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Abstract 
 

Epithelial to Mesenchymal Transition (EMT) is a cellular transformation process that is 

employed repeatedly and ubiquitously during vertebrate morphogenesis to build complex 

tissues and organs. Cellular transformations that occur during cancer cell invasion are 

phenotypically similar to developmental EMT, and involve the same molecular signalling 

pathways. EMT processes are diverse, but are characterised by: a loss of cell-cell adhesion; a 

gain in cell-matrix adhesion; an increase in cell motility; the secretion of proteases that 

degrade basement membrane proteins; an increased resistance to apoptosis; a loss of 

polarisation; increased production of extracellular matrix components; a change from a 

rounded to a fibroblastic morphology; and an invasive phenotype. 

This thesis focuses explicitly on endocardial EMT, which is the EMT that occurs during 

vertebrate embryonic heart development. The embryonic heart initially forms as a tube, with 

myocardium externally, endocardium internally, with these tissue layers separated by a thick 

extracellular matrix termed the cardiac jelly. Some of the endocardial cells in specific regions 

of the embryonic heart tube undergo EMT and invade the cardiac jelly. This causes cellularised 

swellings inside the embryonic heart tube termed the endocardial cushions. The emergence of 

the four chambered double pump heart of mammals involves a complex remodelling that the 

endocardial cushions play an active role in. Even while heart remodelling is taking place, the 

heart tube is operating as a single-circulation pump, and the endocardial cushions are 

performing a valve-like function that is critical to the survival of the embryo (Nomura-

Kitabayashi et al. 2009). As the endocardial cushions grow and remodel, they become the 

valve leaflets of the foetal heart. The endocardial cushions also contribute tissue to the septa 

(walls) of the heart. Their correct formation is thus essential to the development of a fully 

functional, fully divided, double-pump system. It has been shown that genetic mutations that 

cause impaired endocardial EMT lead to the development of a range of congenital heart 

defects (Fischer et al. 2007). 

An extensive review is conducted of existing experimental investigations into endocardial EMT. 

The information extracted from this review is used to develop a multiscale conceptual model of 

endocardial EMT, including the major protein signalling pathways involved, and the cellular 

phenotypes that they induce or inhibit. After considering the requirements for computational 

simulations of EMT, and reviewing the various techniques and simulation packages available 
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for multi-cell modelling, cellular Potts modelling is selected as having the most appropriate 

combination of features. The open source simulation platform Compucell3D is selected for 

model development, due to the flexibility, range of features provided and an existing 

implementation of multiscale models; that include subcellular models of reaction pathways.  

Based on the conceptual model of endocardial EMT, abstract computational simulations of key 

aspects are developed, in order to investigate qualitative behaviour under different simulated 

conditions. The abstract simulations include a 2D multiscale model of Notch signalling lateral 

induction, which is the mechanism by which the embryonic heart tube is patterned into 

cushion and non-cushion forming regions. Additionally, a 3D simulation is used to investigate 

the possible role of contact-inhibited mitosis, upregulated by the VEGF protein, in maintaining 

an epithelial phenotype. 

One particular in vitro investigation of endocardial EMT (Luna-Zurita et al. 2010) is used to 

develop quantitative simulations. The quantitative data used for fitting the simulations consist 

of cell shape metrics that are derived from simple processing of the imaging results. Single cell 

simulations are used to investigate the relationship between cell motility and cell shape in the 

cellular Potts model. The findings are then implemented in multi-cell models, in order to 

investigate the relationship between cell-cell adhesion, cell-matrix adhesion, cell motility and 

cell shape during EMT.  
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Chapter 1 

1. Introduction 

1.1. Background Context 

1.1.1. Modelling and Simulation in Biomedicine 

Computational modelling and simulation are increasingly utilised as tools within biomedical 

research. Experimental findings about the biological systems under investigation become ever 

more detailed, complex and difficult to mentally connect. Thus there is a need to integrate and 

represent the information in ways that are comprehensible. Conceptual models – usually 

diagrammatic – play a key role in summarising the current knowledge, or hypotheses, about a 

biological process. However, the number of interactions involved in a biological process is so 

large that representing all of them in a diagram is impractical. Besides which, large numbers of 

interacting components can exhibit collective behaviours that can not necessarily be 

understood from the behaviour of individual components. These interactions can be integrated 

with mathematical models. However, these models are often too complex for analytical 

solution. They can be translated into sets of algorithms or computational models, which are 

then implemented as simulations. Simulation models provide a representation that can be 

tested and validated against experimental results. They can also provide suggestions for 

further experimentation; either by indicating missing knowledge or by providing experimental 

predictions, as suggested by the black box model below (Figure 1.1). 

 

Figure 1.1 Schematic of the systems biology approach (Merks & Glazier 2005) 
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The majority of computational biology models are single-scale models. This is partly because 

different types of mathematics, and thus modelling techniques, are suitable for representing 

the behaviour of biological systems at different levels of scale. For example: biochemical 

reactions are best represented with ordinary differential equations, or some form of network 

model; diffusion of chemical fields and cellular physiology are best modelled with partial 

differential equations; while cellular behaviour might be represented by some form of agent 

based modelling, because this reduces the complex machinery of cells to a handful of core 

behaviours, encoded as rule-based decisions. 

Peer-reviewed, single-scale models are now frequently deposited in online databases, in a 

format that can be used by many computer programs. These are generally in eXtensible 

Markup Language (XML) format. For example, biochemical reaction models are made available 

as System Biology Markup Language (SBML) files on the Biomodels.net database (Li et al. 

2010). These can be reused, in whole or part, and simulated either deterministically or 

stochastically depending on the tool used. There are now over 150 software systems that are 

SBML compatible. Similarly, hundreds of single cell physiology models have been made 

available in the CellML model repository. These are modular, allowing for easier reuse of 

components. There is a stated aim to provide a catalogue of standard virtual subcellular parts 

(such as ion exchangers or signal transduction pathways) that can be composed into more 

complex models (Garny et al. 2008). 

Agent based formalisms have tended to be more disparate, with each model being 

encapsulated in a specific problem. While there is a library of models of biochemical reactions, 

and a library of models of cell physiology, and even a small library of 3D geometrical models of 

human organs (provided in another XML specification, FieldML); there is no comparable 

repository of models of cellular ‘social’ behaviour in tissues. Currently the closest 

approximations to this are the modelling environments CHASTE (Pitt-Francis et al. 2009) and 

Compucell3D (Cickovski et al. 2007), both of which are open source and provide functionality 

for multiscale modelling of cells and tissues. Compucell3D achieves this through cellular Potts 

models, while CHASTE implements it with both cell centre and cell vertex models. These 

different techniques are explained further in chapter 2. 

The Physiome consortium for multiscale physiological modelling has tended to ignore cells, 

treating them as parts of continuous tissues (Popel & Hunter 2009). In this way, detailed 

subcellular physiology and reaction networks (SBML or CellML) can be integrated with 

mechanical models of organs (FieldML) such as heart wall excitation and deformation. But this 
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approach is not suitable where the changing shape, rearrangement and migration of individual 

cells are a crucial part of the system we wish to simulate and understand. This is very much 

the case when modelling morphogenesis. While cell vertex and cell centre modelling do 

represent the behaviour of individual cells, and this can incorporate multiscale phenomena, 

such as for example in the Epitheliome project (Smallwood 2006); the cellular Potts formalism 

has the most flexibility in terms of directly representing changes in cell shape. As this thesis 

focuses on cardiac morphogenesis and epithelial to mesenchymal transition in particular, 

explicit representation of cellular shape and adhesion are important modelling features to 

include. 

1.1.2. Epithelial to Mesenchymal Transition 

Epithelial and mesenchymal cells differ in a number of phenotypic characteristics. Epithelial 

cells form layers of cells that are organised by a variety of junctional adhesions. These 

epithelial layers have apical-basolateral polarisation due to the localised distribution of 

different adhesion molecules. Epithelial cells are motile, and can move around within the layer. 

However, they do not move away from the layer under normal conditions. Mesenchymal cells 

do not form an organised layer, and contact other mesenchymal cells only by focal adhesions.  

In culture, mesenchymal cells have spindle-shaped (fibroblastic) morphology, and are highly 

motile, while epithelial cells grow in clusters, maintaining full cell-cell adhesion (Thiery & 

Sleeman 2006). 

Epithelial cells can become mesenchymal cells in a process termed Epithelial to Mesenchymal 

Transition (EMT). This is broadly a process of the loss of epithelial characteristics and 

acquisition of mesenchymal characteristics. As such, there is a wide spectrum of types of EMT, 

in different tissues, regulated by different signalling pathways, which may involve the loss and 

gain of different phenotypic characteristics. For example, in a partial EMT, cells may lose tight 

junctions, but maintain adherens junctions or desmosomes (Figure 1.2 The cycle of epithelial 

cell plasticity (Thiery & Sleeman 2006) 

). Alternatively, they may lose all types of epithelial adhesion, but remain non-invasive (Luna-

Zurita et al. 2010). EMT, and the reverse process: Mesenchymal to Epithelial Transition (MET) 

are used throughout embryonic development to build complex tissues and organs. Cancer cells 

also undergo similar processes during metastasis, although there is some controversy over 

whether this is strictly speaking a reactivation of the embryonic programme (Savagner 2010). 

However, the process in cancer cells is certainly controlled by many of the same molecular 

pathways, and the phenotypic changes are similar. 
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Figure 1.2 The cycle of epithelial cell plasticity (Thiery & Sleeman 2006) 

In heart development, EMT underlies the growth of the endocardial cushions, which are 

localised tissue swellings on the inner surface of the embryonic heart tube. As the heart tube 

loops and twists into its final configuration, these endocardial cushions grow and fuse, to form 

much of the inner structure of the heart, including the heart valves and membranous septa. 

This EMT is restricted to the atrioventricular canal and the outflow tract regions. These areas 

are established through Notch signalling by lateral induction (Timmerman et al. 2004). Protein 

signals from the myocardium, including BMP2 (Bone Morphogenetic Protein 2) and TGFβ 

(Transforming Growth Factor β) are also necessary for the fully invasive EMT (Luna-Zurita et al. 

2010). The regions of the myocardium expressing these proteins are also controlled by Notch 

signalling and lateral induction, though the Notch expression pattern is the reverse of the 

endocardium. This is covered in more detail in the Literature Review. 

Mutations in Notch pathway ligands and receptors are associated with a range of congenital 

heart defects in humans, including tetralogy of Fallot and Alagille syndrome. Deletion of Notch 

target genes causes congenital heart defects in mice, due to impaired EMT (Fischer et al. 
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2007). Due to its importance in heart development, there has been a wealth of in vivo and in 

vitro studies into the genetic and protein factors underpinning endocardial EMT. Many of these 

studies propose conceptual models (diagrams) of how the process is controlled, but it remains 

difficult to comprehend fully.  

Thus a multiscale representation of Notch signalling in endocardial EMT is an excellent 

candidate for multiscale modelling analysis. This is one of the most thoroughly investigated 

examples of EMT, providing a starting point for building models that will be relevant, or may be 

adapted for EMT in other fields of development and disease. EMT is also one of the most 

intensively researched aspects of heart development, providing an entrance for modelling the 

complex mechanisms of congenital heart defects. The models also have the potential to be 

applied in a clinical setting; for example through refining the tissue engineering of replacement 

heart valves (Sewell-Loftin et al. 2011). Additionally it is possible to use this type of multiscale 

modelling as a tool within developmental toxicology (Shah & Wambaugh 2010). 

 

Figure 1.3 Schematic of multiscale modelling applied to EMT in heart development. OFT: Outflow Tract, AVC: 

Atrioventricular Canal, VEGF: Vascular Endothelial Growth Factor  

A schematic of the multiscale modelling approach as applied to EMT in heart development is 

given in Figure 1.3. This indicates the range of temporal and spatial scales that are applicable 

to this process, as well as the modelling approaches that could be used at each level of scale. 

Important events taking place at each level during this process are illustrated. Protein 

interactions within cells determine cell behaviour, the interactions of which lead to tissue 
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transformations which govern heart morphogenesis. This is reviewed in more detail in the 

literature review. 

As shown in Figure 1.3 the processes relevant to EMT during heart development encompass 

spatial scales from 10-9m (proteins) to 10-3m (the primitive heart tube), and temporal scales 

from 10-6s (molecular events) to 106s (weeks of heart development). The different modelling 

approaches applicable at each scale have the potential to be encoded in an XML format that 

aids in the sharing of such models between platforms. It would be unwieldy to incorporate all 

levels of scale within a single multiscale model; rather a given multiscale model would normally 

combine models from two levels. For example, an SBML model of a reaction pathway could be 

incorporated within each cell in agent based model (Andasari et al. 2012). Alternatively, a 

CellML model of cellular physiology can be interpolated at discrete points within a continuum 

organ or tissue model, encoded in FieldML (Hunter et al. 2008). 

The modelling methods applicable to each level of spatial scale are outlined in more detail in 

Table 1.1, alongside some of the tools applied, and candidate systems. One point to note is 

that existing repositories of models are essentially only developed for the molecular and single 

cell level at the present time. Additionally, that information modelling (in the form of ontologies) 

is appropriate to all levels of scale, and thus may provide one means of scale-linking between 

models. 

Table 1.1 Modelling approaches, tools, existing repositories and example systems for different levels of spatial 

scale. 

 

*Recommended as part of VPH Toolkit (Garny et al. 2010) 
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1.2. Aims and Objectives 

 

The aims of this work reflect the three aspects that are brought together to represent the 

thesis: EMT; computational simulation models; and multiscale appreciation of their interaction. 

They can be stated thus. 

Aims 

A1: Integrate existing understanding of Epithelial to Mesenchymal Transition (EMT) at 

different levels of spatial scale. 

A2: Increase understanding of EMT by representing key features with computational 

simulation models.  

A3: Refine existing approaches for multiscale modelling of developmental processes. 

 

To achieve these stated aims, several objectives become clear that build upon each other to 

improve understanding of the multiscale system of EMT through modelling and simulation. 

Objectives 

O1: Understand EMT processes at various levels of spatial scale (A1). 

O2: Define conceptual multiscale model of EMT (A1) 

O3: Build cell and tissue level simulations of endocardial cells undergoing EMT (A2). 

O4: Explore key EMT signalling pathways through protein level modelling (A2). 

O5: Use existing experimental results for model validation (A2). 

O6: Explore methodological approaches for semantic integration of multiscale models (A3). 

O7: Investigate multiscale modelling and simulation, using the example of Delta-Notch 

protein signalling in a dynamic tissue field (A3).
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1.3. Plan of Thesis 

Chapter 1, Introduction, has given the background and context of the thesis, including a 

primer on simulation modelling in biomedicine, and multiscale modelling in particular; as 

well as epithelial to mesenchymal transition and its role in heart development. Chapter 2, 

Literature Review, extends on this by giving a more detailed background on heart 

development and EMT in development and disease. Existing EMT simulations, as well as 

EMT pathway simulations and multiscale biomedical models in general, are also 

reviewed in chapter 2. Chapter 3, Methods, describes the research methods used, 

including image processing cellular Potts modelling and pathway modelling. Chapter 4, 

Results, reports the findings of the simulation models, and validation with experimental 

imaging data. An approach for annotation of multscale models is also reported. Chapter 

5, Discussion and Conclusions, reviews and analyses these results and their 

implications, including the contribution to original knowledge made by the thesis. Future 

research opportunities and potential model applications are also discussed. 

 

Figure 1.4 Structure of thesis. 
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Chapter 2 

2. Literature Review 

2.1. Introduction 

 

This chapter opens with an overview of heart development (Section 2.2.). This tells the 

story of the role of EMT in heart development addressed from progressively smaller 

levels of spatial scale, with a progressively narrowing focus. The section begins with a 

brief overview of congenital heart diseases (Section 2.2.2.). This is followed by an in-

depth review of the anatomy of heart development (Section 2.2.3.), which helps the 

reader understand how different types of congenital heart defect arise as a result of 

disrupted developmental processes. Section 2.2.4. narrows the focus to a single 

developmental process, and explores in detail the role of EMT in heart development, and 

the major protein signalling pathways that control it. This focus is narrowed again in 

Section 2.2.5, which focuses on the role of Notch signalling. The basic model for Notch 

signalling, and the difference between lateral inhibition and lateral induction is 

described. This is followed by a review of how Notch signalling delineates the cushion 

forming regions of the embryonic heart tube; and how Notch signalling interacts with 

other pathways during endocardial EMT. 

Section 2.3. reviews the major cell-level modelling techniques that are available. These 

are continuum, cell centre, cell vertex and cellular Potts modelling. These different 

techniques are compared according to their suitability for features that are requirements 

in the modelling of EMT.  

Following the review of different available modelling techniques, Section 2.4. reviews 

existing simulations of EMT. Several cell centre and cellular Potts models of EMT, with a 

range of different features are described in this section. Some are 2D and some are 3D. 

Some include subcellular models of protein dynamics. Some represent extracellular 
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matrix (ECM) threads explicity. Some investigate cell-cell or cell-ECM adhesion, and some 

include both. Some models assume the cells actively migrate in a particular direction. 

Section 2.5. reviews existing simulations of pathways that play a role in EMT  (which were 

introduced in Section 2.2.). This section briefly outlines existing simulations of Notch 

signalling(Section 2.5.1.), TGF-β and BMP signalling (Section 2.5.2.) and Wnt/β-catenin 

and E-cadherin signalling (Section 2.5.3.). 

Section 2.6. Outlines some of the challenges for multiscale modelling in biomedicine, 

including the challenges of consistent semantic annotation of models at different levels 

of scale. 

Section 2.7. then provides details on some existing platforms for multiscale simulation in 

biomedicine, and how they are individually approaching the challenges.  

 

2.2. Heart Development 

2.2.1. Congenital Heart Diseases 

 

Congenital Heart Diseases (CHDs) are the most common type of birth defect, and the 

main cause of birth defect related mortality and morbidity. The incidence of moderate to 

severe forms of CHD is about 6/1000 live births or 19/1000 if bicuspid aortic valve 

(BAV) is included (Hoffman & Kaplan 2002). BAV is a CHD in which two aortic valve 

leaflets develop instead of three. BAV leads to aortic valve stenosis later in life, and most 

people born with BAV will eventually require valve surgery (Otto 2002). Therefore the 

higher figure of 19/1000 live births is appropriate when considering the lifetime effects 

of CHD. The effects of long term remodelling of the heart following surgical repair present 

a significant challenge in terms of therapy planning and disease evaluation (Mansi et al. 

2011). 

There have been a great number of studies linking particular genetic mutations to 

particular CHDs and syndromes in human populations, e.g. (Pierpont et al. 2007). 

Likewise, there is an abundance of research investigating the effects of particular 
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genetic mutations on particular heart development processes in animal models, e.g. 

(Niessen et al. 2008). Such research is, of necessity, highly specific and linear in scope. 

What is sought is the identification of one gene, its effect on one mechanism and its 

implication in one type of disease.  

 

Figure 2.1 A malformation may originate from different mechanisms. Common arterial trunk (CAT), Tetralogy 

of Fallot (TOF) or any other disease resulting from abnormal remodelling of the outflow tract, may result from 

the participation of a defect secondary heart field and/or a migration defect of the neural crest cells, and/or 

a rotation defect of the myocardial outflow tract and/or a formation defect of the endocardial cushions 

(Bajolle et al. 2009). Key: TOF: Tetralogy of Fallot, TOF&PA: Tetralogy of Fallot and Pulmonary Atresia, IAA: 

Interrupted Aortic Arch, CAT: Common Arterial Trunk, VSD: Ventricular Septal Defect, DORV: Double Outlet 

Right Ventricle, TGA: Transposition of the Great Arteries 

In reality, morphogenesis is highly nonlinear: several genes coordinate a single 

mechanism, one gene affects several mechanisms, and several mechanisms interact 

together in normal or abnormal development (Figure 2.1). Thus one type of CHD can be 

the result of many different genetic mutations, and one genetic mutation can lead to 

several different types of CHD, under different circumstances. For example, mutations in 

the Notch signalling pathway, such as the Notch1 receptor or the JAG1 ligand, correlate 
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with BAV as well as Alagille syndrome; and more specifically with tetralogy of Fallot and 

pulmonary valve stenosis (Butcher et al. 2011). 

2.2.2. Anatomy of Heart Development 

The development of the embryonic heart commences in week 2 and is fully formed by 

week 8. This process is well documented, e.g. (Kirby 2007). Week 2 of foetal life provides 

the first milestone of cardiac development as cells of the splanchnic mesoderm cluster 

to form two endocardial tubes (termed the cardiogenic crescent) at the cranial end of the 

embryo. At day 20, these two endocardial tubes join together at the median and ventral 

part of the embryo, thus forming the primitive heart tube. At this stage of development 

the first contractions occur, permitting actual blood circulation (Christoffels et al. 2010). 

At the end of week 3 the heart tube folds into an S-shape, looping to the right (D-loop). 

This repositioning constitutes a crucial step towards the morphology of the heart 

because it brings the future heart chambers and their inflow and outflow tracts into their 

relative spatial positions (Figure 2.2). 

 

Figure 2.2 Heart looping and wedging between embryonic day 20 (E20) and E32, or Carnegie stages 9 to 13. 

After (Kirby 2007) and (Hill 2011). 
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In Figure 2.2, embryonic days are shown for human and mouse development. The heart 

grows from about 1mm to 3mm between E20 and E32 in human. The primitive atrium 

originates at the base of the heart, but due to looping and folding is later positioned at 

the apex. Later stages are shown in more detail from a rear view, sectioned at the level 

of developing valves. In normal development, the outflow tract rotates clockwise while 

growing endocardial cushions divide it into the aorta and pulmonary artery. 

Simultaneously, endocardial cushions are growing in the atrioventricular canal, which 

form the atrioventricular septum, and later the tricuspid and mitral valves (Figure 2.3). 

Throughout week 4 the ventricles grow considerably, in particular the right ventricle, by 

addition of myocardial cells from the second heart field. At the same time the apex of the 

ventricles balloon in sequence from the ventricular loop, leading to the development of 

the ventricular septum. Two processes in the development of the embryonic heart are 

crucial to the understanding of the conotruncal family of congenital heart diseases: 

looping and aortic wedging. 

 

Figure 2.3 Detail of endocardial cushion growth and fusion during heart looping and wedging, after (Kirby 

2007) 
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Looping is the first manifestation of the asymmetry of the embryo. Aortic wedging is due 

to the rotation of the myocardial wall of the outflow tract, itself secondary to remodeling 

of the inner curvature of the heart. This rotation leads the developing aortic valve, which 

is initially located at the right part of the conotruncus, downwards, posteriorly and to the 

left, to nestle between the two atrioventricular valves, thus establishing the mitral-aortic 

continuity. When the heart is fully formed at 8 weeks, the aorta is posterior to the 

pulmonary artery, with the degree of rotation about 30 degrees short of a complete 

juxtaposition of 180 degrees (Figure 2.4). At the same time, the conal septum develops 

by fusion of the endocardial cushions of the outflow tract and is taken along leftwards by 

the rotation of the developing aortic valve, to join the upper primitive ventricular septum 

between the two limbs of the septomarginal trabeculation. The conal (or outflow tract) 

septum is helical in shape, due to the rotation of the outflow tract while the endocardial 

cushions are growing and septation is occuring. 

  

 

 

Figure 2.4 Modified Van Praagh diagram, showing rotation of the outflow tract, after (Donnelly & Higgins 

1996). As the outflow tract septates into the pulmonary artery (P) and aorta (A) it rotates 150 degrees in 

normal development, with different degrees of rotation corresponding to different congenital heart diseases. 

Key: PTA: Persistent Truncus Arteriosus, TOF: Tetralogy of Fallot, DORV: Double Outlet Right Ventricle, d-TGA: 

dextro-Transposition of the Great Arteries, l-TGA: levo-Transpostion of the Great Arteries 
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In normal heart development, the outflow tract should rotate by 150 degrees as shown in 

Figure 2.4. While this rotation, or ‘wedging’ is occurring, the endocardial cusions in the 

outflow tract are growing and fusing into the conal septum. This divides the outflow tract 

into the pulmonary artery and aorta. Thus different degrees of rotation correspond to 

different congenital heart defects. CHDs associated with abnormal rotation of the outflow 

tract are known as outflow tract (or conotruncal) defects. While these all appear to be 

related as disruptions of a common developmental mecanism, they can however be 

defined by very different anatomical characteristics.  

For example, the tetralogy of Fallot (TOF) is defined as the association of four anatomic 

features: overriding aorta (less to the left than it should be), subpulmonary stenosis, 

ventricular septal defect, and right ventricle hypertrophy. Double Outlet Right Ventricle 

(DORV) is defined as a condition in which both the pulmonary artery and aorta arise from 

the right ventricle. However, both these defects correspond to a similar degree of outflow 

tract rotation (about 90 degrees), and thus could be overlapping in terms of definition 

and embryological cause. Furthermore, as shown previously, insufficient rotation of the 

outflow tract could be due to a shortened outflow tract (due to reduced contribution or 

proliferation of the second heart field), insufficient migration or proliferation of neural 

crest cells, disrupted left-right signalling or insufficient contribution from the endocardial 

cushions due to disrupted epithelial to mesenchymal transition (refer again to Figure 

2.1). 

Thus several developmental mechanisms could have been selected as a starting point 

for systems modelling of heart development. Epithelial to mesenchymal transition (EMT) 

was selected for several reasons. There has been a wealth of in vitro and in vivo 

experimentation attempting to characterise this system, but very few attempts to 

formally model it with computer simulations. This means that current knowledge about 

EMT is highly disjointed. By necessity, each ‘wet lab’ investigation is restricted to 

exploring the influence of one aspect of causation. The emergent effects of multiple 

types of regulation cannot be explored in this way. Thus formalising conceptual models 

into mathematical and computational models provides a way to represent the system, so 

that emergent effects may be explored. Furthermore, simulation allows the isolation of 
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effects, which may be impossible to uncouple in the real system. For example, each gene 

influences multiple cell level properties, such as adhesion, motility and invasiveness, 

thus the effect of these properties in EMT cannot be studied individually. When 

represented as parameters in a cell level simulation, they can be independently 

controlled. This makes it possible to do some experiments in silico that are not possible 

in vitro or in vivo. 

EMT also provides an example with the potential to form a link between genetic 

disruption (e.g. a mutation in the Notch signalling pathway), cellular behaviour (EMT) and 

tissue morphogenesis (endocardial cushions, and subsequently heart valve leaflets and 

septa). Mutations in the Notch signalling pathway are linked to CHDs such as aortic valve 

disease, tetralogy of Fallot and Alagille syndrome, and it has been shown that these 

mutations cause CHD because of impaired EMT (Fischer et al. 2007). Multiscale 

modelling of the process therefore has the potential to be informative about the effect of 

genetic regulation on this developmental process, and the potential for disrupted 

morphogenesis. 

