

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Pilkington Library

I • Lol!ghb_orough
., Umversity

A h /F.l. T" l S lo'fH-A/lS\ ut or 1 tng tt e ~'.'.a::-../.•••....•...

··
Vol. No............. Class Mark

Please note that fines are charged on ALL
overdue items.

0402294378

111

The Development of an Application Specific Processor
for the Transmission Line Matrix Method

by

David Stothard

A Doctoral Thesis

Submitted in partial fulfilment of the requirements for the award of

Doctor of Philosophy of Loughborough University

28 April, 2000

© by David Stothard 2000

Abstract

This thesis details the development of an application specific processor for the

transmission line matrix (TLM) method. The application of TLM to the modelling of

wave propagation in two and three dimensions is introduced with the discussion

focusing on the concept of computational efficiency. Methods for improving

computational efficiency are reviewed, in particular the implementation of TLM on

large scale parallel computers. It is shown that these methods, while increasing

throughput, make inefficient use of available resources. The review of existing

methods is used to define a set of goals for a new class of application specific TLM

processor.

The development of an application specific processor based upon the two dimensional

shunt node is presented. This gives rise to an efficient, bit serial scatter processor.

The implementation of this processor within a complete, application specific TLM

system is discussed. The system is based around a unique mapping of the TLM

connect routine to hardware.

The bit serial scatter processor is modified to allow the modelling of inhomogenous

and three dimensional media using the stub loaded shunt node, the symmetrical

condensed node and the symmetrical super condensed node TLM schemes. It is

shown that all four TLM schemes may be implemented within a single architecture

without the introduction of redundant elements through the use of reconfigurable

logic. The implications of interfacing this system to a host PC using the PCI bus are

discussed.

The processor designs are reviewed within the context of the goals set for the work. It

is shown that all of the goals were successfully met. The implications and limitations

of the processor are discussed.

The thesis concludes with recommendations for areas worthy of further study.

p

EEl

E

Jl
T

Architecture

ARMA

Bernstein's Condition

CAB

CLB

CSAS

CUT
Dispersion

DSP

EM

EMC

FD-TD

FE

Fourier Transform

FPGA

FSP

HDL
IF

LUT
Mapping

Glossary

Boundary reflection coefficient

Logical exclusive OR operation

Permittivity

Permeability

Transmission coefficient

Logical inversion

The basic plan along which a computer has been developed

Auto regressive moving averages

A condition for the independence of two operations

Computer aided engineering

Configurable logic block

Carry save add shift

Circuit under test

In TLM - frequency dispersion. The spreading of frequency

components of a wave front as the wave front propagates

through the mesh.

Digital signal processing

Electromagnetic

Electromagnetic compatibility

Finite difference- time domain

Finite element

Method of obtaining frequency domain information from a

time domain signal

Field programmable gate array

Fast serial parallel multiplier

Hardware description language

Inversion flag

Look up table

The relation between a physical system and a computer

model

Mesh width (nodes)

Number of nodes in a mesh

Number of scatter processors

Peripheral component interconnect bus

Processing element

Prony-Pisarenko Method

Processing Rate

SCN

Speed Up

SSCN

Throughput

TLM

tp

VHDL

VHSIC

VLSI

w
w
w
ZF

See Throughput

Symmetrical condensed node

The ratio of throughput on one processor to throughput on N

processors

Symmetrical super condensed node

Number of results produced within a given time period

Transmission line matrix/method

Propagation delay

VHSIC HDL (see VHSIC, HDL)

Very high speed integrated circuit

Very large scale integration

Data word length (bits)

Data length including boundary data (bits)

Stub parameter word length

Zero flag

Contents

ABSTRACT

GLOSSARY

CONTENTS

INTRODUCTION ... i

1. TRANSMISSION LINE MATRIX MODELLING .. !

1.1 lNTRODUITION .. 1
1.2 THE TWO DIMENSIONAL TRANSMISSION LINE MATRIX METHOD .. 1
1.3 TLM FOR LOSSY AND INHOMOGENEOUS MATERIALS ..•.................... 8

1.3.1 Stub Theory .. 8
1.3.2 Generation of Capacitance/Inductance Stubs ... 9
1.3.3 Scattering at a Stub Loaded Shunt Node 10

1.4 THE THREE DIMENSIONAL TLM METHOD .. 12
1.4.1 The Stub Loaded SCN .. l4
1.4.2 The Symmetrical Super Condensed Node .. 14

1.5 COMPUTATIONAL EFFICIENCY IN TLM .. 16
1.5.1 Signal Processing Techniques ... 17
1.5.2 Parallel Computing and TLM 17

1.6 APPLICATION SPECIFIC PROCESSORS FOR TLM ... 27
1. 6.1 Review of Existing Application Specific TLM Processors ... 28
1.6.2 Single Node Coprocessor System .. 28
1.6.3 Complete System .. 28
1.6.4 Comparison ofCoprocessor and Complete System Approaches ... 29

1.7 CONCLUSIONS ... 30

2. DIGITAL ARITHMETIC SYSTEMS DESIGN .. 36

2.1 lNTRODUITION ..•.....................•......................... 36
2.2 AN INTRODUCTION TO DIGITAL ARITHMETIC ... 36

2.2.1 Number Representation in the Binary System , ... 36
2.2.2 Fractional Data Representation .. 37
2.2.3 Block Floating Point Representation ... 38
2.2.4 Rules for Binary Arithmetic ... 38
2.2.5 Addition ... 38
2.2.6 Subtraction .. 41
2.2. 7 Multiplication .. 41
2.2.8 Division. ... 43
2.2.9 Bit Serial Binary Arithmetic .. 43

2.3 ERRORS IN DIGITAL ARITHMETIC ... 46
2.3.1 Quantisation Errors ... 46
2.3.2 Truncation Errors .. 49
2.3.3 Overflow Errors ... 49
2.3.4 Normalisation Errors ... 50
2.3.5 Reliability .. , ... 50

2.4 PERFORMANCE ISSUES ..•................. 51

2.5 CONCLUSIONS ... 52

3. A DATA PARALLEL APPLICATION SPECIFIC PROCESSOR FOR TLM•••..•.••.•.•...•.. SS

3.1 INTRODUCTION .. 55

3.2 DESIGNMETHODOLOGY ... : .. 55

3.2.1 Algorithm Development ... 56
3.2.2 Hardware Considerations ... 57

3.3 XILINXXC4000 FPGAs .. 59

3.4 NUMERICAL REPRESENTATION IN THE TLM PROCESSOR .. 61

3.5 DESIGN OF THE TLM PROCESSOR ... 67

3.5.1 VHDL Description of the 2D Shunt Node .. 68
3.5.2 Logic Synthesis .. 69
3.5.3 Testing and Simulation .. 72

3.6 DESIGN DEVELOPMENT ... 74

3.7 DISCUSSION ... 74

3.8 CONCLUSIONS ... 76

4. A BIT SERIAL SCATTER PROCESSOR •....•...••••••••••........•..•..•••.••.••..•......•..............•.....•.•.........• SO

4.1 INTRODUCTION .. 80

4.2 DEVELOPMENT OF AB IT SERIAL ARCHITECTURE .. 80

4.3 IMPLEMENTATION .. 83

4.4 EXPANSION OF THE BIT SERIAL ARCHITECTURE .. 85

4.5 A BOUNDARY EQUIPPED SCATTER PROCESSOR .. 87

4.6 TESTING .. 88

4.6.1 Testbench Design ... 89
4.6.2 Testing Strategy ... 89

4. 7 DISCUSSION ... 93

5. A PARALLEL ARCHITECTURE FOR THE TLM PROCESSOR ... 96

5.1 INTRODUCTION .. 96

5.2 REQUIREMENTS OF THE CONNECT PROCESS .. 97

5.3 SYSTEM DESIGN .. 98

·5.3.1 Connect Memory Architecture ... 101
5.3.2 Connect Logic Architecture ... 105

5.4 A COMPLETE APPLICATION SPECIFIC SYSTEM FOR TLM ... 106

5.5 DISCUSSION ... 107

5.6 A HIGH ACCESS TIME MEMORY ARCHITECTURE .. 110

5.7 CONCLUSIONS ... 111

6 A STUB LOADED SHUNT NODE SCATTER PROCESSOR ... 113

6.1 INTRODUCTION .. 113

6.2 REQUIREMENTS OF AN APPLICATION SPECIFIC PROCESSOR FOR THE STUB LOADED SHUNT NODE114

6.2.1 Algorithm Developmen/ ... 114
6.2.2 Hardware DevelopmenJ ... 117

6.3 SYSTEM DESIGN .. 118

6.3.1 Stub Memory .. 121
6.4 DESIGN ISSUES .. 121

6.5 A BOUNDARY EQUIPPED, STUB LOADED SCATTER PROCESSOR .. 123

6.6 PERFORMANCE ISSUES .. 123

6.7 CONCLUSIONS ... 124

7. THREE DIMENSIONAL TLM MODELLING USING THE SYMMETRICAL
CONDENSED NODE (SCN) ... 127

7.1 INTRODUCTION .. 127
7.2 DEVELOPMENT OF AN APPLICATION SPECIFIC 3D TLM PROCESSOR ... 128
7.3 THESCN SCATIERPROCESSOR .. 129

7.3.1 Algorithm Development ... 129
7.3.2 Hardware Development ... 130
7.3.3 Implementation of Boundaries in the SCN .. 132

7.4 THE 3D CONNECT PROCESSOR .. 134
7.5 CONCLUSIONS , .. 137

8 AN APPLICATION SPECIFIC PROCESSOR FOR MODELLING INHOMOGENEOUS
THREE DIMENSIONAL MEDIA .. 140

8.1 INTRODUCTION .. 140
8.2 DEVELOPMENT OF A 3D TLM PROCESSOR FOR GENERALISED MEDIA .. 140

8.2.1 Algorithm Development ... 140
8.2.2 Stub Loaded SCN 140
8.2.3 Symmetrical Super Condensed Node ... 141
8.2.4 Comparison of the stub loaded SCN and the SSCN ... 143
8.2.5 Hardware Development ... 144

8.3 DESIGN OF AN APPLICATION SPECIFIC SYSTEM FOR THE SSCN ... 145
8.4 DISCUSSION ... 146
8.5 CONCLUSIONS ... 147

9. A RECONFIGURABLE, GENERAL PURPOSE TLM PROCESSOR 150

9.1 INTRODUCTION .. 150
9.2 ARCHITECTURE OF THE GENERAL PURPOSE PROCESSOR ... 151

9.2.1 Implementation of the Reconfigurable TLM Processor ... 152
9.3 DISCUSSION ... 155
9.4 IMPLEMENTATIONOFNON-TLM CALCULATIONS ... 157
9.5 CONCLUSIONS ... 157

10 REALISATION OF THE TLM PROCESSOR AS A PCI CARD .. 159

10.1 INTRODUCTION .. 159
10.2 THE HOST SYSTEM .. 159

10.2.1 The PC1 Bus ... 162
10.3 A PCI CO~PLIANTTLM PROCESSOR ... 163

10.3.1 Scatter Logic .. 165
10.3.2 Connect Logic .. 165
10.3.3 Control Logic ... 166
10.3.4 Bus Arbitration Logic ... : .. 166

10.4 OUTPUTDATAPOSTPROCESSING ... 167
10.5 PREDICTED PERFORMANCE ... 168
10.6 CONCLUSIONS ... 169

CONCLUSIONS ... 172

RECOMMENDATIONS FOR FURTHER STUDY ... 177

PUBLICATIONS

APPENDIX

Introduction

This thesis details the development of a new class of application specific processors

for the transmission line matrix (TLM) method. The initial goal of the work was to

develop a hardware based accelerator for TLM computations. A more structured set

of goals were defined through a review of the literature surrounding this field.

Potential applications for the processor include the motor industry and the electronics

industry. In both of these areas TLM is being applied to increasingly complex

models. A reduction in processing time for large models would provide a significant

commercial advantage in these areas.

The application of TLM to the modelling of wave propagation in two and three

dimensions is introduced in chapter 1. The focus is on applications of TLM in

electromagnetics as this represents the main field of application for TLM, however

reference is made to other fields as appropriate. The discussion is based around the

four main classes of node in electromagnetics. These are the two dimensional shunt

node and stub-loaded shunt node, and the three dimensional symmetrical condensed

node (SCN) and symmetrical super condensed node (SSCN). It is shown that the

computational efficiency of TLM implementations on serial computers is low. This

gives rise to long run times for large simulations. Methods for reducing run times are

discussed, in particular the implementation of TLM on large scale parallel computers.

These methods, while increasing throughput, make inefficient use of available

resources. The two existing classes of application specific processor for TLM are

introduced. A study of their operation reveals that neither class of processor

successfully overcomes the limitations and inefficiency of other implementation

methods. The key limiting factors of the parallel and application specific processing

implementations of TLM are identified. From these a set of goals are derived for a

new class of TLM processor.

• The granularity of the TLM algorithm must be successfully mapped to hardware.

This means both removing redundant elements from the computational hardware

and providing sufficient bandwidth for the connect process.

• The chosen architecture should not limit the processor to a single form of the TLM

algorithm or a single mesh configuration.

• The chosen architecture should be scalable to allow any mesh size to be

implemented.

• The processor must be accessible. That is its use should not be prohibited through

• Portability/size

• Cost

• Programming requirements

Of these, possibly the most often overlooked criterion is that of accessibility. The

new processor is of little practical importance if restrictions of access prevent its use

by the TLM community as a whole.

The aim of this work is to develop an application specific TLM processor that

successfully achieves the goals defined in chapter 1, thus providing a significant step

forward from existing implementations. A series of milestones are identified which

together form an implementation strategy for achieving the specified aims. This

implementation strategy is shown below.

OBJECTIVE MILESTONE

Feasibility study Demonstrate that an application

specific processor can achieve a

performance increase over existing

computers

Definition of suitable target technology and Evaluate technologies for

implementation strategy implementing the processor. Define

the design flow for the chosen

technology

Development of a shunt node processor Demonstration of a working shunt

node scatter processor

Implementation of connect function Demonstration of a complete system

based on an array of shunt node

processors

Extension of scatter processor to other TLM Demonstration of a working

schemes (stub loading, SCN, SSCN) processor incorporating several TLM

schemes

The implementation strategy is designed to provide a structured development path.

The initial design phases focus on the two dimensional shunt node. The shunt node is

chosen as it is the simplest form of TLM, yet it encompasses many of the principles of

the more complex TLM schemes. The shunt node processor is used as the basis for

the development of scatter processors for the stub loaded shunt node, the SCN and the

ii

~--

SSCN. Once an understanding is gained as to the requirements of each form of TLM,

an efficient method of combining the processors to form a general purpose processor

can be found.

Chapter 2 introduces the basic concepts of digital arithmetic. Various architectures

are presented for the four main arithmetic operations, addition, subtraction,

multiplication and division. The compromises between logic complexity and

throughput for these architectures are discussed. The concept of errors in digital

arithmetic is introduced. The discussion focuses on quantisation error. It is argued

that all digital arithmetic is inherently inaccurate and that the definition of an error is

therefore application dependent.

With the clock rates of modern desktop computers exceeding 400 MHz the ability of

an application specific processor to produce an increase in throughput must be

validated. It is shown in chapter 3 that the performance of the processor is closely

linked to the implementation strategy. A review of implementation methods suggests

the use of a field programmable gate array (FPGA) as a development platform. The

Xilinx XC4000 family of FPGAs is shown to have an internal structure well suited to

forming the logic required by the TLM processor. It is argued that the lack of defined

structure for the TLM processor makes it a candidate for implementation using a

behavioural hardware description language. The VHDL language is chosen as it is a

widely recognised standard. The two dimensional (2D) shunt node algorithm is

formulated in VHDL so as to optimise the circuit produced. The trade off between

word length and accuracy is discussed. It is shown that given a sufficiently large word

length, integer arithmetic provides an adequate level of accuracy. The use of a block

floating point scheme is introduced. Logic synthesis is used to create a circuit from

the HDL description. A review of the performance of the circuit, implemented on a

Xilinx FPGA, reveals a potential throughput increase of an order of magnitude against

software implementations at the time of writing. However the circuit does little to

address the primary aims of the research . An array of scatter nodes is formed. This

exhibits. poor scalability and low efficiency. This is shown to arise from the

mismatch between the needs of the TLM connect process and the interconnect

capability of the processor.

In chapter 4 it is shown that the main components of the shunt node processor, i.e. the

ripple carry adders, may be replaced by full adders and delay elements. This

effectively transforms the design into a bit serial shunt node processor. The bit serial

design allows the word length to be varied so that throughput and accuracy can be

iii

balanced to achieve the desired performance. It is shown that simple boundaries may

be added to the shunt node processor by encoding boundary data passed to the

processor. This allows an homogeneous array of scatter processors to operate on a

TLM mesh of arbitrary geometry. The implementation of the scatter processor on a

Xilinx XC4010 FPGA and the testing of its functionality are described .

The bit serial processor overcomes many of the bandwidth problems encountered

when trying to form large arrays of scatter processors. There is potential for a low

bandwidth SIMD array to be developed around the processor. However such arrays

are shown to limit the size of mesh which may be efficiently implemented. Chapter 5

investigates a more efficient mapping of the TLM mesh on to an array of scatter

processors. This gives rise to the concept of a flexible connect logic array which

allows a small number of scatter processors to operate on a mesh of arbitrary size. It

is shown that unlike previous mappings, the new connect logic introduces no

overhead to the calculations.

In order to eliminate any redundant elements from the scatter processor the TLM

scatter equation is mapped directly into hardware. This limits the processor to a single

form of TLM, the 2D shunt node representation. In order to expand the system to

implement multiple TLM schemes an understanding must be gained of the

requirements of each scheme. Chapters 6, 7 and 8 discuss how the TLM system

developed in chapter 5 may be adapted to implement systems for the stub-loaded

shunt node, the SCN and the SSCN. The issues involved in the design of a scatter

processor for each scheme are presented and discussed. Chapter 7 also shows how

the connect logic of chapter 5 may be extended to work in three dimensions.

Chapter 9 demonstrates how the processors for each of the four main node

configurations may be combined in a single architecture. It is shown that by using

reconfigurable processing elements as opposed to reprograrnmable ones all the

processors may be combined without introducing any redundant elements or

instruction streams. The resulting architecture of the TLM general purpose processor

(TLM-GPP) is shown to have achieved many of the aims laid out in chapter 1. The

implications of building a physical processor around the TLM-GPP concept are

discussed.

Chapter 10 examines the importance of the interface between the TLM-GPP and the

user. It is argued that the interface is important not only in terms of performance but

also in terms of ease of use and accessibility. Given the popularity and wide

iv

availability of personal computers, an implementation of the TLM-GPP on a PCI card

is suggested. The modifications required to meet the PCI standard and their effect on

the processor are discussed. It is concluded that while the PCI bus places limitations

on the processor, it offers a development platform for a very powerful TLM processor

within a PC.

The conclusions return to the aims specified in chapter 1 and define how well each

aim was achieved. It is shown that the TLM-GPP successfully addresses all the initial

aims. The potential applications of the processor are discussed and are compared to

those areas considered potential applications at the start of the work. It is concluded

that the TLM-GPP represents a powerful and highly flexible tool for TLM, providing

a significant step forward from existing implementations.

The adaptable nature of the TLM-GPP has been exploited to produce a system with

genuine wide ranging potential. There is still much to discover before the full

potential of this new class of TLM processor is realised. Some key points are

discussed in the recommendations for further study which conclude the thesis.

V

1. Transmission Line Matrix Modelling

1.1 Introduction

Wave propagation is a major factor in all areas of everyday life, although the study of

wave propagation through the use of analytical techniques is practical only in certain

restricted cases. The idea of solving propagation problems via equivalent electrical

networks has existed for many years1
• However such solutions are impractical due to

the difficulty of physically realising large, ideal networks. The advent of the digital

computer has led to the development of various numerical propagation modelling

techniques, particularly in the field of electromagnetics2
, such as the finite difference

time domain (FD-TD), finite element (FE) and transmission line matrix (TLM)

methods. Unlike FD-TD and FE, which are respectively differential and integral

techniques, the TLM method, first introduced by Johns and Beurle3 in 1971, is built

around an array of scattering points each of which may act as a secondary radiator in a

manner similar to that described in Huygens' principle. Thus the TLM method bears

a close resemblance to the physical process of propagation, and is equally applicable

to the study of both electromagnetic and acoustic waves. This chapter offers an

introduction to TLM before discussing the specific issue of computational efficiency.

Conclusions are drawn as to the failings of current TLM implementations and

recommendations are developed for an improved TLM accelerator.

1.2 The Two Dimensional Transmission Line Matrix Method

Maxwell's equations4 for wave propagation in two dimensions may be written as

(1.1)

1

which combine, as demonstrated in the appendix, to give the wave equation,

Analytical solutions to these equations are possible only in restricted cases or through

lengthy mathematical processes. The idea of solving complex numerical problems

through the use of electrical network analogues has been around for many years 1.

Consider an LCR lumped element network, figure 1.1, analogous to a length, ~l, of

transmission line. Through consideration of the rates of change of the voltage and

current in the line we arrive at the telegrapher's equation. A full derivation is given in

the appendix.

(1.2)

Where Lct, Cct and Rct are the distributed inductance, capacitance and resistance of the

transmission line. If we assume that Rct is negligible, i.e. we have an ideal

transmission line, then the resistive term can be neglected and we are left with a one

dimensional wave equation for lossless transmission.

!11

Figure 1.1 - Equivalent Circuit of a Length of Transmission Line

The basic building block ofTLM is the shunt node3
, the two dimensional (2D)

formulation of which is shown infigure 1.2. It is formed by the orthogonaljunction

2

,/
X

Figure 1.2 • Equivalent Circuit of a 2D Shunt Node

of two lossless transmission lines. This unit cell is repeated to fill the region under

consideration with a Cartesian mesh of transmission lines. If !1! is small compared to

the shortest wavelength under consideration then the node may be assumed

infinitesimally small and the voltage and current changes at the node, according to

Kirchoff's laws, are given by

(1.3)

which may be combined as for Maxwell's equations, yielding the wave equation,

3

Comparison of equation 1.3 with Maxwell's equations, equation 1.1, reveals the

equivalences

Ey = Vy,

-Hx = Ix,

-Hz = Iz

Jl = L, E = 2C

Although this discussion is centered on modelling electromagnetic phenomena it is

noted that, from the basis of a suitable model or set of equations in the form of

equation 1.3, the TLM method may be used to study any form of transverse wave

propagation. Of particular note is the wide application of TLM to acoustics5 where

equivalences are formed between the shunt node capacitance and inductance and the

material properties of compressibility and density respectively.

A voltage impulse approaching a node 'sees' an impedance one third that of the line

segment due to the three branches leaving the junction. This gives rise to a reflection

coefficient, p, of
1
-- 1
3 1 p------- 1 - 2
- + 1
3

and therefore a transmission coefficient in the other three branches of (l+p) = +112.

Superposition of reflected and transmitted impulses for all four branches gives rise to

a scattering matrix at the node which is commonly stated as6

Vt r -1 1 1 1 Vt i

Vz 1 1 -1 1 1 Vz
- (1.4) v3 2 1 1 -1 1 v3

v4 1 1 1 -1 v4

and which may be expressed as

(1.5)

where the suffixes i and r denote incident and reflected impulses respectively and k is

the iteration counter.

4

The velocity of impulses along the transmission lines is constant, therefore the

discretisation of the spatial domain leads to a corresponding discretisation in the times

at which scattering events occur. Impulses scattered from a node traverse a distance Ll

l in a time

Lll
Llt=­

u

where Lll is the node separation and u is the wave velocity. Llt is the iteration time,

impulses scattered from a node at a time t form the incident impulses upon the

neighbouring nodes at a time t + M. This process may be summarised by the TLM
. 3 connect equatwns

k+l vi(z, x) =k V3 (z, X - 1)
k+l V~ (z, x) =k V4 (z - 1, x)
k+l vHz. x) =k VI (z, X + 1)
k+l V~ (z, x) =k V2 (z + 1, x)

The modelling of propagation within the array follows an iterative sequence.

1. Excitation - The field components modelled at each node may be excited by

applying the appropriate voltages or currents to the node.

(1.6)

2. Scatter- Radiated impulses are calculated at each node according to equation 1.4.

3. Connect- New incident values at each node are calculated from equation 1.6.

Data can be output from the array for visualisation purposes either as individual

impulses or as the total energy incident upon each node in the array. Stages 1-3 are

repeated until sufficient data is recovered to formulate a solution in the time domain

or, via a Fourier transform, in the frequency domain. Sample outputs from TLM code

written in C++ are presented infigure 1.3. The ability to view the wave intensity at

all points in the mesh simultaneously with little computational overhead is one of the

major advantages of TLM.

Many practical problems require the modelling of a closed system, therefore TLM

requires some form of boundary representation. To preserve synchronisation of the

impulses within the mesh, boundaries are traditionally placed at a distance Lll/2 from a

node. An impulse launched from a branch of a node upon which a boundary is

present will be returned to the same node in the next iteration. Simple electric or

magnetic walls can be formed by respectively short circuiting (p = -1) or open

5

Figure1.3(a) - TLM Model of Dolphin Echolocation Beam Forming1

Figure 1.3(b)- Diffraction of a Wavefront Through a Narrow Slot

1 Flint, J.A et al 'Visualising Wave Propagation in Bi~-Acoustic Lens Structures using the
Transmission Line Matrix Method', Proc. of the Institute of Acoustics, Vol. 19(9), pp.29-37, 1997

6

circuiting (p = 1) the relevant branch. More general boundaries can be represented by

modifying the connect equation for that branch thus

(1.7)

where p is the reflection coefficient of the boundary and -1 :::; p :::; + 1.

It has been shown3 that the propagation velocity of a wave travelling upon the mesh is

dependent upon the direction of travel and the mesh discretisation. The constituent

axial components of a wave travelling at 45. to the axes have identical phase and

amplitude, therefore when they converge at a node both will 'see' an impedance
1

match. Propagation at 45· to the axes is hence unperturbed with a velocity of .fi u .

However axial propagation is frequency dependent, giving rise to the dispersion

characteristic offtgure 1.43
• If M//..:::; 0.1 then dispersion is low and may be ignored.

It is therefore accepted practice to allow at least 10 nodes per wavelength at the

highest frequency encountered in a given problem.

0.75 .--------------------------,

<:
.2

0.7

; 0.65
0..

.!!l
0
"C .,
,!:)

~ 0.6
0
z

0.55

0.5~----------------------~
0.0

Normali; ed Frequency Al
-i\-

Figure 1.4 • Shunt Network Dispersion Characteristic

0.25

· A second two dimensional node exists. This is created from the connection in series

of four lossless transmission line segments. The series node is shown infigure 1.5.

7

The series node scattering matrix has a similar form to the shunt node scattering

matrix. Solutions to the series node are of the form:

1 [~ ·] r
k+l V~ = 2 ~ k V~ -k Vs-" ..

+----M--+1
2

L~l

2

Figure 1.5- The Two Dimensional Series Node

Cjj.f

2

1.3 Two Dimensional TLM for Lossy and Inhomogeneous Materials

1.3.1 Stub Theory

In the field of electromagnetics two of the most important properties of a material are

its permittivity, E, and its permeability, !l· Similarly in acoustics the important

properties are compressibility and density. These properties affect the propagation of

waves within the material. The method for varying these properties within the TLM

mesh is identical in both acoustics and electromagnetics, only the definitions change.

For simplicity this discussion is focussed on electromagnetics.

Media with regions of varying permittivity/permeability exist throughout

electromagnetics, common examples including the dielectric/plate interface of a

parallel plate capacitor and the substrate (dielectric)/air interface in a microstrip line.

8

The two dimensional (2D) TLM shunt node represents an homogeneous medium of

permittivity Eo and permeability J.lo. From equations 1.1 and 1.3,

2C =Eo

where L and C are respectively the distributed inductance and capacitance of the

transmission line. In order to model a region of relative permittivity Er, (such that

permittivity E =Eo. Er), an extra capacitance must be introduced at the node. Similarly

extra inductance is required to model a medium of permeability J..l. = J..l.r.J.lo. The extra

capacitance/inductance is produced through the addition of stubs to the node.

Capacitive stubs are usually used with shunt nodes and inductive stubs with series

nodes.

1.3.2 Generation of Capacitance/Inductance Stubs

Consider the transmission line segment of figure 1.1. Assuming the length of the line

is short such that tan ~x == ~x, a line segment of length x exhibits a complex

impedance7

Z(x) = Zo [ZL + Zo !f3x]
Zo + ZL ;/3x (1.8)

If ZL = 0, i.e. the end of the segment is short circuited, then Z = j.Z0~x, and the line

exhibits an inductive impedance.

If ZL = oo, i.e. the end of the segment is open circuited, then Z = -j.Z0~x, and the line

exhibits a capacitive impedance.

Thus the capacitance/inductance of a TLM node may be increased by adding an

open/short circuited length of transmission line called a stub. The length of the stub is

chosen to be t:.l/2, thus ensuring that impulses scattered in to the stub and returned to

the node are synchronised with the other impulses within the mesh.

Lossy materials, such that impulses passed between nodes are attenuated by a factor

e-at;J, may be represented by the addition of an infinite length or perfectly matched

stub to the nodes6
• Energy scattered in to this loss stub is absorbed and is not returned

to the node.

9

1.3.3 Scattering at a Stub Loaded Shunt Node

Consider the stub loaded shunt node of .figure 1.68
• Impulses incident upon one of the

four branch inputs encounter a reflection coefficient

/
' '

Pu =
y- 2

y

Al
2

i = 1..4

/
Vs

--------------------~

Figure 1.6 - Stub Loaded Shunt Node

and hence a transmission coefficient

2

y
k :;e i

Impulses reflected from the permittivity stub encounter a reflection coefficient at the

node of

2 Yo- y
Pss = y

10

This yields a transmission coefficient of

2 Yo
T;s = 1 + P55 = i =/: 5

y

Superposition of reflections and transmissions from all input ports gives rise to a

scattering matrix8 for the stub loaded shunt node of

VI r 2- y 2 2 2 2 Yo Vt
i

Vz 2 2- y 2 2 2 Yo Vz
1 v3 - 2 2 2- y 2 2 Yo v3

v4 y
2 2 2 2- y 2 Yo v4

Vs 2 2 2 2 Yo- Y Vs

(1.9)

where Vs is the capacitive stub voltage and y = 4 + Yo +go. Yo is the capacitive stub

normalised admittance and go is the loss stub admittance. This can be reduced to an

explicit form thus,

(1.10)

Although the explicit form is less frequently quoted it offers an alternative to matrix

calculation.

The stub loaded node of figure 1.6 represents a medium of

Yo
£, = 1 +-

4

It is clear that if no stubs are present equation 1.10 reduces to the standard two

dimensional scattering equation, equation 1.5. Note that no alteration is required to

the connect process as the capacitive stub voltage is returned to the same node in the

next iteration and the loss stub voltage is absorbed. Equation 1.6 still holds, with the

additional term

11

The introduction of stubs modifies the values of the attenuation and propagation

constants for the TLM mesh8
. This alters the form of the axial dispersion

characteristic of the mesh, which becomes dependent upon y0. Diagonal propagation

remains frequency independent.

A mesh of series nodes may be loaded with inductive or permeability stubs of

normalised impedance zo and a lumped element series resistance r0. The properties

and scattering matrix of the stub loaded series node may be derived in a similar

manner to the above shunt node properties. y0 is replaced by an impedance zo, and y

is replaced by z = 4 + zo + r0. The scattering matrix has a similar form to that of

equation 1.9.

In a series node mesh the interface between regions of differing permittivity is treated

-as an anisotropic, partially reflective boundary. The reflection and transmission

coefficients are determined by the ratio of the intrinsic impedances of the two regions.

As with the boundaries of objects within the mesh the boundaries between media of

different parameters are assumed to lie at a distance M/2 from the nodes. The same

principles apply to the boundaries between regions of varying permeability in a shunt

node mesh.

1.4 The Three Dimensional TLM Method

Two dimensional models are widely used in acoustic simulation, however in

electromagnetics 2D problems are of limited importance. Most practical EM

applications for TLM require the modelling of propagation within a three dimensional

(3D) medium. A 3D TLM mesh is formed from a 3D Cartesian array of nodes. Each

node must be capable of modelling 3 electric and 3 magnetic field components. This

was originally accommodated by creating a 3D node from a combination of 2D shunt

and series nodes9
• In this distributed node the electric and magnetic field parameters

are spatially distributed among the shunt and series nodes. Electric and magnetic

walls must therefore be defined at different locations within the mesh to maintain their

positioning !:J.l/2 from the nodes representing the relevant field components. To

overcome these limiatations the distributed node was modified to model all field

components at a single point, yielding the asymmetric condensed node10
. This 3D

node brings together the connections between the series and shunt nodes at a single

point.

12

A considerable step forward in 3D modelling was provided in the form of the

symmetrical condensed node (SCN)11 ,figure 1. 7. Unlike the shunt and series nodes

in which the scattering parameters are developed from equivalent circuits, the

scattering matrix of the SCN was formed from a consideration of field parameter

conservation within the region modelled by the node.

Figure 1.7 ·The Symmetrical Condensed Node

This gives rise to a sparse 12 x 12 scattering matrix, equation 1.11 11
• The 12 ports of

the SCN are arranged such that 2 cross-polarised ports are presented at each of the 6

Vt r 1 1 -1 VJ

v2 1 1 -1 1 v2
v3 1 1 1 -1 v3
v4 1 -1 1 v4
Vs 1 1 -1 1 Vs

(1.11)
v6 1 1 1 -1 v6

-
2 -1 v1 1 1 v1

Vs 1 -1 1 1 Vs

v9 -1 v9
v10 -1 1 1 v10
Vu -1 1 1 1 Vu

V12 1 -1 1 1 vl2

13

and

v:pj - v:nj + V~ni - V~pi

Zu + zji

The characteristic impedance of a link line is given by

zij =
.

It can further be shown 14 that in the case of a uniform mesh in which ~ = l:iy = & = 11

l only two characteristic impedance parameters are required.

z
Zxy = Zyz = Zzx = Zp =

AI (1.16)

Zzy = Zxz = Zyx = Zn = Z A1

Where Z is the characteristic impedance of the background medium

Z=~

and the parameter A1 is given by

It is clear from the above that in the case of a background medium where Er= J.lr = 1

the parameter A1 = 1 and Zp = Zn = Zo. The SSCN therefore reduces to the basic

twelve port SCN.

1.5 Computational Efficiency in TLM

As TLM is applied to increasingly complex problems the run times on serial

computers become prohibitive17
• Serial computers are limited to processing a single

operation at a time. Any increase in the number of operations required to perform a

given function leads to a corresponding increase in the processing time required.

Hence the introduction of more complex algorithms for inhomogeneous media, more

16

effective boundary conditions18
'
19

, graded meshes20 and other refinementse.g.21 to the

basic scatter and connect techniques increase the time taken for each scatter or

connect operation. The move to larger meshes, particularly in 3D, and finer meshes

for studying more detailed phenomena increase the number of nodes and therefore the

number of times the scatter-connect processes must be applied in each iteration. In

order to maintain the usefulness of TLM when applied to complex models the run

times must be reduced.

1.5.1 Signal Processing Techniques

The number of iterations required to obtain a solution can be reduced through the use

of digital signal processing (DSP) techniques. The most commonly used in TLM are

the Prony-Pisarenko method22
,
23 (PPM) and the Auto-Regressive Moving Averages

(ARMA)22 technique. Both of these reduce the number of iterations required to

achieve a solution to a given accuracy by interpolating future responses from

knowledge of the previous behaviour of the system. Both may be used to good effect

when frequency domain results are required, as they require fewer samples to obtain a

solution than the traditional Fourier transform.

A wide range of high throughput DSP chips (e.g. C40, Share) is available. Each has

an internal architecture optirnised for high speed arithmetic. Such processors may

offer a significant increase in performance for TLM applications24
. However these

processors are still constrained by the use of a serial internal architecture. While

arithmetic instructions may be executed faster than on a PC, the same limitation of

processing a single instruction at a time exists. In most cases, as with a PC, the

instruction set of these processors is over specified for the requirements of a TLM

processor.

1 .5.2 Parallel Computing and TLM

The explicit nature of the scatter and connect processes allow them to be performed at

all nodes simultaneously. For concurrent scatter or connect operations performed at

any pair of nodes the input (Vi) and output (Vr) data sets for those operations satisfy

Bernstein's Condition

(v~ n v~) u (v~ n v~) u (v~ n v~) = o

17

This states that the output of any given node within a single iteration is independent of

the output of any other node within that iteration. One way to take advantage of this

inherent parallelism would be to implement TLM on a parallel computer. This would

produce an increase in computational performance as the scatter and connect

processes could be applied simultaneously to the entire array in each iteration.

Amdahl' s law25 may be used as an indicator of how suitable an algorithm is for

parallel implementation, based on the fact that any operations that must be performed

serially within an algorithm will limit the maximum speed up achievable through

parallel execution. Thus

1
s :5, -..,--(1--J....,...)

f +-'----~
p

where S is the achievable speed up,

f is the fraction of operations that must be performed in serial, 0 :5, f :5, 1

p is the number of processors in the parallel architecture

(1.17)

In TLM both the scatter and connect routines may be performed in parallel, i.e. f = 0.

