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Abstract 

This thesis details the development of an application specific processor for the 

transmission line matrix (TLM) method. The application of TLM to the modelling of 

wave propagation in two and three dimensions is introduced with the discussion 

focusing on the concept of computational efficiency. Methods for improving 

computational efficiency are reviewed, in particular the implementation of TLM on 

large scale parallel computers. It is shown that these methods, while increasing 

throughput, make inefficient use of available resources. The review of existing 

methods is used to define a set of goals for a new class of application specific TLM 

processor. 

The development of an application specific processor based upon the two dimensional 

shunt node is presented. This gives rise to an efficient, bit serial scatter processor. 

The implementation of this processor within a complete, application specific TLM 

system is discussed. The system is based around a unique mapping of the TLM 

connect routine to hardware. 

The bit serial scatter processor is modified to allow the modelling of inhomogenous 

and three dimensional media using the stub loaded shunt node, the symmetrical 

condensed node and the symmetrical super condensed node TLM schemes. It is 

shown that all four TLM schemes may be implemented within a single architecture 

without the introduction of redundant elements through the use of reconfigurable 

logic. The implications of interfacing this system to a host PC using the PCI bus are 

discussed. 

The processor designs are reviewed within the context of the goals set for the work. It 

is shown that all of the goals were successfully met. The implications and limitations 

of the processor are discussed. 

The thesis concludes with recommendations for areas worthy of further study. 
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Introduction 

This thesis details the development of a new class of application specific processors 

for the transmission line matrix (TLM) method. The initial goal of the work was to 

develop a hardware based accelerator for TLM computations. A more structured set 

of goals were defined through a review of the literature surrounding this field. 

Potential applications for the processor include the motor industry and the electronics 

industry. In both of these areas TLM is being applied to increasingly complex 

models. A reduction in processing time for large models would provide a significant 

commercial advantage in these areas. 

The application of TLM to the modelling of wave propagation in two and three 

dimensions is introduced in chapter 1. The focus is on applications of TLM in 

electromagnetics as this represents the main field of application for TLM, however 

reference is made to other fields as appropriate. The discussion is based around the 

four main classes of node in electromagnetics. These are the two dimensional shunt 

node and stub-loaded shunt node, and the three dimensional symmetrical condensed 

node (SCN) and symmetrical super condensed node (SSCN). It is shown that the 

computational efficiency of TLM implementations on serial computers is low. This 

gives rise to long run times for large simulations. Methods for reducing run times are 

discussed, in particular the implementation of TLM on large scale parallel computers. 

These methods, while increasing throughput, make inefficient use of available 

resources. The two existing classes of application specific processor for TLM are 

introduced. A study of their operation reveals that neither class of processor 

successfully overcomes the limitations and inefficiency of other implementation 

methods. The key limiting factors of the parallel and application specific processing 

implementations of TLM are identified. From these a set of goals are derived for a 

new class of TLM processor. 

• The granularity of the TLM algorithm must be successfully mapped to hardware. 

This means both removing redundant elements from the computational hardware 

and providing sufficient bandwidth for the connect process. 

• The chosen architecture should not limit the processor to a single form of the TLM 

algorithm or a single mesh configuration. 

• The chosen architecture should be scalable to allow any mesh size to be 

implemented. 



• The processor must be accessible. That is its use should not be prohibited through 

• Portability/size 

• Cost 

• Programming requirements 

Of these, possibly the most often overlooked criterion is that of accessibility. The 

new processor is of little practical importance if restrictions of access prevent its use 

by the TLM community as a whole. 

The aim of this work is to develop an application specific TLM processor that 

successfully achieves the goals defined in chapter 1, thus providing a significant step 

forward from existing implementations. A series of milestones are identified which 

together form an implementation strategy for achieving the specified aims. This 

implementation strategy is shown below. 

OBJECTIVE MILESTONE 

Feasibility study Demonstrate that an application 

specific processor can achieve a 

performance increase over existing 

computers 

Definition of suitable target technology and Evaluate technologies for 

implementation strategy implementing the processor. Define 

the design flow for the chosen 

technology 

Development of a shunt node processor Demonstration of a working shunt 

node scatter processor 

Implementation of connect function Demonstration of a complete system 

based on an array of shunt node 

processors 

Extension of scatter processor to other TLM Demonstration of a working 

schemes (stub loading, SCN, SSCN) processor incorporating several TLM 

schemes 

The implementation strategy is designed to provide a structured development path. 

The initial design phases focus on the two dimensional shunt node. The shunt node is 

chosen as it is the simplest form of TLM, yet it encompasses many of the principles of 

the more complex TLM schemes. The shunt node processor is used as the basis for 

the development of scatter processors for the stub loaded shunt node, the SCN and the 
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SSCN. Once an understanding is gained as to the requirements of each form of TLM, 

an efficient method of combining the processors to form a general purpose processor 

can be found. 

Chapter 2 introduces the basic concepts of digital arithmetic. Various architectures 

are presented for the four main arithmetic operations, addition, subtraction, 

multiplication and division. The compromises between logic complexity and 

throughput for these architectures are discussed. The concept of errors in digital 

arithmetic is introduced. The discussion focuses on quantisation error. It is argued 

that all digital arithmetic is inherently inaccurate and that the definition of an error is 

therefore application dependent. 

With the clock rates of modern desktop computers exceeding 400 MHz the ability of 

an application specific processor to produce an increase in throughput must be 

validated. It is shown in chapter 3 that the performance of the processor is closely 

linked to the implementation strategy. A review of implementation methods suggests 

the use of a field programmable gate array (FPGA) as a development platform. The 

Xilinx XC4000 family of FPGAs is shown to have an internal structure well suited to 

forming the logic required by the TLM processor. It is argued that the lack of defined 

structure for the TLM processor makes it a candidate for implementation using a 

behavioural hardware description language. The VHDL language is chosen as it is a 

widely recognised standard. The two dimensional (2D) shunt node algorithm is 

formulated in VHDL so as to optimise the circuit produced. The trade off between 

word length and accuracy is discussed. It is shown that given a sufficiently large word 

length, integer arithmetic provides an adequate level of accuracy. The use of a block 

floating point scheme is introduced. Logic synthesis is used to create a circuit from 

the HDL description. A review of the performance of the circuit, implemented on a 

Xilinx FPGA, reveals a potential throughput increase of an order of magnitude against 

software implementations at the time of writing. However the circuit does little to 

address the primary aims of the research . An array of scatter nodes is formed. This 

exhibits. poor scalability and low efficiency. This is shown to arise from the 

mismatch between the needs of the TLM connect process and the interconnect 

capability of the processor. 

In chapter 4 it is shown that the main components of the shunt node processor, i.e. the 

ripple carry adders, may be replaced by full adders and delay elements. This 

effectively transforms the design into a bit serial shunt node processor. The bit serial 

design allows the word length to be varied so that throughput and accuracy can be 
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balanced to achieve the desired performance. It is shown that simple boundaries may 

be added to the shunt node processor by encoding boundary data passed to the 

processor. This allows an homogeneous array of scatter processors to operate on a 

TLM mesh of arbitrary geometry. The implementation of the scatter processor on a 

Xilinx XC4010 FPGA and the testing of its functionality are described . 

The bit serial processor overcomes many of the bandwidth problems encountered 

when trying to form large arrays of scatter processors. There is potential for a low 

bandwidth SIMD array to be developed around the processor. However such arrays 

are shown to limit the size of mesh which may be efficiently implemented. Chapter 5 

investigates a more efficient mapping of the TLM mesh on to an array of scatter 

processors. This gives rise to the concept of a flexible connect logic array which 

allows a small number of scatter processors to operate on a mesh of arbitrary size. It 

is shown that unlike previous mappings, the new connect logic introduces no 

overhead to the calculations. 

In order to eliminate any redundant elements from the scatter processor the TLM 

scatter equation is mapped directly into hardware. This limits the processor to a single 

form of TLM, the 2D shunt node representation. In order to expand the system to 

implement multiple TLM schemes an understanding must be gained of the 

requirements of each scheme. Chapters 6, 7 and 8 discuss how the TLM system 

developed in chapter 5 may be adapted to implement systems for the stub-loaded 

shunt node, the SCN and the SSCN. The issues involved in the design of a scatter 

processor for each scheme are presented and discussed. Chapter 7 also shows how 

the connect logic of chapter 5 may be extended to work in three dimensions. 

Chapter 9 demonstrates how the processors for each of the four main node 

configurations may be combined in a single architecture. It is shown that by using 

reconfigurable processing elements as opposed to reprograrnmable ones all the 

processors may be combined without introducing any redundant elements or 

instruction streams. The resulting architecture of the TLM general purpose processor 

(TLM-GPP) is shown to have achieved many of the aims laid out in chapter 1. The 

implications of building a physical processor around the TLM-GPP concept are 

discussed. 

Chapter 10 examines the importance of the interface between the TLM-GPP and the 

user. It is argued that the interface is important not only in terms of performance but 

also in terms of ease of use and accessibility. Given the popularity and wide 
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availability of personal computers, an implementation of the TLM-GPP on a PCI card 

is suggested. The modifications required to meet the PCI standard and their effect on 

the processor are discussed. It is concluded that while the PCI bus places limitations 

on the processor, it offers a development platform for a very powerful TLM processor 

within a PC. 

The conclusions return to the aims specified in chapter 1 and define how well each 

aim was achieved. It is shown that the TLM-GPP successfully addresses all the initial 

aims. The potential applications of the processor are discussed and are compared to 

those areas considered potential applications at the start of the work. It is concluded 

that the TLM-GPP represents a powerful and highly flexible tool for TLM, providing 

a significant step forward from existing implementations. 

The adaptable nature of the TLM-GPP has been exploited to produce a system with 

genuine wide ranging potential. There is still much to discover before the full 

potential of this new class of TLM processor is realised. Some key points are 

discussed in the recommendations for further study which conclude the thesis. 

V 



1. Transmission Line Matrix Modelling 

1.1 Introduction 

Wave propagation is a major factor in all areas of everyday life, although the study of 

wave propagation through the use of analytical techniques is practical only in certain 

restricted cases. The idea of solving propagation problems via equivalent electrical 

networks has existed for many years1
• However such solutions are impractical due to 

the difficulty of physically realising large, ideal networks. The advent of the digital 

computer has led to the development of various numerical propagation modelling 

techniques, particularly in the field of electromagnetics2
, such as the finite difference 

time domain (FD-TD), finite element (FE) and transmission line matrix (TLM) 

methods. Unlike FD-TD and FE, which are respectively differential and integral 

techniques, the TLM method, first introduced by Johns and Beurle3 in 1971, is built 

around an array of scattering points each of which may act as a secondary radiator in a 

manner similar to that described in Huygens' principle. Thus the TLM method bears 

a close resemblance to the physical process of propagation, and is equally applicable 

to the study of both electromagnetic and acoustic waves. This chapter offers an 

introduction to TLM before discussing the specific issue of computational efficiency. 