2.2.3. Epithelial to Mesenchymal Transition in Heart Development 

As outlined in the previous section, Epithelial to Mesenchymal Transition (EMT) underlies 

the growth of the endocardial cushions, which constitutes a crucial step in the 

development of the heart. As shown in Figure 2.5, tissue from the endocardial cushions 

in the Atrioventricular Canal (AVV, blue) becomes the mitral and tricuspid valves, while 

endocardial cushion tissue in the Conotruncus (CT, yellow, also termed outflow tract) 

becomes the semilunar valves and the membranous portion of the interventricular 

septum. Ventriucular Septal Defects are the most common type of CHD, and most 

usually the defect is in the membranous portion (rather than the muscular portion) of the 

interventricular septum. Defects of the heart valves are among the most common types 

of CHD such as bicuspid aortic valve (BAV), pulmonary valve stenosis and pulmonary 

atresia (Armstrong & Bischoff 2004). While people with BAV may not require an 

intervention as children, calcification and prolapse of heart valves make repair and 

replacement a widespread intervention later in life. 
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Figure 2.5 Illustration of human cardiac morphogenesis and the redistribution of tissues (Srivastava & Olson 

2000) 

As illustrated in Figure 2.5, development of tissues in early heart development results in 

altered structures in quite different places, due the complicated remodelling of the heart. 

The endocardial cushions, which grow by an EMT process, contribute to some of the 

most vital structures of a fully-formed functioning heart. These are also the structures 

that underpin the most common types of CHD, and those responsible for the highest 

rates of morbidity and mortality, such as ventricular septal defects, and abnormal or 

missing heart valves. Furthermore, endocardial cushion growth appears to contribute 

mechanistically to overall heart looping, due to the additional tissue generated at this 

stage (Bajolle et al. 2009). 

EMT in the outflow tract has some differences to EMT in the AV canal. This is partly due 

to gene expression in the two areas. It is also partly due to the fact that neural crest cells 

migrate to the outflow tract, and contribute to septation there, but they do not migrate to 

the AV canal (Hutson & Kirby 2007). The differences between the two areas have 

recently been demonstrated. Knocking out the Sur-8 gene in mice leads to reduced EMT 

in the atrioventricular canal, which leads to hypoplastic endocardial cushions (fewer 

cells); but the endocardial cushions of the outflow tract are unaffected (Yi et al. 2010). 

The primitive heart tube consists of an outer layer of myocardium and an inner layer of 

endocardium, separated by a thick extracellular matrix termed the cardiac jelly. During 

endocardial EMT, epithelial cells delaminate from the endocardial layer and invade the 
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cardiac jelly, adopting a mesenchymal phenotype (Figure 2.6). The delamination is a 

result of cell signalling interactions between the myocardium, endocardium and cardiac 

jelly, ultimately resulting in a reduction in the vascular endothelial (VE) cadherin proteins 

that attach endocardial cells together. Though multiple signalling pathways are 

coordinated in this process, it is ultimately achieved via an increased expression of Snail 

family transcription factors (High & Epstein 2008). 

            

Figure 2.6 a) TGFβ and BMP signalling from the myocardium induce Snail expression in the endocardium, 

which inhibits expression of the endothelial adhesion molecule VE-Cadherin. Activated intracellular Notch 

has the same effect, and these factors combine to stimulate the endocardial cell to lose its adhesion and 

adopt a mesenchymal phenotype. b) The cushion forming regions are established by restricted areas of gene 

expression in both in the myocardium and endocardium.  

As shown in Figure 2.6, in the endocardium Notch signalling defines a field of cells that 

are predisposed to undergoing EMT. A key reason for this is that Notch increases the 

expression of Snail transcription factors, which inhibit the expression of VE-Cadherin 

(Vascular Endothelial Cadherin), leading to loss of adhesion between endocardial cells. 

At the same time in the myocardium VEGF (Vascular Endothelial Growth Factor) 

expression is controlled to tight levels that enable EMT to take place. It has been 

suggested that this tight control is necessary, because too high a concentration of VEGF 

leads to too high a level of endothelial proliferation, which sustains the epithelial 

phenotype and prevents EMT from happening (Armstrong & Bischoff 2004). On the other 

a) b) 
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hand, too low a level of VEGF means that there are insufficient new endocardial cells for 

prolonged EMT, and formation of sufficiently large and cellularised endocardial cushions, 

as shown in Figure 2.7. 

 

Figure 2.7 Model for VEGF in control of heart valve endothelial cell proliferation (Armstrong & Bischoff 2004) 

One of the key mechanisms regulating VEGF signalling is feedback with the NFAT 

(Nuclear Factor of Activated T-Cells) transcription factors, first in the myocardium, and 

later in the endocardium. NFATc2, c3 and c4 repress VEGF in the myocardium at mouse 

E9 (human E24), which is essential for controlling endocardial proliferation and thus 

allowing EMT to proceed (Lambrechts & Carmeliet 2004). Later, at mouse E11 (human 

E32), VEGF expression increases in the myocardium, which terminates EMT. Now a 

second wave of NFATc1 signalling is required in the endocardium of the cushion forming 

regions to direct valve elongation and remodelling (Chang et al. 2004).  

As suggested in Figure 2.8 below, there is a feedback between VEGF and NFAT, which is 

due to the role of VEGF in controlling the cell’s influx of calcium. VEGF signalling 

increases the influx of calcium through connexin-45 gap junctions. Calcium activates 

calcineurin in the cytosol, which dephosphorylates NFAT, allowing translocation to the 

nucleus where it affects gene transcription (Armstrong & Bischoff 2004). There is 
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evidence for both positive and negative feedback in NFAT signalling. Positive feedback is 

mediated via the transcription of NFATc1. Negative feedback is mediated via the 

transcription of DSCR1; which also binds to calcineurin, and therefore competes with 

phosphorylated NFAT for the calcineurin available (Crabtree & Olson 2002). 

 

Figure 2.8 Major protein interactions during EMT in endocardial cushion growth. After (Luna-Zurita et al. 

2010) and (Wagner & Siddiqui 2007). Gradients show expression pattern for Notch1 (blue, in the 

endocardium) and VEGF (green in the cardiac jelly and red in the myocardium). 

Notch signalling controls the boundary of the cushion forming region in the myocardium 

as well as the endocardium, however here the expression pattern is reversed, with active 

Notch being expressed only outside of the cushion forming regions (Rutenberg et al. 

2006). As shown in Figure 2.8, the Notch target genes Hey1, in the ventricular region, 

and Hey2, in the atrial region, act to repress BMP2. Expression of BMP2 upregulates 

TGFβ protein, which means that both BMP2 and TGFβ are secreted by the myocardium in 

the cushion forming (Notch-inactive) areas. The BMP2 and TGFβ proteins secreted by the 

myocardium are essential for the fully invasive EMT phenotype (Luna-Zurita et al. 2010). 

This demonstrates how endocardial and myocardial signalling are integrated to drive 
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EMT. Underlying both of these complex signalling networks is a spatial patterning in both 

tissues, created by Notch signalling.            

As is evident from Figure 2.8, which by necessity illustrates only some of the signalling 

pathways that regulate this EMT process, there is a great deal of complexity and 

crosstalk between different pathways. This provides a degree of redundancy in the 

signalling and developmental mechanisms. For example, there is evidence that indicates 

that while, Snail1 (Snail) protein is a direct target of TGF-β signalling, Snail2 (Slug) is a 

direct target of the Notch signalling pathways. Furthermore, that Slug acts to repress 

Snail, most likely through repression of TGF-β related pathways (Niessen et al. 2008). 

The result of this is that in Snail2 knockout mice, Snail1 expression increases, which 

compensates for the loss of Snail2 expression; hence there is redundancy built in to the 

system. This ensures that complex embryonic developmental processes nearly always 

proceed robustly, and with precise sequencing. It does, however, make understanding 

the precise function of each gene more challenging, as the effects of silencing a single 

gene is partly compensated by others. 

Notch signalling is a further example of a pathway with built-in redundancy as there are 

multiple ligands and receptors for Notch signalling. Mammals have four Notch receptors 

and seven ligands (Bray 2006). Because these are expressed and active in different 

combinations in different tissues, a genetic deletion of, for example the Jag1 ligand, 

affects some of the tissues where Jag1 is expressed but not others, due to the 

redundancies provided by other ligands and receptors (Bolós et al. 2007). 

 

2.2.4. Notch Signalling in Heart Development 

The Notch signalling cascade is evolutionarily highly conserved. Notch-like molecules 

have been identified in a multitude of diverse species, from C. elegans to humans, and 

appear to play conserved functional roles in development. ‘Notch’ is the broad term for 

the transmembrane receptor proteins of this pathway. All vertebrates and mammals 

have four receptors (Notch1-4) while D. melanogaster has only one (Notch), and C. 

elegans has two (LIN-12 and GLP-1). Vertebrates have seven ligands for Notch (Delta1-4, 

Serrate and Jagged1-2), while D. melanogaster has two and C. elegans has four. 
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However, the basic model is the same throughout  (Borggrefe & Oswald 2009). Notch 

signalling differs from most other signalling pathways in the respect that most of its 

ligands (as well as the receptors) are also transmembrane proteins. This means that 

signalling is restricted to neighbouring cells that are physically adjacent, making this the 

canonical example of juxtacrine signalling. What this allows for is very fine control of 

developmental patterning in tissues, down to the level of single cells. 

The basic model of Notch signalling is illustrated in Figure 2.9. A Delta-type ligand binds 

to a Notch receptor. This activates the receptor, and results in two proteolytic cleavages 

of the receptor; termed the S2 and S3 clevage, which involve different enzymes. These 

clevages release the Notch intracellular domain (NotchIntra/NICD) which transloates to 

the nucleus, and interacts with the DNA-binding protein CSL. It achieves this by binding 

to a co-activator (Co-A) which then replaces the co-repressor (Co-R). In the absence of 

NotchIntra, CSL associates with a co-repressor, which actively represses the transcription 

of ‘Notch target genes’ (Lai 2004).  

 

Figure 2.9 Basic operation of the Notch signalling pathway. The key players are a Delta-type ligand, a Notch 

receptor and the CSL transcription factor (Lai 2004). 

While the basic model illustrated in Figure 2.9 appears to be quite simple, it is used in a 

number of different ways, to achieve different types of developmental patterning. 
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Furthermore, there are some subtle complexities. These include crosstalk with other 

pathways, such as the TGFβ pathway (Blokzijl et al. 2003), as well as positive and 

negative feedback loops (Agrawal et al. 2009) and the effects of trafficking ligands and 

receptors between the cytosol and cell membrane (Bray 2006). Furthermore, while there 

are only a handful of Notch target genes, the question of what makes a particular gene 

into a target in a given cell type, in a particular context, is not well understood. 

Although Notch signalling operates in a wide variety of contexts, with different 

combinations of ligands, receptors and target genes involved, we can define some basic 

modes of signalling that produce different types of tissue patterning. A basic distinction 

in conceptual models of Notch signalling is made between lateral inhibition and lateral 

induction. In lateral inhibition, one effect of Notch signalling (and the activation of CSL) is 

to inhibit the expression of one or more Notch ligands. The result of this is that cells 

which are initially equivalent will become specialised to either be signal receiving (Notch 

expressing) or signal sending (Delta-type ligand expressing) cells. A pattern will emerge of 

signal sending cells surrounded by receptor cells. This happens because lateral inhibition 

amplifies small differences between cells. The more ‘Notch signal’ a cell receives, the 

less signal it can transmit, and thus it becomes specialised to be a Notch receptor cell. 

Conversely, the more Notch signal a cell sends, the more likely its neighbouring cells are 

to have Notch receptors on their surfaces, and the more potential the signalling cell has 

to transmit further signal. The signalling cell also receives a weaker inhibitory signal from 

its neighbours. Conversely, in lateral induction, one of the effects of Notch signalling is to 

upregulate the expression of a ligand for Notch. This positive feedback generates a 

contiguous field of cells with the same fate, with Notch signalling and simultaneous 

expression of receptor and ligand occurring throughout the field. Conversely, loss of 

Notch signalling leads to downregulation of the ligand throughout the field. When 

inductive signalling operates between areas of initially non-equivalent cells, the 

boundaries between these areas are reinforced (Artavanis-Tsakonas et al. 1995). 
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Figure 2.10 Mechanisms of Notch juxtacrine signalling between two adjacent cells, and examples of 

resulting tissue level patterning for (a) lateral inhibition and (b) lateral induction (N: Notch receptor, D: Delta-

type ligand). In the central figures, Notch signalling is represented by black arrows. In lateral inhibition, 

initially equivalent (purple) cells are resolved into distinct fates (blue and pink); cells with the highest Notch 

activity (receptor cells) coloured pink. Confocal scan (upper right) illustrates the case of ommatidium, with 

cell membranes stained green and Notch expression pink. In lateral induction, a boundary is established to 

segregate and/or organise two groups of cells. Black arrows indicate direction of Notch signalling, with pink 

cells having Notch activation. The confocal image (lower right) is of the fly wing primordium, where Notch 

activity (pink) is measured at the boundary of ligand (Serrate) expressing cells (green). After (Bray 2006) 

 

Examples of fine-grained patterning mediated by Notch lateral inhibition include 

vertebrate neurogenesis (Cau & Blader 2009), control of stem cell function (Lewis 1998) 

and the development of sensory hairs in the mammalian inner ear (Lanford et al. 1999). 

Lateral induction of Jagged1 is involved in differentiation of lens fibre cells 

(Saravanamuthu et al. 2009). There is evidence to suggest that lateral induction also 

plays a role in the assembly of the arterial walls, via upregulation of Jag1 in successive 

layers of smooth muscle cells (Hoglund & Majesky 2012). Lateral induction also plays a 

role in synchronising the oscillations between cells during somitogenesis (Giudicelli et al. 

2007), and in boundary formation of margins of the Drosophila wing (Bray 1998).  While 

most sources suggest that the role of Notch signalling in somitogenesis is to synchronise 

the oscillations of presomitic mesoderm cells, it has been suggested that the Notch 

pathway itself may also act as an oscillator in this context. Furthermore, that it can 

produce either a continuous or transient signal in different contexts (Agrawal et al. 

2009). These possibilities are out of the scope of this review. 
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In some cases, lateral inhibition and lateral induction are known to be combined for 

developmental patterning. For example, in the chick inner ear, prosensory patches are 

initially specified by lateral induction. Subsequently lateral inhibition within each patch 

generates a fine grained pattern of hair cells, surrounded by supporting cells. In such 

cases, different ligands or receptors may be used in the different patterning 

mechanisms. In the case of the chick inner ear, the ligand Serrate2 is expressed 

throughout the prosensory patches, while Delta2 is later expressed a fine-grained pattern 

of individual hair cells within the patch (Daudet & Lewis 2005). 

 

Figure 2.11 Developmental patterning of the myocardium of the embryonic heart tube by Notch and Hairy-

related transcription factors (Hey1 and Hey2) (Rutenberg et al. 2006). 

It has been found experimentally that lateral induction is the Notch signalling that 

patterns the embryonic heart, at least at the stage of the endocardial cushions 

(Timmerman et al. 2004). The ligands expressed throughout the endocardium are 

Jagged1 and Delta4, and the receptors are Notch 1, 2 and 4. Though it is not yet fully 

clear the exact roles played by these different ligands and receptors, it is clear that 

Delta4/Notch1 interactions lead to the expression of Snail, which downregulates 

adhesion (Bolós et al. 2007). The mechanism of lateral induction initially patterns the 
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heart into three sections: a ventricular region, an atrial region and a region that 

comprises the outflow tract (OFT) and atrioventricular canal (AVC), which together are the 

cushion-forming regions of the heart tube, as shown in Figure 2.11. This occurs both in 

the myocardium; with Notch2 signalling suppressing BMP2 expression in non-cushion-

forming regions, and in the endocardium, with Notch1 inducing the expression of Snail 

family proteins. 

The Snail family of genes can be seen as central determinants in the process of EMT. 

The downstream targets of Snail gene expression lead to loss of epithelial markers, gain 

of mesenchymal markers, as well as changes in cell shape and movements that 

characterise invasion. These include upregulation of Matrix Metalloproteinases (MMPs), 

which are capable of degrading proteins in the extracellular matrix (ECM) when secreted 

by cells, enabling them to invade tissues. Snail genes also regulate cell proliferation and 

cell death, such that cells tend to proliferate less but survive longer; allowing 

mesenchymal cells to migrate to distant sites in some cases (such as the neural crest 

cells). These effects are summarised in Figure 2.12 (Barrallo-Gimeno & Nieto 2005).  

 

Figure 2.12 Downstream targets of Snail genes. Molecules and processes shown in red are downregulated, 

while those in green are upregulated (Barrallo-Gimeno & Nieto 2005). 

The Snail family function as repressors and the phenotypic outcomes are a combination 

of direct (repression) or indirect (repression of a repressor) regulation of target genes. 

For example, the EMT that leads to formation of the endocardial cushions includes: 
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repression of VE-cadherin (loss of endocardial cohesion), repression of repressors of 

integrins such as fibronectin (increase in cell-ECM adhesion and strengthing of the 

cytoskeleton) and repression of repressors of MMPs (ECM degradation). 

The Snail family genes Snail1 (also known as Snail) and Snail2 (also known as Slug) are 

expressed in both endocardial and mesenchymal cells in the locations where the 

endocardial cushions develop, in both mouse and human (Niessen et al. 2008). Snail1 

and Snail2 are likely to have somewhat different effects in terms of the extent to which 

they upregulate and downregulate different molecules, however it is not yet known what 

these differences might be. It has been demonstrated that a deletion of Snail2 in mice is 

compensated for by an increase in the expression of Snail1 (Niessen et al. 2008). This 

suggests that Snail2 acts to suppress the TGFβ pathway activation of Snail1. As 

previously indicated, Snail2 is a direct of Notch signalling, while Snail1 is a direct target 

of TGFβ signalling. Snail1 is also synergistically induced in endothelial cells when both 

Notch activation and TGFβ stimulation are present (Niessen et al. 2008). This tentatively 

suggests the qualitative network shown in Figure 2.13.  

 

Figure 2.13 Qualitative network of Notch and TGFβ synergy in activating Snail gene expression in endothelial 

cells, derived from results of (Niessen et al. 2008). Snail1 is a direct target of TGFβ while Snail2 is a direct 

target of Notch. Notch and TGFβ synergistically upregulate Snail1, and Snail2 inhibits TGFβmediated Snail1 

activation.  

Lateral induction Notch signalling operates to define both the endocardial regions 

predisposed to EMT, and the myocardial regions that secrete the necessary proteins 

(including TGFβ and BMP2). Notch signalling lateral induction is thus fundamental to the 

process of EMT in the developing heart. In the endocardium, Notch1 signalling specifies 

the domain of cells capable of undergoing EMT (by inducing Snail2 expression). 

Simultaneously in the myocardium, Notch2 signalling represses the expression of BMP2 

and TGFβ outside of the cushion forming regions. The TGFβ secreted by the myocardium 

inside the cushion forming region induces Snail1 expression in the endocardium. BMP2 

Notch1 

TGFβ 

Snail2 

Snail1 
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has a common pathway with TGFβ signalling via the mediator SMAD4 (Wagner & Siddiqui 

2007). However, the effects of BMP2 have been shown to be somewhat different from 

those of TGFβ. BMP2 induces 3D invasion into a collagen gel for in vitro endocardial 

cells, while TGFβ treatment leads merely to 2D migration on the surface of the collagen 

gel (similar to the effects of Notch activation) (Luna-Zurita et al. 2010). Luna-Zurita et al. 

(2010) suggest that this is because BMP2 induces Twist1, which inhibits GSK3β, 

resulting in stabilisation of Snail1. This suggests that it is the sustained expression of 

Snail1 that induces migratory behaviour. Though it is not clear what mechanisms lie 

behind this, possible actions include a delayed upregulation of cell-ECM adhesion or 

delayed expression of MMPs for matrix degradation. Delayed response of cell-ECM 

adhesion is quite plausible, as the strength cell-ECM adhesion increases rapidly over the 

initial hours of integrin binding, before reaching a steady state (Gallant et al. 2005). 

 

Figure 2.14 Mechanism for the integration of TGFβ and Notch signalling. By binding to SMAD3, NICD recruits 

the SMAD3/SMAD4 complex to the CSL domain. The two pathways cooperatively activate Notch target genes 

(Heitzler 2010). 

TGFβ is known to have both synergistic and antagonistic interactions with Notch 

signalling in different cellular contexts (Blokzijl et al. 2003; Zavadil et al. 2004; Sun et al. 

2005). In endothelial cells, it has been found that Notch and TGFβ signalling 

synergistically induce the expression of Snail genes (Niessen et al. 2008). Notch 

Intracellular Domain (NICD) has been shown to have interaction with TGFβ signalling by 

binding to the SMAD3/SMAD4 complex, which then cooperatively activates Notch target 

genes (Blokzijl et al. 2003). This model is illustrated in Figure 2.14. Notch has different 

effects on the target genes of TGFβ in endothelial cells. Specifically, Notch activation 
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decreases the expression of Smad1 and Smad2 and their target genes, but increases 

the expression of Smad3 and its target genes (Fu et al. 2009). 

In summary, endocardial and myocardial signalling are integrated during endocardial 

EMT, and underlying both is an expression pattern formed by Notch lateral induction 

(Notch1 and Notch2 for the endocardium and myocardium respectively). Mutations in 

Notch1, Notch2 and Jag1 are all known to cause Alagille syndrome in humans, which 

includes the heart defects tetralogy of Fallot and pulmonary valve stenosis (Butcher et al. 

2011; McDaniell et al. 2006). There is thus an unambiguous link between genetic 

mutation, impaired EMT and the development of congenital heart defects. This complete 

link has been demonstrated through an in vivo investigation in which mice with 

knockouts of Notch target genes were shown to develop congenital heart defects; that 

impaired EMT was apparent in the endocardial cushions of knockout mice; and that EMT 

of atrioventricular explants from knockout mice was impaired in vitro (Fischer et al. 

2007).   

2.3. Cell Level Modelling Techniques 

There is some precedent for bulk cell migrations, particularly those that occur during 

cancer metastasis, to be represented with continuum models (M. A. J. Chaplain & Lolas 

2006; Painter et al. 2010). There are certain advantages to this approach. Continuum 

models are generally quite simple, and contain only a few parameters. A large area can 

be represented at relatively low computational cost. It is possible to include cell 

proliferation and death, and to have this depend on a spatially varying field. This could be 

quite appropriate for modelling EMT at the tissue level, such as the growth of the 

endocardial cushions. However, the focus of this thesis lies in modelling cellular 

properties, such as cell size, morphology and motility, explicitly. These features are 

essential to the EMT process, and thus it is evidently more appropriate to use some form 

of agent based modelling, in which cells are represented as discrete entities. 

There are three main types of agent based modelling that can be used for representing 

cell behaviour: cell centre, cell vertex and cellular Potts models (Figure 2.15). In cell 

centre models, cell centres are represented as points in space. Forces are defined as 

acting between these centres, such as damped spring forces. Connectivity between cells, 
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as well as cell shapes, can be represented by Voronoi tessellation (Meineke et al. 2001). 

In cell vertex models cells are represented as adjacent polygons. The dynamics of each 

cell are represented by the movement of its vertices. This movement can either be 

determined by explicit forces on each vertex or by a free energy function as a result of a 

balance of forces between cells. It is thus possible to have direct representation of 

mechanical forces such as plasticity, elasticity and viscoelasticity of cells, as well as 

incorporating differential adhesion terms (Walter 2009). Finally, in cellular Potts models 

cells are represented as multiple sites on a lattice. Cell dynamics are represented by 

pixel copy attempts between adjacent lattice sites belonging to different cells. These are 

accepted stochastically with a probability that depends on a free energy function, 

allowing differential adhesion and properties of cell morphology and migration to be 

modelled. 

  

Figure 2.15 Cell centre, cell vertex and cellular Potts models 

The most essential requirements for cell-level modelling of endocardial EMT are a good 

representation of cell morphology, adhesion, movement, and the ability to extend these 

features into a 3D model. Other important features include: the ease of developing 

multiscale models that include subcellular reaction models within each cell; 

computational efficiency (including consideration for the efficiency of multiscale or 3D 

simulations); the ease of programming each model; and the explicit representation of 

biomechanical behaviour such tension and pressure forces and the stiffness of cell 

walls. Nice-to-have features include polarisation of epithelial cells (so that loss of 

polarisation might be included), cell growth, and the representation of intracellular 

filaments. To summarise the key properties of each of the three cell-level modelling 

techniques, as well as continuum modelling, these are presented as a Pugh matrix in 



31 

 

Figure 2.16, with an importance rating assigned to each of the features. This illustrates 

the point that some of the modelling techniques are clearly more appropriate to this task 

than others; but no model is perfect, or better in terms of all the requirements than every 

other technique. 
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Extension to 3D 10 + S - + 
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Ease of Multiscale Coupling 9 - S S + 

Ease of Programming 8 S S S + 

Computational Efficiency 8 + - S + 

Biomechanical Behaviour 7 - - + - 

Polarisation 5 - - + - 

Growth 4 - + + + 

Intracellular Elements 2 - - S - 

Weighted Score   -38 -9 35 64 

Figure 2.16 Pugh matrix for cell to tissue level modelling methods for EMT, based on modelling realism, 

computational efficiency and ease of implementation. Green + = strength, red - = weakness, yellow S= 

neither strength nor weakness.  

The advantages of the cell centre model include that it is able to model cell proliferation 

and migration, as well as the social behaviour of cells such as contact inhibition to some 

extent (Walker et al. 2010). However, the representation of cell shape by Voronoi 

tessellation is both computationally expensive and unrealistic. It is computationally 

expensive due to the need to construct a new Voronoi diagram during each time step. 

This would especially be the case in a 3D model, and indeed most 3D cell centre models 

do not investigate cell shape, and represent cells as spheres in three dimensional space 

(Ramis-Conde et al. 2008; Walker et al. 2010). The question of how to represent the 
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shape of cells that lose connectivity to other cells (as occurs during migration in EMT) 

would also need to be resolved. Voronoi tessellation lacks realism because the shapes of 

cells, and their number of vertices, do not change smoothly during a simulation. 

Furthermore, there is no way to set parameters that directly control cell morphology in 

cell centre models. The validity of representing cell-cell interactions as spring forces 

might also be questioned, as adhesion forces are not dependent on the contact area 

between cells. However, there are examples of cell centre models that do set the 

adhesion force as a function of the contact area between cells (Galle et al. 2005). There 

have been examples of multiscale cell centre models (Ramis-Conde et al. 2008; Walker 

et al. 2010). The Chaste simulation package (Bernabeu et al. 2009) provides a platform 

for developing multiscale cell centre and cell vertex models. Implementing multiscale 

EMT models in Chaste would still require fairly extensive development, however, as the 

multiscale functionality currently provided focuses on incorporating CellML for multiscale 

models of cardiac electrophysiology. 