Amdahl's law then reduces to S :5, p, the only limit on the achievable speed up is the

number of processors available. This implies that TLM is highly suited to parallel

implementation. This equation, however, does not take in to account the limitations

introduced through the choice of parallel architecture, or operations such as reading

output data, which will increase f and therefore reduce S.

1.5.2.1 Parallel Architectures

The classification of parallel computers according to Flynn26 places architectures in to

one of four groups depending upon the number of instruction and data sets acted upon

concurrently.

SISD - Single Instruction - Single Data. SISD computers have one processor and can

only perform one instruction on a single set of data at any time. This category

includes PCs, workstations and similar single processor systems.

SIMD - Single Instruction - Multiple Data. SIMD systems can perform a single

instruction simultaneously upon many data sets, thus a single set of instructions need

only be applied once to process a whole array of data. SIMD machines have difficulty

executing conditional statements as they often lead to the formulation of multiple

instruction streams.

18

MISD - Multiple Instruction - Single Data. This is the least practical and least

common of the classifications. An MISD machine is capable of performing many

instructions simultaneously upon the same data. Each instruction operates on a copy

of the same data and is therefore incapable of affecting the results of the other

processors.

M/MD - Multiple Instruction - Multiple Data. MIMD machines are the most powerful

of all the classifications, as they are capable of executing multiple programs

simultaneously.

Each of the basic types is illustrated graphically infigure 1.8.

There are two other common architectures that do not fit readily in to Flynn's

classification, the systolic array processor and the pipeline processor. In a pipeline

processor a task is divided in toP subtasks, each of which is assigned a processing

element (usually SISD). The output of one processor forms the input to the next, thus

partial results are passed between the processors in a manner analogous to a

production line. All processors are active concurrently thus improving throughput so

long as the pipeline is continually fed new data.

Asystolic array, from Johnson et ae7
, is 'a grid like structure of special processing .

elements that processes data much like an n-dimensional pipeline. Unlike a pipeline,

however, the input data as well as partial results flow through the array. In addition

data can flow in a systolic array at multiple speeds and in multiple directions. Systolic

arrays usually have a very high rate of 1/0 and are well suited for intensive parallel

operations.' This class of systolic array may be termed data systolic to

19

Instruction

CPU
Oat a In

Figure 1.8a Single Instruction Stream, Single Data Stream (SISD) Architecture

Data In A

CPU

I nstru et ion

'

CPU

Data In B

Figure 1.8b Single Instruction Stream, Multiple Data Stream (SIMD) Architecture

20

Instruction A
Data Out A

CPU

Oat a In

Data Out B
CPU

Figure 1.8c Multiple Instruction Stream, Single Data Stream (MISD) Architecture

Data Out A
CPU

Data Out B
CPU

Figure 1.8d Multiple Instruction Stream, Multiple Data Stream (MIMD) Architecture

21

differentiate it from a more recent development in parallel processing, the instruction

systolic array processor (ISP). In the ISP streams of instructions flow through an array

of static data. A second stream of flags controls the application of the instructions to

the required data locations. The ISP has the advantage that, unlike data systolic

arrays, the instruction performed is independent of the location within the data array.

This leads to more efficient coding and lower redundancy (ie. less inactive

processors). This efficiency i~ained at a price. Each processing element must be

capable of performing a whole set of instructions. ISPs therefore generally require

more complex processing ele nts than data systolic arrays.

1.5.2.2 Parallel Implementations of TLM

The idea of applying TLM on a parallel computer has been investigated by a number

of groups in recent years. Table 1.1 gives a summary of the methods used and results

produced through these applications.

So et al.28
,
29 utilised the DECmpp12000 SIMD parallel computer and a number of HP

workstations to implement both 2D and 3D TLM. A combination of parallel

computing and signal processing were used to achieve a speed up factor of 34.

However the low data transfer rate between the DECmpp12000 and the DECS000/200

front end limited the speed up factor to 18 when a c.w. input was injected in to a

single point in the mesh. Three dimensional arrays were formed by creating arrays of

data at each processing element.

Dubard et al. 16 implemented TLM on the :MIMD architecture of the CM-3 connection

machine. A three dimensional stub loaded SCN mesh was created. The connect

architecture of the CM-3 allowed a three dimensional mesh to be mapped directly on

to the processor array. A speed up factor of 70 was achieved. Results were compared

to a 20 MHz 80386 processor

Luthi et al.30 tested the efficiency of TLM on a variety of parallel computers

incorporating both SIMD and MIMD architectures. The results were used to derive an

empirical formula linking execution times to the ratio of calculation time to

communications time.

(1.18)

22

tp =execution time

a = unit calculation time

n = problem size

p = no. of processors

bn oc communications overhead

The results suggest that those systems which use direct interconnects are more

efficient than those using message passing systems with large communications

overhead.

Tan and Fusco31 implemented a stub loaded shunt node mesh on the bit serial SllviD

architecture of the AMT DAP510. A small mesh was used in the test as the DAP510

has only a 32 x 32 array of processing elements. Larger meshes may be processed in

32 x 32 partitions. Execution time is proportional to the number of partitions in the

mesh.

Parsons et al. 32 implemented TLM on a distributed array of SISD Spare workstations

using PVM (parallel virtual machine) software. Various mappings of a mesh on to the

array were tested in order to study the effect of the mapping on the performance of the

system. In particular the ratio of computation to I/0 was varied. It was shown that

this ratio has a strong effect on the speed up factor achieved. The effect was

exacerbated by the serial data link between the machines.

Although the techniques, hardware and system complexity varies greatly between

individual applications there are a number of general conclusions that may be drawn.

• None of the processors optimally matches the granularity of the processing

elements with that of the problem. In the case of the AMT DAP510 the single bit

processors require much manipulation of data between the processor and local

memory. In the other cases, e.g. Du bard et al, the processors are capable of far

more complex operations than the simple calculations required for TLM, therefore

much of the system's potential is unused.

• With the exception of the work of Parsons et al. all applications map one

processor to one node in the mesh. This limits the number of nodes in the mesh to

the number of processors available. So et al. mapped a 3D mesh to a 2D connect

scheme by mapping the third dimension to ID arrays within the local memory of

each processor, thus each processor maps to one node in each plane of the model.

This restricts the number of nodes in the third dimension as local memory is

limited.

23

REFERENCE 29,30
HARDWARE DECmpp12000

DEC5000/200
HP Workstation

ARCHITECTURE SIMD
NO. OF 8k

PROCESSORS
SCATTER* p
CONNECT* p

SOFfWARE MPLIMPF
MAPPING 1-1 (2D)

10-1 (3D)
SPEED UP 34 x Plain

18 x Gaussian Input
c.f. DEC5000

EFFICIENCY 0.4%-0.2%
COMMENTS Used arrays in local memory

to map 3D mesh on to a 2D
connect scheme. Integrated

with OSA90/hope CAD
software.

* P = Parallel Operation

S = Serial Operation

24
Connection Machine CM-

3

MIMD
16k

(8k Used)
p
p
c·

1-1 (3D)

-70x
c. f. 20MHz 386 PC

0.85%
Full stub loaded 3D. The

CM-3 connect scheme
allows 3D arrays to be

mapped directly.

31 32
Various AMTDAP510

Various SIMD
Various 1024

(32 * 32)
p p

Various p

Various Fortran Plus
Various 1-1 (2D)

Tp=an2/p + bn -10 X

tp - Exec. Time c.f. V AX9000
a - Unit Calc. Time
n -Problem Size
p- No. of Processors
bn - Comms. Overhead

- 0.97%
Results suggest that TLM Single bit processors with
runs more efficiently on dedicated near neighbour

SIMD machines with interconnect.
direct interconnect as Performance is dependent

opposed to those using upon model dimensions.
message passing.

Table 1.1 - Comparison of Implementations of TLM on Parallel Computers

24

33
Sun Spare Workstations

SISD/PVM
12

(12 * 1)
PIS
s

PVM
Various

3.5 -8.72 X

c.f. Single Sun Spare

29.1-72.7%
Studied effect of mapping
on performance. Message
passing is a major factor,

partly due to the serial link
used.

• TLM exhibits a very high ratio of I/0 to computation, therefore applications

require very high data bandwidths. The equation used by Luthi et al. to measure

performance highlights the importance of this. As a 1 to 1 mapping is used in

most cases, n2/p = 1 and the dominating factor becomes the communications

overhead, b0 • The work of Parsons et al. shows the importance of limiting the

data bandwidth in distributed computing. It has been shown that the effectiveness

of a given distribution of a mesh between a number of workstations is inversely

related to the volume of data that must be transferred after each iteration.

• So et al. show the effect of communications overhead when data is injected in to

or extracted from the mesh. The performance of their implementation on the

DECmpp12000 falls by almost 50% when a continuous, Gaussian waveform is

injected in to the mesh c.f a single iteration impulse.

• Amdahl' s law stated that for TLM the maximum achievable speed up is equal to

the number of processors used. A rough measure of the success of each

implementation can be gained by comparing the speed up achieved to the

theoretical maximum. The efficiency row of table 1.1 shows the actual speed up

as a percentage of the theoretical maximum. This is not an exact figure as it does

not take in to account the serial operations required for I/0 etc. however these

form only a very small percentage of the total number of operations performed. It

is also recognised that speed up is often quoted with respect to a second machine

as opposed to a single node of the parallel architecture. One reason for the very

low efficiency demonstrated is that restricted data bandwidth prevents I/0

operations from being performed in parallel, thus the ratio of I/0 to computation

increases dramatically.

• Each implementation uses a different programming language and each processor

has its own executable format. Therefore code is not portable between

implementations.

• In all cases the hardware requirements are impractical. Parsons et al. used 12 Sun

Spare workstations linked as a single Parallel Virtual Machine (PVM). While it is

true that a network of workstations is commonly found in educational and research

establishments, it is not necessarily true that these are all available simultaneously

and may be taken over for a single experiment. In all other cases some or all of

the hardware used is of limited availability, costly and inaccessible to most people.

Many of the problems listed above arise due to a mismatch between the requirements

of TLM and the provisions of the chosen architecture. The TLM method consists of

two distinct processes, scatter and connect. Each of these has separate requirements.

Consider firstly the scatter process. Whichever form of the scattering equation is

used, the process consists of the application of a scattering equation to the input data

of each node in the array. This would appear to be highly suited to solution on an

SIMD machine on which the same instruction is applied simultaneously to a whole

array of data. However the TLM array is inhomogeneous on a computational level.

Sources, receivers and boundaries all require handling differently to the rest of the

array. The approach favoured on most SThiD machines is to mask out any processors

to which a given instruction, e.g. the injection of an impulse, does not apply. This can

reduce the performance of a system considerably as demonstrated by So et al. There

is a need for a degree of local autonomy33 within the mesh, some processors must

have the freedom to behave differently under certain circumstances.

The connect process, the application of equation 1.6 to each node in the array, results

in a flow of data between neighbouring processors. A systolic approach may therefore

be expected to yield results. However none of the implementations reported utilise a

systolic connect strategy. Again the need for a degree of local autonomy is present

when dealing with boundaries. Data transfer is often the slowest part of a system, as

demonstrated by computationally intensive processes where instruction fetching can

lead to bottlenecks. In many of the implementations described above data must be

transferred to a slower host system for visualisation or post-processing. Flynn 19

describes [parallel computers] as 'suitable for problems characterised by a high ratio

of computing requirement to I/0 requirement', however in TLM this is clearly not the

case. Even the scattering matrix of the stub loaded SCN can be solved using only 54

addition/subtraction operations and 12 multiplications34
• Most large scale parallel

computers are designed to perform considerably more computation per data transfer

therefore in many cases the data bandwidth required can not be provided by the

chosen architecture. Flynn19 again summarises this problem by saying that for SIMD

machines 'latency in the instruction stream is often replaced by latency in the data

stream caused by operand communication problems'. This is demonstrated by Luthi

et al. who show that communication costs vary in inverse proportion to the processing

rate in the systems they reviewed, thus as the performance of the individual processors

improves the communications overhead increases to offset some of the increase in

performance. It is clear therefore that while many systems may provide the required

physical interconnections for TLM they can not provide sufficient bandwidth. This

will limit the rate at which the computations are performed.

26

..

The architecture of the system poses an interesting trade off between the freedom to

select arbitrary mesh geometries and throughput. The use of a large array of

processors, where one processor is dedicated to each node in the model, allows the

whole array, or large partitions of it, to be processed concurrently. However such

arrays have a restricted input/output data bandwidth. Either the number of nodes in

the model must be limited to the number of processors available or much of the

performance increase achieved through parallel processing is lost through slow data

transfer rates between partitions of the model. The use of only a small number of

processors limits the size of partition of the model that may be processed

concurrently, therefore reducing throughput. However the reduction in required

bandwidth as the mesh partition sizes are made smaller makes the transfer of data

between partitions of the model a realistic proposition. The advantage of the latter

architecture is that by processing the model in smaller partitions and transferring data

between them the restrictions on the size of the model imposed by the one to one

mapping of the mesh on to the processor array may be removed. However the

advantages of partially parallel operation are maintained. The high efficiency ratings

of the TLM implementations by Parsons et al confirm the viability of this type of

architecture.

1.6 Application Specific Processors for TLM

Software based TLM is an iterative process. Loops of instructions apply the scatter

and connect processes to each node in turn. The parallel processing methods outlined

in section 1.5 reduce computation times by performing the scatter and connect

routines many times simultaneously, thus reducing the number of times each loop is

performed to process the whole mesh. One further way to increase performance is to

reduce the time taken to perform each loop. It was shown in section 1.5.2.2 that poor

matching of processor granularity to that of the problem leads to computational

inefficiency. If the processor granularity is too low then partial results must be

manipulated to yield a final value, if it is too high then time is spent fetching and

decoding complex instructions. The development of an application specific processor

for TLM would allow the processor granularity to be matched to that of the problem,

overcoming the loss of efficiency caused by a granularity mismatch. In the long term,

systems with reduced computational complexity deliver higher performance at lower

cost, the success of RISC (Reduced Instruction Set Computing) based processors in a

wide range of computers confirms this principle. Two application specific approaches

to reducing run times in TLM have been studied.

27

1.6.1 Review of Existing Application Specific TLM Processors

Existing application specific processor designs for TLM fall_ in to two distinct

categories, complete systems on to which the TLM array is mapped and single

processors which are utilised by software to perform the scatter operation. The

following sections evaluate and compare the two approaches.

1.6.2 Single Node Coprocessor System

Sal eh developed the coprocessor approach35
. A single RISC processor was developed

around the two dimensional, stub loaded shunt node algorithm. A host system runs

the main TLM code and each time a scatter operation is encountered the data is passed

to the TLM coprocessor. This performs a scattering computation and returns the

scattered data to the host. The TLM array is defined in software, therefore any mesh

size may be accommodated dependent upon the available memory. An instruction

register and several control lines provide some control over the configuration of the

processor for each node. All data regarding the composition of the array and the

material properties at each node are held by the host system, the only data storage on

the processor is a stack for holding partial results during calculations. Performance

increase is achieved by performing the scatter calculations using optimised hardware.

This removes the need for instruction fetch and decode cycles for these calculations.

Software running on an LSI-11 computer achieved 62 node iterations per second,

where as the same software on an LSI-11 equipped with the coprocessor achieved

1670 node iterations per second, a speed up factor of 27. These results were limited

by the technology of the time, the processor was built from discrete ICs with high

propagation delays. The LSI-11 uses a 16 bit data bus, therefore the processor utilised

16 bit floating point data with an 8 bit mantissa and 8 bit exponent. The numerical

accuracy of the processor was low due to the limitations of the 8 bit mantissa.

1.6.3 Complete System

Gregory designed a complete application specific, parallel TLM system36
. The system

was developed around an array of bit serial processing elements, which performed a

basic 2D scattering operation on their input data. A number of these PEs were

arranged in an SIMD array on to which the TLM mesh was mapped with one node per

28

PE. All integer data regarding the energy within the mesh was stored on the array.

The results produced were subject to delta modulation for error stacking, thus anN bit

output took zN clock cycles to generate. One consequence of this is that throughput

reduces exponentially with word length. It was shown that any word length above 11

bits would be less efficient than a theoretical software implementation on a 100 MHz

serial processor. The PE was developed through full custom IC design. Although the

system was never realised it was verified through simulation, with 2 interconnected

nodes being tested.

1.6.4 Comparison of Coprocessor and Complete System Approaches

The system described in section 1.6.2 and that of section 1.6.3 both produced a

performance increase over software implementations of TLM, however both systems

retain some of the limitations imposed by traditional parallel architectures.

• The use of a coprocessor design reduces the restrictions on mesh size, however it

limits the achievable throughput increase as the architecture does not utilise

parallel processing. Gregory's design increases throughput both by improving the

efficiency of the scatter operation and introducing parallelisation.

• An array implemented using Gregory's system is limited not only in size but in

configuration as the interconnections between the PEs are hardwired.

• Saleh's processor greatly reduces data bandwidth as data is passed to only one

node in each transaction. Gregory also reduces bandwidth through the use of a bit

serial design. However the choice of bit serial algorithm forces the use of delta

modulation, greatly increasing the number of clock cycles required to process a

given word length.

• Both processors are limited to implementing a single TLM scheme, 2D shunt node

in the case of Gregory and stub loaded 2D shunt node in the case of Saleh. There

is no room for expansion, the limited reprograrnmability of Saleh's processor only

allows for placement of simple open and short circuited boundaries and the

specification of material parameters within the given scheme. Gregory's

processor fixes both the material parameters and the location of the boundaries.

It is clear from the above that neither system is ideally suited to TLM. The

development of an application specific processing element increases the efficiency of

the implementation by removing redundant computational steps. However as

efficiency increases, flexibility decreases and the most efficient processors are limited

to implementing a single form of the TLM algorithm. Saleh's approach produced a

significant performance increase given the technology available at the time. However

29

with modem computer systems latency in data transfer, as opposed to computation

rates, has become the overriding limitation on performance. It is therefore unlikely

that such a system would produce similar performance increase over modem

processors due to the high number of data transfers required. There is, therefore, a

necessity for some degree of parallelisation. Gregory's system demonstrates a

fundamental problem with parallel architectures for TLM. The number of PEs

available limits the mesh size that may be implemented. With the exception of very

large scale parallel computers, the number of PEs is limited. Gregory's system was

developed around the concept of a chip containing a 3x3 array of nodes. With the

potential to realise 2 or 3 chips per board and 2 boards per PC, an array of at most 54

nodes is possible. No details were given as to how the chips, or the boards, would

communicate. Very few models of any practical interest could be solved using an

array of this size. Modem fabrication techniques have increased the number of nodes

which may be realised on the same area of silicon but as the number of nodes

increases so the data bandwidth and pin count for each chip also rises, rapidly

becoming the most significant limitation on array size.

1.7 Conclusions

Run times for software based TLM applications on serial computers are becoming

prohibitively large. More efficient software schemes offer some improvement but the

serial architecture of the PC places fundamental limits on the performance that may be

achieved. Applications using parallel and distributed computing to take advantage of

the inherent parallelism of TLM have been investigated. However a mismatch

between the architecture of the parallel computer and the requirements of the TLM

algorithm limit the efficiency obtainable. The mismatch problem may be overcome

through the development of an application specific processor, using either a direct

mapping of the TLM algorithm in to hardware or a reduced instruction set (RISC)

approach. Existing application specific processors for TLM have failed to overcome

the majority of the problems associated with parallel applications. Two classes of

processor architecture exist for TLM, single node processors and large arrays. Both

architectures reduce computational redundancy in the processing element, however

neither architecture addresses the problems associated with the connect process and

the mapping of the array in to hardware/memory. Single node processors handle the

connect process as a software routine where as array based processors use hard wired

near neighbour interconnects in a manner similar to an SIMD or systolic array. Many

30

of the problems associated with parallel implementations of TLM are caused by the

connect process, such as bandwidth limitations restricting data I/0 rates.

From this review of parallel and distributed processing implementations of TLM it is

clear that existing solutions for increasing computational rates make inefficient use of

the resources available. The literature highlights a number of issues relating to the

design of TLM accelerators.

• The granularity of the TLM algorithm must be successfully mapped to hardware.

This means both removing redundant elements from the computational hardware

and providing sufficient bandwidth for the connect process.

• The chosen architecture should not limit the processor to a single form of the TLM

algorithm or a single mesh configuration.

• The chosen architecture should be scalable to allow any mesh size to be

implemented.

• The processor must be accessible. That is its use should not be prohibited through

• Portability

• Cost

• Programming requirements

This thesis aims to demonstrate how each of these issues may be addressed through

the development of a new class of TLM processor. Concepts are introduced for the

efficient mapping of the scatter and connect routines in to hardware. These concepts

are developed to give a description of a complete hardware based TLM accelerator.

One key measure of the success of the new processor is its efficiency score, as defined

in Table I for previous implementations. However success must also be measured

against resolving the above issues and producing an increased processing rate with

respect to software based implementations of TLM.

The brief for the implementation of the new class of TLM processor is very open. A

clear implementation strategy is therefore required to ensure a successful outcome.

The strategy must break the work down in to a logical sequence of goals, the success

of which may be measured by attaining certain milestones. There are many extensions

to the TLM method, however it is not possible in the time scale of this thesis to

address them all. The scope of the thesis is limited to the four main node schemes

identified in this chapter. These are the shunt node, the stub loaded shunt node, the

SCN and the SSCN. Between them they offer the ability to process a wide variety of

media in both two and three dimensions. The implementation strategy for this project

31

is shown below.

OBJECTIVE MILESTONE

1. Feasibility study Proof that an application specific

processor can achieve .a higher

throughput than existing computers

2. Definition of suitable design flow Selection of hardware and software

required for implementation

3. Development of a shunt node processor Demonstration of a working shunt

node scatter processor

4. Implementation of connect function Demonstration of a parallel array of

shunt node processors

5. Extension of scatter processor to other Demonstration of working processors

TLM schemes (stub loading, SCN, for the four main TLM schemes

SSCN)

32

References

1 Kron, G 'Equivalent Circuit of the Field Equations of Maxwell', Proc. IRE, Vol.32,
pp.289-99, 1944

2 'Numerical Techniques for Microwave and Millimeter-Wave Passive Structures',
ed. T. Itoh, J. Wiley & sons, New York, 1989

3 Johns, P.B and Beurle, R.L 'Numerical Solution of 2-Dimensional Scattering
Problems Using a Transmission-Line Matrix', Proc. lEE, Vol.118(9), pp.1203-08,
1971

4 Dunlop, J and Smith, D.G 'Telecommunications Engineering, 2nd Edition',
Chapman and Hall, London, 1989

5 Coates, R; deCogan , D and Willison, P.A 'Transmission Line Matrix Modelling
Applied to Problems in Underwater Acoustics', Proc. IEEE OCEANS '90, 24
September 1990

6 Johns, P.B 'The Transmission Line Matrix Method of Waveguide Analysis' PhD
Thesis, University of Nottingham, 1973

7 Johnson, Hand Graham, M 'High Speed Digital Design', Prentice Hall, 1993

8 Johns, P.B 'The Solution of Inhomogenous Waveguide Problems Using a
Transmission Line Matrix', IEEE Trans. On Microwave Theory and Techniques,
Vol.22(3), pp.209-215, 1974

9 Akhtarzad, Sand Johns, P.B 'Solution of 6 Component Electromagnetic Fields in
Three Space Dimensions and Time by the TLM Method', Electronics Letters,
Vol.10(25), pp.535-537, 1974

10 Amer, A 'The Condensed Node TLM Method and its Application to Transmission
in Power Systems', PhD Thesis, University of Nottingham, 1980

11 Johns,P.B 'New Symmetrical Condensed Node for the Three Dimensional Solution
of Electromagnetic Wave Problems by TLM', Electronics Lett. Vol.22, pp.162-64,
1986

12 Krumpholz, M and Russer, P 'On the Dispersion in TLM and FD-TD', IEEE
Trans. On Microwave Theory and Techniques, Vol.42(7), pp.1275-79, 1994

13 Tong, C.E and Fujino, Y 'An Efficient Algorithm for Transmission Line Matrix
Analysis of Electromagnetic Problems Using the Symmetrical Condensed Nqde',
IEEE Trans. On Microwave Theory and Techniques, Vol.39(8), pp.1420-1424, 1991

33

14 Trenkic, V 'The Development and Characterisation of Advanced Nodes for the
TLM Method', PhD Thesis, University of Nottingham, 1995

15 Trenkic, V; Christopoulos, C andBenson, T.M 'New Symmetrical Super­
Condensed Node for the TLM Method', Electronics Letters, Vol.30(4), pp.329-30,
1994 .

16 Trenkic, V; Christopoulos, C and Benson, T.M 'Theory of the Symmetrical Super
Condensed Node for the TLM Method', IEEE Trans. On Microwave Theory and
Techniques, Vol.43(6), pp.1342-48, 1995

17 Lawton, S; Ward, D.D; Cloude, S.R and Dawson, J.F 'Hybrid Time Domain
Modelling for Automotive EMC', lEE znct Int. Workshop on Computation in
Electromagnetics Digest, pp.275-78, 1994

18 Morente, J.A; Porti, J.A and Khalladi, M 'Absorbing Boundary Conditions for the
TLM Method', IEEE Trans. On Microwave Theory and Techniques, Vol.40(11),
pp.2095-2099, 1992

19 Simons, N.R.S and Bridges, E 'Method for Modelling Free Space Boundaries in
TLM', Electronics Lett. Vol.26(7), pp.453-455, 1990

20 Al-Mukhtar, D.A and Sitch, J.E 'Transmission Line Matrix Method with Irregularly
Graded Space', lEE Proc. Vol.128(6), part H, pp.299-305, 1981

21 Duffy, A.P; Herring, J.L; Benson, T.M and Christopoulos, C 'Improved Wire
Modelling in TLM' IEEE Trans. On Microwave Theory and Techniques, Vol.42(10),
pp.1978-1983, 1994

22 So, P.P.M; Eswarappa, C and Hoefer, W.J.R 'Parallel and Distributed TLM
Computation with Signal Processing for Electromagnetic Field Modelling', Int. Jnl.
Num. Mod: Elect. Networks, Devs. And Fields, Vol.8, pp.169-185, 1995

23 Dubard, J.L; Benevello, 0; Pompei, D; Le Roux, J; So, P.P.M and Hoefer, W.J.R
'Acceleration of TLM Through Signal Processing and Parallel Computing', Int.
Conference on Computation in Electromagnetics, lEE, pp.71-74, 1991

24 Stothard, D 'The Implementation of TLM on a Fast DSP Processor', Awaiting
Publication, 1999

25 Swarninathan, M; Sarkar, T.K 'A Survey of Various Computer Architectures for
Solution of Large matrix Equations' Int. Jnl. Num. Mod: Elect. Networks, Devs. And
Fields, Vol.8, pp.153-168, 1995

26 Flynn, M.J 'Very High Speed Computing Systems', Proc. IEEE Vol.54(12),
pp.1901-1909, 1966

27 Johnson, K.T; Hurson, A.R and Shirazi, B 'General Purpose Systolic Arrays', IEEE
Computer pp.20-31, Nov. 1993

34

28 So, P.P.M and Hoefer, W.J.R 'Optimization of Microwave Structures using a
Parallel TLM Module', Progress in Applied Computational Electromagnetics, lOth
Annual Review, pp.546-53, 1994

29 So, P.P.M; Eswarappa, C and Hoefer, W.J.R 'Transmission line Matrix Method on
Massively Parallel Processor Computers', Progress in Applied Computational
Electromagnetics, 9th Annual Review, pp.467-74, 1993

30 Luthi, P.O; Chopard, Band Wagen, J-F 'Wave Propagation in Urban Microcells: a
Massively Parallel Approach Using the TLM Method', Applied Parallel Computing
in Physics, 2nd International Workshop, pp.408-18, 1995

31 Tan, C.C and Fusco, V.F 'TLM Modelling Using an SIMD Computer', Int. Jnl.
Num. Mod: Elect. Networks, Devs. And Fields, Vol.6, pp.299-304, 1993

32 Parsons, P.J; Jaques, S.R, Pulko, S.H and Rabhi, F.A 'TLM Modelling Using
Distributed Computing', IEEE Microwave and Guided Wave Letters, Vol.6(3),
pp.l41-42, 1996

33 Li, Hand Stout, Q.F 'Reconfigurable SIMD Massively Parallel Computers', Proc.
IEEE, Vol.79(4), pp.429-43, 1991

34 Trenkic, V; Christopoulos, C and Benson, T.M 'Efficient Computation Algorithms
for TLM', 1st Int. Workshop on Transmission Line Matrix (TLM) Modelling : Theory
and Applications, pp.77-80, University of Victoria, 1-3 Aug., 1995

35 Saleh, A.H 'A Dedicated Processor For Solving TLM Field Problems', PhD
Thesis, University of Nottingham, 1982

36 Gregory, S 'Design of a Single Bit Processor for TLM Using Full Custom IC
Design', Dissertation (BEng), University of Nottingham, 1989

35

2 - Digital Arithmetic Systems Design

2.1 Introduction

Much of the performance increase gained through the use of application specific

computing results from a reduction in the number of redundant computational

elements within the processor. In order to efficiently map the TLM algorithm to

hardware an understanding must be gained of the way in which arithmetic operations

are performed on binary data. This chapter presents a review of binary arithmetic and

discusses the development of digital arithmetic systems from the perspectives of

processing rate and error minimisation. The specific issue of quantisation noise in

discrete systems is raised.

2.2 An introduction to Digital Arithmetic

There are four principle operations in the familiar decimal arithmetic system. They

are addition, subtraction, multiplication and division. The multiplication/division of

two long numbers is commonly broken down into a sequence of smaller

multiplication/division operations with addition or subtraction of the partial products

used to generate a final sum. More complex functions such as square roots or calculus

may generally be approximated to any given accuracy by iterating algorithms

composed from these four main operations 1•

2.2.1 Number Representation in the Binary System

In a digital computer numbers are stored as sequences of binary digits, either 0 or 1.

In the same way as decimal arithmetic uses columns to represent units (10°), tens

(101
), hundreds (102

) etc., so the binary system uses columns representing 2°, 21
, 22

etc. with the least significant bit (l.s.b) written on the right. Thus the binary number

1001lz has the decimal equivalent 1 *24 + 0*23 + 0*22 + 1 *21 + 1 *2° = 16 + 2 + 1 =

1910. Fractional numbers are formed by extending the number to the right beyond the

fractional pointm. These columns then represent 2-1
, 2-2

••• 2-=. For example the binary

m As we are not dealing with decimal representations the term decimal point is inappropriate. The term
fractional point will be used instead for the delimiter between the integer and fractional parts of a
number.

36

number 1011.100b has the decimal equivalent 11.562510.

The negative form of a number is defined as that value which must be added to a

number to obtain a sum of 0. Negative numbers may be represented in a variety of

ways, the most common of which are discussed below.

• Sign and Magnitude -The magnitude of the number is represented in standard

binary format as discussed above. An extra bit, the sign bit, is included at the most

significant (left hand) end of the number. If the sign bit is 0 the number is positive,

if the sign bit is a 1 the number is negative.

• Ones Complement- Negative numbers are formed by inverting the bits in the

positive number.

• Twos Complement -To form the negative of a number in 2s complement notation

all the bits of the number are inverted and 1 is added to the result. The 2s

complement system works on the principle of using fixed word lengths to represent

numbers. Any overflowing bits are ignored. 2s complement notation has the

advantage that the sign bit is automatically maintained during calculations. This is

unlike sign and magnitude, where the signs of the operands must be compared to

create the correct sign for the result.

2.2.2 Fractional Data Representation

There are two commonly used methods for representing fractional data in binary

arithmetic. The simplest uses a fixed word length similar to the integer notation used

above. It is noted that an integer is simply a number in which the fractional point lies

at the extreme right of the number. Using a fixed length representation the fractional

point may be implied at any location. So long as all numbers use the same fixed

reference point notation the simple arithmetic rules used above may be used to

perform calculations. The term 'fixed point' is often used with reference to a

numbering scheme in which the fractional point lies at the extreme left of the number.

In this case the number is wholly fractional.

A more complex, but more flexible representation is floating point notation. This ·

uses two numbers to represent a single number in the form A= a2e. a is the mantissa

and e is the exponent. A negative exponent implies a wholly fractional number. The

main advantage of floating point is that it is able to represent a much broader range of

numbers than integer or fixed point. However the hardware requirements of floating

point processors are greatly increased as both mantissa and exponent are involved in

37

calculations1
. Floating point representation does not represent the panacea of

numerical inaccuracy. The range of numbers that may be represented is greatly

increased through the addition of the exponent. However the precision to which each

number may be represented is still limited by the number of bits available to the

mantissa. Consider a 32 bit fixed point number and a 32 bit floating point number.

The floating point number is able to express a larger range of values. However in

some cases the fixed point number can represent a given value to a higher accuracy as

only some of the bits of the floating point number (typically 24 for a 32 bit number)

are given to expressing the mantissa.

2.2.3 Block Floating Point Representation

The range of fixed point numbers of a given word length may be extended using a

block floating point scheme. This scheme applies a single exponent value to a whole

array of fixed point data. Should an overflow occur the exponent may be incremented

and the whole array right shifted by one bit. Similarly the exponent may be

decremented and the whole array left shifted, for example to increase the number of

significant bits stored from the result of a calculation. This scheme is commonly used

for calculations such as Fourier transforms of large arrays14
, where data growth can be

significant. Because the exponent is the same for all data in the array there is no need

for the comparison and shifting operations required in true floating point. A block

floating point processor may therefore make use of simple fixed point arithmetic

hardware. Additional hardware is required to detect overflow or loss of significant

bits and shift the data array when necessary.

2.2.4 Rules for Binary Arithmetic

In binary arithmetic there are two principle functions, addition and subtraction. A

diverse set of algorithms exists for multiplication and division, which will be

discussed later. These are mostly formed from addition and subtraction operations

and basic logic functions.

2.2.5 Addition

The addition of two binary digits has a maximum value of 102, hence both a sum and

carry output are required. These are defined by the truth tables in table 2.1(a,b).

38

Input A is read across the top row of the table, input B is read from the first column of

the table. The intersection of the selected row and column provides the output.

+
0

1

+
0

1

0

0

1

(a)

0

0

0

(b)

1

1

0

1

0

1

Table 2.1 ·Sum (a) and Carry (b) Function Truth Tables for a Binary Adder

It is clear from above that the sum function is formed from the exclusive OR (symbol

EB) of the inputs while the carry is formed from the logical AND of the inputs. A

further input formed by the carry out from a previous adder stage can also be

introduced to provide a 'full adder'. The full adder is defined by the logic equations

Sum= (A EBB) EB Cin

Carry= (A. B)+ (A. Cin) +(B. Cin)

Chains of full adders may be formed by linking the carry out of each adder to the carry

in of the adder whose inputs form the next most significant bit of the sum. This basic

parallel adder, a section of which is shown in .figure 2.1, is known as a ripple carry

adder. As the calculation of each bit of the output depends upon the carry bit from the

vcc
A

A

80 8

SUM

OVFL

C Ol.JT

A1 A

81 9

Figure 2.1 • First Two Stages of a Ripple Carry Parallel Adder

39

SUMO

SUM SUM1

OVFL

C OUT

previous stage the sum ripples through the chain of adders from l.s.b to m.s.b. This

type of parallel adder is inefficient as only one bit of the sum is actively being

produced at any one time. For a chain of N adders, each with a propagation delay of tp

ns, the ripple carry adder may take up to N.tp ns to produce a sum.

The ripple carry adder may be improved through the use of a look ahead system1.

Consider two functions, Gi and Pi, derived from the A and B inputs of a full adder and

defined by the truth table

A B Gi pi

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Gi - carry generate - is true when the inputs to the adder guarantee the generation of a

carry output.

Pi- carry propagate- is true when Cin is propagated as an identical Cout·

The full adder may thus be defined by the logic equations

Sum = Pi EB Cin

Carry = Gi + (Pi . Cin)

The carry function may be expanded for each bit in the adder as

C1 =Go + (Po . Co)

c2 = Gl +PI . (Go+ (Po . Co)) etc.

From the preceding table Gi and Pi may be substituted by

Yielding the final result

Gi=Ai.Bi

Pi=Ai Ee Bi

C1 = Ao . Bo + Ao . Co + Bo . Co

c2 = AI . Bl + AI . Ao . Bo + AI . Ao . Co + ... etc.

40

As long as the initial input to the carry chain is known all further values may be

derived. Although the logic for producing the carry bits for the more significant bits

of the sum can be quite involved it is generally faster than the ripple carry method.

2.2.6 Subtraction

Binary subtraction is most commonly performed by making use of the relationship

A-B = A+(-B)

It has already been shown that there are several ways of representing negative

numbers in binary. The 2s complement method is most commonly used as it does not

require any extra processing to generate the correct sign bit in the result. 2s

complement subtraction is performed by inverting all the bits in the number to be

subtracted and setting the initial input to the carry chain to 1. The two inputs are then

added using either a ripple carry or look ahead carry adder as described above. A

fixed word length must be maintained. If one operand is shorter than the other it may

be made up to the same length by adding copies of the sign bit to the left (m.s.b) end

of the number.

