparison method. In this meth­

od, the observers compare an impaired or distorted test image with a reference image to which im­

pairment of a standard type has been added. The comparison may be on two monitors arranged side

by side or on one monitor where both images are displayed sequentially in time. Impairment is add-

60

Chapler4 Image Quality Evalualion

ed to the reference image until both images appear to the observers to be of equal quality. The

amount of the added impairment can be either under the subject's control, or alternatively a group

of images with variable amount of impairment can be precomputed, stored and displayed in a given

sequence.

The comparison between the test image and the reference image can usually be done accurately

when the two types of distortions are visually similar, e.g., additive noise of different spectral char­

acteristics. The distortion of the test image can be assigned a quality (or category) by utilizing the

previous category-judgement test ratings on the impaired reference images.

A variation of this method is where the subject uses a comparison rating scale, e.g., table 4.I(c), to

compare test images with a reference image. The observers then reply to the question "how much

better or worse is the test image compared to the reference image?" using the comparison rating

scale. The resulting data is then processed to determine the "point of subjective quality" between

the distorted test image and the impaired reference image. One problem in these comparison meth­

ods is that transitivity among impaimlents may not always be hold, especially when different im­

pairments have very different appearance. For example, suppose the following subjective

equivalence has been established separately: x amount of impairment A is subjectively equivalent

to y amount of impairment B; and y amount of impaimlent B is also subjectively equivalent to z

amount of impairment C. It is not always true to conclude that x amount of impairment A is sub­

jectively equivalent to z amount of impairment C.

4.3 Objective Evaluation of Image Quality

The objective evaluation of image quality is to establish a functional relationship between the de­

gree of the impairment felt by observers and the measurable characteristics of the degraded image.

However, a function which can predict the quality of the degraded image and is correlated with the

61

Chapter 4 Image Quality Evaluation

subjective evaluation has not been developed. This is because many aspects in image quality eval­

uation are a purely subjective matter and the visual processing is not fully understood. For exam­

ple, viewers always concentrate their attention on particular areas of a displayed image at anyone

time, and large distortions in other regions of the visual field may be ignored. Or the attention of

the casual observer, whose eyes roam, initially at least, at will over the displayed image, will be

caught by isolated large impairments, especially if the impairments are caused by individual local­

ized luminance errors which are correlated, i.e. form a pattern with readily recognizable structure.

Furthermore, when people evaluate an image, they normally compare it with what such an image

"ought to" look like rather than with the original image.

Some models for image quality have been proposed, either in the space domain or frequency do­

main [Netr881. They are consistent with many physiological facts and psychophysical experi­

ments, such as non-linearity, visual masking etc. But they cannot be uniquely derived based on

experimental data and are too complex to be directly useful at present for optimizing coding algo­

rithms.

The methods used frequently in practical applications are the Mean Squared Error (MSE) or the

Signal to Noise Ratio (SNR). Suppose the image resolution is N x N, the MSE between the original

image and the distorted image is computed as follows,

N-IN-I

MSE = ~ L L E(fjj-f'j) (4.2)
N j=Oj=o

where fjj'!'jj are the value of the original and the processed data respectively and EO is expecta­

tion. Experimentally, the MSE is often estimated by the average sample mean squared error in the

given image defined by:

N-IN-I

MSE~~ L L (fij-f'j/ (4.3)
N j=Oj=O

The SNR used in image processing is:

62

Chapter 4 Image Quality Evaluation

SNR =

N-IN-I

~I IJt
N i=Oj=O

JMSE

112

(4.4)

The MSE and the SNR are very simple to compute and are widely used, particularly in mathemat­

ical studies, but they show weak correlation with the judgement of human observers. The reason

for this is that they do not consider the aspect of the human observer. For example, the human vi­

sual system does not process the image in a point-to-point way but extracts certain spatial and tem­

poral features for neural coding, while Ihe MSE or the SNR are the summation of the distortion of

point-by-point without any consideration of their spatial relationship. Therefore, it is quite possible

that the processed image has a poor quality but a very small MSE or SNR value.

For col or images, one typical method for the distortion computation is, first compute the distortion

of three component images separately in the same way as the computation on the black and white

image, and then compute the summation of the three distortion values as the final result. Such in­

dependent processing of the three component images does not consider the interaction of the three

colour components.

63

Chapler 5 Image Compression

Chapter 5

Image Compression

This chapter deals with the technology for image compression. The goal of image compression is

to reduce the amount of data in the image in order to minimize the memory for storage and the

bandwidth for transmission. A large variety of techniques for image compression has been devel­

oped and is reviewed in section 5.1. Image compression techniques can be divided into two main

classes, namely information lossless and information lossy techniques. The fonner is able to recon­

struct the original image without any loss of information whereas the later introduces some distor­

tion in the reconstructed image which should not be perceived by human eyes. In this chapter, the

Discrete Cosine Transform (DCT), which is an information lossy technique, is discussed in section

5.2. The conventional colour image compression techniques are studied in section 5.3. Finally the

Joint Photographic Expert Group (JPEG) still image compression standard is described in section

5.4.

5.1 Review of Image Compression

In image transmission and storage, digital techniques instead of analog are increasingly used due

to the rapid growth in the use of digital computers, the declining cost of digital processing and

transmitting equipments. This is also because the digital transmission and storage system has many

inherent advantages over the analog system, such as easy processing, processing flexibility, easy

64

Chapter 5 Image Compression

and random access in storage, higher signal-to-noise ratio (SNR), possibility of erroriess transmis­

sion etc. However, images, whether digital or analog, contain a large amount of information and

require wideband channels for transmission and big memory for storage, especially digital images.

For example, a 4 MHz television signal sampled at Nyquist rate with 8 bit samples could require a

bandwidth of 64 MHz in transmitting. Therefore it is highly desirable to compress image data for

transmission and storage. A lot of techniques for digital image compression [Jain88] [Netr88] have

been developed.

The statistical properties existing in images are the main reasons that images can be compressed.

The statistical property upon which intraframe coding techniques rely is the high correlation be­

tween neighbouring pixels.This means that adjacent pixels are usually similar to one another and

the magnitude of a pixel may be estimated from the values of the pixels around it. Most images,

even fairly "active" images which contain a large amount of spatial detail, have quite high values

of correlation. The interframe coding is based on the fact that there exists a large amount of frame­

to-frame correlation in moving images, which is also called temporal correlation. For example, in

moving images, the background is likely to remain stationary in successive frames. The correla­

tions in one frame of an image or successive frames are image data redundancies which can be re­

duced without apparent degradation of image quality. [n this thesis, only the intraframe

compression techniques are discussed.

The image compression techniques can be classified into two classes, namely information [oss[ess

and information lossy techniques. The fomler is able to reconstruct the original image without any

loss of information, whereas the later introduces some distortion in the reconstructed image and

cannot recover the original image exactly. Lossless and lossy compression techniques are used in

different applications. For example, medical images often require completely lossless compression

because any slight distortion may result in wrong diagnosis. [n other applications, such as enter­

tainment, education etc., the reconstructed images need not necessarily be exactly the same as the

original ones and lossy compression techniques are then widely used. The [ossless techniques nor­

mally reach lower compression ratio while the lossy techniques can reach higher compression ra-

65

Chapler 5 Image Compression

tio. Next we will discuss the monochrome image compression techniques for intraframe coding.

5.1.1 Predictive Coding

Predictive coding is a popular technique for image compression. Since in a typical image, the pixel

sequence has statistical dependency from one pixel to the next, then the value of a given pixel may

be predicted from its preceding coded neighbouring pixels. On the encoding side, the code of a giv­

en pixel is the difference between the pixel value and its predicted value. On the decoding side, the

original pixel is recovered by the difference signal together with the predictor which is carried out

in the same way as that in the encoding.

The predictive coding is relatively simple and easy to implement. It has low complexity both in

memory requirement and number of operations. Using adaptive systems, predictive coding can

give good quality images in the 1 to 2 bits/pixel range. However, the predictive coding is quite sen­

sitive to channel errors. For example, a code loss will result in the loss of the rest of the codes if no

extra counter measures are used, and an error code will introduce distortion to all the codes after

it. Also, it depends on the variation in input data statistics.

5.1.2 Transform Coding

The basic motivation behind transfoml coding rWint72j [Clar85] is to transform the image from

the data domain to a frequency domain by an energy preserving unitary transform. In the frequency

domain, the image pixels are de-correlated and the energy is concentrated on a few coefficients so

that the high frequency coefficients and the coefficients with less energy, can be removed without

any visual effect on the reconstructed image, since they play less important roles in the image re-

66

Chapter 5 Image Compression

construction. The transform could be applied to the entire image but implementation problems

make this impractical. First, the amount of the memory and the computation required increase pro­

portionally to M2, where M is the image dimension. Second, because of the elimination of unim­

portant coefficients, large transform size often leads to more significant degradation than small

size. A typical approach is to divide the image into a number of rectangular blocks or sub-images,

normally 8 x 8 or 16 x 16, and then an unitary transform is applied to each sub-image.

After the transformation, the image compression in the transform coding is achieved by quantizing

the transform coefficients. If all the coefficients are quanti zed and coded, the compression ratio is

quite small. It has been pointed out that the important characteristic of the transform is that most

energy of the image is packed into a small number of low frequency coefficients and the coeffi­

cients with less energy or the high frequency coefficients play less important roles in the image re­

construction. To achieve higher compression, one possibility is to use a mask covering an area of

low frequency coefficients and to discard the remaining coefficients, i.e. set the remaining coeffi­

cients to zeroes. Only those coefficients in the mask are quantized and coded. Considerable com­

pression can be achieved depending on the size of the mask. This technique is known as zonal

coding. Another possibility is to use a threshold on each transform coefficient and set the coeffi­

cients which are below the threshold value to zero. The remaining non-zero coefficients together

with their address information are quantized and finally coded efficiently by coding schemes such

as the Huffman coding [Huff52] or the arithmetic coding[Witt87J. For better subjective image

quality, the quantizer in both cases should be designed to optimize the reconstructed image quality

for a given number of bits.

A number of orthogonal transfom1s can be used in the transform coding and most of them are lin­

ear transformations.

1. The Karhunen-Loeve Transform (KLT)

The Karhunen-Loeve transform [Clar851 is the best linear transformation in the sense of

67

Chapler 5 Image Compression

completely de-correlating the data and maximizing the amount of energy compacted into

the lowest-order coefficients. However, it is not certain that the KLT is the absolutely op­

timum transform since it does not consider other factors such as the human visual system.

Additionally, the transform matrix depends on the image data, i.e., the transform matrix

is different for different image data. Thus, the KLT transform matrices are also transmitted

and stored along with the coded data. Furthermore, the amount of the computation in the

transform matrix generation is very large and the KLT has no fast transformation associ­

ated with it.

Because of the computation complexity, the large amount of storage requirement and the

dependence on the input images, the KLT is seldom used in practice but is employed in

theoretical studies of image coding. I t gives an indication about the upper-bound of what

other transformations, computationally more efficient, should attempt to reach for de-cor­

relating data samples.

20 The Discrete Fourier Transform (DFT)

The discrete Fourier transform [Clar85] is naturally applied to image coding because of

its widespread use in other signal processing fields and the fact that it has efficient com­

putational algorithms and fast implementation. It is the only complex transform used in

data coding schemes. The OFT is not convenient for general use due to the necessity to

process both real and imaginary components, which requires a large number of operations

and large storage.

30 The Discrete Cosine T.oansform (DCT)

The discrete cosine transform [Ahme74] is one of an extensive family of sinusoidal trans­

forms. Compared with other orthogonal transforms, the OCT has the best all-around per­

formance with respect to efficient computation and acceptable perceptual quality for a

68

Chapler 5 Image Compression

given compression rate. It is widely used in image compression and is adapted in the

JPEG still-image compression standard. The OCT will be discussed in section 5.2.

4. The WaIsh-Hadamard Transform (WHT)

The Walsh-Hadamard transfoml IPrat81][Clar85] is the simplest transform among vari­

ous types of orthogonal transforms. The elements in the transform matrix only consists of

1 and -1, and the only multiplication needed is that of the final scaling operation. Howev­

er, it is too simple to compact energy well.

Transform coding can achieve higher compression ratios than the predictive coding and its com­

pression ratio is normally 10:1. It also has better immunity to channel noise. In the transform cod­

ing, a code error in transmission only influences the corresponding block and has no effect on the

succeeding blocks because this error is distributed by the reverse transform over the entire block.

Visually, a code error in the transform coding is less visible than that in predictive coding. Howev­

er, transform coding has some defects. First, since the image is divided into blocks, the block to

block correlation is not employed in the transform. Furthermore, artificial blocking segments the

image arbitrarily without considering its contents. Second, in the transform coding at low bit rate,

sometimes the so-called blocking effects and mosquito effects are apparent in the reconstructed im­

age. Blocking effects are perceived in the reconstructed image as visible discontinuity between ad­

jacent blocks. Mosquito effects are the fluctuation of luminance/chrominance within blocks. These

are especially visible around the boundaries of moving objects and still background. Both effects

are caused by the improper coding of the transform coefficients, such as eliminating too many co­

efficients or the coarse quantization. Finally, transfoml coding needs more operations and memory

than predictive coding. This is improved due to the rapidly decreasing cost of digital hardware and

computer memory, and this may no longer be a disadvantage. Many transforms, such as the OCT,

the OFT etc., have been hardware implemented to achieve higher speed performance.

69

Chapter 5 Image Compression

5.1.3 Hybrid Coding

Hybrid coding [Habi74] is a kind of technique which combines transform coding and predictive

coding together to generate a better coding scheme. It takes the advantages of transform coding and

predictive coding and overcomes their shortcomings to a certain degree. Typically, in a hybrid cod­

ing, a two-dimensional image is unitarily transformed in one of its dimension to obtain a sequence

of one dimensional sequences. Each of these sequences is then coded independently by a one di­

mensional predictive technique, such as the DPCM.

Generally, hybrid coding performance lies between transform coding and predictive coding. It is

easily adaptable to coding images and changes in data statistics. It is less sensitive to channel errors

than predictive coding.

5.1.4 Vector Quanti7.ation (VQ)

According to Shannon's rate distortion theory, a better performance is always achievable in theory

by coding vectors instead of scalars. Though predictive coding and transform coding usually use

the psychovisual as well as statistical redundancy in the image data to reduce the data rate, one de­

ficiency of these coding schemes is that quantization is performed on individual samples of image

pixels and lower compression is obtained. Vector quantization [Gers82] [Gray84], however, is one

of the coding techniques that could approach the rate distortion limit and achieve high compression

rate. The principle of vector quantization has been discussed in section 2.1. Here, vector quantiza­

tion is discussed in the context of image compression.

In vector quantization, compression is achieved by using a relatively small codebook to approxi­

mate the gamut of the image vectors. Let np be the number of bits for one pixel, Ne be the size of

the code book and n be the dimensions of the vector. The resulting bit rate of the vector quantization

70

Chapter 5 Image Compression

scheme is R = (log2Nc)/n bits/pixel and the compression ratio is R!np' that is (log2Nc)/nnp. In the­

ory, vector quantization can achieve perfomlance close to the rate-distortion bound as n ~ 00, how­

ever, large vector dimensions will make codebook storage and searching impractical. Fortunately,

reasonable performance can be achieved with modest n, say in the range of 4.

Vector quantization can also be used together with other image compression techniques to form

more powerful and efficient image compression techniques, such as predictive vector quantization,

transform vector quantization [Mare86][Maen891etc. In predictive vector quantization coding

scheme, the encoder consists of a vector predictor and an error vector quantizer. The error vector

is coded by vector quantization. The idea of predictive vector quantization can also be extended to

interframe DPCM coders. In transform vector quantization coding scheme, the vector quantization

is applied to the transform domain. It is believed that using vector quantization rather than scalar

quantization on transform coefficients can achieve better compression. Besides, since some of the

high-frequency coefficients are discarded, the computational cost can be reduced. For colour im­

ages, a VQIDCT coding scheme [Wang91] is developed, which will be discussed in the later chap-

ters.