The advantages of the cell vertex model include a good representation of differential cell-

cell adhesion. Cell shapes and tissue patterns change smoothly and provide a good 

representation of real cell morphology (Honda et al. 2004). It is possible to use either 

explicitly calculated forces on each vertex, or to have cells move down gradients of a free 

energy function (Walter 2009). Where using explicit forces, it is possible to include a cell 

pressure and membrane tension force that will ensure cells tend to a particular volume 

and surface area (Weliky & Oster 1990). Where using a free energy function, it is 

possible to include a cell-cell adhesion energy, which is proportional to the contact area 

between cells (e.g. the length of the edge between two cells). Deformation energies can 

also be included so that cells tend to a particular volume or surface area (Nagai & Honda 

2006). The free energy function approach is comparable to the dynamics of the cellular 

Potts model; however vertices move deterministically rather than stochastically. While 

cell vertex models have been extended to 3D, this has only been used for representing 

epithelial cells on a hollow 3D surface (Trichas et al. 2012) or as space filling polyhedra 

in a cell aggregate (Honda et al. 2004). The issue of using the vertex model to represent 

cells that migrate away from other cells has not been addressed. This means that the 

existing 3D extensions are not fit for our purposes. Vertex models have the advantage 
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that biomechanical forces acting on the cell walls can be modelled and measured 

explicitly. Extensions of the vertex model, such as the subcellular element model 

(Newman 2005), have the capability to also represent intracellular filaments. Although 

cell vertex models have the advantage of having no need for a Voronoi diagram or 

Delaunay triangulation to be produced at each timestep, they often contain more 

information, and so can be more computationally expensive. They are also comparatively 

computationally expensive compared to cellular Potts models, as vertex models are 

lattice-free, while cell movements in Potts models are restricted to a lattice. This can 

mean that cell movements in vertex models are smoother than Potts models. 

The Potts model has the advantages that it is simple to program and computational 

inexpensive to run, due to it being a lattice-based model. This also means, however, that 

a high spatial resolution is required for realistic cell shapes (Walter 2009). Extension into 

three dimensions is very straightforward. A number of multiscale cellular Potts models 

have been developed recently, notably using the Compucell3D simulation platform 

(Hester et al. 2011; Swat et al. 2012). This provides a framework for loading SBML 

models to individual cells and solving them as ODEs during a cellular Potts simulation. 

Cell level parameters can be set as functions of SBML model variables, and vice versa, 

providing a strong coupling between the models, while keeping their declarative 

specifications separate. It is quite straightforward to represent all of the main 

requirements of 2D and 3D EMT modelling with cellular Potts models. Terms can be 

added to the free energy function such that cells will tend toward particular volumes or 

surface areas. Differential adhesion is included as a core mechanism in the dynamics of 

cell movement in the model. As the ‘medium’ (in vitro collagen gel or extracellular matrix) 

is also represented as a set of lattice points, cells are able to move independently 

through the medium. Thus a representation of cell migration and transformation is 

uncomplicated. The main disadvantage of the cellular Potts model is no physical 

realisation of time, as time is measured by the number of Monte-Carlo steps (MCS). This 

means that a little more effort is required to fit the MCS of a particular model to an 

equivalent ‘biological time’ and to ensure that the space and time scales correspond to 

this (Hester et al. 2011). The cellular Potts model also does not have a representation of 

biomechanical forces acting on individual cell walls. As the cellular Potts model meets all 
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of the essential requirements for modelling EMT (Figure 2.16) this formalism is used for 

the cell and tissue level simulations in this thesis as reported in Chapters 3 and 4. A 

combination of 2D, 3D and 2D multiscale cellular Potts models are used for different 

mechanisms within endocardial EMT. Furthermore, by adding a plastic coupling term to 

the free energy function as a breakable spring force between cell centres, an aspect of 

the cell centre model is included. This allows investigation of the interactions between 

cell morphology, weak labile adhesion and strong plastic coupling (assumed to act 

between cell centres). This methodology is explained further in Chapter 3.  

Various types of epithelial to mesenchymal transition have been previously modelled 

using variations of the three different agent based simulation methods shown previously 

in Figure 2.15. Wound healing EMT has been modelled using a cell centre model (T. Sun 

et al. 2009), as has cancer metastasis EMT (Ramis-Conde et al. 2009). These models 

both incorporated subcellular reaction models, and represent cell adhesion as a 

breakable spring force between cell centres. Endocardial EMT has been modelled using 

the cellular Potts method (Neagu et al. 2010). However, this latter example did not 

investigate the role of cell morphology during EMT, which is an issue addressed in this 

thesis. A review of existing cell and tissue level models of EMT follows in the next section.    

2.4. Existing Simulations of EMT 

2.4.1. 3D Cellular Potts Simulation of Endocardial Cushion Growth 

A number of simulations of EMT have been developed, using a variety of cell level 

modelling techniques. The majority of these simulations focus on EMT as reactivated 

during cancer metastasis.  To our knowledge, there is only one existing example of a 

simulation model of endocardial EMT (Neagu et al. 2010). This is a 3D cellular Potts 

model, and includes four ‘particle types’: endocardial cells, mesenchymal cells, 

extracellular matrix and ‘medium’. In this case, the medium represents the lumen of an 

embryonic heart tube.  

This model provides a conceptual representation of an in vivo endocardial cushion. Due 

to the complexity of processes involved, it is not directly fitted to experimental data, but 

rather provides qualitative results of the interplay of mechanisms that drive endocardial 

cushion growth. The mechanisms included within the model are: cell movement (driven 
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stochastically by differential adhesion), EMT (conversion of an endocardial cell to a 

mesenchymal cell), mesenchymal cell proliferation, endocardial cell proliferation and 

production of ECM by mesenchymal cells. 

Rather than investigating the role of cell-level factors, such changes in adhesion or cell 

motility, that drive EMT; this model focuses on the role of EMT and other factors (cell 

proliferation, adhesion and matrix production) in driving endocardial cushion growth. 

Thus it assigns probabilities of EMT occurring, and of proliferation or matrix production 

occurring during a simulation step. The model does not suggest mechanisms that control 

these probabilities, but rather the parameter space is explored to determine the relative 

importance of different mechanisms. Thus cell shape and deformability are not 

important within the model, and cells are represented as individual voxels. The model 

indicates that an increase of cell-ECM adhesion is more efficient at driving endocardial 

cushion growth than a decrease in cell-cell adhesion. Interestingly, this conclusion 

matches that of cellular Potts simulations described in this thesis (see Chapter 4), which 

take an approach of modelling the influences of cell shape, motility and adhesion in 

driving EMT.  

 

 

Figure 2.17 3D cellular Potts model of endocardial EMT (Neagu et al. 2010). (A) EMT is assumed to be 

restricted to a circular area with a diameter of 30 cells, and takes place during the first 3 x 104 MCS. 

Probabilities are assigned for matrix production and cell proliferation. (B) The final state assumed at 5 x 104 

MCS; showing full view, epithelium removed, and extracellular matrix removed respectively. Key: Epithelium: 

green, ECM: grey, mesenchymal cells: red.  
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The myocardium is not included explicitly within this model, although is included 

implicitly by the assumption of signalling proteins that would induce EMT within a 

regionally restricted area of the endocardium. The model demonstrates that the 

combination of regionally restricted EMT, cell proliferation, differential adhesion and ECM 

production are sufficient to produce structures consistent with the development of 

endocardial cushions, as shown in Figure 2.17. 

2.4.2. 2D Cellular Potts Simulation of Active Cell Migration & Mechanical Equilibrium 

A recently published extended cellular Potts model focussed on cell invasion from an 

aggregate (Szabó et al. 2012). Rather than specifying the developmental or disease 

context, the model described the behaviour emerging from autonomous cell motility, 

changes in cell-cell adhesion, contact guidance by ECM filaments and the ability of cells 

to degrade the ECM. Rather than using random motility, the model assumed a positive 

feedback to cell polarity from cell displacements exists; on the basis that cell invasion 

from multicellular aggregates has been observed to be persistent in vitro (Rupp et al. 

2008).  

The authors first explain the adaptations of the cellular Potts model to enforce 

mechanical equilibrium within a cell mass. While the standard cellular Potts model 

represents each individual cell as a droplet of viscoelastic fluid, the adapted model 

accounts for bulk dynamics by additionally treating an aggregate of cells as a larger mass 

of viscoelastic fluid. They demonstrate that only accounting for local mechanics produces 

unrealistic results in the context of a cell mass adhering to a moving adhesive surface 

(Figure 2.18). They further demonstrate that unrealistic results are obtained in the case 

of cells adhering to simulated immutable ECM fibres. While cells are able to invade the 

ECM filaments, they leave gaps behind, as cells in the bulk are unable to adjust quickly 

enough to the changing conditions (Figure 2.19). 
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Figure 2.18 The ‘piston test’ demonstrates the shortcomings of strictly local dynamics of the cellular Potts 

formalism. Cells (red) adhere to an ECM surface (green) which is shifted 1 pixel every 100 MCS. (A) With the 

standard cellular Potts model, cells cannot adjust to the changing boundary and holes appear near the 

attachment surface. The holes expand, and eventually the cells separate from the adhesive surface. (B) By 

including mechanical relaxation, whereby the aggregate of cells is given the same dynamics as each 

individual cell, the cells are able to adjust; matching the behaviour of real cell aggregates (Szabó et al. 

2012). 

 

Figure 2.19 Bulk cell movement at the ECM-cavity interface is unrealistic in the standard Potts model. While 

cells that adhere to the ECM are able to invade the space between ECM filaments; cells in the bulk are 

unable to adjust fast enough. Thus gaps form, and the average cell density is reduced at the cavity-matrix 

interface (Szabó et al. 2012). 

The authors then use the extended model to investigate the effects of cell-cell adhesion, 

cell-ECM adhesion, persistent cell motion, the presence of an oriented matrix, and matrix 

degradation on cell invasion. While the assumptions of a highly oriented and rigid ECM is 
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unrealistic, and the dimensions are not fitted to a realistic geometry, the model provides 

a means to evaluate the effectiveness of contact guidance under idealised conditions.  

 

Figure 2.20 2D extended cellular Potts model of cell invasion from an aggregate (Szabó et al. 2012). Cells 

with spontaneous motility invade an anisotropic, aligned and immutable ECM environment. (A) Morphology 

diagram of the invasion process for various values of the parameters β (cell-cell adhesion) and γ (cell-ECM 

adhesion). Configurations shown were obtained at t = 1000 MCS, which represents 17 hours. (B) Cell density 

changes along the direction of invasion reveal a steady invasion speed. The colour code indicates cell 

density compared to confluency. Temporal and spatial ranges on vertical and horizontal axes respectively are 

2000 MCS and 500 lattice units. Plots annotated as 1, 2 and 3 correspond to the parameter values marked 

accordingly in (A). 

The model demonstrates that the presence of an oriented ECM indeed increases cell 

invasion, as does the level of cell-ECM adhesion; while a high level of cell-cell adhesion 

increases the probability of cells invading in chords, as shown in Figure 2.20. The ability 

of cells to degrade ECM enables them to form new channels in the matrix, increasing 

their potential for invasion. 

2.4.3. Multiscale 3D Cell Centre Model of Cancer Cell Invasion 

This model illustrates how cell adhesion can be regulated by interactions between E-

cadherin and β-catenin, and in turn how cell adhesion is related to cell migration (Ramis-

Conde et al. 2008). It is a multiscale model, and uses the cell centre formalism in 

combination with a system of differential equations that are assigned to each cell. The 
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subcellular model embodies the molecular kinetics of E-cadherin and β-catenin. The 

model makes a fundamental assumption that an increase in free β-catenin is a primary 

determinant in activating cell migration. Dissociation of E-cadherin adhesive bonds 

between cells releases β-catenin, while the formation of E-cadherin bonds sequesters β-

catenin to the adherens junction. This suggests a mechanism whereby loss of cell-cell 

adhesion induces an increase in cell migration. In this scenario, a loss of cell-cell 

adhesion is mediated by the disassembly of E-cadherin based junctions, which activates 

downstream targets via β-catenin/Wnt signalling, including mechanisms that increase 

cell migration. The model does not suggest specifically what these mechanisms are (e.g. 

an increase in motility or an increase in cell-ECM adhesion), but represents them as 

chemotaxis (migration towards a chemical source of attractant). 

 

Figure 2.21 3D cell centre simulation of cancer cell invasion, toward a source of morphogen to the right of 

the tumor (Ramis-Conde et al. 2008). Cells detach gradually as the intracellular concentration of β-catenin is 

upregulated (light grey). Unit of time is given in minutes. 

The model is applied to a generalised case of EMT in an epithelial layer. This illustrates 

that a single cell undergoing detachment induces an outwardly moving detachment wave 

in neighbouring cells. As E-cadherin junctions break, β-catenin is released, inducing 

migration towards the attractant. It is also applied to a model of cancer cell invasion 

(Figure 2.21). This illustrates that cancer cells at the periphery of a tumour, having fewer 

E-cadherin bonds and thus a higher concentration of soluble β-catenin, have the 

potential to detach and migrate towards a source. This suggests that cancer cell 
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migration is a gradual process, with subsequent layers of cells detaching from the 

tumour surface. 

2.4.4. Multiscale 3D Cellular Potts Simulation Cancer Cell Growth and Invasion 

The model of Ramis-Conde et al. (2008) described in the previous section has been re-

implemented as a multiscale 3D cellular Potts model (Andasari et al. 2012). This utilises 

Compucell3D for the lattice based cell level modelling and the Bionetsolver API for 

integrating SBML encoded models of the E-cadherin/β-catenin dynamics. Re-creating a 

model using a different cell-level modelling formalism provides a means of cross 

validation, by ensuring that different techniques provide at least a qualitative agreement. 

In this case, the wave of detachment produced in the Potts implementation is uneven, 

due to the stochastic nature of cell dynamics in cellular Potts models, and fluctuations in 

contact area between cells. This contrasts with the cell centre implementation in which a 

very regular wave of detachment is produced. The particular nature of the detachment 

waves (regular or randomised) is an artefact of each modelling technique. However both 

methods at least produce qualitative results that include waves of detachment. 

Reproducing results in this way helps to demonstrate which effects are artefacts of the 

model and which are true properties of the system being represented. 

 

Figure 2.22 Comparison showing the difference in β-catenin detachment wave simulations between centre 

based model of Ramis-Conde et al. (2008) (left figure) and the Compucell3D- Bionetsolver model of Andasari 

et al. (2012) (right figure). 

Like the model of Ramis-Conde et al. (2008), this model is applied to generalised 

detachment and EMT from an epithelial layer, as well as the representation of tumour 

growth and cancer cell invasion (Figure 2.23). A radial chemoattractant gradient is used 
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to cause cells to migrate outwards in all directions, following detachment. However, this 

simulated chemotaxis serves as an analogue for any combination of cell characteristics 

that induce migration: such as active cell motility or increased cell-ECM adhesion. The 

model does not include any representation of changes in cell shape, which have been 

widely observed to occur during EMT (Mendez et al. 2010). 

 

Figure 2.23 Results multicellular tumour spheroid simulation. The tumour grows from a single cell placed in 

the middle of the lattice. After 400 MCS, cells begin to detach and invade from the surface of the tumour. 

Cell colour represents β-catenin concentration (Andasari et al. 2012).   
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2.4.5. 2D Cellular Potts Simulation of the Role of ECM in Glioma Invasion 

This cellular Potts based model is used to analyse the relative importance of cell-cell and 

cell-ECM adhesion in glioma invasion (Rubenstein & Kaufman 2008). In order to capture 

the dynamics of this type of tumour, three cell types are defined: proliferative, quiescent 

and necrotic. These types are widely used in continuum and agent based tumour 

modelling as cancer cells require nutrients to grow and divide. Thus as the tumour 

expands, cells on the inner layers become first quiescent (non-dividing) and then necrotic 

(dead). The ECM is represented with two components: a fibrous component that forms a 

scaffold and a non-fibrous component that is homogenous at the cellular scale. The 

inclusion of a two component ECM is a novel aspect of the model. It is intended to 

recapitulate the structure of typical collagen I gels, widely used for in vitro studies. 

Additionally, it allows for investigating the optimal density of ECM fibres for invasion, 

following in vitro results that cells are most invasive in intermediate density collagen 

gels.   

The model qualitatively captures the invasive patterns that occur with in vitro 

experiments of gliomas embedded in collagen I gels. The authors acknowledge the 

limitation of accurate geometric representation of collagen fibres in the model. While in 

vitro collagen fibres generally range between 100nm and 1µm, in the model they are 

given the width of a single site (2 µm) as this is the minimum permitted by the lattice 

scale used (Rubenstein & Kaufman 2008).  

The model uses a target perimeter term in the Hamiltonian equation, and a parameter 

for the strength of this constraint, which they term ‘elasticity’. Elasticity is varied in the 

model in order to explore the role of cell membrane rigidity on tumour growth and cancer 

cell invasion. This is used alongside ‘Temperature’ (cell motility) to explore the role of 

membrane rigidity in cancer cell invasion. The results suggest that, at very high collagen 

densities, cell shape alterations are not sufficient to overcome the small pore size, or 

disinclination of cells to detach from collagen fibres in order to migrate. This is in 

agreement with recent experimental findings (Wolf et al. 2007). 

 



43 

 

 

Figure 2.24 (a,b,c) Spheroid development at 14 days (2016 MCS) as a function of the number of 52µm long 

collagen threads, with 577, 2308 and 3462 threads respectively. Greyscale levels have no meaning, and are 

just to allow visualisation of individual cells. (d,e,f) Spheroid development as a function of time on a lattice 

containing 7500 12µm collagen threads at 0, 7 and 14 days respectively. Key: prolifereative cells: purple, 

quiescent cells: blue, necrotic cells: green (Rubenstein & Kaufman 2008). 
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2.4.6. Multiscale 3D Cell Centre Model of the Human Epidermis and Wound Healing 

This 3D multiscale model integrates an agent based model of the epithelium with a 

model of TGF-β1 signalling (Adra et al. 2010). This was also used to explore hypotheses  

of the functions of TGF-β1 signalling during epidermal wound healing (Sun et al. 2009). 

The model provides a visualisation tool of the contradictory roles of TGF-β1 signalling in 

keratinocytes: that it stimulates migration but inhibits proliferation. This has implications 

for the normal migration and turnover of keratinocytes in the epidermis, as well as the 

behaviour of cells when migrating and proliferating to cover a wound area. The integrated 

model recapitulates some qualitative aspects of wound healing. This includes the 

emergent effect that a small wound area is successfully covered by a fully renewed 

epidermis, due to the migration of epidermal cells; while in a large wound area, 

keratinocytes become committed before epidermal cells have migrated to cover the large 

area (Figure 2.25). 

 

Figure 2.25 With a small virtual wound with normal proliferation and migration rates, epidermal cells migrate 

to cover the denuded area; shown at (A) 0, (B) 50, (C) 120, (D) 500 iterations. With a large virtual wound with 

the same migration and proliferation rates, keratinocytes on the wound bed begin to differentiate into 

committed cells before the epidermal cells have migrated to cover the large denuded area; shown at (E) 0, 

(F) 200, (G) 400, (H) 800 iterations. The level of TGF-β1 in each cell was a function of the position of the 

agent in the stratified layers or in contact with the matrix (I) (J). Key: keratinocyte stem cells (blue), transit 

amplifying cells (light green), committed cells (dark green), corneocytes (brown), provisional matrix (dark 

red), secondary matrix (green). Cell agent diameter = 10 µm (Sun et al. 2009).   
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The concentration of TGF-β1 in cell agents in the model is dependent upon their position 

within the stratified layers of epidermis, their cell type, and contact with the matrix. For 

the subcellular model, an existing SBML model was solved during model iterations using 

the Complex Pathway Simulator (COPASI). In the integrated model, cell level behaviours 

were dependent upon the concentration of TGF-β1 in the pathway model. This 

determined the propensity for cells to migrate, proliferate and differentiate. The TGF- β1 

variable also determined cell-cell and cell-substrate attractive forces, which represent 

adhesion. Cells in the model are set to migrate preferentially towards exposed areas of 

secondary matrix (wounds). While in reality this is driven by cell-matrix adhesion, as well 

as active cell movement, these features are reduced to a preferential directed migration 

in the model. The model demonstrated that TGF- β1 plays an important role in 

maintaining the balance between migration and proliferation in normal epidermal wound 

healing. Any disruption to TGF- β1 expression or signalling in the model could lead to 

chronic or hypertrophic wounds, which corresponds qualitatively with in vitro research 

(Fitsialos et al. 2007).  

The multiscale approach of coupling an SBML model solver to an agent based modelling 

platform has similarities to the approach of developing multiscale models in 

Compucell3D. It is interesting to note that the approach of the epidermal wound healing 

model makes use of a stochastic subcellular model solver, COPASI, with a deterministic 

agent based model simulator, FLAME. This is the reverse situation to using stochastic 

cellular Potts models with a deterministic subcellular model solver. It has been argued 

that there is little need for representing the stochastic nature of biochemical models 

within multiscale cellular Potts models, because the stochastic fluctuations of the Potts 

model are large compared to the deterministic approximation of subcellular ODEs 

(Hester et al. 2011).   
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2.4.7. 2D Cellular Potts Model of Intercellular Adhesion and Cancer Invasion 

This 2D cellular Potts model is used to explore the relationship between cell-cell 

adhesion, cell-ECM adhesion, secretion of proteolytic enzymes and the rate of cell 

proliferation (Turner & Sherratt 2002). The model reproduces the qualitative emergence 

of ‘fingering’ and the invasive front of part of a tumour. The model suggests that the rate 

of mitosis can, under certain conditions, inhibit the invasiveness of cancer cells, by 

increasing the amount of surface area between cells at the invading front. As the cells 

adhere to each other, this is a limiting factor in the distance migrated (Figure 2.26). 

 

 

 

2.5. Existing Simulations of EMT Pathways 

2.5.1. Notch Signalling 

The Notch signalling cascade is evolutionarily highly conserved. Notch-like molecules 

have been identified in a multitude of diverse species, from C. elegans to humans, and 

appear to play conserved functional roles in development (Borggrefe & Oswald 2009). 

The classic model of Notch signalling is the lateral inhibition model (Collier et al. 1996). 

In lateral inhibition, a cell adopts a fate, and then inhibits its neighbours from doing 

likewise. Thus fine grained patterns of gene expression may emerge from an initially 

homogenous tissue, allowing the evenly spaced differentiation of, for example, neural 

Figure 2.26 2D cellular Potts simulations of part of cancer invading front; (left) without cell proliferation, (right) with cell 

proliferation (Turner & Sherratt 2002). 
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cells from epidermal cells. Most simulation studies of Notch signalling are extensions on 

the Collier et al. model, and focus on the lateral inhibition mechanism. Refinements to 

the model of Collier et al. (1996) have included: implementing it as a homogenised 

reaction diffusion model (O’Dea & King 2011); investigating the role of differential 

adhesion and apoptosis in fine-grained pattern formation through a multiscale cellular 

Potts model (Podgorski et al. 2007); a multiscale model of Notch and VEGF signalling in 

tip cell selection during angiogenesis sprout formation (Bentley et al. 2008); an 

investigation of the role of mutual inactivation between Notch receptors and ligands 

(Sprinzak et al. 2011); and an investigation of the role of structured noise in driving 

pattern formation (Cohen et al. 2010). 

In heart development, Notch signalling operates by lateral induction rather than lateral 

inhibition, to specify the regions of endocardial cells predisposed to EMT, as well as the 

regions of myocardium that secrete transforming proteins in these same regions 

(Timmerman et al. 2004). Only one model of Notch signalling lateral induction has been 

identified (Owen et al. 2000). This is a generic system of differential equations, with 

indications for ranges of parameters under which spatial patterning, uncontrolled 

feedback and homogenous equilibrium occur. 

2.5.2. TGF-β and BMP Signalling 

Transforming Growth Factor beta (TGF-β) superfamily (which includes Bone 

Morphogenetic Protein (BMP) signalling) generate intracellular signalling through a 

conserved family of proteins termed Smads. When a TGF- β or BMP ligand binds to a 

receptor, this phosphorylates an R-Smad protein (either Smad2/3 for TGF- β or 

Smad1/5/8 for BMP), which then bind to co-Smad (Smad4). The complex formed then 

translocates to the nucleus and activates gene transcription. The process during EMT in 

heart development is shown in Figure 2.27. 
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Figure 2.27 Notch, TGF-β and BMP activity in endocardial cushion formation (Wagner & Siddiqui 2007) 

There have been several mathematical models of the TGF- β pathway. One model 

focuses on the receptor trafficking network, to demonstrate its potential for processing 

signals received from different TGF-β superfamily ligands (Vilar et al. 2006). Other 

models have focussed on the role of the shuttling of Smad proteins between nucleus and 

cytoplasm, and the phosphorylation of Smad in response to the TGF- β signal, without 

accounting for the receptor network (Clarke et al. 2006; Schmierer et al. 2008). The 

models of these different processes were combined using a constraint based method (Zi 

& Klipp 2007) , which identified the importance of different mechanisms of endocytosis 

in regulating the signal response to TGF-β.  
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2.5.3. Wnt/β-catenin and E-cadherin Signalling 

It has been shown in numerous experiments that the loss of E-cadherin mediated cell 

adhesion leads to the realease of β-catenin, which leads to nuclear localisation of β-

catenin and the activation of Wnt/β-catenin signalling. Conversly, many target genes of 

Wnt/β-catenin signalling (including Twist and Snail2) lead to further E-cadherin 

degradation, and promote cell invasiveness characteristic of EMT (Heuberger & 

Birchmeier 2010). This positive feedback means that an EMT could be initiated either 

from canonical Wnt signalling, or from loss of E-cadherin adhesion by another pathway. 

β-catenin dynamics have been modelled as a system of differential equations, and 

implemented as a multiscale cell centre model of cancer cell EMT (Ramis-Conde et al. 

2008). This model makes the assumption that E-cadherin and β-catenin will be 

stimulated to bind when a cell makes contact with another cell, and unbind when the cell 

detaches, and that this is proportional to the contact area. Furthermore, the model 

makes the assumption that when cytosolic β-catenin is above a certain threshold, there 

will be enough to translocate to the nucleus, activate gene transcription, and therefore 

induce migration. The model illustrates that when one cell receives a Wnt/β-catenin 

pathway signal, the resulting invasion and rupturing of adhesive bonds with adjacent 

cells will in turn activate Wnt/β-catenin signalling in those cells, inducing them to 

become invasive, and so on. 

 

2.6. Challenges for Multiscale Modelling in Biomedicine 

 

While it is widely accepted that appreciating the links between different levels of spatial 

and temporal scale is essential for integrated understanding of physiology, the majority 

of computational biology models are single-scale models. This is partly because different 

modelling techniques are suitable for representing the behaviour of biological systems at 

different levels of scale. Thus multiscale modelling usually requires the integration of two 

different approaches.  For example: biochemical reactions are best represented with 

ordinary differential equations, or some form of network model; diffusion of chemical 

fields and cellular physiology are best modelled with partial differential equations; while 

cellular behaviour might be represented with agent based modelling. However, biological 
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systems are fundamentally multiscale. This may in part be a reflection of the evolution of 

complexity: from self-replicating macromolecules; to self-replicating units of 

interdependent molecules enclosed within phospholipid membranes (early cells); to 

cooperative dependence between groups of cells in the evolution of multicellular 

organisms; to the separation of physiological functions into interdependent organs and 

organ systems. The use of single scale models can thus only be taken so far, as it is 

necessary to understand most biological processes in terms of what is occurring at the 

levels of spatial and temporal scale above and/or below it. 