Conclusions are drawn as to the failings of current TLM implementations and 

recommendations are developed for an improved TLM accelerator. 

1.2 The Two Dimensional Transmission Line Matrix Method 

Maxwell's equations4 for wave propagation in two dimensions may be written as 

(1.1) 

1 



which combine, as demonstrated in the appendix, to give the wave equation, 

Analytical solutions to these equations are possible only in restricted cases or through 

lengthy mathematical processes. The idea of solving complex numerical problems 

through the use of electrical network analogues has been around for many years 1. 

Consider an LCR lumped element network, figure 1.1, analogous to a length, ~l, of 

transmission line. Through consideration of the rates of change of the voltage and 

current in the line we arrive at the telegrapher's equation. A full derivation is given in 

the appendix. 

(1.2) 

Where Lct, Cct and Rct are the distributed inductance, capacitance and resistance of the 

transmission line. If we assume that Rct is negligible, i.e. we have an ideal 

transmission line, then the resistive term can be neglected and we are left with a one 

dimensional wave equation for lossless transmission. 

!11 

Figure 1.1 - Equivalent Circuit of a Length of Transmission Line 

The basic building block ofTLM is the shunt node3
, the two dimensional (2D) 

formulation of which is shown infigure 1.2. It is formed by the orthogonaljunction 
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Figure 1.2 • Equivalent Circuit of a 2D Shunt Node 

of two lossless transmission lines. This unit cell is repeated to fill the region under 

consideration with a Cartesian mesh of transmission lines. If !1! is small compared to 

the shortest wavelength under consideration then the node may be assumed 

infinitesimally small and the voltage and current changes at the node, according to 

Kirchoff's laws, are given by 

(1.3) 

which may be combined as for Maxwell's equations, yielding the wave equation, 

3 



Comparison of equation 1.3 with Maxwell's equations, equation 1.1, reveals the 

equivalences 

Ey = Vy, 

-Hx = Ix, 

-Hz = Iz 

Jl = L, E = 2C 

Although this discussion is centered on modelling electromagnetic phenomena it is 

noted that, from the basis of a suitable model or set of equations in the form of 

equation 1.3, the TLM method may be used to study any form of transverse wave 

propagation. Of particular note is the wide application of TLM to acoustics5 where 

equivalences are formed between the shunt node capacitance and inductance and the 

material properties of compressibility and density respectively. 

A voltage impulse approaching a node 'sees' an impedance one third that of the line 

segment due to the three branches leaving the junction. This gives rise to a reflection 

coefficient, p, of 
1 
-- 1 
3 1 p------- 1 - 2 
- + 1 
3 

and therefore a transmission coefficient in the other three branches of (l+p) = +112. 

Superposition of reflected and transmitted impulses for all four branches gives rise to 

a scattering matrix at the node which is commonly stated as6 

Vt r -1 1 1 1 Vt i 

Vz 1 1 -1 1 1 Vz 
- (1.4) v3 2 1 1 -1 1 v3 

v4 1 1 1 -1 v4 

and which may be expressed as 

(1.5) 

where the suffixes i and r denote incident and reflected impulses respectively and k is 

the iteration counter. 

4 



The velocity of impulses along the transmission lines is constant, therefore the 

discretisation of the spatial domain leads to a corresponding discretisation in the times 

at which scattering events occur. Impulses scattered from a node traverse a distance Ll 

l in a time 

Lll 
Llt=­

u 

where Lll is the node separation and u is the wave velocity. Llt is the iteration time, 

impulses scattered from a node at a time t form the incident impulses upon the 

neighbouring nodes at a time t + M. This process may be summarised by the TLM 
. 3 connect equatwns 

k+l vi(z, x) =k V3 (z, X - 1) 
k+l V~ (z, x) =k V4 (z - 1, x) 
k+l vHz. x) =k VI (z, X + 1) 
k+l V~ (z, x) =k V2 (z + 1, x) 

The modelling of propagation within the array follows an iterative sequence. 

1. Excitation - The field components modelled at each node may be excited by 

applying the appropriate voltages or currents to the node. 

(1.6) 

2. Scatter- Radiated impulses are calculated at each node according to equation 1.4. 

3. Connect- New incident values at each node are calculated from equation 1.6. 

Data can be output from the array for visualisation purposes either as individual 

impulses or as the total energy incident upon each node in the array. Stages 1-3 are 

repeated until sufficient data is recovered to formulate a solution in the time domain 

or, via a Fourier transform, in the frequency domain. Sample outputs from TLM code 

written in C++ are presented infigure 1.3. The ability to view the wave intensity at 

all points in the mesh simultaneously with little computational overhead is one of the 

major advantages of TLM. 

Many practical problems require the modelling of a closed system, therefore TLM 

requires some form of boundary representation. To preserve synchronisation of the 

impulses within the mesh, boundaries are traditionally placed at a distance Lll/2 from a 

node. An impulse launched from a branch of a node upon which a boundary is 

present will be returned to the same node in the next iteration. Simple electric or 

magnetic walls can be formed by respectively short circuiting (p = -1) or open 

5 



Figure1.3(a) - TLM Model of Dolphin Echolocation Beam Forming1 

Figure 1.3(b)- Diffraction of a Wavefront Through a Narrow Slot 

1 Flint, J.A et al 'Visualising Wave Propagation in Bi~-Acoustic Lens Structures using the 
Transmission Line Matrix Method', Proc. of the Institute of Acoustics, Vol. 19(9), pp.29-37, 1997 
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circuiting (p = 1) the relevant branch. More general boundaries can be represented by 

modifying the connect equation for that branch thus 

(1.7) 

where p is the reflection coefficient of the boundary and -1 :::; p :::; + 1. 

It has been shown3 that the propagation velocity of a wave travelling upon the mesh is 

dependent upon the direction of travel and the mesh discretisation. The constituent 

axial components of a wave travelling at 45. to the axes have identical phase and 

amplitude, therefore when they converge at a node both will 'see' an impedance 
1 

match. Propagation at 45· to the axes is hence unperturbed with a velocity of .fi u . 

However axial propagation is frequency dependent, giving rise to the dispersion 

characteristic offtgure 1.43
• If M//..:::; 0.1 then dispersion is low and may be ignored. 

It is therefore accepted practice to allow at least 10 nodes per wavelength at the 

highest frequency encountered in a given problem. 

0.75 .--------------------------, 

<: 
.2 

0.7 

; 0.65 
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.!!l 
0 
"C ., 
,!:) 

~ 0.6 
0 
z 

0.55 
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0.0 

Normali; ed Frequency Al 
-i\-

Figure 1.4 • Shunt Network Dispersion Characteristic 

0.25 

· A second two dimensional node exists. This is created from the connection in series 

of four lossless transmission line segments. The series node is shown infigure 1.5. 
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The series node scattering matrix has a similar form to the shunt node scattering 

matrix. Solutions to the series node are of the form: 

1 [~ ·] r 
k+l V~ = 2 ~ k V~ -k Vs-" .. 

+----M--+1 
2 

L~l 

2 

Figure 1.5- The Two Dimensional Series Node 

Cjj.f 

2 

1.3 Two Dimensional TLM for Lossy and Inhomogeneous Materials 

1.3.1 Stub Theory 

In the field of electromagnetics two of the most important properties of a material are 

its permittivity, E, and its permeability, !l· Similarly in acoustics the important 

properties are compressibility and density. These properties affect the propagation of 

waves within the material. The method for varying these properties within the TLM 

mesh is identical in both acoustics and electromagnetics, only the definitions change. 

For simplicity this discussion is focussed on electromagnetics. 

Media with regions of varying permittivity/permeability exist throughout 

electromagnetics, common examples including the dielectric/plate interface of a 

parallel plate capacitor and the substrate (dielectric )/air interface in a microstrip line. 
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The two dimensional (2D) TLM shunt node represents an homogeneous medium of 

permittivity Eo and permeability J.lo. From equations 1.1 and 1.3, 

2C =Eo 

where L and C are respectively the distributed inductance and capacitance of the 

transmission line. In order to model a region of relative permittivity Er, (such that 

permittivity E =Eo. Er), an extra capacitance must be introduced at the node. Similarly 

extra inductance is required to model a medium of permeability J..l. = J..l.r.J.lo. The extra 

capacitance/inductance is produced through the addition of stubs to the node. 

Capacitive stubs are usually used with shunt nodes and inductive stubs with series 

nodes. 

1.3.2 Generation of Capacitance/Inductance Stubs 

Consider the transmission line segment of figure 1.1. Assuming the length of the line 

is short such that tan ~x == ~x, a line segment of length x exhibits a complex 

impedance7 

Z(x) = Zo [ZL + Zo !f3x] 
Zo + ZL ;/3x (1.8) 

If ZL = 0, i.e. the end of the segment is short circuited, then Z = j.Z0~x, and the line 

exhibits an inductive impedance. 

If ZL = oo, i.e. the end of the segment is open circuited, then Z = -j.Z0~x, and the line 

exhibits a capacitive impedance. 

Thus the capacitance/inductance of a TLM node may be increased by adding an 

open/short circuited length of transmission line called a stub. The length of the stub is 

chosen to be t:.l/2, thus ensuring that impulses scattered in to the stub and returned to 

the node are synchronised with the other impulses within the mesh. 

Lossy materials, such that impulses passed between nodes are attenuated by a factor 

e-at;J, may be represented by the addition of an infinite length or perfectly matched 

stub to the nodes6
• Energy scattered in to this loss stub is absorbed and is not returned 

to the node. 
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1.3.3 Scattering at a Stub Loaded Shunt Node 

Consider the stub loaded shunt node of .figure 1.68
• Impulses incident upon one of the 

four branch inputs encounter a reflection coefficient 

/ 
' ' 

Pu = 
y- 2 

y 

Al 
2 

i = 1..4 

/ 
Vs 

--------------------~ 

Figure 1.6 - Stub Loaded Shunt Node 

and hence a transmission coefficient 

2 

y 
k :;e i 

Impulses reflected from the permittivity stub encounter a reflection coefficient at the 

node of 

2 Yo- y 
Pss = y 
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This yields a transmission coefficient of 

2 Yo 
T;s = 1 + P55 = i =/: 5 

y 

Superposition of reflections and transmissions from all input ports gives rise to a 

scattering matrix8 for the stub loaded shunt node of 

VI r 2- y 2 2 2 2 Yo Vt 
i 

Vz 2 2- y 2 2 2 Yo Vz 
1 v3 - 2 2 2- y 2 2 Yo v3 

v4 y 
2 2 2 2- y 2 Yo v4 

Vs 2 2 2 2 Yo- Y Vs 

(1.9) 

where Vs is the capacitive stub voltage and y = 4 + Yo +go. Yo is the capacitive stub 

normalised admittance and go is the loss stub admittance. This can be reduced to an 

explicit form thus, 

(1.10) 

Although the explicit form is less frequently quoted it offers an alternative to matrix 

calculation. 