Vector quantization has been successfully applied to digital image coding at low bit rates. For ex­

ample, for monochrome images, the rate is in the range of 0.5-1.5 bits/pixel. Besides, the particu­

larly simple table looking-up decoding procedure makes vector quantization an attractive method

of data compression in practice. However, the simple vector quantization system suffers from some

defects. First, edges are poorly reconstructed and the code word edges make the reconstructed im­

age appear "blocky" because the code book cannot reproduce all the possible patterns in the image.

This situation can be improved by constructing composite codewords, that is to have separate code­

books for the edge information and the texture information [Gers821. Secondly, vector quantization

codes are very sensitive to errors because a code error will result in a wrongly reconstructed vector.

Thirdly, the codebook generation and the coding procedure need a lot of computation. Finally, the

distortion measure used normally is the Mean Squared Error (MSE) measure which does not cor­

relate well with perceived quality. Better quality for vector quantization could probably be

71

Chapter 5 Image Compression

achieved with a more complicated distortion measure rather than the MSE distortion measure.

5.1.5 Synthetic High Coding

The synthetic high coding [Kunt85][Kunt87] exploits the properties of the human visual system to

achieve a considerable amount of redundancy reduction. In the synthetic high coding system, the

image is split into two parts: the low-pass image giving the general area brightness without sharp

contours and the high-pass image containing sharp edge information. The low-pass image can be

represented by very few samples. The high-pass image is characterized by the location, magnitude

and argument of each selected edge-point gradient. These are coded for storage and transmission.

Therefore, the coded image is represented by four sets of data, low-pass image, contouring direc­

tion changes, gradient direction changes and gradient magnitude. The low-pass image is coded by

transform coding. Because there is no sharp edge in the low-pass image, the weakness in coding

edges in transform coding is no longer a problem here and transform coding can work very effi­

ciently. The edge information can be coded by an optimum Huffman code derived from their dis­

tribution. At the decoding side, the image is reconstructed by the low-pass image and a two­

dimensional reconstruction filter. The reconstruction filter, whose properties are determined

uniquely by the low-pass filter for the low-pass image, is used to synthesize the high frequency part

from the edge information. The synthetic high coding can achieve higher image compression ratio,

up to 70: 1. But it needs a tremendous amount of computation which makes it inappropriate for real­

time applications.

5.1.6 Discussion

A large number of image compression techniques have been developed for digital image transmis-

72

Chapter 5 Image Compression

sion and storage. They have been efficiently used in real-time applications due to the development

of computers, both in the power and the speed, and niicro-electronic technologies. Many coding

techniques, which used to be thought too complex for real time applications, such as the DCf, can

be hardware implemented by small fast DSP chips.

However, most of image compression techniques, such as predictive coding and transfonn coding,

are mainly based on the statistical properties in the image data to achieve redundancy reduction

with less consideration of the properties of the human visual system. With the progress in the study

of the brain mechanism of vision, new methods exploiting the vision properties for image compres­

sion to achieve higher compression ratio are being studied intensively [Kumt85] [Kunt87]. In this

kind of methods, an image is described by contour and texture and then the contour and the texture

are encoded. This kind of image descri ption is more natural since it coincides with the psycholog­

ical conception of vision. The synthetic high coding system is an example. This group of methods

can reach high compression ratios, some of them up to 100: I. The main problem associated with

them is the large amount of processing. They are still in the research stage.

5.2 The Discrete Cosine Transform (DCT)

The discrete cosine transform [Ahme74] was proposed by Ahmend et al. in 1974. At that time,

there was increasing interest in the class of orthogonal transforms, such as the discrete Fourier

transform, the Hadamard transform, in the general area of digital signal processing, such as image

coding, pattern recognition etc. It is known that the KLT is the optimal transfonn with respect to

perfonnance measure, but it needs a large amount of computation and has no fast transfonn. There­

fore, researchers tried to develop a transform which is close to the performance of the KLT and has

fast algorithms. To fill the role, the discrete cosine transform was proposed.

The two-dimensional discrete cosine transfom1 of a data sequence f(i, j) for i, j = 0, 1, ... , N - 1, is

73

Chapter 5 Image Compression

defined as:

4C(u)C(V)N~JN~J .. (2i+ l)u1t (2)+ l)v1t
F (u, v) = 2 £... £... !(t,j) cos 2N cos 2N

N i=Oj=O

(5.1)

for u, v = 0, I, ... , N-I, where

I
00=0

c(oo) = {~ for

for oo=I, ... ,N-I

The inverse two-dimensional discreJe cosine transform is defined as:

fU,})
N-JN-J (2i + I) U1t (2) + I) V1t

= L, L,c(u)c(v)F(u,v)cos 2N cos 2N
u = Qv = 0

(5.2)

for i, j = 0, I, ... , N - I.

It has been shown that the performance of the OCT is nearly identical to the KLT transform for

blocks ofreasonable large size ITsen781. Furthermore, the empirical evidence shows that even for

blocks of small size the performances of the OCT and the KLT are close. Additionally, experiments

show that the OCT [Mak085] is better than other transforms, such as the Hadamand transform etc.

in respect to the minimum block distortion and good energy compaction.

Since the computation in the OCT by software is quite large for time critic applications, fast ver­

sions of the OCT [Chen77][Kama82][Makh87] have been proposed. Though speed performance

is improved by the fast algorithms, the fast algorithms still require a large amount of computation.

Now the OCT can be hardware implemented by digital signal processor to achieve high speed at

reasonable cost.

74

Chapter 5 Image Compression

5.3 Conventional Colour Image Compression

Typically, a colour image is composed of three bands, corresponding to the three colour primaries,

namely Red, Green and Blue. Colour image compression can be carried out on the Red, Green and

Blue bands independently using the techniques for monochrome image compression. However,

this simple approach does not achieve very efficient compression. Because there is considerable

correlation among the Red, Green and Blue components, especially for natural pictures. This

means that pixels with similar values of Red, Green and Blue components occur frequently in the

image. This redundancy cannot be removed by the operations on the Red, Green and Blue bands

independently. Alternatively, the Red, Green and Blue primaries can be firstly transformed into al­

ternate colour primaries to decorrelate the correlation in the Red, Green and Blue primaries and the

compression techniques are then applied to the transformed primary bands independently. In most

colour image compression schemes [Eina87] [Limb77][Mitr89], the ROB coordinates are normal­

ly transformed into the YUV coordinates using the following transformation:

[

y (i, i)l ~0.299 0.587 0.114J [R (i, j)l
U (i,i) = 0.596 -0.274 -0.322 G (i,j)
V U,i) 0.212 -0.523 0.311 B (i,j)

and its reverse transformation from the YUV back to the RGB is:

[
R (i, i)l [1.000 0.956 0.621

1
[Y (i, j)l

G (i,j) = 1.000 -0.272 -0.647 U (i,j)
BU,}) 1.000-1.106 1.703 VU,j)

In the Y, U, V representation, most energy from the Red, Green and Blue components is packed on

Y (as much as 93%) and significant less energy on U (about 5%) and V (about 2%). The Y com-

ponent contains luminance information and the U, V components contain chrominance informa­

tion. Since the U and V components carry less energy, the U and V bands are often spatially

averaged and sub-sampled by a factor 2: I or 4: I in both horizontal and vertical directions without

noticeable effect on the image quality. At the receiver side, the reconstructed U and V bands are

interpolated back to the original size. Another colour primary transform which is similar to the

YUV primaries but easier to implement in hardware is: Y, R - Y and B - Y components. These two

75

Chapter 5 Image Compression

kinds of colour primaries have no significant difference from the compression point of view.

In conventional colour image compression scheme, the Red, Green and Blue primaries are first

transformed to a proper primaries which can compact energy well, such as the YUV primaries.

Then the image compression techniques are applied to the three transformed primary images sep­

arately in the same way as to a black and white image.

5.4 The JPEG Still Picture Compression Standard

To promote widespread application of digital image transmission and storage in the market place,

an image compression standard is required. An international team of technical experts, called the

Joint Photographic Experts Group (JPEG), has been working for the past few years on the first in­

ternational digital image compression standard for continuous-tone (multilevel) still images both

gray scale and colour [Huan89J[WaIl91][Mitc9IJ. The JPEG aim was to develop a compression.

standard which meets the following requirements: a) be at or near the state of the art compression

performance; b) be applicable to the widest range of applications and consistent with a number of

predetermined constraints; c) have tractable computational complexity; d) have the following

modes of operation: sequential encoding, progressive encoding, lossless encoding and hierarchial

encoding.

\

The JPEG standard describes a family of image compression techniques. It provides a toolkit of

image compression techniques which can be selected for a wide range of applications with differ­

ent requirements. There are four main modes of operation in the JPEG toolkit, which provide the

framework for implementation of both lossy and loss less coding processes. They are sequential

DCT-based mode; the progressive DCT-based mode; the sequentiallossless mode; and the hierar­

chical mode. In the remaining part of this section, the main focus is on the DCT-based coding

which is a key part in the standard and many of the techniques used in it are also employed in other

76

Chapter 5 Image Compression

modes of operation. The block diagram of the DCT-based coding is shown in figure 5.1.

DCT
Entropy

Source
Quantization Encoding

Compre ssed
data image data

T
image

Table Table
Specification Specification

DCT-based encoder

Entropy
mCT Dequantization

Co mpressed
Decoder

Reconstru cted

ata 1 mage data image d

,
Table Table

Specification S peci fication

DCT-based decoder

Figure 5.1 The diagram of the DCT-based coding

The main processing steps in the DCT-based coding are explained as follows:

• 8 x 8 FDCT and meT

The FDCT (Forward Discrete Cosine Transform) is applied to streams of blocks of 8 x 8

pixels and outputs 64 DCT coefficients. The coefficient with zero frequency in both di­

mensions is called the DC coefficients and the remaining 63 coefficients are called AC co­

efficients which represent the values of different frequency changes. The FDCT

concentrates most energy on the lower spatial frequencies, which provides the possibility

77

Chapler 5 Image Compression

of data compression. The lDCT (Inverse Discrete Cosine Transform) is applied to 64

DCT coefficients and reconstructs a 64-point image signal.

• Quanti7.ation

The compression is achieved by the process of quantization on the FDCT coefficients.

Quantization is used to discard information which is not visually significant in the image

reconstruction. Each of the 64 DCT coefficients is quantized in conjunction with a 64-el­

ement quantization table, that is each of the 64 coefficients is divided by its corresponding

threshold in the quantization table, followed by rounding to the nearest integer:

Q (F (u, v)) F (u, v) = Integer Round
Q (u, v)

(5.3)

The quantization tables recommended by the Committee are given in tables 5.1 and 5.2,

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Table 5.1 Luminance quantization table

78

Chapter 5 Image Compression

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

Table 5.2 Chrominance quantization table

• Zigzag scan order

The 8 x 8 block of the DCT coefficients is reorganized into a one-dimensional list in the

order of zigzag sequence shown in table 5.3, so that the lower frequency coefficients are

concentrated at lower indexes to facilitate later encoding. Because of the important role

of the DC coefficient in the image reconstruction, it is coded in a different way. The DC

coefficient from the preceding 8 x 8 block is used as a predictor for the DC value of the

current block and either the Huffman coding or the arithmetic coding is employed to code

the difference between the DC value of current block and the predictor.

0 I 5 6 14 15 27 28

2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63

Table 5.3 Zigzag order of an 8 x 8 matrix

79

Chapter 5 Image Compression

• Entropy coding

Entropy coding can achieve additional lossless compression by encoding the quantized

DCT coefficients more compactly based on their statistical characteristics. The JPEG pro­

posal specifies two entropy coding methods, the Huffman coding [Huff52] and the arith­

metic coding [Lang87][Witt87].

The entropy coding can be considered as a 2-step process. The first step converts the zig­

zag sequence of quantized coefficients into an intermediate sequence of symbols. The sec­

ond step encodes the symbols in a data stream. The intermediate symbol sequence for AC

coefficients is composed of two parts, symbol-I and symbol-2:

symbol-I: (RUNLENGTH, SIZE)

symbol-2: (AMPLITUDE)

where the RUNLENGTH is the number of consecutive zero value AC coefficients in the

zigzag sequence, SIZE is the number of bits used to encode AMPLITUDE, and AMPLI­

TUDE is the value of a non-zero coefficient. At the end of each block, there is a terminat­

ing symbol [EOB] to signify the end of the block. RUNLENGTH uses 4 bits and

represents a value from I to IS. If there are more than IS consecutive zeroes, symbol-I is

represented as (15, 0) which is interpreted as the extension symbol with RUN LENGTH

= 16. Therefore, for each 8 x 8 block of pixels, the zigzag sequence of 63 quantized coef­

ficients is represented as a sequence of symbol-I and symbol-2 pairs, and each pair can

have repetitions of symbol-I in the case of a long run-length or only one symbol-I in the

case of an EOB.

The numerical analysis of the 8 x 8 FDCT equation shows that, if the 8 x 8 block input

pixel is N-bit integers, the non-fractional part of the output coefficients can grow by at

most 3 bits. Therefore, in the 8 x 8 block FDCT with 8-bit pixels, the quantized AC coef­

ficient amplitude is in the range [_2 10, 210 - IJ. Then the symbol-2 AMPLITUDE code

uses I to 10 bit length to represent signed integer in the range [_2 10, 210 - I] and the SIZE

80

Chapter 5 Image Compression

represents value from I to 10.

The intermediate symbol sequence for the DC coefficient is:

, symbol-I: (SIZE) •
symbol-2: (AMPLITUDE)

Because the DC coefficient is differentially encoded, it is in the range [_211 ,211 - I). The

symbol-2 AMPLITUDE codes uses I to 1I bits and symbol-I SIZE represents a value

from I to I!.

For both DC and AC coefficients, each symbol-I is encoded with a variable length code

(VLC) from the Huffman table, which must be specified as an input to the encoder. Each

symbol-2 is encoded with a "variable length" integer (VLI) code whose length in bits is

given in table 5.4.

SIZE

2

3

4

5

6

7

8

9

10

AMPLITUDE

-I, I

-3, -2, 2, 3

-7, ... ,-4,4, ... ,7

-15, ... , -8, 8, ... ,15

-31, ... ,-16,16, ... ,31

-63, ... , -32, 32, ... , 63

-127, ... , -64, 64, ... ,127

-255, ... , -128,128, ... ,255

-511, ... ,-256,256, ... ,511

-1023, ... , -512, 512, ... ,1023

Table 5.4 The DCT coefficient arithmetic coding

81

Chapler6 Experimental Hardware Environment

Chapter 6

Experimental Hardware Environment

This chapter is about the hardware environment of the experimental system. First, it gives the

whole structure of the experimental system (§ 6.1). After a description of the transputer (§ 6.2.1),

the Inmos A 121 Discrete Cosine Transform chip (§ 6.2.2) and the FIFO chip (§ 6.2.3), it presents

the design and implementation of the DCT board (§ 6.2.4). It also introduces the MicroEye TC co­

lour image capture and display board (§ 6.3).

6.1 System Structure

The system is a transputer-based parallel image processing system, which can be used to compress

and decompress colour images by image compression techniques, such as the discrete cosine trans­

form, vector quantization etc., or to carry Ollt image processing, such as image segmentation, edge

detection etc. Figure 6.1 provides an overview of the whole system. It consists of an IBM PC, a

B004 transputer board, a discrete cosine transform board, a colour image capture and display board

(MicroEye TC), a colour image display monitor and a video camera.