As the use of computational models has grown within biological and biomedical 

research, along with the complexity and realism of such models, there has been an 

increasing realisation of the need for formality in the way that models are defined and 

developed. An increase in model complexity has also led to a growing desire for reuse of 

existing models as functional parts of new models. Multiscale modelling in particular has 

thrived on reuse. For example, a multiscale Compucell3D model of somitogenesis 

(Hester et al. 2011) reused an existing segmentation clock model (Goldbeter & Pourquié 

2008), which is available as CellML in the CellML models database, and also as SBML in 

the Biomodels database. Multiscale models of cardiac electrophysiology have reused 

models of calcium dynamics available in CellML (Hunter et al. 2008). There are a number 

of advantages to the reuse of published models in this way: as well as making the 

development of a complex model more manageable, it splits part of the tasks of 

verification and validation into component models. To some extent it also mirrors the 

reuse of components that occur in real biological systems: the same core molecular 

players, pathways and cellular behaviours are used in different developmental, 

physiological and disease processes, in different species. However, there are additional 

challenges of ensuring that models developed based on experiments in particular 

species will be valid in the context of a model derived from data in a different species. 

One means to address this is through semantically driven, machine readable annotation 

of models, using terms from biomedical ontologies. This at least makes it explicit what 

biological objects and properties the objects and parameters in the model represent; at 

whatever level of generality (e.g. “myocyte”, “mammalian cardiac ventricular myocyte”, or 

“rat cardiac ventricular myocyte”). There are now minimum information guidelines for the 
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annotation of models (Juty et al. 2012) and simulation experiments (Waltemath et al. 

2011) that accord with similar guidelines for wet lab experimental research. Due to the 

logical rules expressed in ontologies, it is also possible to add a layer of reasoning, so 

that appropriate models and model connection points might be suggested when 

attempting to merge or couple models (Gennari et al. 2010). 

The availability and adoption of standards is clearly an important aspect of reusability, as 

this enables the simulation of models encoded in the same language on different 

platforms. Quite different implementations are even possible for the same model. For 

example, an SBML model can be simulated as a deterministic system of ODEs using a 

large number of tools (e.g. JDesigner, Jarnac, CellDesigner, SBMLToolbox for MATLAB 

and Octave) or using a stochastic algorithm such as the Gillespie algorithm in, for 

example, COPASI or Dizzy. There have been many attempts to develop modelling 

standards in recent years. As one might expect, many have simply never taken off 

beyond the groups that developed them, while others have been extremely successful. 

Still others are highly successful, but limited by design to models within very specific 

domains. The latter include NeuroML (Gleeson et al. 2010) which now provides a 

common language for the handful of major neuronal simulators.  

The success of eXtensible Markup Language (XML) specifications is partly due to this 

enforcing a declarative approach, that captures only the essential ‘information’ features 

of a model (objects, relationships and parameters), without any of the procedural code 

needed to run it. However, the standards with the greatest success have been for 

subcellular models: SBML and CellML. These are somewhat overlapping in terms of their 

domain, but both have been adopted as import and export formats by an impressive 

range of tools. The main difference between these languages is that CellML is more 

general, SBML being focussed mainly on pathway and reaction models. SBML data 

structures have names like “species” (e.g. molecular species) and “reaction”, while in 

CellML the biology is described only through metadata. CellML takes a modular approach 

while SBML is hierarchical. For example, while in SBML you have a list of molecular 

species, parameters, reactions, etc. in CellML there are modules, each of which may 

contain variables, objects, and other modules. This is intended to make reusing models 
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and parts of models (modules) easier. There is an import mechanism so that a module 

from one CellML file may be directly imported by another. CellML was developed by the 

Auckland Bioengineering Institute alongside another standard, FieldML. FieldML aims to 

provide a declarative language for models described by mathematical fields, such as 

geometrical models, with or without dynamic features. This can be used to create 

multiscale models of organs such as the heart by interpolating CellML models to 

discretised points on a FieldML field, and mapping CellML variables to a field degree of 

freedom (Popel & Hunter 2009). 

2.6.1. Annotation of Multiscale Models 

Another advantage of XML based languages is that it is possible to create an explicit link 

between concepts in a model and external web-accessible resources using the XLink 

mechanism (Hunter et al. 2006). This might be used to create a link to uniform resource 

identifiers for terms from biomedical ontologies. Ontologies are essentially collections of 

terms relevant to a particular domain, organised hierarchically, with logically defined 

relationships between terms. As such, they can be used for purposes such as 

classification, clinical decision support, making domain assumptions explicit, and 

semantic searching or querying of datasets. 

Ontologies are particularly well developed within biomedicine. This is partly because it 

has become an extremely data intensive science, and partly because of the ‘messy’ 

nature of biology. Biology is riddled with exceptions, loose definitions, and confusing, co-

existing, naming schemes; with dozens of synonyms for any given gene or protein. This 

makes formal semantic representation particularly important. Ontology development 

within biomedicine is being coordinated under the umbrella of the Open Biomedical 

Ontology (OBO) Foundry (Smith et al. 2007). These include both ‘reference ontologies’, 

which are considered to be the standard ontology for a particular domain, and 

‘application ontologies’, which are designed for a particular purpose. Terms in application 

ontologies are often mapped back to terms from reference ontologies. The OBO Foundry 

provides reference ontologies with an increasingly good coverage of biomedical concepts 

at different levels of spatial and temporal scale. Initially, this grew from the coordination 

of heterogeneous databases that record the characteristics of gene products, primarily 

with the Gene Ontology (GO). Reference ontologies are now used for annotating a wide 
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variety of biomedical knowledge sources. These sources include images, database 

entries, publications, computational models and simulation results. By keeping reference 

ontologies well-bounded and essentially orthogonal the OBO Foundry minimizes logical 

inconsistencies and confusion over which ontology to use. 

For many applications, there is a need to combine terms from multiple reference 

ontologies, in order to create a composite term suitable for a particular annotation. This 

can either be done by defining terms in application ontologies as equivalent to a 

composition of reference ontology terms (pre-composition); or through post-composition, 

whereby the annotator can compose terms ‘on the fly’, and add them to a repository of 

composite terms. While the former approach is less complex for the annotator, the latter 

approach is more flexible. An illustration of the post-composition approach is given in 

Figure 2.28. 

 
Figure 2.28 Relationship between models/data and annotations of models/data using ontologies. Models 

will be annotated to terms using a standard annotation scheme. These annotations will be stored in a central 

repository to enable fast querying (Baldock et al. 2010). 

Multiscale modelling efforts have focused mainly on the physiology of adult organ 

systems. Post-composed annotation of models has so far been applied only to 
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physiological models with fairly simple physical properties (Neal et al. 2009). Embryonic 

heart morphogenesis involves complex cellular behaviour that is not well defined, and 

provides an interesting test case for the generality of the approach. 

 

2.7. Existing Multiscale Simulation Platforms 

 

2.7.1. VPH/Physiome Project 

The VPH/Physiome project is an international public domain effort to provide a 

computational framework for understanding human physiology. Some of the initial 

outcomes include: specifications of standard languages for encoding biological models, 

web accessible databases of models encoded in these standard languages, 

development of ontologies for linking components between models and databases, and 

user interfaces for creating and running models; which facilitates linking between models 

at different levels of scale (Hunter et al. 2006). 

Conventionally, when one bioscience research team wishes to make use of another 

team’s model, it is necessary for them to entirely reconstruct the model from the 

published equations. This is cumbersome, time consuming and entails a number of 

steps in which mistakes are all too possible. Even when written source code of a model is 

made freely available, it is not easily integrated into models written in different 

languages, on different computer platforms. Overcoming these problems could greatly 

accelerate the pace of systems biology research. This is because, owing to the 

parsimonious nature of evolution, biological models are highly reusable for different 

contexts. Many signalling pathways, such Notch signalling, are common across a 

multitude of diverse species, as are basic cellular mechanisms such as adhesion, 

migration, growth, division and death. It is for these very reasons that research on model 

organisms such as mice, yeast or fruit flies can yield results relevant to human 

physiology. 

The Physiome project is addressing this challenge by developing a series of compatible 

eXtensible Markup Language (XML) based languages for encoding biological models, the 
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most developed of which is CellML. CellML makes use of another markup language, 

MathML, to express mathematical equations, and builds models as a network of 

interconnected components, so that an individual component of a model can easily be 

reused in a different model (Lloyd et al. 2004). There is an import mechanism that can 

be used for combining models, and grouping and containment can be used to organise 

model components in terms of their functions and physical locations. The model 

components normally represent components of a cell, though the language is not 

domain specific in this sense; and it could be used for modelling virtually any field. A 

related language, still in development, is FieldML. This is intended as a standard for 

modelling field descriptions, thus providing a standard interchange format for (potentially 

time-varying) geometrical models (Christie et al. 2009). 

 

Figure 2.29 Spatial and temporal scales encompassed by the Human Physiome Project. Markup languages 

developed at Auckland Bioengineering Institute for different levels of scale are indicated, as well as the types 

of mathematical model appropriate to each level (Hunter et al. 2002).  

The levels of scale encompassed by the Physiome project are illustrated in Figure 2.29. 

This is not to suggest that the entire spectrum of scales could be represented in a single 

model. Rather, depending on the question being addressed, different processes would 

be linked through a hierarchy of models; with different modelling approaches used at 

different scales. For example, ion channels are best represented by stochastic models, 

models of internal cellular dynamics by ordinary differential locations, the mechanics and 
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nutrient distribution of tissues and organs by partial differential equations and 

continuum models.   

The first examples of Physiome projects focussed on cardiac physiology, coupling 

between models of excitation-contraction, cellular calcium dynamics, and cardiac 

electrophysiology, to produce geometrically accurate models of a beating heart (Crampin 

2004). This has been achieved by coupling continuum models of excitation-contraction 

and heart electrophysiology, with ODE models of calcium dynamics. This approach 

couples between the single cell or subcellular level to the organ level, without explicit 

representation of cellular or tissue structure. An open source simulation environment, 

OpenCMISS (Bradley et al. 2011), has been developed at Auckland University for 

coupling of tissue or organ mesh models specified in FieldML with CellML models, to 

develop multiscale multiphysics models. 

Modelling formalisms that treat cells as individual agents have tended to be more 

insular, with each model being encapsulated in a specific problem. While there is a 

library of models of biochemical reactions (Biomodels.net), and a library of models of cell 

physiology (CellML repository), and even the beginnings of a library of 3D geometrical 

models of human organs (FieldML repository); there is no comparable repository of 

models of cellular ‘social’ behaviour in tissues. It is precisely this social behaviour 

(changing shape, rearrangement, migration) that is the most fundamental aspect of 

modelling EMT. There are recent efforts to address the lack of cohesion in cellular agent 

based modelling, with the development of extendable simulation platforms, notably 

Compucell3D, FLAME and Chaste. These are reviewed in the following sections. The 

question of whether declarative standards are possible for cellular agent based 

modelling is currently an issue of active discussion (Galdzicki et al. 2009; Osbourne 

2012) but there are no such standards at the time of writing. 

2.7.2. Compucell3D 

Compucell3D is an open source platform for developing extended cellular Potts models, 

developed at Indiana University (Swat et al. 2009). It is built in C++ with a python 

wrapper. Models can be encoded in a combination of a native XML format (CC3DML) and 

Python; and the later allows dynamically changing parameters during a simulation run. 
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Compucell3D provides a means for quick development of agent based cellular Potts 

models, circumventing the need to reinvent basic code for each investigation. While 

previously, every researcher developing cellular Potts models built their own platform, 

Compucell3D allows this time to be saved for modelling and analysis; as well as allowing 

models to be more easily reproduced by other researchers. Compucell3D boasts an 

interesting range of features, including a PDE solver which can be used for simulating the 

diffusion of chemical fields; either secreted by cells or as an intrinsic part of the 

environment. Cell types are specified with parameters for the target volume and surface 

area of a cell, constraints on these target values, response to chemical gradients, 

secretion of chemicals and surface energy between different cell types; which provides a 

representation of differential adhesion. Surface energy simulates cell-cell adhesion and 

repulsion, as cell types with low or negative surface energy between one another will 

tend to stick together, while those with high surface energy push apart. An intrinsic 

parameter for the speed at which all cells change shape is specified in the model, which 

is (misleadingly) termed “Temperature”. Simulations are normally run in a GUI that allows 

dynamic visualisation, but can also be run without the GUI. Parallel execution is 

supported through Open Message Passing. Multiscale models can be created by 

importing subcellular SBML models, and coupling between variables in the SBML and 

Compucell3D models. As cellular Potts models were identified as the most appropriate 

technique for modelling EMT, Compucell3D is used for simulations in this thesis, and the 

implementation is explained in more detail in the Methods chapter. 

2.7.3. Chaste 

Chaste (Cancer Heart and Soft Tissue Environment) is a general purpose simulation 

package developed at University of Oxford. It is aimed at multiscale and computationally 

demanding problems in physiogy and biology, and as such is designed with the ability to 

run on clusters using Message Passing Interface. Chaste is developed in C++ using 

techniques adopted from the commercial sector. The team uses a variant of the agile 

development approach ‘eXtreme programming’, which includes test driven development, 

continuous integration and collective code ownership through programming in pairs (Pitt-

Francis et al. 2009). This means a longer time is needed for adding new functionality 

initially, but this has rewards in the medium to long term by having a piece of software 
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that is readily understandable (through test suites and documentation). Due to the 

additional effort it requires to add new functionality, Chaste developers take the 

approach of adding new functionality as they require it, rather than predicting what they 

might need in the future (Osbourne 2012). This contrasts with the approach taken by the 

Compucell3D team, of developing functionality so that it might be applied to a wide 

range of problems by a wide range of users; but at the expense of extensive testing and 

really thorough documentation. This difference reflects the fact that Compucell3D is 

aimed at solving a much narrower set of problems: cellular Potts models with extensions, 

while Chaste aims to be a fully general simulation package. This means that Chaste 

needs to incorporate a much greater set of mathematical and computational techniques, 

with the consequence that a more rigorous approach is needed to ensure that these 

remain consistent when new modules are added.  

 

Figure 2.30 Example simulations of an intestinal crypt developed in Chaste using (a) the cell centre model 

and (b) the cell vertex model. Proliferating cells: yellow, non-proliferating cells: pink (Osborne et al. 2010). 

One of the advantages of having a range of techniques available within a unified 

simulation package is the ability to compare different modelling approaches for the same 

underlying biological model. This is shown for a comparison of the cell centre model with 

the cell vertex model in Figure 2.30. It would also be possible to do lattice based 
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simulations in Chaste, such as cellular automata or cellular Potts models, though this 

functionality has not been developed yet at the time of writing. The main applications of 

Chaste are currently simulations of cardiac electrophysiology and cell based simulations, 

particularly focussed on simulations of intestinal crypts, and the colectoral cancers that 

can appear within these. The cardiac simulations use a finite element mesh, and each 

point in the mesh is associated with a cardiac cell model that may or may not be 

stimulated. The cell based simulations also typically use a mesh to generate the 

geometry, and assign cell classes to that geometry; as well as forces to the simulation 

class that determine how the cells move (Pitt-Francis et al. 2009). 

2.7.4. FLAME 

FLAME (Flexible Large Scale Modelling Environment) is a generic agent based modelling 

platform developed at the University of Sheffield. FLAME has been used for modelling of 

cell populations as well as macroeconomic modelling, and modelling a signalling 

pathway, in which the agents represented molecules within a single cell (Holcombe et al. 

2012). Individual agents are defined in a markup language (XMML: X-Machine Markup 

Language) which is parsed to generate simulation code in C. FLAME can be used for 

multiscale agent based simulations of cells. This is achieved through the use of wrappers 

that allow agents to call either COPASI or JSim during a simulation. This means that 

models available in SBML, CellML or JSim’s MML format can be coupled to FLAME agent 

based simulations, and solved deterministically or stochastically. This multiscale 

approach has been used to model the role of TGF-β1 in epidermal wound healing (Sun et 

al. 2009). 

2.7.5. SemGen 

SemGen is a tool being developed at the University of Washington to automate the 

modular composition and decomposition of biological simulation models (Gennari et al. 

2010). The approach taken is to first create lightweight semantic models (ontologies) 

representing each simulation model, and then attempt to merge those ontologies in 

order to suggest the points at which simulation models might be merged. This is 

achieved with composite annotations that leverage multiple existing biomedical 

reference ontologies. This allows the creation of complex definitions for the specific 

physical properties in particular models (Figure 2.31). 
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While SemGen is a work in progress, the approach suggested is an intriguing one. The 

demonstration used was to reproduce a previously hand-merged multiscale model, 

comprising of separate cardiovascular circulation, baroceptor and vascular smooth 

muscle cell models (Gennari et al. 2010). The indication is that mapping between 

models at different levels of scale has the potential to be partially automated through the 

leveraging of semantic annotations. SemGen models are expressed in the SemSim 

language, and can be created from models in either of the major current declarative 

biomedical languages (SBML and CellML), but these need to be first imported and 

compiled in the JSim modelling tool. After merging the SemSim models, executable code 

can be exported. Export to JSim’s MML is the only option currently available, but the 

developers intend to eventually offer translation to a range of languages. This has 

approach has so far only been applied to models with well defined physical properties. It 

is not clear how well this might work for individual based cell level modelling, for 

example, where the physical properties that drive cell behaviour are not fully understood. 

2.7.6. MoBi and PK-Sim 

Developed by Bayer Technology Services, these two packages can be integrated to 

create multiscale models. PK-Sim provides a platform for whole body physiology based 

pharmacokinetics modelling (WB-PBPK), and MoBi provides a tool for protein and drug 

interactions. Applications of this include scaling models of drug responses between in 

vivo studies and human, or between adult and pediatric or elderly populations, by taking 

account of differences in organ sizes and composition (water, fat and muscle), as well as 

differences in physiology (Strougo et al. 2012). This is proprietary software, and with a 

different scale and application domain from that of this thesis. Nonetheless, this is an 

encouraging example of the use of multiscale modelling within the field of clinical drug 

development. There is likely much to be gained through greater collaboration between 

industry and academic research in the field of multiscale biomedical modelling. 
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Figure 2.31 SemGen annotator tool (top) is used to create composite annotations for model variables, and 

the merger tool (bottom) is used to suggest resolution points between models (Neal 2010). 
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2.8. Summary 

 

This chapter has provided a review of literature from several different disciplines to 

provide a solid foundation for the remaining chapters of the thesis. It has reviewed the 

anatomy and cell biology of EMT in heart development; the available cell-level modelling 

techniques and their suitability for modelling EMT; existing simulations of EMT; the 

challenges of multiscale modelling within biomedicine and existing platforms for 

multiscale simulation that address these challenges. The biological background of EMT 

and the technical background of modelling and simulation approaches will be built on in 

the following chapter; in which the methods used for modelling different features of EMT 

are described. The review of the approaches multiscale modelling in biomedicine is 

picked up in the Methods and Results chapters. In these following chapters, preliminary 

multiscale modelling of Notch signalling lateral inhibition is given, as well as an approach 

for multiscale annotation of for heart development processes with biomedical ontologies. 
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Chapter 3 

3. Methods 
 

3.1. Introduction 

 

The Literature Review identified the cellular Potts model as having the most suitable 

range of features for representing EMT. This chapter begins with a description of the 

method selection, in terms of the types of cellular Potts models used to address different 

questions (Section 3.2.) The selection choices for different features of EMT (between 2D 

and 3D, single cell and multicell cellular Potts models, and whether or not to include 

subcellular reaction models) are explained.  

In Section 3.3., the image processing methods used to extract cell shape parameters 

from the available imaging data are explained. 

Section 3.4. explains the basis of the cellular Potts model, and the specific 

implementations used in this thesis. Further details are given in Appendix A. Section 

3.4.1. details the constraints included in the 3D simulations and Section 3.4.2. details 

those included in the 2D simulations. The 2D simulations include more constraints than 

the 3D simulations, because cell morphology is investigated. The role of adhesion forces 

that bind across the cytoskeleton (in addition to those that operate at the surface) is 

investigated using the Compucell3D FocalPointPlasticity plugin. Section 3.4.3. explains 

how the time and space scale of the simulations are matched to those of the real 

system, which is essential for comparing cell morphology and cell migration metrics. 

These are explained in Sections 3.4.4. and 3.4.5 respectively. Section 3.4.6 explains the 

multiscale implementation which uses the Bionetsolver library with Compucell3D. 

Section 3.5. provides details on the methods for model verification and validation. 
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3.2. Method Selection 

Endocardial EMT is only one of the many complex developmental mechanisms that occur 

during heart development. However, it is a complex system in its own right, and 

comprises a large number signalling pathways and cellular changes. In order for 

computational models of endocardial EMT to be useful, they need focus on a small 

subset of the real interactions that take place. Rather than attempting to develop a 

unified model that integrates several aspects EMT regulation, this thesis takes the 

approach of providing a set of small models; each applied to a narrowly defined question 

or hypothesis. This means that a variety of models are presented, employing a range of 

methods. In order to assist the reader in understanding which methods are applied to 

which biological mechanism, these are summarised in Figure 3.1, along with the main 

justifications for the use of each method. 

 

Figure 3.1 Overview of the computational methods applied to particular biological mechanisms, and the 

main justifications for the use of each method 
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Method selection proceeded on a number of criteria. In the case of quantifying in vitro 

cell morphology, image processing is really the only option, and it was a case of trying 

different techniques to find a method that worked and was easy to implement. Where 

the difference between 2D migration and 3D invasion needed to be captured in the 

model, modelling in 3D was a self-evident requirement. However, it would be 

complicated to quantify simulated cell shapes in 3D, and moreover the imaging data 

available was 2D. Therefore 2D simulations made more sense in all models that included 

changes in cell morphology as a feature (both the single cell and multi-cell models). In 

the case of the model of Notch signalling lateral induction, a 2D model was used. This 

makes the assumption that cells in an epithelial sheet are relatively thin in cross-section, 

and move around other epithelial cells, but not away from this thin layer. Under these 

assumptions, there would be no difference in the expression pattern produced by a 2D or 

3D simulation. 

One major point to note is that all the models are of either entirely abstract scenarios or 

represent endocardial cells in vitro. A model of in vivo EMT is not attempted. It is only 

possible to generate data on in vivo EMT through wildtype and mutant embryos, and 

tissue sectioning. While this can indicate something about the role of a particular gene in 

the entire process of EMT, it is insufficient for developing a multiscale or tissue-level 

model. This is due in part to the extremely large number of uncertainties and interactions 

present in a developing embryo. These interactions can be controlled to a much greater 

extent in an in vitro model of EMT, providing a means for model validation, and the 

potential for future feedback between modelling and wet-lab investigations. It is worth 

noting that, as indicated in the Literature Review, there is an existing 3D cellular Potts 

model that aims to represent in vivo endocardial cushion growth in terms of the 

qualitative functons of regionally restricted EMT, cell proliferation, differential adhesion 

and ECM production (Neagu et al. 2010). Whereas this thesis focuses on the cellular 

mechanics that occur during EMT, the model of Neagu et al. (2010) treats EMT as a 

lumped parameter. The models in this thesis agree qualitatively with those of Neagu et 

al. (2010). There may be potential for incorporating some of the more detailed 

mechanisms investigated in this thesis (such as changes in cell morphology and motility), 

within a functional representation of in vivo endocardial cushion growth. However it is not 
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immediately clear how this could be validated or would otherwise add value to the 

existing model of Neagu et al. (2010). 

A recent in vitro investigation (Luna-Zurita et al. 2010) is used as the benchmark for all 

of the modelling in this thesis. This investigation provides, to our knowledge the greatest 

detail of any currently published in vitro investigation on the role of the main molecular 

players (e.g. Notch, TGFβ, BMP2) in driving endocardial migration and invasion during 

EMT. 3D cellular Potts models were used to represent cell migration on the surface, and 

cell invasion into the gel, as a function of aggregate differential adhesion. High quality 

imaging data in the form of confocal stacks were provided by the authors of the 

investigation, and further analysis was conducted in the form of simple image 

processing. By this means, 2D cell shapes were extracted and quantified in the different 

experimental conditions. This was then used in order to fit 2D cellular Potts models that 

investigated the relationship between cell shape and cell motility. This was then 

extended to an investigation of the role of different adhesion forces in driving epithelial 

and mesenchymal morphology, by including a function for plastic coupling within 

multiple-cell 2D cellular Potts models. 

More abstract simulations include the multiscale Notch lateral induction model. This is 

entirely generic to lateral induction in any epithelial tissue, though the implications for 

lateral induction in heart development in particular are considered. The 3D cellular Potts 

model of contact-inhibited mitosis is also highly abstract. It would require improvements 

to the model realism as well as further in vitro experimentation in order to validate this 

model. However it does at least give a visual and functional representation of one 

possible mechanism of the role of contact-inhibited mitosis in restraining cell migration 

and invasion during EMT. 
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3.3. Image Processing 

 

In order to quantify the difference in shape between endocardial and mesenchymal cells, 

basic image processing analysis was performed on existing in vitro experimental results 

(Luna-Zurita et al. 2010) using ImageJ. Full resolution confocal stacks were provided by 

the authors of the in vitro study. Two conditions were investigated further for comparison: 

the wildtype condition and Notch1 activated (Tie2-Cre;N1ICD) cells. These conditions 

were chosen because the cells migrated mainly in 2D, rather than invading the collagen 

gel, allowing 2D comparisons of cell shape and migration to be made. This allowed 

investigation of the influence of Notch1 on cell shape and migration during EMT; as well 

as the interplay between cell shape, cell adhesion and cell migration. 

As the wildtype condition consisted of a monolayer of endocardial cells, while the Notch1 

activated cells were scattered, it was necessary to process them in different ways to 

extract individual cell shapes. For the wildtype condition, first a maximum intensity z-

projection of the stack was produced, and the myocardium removed. The blue channel, 

which represents nuclei of the cells, was overlayed on the image in white. Then Find 

Maxima in ImageJ was used, which located these as local maxima (in terms of 

brightness) in the image.  The output type Segmented Particles was used, which 

implements a watershed algorithm to extract an outline from the area surrounding the 

maxima. These outlines were then added to the ROI manager, allowing measurement of 

cell shape metrics to be performed. This workflow is shown in Figure 3.2. While it is 

impossible to strictly quantify the accuracy of this method without a ground truth 

segmentation with which to compare it to, a close inspection of the cell overlay indicated 

that the cell outlines were at least a reasonably good fit (Figure 3.3). As the method 

produced a lot small outlines, with very high circularity, cells with an area less than 

100µm were excluded from the dataset. 

For the Notch1 activated cells, slice number 15 was analysed, as this provided a 

representative image of cells moving on the surface of the collagen gel. The myocardium 

from the ventricular explants was removed from the image. Adjust Threshold in ImageJ 

was used to create a binary image of the cells. The Analyse Particles plugin was then 
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used to add the cell shapes to the ROI manager, which was used to measure the cell 

shape characteristics. This workflow is shown in Figure 3.4. Although there were some 

large shapes extracted, that clearly represent more than one cell, excluding these did not 

significantly affect the circularity or aspect ratio. 