The stub loaded node of figure 1.6 represents a medium of 

Yo 
£, = 1 +-

4 

It is clear that if no stubs are present equation 1.10 reduces to the standard two 

dimensional scattering equation, equation 1.5. Note that no alteration is required to 

the connect process as the capacitive stub voltage is returned to the same node in the 

next iteration and the loss stub voltage is absorbed. Equation 1.6 still holds, with the 

additional term 
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The introduction of stubs modifies the values of the attenuation and propagation 

constants for the TLM mesh8
. This alters the form of the axial dispersion 

characteristic of the mesh, which becomes dependent upon y0. Diagonal propagation 

remains frequency independent. 

A mesh of series nodes may be loaded with inductive or permeability stubs of 

normalised impedance zo and a lumped element series resistance r0. The properties 

and scattering matrix of the stub loaded series node may be derived in a similar 

manner to the above shunt node properties. y0 is replaced by an impedance zo, and y 

is replaced by z = 4 + zo + r0. The scattering matrix has a similar form to that of 

equation 1.9. 

In a series node mesh the interface between regions of differing permittivity is treated 

-as an anisotropic, partially reflective boundary. The reflection and transmission 

coefficients are determined by the ratio of the intrinsic impedances of the two regions. 

As with the boundaries of objects within the mesh the boundaries between media of 

different parameters are assumed to lie at a distance M/2 from the nodes. The same 

principles apply to the boundaries between regions of varying permeability in a shunt 

node mesh. 

1.4 The Three Dimensional TLM Method 

Two dimensional models are widely used in acoustic simulation, however in 

electromagnetics 2D problems are of limited importance. Most practical EM 

applications for TLM require the modelling of propagation within a three dimensional 

(3D) medium. A 3D TLM mesh is formed from a 3D Cartesian array of nodes. Each 

node must be capable of modelling 3 electric and 3 magnetic field components. This 

was originally accommodated by creating a 3D node from a combination of 2D shunt 

and series nodes9
• In this distributed node the electric and magnetic field parameters 

are spatially distributed among the shunt and series nodes. Electric and magnetic 

walls must therefore be defined at different locations within the mesh to maintain their 

positioning !:J.l/2 from the nodes representing the relevant field components. To 

overcome these limiatations the distributed node was modified to model all field 

components at a single point, yielding the asymmetric condensed node10
. This 3D 

node brings together the connections between the series and shunt nodes at a single 

point. 
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A considerable step forward in 3D modelling was provided in the form of the 

symmetrical condensed node (SCN)11 ,figure 1. 7. Unlike the shunt and series nodes 

in which the scattering parameters are developed from equivalent circuits, the 

scattering matrix of the SCN was formed from a consideration of field parameter 

conservation within the region modelled by the node. 

Figure 1.7 ·The Symmetrical Condensed Node 

This gives rise to a sparse 12 x 12 scattering matrix, equation 1.11 11
• The 12 ports of 

the SCN are arranged such that 2 cross-polarised ports are presented at each of the 6 

Vt r 1 1 -1 VJ 

v2 1 1 -1 1 v2 
v3 1 1 1 -1 v3 
v4 1 -1 1 v4 
Vs 1 1 -1 1 Vs 

(1.11) 
v6 1 1 1 -1 v6 

-
2 -1 v1 1 1 v1 

Vs 1 -1 1 1 Vs 

v9 -1 v9 
v10 -1 1 1 v10 
Vu -1 1 1 1 Vu 

V12 1 -1 1 1 vl2 
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and 

v:pj - v:nj + V~ni - V~pi 

Zu + zji 

The characteristic impedance of a link line is given by 

zij = 
. 

It can further be shown 14 that in the case of a uniform mesh in which ~ = l:iy = & = 11 

l only two characteristic impedance parameters are required. 

z 
Zxy = Zyz = Zzx = Zp = 

AI (1.16) 

Zzy = Zxz = Zyx = Zn = Z A1 

Where Z is the characteristic impedance of the background medium 

Z=~ 

and the parameter A1 is given by 

It is clear from the above that in the case of a background medium where Er= J.lr = 1 

the parameter A1 = 1 and Zp = Zn = Zo. The SSCN therefore reduces to the basic 

twelve port SCN. 

1.5 Computational Efficiency in TLM 

As TLM is applied to increasingly complex problems the run times on serial 

computers become prohibitive17
• Serial computers are limited to processing a single 

operation at a time. Any increase in the number of operations required to perform a 

given function leads to a corresponding increase in the processing time required. 

Hence the introduction of more complex algorithms for inhomogeneous media, more 
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effective boundary conditions18
'
19

, graded meshes20 and other refinementse.g.21 to the 

basic scatter and connect techniques increase the time taken for each scatter or 

connect operation. The move to larger meshes, particularly in 3D, and finer meshes 

for studying more detailed phenomena increase the number of nodes and therefore the 

number of times the scatter-connect processes must be applied in each iteration. In 

order to maintain the usefulness of TLM when applied to complex models the run 

times must be reduced. 

1.5.1 Signal Processing Techniques 

The number of iterations required to obtain a solution can be reduced through the use 

of digital signal processing (DSP) techniques. The most commonly used in TLM are 

the Prony-Pisarenko method22
,
23 (PPM) and the Auto-Regressive Moving Averages 

(ARMA)22 technique. Both of these reduce the number of iterations required to 

achieve a solution to a given accuracy by interpolating future responses from 

knowledge of the previous behaviour of the system. Both may be used to good effect 

when frequency domain results are required, as they require fewer samples to obtain a 

solution than the traditional Fourier transform. 

A wide range of high throughput DSP chips (e.g. C40, Share) is available. Each has 

an internal architecture optirnised for high speed arithmetic. Such processors may 

offer a significant increase in performance for TLM applications24
. However these 

processors are still constrained by the use of a serial internal architecture. While 

arithmetic instructions may be executed faster than on a PC, the same limitation of 

processing a single instruction at a time exists. In most cases, as with a PC, the 

instruction set of these processors is over specified for the requirements of a TLM 

processor. 

1 .5.2 Parallel Computing and TLM 

The explicit nature of the scatter and connect processes allow them to be performed at 

all nodes simultaneously. For concurrent scatter or connect operations performed at 

any pair of nodes the input (Vi) and output (Vr) data sets for those operations satisfy 

Bernstein's Condition 

(v~ n v~) u (v~ n v~) u (v~ n v~) = o 
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This states that the output of any given node within a single iteration is independent of 

the output of any other node within that iteration. One way to take advantage of this 

inherent parallelism would be to implement TLM on a parallel computer. This would 

produce an increase in computational performance as the scatter and connect 

processes could be applied simultaneously to the entire array in each iteration. 

Amdahl' s law25 may be used as an indicator of how suitable an algorithm is for 

parallel implementation, based on the fact that any operations that must be performed 

serially within an algorithm will limit the maximum speed up achievable through 

parallel execution. Thus 

1 
s :5, -..,--( 1--J....,...) 

f +-'----~ 
p 

where S is the achievable speed up, 

f is the fraction of operations that must be performed in serial, 0 :5, f :5, 1 

p is the number of processors in the parallel architecture 

(1.17) 

In TLM both the scatter and connect routines may be performed in parallel, i.e. f = 0. 

Amdahl's law then reduces to S :5, p, the only limit on the achievable speed up is the 

number of processors available. This implies that TLM is highly suited to parallel 

implementation. This equation, however, does not take in to account the limitations 

introduced through the choice of parallel architecture, or operations such as reading 

output data, which will increase f and therefore reduce S. 

1.5.2.1 Parallel Architectures 

The classification of parallel computers according to Flynn26 places architectures in to 

one of four groups depending upon the number of instruction and data sets acted upon 

concurrently. 

SISD - Single Instruction - Single Data. SISD computers have one processor and can 

only perform one instruction on a single set of data at any time. This category 

includes PCs, workstations and similar single processor systems. 

SIMD - Single Instruction - Multiple Data. SIMD systems can perform a single 

instruction simultaneously upon many data sets, thus a single set of instructions need 

only be applied once to process a whole array of data. SIMD machines have difficulty 

executing conditional statements as they often lead to the formulation of multiple 

instruction streams. 
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MISD - Multiple Instruction - Single Data. This is the least practical and least 

common of the classifications. An MISD machine is capable of performing many 

instructions simultaneously upon the same data. Each instruction operates on a copy 

of the same data and is therefore incapable of affecting the results of the other 

processors. 

M/MD - Multiple Instruction - Multiple Data. MIMD machines are the most powerful 

of all the classifications, as they are capable of executing multiple programs 

simultaneously. 

Each of the basic types is illustrated graphically infigure 1.8. 

There are two other common architectures that do not fit readily in to Flynn's 

classification, the systolic array processor and the pipeline processor. In a pipeline 

processor a task is divided in toP subtasks, each of which is assigned a processing 

element (usually SISD). The output of one processor forms the input to the next, thus 

partial results are passed between the processors in a manner analogous to a 

production line. All processors are active concurrently thus improving throughput so 

long as the pipeline is continually fed new data. 

Asystolic array, from Johnson et ae7
, is 'a grid like structure of special processing . 

elements that processes data much like an n-dimensional pipeline. Unlike a pipeline, 

however, the input data as well as partial results flow through the array. In addition 

data can flow in a systolic array at multiple speeds and in multiple directions. Systolic 

arrays usually have a very high rate of 1/0 and are well suited for intensive parallel 

operations.' This class of systolic array may be termed data systolic to 
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Figure 1.8a Single Instruction Stream, Single Data Stream (SISD) Architecture 
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Figure 1.8b Single Instruction Stream, Multiple Data Stream (SIMD) Architecture 
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Figure 1.8c Multiple Instruction Stream, Single Data Stream (MISD) Architecture 
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Figure 1.8d Multiple Instruction Stream, Multiple Data Stream (MIMD) Architecture 
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differentiate it from a more recent development in parallel processing, the instruction 

systolic array processor (ISP). In the ISP streams of instructions flow through an array 

of static data. A second stream of flags controls the application of the instructions to 

the required data locations. The ISP has the advantage that, unlike data systolic 

arrays, the instruction performed is independent of the location within the data array. 