2.2.7 Multiplication

Binary multiplication algorithms may take many forms1
• The simplest form requires a

combination of addition and shift operations. Consider the calculation

which in binary becomes

5.0

4.0x

20.0

101.0

100.0x

10100.0

Two registers are required to store the multiplicand (MD) and the multiplier (M). A

double length register initially holds M in its lower half and a partial product (PP),

initially set to zero, in its upper half. If the least significant bit of the double length

41

register is a 1 the value of MD is added to PP, maintaining a fixed word length,

otherwise 0 is added to PP. The value stored in the double length register is then

shifted right using an arithmetic shift i.e. maintaining the sign of PP. This add and

shift routine is repeated Wtimes for a Wbit long multiplier following which the

double length register holds the product of .MD and M. The double length register

accumulates the sum of the partial products formed by multiplying .MD by each bit in

M. The product of two numbers of arbitrary lengths m and n will have a maximum

length m+ n.

While the above method is simple and functionally correct it can be slow, particularly

where both multiplier and multiplicand contain many bits. Faster multipliers may be

formed using asynchronous switching networks or large arrays of adders1
• However

these require considerably more logic resources. With the advancement of very large

scale integration (VLSI) techniques, array multipliers have become more feasible.

However other options for decreasing the computation time for multiplication

operations are available.

As shown above, a multiplication may be considered as a sequence of smaller

multiplications with accumulation of the partial results used to form the product.

Consider the binary multiplication 110 x 111. This may be written

A cursory examination of the above reveals the product (22 x 21
) occurs twice. Where

this happens the multiplication need only be performed once and the partial product

left shifted one place before addition. In longer calculations where many partial

products may be repeated this technique can provide a considerable reduction in

processing time. Any partial product that is repeated 2n times may be performed once

and the result left shifted n places prior to addition. Similar systems may be derived

by performing single operations wherever consecutive groups of bits form a given

pattern. The aim of all these schemes is to improve efficiency by reducing the number

of operations performed.

Many other, more complex, schemes also exist. Their inclusion is beyond the scope

of this thesis, however references1
•
2 are provided which offer a starting point for

anyone wishing to research the subject in more depth.

42

-- ---------------------------------------

2.2.8 Division

Binary division in its simplest form has two variations, restoring and non-restoring1
.

Restoring division uses a technique similar to decimal long division. The divisor is

aligned with the m.s.b of the dividend and subtracted. If the result is positive the

m.s.b of the quotient is set to 1. If the result is negative the m.s.b of the quotient is set

to 0 and the divisor is added to the dividend to restore it to the value it held prior to

the subtraction. In both cases the divisor is then shifted one place to the right w.r.t the

dividend and the process is repeated to produce subsequent bits of the quotient.

Following the subtraction (and restoration as appropriate) performed when the least

significant bits of the divisor and dividend are aligned the quotient is resolved and the

divisor holds the value of any remainder. In non-restoring division if subtraction

results in a negative dividend the quotient bit is set to 0 and in the next cycle the

divisor is added to the dividend. In longer calculations the non-restoring method

offers a significant reduction in the number of operations performed. As with

multiplication, division may be performed faster by using large parallel switching

networks.

2.2.9 Bit Serial Binary Arithmetic

Thus far the discussion of binary arithmetic has assumed that all bits of all arguments

of an operation are available prior to calculation. This is not always the case, many

systems produce data as serial streams of individual bits. Bit serial operation is

generally slower than parallel operation. Its main advantage is that, as only a single

bit of each operand is acted on at any given time the hardware required is considerably

reduced.

A basic bit serial adder/subtractor is the shown infigure 2.2. It has been shown

(section 2.2.4) that 2s complement notation allows subtraction to be performed as an

addition operation. Therefore only a single full adder is required. For subtraction one

input is inverted and the initial input to the carry chain is set to '1 '. This is equivalent

to adding the 2s complement of the inverted input. Both operands must be of the

same length. This is achieved by padding the most significant bits of the shorter

number with copies of the sign bit. Zeros are used to pad unsigned numbers. The

operands are presented to the adder bit serially from l.s.b to m.s.b. The carry formed

by each pair of operands is fed back to form the carry input signal for the calculation

43

A

Sum

OR2

Figure 2.2 • A Bit Serial Adder/Subtractor

of the next bit. The addition or subtraction of two W bit long words requires W clock

cycles. The final carry output forms the m.s.b of the sum except in 2s complement

arithmetic where the final carry bit is discarded to maintain a fixed word length.

There are two forms of bit serial multiplication/division. Firstly there is genuine bit

serial operation where both operands are presented bit serially. The second and

simplest form is serial-parallel, where all bits in one or both of the operands are

known prior to operation. Serial-parallel multipliers may make use of either serial or

parallel adders. The use of bit serial adders leads to very compact multipliers,

however due to the very large number of additions that need to be performed these

circuits are slow.

A class of fast serial-parallel (FSP) multipliers has evolved which reduce computation

times by using only full adders and basic combinationallogic3
. An FSP multiplier

based upon the carry-save add-shift (CSAS) technique is shown infigure 2.34
.

The multiplier is presented in parallel to the system while each bit of the multiplicand

is in turn broadcast throughout the system. For an M bit long multiplicand the first M

clock cycles are used to calculate the partial products from the multiplicand. These

are output from PO in figure 2.3. A further M clock cycles are required to produce the

remaining bits of the product from the data held in the adder chain. It has been shown

that the computation time for a CSAS based FSP multiplier can be significantly

reduced if the data held in the adder chain after M clock cycles is processed using a

single parallel addition. This technique has been further extended to operate on 2s

complement data via an implementation of the Baugh-Wooley algorithm5
. The

44

PO

M

~!>ro
FA FA6

r,
A Sum: A Sum: p~

Bi AND2 .----.B ~B

c·Cin CoutD~
a

Gin Coutl~

A! =i!>ro FAO FAS

A Sum 11 - A Sum• P2

AN02 r--- .B 8

,.Cin CoutiJl '----~Cin Couti!P~

f.:> =i!>ro FA! FA4

A Sum I - A Sum: P3

AND2 - ~8 8

~Cin Coutll - .Cin

"""l
AJ gt>-D FA2 FA3

A Sum I f-- A Sum: P4

A 02 .___ ~8 B

~~Cin Co"D~ '---~Gin Cout: P5

Figure 2.3- A Fast Serial-Parallel Multiplier

hardware cost of the FSP multiplier is greater than that of a similar circuit employing

bit serial addition as both the adder chain and an M bit parallel adder are required.

However the reduction in computation time achieved by replacing M-1 serial

additions with a single clock cycle, parallel adder operation can considerable,

particularly when long multiplicands are used.

More complex techniques are required for multiplication or division where both

operands are presented bit serially. A single bit slice of a serial multiplier, after Ienne

and Viredaz6
, is shown infigure 2.4. M-1 such slices are required to multiply two M

bit numbers with some additional logic required for the most and least significant bit

slices. With minor adjustment the system can be made fully modular, i.e. all bit slices

are identical, thus facilitating simple extension to any word length. 2M clock cycles

are required to produce an output. The sign bits of the inputs must be preserved at the

inputs during the latter M clock cycles or the data sign extended to a length. of 2M

bits. This design is particularly compact and has a low latency. It is however only

one of many serial multiplier designs.

45

'lY

Sum3

U?
pr:J,JI

M2_1

Cc!Jt

Pin

Raul

Lr.st8it

Figure 2.4 - A Bit Serial Multiplier Slice

2.3 Errors in Digital Arithmetic

In manual arithmetic numbers may be written down to any given accuracy as long as

the value is known to that accuracy. Digital systems usually operate to a fixed word

length due mainly to the need to compartmentalise memory into bytes and to match

data widths to bus widths. The use of a fixed word length can lead to the occurrence

of errors in binary arithmetic. It is impossible to express any number absolutely

without specifying an infinite number of significant figures. All calculations therefore

inherently contain inaccuracies. There exists a threshold above which the inaccuracy

becomes too large and must be classed as a mathematical error. This threshold is

different for each application and is determined by the requirements of the solution.

The term error is used in the remainder of this chapter. The primary sources of error7

are quantisation, truncation and overflow. A less obvious source of error arises from

the process of normalisation in floating point.

2.3.1 Quantisation Errors

Quantisation is most commonly used to refer to the process of sampling an analogue

signal. A quantised system is any system that can only take one of a fixed set of

values. Quantisation errors result from the fact that any number represented by a

46

particular system may only be expressed to an accuracy equal to the smallest number

which may be expressed by that number system8
. Thus for an integer the quantisation

step is 1, any number can only be expressed to an accuracy of ±0.5 in integer notation

(unless the number is a perfect integer). Quantisation errors occur whenever a fixed

word length is used to represent a number, regardless of the base of the number

system used. Quantisation errors limit the accuracy with which a given real event can

be modelled mathematically. If the word length is sufficiently large, over 12 bits is

commonly used as a rule of thumb11
, the errors tend to be randomly distributed and

uncorrelated. Correlation is dependent upon the input signal. A widely varying input

signal, e.g. white noise, will exhibit much lower correlation than an impulse or other

low frequency input9. The effect of uncorrelated quantisation noise may be modelled

by placing an additive white Gaussian noise (A WGN) source in series with the

original signal source. The quantised signal is given by

Where Sn is the quantised value,

Se is the original signal

en is an instantaneous A WON sample

Sn=Sc+en

It can be shown 11 that the noise source has a variance _!_ L 2 and a mean value of 0.5L,
12

where L is the value of the least significant bit of the quantised word. If a rounding

algorithm is used to create the sample the mean value of the noise is zero. The

variance is unchanged through the use of rounding. If the word length is too short

then the errors become correlated with the data and can no longer be represented by

simple statistical means. An accurate description of the errors under these conditions

requires prior knowledge of the distribution of the input data and the calculations

being performed.

If integer data is used the least significant bit has a fixed value, independent of the

word length. Both the mean and the variance are predefined, having the values -0.5

and 0.2083 respectively. In fixed point notation the mean and variance are dependent

upon the word length. For a word of length W the mean has a value

47

While the variance has a value of

1
-XT2w
12

The maximum number expressible in fixed point notation is 1.0, therefore if we

express the mean error as a fraction of the maximum expressible value it remains

unchanged at z-<W+I)_ Consider the mean error in integer notation expressed as a

fraction of the maximum expressible value. For a word of length W this is given by

-I

E =1._= 2-(W+I)
w w

2

It is clear that the magnitude of the mean error for a fixed word length given as a

fraction of the largest number expressible in that word length is the same in both fixed

point and integer representation. This function is plotted in figure 2.5.

lOr-------.-------.-------.-------~------,

1

10 20 30 40 so
w

Quantisation gives rise to a signal to mean quantisation noise ratio (SNR) of

SNR:20logN dB

where N is the number of bits used to represent the signal. Thus the SNR increases by

6 dB for each extra bit used.

48

2.3.2 Truncation Errors

Consider the summation of 10011000.0110 with 110.011000111. Before the

summation can take place the fractional points of the two words must be aligned. To

the left of the fractional point the smaller operand is padded out with zeros. However

to the right of the fractional point the smaller operand must be truncated to .0110 in

order to maintain a fixed word length. This represents a loss of half of the significant

bits of the value. Truncation may be considered as a process of re-quantising a

number to fit within a given representation. As such the statistical treatment of

truncation errors is as for quantisation errors (section 2.3.1). Errors of this type

mainly occur in mantissas of floating point numbers where the fractional points can

not be shifted without a loss of data. Truncation is not limited to addition but is also

prevalent in multiplication. Consider the multiplication of two m bit numbers. The

result is a 2m bit long number. For integers, truncation of this number by removal of

the lower m bits results in a meaningless value. Systems that require multiplication

with a fixed length result use fixed point representation (section 2.2.2). In this case

the result after truncation is meaningful but is subject to quantisation noise. Each

calculation within the system that requires a number to be truncated represents a

source of AWGN. As the noise is uncorrelated each source may be added in series to

produce a total noise figure for the system. The effect of truncation may be reduced

through rounding, which gives a mean noise value of zero.

2.3.3 Overflow Errors

An overflow occurs when the result of an arithmetic operation is too large to fit in the

target memory location10
• Consider the fixed length addition of two unsigned

numbers 1001 and 1110. The result is 10111, which, to a fixed word length of 4 bits

yields the incorrect result 0111. Addition operations with two operands may produce

one overflow bit (see table 2.1(a)). However the multiplication of two Wbit long

integers may result in a 2Wbit long product, a potential overflow of Wbits. Overflow

errors are particularly damaging as they affect the most significant bits of the data.

Overflow in fixed length integer data may be overcome by right shifting the data and

moving the fractional point. This technique is used in the block floating point scheme

introduced earlier. The same technique is used to correct overflow in the mantissa of

49

a floating point number. Data normalised in this way is subject to quantisation noise

due to the truncation of the least significant bits of the word.

Fixed point notation is commonly used where a large number of multiplications are to

be performed. Recall that fixed point numbers are wholly fractional. The product of

two numbers less than one is itself always less than 1. The product can therefore

never extend to the left of the fractional point, the extra bits are formed at the least

significant end of the word. The product may then be truncated to a word length of W

to prevent overflow. Although the truncation adds noise (section 2.3.2) it is less

damaging than either overflow or truncation in integer data, both of which result in a

meaningless value.

2.3.4 Normalisation Errors

An often overlooked error is encountered through the process of normalisation.

Floating point numbers are often stored such that the mantissa is wholly fractional

with no leading zeros or copies of the sign digit. This format maximises the number

of significant bits that may be stored. Problems may occur when the word length

allows numbers to be stored to a greater precision than they are initially specified to.

Consider the value 0001010*26
. This may be normalised to yield 10100000*22

. This

implies an accuracy of 8 significant bits. However only the first four bits of data are

significant. Normalisation errors must be carefully controlled, as any operation where

one operand contains non-significant bits will propagate the error. Hence during

repeated operations the proliferation of non-significant bits due to normalisation errors

can corrupt large amounts of data. Normalisation errors are particularly difficult to

detect unless the expected result of a calculation is known. Errors of this type are

most common when calculations require data to be truncated and later re-normalised.

In this case the truncated bits are not restored but are replaced with zeros. The

exponent acts as a gain function, amplifying the noise created by the truncation

operation10
• Normalisation errors can not easily be quantified statistically as they are

highly correlated with the data. However a careful examination of the calculations to

be performed will highlight areas in which these errors are likely to occur.

2.3.5 Reliability

The reliability of a system is defined as 'the probability that a system will not fail

within a timet given that it was working correctly at time 0' 10
. The failure of a

system is 'any deviation of [the system] from its specified correct behaviour' 10
• A

50

failure is caused by the existence of an error or incorrect output from a module or

subsystem. Again the term error must be taken to imply an inaccuracy above a certain

threshold. Assuming that the hardware of the system is sound, the main source of

error for an arithmetic unit is the input data. If the system is fed operands for which it

can not resolve the current operation it will fail. Some failures are catastrophic, such

as an attempt to divide a number by zero. The result of this operation is undefined"'

and hence the system will fail. There are three stages10 in fixing an error- detection,

diagnosis and repair.

• Detection - The first stage in repairing an error is determining that the error exists.

Some errors, e.g. normalisation error, are inherent in a given operation, therefore

the proliferation of these errors may be monitored each time the operation takes

place. Other errors such as overflow are dependent upon the input data, therefore

the simplest form of detection is to apply a set of rules for checking the input data.

• Diagnosis - Once an error has been detected the nature of the error must be

determined. The definition of the rules used for error detection can help in

diagnosis.

• Repair - Errors must be prevented from propagating through the system.

Repairable errors include overflow and truncation errors in floating point. Both of

these errors may be fixed by shifting the mantissa and incrementing or

decrementing the exponent accordingly. Truncation errors may be irreparable if

shifting the mantissa to recover the lost bits would lead to overflow. In this case

the error may be minimised by using a rounding algorithm. Truncation and

overflow in integer data are at worst irreparable. In this case detection should

occur at the inputs to the arithmetic unit and the operation should be prevented

from taking place.

2.4 Performance Issues

The performance of a system is usually quoted in terms of the number of operations

performed per second (ops). It has been shown1 that multiplication and division may

be performed using multiple add/subtract and shift operations. In 2s complement add

and subtract are the same operation, therefore a 2s complement arithmetic unit could

be constructed purely from adders and basic logic. However the basic add and shift

techniques may require many cycles to perform a single operation and therefore limit

"'The result can not be taken as infinity as the divisor is only known to be zero to within the specified
number of significant bits.

51

performance. In order to increase performance the time taken for each operation must

be reduced.

The use of more sophisticated multiplication and division algorithms can significantly

improve performance. However as a general rule the hardware required to perform

these algorithms increases in complexity as the processing time decreases. This rule

is not limited to multiplication/division. A good example of this is the extra logic

required in producing a look ahead carry parallel adder. The introduction of error

checking and repair logic may also degrade the performance of a system, however this

must be weighed against the time lost in repeating calculations should an unchecked

error occur. High performance is clearly often obtained at the cost of system

complexity and size.

2.5 Conclusions

The principles of binary arithmetic have been presented. The four basic operations -

addition, subtraction, multiplication and division, have been discussed for both

parallel and serial operation. It is clear that numerous methods exist for performing

each of these algorithms. The choice of method for a given application is a trade off

between performance, resource availability and reliability.

The design of digital arithmetic systems is clearly a complex issue. The required

reliability and performance must be determined beforehand. A system that is used to

perform a few operations before its state is checked will need less error checking and

repair software/hardware than a deep space probe which has to work unchecked for

years. Similarly a PC graphics card must be capable of performing calculations many

times faster than a simple calculator. In each case the requirements must be clearly

stated and the choice of hardware made accordingly.

While it would appear from above that floating point notation gives rise to fewer

irreparable errors than fixed point notation it is considerably more difficult to

implement, requiring logic to process both the mantissa and the exponent. It has been

shown that despite the increased range available to floating point numbers they are

subject to quantisation noise in the mantissa in the same way as fixed point numbers.

Block floating point representation combines the range of floating point with

simplicity of fixed point. The accuracy of a block floating point representation lies

between that of fixed point and that of floating point. The simplicity of fixed point

52

calculations means they often give higher performance than floating point operations,

however they offer lower precision and reliability. The existence of a number of

commercially successful fixed point DSP chips (e.g. ADSP21XX, Motorola 5630X) is

evidence of the fact that, with careful algorithm design, fixed point notation can

provide sufficient accuracy even for demanding signal processing applications.

53

References

1 Pirsch, P 'Architectures for Digital Signal Processing', John Wiley & Sons, New
York, 1998

2 Oklobodzija, V.G; Villeger, D and Liu, S.S 'A Method for Speed Optirnized Partial
Product Reduction and Generation of Fast Parallel Multipliers using an Algorithmic
Approach', IEEE Trans. On Computers, Vol.45(3), pp.294-305, 1996

3 Dadda, L 'Some Schemes for Parallel Multipliers', Alta Frequenza, Vol.34, pp.349-
356, 1965

4 Sunder, S; El-Guibaly, F and Antoniou, A 'Two's Complement Fast Serial Parallel
Multiplier', IEE Proc. Circuits Devices Syst., Vol.142(1), pp.41-44, 1995

5 Baugh, C.R and Wooley,B.A 'A Two's Complement Parallel Array Multiplication
Algorithm', IEEE Trans. Comput., Vol.33, pp.1045-47, 1983

6 Ienne, P and Viredaz, M.A 'Bit Serial Multipliers and Squarers', IEEE Trans.
Comput., Vol.43(12), pp.1445-1450, 1994

7 Nelson, V.P and Carrel, B.D (eds) 'Tutorial: Fault Tolerant Computing', IEEE
Comp. Soc. Press. Los Angeles, USA 1987

8 Porat. B 'A Course in Digital Signal Processing', J. Wiley and Sons, New York,
1997

9 Oppenheim, A. V and Schafer, R.W 'Digital Signal Processing', Prentice Hall, 1975

10 Higgins, R.J. 'Digital Signal Processing in VLSI', Prentice Hall, 1990

54

3. A Data Parallel Application Specific Processor for
TLM

3.1 Introduction

Chapter 1 highlighted the fact that run times for serial computations of TLM are

becoming excessively large. The development of dedicated processors for the TLM

method has, in the past, produced an increase in performance with respect to software

applications. However recent advances in computer technology have increased

significantly the performance of desktop PCs and workstations and therefore the rates of

computation that may be achieved by these systems. The feasibility of an application

specific processor for TLM is dependent upon advances in the technology used to

implement the processor. The application specific processors of Saleh1 and Gregori,

respectively built using discrete components and small scale integration, are made

obsolete by the very large scale integration (VLSI3
) techniques used to create modem

300+ MHz processors. This chapter documents the development of an application

specific processor for the TLM method developed using current technologies. The aim of

this work is twofold. Firstly the performance of the design is compared to software

running on a personal computer to determine the feasibility of the application specific

approach to reducing run times in the modem computing environment. The second aim

is to evaluate suitable implementation strategies for a new TLM processor.

3.2 Design Methodology

The development of an application specific processor may be divided in to two key areas4
•

• Algorithm development - The specific form of the TLM algorithm implemented can

have significant effects on the performance of the processor. Decisions have to be

made as to which features the processor will implement e.g. boundaries, stub loading

and two or three dimensional meshes.

55

• Hardware development - Choice of implementation technology - hardware mapped or

RISC and specific architectural issues e.g. single node or array, floating point or

integer data.

3.2.1 Algorithm Development

The increased efficiency of a hardware mapped approach arises mainly from a reduction

in the number of operations which must be performed in the application of a given

algorithm. The mapping of an algorithm directly to the hardware of a device reduces the

need for instruction fetching and decoding cycles, instruction stack operations and data

management (caching, storing of partial results etc.) operations. The form of the

algorithm to which the hardware is mapped has a bearing on the efficiency of the design.

The algorithm must therefore be developed with some knowledge of the way

mathematical constructs are performed in hardware5
• The design of digital arithmetic

systems was discussed in chapter 2. The hardware required to implement adders,

multipliers and other typical mathematical functions varies a great deal. As such it may

be necessary to trade off one form of an algorithm for another requiring more calculations

but where each calculation is in itself less complex. The choice of data representation

and word length is also significant. The hardware requirements of a floating point system

are greater than those of a fixed point system. The requirements of a bit serial fixed point

system are less than those of a data parallel system. A careful choice of algorithm can

reduce both the number and complexity of operations performed by the hardware. Many

calculations produce partial results that must be stored until required. A single flip flop is

sufficient to store one bit of data. Registers may be formed by linking a number of flip

flops with a common enable line. However if many results must be stored the

consumption of resources and the complexity of the logic required to access the correct

register can increase rapidly. An efficient design must keep the storage of partial results

to a minimum, utilising results as they are produced.

The TLM method takes many forms in both two and three dimensions, each of which has

a unique algorithm. The two dimensional shunt node algorithm makes a good starting

point in the development of a TLM processor.

• The shunt node was used as the basis for the processors of both Saleh and Gregory.

Developing the new processor around the shunt node offers some continuity. This is

important when comparing performances to test the feasibility of the current design.

56

• The algorithm is relatively simple. However the scatter and connect processes used

form the basis for all other TLM schemes. The ideas developed with the shunt node

could therefore be expected to form a solid base for the implementation of more

complex schemes.

3.2.2 Hardware Considerations

The implementation of a new circuit in silicon is a costly process. The design must be

verified before it is committed to hardware, requiring many hours of skilled design and

rigorous testing. The design process is usually performed on paper or on a computer,

rarely involving actual hardware. Once a circuit has been designed and verified there are

three typical routes to implementation.

1) Discrete components mounted on a PCB or wire wrap board. This approach, as used

by Saleh, is relatively low cost for small designs. Wire wrap has the flexibility that

components may be easily moved or changed. The main disadvantages are that

discrete components of this nature tend to have high propagation delays and power

consumption and are also physically large, thus limiting the size of circuit which may

be created.

2) Custom IC design, as used by Gregory. A custom built IC offers a high speed, single

component solution. However the design process is complex, requiring a detailed

knowledge of gate level design and fabrication techniques, and mistakes are

impossible to rectify following implementation without rebuilding the entire circuit.

The equipment required for fabrication is very expensive and production is usually

limited to specialist companies. This approach is best suited to high volume

production following a significant prototyping phase.

3) Field Programmable Gate arrays (FPGAsl An FPGA is a silicon chip composed of a

large array of logic cells, which may range from single gates to multiple input look up

tables (LUTs). The function and interconnection of the cells is usually defined by

loading an appropriate bitstream in to the device, allowing any combination of logic

functions to be mapped in to the array. Bitstreams, binary files containing

programming data for the device, are generated from either schematics or textual

('netlist') descriptions of the circuit to be implemented. FPGAs are low cost and in

most cases can be reprogrammed any number of times, the new configuration

overwriting the old one. Libraries of macros, logic configurations designed to

perform common functions, are available for many FPGAs. Complex circuits are

57

created by linking these macros together. This approach therefore combines the

flexibility and simplicity of discrete components with the speed and size advantages

of a custom IC in a low cost, low development time solution. For bulk applications

FPGAs prove considerably more expensive than custom built ICs, therefore their

main advantage is in prototyping. Design faults that would require a costly

remanufacture in an IC require only a reprogramming of the FPGA.

It would appear that FPGAs offer an ideal design solution for developing a TLM

processor. The potential exists for transferring the design to a custom IC following

testing.

FPGA architectures vary between manufacturers in two ways, the type and granularity of

the logic cells and the programming method. In much the same way as an efficient

processor must map the granularity of its architecture to that of the problem, so the FPGA

must map the granularity of its logic cells to that of the logic to be implemented.

FPGAs may have a coarse or a fine grain architecture. Fine grain architectures typically

use a 'sea of gates' construction in which the device consists of a large array of logic

gates. These are usually NAND or NOR. The programmer has control over the

interconnections between the gates. Coarse grain architectures are built around an array

of more complex cells. These may consist of combinational logic. However modem

FPGAs have been developed around SRAM based look up tables (LUTs). The principle

behind the LUT is that a single output combinational logic circuit may have its N inputs

in any one of 2N states. Each state will produce either a '0' or a '1' output. The

combinational logic is replaced with a 2N bit deep SRAM that uses the logic inputs as its

N address lines. Each state of the inputs therefore addresses a different location in the

memory. The memory is then programmed with the required pattern of ls and Os to

produce the output defined by the logic mapped within the LUT. There are three main

advantages to this approach.

• Large logic circuits, with many levels of logic and therefore large propagation delays,

may be reduced to a single SRAM LUT with a single propagation delay.

• The logic that is mapped to the SRAM may contain any combination of gate types,

where as sea of gates arrays usually consist of only one type of gate.

• The logic functions performed by the FPGA may be changed by simply writing new

data to the SRAM cells, thus providing unlimited reprogrammability.

58

1

The shunt node algorithm requires only additions, subtractions (which may be

implemented using 2s complement addition) and a divide by two, which may be achieved

by right shifting the data one bit. The main components of the processor are therefore

adders. While these may be developed from a gate level architecture a coarser granularity

may reduce propagation delays and therefore provide better performance.

The programming method is more a matter of convenience. Some technologies allow

programming with the FPGA in situ whereas others require special equipment. Some

require less loading time or data storage. The choice of programming method only

becomes an issue when specific factors in the circuit layout require the use of one

method. For example an FPGA in an embedded system must program itself from a

PROM on its circuit board at power up. Prototyping systems require programming from

a host machine. The nature of the host will define whether the bitstream is presented in a

serial or a parallel format.

3.3 Xilinx XC4000 FPGAs

The Xilinx XC40007 family ofFPGAs is built around an array of configurable logic

blocks (CLBs). Each CLB consists of two four input and one two input LUTs, denoted F,

G and H respectively. These may be combined to produce a LUT with up to 9 inputs.

Each of the four input LUTs has an associated flip flop for intermediate data storage. A

single full adder/subtractor may be compressed in to two four input LUTs, each with a

propagation delay of around 5ns. It is therefore possible to build very high speed adders

and subtractors with the XC4000 CLBs. The Xilinx devices also use dedicated carry bit

routing for efficient design. The CLB architecture and the availability of larger

components with high pin counts make the Xilinx XC4000 FPGAs ideal for developing

the TLM processor.

The design flow for these devices is shown infigure 3.1. A sequence of software

packages synthesise a generic, gate level netlist in the EDIF netlist format from a high

level text description or a schematic. Proprietary, vendor specific software from Xilinx,

called Ml, translates this netlist in to a physical layout via the MAP and place and route

(PAR) routines. The combinational logic in the netlist is partitioned by the software,

where possible, in to groups of 4, 5, 8 or 9 input, single output functions, each of which is

59

VHDL File

~
Functional
Simulation

I

Synthesis

I Schematic

I
~ Post Synthesis

Functional
Simulation

I
Netlist

Generation

I L filename.edf

MAP -

Constraints File

I
-[Xilinx Alliance

Tools
....... _ -....._

Place & Route -

I

Back Annotation

I
Post Layout
Functional
Simulation

I Bitstream

I
~

In Circuit
Test

Figure 3.1 · Design Flow for a Xilinx FPGA

60

mapped to one or more LUTs within a CLB. These CLBs are then placed within the array

so as to minimise routing delays and signal skew. A graphical representation of the

device is provided allowing the layout to be edited manually at the CLB level. This is

useful for adjusting critical logic or routing where guaranteed performance is required.

The device is programmed by downloading a bitstream generated by the Ml software.

The bitstream defines the contents of the LUTs and the individual SRAM bits, which

control the programmable interconnect routing matrix. The device may be programmed

in situ over a data bus or at power up from an EPROM mounted on the circuit board.

Loading the bitstream takes from a few hundred milliseconds to a few seconds for a

single device depending on its size.

Back annotation tools can be used to re-write the EDIF netlist to include information on

the propagation delays within the device. This post layout netlist can be incorporated in

to a schematic, which may include external components. This allows the interaction of

the FPGA with, for example, a bus interface to be tested. With the aid of simulation

software the performance of the final implementation can be predicted with a very high

degree of accuracy. A medium sized design can be taken from a schematic, through

verification to an operational FPGA device within a few hours. Any design that fails to

meet the specified criteria can be overwritten with a new bitstream, allowing development

costs to be minimised.

3.4 Numerical Representation in the TLM Processor

In chapter 2 it was shown that the way in which numbers are represented in a system

could have a significant impact upon the behaviour of the system. A balance must be

struck between accuracy, range and processor complexity. The three main numeric

representations used in digital systems are

1) Fixed Point- Also referred to as integer data. The accuracy of fixed point arithmetic

is strongly dependent upon the word length used. Calculations may be subject to

quantisation noise, truncation errors and overflow. The hardware required to

implement fixed point arithmetic is simple and exhibits a high throughput.

2) Floating Point - Represents each number using a mantissa and an exponent. Floating

point representation is able to express a much larger range of values than a fixed point

61

number of the same length. Accuracy is less dependent upon word length as the

exponent allows the data to be scaled, preserving significant bits which would have

been lost in fixed point arithmetic. Floating point hardware is complex as operations

must be performed on both the mantissa and the exponent. High throughput floating

point arithmetic units may be realised at a high silicon cost.

3) Block Floating Point- This method is used for calculations on arrays of fixed point

data. A single exponent is applied to the whole block. The data can be scaled as in

floating point. Block floating point is less accurate than floating point as numbers can

not be scaled individually. It is more resilient to truncation errors and overflow than

fixed point and exhibits a greater range. The arithmetic is carried out on fixed point

numbers, therefore the hardware requirements are low. They are greater than for

fixed point due to the need for shifters but lower than floating point.

TLM requires the repeated application of a calculation to an array of data. Any

inaccuracy introduced through the calculation will be exacerbated by its repeated

application. As a consequence of this the accuracy of the numeric representation within

the processor must be high. If the processor is to demonstrate an increased throughput

with respect to a PC the arithmetic logic must be fast. High speed implies a fixed point

representation. The accuracy of fixed point arithmetic is dependent upon the word length

used. A longer word length provides a lower mean quantisation noise but produces a

larger, slower circuit.

10r-------------~------~~----------------------------~

8

6

4

2

O~~HH~~++~~HH~++++~Hh~~~++~~HH~~~++~~HH

-2

-4

-6

-8

-10~--~

Figure 3.2a - Comparison of Integer and Floating Point Results, Short Integer Word Length

62

100~---,

80

60

40

20

Otr+rHH~~++~~~~++++~hH~++++~~~~++++~HH~~+1

-20

-40

-60

-80

-100~--~

Figure 3-2b • Comparison of Integer and Floating Point Results, Medium Integer Word Length

1000.---~

800

600

400

200

O~~++++rH~~~~+r~++++rH~~~~+BHH~++rH~+++rHHH

-200

-400

-600

-800

-1000 ~----------------'"---------'-'-------'-'-------------------'

Figure 3-2c • Comparison of Integer and Floating Point Results, Long Integer Word Length

Figures 3.2(a-c) show the effect of varying the size of the word length in a TLM

simulation written in C++. These results were obtained by exciting a 100 x 100 node

mesh at the center node with a continuous sine wave. The blue line shows the result of

the simulation performed using 32 bit floating point arithmetic. The magenta line shows

the results of the same simulation using integer arithmetic. Figure 3.2a clearly shows the

effect of quantisation noise on the integer data. Significant distortion of the output has

63

occurred. Although quantisation noise is present in the floating point data it has a much

lower mean value. As the word length is increased, so the difference between the floating

point and integer results decreases. The integer quantisation noise has a fixed mean level

(see chapter 2). However the signal to noise ratio (SNR) is greatly increased. The SNR

may be maximised by normalising the integer input such that it occupies all the available

bits of the input word. As demonstrated infigure 3.2c, there is a negligible difference

between the fixed and floating point results for a 32 bit word length.

8

6

4

2

-a- Aoating Rlint

0 -<>-- Block Roating Rlint
U)

A Integer

-2

-4

-6

-8

Figure3.3- Comparison of Simulation Results Using Various Numeric Formats

Figure 3.3 shows the application of a block floating point scheme to TLM. The output

was generated from a low amplitude impulse excitation to the center of a 100 x 100 node

mesh. It is clear from the diagram, which shows a section of the first 200 iterations, that

by the time the output node is reached the integer data has decayed to a level where it is

consumed by noise and no longer accurately represents the desired output of the

simulation. However the block floating. point and floating point outputs are

indistinguishable. The output of the block floating point scheme has been re-normalised

to yield the same exponent for each output point. The exponent was shifted four times

during a 10000 iteration simulation. This yields a very small computational overhead

with respect to an integer calculation but provides a significant improvement in the

accuracy of the results.

64

Each TLM model will have a different set of requirements. In some cases the increased

accuracy and range of floating point may be deemed a necessity. These however are

exceptions. It has been shown that given a sufficiently large word length, fixed point

arithmetic can exhibit an accuracy very close to that of floating point. The use of a block

floating point scheme extends this accuracy over a range of numbers comparable to

floating point for a small increase in hardware costs. In the majority of cases the accuracy

provided by a block floating point scheme is greater than that offered by the model itself.

Limitations on boundary placement and geometry and similar effects of spatial

quantisation will sometimes generate a greater inaccuracy in the output of a model than

the effects of numerical quantisation.

The effects of quantisation noise may be further limited when necessary at the output of

the TLM mesh. Excitations in the TLM mesh are band limited to minimise dispersion.

Typically the maximum frequency of the excitation is one tenth of the sampling rate (thus

giving 10 nodes per wavelength). However the quantisation noise is white noise; it

contributes an equal power at all frequencies. The noise bandwidth extends from 0 Hz up

to the Nyquist frequency. Assuming 10 nodes per wavelength the noise bandwidth is

therefore 5 times greater than the signal bandwidth. Figure 3.4 shows the effect of

applying a very simple 5 point, finite impulse response, low pass filter to the integer data

8~-------.~.--~~----------~~------~--~

2

0

-2

-4

-6

-8

-10
0 10 20 30 40 50 60

Figure 3.4 • Effect of Filtering the Output of a Noisy TLM Mesh

65

output of .figure 3.2a. The effect is to limit the noise bandwidth, greatly improving the

SNR. The output of the filter, the solid line, shows the recovered sine wave. Filtering

performed on the output of the TLM mesh may be used to reduce the noise power and

minimise the effect of quantisation noise.

The significant reduction in hardware costs offered by integer arithmetic over floating

point arithmetic makes it an attractive choice. It is also reasonable to expect an integer

arithmetic unit to demonstrate a higher throughput. The use of a block floating point

scheme further extends the range of integer data without significantly affecting either of

the above properties. If integer data is to be used in the TLM processor a suitable word

length must be chosen. The decision must be based on a trade off between hardware

requirements, speed and accuracy. The quantisation step, the smallest change in value

that may be represented by a given numeric representation, may also be an issue. The

TLM processor must be able to accurately model the smallest changes that may occur in

the system under consideration.

32 bit integer data was chosen for the TLM processor for a number of reasons.

• 32 bit data offers a range of 232 = 4294967296 numbers. The quantisation step as a

fraction of the full scale value is 2-32 = 2.33e-10.