As the same shape metrics could also be calculated during a simulation run in 

Compucell3D, this allowed a comparison to be made between the in vitro and simulation 

results. For the purpose of this comparison, the metrics of circularity 

(4π*area/perimeter2) and aspect ratio (length/width) were used. These metrics have the 

advantage that describe shape properties relevant to those taking place during EMT, and 

that they are widely used in other experimental work. Although a variety of names have 

been used for these metrics, e.g. ‘form factor’, ‘cell shape index’ or ‘roundness’ for 

circularity (Mendez et al. 2010; Malek & Izumo 1996; Gray et al. 2002), or ‘length to 

width ratio’ for aspect ratio (Davidson et al. 2010); their use in other research make the 

results of the image processing and simulations highly reusable. For the sake of 

consistency, the names for the metrics used in the ImageJ software are used to describe 

both the image processing and simulation results.  The image processing results showed 

a significant difference in circularity between Wildtype and Notch activated endocardial 

cells. Full details are given in the Results chapter.     
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Figure 3.2 Image processing workflow in ImageJ for wildtype cells. a) Starting image b) Nuclei extracted and 

overlaid in white, background removed. c) Find maxima used to output segmented particles d) Outlines used 

to add cell shapes to ROI manager. 

a) 

d) 

b) 

c) 
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Figure 3.3 Closeup inspection of overlay for wildtype condition suggests that cell outlines provide a 

reasonably good fit. 
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a) b) 

c) d) 

Figure 3.4 Image processing workflow in ImageJ for Notch1 activated cells undergoing EMT. a) Starting image 

b) Myocardium removed. c) Adjust Threshold to create binary image d) Analyse particles used to add cell 

shapes to ROI manager. 
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3.4. Cellular Potts Modelling 

 

The simulations use the Cellular Potts model (CPM), also known as the Glazier-Graner-

Hogeweg model (GGH). CPMs are lattice based simulations, with cells occupying multiple 

sites on the lattice. A key advantage of this is that it allows cell size and shape to be 

explicitly represented; thus the simulations have the potential to describe processes in 

which controlled cell shape plays an important role. CPM applications have included 

models of cancer cell invasion (Andasari et al. 2012) somitogenesis (Hester et al. 2011), 

bacterial biofilms (Popławski et al. 2008), slug formation in the cellular slime mould 

Dictyostelium discoideum (Savill 1997), developmental patterning of the chick limb bud 

(Cickovski et al. 2005), and the failure of Bruch’s membrane in the eye by choroidal 

neovascularisation (Shirinifard et al. 2012).  

In CPM, cell movements are described in terms of effective energies and constraints. 

According to the Differential Adhesion Hypothesis (DAH) morphogenetic changes are 

driven by cell displacements that lead to the lowest energy configurations, and thus the 

largest number of strong adhesive bonds. This can be simulated with CPMs using a 

Metropolis Monte Carlo algorithm. A Hamiltonian effective energy, H, is defined for the 

system. During each step in the simulation, a random copy attempt is made for each 

lattice site at a cell surface. For each copy attempt the resulting change in energy, ΔH, is 

calculated, and each copy attempt is accepted with a probability:             ; where T 

is used as an intrinsic measure of cell motility. This is because T scales the probability of 

any copy attempt being accepted, thus increasing T causes simulated cells to make more 

stochastic movements in a given time (hence move faster). There is a limit to increasing 

the T parameter, as under certain conditions this will lead to cell fragmentation and 

unrealistic results. In many cases, T can be increased within the range of realistic 

representation, to improve the speed and efficiency of simulations. Cell speeds and thus 

the lattice scale are then subsequently fitted to any available experimental data 

(Shirinifard 2012). In some of the simulations reported in this thesis however, the 

intrinsic motility of cells is itself a parameter that is to be investigated, as mesenchymal 

cells may well have a higher intrinsic motility than epithelial cells.  
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Figure 3.5 CPM representation of an index-copy attempt for two cells on a 2D square cell lattice – The 

“white” pixel (source) attempts to replace the “grey” pixel (target). The probability of accepting the index copy 

is given by             . Thus any change reducing the entropy is accepted, while those increasing the 

entropy depend on the change in H and the T parameter (Swat et al. 2012). 

In CPM, pixel copies (and cell movements) are biased towards creating configurations 

with a lower Hamiltonian energy H, so motile cells in a CPM will tend to move so as to 

reduce H. Thus over time cells move so as to reduce the entropy of the system. Typically 

the Hamiltonian equation includes terms for type dependent surface energies between 

each pair of different cell types. The basic effective energy in a simulation step is 

calculated by summing the surface energy across all cell boundaries. Thus cells with a 

lower surface energy (higher adhesion) will tend to move so as to come into contact, and 

stay in contact, while those with a high surface energy will tend to move apart. This 

contact energy parameter is usually treated as the aggregate surface tension between 

cell types, which is assumed to arise from the overall level of adhesion between cells. 

It has been experimentally demonstrated that there is an almost perfect linear 

relationship between aggregate cell surface tension and the level of cadherin expression 

as shown in Figure 3.6. It is on this basis that the DAH and CPMs essentially treat cell 

aggregates as having the same properties as droplets of immiscible fluids (Foty & 

Steinberg 2005).  
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Figure 3.6 Data points expressing the relationship between cadherin expression level and aggregate surface 

tension fall almost exactly on a straight line (R2=0.9965) that passes very close to the graph’s origin, 

intersecting the Y axis (representing zero N-cad expression) at the very low surface tension value of 0.32 

erg/cm2 (Foty & Steinberg 2005). 

Thus higher surface energy levels in CPMs represent a lower level of adhesion. The 

aggregate differences in adhesion levels between different cell types is sufficient to 

model of the kinds of cell sorting and patterning observed in many developmental 

processes. CPM can be extended to include terms for anything that can be calculated 

from the simulated cell attributes. For example, a type dependent target volume or target 

surface area can be included, with constraint values for the propensity of a cell to reach 

the target. These parameters directly constrain cell shape, and would be added to the 

effective energy equation so that they are accounted for in each pixel copy attempt. One 

of the simplest cellular Potts simulations represents an in vitro cell sorting experiment, 

where an initial mixed population of two or more cell types become sorted (Figure 3.7). 

The cells with higher preferential cohesion move to the centre of the cluster, while those 

with lower cohesion move to outer layers.  
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Figure 3.7 Cells interact at their surfaces (adjacent lattice sites) in cellular Potts models. a) At the start of the 

simulation, cell types are mixed. b) After 8000 Monte Carlo Steps (MCS), the cells are sorted, with the less 

cohesive type (red) forming an outer layer. 

This provides a good qualitative representation of the behaviour a mixed population of in 

vitro cells that differ only in the expression of a single cadherin, as shown in Figure 3.8. 

 

Figure 3.8 Sorting out of subclones differing only in expression level of a given cadherin. Two N-cad-

transfected L cell subclones, expressing N-cad at their surfaces in the ratio of 2.4:1, were stained with red 

and green fluorescent membrane-intercalating dyes, mixed in equal proportions and cultured as hanging 

drops. (a) Confocal optical section through an aggregate after 4 hours of incubation, showing initial cell 

mixture. (b) Confocal optical section through another aggregate after 24 hours of incubation. As predicted by 

the DAH, the cell line expressing the lower level of N-cad (surface tension σ = 2.4 erg/cm2), labeled red, 

segregates from and envelops the cell line expressing higher amounts of N-cad (surface tension σ = 5.6 

erg/cm2), labeled green. This demonstrates that cell sorting does not require (although it does, of course, 

permit) qualitative differences in cell–cell ‘recognition specificity’ (Steinberg 2007) 

CPMs are able to simulate cell behaviour by representing any mechanism where cell 

rearrangement is determined principally by differences in adhesion. As the focus of CPM 

is cell reorganisation, they have been used mainly for modelling developmental 

a) b) 
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mechanisms. Compucell3D (Swat et al. 2009) is the most widely used modelling 

environment for implementation of CPMs. It is open source software and very easy to 

extend, enabling flexibility, rapid model development and some degree of model 

reusability. 

3.4.1. 3D Simulations 

3D Compucell3D simulations were used to represent the qualitative conditions of an in 

vitro study of EMT (Luna-Zurita et al. 2010) in terms of changes in adhesion, represented 

by changes in the contact energy parameters. The in vitro study demonstrated that 2D 

scattering of cells on the surface of collagen gel (partial EMT) could be induced 

separately from 3D invasion into the gel (full EMT). The models represent the collagen 

gel as one large generalised cell, and endocardial cells as initially forming a monolayer 

on the surface of the gel. Changes in surface energy parameters are sufficient to explain 

the behaviours of cell separation and migration on the surface, independently of cell 

invasion into the gel. These results are detailed fully in Section 4.1. 3D Compucell3D 

simulations were also used to investigate the potential role of VEGF driven contact 

inhibited mitosis in maintaining the epithelial phenotype, and thus regulating EMT. The 

concept behind this is that, by preventing the formation of gaps between endocardial 

cells, contact inhibited mitosis may play a role in preventing the migration, invasion or 

transformation of cells. These are abstract models, and the results merely indicative. The 

results of the contact inhibited proliferation models are detailed fully in Section 4.2. 

In addition to contact energy parameters, cells in the 3D simulations are also given a 

volume constraint in order to maintain them at an approximately constant size. Thus in 

these simulations, the Hamiltonian energy H is given by the following equation: 

                       
 

Equation 3.1 

Aggregate cell adhesion is represented by a contact energy parameter, J, between cells. 

The greater this number is, the lower the level of adhesion between cells: 

 
            

                     

                                

 

Equation 3.2 
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Where i and j label two neighbouring lattice sites,  ’s denote cell Ids,  ’s denote cell 

types, and the Kronecker delta is: 

                     

 

Equation 3.3 

The volume constraint term is given by: 

 
                

     

       

 

Equation 3.4 

Where         denotes the strength of volume constraint, v denotes the current volume 

and V denotes the target volume. 

3.4.2. 2D Simulations 

2D Compucell3D simulations of individual cells were used to simulate the changes in cell 

shape observed in EMT. By using simulations of a single cell, multiple parameters on the 

interplay of cell morphology and migration could be explored. To give control over cell 

shape in the model, terms for volume and surface constraints are added to the contact 

term in the Hamiltonian. An elongation term was used for simulations that investigate the 

effect of elongation, and a connectivity penalty to ensure that elongated and fibroblastic 

cells did not fragment. After achieving an understanding of the relationship between cell 

shape and motility in the CPM, part of the parameter space was implemented in 2D 

multicellular simulations of generic in vitro epithelial tissue.  

The purpose of the 2D multicellular simulations was to investigate the roles of different 

types of adhesion in driving epithelial morphology. While the standard CPM includes 

adhesion only as a contact energy parameter, there are evidently a variety of forces 

acting between cells during different types and stages of cell adhesion. Some of these 

forces act at the surfaces of cells, while others involve the binding of cytoskeletal 

proteins across and between cells. Generally, the binding of cytoskeletal proteins is a 

stronger force that takes a longer period of time to form, while forces that act only at the 

surface are easier to form or break; and thus represent the initial stages of adhesion. A 

term for plastic coupling is added to the model, using the FocalPointPlasticty 

plugin in Compucell3D. This implements plastic coupling as a breakable spring force 
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between cell center of masses. To distinguish this from contact adhesion in the model, 

the contact adhesion force will be referred to as labile adhesion, following (Shirinifard 

2012). Thus in these simulations, the Hamiltonian energy H is given by the following 

equation: 

                                                  

                

 
 

Equation 3.5 

Labile adhesion is represented by a negative contact energy, J, between cells. The more 

negative this number is, the greater the level of labile adhesion between cells: 

 
            

                     

                                

 
 

Equation 3.6 

Where i and j label two neighbouring lattice sites,  ’s denote cell Ids,  ’s denote cell 

types, and the Kronecker delta is                    . 

Plastic coupling is represented by a breakable spring force between cell centres, and this 

term is added to the Hamiltonian equation governing the simulations. 

 
             

                     

         
  

 

Equation 3.7 

Where     is the distance between the centre of masses of cells i and j, and Pij is the 

target distance corresponding to    , and     is a constraint representing the strength of 

the plastic coupling. Additionally, a maximum distance is set, which determines the 

distance between cells’ centre of masses when the links between them can break or 

form. The maximum number of links per cell is also defined. The minimum distance is set 

to be the same as the average cell radius, so that links tend to form when cells are in 

contact. 
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The volume and surface constraint terms are given by: 

 
                  

     

       

 

Equation 3.8 

 
                

     

       

 

Equation 3.9 

 
                   

     

       

 

Equation 3.10 

Where                   and          denote the strength of volume, surface and length 

constraints, v, s and l denote the current volume, surface and major axis length, and V, S 

and L denote the target volume, surface and length. The connectivity constraint is a large 

energy penalty (107) for a pixel copy that would lead to cell fragmentation. 

3.4.3. Fitting Space and Time Scale of Simulations 

The 3D Compucell3D models used initial 10x10x2 voxel cells, whereas 2D models are 

15x15 pixels, because more detailed shape information was needed for the morphology 

investigations in the 2D simulations. While the 3D simulations attempt to produce only a 

generic, qualitative representation of the processes in terms of aggregate cell adhesion, 

the 2D models are directly fitted to the experimental data. For the 2D models, the length 

scale was set to 1 micron per pixel, and model cells given a width of 15 microns, based 

on the dimensions of cultured murine endocardial cells  (Luna-Zurita et al. 2010). This 

choice reflects a prospective goal to include subcellular reaction kinetics; and thereby 

develop a multiscale model of the integrated roles of Notch and TGF-β signalling in 

endocardial to mesenchymal transition. Experimentally, in vitro epithelial cells such as 

MCF-7 cells move at a rate of about 0.28 µm/min, whereas mesenchymal cells move at 

about 0.4 µm/min (Mendez et al. 2010).  For typical parameter settings, simulated 

epithelial cells move at about 0.01 pixels/MCS (e.g. 0.01 µm/MCS). Equating the 

experimental and simulated cell speed implies 0.28 MCS = 0.01 min, or 1 MCS = 0.036 

min (about 2 seconds). The 2D multicellular simulations were each run for 5 x 104 MCS, 

which equates to 30 hours. Cellular movement was quite stable after this time, and this 

provides a link with typical in vitro experiments, for which results are often given after 24, 

48, or 72 hours, e.g. (Luna-Zurita et al. 2010). 
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3.4.4. Cell Morphology Metrics 

There are a few measures that can be used for quantifying the shape of cells. The main 

criteria for selecting suitable metrics is that they should enable a comparison to be made 

between the in vitro results (Luna-Zurita et al. 2010) and the simulation results, that they 

should describe shape property relevant to the changes which take place during EMT, 

and preferably that they should be widely used in other experimental work, to allow for 

direct comparisons, making the results reusable. Based on these criteria, the two metrics 

selected were aspect ratio (length/width) and circularity (4π*area/perimeter2). Aspect 

ratio indicates the elongation of a cell. Circularity gives a number between 0 and 1, with 

1 being a perfect circle and smaller values indicating a less rounded shape. These 

metrics could both be calculated during a simulation run, from basic cell attributes, and 

calculated from the confocal images of endocardial explants using ImageJ. This allowed 

a direct comparison to be made between simulated and in vitro cells. 

3.4.5. Cell Migration Metrics 

There are a plethora of metrics that are used to quantify cell migration. For example, in 

vitro assays sometimes report the average speed of cells (Gilles et al. 1999), and 

sometimes the average velocity (Mendez et al. 2010). Alternatively, the average 

displacement of cells over time can be measured (Rupp et al. 2008). When it comes to 

tissue simulations, there are even more possibilities, because the migration of an 

individual cell can also be quantified by its relation to other cells. For example, it is 

possible to measure the average contact area between cells, the average number of cell 

neighbours or the ratio of cells that remain adhered to other cells (de Rooij et al. 2005). 

Some investigations define their own metrics, for example, one study defined a 2D and 

3D transformation index as the ratio of cells able to migrate on the surface, or invade the 

collagen gel (Luna-Zurita et al. 2010). It is even possible to analyse cell centre 

coordinates (provided by DAPI stained nuclei) by constructing a cell graph, and thus 

provide metrics such as the mean and standard deviation of edge lengths, a clustering 

coefficient, and the number of central, connected and isolated points (McKeen-Polizzotti 

et al. 2011). It is possible to implement all of these metrics in simulations. Indeed it is 

more straightforward to measure and analyse this information from simulation runs than 

from in vitro experiments. However, in order to provide validation, the average speed and 
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velocity remain the most suitable metrics of cell migration, as they are the most widely 

used in experimental work. 

3.4.6. Compucell3D-Bionetsolver Implementation 

Bionetsolver is a C++programming library with a high level Python API that allows for easy 

definition of multiscale models by assigning reaction-kinetic models in SBML to cell 

objects in a Compucell3D simulation. Bionetsolver makes use of the SBML ODE Solver 

Library (SOSLib) for reading the SBML models and solving them as a system of ODEs. 

Typically the Bionetsolver API is imported and initialised in a Compucell3D Python 

steppables file, which makes the API available within the steppable. SBML models are 

loaded with a loadSBMLModel function, which uses a string argument to specify the 

directory of the model. The loaded SBML file can then be assigned to one or more cell 

types in the Compucell3D model with the function 

addSBMLModeltoTemplateLibrary by using the name of the cell type as the name 

of the template library. Additionally the function setBionetworkInitialCondition 

may be used to specify initial conditions for the parameters and variables in the assigned 

SMBL file: thus different SBML initial conditions may be set for different for different cell 

types with the same SBML model. When the function initializeBionetworks is 

called this creates a separate bionetwork object for each cell of the given cell type using 

the specified initial conditions. Any parameters not set with 

setBionetworkInitialCondition are set by default to those given in the original 

SBML file. 

The above functions are all called during the start function of the Compucell3D 

steppable. There are three additional functions that are called during the step function of 

the steppable. These are: timeStepBionetworks for time stepping the ODE 

integrator, getBionetworkValue for retrieving SBML parameters or variables from 

particular cells, and setBioNetworkValue for setting the SBML parameters of 

particular cells. In this way, SBML parameters can be set as a function of Compucell3D 

cell properties, and Compucell3D cell properties can be set as function of SBML variable 

values. Thus a true multiscale coupling can be achived between Compucell3D and SBML 

dynamics, while maintaining the cell and subcellular levels as separate models, which 
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might well be developed independently in the first instance. A skeleton steppable that 

implements the Bionetwork API is given in Figure 3.9. 

 

Figure 3.9 Skeleton of Bionetwork API implementation within a Compucell3D Python steppable 

A multiscale model of Notch signalling lateral induction was implemented using the 

Bionetsolver API. This was achieved by translating an existing ODE model of lateral 

induction (Owen et al. 2000) into SBML using the Systems Biology Workbench (SBW). 

Multiscale models in Compucell3D are typically implemented as four simulation files. For 

the sake of data provenance, Compucell3D can be set to automatically copy these files 

into a new (output) directory, along with any screenshots or results recorded during a 

given simulation. This is a very useful feature of Compucell3D, as this provides a record 

of the exact code used to generate a given set of results. Small iterative changes during 

model development are almost inevitable, and without this facility would be cumbersome 

and error-prone to record manually. 

The four simulation files of a multiscale model generally consist of:  
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 A file in an XML format native to Compucell3D (CC3DML), which sets the Potts 

dimensions, the Compucell3D plugins to be loaded in the model (perhaps 

including the volume and surface constraints), the number of Monte Carlo steps 

to run the simulation for, the ‘Temperature’ parameter, the cell types and contact 

energies in the simulation, and a specification of the initial geometry as regions 

of cells within the lattice. The geometry may alternatively be set by linking to an 

additional Pixel Initialisation File (pif). 

 A Python steppables file. This contains modules with code that is to be run at the 

start of the simulation, repeatedly (e.g. every step, or every 10 steps), and at the 

end of the simulation. Steppables are used for implementing dynamic features of 

the model. These include the rules governing mitosis, calling Bionetsolver 

functions (as shown above in Figure 3.9), doing calculations for cell migration 

and morphology metrics and printing these to a file, and creating dynamic 

visualisations such as graph plots or scalar or vector fields. 

 The SBML file (a widely used XML format for biological reaction modelling). This 

provides details of the reaction model, including the protein species involved, the 

reactions, parameters and variables, as well as the initial values. 

 The main Python simulation file. This adds the steppables to the model and 

initialises the simulation to be run. 

The advantage of this approach to modelling is that it allows rapid development of 

models, and allows flexibility in terms of how a model is implemented. It hides much of 

the complexity of procedural code, used in every single Potts simulation, from the 

modeller. If the modeller wants to develop new C++ modules for their specific needs they 

can do so, as Compucell3D is open source. While, in the recent past, every research 

group doing Potts modelling would have developed all of their own code, Compucell3D is 

becoming an increasingly popular choice. This not only saves time, allowing more time 

for model implementation, it also facilitates the reuse and reproduction of published 

models. This verification through reproducibility is essential to the scientific process. 

One disadvantage of the approach is that having several simulation files that specify 

parameters, plugins and simulation objects, means that it is quite easy to lose track of 
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exactly what has been specified where. It very easy, for example, to neglect to import the 

necessary plugin in the CC3D XML file in order for one of the Python steppables to work. 

The developers have begun to address this to some extent by including a program called 

Twedit++ with binary distributions of Compucelld3D. This is developed on top of the free 

source code editor Notepad++, and provides the option to create simulation files using 

forms to specify the behaviours included in the model. Boilerplate code snippets can also 

be selected from dropdown menus. 

 

Figure 3.10 UML class diagram of multiscale cellular Potts model, as implemented in Compucell3D 
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In order to give a clearer impression of the objects, attributes, methods and relationships 

in a typical Compucell3D model, they are summarised as a class diagram in Figure 3.10. 

The case of a 2D model, on a square lattice, with a NeighbourOrder of 2 is illustrated; 

as each lattice site has eight neighbours, and four surfaces. As explained previously, 

each surface unit has a contact energy, which is the contact energy specified between 

the cells on either side of the surface, and the sum of these energies form the basis of 

the effective energy in the simulation; to which other terms are added. Each cell consists 

of many sites, and each site is associated with a given cell, at a particular point in time. 

Each Cell may be associated with multiple Bionetwork SBML models. 

There is currently no common language for agent based multicell biological models. The 

developers of Compucell3D, through a series of workshops, have begun to develop a Cell 

Behaviour Ontology, and associated markup language with the aim of creating such a 

language (Galdzicki et al. 2009). However, it seems unlikely that the rules governing 

behaviour of agents in a model would be straightforward to define using XML. An 

alternative approach might be to employ a graphical language such as UML (Bersini 

2012), or a graphical language based on the same principle. As for existing language 

interchange formats (or for that that matter, the use of UML), different levels of adoption 

would coexist. Some platforms might develop the facilities to generate diagrams 

automatically from code, or to generate code from diagrams, while in other cases 

diagrams might be used to manually document code, or to interpret models generated 

on other platforms. In this way, cell centre models developed on FLAME (Holcombe et al. 

2012), or cell vertex models developed on Chaste (Pitt-Francis et al. 2009), might be 

more easily re-implemented as Potts models in Compucell3D, and vice versa. The testing 

of models using different formalisms provides a means of verification, and additionally 

highlights behaviours that arise as a result of artefacts of a particular method. 

3.5. Verification and Validation 

Verification and validation are independent procedures that are used in combination for 

checking that a product or system is fit for its intended application. While verification is 

generally concerned with internal accuracy and consistency (“Are we building the system 

right?”), validation addresses the question of fulfilling the specification and meeting the 

intended purpose (“Are we building the right system?”). In the context of simulation 
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models, verification is the process of ensuring that the model is a correct implementation 

of the conceptual model, and checking for errors. Validation is the process of checking 

the accuracy with which the model represents the real system. 

3.5.1. Verification 

Verification of models is addressed by checking every parameter three times. 

Parameters are first checked in the simulation code, and the files for executing each 

simulation are given names that reflect the parameters used. Each parameter is checked 

a second time in the graphical user interface at the beginning of each simulation run. 

Finally, the executed code for each simulation is copied into a new directory, along with 

results and visualisation snapshots for that simulation. Parameters are checked a third 

time in this copied code before aggregating the results. Verification that the simulation 

model accurately reflects the conceptual model is achieved by testing the models under 

different parameters and checking that the behaviour is as expected. E.g. that an 

increase in cell-cell contact energy leads to cell separation, reduction in cell-medium 

energy leads to cells migrating into the medium, and an increase in Temperature 

increases the speed of cell movement. A potential further method of verification, though 

not attempted in this thesis, would be to reproduce the models using a different 

formalism, such as cell centre or cell vertex modelling. 

3.5.2. Validation  

Model validation is addressed in the first instance by constructing models with high face 

validity. This is achieved by showing simulation results to domain experts, and then 

adopting their suggestions to in order to improve the face validity of the models. The 

domain experts in this case are the cell biologists José Luis De la Pompa and Luis Luna-

Zurita, who are experts on the role of Notch signalling in EMT in heart development. 

These experts were selected as they were authors of the in vitro investigation on which 

the simulations are principally based (Luna-Zurita et al. 2010). Therefore, they have the 

best available knowledge of the system being modelled. Feedback is used to improve the 

face validity of the model by adopting suggested features, such as shape changes during 

EMT. Simulations are also shown to clinical experts (Jean-Marc Schleich and Lucile 

Houyel) with specialist knowledge in heart development, in order to check whether the 

simulations appear to be an accurate representation of EMT.  
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The second validation test is checking cell shape parameters in the simulations against 

those derived from image processing results of data provided by the authors of (Luna-

Zurita et al. 2010). In this way, the simulations are improved by adjusting parameters 

one at a time in order to calibrate the model with the cell shapes measured in the 

imaging data; and cell speeds recorded in mesenchymal cells.  

While the models are fitted to the available experimental data, formal model validation is 

not possible at this time, as only one, historical, dataset is available for this purpose; 

which only provides static information. Further experimental imaging studies could be 

employed for additional validation by altering inputs in the real system that have a direct 

correspondence in the model. For example, increasing density of particular cell adhesion 

molecules in the collagen gel could be used to increase cell-matrix adhesion by a known 

amount. Input-output transformations could then be compared directly between the real 

system and the model, and the model iteratively improved. Additionally, recording image 

sequences of the evolution of the real system would enable checking of the dynamic 

behaviour of the model, e.g. the change in cell shape, motility and contact area between 

cells over time. 

3.6. Summary 

 

This chapter has explained the criteria for method selection, and has also explained each 

of the methods used in this thesis. These include image processing, and cell level 

modelling and simulation, as well as methods of verification and validation. The different 

implementations of cellular Potts models used have been explained, as well as the 

technique for fitting the time and space scales, and the quantitative cell metrics used for 

model validation. The method for implementing multiscale models with Compucell3D 

and Bionetsolver was also explained.  The next chapter reports the results that were 

derived using this set of methods.  
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Chapter 4 

4. Results 
Throughout this chapter, simulation objects are printed in bold (e.g. endocardial cell) in 

order to distinguish them from the physical objects that they represent (e.g. endocardial 

cell). 