This leads to more efficient coding and lower redundancy (ie. less inactive 

processors). This efficiency i~ained at a price. Each processing element must be 

capable of performing a whole set of instructions. ISPs therefore generally require 

more complex processing ele nts than data systolic arrays. 

1.5.2.2 Parallel Implementations of TLM 

The idea of applying TLM on a parallel computer has been investigated by a number 

of groups in recent years. Table 1.1 gives a summary of the methods used and results 

produced through these applications. 

So et al.28
,
29 utilised the DECmpp12000 SIMD parallel computer and a number of HP 

workstations to implement both 2D and 3D TLM. A combination of parallel 

computing and signal processing were used to achieve a speed up factor of 34. 

However the low data transfer rate between the DECmpp12000 and the DECS000/200 

front end limited the speed up factor to 18 when a c.w. input was injected in to a 

single point in the mesh. Three dimensional arrays were formed by creating arrays of 

data at each processing element. 

Dubard et al. 16 implemented TLM on the :MIMD architecture of the CM-3 connection 

machine. A three dimensional stub loaded SCN mesh was created. The connect 

architecture of the CM-3 allowed a three dimensional mesh to be mapped directly on 

to the processor array. A speed up factor of 70 was achieved. Results were compared 

to a 20 MHz 80386 processor 

Luthi et al.30 tested the efficiency of TLM on a variety of parallel computers 

incorporating both SIMD and MIMD architectures. The results were used to derive an 

empirical formula linking execution times to the ratio of calculation time to 

communications time. 

(1.18) 
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tp =execution time 

a = unit calculation time 

n = problem size 

p = no. of processors 

bn oc communications overhead 

The results suggest that those systems which use direct interconnects are more 

efficient than those using message passing systems with large communications 

overhead. 

Tan and Fusco31 implemented a stub loaded shunt node mesh on the bit serial SllviD 

architecture of the AMT DAP510. A small mesh was used in the test as the DAP510 

has only a 32 x 32 array of processing elements. Larger meshes may be processed in 

32 x 32 partitions. Execution time is proportional to the number of partitions in the 

mesh. 

Parsons et al. 32 implemented TLM on a distributed array of SISD Spare workstations 

using PVM (parallel virtual machine) software. Various mappings of a mesh on to the 

array were tested in order to study the effect of the mapping on the performance of the 

system. In particular the ratio of computation to I/0 was varied. It was shown that 

this ratio has a strong effect on the speed up factor achieved. The effect was 

exacerbated by the serial data link between the machines. 

Although the techniques, hardware and system complexity varies greatly between 

individual applications there are a number of general conclusions that may be drawn. 

• None of the processors optimally matches the granularity of the processing 

elements with that of the problem. In the case of the AMT DAP510 the single bit 

processors require much manipulation of data between the processor and local 

memory. In the other cases, e.g. Du bard et al, the processors are capable of far 

more complex operations than the simple calculations required for TLM, therefore 

much of the system's potential is unused. 

• With the exception of the work of Parsons et al. all applications map one 

processor to one node in the mesh. This limits the number of nodes in the mesh to 

the number of processors available. So et al. mapped a 3D mesh to a 2D connect 

scheme by mapping the third dimension to ID arrays within the local memory of 

each processor, thus each processor maps to one node in each plane of the model. 

This restricts the number of nodes in the third dimension as local memory is 

limited. 
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REFERENCE 29,30 
HARDWARE DECmpp12000 

DEC5000/200 
HP Workstation 

ARCHITECTURE SIMD 
NO. OF 8k 

PROCESSORS 
SCATTER* p 
CONNECT* p 

SOFfWARE MPLIMPF 
MAPPING 1-1 (2D) 

10-1 (3D) 
SPEED UP 34 x Plain 

18 x Gaussian Input 
c.f. DEC5000 

EFFICIENCY 0.4%-0.2% 
COMMENTS Used arrays in local memory 

to map 3D mesh on to a 2D 
connect scheme. Integrated 

with OSA90/hope CAD 
software. 

* P = Parallel Operation 

S = Serial Operation 

24 
Connection Machine CM-

3 

MIMD 
16k 

(8k Used) 
p 
p 
c· 

1-1 (3D) 

-70x 
c. f. 20MHz 386 PC 

0.85% 
Full stub loaded 3D. The 

CM-3 connect scheme 
allows 3D arrays to be 

mapped directly. 

31 32 
Various AMTDAP510 

Various SIMD 
Various 1024 

(32 * 32) 
p p 

Various p 

Various Fortran Plus 
Various 1-1 (2D) 

Tp=an2/p + bn -10 X 

tp - Exec. Time c.f. V AX9000 
a - Unit Calc. Time 
n -Problem Size 
p- No. of Processors 
bn - Comms. Overhead 

- 0.97% 
Results suggest that TLM Single bit processors with 
runs more efficiently on dedicated near neighbour 

SIMD machines with interconnect. 
direct interconnect as Performance is dependent 

opposed to those using upon model dimensions. 
message passing. 

Table 1.1 - Comparison of Implementations of TLM on Parallel Computers 
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33 
Sun Spare Workstations 

SISD/PVM 
12 

(12 * 1) 
PIS 
s 

PVM 
Various 

3.5 -8.72 X 

c.f. Single Sun Spare 

29.1-72.7% 
Studied effect of mapping 
on performance. Message 
passing is a major factor, 

partly due to the serial link 
used. 



• TLM exhibits a very high ratio of I/0 to computation, therefore applications 

require very high data bandwidths. The equation used by Luthi et al. to measure 

performance highlights the importance of this. As a 1 to 1 mapping is used in 

most cases, n2/p = 1 and the dominating factor becomes the communications 

overhead, b0 • The work of Parsons et al. shows the importance of limiting the 

data bandwidth in distributed computing. It has been shown that the effectiveness 

of a given distribution of a mesh between a number of workstations is inversely 

related to the volume of data that must be transferred after each iteration. 

• So et al. show the effect of communications overhead when data is injected in to 

or extracted from the mesh. The performance of their implementation on the 

DECmpp12000 falls by almost 50% when a continuous, Gaussian waveform is 

injected in to the mesh c.f a single iteration impulse. 

• Amdahl' s law stated that for TLM the maximum achievable speed up is equal to 

the number of processors used. A rough measure of the success of each 

implementation can be gained by comparing the speed up achieved to the 

theoretical maximum. The efficiency row of table 1.1 shows the actual speed up 

as a percentage of the theoretical maximum. This is not an exact figure as it does 

not take in to account the serial operations required for I/0 etc. however these 

form only a very small percentage of the total number of operations performed. It 

is also recognised that speed up is often quoted with respect to a second machine 

as opposed to a single node of the parallel architecture. One reason for the very 

low efficiency demonstrated is that restricted data bandwidth prevents I/0 

operations from being performed in parallel, thus the ratio of I/0 to computation 

increases dramatically. 

• Each implementation uses a different programming language and each processor 

has its own executable format. Therefore code is not portable between 

implementations. 

• In all cases the hardware requirements are impractical. Parsons et al. used 12 Sun 

Spare workstations linked as a single Parallel Virtual Machine (PVM). While it is 

true that a network of workstations is commonly found in educational and research 

establishments, it is not necessarily true that these are all available simultaneously 

and may be taken over for a single experiment. In all other cases some or all of 

the hardware used is of limited availability, costly and inaccessible to most people. 

Many of the problems listed above arise due to a mismatch between the requirements 

of TLM and the provisions of the chosen architecture. The TLM method consists of 

two distinct processes, scatter and connect. Each of these has separate requirements. 



Consider firstly the scatter process. Whichever form of the scattering equation is 

used, the process consists of the application of a scattering equation to the input data 

of each node in the array. This would appear to be highly suited to solution on an 

SIMD machine on which the same instruction is applied simultaneously to a whole 

array of data. However the TLM array is inhomogeneous on a computational level. 

Sources, receivers and boundaries all require handling differently to the rest of the 

array. The approach favoured on most SThiD machines is to mask out any processors 

to which a given instruction, e.g. the injection of an impulse, does not apply. This can 

reduce the performance of a system considerably as demonstrated by So et al. There 

is a need for a degree of local autonomy33 within the mesh, some processors must 

have the freedom to behave differently under certain circumstances. 

The connect process, the application of equation 1.6 to each node in the array, results 

in a flow of data between neighbouring processors. A systolic approach may therefore 

be expected to yield results. However none of the implementations reported utilise a 

systolic connect strategy. Again the need for a degree of local autonomy is present 

when dealing with boundaries. Data transfer is often the slowest part of a system, as 

demonstrated by computationally intensive processes where instruction fetching can 

lead to bottlenecks. In many of the implementations described above data must be 

transferred to a slower host system for visualisation or post-processing. Flynn 19 

describes [parallel computers] as 'suitable for problems characterised by a high ratio 

of computing requirement to I/0 requirement', however in TLM this is clearly not the 

case. Even the scattering matrix of the stub loaded SCN can be solved using only 54 

addition/subtraction operations and 12 multiplications34
• Most large scale parallel 

computers are designed to perform considerably more computation per data transfer 

therefore in many cases the data bandwidth required can not be provided by the 

chosen architecture. Flynn19 again summarises this problem by saying that for SIMD 

machines 'latency in the instruction stream is often replaced by latency in the data 

stream caused by operand communication problems'. This is demonstrated by Luthi 

et al. who show that communication costs vary in inverse proportion to the processing 

rate in the systems they reviewed, thus as the performance of the individual processors 

improves the communications overhead increases to offset some of the increase in 

performance. It is clear therefore that while many systems may provide the required 

physical interconnections for TLM they can not provide sufficient bandwidth. This 

will limit the rate at which the computations are performed. 
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The architecture of the system poses an interesting trade off between the freedom to 

select arbitrary mesh geometries and throughput. The use of a large array of 

processors, where one processor is dedicated to each node in the model, allows the 

whole array, or large partitions of it, to be processed concurrently. However such 

arrays have a restricted input/output data bandwidth. Either the number of nodes in 

the model must be limited to the number of processors available or much of the 

performance increase achieved through parallel processing is lost through slow data 

transfer rates between partitions of the model. The use of only a small number of 

processors limits the size of partition of the model that may be processed 

concurrently, therefore reducing throughput. However the reduction in required 

bandwidth as the mesh partition sizes are made smaller makes the transfer of data 

between partitions of the model a realistic proposition. The advantage of the latter 

architecture is that by processing the model in smaller partitions and transferring data 

between them the restrictions on the size of the model imposed by the one to one 

mapping of the mesh on to the processor array may be removed. However the 

advantages of partially parallel operation are maintained. The high efficiency ratings 

of the TLM implementations by Parsons et al confirm the viability of this type of 

architecture. 