• The mean truncation error as a fraction of the full scale value is 1.16e-10. This offers

a full scale signal to mean quantisation noise ratio (SNR) of 99dB.

• 32 bits represents a standard bus width for many systems. This is an important

consideration in the integration of the processor in to a complete system.

The dynamic range and quantisation step were considered sufficient for most applications

in TLM. The loss of range with respect to a floating point solution may be compensated

for by an increased throughput due to the simplified circuit architecture. The range may

be extended using a block floating point scheme. The job of monitoring the data and

scaling the array would be best performed by a host system.

The use of integer data with a fixed dynamic range does not restrict the implementation of

non-linear models. While the dynamic range of the 32 bit data may not appear to suit the

non-linear system under consideration it must be remembered that the model is a user

generated entity. As such its parameters may be adjusted to scale the input data to the

non-linearity under examination. When using the term integer it is often assumed that the

bit positions are fixed to represent 2w ... i, 2°. However through careful choice of the

66

model parameters the bit positions may assume an arbitrary range of consecutive powers

of 2. Models requiring small value inputs do not necessarily suffer a decrease in range or

accuracy.

There are certain classes of problem which are less affected by the use of fixed point data.

Problems involving fully enclosed meshes or meshes with constant sources are less

affected as the total energy within the mesh is maintained. As such the range of values of

interest tends to be smaller. Integer arithmetic is less suited to those problems where

small amplitude effects are important. This class of problems is not excluded from

making use of the processor. It is however necessary to give a little more consideration to

selecting a suitable word length. The use of a block floating point scheme extends the

range of the processor. However this is most useful for tracing decaying waveforms such

as impulses. The inability to scale individual data words makes the scheme ineffective

for problems where a large range of must be represented simultaneously. In this case the

increased range must be provided through an increased word length. Such problems are

relatively uncommon.

3.5 Design of the TLM Processor

The introduction of computer aided engineering (CAB) has allowed designers to lay out

circuits on a computer and study their operation via simulation without the need to build

any physical hardware. Performance and operation can therefore be fully tested before

the design is transferred to hardware. A useful extension to CAE is the hardware

description language (HDLl The HDL allows a circuit to be described either

structurally or behaviourally using a high level language similar to many programming

languages. The behaviour of the circuit thus described can then be verified through

simulation. The key advantage of this approach is that the initial HDL description is

technology independent, removing the need to know in the early stages of design which

technology will be used for the final implementation of the circuit. The HDL may be

used as a technique for the rapid prototyping of algorithms, following which a circuit is

built using traditional techniques. A more powerful technique, that of logic synthesis9

uses computer software to generate a circuit from an HDL description. The synthesis

package may generate a schematic for entry in to a CAB package for testing and

67

simulation. It may also generate a text based netlist file, detailing all the components in

the circuit, their properties and their interconnections.

There are two main design methods used with hardware description languages,

behavioural modelling and structural modelling. Behavioural modelling may be

considered as 'black box' modelling. The HDL is used to define the relationship between

the inputs and outputs of the system with no consideration as to its architecture. It is

useful if the designer has some idea of the architecture required from the behavioural

model as completely abstract descriptions will lead to abstract and inefficient circuits.

Structural modelling defines the system in terms of its component parts and their

interconnections. Structural models are usually hierarchic. The bottom level must

contain a behavioural description of each component. For example, an arithmetic unit

may be modelled as a collection of adders, which are in turn modelled as individual

NAND gates. The bottom level of the hierarchy will then be a behavioural description of

a NAND gate.

3.5.1 VHDL Description of the 20 Shunt Node

There are several hardware description languages available. These include Verilog,

Altera's AHDL and ABEL. One of the most popular languages is the Very High Speed

Integrated Circuit (VHSIC) Hardware Description Language or VHDL 10
• Using VHDL

to model the circuit and simulate its operation, a number of different forms of the TLM

algorithm may be tested. Changing the form of an algorithm in a text file is much faster

than redesigning a circuit. VHDL therefore facilitates rapid prototyping of systems. As

no predefined structure exists for the TLM processor, and its behaviour is defined by the

shunt node equation, equation 1.4, behavioural modelling seems the most appropriate

approach. However, as stated above, the form of the equation affects the development of

the circuit. The matrix form of equation 1.4 is difficult to represent in an HDL.

Expanding equation 1.5 for each branch of the node would lead to a series of four

equations which may lead to the synthesis of four adders all producing the same

summation of the input values. A more efficient form of the shunt node equation for

synthesis is

68

s = ~ (vf + v~ + v~ + v~)
V! = S -Vi

V2 = S -V~

V3 = S -V~

V~ = S - V~

(3.1)

The form of equation 3.1 ensures that the circuit synthesised from the VHDL will contain

only one construct to form the sum, S. Figure 3.5 gives a complete VHDL description of

the circuit using equation 3.1.

Logic synthesis is a very specific procedure. The HDL description must clearly specify

all properties of the circuit to be synthesised. The circuit defined therefore by the set of

equations presented in figure 3.5 will not include any error checking or correction such as

rounding. Such constructs, if desired, must be manually added after synthesis or included

in the HDL file.

3.5.2 Logic Synthesis

The synovation synthesis package was used to generate a generic EDIF netlist from the

VHDL description of figure 3.5. This netlist was then translated in to a schematic for the

Veribest CAE package, the top level architecture of which is shown injigure 3.6. The

adders use a ripple carry. The first two bits are summed and the carry is passed on to the

next section of the adder, while simultaneously the sum is passed to the next adder. This

produces a pipeline effect, considerably reducing the time to generate the total sum, S.

Shifting the sum one bit to the right performs the divide by two. Extra logic is required to

maintain the word length and the sign of the sum. The input data is also routed to the

inverting inputs of the second set of full adders. These produce the outputs using 2s

complement addition. The operation of the system is entirely mapped in to hardware. No

instruction stream is required; the only control signal required is a clock to sample the

output of the system.

69

USE STD_DAZIX_PRIMITIVES.ALL;

USE STD_DAZIX_OPERATIONS.ALL;

USE STD_DAZIX_STANDARD.ALL;

ENTITY TLM_NODE IS

PORT (VI1, Vl2, Vl3, Vl4 : IN INTEGER RANGE -35565 TO +35565;

VR1, VR2, VR3, VR4: OUT INTEGER RANGE -35565 TO +35565;

CLOCK : IN BIT);

END TLM_NODE;

ARCHITECTURE BEHAV _ TLM_NODE OF TLM_NODE IS

BEGIN

PROCESS (CLOCK)

VARIABLES= INTEGER RANGE -35565 TO +35565;

BEGIN

IF (CLOCK= '1 ')AND (CLOCK' EVENT) THEN

S := 0.5*(VI1+V12+VI3+VI4);

VR1 <= S-VI1;

VR2 <= S-VI2;

VR3 <= S-VI3;

VR4 <= S-Vl4;

END IF;

END PROCESS;

END BEHA V _TLM_NODE;

Figure 3.5 • VHDL Description of a TLM Node

70

1/CC

Psum[31:0]

Sum[31:0]

Output of Final Adder Is
Shifted and Sign Extended

Figure 3.6 - Architecture of the Shunt Node Processor

71

i
~~][31:0] H

&Ill

~Ul V~[31:0]

V.\[31:0)

3.5.3 Testing and Simulation

The synthesised gate level schematic may be simulated within Veribest. Timing data

used by the simulator is based upon the propagation delays of the individual gates created

by the synthesis package. The Xilinx place and route process compresses a number of

gates in to a single CLB, considerably reducing propagation delays. Therefore timing

data extracted from the schematic may potentially be greater than that of the final

implementation. Simulation at this stage therefore facilitates only basic functional

testing.

The schematic serves a more important purpose in that it may be used to fix parameters

for the place and route (PAR) software. By setting properties attached to the components

in the schematic the designer can specify maximum delays allowable for a given path, fix

the location to which components are placed within the FPGA or mark out groups of

gates to be partitioned together in a single CLB. Of particular importance is the ability to

fix the device pins to which particular input/output nets are routed. This simplifies board

level design. In this case pin location constraints were used to route the clock pin to a

dedicated clock buffer input. Due to the large number of pins required by the design one

of the Xilinx IT AG test port pins was also defined as a data input.

The fully annotated schematic is then translated in to a netlist in either the Xilinx Netlist

Format (XNF) or the EDIF format. The Xilinx Ml software package is used to

implement the netlisted design on an FPGA. First, the design is mapped to the target

device, i.e. the logic is divided up and functions are compressed in to CLBs. The CLBs

are then placed and routed within the device. This process may be optimised to within

user defined guidelines. The layout can be tested for failed routings and the delays within

the chip can be analysed via criteria such as pin to pin timings, clock to output timings

etc. From this data the Xilinx timing analyser will deduce a maximum clock rate for the

circuit. The nature of the programmable interconnect structure, which routes nets

between fixed points means that all path lengths within the device are specified to a high

degree of accuracy. As the properties of the CLBs are equally well defined the timing

data generated by the timing analyser is highly accurate. User defined parameters can be

used to study the effects of varying external conditions such as temperature.

72

The design of figure 3.6 was placed and routed to produce a bitstream for an

XC4025pg191. No specific criteria were attached to the design and the place and route

tools were left to determine the most efficient layout based upon default parameters. Post

layout timing analysis predicts a maximum clock rate of 5.75 MHz. As the circuit

performs a scattering operation on its inputs on each rising clock edge, a single processor

is theoretically capable of 5.75 x 106 scattering operations per second.

Once the Xilinx timing analysis has been performed the original schematic may be back

annotated. The circuit's simulation netlist is rewritten to include the propagation delays

calculated by the software. The circuit was simulated, including the actual device

propagation delays, to ensure that no timing conflicts existed. Figure 3. 7 shows the

results of the post layout simulation.

:;vR2

!fVR3
i'
i{VR4
l~

Figure 3-7 Simulation Results for the TLM Processor

73

3.6 Design Development

Thus far the design process has developed around a single node, however it is possible to

connect a number of single node processors to form a structure similar to an SilVID array.

The output pins of each node in the array are connected directly to the inputs of its near

neighbours to form a 2D array. The Xilinx XC4025 has sufficient logic resources to

allow the design of a 3 x 3 node array on a single chip. Such a design was modelled in

VHDL using a structural description whose bottom level components were the single

node processor developed above. This design was simulated to test its functionality and

then synthesised in to an XNF netlist using the procedures outlined infigure 3.1. As

there are insufficient pins on the Xilinx to route all the outputs only a single branch of

one node was used for input and output. All other branches at the edge of the model were

looped back such that they simulated electric (p = 1) walls. Timing analysis of the

synthesised circuit performed by the M1 software indicates a maximum clock rate of 1.31

MHz. Therefore each node in the array would perform 1.31 x 106 scattering events per

second and the 9 node system would be capable of performing 11.7 x 106 scattering

events per second.

3. 7 Discussion

The development of an application specific processor for the two dimensional TLM shunt

node has been presented. The performance of the processor implemented on a Xilinx

XC4025 FPGA, ignoring the effects of any external circuitry, has been calculated as 5.75

x 106 scattering operations per second. This is an order of magnitude greater than

software applications at the time of writing11
• This represents a significant increase given

that it results purely from the direct mapping of the TLM algorithm into hardware. When

a limited degree of parallel processing is introduced, by extending the processor to an

array of 3 x 3 nodes, the throughput approximately doubles. The figures were calculated

via simulation and from the Xilinx Ml timing analyser, as the resources were not

available to produce a working design in hardware. However the nature of the modular

logic and fixed routing paths on the Xilinx ensure the accuracy of the information

produced.

74

These figures clearly demonstrate that, despite increases in desktop computer

performance, the idea of an application specific processor for TLM is still viable.

However the design developed is far from ideal.

Although the parallel implementation presented here is of little practical importance it

demonstrates that the processor may be used as part of a larger array to achieve greater

throughput. Practical models in TLM often contain many tens of thousands of nodes.

However, the number of nodes in the processor array is constrained by limitations of the

technology on which it is implemented.

• There is a physical upper limit to how many nodes may be placed on a single chip.

Large chips, with densities of 105
- 106 gates, could contain many more than nine

nodes. However limitations in packaging technology restrict the number of pins

available for input/output, thus restricting the size of array which may be implemented

without using sophisticated interconnection strategies. A single node requires four 32

bit wide inputs and four 32 bit wide outputs, a total of 256 pins. For an M x N array of

nodes, 2 x (M+N) x 32 pins are required. The array of nine nodes developed above

therefore requires 384 pins. This is the minimum number of pins required to give

access to all points on the edges of the array, any data routed from within the array

would require further resources. A typical, large FPGA, the XC4025, has 256 pins

available to the user. This is just enough to implement a single node. Even this is

only possible through the use of a non-dedicated 110 pin on the Xilinx as a data input.

Although the logic resource available in FPGAs is increasing rapidly, technological

limitations mean that packaging size and pin counts are rising at a much slower rate.

This is a fundamental limit on the technology and one that is not likely to be overcome

in the near future12
• Complex interconnection strategies may be developed13

• Indeed

the single node processor may be used as the processing element in a full SIMD array

like the DECmpp 12000, however these architectures have been shown in chapter 1 to

have their own disadvantages. Large arrays may be formed by linking several FPGAs

together, however this incurs further routing delays through input/output buffering and

increased path lengths and therefore degrades performance. A multiplexed

input/output is another option however this may limit performance as each calculation

would require multiple clock cycles.

• The word length used in the calculation is fixed by the width of the logic. Integer data

has been used as this considerably simplifies the arithmetic logic required. A 32 bit

word length was chosen as this provides a wide dynamic range with a high full scale

signal to noise ratio. 32 bit data buses are standard in most microprocessor systems,

75

thus the use of 32 bit data also eases integration in to such a system. The processor

can be developed to operate on any word length within pin limitations, however any

changes must be made at the HDL level and the processor must be resynthesised.

• When an array of nodes is formed using fixed, hard wired interconnects, as above,

there is no access to the total incident energy at each node. This is a consequence of

the simple interconnect strategy. This value is commonly used for visualisation

purposes.

3.8 Conclusions

The development of an application specific processor for TLM has been presented. A

single two dimensional shunt node processor has been designed using the VHDL

hardware description language and synthesised for fabrication on a Xilinx XC4000 series

field programmable gate array. A design incorporating nine of these nodes in to a 3 x 3

node array has been developed and analysed.

This work represents the conclusion of milestones 1 and 2 as defined in chapter 1. An

application specific processor has been demonstrated to provide an order of magnitude

performance increase over existing software based solutions. A suitable design flow has

been identified by which future processors may be developed.

Comparison of Sal eh's processor with the current processor shows that Sal eh achieved a

speed up of 27 times where as the processor detailed above produces a performance

increase of an order of magnitude. This reflects both the rapid increase in performance of

desktop computers and the limitations of the synthesised design.

While it has been shown that an application specific approach to reducing run times in

TLM applications is still theoretically viable, the system developed here fails to address

many of the aims laid out in chapter 1. The processor does not address the issue of

reducing data bandwidth. Consequently the system offers scalability only at a high

resource price. A practical system developed around this processor would be both costly

and large, violating two of the accessibility requirements for the processor. Only a single

form of the TLM algorithm is implemented.

76

The nine node array provides a speed up of 2.03, thus giving it an efficiency score of

22%. This compares favourably with the large scale parallel processor implementations

reviewed in chapter 1. The efficiency calculation assumes that sufficient bandwidth is

available to supply all inputs within the allowed clock period of 761-ls. This equates to a

bandwidth of 159 Mbits·1 node -I.

The design flow identified for implementing designs with the Xilinx FPGA is thus. The

circuit is specified using VHDL. The VHDL description is synthesised to produce a gate

level netlist description of the circuit. If necessary this is converted to a schematic to

allow properties to be added or modified. Functional simulation may be performed at this

stage to ensure the synthesised design operates as expected. The netlist is then passed to

the Xilinx place and route tools. These divide the logic in to small (typically ~ 4 input, 1

output) units, which are then placed within the CLB array on the chip. The Xilinx timing

analyser inspects the routing between logic blocks and produces accurate timing

information. This information is added (back annotated) to the functional netlist. The

design can then be re-simulated to ensure no timing conflicts exist. A bitstream is then

generated to program the FPGA.

The predictability of the fixed routing network within the FPGA allows the timing

analyser to give very accurate results. Post layout simulation can thus be assumed to be a

very good approximation to the behaviour of the actual device under the conditions

specified in the simulator. Both supply voltage and temperature effects can be varied to

simulate the device under a range of conditions.

The implementation path chosen allows freedom of design. It also permits thorough

design verification through simulation at all stages in the development process. The

Xilinx XC4000 series FPGA has been chosen as a target device due to its low cost and

reprogrammability. The internal architecture of the Xilinx device has a granularity

closely matched to that of the main components in the shunt node, thus satisfying the first

of the conditions laid out in chapter 1. Where, as in this case, components are not

available for physical device testing the Xilinx implementation software provides

accurate timing data. This data may be incorporated in to a post layout simulation to test

for timing violations. Processing rates of an order of magnitude greater than current

software applications have been predicted for a single node. This demonstrates the

viability of the approach taken in the development of the processor. VHDL offers a

useful starting point in the development of the TLM algorithm in to a form suitable for

77

hardware implementation. However unless the code is written in a precise way it is hard

to control the output of the synthesis software. This may potentially lead to a decrease in

efficiency.

The development of the TLM processor has allowed a suitable implementation path and

target technology to be defined. However the development of a complete working system

capable of sustaining an increase in perfonnance requires a redesign of the processor.

This must take in to account the limitations highlighted above and in previous chapters.

78

References

1 Saleh, A.H 'A Dedicated Processor For Solving TLM Field Problems', PhD Thesis,
University of Nottingham, 1982

2 Gregory, S 'Design of a Single Bit Processor for TLM Using Full Custom IC Design',
Dissertation (BEng), University of Nottingham, 1989

3 Price, T.E 'Introduction to VLSI Technology', Prentice Hall, New York, 1994

4 Hosticka, B.J 'Digital Signal Processing Algorithms and VLSI Design', Proc. Of the 1st
International Workshop on Digital Signal Processing Techniques Applied to Space
Communications, ESTEC, Noordwijk, Netherlands, pp.191-97, 1988

5 Pirsch, P 'Architectures for Digital Signal Processing', McGraw Hill, New York, 1998

6 Read, J.W ed. 'Gate Arrays', Collins, London, 1985

7 'The Programmable Logic Data Book', Xilinx Inc. 1999

8 Brewer, M and Hartenstein, R ed. 'Computer Hardware Description Languages and
their Applications', North-Holland, Amsterdam, 1981

9 DeMicheli, G 'Synthesis and Optimisation of Digital Circuits', McGraw Hill, New
York 1994

10 Perry, D 'VHDL', McGraw Hill, New York, 1991

11 Jaycocks, R 'Private Communication' 1994

12 Cypher, R 'Theoretical Aspects of VLSI Pin Limitations', SIAM Journal of
Computing, Vol.22(2), pp.356-378, 1993

13 Babb, J; Tessier, Rand Agarwal, A 'Virtual Wires: Overcoming Pin Limitations in
FPGA-based Logic Emulators', Proceedings of the IEEE Workshop on FPGAs for
Custom Computing Machines '93 (FCCM '93), April1993.

79

4 - A Bit Serial Scatter Processor

4.1 Introduction

The data parallel TLM processor presented in chapter 3 demonstrates the problems

associated with the very high bandwidth requirements of a TLM processor.

Limitations on routing resources and the availability of I/0 pins make the processor

effective only in a large scale parallel array with a complex interconnect strategy.

From the literature review in chapter 1 this type of structure has been demonstrated to

be inefficient. This illustrates an important but often overlooked point regarding

TLM, that while the calculations performed are relatively trivial, the efficient routing

of data between nodes is a complex problem.

A physical implementation of the processor developed in chapter 3 consumes a

significant percentage of the resources available within a large FPGA. As the routing

resources within the FPGA are consumed, successive routing operations are forced to

use increasingly less efficient paths. This can increase the propagation delays within

the device and limit the maximum clock rate. This chapter presents an alternative

processor design, which uses a bit serial architecture to reduce the bandwidth and

resource requirements of the processor. The performance of the new design and the

implications of a bit serial architecture are discussed.

4.2 Development of a Bit Serial Architecture

The processor developed in the previous chapter makes inefficient use of the

resources it consumes. The major components of the processor are 32 bit wide ripple

carry adders. A graphical representation of the operation operation of a ripple carry

adder,figure 4.1, reveals the inefficiency of their design.

The first full adder generates the sum and carry from the least significant bit (LSB) of

its inputs. The sum bit is output while the carry is used to generate the sum from the

second full adder. This forms the second bit of the parallel sum. This process

continues between successive full adders to form the full parallel sum.

80

(-------------------- ---,\!
Inputs

! !
i i

I F"ll Adde' c:'Y I
Carry Carry

Full Adder Full Adder Full Adder

I
l 0 Sum 2 3
' .. __ ,,

Serial Inputs

Carry

Full Adder

3

Sum 2
1
0

Figure 4.1 - Operation of a Ripple Carry Adder

81

The key elements of the operation of the parallel adder are

• Data flows in one direction through the full adder chain. Each full adder is

dependent upon the carry output of its predecessor, thus they form a one

dimensional pipeline.

• At any given time, the parallel adder is calculating only one bit of its output sum.

The principle of circuit folding 1 may be used to determine where the operation of

multiple processing units may be implemented within a single unit using pipelined or

time division multiplexed inputs. The application of this principle to the ripple carry

adder demonstrates that its operation is identical to that of a single bit full adder. The

chain of adders is folded on to itself. Bit n of the input is delayed by n!:!., where D. is

the delay of the carry loop. The application of the folding concept to the TLM

processor gives the architecture of figure 4.2. The order of the summation of the

inputs has been altered. The adder chain forming the total incident energy has been

reduced to two stages as opposed to three in the data parallel node. This is because

each stage contributes to the mean noise at the output. Reducing the number of stages

therefore reduces the mean noise. The operation of the circuit remains unchanged.

Data is presented to the adders bit serially, starting with the LSB. The divide by two

is performed by discarding the first bit of the sum, simulating a right shift. As it takes

three clock cycles for the sum to be produced the inputs must be delayed in reaching

the subtractors. Flip-flops are used as delay elements. The bit serial and data parallel

architectures are mathematically identical. This becomes clear if the width of the

data parallel adder operands is reduced to 1 bit and the circuits are compared.

However the bit serial design has several advantages.

• Each 32 bit wide adder is replaced by a single full adder, leading to a considerable

reduction in resource requirements.

• The processor is mapped to the TLM algorithm at a lower level of granularity, thus

further reducing computational redundancy. Many algorithms exhibit such

exploitable architectures when considered at a bit leveF.

• By using bit serial input/output the required bandwidth is significantly reduced.

The number of device pins required by each processor is reduced from 256 to 11.

• The word length is no longer dependent upon the width of the adders, thus enabling

the use of arbitrary word lengths.

• A single pin is sufficient to output the total energy incident upon the node for

visualisation purposes.

• The ripple carry adder design receives all 32 bits of all four inputs simultaneously.

The rate at which a sum is produced is dependent upon the rate at which data can

flow between the stages of each adder. The time taken for the output to settle to a

82

steady state, which governs the maximum clock rate, is difficult to determine as

quasi-steady states may appear. In the bit serial design a clock signal gates through

each bit of data, thus ensuring predictable performance and eliminating the

possibility of latching incorrect data.

Vl1 Vl2 V13 Vl4
I I l

1 1 1 l
! !
A B A B

r--1 Cln L L Cln -
f. I f. I

CO ut Sum Sum CO ut

I I I
f. I t.t

1 1
A B

r--1 Cln L
CO ut Sum

I I Total

1 1 1 1
A B A B B A B A

r-l Cln L- r-l Cln L- r-' Cln L- r--l Cln L-
CO ut Sum CO ut Sum eo ut Sum COut Sum

I 1 1 I 1 I 1
VR1 VR2 VR3 VR4

Figure 4.2 • Architecture of the Bit Serial Scatter Processor

4.3 Implementation

A bit serial scatter processor has been developed using the design flow defined in

chapter 3. Again the architecture of the Xilinx FPGA provides a close match to the

granularity of the TLM processor. A structural VHDL description was developed

fromfigure 4.2 using a full adder as the basic component. This simplifies the code as

the full adder is only defined once. The full adder is defined using boolean equations

for the sum and carry functions to aid the synthesis tool in mapping the functions to

the LUTs. Code listings are given in the appendix.

The code has been synthesised, placed and routed on a Xilinx XC4013 FPGA.

Analysis of the routed design reveals that the implementation makes inefficient use of

the resources available. This is due to an intermediate stage in the synthesis procedure

where the VHDL is mapped to a generic gate level description. The structure

83

developed at this stage does not take into account the internal structure of the Xilinx

device and therefore does not translate well into an optimised Xilinx netlist. Each full

adder synthesised from the generic netlist description requires 3 CLBs. However it is

possible to create a full adder in a single CLB, using one four input LUT to generate

the sum and the other four input LUT to generate the carry. For this reason the

processor was implemented manually via the EPIC graphical editing interface. This

initially presents the user with a schematic representation of the interior structure of

the FPGA device, in this case an XC4013. The user may then select individual CLBs

and define the contents of the LUTs via graphical means or Boolean equations. The

interconnections between the CLBs may be manually defined by selecting individual

programmable interconnect points within the routing matrix to guide a signal between

source and sink. Although the routing may be performed automatically once source

and sink pins are defined, better results were achieved using manual routing. The

final design is composed of just 8 CLBs and 11 110 pins, a considerable reduction in

resources cj the data parallel design of chapter 3. The sum and carry LUTs are

defined using the Boolean equations

Sum. F = (F1EBF2)EBF3

Carry. G = (G1 *G3)+(G2*G3)+(G1 *G2)

Where F and G define the outputs of the F and GLUTs, Fl/G1 is input 1, F2/G2 is

input 2 and F3/G3 is the carry bit formed in the previous clock cycle. For the

subtractors the carry equations are modified thus.

Sum.

Carry.

F = (F1EBF2-)EBF3

G = (01 *G3)+(G2-*G3)+(G1 *02-)

Where -indicates a logical inversion. Fl!G 1 is the sum of the inputs and F2/G2 is the

delayed input signal.

The Xilinx timing analyser calculates a maximum clock rate of 100 MHz for the

manually implemented circuit. As each clock cycle produces one bit of output data

this gives a calculation rate of 3.03 x 106 scattering events per second for a single

processor using 32 bit data. This is comparable with the 5.75 x 106 scattering events

per second achieved by the data parallel design. Note that due to the discard bit

produced during the divide by two operation, 33 clock cycles are required to produce a

32 bit output. The slight reduction in the rate of calculations compared to the data

84

parallel design is balanced by the reduction in circuit complexity and required

bandwidth.

4.4 Expansion of the Bit Serial Architecture

The reduced bandwidth and resource requirements of the bit serial design free

resources within the FPGA to introduce more advanced features to the processor. The

finite storage capacity of a computer forces the TLM mesh to have a finite size,

therefore the introduction of boundaries within the mesh is of particular importance.

Traditionally boundaries within the TLM mesh are treated as part of the connect

process3
, equation 1.7. However the modification of the data by the reflection

coefficient of the boundary may be implemented within the scatter process thus

removing all computational content from the connect process. This ensures that even

in a coprocessor architecture all computational steps are mapped to hardware for

maximum efficiency. The scatter equation thus becomes

,.,v; = P,g[t, ,v~]-, v~} (4.1)

where Pn is the reflection coefficient of branch n. The connect process for that branch

then becomes

(4.2)

In order to prevent the complication of the current design through the introduction of

multipliers this discussion is restricted to the implementation of boundaries with

reflection coefficients of p = 0, + 1, -1. Each node in the array must be aware of the

location and reflection coefficient of any local boundaries. This may be achieved in

one of two ways.

• Special boundary nodes are developed and placed within the array. The location of

these nodes fixes the location of the boundaries

• An homogeneous array of nodes is created where all nodes are capable of

representing all boundary conditions. Each node is informed of its local boundary

conditions dynamically at run time.

85

Of these, the latter is the preferable option as it allows the arbitrary placement of

boundaries within the array. This conforms to the aim laid out in chapter 1 stating

that the processor should not limit the configuration of the TLM mesh. Even a fixed

array of processors may be reconfigured to provide a wide range of modelling

environments. Each node must be informed of the boundary conditions at each

branch at any given time. This may be performed as part of the initialisation of the

array, giving a static configuration for that simulation. A more interesting solution is

to pass the boundary data to the node in each iteration, thus allowing boundaries to

move or dynamically change their properties during the course of the simulation.

The simplest way to pass local boundary data to each branch in each iteration is to

include it in the incident data word. Four possible states are catered for in each branch

of each node. These are no boundary, or a boundary with a reflection coefficient of p
= 0, + 1 or -1. The type of boundary may therefore be specified by adding a two bit

code to the beginning of each data word. The code is interpreted by the processor

according to table 4.1.

CODE BOUNDARY

00 None

01 p=+1

10 e= -1

11 p=O

Table 4.1 - Boundary Representation using a 2 bit Code

An external control signal indicates to the processor which part of the incident data is

boundary code. This data is then used to set two flags for each branch within the

processor, the active low zero flag (ZF-) and the inversion flag (IF). The first two

conditions, no boundary and p = + 1 require no action by the scatter processor as the

data is unchanged by the boundary. When p = 0, ZF- is asserted and the output from

the subtractor for that branch is set to zero using a logical AND operation. The case

of p = -1 makes use of the relationship

-(A- B)= (B-A)

The boundary code '10' sets IF which is used to select which input to the subtractor is

inverted. The inversion is created using an exclusive OR (XOR) operation. Any

binary value XORed with '1' becomes inverted, whereas any binary value XORed

86

with '0' remains unchanged. One input is XORed with the active high IF, and is thus

inverted. The other input is XORed with the complement of IF and thus remains

unchanged. When IF is negated the second input becomes inverted. Using 2s

complement notation the inverted input is subtracted from the non-inverted input.

Swapping the inverted input using IF therefore changes the output of the subtractor

from (A - B) to (B - A).

4.5 A Boundary Equipped Scatter Processor

The boundary method defined above has been built in to the scatter processor. As

with the basic architecture a manual implementation via the EPIC editing facility was

chosen for efficiency. The additional hardware required to produce a boundary

equipped scatter processor is shown infigure 4.3.

~1
From Subtractor xoA2

Figure 4.3 - Additional Logic for Boundary Implementation

The Boolean equations to define the sum and carry logic in the subtractor LUTs

become

Sum.

Carry.

F = (((F1EBIF)EB(F2EBIF-))EBF3), H = F*ZF-

G = ((GlEBIF)*G3)+((G2EBIF-)*G3)+((GlEBIF)*(G2EBIF-))

By XORing one input with IF and the other with the logical inverse of IF, the logical

state of the flag defines which input is inverted. This determines the output of the

subtractor. The sum requires 5 inputs and therefore makes use of the H LUT to

87

provide the 5th input. A control signal, generated externally, is used to set the carry

bits in the adders/subtractors for the first bit of each new word. The B_Set signal,

generated from control, enables the flip flops which store the boundary data, thus this

signal is active for the first two bits of each word. A third signal, B_En, also

generated internally from control delays the activation of the new state of the

boundary data. This is required as, due to the pipelined nature of the processor, the

boundary data changes while some stages of the pipeline are still processing the

previous input word. The boundary state associated with the old data must be

preserved until this data has cleared the pipeline. This technique also prevents the

activation of intermediate values formed as the boundary registers are serially loaded.

As the boundary flags apply only to the subtractors the new data may enter the adder

stages of the pipeline before the boundary data changes. This eliminates the need for

wait states between words and ensures the flow of data through the pipeline is

uninterrupted.

Timing data from the Xilinx software shows that the introduction of the boundary

logic reduces the maximum clock rate of the circuit to 80 MHz. Thus a single

processor with 32 bit input data would perform 2.28 x 106 scattering events per

second. The reduction in performance c.f the basic bit serial architecture is due in

part to the increased propagation delays of the circuit from the addition logic used and

also to the increase in word length caused by the addition of the boundary code.

4.6 Testing

The reduced resource requirements of the bit serial scatter processor permit it to be

fabricated on a Xilinx XC4010 FPGA. This is a smaller component than that required

for the data parallel design. Alongside the functional simulation testing introduced in

chapter 3 a physical implementation of the processor has been tested.

Testing4 has two facets, test generation, obtaining test data to confirm the circuit

operation, and test verification, proving that the test results confirm the correct

operation. Exhaustive test vectors must cover all possible combinations of inputs,

thus for a circuit with N inputs, 2N test vectors are required. Good testing design

utilises the principle of partitioning, the so called 'divide and conquer' approach. This

simplifies testing by dividing the circuit in to smaller sub-circuits, each of which may

be tested individually. Partitioning aids fault location by reducing the number of

components in the circuit under test (CUT) and preventing the propagation of faults

88

through the circuit. Efficient partitioning also reduces the number of inputs to each

test partition, thus reducing the number of test vectors required for an exhaustive test.

4.6.1 Testbench Design

A controlled method of entering the test vectors and collating the results is required.

A testbench, a physical or software based ('virtual testbench') device that surrounds

the CUT, may be used to provide controlled test conditions. A virtual testbench has

been developed by researchers at Loughborough University around a Xilinx XC4000

prototyping board using Viewlogic's Labview™ software. The XC4000 board

contains an XC4010 device with connections for downloading the bitstream from a

host system and testing configuration via the Xilinx readback facility. Access is

provided to all I/0 pins, 88 of which are connected via a PC-DI0-96 interface card to

a PC running the testbench software.

The testbench is controlled through a simple user interface. Text input boxes are used

to enter the locations of the configuration and input and output vector files. The

configuration file tells the testbench which signals are connected to which port of the

I/0 card while the vector files store the test data to be input to the system and the

results produced by the test. A critical signal may be selected, that is one that is

updated after the others. This may be necessary particularly in the case of a driving

clock signal.

4.6.2 Testing Strategy

When partitioning the circuit for testing it is important that

• Sub-circuits maintain their functional integrity. That is, the circuit is split in to its

component functions and not simply in to smaller groups of logic.

• The number of inputs in each partition is minimised in order to limit the number of

test vectors required.

The boundary equipped scatter processor divides in to four test partitions

• Full adder

• Subtractor

• Boundary flag logic

• Delay pipeline

89

The logic blocks can be functionally tested via schematic entry and simulation,

however the testbench checks that the functionality of the design has been retained

throughout the partition, place and route procedure. This is particularly important in

this case as the design was placed and routed manually. It is possible to place and

route each partition individually for testing, however the bit serial design provides an

abundance of spare I/0 pins which may be used to generate test points allowing each

partition of the circuit to be tested in situ. The inputs and outputs of each sub-circuit

may be routed to spare pins to provide individual control without the need for creating

separate FPGA bitstreams for each partition.

By reducing the number of inputs in each partition all possible input states may be

tested. As the boundary flag and control partitions contain sequential logic the range

of test vectors must be limited to all valid input sequences, as the number of potential

bit sequences is infinite. Valid sequences are defined by the length of the sequential

logic pipeline. In the case of the boundary data only combinations of 2 bits need be

tested. Test results are included in the appendix.

Having confirmed the functionality of each partition the circuit as a whole must be

tested. The test vectors used to test each partition are designed to evaluate the circuit

under all possible input conditions. However in the case of the whole processor the

test data is required to confirm the synchronisation between the control signals and the

flow of data through the processor, therefore real16 bit input data was used and tested

under all boundary conditions. The word length of the data is largely irrelevant in that

the arbitrary choice of 16 bits does not affect the validity of the testing. Robust testing

requires that the test data satisfy certain requirements.

• All inputs and outputs are tested with both zero and non-zero data.

• All inputs and outputs are tested with both positive and negative data.

Figure 4.4(a-d) show a graphical representation of some of the test results. It is clear

from these results that the circuit behaves as expected under all boundary conditions.

The testbench does not allow the clock rate to be varied and therefore does not allow

the maximum clock rate of the CUT to be evaluated.

90

: vi1x

vi2x it
~.m--------'

elk

vi1x

vi2x

vi3x

vi4x

vr1x

vr2x

vr3x

vr4x

I;
I;

);Hr---------------' j}'· l

!f
i'
l1 ~--------------~

Figure 4.4(a) • Normal Operation, No Boundaries

i<

1,.
I' li
!t

I;
; ~
D
li
I'
F
j ~

11 J ,,

••• 0 ••••••••••••••••••••••••••••• 0 ••••••••••••••• 0 ••• 1!
'-------------ii

n n
l?
i\
; ~
l\<

: ~.

I;
~~

•••• 0 0 0 •••• 0 0 •••••••••••••••••• 0. 0 •••••• 0. 0. 0

li ,,

1:

,, ' 1----..__--------------------;::
~-·,

;; . , .