4.1. Introduction 

 

This chapter details the results gained from implementing the methods described in the 

previous chapter. These results are based principally on simulation, rather than data 

from the real system. Section 4.2 describes the 3D simulation of in vitro EMT, and the 

qualitative results of cell behaviour under different simulated conditions. Section 4.3. 

describes a 3D simulation of contact inhibited mitosis, based on the conceptual model of 

how this process regulates EMT.  

Section 4.4. details the results of 2D simulations that included cell morphology as a 

feature. First the image processing results are given in Section 4.4.1. Then results from 

simulations of single cells are given (Section 4.4.2.), which explore the relationship 

between motility and cell morphology in the cellular Potts model. Section 4.4.3 applies 

these results in multicell simulations, which were used to investigate the effect of cell-

cell and cell-Medium adhesion on cell morphology.  

Section 4.5. reports the results of a multiscale 2D model of Notch mediated lateral 

induction. This reuses a published subcellular model of lateral induction. 

Section 4.6. describes an approach for composite annotation that can be used to 

establish a link between objects and parameters in biomedical simulations and concepts 

defined in reference ontologies. Example annotations are given for heart development. 
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4.2. 3D Simulation of in vitro EMT 

A recent in vitro study of endocardial cells (EC) cultured on a collagen gel demonstrated 

that 2D migration of cells on the collagen surface could be induced independently of 3D 

invasion into the gel (Luna-Zurita et al. 2010). Thus an important distinction is made 

between cell migration (“2D transformation”) and cell invasion (“3D transformation”). 

These two properties were measured separately in the in vitro investigation by counting 

the proportion of cells able to migrate in 2D and/or invade in 3D into the gel.  

 
Figure 4.1 In vitro endocardial explants, comprising endocardium (e) and myocardium (m). a) Wildtype (WT) 

endocardial tissue remains in a monolayer. b) Notch activated (Tie2-Cre;N1ICD) endocardial cells migrate on 

the surface of the collagen gel. c) BMP2 treatment causes wildtype cells to both migrate on the surface and 

invade the gel (Luna-Zurita et al. 2010). 

Wildtype ventricular endocardial explants from E9.5 mouse embryos remain in a 

monolayer when cultured on collagen gel (Figure 4.1a). This is because ventricular 

endocardial cells are not predisposed to EMT. 2D migration on the surface of the 

collagen gel could be induced by constitutively activating Notch1 in the cells, or by 

treating the media with TGFβ2 protein (Figure 4.1b). Anti-TGFβ2 both counteracted the 

effects of TGFβ2 and maintained the monolayer in Notch1 activated cells. Treatment 

with BMP2 induced both 2D migration and 3D invasiveness of wild type cells (Figure 

4.1c). This suggests that both TGFβ2 and Notch1 in endocardium act to reduce 

endocardial cohesion, independently of factors that induce 3D invasion. BMP2, on the 

other hand, activates the mechanisms of 3D invasion, including increased endocardial-

matrix adhesion and degradation of extracellular matrix proteins. 

Compucell3D simulations were created to represent these in vitro conditions. As the 

interest lay in the differences between 2D migration and 3D invasion, it was essential to 
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use a 3D model, to separate these two aspects of cell movement. For the initial 

conditions, a circular monolayer of endocardial cells (EC) was generated, lying on the 

surface of collagen gel, which was represented as one large homogenous cell. The 

default ‘Medium’ cell type in the simulations is taken to be the air in the space above the 

cells and collagen gel, and is set to invisible for the sake of simulation renderings. The 

initial conditions were generated by using a simple Python script to create a simple 

‘cubic’ arrangement, and saving this in the native Compucell3D geometry format (pixel 

initialisation file: .pif). A simulation was then run for 1000 MonteCarlo steps (MCS) in 

Compucell3D to allow this geometry to relax into a circular arrangement, in an energy-

minimised (equilibrium) state. Under the assumption that cells behave like immiscible 

fluids, the cell shapes in this condition should be realistic. This ‘realistic’ layout was then 

saved to be used as the initial geometry for all further simulations. The ‘cubic’ layout 

consisted of 100 box-shaped cells, 10 x 10 x 2 voxels, e.g. with a volume of 200 voxels 

each. ECs were assigned a target volume of 400 voxels, and a fairly high volume 

constraint of 20 (10-15kg1s-2), which ensured a consistent volume and rounded 

morphology typical of epithelial cells. The gel was given a target volume equal to its initial 

size (140x140x20=392000 voxels) and lower volume constraint value of 2 (10-15kg1s-2), 

as this was found to be sufficient for it to maintain a constant volume.  

As the medium represents the space above the cell culture, it has no intrinsic surface 

energy in these simulations. It is assumed that EC-EC adhesion is stronger in the wildtype 

situation than EC- gel adhesion, and that the latter is stronger than gel-gel adhesion. The 

contact energies with the surrounding air (medium) are taken to be higher than other 

surface energies, as there is no adhesion between the air and cells or gel; in fact there is 

a strong positive surface tension. It is assumed that the surface energy between EC-

medium is higher than that between gel-medium. This is because cell membranes are 

less deformable than the surface of collagen gel, due to the comparatively rigid structure 

of cell walls and cytoskeletal proteins. 

Therefore, to simulate wildtype EC on the surface of gel, the following energy hierarchy is 

assumed:  

JEC,medium > Jgel,medium > Jgel,gel > JEC,gel > JEC,EC > Jmedium,medium = 0 Equation 4.1 
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For reasons explained in the methods chapter (and further explored in Appendix A) in the 

cellular Potts model it is the relative differences between these surface energies, rather 

than the absolute levels, that are important. From simulation it was found the 

corresponding parameters of set 1 (Table 4.1) give rise to an endocardial monolayer that 

does not invade the gel. Set 2 corresponds to a loss of endocardial cohesion: an 

increase in JEC,EC such that the surface energy between endocardial cells overcomes the 

intrinsic surface energy of the gel. Set 3 corresponds to a gain in EC-gel adhesion: a 

reduction in JEC,gel such that this is lower than the surface energy between ECs. Set 4 

corresponds to both these effects simultaneously, thus re-ordering the energy hierarchy 

to be: 

JEC,medium > Jgel,medium > JEC,EC > Jgel,gel > JEC,gel > Jmedium,medium = 0 

 

Equation 4.2 

Table 4.1 Surface energy parameters J (10-15Kg1s-2) for in vitro EMT simulations. 

Surface 

energy J 

EC-

Medium 

Gel-

Medium 

Gel-Gel EC-Gel EC-EC Medium-

Medium 

Set 1 16 14 8 4 2 0 

Set 2 16 14 8 4 10 0 

Set 3 16 14 8 1 2 0 

Set 4 16 14 8 1 10 0 

 

The base-case, or wildtype, scenario (Figure 4.2a) used the parameters from set 1 Table 

4.1, as these were found through experimentation to produce a stable monolayer. The 

cells in the monolayer move around each other, but they do not migrate away from the 

monolayer, nor invade the collagen gel. This is consistent with the behaviour of the 

wildtype in vitro cells, demonstrating that the energy hierarchy assumptions are valid. 

The base-case was perturbed by adopting the parameters in Sets 2-4, and running the 

simulation for a further 1000 MCS in separate experiments. 
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Figure 4.2 Cellular Potts simulations of in vitro EMT. a) Endothelial monolayer on the surface of collagen gel. 

b) With reduced EC-EC adhesion, cells migrate on the surface, but do not invade the gel (partial EMT). c) With 

reduced EC-EC adhesion and increased EC-Gel adhesion, some cells invade the gel in 3D (full EMT). 

With the parameters in set 2, ECs scattered on the surface of the collagen gel without 

invading it (Figure 4.2b). This is consistent with the in vitro conditions of Notch activated 

cells, or a media treated with TGFβ2, suggesting that a loss of endocardial cohesion is a 

sufficient model of the behaviour exhibited in these examples. With the parameters in 

set 3, the ECs invaded the collagen gel but without delaminating from each other (results 

not shown). This behaviour was not exhibited by any of the in vitro conditions in this 

example (Luna-Zurita et al. 2010). However it is consistent with the behaviour of 

collective cell migration exhibited in other biological contexts (Ilina & Friedl 2009). With 

the parameters in set 4, all ECs delaminated from each other, and some of them invaded 

the collagen gel (Figure 4.2c). This is consistent with the 3D invasion of a proportion of 

cells observed in the in vitro explant with BMP2 treatment. This suggests that loss of 

endocardial cohesion and gain of EC-gel adhesion are sufficient conditions to model this 

invasive behaviour. 

The simulations demonstrate correspondence with the in vitro experiments on which they 

are based. For example: in both the in vitro experiments and the simulations, it was 

possible to induce 2D scattering of ECs independently of 3D invasion into the collagen 

gel. In the in vitro experiments this was accomplished through Notch activation of the 

endocardial cells, or through TGFβ2 treatment. Alongside simulation results, this 
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supports the hypothesis that Notch primarily acts to reduce endocardial cohesion, 

without stimulating invasive mechanisms. In the simulation with the set 3 parameters, it 

was possible for the EC to invade the gel, but still remain attached together. This effect 

was not observed in these in vitro experiments (Luna-Zurita et al. 2010), however it is 

consistent with the collective cell migration as observed elsewhere. This could be 

because it was not practicable to isolate an increase in EC-gel adhesion from a decrease 

in EC-EC adhesion in real ECs, due to the nature of the signalling pathways involved. 

Notch is a downstream target of BMP signalling, and therefore inducing increased EC-

ECM adhesion via treatment with BMP2 would have the additional effect of activating 

Notch signalling and reducing EC-EC Adhesion.  

However, the simulations do not investigate many of the features clearly present in the in 

vitro experiments, such as the changes in cell shape from a rounded to fibroblastic 

morphology. These features are potentially influenced by so many different factors that it 

was intractable to explore the necessary parameter space in 3D simulations. 

Furthermore, it is hard to define appropriate metrics for quantifying 3D fibroblastic 

shapes, and the quality of the confocal scans was not high enough to extract 3D cell 

shapes, thus 3D simulations of this kind would have been impossible to validate with the 

available data. The role of cell morphology in 2D migration was investigated through 2D 

simulations, and this is reported later in this chapter. 

Verification of the models in this section was addressed by checking each parameter 

three times: in the simulation code, in the graphical user interface and in the saved copy 

of the simulation code after execution. Verification that the simulation model sufficiently 

represented the conceptual model was achieved by testing the model under different 

parameter conditions, and checking that the behaviour was as expected. In this case, a 

reduction in cell-cell adhesion in the model resulted in cells separating on the surface of 

the collagen gel, without invading it. A simultaneous reduction in cell-cell adhesion and 

increase in cell-gel adhesion results in the behaviour of cell separation and invasion. 

These behaviours are consistent with those observed in the real system. Thus the model 

passed the verification test of representing expected behaviours of the system under 

different parameter conditions. 
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Validation of the models in this section was addressed by showing the simulation results 

to domain experts, to check the face validity of the models. In this case the domain 

experts were the cell biologists José Luis De la Pompa and Luis Luna-Zurita, who are 

leading researchers in the field of EMT in heart development. These subject matter 

experts were selected as the authors of the in vitro investigation upon which the 

simulations are principally based (Luna-Zurita et al. 2010). They therefore have the best 

technical knowledge available of the system being modelled. Simulation outputs were 

communicated in the form of screenshots under different parameter conditions and 

explanation of how the model functions. It was the domain experts’ suggestion to include 

the feature of shape changes in EMT. This suggestion was adopted and explored as 

reported on in Section 4.4. Thus feedback from domain experts directly helped to 

improve the face validity of the model. 

4.3. 3D Simulation of Contact Inhibited Proliferation 

An abstract scenario was used for investigating the potential role of contact inhibited 

mitosis. In this case, the simulations are used to dynamically represent the conceptual 

model, and thereby improve understanding; but there is no available experimental data 

that can be used to directly validate the simulation models. The existing findings are that 

EMT in the endocardial cushions is tightly controlled by the expression of VEGF. One 

conceptual model of this is that insufficient VEGF leads to depletion of endothelial cells, 

and thus insufficient EMT; while too high an expression of VEGF leads to a sustained 

endothelial phenotype (Armstrong & Bischoff 2004). These simulations employ an 

abstract scenario in order to test the possibility that the epithelial phenotype can be 

maintained as a direct result of a high level of contact-inhibited proliferation. An 

endocardial monolayer of 100 10x10x2 cells was defined as occupying the entire 

midplane between two layers of default medium. Surface energy parameters were 

adapted from those in the previous section so that the medium would now represent 

collagen gel ( 
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Table 4.2). The meaning of such parameters are explained in Appendix A. The medium 

was set as invisible for simulation renderings, to enable visualisation of cell migration in 

2D and cell invasion in 3D. 

 

 

Table 4.2 Surface energy parameters J (10-15Kg1s-2) for contact-inhibited mitosis simulations. 

Surface energy J EC-Medium EC-EC Medium-Medium 

Set A 16 2 0 

Set B 4 10 0 

Set C 2 2 0 

Set D 2 10 0 

 

The mechanisms by which epithelial cells in a monolayer regulate mitosis are not 

precisely known. For these simulations, it was assumed that mitosis is regulated by some 

form of contact inhibition. The Compucell3D NeighbourTracker plugin and Mitosis 

Python steppable were adapted such that a simulated EC will undergo mitosis if it meets 

the condition that the surface area it shares with the medium is greater than the surface 

area it shares with other ECs. Cells were also required to have a volume greater than the 

initial volume of 200 voxels to undergo mitosis, in order to prevent excessive mitosis of 

small cell fragments. Simulated ECs were again assigned target volumes of 400 voxels, 

and a volume constraint of 20 (10-15kg1s-2). This led to rapid cell growth until cells were 

either in contact with other cells (over 50% or more of their surface), or ready to divide 

again (200 voxels or more in volume). These rules are summarised in Figure 4.3. 

 
Figure 4.3 UML state machine diagram for contact inhibited mitosis model. 
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The mitosis scenarios produced results analogous to those of the 3D in vitro EMT 

simulations of the previous section. Set A parameters represent a high level of 

endocardial cohesion and a low level of endocardial-gel adhesion. With these 

parameters the endothelial monolayer was fully maintained with and without contact 

inhibited mitosis (results not shown). Set B parameters represent a loss of endocardial 

cohesion. The ECs delaminated from each other with these parameters (Figure 4.4a), but 

the inclusion of contact-inhibited mitosis caused the endothelial monolayer to prevail 

(Figure 4.4b). Set C parameters represent a gain in EC-gel adhesion, without a loss in EC-

EC adhesion. With these parameters, the ECs invaded in 2D and 3D after 1000 MCS. 

The inclusion of contact inhibited mitosis caused the monolayer to prevail (Figure 4.4d). 

Set D parameters represent a gain in EC-gel adhesion and a loss in EC-EC adhesion. With 

these parameters, the ECs invaded in 2D and 3D after 1000 MCS. The inclusion of 

contact-inhibited mitosis led to the monolayer failing under the parameters of set D. Due 

to the conditions for mitosis specified, cells rapidly fill the entire lattice (results not 

shown). In this model, mitosis prevents breakdown of the monolayer under the 

conditions of reduced EC-EC adhesion or increased EC-gel adhesion, but not in 

combination. 
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Figure 4.4 Mitosis simulations. a) Cells separate in 2D under set B parameters. b) monolayer prevails under 

set B if contact-inhibited mitosis is included. c) Cells migrate in 2D and 3D under set C parameters. d) 

Including contact-inhibited mitosis rescues monolayer integrity for set C. Daughter cells are illustrated in a 

different shade in order to highlight the effects of mitosis.  

Although in this simulation mitosis was treated as a lumped variable that occurs 

instantaneously, the results demonstrate a plausible mechanism by which VEGF could 

control the level of EMT, by increasing the rate of contact-inhibited mitosis. 

 Verification of the models in this section was addressed by checking each parameter 

three times: in the simulation code, in the graphical user interface and in the saved copy 

of the simulation code after execution. Verification that the simulation model sufficiently 

represented the conceptual model was achieved by testing the model under different 

parameter conditions, and checking that the behaviour was as expected. In this case, the 

inclusion of contact inhibited mitosis led to behaviour of preservation of the monolayer in 

parameter conditions where this preservation would otherwise be lost. While this 
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provided agreement with the experimental hypothesis that contact-inhibited mitosis plays 

a role in preserving the endocardial monolayer; there is insufficient knowledge of how 

exactly this is achieved and implemented in the real system for further verification and 

validation of this model at the current time. 

 

4.4. 2D Simulations of Cell Morphology 

This section focuses on the same in vitro results of (Luna-Zurita et al. 2010), but narrows 

the analysis to 2D migration, in the absence of 3D invasion. The condition of cell invasion 

into the gel is not represented in this section, and the assumption is made that cells are 

relatively thin in cross-section, and move around, instead of over or under, each other. 

These assumptions allow for the simplification of 2D modelling to be used. This also 

allows for validation of the model from shape metrics derived from image processing of 

the in vitro imaging data. The simulations, and the images analysed, focus on the 

differences between wildtype and Notch activated in vitro endocardial cells, as these 

migrated only in 2D. As real endocardial cells are very thin in cross section, the 

simplification still allows for meaningful results. Cells are assumed to be uniformly 1µm 

(1 voxel) thick, allowing a direct representation of cell geometry, with cells approximately 

15µm (15 voxels) wide. These dimensions are based on the sizes of cells measured in 

the confocal images of wildtype cells. 

4.4.1. Image Processing Results 

The image processing results indicated that there is a significant difference in shape in 

terms of circularity, but not aspect ratio, between wild type and Notch1 activated 

ventricular endocardial cells. As shown in Figure 4.5, the N1ICD cells had a significantly 

less circular morphology, but were not found to be significantly elongated compared to 

the wild type endocardial cells. 
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Figure 4.5 Shape metric comparison of wild type and N1ICD murine ventricular endocardial cells. a) Wildtype 

cells have a mean circularity of 0.536, and N1ICD cells 0.187 (p<0.001). b) Wild type cells have a mean 

aspect ratio of 1.735 and N1ICD cells 2.452 however this difference is not significant.  Error bars show 

standard deviation. 

However, these results do not tell us anything about the mechanism by which Notch 

signalling induces a shape change in these cells. It is likely to be a combination of many 

factors. For example, Notch signalling induces a loss of VE-Cadherin protein, which 

means a loss of endocardial adherens junctions. A secondary effect of cells being able to 

migrate away from the epithelial layer is that they are no longer pulled into an 

approximately hexagonal shape by other epithelial cells. Thus loss of contact and 

adhesion with other endocardial cells might account for some of the loss of circularity. 

Additionally, there is significant crosstalk between the Notch and TGF-β signalling 

pathways (Fu et al. 2009), and TGF-β2 expression is upregulated in Notch1-activated 

ventricular endocardial cells (Luna-Zurita et al. 2010). TGF-β signalling upregulates 

several integrin adhesion molecules, which bind to extracellular matrix components such 

as collagen, laminin, vimentin and fibronectin (Margadant & Sonnenberg 2010). This 

increased adhesion to the matrix might pull cells into a spindly morphology, as well as 

increasing their migrative capacity. Finally, Notch and TGF-β induce a relocation of E-

cadherin and cortical actin from cell walls to the cytoskeleton, meaning a stronger cell, 

with more  ability to survive under mechanical stress, and thus change shape (Zavadil et 

al. 2004). The potential role of these different effects was investigated through 

simulation models, as reported in the next section. 
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4.4.2. Single Cell Simulation Results 

Compucell3D simulations of individual cells were used to simulate changes in cell shape. 

Starting from a rounded morphology, the effects of an increased surface perimeter 

(relative to volume), and increased motility were simulated. Motility was increased by 

raising the ‘Temperature’ parameter in the simulations, which increases the number of 

pixel copies accepted, and thus the speed that simulated cells move. Changes in shape 

led to greater motility, while greater motility led to changes in cell shape. This indicates 

that cell shape and migration are highly interdependent in the model. In each case, the 

base case of a rounded morphology is used, before changing one parameter at a time. 

Base case simulations used the parameters: lambdaVolume=3.0, lambdaSurface=3.0, 

targetVolume=225, targetSurface=60, Temperature=10. These parameters maintain an 

approximately circular cell shape, with little deviation from this. Contact energy with the 

surrounding Medium is set to 0. Cells are initialised as a square shape of 15x15 pixels, 

which represents a 2D surface area (volume) of 225 µm2 per cell, assuming a constant 

thickness of 1 µm. 

Larger Surface Area Induces Greater Motility 

An increase in surface area, relative to volume, can be induced by increasing the target 

surface parameter, while keeping other parameters constant. This constrains cells into 

adopting a fibroblastic (spindle-shaped) morphology. However this change in morphology 

is also accompanied by an increase in motility, as shown in Figure 4.6. This can be 

explained by the greater number of interactions between cell surfaces and medium 

leading to a greater number of pixel copies being attempted and accepted. This has the 

biological equivalent of a cell with a more fibroblastic morphology having a greater 

surface area over which to interact with and adhere to the matrix.   
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Figure 4.6 a) Circularity of simulated cells falls with increasing Target Surface. b) This is accompanied by 

increased speed (and hence motility). Error bars show standard deviation, and caps show the range, from 10 

simulation replicas. 

Greater Motility Induces Fibroblastic Morphology 

An increase in cell motility can be directly induced by increasing the ‘Temperature’ 

parameter in the simulations, as a greater proportion of pixel copy attempts are 

accepted. However, this change in motility is accompanied by the adoption of a 

fibroblastic morphology. Furthermore, the magnitudes of reduced circularity associated 

with increased speeds are similar to those that result from increasing the target surface 

(compare Figure 4.6 with Figure 4.7). In both cases, migration speeds are consistent with 

those of in vitro epithelial and mesenchymal cells (Mendez et al. 2010). 

 

Figure 4.7 a) Speed of simulated cells increases as a result of increasing ‘Temperature’. b) This is 

accompanied by a reduction in circularity. Error bars show standard deviation, and caps show the range, 

from 10 simulation replicas. 

There are two plausible explanations for this. Either the increase in Temperature has the 

side of effect of giving the cells the flexibility to deviate from a rounded morphology; or 

the easiest (lowest entropy) way for a cell to be more motile is for it to adopt an 
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elongated or fibroblastic morphology. This has the biological equivalent of a cell changing 

shape in order to ‘squeeze through’ the matrix. 

4.4.3. Multicell Simulation Results 

Multicell simulations were performed, corresponding to the dimensions of the 

endocardial explants reported in (Luna-Zurita et al. 2010). Each simulation consisted of 

316 cells, initially arranged in a filled circle.  As with the single cell models, each cell has 

initial dimensions of 15x15 pixels (225 µm2), with target volume parameters that 

maintain this size. In our multicell model we consider that there are four factors that 

might guide EMT: loss of epithelial labile adhesion, loss of epithelial junctional adhesion, 

increase in motility and increase in adhesion to the surrounding medium. For 

simplification, we assume that both types of epithelial adhesion would be lost during 

EMT, as a result of downregulation of VE Cadherin. 

 

Figure 4.8 Separation force measurements for Ecad cells held in contact for 0.5-60min (Chu et al. 2004). 

The adhesion force required to separate two E-cadherin expressing cells is initially of the 

order of a few nanonewtons (nN). However, this adhesion strength increases rapidly 

between 30 seconds and 30 minutes, and this is followed by a slower increase up to an 

hour, reaching a force over 200 nN. The profile of increasing adhesion strength is shown 

in Figure 4.8. The initial E-cadherin mediated contact adhesion doesn’t require 

connection to the actin cytoskeleton. The stronger junctional adhesion forms over a 
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longer period of contact by a connecting the actin cytoskeleton between the two cells 

(Chu et al. 2004). For these simulations, it is assumed that the properties of VE-cadherin 

binding are qualitatively analogous to those of E-cadherin binding. This assumption is 

based on the fact that both form adherens junctions, and both bind to the same 

cytoskeletal proteins, including catenin and actin. 

The two phases of adhesion (weak labile adhesion followed by strong junctional coupling) 

can be included in the model as two types of force, to investigate their individual roles in 

driving epithelial morphology. Labile adhesion is represented as a negative surface 

tension (contact energy) between cells, determining the likelihood of pixel copy attempts 

that separate or connect two adjacent cell boundaries. Junctional coupling is 

represented as a breakable spring force between cell centres, operating between cells 

whose centres are within a set maximum distance. In this way the model combines 

elements of the cellular Potts and cell centre models. In order to capture the difference 

in magnitude between adhesion phases, we generally set labile adhesion energy 

between 0 and -20 (10-15Kg1s-2), and the strength of plastic coupling lambda between 0 

and 200 (10-15kg1s-2). 

Labile Adhesion and Junctional Coupling 

Multicell simulations incorporated terms for both plastic coupling and junctional 

adhesion in order to perform a basic parameter scan and investigate the role of these 

forces, and cell morphology, in maintaining an epithelial tissue. For endothelial cells, a 

target surface of 60 µm is used, while for mesenchymal cells a target surface of 120 µm 

is used, based on the results of the single cell simulations reported previously. 

It was postulated that labile adhesion and junctional coupling might be able to rescue 

epithelial morphology, for cells that were given mesenchymal shape parameters. 

However, as shown in Figure 4.9, this was not the case. Cells with junctional coupling 

and/or labile adhesion neither maintained contact, nor formed a more rounded 

morphology. Higher strengths of plastic coupling produced incoherent results, and 

unrealistic cell shapes (not shown). 
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Figure 4.9 Cells with fibroblastic morphology. Simulation snapshots at 50000 MCS, for different levels of 

plastic coupling lambda [20, 5] and cell-cell contact energy [-15, 0] (units are 10-15kg1s-2). 

These results suggest that some inherent tendency towards a rounded morphology is 

required, in addition to the mechanisms of epithelial adhesion. It was also hypothesised 

that epithelial roundness could be shown to be an emergent property of cellular 

adhesion from simulation, in cells with epithelial shape parameters. However, neither 

junctional coupling nor labile adhesion significantly increased the roundness of these 

simulated cells (Figure 4.10).  

 

Figure 4.10 a) Monolayer with no epithelial adhesion and b) monolayer with both labile and junctional 

adhesion, after 50000 MCS. c) Labile adhesions, C, and junctional coupling, FPP, do not significantly affect 

average cell roundness (p > 0.05, n=316 in all cases). 
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This suggests that, while a loss of epithelial adhesion may be necessary for the cell 

migration and shape changes observed in EMT, it is not sufficient. Increased motility 

and/or increased cell-medium adhesion are also required. 

Increase in Motility 

Based on the results of the single cell simulations, it was postulated that an increase in 

cellular motility (Temperature parameter), coupled with a loss of epithelial adhesions, 

might be sufficient to induce an EMT process. In other words: that inherent shape 

changes might not be a necessary condition, provided there is both an increase in 

motility and a loss of epithelial adhesion. This was not the case, as the epithelial integrity 

and morphology was preserved even under large Temperature increases (from 20 to 

500).  