1.6 Application Specific Processors for TLM 

Software based TLM is an iterative process. Loops of instructions apply the scatter 

and connect processes to each node in turn. The parallel processing methods outlined 

in section 1.5 reduce computation times by performing the scatter and connect 

routines many times simultaneously, thus reducing the number of times each loop is 

performed to process the whole mesh. One further way to increase performance is to 

reduce the time taken to perform each loop. It was shown in section 1.5.2.2 that poor 

matching of processor granularity to that of the problem leads to computational 

inefficiency. If the processor granularity is too low then partial results must be 

manipulated to yield a final value, if it is too high then time is spent fetching and 

decoding complex instructions. The development of an application specific processor 

for TLM would allow the processor granularity to be matched to that of the problem, 

overcoming the loss of efficiency caused by a granularity mismatch. In the long term, 

systems with reduced computational complexity deliver higher performance at lower 

cost, the success of RISC (Reduced Instruction Set Computing) based processors in a 

wide range of computers confirms this principle. Two application specific approaches 

to reducing run times in TLM have been studied. 
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1.6.1 Review of Existing Application Specific TLM Processors 

Existing application specific processor designs for TLM fall_ in to two distinct 

categories, complete systems on to which the TLM array is mapped and single 

processors which are utilised by software to perform the scatter operation. The 

following sections evaluate and compare the two approaches. 

1.6.2 Single Node Coprocessor System 

Sal eh developed the coprocessor approach35
. A single RISC processor was developed 

around the two dimensional, stub loaded shunt node algorithm. A host system runs 

the main TLM code and each time a scatter operation is encountered the data is passed 

to the TLM coprocessor. This performs a scattering computation and returns the 

scattered data to the host. The TLM array is defined in software, therefore any mesh 

size may be accommodated dependent upon the available memory. An instruction 

register and several control lines provide some control over the configuration of the 

processor for each node. All data regarding the composition of the array and the 

material properties at each node are held by the host system, the only data storage on 

the processor is a stack for holding partial results during calculations. Performance 

increase is achieved by performing the scatter calculations using optimised hardware. 

This removes the need for instruction fetch and decode cycles for these calculations. 

Software running on an LSI-11 computer achieved 62 node iterations per second, 

where as the same software on an LSI-11 equipped with the coprocessor achieved 

1670 node iterations per second, a speed up factor of 27. These results were limited 

by the technology of the time, the processor was built from discrete ICs with high 

propagation delays. The LSI-11 uses a 16 bit data bus, therefore the processor utilised 

16 bit floating point data with an 8 bit mantissa and 8 bit exponent. The numerical 

accuracy of the processor was low due to the limitations of the 8 bit mantissa. 

1.6.3 Complete System 

Gregory designed a complete application specific, parallel TLM system36
. The system 

was developed around an array of bit serial processing elements, which performed a 

basic 2D scattering operation on their input data. A number of these PEs were 

arranged in an SIMD array on to which the TLM mesh was mapped with one node per 
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PE. All integer data regarding the energy within the mesh was stored on the array. 

The results produced were subject to delta modulation for error stacking, thus anN bit 

output took zN clock cycles to generate. One consequence of this is that throughput 

reduces exponentially with word length. It was shown that any word length above 11 

bits would be less efficient than a theoretical software implementation on a 100 MHz 

serial processor. The PE was developed through full custom IC design. Although the 

system was never realised it was verified through simulation, with 2 interconnected 

nodes being tested. 

1.6.4 Comparison of Coprocessor and Complete System Approaches 

The system described in section 1.6.2 and that of section 1.6.3 both produced a 

performance increase over software implementations of TLM, however both systems 

retain some of the limitations imposed by traditional parallel architectures. 

• The use of a coprocessor design reduces the restrictions on mesh size, however it 

limits the achievable throughput increase as the architecture does not utilise 

parallel processing. Gregory's design increases throughput both by improving the 

efficiency of the scatter operation and introducing parallelisation. 

• An array implemented using Gregory's system is limited not only in size but in 

configuration as the interconnections between the PEs are hardwired. 

• Saleh's processor greatly reduces data bandwidth as data is passed to only one 

node in each transaction. Gregory also reduces bandwidth through the use of a bit 

serial design. However the choice of bit serial algorithm forces the use of delta 

modulation, greatly increasing the number of clock cycles required to process a 

given word length. 

• Both processors are limited to implementing a single TLM scheme, 2D shunt node 

in the case of Gregory and stub loaded 2D shunt node in the case of Saleh. There 

is no room for expansion, the limited reprograrnmability of Saleh's processor only 

allows for placement of simple open and short circuited boundaries and the 

specification of material parameters within the given scheme. Gregory's 

processor fixes both the material parameters and the location of the boundaries. 

It is clear from the above that neither system is ideally suited to TLM. The 

development of an application specific processing element increases the efficiency of 

the implementation by removing redundant computational steps. However as 

efficiency increases, flexibility decreases and the most efficient processors are limited 

to implementing a single form of the TLM algorithm. Saleh's approach produced a 

significant performance increase given the technology available at the time. However 
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with modem computer systems latency in data transfer, as opposed to computation 

rates, has become the overriding limitation on performance. It is therefore unlikely 

that such a system would produce similar performance increase over modem 

processors due to the high number of data transfers required. There is, therefore, a 

necessity for some degree of parallelisation. Gregory's system demonstrates a 

fundamental problem with parallel architectures for TLM. The number of PEs 

available limits the mesh size that may be implemented. With the exception of very 

large scale parallel computers, the number of PEs is limited. Gregory's system was 

developed around the concept of a chip containing a 3x3 array of nodes. With the 

potential to realise 2 or 3 chips per board and 2 boards per PC, an array of at most 54 

nodes is possible. No details were given as to how the chips, or the boards, would 

communicate. Very few models of any practical interest could be solved using an 

array of this size. Modem fabrication techniques have increased the number of nodes 

which may be realised on the same area of silicon but as the number of nodes 

increases so the data bandwidth and pin count for each chip also rises, rapidly 

becoming the most significant limitation on array size. 

1.7 Conclusions 

Run times for software based TLM applications on serial computers are becoming 

prohibitively large. More efficient software schemes offer some improvement but the 

serial architecture of the PC places fundamental limits on the performance that may be 

achieved. Applications using parallel and distributed computing to take advantage of 

the inherent parallelism of TLM have been investigated. However a mismatch 

between the architecture of the parallel computer and the requirements of the TLM 

algorithm limit the efficiency obtainable. The mismatch problem may be overcome 

through the development of an application specific processor, using either a direct 

mapping of the TLM algorithm in to hardware or a reduced instruction set (RISC) 

approach. Existing application specific processors for TLM have failed to overcome 

the majority of the problems associated with parallel applications. Two classes of 

processor architecture exist for TLM, single node processors and large arrays. Both 

architectures reduce computational redundancy in the processing element, however 

neither architecture addresses the problems associated with the connect process and 

the mapping of the array in to hardware/memory. Single node processors handle the 

connect process as a software routine where as array based processors use hard wired 

near neighbour interconnects in a manner similar to an SIMD or systolic array. Many 
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of the problems associated with parallel implementations of TLM are caused by the 

connect process, such as bandwidth limitations restricting data I/0 rates. 

From this review of parallel and distributed processing implementations of TLM it is 

clear that existing solutions for increasing computational rates make inefficient use of 

the resources available. The literature highlights a number of issues relating to the 

design of TLM accelerators. 

• The granularity of the TLM algorithm must be successfully mapped to hardware. 

This means both removing redundant elements from the computational hardware 

and providing sufficient bandwidth for the connect process. 

• The chosen architecture should not limit the processor to a single form of the TLM 

algorithm or a single mesh configuration. 

• The chosen architecture should be scalable to allow any mesh size to be 

implemented. 

• The processor must be accessible. That is its use should not be prohibited through 

• Portability 

• Cost 

• Programming requirements 

This thesis aims to demonstrate how each of these issues may be addressed through 

the development of a new class of TLM processor. Concepts are introduced for the 

efficient mapping of the scatter and connect routines in to hardware. These concepts 

are developed to give a description of a complete hardware based TLM accelerator. 

One key measure of the success of the new processor is its efficiency score, as defined 

in Table I for previous implementations. However success must also be measured 

against resolving the above issues and producing an increased processing rate with 

respect to software based implementations of TLM. 

The brief for the implementation of the new class of TLM processor is very open. A 

clear implementation strategy is therefore required to ensure a successful outcome. 

The strategy must break the work down in to a logical sequence of goals, the success 

of which may be measured by attaining certain milestones. There are many extensions 

to the TLM method, however it is not possible in the time scale of this thesis to 

address them all. The scope of the thesis is limited to the four main node schemes 

identified in this chapter. These are the shunt node, the stub loaded shunt node, the 

SCN and the SSCN. Between them they offer the ability to process a wide variety of 

media in both two and three dimensions. The implementation strategy for this project 
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is shown below. 