The B004 board is a PC plug in board, which mainly contains an Inmos transputer, such as T414

or T425 32-bit processor, and 2 Mbytes RAM. It provides four transputer links, where one link,

normally link 0, is used in the interface with the PC, and the other three remaining links are left for

82

Chapter 6

E3
IBM PC

IBM Bus

2-way
protocol

o
monitor

camera

Experimental Hardware Environment

link

B004

link

link DcrBoard

link

Microeye TC

link

Figure 6.1 Experimental system structure

the expansion of the system by users. It runs the Tansputer Development System (IDS) [Inm088],

which provides an Occam application program development environment, and gives access to the

PC resources. In the experimental system, the B004 board is combined with the PC as the host com­

puter, while the DCT board and the MicroEye TC board are its transputer network nodes. The BOO4

board boots the Dcr board and the MicroEye TC board and loads their corresponding codes before

the whole system works. It performs most of the functions in the system. For example, it imple­

ments colour image vector quantization in the colour image VQlDcr coding scheme and colour

image edge detection in the colour image processing system.

The MicroEye TC board is a high speed colour video capture card and frames tore using transputer

technology, more details can be found in section 6.3. It provides an interface between the BOO4 and

the image input and output equipments in the experimental system. That is, it grabs an image from

the camera and sends the image to the B004 for processing, or sends the processed image from the

B004 to the monitor for display. It can also be used as the B004 link extension to exchange mes­

sages between the B004 and the DCT board due to the limited number of links available on the

83

Chapler6 Experimental Hardware Environment

B004 board. It can, for example, transmit some side information, like the threshold for the ocr
coefficients, from the B004 to the ocr board.

The ocr Board is specifically designed to implement the discrete cosine transform. It has high pre­

cision and fast speed owing to the use of discrete cosine transform chips. It provides four transputer

links as interfaces to the other transputer-based systems. It receives blocks of image data from the

B004 for the ocr coding and sends reconstructed image data to the B004 by transputer links.

The B004 board, the ocr board and the MicroEye TC board work in parallel and the message ex­

changes among them are made through fast transputer links. The link connection also makes the

system architecture flexible in applications since different functions can be realized by only chang­

ing the link software configuration. For example, when it is used to perform the colour image vec­

tor quantization or image processing, the link software configuration is set in the way of figure 6.2,

and when it is used to implement the colour image VQ/DCT coding, the link software configuration

is set in the way of figure 6.3, while the hardware configuration need not be changed in both cases.

B
IBM PC

IBM Bus

2-way
protocol

o
monitor

camera

Image VQ or
segmentation B004

c.control c.report

Monitor .and

camera control
MicroEye TC

Figure 6.2 Configuration for image VQ or other processing

84

Chapler6 Experimental Hardware Environment

B004

C)
I

I I E3
I I I 11

IBM Bus c.idct

• • Colour image

VQ 2-way c.dct ~
protocol

DCTdata IDCT
feed in data out

IBM PC DCT processor processor
Board

c.control c.report threshold de-threshold
zigzag de-zigzag

processor processor

O~ Monitor and
monItor c. threshold

V
camera control

c.dethreshold
MicroEye TC

camera

Figure 6.3 Configuration for colour image VQ/DCT coding

6.2 The DCT Board

The DCT board is designed for two reasons. First, though the Discrete Cosine Transform (DCT)

coding on images can be accomplished in software, the speed on a 512 x 512 colour image is very

slow, about 10 minutes. The speed can be improved by the fast DCT, but it is still not quick enough.

In the experimental system, since the DCT processing is only used as a test method for colour code­

book ordering, it is inefficient 10 consume most of the time on the DCT coding rather than on colour

codebook ordering. Second, since the index image (see § 3.2) is very sensitive to any errors, it is

required to keep the distortion caused by the computation precision in the DCT processing as small

85

Chapler6 Experimental Hardware Environment

as possible. The Dcr board is then designed to implement the DCT with high speed and precision.

In this section, first the main chips used in the DCT board are introduced. Then the design of the

DCT board is discussed.

6.2.1 Transputer

The transputer [Inmos891] is a high performance microprocessor with on-chip memory and four

or two communication links for point-to-point direct connection with other transputers, see figure

6.4. The transputer can also access external memory space, 4 Gbytes for the T800, T425 and T414,

and 64 Kbytes for the T222 and T2l2. The on-chip memory and the external memory are part of

the same linear address space.

Much of the power of the transputer lies in its link structure, 2 links for the T400 and 4 links for

the others. The independent bi-directional high speed Inmos serial links provide point-to-point syn­

chronized communication with other processors with bit rate of 5, 10, or 20 Mbps (Million bits per

second). Thus the transputer has the power of both data processing and data transfernng, while

conventional microprocessors just have the former power. Its link structure facilitates inter-process

communications and supports parallel and concurrent applications. It is easy to construct a network

of transputers for parallel and concurrent systems using point-to-point link communication without

external complicated logic circuits. The point-to-point link communication also saves the time and

the cost of system design. Moreover, the network of transputers is flexible and extensible for di­

verse processing requirements. Arbitrarily large systems can be constructed and more processing

power can be added by only adding more transputers connected by links. Additionally, transputer

links have DMA (Direct Memory Access) interface into memory to allow the data transfer to be

carned out with the minimum processor intervention. The DMA communications are particular

useful and efficient in transferring large blocks of data, such as image data.

86

Chapler6 Experimental Hardware Environment

System
Processor

Services

Link
input

Interface
On-chip

output

........
RAM •

•
•

1 t
~ •

I Application Specific Interface I
Figure 6.4 The transputer architecture

The other advantage of the transputer is its on-chip memory, 2 Kbytes or 4 Kbytes. The on-chip

memory is fast static memory with high rates of data throughput. It has a higher sustained data rate

than external memory. For the T222, for example, its internal memory sustained date rate is 40

Mbytes/sec, while the external memory sustained data rate is 20 Mbytes/sec. When memory re­

quirement is less than the size of the on-chip memory, external memory can be saved, which sim­

plifies the system design and reduces the cost of the system without the trials and complications of

memory interface circuits.

To gain most benefits from the transputer, the whole system can be designed in language Occam

[Burn88l. Occam is a concurrent high level language which is designed to support fully the trans­

puter construct. It has the communication structure which uses the link features of the transputer

87

Chapler6 Experimental Hardware Environment

and its many instructions are based on the features of the transputer. On the other hand, all trans­

puters contain special instructions and hardware to provide maximum performance and optimal

implementations of the Occam model of concurrence and communications. All transputer instruc­

tion sets are designed to enable simple, direct and efficient compilation of Occam.

The transputer family includes the 16 bit Inmos T212 and Inmos T222, the 32 bit Inmos T414 and

Inmos T425, and the Inmos T800, a 32 bit transputer with an integral high speed floating point pro­

cessor. The T222 is used in the Dcr board and its features can be found in appendix A.

6.2.2 The Inmos Al21 DCT Chip

The Inmos A 121 [Inmos892] is a digital signal processing device which is designed to provide high

speed computation of a 2-dimensional Discrete Cosine Transform (Dcr) or Inverse Discrete Co­

sine Transfoml (IDcr) at video rates for image processing. The pixel rate of the A 121 can reach

up to 20MHz, that is, for a block of 8 x 8 data, the 2-dimensional DCT calculation time can be less

than 3.2 Ils. It can then be used in image data compression and decompression, e.g. video codecs.

The Inmos A 121 computes on blocks of data which have fixed size of 64 samples and represent an

8 x 8 matrix, see figure 6.5. Data is sampled on the Din port every cycle and data is output every

cycle on the Dout port. For the DCT, the input is a 9 bit signed integer in the range -256 to +255

and the output is a 12 bit signed integer in the range -2048 to +2047. For the IDcr, the input is a

12 bit signed integer in the range -2048 to +2047 and the output is a 9 bit signed integer in the range

-256 to +255. The main computation is performed by two identical multiplication arrays, each of

which performs an 8 x 8 matrix multiplication in 64 cycles. Therefore, the first sample of the block

is output on the Dout port 128 cycles after the first sample of the block was sampled on the Din

port. The intermediate 8 x 8 matrix result is rounded to 16 bits and stored in the transposition RAM

between the two multiplication arrays. The transposition RAM also serves a function of transpos-

Chapter 6 Experimental Hardware Environment

ing the data from column order into row order. This permits the two mauix computation elements

to be identical although the first multiplication is the column computation and the second one is the

row computations. The 2-dimensional DCf is then realized by two identical multiplications, i.e. Y

= (X x C);,x C, and the 2-dimensional !DCf is realized by two identical multiplications, i.e. X =

(Y x er? x er, where X is the input matrix data, C the DCT coefficient mauix, er the IDCf coef­

ficient matrix and (? the transposition operation on a matrix. The DCf and the IDCf coefficients

are 14 bits signed integers stored in 4 banks of fixed ROM.

SEL[2-0]
eLK

GO
-----+ --.

9 (12)

,
Din

control
4 banks 4 banks

coefficient coefficient
ROMstorc ROM store

14 , ,/ 14 ,-v

33 16 Malrix 16
8x8 malrix /,

Select ,
~ 8x8 matrix

mUltiply
,-. and , transposition

Round RAM multiply

Figure 6.5 The diagram of the Inmos A121 chip

33 9 (12)

f-,4
Select

and .r

Round Dout

The Inmos A 121 chip is a high speed processing chip, which is partly realized by pipeline process­

ing technique. The device is fully pipelined with data sampled on the input port at the clock fre­

quency, data processed in the chip, and the result output appearing 128 clock cycles later. As a

result, on the input port, blocks of data can follow directly after one another so that the first data of

a block is presented to the input exactly 64 cycles after the first data of the preceding block, mean­

while the preceding block is being processed and the further preceding block is output. Figure 6.6

gives an illustration of the pipeline processing. For example, while block C is sampled on the input

port, block B is processed inside the chip and block A is output on the output port at the same time.

In this way, the high throughout is achieved.

The main control signal of the Inmos A 121 chip required to design is GO signal, see appendix B.

89

Chapler6

Input

Processing

Output

· · · · · · · · · · :.

Block A

. .

Block B

Block A

64 cycles : 64 cycles
~:4

128 cycles

Experimental Hardware Environmenl

Block C Block D

Block B Block C Block D

Block A Block B Block C

~:

Figure 6.6 Data timing diagram

The GO signal is used to indicate the start of a block. When it is sampled high, the data on the Din

port is the first sample of the block. Data is always assumed to be valid for the 64 cycles from the

start of a major cycle, meanwhile the GO signal is ignored. Blocks of data may be processed at any

time and any spacing between the major blocks, by toggling the GO signal as necessary.

6.2.3 The CY7C408A FIFO Chip

The CY7C408A chip [Cypr89] is a 64-word deep by 8-bit wide first-in first-out (FIFO) buffer

memory. It is implemented by a dual port RAM cell, where the writing and reading operations are

independent of each other so that the input and output operations are truly asynchronous. This al­

lows the FIFO to be used as a buffer of two digital machines of widely different operation frequen­

cies. Also, due to the dual port RAM architecture, data input and output is realized by increasing

the write and read pointers instead of moving data. Since the time required to increment the read

and write pointers is much less than the time that would be required for data to propagate through

90

Chapler6 Experimental Hardware Environmenl

the memory, high throughput rate is achieved. Its shift-in and shift-out rates range from 17MHz to

35 MHz. It is ideal for high speed communications and controllers.

The logic block diagram of the CY7C408A is shown in figure 6.7. It consists of a memory array of

64 words of 8 bits, a write pointer, a read pointer and the control logic necessary to generate the

handshaking (SIIIR, SO/OR) signals as well as the Almost FulVAlmost Empty(AFE), and the Half­

Full (HF) flags. The memory accepts 8 parallel bits at its inputs pins (OIO-DI7) under the control

of the Shift-In (SI) input when the Input-Ready (IR) control signal is High. The data is output in

the same order as it was stored, on the 000-007 output pins under the control of the shift-out (SO)

input when the Output-Ready (OR) control signal is High. If the FlFO is full (IR LOW), pulses at

the SI input are ignored; if the FIFO is empty (OR LOW), pulses at the SO input are ignored. The

IR and OR signals are also used to connect the F1FO's in parallel to make a wider word, or in series

to make a deeper buffer, or both.

SI

IR

DIO

DI6
DI7

MR

---:-+

=:

---+

input
control
logic

data in

master
reset

~~ write pointer

-: - write multiplexer

memory

array
- ..

read multiplexer -- read pointer

Figure 6.7 Logic block diagram

almost full/
empty
half full

data out
~

~~
output
control
logic

A FE

F H

0 R

o S

000

006

007

OE

The main control signals which need to be designed are SI and SO. These two signals are used to

91

Chapter 6 Experimental Hardware Environment

control the data in and out of the FlFO. A low to high transition on the SI pin will load the data on

the input pins into the FIFO. Therefore, the low to high transition on the SI pin should happen after

the input pins hold efficient data. A low to high transition on the SO pin wiIlload the data in the

FlFO out to the output pins. The low to high tmnsition should not happen until the read device is

ready to receive the data from the FlFO. The data in and out timing diagmm can be seen in appen­

dix C.

The CY7C40SA is expandable in required word width and FIFO depth. Parallel expansion for wid­

er words is implemented by logically ANDing the IR and OR outputs respectively of the individual

FIFOs together, see figure 6.S. The AND operation insures that all of the FIFOs are either ready to

accept more data or are ready to output data and thus it can compensate for variations in propaga­

tion delay times between devices. Serial expansion for deeper buffer memories is accomplished by

connecting the data outputs of the FIFO closest to the data sources to the data inputs of the follow­

ing FlFO, see figure 6.S. In addition to insure proper operation, the SO signal of the upstream FIFO

must be connected to the IR output of the downstream FlFO and the SI signal of the downstream

FlFO must be connected to the OR output of the upstream FIFO. In the serial expansion configu­

ration, the IR and OR signals are used to pass data through the FIFOs.

92

Chapler6 Experimental Hardware Environment

128 x 16 Configuration

HF/AFE HF/AFE

IR SO IR SO
SHIfT OUT

SI OR SI OR
DID 000 DID 000
OIl 001 DII 001
DI2 002 DI2 002
0I3 003 DI3 003
DI4 004 DI4 004

COMPOSITE DI5 DOS DI5 005 COMPOSITE
INPUT READY

DI6 _ 006 DI6 006
OUTPUT READY DI7 MR 007 DI7 MR 007

SHIFT IN IR SO IR SO
SI OR SI OR
DID 000 DID 000
DII DOl DII DOl
DI2 002 DI2 002
0I3 003 DI3 003
DI4 004 DI4 004
015 005 DI5 005
DI6 006 DI6 006
DI7 MU 007 DI7 MU 007

MR

Figure 6.8 Depth and width expansion

6.2.4 The DCT Board Design

The DCT board is designed to perform the discrete cosine transform on image data with high pre­

cision and speed. It is a transputer-based board and can be used as a node in transputer networks

communicating with other boards by transputer links. The board is mainly composed of two inde­

pendent parts, namely the DCT part and the IDCT part, see figure 6.9. In the DCT pan, it receives

blocks of data, each of which has fixed size of 64 pixels and represents an 8 x 8 matrix, from an

93

Chapter 6 Experimentalllardware Environment

image processing device through a transputer link and then applies the 2-d ocr to the blocks. After

the ocr, it thresholds the ocr coefficients, sequences the matrixes in the order of zigzag, see §5.4,

and then sends the processed blocks of data out by a link. While in the IOeT part, it receives se­

quences of 64 data items via a transputer link, de-zigzags them into an 8 x 8 matrix and then de­

thresholds the matrix. The 2-d IOcr is then applied to the matrix. Thereafter, every element in the

matrix is rounded to the range 0 to 255 and output to an image processing device by a link. The

maximum throughput of the board can reach up to 20 Mpixels/sec, but the throughput here is con­

fined by the link speed and is 256 Kpixels/sec.