. :. """':;;.--:-- i:. ··c:---c-- ·- ·-:'"7"'·- ···:·-:"cc-·;----·------.-· ·-·· ·•· ···--- ___ , --7 -· ···-· ··- -. . .. -,-- -··-- •• • .,..... _Ji J,
Figure 4.4(b) • p= 0 Boundary on Branch 3

91

!! vi2x
j[

ll vi3x
j,t

h

;ivi4x
i ~
it
:; vr1x

vr2x

vr3x

vr4x

;r;
ii

i!vi4x

/! vr1x
H

Figure 4.4(c) • p= -1 Boundary on Branch 4

il vr2x ;-
1? illll-----"--------'
;; l;n------,
i~ vr3x '·~ .. . ;, ,,
it jjl·u..::...::._;;;_;;;_:_,;;;...:;;;'------------------------:HI

1' vr4x ;r J~

Figure 4.4(d) ·All Boundary Conditions Active Concurrently, branch 1 :no boundary, branch 2 : p
= 1, branch 3 : p = 0, branch 4 : p = -1

92

4.7 Discussion

The bit serial, boundary equipped processor presented in this chapter offers

considerable advantages over previous data parallel designs. An 86% reduction in pin

count, with a similar reduction in FPGA resources, has been achieved over the data

parallel processor. The processing rate for a single node remains of the same order of

magnitude as that of the parallel processor.

Mapping the node to a lower level structure within the TLM algorithm has produced a

more compact processor with less computational redundancy. The bandwidth

requirements of the processor are more closely matched to those provided by potential

hosts, reducing the need for a complex interconnect strategy.

The bit serial design allows a single architecture to process data of arbitrary length

without the need for reconfiguration. The trade-off between precision, dynamic range

and throughput becomes a software, as opposed to a hardware issue. The ability to

view the total energy at each node at the cost of only a single pin makes possible the

visualisation of impulses propagating within the array. This is coupled with the

ability to apply simple boundary conditions at arbitrary points within an homogeneous

array of processors. The implementation of simple boundaries is independent of the

connect process. This provides greater flexibility in the deployment of the processor.

The addition of boundary data to each word increases the word length and therefore

reduces throughput. For the majority of nodes within a model no local boundaries

exist, therefore the addition of the boundary data provides no new information,

however it must be included to preserve synchronisation with those nodes for which

local boundaries are present. The extended word length and extra logic required to

process the boundary data give rise to a 27% reduction in throughput c.f. a non

boundary equipped processor. This is also due to the use of the H LUT, which adds

an extra layer to the logic. The propagation delay, tp. of this layer is encountered in

each bit calculation and therefore produces a compound delay of W.tp over the whole

calculation. Despite the increased delay the node is still capable of higher throughput

than software based implementations

During the divide by two the data is shifted one bit to the right and the resulting

fractional part, the least significant bit, is discarded. In the data parallel processor

architecture of chapter 3 the word length is maintained via an arithmetic shift, each

bit discarded from the right is replaced by a copy of the sign bit on the left. In the bit

93

serial architecture the word length is not maintained during the division, rather it is

left up to the connect routine to produce a copy of the sign bit.

As with the data parallel architecture, no provision is made for preventing data

overflow. However, the maximum energy input to the mesh during a simulation may

be calculated and the word length chosen such that this value may be accommodated.

The total incident energy at any one node can never exceed the total energy within the

mesh therefore the calculations will not generate overflow. The provision for

arbitrary word lengths offered by the bit serial architecture makes this a realistic

solution. Due to the nature of TLM the tendency is for the impulses within the mesh

to diminish as the calculation progresses. However in closed systems, particularly

those with constant input sources, the energy at any point within the mesh can rise

considerably above the peak value of the input, thus the word length must be carefully

chosen to prevent overflow in these cases without unnecessarily limiting performance.

As with the data parallel design, inaccuracies due to quantisation noise may be limited

through the use of a block floating point scheme. This is easier to perform at a system

level by a host PC than to build in to individual processors.

It is possible to develop a floating point processor using bit serial inputs to reduce the

required bandwidth per clock cycle. However the need for examination of the

exponents and the shifting of data to align decimal points requires, at least in part, a

data parallel approach. The data must therefore be converted to parallel within the

processor. It has been shown that even a simple fixed point processor consumes a

large proportion of the resources within an FPGA. A floating point processor would

require even more resources per node. By using the bit serial, fixed point node a

reduction in resources of approximately 80% is achieved. The advantages obtained

from a reduction in resource requirement therefore force the use of a fixed point

scheme.

The bit serial processor achieves several of the goals laid out in chapter 1. The bit

serial architecture demonstrates an improved match between the granularity of the

TLM algorithm and that of the processor. In particular the significant reduction in pin

count per processor reduces the need for a complex interconnect strategy. The

reduction in logic resource requirements of the bit serial design makes possible the

creation of larger arrays on a single FPGA. Thus a large array could be produced on a

small, cheap device. The processor also represents the delivery of milestone 3, a new

design of shunt node scatter processor. The potential for a more accessible hardware

accelerator for TLM is apparent.

94

References

1 Huang, A 'Computational Origami: The Folding of Circuits and Systems', Applied
Optics, VOL.31(26), pp.5419-5422, 1992

2 Fetwells, G; Serra,R and Stahl,J 'On the Interaction Between DSP-Algorithms and
VLSI-Architecture', Proc. Of the 1st International Workshop on Digital Signal
Processing Techniques Applied to Space Communications, ESTEC, Noordwijk,
Netherlands, 1988

3 Johns, P.B and Buerle, R.L 'Numerical Solution of 2 Dimensional Scattering
Problems using a Transmission Line Matrix', Proc. lEE, Vol.118(9), pp.1203-1208,
1971

4 Williams, T.W and Parker, K.P 'Design for Testability- A Survey', Proc. lEE,
Vol.71(1), pp.98-112, 1985

95

5. A Parallel Architecture for the TLM Processor

5.1 Introduction

The bit serial architecture TLM processor detailed in the previous chapter provides many

significant advantages over previous data parallel designs. These advantages include the

reduction of circuit size and pin count and the ability to implement simple boundary

conditions. However, as with previous hardware implementations of TLM, the TLM

connect procedure has not so far been considered in any detail. The literature review of

chapter 1 indicates that the connect procedure is often overlooked as a source of

inefficiency.

Data transfer has overtaken processing as the main source of latency in modern

computers'. It is therefore to be expected that an externally attached coprocessor

architecture as used by Saleh2 would be ineffective in a modem computer. A method of

connecting multiple processors to form a parallel array is needed to boost performance

significantly. The pipeline architecture of the bit serial processor makes it difficult to use

hardwired interconnects. This is because output is generated while the input is still being

processed. If the processor were placed in a traditional SIMD or systolic array some

form of buffering would be required to store the results until the neighbouring nodes were

ready to accept new input data. It is possible to use a FIFO as a delay pipeline, allowing

the serial transfer of data without additional clock cycles. However it would be difficult

to ensure the boundary data was added to the beginning of each word. The depth of the

FIFO would have to be matched to the word length to remove any redundancy. This

would preclude the use of variable word lengths built into the design of the processor.

The limitations on mesh size imposed through the use of a hard wired array would also

still be present.

In fact, a closer inspection of the data transfer process within the TLM mesh yielded a

better design of connect hardware in much the same way that a review of the scatter

process has led to a more efficient scatter processor.

96

5.2 Requirements of the Connect Process

Each scattering event within a 2D TLM mesh generates four output data words, one for

each branch of the node. The connect routine, stated in equation 1.6, presents these four

data words as the inputs to the nodes adjoining the respective branches of the node at

which the scattering took place. Equation 1.6 holds true in all but the following

circumstances.

• When a boundary is present on a branch the connect process is altered for that branch

thus

+ The scattered data is returned in the next iteration as an input to the node from

which it was scattered.

+ The value of the scattered data may be altered at the boundary due to a non­

unity reflection coefficient.

• At a partially reflecting boundary a fraction, p, of the data is reflected as though a

boundary of reflection coefficient p were present. The remaining (1-p) is transmitted

as though no boundary was present. Both the reflected and transmitted components

may be attenuated by the boundary by reducing the reflection and transmission

coefficients by the desired amount.
\

• At the boundary between regions of differing permittivity/permeability where

internodal reflections may occur.

The design of the bit serial TLM processor allows these exceptions to be simplified when

implementing boundaries. The common method of implementing boundaries within

TLM, stated in equation 1. 7, is to perform any modification of the reflected value due to

a non-unity reflection coefficient as part of the connect process. However the TLM

processor developed in chapter 4 performs this modification as part of the scatter process.

Thus, from above, the connect process becomes a straightforward matter of routing the

data to the required node. The routing may be simplified by considering only the class of

reflecting boundaries for which the transmission coefficient is zero. Each scattered data

impulse is then routed to a single destination.

While the above represent the requirements for the connect process to satisfy the TLM

equations, the nature of the scatter processor itself imposes requirements upon the

connect hardware. The connect process should support the arbitrary variability of some

model parameters introduced by the bit serial node design, these being

• Data word length

97

• Boundary positioning

• Mesh geometry

Removing the limitation on mesh size imposed by the standard one node per processor

mapping used in SIMD architectures would allow the processor to be applied to a whole

range of large mesh problems in fields such as acoustics and electromagnetics. Such

problems have previously been denied the use of high speed computing solutions.

5.3 System Design

Impulses within the TLM mesh travel with a finite velocity, therefore the principle of

causalitl states that in a finite time impulses generated by a scattering event can only

influence other events within a finite distance. In TLM the time period of interest is M,

the iteration time. After this time the influence of the scattering event extends over a

distance ~1. Thus within a single iteration a scattering event will affect only the nodes

directly adjacent to the scatterer, see .figure S.la. If scattering occurs concurrently at any

number of nodes within the same row of the mesh, the influence of the scattering events

after a time M covers only the row on which the scattering takes place and the two

adjacent rows, see figure S.lb.

Conceptually, unsophisticated software solutions for TLM store all the incident mesh data

in an array and use a separate temporary array to hold the scattered data. The data in the

incident array is swapped for the data in the temporary array (the swap array) at the end of

each iteration. If the scatter process is performed at all nodes before the connect process

is performed then both arrays must be large enough to store data for all nodes in the mesh.

However if the scatter and connect processes are performed concurrently within a single

row of the mesh then causality demonstrates that the swap array need only be large

enough to hold three rows of the model. Beyond this the current scattering event has no

influence and the scattered data can be written back to the incident array to form the

incident data for the next iteration. This is a minimal form for the swap array. No

smaller causal array can prevent data being overwritten.

98

Figure 5.1- Space-Time Diagram for a 2D TLM Scattering Event (a) After a time M a single
scattering event may affect only adjacent nodes. (b) Scattering from several nodes in the same row will

affect only three rows of the model.

Consider a serial TLM implementation in software where scattered data is written to a

three row swap array. The connect process is performed by writing the scattered data to

the neighbouring node locations in the swap array, thus removing the need for a separate

connect routine. At the end of each row of the mesh, data in the last row of the swap

array is transferred to the incident data array in preparation for the next iteration. Such a

solution would make efficient use of the available memory and would require a reduced

number of instructions due to the integrated scatter/connect processes. The serial

execution of the software would allow the use of an arbitrary mesh geometry. It has

been demonstrated above that the principle of a three row swap array extends to parallel

scattering events as long as they all occur in the same row of the model. Therefore this

solution could be extended to processing partitions of the mesh up to one row long in

parallel. The partially serial execution of such a system would provide an increase in

throughput without placing a limit on the mesh size. This fulfils the requirements of the

connect process defined in section 5.2. Consequently the objectives laid out in chapter 1

that the processor should not limit the mesh size or configuration are also met.

Scattered Data is Written
to the Connect Memory

Figure 5.2a - Flow of Data Through the Connect Procedure

The above software based solution may be mapped into hardware. The incident data and

swap arrays of the software are replaced by semiconductor memories respectively called

the main store and connect memory. The scatter routine becomes an array of bit serial

scattering processors and the connect process is mapped to routing logic. This results in

the architecture offigure 5.2(a-b).

100

Main Store ~-----~ Scatter Processors

Connect Memory Connect Logic

Figure 5.2b - Block Diagram of the Complete TLM System Architecture

5.3.1 Connect Memory Architecture

Consider an implementation of the above system in which an array of scatter processors is

used to process a TLM mesh one row at a time. The main store memory holds the

incident data array. Figure 5.3 shows a memory map of the main store. The memory

holds four words of data for each scatter processor. It therefore has a width of 4NP bits

for a system with NP scatter processors. Each address holds a bit slice containing one bit

from each of the 4NP data words. Reading from consecutive addresses thus produces the

input data for each processor in a bit serial format. Each group of M bit words requires

M+2 addresses to hold the boundary code and the data. Consecutive blocks of M+2

addresses hold data for consecutive groups of NP nodes within the mesh. A simple

counter may be used to address the main store. This provides the data to the scatter

processors in the correct order to process the entire mesh. Data scattered from a given

node will be written to non-adjacent locations in the main store. The purpose of the

101

Address

M+3

M+2

M+1

M

0003

0002

0001

0000

------------- ------------ -----------T ------------r-----------r----------- ------------ -------------:

w
0

r
d
~-

0

w
0

r
d

1-- -

1

w
0

r
d
~-

2

Boundary Bit 1 j

Boundary Bit 0

Data Bit M-1

w
0

r
d

w
0

r
d

w
0

r
d

~-~-1-- -

3 4 5

Data Bit 0
I
I

Boundary Bit 1
I I I
I I I
Boundary Bit 0
I I I

w
0

r
d

1-- -

6

~

' ' ' ' w :

~ i
'
'
'

7

i
j

!
Figure 5-3 Memory Map of the Main Store Memory

connect logic is to re-order the scattered data such that it may be written back to the main

store in the same ordered, bit slice format. This removes the need for a sophisticated

write addressing scheme, thus minimising the processing costs of implementing the

connect function.

The output from the main store is routed to an array of scatter processors. The scattered

data output from the processors is routed via the connect logic to the connect memory.

102

5.3.2 Connect Logic Architecture

The purpose of the connect logic is to route data from the scatter processors to the correct

location in the connect memory, dependent upon the boundary conditions at the scattering

nodes. Each branch of each node in the array receives scattered data from one of two

locations. These are the correct branch of an adjacent node (no boundary present) or the

same branch of the node at which the scattering took place (boundary present). The

choice of location is dependent upon the boundary data tagged to the front of each data

word (chapter 4). The value 00 represents no boundary, therefore any non-zero code

represents the presence of a boundary. A suitable circuit for the connect logic may be

constructed from the basic components shown infigure 5.6. The boundary data for

From ConnectMernay
Line2~

\'r30:·1,'r)
~r16.~o)

'

~~ctMernay

.---~----. e ~r:»-1,>) use ~o.----

•E<~ To Connect
:: ~...--- Memo:y

·~· Line 2

..
To Connect ·~·
Memo:y
Line 2

From ConnectM""'""' Line 2 ----.:_·-J
~rtl)-1:.0)

~r1i),'f)

'

Figure 5-6 • Basic Connect Logic Components

"" To Connect
:: [?'..----- Memo:y
·~· Line 3

each branch is stored in two flip-flops as it is read from the main store. An OR gate is

used to generate the boundary flag for that branch if a '1' is present in the boundary data.

The actual value of any non-zero boundary code is irrelevant to the connect processor as

all computation is performed by the scatter processor. The boundary flag is used as the

control input to a multiplexer, the output of which is routed to the connect memory. The

boundary flag selects whether the memory receives data from the scatter processor or

from the previous line in the connect memory (the adjacent node). In the case of data

passed between nodes within the scattering row, row 2, a pair of multiplexers are used to

105

--~----------------------

either swap impulses between adjacent nodes or route data back to the scattering node. A

delay, generated by a short chain of flip-flops, is introduced between the OR gate and the

multiplexers. This is to compensate for the time required for the incident data associated

with the boundary data to pass through the scatter processor pipeline.

5.4 A Complete Application Specific System for TLM

The scatter processor of chapter 4 and the connect logic and associated memory

described above may be combined to produce a complete application specific processor

for TLM using the architecture of figure 5.2b. The incident data array is mapped to a 4NP

wide dual port memory of sufficient depth to store the boundary data and incident

impulses for all nodes in the mesh. The nodes within the mesh are numbered starting in

one corner at 0 and proceeding along the row to Mw-1 for a mesh of width Mw, the node

below 0 becomes Mw, progressing along the second row to 2Mw-1 and so on. The choice

of starting corner and row direction is arbitrary. The scatter block contains some number

of scatter processors, NP, such that NP::;; Mw. The main store memory is organised using

the bit slice architecture of figure 5.3. Processing follows a cycle of events.

• Data for the first NP nodes is read bit serially from the incident data memory, the main

store, on each rising clock edge and received by the scatter processors. The boundary

code within the data is also received by the connect logic.

• After 5 clock cycles, during which the scatter processor pipeline fills and outputs the

boundary data and discard bit, the first bit of scattered data is output from the scatter

processors and the connect logic applies the new boundary conditions. Valid data is

subsequently output from the scatter processors in each clock cycle.

• The connect logic routes the scattered data to the correct locations within the connect

memory dependent upon the boundary conditions at each node.

• These steps are repeated for subsequent blocks of NP nodes until the end of the row is

reached.

• Data from memory row 3 is written back to the main store where it forms the incident

data for the next iteration. Data from memory rows 1 and 2 are transferred to memory

rows 2 and 3 in accordance with figure 5.4b.

• The above cycle is repeated for subsequent rows of the mesh.

• When the final node is reached processing begins again at node 0, stopping when the

required number of iterations have been performed.

106

In practice the use of dual port memory or a write through architecture allows the transfer

of data between the rows of the swap array while the new scattered data is being written.

The connect process then runs in parallel with the scatter process and consumes no

further clock cycles. The communications overhead, shown in chapter 1 to be a

significant parameter in determining the efficiency of a system, is therefore zero in this

case.

5.5 Discussion

The system described by the architecture of .figure 5.2b forms a complete, self-contained

processor for TLM. Unlike previous TLM processors both scatter and connect have been

~ mapped to optirnised hardware. The system meets the requirements for the connect

process defined in section 5.2. To summarise:

• The two dimensional connect process is correctly performed by the connect logic and

associated memory.

• The bit serial organisation of data within the memory and the fact that consecutive

groups of NP nodes occupy consecutive blocks of memory mean that data within the

main store is accessed sequentially. This allows the use of arbitrary data lengths by

removing the dependence of both the address generator and memory width on the data

length. The timing of the control signals by which the connect logic sets the boundary

flag are data length dependent. However, as it is logical to use the same data length

throughout the model, a simple counter with a reset register pre-loaded with the data

length would suffice. The control logic is then activated at specific counter values.

• In order for the connect logic to work each boundary must be specified twice.

Consider the mesh of .figure 5.7, the connect logic requires that the boundary be

defined on both branch 2 of node (x+l,y) and branch 4 of node (x,y). However the

reflection coefficients of the two boundaries may be different, allowing the inclusion

of anisotropic boundaries within the mesh that behave differently depending upon the

direction of propagation.

107

.Boundary

4

2

3

(X+ 1 ,y) (x,y)

Figure 5-7· Boundaries Must be Specified From Both Directions However Each Direction May Have
Independent Properties

• The connect logic allows the connect process to be applied to a discrete region of the

mesh without affecting calculations performed on the rest of the mesh. Thus scatter

and connect may be performed concurrently in this region. By removing the direct

interconnect schemes of traditional SIMD arrays the mesh size becomes independent

of the number of scatter processors available. The system therefore has the flexibility

of a serial implementation with the performance advantages of partial parallel

processing of the mesh.

• Each scatter processor acts independently. The architecture of the connect logic is

therefore scalable to any given number of scatter processors without penalty. There is

no communication between the scatter processors. Each processor receives its input

operands from memory and writes its outputs to memory, via the connect logic.

Because of this the formation of an array of scatter processors does not impose any

extra communication overhead to the processing time. Each processor in the array

operates at the same rate as it would were it a single processor system. The efficiency

of the processor array is therefore theoretically 100%.

• A block floating point scheme may be implemented by the connect processor.

Normalised fixed point inputs are used, such that the maximum value on ariy branch of

a node is 1. The maximum value of the scattered output on any branch, from equation

1.4, is then 1. Overflow at the outputs of the processor will not occur with this

108

scheme. The discard bit formed by the divide by two may be held in the main store as

the least significant bit of data. This requires 1 extra bit of storage per word. This bit

is not read on a normal iteration. However if the system detects that none of the

branches has significant data in its most significant bit the array may be left shifted and

the block exponent decremented. The left shift is performed by offsetting the main

store read address generator by one to include the discard bit. As long as the same

number of bits are read the word length will be maintained and the redundant most

significant bit will be dropped to facilitate the left shift. Preserving the discard bit

prevents normalisation errors, which would otherwise propagate rapidly through the

data. Thus the word length is maintained without decreasing the signal to noise ratio.

The logic required to detect the need to shift the array may be built in to the connect

logic or the scatter processor. A flag is set at the start of each iteration. The processor

monitors the two most significant bits of each scattered word. These are the most

significant data bit and the sign bit. If both of these bits are the same then a left shift

can be performed without changing the sign or corrupting the data. If any word has

different values for these two bits then the flag is cleared. If the flag is still set at the

end of the iteration then the whole array can be shifted and the exponent decremented.

The sensor logic required consists of exclusive OR gates to test each word, OR gates

to combine the tests and a latch to store the result. Shifting the array and storing the

exponent is the job of the host system.

There are however still some limitations imposed by the architecture.

• The maximum number of scatter processors is limited to Mw, the number of nodes in

one row of the mesh. This limits the number of nodes that may be executed in

parallel, and consequently limits ultimate performance.

• The connect process requires a regular, rectangular mesh. For optimum performance

the width of the mesh, Mw, should be some integer multiple of NP.

• The bit serial design produces a very efficient scatter processor capable of millions of

operations per second. These processors generate new input and output data in each

clock cycle, therefore relatively expensive, low access time SRAM is required for the

main store and the connect memory to provide data at the rate required.

• The array size is limited by the capacity of the main store memory and the word

length.

109

5.6 A High Access Time Memory Architecture

In order to process large TLM problems the system requires a large main store to hold the

array. The low access time memory required for the main store in this architecture is

expensive. Increasing model sizes lead to rapidly escalating system costs. Replacing the

main store in the architecture of figure 5.2b with slower SRAM or DRAM memory

would reduce the costs but would lead to a reduction in throughput due to the lower data

transfer rates available. The design of section 5.4 uses a bit serial memory organisation.

An alternative is to use a data parallel memory organisation. Slower SRAM or DRAM

memories may be used for the main store in this design. Impulse data is fed in to shift

registers that perform a parallel to serial conversion and are capable of providing the high

input data rates required by the scatter processors. Similar shift registers perform a serial

to parallel conversion on the output data before it is written back to the main store. By

double buffering the shift registers the scatter processors may be supplied while the data

for the next NP nodes is read from the main store. Only the main store is affected by

these changes. The rest of the system remains unchanged.

In reducing the cost of the system the new architecture loses some of the flexibility

inherent in the original design.

• By introducing a data parallel organisation to the main store the boundary data

becomes an integral part of the data. It is no longer possible to skip this part of the

data when writing back to the main store as it forms part of the current parallel word.

This problem may be overcome either through the use of a read-modify-write

architecture or by placing the boundary data in a separate memory.

• The size of the input and output shift registers and the width of the main store memory

restrict the data length. The most efficient use of resources occurs when the memory

width matches the word length. The availability of suitable components then dictates

that the word length should be some multiple of 4 or 8 bits.

Several video RAM (VRAM) chips are commercially available which incorporate a wide

SRAM with a fast parallel in-serial out shift register in a single package. These may be

suitable for an implementation of a data parallel main store, however the problems

surrounding the inclusion of boundary data into the serial data stream are exacerbated by

the lack of access to taps within the shift register.

110

5.7 Conclusions

Two architectures have been presented for a complete application specific system for

processing a two dimensional TLM mesh. The first approach utilises high speed, high

cost components. The latter sacrifices some flexibility in order to reduce the cost of the

system while maintaining performance levels. This is achieved by using a data parallel

main store. The key to both systems is a unique mapping of the TLM connect process in

to hardware. This mapping allows a fixed number of processors to operate on an array

containing an arbitrarily large number of nodes. Processing sections of the array in

parallel increases throughput and efficiency. However the design maintains the flexible

geometry available in serial implementations. By generating an adaptable mapping of the

array of scatter processors on to the mesh a small number of processors may be used to

process models of arbitrary size. This is a considerable step forward from the limitations

of existing large scale parallel computers. However by restricting parallel processing to

partitions of the mesh throughput is reduced compared to a completely parallel

architecture. There is a tradeoff between partition size, memory bandwidth and

throughput. As partition size and therefore throughput increases, so the number of scatter

processors must increase. The number of processors that may be accommodated within a

given system is limited mainly by the databus width of the device in which the scatter

processors are implemented.

Figure 5.3 shows how the required bandwidth of the main store increases with the

number of scatter processors, NP. A similar relationship exists between Nand the width

of the connect memories. There exists an optimum point beyond which the cost of

developing wider memories outweighs the increase in throughput produced. However

given the current low cost of SRAM the development of wide, shallow memories is a

feasible proposal. As most systems which would be used to extract data from the TLM

processor will operate on a fixed bus width, usually 8, 16 or 32 bits, there may be a need

for extra logic to match a wide main store to a narrower output channel.

The system presented above performs both scatter and connect operations in parallel. As

the connect process adds no overhead to the calculations the throughput of each processor

in the system is equal to that of a stand alone bit serial node. This was calculated in the

previous chapter to be 2.28 x 106 scattering events per second per processor, assuming 32

bit data. The efficiency of the system is therefore close to 100%. There is a slight

reduction in throughput due to increased resource usage within the FPGA, so that the

111

efficiency never quite reaches 100%. The number of processors implemented

concurrently determines the achievable speed-up. Speed-up thus becomes a factor

determined by a specific implementation of the system. It is directly proportional to the

number of processors implemented in the scatter array.

The complete system for the 2D shunt node represents the achievement of milestone 4. It

also represents a completely new class of self-contained, application specific processors

forTLM.

112

References

1 Flynn, M.J 'Very High Speed Computing Systems', Proc. IEEE Vol.54(12), pp.1901-
1909, 1966

2 Saleh, A.H 'A Dedicated Processor For Solving TLM Field Problems', PhD Thesis,
University of Nottingham, 1982

3 Hawking, S 'A Brief History of Time', Transworld Publishers, London, 1988

113

6 A Stub Loaded Shunt Node Scatter Processor

6.1 Introduction

The preceding chapters have introduced a new class of application specific TLM

processor. This processor addresses many of the shortcomings of previous

implementations of TLM on parallel and application specific platforms which were

described in chapter 1. However in order to maximise the throughput of the

processor the TLM algorithm is mapped directly to the hardware. This direct mapping

restricts the new processor to a single fonn of TLM, the 2D shunt node.

There are four main types of TLM node. These are the 2D shunt node, the stub loaded

shunt node, the symmetrical condensed node (SCN) and the symmetrical super

condensed node (SSCN). The physical relationship between the shunt node and the

stub loaded shunt node is clear. It was stated in chapter 1 that the SCN is the ·

equivalent of the distributed 3D node, made from a combination of shunt and series

nodes. Similarly the SSCN must, under certain conditions, be identical to the SCN.

The hierarchy of the nodes thus traces back to the shunt node. It is reasonable

therefore to assume that the developments made in the preceding chapters regarding

the shunt node may be extended to cover each of the other 3 types of node.

Some redundancy must be introduced to create a general purpose TLM processor. In

order to minimise the redundancy, optimised fonns must be found for implementing

each of the node schemes. This has already been done for the shunt node. This

chapter considers the concept of an optimised processor for the stub loaded shunt

node. Subsequent chapters will study the implementation of the three dimensional

nodes, the SCN and the SSCN. The aim of this study is not to build and test such a

processor but rather to understand the requirements of each processor within the

context of the existing system. This understanding will allow a general purpose

design to be implemented more efficiently. The advantages inherent in the use of a bit

serial architecture for both the scatter and connect logic have been demonstrated. The

conceptual designs for the new TLM nodes must therefore draw on the shunt node

design in order to preserve these advantages.

113

Chapter 1 introduced the concept of modelling lossy and inhomogenous media in two

dimensions by adding stubs to the basic two dimensional shunt node. This chapter

investigates the development of a new application specific processor based around

this node configuration. The requirements for mapping the theory in to hardware are

considered. An application specific processor for the stub loaded shunt node is

developed from these requirements.

6.2 Requirements of an Application Specific Processor for the Stub
Loaded Shunt Node

Section 3.2 highlighted the key considerations in the development of an application

specific processor for TLM. These were algorithm development and hardware

development. This section applies these considerations to the concept of an

application specific processor based around the stub loaded 2D shunt node.

6.2.1 Algorithm Development

Scattering at the stub loaded shunt node may be expressed in the form

(6.1)

The stub loaded shunt node requires more complex hardware than the basic shunt

node due to the extended form of the scattering equation. Significantly the

multiplication factor of Yz in equation 1.4 is replaced by a factor of 2 I (4 + Yo +go).

Except in a few specific cases where 2 I (4 + y0 + g0) =e-n, n = { 1,2,3 ... m} this

multiplication can no longer be performed by a shift operation. Instead a hardware

multiplier is required. A number of multiplier algorithms were described in chapter

2. Due to the complexity of the multiply operation c.f an addition the multiplier

becomes the main hardware component of the node. The optimum form of the

scattering equation for hardware implementation must therefore minimise the number

of multiplications performed.

The scatter equation as given in equation 6.1 requires only two multiplication

operations, the multiplication of the stub voltage by y0 and the multiplication of the

114

total incident energy term by 2/y. The equation has a form similar to that of equation

1.5, which has been shown in previous chapters to map efficiently onto hardware. No

form of equation 6.1 with less than two multiplications exists thus this form

minimises the number of components required. However, while the number of

multipliers used is an important consideration, the form of the algorithm used can

impact upon the design in other ways.

With the inclusion of multipliers to the stub loaded shunt node processor the potential

for the creation and propagation of truncation errors increases. This may be reduced

through careful choice of numerical representation.

In order to select a suitable representation scheme for data within the processor the

range of values to be represented must be known. Consider a closed system in which

the total energy input to the system is less than unity. For simplicity the system is a

single node with p = 1 boundaries on all four branches and a single stub of normalised

admittance yo. Consider an initial impulse applied to each of the four main branches

of the node.

Vt = Vz = V3 = V4 = Vx

Vs= 0

After a single iteration this yields

2
Where y = ---

4 + Yo

V TOT = Vt + V 2 + V 3 + V 4 + Vs = 4 . V X

VI = V2 = V3 = V~ = (4y - 1) V X

Vs= 4yVx

This may be expanded to yield

115

Since

We find that

Yo
c, = 1 +-

4

0 ~ Vl-4 ~ V X} 8, ~ 2

-Vx~Vi-4<0 8,>2

0<Vs<2Vx

In the following iteration the total energy incident upon the node becomes

Vmr = 4[(8 J - 1] V x + (
8

Yo J V x
4 + Yo 4 + Yo

= (4 + Yo{
8 J V X - 4 V X \4 + Yo

= 4 Vx

Thus the total energy within the system is conserved. With the introduction of loss

stubs the total energy will decrease but under no circumstances may it increase. If we

impose the condition V mr < 1, the maximum value of the impulse scattered in to any

given branch is also less than 1 and, from above, the maximum impulse scattered in to

the stub is Y2. A fixed point data scheme is therefore suitable for storing the total

energy and the data for each branch of the node, including the stub. The concept of an

implied fractional point in binary data was introduced in chapter 2. By storing fixed

length data such that the implied point is at the extreme left a wholly fractional

number is formed. Impulses within the mesh may be stored in this way by

normalising initial inputs with respect to a maximum total energy value of 1.

It is clear from the above that if y0 > 2 intermediate values in the calculation of

equation 6.1 will be greater than one. These must be stored using a different

representation, potentially one in which the fractional point lies at some point within

the number. The range of numbers required will determine the placement of the

fractional point. From above the maximum value scattered in to the stub is Y2,

therefore the maximum value generated by the stub multiplier is yo/2.

116

The need for a separate number representation for intermediate values may be

removed by rewriting equation 6.1 as

(
2 ~ . 2 Yo ·J k+tV~= -LJkV~+--V~
Y m=! Y

(6.2) .

The term 2yo/y is 0 when y0 = 0 i.e. no stubs are present, is asymptotic to 2 as Yo

increases (See .figure 6.1). It was shown above that the maximum value that may be

scattered in to the stub is Yz, so the maximum product of the right hand side of the

total energy term in equation 6.2 is 1. This result

2 r-=;:::==---.,.,-----,

2 ·yO
---1--
4 + yO

-

o~--------~'------~
0 500 1000

0

Figure 6-1 Plot of Stub Parameter 2y0/y

is consistent with the principle of conservation of energy which must be obeyed by the

node. All intermediate values within the calculation may therefore be represented

using a fixed point notation. The parameter 2yo/y may be stored to any given accuracy

by increasing the word length, W. No overflow errors are generated in the

multiplication on the left hand side of the total energy term as the product of two

numbers less than one will itself always be less than one. The fixed point multiplier

contributes the same mean value to the noise level as each of the adder stages. This is

the equivalent of a truncation of the output to a length of W.

6.2.2 Hardware Development

The hardware development path described in chapter 3 was followed in the

development of the stub loaded shunt node processor. Experience gained on the basic

117

shunt node processor demonstrated that in order to maximise the performance of a

circuit synthesised from VHDL a structural description is preferable to a behavioural

description. The structural description offers more control over the architecture of the

synthesised circuit, as it may implicitly state the components to be used in

performance-critical sections of the design. However if a particular form of multiplier

is required a schematic based design may prove more efficient. This would allow the

exact structure of the multiplier to be designed by hand instead of leaving it to the

synthesis software.

Given the increased complexity of the stub loaded processor it would be

counterproductive to place and route the design manually. The Xilinx Alliance

software allows the user to place and route a circuit automatically and analyse the

propagation delays of critical paths. These paths may then be edited manually to

achieve the desired level of performance.

The advantages introduced through the use of a bit serial architecture for the TLM

processor have been proven. These include a significant reduction in pin count and

resource requirements and the ability to perform calculations to arbitrary precision.

The stub loaded shunt node architecture needs to preserve the bit serial aspect of

previous designs in order to gain these advantages. However any gains must be

weighed against the increased processing time of a bit serial multiplier.

As energy scattered in to a stub is returned directly to the node from which it was

scatteredRl there is no change in the connect routine. Preserving the use of a bit serial

architecture therefore also allows the stub loaded scatter processor to interface with

the connect hardware developed in chapter 5. As there are significant advantages in

relation to mesh geometry offered by this system, this is an important argument in

favour of retaining a bit serial architecture.

6.3 System Design

A block schematic of an application specific TLM processor for modelling 2D

inhomogenous media using the stub loaded shunt node is presented in figure 6.2.

The only noticeable change from the non-stub loaded circuit of .figure 5.2b is the

addition of the stub memory. Each node has one permittivity stub for which the

Rl Loss stubs are an exception to this rule. Energy scattered in to a loss stub is absorbed at the stub
termination and is not returned to the node.

118

values 2yo/y, 2/y and Vs must be stored. Therefore the stub memory is 3NP bits wide

for a system with NP scatter processors. Using a separate memory for the stub data

leaves the architecture of the main store unchanged, providing backward compatibility

with the non-stub loaded system. Data scattered in to the loss stub, if present, is

absorbed and therefore does not require storage. Scattered stub data is routed directly

back to the stub memory and does not pass through the connect logic. These features

allow full backward compatibility with the previous system. The connect logic is

unchanged by the introduction of stubs, therefore the only processing changes occur in

the scatter logic.

Main Store ~
Scatter ~ ~ Stub Memory

Processors

L(~

"(7

Connect Memory ,/1- Connect Logic "'--

Figure 6.2 - Architecture of a Stub Loaded Shunt Node TLM Processor

Multiplication in the scatter processors is performed using the fast serial-parallel

multiplier described in chapter 2. By fixing the length of the stub parameters the FSP

multiplier architecture remains independent of the data length used. Most genuine bit

serial multipliers operate on a fixed word length, requiring all data to be sign extended

to 2W bits long. A fast serial-parallel multiplier is therefore preferred to a genuine bit

serial multiplier in order to maintain capability to arbitrarily choose the word length

and to reduce the amount of data storage required. A parallel adder is used for the

final summation of the bits in the carry chain to prevent the need for sign extension of

the data. This also reduces processing time. The FSP multiplier is composed of full

adders and delay elements. It is therefore well suited to the granularity of the Xilinx

target device.

The architecture of the stub loaded scatter processor is shown injigure 6.3. The

processor has seven inputs. These are the four incident branch impulses, the stub

voltage Vs and the stub parameters 2/y and 2yo/y. A pipeline of full adders provides

119

the summation of the non-stub incident impulses. Two pipeline stages are required to

obtain the total incident non-stub energy. This total is multiplied by the impedance

parameter 2/y while the stub voltage is multiplied with the parameter 2yo/y. The latter

product is then routed via three delay elements to a further full adder which sums the

two products to produce the product of the total incident energy and 2/y, which may

be accessed via the TOTAL output signal. This sum is routed to the five single bit

wide subtractors that generate the reflected impulse values. These are output via the

five output ports to the connect logic or stub memory as appropriate. For data and

stub parameter word lengths of Wand W respectively the product will be of length W

+ W bits. As only the W most significant bits of the product up to the fractional point

are required the first W bits produced must be discarded. This may be done after the

VII VI3 _2_
y

2y0
y

B A B

Figure 6.3 • Architecture of the Stub Loaded Shunt Node Scatter Processor

VIS

summation of the products, as the increased word length during the summation will

minimise truncation errors. The processor contains 5 pipelined stages, each

contributing the same amount to the mean noise level. The shunt node processor had

three such pipeline stages. The mean noise at the output of the stub loaded shunt node

processor is therefore approximately 5/3 that of the shunt node processor.