OBJECTIVE MILESTONE 

1. Feasibility study Proof that an application specific 

processor can achieve .a higher 

throughput than existing computers 

2. Definition of suitable design flow Selection of hardware and software 

required for implementation 

3. Development of a shunt node processor Demonstration of a working shunt 

node scatter processor 

4. Implementation of connect function Demonstration of a parallel array of 

shunt node processors 

5. Extension of scatter processor to other Demonstration of working processors 

TLM schemes (stub loading, SCN, for the four main TLM schemes 

SSCN) 

32 



References 

1 Kron, G 'Equivalent Circuit of the Field Equations of Maxwell', Proc. IRE, Vol.32, 
pp.289-99, 1944 

2 'Numerical Techniques for Microwave and Millimeter-Wave Passive Structures', 
ed. T. Itoh, J. Wiley & sons, New York, 1989 

3 Johns, P.B and Beurle, R.L 'Numerical Solution of 2-Dimensional Scattering 
Problems Using a Transmission-Line Matrix', Proc. lEE, Vol.118(9), pp.1203-08, 
1971 

4 Dunlop, J and Smith, D.G 'Telecommunications Engineering, 2nd Edition', 
Chapman and Hall, London, 1989 

5 Coates, R; deCogan , D and Willison, P.A 'Transmission Line Matrix Modelling 
Applied to Problems in Underwater Acoustics', Proc. IEEE OCEANS '90, 24 
September 1990 

6 Johns, P.B 'The Transmission Line Matrix Method of Waveguide Analysis' PhD 
Thesis, University of Nottingham, 1973 

7 Johnson, Hand Graham, M 'High Speed Digital Design', Prentice Hall, 1993 

8 Johns, P.B 'The Solution of Inhomogenous Waveguide Problems Using a 
Transmission Line Matrix', IEEE Trans. On Microwave Theory and Techniques, 
Vol.22(3), pp.209-215, 1974 

9 Akhtarzad, Sand Johns, P.B 'Solution of 6 Component Electromagnetic Fields in 
Three Space Dimensions and Time by the TLM Method', Electronics Letters, 
Vol.10(25), pp.535-537, 1974 

10 Amer, A 'The Condensed Node TLM Method and its Application to Transmission 
in Power Systems', PhD Thesis, University of Nottingham, 1980 

11 Johns,P.B 'New Symmetrical Condensed Node for the Three Dimensional Solution 
of Electromagnetic Wave Problems by TLM', Electronics Lett. Vol.22, pp.162-64, 
1986 

12 Krumpholz, M and Russer, P 'On the Dispersion in TLM and FD-TD', IEEE 
Trans. On Microwave Theory and Techniques, Vol.42(7), pp.1275-79, 1994 

13 Tong, C.E and Fujino, Y 'An Efficient Algorithm for Transmission Line Matrix 
Analysis of Electromagnetic Problems Using the Symmetrical Condensed Nqde', 
IEEE Trans. On Microwave Theory and Techniques, Vol.39(8), pp.1420-1424, 1991 

33 



14 Trenkic, V 'The Development and Characterisation of Advanced Nodes for the 
TLM Method', PhD Thesis, University of Nottingham, 1995 

15 Trenkic, V; Christopoulos, C andBenson, T.M 'New Symmetrical Super­
Condensed Node for the TLM Method', Electronics Letters, Vol.30(4), pp.329-30, 
1994 . 

16 Trenkic, V; Christopoulos, C and Benson, T.M 'Theory of the Symmetrical Super 
Condensed Node for the TLM Method', IEEE Trans. On Microwave Theory and 
Techniques, Vol.43(6), pp.1342-48, 1995 

17 Lawton, S; Ward, D.D; Cloude, S.R and Dawson, J.F 'Hybrid Time Domain 
Modelling for Automotive EMC', lEE znct Int. Workshop on Computation in 
Electromagnetics Digest, pp.275-78, 1994 

18 Morente, J.A; Porti, J.A and Khalladi, M 'Absorbing Boundary Conditions for the 
TLM Method', IEEE Trans. On Microwave Theory and Techniques, Vol.40(11), 
pp.2095-2099, 1992 

19 Simons, N.R.S and Bridges, E 'Method for Modelling Free Space Boundaries in 
TLM', Electronics Lett. Vol.26(7), pp.453-455, 1990 

20 Al-Mukhtar, D.A and Sitch, J.E 'Transmission Line Matrix Method with Irregularly 
Graded Space', lEE Proc. Vol.128(6), part H, pp.299-305, 1981 

21 Duffy, A.P; Herring, J.L; Benson, T.M and Christopoulos, C 'Improved Wire 
Modelling in TLM' IEEE Trans. On Microwave Theory and Techniques, Vol.42(10), 
pp.1978-1983, 1994 

22 So, P.P.M; Eswarappa, C and Hoefer, W.J.R 'Parallel and Distributed TLM 
Computation with Signal Processing for Electromagnetic Field Modelling', Int. Jnl. 
Num. Mod: Elect. Networks, Devs. And Fields, Vol.8, pp.169-185, 1995 

23 Dubard, J.L; Benevello, 0; Pompei, D; Le Roux, J; So, P.P.M and Hoefer, W.J.R 
'Acceleration of TLM Through Signal Processing and Parallel Computing', Int. 
Conference on Computation in Electromagnetics, lEE, pp.71-74, 1991 

24 Stothard, D 'The Implementation of TLM on a Fast DSP Processor', Awaiting 
Publication, 1999 

25 Swarninathan, M; Sarkar, T.K 'A Survey of Various Computer Architectures for 
Solution of Large matrix Equations' Int. Jnl. Num. Mod: Elect. Networks, Devs. And 
Fields, Vol.8, pp.153-168, 1995 

26 Flynn, M.J 'Very High Speed Computing Systems', Proc. IEEE Vol.54(12), 
pp.1901-1909, 1966 

27 Johnson, K.T; Hurson, A.R and Shirazi, B 'General Purpose Systolic Arrays', IEEE 
Computer pp.20-31, Nov. 1993 

34 



28 So, P.P.M and Hoefer, W.J.R 'Optimization of Microwave Structures using a 
Parallel TLM Module', Progress in Applied Computational Electromagnetics, lOth 
Annual Review, pp.546-53, 1994 

29 So, P.P.M; Eswarappa, C and Hoefer, W.J.R 'Transmission line Matrix Method on 
Massively Parallel Processor Computers', Progress in Applied Computational 
Electromagnetics, 9th Annual Review, pp.467-74, 1993 

30 Luthi, P.O; Chopard, Band Wagen, J-F 'Wave Propagation in Urban Microcells: a 
Massively Parallel Approach Using the TLM Method', Applied Parallel Computing 
in Physics, 2nd International Workshop, pp.408-18, 1995 

31 Tan, C.C and Fusco, V.F 'TLM Modelling Using an SIMD Computer', Int. Jnl. 
Num. Mod: Elect. Networks, Devs. And Fields, Vol.6, pp.299-304, 1993 

32 Parsons, P.J; Jaques, S.R, Pulko, S.H and Rabhi, F.A 'TLM Modelling Using 
Distributed Computing', IEEE Microwave and Guided Wave Letters, Vol.6(3), 
pp.l41-42, 1996 

33 Li, Hand Stout, Q.F 'Reconfigurable SIMD Massively Parallel Computers', Proc. 
IEEE, Vol.79(4), pp.429-43, 1991 

34 Trenkic, V; Christopoulos, C and Benson, T.M 'Efficient Computation Algorithms 
for TLM', 1st Int. Workshop on Transmission Line Matrix (TLM) Modelling : Theory 
and Applications, pp.77-80, University of Victoria, 1-3 Aug., 1995 

35 Saleh, A.H 'A Dedicated Processor For Solving TLM Field Problems', PhD 
Thesis, University of Nottingham, 1982 

36 Gregory, S 'Design of a Single Bit Processor for TLM Using Full Custom IC 
Design', Dissertation (BEng), University of Nottingham, 1989 

35 



2 - Digital Arithmetic Systems Design 

2.1 Introduction 

Much of the performance increase gained through the use of application specific 

computing results from a reduction in the number of redundant computational 

elements within the processor. In order to efficiently map the TLM algorithm to 

hardware an understanding must be gained of the way in which arithmetic operations 

are performed on binary data. This chapter presents a review of binary arithmetic and 

discusses the development of digital arithmetic systems from the perspectives of 

processing rate and error minimisation. The specific issue of quantisation noise in 

discrete systems is raised. 

2.2 An introduction to Digital Arithmetic 

There are four principle operations in the familiar decimal arithmetic system. They 

are addition, subtraction, multiplication and division. The multiplication/division of 

two long numbers is commonly broken down into a sequence of smaller 

multiplication/division operations with addition or subtraction of the partial products 

used to generate a final sum. More complex functions such as square roots or calculus 

may generally be approximated to any given accuracy by iterating algorithms 

composed from these four main operations 1• 

2.2.1 Number Representation in the Binary System 

In a digital computer numbers are stored as sequences of binary digits, either 0 or 1. 

In the same way as decimal arithmetic uses columns to represent units (10°), tens 

(101
), hundreds (102

) etc., so the binary system uses columns representing 2°, 21
, 22 

etc. with the least significant bit (l.s.b) written on the right. Thus the binary number 

1001lz has the decimal equivalent 1 *24 + 0*23 + 0*22 + 1 *21 + 1 *2° = 16 + 2 + 1 = 

1910. Fractional numbers are formed by extending the number to the right beyond the 

fractional pointm. These columns then represent 2-1
, 2-2 

••• 2-=. For example the binary 

m As we are not dealing with decimal representations the term decimal point is inappropriate. The term 
fractional point will be used instead for the delimiter between the integer and fractional parts of a 
number. 
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number 1011.100b has the decimal equivalent 11.562510. 

The negative form of a number is defined as that value which must be added to a 

number to obtain a sum of 0. Negative numbers may be represented in a variety of 

ways, the most common of which are discussed below. 

• Sign and Magnitude -The magnitude of the number is represented in standard 

binary format as discussed above. An extra bit, the sign bit, is included at the most 

significant (left hand) end of the number. If the sign bit is 0 the number is positive, 

if the sign bit is a 1 the number is negative. 

• Ones Complement- Negative numbers are formed by inverting the bits in the 

positive number. 

• Twos Complement -To form the negative of a number in 2s complement notation 

all the bits of the number are inverted and 1 is added to the result. The 2s 

complement system works on the principle of using fixed word lengths to represent 

numbers. Any overflowing bits are ignored. 2s complement notation has the 

advantage that the sign bit is automatically maintained during calculations. This is 

unlike sign and magnitude, where the signs of the operands must be compared to 

create the correct sign for the result. 

2.2.2 Fractional Data Representation 

There are two commonly used methods for representing fractional data in binary 

arithmetic. The simplest uses a fixed word length similar to the integer notation used 

above. It is noted that an integer is simply a number in which the fractional point lies 

at the extreme right of the number. Using a fixed length representation the fractional 

point may be implied at any location. So long as all numbers use the same fixed 

reference point notation the simple arithmetic rules used above may be used to 

perform calculations. The term 'fixed point' is often used with reference to a 

numbering scheme in which the fractional point lies at the extreme left of the number. 

In this case the number is wholly fractional. 

A more complex, but more flexible representation is floating point notation. This · 

uses two numbers to represent a single number in the form A= a2e. a is the mantissa 

and e is the exponent. A negative exponent implies a wholly fractional number. The 

main advantage of floating point is that it is able to represent a much broader range of 

numbers than integer or fixed point. However the hardware requirements of floating 

point processors are greatly increased as both mantissa and exponent are involved in 
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calculations1
. Floating point representation does not represent the panacea of 

numerical inaccuracy. The range of numbers that may be represented is greatly 

increased through the addition of the exponent. However the precision to which each 

number may be represented is still limited by the number of bits available to the 

mantissa. Consider a 32 bit fixed point number and a 32 bit floating point number. 