Image data in Recovered data out

Link Link

i------------------- -._------.-------- ~-------------------
- - --- ---- - - - ____ PoP,

· . · · Image data rounding Image data in · · · and out (8 x 8) · · (8 x 8) · · , · • ·
~ r · · · · · 2-dimensional ocr · 2-dimensional IOcr · (8 x 8) · (8 x 8) · · · · · · , • · ·
r

Threshold, zigzag Data in, de-threshold
and data out and de-zigzag

(8 x 8) (8 x 8)

-------------------- - -- - - - ------ -.- - - -- '-- -- --- - - - - --- -- --- -------------------

Link Link

ocr coefficients out ocr coefficients in

Figure 6.9 The function diagram of the ocr board

94

Chapter 6 Experimentallfardware Environment

The Inmos A 121 chip is chosen to realize the OCT owing to its high speed and precision. Two

A121 chips are used here, one for the OCT and one for the IOCT.

The transputer is selected in the board mainly for two reasons. First, since the whole system works

on the transputer-based system, it is feasible to use the transputer to provide transputer link inter­

faces for the board so that the message can be exchanged easily among the processing boards. Sec­

ond, it has on-chip memory which can save a lot of complicated external memory interface circuits

and simplify the board design. As the data for the OCT are 9 bit signed integers and the coefficients

out of the OCT are 12 bit signed integers, the 16 bit T222 is chosen for economical considerations.

Four T222's are used on the board, see figure 6.10, where T222 (1) controls blocks of data in

through a link and blocks out them in the FlFO (l), T222 (2) blocks in the OCT coefficients from

the FIFO (2), does the threshold and zigzag processing on the coefficients, and then control the data

out through a link, transputer (3) controls blocks of data in through a link, does the de-zigzag and

de-threshold processing to them, and blocks out them in the FIFO (3), and T222 (4) blocks in

blocks of data from FIFO (4) and rounds the data in the range 0 to 255 and controls blocks of data

out through a link. Each T222 provides one link as the board interface to communicate with other

transputer-based systems.

The T222 and the A 121 write/read data in different frequencies and they cannot be connected di­

rectly. The A 121 reads/writes a block of 64 data each time, that is, when the GO signal is High, it

takes in/outputs a sequence of 64 data spanning 64 clock cycles, where each data is sampled in one

clock cycle. The data in and out have strict time requirement. The data input port is sampled 64

times on successive clock cycles, commencing when GO is sampled High. Oata must be valid on

the rising edge of CLK for each of the 64 cycles. The output port will be valid for periods spanning

64 clock cycles, and the data will be valid on the rising edge of the clock, exactly 128 cycles after

the data was sampled on the input. On the other side, the T222 reads in/writes out one data each

time in one external memory cycle. It can read/write a sequence of data in a burst of short time. But

it is very hard to control the T222 reading/writing data to comply with the pace of the A121 read-

95

CfuJpter6

Link

I
1'222

Block out

FIFO

AI21

FIFO

Block in

1'222

Link

Experimental Hardware Environment

Logic circuits

Figure 6.10 The DCT board diagram

Link

4
T222

Block in

FIFO
4

2
AI21

FIFO 3

Block out

3
T222

Link

ing/writing. To deal with the incompatibility of the operation frequencies of the T222 and the

A 121, the two port CY7C408A FIFO is used as a buffer between them where one port is used for

the T222 and the other one for the AI21. Since the T222 data bus is 16 bit wide and the AI21 is

12 bit wide while the CY7C408A is 8 bit wide, F1FOs are depth expanded by two CY7C408A

chips. Four FIFOs are used on the board, see figure 6. 10.

96

Chapler6 Experimental Hardware Environment

The control signals required to design are as follows:

I. EVENT: When the T222 reads an EVENT signal, it writes/reads 64 data to/from the

FIFO.

2. MR: Before the T222 begins to write 64 data items in the FIFO, or after the T222 fin-

ishes reading 64 data items from the FIFO, a MR signal is used to reset the FlFO.

3. SI: 64 consecutive SI signals for the FIFO to input 64 data items from the T222/AI21.

4. SO: 64 consecutive SO signals for the FIFO to output 64 data items to the A121m22.

5. GO: When there is a GO signal except when the A 121 is reading data, the A 121 reads

in 64 data items from the FIFO for the OCT/IDCT processing and after 128 cycles, the

processed data are output and stored in the FIFO.

Since the OCT and the IOCT parts are almost symmetry, the OCT part is discussed in the remaining

part of this section and the IOCT part can be concluded similar results. The timing diagram of the

OCT part is shown in Figure 6.11. The clock cycles are divided by 128 and the first 64 cycles are

for the transputers to write/read 64 data in/from FIFOs, and the second 64 cycles are for the AI21

to read/write 64 data from/to FIFOs. Also in the second 64 cycles, the transputers receive/send data

from/to the other image processing devices via a link and do the data processing, like thresholding,

zigzagging etc. More detail, when T222 (I) reads an Event signal, it resets FIFO (I) and then

blocks out 64 data in the FIFO (I). When T222 (2) reads the Event signal, it blocks in 64 data from

the FIFO (2) and then resets the FIFO (2). At the (2k+ I) x 64 + I cycles, k=O, 1,2, ... , GO signal is

High, and A 121 (I) samples 64 pixels at its input port from FIFO (I) and output 64 data at its output

port to FIFO (2). In every 128 cycles, the transputers read/write a block of 64 data in/from FlFOs

in the first 64 cycles, while the A 121 chip processes a block of 64 data in the second 64 cycles and

the T222s also receive/read a block of 64 data from/to image processing devices via links in the

second 64 cycles. The board works on in this way after it is started. The T222s and the AI21s are

pipelined to achieve high speed. For example, during the time from cycle 193 to cycle 256, AI21

(I) input block2 from the FIFO (I) and at the same time outputs block I; during the time from cycle

97

Chapter 6 Experimental Hardware Environment

257 to cycle 320, blocks is written in the FlFO (I), block2 is applied the DCT processing and

block I is read by T222(2) from FIFO(2).

98

-c
-c

2 3 64 65 66 67 128 129 130131 192 193 194 195 256 257 258 259 320

CLK~ JlJlJUl JlJlJUl JlJlJUl. JUlJlJl JL
F/128 J L
Event ~ n nL-___ _
MRI U U U
Block
out

GO

Iblock I ~~;l ! block 2 out! ! block :3 out!

___ n n __ J

~a~:in 1UUl__ll 1UUl___Jl n
block I block 2

~a7;out 1UUl.....Jl nJUl__Jl It
block 0 block I

MR2 U U U-
Block I·'·'····· 1 1·'··········,,···'··-····1 I········,····,,··'· ····'····1 block -1 in block Oin. blockl in : - '.,:':.,:::," -'- "" . "::.:,-." .. :., .. : '- " - '_-,::.,.,;;-' ".,-:.";.'
In

Figure 6.11 The timing diagram of the DCT part

()

~
" ...
'"

~

1-
§.

~
~
~
g>

I'

Chapter 6 Experimentalllardware Environment

6.3 The MicroEye TC Colour Image Capture and Framestore Board

MicroEye TC board is a high speed video capture card and framestore using transputer technology.

The card can be installed in one 8-bit expansion slot inside a PC. The MicroEye TC board can dig­

itize and grab live video signals from a camera, a recorder, an imaging system or other sources, and

has a video output for replaying stored or processed images. It has a large memory capacity, a

graphics overlay facility, and high speed data transfer and processing. It provides full 24 bit (16.7

million colours) frame grabbing and output. Images may be digitized at full 720 x 512 pixel reso­

lution in 1/25 second (frame rate) or at 720 x 256 resolution in 1/50 second (field rate).

The structure of the MicroEye TC board is shown in figure 6.12. A T425 is used as a processing

unit to control the board and conduct image processing. Under the control of the transputer, it dig­

itizes RGB signals in one frame period or one field period, and holds the resulting data in a frame

store video memory or be played through the on-board colour look-up table for output. Each pixel

consists of 24 bits, 8 bits for each of the R, G, B colour components. A grabbed or transputer-pro­

cessed image in the frame store can be played through the on-board 24-bit programmable colour

look-up table for output as real or pseudo colour graphics to a video display. The memory on the

MicroEye TC board is composed of three main regions, which are video memory, picture memory

and program memory. The video memory is a dual-por! memory which is used to hold the 720 x

512 pixel x 24 bit grabbed image data straight from the AID converters. The picture memory is the

1024 x 512 pixel x 24 bit memory to which an image may be transferred to provide a second copy

for reference and processing purposes. The frame store also contains 4 additional bits which can

be used to generate overlay graphics under the control of the transputer. The video memory and

picture memory together are referred to as image memory which has 3 Mbytes altogether. The

transputer can access the frame store to process image data and the picture store can output from

or load data into the frame store by a fast transfer routine under the control of the transputer. Thus

data in the picture store may be generated or processed independently, without affecting the

framestore. The I Mbytes program memory provides sufficient space for most applications.

100

Chapter 6 Experimental Hardware Environment

--+l~1 Decoder 1 i =1
Video. ..

AID D/A, colour
look up table

Input
24 bit
video
data 4 bit overlay

.... Video Memory/
Transputer I> Framestore
Processing

720 x 512 x 28 bits
Unit v.>

N

g:
0- Picture Store "' El , , 0-
c: 1024 x 512 x 24 bits high speed '"

dala link

Host ... Program
Interface Memory

1 M Byte, 32 bit data

Host Microcomputer Bus

Figure 6.12 The MicroEye TC structure diagram

Video
Output

In the experimental system, the board is mainly responsible for image grabbing and displaying. It

takes a video input, digitizes it in one frame period and stores it as a 720 x 512 pixel, 24 bit data

block in its video memory under the control of the B004 board. The grabbed image is then sent to

the B004 board via a transputer link or replayed through the on-board palette to provide a full co­

lour video output. The images processed by the B004 are sent back to the MicroEye TC board to

be displayed by a link. The I MByte program memory is sufficient for the Occam control pro­

grams, which control the grabbing, displaying images and data transferring from or to the B004

board or the DCT board. One of its transputer links is connected to the B004 board and two links

to the DCT board and the other one is left for further expansion.

101

Chapter 6 Experimental Hardware Environment

6.4 Summary

In the experimental system, most of the processing, such as colour codebook generation, colour

code book ordering, colour image vector quantization etc., are carried out on the B004 board. The

experimental image can be obtained either from a DOS file or from a video camera under the con­

trol of the MicroEye TC board. When the B004 board need an image from the video camera, it

sends a control signal through a transputer link to the MicroEye TC board and the MicroEye TC

board captures an image and sends the image to the B004 board through a link. When the image

need to be DCT processed, the B004 board sends the image data to the DCT board and after 128 x

2 cycles, while it is sending the image block data to the DCT board, it receives the recovered image

block data from the DCT board at the same time. The DCT processing on a 512 x5 I 2 image can

be carried out by the DCT board with high speed, about I second, and also the DCT processing

precision is high. When the processed image, or the final recovered image or some parts of the im­

age need to be displayed, the B004 board sends a control signal and image data to the MicroEye

TC board, then the MicroEye TC board displays the image on the monitor. The boards in the ex­

perimental system work in concurrent and the data communication between the boards is realized

by transputer links.

102

Chapter 7 Experimental Results and Discussions

Chapter 7

Experimental Results and Discussions

The previous chapters have discussed how it may be possible to transform a colour image into a

meaningful index image with a well ordered colour codebook. It can be seen from previous discus­

sions that the crucial step to achieve this transform is colour codebook ordering. A number of tech­

niques for colour codebook ordering have been proposed and are discussed in chapter 3. In this

chapter, experiments are described which test the efficiency of those techniques for colour code­

book ordering. The tests are: computing the ordering function on the ordered colour codebook (§

7.3.1), applying edge detection to the index image (§ 7.3.2) and compressing the index image using

the DCT processing (§ 7.3.3).

7.1 Experimental Images

Four colour images are used as the test images to which the techniques discussed in the previous

chapters are applied. The four colour images referred to as "girl I ", "girI2", "pepper" and "plane"

respectively are shown in figure 7.1. They are taken from a standard image database. The experi­

mental colour images are all of resolution 512 x 512 pixels. Each pixel is represented by 24 bits

where 8 bits are used for each colour component, e.g. Red, Green and Blue. These images are

stored on the hard disk memory for processing. The details of the four colour images are described

as follows:

t03

Chapter 7 Experimental Results and Discussions

(a) image "girl I " (b) image "girI2"

(c) image "plane" (d) image "pepper"

Figure 7.1 Experimental images

104

Chapter 7 Experimental Results and Discussions

• Image 1: "girll"

Image "girl I " shows a girl's head, see figure 7.1 (a). In this image, the head covers more than half

the area of the image. There are a few edge details, mainly in the area of hair, but a lot of smoothly

varying regions, especially, in the face. It is not a colourful image and the primary colours used in

the image are yellow, pink, red, brown, and green. These colours are quite close, especially light

yellow, light brown, light pink and light green. The skin colour is actually a mixture of these co­

lours. The histograms of the Red, Green and Blue components of the image are shown in figure

7.2, which illustrates the number of occurrences of each component likely levels. It can be noted

that their level ranges are rather narrow, from about 90 to 255. This means that the colour dynamic

range in the image is small and the image is not colourful. The Blue colour component has rela­

tively small luminance value, and the Red and Green components have big luminance values. This

means that the Red and Green components, especially the Red component, occupy more energy in

the image, and they play more important roles in the colour appearance in the image .

• Image 2: "girI2"

Image "girI2" is about a girl's head and shoulder, see figure 7.I(b). Compared with image "girl!",

it has more edge details and rather complex background. It also has a lot of smoothly varying re­

gions in the areas of the face, the shoulder and the background. The primary colours used in the

image are orange, reddish colours, yellow, purple, the colours between orange and red, and the co­

lours between purple and red. The colours used are very similar. The histograms of the Red, Green

and Blue components are shown in figure 7.3. Their levels cover a wider range than image "girl! ".

It can be seen that the Red colour component has big luminance levels and it plays the dominant

role in the colour appearance of the image .

. • Image3: "plane"

Image "plane" is a typical natural scene image as shown in figure 7.I(c). It has a few abrupt edge

105

Chapler 7 Experimental Resulls and Discussions

details and the details are mainly in the area of mountains and the figures on the plane. It has large

areas of snow and clouds which have no abrupt edges. The image does not contain many saturated

colours and the main colours used in the image are blue and red. The histograms of the Red, Green

and Blue components are shown in figure 7.4. It can be seen that the histograms of the Red, Green

and Blue components are quite similar and their peaks are around levels 192 to 224. This means

that there is a lot of correlation among the Red, Green and Blue components and there are a lot of

achromatic colours in the image. In this image, the Blue components occupy the most energy and

the basic colour of the image is blue .

• Image 4: "pepper"

Image "pepper" is a still object image, see figure 7.I(d). The image is crowded with different size

and colour peppers, big, small, red, green etc. There are some smoothly varying regions, for exam­

ple, in the area of the big green peppers. It is a quite colourful image compared with the other three

images. The main colours used in the image are bright red, green, orange and yellow. The histo­

grams of the Red, Green and Blue components are shown in figure 7.5. The histograms of the three

colour components are quite different and the three colour components have a quite wide dynam­

ical range and their peaks are in different places. This means that the colour image is quite colour­

ful. Most of the energy is taken by the Red and Green components.

The four experimental colour images are of different types in colour distributions and image pat­

terns. Image "girl I " has a lot of smoothly varying regions, especially in the face, and few edge de­

tails. Image "girI2" has more details and also has a lot of smoothly varying areas. These two images

do not have many saturated colours and the colours used are quite close. These two images are

about human's head or head and shoulder, which are the main contents in many applications, such

as video-conference, video-phone etc. Image "pepper" is more colourful and has two strong con­

trasting colours, red and green, as well as some colours in the middle between red and green, such

as yellow, brown etc. It has few details and some smoothly varying areas. Image "plane" is a typical

natural scene image, which uses a few colours and a lot of achromatic colours. It has few smoothly

106

Chapter 7 Experimental Results and Discussions

varying areas and edge details. Image "plane" has lower image quality requirement than the other

three images. For example. the distortion in the sky is not so easy to perceive. Therefore. it is easier

to process.