120

6.3.1 Stub Memory

The stub memory must store the values of the stub parameters 2yofy and 2/y, and the

stub voltage for all nodes in the mesh. As the stub parameters are independent of the

scattered data and do not change they can be stored in a separate memory. This

prevents the need for a sophisticated memory management system to ensure that

constant parameter data is not overwritten as the scattered data is changed. This

potential hazard arises from the bit serial data organisation. Each address in a

combined parameter/data stub memory would hold both variable (stub voltage) and

read only (parameter) data. The stub memory thus consists of two separate memories,

an NP bit wide SRAM which holds Vs for each node in the array and a 2NP bit wide

SRAM which holds the fixed stub parameters

6.4 Design Issues

• A maximum size must be set for the multiplier registers that hold the stub

parameters. The size of these registers defines the precision of the stub data and

the range of relative permittivity that may be modelled. Table 6.1 gives values for

some materials frequently encountered in electromagnetics. It is important to note

that while a non-stub loaded section of the mesh represents a background medium,

it need not necessarily represent a vacuum. The concept of relative permittivity

must be discussed with reference to the permittivity of the background medi':lm.

The length of the multiplier register, W, therefore sets the range of the permittivity

relative to the background medium. The register should be large enough so as not

MATERIAL Er 2yofy 2/y

Air 1.0006 0.0012 ==Y2

Polystyrene 2.56 1.218 0.1953

Water (Sea/Distilled) 70 I 81 1.97 I 1.9744 0.007142 I 0.00617

Silicon 11.8 1.83 0.04237

Germanium 16.0 1.875 0.03125

Table 6.1 • Relative Permittivity and Stub Parameters for Common EM Materials

to limit the accuracy of the mesh parameters, however as the product requires W +
W clock cycles to produce the register should not be made longer than necessary,

thus incurring performance losses. The bit serial nature of the processor permits

the use of arbitrary word lengths for the stub parameters provided the multiplier

121

register is sufficiently large. Therefore through reconfiguration of the registers any

stub parameter precision may be accommodated.

• The performance of the stub loaded processor will be inferior to that of the simple

shunt node processor due to the increased number of clock cycles required to

perform the multiply operations. A total of W + W clock cycles are required for

each multiplication with an extra 4 clock cycles required for the

addition/subtraction operations. The shunt node processor required only W + 3

clock cycles to produce an output.

• In order to simplify memory management and preserve the synchronisation of

impulses within the mesh all stub parameters should be of the same word length.

This may result in a loss of accuracy for smaller stub parameters. If the orders of

magnitude between the largest and smallest values approaches the number of bits

in the assigned word length then much of the smaller value consists of leading

zeros. This may be overcome by increasing the word length, but at the cost of

increased processing time.

• The inputs to the processor must be delayed so that they appear at the inverting

inputs to the subtractors at the same time as the first bit of total energy summation.

In the shunt node processor the inputs must be delayed for three clock cycles. The

introduction of the multiplier in the stub loaded processor requires a delay of W +
W clock cycles. If W is large then long delay chains can be required.

Additionally, the delay introduced will vary depending upon the mesh parameters;

thus the delay chain must also be variable so as not to limit the range of these

parameters. One way to introduce a variable delay is to use the Xilinx internal

RAM capability to create a variable length FIFO.

• The multiplicand registers for the two multipliers may be double buffered so that

they are pre-loaded while the current calculation is in progress. As the multiplier

registers must be loaded bit serially this operation can be a considerable source of

latency if pre-loading is not used.

• While the system retains the capability to vary stub parameters for each individual

node, in practice the mesh parameters are usually constant over large regions. It is

therefore often unnecessary to pre-load the multiplier registers for each node, rather

only when local parameters change. However retaining the ability to alter the

parameters for individual nodes increases the system's flexibility, as the processor

is able to model gradually varying media. The arbitrary placement of boundaries

between regions of differing parameters is also allowed.

122

6.5 A Boundary Equipped, Stub Loaded Scatter Processor

The introduction of simple boundary conditions to the scatter processor was discussed

in chapter 4. The use of a two bit code tagged to the front of each data word to

indicate the local boundary conditions is equally applicable to the stub loaded

processor. The preceding work has shown how simple boundaries, those with

reflection coefficients of p = 1, -1 or 0, may be implemented through changes made to

the subtractor stage of the processor pipeline. The operation of the subtractors is

identical in both the stub loaded and non-stub loaded processor, so an identical system

may be used. As stated above, the introduction of stubs does not affect the connect

logic, and the implementation of boundaries within the connect logic is unchanged.

6.6 Performance Issues

The stub loaded shunt node scatter processor is applicable to the solution of a wide

variety of problems in electromagnetics and many problems in acoustics. However in

introducing the ability to model inhomogenous media the processor suffers a loss of

performance. The increase in resources consumed by the node will lead to the use of

less efficient routing within the FPGA, giving rise to a possible reduction in the

maximum clock rate. For a word length of 32 bits plus a two bit boundary code the

non-stub loaded processor produced a throughput of 2.3 x 106 scattering events per

second. Assuming a stub parameter value of length 9 bits m, the stub loaded processor

would be capable of 1.81 x 106 scattering events per second. This represents a

reduction in throughput of 21% and assumes the maximum clock rate of the processor

is not significantly reduced. A general relationship for the throughput is

1
t----------r------~

- 1.25x10-8 X (w + ws + 3)

As with the simple shunt node processor, the word length is increased by 3 due to the

boundary data and the discard bit. This function is compared to the shunt node

throughput infigure 6.4.

The connect logic is unchanged from the non-stub loaded system and therefore adds

no overhead to the operation of the scatter processors. The efficiency of an array of

stub loaded scatter processors, as for the non-stub loaded processor, will approach

100%.

"'An implied inaccuracy in the stub parameter of± 0.001

123

2.:10
6

2.:no
6

2'10
6

\is

T 6
- -1.~10

l.H0
6

1.:10
6

0 2 8 10 12 14 16

Ws

Figure 6-4- Stub Loaded Shunt Node Throughput versus Stub Parameter Word Length. Dotted
line shows shunt node throughput

6.7 Conclusions

An application specific TLM processor has been developed around the 2D stub loaded

shunt node. The node is fully compatible with the connect logic developed in chapter

5. Integration of the stub loaded scatter processor in to the TLM system of chapter 5

requires the addition of an extra memory bank and a reconfiguration of the scatter

logic. The new system is fully backward compatible with the original.

As with previous systems the stub loaded shunt node processor retains the use of

arbitrary arithmetic precision and arbitrary mesh geometry. By utilising the same

connect logic as the previous system the ability to process any size of rectangular

mesh using a small, fixed number of processors is also retained. As with the shunt

node processor, the efficiency of an array of stub loaded scatter processors integrated

with the connect logic will be close to 100%.

The increase in flexibility provided by the addition of stubs to the TLM mesh is offset

by a loss in performance due to the increased complexity of the arithmetic, most

notably the inclusion of 2 fast serial-parallel multipliers. However this reduction in

throughput is only of the order of= 20-25% to the shunt node processor operating

with the same precision. This is due to the increased number of clock cycles required

for the stub loaded scatter operation and assumes a stub parameter word length of

124

between 10 and 16 bits. The word length used to store the stub parameters has a

significant effect on the throughput. A balance must be struck between precision and

performance.

125

References

126

7. Three Dimensional TLM Modelling using the
Symmetrical Condensed Node (SCN)

7.1 Introduction

Most practical problems involving propagation phenomena exist in 3 spatial

dimensions. The extension of TLM to modelling propagation in 3 dimensions has

been well documented. A review of the theory has been presented in chapter 1. The

basic building block of a 3D electromagnetic TLM mesh is the symmetrical

condensed node (SCN)1 ,figure 7.1. An application specific scatter processor for the

SCN is developed using the basic principles of algorithm development and hardware

development. The concept of a three row connect logic is extended to operation in

three dimensions. These two sections are combined to produce a complete system for

three dimensional TLM modelling and the system's operation is discussed.

Figure 7.1 The Symmetrical Condensed Node

127

7.2 Development of an Application Specific 3D TLM Processor

The development of an application specific processor for the 3D TLM method

requires the development of both an SCN scatter processor and a 3D connect

processor. While the 2D shunt node processor of chapters 4 and 5 presents some

useful techniques which may in principle be applied to a 3D processor, significant

algorithmic differences exist. Principally these lie in the following areas

• The 3D Connect Process - The 3D TLM method requires data scattered from a

node to be transmitted to adjacent nodes in 6 directions. Data scattered within one

plane of the mesh follows a pattern identical to that of 2D TLM. However 3D

TLM also requires data to be transmitted to nodes in the planes above and below

the scattering plane. The 2D pattern thus occurs in three planes of the model,

figure 7.2.

7/,

Figure 7.2- Three Dimensional Scattering Comprises of2D Scattering Events in Three Planes

• 2 Impulses per Link Line - Each of the 6 link lines of the SCN is composed of two

orthogonally polarised branches. The connect process must therefore transmit two

words of data in each direction. Boundaries must cope with the possibility of each

branch having independent boundary conditions.

• 6 Field Components Available- In 2D TLM energy distribution within the mesh is

commonly visualised by plotting the total incident voltage or current at each node.

This value represents a single field component. In the SCN 6 field components

may be formed from appropriate combinations of the input impulses. Any of these

components may be required for visualisation and should be provided by the

processor.

128

7.3 The SCN Scatter Processor

7.3.1 Algorithm Development

The SCN has a scattering matrix of the form

VI r 1 1 1 -1 VI
v2 1 -1 1 v2
VJ 1 1 1 -1 VJ
v4 1 1 -1 1 v4
Vs 1 -1 1 Vs
v6 1 1 1 1 -1 v6

-
v1 2 -1 1 1 V?
Vs 1 -1 1 1 Vs
v9 1 -1 1 1 v9
VIO -1 1 1 1 VJO
Vu -1 1 1 1 Vu
vl2 1 -1 1 1 V12

Examination of the scattering matrix reveals explicit solutions of the form

VI = ~ (v~ + V~ + V~ - Vft) (7.1)

However there is no simple rule for determining which of the arbitrarily numbered

incident port voltages combine to produce each output. A suitable scheme may be

developed based upon the notation of Trenkic2
• In this notation each port is labelled

by three letters representing respectively the direction of the line, whether the

direction is positive or negative with respect to the centre of the node and the port

polarisation. Thus XnY is the Y polarised port in the negative X direction (this

corresponds to port 3 in the notation of figure 7.1). We can further exploit the

concept of data pairing within the SCN. A cursory examination of the scattering

matrix reveals that certain pairs of ports, e.g. 1 and 12, are linked. When ever one of

the pair appears in any row of the scattering matrix its pair also occurs. In some cases

one of the pair is negated, however in no cases are both members of the pair negated.

Using the dummy indices I, J, K = {x,y,z}, it is noted that pairing occurs between

ports lpJ and InJ. We can utilise these facts to produce two relationships

129

where V1p1 is the incident voltage at port IpJ.

The reflected port voltages are thus determined by

(7.2)

It is noted that the expanded forms of equation 7.2 correspond to the mathematically

optirnised SCN equations developed by Trenkic3
• The 6 field components modelled

by the node may be obtained from

VI =VJI+VKI

If = V'JK - V'KJ

where the electric and magnetic fields are proportional to the voltage and current

respectively in the required direction. When calculating the current, 1 and K are

chosen such that JpK progresses around I in a right handed sense.

7.3.2 Hardware Development

(7.3)

By expanding equation 7.2 we obtain explicit solutions for each port of the SCN.

These are of a similar form to the solutions of the shunt nocif?. The principle

operations performed are addition, subtraction and a division by two. Indeed each

port of the SCN may be implemented using a shunt node processor given the correct

input values and the selective use of a single output. This may be expected given that

the SCN must be the physical equivalent of the distributed and asynchronous nodes

described in chapter 1. These nodes are formed from networks of shunt and series

nodes.

130

Vxpy Vxny Vxpy Vxny Vypz Vynz

Vxy Vxy' Vyz'

Vxy Vyz' Vyx Vxz' Vyz Vzx'

VRxpy VRxny VRynz

Figure 7.3- Architecture of the SCN Scatter Processor

However the sequence of equations shown in equation 7.2 suggest a much more

effidient structure. The architecture offtgure 7.3 implements the SCN algorithm in

this form. The adders are developed using a bit serial architecture as used by the

shunt node processors developed previously. These components were shown in

chapter 4 to map efficiently to the hardware of the Xilinx FPGA. The processor

retains the properties inherent in the bit serial architecture and discussed at length in

previous chapters. These include the use of arbitrary precision and a significant

reduction in hardware costs per processor. Each of the 12 parameters Vu and V'u is

formed in a single pipeline stage using 12 bit serial full adders/subtractors. The

output values may thus be formed using a second pipeline stage to produce the correct

combinations of these parameters. Again only 12 bit serial full adders are required.

Each scattered data sum is divided by two by discarding the first bit of the output.

This architecture provides a considerable reduction in resource requirement compared

to a processor developed from a combination of shunt nodes. This is evident from the

reduction in the number of adders used by the processor, 24 as opposed to 84 required

for the shunt node configuration. Further reductions arise from the order in which

operations are performed. In the SCN processor all subtractions are performed in the

first stage of the pipeline, therefore there is no need for extra logic to produce delayed

copies of the input streams. Writing the algorithm in this way also reduced the

number of stages of logic in the pipeline. Each stage contributes to the total noise at

the output. This architecture therefore minimises the total noise.

As the SCN processor uses identical components to those of the shunt node processor

it is also well matched to the granularity of the Xilinx FPGA. A single node requires

131

24 CLBs and 25 pins including a clock input to control the flow of data through the

pipeline.

7.3.3 Implementation of Boundaries in the SCN

Boundaries within a 3D SCN mesh are placed a distance fll/2 from nodes to preserve

the synchronisation of data within the mesh. Boundaries with reflection coefficient p

are traditionally implemented by modifying the connection equations in the following

manner.

k+t V~ (x, y, z) = Pk V~ (x, y, z)

It was demonstrated in the development of the shunt node processor that the

computational elements of the above may be moved to the scatter processor, thus

reducing the connect process to the routing of data. This eliminates any

computational latency from the connect process and allows the processor array to

operate at maximum throughput. However in that case the boundary calculation is

performed by modifying the subtract stage in the pipeline. The architecture of the

SCN does not provide a single stage at which this modification may take place,

therefore a new technique is required. The use of integer data restricts the boundary

conditions which may be readily implemented to those of reflection coefficients p = 0,

1, -1. A two bit code is added to the front of each data word to specify the presence

and type of any local boundaries. The code specified in table 4.1 may be used. This

code is interpreted to set two flags, the zero flag (ZF) and the inversion flag(IF). The

nature of these two flags was defined in chapter 4. The output at each port is ANDed

with the active low ZF and is hence forced to zero when ZF is asserted. The inversion

flag must produce the 2s complement of the data output from the second stage of the

pipeline. This may be generated by inverting all bits in the output and adding the

result to OOOlH. This technique would obviously require an extra stage in the pipeline

as an extra adder must be inserted in to the output stream. This stage would

effectively subtract the output from zero. A simpler method of generating the 2s

complement is presented infigure 7.4. The effect of converting a

132

IN

CLOCK

FDCE

FD_1

INV

Figure 7.4- 2s Complement Logic

1>----==

number to its 2s complement is that all bits up to and including the first '1' remain

unchanged while all subsequent bits are inverted e.g.

1310

0110(1)

810

0(1000)

-1310

1001(1)

-8w

1(1000)

The circuit operates on a similar principle to that of the subtractor modifier used in the

shunt node. That is when a bit is XORed with '0' its value is unchanged where as

XORing with '1' inverts the bit. The circuit uses a transparent latch, the output of

which is fed back via a flip flop to form the gate signal. At the start of each data word

the reset signal sets the gate to open. Any preceding zeros pass through and, as the

gate signal is active low, do not change the gate conditions. The first '1' in the data

word is passed through and is clocked on the next rising clock edge, latching the gate

shut to prevent the data from changing again until the reset signal is applied. The

output of the flip flop is ANDed with IF and XORed with the output data. Thus if IF

is negated the output of the AND gate is '0' regardless of the state of the latch and the

output data is unchanged. If IF is asserted the output of the AND gate becomes ' 1' on

the clock cycle after the first '1' is presented, thus all data after the first '1' is inverted.

The advantage of this circuit is that it may be compressed in to two LUTs, i.e. a single

CLB, with one LUT providing the complete latch, AND gate and XOR gate and the

second LUT and associated flip flop producing the gate signal. The increase in

propagation delay of the circuit is therefore only - 5ns. A small transient signal

change may occur in the output following the first active clock edge after the first '1'

133

is output. This is due to the propagation delay in the AND gate LUT. Careful

selection of the time at which the output is sampled prevents this transient from being

propagated as data.

As the boundary flags are set for each port individually it is possible to specify

different boundary conditions for each of the 2 cross-polarised ports within a single

branch of the node. This may be useful for modelling anisotropic or polarising

materials. Indeed it is possible to specify a boundary upon one polarisation while

transmitting data of the opposite polarisation unchanged.

The six field parameters modelled at the node may be produced by combining two of

the 12 parameters from the first pipeline stage, equation 7.3. Generating each field

parameter requires a single CLB. Six output pins are required for the field parameter

data, however a single pin may be used with a mutliplexer to select a single parameter

for output. This method reduces the pin count and the routing resource requirement of

the node. In many practical cases only a single parameter is considered, therefore the

latter scheme offers an acceptable compromise between flexibility and cost reduction.

7.4 The 3D Connect Processor

With the implementation of boundary calculations in the scatter processor the design

of the connect processor becomes that of a 3D data router. In an SCN mesh data is

scattered in 6 directions. As with 2D TLM, impulses on the mesh travel a distance !ll

in an iteration period M. Thus scattered impulses become incident upon neighbouring

nodes in the next iteration. Consider data scattered from a row of SCNs within a

single plane of a 3D model. Data is scattered to neighbouring nodes in that plane in a

pattern identical to the 2D connect process. However two impulses are transferred

between nodes in each direction. Along with this 2D-type scattering within the plane,

impulses are scattered to neighbouring nodes perpendicular to the plane. Scattered

data may be routed to a connect memory as in figure 5.2a. If scattering progresses

along each plane of the model one row at a time as in the 2D processor, data scattered

within the plane may be transferred the 3 row connect memory developed in section

5.3. This must be modified to allow for the scattering of 8 impulses within the plane

as opposed to 4. Each impulse must be routed individually based upon its own local

boundary conditions. Impulses scattered perpendicular to the plane must be stored

until they are written back to the main store. This requires extra storage for 2 planes

134

in the model. A complete TLM processor architecture incorporating a 3D connect

architecture is shown infigure 7.5.

Previous Plane

Current Plane

Next Plane

Main Store

Connect Memory ~r-----1

Figure 7.5 ·Block Schematic of the SCN Processor

Scatter
Processors

Connect Logic

Data is passed from the main store to an array of SCN scatter processors. The

scattered output data is routed via the control logic to one of three locations within the

plane memory.

• The 2D-Type Connect Memory- This memory consists of three blocks of SRAM,

each sufficient to hold 8 data words for each node in one row of one plane of the

mesh.

• The Next Plane Memory - This memory consists of a single SRAM sufficient to

hold two data words for each node in one plane of the mesh.

• The Current Plane Memory- This memory consists of a single block of SRAM

sufficient to hold all data (12 data words) for all nodes in a single plane of the

mesh.

The operation of the plane memories is analogous to the operation of the three rows in

the 2D connect memory. As data is passed between the rows each location is filled

such that when the data is written back the main store all locations hold pertinent data

for the next iteration. Data scattered within the plane of the scatter processors is

routed to locations within the 2D-type connect memory. The next plane and current

135

plane memories hold respectively data scattered in to the next plane to be scattered

and the current plane in which scattering is taking place. Data output from row three

of the 2D-type connect memory can not be written back to the main store as the

scattering window, the causal region in which scattering events may affect

neighbouring nodes (section 5.3), becomes a sphere of radius 111 in 3D. Nodes in the

current plane will therefore still fall within the scattering window of nodes in the next

plane. The scattered data is instead written to the current plane memory. Data

previously held in this memory is written back to the main store along with any

impulses passed back to the previous scatter plane. The boundary data of the two

ports linking to the previous scatter plane must be held until the data is written back to

the main store as it is required to multiplex the data direct from the scatter processors

and data from the current plane. Data scattered to the next plane is held in the next

plane memory and must also be stored until the scattering window has passed that

plane for the current iteration. Data currently held in this memory is passed to the

current plane memory as scattering progresses on to the next plane in the mesh.

This is illustrated infigure 7.6, which shows how the scattered data is accumulated

for each node as the scattering event moves through the array.

The 3D connect logic minimises the amount of memory required by the processor by

only storing the data that falls within the causal region of the scattering event. As

with the 2D connect logic it eliminates the traditional! node per processor mapping.

This allows a small array of scatter processors to operate on a cuboid mesh of arbitrary

size. Data scattered within the current plane is processed in a manner similar to the

2D connect logic. The maximum number of scatter processors is therefore limited to

the number of nodes in one row of the mesh. This ensures that the connect logic does

not overwrite incident data for the current iteration.

The connect logic and main store use a bit slice architecture as introduced for the

shunt node processor in chapter 5. It was shown in chapter 5 that such an

architecture may be easily adapted to implement a block floating point scheme. The

amount of storage required is increased by one bit per word to hold the discard bit.

This is necessary to prevent normalisation errors when the array of data is shifted.

The use of a block floating point scheme is particularly important in 3D TLM where

larger arrays often require considerably more iterations to yield a solution than 2D

models. The block floating point scheme effectively increases the word length to

allow the storage of extra significant bits as the array is shifted. This reduces the

noise added in each computation, hence the total noise added during a large number of

iterations is reduced.

136

•

Previous Plane

Current Plane

Next Plane

Data Scattered From
Central Node

Data Scattered From
Preceding Plane

Figure 7.6 - Routing of Scattered Data Within the 3D Connect Memory

7.5 Conclusions

In this chapter the extension of the TLM processor to three dimensions using the

symmetrical condensed node has been reviewed. A compact notation for scattering at

the node has been developed. An application specific scatter processor has been

developed to implement the SCN. By maintaining the bit serial architecture and

encoded boundary representation developed in chapter 4 for the 2D shunt node the

137

system is able to use arbitrary word lengths and arbitrary boundary placement. The

2D connect processor has been adapted to operate in three dimensions. This allows a

small number of scatter processors to operate on a cuboid mesh of arbitrary size up to

that permitted by the available memory of the system.

The scatter logic for the SCN processor is very similar to that of the 2D shunt node,

hence throughput for a single node may be expected to be of a similar rate. Each word

of length Whits requires W + 3 clock cycles to produce an output. The SCN processor

requires only two pipelined stages compared to three in the shunt node. The latency

of the processor, i.e. the time between the first bit entering the pipeline and the first bit

being output, is therefore reduced. Each pipeline stage contributes to the overall noise

at the output, so the SCN processor can be expected to have a lower total noise than

the shunt node processor.

As with the 2D processors developed in chapters 4 and 5, no computational latency is

introduced by the connect logic. The efficiency of an array of SCN scatter processors

will therefore be close to 100%. Each scatter processor will operate at the rate of a

stand alone processor. The connect logic uses the bit slice memory architecture

introduced in chapter 5. This allows a block floating point scheme to be implemented

in the 3D main store in the same way as for the shunt node. The block floating point

scheme, coupled with the use of arbitrary word lengths, permits the trade off between

precision, range and throughput.

The extra 10 requirements of the SCN processor limit the number of processors that

may be formed on a single FPGA. This limits the size of the parallel processing

partition and thus limits the achievable speed up. However the use of a bit serial

architecture minimises the 10 requirements of each processor.

138

References

1 Johns, P.B 'New Symmetrical Condensed Node for the Three Dimensional Solution
of Electromagnetic Wave Problems by TLM', Electronics Lett. Vo1.22, pp.162-64,
1986

2 Trenkic, V; Benson, T.m and Christopoulos, C 'Dispersion Analysis of a TLM
Mesh Using a New Scattering Matrix Formulation', IEEE Microwave and Guided
Wave Letters, Vo1.5(2), 1995

3 Trenkic, V; Christopoulos, C and Benson, T.M 'Efficient Computational
Algorithms for TLM', 1st International Workshop on Transmission Line Matrix
(TLM) Modelling: Theory and Applications, pp.77-80, University of Victoria, 1-3
Aug., 1995

139

8 An Application Specific Processor for Modelling
Inhomogeneous Three Dimensional Media

8.1 Introduction

As with the shunt node in two dimensions, the SCN, introduced in chapter 7, is

capable only of modelling homogeneous media. This chapter presents an application

specific processor for the modelling of inhomogeneous media in three dimensions

using the stub loaded SCN. This node configuration is shown to be inefficient when

implemented in hardware. An application specific processor to implement the SSCN

scattering algorithm for isotropic, non-graded media is developed.

8.2 Development of a 3D TLM Processor for Generalised Media

Two different approaches to modelling inhomogeneous media in three dimensions

were presented in chapter 1. The first is the stub loaded SCN. As with the shunt

node stubs may be added to the SCN to increase the capacitance or inductance at the

node. Separate stubs are required for each dimension. Loss stubs may also be added.

A total of 9 stubs may therefore be added to each node. The second approach uses a

new node called the symmetrical super condensed node (SSCN). The SSCN varies

the parameters of the region modelled by the node by varying the impedances of the

link lines forming each branch.

8.2.1 Algorithm Development

8.2.2 Stub Loaded SCN

Stubs may be added to the SCN to model increased permittivity and permeability in

the same way they are added to the shunt node. However due to the increased number

of stubs the parameters y and y0 are replaced by a series of 10 parameters. These are

denoted by the lower case letters a-j. The stub loaded SCN has a densely packed 18 x

18 scattering matrix 1• 10 parameters are stored for each homogeneous region of the

mesh. It is possible to generate twelve secondary values from the incident data as

done previously for the SCN

140

V ii = Vipj+ Vinj

V'ii = Vipj- Vinj

As with the SCN inspection of the scattering matrix reveals patterns that may be used

to develop compact equations for the scattering at each port. These take the form

A

V~j = 8 V ii + b V kj - d V'ji + g Voi + i V sk

V[nj = a V ii + b V kj + d V'ji + g V oi - i V sk (8.1)

The subscripts oi and sk denote the voltages of the i and k polarised open and short

circuited stubs respectively. The operators g and a are defined as

A 1
8V = - [(a + c)V + (a - c)V']

2
1

a~ = -[(a + c)V - (a - c)V']
2

Reflected capacitive and inductive stub voltages may be calculated from

v~i = e vi + h v~i

v~i = t Ii + j v~i (8.2)

Loss stub voltages may be similarly determined. Vi and Ii were defined in equation

7.4.

8.2.3 Symmetrical Super Condensed Node

The SSCN2 offers many degrees of freedom. By restricting the node to lossless,

uniformly graded meshes the design may be simplified considerably. However both

restricted and generalised cases will be considered.

It was shown in chapter 1 that the SSCN may be solved using a series of equations of

the form

V[nj = V j + I j Zii - Vlpj

V~j = V j - h Zii - Vlnj

141

(8.3)

In order to simplify the SSCN scattering equations (equation 8.3) two new parameters

are introduced3
•

(8.4)

Following the data pairing notation introduced previously for the secondary values

generated from the incident data at a node, the definitions for the voltages and currents

in equation 8.1 may be written as

Vi = C'ii V ii + (1 - C'ii) V kj

= C'ij (vij- vkj) + vkj

L'ii (v•ii - V'ii)
zij

The general scattering equations may thus be written

v~j = C'ij (vij - V kj) - L'ij (v·ij - V'ji) + V kj - v:nj

Vinj = C'ij (v ij - vkj) + L'ij (v·ij - v·ji) + vkj - v:pj

It is noted that the current term Ik may take one of two values dependent upon the

ordering of the indices i andj. It is further noted that for isotropic media

L'ii = C'j; = (1 - C'ii)

(8.5)

In this case only three parameters are required to define the node, C' xy. C' yz and C' zx·

This reduces both storage requirements and the number of multiplication operations

required. If the node is further restricted to modelling isotropic, uniformly graded

media equation 8.4 yields

C' - C' = C' = C' xy - yz zx

Thus as L' = (1 - C') only one parameter must be stored to define the whole node.

142

Trenkic further notes that the number of multiplications performed may be reduced

using the relationships

Iiij) = - lkji)

L'ji = (1 - L'ij)

where I~n denotes the positive or negative k directed loop current. These may be

substituted in to the scattering equations to yield

As the bracketed term has already been produced during the earlier stages of the

calculation this substitution reduces the number of multiplications by three at the cost

of only three extra additions. However the form of equation 8.5 is preferred for

hardware implementation as it produces an equal delay in each branch of the

processor.

8.2.4 Comparison of the stub loaded SCN and the SSCN

The series of equations derived for the stub loaded SCN offer a significant advantage

over large matrix multiplication for hardware development. However they still

require many pipelined levels of arithmetic including many multiplication operations.

As demonstrated previously these are complex operations in digital arithmetic and can

incur high processing time and resource costs. The large number of levels of

arithmetic required will give rise to a large noise value at the output.

It has been shown3 that the SSCN offers a considerable reduction in software

processing requirements over the stub loaded SCN. The preceding sections show that

this conclusion also holds true for hardware implementation. The SSCN requires

fewer levels of arithmetic and considerably fewer multiplications that the stub loaded

SCN. As such it is reasonable to expect an SSCN based processor to be more

compact than a stub loaded SCN based processor. It would also be expected to yield a

higher throughput due to the reduced number of multiply operations. The reduction in

logic levels also yields a lower additive noise at the output.

143

8.2.5 Hardware Development

From section 8.2.4 it is clear that the SSCN offers significant advantages over the stub

loaded SCN. It is therefore the preferred scheme for the development of a 3D TLM

processor for non-uniform media. Unlike the extensions to the TLM method detailed

in previous chapters, the SSCN is not developed from the basic shunt node

configuration, nor does it present equations of a similar form to the shunt node.

However there are certain similarities between the SSCN and previous systems.

• Intermediate values are formed from combinations of the incident impulses at each

port.

• Combinations of these values are used to produce the output values for each port

via some intermediate stages.

• All ports in the node may be described by equations of the same form.

• The basic operations performed are addition, subtraction and multiplication.

These similarities are sufficient to suggest that a bit serial, pipelined structure similar

to that used in previous processors would be suitable for an SSCN processor. The

connect operation in the SSCN is identical to that of the SCN with the exception that

internodal reflections may occur between regions of differing material parameters (i.e.

between regions of varying link line impedance). If the calculation stages required for

the internodal reflection are treated separately to the actual transfer of data then the

three dimensional connect processor developed in the previous chapter for the SCN

may be utilised here for the SSCN. This requires that the scatter processor accept 12

bit serial inputs and produce 12 bit serial outputs to provide compatibility with the

existing system.

All forms of the scatter equations presented above use the 12 intermediate values

developed in section 7.4.1. These may be formed using 12 full adders/subtractors. A

further 9 adders/subtractors are required to produce the multiplicands in the voltage

and current terms of equation 8.5. Trenkic has shown that the 3 voltage and 6 current

terms may be produced using only 6 multiplications, however in the development of a

hardware based solution for the SSCN the form of equation 8.5, which requires 9

multiplications, is preferable. Using this form the number of computational steps

required to produce each product is equal, hence synchronisation is preserved. In the

reduced scheme, three of the current terms require an extra subtraction stage thus

synchronisation is lost. It has been shown in previous chapters that a fast serial

parallel multiplier with one operand of length M and the other presented in a bit serial

format requires an M bit wide parallel adder, and an M bit wide accumulator register.

It is true that the resources required to produce the necessary delays in the reduced

144

scheme are less than those required for a further three multipliers. However the

introduction of the extra multipliers opens up the system to the implementation of

anisotropic media where the reduced scheme simplifications are not valid.

As with previous processor designs the granularity of the SSCN processor is well

suited to implementation using a Xilinx FPGA. The use of 9 multipliers leads to high

resource requirements for the SSCN processor. However this requirement is

mitigated through the use of a bit serial architecture.

8.3 Design of an Application Specific System for the SSCN

A block diagram of a single SSCN processing element is shown infigure 8.1.

Vxpy Vxny Vypz Vynz

VRxpy VRxny VRynz

Figure 8.1 - Block Schematic of an SSCN Scatter Processor

This basic processor is suitable for isotropic, uniformly graded media. The bit serial,

pipelined architecture is composed of several distinct computational stages. Stage one

produces the twelve intermediate values Vij and V' ij· These are combined to form the

nine multiplicands for the voltage and current terms in stage two. The multiplicands

are passed bit serially to the nine multipliers as they are produced. The double

buffered multiplier registers are pre-loaded to reduce latency. In order to reduce

145

storage requirements only the value of C' is stored. The value of L' is found using the

relationship

L' = (1 - C') = -C'+l

The 2s complement of C' is formed using the circuit developed in section 7.4.3. One

is then added to the result bit serially using a half adder with an initial carry input

forced high. This computation occurs during the pre-loading stage. The multipliers

produce the three voltage and six current terms which are summed in stage four to

produce the six combinations required by the next stage of the calculation. A second

operation in stage four produces the sum and difference terms which complete

equation 8.5. These are formed from delayed copies of the inputs and the necessary

secondary values formed in stage one. Finally stage five combines the two sets of

outputs from stage four to produce the scattered data at each port. This architecture

may be expanded to incorporate anisotropic media by allowing each multiplier

register to be loaded individually, thus allowing the material properties to be varied in

each dimension independently. Extension of the processor to generally graded media

would require the addition of three further multipliers and subsequent adjustment to

the logic of stages four and five. This would allow the properties of all link lines to be

varied independently, giving rise to a very powerful modelling tool.

8.4 Discussion

As with the stub loaded shunt node a considered choice of numeric representation is

required in order to prevent the introduction of errors, particularly during the

multiplication operations. As the principle of energy conservation is upheld by the

SSCN a fixed point notation may be used to store the incident and scattered data as

wholly fractional values. A second format may be required to hold the multiplicands

and any intermediate values formed during the calculations. Careful choice of values

for the parameters L and C will prevent the need for an intermediate notation.

The significant increase in resources required for the SSCN processor in comparison

with the previously developed TLM processors leads to a decrease in the number of

processors that may be implemented on a single FPGA. It would be expected that the

throughput of an SSCN based system would be less than that of the other systems.

This is due mainly to the increased consumption of resources within the FPGA.

146

It is clear from above that by using bit serial 10 the SSCN processor may be used in

conjunction with the 3D scatter logic defined in the previous chapter. An additional

link line data memory would be required, analogous to the stub memory of the stub

loaded shunt node system, to hold the link line parameters. This gives rise to the

architecture of .figure 8.2. The processor retains the other benefits of a bit serial

architecture, e.g. the use of arbitrary word lengths and arbitrary mesh size.

Link Line
~ Scatter]/1_

Previous Main Store Parameter
Plane

-v Processors ~ Memory

.;'~

V
Current
Plane Connect V1- Connect

Memory N Logic

Next Plane V
Figure 8.2 - Block Schematic of a Complete SSCN Processor

The introduction of boundaries within the SSCN mesh may be achieved in a manner

similar to that used for the SCN. A two bit code is added to the front of each incident

data word. This code is used to set the zero and inversion flags which act on the

output of the node to set the correct values for the next iteration. As with the SCN

additional logic is required to produce an inversion of the output when p = -1.

8.5 Conclusions

The path between input and output of the SSCN processor includes three full adders

and one multiplier. This is the same as for the stub loaded shunt node. Throughput in

the SSCN processor has the same dependency upon parameter word length as the stub

loaded shunt node. The plot will therefore follow the same trend as figure 6.4.

However due to the increased resource requirements it is reasonable to expect that the

clock rate would be slightly reduced. This is because the routing within the FPGA

becomes congested, forcing the use of less efficient paths. Actual throughput would

therefore be slightly lower than for the stub loaded shunt node.

147

As with previous systems, the efficiency of an array of SSCN processors will be close

to 100%. The SSCN processor forms a highly adaptable platform for the study of

three dimensional problems in electromagnetic. The processor preserves the full

functionality of the SSCN, allowing the modelling of anisotropic, irregularly graded

meshes. The combination of the SSCN scatter processor and the 3D connect logic

developed in chapter 7 provides a very powerful modelling tool for TLM.