 

Figure 4.11 Under conditions of increased motility (Temp=500) and moderate cell-medium adhesion (-20), 

cells scatter under conditions with a loss of junctional coupling, but not with a loss of labile adhesion alone. 

In all cases cells maintain a rounded morphology (units are 10-15kg1s-2). 



106 

 

However, when this motility increase was coupled with a moderate increase in cell-

medium adhesion, an intermediate phenotype is observed, whereby a proportion of cells 

migrate, while maintaining a rounded morphology (Figure 4.11). The increase in cell-

medium adhesion is modelled by a reduction in cell-medium contact energy from 0 to     

-20. The intermediate phenotype only occurred in the cases with a loss of junctional 

adhesion, illustrating that junctional adhesion has a greater effect in maintaining 

epithelial morphology in this case. Thus while plastic coupling was not found to influence 

cell shape, it did affect whether cells all stayed attached in a monolayer. 

The rounded morphology observed in these migratory cells is consistent with an 

intermediate phenotype observed in endocardial cells for which some Notch target genes 

(Hey1 or Hey2) have been deleted (Fischer et al. 2007). This suggests that Notch 

signalling has multiple phenotypic effects in these cells. Loss of cell-cell adhesion is 

mediated by loss of VE-Cadherin (in endocardial explants), while increase in cell-gel 

adhesion is mediated by upregulation of vimentin and fibronectin. These different effects 

are induced to a greater or lesser extent by the different Snail genes; which are Notch 

targets (Barrallo-Gimeno & Nieto 2005). In the next section we turn to the effects of an 

increase in cell-medium adhesion. 

Increase in Cell-Medium Adhesion 

A strong cell-medium adhesion was added to the model by reducing the cell-medium 

contact energy parameter from 0 to -200 (10-15kg1s-2). This case, with combined loss of 

endocardial adhesion, increase in motility and strong increase in cell-medium adhesion, 

leads to migration and cell morphology changes consistent with those induced in Notch 

activated mesenchymal cells (see Figure 4.12). 

Simulated and measured values for aspect ratio and circularity were significantly 

different (p<0.01), indicating that the model does not perfectly represent the 

morphological characteristics of Notch activated cells. There is not available data to 

make the comparison for migration speeds. While the values are not a perfect fit, they 

are consistent with the order of magnitude for the three EMT characteristics. The next 

section investigates the potential role for cell elongation to improve the model of EMT. 
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Figure 4.12 Combined loss of cell adhesion, gain of cell-medium adhesion and increased motility simulation 

a) Snapshot at 50000 MCS b,c,d) Mean and standard deviation of simulated (CM-200) cell characteristics at 

50000 MCS (n=316) compared with those obtained from in vitro Notch activated endocardial cells (N1ICD, 

n=54) (Luna-Zurita et al. 2010) or  MCF-7 cells transfected with vimentin (n=5) (Mendez et al. 2010). 

Cell Elongation 

In order to achieve the large aspect ratio observed in the N1ICD cells, a target length of 

50 pixels (50µm) was set, with a constraint value of 5.0 (10-15kg1s-2), for all cells in the 

simulation. Additionally, to increase circularity, while reducing speed, the cell-medium 

contact energy parameter was increased from -200 to -100 (10-15kg1s-2). This produced 

cells which were not significantly different from the in vitro N1ICD cells (Figure 4.13). 

             
Figure 4.13 Addition of an elongation parameter to the model, and reduction of cell-medium adhesion from   

-200 to -100 (10-15kg1s-2), provides a better fit, a) Snapshot at 50000 MCS b,c,d) Mean and standard 

deviation of simulated cell characteristics at 50000 MCS (n=316) compared with those obtained from in 

vitro notch activated endocardial cells (N1ICD, n=54) (Luna-Zurita et al. 2010) or  MCF-7 cells transfected 

with vimentin (n=5) (Mendez et al. 2010).  

Cell speed was not significantly affected by the reduction in cell-medium adhesion, 

though it did increase circularity, making the cells morphologically consistent with in vitro 

N1ICD cells (p>0.05). The elongation term increased the average aspect ratio of 

simulated cells, so that they were not significantly different from the in vitro model 

(p>0.05). 
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4.4.4. Verification and Validation 

Verification of the models in this section was addressed by checking each parameter 

three times: in the simulation code, in the graphical user interface and in the saved copy 

of the simulation code after execution. Verification that the simulation model sufficiently 

represented the conceptual model was achieved by testing the model under different 

parameter conditions, and checking that the behaviour was as expected. In this case, in 

increase in the Temperature parameter increased cell motility, and also led to a more 

fibroblastic shape; and these same behaviours were observed with an increase in the 

Target Surface parameter. This interdependency of cell shape and cell motility is 

consistent with cell behaviour observed in the real system of EMT.  

Validation of the models in this section was addressed by showing the simulation results 

to domain experts to check the face validity of the models. In this case the domain 

experts were the cell biologists José Luis De la Pompa and Luis Luna-Zurita; authors of 

the original in vitro investigation on which the simulations are based (Luna-Zurita et al. 

2010). Model outputs were shared in the form of screenshots and quantitative results as 

presented here; along with explanation of how the simulations work. The domain experts 

indicated that the model provides a representation in good qualitative agreement with 

the cell changes that take place during EMT.  

The second validation test was checking cell shape parameters in the simulations 

against those derived from image processing results of data provided by the domain 

experts from their previous investigations (Luna-Zurita et al. 2010). In this way, the 

simulations were improved by adjusting parameters one at a time in order to calibrate 

the model with the cell shapes measured in the imaging data; and cell speeds recorded 

in mesenchymal cells.  

In the multi cell simulations, an increase in cell-medium adhesion was required in 

addition to loss of endocardial adhesion and increase in the Temperature parameter, to 

achieve cell shapes and motility consistent with those in notch-activated cells. This is 

consistent with the conceptual model of notch-activated EMT as a comprising both loss 

of cell-cell adhesion and gain of cell-matrix adhesion. The addition of an elongation term 

was also required to achieve shape parameters consistent with those measured from the 
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in vitro results. Further experimental investigation could be directed at refining the 

conceptual model, to investigate whether directly driven shape changes such as 

elongation occur during EMT.   

4.5. Multiscale Modelling of Notch Mediated Lateral Induction 

Notch signalling patterns the vertebrate heart into cushion and non-cushion forming 

regions via the mechanism of lateral induction (Timmerman et al. 2004).  The majority of 

wet-lab research and computer simulations of Notch signalling focus on the other well-

known patterning mechanism: lateral inhibition (Collier et al. 1996; Podgorski et al. 

2007; Sprinzak et al. 2011). The literature review of this thesis identified only one 

existing model of Notch lateral induction (Owen et al. 2000). This has also been re-used 

in a multiscale cellular Potts model to indicate that control of the size of epidermal stem 

cell clusters can be achieved by lateral-induction (Savill & Sherratt 2003). In this section, 

the Notch lateral induction model (Owen et al. 2000) is reimplemented as a multiscale 

model in Compucell3D, in order to investigate some of the fundamental systemic 

aspects of lateral induction patterning within a field of tissue. The implications of these 

emergent properties for the regulation of cardiac morphogenesis are also assessed. 

The Notch lateral induction pathway model was translated into Systems Biology Markup 

Language (SBML) using the JDesigner tool in Systems Biology Workbench. The model 

equations are as follows: 

 

 

  
                              

 

 

 

Equation 4.3 

 

 

 

  
                   

 

 

 

Equation 4.4 

 

Where the variable D is the expression of Delta protein, N is the level of Notch activation 

in a cell (the amount bound with a ligand). Angle brackets: < > indicate the average level 

of a variable taken over all the neighbouring cell surfaces. Curly brackets: { } indicate a 

variable divided by the cell surface area. In this case this was implemented by a function 
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in Compucell3D which iterates over all neighbour cell surfaces, adding the values of the 

variables together before dividing by the total surface area of the cell.  

Thus the expression of free Delta depends on the background production of Delta in the 

cell, the production of Delta induced by (directly proportional to) the average level of 

Notch activation of neighbour cells, the proportion of unbound Notch in neighbour cells: 

(1-<N>) as the free Delta will bind to this Notch, the dissociation rate of Delta-Notch (as 

dissociation releases free Delta ligand), and the decay rate of Delta. The Notch activation 

(proportion of Notch binding) of a particular cell depends of the expression of free Delta 

in neighbour cells (as free Notch may bind to this), the dissociation rate of Notch and the 

Notch internalisation rate. The model constants C1 to C5 are given in Table 1. These use 

the dedimensionalised form following (Savill & Sherratt 2003) so that the expression of 

Notch and Delta in a given cell is a number between 0 and 1. 

Table 4.3 Parameter values of the lateral induction model (N. J. Savill & J. A. Sherratt 2003) 

Symbol Meaning Value 

D Delta Expression Variable 

N Notch activation (bound Notch) Variable 

C1 Background production of Delta 0.001 

C2 Delta production rate 1 

C3 Dissociation rate of Delta-Notch 1 

C4 Delta decay rate 1 

C5 Notch internalisation rate 0.1 

The two equations of the lateral induction model were defined in the JDesigner tool 

through a combination of the graphical model editor and manually entering kinetic rate 

laws for each reaction, as shown in Figure 4.14. Fixed (boundary) species are used for 

the input and output of Notch and Delta, so that the two differential equations could be 

easily defined as a set of two reactions each. 
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Figure 4.14 Notch Lateral induction model in JDesigner and reaction equations. ni: active Notch (NICD), di: 

free (unbound) Delta. Other variables are defined in the text. 

Where it is necessary to calculate the average variable taken over cell surfaces, new 

parameters are defined: nsari, nbari and dbari. A Python steppable and the Bionetsolver 

API, are used to calculate these parameters at each integration of the SBML model. The 

parameter nsari represents the Notch activation in a given cell, divided by the surface 

area of that cell. The parameter nbari represents the sum of Notch activation for all 

neighbouring cell sites, divided by the surface area. The parameter dbari represents the 

sum of Delta for all neighbouring cell sites, divided by the surface area. This was 

achieved specifically with the following section of Python code (where the SBML model 

has previously been loaded and given the key DN): 

for cell in self.cellList: 

    weightedSumOfNeighborDeltaValues = 0.0 

    weightedSumOfNeighborNotchValues = 0.0                         

    neighborContactAreas = 

bionetAPI.getNeighborContactAreas(cell.id) 

    neighborDeltaValues = 

bionetAPI.getNeighborProperty("DN_di", cell.id) 

    neighborNotchValues = bionetAPI.getNeighborProperty("DN_ni", 

cell.id) 

    nsari = bionetAPI.getBionetworkValue( "DN_ni", cell.id ) 

    for neighborID in neighborContactAreas.keys(): 

        weightedSumOfNeighborDeltaValues += 

(neighborContactAreas[neighborID] * 

neighborDeltaValues[neighborID]) 

        weightedSumOfNeighborNotchValues += 

(neighborContactAreas[neighborID] * 

neighborNotchValues[neighborID]) 
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    bionetAPI.setBionetworkValue( "DN_dbari", 

weightedSumOfNeighborDeltaValues/cell.surface, cell.id ) 

    bionetAPI.setBionetworkValue( "DN_nbari", 

weightedSumOfNeighborNotchValues/cell.surface, cell.id ) 

    bionetAPI.setBionetworkValue("DN_nsari", nsari/cell.surface, 

cell.id)    

 

An SBML model is assigned to each cell in the simulation. Some SBML parameters are 

set as a function of cell level properties (e.g. surface area) and calculated at each 

integration of the SBML model in Compucell3D. A scalar field was also defined so that 

the level of Notch activation across the tissue could be visualised. This was achieved 

calling the Bionetsolver API with the following code fragement: 

for cell in self.cellList:   

    fillScalarValueCellLevel(self.scalarField, cell, 

bionetAPI.getBionetworkValue( "DN_ni", cell.id ))   

 

The tissue level was modelled as a 2D circular tissue layer in Compucell3D, with cells 

initialised with a 5x5 pixel volume. The simplification of modelling in 2D allowed the 

single mechanism of lateral induction to be investigated from a multiscale approach 

without introducing additional complexity. To represent the process of EMT, e.g. cells 

leaving the 2D endocardial layer as they invade the cardiac jelly the appropriate cells are 

set to disappear. The cells that undergo EMT in reality is likely a stochastic process, 

determined by thresholds in protein concentrations that a carefully controlled number of 

cells will cross. Parameters for this threshold were based on the outcome of the 

simulation, so that only a few cells would undergo EMT each time this function was 

called. Any cell that had a Notch activation above 0.88 was given a target volume of 0, 

so that it quickly disappeared. To replace migrated cells with new cells, any cell with a 

volume greater than 26 pixels was set to undergo mitosis, and daughter cells inherited a 

target volume of 25 pixels. Basic parameter adjustment was performed so that the 

number cells would stay approximately constant. Real endocardial cushions expand over 

time; however this feature is not represented in the current model.   

Scale linking between the pathway and tissue level models is achieved by assigning a 

copy of the SBML pathway model to each cell in the tissue simulation, and integrated 
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several times at each timestep in the simulation. The pathway model therefore 

represents the overall level of Delta and Notch proteins in a given cell. The variables in 

the SBML models are accessible through the Bionetwork API in Compucell3D, so it is 

possible to dynamically plot what is happening to the level of protein expression in each 

individual cell. It would also be possible to plot cell level properties (e.g. cell surface area, 

distance migrated) against protein level variables. The juxtacrine signaling between cells 

is captured by iterating over the surfaces that neighbor each cell, and thereby calculating 

the average density of Notch and Delta that each cell is exposed to at its membrane. For 

simplicity, it is assumed that proteins are equally distributed within each cell, as well as 

on their surfaces. To capture the magnitude of difference in speed between protein and 

cellular dynamics, the SBML models are integrated 10 times each timestep, while cell 

divisions and EMT only permitted every 30 timesteps. 

As would be expected for lateral induction, the level of Notch activation is highly 

positively correlated with the level of Delta expression in each individual cell (Figure 

4.15). Moreover the concentration of both Delta and Notch was higher towards the 

centre of the tissue field. As Notch is known to have a direct influence on the adhesive 

properties of cells, this suggests a simple mechanism by which the endocardial cushions 

could autonomously focus growth toward their centres. 
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Figure 4.15 Notch activation is highly correlated with Delta expression in individual cells, as expected. Data 

taken from simulation as shown in Figure 4.16b over the first 800 MCS. Pearson correlation coefficient r = 

0.953. 

The reason why Notch activation is higher toward the centre of the tissue is because 

cells in the centre are surrounded on all their surfaces by other cells, and so receive a 

higher level of lateral induction. This also means that larger tissue areas will have a 

higher average Notch activation, due to the larger proportion of cells that are not close to 

the periphery. 
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Figure 4.16 Notch activation after 800 MCS for (a) a tissue starting with a radius of 20 pixels and (b) a tissue 

starting with a radius of 30 pixels 

This effect is illustrated by comparing two simulations which are identical except that 

they start with two different tissue sizes (Figure 4.16). The first has a radius of 20 pixels, 

and the second a radius of 30 pixels. The average Notch activation over all the cells was 

dynamically plotted for each (Figure 4.17). 

 
Figure 4.17 Average Notch activation over time in a tissue starting from (a) 20 pixel radius and (b) 30 pixel 

radius 
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Verification of the model in this section was addressed by checking each parameter 

three times, as in previous models. While the model is not validated with real biological 

data, the simulation results demonstrate the basic principle that larger fields of tissue 

will have a higher average level of Notch activation under a lateral induction mechanism. 

This effect would be significant in a developing embryo, as rapid growth in the 

endocardial cushions occurs. As shown in Figure 4.16, peripheral cells have lower 

expression of both Notch and Delta, and this could play a role in establishing tissue 

boundaries. Both the tissues grow slightly over time in the simulations, and this is 

because the effect of cell division slightly outweighs the loss of cells from the sheet as a 

result of EMT. This unintended feature is reflected in Figure 4.17, as the average Notch 

activation increases over time as both the fields of tissue grow. 

The multiscale simulations demonstrate some interesting properties of the lateral 

induction signalling mechanism. There is a high correlation between Delta and Notch 

activation in all cells and both of these are higher towards the centre of a tissue. This has 

implications for the mechanisms of EMT in a growing endocardial cushion. It suggests 

that EMT would occur at a greater rate toward the centre of the endocardial cushion. It is 

plausible that this mechanism could be employed to autonomously regulate ‘bulging’ in 

the endocardial cushions.  

4.6. Composite Annotation for Heart Development 

As identified in the Literature Review of this thesis, heart development is a complex 

process that unfolds as a result of interactions between multiple levels of scale.  The 

levels of temporal and spatial scale applicable to heart development, and methods of 

representation are illustrated in Figure 4.18. Computational modeling approaches that 

can be applied at different levels of scale are shown, as well as markup languages that 

enable a degree of model sharing between different platforms. The XML languages force 

a declarative expression of the components of a model, which allow it to be interpreted 

by different platforms. It is straightforward to annotate XML, and create an explicit link 

between entities in the model and external identifiers, that can be interpreted by 

software agents. In contrast, procedural code might only be annotated with in-line 

comments that need a human reader to interpret them. 
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Figure 4.18 Spatial and temporal scales of heart morphogenesis modelling. The modelling framework 

encompasses spatial scales from 10-9m (proteins) to 10-3m (the primitive heart tube), and temporal scales 

from 10-6s (molecular events) to 106s (weeks of heart development). Spatial and Temporal ontologies that 

apply to different levels of scale are also shown. PRO: Protein Ontology, ChEBI: Chemical Entities of Biological 

Interest, CL: Cell Type Ontology, FMA: Foundational Model of Anatomy, GO-CC: Gene Ontology Cellular 

Component, EHDA: Edinburgh Human Developmental Anatomy, GO-MF: Gene Ontology Molecular Function, 

CBO: Cell Behaviour Ontology, MP: Mouse Phenotype Ontology, OPB: Ontology of Physics for Biology, PATO: 

Phenotype And Trait Ontology, GO-BP: Gene Ontology Biological Process 

Along the bottom of Figure 4.18, the ontologies applicable to different levels scale are 

illustrated, which can be used for annotation of different model components. These 

ontologies are split between ‘occurents’, ‘independent continuants’ and ‘dependent 

continuants’, following BFO and OBO Foundry conventions. By making this high level 

distinction, the OBO community has created a clearly defined boundary between the 

spatial and temporal domains. As simulation models comprise both spatial and temporal 

domains, it is necessary to either combine terms in a post-composition approach, or 

make use of an application ontology for the annotation of a particular type of model.  

The example process illustrated in Figure 4.18 is EMT in endocardial cushion growth. A 

signalling pathway within a single cell might be represented as an ODE within SBML. The 

interactions of cells and their chemical signalling might be represented with PDEs or 
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stochastic Petri nets. A simulation of a larger numbers of cells is likely to use some form 

of agent based modelling. Finally, at the level of the developing heart tube as an 

anatomical component, finite element and multiphysics simulation may be used, to 

understand the relationships between mechanical properties of the heart walls (affected 

by EMT), its function as a pump and its looping morphology. 

Developmental biology is a well established field of quantitative analysis. New results 

emerge every day from in vitro and in vivo high-throughput analysis, and add to the 

growing knowledgebase of genotype-phenotype associations. Heart morphogenesis is an 

area of particularly intensive research, as heart defects are among the most common 

type of congenital disorder. This has led to a recent expansion of the gene ontology to 

include a much broader range of biological process terms for heart development 

(Khodiyar et al. 2011) and a corresponding initiative to increase the number of GO 

cardiovascular annotations. This represents a pre-composition approach, including 

creation of differentiation terms for 26 different cell types (‘Endocardial cell 

differentiation’, ‘Pacemaker cell differentiation’ etc.) Due to the logical structure of GO, 

these terms can be de-composed using cross-product extensions (Mungall et al. 2011). 

Post-composition has been applied successfully for annotating phenotypic descriptions. 

This makes use of a particular type of ontology composition: the Entity Quality (EQ) 

formalism. This extends entity terms from reference ontologies by describing them as the 

intersection of the entity with a relationship to a quality term in PATO (Phenotype and 

Trait Ontology). The entities are most often from species specific anatomy or 

developmental anatomy ontologies, but may also be a cell type from CL; a biological 

process, molecular function or cellular component from GO; or a molecular level entity 

from PRO or ChEBI. The EQ formalism has been used for investigating the evolution of 

phenotypic traits (phylogenetics) (Balhoff et al. 2010) and in integrating phenotypic 

annotations from multiple species (Mungall et al. 2010), and in this way linking human 

diseases to mutant animal models (Washington et al. 2009). In contrast, the Mammalian 

Phenotype (MP) ontology takes a pre-composition approach, which aims to include terms 

sufficient for phenotypic description within a single ontology (Smith et al. 2005). This has 

been used successfully for the mouse and rat genome databases. The two approaches 
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are not mutually exclusive, as MP terms could be defined as equivalent to EQ terms, 

when appropriate. 

The post-composition approach has also begun to be used for the annotation of 

biomedical simulation models. This is similar to the EQ formalism described above, but 

using the Ontology of Physics for Biology (OPB) rather than PATO. The OPB describes both 

physical properties and physical processes. This is because simulation models mainly 

represent the physical properties of biological entities. The SemGen tool enables 

modellers to annotate SBML or CellML code using OPB post-composition terms; although 

they must first be imported and compiled in the JSim modelling tool (Gennari et al. 

2010). Once models are annotated in this way, a semantic comparison of several models 

can then be made through SemGen, automatically identifying entities that can be 

combined if models are merged. However, this approach to annotating models has only 

been applied to domains with well defined physical properties. It is not clear how well this 

would work for cell level modelling for example, where the physical properties that drive 

cell behaviour are not fully understood. 

It is straightforward to adapt the EQ formalism for developmental phenotypes. The initial 

step is to select the relevant ontologies for the domain, as well as the types of sources 

that might be annotated. The process for the domain of heart development is illustrated 

in Figure 4.19. 

PATO allows composite phenotype annotations such as ‘endocardial cushion with 

decreased concentration of SNAIL protein’, which are composed from the integration of 

multiple reference ontologies. OPB allows formalization of the physical properties of 

these composite annotations, such as the concentration of a particular protein in a 

particular endocardial cell, or the density of mesenchymal cells in an endocardial 

cushion. These terms can then be used to annotate variables in a computational model, 

or experimental data. PATO composites can also be mapped to disease classifications, 

such as OMIM. 
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Figure 4.19 Schema for creating composite annotations from terms in multiple reference ontologies. 

The topmost annotation shown in Figure 4.19 can be represented in OBO or OWL format 

as detailed in Table 4.4. 

Table 4.4 OBO and OWL representation of composite annotation. 

OBO OWL 

intersection_of:  

PATO:0001163 ! decreased 
concentration 

intersection_of: inheres_in 

PR:000015308 ! SNAI1 
intersection_of: contained_in 

CL:0002350 ! endocardial cell 

EquivalentTo:  

PATO:0001163  

and (inheres_in some 

PR:000015308)  

and (contained_in some 

CL:0002350) 

 

 

Example annotations will be represented using a simplified EQ syntax, using term labels 

rather than identification numbers. The annotation in Table 4.4 would be expressed as:  

PATO:decreased concentration <inheres_in> PR: SNAI1 

<contained_in> CL:endocardial cell 
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The OPB based composite annotation for the concentration parameter or measured 

value would be:  

OPB:chemical concentration <property_of> OPB:portion of 

molecules <composed_of> PR:SNA1 <contained_in> CL:endocardial 

cell 

The same annotation could be used whether pointing to a model parameter, or an 

experimentally measured concentration. This suggests a method for leveraging the 

semantic relationships between very different types of information. 

An EQ representation may be defined under a number of categories (Balhoff et al. 2010), 

with the examples below taken from the process of heart morphogenesis. 

Monadic states are those that involve single entities or structures. For example, it has 

been previously shown that some congenital heart abnormalities are caused by an 

incorrect rotation of the outflow tract. This can be annotated in a general way as:  

PATO:mislocalised_radially<inheres_in> EHDA:outflow_tract 

Relational states are those that describe a phenotype that exists between two entities or 

structures. The first example in this section was relational, as describes a phenotype that 

exists between SNAI1 protein and endocardial cell: 

PATO:decreased concentration <inheres_in> PR: SNAI1 

<contained_in> CL:endocardial cell 

Quantitative states describe a measured value for a variable feature (e.g. size, area, 

count). For example, the volume of an endocardial cell would be annotated as: 

OPB:volume region <inheres_in> CL:endocardial cell 

<has_magnitude> OPB:volume amount=3.2 <has_unit> UO:microliter 

With post-composition, there is a lack of exact consistency in annotations between 

different annotators (Mungall et al. 2010). This is not always a major problem because, 

with sufficient guidelines, the differences are usually ones of specificity (e.g. did the 

annotator use the FMA term ‘endothelium’, ‘endothelium of endocardium’ or 

‘endothelium of aortic valve’?). These annotations are still valid semantically, but where 
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a more coarse term is used there is a degree of information loss, to be avoided where 

possible. Restriction to terms of a specific domain and the use of customizable software 

tools for annotation improves consistency. For example, Compucell3D and Chaste might 

allow you to tag cell types in a model as particular cell types from the CL ontology. An 

example of a customisable annotation tool is Phenote (Balhoff et al. 2010), an open 

source toolkit that facilitates annotation of biological data using OBO-format ontologies. 

However, it is still possible to have different perspectives on the same physiological 

phenomenon. For example, one decision might be whether the interest is in the 

decreased volume of the membranous septum, or the fact that the membranous septum 

is dysfunctional. From the perspective of exact volume quantification the actual size 

measurement is important, whereas in the more general disease classification the 

interest lies only in the fact that there is a dysfunction. There are often pre-composed 

terms in existing ontologies, which could also be made by post-composing terms from 

multiple ontologies. For example, in the MP ontology the term ‘abnormal outflow tract 

development’, could be composed as:  

PATO:abnormal <inheres_in> GO:outflow_tract_morphogenesis 

The degree of variability possible is a key advantage of post-composition: congenital 

heart diseases are a spectrum of overlapping phenotypes, and it is necessary to have 

flexibility in the way they are annotated. This accuracy in genotype-phenotype annotation, 

while arguably more complex, has greater benefits to wider biological research than 

mere coding and classification of defects. However, the strategies are not mutually 

exclusive. An intriguing possibility is to map anatomical measurements (such as those 

determined from the MRI of congenital heart disease specimens) to disease 

classifications. 

The challenge of reasoning over multiple ontologies remains a considerable one. 