107

Chapter 7 Experimental Results and Discussions

Number (1,000)

200 - D Red component
,----.

Green component ' ' , ' ._---,

D Blue component
100 -

-I
60 - ,

50 -

r
,

,-----

~
,

40
,

- , , , ,

~
- ---:

30 , ;- - -- , , , , , , ,
~

20 , , -, ,
, , , , ,

10
,

, '---, r--=
- ---: ,--

---- I-0 i •· '. ---

I I I I

0 32 64 96 128 160 192 224 256 R/G/B

Figure 7.2 The histograms of the Red, Green and Blue components in image "girll"

108

\

Chapter 7

Number

200 -

100 -

60 -

50 -

40 -

30 -

20 -

10 -

0

0

(1,000)

D Red component

i~~~~j Green component

D Blue component

1

I . I 'T
~~ ----, ----~----: :
, ' , , ,

!~.:.:.:.! :-' : ' '
~-:

, ' r-- , :
- __ ., I ,

, :-- --, '-.. _-,
, , 1-'-, , , , , ,

r--,
, ,

I

r-

32 64 96 128 160

Experimental Results and Discussions

-
-

-

I--

192 224 256 R/G/B

Figure 7.3 The histograms of the Red, Green and Blue components in image "girI2"

109

Chapter 7 Experimental Results and Discussions

Number (1,000)

200 - D Red component

C::J Green component

100
Cl Blue component

--C .. I - . · . · · -' · : ·
60

... 1--:
-

50 -

40 -

.---30

20 -
iT···· --- -

-- r-- ! i--... ~i:-::-: . ..
I-- ----..... " .. J.:..:. ,

10

o ··_-:····r ..,
I

o 32 64 96 128 160 192 224 256 RlGIB

Figure 7.4 The histograms of the Red, Green and Blue components in image "plane"

110

Chapter 7

Number

200 -

100 -

60 -

50 -

40 -

30 -

20 -

10 -

0
0

(1,000)

D Red component

l::J Green component

D Blue component

-

-
... - ... ~ I--. --- ... ' , , ,

, ' , , , , , ,
;-:-: ' , ,
I--, ' ,

~----' , , ' ,
, ' , ,

' ,
:----:-
r-- ---- ----

H
.. -

,
32 64 96 128

Experimental Results and Discussions

r--

, , ,
-:

---"" ,

160 192 224 256 R/G/B

Figure 7.5 The histograms of the Red, Green and Blue components in image "pepper"

III

Chapter 7 Experimental Results and Discussions

7.2 Colour Codebook

Besides the ordering algorithms, the quality of colour code book ordering is also dependent on the

features of the codebook, such as the codebook size, the codewords distribution in colour space etc.

In this section, the colour codebooks of the four experimental images are discussed. The colour

code books discussed in the following sections are all local codebooks, i.e., the training vectors are

generated from the image to be coded as described in chapter 3.

7.2.1 Colour Codebook Size

The codebook size and the quality of the reconstructed colour image are normally conflicting. In

colour codebook ordering, it is easier to order a small size codebook than a large one. The smaller

the size is, the easier the ordering is. It is then desirable that the colour codebook which can gen­

erate the good quality of the reconstructed colour image has as small a size as possible. On the other

hand, a codebook of small size will introduce more distortion in the reconstructed image. There­

fore, it is required to trade off between the code book size and the quality of the reconstructed colour

image. Normally, 256 codewords are sufficient for most colour images and the reconstructed colour

image is almost visually identical to the original full colour image. For some colour images, less

codewords, typically 100-150, are able to vector quantize the colour images and can generate quite

good quality reconstructed colour images. The optimum size of the colour code book for a colour

image depends on the colour image to be coded and the codebook generation algorithms. The al­

gorithms used in the following experiments are the PNN algorithm and the LOB algorithm, where

the PNN algorithm is used to generate an initial codebook and the LBO algorithm is used to refine

the initial codebook. For codebooks of different sizes, the Signal to Noise Ratio (SNR) of the re­

constructed colour images is computed. The SNR is computed as follows:

N - IN - I

MSE = _1 ~ ~ «r .. -r, ..)2+ O:-g,)2+ (b .. -b, . .)2) (7.1)
2 ~ L..J IJ IJ I) IJ IJ IJ

N i~Oj~O

112

Chapler 7 Experimental Resulls and Discussions

SNR =

N-IN-l ILL 2 2 2 - (r .. +g .. +b ..)
2 V V V

N i=Oj=O

112

(MSE) 112
(dB) (7.2)

where the rij' gij' bij are the original pixel data, r'jj' g'jj' and b'ij are the reconstructed pixel

data, and N is 512 here.

The relationship between the codebook size and the SNR of the reconstructed colour image for the

four test images is plotted in figure 7.6. It can be observed that the plots of image "plane" and

"girl I " are rather flat while the plots of images "girI2" and "pepper" are steeper. This means that

the quality of the reconstructed colour images "girI2" and "pepper" is more sensitive to the code­

book size than that of images "girl I " and "plane". The reason for this is that since more colours are

used in images "girI2" and "pepper", more codewords are required to represent the original full co­

lour image. It can also be noticed that, for the four images, when their codebook sizes are smaller

than certain numbers, the plots of the four colour images in those ranges are all very steep. In this

case, the reconstructed colour image quality is very sensitive to the codebook size. For example;

for image "plane", when the codeword number is smaller than 95, the plot is steep. This indicates

that for any image, a certain number of codewords are required and when less codewords are used,

more distortion will be caused in the reconstructed colour image. Combining the consideration of

the visual quality of the reconstructed colour images, the minimum codeword numbers which can

generate good visual quality reconstructed colour images are SO, SO, 90 and SO for images "plane",

"girl!", "girI2" and "pepper" respectively, see figures 7 .16(a), 7.17(a), 7.IS(a) and 7.19(a). The

codebook size used in the later discussions for images "plane", "girl! ", "girI2" and "pepper" are

chosen as SO, SO, 90 and SO respectively. It can also be noted that when the image is more colourful,

more distortion will be introduced in the reconstructed image, namely lower SNR levels. For ex­

ample, image "pepper" is the most colourful image among the four test images and its average SNR

is the smallest, while image "plane" is not very colourful, its average SNR is the biggest.

113

Chapter 7 Experimental Results and Discussions

SNR(dB)

118

108

98

88

78

68

58

Image "plane"

Image "girll"

Image "girI2"

Image "pepper"

Figure 7.6 The SNR vs. the codebook size for four images

114

Codeword
Number

Chapler 7 Experimenlal Resulls and Discussions

7.2.2 Colour Codebook Distribution in the RBG Colour Space

Colour codebook ordering also depends on the distribution of the code words in colour space. If the

codewords are uniformly distributed in colour space, it is impossible to order the codewords to sat­

isfy the two ordering conditions. On the other hand, if the codewords are distributed on a line, the

ordering is very easy and can completely satisfy the two ordering conditions. For most colour im­

ages, the codewords normally cover a quite small range of colour space and are not distributed over

the whole colour space. Furthermore, the codewords are not distributed uniformly nor on a line but

in the form of clusters. This can be seen in figures 7.7, 7.8, 7.9, and 7.10, which are the codebook

distributions in the RGB colour space for the test images "girl I ", "girI2", "plane" and "pepper" re­

spectively.

115

Chapter 7 Experimental Results and Discussions'

-- - - --

T ,. I I -----/.. '-I-
2:lI}-/f\'. ". ----t-_ _ __ ~' I ~-"--f--- __ _ -.1.(. . I (I.., , __

'

I ~tt' I~ ---r--f.-·-,) ,."I---i --f-!! I .,
.-.- ,-, '/1 . ,t -_ I 1'---I1------L• l' L ~] -..... 1
- - - I" T- I -. - _ !I • 9 I ,

'-- " ---I---- '" I I --p' ~ ., •. /" -- /' r"~_ J7 17/ ~ .10"""--..:....
-- lS-et 16 .12 I

"-"- ~. "'"- -'6 39 40 19. 30 • ~7 _ ----. I " J --r- .. -- •• .. r- 25 :lJ , / • ~ t -.~--;: --"9!.4~ ... ;~ 41 t:-10~-~ir'19"". (-A.
I = I-I I /, ,,~... « .~ ~ •) 28 24
... ~:.. / 1" ,I 1j' ~().l'B.,Br;-. 43 .,")(,. I

--<-1- /l ,Ilero/, -'?-- ~~-60C;'.} • ., I" 'i ----"., __ " ~ ~ . -- • :l~r;:.. .
1'::: !'-'~" ',., I ~UL-'---=.:L.-'·'-I_"_:L"·,,-~"_'::r:-, -~-f---f-, -r--- .. ;'1-.- / -~. , w:- ----- _ , 1 ___

I ' 'i!Ell).' !~" '--;"--,l... 1--["
' I 'J I' 11' / -_. f --- J I ' __

-". 'T~~:/ ~~/b _~/" -i-'~~---+-=:
' .) - .'.1, iI'D-<.,., 1 !-----..!.. ' I _"-_ .
--'. / ---I I {-----c ___

'~, ~O~9;~/-/ __ --L -ji-----l
l
-t:

'------- / ! /-----1. j -r--'1--- (
iOrr-lf.-r_ /----+--; _-'-, i r----.

- - 1 ~~_ I --""I-----L--
161J--~ ~ -.

2 0 U---2~_ ",_
?ij --->. G - .,..

Figure 7.7 The code book distribution in the RGB colour space for

image" girll "

116

Chapter 7 Experimental Results and Discussions'

L50

/

___ I'l ote:~~ n~~er_~:i~e a point!.s th~ index of ~h~c()~eword in' the ordered codebook
. - ---- - .-

Figure 7.8 The code book distribution in the RG B colour space for

image "gir12"

(
'.

117

I'
I

.1
.;..

.~

•
• d:
,

.;

•

,
. j ,

,~
Cho.pter 7 Experimental Results and Discussions~'

------ --
-,
'I

·1
, . "

, ' .

i •
~
I

Figure 7:9 The qx!ebook distribution in the RGB colour space for

image "plane"

118

Chapler 7 ExperimentaL Results and Discussions

-

R J I ' J

,I I -,-' +--f--':'---L_~' " , "
,,[\ i i)-' I J ! I .' -~-_____ ! / i

2:J~ . ~ '__', '-re
'[L, ,- ----tJri--/--)----~_=i---:{---.-~JL, ~I '--- '

: .-1----1, -' I d-- I : " ,r T---~- i • l ,
L -; 3 ---"~:: I t -'1" J 1/ -T----;-----I--.... i /' /'" -:-----:-- - ... ' _

I ... • I I " --,----- (, I' ' -' 1 I I I I I ----- ,. r 1 l t y-, ------.' i ! ---- .. .:..-. ..", . ("'" ., I I I '- " J ~___ I

. =" - : .-- 'I "[r l .. ' IJ- I i ;----T-. "..' i / • J~-r---, -;-, "1~ '~IJ rl -J--'----;----.:... , J ~---r __ J ·,·1
, .. 0 i ,f/ I -l'l 'Il i- - ' i '::,':" ---+---.__ ,,' JO ;/". ;--' ~ .' ~ 1 J / ----:~ -- ~\ I Jl I -- .! __ ~ • \J '

'-"'-., I -('ll'/'[~ ., " " ~- . r"--7--- c __ :_ ,,: ",I" "'~ i---
I' 'I "I 'liB' ., -:-!' ;~ "'_" 'e J. H,' " -.() ~.~ • ... ,I .. I 'I -:, ~6. r----~8_; .. ; ;8 17- IO _ •• l

- • - ~..# 71 -_. • \ ~~ ~q _ ~ _ ' __ --- I" v j 1'" ' .. ~ , ,." -'iI- -, • i " .! "I J·~~iifil.-- • ..o_,."j ~b I ••• I '":: -·zr I / " I " -:, ... ~ . ·61 :-. __ • -~~-_...:... '. ---~
1 " ,.,' / I --:----.... ---._.:--.--- I I -
I 'l" J --' -' -- .. ., - .. " ' " ' -'", . ,(,.1--~ __ oS J' _: ~s " -'1 __ . ~_.:..._ .'
t " : I" l' ...!. ~ •• ~""-_'." - . : '"'7---!---:---" , 1;1 ,- 7~ '0 .' 67 '7--- 6001 ,41 __ .;.._: ~ __ !
,i I" -,-=, __ ,:" / ~." , ___ ':"'" ;' -~__: '"7-_
! .'~, 1/ 1 [!t!j~~.;'. 6, 1----:--___ ,. --:---." "'(----f----

"'-- I ~'6 ,-.... .. ,-__: _____ !- 1 . V--:- ':: __ .' ... ---_ : --:--____ ,I .' --_~
, ' 0, , ... _," ~ " _.' __ --:-__:' -:----__ '

"'" / c: .. --______ ,.' =---. : '~I '-_:---'~-..:...'. ... I) /' --:--:-----..::.. --,~~ l -~_ i I

/~"- :' : ---,' ," ---.:.- ; -:-------1. :/)""1/---....:'.... ; ~ ... ___ . i

l
~_

. --I I ___ i " ~ .' --;-----i..
~----c..... / I ____ ~i :' --,,---.' ;' __ ._ ""1:'-----.: " , l .' ~_ ;' _.

~O· . 1 ~ ~ t....J ' --~. j' 1 .' r --_:--- '
-- --i"= : / .i..-.. :' i--

- ':i 0 ---c, .. ''''____ ' j. • ? ----l.. .' I ___ ~
!. _:J :-...! I --;-._

,-..,' ----'- . ..,---- ~'.
~ . : -::-:-... ""

'''n -~ G --'- ::i=-./- -
/'

Note: the nwnber beside a point is the index of the codeword in the ordered codebook
- ,- ~--

Figure 7,10 The codebook distribution in the RGB colour space for

image "pepper"

JJ9

Chapter 7 Experimental Results and Discussions

7.3 Comparison of Several Colour Codebook Ordering Strategies

A colour codebook can be ordered by the ordering techniques, which have been presented in chap­

ter 3, to satisfy the two ordering conditions (see § 3.1). Four methods for colour code book ordering

are compared in this section. They are: I) arranging the code words in the decreasing order of the

luminance value Y, which is referred to as the Y ordering method; 2) the centroid method (see §

3.2.1); 3) the PNN-based method (see § 3.2.2); and 4) the PNN-based method followed by the re­

finement of the ordering function (see § 3.3), which is referred to as the PNN-based/ordering func­

tion method. The randomly arranged code book is used as a comparison reference. Finally the role

of the strategy of the artificial codeword insertion (see § 3.4) played in colour codebook ordering

is tested.

The efficiency of several colour codebook ordering techniques is compared by testing their corre­

sponding ordered code books in three ways. First, they can be evaluated by computing the ordering

function on the ordered codebooks. This is because the ordering function can be used to indicate

how well the arrangement of the codewords satisfies the two ordering conditions (§ 3.1) and the

smaller the ordering function value is, the better the code word arrangement conforms with the two

ordering conditions. Second, the ordered codebooks are tested by applying edge detection process­

ing to the index images. This is to test whether the code words which are far away in colour space

are far away in the code book so that the edges existing in the original full colour image can be re­

tained in the index image. Finally, the ordered codebooks can be tested by applying image com­

pression techniques, especially information lossy compression techniques such as the Dcr, to the

index images and then examining the reconstructed colour image quality with a certain compres­

sion ratio. This test can indicate how well the two ordering conditions are met by the ordered code­

book. Information lossy compression techniques introduce some distortion in the reconstructed

index image and the distortion eventually degrades the reconstructed colour image. However, if the

codewords which are close in the code book represent close colours, the degradation caused by the

distortion in the recovered index image can be alleviated and the quality of the reconstructed colour

image is good at a certain compression ratio. On the other hand, since the compression is achieved

120

Chapter 7 Experimental Results and Discussions

by reducing the data redundancy in the image, high compression ratio can be obtained if much of

the data correlation is retained in the index image. To retain the data correlation in the index image,

it is desirable the close codewords which are close in colour space should be close in the code book.