148

References

1 Tong, C.E and Fujino, Y 'An Efficient Algorithm for Transmission Line Matrix
Analysis of Electromagnetic Problems Using the Symmetrical Condensed Node',
IEEE Trans. On Microwave Theory and Techniques, Vol.39(8), pp.1420-1424, 1991

2 Trenkic, V; Christopoulos, C and Benson, T.M 'New Symmetrical Super­
Condensed Node for the TLM Method', Electronics Letters, Vol.30(4), pp.329-30,
1994

3 Trenkic, V; Christopoulos, C and Benson, T.M 'New Developments in the
Numerical Simulation of RF and Microwave Circuits Using the TLM Method', Facta
Universatis (Nis), Series Electronics and Energetics, Vol.1, pp.87-95, 1995

149

9. A Reconfigurable, General Purpose TLM Processor

9.1 Introduction

Chapter 4 of this thesis documented the development of an application specific processor

for the two dimensional shunt node. Chapters 6, 7 and 8 subsequently demonstrated the

development of scatter processors for three other TLM nodes. These were the stub

loaded shunt node, the symmetrical condensed node (SCN) and the symmetrical super

condensed node (SSCN). The four scatter processors are based around a common set of

features. These are:

• Each processor maps a particular form of the TLM scattering equation to hardware in

a manner ensuring that there are no redundant elements.

• The granularity of the proposed implementation technology, the Xilinx XC4000

FPGA, is closely matched to the low level mathematical constructs within the TLM

equations.

• The processors all use bit serial arithmetic. There are a number of advantages

resulting from the use of a bit serial architecture. They are:

• Reduced data bandwidth compared to a data parallel processor.

• Reduced resources required for each processor compared to a data parallel

architecture.

• The word length is independent of the width of the internal logic, thus arbitrary

word lengths may be used. This allows the trade off between arithmetic precision

and throughput to be evaluated on a per simulation basis.

The TLM connect process has also been mapped to hardware. Connect logic for 2D TLM

(chapter 5) and 3D TLM (chapter 7) has been described. The connect processors also

exhibit a set of common features. These are:

• A small number of scatter processors are mapped on to a TLM mesh of arbitrary size.

• The bit serial memory organisation supports the use of arbitrary word lengths.

• The architecture is infinitely scalable for word length, number of scatter processors

and mesh size.

• Memory requirements are minimised for a given scheme.

• The connect process adds zero overhead to the computation in the scatter processors.

150

• Each scatter processor works independently. The throughput of each processor is

independent of the size of the scatter array. The efficiency of the array is therefore

close to 100%.

Each scatter processor implements only one form of TLM. The distinct, individual

processor designs do not achieve the aim of removing limitations on the type of node they

can implement. In order to produce a combined scatter processor some redundancy must

be introduced. This redundancy must be minimised without affecting the performance of

the individual scatter processor implementations. A system capable of implementing the

four TLM schemes, preserving the capabilities inherent in each of the existing application

specific architectures, would be a very powerful modelling tool. This chapter shows how

such a system may be developed. The concept and implications of a general purpose

TLM processor are documented and its implementation is discussed.

9.2 Architecture of the General Purpose Processor

A general purpose TLM processor may be realised through one of two techniques,

reprogrammability and reconfigurability.

Reprogrammable systems were studied in the literature review of chapter 1. These

systems use an instruction stream to control the operations performed on a data stream by

the processor. The processor used must be capable of performing a range of tasks.

Certain instructions will utilise only certain parts of the processor. The processor must

therefore contain some redundant components. The minimum amount of logic the

processor can contain is that required to perform the most complex task. Throughput is

reduced through the need for instruction fetch and decode cycles. The main advantage of

such systems is the ease with which their operation may be changed. To implement a

new function the user simply loads a new set of instructions. The level of redundancy

required is balanced against the complexity of the instruction set and the range of

operations which may be performed. RISC (Reduced Instruction Set Computer)

processors use this principle to produce fast, small processors with a limited range of

operations, often tailored to a specific task.

Application specific processors represent the logical extreme of the RISC principle. By

. restricting the processor to a single operation the need for an instruction stream is

removed. The processors developed in chapters 4, 6, 7 and 8 increase throughput by

mapping a single nodal scheme in to hardware. The logic is minimised to perform only

151

---·----·------------------------------

the required scatter operation. Each processor maintains an inherent generality in terms

of the use of arbitrary mesh geometries and word lengths. Some basic level of

programmability is required to support this flexibility. This takes the form of instructions

for loading configuration registers and memory access operations. The logic required to

implement this can be kept separate from the scatter and connect logic to prevent it from

impacting upon their operation. The general purpose system must incorporate all four

types of scatter processor without affecting their individual performance. This is

achieved by implementing each processor in its current form using the reconfigurable

properties of the FPGA.

Consider figure 9.1. This is the architecture for the SSCN processor developed in

chapter 8. Consider also the architectures of figure 9.2(a-c). These are the architectures

for the shunt node, the stub loaded shunt node and the SCN processors respectively. A

comparison of these with figure 9.1 indicates that each of these three architectures exists

as a subset of the SSCN architecture.

Previous
Plane

Current
Plane

Next Plane V

Scatter VL-Main Store ~
v Processors ~

.,(

"(7

Connect
~

Connect
Memory Logic

Figure 9.1 - SSCN System Architecture

9.2.1 Implementation of the Reconfigurable TLM Processor

Link Line
Parameter
Memory

It has been shown that the Xilinx XC4000 family of gate arrays has an internal

architecture well matched to the components required to perform TLM calculations. The

reconfigurable nature of the FPGA has been used up to this point to allow the

development of the shunt node processor. Reconfiguration of the gate array may be

utilised to implement a TLM general purpose processor (TLM-GPP). Fromfigures 9.1

and 9.2 it is clear that the scatter and connect components are common to all four TLM

152

schemes. However the contents of these components vary in each case. By

implementing the scatter and connect processors using FPGAs the configuration of each

may be changed as required. Thus both scatter and connect may be implemented using

the optimised logic developed for each scheme. Changing the function of the system

becomes a case of loading a new set of bitstreams. This is analogous to loading a new

program in to a reprogrammable system and maintains the same inherent simplicity. The

system still creates some redundancy. This occurs in the memory requirements,

particularly the stub/link line memory. This redundancy does not impact upon the

operation of the scatter and connect logic.

Main Store r--______,~ Scatter Processors

Connect Memory Connect Logic

Figure 9.2a • System Architecture for the Shunt Node

153

-- ---------

Main Store ~ Scatter ~ ~ Stub Memory
V Processors -v

~~

"(7

Connect Memory ~ Connect Logic N

Figure 9.2b System Architecture for the Stub Loaded Shunt Node

Previous Plane

Current Plane

Next Plane

1------'~
-v Main Store

Connect Memory ~.-----1

Figure 9.2c System Architecture for the SCN

Scatter
Processors

Connect Logic

Each system configuration requires a different combination of control signal timings and

configuration options. These may be provided by programmable micro-controller.

Another option is to use a control FPGA to provide a reconfigurable control structure.

The advantage of this over a micro-controller is that an FPGA contains additional logic

resources which may be used for subsidiary functions such as main store read and write

154

address generation. An FPGA may also be configured to perform multiple control tasks

in parallel, an option open to few micro-controllers. The control logic may also store the

exponent of a block floating point scheme. This permits the shifting of the main store to

improve numeric precision without the intervention of the host, thus reducing data

transfer latency.

9.3 Discussion

The reconfigurable TLM-GPP system may perform multiple TLM schemes without the

introduction of redundant components or instructions. This is a major advantage over

reprogrammable, software based systems. The optimised, hardware mapped scatter

processor for a given TLM scheme is implemented unchanged in the TLM-GPP. The

considerable flexibility of the new system is gained with no loss of performance. The use

of a single architecture for all four schemes removes the need for separate software

routines. The processor must be initialised with the data length, the mesh dimensions and

the location and type of any boundaries. The timing and control of the processor is then

governed by a control FPGA. The correct control bitstream is downloaded for the

required node scheme. The operation of each of the four TLM schemes therefore appears

identical to the user. Some form of front-end software is required to generate the initial

data for the main store. Through careful development of this software the configuration

and operation of the TLM-GPP could become totally transparent to the user.

The bit serial architecture common to all four processors permits the use of arbitrary

precision arithmetic, independent of the choice of fixed point or integer data. The unique

connect hardware developed in chapter 5 for two dimensions and chapter 7 for three

dimensions allows a small, fixed number of scatter processors to operate on a rectangular

or cuboid mesh of arbitrary"' size. The connect logic allows the implementation of a

block floating point scheme. Numeric representation, word length and arithmetic

accuracy can be balanced to achieve the desired performance for a given problem.

The use of FPGAs for the scatter and connect logic provides sufficient resources for

expansion of the system. This includes the implementation of new TLM schemes as they

arise. Each new scheme can be developed using the procedures followed above and

implemented by loading the appropriate bitstreams in to the scatter, connect and control

"' With the condition that the mesh size in one dimension must be an integer multiple of the number of
scatter processors available.

155

FPGAs. In this way the system is 'future-proof', providing its own minimum effort

upgrade path.

The memory requirements of the processor are increased by the extension to three

dimensional meshes. The use of a reconfigurable control processor allows extension of

the address bus for the main store to effectively allow the use of an arbitrarily large

memory. The decoding of the upper address bits to form the memory chip selects is

incorporated in to the control device. The bit serial organisation of data within the main

store simplifies data addressing.

The stub/link line memory constitutes a redundant component in those schemes that do

not require its use. However it is possible to route the address and data lines from these

memories to multiple sources, e.g. both the scatter and connect FPGAs, thus when the

memory is not required the pins it consumes may be used as general purpose IO.

In developing a hardware implementation of the TLM-GPP certain compromises must be

reached.

• The width of the main store will determine the number of scatter processors that may

be operated concurrently. The bus widths will in turn be limited by the number of pins

available on the FPGAs and the internal resources required for a given number of

nodes. Performance must be balanced against resource availability and cost.

• Future expansion of the system will be limited by the configuration of the circuit board

on which the FPGAs are placed. While it is possible to reconfigure the computational

elements of the design the routing is fixed. Careful choices must be made as to the

inclusion of spare IO for future expansion, both how much to provide and where to

route between. The provision of spare IO will also reduce the number of pins

available for the implementation of existing schemes and will impact upon the

performance of the device by limiting the number of scatter processors which may be

operated concurrently. Configurable routing using crosspoint switches would increase

the flexibility of the board.

• The host interface must be chosen to allow for possible future changes to both the

TLM-GPP and the systems to which it will communicate. Thorough research is

required to find an interface which provides the required data transfer rates, is widely

accessible and will not become obsolete within the predicted lifetime of the TLM­

GPP. In recent years many data transfer standards in computing have appeared and not

been accepted by the community in general, in particular many high performance

standards are not widely used as they offer too great an overhead and are beyond the

156

account future developments in TLM. Through a careful design of front end software the

configuration and operation of the processor become totally transparent to the user, thus

making an SSCN mesh as simple to implement as a simple shunt node mesh.

The TLM-GPP represents a new concept in parallel architectures for TLM due to its

unique mapping of the TLM connect process in to hardware. This overcomes much of

the data transfer latency inherent in other parallel systems due to a mismatch between the

requirements of TLM and the provisions of the architecture. As a result of this mapping

the connect routine adds zero overhead to the computation. This is a considerable

improvement over existing parallel implementations where data transfer is the overriding

source of latency within the system. The efficiency of an array of scatter processors for

any of the four node TLM schemes considered approaches 100%. The literature review

of chapter 1 revealed that most existing large scale parallel computer implementations of

TLM exhibited an efficiency of less than 1%. The scalability of the connect logic

removes any restrictions upon the size of the TLM mesh. Processing time is a linear

function of mesh size and the number of scatter processors. The throughput of individual

scatter processors is a function of word length and, where applicable, stub data word

length. The overall performance of the system is therefore highly predictable once these

parameters are known.

The hardware required by the system is minimal. A typical implementation is composed

of 3 FPGAs (scatter, connect and control logic), memory and an interface. Again this

represents a significant improvement over existing parallel implementations of TLM

where resource requirements range from large scale supercomputers to networks of

workstations.

158

1 0 Realisation of the TLM Processor as a PCI Card

10.1 Introduction

The development of the TLM processor has concentrated on the elementary design of

the TLM processor, focusing on the mapping to hardware of the scatter and connect

routines, i.e. the TLM algorithm itself. The feasibility of producing a general-purpose

processor for TLM, the TLM-GPP, has been demonstrated. Many of the issues raised

in chapter 1 regarding processor design and efficiency have been addressed by the

TLM-GPP. Issues of accessibility have not been addressed up to this point. Little

consideration has been given to the interface between the TLM processor and the user.

Such an interface is necessary to allow the input of model geometry, mesh parameters

and excitation and the visualisation of output data. The input and output data is

provided in a bit serial format, each byte containing a bit slice from each branch of

two nodes. Most host systems store data in a more conventional, word parallel

format. At the very least some processing by a host system is required to provide

inputs in the correct format to allow the processor to interface to visualisation

software or other analysis tools.

1 0.2 The Host System

The role of the host system is to act as both a controller and a processing platform.

The host itself must not violate any of the aims of the TLM processor, it must

therefore be cheap, simple to use and conform to a common standard for portability.

The host system has two main functions. The first of these is initialisation. This

involves programming the FPGAs, defining the mesh and setting the initial state of

the main store memory. The FPGAs may be programmed in serial or parallel from the

host. The second function is to post process the output data from the mesh. The

interface must therefore be bi-directional. Post processing functions will include

reformatting data and possibly filtering or Fourier transformation. The host must be

capable of performing these functions. The host may also be responsible for

controlling the main store as a block floating point array and for injecting impulses in

to the mesh at run time.

159

A number of host configurations are available.

• Stand alone device

• Networked device

• Expansion card

A genuine stand alone system would require all the necessary hardware for pre- and

post processing of the input and output data. Some method of visualisation of the

output of the models is also required. To include all of this within the TLM-GPP

would make the processor very costly, thus limiting acceptability on the grounds of

price. It is unlikely that code developed for such a device would be portable to other

formats. A second machine acting as a code compiler would be necessary.

By attaching the TLM processor array to a network a host PC or Unix workstation

could be used to provide external processing and visualisation. This option would

allow multiple users access to a single device. This would minimise cost and increase

accessibility. Networks such as Ethemet are supported by a wide range of standard

platforms. However the high bandwidth requirements of the TLM processor places

restrictions upon the choice of network. Many packet switched networks, e.g.

Ethemet, do no provide a guaranteed quality of service (QoS) and can not therefore

guarantee the correct or timely delivery of packets of data. To ensure no data was lost

would require that considerable control overhead be built in to the TLM processor.

The processor would have to be stalled should a data packet be delayed or lost. This

would reduce the throughtput of the system. Guaranteed delivery of data under heavy

traffic loads, e.g. when the whole mesh is output for visualisation, would require a

high speed, dedicated network segment. Networks that do offer a fixed QoS, e.g.

ATM, do so at a price. System complexity and component costs tend to be high.

These networks often require non-standard interface cards further increasing cost and

reducing accessibility.

In fact the TLM processor is small enough to be realised as an expansion card for a

host system. The increase in processing power and affordability of the personal

computer (PC) in recent years makes it the most widely available platform to host the

processor. The main advantage of the PC is that systems developed by many

manufacturers share a common architecture and therefore offer a common interface.

This standardisation was introduced to simplify the design of both hardware and

software for PCs by removing the need to produce separate host adapters for each

manufacturer or system. The use of a common interface also simplifies the design of

software for the system. Widely available routines and compilers may be used,

160

allowing designers to develop software for the system without requiring an intimate

knowledge of its operation. This maximises code portability. Software written to

access the processor from one platform will also successfully access the processor

when run from a different platform.

CPU
r----fMicroprocessor

ALU,
Registers]

Bi-directional Parallel Data Bus

RAM
[Volatile
Memory]

ROM
[Non-Volatile

Memory]

Parallel Address Bus

1/0 Ports
and

Expansion
Susses

[PCI/ISA]

... -- -- -- --- _ ... _ --- . - -- --- _1'_----- . - ---- 'k----- -- -- - :!1

Control Bus

Figure 10.1 - Three Bus Architecture of a Generic PC

The PC has a bus driven architecture, figure 1 0.1. Adapters and plug-in cards such as

graphics and sound cards are connected to the CPU via the expansion buses. There

are two standard expansion buses, the older Industry Standard Architecture (ISA) bus

and the more rec~ntly developed Peripheral Component Interconnect (PCI) bus 1•

Other data transfer protocols may be used to connect an expansion card to a PC, e.g.

SCSI or USB. While these may offer higher data transfer rates than either the PCI or

ISA expansion buses they are not a standard part of most PC architectures and require

an intervening protocol adapter to connect to the PC. The PCI and ISA buses both

offer relatively simple interfaces to the PC minimising costs and reducing the scope

for design failure. Although the operation of the two systems is similar in principle

the protocols used are very different. The high data bandwidth required by the TLM

processor is best provided by the PCI bus as it offers a wider data bus and a higher

clock rate than the ISA bus.

The development of the TLM-GPP as an add in card for a personal computer would

appear to offer the best solution in terms of accessibility. It is a relatively low cost

solution offering portability between a number of host platforms. The PC has more

than adequate computing power to perform the necessary post processing and

161

visualisation tasks. The PCI bus would appear to be the most appropriate of the

internal PC buses for hosting the TLM-GPP. It offers a wider bandwidth than the ISA

bus and represents an emerging standard, thus ensuring survivability. The

development of a TLM-GPP architecture for use as a PCI card is detailed below.

1 0.2.1 The PCI Bus

The PCI local bus was designed to provide a low latency transfer path between high

bandwidth peripheral functions and a host processor. The processor is connected to

the bus via a PC! bridge, through which it may directly access PCI devices mapped

anywhere within the processor's memory or I/0 address space. The PCI Special

Interest Group (PCISIGRJ) has been set up by members of the microcomputer industry

to control the evolution of the open standard that defines the bus. Devices connected

to the PCI bus may take one of two forms, Master or Target (slave). A bus master

may take control of the bus and communicate with or control other bus devices where

as a target may never read data from or write data to other bus devices, it may only be

read from or written to by those devices.

One advantage of the PCI bus is its low pin count,.figure 10.2. This is achieved by

multiplexing the 32 bit address and data lines on the same pins, AD[31:00]. In total

only 47 pins are required by a PCI target device and 49 by a master device. The clock

signal, CLK, runs at 33 MHz, although a compatible 66 MHz specification is under

development. A similar expansion to 64 address and data lines is also under

development. The current specification offers a data transfer rate of up to 132

Megabytes per second using burst mode transfers.

Any device connected to the PCI bus must adhere to its protocols. To simplify the

design of peripheral systems there are a number of PCI interface chips that provide a

standardised interface between a local system bus and the PCI bus. Such chips are

readily available as interface cards that plug directly in to a free PCI slot on the

motherboard of the host PC. The boards generally offer a PCI bridge, a limited

amount of on board memory space and either stripboard (or similar) or connectors for

a daughter board on which the user's circuit may be developed. These cards form

useful prototyping tools as they allow the user to concentrate design effort upon the

target system as opposed to the interface. PLX Technologies Ltd has developed one

such family of chips and development boards2
. The PCI9050,.figure 10.3, is a target

only device.

fb PCI Special Interest Group, P.O.Box 14070, Portland, OR 97214

162

Required Pins Optional Pins

I \

< I AD[31::00]) AD[63::32]

Address \ I
& Data < > < > 64Bit

C/BE[3::0]# C/BE[7::4]# Extension

PAR PAR64
REQ64#

FRAME# PCI ACK64#
TROY#

IROY# LOCK# J Interface Interface
STOP# Compliant Control

Control INTA#
OEVSEL#

Device INTB#

) '""rupffi
lOS EL INTC#

INTO#
PEAR#

Error (SBO#
Reporting SEAR#

) Cache SOONE
Support

Arbitration (
REO# TOI

(Masters Only) GNT# TOO

TCK }AG
System (

CLK TMS (IEEE 1149.1)
RST# TRST#

Figure 10.2- Pin Requirements of the PCI Bus

10.3 A PCI Compliant TLM Processor

The TLM-GPP processor developed in chapter 9 requires some modification to make

it compliant with the PCI protocols; a revised architecture is presented in figure 1 0.4.

For clarity the processor is shown in a basic shunt node configuration. Removing the

stub and 3D connect memories simplifies the architecture without losing the structure

of the system. A PCI9050 interface device provides a bridge between the processor

and the PCI bus. The local bus of the PCI9050 development card becomes the main

data path of a bus driven architecture for the TLM processor. The main components

of the system are the scatter and connect logic and the control and arbitration blocks.

Each component occupies a dedicated FPGA. Each 2D scatter processor requires four

bit serial data inputs therefore the 32 bit wide local bus is capable of supporting an

array of 8 scatter processors i.e. NP = 8. For 3D processors, 12 inputs are required.

The use of the 32 bit local bus would permit only 2 processors to operate in parallel.

The local bus must therefore be made wider, with the lower 32 bits selected to form

the local data bus from the PCI9050. The width of the local bus is dependent upon the

width of the main store. A reasonable limit of 128 bits may be set, allowing the

parallel operation of 10 3D nodes or 32 2D nodes. Wider buses may be developed at

a cost. The physical development of fast synchronous buses becomes more difficult

163

-- -------

~ E LAD[31 ::00) E AD[31::00J~

'
~

LA[27::21 C/BE[3::0)11 ~ ~

E E8B ~
LBE[3::0j#

~
Cl) LINTi1 FRAME#

::::::s IRDYII
LINTi2
LCLK

CO TRDYII ,w "' LHOLD
SIC Ell " E ~ LHOLDA en 1/0 - lDS EL J!l LRESETII

~
::J H 0

~
.E Controller E DEVSELII
"' BPCLKO CO PERRII " c.. ill CS[1::0)11

~ SERR# 13 ,USEROIWAITOII~ CO a..
,usER1/LLOCK#~ (..)

DRAM
E USER2/CS211 ~ 0 J.-J.. CLK _J CTRLR,._ RSTII E USER3/CS311 ~

H & INTA# I
ADS#

BLAST#
lOCK# DRAM

~ PCI9050 LW/RII
ROll
WR#

(EESK READYi#
EEDO Serial ~

EEPROIV
EEDI BTERM#

EECS
ALE

(MODE E

FigU.re 10.3 • Interface Between the PCI Bus and Local Bus Provided by the PCI9050

as the bus width increases. This is due to the difficulty equalising path lengths and

minimising crosstalk effects3
•

The main store is mapped on to a block of SRAM on the board. This is configured to

appear as part of the PCI address space of the host, allowing direct access to the main

store over the PCI bus using standard memory read and write operations. The PCI

memory space is divided in to three sections. The first contains the configuration

registers on the connect logic. These are used to set the data word length and store the

mesh parameters. The second section is mapped to the main store memory. The final

section maps to a small block of SRAM, which may form part of the main store

SRAM, used to store the total incident energy at each node. This final section is

called the visualisation memory as it holds the data used to visualise the propagation

within the mesh.

164

Connect
Memory

onnect
Memory

v

PCI9050

Connect ~ Scatter
Logic

< ___]
Logic

~ 1\ ~ ~
V ' ~ -Local Bus

~------~Bus Arbitration~-~
Logic

PCI Bus

Main
Store

Memory

Control
Logic

I

Figure 10.4 - PCI Compliance Requires a Bus Driven Architecture for the TLM Processor

1 0.3.1 Scatter Logic

The scatter logic is composed of an array of bit serial scatter processors. The number

of processors in the array is dependent upon the type of processor. Incident data is

input to the scatter processors via the local bus and the scattered data output is routed

to the connect logic on a dedicated bus to minimise latency. Total incident energy

data is output to the local bus from where it written to the visualisation memory. Only

two control lines are required, a clock input to control the flow of data through the

processor and a flag to indicate the start of each new data word.

1 0.3.2 Connect Logic

The connect logic block comprises the logic necessary to route the scattered data to

the correct locations within the connect memory. It also co-ordinates the flow of data

between the rows of the connect memory and between row 3 and the main store.

Boundary data is read from the local bus when the B_Set signal is active. Data is

received from the scatter processor on each rising edge of the scatter clock and is

routed out to the connect memory via three bi-directional buses. Row 3 of the connect

memory may be accessed via the local bus. This allows data transfer between the

connect logic and the main store. One bit of data is transferred on each rising edge of

165

the control clock. Data passed to the right of the scatter window is stored internally in

a memory generated using the Xilinx internal RAM capability4
. The memory may be

made sufficiently deep to accommodate any given word length. A simple counter

suffices as an address generator due to the sequential data storage highlighted in

section 5.5. The CE signal indicates the start of a new scattered data word. This

signal both acts as a reset for the internal memory address generator and gates through

the relevant boundary flags for the new scattered data.

1 0.3.3 Control Logic

The control logic is responsible for the generation of the control and timing signals

required by the scatter and connect logic. It also generates the address and control

signals for the main store, the connect memory and the visualisation memory. The

sequential organisation of data within the memories permits the use of counters as

address generators. The counters are returned to zero when they reach a value pre­

loaded in to their corresponding control register during initialisation. Each counter

has its own register, this is necessary to provide independence between the number of

nodes in the array and the aspect ratio of the array. The active low signal FORCE­

acts as an enable signal for the TLM processor. When FORCE- is negated the

processor enters configuration mode allowing reading from and writing to the memory

mapped configuration registers by the host via the PCI bus.

The amount of data transmitted between the host and the main store may be reduced

significantly by using the control logic to provide driving waveforms to the mesh.

This is best suited to problems requiring the input of a few repeated or short duration

driving signals. The discrete samples for each signal are stored in ROM based look

up tables on the control logic FPGA. At the end of each cycle the control logic

accesses the main store and adds the stored sample value to the source node. This

requires extra, redundant logic in the control processor but is significantly faster than

implementing the source on the host system.

1 0.3.4 Bus Arbitration Logic

The arbitration logic provides all the signals necessary for communication between

the TLM processor and the PCI9050 interface. When the processor enters

configuration mode the arbitration block takes control of the address and control

166

signals for the on board memory. This allows direct, random access to the memories

from the host instead of via the on board control logic.

10.4 Output Data Post Processing

The TLM processor stores the total incident energy data at each node for each

iteration. By mapping the total incident energy memory to the PCI9050 local address

space, random access is provided to individual nodes within the array. This allows for

the arbitrary placement of output points within the array. Data within the total

incident energy memory is organised bit serially. Each output byte placed on

LAD[7:0] contains one bit from each of the NP nodes in a given scattering partition.

W read operations are therefore required to obtain the data from a single output point

for a word length of W. These may be performed as a continuous burst transfer via the

PCI9050 read FIFO to minimise performance loss. Careful pre-processing of the

array can ensure that local output points exist where possible in the same or adjacent

scattering partitions to maximise the use of burst mode transfers and sequential

addressing.

Some post-processing of the output data is required to perform a serial to parallel

conversion and strip away data from any unwanted nodes. The latter stage is

necessary as each read from the total incident energy memory retrieves one bit of data

from each of NP adjacent nodes. If the word length used is not a multiple of 8 then

null data must be added to the end of the word to prevent the parallel data lying across

byte boundaries. The post processing software may also convert the output data in to

a format suitable for a given visualisation programme or prepare data for a Fourier

transform for visualisation of results in the frequency domain. Filtering may also be

required to reduce the noise present in the output signal. Most modern PCs are

capable of performing these functions in real time. It may be preferable to store the

output data on disk for processing at a later time.

As the TLM processor requires no external input during the calculation phase the PCI

interface is free to transfer output data to the host. Post processing of the output

results from one iteration may therefore take place while the next iteration is in

progress. This further helps to reduce the latency introduced through post processing.

Other tasks requiring the PCI bus may also be performed by the host during this down

time.

167

It is worth noting that the amount of post processing required by the relatively slow

access time memory architecture of section 5.6 is considerably reduced due to the

parallel organisation of words within the main store. Only a single write instruction is

required per output word. This is at the cost of flexibility in defining model

parameters.

10.5 Predicted Performance

The performance of the above system is dependent upon the clock rate of the local

bus. As the local bus is required for more than one transfer of data within each

computational cycle, multiple clock cycles are required to produce each bit of data. In

order to synchronise the transfer of data between the host and the TLM processor the

PCI 33MHz clock is used as a source for the system clock. It is possible to run the

TLM processor at a higher clock rate. However synchronisation with the 33MHz

clock must be maintained at the PCI bridge. The use of the 66MHz extended PCI

protocol would double the throughput of the system. The scatter processors would

still be operating below their predicted maximum clock rate. Using the extended PCI

protocol the processor would be capable of approximately 30 million scattering events

per second. This is based on boundary equipped shunt nodes using 32 bit data and

assumes a local bus width of 64 bits, i.e. NP = 16. Visualisation data is therefore

created at a rate of 114MBs-1
• Naturally the throughput for other data lengths or node

configurations would differ as discussed in the relevant chapters of this thesis.

As demonstrated in the literature review, latency in data transfer is the governing

factor in system performance5
• Limited transfer rates on the board due to the

restrictions on clock rate are further exacerbated by bottlenecks imposed in reading

total incident energy data from the board. While the PCI protocol states that data

transfer rates of 132MBs-1 are possible using burst mode these transfer rates are rarely

sustainable for any significant period. In a modern PC the PCI bus supports the sound

card, network adapter and a number of other expansion cards. Each card competes for

use of the bus. Naturally adapters such as the graphics card occupy a considerable

portion of the operating time of the bus, thus wait states must be introduced in the

transfer of data from the PCI card. As the PCI9050 is a slave device it can not request

ownership of the bus and write data to the host system. Rather it must wait until the

host initiates a data transfer. The hardware is thus limited by the operating rate of the

underlying software and the requirements of the other add in cards.

168

10.6 Conclusions

A PCI compliant TLM processor has been presented. This encompasses the ideas

developed in the preceding chapters within a practical, working system. The TLM

mesh is divided in to partitions and all nodes in each partition are processed in

parallel. The unique mapping of the TLM connect routine in to hardware developed

in chapters 5 & 7 remove the limitation on mesh size imposed by traditional

architectures. The large scale parallel computers introduced in chapter 1 are replaced

by a single plug in card for a personal computer. The processor achieves many of the

aims for this research presented in chapter 1.

• All redundant hardware has been removed from each processor configuration.

• The bit serial architecture and the use of partitioning reduce the required bandwidth

to manageable proportions.

• Through reconfiguration any of the four main TLM schemes may be implemented.

• The use of arbitrary word lengths is permitted, allowing dynamic range, accuracy

and processing rate to be balanced as required.

• The hardware mapping of the connect process removes limitations on mesh size.

• Boundaries may be distributed arbitrarily within the mesh, allowing the

implementation of arbitrary mesh geometry.

Although the processor offers a significant step forward from previous application

specific TLM processors it has limitations, notably

• Boundaries are limited to one of three basic types. This is largely a consequence of

the use of fixed point data. The use of multipliers to provide a wide range of

boundary reflection coefficients must be undertaken only after a careful study of

the effect on errors within the mesh.

• Pre-/post-processing of the mesh data is required before it can be used.

• The mesh parameters are limited by the available memory. Memory forms a

significant part of the overall cost of the system. The width of the main store

determines the maximum number of scatter processors which may operate

concurrently. The total size of the main store limits the overall size of the mesh.

Suitable provision must be made when routing between memory and the connect

logic to allow for extra address bits, paging signals or the implementation of other,

more sophisticated techniques to access an extended main store.

169

• The width of the data buses on the board limit the number of scatter processors that

may be supported. A single FPGA may contain many more processors than

allowed by the bus width. The number of scatter processors defines the size of

each parallel partition of the mesh, therefore limiting the number of processors

limits the performance of the system. Careful floorplanning of the board is

required to maximise the available bus width without limiting the achievable clock

rate.

It is clear that the development of the system as a PCI slave device places constraints

upon performance. Future generations of the processor may be developed around

other data transfer protocols. However, the concept of developing the processor as a

PC expansion card offers the advantages of standardisation and accessibility. While

the use of the PCI card does not allow the full potential of the design to be realised it

has been clearly demonstrated that an application specific TLM processor is a viable

idea and may be realised using relatively inexpensive, accessible components. This is

a major advantage over the custom ICs and large scale parallel computers of previous

TLM systems. More work is necessary to establish a system architecture and host

interface which allow larger partitions and sustained data transfer before the full

potential of the processor will be realised.

170

References

1 PCI Specification, PCI Special Interest Group

2 'PCI Interface and clock Distribution Chips', Product Catalogue, PLX Technology
Inc. 1996

3 Johnson, Hand Graham,M 'High Speed Digital Design', Prentice Hall, New Jersey,
1993

4 'XC4000 Family Data Book', Xilinx Inc. 1996

5 Flynn, M.J 'Very High Speed Computing Systems', Proc. IEEE Vol.54(12),
pp.1901-1909, 1966

171

Conclusions

In chapter 1 of this thesis a number of aims were defined for the new class of TLM

processor. An implementation path with distinct milestones was also defined. It was

determined that the success of this work would be determined by three factors. The

first of these was the successful implementation of all the aims, achieved through

reaching each of the milestones in the implementation plan. The other factors for

success were creating a processor with a high efficiency percentage and producing a

significant increase in processing throughput over existing TLM implementations.

It has been demonstrated in the preceding chapters that each of the milestones laid out

in the implementation plan has been successfully achieved. This in itself indicates

that a working, general purpose TLM processor has been developed. It remains to

summarise how the development of the processor addresses each of the original aims.

"The granularity of the TLM algorithm must be successfully mapped to hardware.

This means both removing redundant elements from the computational hardware and

providing sufficient bandwidth for the connect process."

It was shown in chapter 3 that what appears to be a minimised form of the shunt node

scatter equation in a high level representation is actually very inefficient when mapped

to hardware. The granularity of the scatter equations was reduced in two ways.

Firstly the principle of circuit folding was introduced in chapter 4 to show how a data

parallel structure can be efficiently mapped to a bit serial, pipelined structure. This

produced a significant reduction in circuit complexity and in bandwidth requirement

per clock cycle. Secondly the concept of data pairing was used to highlight repeated

structures within the SCN scatter equations. These lower level structures allow the

scatter equations to be re-written in a form more acceptable to hardware

implementation.

"The chosen architecture should not limit the processor to a single form of the TLM

algorithm or a single mesh configuration."

The mesh configuration is varied by the introduction of boundaries and regions of

differing material parameters. Both of these may be altered on a node by node basis.

The creation of a scatter processor capable of performing a range of simple boundaries

generates an homogeneous mesh which may model any arbitrary geometry. By

172

passing the boundary data to the scatter processors with the input data the geometry

may be altered on the fly on a per iteration basis. In the case of the stub loaded shunt

node and the SSCN, the material parameters may be altered at each node individually

and on a per iteration basis. Mesh configuration therefore has many degrees of

freedom.

It has been shown that through reconfigurable computing the TLM-GPP architecture

can be used to process a mesh using any one of the four main TLM schemes. This

flexibility is provided without the introduction of redundant computational elements

and without attenuating the performance of the individual types of processor.

"The chosen architecture should be scalable to allow any mesh size to be

implemented."

The mapping of the connect process in to hardware allows a fixed number of scatter

processors to process a rectangular/cuboid mesh of arbitrary size. The processing

time increases linearly with the number of nodes in the mesh. Each scatter processor

in the array operates independently and has no communication with the other scatter

processors. The size of the scatter processor array may thus be varied without

affecting the throughput of the individual processors. As the connect process is

simply a data router and adds no overhead to the computation time the whole

processor array is scalable to any given number of scatter processors. This allows

throughput to be balanced against resource availability. The only limitation on mesh

size is the depth of the main store memory. By using SIMMs, the TLM-GPP allows

the size of the main store to be adjusted to meet individual requirements.

"The processor must be accessible. That is its use should not be prohibited through

• Portability

• Cost

• Programming requirements"

By implementing the processor as a PCI card it becomes available to the mass market

of personal computer users. This is a significant advance over the large scale parallel

computers used in previous applications, where access is generally limited to the

research sector. The PCI card is small, light and physically portable. It is also

portable in the sense that it may be transferred between computers. The PCI bus is a

widely used standard, thus the potential hosts for the card are not limited to a

particular manufacturer or class of processor.

173

The main components of the system are the PCI bridge chip, four Xilinx XC4000

FPGAs and the SIMMs used for the main store. At current prices the board could be

produced for considerably less than £1000, even for small volume production. This is

well within the range of most potential users, both in industry and research. Using off

the shelf components as opposed to a full custom IC development reduces the cost of

the system.

The operation of the processor is governed almost entirely by the control FPGA. The

host system is required to transfer data to and from the processor and to post process

result data. For each of the four classes of TLM node implemented the operation is

the same. The host transfers information about the size, shape and material

parameters of the mesh to the TLM-GPP. The processor passes scattered data back to

the host which has to realign the bit serial data on to a byte organised data bus for

visualisation. A simple interface could be developed to handle all of these features

and communicate between the host and the TLM-GPP. As reconfiguration is

controlled by downloading an appropriate bitstream there would be no requirement for

any programming by the user. The same, simple interface could be used to access all

four types of node.

The development of the system has highlighted the importance of the connect process

to the efficiency ofTLM. The TLM-GPP implements the connect routine as a series

of multiplexers. These add no communications overhead to the scatter processing

time. Because of this each scatter processor in the system may be treated as an

independent unit. Each scatter processor operates at its stand alone processing rate.