Nonetheless, it is much more feasible to achieve data integration in this way than in any 

existing alternative. In particular if new ontologies were constructed for each application, 

with no semantic links to existing reference ontologies, then ontologies would be of little 

use in integrating between applications. 
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4.7. Summary 

This chapter has presented the simulations which comprise the main results of this 

thesis. First it was demonstrated that a 3D cellular Potts model can capture the 

qualitative behaviours of equilibrium, migration on the surface and invasion into collagen 

gel of an in vitro EMT. These behaviours can be observed as a result of changing contact 

energy parameters such that the hierarchy of contact energies is re-ordered; with 

different hierarchies producing the different observed behaviours. Next, a 3D simulation 

was used to represent qualitative behaviour in conditions of migratory and invasive cells 

with and without contact inhibited mitosis.  It was demonstrated that contact inhibited 

mitosis potentially plays a role in preserving the endocardial phenotype, by preventing 

gaps from forming in the tissue layer. 2D simulations were then used to investigate the 

role of cell morphology in EMT, first with models of individual cells, and then in multicell 

simulations. It was found that there is a direct relationship between cell motility and cell 

morphology in the cellular Potts model. The multicell simulations applied this finding to 

investigate the relationship between Cell-Cell and Cell-Medium adhesion, and cell motility 

and morphology. The simulations failed to show that Cell-Cell adhesion can be used to 

increase the roundness of cells. It was also found that a moderate increase in Cell-

Medium adhesion was necessary, in addition to loss of cell-cell adhesion and increase in 

motility, to produce migratory cells in the model. While a weak increase in cell-medium 

adhesion produced rounded migratory cells, a strong increase was sufficient to produce 

morphological changes. Adding elongation to this model was sufficient to produce cells 

with the same morphological and migratory characteristics of in vitro mesenchymal cells. 

The results of the multiscale simulation of Notch lateral induction were presented next, 

which indicated qualitative behaviour of the expression pattern in fields of tissue of 

different sizes. These suggest the potential for lateral induction to regulate bulging 

towards the centre of the endocardial cushions. However, further experimental validation 

would be needed to draw conclusions; especially with regards to the exact geometry of 

endocardial cushions and the areas of Notch expression during development. This 

chapter closed by presenting an approach used for composite annotation of concepts in 

heart development, which combine terms from multiple fields, and therefore multiple 

reference ontologies. The next chapter will discuss the results, the conclusions and 

contributions of this research, and opportunities for future investigation. 
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Chapter 5 

5. Discussion and Conclusions 

5.1. Review of the Aims and Objectives 

The thesis has integrated existing knowledge of EMT in heart development at different 

levels of spatial scale (A1). Integrating existing knowledge was achieved through 

extensive review of the experimental literature on EMT, heart development, and the 

major signalling pathways known to be involved in EMT. Through understanding EMT 

processes at various levels of spatial scale (O1), existing knowledge was integrated and 

presented in a conceptual multiscale model (O2). Key features identified in this 

conceptual model included: 

• Lateral induction by Notch signalling 

• Regulation of EMT by VEGF expression, and contact-inhibited proliferation 

• Reduction in cell-cell adhesion and increase in cell-matrix adhesion by Notch 

and TGF-β signalling (via Snail transcription factors)  

• Activation of an invasive phenotype by BMP2 signalling, which includes 

degradation of extracellular matrix proteins 

The thesis increased understanding of these EMT processes by representing key 

features of EMT with computational simulation models (A2). This was achieved by 

building computational cell and tissue simulation models of cells undergoing EMT (O3). 

The simulation models included 3D models which represented conditions for 2D 

migration and 3D invasion of cultured in vitro endocardial cells. 2D models were used to 

represent the interplay of cell motility, morphology and adhesion as cellular changes that 

take place during EMT. The key EMT signalling pathway of Notch signalling lateral 

induction has been explored through protein level modelling (O4). Simulations supported 

the existing hypothesis of the role of lateral induction in cardiac EMT; that it demarcates 

the regions of the endocardium where EMT takes place. Multiscale simulations of lateral 

induction showed that a regional pattern of Notch expression is generated in a tissue 

field through lateral induction signalling. Existing experimental results, in the form of 
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imaging data derived from an in vitro investigation of EMT were used for validation of cell 

and tissue level models (O5). Cell outlines were extracted from images of wildtype and 

Notch activated in vitro endocardial cells. Shape metrics of aspect ratio and circularity 

were used to fit 2D models to the morphological characteristics of the two experimental 

conditions; thereby improving the validity of the model. 

The thesis has also refined existing approaches for multiscale modelling of 

developmental processes (A3). Existing approaches to multiscale modelling were refined 

by applying the post-composition approach for ontological annotation of phenotypic 

descriptions to EMT in heart development, (O6). This demonstrated the feasibility of 

using the post-composition approach to leverage terms from multiple existing biomedical 

reference ontologies for the annotation of multiscale simulation models. Multiscale 

modelling and simulation was investigated, using Delta-Notch lateral induction as an 

example, by re-implementing a published subcellular model of lateral induction as a 

multiscale cellular Potts model (O7). This was implemented by assigning an ODE model 

of the subcellular reactions, encoded in SBML, to each cell in a Compucell3D cellular 

Potts model.  

5.2. Contributions to Original Knowledge 

The thesis has made significant contributions to original knowledge in the field of 

computational biology. It has been demonstrated, through 3D simulations, that the 

representation of surface tension in the cellular Potts model is sufficient to capture the 

behaviours of cell migration on the surface of collagen gel, and invasion into the gel, 

independently, by taking account of reordering of contact energies (Section 4.2.). A 

reduction in cell-cell adhesion in the model was sufficient to represent the behaviour of 

2D separation and migration of cells. A simultaneous reduction in cell-cell adhesion and 

increase in cell-matrix adhesion was sufficient to capture the behaviour of 3D invasion of 

cells into the collagen gel. Further experimental validation is needed to draw mechanistic 

conclusions about the true changes in adhesion that takes place, and their role in driving 

migration and invasion. Representing the system with a different modelling technique 

will provide validation against model artefacts (Section 5.3.1.). The 3D model does not 

capture some important features of EMT, such as changes in cell morphology. This was 

investigated in 2D simulations for the experimental conditions of Wildtype endocardial 
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cells (which remain rounded and in a monolayer) and Notch activated endocardial cells, 

which migrate on the surface of the gel and adopt mesenchymal morphology. 

For the first time, a relationship has explicitly been shown between cell motility and cell 

shape in the cellular Potts model. Cells that are driven to be more motile (increase in T 

parameter) become less circular; where cir 2. 

Cells that are driven to be less circular (increase in target surface area) become more 

motile as measured by average speed of the cell centre (Section 4.4.2.) Increasing the 

target surface to produce a reduction in circularity from ~0.7 to ~0.2 also caused an 

increase in motility from ~0.2µm to ~0.5µm. Increasing the T parameter so as to 

increase motility from ~0.2µm to ~0.5µm also caused a reduction in circularity from ~0.7 

to ~0.4. This shows that there is an approximately inverse proportionality in the 

relationship between cell speed and cell circularity in the cellular Potts model. This result 

is interesting when considering that both changes occur simultaneously during EMT, and 

raises the question of what are the physical changes driving both motility and shape 

changes during EMT. Validation is needed to draw definitive mechanistic conclusions 

from these results, particularly through representing the same process using a different 

modelling formalism with equivalent parameters. Cell vertex model will be an appropriate 

technique for this (Section 5.3.1.). 

This thesis is the first time, to the author’s knowledge, that the features of cell 

morphology, adhesion and motility have been investigated together in a simulation 

model of EMT.As was shown in Section 4.4.3., in the cellular Potts model, shapes 

characteristic of mesenchymal cells can be achieved with high cell-ECM adhesion. 

However an elongation constraint was required to achieve aspect ratios consistent with 

those measured from images of in vitro mesenchymal cells. Furthermore, cell shape in 

the simulations was not found to be significantly affected by cell-cell adhesion. These 

findings show that the cellular Potts model requires inherent tendencies (shape driving 

parameters) towards rounded and mesenchymal cell morphologies that are not 

accounted for by cell-cell or cell-ECM adhesion alone. These findings are consistent with 

the experimental observation of intermediate phenotype cells that are migratory but 

remain rounded (Fischer et al. 2007). Such cells have clearly lost their adhesion to other 
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epithelial cells, but maintain a rounded epithelial morphology; as observed 

experimentally with deletion of the Notch target genes Hey1 or Hey2 (Fischer et al. 

2007). A simulation that corresponds to this phenotype emerged from loss of epithelial 

adhesion, an increase in motility (‘Temperature’) and a moderate increase in cell-matrix 

adhesion. Validation involving a wider range of experimental parameters and 

measurements (Section 5.3.1.) will be needed to draw conclusions on the mechanisms 

sufficiently represented by the integrated cellular Potts models of cell adhesion, motility 

and morphology.  

Methods for multiscale modelling have been investigated by re-implementing a published 

Delta-Notch lateral induction model as a multiscale cellular Potts model (Section 4.5.). 

While not entirely novel (Andasari et al. 2012), there are few examples of their use, and 

the multiscale model of Notch lateral induction provides an interesting case in which 

emergent expression patterns occur as a result of feedback between the models at two 

levels of scale.  Cell level properties, such as adjacent surfaces between cells, were used 

to dynamically feedback with a subcellular model assigned to each cell, as described in 

Section 3.4.6. The multiscale model of Notch mediated lateral induction demonstrated 

some interesting generic properties of this signalling mechanism. Specifically, that there 

is a high correlation in cells at a given time between the expression of Delta ligand and 

the level of activated Notch (Pearson correlation coefficient r = 0.953). Additionally, that 

the expression of both Notch and Delta are higher towards the centre of a tissue in which 

lateral induction is operating. Cells at the outermost layer of a tissue have a reduced 

expression of Notch and Delta due to receiving Notch signal only from surfaces adjacent 

to surrounding cells. However, they rapidly adjust toward a maximal level of Notch and 

Delta expression as they move into the tissue, and become surrounded on all sides; as 

the protein signalling operates much more rapidly than cellular movement. This is 

captured in the model by integrating the subcellular models several times in each 

timestep, in which the cells can move. While these results are largely qualitative, they 

have implications for the mechanism of EMT in a growing endocardial cushion. The 

model shows that EMT occurs at a greater rate towards the centre of the endocardial 

cushion, due to the level of Notch activation being higher towards the centre of the 

region. Additionally, that as the cushion grows Notch signalling will induce the rate of 
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EMT to accelerate in the cushion, as a smaller proportion of the cells are at the tissue 

boundary. These implications need experimental validation by comparing the findings 

from the simulation with those from an appropriate in vitro study of the interaction 

between protein signalling and cell behaviour; and the threshold of Notch activation at 

which cells undergo EMT. 

The thesis also made a significant contribution to methodological approaches for the 

annotation of multiscale biomedical models with terms from multiple biomedical 

reference ontologies. It has been demonstrated that a postcomposition annotation 

approach is applicable to multiscale processes, with heart development as an example. 

Using this approach, terms from existing reference ontologies for different domains and 

types of objects can be used to make it explicit what different objects in a model 

represent (e.g. cell types from CL ontology or protein species from PRO). Furthermore, 

lightweight ontologies have been used to provide descriptive terms that are a 

composition of terms from multiple ontologies, which has been used for semantic 

integration across different levels of spatial scale. For example, PATO is used for 

phenotypic annotations that may be spatial descriptions of anatomical parts, or 

qualitative observations of protein concentrations in particular cell types. OPB is used for 

physical descriptions, such as the volume parameter of a simulated cell, the size of an 

anatomical part, or a measured concentration level of a protein in a particular cell type. 

These approaches have the potential to leverage the semantics embodied in reference 

biomedical ontologies. The model annotation approach developed in this thesis has 

clearly shown (Section 4.6.) that it is now possible for multiple sets of data to be queried 

for the phenotypic effects associated with an increased concentration of a particular 

protein in a particular cell (narrower cell types or related protein species included). 

5.3. Future Research Opportunities 

Currently the models presented in this thesis are separated for the purpose of 

representing and understanding individual features of EMT. The models will be extended 

and integrated to provide a more holistic model of EMT. Future extensions to the models 

must include an integrated subcellular pathway for Notch, TGF-β and BMP signalling, and 

the improvement of the implementation of plastic coupling, by making it a direct function 

of contact area between cells over time. There is also the potential to explicitly represent 
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the independent effects of different molecular players on cell adhesion, cell motility and 

cell morphology. For a specific example, consider the secretion of TGF-β2 protein by the 

myocardium underlying the endocardial cushions. The secreted TGF-β2 protein both 

activates the Notch ligand Jagged1 and independently activates Snail1 and Snail2 (also 

termed Slug) which both act to represses VE-Cadherin (a major protein of endocardial 

cohesion). In contrast, only Snail2 is a direct target of Notch signalling. Simulations will 

be able to demonstrate the implications of these fine details in terms of genetic 

mutations that affect particular pathways; specifically how EMT is disrupted, and which 

signalling pathways are implicated in the myocardium or endocardium. 

The hypothesis offered in Section 4.3. that VEGF regulates EMT via endocardial 

proliferation must be tested in vitro, by using markers for mitosis and altering the 

concentration of VEGF in endocardial explants. This willd provide further refinement for 

the model, which will improve the model with a more realistic representation of 

endocardial proliferation. 

The multiscale model of lateral induction must be improved through experimental 

validation involving imaging studies. Modelling the interactions of regulatory processes 

requires a greater understanding of the threshold of Notch activation at which cells 

undergo EMT, and greater geometrical accuracy in the model, regarding both cell size, 

cushion size and the areas of Notch expression. Including a realistic rate of cell 

proliferation, and Notch threshold for EMT would make it possible to study the 

relationships between growth rate, EMT and lateral induction. Both geometrical 

information on cushion architecture, and the threshold of Notch activation at which cells 

undergo EMT, could be derived from suitable imaging studies. A close approximation to 

the geometry of the endocardial cushions is important in this case. The larger the 

cushion region, relative to the size of the endocardial cells, the less pronounced will be 

the bias towards EMT at the centre of the tissue field. This is because it is the effect of a 

reduced number of contacts with Notch expressing cells at the periphery of a tissue in 

which Notch signalling lateral induction operates. This effect can only occur within the 

outermost layers of cells. As cellular movement is slow compared to protein signalling, 
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cells that return from the edge toward the centre rapidly adjust to a maximal level of 

Notch and Delta expression. 

Further work must be done on the methods for annotating multiscale models with a 

postcomposition approach. EMT is a complex, multiscale process, which can only be 

understood through the integration of knowledge from multiple biomedical domains. 

Making this tractable requires abstraction, particularly through computational modelling, 

as has begun to be addressed by this thesis. The potential for sharing in silico research 

has been improved by common modelling standards, online databases of published 

models, and widespread adoption of biomedical ontologies. However, both ontologies 

and modelling standards tend to focus on particular levels of spatial and temporal scale, 

presenting a challenge for unified semantic representation of multiscale developmental 

processes. The methods for multiscale annotation of models described in Section 4.6. of 

this thesis begin to address this. As multiscale models develop in number and 

complexity, methods for composite annotation must also be applied and improved to 

meet the challenges of multiscale representation. 

5.3.1. Verification and Validation 

In-depth verification and validation are essential requirements to moving the modelling 

and simulation work in this thesis forward. Cellular Potts models are phenomenological 

(empirical or data-based) in that they can agree with observed biological behaviour in a 

statistical sense. This contrasts with mechanistic models of cell behaviour, which are 

based on rules that have been abstracted from an underlying biological process. 

Mechanistic and phenomenological models are useful for different purposes. 

Mechanistic models can used to provide a satisfactory explanation of a proposed 

mechanism. Phenomenological models that have been sufficiently validated can be used 

to summarise or visualise data, to make predictions, or as an aid to designing 

experiments (Voss-Böhme 2012).  

The 2D and 3D simulation models presented in this work have been empirically matched 

to the (limited) available experimental data on cell morphology, speed and migration 

behaviour in different experimental conditions of EMT. This is necessary for the models 

to be valid, but it is not sufficient. The mechanistic conclusions that may be drawn from 
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the models are thus of limited reliability without further validation. Without in-depth 

validation, it is not possible to distinguish whether agreement or disagreement with 

biological data is the result of the appropriateness of the model, or the validity of the 

hypothesised underlying biological mechanism.  Future work appropriately validating the 

models must involve empirically matching the properties of the models under a wider 

range of parameter conditions. This requires further experimental work. In particular, 

measurement of the aggregate levels of cadherin expression under different 

experimental conditions, as well as the separation forces required between pairs of cells, 

and cells and matrix; and the average speed of individual cells. These measurements will 

distinguish between the mechanisms of cell-cell adhesion and cell-matrix adhesion in 

migration and invasion, and provide validation of the appropriateness of the cellular 

Potts models for representing controlled in vitro EMT. A wider range of experimental 

parameter conditions will be achieved by using cells with different expression levels of 

cell-cell and cell-matrix adhesion molecules. Fitting the models to the wider range of 

parameter conditions will test their validity empirically.  

A further important method for validation will be constructing the same models using 

different modelling formalisms. As reviewed in Section 2.3., there are a few other 

techniques that are used for modelling the emergent behaviour of interacting cells. Each 

has different features and advantages. For example, coarse grained techniques such cell 

centre modelling are mechanistically better understood, and thus open to more formal 

analysis. However this technique is not able to represent features at the sub-cellular 

level (e.g. cell shape) and therefore not appropriate for the 2D models presented in this 

thesis; in which cell shape is a critical feature. The 2D models will be validated by 

constructing equivalent cell vertex models, while the 3D models will be validated by 

constructing equivalent cell centre models. The use of different formalisms for 

representing the same process will elucidate between behaviours that are truly captured 

by the model, and those that are an artefact of the formalism being used. For example, 

constructing cell vertex models in which cells are driven to be more or less circular in 

shape, will validate whether the greater motility of less circular cells is a true physical 

property, or an artefact that exists in the cellular Potts model. A high resolution cell vertex 

model will be required for, to avoid shape artefacts caused by the coarseness of the 
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vertices. Cell perimeter, and thus circularity, will be derived from the total length of the 

surface vertices of a cell. Cell-cell adhesion will be represented in an equivalent way to 

the cellular Potts model (as an energy parameter between adjacent vertices, proportional 

to the contact area between cells). This will provide validation of the tentative 

mechanistic interpretations of the roles of cell-cell and cell-matrix adhesion in driving 

EMT that have been offered in this thesis. 

5.3.2. Potential Model Applications 

EMTs are diverse, context dependent, and regulated by different protein signalling 

pathways in different contexts. Thus different roles may be played by cell morphology, 

motility and adhesion in each case. The computational models presented in this thesis 

provide the flexibility to simulate cells with different combinations of physical 

parameters. This allows investigation of the conditions under which cells remain 

epithelial, undergo EMT or exhibit an intermediate phenotype. The cell morphology and 

migration metrics described in Sections 3.4.4. and 3.4.5. provide a means to match the 

model to a particular example of EMT. In combination with in vitro analyses that 

investigate the effect of individual proteins, this has the potential for quantifying the cell-

level effects of gene expression changes. 

While the simulation models developed in this thesis are aimed at representation for the 

sake of understanding, with appropriate validation it would be possible to extend them 

into a number of applied directions. It is also worthwhile discussing these as an 

indication of some of the soon-to-be-realised applications of multiscale biomedical 

modelling. 

In Silico Screening for Toxicity 

Drug development is a long and expensive process. The most recent formal estimate for 

the average cost of development put the cost in 2003 at $802 million (DiMasi et al. 

2003). Many candidate drugs fail in the late stages of development during preclinical 

and clinical trials. Identifying the candidate drugs that have a higher risk of toxicity earlier 

on in the development cycle has the potential to create savings, and to focus resources 

on compounds with a higher chance of success (Figure 5.1).  
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Figure 5.1 Major steps in the drug discovery process. A typical path for drug discovery is presented. 

Compounds in a chemical library are screened to identify those molecules that interact with the intended 

target. Molecules that are positive in this assay “Hits” begin the process of lead identification (Hit-to-Lead) 

and Lead optimization. In vitro toxicity screening as well as screens designed to identify ADME, genotoxicity, 

and cardiac toxicity should be done early in this process in order to identify high risk molecules early (McKim 

2010). 

 

This has led to increasing interest in the use of multiscale modelling for in silico 

toxicology studies, to augment the existing in vitro and in vivo protocols. This notably 

includes the United States Environmental Protection Agency’s Virtual Embryo project 

(Shah & Wambaugh 2010). Currently this involves Compucell3D models of vascular 

development, limb development and eye development. With improved representation of 

the pathways involved, a model of EMT could be applied to in silico toxicology. EMT would 

be a good candidate due to the ubiquity of EMT throughout embryonic development, the 

central role of EMT in congenital heart malformations, and the fact that there have been 

a lot of experimental studies on this system. Another example is Germany’s Virtual Liver 

network, which has developed a network model for a single hepatocyte cell, and is now 

developing multiscale agent based models of liver lobules for in silico toxicology (Abbott 

2010). The multiscale aspect of the models is crucial to their application in this example. 

We may know which proteins in which cell types a drug interacts with, but we can’t 

predict the effects without a model of interacting pathways and interacting cells.   
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Predicting the Success of Cancer Treatments 

The processes that cancer cells undergo during the stages of invasion are phenotypically 

similar to developmental EMT. Current cancer therapies include killing cancer cells, 

interfering with their ability to follow chemotatic gradients, and inhibiting the ability of 

tumors to create vascular networks that allow them to collect the nutrients they require 

for growth and metastasis. There is potential for developing cancer therapies that target 

pathways controlling the adhesiveness of cancer cells (van Nimwegen & van de Water 

2007). Such approaches might aim at strengthening cell-cell adhesion while inhibiting 

cell-ECM adhesion, in order to prevent metastasis.  

Tissue Engineering 

As EMT is crucial to developing complex tissues, understanding how cellular transitions 

are regulated in different tissue types, in different contexts, has potential applications in 

tissue engineering and regenerative medicine. Modelling and simulation could be used 

to suggest cell seeding strategies, environmental conditions, or the potential success of 

different scaffolding structures. Heart valve tissue engineering is an active area of 

research currently, due to the limitations of mechanical and bioprosthetic replacement 

valves (Weber et al. 2011; Sewell-Loftin et al. 2011; Schmidt et al. 2010). A potential 

future application for simulation models of EMT is to inform strategies for heart valve 

tissue engineering which use endocardial EMT under controlled conditions. 
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Appendix A. 

Modelling and Simulation Methods in Further Detail 

 

Readers unfamiliar with cellular Potts modelling may be left wondering how parameters 

such as the contact energies and Temperature are derived, and what these figures might 

represent in the real system. Furthermore, the common practice of using convenient 

integer values for parameters can leave an unfortunate impression that simulations are 

ad-hoc setups. 

The first important point to make is that the absolute values for contact energy 

parameters have no direct meaning whatsoever. What is important is the hierarchy of 

energies, and the relative differences between them. However, simply scaling the contact 

energies (multiplying them by 10 say) will not produce exactly equivalent simulations. 

This is because, with higher contact energies, there will be a greater change in the 

system energy at each simulation step. So for a given Temperature value, a model with 

higher contact energies will have a lower tendency to change. 

Recall from Section 3.3. that the acceptance probability function used for each pixel copy 

in a Potts simulation is:             . Therefore, to achieve an equivalent set of 

parameters, it is necessary to scale the Temperature by the same factor. Any other 

constraints (e.g. the volume constraint) need to also be scaled by the same factor, in 

order that they have the same effect. 

In other words, the four sets of parameters given in the table below are all exactly 

equivalent. In each case, for example, the contact energy between A cells (A-A) is eight 

times as high as that between B cells (B-B).  
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Table_Apx A.1 Four equivalent parameter sets can be produced by scaling the contact energies, the 

Temperature, and Lambda Volume. 

Surface 

energy J 

A-A A-

Medium 

B-B B-

Medium 

A-B Medium-

Medium 

T Target 

Volume 

Lambda 

Volume 

Set 1 16 16 2 16 11 0 10 25 2 

Set 2 160 160 20 160 110 0 100 25 20 

Set 3 1600 1600 200 1600 1100 0 1000 25 200 

Set 4 4 4 0.5 4 2.75 0 2.5 25 0.5 

By way of illustrating that these parameter sets are exactly equivalent, the figure below 

shows a snapshot at 2000 MCS from simulations with each of the parameter sets 1-4. 

While, of course, the snapshots are not exactly the same, due to the stochastic nature of 

the simulations, in each case the type A (blue) cells surround the type B (green) cells. 

Furthermore, due to the (relatively) low contact energy (high adhesion) between type B 

cells, they tend to be more condensed than type A cells. 

 

Figure_Apx A.1 Simulations with equivalent parameter sets at 2000 Monte Carlo steps: a) Set 1 b) Set 2 c) 

Set 3 d) Set 4. Green: cell type A, Blue: cell type B  
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Therefore, these input parameters do not have a direct biological meaning (apart from 

the Target Volume, which can be treated as the average volume of the cells). Nor do they 

have any meaning at all outside the context of the other parameters. However the 

behaviours observed in the simulations do have biological meaning. In each case, type B 

cells tend to envelop type A cells. This is due to the contact energy A-A being 8 times as 

high as that of B-B. Due to the linear relationship between the expression level of 

cadherins and the aggregate surface tension of cells (Foty & Steinberg 2005), it is 

reasonable to interpret this as: “in the model, type B cells have 8 times the level of 

cadherins as type A cells”.  

When setting contact energy parameters, one needs to consider the likely overall order of 

surface tensions between objects in the model, and how these might be affected by 

changes in adhesion. Let’s return to the first model described in the Results chapter. 

This contained 3 types of object: the cells, the collagen gel and the air above the cells. As 

such, you may recall that we took the highest contact energy to be between cells and the 

air. The second highest was between the collagen gel and the air. These assumptions are 

made on the basis that the air does not stick to anything, and the cells are less 

deformable objects than the collagen gel.  

 

Figure_Apx A.2 The simulation of an endothelial monolayer contains 3 types: Cells (green), Collagen Gel 

(Blue) and Air (or Medium, invisible) 

 



155 

 

Next, we assume that if cells were to lose all adhesion to each other, they would in fact 

have high contact energies with each other (again, due to their low deformability), but not 

as high as between the collagen gel and the air. We proceed from these assumptions to 

experiment with switching the order of contact energies, and observe the qualitative 

behaviour of the simulated system. Of course we can’t know (without detailed 

measurements) that the objects in real system exhibit the same relative differences in 

surface tension that we use in the model. However, what we can show is that this model 

is sufficient to capture the different cell behaviours of migration and invasion. The model 

is sufficient for this purpose, by taking account of the assumptions about surface 

tensions, and without including any active migration in the model. The Temperature 

parameter, and any cell constraints (e.g. the volume constraint), are set at reasonable 

levels for the scale of the contact parameters used (see above table) – so that the cells 

maintain their volumes, and the system doesn’t freeze (Temperature too low or 

constraints too high) or exhibit fragmentation (Temperature too high or constraints too 

low).  

Later simulations explored a range of parameters for contact energies, Temperature and 

cell constraints. Here the objectives were to understand how the model behaves under 

different conditions, and to adjust parameters one at a time in order to calibrate the 

model with the available data. This was achieved by comparing cell shape and migration 

metrics recorded in simulation results with those measured in the in vitro system. 

 