Therefore, applying the image compression techniques to the index image and checking the recon­

structed colour image quality with a certain compression ratio is an effective way to test whether

the ordering techniques can order the codebook to satisfy the two ordering conditions.

7.3.1 Test By the Ordering Function

For the four experimental images, the ordering function is computed on five codebooks ordered in

different ways. They are: randomly arranged code book; the code book ordered by the Y ordering

method; the codebook ordered by the centroid method; the codebook ordered by the PNN-based

method; and the codebook ordered by the PNN-based/ordering function method. The computed re­

sults are listed in table 7.1.

orderin~ Girll Girl2 Plane Pepper

~ Codebook
(codewords:80) (codewords:90) (codewords:80) (codewords:80)

random 16147 23615 11776 16429

Yordering 3304 3122 2368 2716

centroid method 3171 2807 1904 1984

PNN-based 2267 1942 1422 2162

PNN-based/
ordering 1359 1374 1048 994
function

Table 7.1 Comparison of the code books by the ordering function

121

Chapter 7 Experimental Results and Discussions

It can be seen that, for the four images, the randomly arranged codebooks have the biggest function

values, while the codebooks ordered by the PNN-based/ordering function method have the small­

est values. This means that the PNN-based/ordering function method can generate the best ordered

codebook in the sense of satisfying the two ordering conditions by the arrangement of the code­

words. Clearly, the codebook without any ordering does not satisfy the two ordering conditions.

For the four images, the centroid method and the PNN-based method can achieve better ordering

than the Y ordering method. For images "girl I ", "girl2" and "plane", the PNN-based method yields

better ordering than the centroid method, while for image "pepper", the centroid method is slightly

better than the PNN-based method. To sum up, the PNN-based/ordering function method is the best

in regard to producing the smallest function value, followed by the PNN-based method, the cen­

troid method, and the Y ordering method, which is the least satisfactory.

It can also be noted from the table that the function values of the ordered codebooks for images

"plane" and "pepper" are normally smaller than those of images "girl I " and "girI2". This indicates

that the images which have a lot of saturated colours, like image "pepper", or have a lot of achro­

matic colours, like image "plane", have smaller ordering function values than the images which

use a lot of close colours, like images "girl I " and "girI2". This is because, in the codebooks for

images "girl I "and "girI2", there are a lot of junction codewords, see §3.1, and therefore it is much

harder to order the code books.

7.3.2 Edge Detection on the Index Image

"Edge" in an image is defined as the boundary between two regions which have distinct features.

The feature can be brightness for a monochrome image and colour for a colour image. Many tech­

niques have been developed for edge detection [Davi75] [Robi77]. Here, a simple method is used

and the processing steps are described as follows,

122

Chapter 7 Experimental Results and Discussions

1. Compute the gradient at each pixel f(i, j) in the index image [Gonz87j [Youn86j:

Consider the sub-image shown in figure 7.11

f(i-I,j-I) f(i-I,j) f(i-I,j+l) -1 -2 -I -1 0 1

f(i,j-I) f(i,j) f(i, j+ I) 0 0 0 -2 0 2

f(i+ I, j·l) f(i+ I, j) f(i+I,j+l) 1 2 I -1 0 1

(a) (b) (c)

Figure 7.11 (a) 3 x 3 sub-image (b) Mask for Gi computation at center point f(i, j)

(c) Mask for Gj computation at center point f(i, j). These two masks are referred to

as the Sobel operator

Two partial derivatives for pixel f(i, j) are computed:

The gradient for pixel f(i, j) is then,

G (j(i,j)) (7.5)

Each pixel in the index image is replaced by its gradient G(f(i, j)) to form a new image

2. Thresholding each pixel in the newly formed image to generate a gradient image:

{

L .'

G (j(i,j)) = L;"
G (j(i,j)) ~ T

otherwise
(7.6)

.'

where T is a non-negative threshold and is properly selected to emphasize significant edg-

[

123

Chapter 7 Experimental Results and Discussions

es without destroying the characteristics of smooth backgrounds. ~ and LB are two spec­

ified luminance levels and are 0 and 255 respectively in the following experiments.

Following the above steps, a binary gradient image is formed, in which the edges and backgrounds

are 0 and 255 respectively and the location of edges can be seen clearly.

The above process is applied to the index image to test whether the edges existing in the original

full colour image can be retained in the index image. In the test, the black and white image corre­

sponding to the colour image is used as the comparison reference. The following results can be ob­

tained after analyzing the binary gradient images, see figures 7.12, 7.13, 7.14, and 7.15.

First, the randomly arranged codebook does not retain edges in the index image. This can be seen

in figures 7.12(b), 7.13(b), 7.14(b) and 7.15(b), where the binary gradient images are in mess and

have no meaning.

Second, the ordered codebooks can retain most edges in the index images. In the black and white

images, since an edge is a brightness discontinuity without any consideration of the colour discon­

tinuity, some edges which are caused by colour rather than brightness are not retained. For exam­

ple, consider image "pepper", the pixels in the lower left part of the big green pepper in the middle

of the image have close luminance values but different chrominance values. The edges in this part

cannot be retained in the black and white image, as illustrated in figure 7.15(a). However, the or­

dered codebooks cannot only retain the brightness discontinuity but also some colour discontinuity.

Take image "pepper" as an example, see figure 7.15. It can be seen that almost all the edges which

exist in figure 7 .15(a) also exist in figures 7.15(c), 7 .15(d), 7.15(e), and 7.15(f). Besides, some edg­

es which do not exist in figure 7.15(a) exist in figures 7.15(c), 7.15(d), 7.15(e), and 7.15(f). The

edges which do not exist in figure 7 .15(a) are caused by colour discontinuity. This can also be seen

in images "girll ", "girI2", and "plane", see figures 7.12, 7.13 and 7.14.

Thirdly, the codebooks ordered by the centroid method, the PNN-based method and the PNN-

124

J

Chapter 7 Experimental Results and Discussions

based/ordering function method can retain more colour discontinuity than the codebook ordered

by the Y ordering method. This can be easily understood because in the Y ordering method, as long

as the codewords have close luminance values, no maller how different their chrominance values

are, they are put close in the code book. Therefore, some edges caused by colour discontinuity can­

not be retained in the index image. Fourthly, the PNN-based/ordering function method works best

in the sense of retaining more edges, especially colour discontinuity.

Finally, in the process of the above edge detection, the thresholds used in the black and white image

and the index image by the PNN-based/ordering function method, see Eq.(7.16), are smaller than

the thresholds used in the other index images. This is because, in the other index images, there are

many wrong edges which do not exist in the original full colour images. The reason for the wrong

edges is that some codewords which are close in colour space are placed far away in the code book.

High threshold is required to remove these wrong edges. But at the same time, high threshold also

removes some meaningful edges. Therefore, improper ordering of the codebook results in many

wrong edges in the index image. The PNN -based/ordering function method is the best in the sense

that few wrong edges are introduced in the index image.

On the whole, the PNN-based/ordering function method can order the code book best with respect

to the amount of edge retained. The resulting index images retain more edges and have less wrong

edges. Next is the PNN-based method or the centroid method. Finally comes the Y ordering meth­

od. The randomly arranged codebook cannot retain any edges in the index image and the index im­

age is meaningless.

125

Chapter 7 Experimental Results and Discussions

(a) black and white image, threshold = 60 (b) random codebook, threshold = 100

(c) Y ordering method, threshold = 100 (d) centroid method, threshold = 100

(e) PNN-based method, threshold = 100 (t) PNN/ordering function method, threshold = 70

Figure 7.12 Edge detection by the Sobel operator for image "girll"

126

Chapter 7 Experimental Results and Discussions

(a) black and white image, threshold = 70 (b) random codebook, threshold = 80

(c) Y ordering method, threshold = 80 (d) centroid method, threshold = 80

(e) PNN-based method, threshold = 80 (f) PNN/ordering function method, threshold = 70

Figure 7.13 Edge detection by the Sobel operator for image "girl2"

127

Chapter 7 Experimental Results and Discussions

(a) black and white image. threshold = 70 (b) random codebook. threshold = 80

(c) Y ordering method. threshold = 80 (d) centroid method. threshold = 80

(e) P -based method. threshold = 80 (t) PN /ordering function method. threshold = 70

Figure 7.14 Edge detection by the Sobel operator for image "plane"

128

Chaprer 7 Experimenral Resulrs and DiscussiollJ

(a) black and white image. threshold = 70 (b) random codebook. threshold = 90

(c) Y ordering method. threshold = 90 Cd) centroid method. threshold = 90

(e) P -based method. threshold = 90 (t) PN lordering function method. threshold = 70

Figure 7.15 Edge detection by the Sobel operator for image "pepper"

129

Chapler 7 Experimental Resulls and Discussions

7.3.3 The DCT Processing on the Index Images

The codebooks, which are ordered by different ordering techniques, can also be tested by applying

the discrete cosine transform and the threshold processing on their corresponding index images.

The steps in the test are as follows:

I. Vector quantize the colour image by an ordered colour codebook

2. Apply the discrete cosine transform on 'he index image

3. Zigzag and threshold the coefficients and compute the required bits to encode the pro-

cessed image

4. De-threshold and de-zigzag the coefficients

5. Apply the inverse discrete cosine transform to the coefficients

6. De-vector quantize the recovered index image

7. Compute the SNR on the reconstructed colour image

8. Subjectively evaluate the reconstructed colour image

The ordered colour codebooks are then compared in three aspects, namely, the required bit rate, the

SNR of the reconstructed colour image and the visual quality of the reconstructed colour image.

The bit rate is computed in the similar way as that in the JPEG still image coding standard (§ 5.4)

with the difference that, the Symbol-I for DC coefficient is encoded by constant 8 bits and for AC

coefficients by constant 4 bits rather than using a Huffman coding table. Coding the coefficients in

this way requires more bits but the coding is simpler. The bit rate can be lower if the Huffman cod­

ing is used to encode Symbol-I. The signal to noise ratio (SNR) is used as a rough indicator for the

quality of the reconstructed colour image, see Eq.(7.2). The results of the four test images are

shown in table 7.2, table 7.3, table 7.4, and table 7.5.

For image "girl I ", the following observations can be made from table 7.2. First, when using the

randomly arranged code book to vector quantize colour image "girll ", the index image retains rath­

er few correlation and more bits are required to represent a pixel. For example, at threshold 2, its

130

Chapter 7 Experimental Results and Discussions

Codebooks ordered by different ordering methods

y PNN-based
Random ordering Centroid PNN-based and ordering Threshold method method method function

Rate SNR Rate SNR Rate SNR Rate SNR Rate SNR

bits/pel dB bits/pel dB bits/pel dB bits/pel dB bits/pel dB

I 8.56 57 6.32 78 6.19 82 6.25 83 6.12 83

2 6.56 47 3.98 69 4.01 74 4.04 75 3.90 76

3 5.35 45 2.89 67 2.95 72 2.96 73 2.86 74

4 4.49 43 2.24 66 2.31 71 2.32 71 2.24 73

5 3.87 43 1.82 66 1.89 70 1.91 70 1.84 72

Table 7.2 Apply the DCT to the index images of image "girll"

bit rate is 4.4Y bits/pel, which is bigger than the bit rates of the other kinds of the ordered colour

codebooks. Furthermore, its SNR of the reconstructed colour image is rather low and the visual

quality of the reconstructed colour image is unacceptable even when the threshold is only I. There­

fore, the index image which is generated by the randomly arranged codebook has no structure. Sec­

ond, though the code book ordered by the Y ordering method has very close or even lower bit rate

compared with the code book ordered by the centroid method, or the PNN-based method, or the

PNN-based/ordering function method, its SNR is much smaller than the other kinds of ordered

code books and the visual quality of the reconstructed colour image is also worse. The reason for

this is that, when the code book is ordered by the Y ordering method, only the luminance of the co­

lour is considered in the ordering without the chrominance of the colour. As a result, though the

close codewords which have close luminance values are put close in the codebook, it is not neces­

sary that the codewords which are close in the code book represent similar colours, because the

codewords having close or the same luminance level can represent quite different colours. Conse­

quently, the distortion in the recovered index image after the DCT coding may result in more wrong

131

Chapter 7 Experimental Results and Discussions

colour recoveries which degrades the reconstructed colour image.

Third, for image "girl 1 ", the codebooks ordered by the centroid method or the PNN-based method

have quite close results both in the bit rate and the SNR. Comparatively, for image "girll ", the

code book ordered by the PNN-based method has slightly lower SNR value and better visual quality

of the reconstructed colour image. Finally, when the codebook is ordered by the PNN-basedlorder­

ing function method, the bit rate and the SNR are more or less improved. For example, its SNR at

threshold 4 is the same as that of the PNN-based method at threshold 3 and the visual quality of the

reconstructed colour image is better. On the whole, for image "girll", the PNN-basedlordering

function method is the best regarding to the high SNR, low bit rat and good visual quality of the

reconstructed colour image, followed by the PNN-based method or the centroid method and the Y

ordering method. For the other three test images, similar results are also obtained.

Codebooks ordered by different ordering methods

y PNN-basedl
Random ordering Centroid PNN-based ordering

Threshold method method method function

Rate SNR Rate SNR Rate SNR Rate SNR Rate SNR

bits/pel dB bits/pel dB bits/pel dB bits/pel dB bits/pel dB

1 9.63 32 6.44 49 6.63 57 6.28 58 5.59 58

2 7.68 27 3.84 43 4.20 49 3.82 50 3.23 51

3 6.41 26 2.67 42 3.02 47 2.69 48 2.23 49

4 5.48 26 2.01 42 2.33 46 2.06 47 1.69 48

5 4.77 25 1.60 42 1.88 46 1.66 47 1.37 47

Table 7.3 Apply the DCT to the index images of image "girI2"

For image "girl2", the following points can be observed from table 7.3. First, the randomly ar­

ranged code book cannot retain any structure in the index image. It requires high bit rate and has

132

Chapter 7 Experimental Results and Discussions

rather low SNR and poor visual quality of the recovered colour image. Second, the Y ordering

method has low bit rate, but low SNR and poor visual quality of the reconstructed colour image

compared with the other kinds of ordered codebooks. Third, the PNN-based method is better than

the centroid method and it has lower bit rate, higher SNR and better visual quality of the recon­

structed colour image. Finally, the ordering function can improve the codebook ordering. The

code book ordered by the PNN-based/ordering function method can retain more structure in the in­

dex image than that by the PNN -based method. It has lower bit rate, higher SNR and better visual

quality of the reconstructed colour image. Therefore, for image "girI2", the PNN-based/ordering

function method is the best, followed by the PNN -based method, the centroid method, the Y order­

ing method and the randomly arranged codebook.