The speed up gained by adding an extra processor is approximately linear with a 1:1

relationship between speed up and number of processors. The efficiency of the

system is therefore very close to 100%. The efficiency is slightly reduced by the slight

reduction in clock rate inherent when extra resources are consumed within the FPGA.

Through careful floorplanning this may be minimised and the efficiency score

maintained close to 100%. Given that many large scale parallel computer

implementations of TLM demonstrated an efficiency score of less than 1% the new

processor represents a significant breakthrough. This is primarily due to the reduction

in bandwidth requirements and the unique mapping of the scatter processor array onto

the mesh.

174

The throughput available to a basic 32 bit PCI implementation of the TLM-GPP has

been estimated at 30 x 106 node iterations per second using a shunt node

configuration. This demonstrates a significant throughput increase over software

based implementations of TLM at the time of writing. The use of larger FPGAs,

allowing large scatter processor arrays, or a faster scatter processor clock would

produce a further increase in throughput.

The development of the scatter processors has focused on applications in

electromagnetics. This is the dominant area for TLM applications. The 2D scatter

processors may be applied to problems in acoustics or other fields. The 3D processors

are specific to electromagnetics. Scalar 3D TLM, in which only one link line is

required in each direction, has not been studied. The reconfigurable nature of the

TLM-GPP allows schemes such as the scalar 3D method to be implemented as

suitable scatter and connect processors are developed. The main field of application

for the TLM-GPP in its current form remains the modelling of electromagnetic

phenomena. The motor industry and the electronics industry remain potential

applications of the system. The low cost of the TLM-GPP makes it viable as a

research tool or a teaching aid.

One of the initial reasons for developing the TLM-GPP was to overcome the lengthy

run times associated with processing many iterations of large models. The TLM-GPP

provides the required increase in throughput. The use of integer data and the

proliferation of truncation errors and quantisation noise may be expected to make the

processor unsuitable for models requiring many iterations. However it was shown in

chapter 3 that given a sufficient word length, integer arithmetic results are

indistinguishable from those achieved using floating point arithmetic. In certain cases

where the word length decreases rapidly, e.g. a mesh excited by a single impulse, a

block floating point scheme has been demonstrated in software to provide an accuracy

comparable to that of floating point over models in excess of one million node

iterations. The TLM-GPP is able to implement a block floating point scheme with

very little computational overhead. The use of arbitrary word lengths allows the

numeric precision to be balanced against throughput.

From the above it is clear that the TLM-GPP has attained all the goals laid out at the

start of the project. The system represents a considerable step forward from existing

attempts to accelerate the processing rate of TLM. The power of a large scale parallel

175

computer has been harnessed within a small, low cost platform. The system is

reconfigurable with many degrees of freedom in defining the mesh for

implementation. While its main applications lie in the field of electromagnetics, the

reconfigurable nature of the TLM-GPP provides an upgrade path for the introduction

of many other TLM schemes. The TLM-GPP demonstrates the significant potential

of an application specific processor for TLM and provides a platform from which

further research may be developed.

176

Recommendations for Further Study

This thesis has presented the reader with an introduction to the transmission line

matrix method for the modelling of electromagnetic wave propagation. A review of

techniques for the development of digital arithmetic systems has been presented. The

literature review of chapter 1 provides evidence of the need for a more efficient

accelerator for TLM. In chapter 3 the efficiency of application specific computing for

this purpose was demonstrated. This work forms the basis for the application specific

processor designs presented in chapters 4-9. The product of this thesis is an

application specific, general purpose TLM processor design. The processor is able to

individually implement the four main electromagnetic TLM schemes. These are the

shunt node and stub loaded shunt node in two dimensional modelling and the SCN

and SSCN for three dimensional problems. In chapter 9 it was shown how a single

processor architecture, the TLM-GPP, may be used to implement each of the above

schemes without the introduction of any redundant computational logic elements. An

example implementation of the processor as a PCI card for use with a personal

computer has been described. This example demonstrates the requirements of the

interface to the processor.

The use of a bit serial architecture and a unique mapping of the TLM connect process

in to hardware produce a system which is capable of operating on a rectangular or

cuboid mesh of arbitrary row length and aspect ratio using a small, fixed number of

scatter processors. The numerical precision of the calculations is arbitrary and may be

selected to fit the requirements of each individual application. Implementing the

system as a PCI card provides accessibility, which is significantly absent from

traditional high performance computing applications of TLM. These advantages

coupled with the high performance of the system fully justify its development.

Although the TLM-GPP presents a significant step forward in application specific

computing for numerical modelling there are a number of features which must be

addressed before the system becomes a truly powerful modelling tool.

Point 1 focuses on the obvious need to build a physical system that may be used to test

the TLM-GPP principle. A physical platform would allow the individual node

designs to be better evaluated and fully optimised.

Future development of the TLM-GPP may be focussed on two key areas. The high

degree of scalability inherent in the architecture of the system is constrained by the

physical interface to the host computer. Unless a more suitable interface can be found

which maintains the accessibility benefits offered by PCI, other methods of improving

the scalability of the system must be found. These issues are addressed in points 2

and3.

The second area to be addressed is improving boundary and mesh representation.

These areas are addressed in points 4 and 5. These points relate to improving both the

quality and efficiency of the models produced by the processor.

1 Realisation of a Physical Device

One of the most obvious requirements of any further work is to realise the concepts

presented within this thesis as a complete physical system. Using such a system the

performance of the processors could be accurately tested against the predictions made

in the relevant chapters above. A detailed study of the effect of word length on the

accuracy of the processor could also be undertaken. While this is possible through

simulation, the large numbers of calculations required to obtain statistically

meaningful data are much better performed in hardware.

A physical processor would also provide an ideal platform for prototyping. This

would allow the testing of host interfaces, such that alternatives to the PCI bus might

be evaluated. Options worthy of study include the Advanced Graphics Port (AGP) and

the use of a dedicated Gigabit Ethemet link. It would also allow the rapid testing of

new node designs. Possible candidates include diffusion modelling or the

development of a floating point processor.

2 Overcoming Memory Limitations

At present the design of the system allows the modelling of meshes containing an

arbitrarily large number of nodes. However in practice the number of nodes in the

mesh is limited by the word length required and the memory available on the PCI

card. A one Mbyte deep main store is sufficient to hold only 8192 nodes using 32 bit

data. This represents a mesh of only 90 x 90 nodes. In order to reduce bandwidth, the

memory used for the main store must be located on the board with the scatter and

-- -- -----------------------------------

connect processors. One option is to provide a number of free SIMM sockets. The

user is then free to customise the system according to requirements and budget by

adding or removing memory cards. The control logic must be adaptable to allow

sufficient addressing for deeper memories. For very large meshes the main store must

be partially stored on the host system and data transferred between the host and the

main store as required. Due to the very high bandwidth this would require such a

system would suffer from a significant loss of performance. An improved interface to

the host would alleviate this problem. The creation of a memory expansion card is

another interesting way of extending the applicability of the processor to much larger

meshes.

3 Increasing the Level of Parallelisation

The throughput of the system is enhanced in two ways with respect to software

implementations of TLM. Firstly the use of application specific, optimised hardware

reduces the time required to perform each scattering event and secondly multiple

processors are operated concurrently. The throughput of the system is directly

proportional to the number of scatter processors operating concurrently. By

increasing this number the throughput is raised. The width of the local bus defines

how many scatter processors may operate. The bus width is constrained by physical

problems e.g. crosstalk. There are several ways of increasing the effective bus width.

Firstly the mesh may be partitioned between several boards which are operated

concurrently. Data is transferred only during the connect process. As only a single bit

serial connection exists in each direction from a scattering node only a two bit wide

connection is required between the two boards. The PCI bus protocol allows for

proprietary signals between boards. Extra signals would be required for preserving

synchronism between the two boards. By generating all control signals on a single

board this condition is met. More than two boards may be connected in a daisy chain

however the PCI bus will only support a maximum of 4 add in boards in a typical

application. Some of these slots may be taken up by graphics cards, sound cards or

other peripheral controllers.

The second expansion method is to work on multiple iterations of the mesh in parallel

on a single board. When data is written back to the main store from the third row of

the connect memory it is no longer influenced by scattering in the current iteration.

Instead of writing this data back to the main store it may be passed to a second array

of scatter processors that operate on it as the incident data in a second iteration. Any

number of iterations may be processed concurrently; each array of scatter processors

requires its own connect memory. Each subsequent iteration lags three rows behind

the previous one. The number of iterations must be such that data from the last

iteration is written back to the main store behind the current scattering event in the

first iteration i.e. it is not possible to operate on the whole mesh concurrently in this

way.

4 Improving Boundary Representation

The TLM processor uses a two bit code tagged to the front of each data word to

specify the location and type of any local boundaries within the mesh. Due to the use

of integer data in the basic shunt node the boundaries which may be represented were

chosen as those with reflection coefficients of r = 0, 1 and -1. These boundaries are

sufficient for representing simple electric and magnetic walls. However in many

practical models, particularly in acoustics, boundaries must represent partially

absorptive media and have non-integer reflection coefficients. The processing of such

boundary conditions would require the introduction of a multiplier in to the output

stream of each branch of the scatter processor. The two bit code would no longer be

sufficient to specify the boundary conditions at each branch. Extra storage would be

required to hold the reflection coefficient at each branch as this could no longer be

specified as part of the data. However if the number of reflection coefficients within

the mesh is limited it may be possible to store all values on the scatter processor and

specify using a longer code which boundary condition is required at each branch. The

length of the boundary code is added to the length of the data when calculating

processing time therefore the number of boundaries which could be represented using

this system must be kept small to avoid unnecessarily reducing throughput.

It was stated in chapter 2 that there are a number of problems associated with

performing multiplication using integer data of a fixed word length. In particular

overflow can lead to significant errors. The fixed point scheme used in the stub

loaded shunt node and the SSCN may be equally used for the shunt node and the

SCN. Assuming the incident data is normalised to ensure that the total energy within

the mesh is less than 1 the use of fixed point data would ensure that overflow does not

occur. This assumes that only passive boundaries, i.e. those with IPI ~ 1, are

required.

5 Arbitrary Mesh Geometries

At present the system is limited to processing rectangular or cuboid meshes. In order

to model a non-rectangular geometry the problem must first be mapped to a

rectangular mesh and nodes outside of the problem area processed. This is naturally

inefficient. Consider the narrow cross of .figure 1.

Figure 1 • TLM Mesh Representation of a Narrow Cross

In order to model this geometry a square mesh must be processed. A very high

percentage of the nodes in the mesh are outside the problem area but must be

processed with null data to preserve the flow of data through the system. This is due

to the way in which the mesh is mapped to the system. The connect processor maps

to the mesh starting in one corner and traverses each row in turn. It is assumed that

each node has a neighbour in all four directions. This is clear if no boundaries are

specified at the edges of the model, when the connect processor gives rise to a toroidal

mapping of the mesh. In the case of a non-rectangular mesh this is not necessarily the

case. The main store may hold data for any mesh geometry, however it is assumed

that adjacent nodes in each row occupy adjacent memory locations. Only the connect

logic requires any knowledge of the physical geometry of the mesh in order to produce

the correct data routing. The smallest geometric feature that may be isolated by the

mesh is one row deep and NP nodes wide for a system of NP scatter processors. By

defining where active nodes exist in the mesh the system may be adapted to operate

on arbitrary geometries. This may be performed by setting up a bit map image of the

mesh, with one bit representing each 1 x NP node block. A '1' would represent a

block with active nodes where as a '0' would represent an empty cell that may be

passed over. Figure 2 shows the bit map representation of the cross geometry of

figure 1.

ooo•ooo ooo•ooo ooo•ooo ooo•ooo ooo•ooo ooo•ooo ooo•ooo ooo•ooo ooo•ooo ••••••• ••••••• ••••••• ooo•ooo ooo•ooo ooo•ooo ooo•ooo ooo•ooo ooo•ooo ooo•ooo ooo•ooo ooo•ooo
Figure 2 • Bitmap for the Narrow Cross Geometry with N" = 3

The three connect memories must be sufficiently large to store all data for the longest

row in the model. Each time the scatter processors are moved the bits corresponding

to the current location and the nodes directly in front of it in the bit map image are

read. If either is a '1' processing continues as normal, otherwise the address

generators are incremented by the word length and processing continues with the next

partition. The nodes in front of the scatterers must be checked as these correspond to

row 3 of the connect memory. If these nodes are active then they contain data that

must be written back to the main store.

In TLM many nodes are initially set with zero data. In a large mesh it may be many

iterations before data from the initial impulses reaches these nodes. However in every

iteration they are processed with null inputs. This is obviously inefficient. By

assigning the mesh bit map values dynamically at run time it is possible to reduce this

inefficiency. Initially only those nodes with t=O inputs are set to '1 '. Each time data

is scattered in to a new partition its bit map location is also set to '1'. In this way the

mesh is dynamically defined at run time such that only those partitions containing real

data are active.

6 Conclusions

In conclusion the processors developed in this thesis demonstrate the performance of a

large-scale parallel computer in a small, accessible unit. While the above

recommendations highlight some of the limitations of the current design the concepts

it has introduced lay the foundation for the realisation of a very powerful, generalised

class of TLM processor.

The specific issues of low efficiency and poor scalability identified from the literature

as affecting previous parallel implementations of TLM have been overcome through a

direct mapping of the connect process in to hardware. An efficiency of close to 100%

ensures speed up is predictable and the scatter array is scalable without penalty.

Scalability in the areas of word length, mesh size and the number of scatter processors

ensure that performance can be balanced against throughput requirements to suit

individual situations.

Publications

Much of the work presented in this thesis has been publish by the author. Publication

details are presented here for further reference.

Stothard,D; Pomeroy,S.C; Sillitoe,I.P.W "An Application Specific Processor for

TLM''. 1st International Workshop on Transmission line Matrix (TLM) Modelling,

1995

Stothard,D; Pomeroy,S.C "An Application Specific TLM System". TLM: The

Wider Applications, 26th June 1996, U.E.A, Norwich

Stothard,D; Pomeroy,S.C "A Parallel Processor for TLM''. TLM: The Wider

Applications, 24th June 1997, University of Hull, Hull

Stothard,D; Pomeroy,S.C "An Application Specific System for TLM", 2nd

International Workshop on Transmission line Matrix (TLM) Modelling, Munich, 28th-

31st November 1997

Stothard,D; Melton,M.D; Goodson,D; Pomeroy,S.C; Jaycocks,R "Modelling Near

Field Sound Pressure Level Variations in a Shallow Water Marine Mammal

Enclosure" Underwater Bio-Sonar Systems and Bioacoustics Symposium,

Loughborough University, December 1997

Stothard,D; Pomeroy,S.C "A Dedicated TLM Array Processor", Journal of the

Applied Computational Electromagnetics Society, Special Issue on High Performance

Computing, Vol.13(2), pp.188-196, 1998

Appendix

- Derivations of Maxwell's Wave Equation and the
Telegraphers' Equation

- VHDL Listings

- Shunt Node Processor Partitioning Test Results

- Schematics for the Shunt Node System

Derivation of Maxwell's Wave Equation

Maxwell's equations state

oHx oHz oEy
------=&--

O.x & a

OEy o Hz
--=p--

Oz a

These may be combined to yield Maxwell's wave equation by taking the second

derivative of the E field in the x and z directions and combining thus

The last equality is found by comparison with the first ofMaxwell's equations.

Rearranging the above we arrive at the wave equation.

Derivation of the Telegraphers' Equation

Consider the transmission line circuit of figure I.

~I

Figure 1- Equivalent circuit of a length oftransmission line

The voltage change across transmission line is the sum of individual voltages across

the resistor and the inductor.

av a
-=1R+L­
t3x a

The current flowing through the circuit is given by

Which may be written as

Substituting this in to our equation for the voltage across the circuit yields

Which may be rearranged to yield the Telegraphers' equation

LIBRARY IEEE;
USE IEEE.std_logic_ll64.all;

ENTITY bit_node IS

PORT (VII, VI2, VI3, VI4, CLOCK, CSl, CS2, CS3, CE :IN std_logic;
VRl, VR2, VR3, VR4, TOTAL :OUT std_logic);

END bit_node;

ARCHITECTURE behav_bit_node OF bit_node IS

COMPONENT a_block
PORT (A, B, CIN, CS, CLOCK : IN std_logic;

COUT, SUM :OUT std_logic);
END COMPONENT;

COMPONENT b_block
PORT (A, B, CIN, CS, CLOCK, FLAG, ZERO_FLAG: IN std_logic;

COUT, SUM : OUT std_logic);
END COMPONENT;

COMPONENT delay
PORT (I, CLOCK: IN std_logic;

0 : OUT std_logic);
END COMPONENT;

COMPONENT store
PORT (I, CLOCK, CE: IN std_logic;

01, 02 :OUT std_logic);
END COMPONENT;

SIGNAL Cl, C2, C3, C4, CS, C6, C7, Sl, S2, S3, Fl, F2, F3, F4,
ZFl, ZF2, ZF3, ZF4, Dl, D2, D3, D4: std_logic;

BEGIN

Ul: a_block

PORT MAP (VIl, VI2, Cl, CSl, CLOCK, Cl, Sl);

U2: a_block

PORT MAP (VI3, Vl4, C2, CSI, CLOCK, C2, S2);

U3: a_block

PORT MAP (Sl, S2, C3, CS2, CLOCK, C3, S3);

U4: b_block

PORT MAP (Dl, S3, C4, CS3, CLOCK, Fl, ZFl, C4, VRl);

US: b_block

PORT MAP (02, S3, CS, CS3, CLOCK, F2, ZF2, CS, VR2);

U6: b_block

PORT MAP (D3, S3, C6, CS3, CLOCK, F3, ZF3, C6, VR3);

U7: b_block

PORT MAP (D4, S3, C7, CS3, CLOCK, F4, ZF4, C7, VR4);

US: delay

PORT MAP (Vll, CLOCK, Dl);

U9: delay

PORT MAP (VI2, CLOCK, D2);

UlO: delay

PORT MAP (VB, CLOCK, D3);

Ull: delay

PORT MAP (VI4, CLOCK, D4);

U12 :store

PORT MAP (Vll, CLOCK, CE, Fl, ZFl);

U13 :store

PORT MAP (VI2, CLOCK, CE, F2, ZF2);

U14: store

PORT MAP (VB, CLOCK, CE, F3, ZF3);

U15: store

PORT MAP (VI4, CLOCK, CE, F4, ZF4);

TOTAL<= S3;

END behav _bit_node;

LIBRARY IEEE;
USE IEEE.std_logic_ll64.all;

ENTITY a_ block IS

PORT (A, B, CIN, CS, CLOCK: IN std_logic;
COUT, SUM : OUT std_logic);

END a_block;

ARCHITECTURE behav _a_ block OF a_ block IS

BEGIN

PROCESS(CLOCK)

BEGIN

IF (CLOCK= '1') AND (CLOCK'EVENT) THEN

SUM <=(A XOR B) XOR CIN;
COUT <= ((A AND B) OR (A AND CIN) OR (B AND CIN)) AND CS;

END IF;

END PROCESS;

END behav_a_block;

LIBRARY IEEE;
USE IEEE.std_Iogic_ll64.all;

ENTITY b_block IS

PORT (A, B, CIN, CS, CLOCK, FLAG, ZERO_FLAG: IN std_logic;
COUT, SUM : OUT std_logic);

END b_block;

ARCHITECTURE behav_b_block OF b_block IS

BEGIN

PROCESS(CLOCK)

BEGIN

IF (CLOCK= '1') AND (CLOCK'EVENT) THEN

SUM <= (((A XOR NOT(FLAG)) XOR (B XOR FLAG)) XOR CIN) AND NOT(ZERO_FLAG);
COUT <= (((A XOR NOT(FLAG)) AND (B XOR FLAG)) OR ((A XOR NOT(FLAG)) AND CIN)
OR ((B XOR FLAG) AND CIN)) OR NOT(CS);

END IF;

END PROCESS;

END behav_b_block;

LIBRARY IEEE;
USE IEEE.std_logic_ll64.all;

ENTITY delay IS

PORT (I, CLOCK : IN std_logic;
0 : OUT std_logic);

END delay;

ARCHITECTURE behav_delay OF delay IS

BEGIN

PROCESS(CLOCK)

VARIABLE A, B, C, X : std_logic;

BEGIN

IF (CLOCK = '0') AND (CLOCK'EVENT) THEN

A :=I;
B:=A;
C:=B;
O<=C;

END IF;

END PROCESS;

END behav_delay;

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY store IS

PORT (I, CLOCK, CE: IN std_logic;
01, 02 :OUT std_logic);

END store;

ARCHITECTURE behav _store OF store IS

BEGIN

PROCESS(CLOCK, CE)

VARIABLE A, B : std_logic;

BEGIN

IF (CLOCK= '1') AND (CLOCK'EVENT) THEN

IF (CE = '0') THEN

B := '0';
A :='0';

END IF;

END IF;

IF (CE = '1') AND (CE'EVENT) THEN

01 <= '1';
02<= '0';

END IF;

END PROCESS;

END behav_store;

Figure 1- Full Adder Test Waveforms

Figure 2- Subtractor Test Waveforms showing the effect of the boundary flags

Figure 3- Delay Chain Test Waveforms

Figure 4- Boundary Flag Generate/Store Logic Test Waveforms

I n I

I
I'P ~I

--

~

f1 ~ ~ ~ ~ ~ ~ ~ w

~ 13

~

~

rl

1-~> o-

~~ ~~
~

~ ~ '---~ ~ ~
i!:
"'

,J - N
-~

....

I

~ ! l §
j ~ il

i!l ~
< ~ ~ - il!
!:: ~

-~
;;:

~,.., ~ §
'"~ ~ 11! "'

~ !0! lll
ill
:::!

l
!i!::o

"' :S
VJ
i5
z
VJ -

~ i " > ;;:

-
~
i!l

"1 ~
"

)> I 1.~ I ,J -~·.J T n I c

-

l> I c:o J,
,...,

I 0

n LAIXOdll ,_
CLOOLS -

3';!iii:!i~ ~~~ ~:l!lc::~ g:! :~~ ~ ~ ~~~ ~~ ~~ ~ ~~e ~~~; ~~~~~
~

!:566

~~
BBBBBBBBBBBBBBBBBBBBBBB

ar~~ ~:~n~~b~~~~~~~~E~~~~~~~
vf

IO..Dl4/HDC
014

H1 A16
A3

IO_H1/A8 MO
A15

A2
IO_A31TCK M1 814

Al
!O_A2 I0_814/SGI2

815
03

!O_AliA17 M2 (15
(2 IO..D3 10_(15

El4
1U2 10..£14

E3 IO_E3/A12 10_816/PGI2
816 ~

- 81 10_81/A14 IO..DIS
015 f-

Cl
10-CI/A13 JO_C16ILDC Cl6

E2 E16
El

IO_E2 10J:16 fl5 vcc
f2

10_El !O_f!S
fl6

fl
JO_f2/AU 10JI6 G14

G3
10..fi/A10 IO_G14

G15 AS
G2

JO_G3 IO_G!S Gl6 '" G!
IO..G2 IO_G16

H16
J3

JO_Gl/A9
XC4006PG156

IOJ116 HIS
J2

10..J3/A7 10J11SIER!llm J15
J!

IO..J2/A6 10...115 Jl6
Kl

IO_Jl 10...!16 K16
K2

10-Kl IO-K16 K15

fu K3
10_K2/AS IO..K15 K14 lJJ

u IO_K3/A4 IO_Kl4
ll6

L2
10_U 10-1.16

#.~ vcc
NI

JO_l2 lll..L15

PI
1D..N1/A3 IOJ116 !Jl~

N2
IO_Pl/ A2/CS1 10..1'16 ~~

RI 10..112 IO_N15 ~~ ••
M3

!O_Rl/AOIWS 10..R16/SGI3 fjiji. .. ,
P2 IO..H3 10..1114 ~

r--4
10-P2/ A1/PGJ4 B IO..P15 CRtS I

R3
CCLK ~ DONE

~~ 10_R3 p 1!l IO_N14
10_TI6/07 Tl6

;:::e -< r!!s
~ ~~ ~ B IO..TIS/PGI3

-c
~

§t a aea a P~ P ~ a-- o • taj• ~ """a-aaa-
cc 'oaa~ Baaa ~a a-o c 0 """~--s

~bSa~~~~ ~~~~~~~~~~~~~a~~~~~~ ~b>
~ N~~o~ ~~ -~~~~N w~~~~ o--~w~~ -N~

~ ~[ii1:;:1;::li;:J ,• ~~;]!<; Ul6<10l::l I ::la l~<ll ~~~ i:;i~S~~~~ ~~~ SI~~ n

...J N

u
o l'lfa f-
CK 'Di-

! ! ~ ~ ~ -~
:c

~
~ < ~ ~ ~ § ! I'

"' 0 0 n nl -
ill

~ RI R2 "'
- .!:.

"'' "'' "''
1~9

va: vcc vcc ~

~ l'l

!

l
~:0

m
<

f.o
Vi
0
z

- 1-Vl

l 0
> Cl ;;:

-
~

~
El
~

)> I I"" I ,J ,... ··"' i ,..., I 0

)> I CO J.
,..,

I c

u.oco-.231 LAIW ,_. -"""""' ""='

nonl n
a a .H ~ ""'
~·t: 'H I139~H g:lc:l~ !ll!'i lg:'~ gl: 1!":1:1:; ·~ ~ 1:::1~ ~~~ ~~~~ 2: l! r~a~ £ ~ ~Is a
aasaaaas~>dBB~aaaaaasaaaasssaasaaaaaaasa

-= ~bbebbS~~~~~m~~~m~~~b~~~b~~e~~~~~bso~~~~ IQ_ VB ..Y~
IJ1[SIT_ P"""\1 no JO..T10

~~~~~~~~~~ p oOO--NN~~~m~mm~~ IO_UB UB 
-=- ~l.. IO..E3 

6§1:; ~ ID.. TB TB ""'"' ~ 
~!.. 10_81 ~b JO_V6 .::j,~ 

...... 
~~ 10_01 IO_U6 ~~ 
r.~ IOJ1 IO_VS ~ LIIITI1 o==o.. 

V([ 

~~ IO..H3 IO_V4 
H}- IO_H2 IO_US us mm ~ 

r- ik- IO..J3/AB ~-06 -ft: - r--
at- 10-H1 MQ 

ClS 
AT 10_84/TCK Ml 816 "" .-. l:t- JILA3 SGJ2/JO-B16 (16 -iit IO_C4/A17 M2 815 , .... , -c1 10_83 10_815 

814 , .... ,. -fl 
10..(1 10_814 

817 TOTAUll' -l:t JOJ3/A12 PGJ2/JO-B17 A17 'ilr:R ~ 
iit 10_(2/A14 ID..A17 

10-D21A13 LOCIIO_El7 
E17 tlOL ~ 

rt E16 ,., -r1 IO..E2 ID..A16 FlB ...... 
ilt IO..E1 IOJ18 

F16 
vcc 

ii1 l0..G2/AI1 IOJ16 G1B 
fl 

JO_G1/A10 XC4010PG191 lO..G1B G17 lJJ 
Hl 

JQ_F2 lO..G17 F17 
R4 

ff- ID..H2 IOJ17 H16 
4KT 

i<t Jo..ntA9 lo..H16 Jl6 
Kz IO..K3/A7 rnR'/11ll1"110_.116 

K17 u it- IO..K21A6 Jo..K17 J17 
i<l Jo..Jl IO.J17 K16 

~ HT IO..K1 IOJ<16 KIB 
H2 

JQ_Hl/AS IOJ<18 U14 ; L1 
Jo..M2/A4 IO_U14 

U6 
1!: L2 

JO_Ll 10_!.16 
UB 

" N3 
IO_l2 Jo..L18 P1B 

P1 
IQ_N3/A3 IO..P18 P16 

vcc 

N2 10-P1 IO..P16 N16 1-il T3 10..112 l0..N16 T16 
.,_ 

N1 10-T3/ AOIWS SGJ3/IO_ T16 MlB "' 
U1 ID..N1 lo..HlB 

UIS 
4KT 

[,...... CCU< V1 10-U!I Al/PGl4 

~ 
lO..UlS U17 

((LJ( DONE 
[""""" R2 

l0-R2 e ;; IO.Jn7 
N17 

C6 J0_(6 e CS ~ ~ · D71lO_T15 ~5 

I AS 10-AS !.., !: § ~ ~ !5 - PGl3/lO_U16 
U16 0111<0 _ __., 

CB 10-CB t:!LII cs eaa FS< P tou4 -¥~ - 0 ~~~~~E~E~~~~~~~~~~~~~~~~~e~~~~~~~~i~~~~~E~~~~u .J,3 

~~~~~~~~SNZw~ ~~~~ S~wN~=~ =~~~~~ ~~~~~~~~ 

a~~~a~~~s.,E l"'~;sl~;;j~~sl:sfs;l .~ ~ l=r~ IS~ 1~1; ~ii ~ ~~~ id
:;:

.~1" '* "
N

li1 @
~ f"
h ~ ""lE

n n ~ H Jllj

~ n~ § .,
El ~
< ~ ~ ·-

AIXILSIDEIG-..1.21 ~
~ -~
;;;

~..,

~ ~

~ ~

~
~:0 ,.,

<
Vi

~ a
z

I

l
- _Vl

~
!:1 ;;;

-
~

tJ
~
;ii
"'

)> I I I ·- ""' f ,.., I CJ

4
I

3
J,

2 1

REVISIONS
REv(DESCRIPTJCN I DATE I APPROVED

r=J..DA.TA..SlOCio-..31 0 CUlJ F""""''''tr DATUCATTERI0..3ll I I I
0

__,

~ ~~ ~
~ t - 0

n ~F I !Cl~ ~~~HH!~ 1 0f~lflt:SI:ii "'"' ~ ~~~r:rer:;r~r~rdr~'~'~'~'~'~'~ ~~r: H ~~~ l~l:_!l "'"'
~aa~~a~~~q~~:s~~~~~~~~~~~d~~~~~~~~a~~~~~~

~ " eee~~eee~~~ee~assessssseeaeee~~a~eeee~~e ID_ VB
:ll no IO_TIO IO_UB ~
~

El IO..E3
tno.l- ~

ID_ TB '::. 'Vi. - 81 10_81 ~:(IO_V6
Dl t-U6 -a IQ_Dl IO_U6

~ Fl IO..fl ro_vs ry-;: V([
H3 IO..H3 ro_v4
HZ IQ_HZ ro_us ~
J3 IO_J3/A8 to::/10_£16

1:16
HI -'iie
64

IQ_Hl HO (15
A3

10_84/TCK Ml
816

(4
JO_A3 SGI2/I!L816 (16

83
J0_(4/Al7 HZ

815
Cl

10_83 10_815
814 (

F3
JO_ct 10_814

817 (
C2

IOJ3/Al2 PGI2110_817
Al7

D2
IO_C2/A14 IO_Al7

El7
E2

10..112/All LOC/IO_El7
E16

El
10-E2 IO..A16

f¥.8
G2

IO_EI ID JIB vcr
IO..G2/All IO_f16

F16
Gl Gl8
f2

10_61/AIO Xt:4010PG191 IO_Gl8
Gl7

H~
IQ_f2 ID..Gl1

f17 "' IO..H2 IO..fl7
Hl6 "" 12 IO_l2/A9 IO..HI6 -t: K3 IQ_KJ/A7 rRI!IIFliT /10_!16
Jl6 fJ-K2 Kl7

Jl
IOJ<2/A6 IOJ<l7

Jl7
Kl

IO_Jl IO_Jl7
Kl6

HI
10-Kl IOJ<I6

Kl8 i
H2

IO_Hl/AS IOJ<l8
Ul4 i

Ll
IO..H2/A4 IO_Ul4

Ll6
L2

IO_ll 10_1_16
Ll8

N3
10_1_2 10_1_18

Pl8
PI

IO...N3/A3 10..1'18
Pl6

vcc
I N2

10..1'1 IDJ'16
Nl6 B T3

IO...N2 IO...Nl6
Tl6

NI
10-T3/ AOIW!: SGD/10_ Tl6

~8 "'
Ut

IO...NI IOJ118 4K7 h - ~·
IO_Ul/Al/PGI4

~
IO..Ul5 '*~ VI

CCLK DONE 1-._...
R2 ~p (6

RR2 G~ IO...Nl1 !
)0_(6 ~ ~ ~ D7/IO_Tl5 t+.1-5 1-AS Ul6

(~
IO_As :::; E:;! B)- ...,. U'\ ~ <tO PG13/IO_U16 U4 10..(8 .,_,._..,.,,...., ... !!1 t!~ ~~~ ~~~ ~ ~'""' rtt""'C"-~41)~ ~U'\-IP'IP'I.,-4..-40 10-04

L3

IJ ~~~MMsM N~~~~~~M·s~--NMMs~-~MM MM~M~MMMMM~ rou ~~ ~~o~~d~ ~d~ ~~~~~ > ~~~~> > >~>~> -

- eReeeee~ee~eeee_eeeeeaeeeeeeeaeae eeeeeee~
1--:i ~ ~ ~ ~ ~ ~ ~91~1r; ~'t! !::~ ~M ;!!5 ~s e:~ OM

s~ ;~
~ ~ ~m ~~ 1sls I! I~ I~~~ I 51! o-« :;>- z;;L >-« >>

j) b I§
li)

ONTRACT NO.

A - A """"" lAIJO<~lll APPROVALS DATE
IUlAWN

'Cf1Ul<[lr
ll»U<U 0

I NU. luwo. NO. l""v
CALE T ISI£ET

I ~ f ., 1

4
I

3
J,

2 1

REVISIONS
REV DESCRIPTION I DATE I APPROVED

I I I
D AIDl.HAJH...STtRtO::l9J D ..-... ._,

:Q~ f~ ~4 "'"' "'~
..,,._ ~~ :l~

Oo
~~ ~11il1 ;i1 al S1 SJ1 ~~ ~1lil1 ~1i11 "'"' U<D "'"'

..,., u"' "'u :ea

.n
~~~~~~~~~~~~t~~~~~~o~~~~~~~~~~~~ n 9ee,~~ee~eaedeeeeadddodddgd~dSd~ V(( 

- ~~~ ~ ---~--- -s- - r-
LAI2::27J 

~~51 s 
014 AIXIU0::19J "1"1 JO.D141HJC HI a a A16 

A3 
IO.Hl/AB 110 

A15 
A2 

IO_A]/TCK 111 
814 

A1 
!O_A2 lQ_B14/S6!2 

815 
03 

ID-A1/A17 112 
C15 

C2 
IO.D3 JO_ns 

U4 
E3 

[0_C2 10..£14 
816 

81 
I0..£3/A12 lll..B161PGI2 015 

C1 
IO..B11A14 IO.D15 

C16 c E2 
IO_Cl/AU !0_(16/LDC 

El6 c 
El 

!0..£2 IQ_El6 
f15 \'(( 

f2 !0..£1 lQ_fl5 
f16 

fl 
IO_f2/A11 IQ_f16 

614 
63 

IOJl/AlO !0_614 
615 R2 

62 
!0_63 !0_615 

616 .. , 
61 

!0_62 !0_616 
H16 

J] 
f0_61/A9 

XC4006P6156 IO.Hl6 H15 
J2 

!O_J3/A7 lO.H15/EmlfmT J15 
Jl 

!O_J2/A6 l0-l15 J16 
~ Kl 

!O_Jl !0...116 Kl6 q-
K2 

lOJ(l l0-Kl6 Kl5 
K3 

!OJ<21A5 !DJ<15 Kl4 
ll 

IO_K3/A4 !OJ(l4 
116 

~ 12 
[O_ll ID..ll6 

~5 V(( 

NI 
[0_12 !0..1.15 
IO_Nl/A3 !0_1116 ~~ PI ro_pu A2/CS1 ro_p16 ~~ 

~~ !O..N2 IO..N15 ~~ 
R1 ~~ lOJU/AOI'iiS" HUll6/SGI3 

R16 

~ IOJ13 JO..Hl4 
Hl4 .. , 
Pfs 

B - CCLK ~~ IO_P2/ A11P6!4 

~ 
m_pts iffs R2 CUK OONE 

"==" R]_ IO..R3 ~ ~ 
IO..N14 ~~ 

!(!..,; IO_Tl6/01 .g~ 
5~ >- "'~ ~ IQ_ Tl51PG13 _!!5 

8~ ~s s~a ~ ~ ~ 
N~~ ' ' ' ' ' ' ooo"~N~~~ ~ 
~~So~~~~~~~~~~~~~t~~~~~~~~~~~~~S< 
999~S999e9Se8Se99Se9See9ee9_9 eee 

:ii~IEJI~I~ t ~lt!l~ ~~ ~ ~ li:&: C:" &: frl ~ 0 0 

~ EI~I~ISI~I~I~ SISI~I er>- ~li: 

- -

H1 
;I~ I~~~ I~ I~ IH ~I~ 

J ~ jl ~) ~ 

H u H u n 
CONTRACT NO. 

A A 
APPROVALS DATE 

O<AW" 

Ili:U\CU 

···~ 
IScti'SLM NU. rwo. NU. r·· 

(Al.£ !SHEET 

I T I 