The floating point number is able to express a larger range of values. However in 

some cases the fixed point number can represent a given value to a higher accuracy as 

only some of the bits of the floating point number (typically 24 for a 32 bit number) 

are given to expressing the mantissa. 

2.2.3 Block Floating Point Representation 

The range of fixed point numbers of a given word length may be extended using a 

block floating point scheme. This scheme applies a single exponent value to a whole 

array of fixed point data. Should an overflow occur the exponent may be incremented 

and the whole array right shifted by one bit. Similarly the exponent may be 

decremented and the whole array left shifted, for example to increase the number of 

significant bits stored from the result of a calculation. This scheme is commonly used 

for calculations such as Fourier transforms of large arrays14
, where data growth can be 

significant. Because the exponent is the same for all data in the array there is no need 

for the comparison and shifting operations required in true floating point. A block 

floating point processor may therefore make use of simple fixed point arithmetic 

hardware. Additional hardware is required to detect overflow or loss of significant 

bits and shift the data array when necessary. 

2.2.4 Rules for Binary Arithmetic 

In binary arithmetic there are two principle functions, addition and subtraction. A 

diverse set of algorithms exists for multiplication and division, which will be 

discussed later. These are mostly formed from addition and subtraction operations 

and basic logic functions. 

2.2.5 Addition 

The addition of two binary digits has a maximum value of 102, hence both a sum and 

carry output are required. These are defined by the truth tables in table 2.1(a,b). 
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Input A is read across the top row of the table, input B is read from the first column of 

the table. The intersection of the selected row and column provides the output. 

+ 
0 

1 

+ 
0 

1 

0 

0 

1 

(a) 

0 

0 

0 

(b) 

1 

1 

0 

1 

0 

1 

Table 2.1 ·Sum (a) and Carry (b) Function Truth Tables for a Binary Adder 

It is clear from above that the sum function is formed from the exclusive OR (symbol 

EB) of the inputs while the carry is formed from the logical AND of the inputs. A 

further input formed by the carry out from a previous adder stage can also be 

introduced to provide a 'full adder'. The full adder is defined by the logic equations 

Sum= (A EBB) EB Cin 

Carry= (A. B)+ (A. Cin) +(B. Cin) 

Chains of full adders may be formed by linking the carry out of each adder to the carry 

in of the adder whose inputs form the next most significant bit of the sum. This basic 

parallel adder, a section of which is shown in .figure 2.1, is known as a ripple carry 

adder. As the calculation of each bit of the output depends upon the carry bit from the 

vcc 
A 

A 

80 8 
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81 9 

Figure 2.1 • First Two Stages of a Ripple Carry Parallel Adder 
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previous stage the sum ripples through the chain of adders from l.s.b to m.s.b. This 

type of parallel adder is inefficient as only one bit of the sum is actively being 

produced at any one time. For a chain of N adders, each with a propagation delay of tp 

ns, the ripple carry adder may take up to N.tp ns to produce a sum. 

The ripple carry adder may be improved through the use of a look ahead system1. 

Consider two functions, Gi and Pi, derived from the A and B inputs of a full adder and 

defined by the truth table 

A B Gi pi 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 

Gi - carry generate - is true when the inputs to the adder guarantee the generation of a 

carry output. 

Pi- carry propagate- is true when Cin is propagated as an identical Cout· 

The full adder may thus be defined by the logic equations 

Sum = Pi EB Cin 

Carry = Gi + (Pi . Cin) 

The carry function may be expanded for each bit in the adder as 

C1 =Go + (Po . Co) 

c2 = Gl +PI . (Go+ (Po . Co)) etc. 

From the preceding table Gi and Pi may be substituted by 

Yielding the final result 

Gi=Ai.Bi 

Pi=Ai Ee Bi 

C1 = Ao . Bo + Ao . Co + Bo . Co 

c2 = AI . Bl + AI . Ao . Bo + AI . Ao . Co + ... etc. 

40 



As long as the initial input to the carry chain is known all further values may be 

derived. Although the logic for producing the carry bits for the more significant bits 

of the sum can be quite involved it is generally faster than the ripple carry method. 

2.2.6 Subtraction 

Binary subtraction is most commonly performed by making use of the relationship 

A-B = A+(-B) 

It has already been shown that there are several ways of representing negative 

numbers in binary. The 2s complement method is most commonly used as it does not 

require any extra processing to generate the correct sign bit in the result. 2s 

complement subtraction is performed by inverting all the bits in the number to be 

subtracted and setting the initial input to the carry chain to 1. The two inputs are then 

added using either a ripple carry or look ahead carry adder as described above. A 

fixed word length must be maintained. If one operand is shorter than the other it may 

be made up to the same length by adding copies of the sign bit to the left (m.s.b) end 

of the number. 

2.2.7 Multiplication 

Binary multiplication algorithms may take many forms1
• The simplest form requires a 

combination of addition and shift operations. Consider the calculation 

which in binary becomes 

5.0 

4.0x 

20.0 

101.0 

100.0x 

10100.0 

Two registers are required to store the multiplicand (MD) and the multiplier (M). A 

double length register initially holds M in its lower half and a partial product (PP), 

initially set to zero, in its upper half. If the least significant bit of the double length 
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register is a 1 the value of MD is added to PP, maintaining a fixed word length, 

otherwise 0 is added to PP. The value stored in the double length register is then 

shifted right using an arithmetic shift i.e. maintaining the sign of PP. This add and 

shift routine is repeated Wtimes for a Wbit long multiplier following which the 

double length register holds the product of .MD and M. The double length register 

accumulates the sum of the partial products formed by multiplying .MD by each bit in 

M. The product of two numbers of arbitrary lengths m and n will have a maximum 

length m+ n. 

While the above method is simple and functionally correct it can be slow, particularly 

where both multiplier and multiplicand contain many bits. Faster multipliers may be 

formed using asynchronous switching networks or large arrays of adders1
• However 

these require considerably more logic resources. With the advancement of very large 

scale integration (VLSI) techniques, array multipliers have become more feasible. 

However other options for decreasing the computation time for multiplication 

operations are available. 

As shown above, a multiplication may be considered as a sequence of smaller 

multiplications with accumulation of the partial results used to form the product. 

Consider the binary multiplication 110 x 111. This may be written 

A cursory examination of the above reveals the product (22 x 21
) occurs twice. Where 

this happens the multiplication need only be performed once and the partial product 

left shifted one place before addition. In longer calculations where many partial 

products may be repeated this technique can provide a considerable reduction in 

processing time. Any partial product that is repeated 2n times may be performed once 

and the result left shifted n places prior to addition. Similar systems may be derived 

by performing single operations wherever consecutive groups of bits form a given 

pattern. The aim of all these schemes is to improve efficiency by reducing the number 

of operations performed. 

Many other, more complex, schemes also exist. Their inclusion is beyond the scope 

of this thesis, however references1
•
2 are provided which offer a starting point for 

anyone wishing to research the subject in more depth. 
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-- ---------------------------------------

2.2.8 Division 

Binary division in its simplest form has two variations, restoring and non-restoring1
. 

Restoring division uses a technique similar to decimal long division. The divisor is 

aligned with the m.s.b of the dividend and subtracted. If the result is positive the 

m.s.b of the quotient is set to 1. If the result is negative the m.s.b of the quotient is set 

to 0 and the divisor is added to the dividend to restore it to the value it held prior to 

the subtraction. In both cases the divisor is then shifted one place to the right w.r.t the 

dividend and the process is repeated to produce subsequent bits of the quotient. 

Following the subtraction (and restoration as appropriate) performed when the least 

significant bits of the divisor and dividend are aligned the quotient is resolved and the 

divisor holds the value of any remainder. In non-restoring division if subtraction 

results in a negative dividend the quotient bit is set to 0 and in the next cycle the 

divisor is added to the dividend. In longer calculations the non-restoring method 

offers a significant reduction in the number of operations performed. As with 

multiplication, division may be performed faster by using large parallel switching 

networks. 

2.2.9 Bit Serial Binary Arithmetic 

Thus far the discussion of binary arithmetic has assumed that all bits of all arguments 

of an operation are available prior to calculation. This is not always the case, many 

systems produce data as serial streams of individual bits. Bit serial operation is 

generally slower than parallel operation. Its main advantage is that, as only a single 

bit of each operand is acted on at any given time the hardware required is considerably 

reduced. 

A basic bit serial adder/subtractor is the shown infigure 2.2. It has been shown 

(section 2.2.4) that 2s complement notation allows subtraction to be performed as an 

addition operation. Therefore only a single full adder is required. For subtraction one 

input is inverted and the initial input to the carry chain is set to '1 '. This is equivalent 

to adding the 2s complement of the inverted input. Both operands must be of the 

same length. This is achieved by padding the most significant bits of the shorter 

number with copies of the sign bit. Zeros are used to pad unsigned numbers. The 

operands are presented to the adder bit serially from l.s.b to m.s.b. The carry formed 

by each pair of operands is fed back to form the carry input signal for the calculation 
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of the next bit. The addition or subtraction of two W bit long words requires W clock 

cycles. The final carry output forms the m.s.b of the sum except in 2s complement 

arithmetic where the final carry bit is discarded to maintain a fixed word length. 

There are two forms of bit serial multiplication/division. Firstly there is genuine bit 

serial operation where both operands are presented bit serially. The second and 

simplest form is serial-parallel, where all bits in one or both of the operands are 

known prior to operation. Serial-parallel multipliers may make use of either serial or 

parallel adders. The use of bit serial adders leads to very compact multipliers, 

however due to the very large number of additions that need to be performed these 

circuits are slow. 

A class of fast serial-parallel (FSP) multipliers has evolved which reduce computation 

times by using only full adders and basic combinationallogic3
. An FSP multiplier 

based upon the carry-save add-shift (CSAS) technique is shown infigure 2.34
. 

The multiplier is presented in parallel to the system while each bit of the multiplicand 

is in turn broadcast throughout the system. For an M bit long multiplicand the first M 

clock cycles are used to calculate the partial products from the multiplicand. These 

are output from PO in figure 2.3. A further M clock cycles are required to produce the 

remaining bits of the product from the data held in the adder chain. It has been shown 

that the computation time for a CSAS based FSP multiplier can be significantly 

reduced if the data held in the adder chain after M clock cycles is processed using a 

single parallel addition. This technique has been further extended to operate on 2s 

complement data via an implementation of the Baugh-Wooley algorithm5
. The 
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Figure 2.3- A Fast Serial-Parallel Multiplier 

hardware cost of the FSP multiplier is greater than that of a similar circuit employing 

bit serial addition as both the adder chain and an M bit parallel adder are required. 