Code books ordered by different ordering methods

Y PNN-basedl
Random ordering Centroid PNN-based ordering

Threshold method method method function

Rate SNR Rate SNR Rate SNR Rate SNR Rate SNR

bits/pel dB bits/pel dB bits/pel dB bits/pel dB bits/pel ·dB

I 5.94 48 4.34 66 4.37 82 4.57 83 4.39 88

2 4.44 40 2.72 59 2.77 74 2.95 73 2.75 80

3 3.61 36 2.04 56 2.07 71 2.21 70 2.04 76

4 3.04 33 1.65 55 1.67 69 1.78 68 1.64 74

5 2.64 32 1.40 55 1.42 68 1.51 67 1.38 73

Table 7.4 Apply the DCT to the index images of image "plane"

For image "plane", the following results can be taken from table 7.4. First, the randomly arranged

code book cannot retain structure in the index image. It has high bit rate and rather low SNR and

poor visual quality of the reconstructed colour image. Second, the Y ordering method has very low

bit rate, and sometimes the bit rate is even lower than the centroid method and the PNN-based

method, but it has low SNR and poor visual quality of the reconstructed colour image. For exam-

133

Chapler 7 Experimenlal Resulls and Discussions

pie, its SNR of the reconstructed colour image at threshold I is lower than that of the centroid meth­

od and the PNN-based method at threshold 5. And the visual quality of the reconstructed colour

image at threshold 2 is worse than that of the centroid method at threshold 5. Third, for image

"plane", the centroid method is better than the PNN-based method regarding to the low bit rate,

high SNR and good visual quality of the reconstructed colour image. Finally, the ordering function

can improve the ordering. The codebook ordered by the PNN-basedlordering function method can

retain more structure in the index image than that by the PNN-based method. It has lower bit rate,

higher SNR and better visual quality of the reconstructed colour image. On the whole, for image

"plane", the PNN-based/ordering function method is the best, followed by the centroid method, the

PNN-based method, the Y ordering method and the randomly arranged codebook.

Codebooks ordered by different ordering methods

Y PNN-basedl
Random ordering Centroid PNN-based ordering

Threshold method method method function

Rate SNR Rate SNR Rate SNR Rate SNR Rate SNR

bits/pel dB bits/pel dB bits/pel dB bits/pel dB bits/pel dB

1 9.69 25 6.37 35 6.30 43 6.39 44 5.63 47

2 7.80 21 3.71 31 3.72 37 3.89 38 3.13 42

3 6.56 20 2.50 30 2.56 35 2.74 36 2.12 40

4 5.65 20 1.84 30 1.93 34 2.08 35 1.59 39

5 4.94 20 1.45 30 1.54 34 1.67 34 1.28 38

Table 7.5 Apply the DCT to the index images of image "pepper"

For image "pepper", the following results can be yielded from table 7.5. First, the randomly ar­

ranged codebook cannot retain any structure in the index image. Second, the Y ordering method

has low bit rate, but low SNR and poor visual quality of the reconstructed colour image compared

with the other kinds of ordered codebooks. Third, the centroid method has lower bit rate but lower

134

Chapter 7 Experimental Results and Discussions

SNR and poorer visual quality of the reconstructed colour image than the PNN-based method. Fi­

nally, the ordering function can improve the code book ordering. The codebook ordered by the

PNN-basedlordering function method can retain more structure in the index image than that by the

PNN-based method. It has lower bit rate, higher SNR and better visual quality ofthe reconstructed

colour image. On the whole, for image "pepper", the PNN-basedlordering function method is the

best, followed by the PNN-based method, the centroid method, the Y ordering method and the ran­

domly arranged codebook.

For the four experimental colour images, the PNN-based/ordering function method is the best or­

dering technique among the techniques tested in the sense of low bit rate, high SNR and good vi­

sual quality of the reconstructed colour image. However, the visual quality of the recons.tructed

colour image is un-acceptable when threshold is much larger than 2. When the threshold is 2, the

bit rates for the four test images "girl I ", "girl2", "plane" and "pepper" are 3.95, 3.23, 2.75 and 3.13

respectively and the compression ratios are I :6.0, I :7.4; I :8.7 and 1:7.7. These compression ratios

are not high enough for practical applications. The reasons for the low compression are that, though

the ordering techniques can order the colour code book quite well, there are still some rough places,

where adjacent codewords in the code book have big distance in colour space, such places as the

join of two clusters, and there are code words which are close in colour space are far away in the

code book, such as the junction codewords. The strategy of the artificial codeword insertion, see §

3.4, has been proposed to improve codebook ordering. Artificial code word insertion has been ap­

plied to the codebooks ordered by the PNN-based/ordering function method. The results are listed

in table 7.7, while the results of the PNN-based/ordering function method alone are listed in table

7.6 for comparison.

It can be seen that artificial codeword insertion improves the code book ordering quite remarkably.

First, for the four images, the SNR of the reconstructed colour images is increased substantially.

For example, consider image "plane", before the insertion the SNR at thresholds I, 2, 3, 4, 5 is 88,

80,76,74 and 73 respectively, as shown in table 7.6, while, after artificial codeword insertion, the

SNR is 93, 86, 82, 79 and 78 respectively, as shown in table 7.7. Second, the visual quality of the

135

Chapter 7 Experimental Results and Discussions

Images

Girl! Girl2 Plane Pepper
Threshold

Rate SNR Rate SNR Rate SNR Rate SNR

bits/pel dB bits/pel dB bits/pel dB bits/pel dB

I 6.12 83 5.59 58 4.39 88 5.63 47

2 3.90 76 3.23 51 2.75 80 3.13 42

3 2.86 74 2.23 49 2.04 76 2.12 40

4 2.24 73 1.69 48 1.64 74 1.59 39

5 1.84 72 1.37 47 1.38 73 1.28 38

Table 7.6 The experimental results before the artificial codeword insertion

Images

Girl! Girl2 Plane Pepper
Threshold

Rate SNR Rate SNR Rate SNR Rate SNR

bits/pel dB bits/pel dB bits/pel dB bits/pel dB

I 6.45 90 5.89 67 5.21 93 6.20 51

2 4.33 84 3.61 60 3.54 86 3.81 46

3 3.27 80 2.61 56 2.70 82 2.74 43

4 2.63 77 2.05 54 2.21 79 2.14 42

5 2.19 75 1.70 53 1.88 78 1.76 41

Table 7.7 The experimental results after the artificial codeword insertion

136

Chapter 7 Experimental Results and Discussions

reconstructed colour image is also improved and at the same threshold, the reconstructed colour

image after insertion looks betterthan that before the insertion. For example, for image "girll ", the

visual quality at threshold 3 before the insertion is unacceptable, while after the insertion, the visual

quality of the reconstructed colour image at threshold 3, even 4 is quite good, see figure 7.16. Fi­

nally, the bit rate is decreased when the visual quality of the reconstructed colour image is good or

acceptable. For images "girl I ", "girI2" and "pepper", when the threshold is up to 4, the visual qual­

ity of their reconstructed colour images is quite good. In this case, the bit rates are 2.63, 2.05, 2.21

and 2.14 respectively and their compression ratios are then 1:9.1, 1: 11.7, I: 10.9, and 1: 11.2 respec­

tively. For image "plane", when the threshold is up to 5, the visual quality of the reconstructed co­

lour image is still good, and the bit rate is 1.88, and the compression ratio is 1: 12.8.

I
The reconstructed colour images at thresholds 1,2,3,4,5 of the images 'girll', 'girl2', and'

I
. ,

,'plane' are s_hown in figures 7.16, 7.17, 7.18. (It is unfortunate to point out that because of photogra-
- '. -

phy problem, image "pepper" only has two reconstructed colour images at thresholds I, and 2.)

Normally, when the threshold is up to 4, the reconstructed colour images look good. For image

"plane", the quality of the reconstructed colour image is still good at threshold 5. But it can be not­

ed that when threshold is big, say 5, the degradation in the reconstructed colour image is quite ob­

vious to be perceived. It has been explained in chapter 3 that the value of a pixel in the index image

is the index of the closest mapped code word in the codebook. The value of a distorted pixel will

cause wrong colour recovery. Though the codebook is ordered, there are still some places where

the arrangements of the codewords cannot satisfy the two ordering conditions well. Therefore,

when the distortion is large, more distortion will be introduced in the recovered index image and

the distortion will result in wrong colour recovery. The other problem is that some significant edges

are blurred even though the threshold is very small. Some smooth edges are zigzagged. For exam­

ple in figure 7.18(b), the edge along the tail of the plane is zigzagged. Because after the Dcr and

the threshold process, the recovered image blocks are actually averaged to some extent. Therefore,

in the blocks where there are sharp edges, after the averaging more distortion is then introduced.

Since the pixel in the index image is the index of the mapped closest codeword in the codebook, it

is easy to have blocky effect along the edges.

137

Chapter 7 Experimental Results and Discussions

(a) no DCT processing

(c) threshold = 2

(e) threshold = 4 (f) threshold = 5

Figure 7.16 Reconstructed colour images of image "girl I "

138

Chapter 7 Experimental Results and Discussions

(c) threshold = 2 (d) threshold= 3

(e) threshold = 4 (t) threshold = 5

Figure 7.17 Reconstructed colour images of image "girl2"

t39

Chapter 7 Experimental Results and Discussions

(a) no DCT processing (b) threshold = I

(c) threshold = 2 (d) threshold= 3

(e) threshold = 4 (f) threshold = 5

Figure 7,18 Reconstructed colour images of image "plane"

140

Chapter 7 Experimental Results and Discussions

(b) threshold = 1

(c) threshold = 2

Figure 7.18 Reconstructed colour images of image "pepper"

14 1

Chapter 7 Experimental Results and Discussions

7.3.4 Summary

The quality of the ordered codebook depends both on the codebook and the ordering techniques.

The characteristics of a code book are determined by the image to be coded. For the images which

have a lot of saturated colours, such as image "pepper", or have a lot of achromatic colours, such

as image "plane", their codebooks are easier to order. They have low ordering function values, low

bit rates and good visual quality of the reconstructed colour images after the DCT processing. They

can retain more edges in the index image. For the images which have a lot of close colours, such

as images "girl I" and "girI2", their code books are more difficult to order. They have higher order­

ing function values, higher bit rates etc.

Among the four ordering techniques, the PNN-based/ordering function method is the best regard­

ing low bit rate, high SNR and better visual quality of the reconstructed colour image after the DCT

processing, low ordering function value and more edges retained and less wrong edges in the index

image. Next come the centroid method and the PNN-based method. They give quite similar results,

such as the bit rates, SNR, ordering function etc. In most cases, the PNN-based method works bet­

ter than the centroid method. Finally comes the Y ordering method. It can retain a lot of significant

edges and some correlation in the index image. But it is not suitable for the image processing which

introduces distortion into the index image, such as information lossy compression techniques. The

randomly arranged codebook cannot retain any structure in the index image. Artificial codeword

insertion has been shown to improve the codebook ordering. It is especially useful in improving

the reconstructed colour image quality when there is distortion in the index image.

The conclusion can be reached from the above tests that if the code book is ordered by a proper or­

dering method, such as the PNN-based/ordering function method together with the artificial code­

word insertion, then using the ordered code book to vector quantize the colour image gives

satisfactory results. The practical application of this process is that further image processing, such

as edge detection, image compression techniques etc., can be applied to the index image. There­

fore, colour image processing is transfomled to index image processing which works in the same

142

Chapler 7 Experimental Resulls and Discussions

way as black and white image processing. This not only simplifies colour image processing but also

saves the memory space and the system expense required in the processing. Consequently, the three

band colour image is transformed into a single band index image and the colour image vector rep­

resentation is transformed into a scalar representation.

143

ChapterS Conclusions

Chapter 8

Conclusions

In this thesis, the possibility of representing colour images by scalar variables is proposed. In this

kind of colour image representation, the colour code book ordering is the most crucial step. Several

strategies for the colour codebook ordering have been designed and tested. The examples are the

Y ordering method, the centroid method, the PNN-based method, and the PNN-basedlordering

function method. The experimental results show that the PNN-based/ordering function method to­

gether with artificial codeword insertion is the best way of colour code book ordering among those

ordering methods so far discussed. The colour codebook which is ordered by the PNN-basedlor­

dering function method and artificial code word insenion can retain a lot of structure, such as edges

and correlation, in the index image so that edge detection and image compression techniques can

be applied to the index image. This indicates that further image processing can be applied to the

index image if the colour codebook is well ordered. In this sense, a three-band colour image is

transfonned into a single band index image with a well ordered colour codebook. Conventionally,

the colour image processing is realized by applying image processing techniques to the three bands

separately. But now, colour image processing can alternatively be carried out on the index image

in the same way as on a monochrome image. In this way, it not only simplifies colour image pro­

cessing but also reduces the processing complexity and memory requirement up to one third. Ad­

ditionally, the image processing techniques which have been developed for monochrome images

can be applied to index images straightforwardly.

The research on the colour image representation by scalar variables is at its early stage of research

144

Chapter 8 Conclusions

and further research is worthwhile. In the future, it would be interesting to carry out further re­

search associated with the ordering function in colour codebook ordering. It can be seen that the

ordering function plays an important role in the process of colour codebook ordering. It can quan­

titatively evaluate how well the ordering conforms with the two ordering conditions. What is more,

it can be used in refining the ordering. The ordering function proposed in this thesis works quite

well. This can be seen from the results of the experiments discussed in chapter 7. Further research

can be carried out in the following aspects.

First, a better colour space rather than the RG B colour space should be used. In the colour code­

book ordering, it is required that the codewords which represent close colours should be put close

in the code book and the codewords which are close in the codebook should represent close colours.

Therefore, it is desirable that the close ordinal number in colour space is computed in the colour

space in which the colour tristimulous difference is more consistent with perceived colour differ­

ence. Second, a better colour distance measurement, rather than the Euclidean distance, should be

used in the computation of the close ordinal number in colour space. In the computation of the close

ordinal numbers in colour space for a reference code word, the codewords are first ordered accord­

ing to their distance in colour space from the reference codeword. It is assumed here that the dis­

tance between two codewords in colour space can describe the difference of the colours they

represent and the smaller the distance is, the closer the colours they represent. But it is obvious that

the Euclidean distance between two codewords does not necessarily correlate with the perceived

colour difference. This is because the Euclidean distance does not consider the aspect of the human

visual system.

Finally, the arrangement of the junction codewords should be taken into account in the ordering

function. A junction codeword is close to several codewords with almost the same small distance.

According to the two ordering conditions, it is required that the junction codeword should be put

close to all its close code words in the code book. But in a linear codebook, this cannot be realized.

In the techniques proposed in this thesis, the junction code word is either taken out to form a sepa­

rate cluster or put close to any of its close codeword. Better arrangement of the junction codeword

145

Chapter 8 Conclusions

would be that the junction codeword is put close to that codeword to which it is most likely to be

close to in the index image. Then, in the calculating of the function f(i), weight should be used to

reflect the importance of a codeword in the image to a reference codeword. Therefore, if this ar­

rangement of the junction codewords is reflected in the ordering function, the ordering refinement,

by reducing the ordering function, can achieve better colour codebook ordering.

146

Appendix A The I nmos Transputer 7222

Appendix A

The Inmos Transputer T222

The Inmos T222 is a 16 bit version with on-chip RAM for high speed processing, an external mem­

ory interface and four standard Inmos communication links. The T222 has 4 Kbytes of fast on-chip

memory and can access 64 Kbytes of external memory The memory is byte addressed with words

aligned on two-byte boundaries. Its links allow networks of transputers to be constructed by direct

point-to-point connections with no external logic. The links support the standard operating speed

of 10 Mbits/sec, but also at 5 or 20 Mbits/sec. Each lnmos T222 link can transfer data bi-direction­

ally at up to 2.05 Mbytes/sec. Its instruction set achieves efficient implementation of high level lan­

guages and provides direct support for the Occam model of concurrence when using either a single

transputer or a network. Procedure calls, process switching and typical interrupt latency are sub­

microsecond and this feature is very important as image processing involves moving lots of data,

i.e. many interrupts. The T222 also supports block in and block out operations in Occam, which

provides an efficient and easy way to control and communicate with fast external memory, such as

FIFOs. The main features of the T222 are summarized as follows:

· 16 bit architecture

· 50 ns internal cycle time

· 20 MIPS (peak) instruction rate

.4 Kbytes on-chip static RAM

· 40 Mbytes/sec sustained data rate to internal memory

· 64 Kbytes directly addressable external memory

· 20 Mbytes/sec sustained data rate to external memory

· 950 ns response to interrupts

147

Appendix A The Inmos Transputer 1222

· Four INMOS serial links 5/10/20 Mbytes/sec per link

· Internal timers of I ~s and 64 ~s

· Boot from ROM or communication links

· Single 5 MHz clock input

· Single +5V ± 5% power supply

148

Appendix B The CY7C408A FIFO Chip

Appendix B

The CY7C408A FIFO Chip

The A 121 chip has 44 pins, see figure B.I. The signal of each pin is explained as follows:

· eLK: The clock input signal eLK controls the timing of the input and output on the three

dedicated interface, and controls the progress of data through the multipliers and transposition

RAM.

· GO: The GO signal is used to indicate the start of a block. When it is sampled high, the data

on the Din port is the first sample of the block. Data is always assumed to be valid for the 64

cycles from the start of a major cycle, meanwhile the GO signal is ignored. Blocks of data may

be processed at any time and any spacing between the major blocks, by toggling the GO signal

as necessary.

· Dinfll-O): The data input ports Dinfll-O) are sampled on every clock cycle and for a further

63 cycles, from when GO is sampled high. Data must be valid on the rising edge of eLK for

each of the 64 cycles.

· Dout[II-OJ: The data output ports Doutfll-Ol will be valid for periods spanning 64 clock cy­

cles. The data will be valid on the rising edge of the clock, exactly 128 cycles after the data

was sampled on the input.

· SELf 1-0]: The mode select input port is sampled on the rising edge of eLK, when GO is ac­

tive, at the start of a block of data. This fixes the selected mode for the entire data block. There

are 4 possible modes of operation, and these 4 modes select I of the four coefficient ROMs .

. Mode 0, SELf 1-0]=00, bank O. This selects the DCT function

. Mode I, SELf I-OJ=O I, bank I. This selects the lDCT function

149

Appendix B

CLK 7
Din[O] 8
Din[l] 9

Din[2] 10
Din[3] 11
VDD 12
GND 13

Din[4] 14
Din[5] 15
Din[6] 16
Din[7] 17

•

Inmos AI21

44 pinPLCC

LOp view

39 Dx[lO]
38 Dx[l1]
37 DOUI[O]
36 Doul[1]
35 Doul[2]
34 GND
33 VDD
32 Doul[3]
31 Doul[4]
30 DOUI[5]
29 DOUl[6]

The CY7C408A FlFO Chip

Figure B.1 The Inmos A 121 44 pin PLCC top view

150

Appendix C The Data In and Out Timing Diagram of the FIFO

Appendix C

The Data In and Out Timing Diagram of the FIFO

The data in and out diagram of the CY7C408A FIFO chip:

Data In Timing Diagram

Shift In ~ \ / \ / \
Input Ready \ / \ /
Data in Y, '/Y'f:IXXY. X XXXXXYX

AFE \
HF (Low)

Data Out Diagram

Shift Out ~ \ / \ / \
Output Ready \ / \ /

Data out _______ XZKX~ ______ ~~ ________ _
HF (Low)

AFE --------------------~/
Figure C.I Data in and data out timing diagram

151

AppendixD The Program in the EPW610 Chip

Appendix D

The Program in the EPLD610 Chip

The configuration of EPLD610 chip is shown in figure D.I:

Gnd 24 VCC

F 2 23 F2

Gnd 3 22 EVENT

SOl 4 21 GO

NOTCEI 5 20 NOTMRI

NOTWBOI 6 EP610
19 SIl

PROCLK 7 18 CLR

Gnd 8 17 SI2

NOTCE2 9 16 S02

NOTWB02 10 IS NOTMR2

FI28 11 14 Gnd

GND 12 13 Gnd

Figure D.I The configuration of the EP61 0

The control program in the EP610 is as follows:

E610

controlling the DCT board

NETMAP Version 3.0, Baseline IS, 8/3/1985

152

Appendix D The Program in the EPW6JO Chip

Part: EP610

INPUTS: FI2S@Il, F@2, F2@23, NOTCEI@5, NOTWBOI@6, PROCLK@7, NOT­

CE2@9, NOTWB02@1O

OUTPUTS: SOI@4,GO@21, NOTMRI@20, EVENT@22, SI2@17, S02@16, NOT­

MR2@15, SII@19,CLR@IS

NETWORK:

SOl = CONF (sol, VCC)

GO = RONF (VCC, f12ScIk, f2, GND, VCC)

NOTMRI = CONF (notmrl, VCC)

EVENT = RONF (VCC, notfl28, f2, GND, VCC)

SI2 = CONF (si2, VCC)

S02 = CONF (s02, VCC)

NOTMR2 = CONF (notmr2, VCC)

SII = RONF (V CC, procIk, clear, GDN, VCC)

CLR, clear = COIF (cIr, VCC)

cIr = OR (notcel, notwbO I)

notcel = INT (NOTCEI)

notwbOl = INP (NOTWBOI)

proclk = INP (PROCLK)

notmr2 = OR (notce2, notwb02)

notce2 = INP (NOTCE2)

notwb02 = INP (NOTWB02)

s02 = AND (ce2, notwb02)

ce2 = NOT (notce2)

si2 = AND (notf, fl2S)

notf = NOT(f)

153

Appendix D

fl28clk = CLKB (fl28)

fl28 = INP (Fl28)

f= INP (F)

notfl28 = NOT (fl28)

f2 = INP (F2)

notmrl = OR (notee1, wbOl)

wbOl = NOT (notwbOl)

wbOl = NOT (notwbOl)

so 1 = AND (f, fl28)

END$

The Program in the EPW610 Chip

154

Bibliography

[Ahme74] N. Ahmed, T. Natarajan and K. Rao: "Discrete Cosine Transform", IEEE Trans. on

Communications, January 1974.

[Bala91]

[Brau87]

R. Balasubramanian, J. Allebach: "A New Approach to Palette Selection for Colour

Images", SPIE vol. 1453, Human Vision Visual Processing, and Digital Display, pp.

58-69,1991.

G. Braudaway: "A Procedure for Optimum Choice of a Small Number of Colours

from a Large Colour Palette for Colour Imaging", Electronic Imaging 87, San Fran­

cisco, CA, 1987.

[Burn88] A. Burns: "Programming in Occam2", Addison-Wesley Publishing Company, 1988.

[Chen77] W. Chen, C. Smith, and S. Fralick: HA Fast Computational Algorithm for the Discrete

Cosine Transform", IEEE Trans. on Com., vol. Com-25, no. 9, pp. 1004-1009, Sep­

tember 1977.

[Chen77] W. Chen, C. Smith: "Adaptive Coding of Monochrome and Colour Images", IEEE

Trans. on Com, vol. COM-25, no. 11, pp. 1285-1292, November 1977.

[Chen84] W. Chen, W. Pratt: "Scene Adaptive Coder", IEEE Trans. on Corn., vol. COM-32, no.

3, pp. 225-232, March 1984.

[Chen91] S. Chen, W. Hsieh: "Fast Algorithm for VQ Codebook Design", lEE Proceedings-I,

vol. 138, no. 5, pp. 357-362, October 1991.

155

[Clar85]

[Cypr89]

[Davi75]

[Eina87]

[Equi89]

[Este90]

[Gers82]

Bibliography

R. Clarke: "Transfonn Coding of Image", Academic Press, 1985.

Cypress Semiconductor: "CMOS BiMos Data Book", pp. 5.34-5.47, 1989.

L. Davis: "A Survey of Edge Detection Techniques", Computer Graphics and Image

Processing, pp. 248-270, 1975.

G. Einarsson, G. Roth: "Data Compression of Digital Colour Pictures", Computer &

Graphics, vol. 11, no. 4, pp. 409-426, 1987.

W. Equitz: "A New Vector Quantization Clustering Algorithm", IEEE Trans. on

ASSP, vol. 37, no. 10, pp. 1568-1575, October 1989.

M. Ester: "Image Quality and Viewer Perception", 1990 ISAST, pp. 51-63.

A. Gersho and B. Ramamurthi: "Image Coding Using Vector Quantization", 1982

IEEE.

[Gers85] R. Gershon: "Aspects of Perception and Computation in Colour Vision", Computer

Vision, Graphics, and Image processing, pp. 244-277, 1985.

[Gold91] N. Goldberg: "Colour Image Quantization for High Resolution Graphics Display",

Image and Visual Computing, vol. 9, no. 5, pp. 303-312, October 1991.

[Gonz87] R. Gonzales, P. Wintz: "Digital Image Processing", Addison-Wesley Publishing

Company, second edition, 1987.

[Gran79] D. Granrath, B. Hunt: "A Two-Channel Model of Image Processing in the Human

Retina", Proc. SPIE, vol. 199, pp. 126-133, August, 1979.

156

Bibliography

[Gray84] R. Gray: "Vector Quantization", IEEE ASSP Magazine, pp. 4-29, April 1984.

[Habi74] A. Habibi: "Hybrid Coding of Pictorial Data", IEEE Trans on Corn., vol. COM-22,

no. 5, May 1974.

[Heck82] P. Heckbert: "Colour Image Quantization for Frame Buffer Display", Computer

Graphics, vol. 16, num. 3, pp. 297-307, July 1982.

[Helm90] R. Helms: "Introduction to Image Technology", IBM systems Journal, vol. 29, no. 3,

pp. 313-332, 1990.

[Huan89] A. Huang,: "Image Compression: The Emerging Standard for Colour Images", IEEE

Computing Futures, 1989.

[Huff52] D.Huffman: "A Method for the Construction of Minimum Redundancy Codes", Pro­

ceedings of the I. R. E., vol. 40(10), pp. 1098-1101, September 1952.

[Inm088] lnmos Limited: "Transputer Development System", Prentice Hall, 1988.

[Inm0891] Inmos Limited: "The Transputer Data Book", Redwood Burn Ltd., 1989.

[Inm0892] 1nmos Limited: "Digital Signal Processing Data Book", Bath Press Ltd., pp. 77-96,

1989.

[Jain81] A. Jain: "Image Data Compression: A Review", Proceedings of the IEEE, vol. 69, no.

3, pp. 349-389, March 1981.

[Kama82] F. Kamangar, K. Rao: "Fast Algorithms for the 2-D Discrete Cosine Transform",

IEEE Trans. on Com. vol. COM-31, no. 9, September 1982.

157

[Kunt85]

[Kunt87]

[Lang84]

[Lava90]

Bibliography

M. Kunt, A. Ironomopoulos, M. Kocher: "Second-Generation Image Coding Tech­

niques", Proceedings of the IEEE, pp. 549-591, April 1985.

M. Kunt, M. Benard, R. Leodardi: "Recent Results in High-Compression Image Cod­

ing", IEEE Trans. on Circuits and Systems, vo!. CAS-34, no. 11, pp. 1306-1336, No­

vember, 1987.

G. Langdon: "An Introduction to Arithmetic Coding", IBM J. Res. Develop., vo!. 28,

no. 2, pp. 135-149, March 1984.

F. Lavagetto, S. Zappatore: "Comparative Evaluation of Different Techniques in Im­

age Vector Quantization", SPIE vo!. 1349, Applications of Digital Image Processing

XIII (1990), pp. 192-202.

[Limb77] 1. Limb, C. Rubinstein, 1. Thompson: "Digital Coding of Colour Video Signals-A Re­

view", IEEE Trans. on Communication, vo!. COM-25, no. 11, November 1977.

[Limb79] 1. Limb: "Distonion Criteria of the Human Viewer", IEEE Trans. on System, Man and

Cybernetic, vo!. SMC-9(12), pp. 778-793, December 1979.

[Lind80] Y. Linde, A. BuZQ, R. Gray: "An Algorithm for Vector Quantization Design", IEEE

Trans. on COol., vo!. COM-28, no. I, pp. 84-95, January 1980.

[Maen89] 1. Maeng, D. Hein: "A Low-Rate Video Coding Based on DCTNQ", Visual Commu­

nication and Image Processing IV (1989), pp. 267-273.

[Mare86] J. Marescq, C. Labit, "Vector Quantization in Transformed Image Coding", ICASSP

86, pp. 145-148, 1986.

158

Bibliography

[Macd90] L. Macdonald: "Using Colour Efficiently in Displays for Computer-Human Inter­

face", Displays: Technology and Applications, vol. 11, pp. 129-141, July 1990.

[Makh87] J. Makhoul: "A Fast Cosine Transform in One and Two Dimensions", IEEE Trans. on

ASSP, vol. ASSP-28, no. 1, February 1987.

[Mitc91]

[Mitr89]

[Miya85]

J. Mitchell, "Evolving JPEG Colour Data Compression Standards", Standards for

Electronic Imaging Systems, 91.

S. Mitra, I. Zarrinnaal, Y. Wang: "Digital Processing of Colour Images", SPIE vol.

1077, Human Vision, Visual Processing and Digital Display, pp. 132-135, 1989.

M. Miyahara, K. Kotanl: "Block Distortion in Orthogonal Transform Coding-Analy­

sis, Minimization and Distortion Measure". IEEE Trans. on Corn, no. 1, January 1985.

[Murc84] G. Murch, Tektronic: "Physiological Principles for the Effective Use of Colour",

IEEE CG&A, pp. 49-54, November 1984.

[Nasr88] N. Nasrabadi, R. King: "Image Coding Using Vector Quantization: A Review", IEEE

Trans. on Corn., vol. 36, no. 8, pp. 957-971, August 1988.

[Netr88] A. NetravaIi, B. Haskell: "Digital Pictures: Representation and Compression", Ple­

num Press, 1988.

[NibI86] W. Niblack: "An Introduction to Digital Image Processing", Prentice-Hall Interna­

tional Ltd., 1986.

[Prat71] W. Pratt: "Spatial Transform Coding of Colour Images", IEEE Trans. on Communi­

cation Technology, vol. COM-19, December 1971.
\

\

159

[Prat81]

Bibliography

W. Pratt, J. Kana, H. Andrews: "Hadmard Transform Image Coding", The Radio and

Electronic Engineering, vol. 5 I, no. \I, 1981.

[Pres91] K. Preston: "Who Needs 24-bit Colour?", PHOTONICS Spectra, pp. 119-121, April

1991.

[Rama86] B. Ramamurthi, A. Gersho: "Classified Vector Quantization of Images", IEEE Trans.

on Com., vol. COM-34, no. 11, pp. 1105-1115, November 1986.

[Robi77]

[Shan76]

[Sakr77]

[Truc81]

[Tsen78]

G. Robinson: "Colour Edge Detection", IEEE Trans. on Systems, Man, and Cybernet­

ic, vol. SMC-7, no. 11, pp. 525-530, November 1977.

K. Shanmugam: "Comments on Discrete Cosine Transform", IEEE Trans. on Com­

puters, vol. C-23, March 1975.

D. Sakrison: "On the Role of the Observer and a Distortion Measure in Image Trans­

mission", IEEE Trans. on Com., vol. COM-25, no.l1, November 1977.

J. Truckenbrod: "Effective Use of Colour in Computer Graphics", Computer Graph­

ics, vol. 15, no. 3, pp. 83-90, August 1981.

B. Tseng, W. Miller: "On Computing the Discrete Cosine Transform", IEEE Trans. on

Computers, vol. C-27, October. 1978.

[Wa1l91] G. Wallace: "The JPEG Still Picture Compression Standard", Com. of the ACM, vol.

34, no.4, pp. 31-44, April 1991.

[Wang91] H. Wang: "A VQ/DCT Coding Scheme for Colour Images", ICC'91, pp. 236-240,

June 1991.

160

[Wint72]

Bibliography

P. Wintz: "Transfonn Picture Coding", Proceedings of the IEEE, vol. 60, no. 7, July

1972.

[Witt87] l. Witten, R. Neal, and J. Cleary: "Arithmetic Coding for Data Compression", Com­

munications of the ACM, vol. 30(6), pp. 520-540, June 1987.

[Youn86] T. Young, K. Fu: "Handbook by Pattern Recognition and Image Processing", Aca­

demic Press, pp. 201-204, 1986.

161