However the reduction in computation time achieved by replacing M-1 serial 

additions with a single clock cycle, parallel adder operation can considerable, 

particularly when long multiplicands are used. 

More complex techniques are required for multiplication or division where both 

operands are presented bit serially. A single bit slice of a serial multiplier, after Ienne 

and Viredaz6
, is shown infigure 2.4. M-1 such slices are required to multiply two M 

bit numbers with some additional logic required for the most and least significant bit 

slices. With minor adjustment the system can be made fully modular, i.e. all bit slices 

are identical, thus facilitating simple extension to any word length. 2M clock cycles 

are required to produce an output. The sign bits of the inputs must be preserved at the 

inputs during the latter M clock cycles or the data sign extended to a length. of 2M 

bits. This design is particularly compact and has a low latency. It is however only 

one of many serial multiplier designs. 
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2.3 Errors in Digital Arithmetic 

In manual arithmetic numbers may be written down to any given accuracy as long as 

the value is known to that accuracy. Digital systems usually operate to a fixed word 

length due mainly to the need to compartmentalise memory into bytes and to match 

data widths to bus widths. The use of a fixed word length can lead to the occurrence 

of errors in binary arithmetic. It is impossible to express any number absolutely 

without specifying an infinite number of significant figures. All calculations therefore 

inherently contain inaccuracies. There exists a threshold above which the inaccuracy 

becomes too large and must be classed as a mathematical error. This threshold is 

different for each application and is determined by the requirements of the solution. 

The term error is used in the remainder of this chapter. The primary sources of error7 

are quantisation, truncation and overflow. A less obvious source of error arises from 

the process of normalisation in floating point. 

2.3.1 Quantisation Errors 

Quantisation is most commonly used to refer to the process of sampling an analogue 

signal. A quantised system is any system that can only take one of a fixed set of 

values. Quantisation errors result from the fact that any number represented by a 
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particular system may only be expressed to an accuracy equal to the smallest number 

which may be expressed by that number system8
. Thus for an integer the quantisation 

step is 1, any number can only be expressed to an accuracy of ±0.5 in integer notation 

(unless the number is a perfect integer). Quantisation errors occur whenever a fixed 

word length is used to represent a number, regardless of the base of the number 

system used. Quantisation errors limit the accuracy with which a given real event can 

be modelled mathematically. If the word length is sufficiently large, over 12 bits is 

commonly used as a rule of thumb11
, the errors tend to be randomly distributed and 

uncorrelated. Correlation is dependent upon the input signal. A widely varying input 

signal, e.g. white noise, will exhibit much lower correlation than an impulse or other 

low frequency input9. The effect of uncorrelated quantisation noise may be modelled 

by placing an additive white Gaussian noise (A WGN) source in series with the 

original signal source. The quantised signal is given by 

Where Sn is the quantised value, 

Se is the original signal 

en is an instantaneous A WON sample 

Sn=Sc+en 

It can be shown 11 that the noise source has a variance _!_ L 2 and a mean value of 0.5L, 
12 

where L is the value of the least significant bit of the quantised word. If a rounding 

algorithm is used to create the sample the mean value of the noise is zero. The 

variance is unchanged through the use of rounding. If the word length is too short 

then the errors become correlated with the data and can no longer be represented by 

simple statistical means. An accurate description of the errors under these conditions 

requires prior knowledge of the distribution of the input data and the calculations 

being performed. 

If integer data is used the least significant bit has a fixed value, independent of the 

word length. Both the mean and the variance are predefined, having the values -0.5 

and 0.2083 respectively. In fixed point notation the mean and variance are dependent 

upon the word length. For a word of length W the mean has a value 
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While the variance has a value of 

1 
-XT2w 
12 

The maximum number expressible in fixed point notation is 1.0, therefore if we 

express the mean error as a fraction of the maximum expressible value it remains 

unchanged at z-<W+I)_ Consider the mean error in integer notation expressed as a 

fraction of the maximum expressible value. For a word of length W this is given by 

-I 

E =1._= 2-(W+I) 
w w 

2 

It is clear that the magnitude of the mean error for a fixed word length given as a 

fraction of the largest number expressible in that word length is the same in both fixed 

point and integer representation. This function is plotted in figure 2.5. 

lOr-------.-------.-------.-------~------, 

1 

10 20 30 40 so 
w 

Quantisation gives rise to a signal to mean quantisation noise ratio (SNR) of 

SNR:20logN dB 

where N is the number of bits used to represent the signal. Thus the SNR increases by 

6 dB for each extra bit used. 
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2.3.2 Truncation Errors 

Consider the summation of 10011000.0110 with 110.011000111. Before the 

summation can take place the fractional points of the two words must be aligned. To 

the left of the fractional point the smaller operand is padded out with zeros. However 

to the right of the fractional point the smaller operand must be truncated to .0110 in 

order to maintain a fixed word length. This represents a loss of half of the significant 

bits of the value. Truncation may be considered as a process of re-quantising a 

number to fit within a given representation. As such the statistical treatment of 

truncation errors is as for quantisation errors (section 2.3.1). Errors of this type 

mainly occur in mantissas of floating point numbers where the fractional points can 

not be shifted without a loss of data. Truncation is not limited to addition but is also 

prevalent in multiplication. Consider the multiplication of two m bit numbers. The 

result is a 2m bit long number. For integers, truncation of this number by removal of 

the lower m bits results in a meaningless value. Systems that require multiplication 

with a fixed length result use fixed point representation (section 2.2.2). In this case 

the result after truncation is meaningful but is subject to quantisation noise. Each 

calculation within the system that requires a number to be truncated represents a 

source of AWGN. As the noise is uncorrelated each source may be added in series to 

produce a total noise figure for the system. The effect of truncation may be reduced 

through rounding, which gives a mean noise value of zero. 

2.3.3 Overflow Errors 

An overflow occurs when the result of an arithmetic operation is too large to fit in the 

target memory location10
• Consider the fixed length addition of two unsigned 

numbers 1001 and 1110. The result is 10111, which, to a fixed word length of 4 bits 

yields the incorrect result 0111. Addition operations with two operands may produce 

one overflow bit (see table 2.1(a)). However the multiplication of two Wbit long 

integers may result in a 2Wbit long product, a potential overflow of Wbits. Overflow 

errors are particularly damaging as they affect the most significant bits of the data. 

Overflow in fixed length integer data may be overcome by right shifting the data and 

moving the fractional point. This technique is used in the block floating point scheme 

introduced earlier. The same technique is used to correct overflow in the mantissa of 
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a floating point number. Data normalised in this way is subject to quantisation noise 

due to the truncation of the least significant bits of the word. 

Fixed point notation is commonly used where a large number of multiplications are to 

be performed. Recall that fixed point numbers are wholly fractional. The product of 

two numbers less than one is itself always less than 1. The product can therefore 

never extend to the left of the fractional point, the extra bits are formed at the least 

significant end of the word. The product may then be truncated to a word length of W 

to prevent overflow. Although the truncation adds noise (section 2.3.2) it is less 

damaging than either overflow or truncation in integer data, both of which result in a 

meaningless value. 

2.3.4 Normalisation Errors 

An often overlooked error is encountered through the process of normalisation. 

Floating point numbers are often stored such that the mantissa is wholly fractional 

with no leading zeros or copies of the sign digit. This format maximises the number 

of significant bits that may be stored. Problems may occur when the word length 

allows numbers to be stored to a greater precision than they are initially specified to. 

Consider the value 0001010*26
. This may be normalised to yield 10100000*22

. This 

implies an accuracy of 8 significant bits. However only the first four bits of data are 

significant. Normalisation errors must be carefully controlled, as any operation where 

one operand contains non-significant bits will propagate the error. Hence during 

repeated operations the proliferation of non-significant bits due to normalisation errors 

can corrupt large amounts of data. Normalisation errors are particularly difficult to 

detect unless the expected result of a calculation is known. Errors of this type are 

most common when calculations require data to be truncated and later re-normalised. 

In this case the truncated bits are not restored but are replaced with zeros. The 

exponent acts as a gain function, amplifying the noise created by the truncation 

operation10
• Normalisation errors can not easily be quantified statistically as they are 

highly correlated with the data. However a careful examination of the calculations to 

be performed will highlight areas in which these errors are likely to occur. 

2.3.5 Reliability 

The reliability of a system is defined as 'the probability that a system will not fail 

within a timet given that it was working correctly at time 0' 10
. The failure of a 

system is 'any deviation of [the system] from its specified correct behaviour' 10
• A 
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failure is caused by the existence of an error or incorrect output from a module or 

subsystem. Again the term error must be taken to imply an inaccuracy above a certain 

threshold. Assuming that the hardware of the system is sound, the main source of 

error for an arithmetic unit is the input data. If the system is fed operands for which it 

can not resolve the current operation it will fail. Some failures are catastrophic, such 

as an attempt to divide a number by zero. The result of this operation is undefined"' 

and hence the system will fail. There are three stages10 in fixing an error- detection, 

diagnosis and repair. 

• Detection - The first stage in repairing an error is determining that the error exists. 

Some errors, e.g. normalisation error, are inherent in a given operation, therefore 

the proliferation of these errors may be monitored each time the operation takes 

place. Other errors such as overflow are dependent upon the input data, therefore 

the simplest form of detection is to apply a set of rules for checking the input data. 

• Diagnosis - Once an error has been detected the nature of the error must be 

determined. The definition of the rules used for error detection can help in 

diagnosis. 

• Repair - Errors must be prevented from propagating through the system. 

Repairable errors include overflow and truncation errors in floating point. Both of 

these errors may be fixed by shifting the mantissa and incrementing or 

decrementing the exponent accordingly. Truncation errors may be irreparable if 

shifting the mantissa to recover the lost bits would lead to overflow. In this case 

the error may be minimised by using a rounding algorithm. Truncation and 

overflow in integer data are at worst irreparable. In this case detection should 

occur at the inputs to the arithmetic unit and the operation should be prevented 

from taking place. 

2.4 Performance Issues 

The performance of a system is usually quoted in terms of the number of operations 

performed per second (ops). It has been shown1 that multiplication and division may 

be performed using multiple add/subtract and shift operations. In 2s complement add 

and subtract are the same operation, therefore a 2s complement arithmetic unit could 

be constructed purely from adders and basic logic. However the basic add and shift 

techniques may require many cycles to perform a single operation and therefore limit 

"'The result can not be taken as infinity as the divisor is only known to be zero to within the specified 
number of significant bits. 
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performance. In order to increase performance the time taken for each operation must 

be reduced. 

The use of more sophisticated multiplication and division algorithms can significantly 

improve performance. However as a general rule the hardware required to perform 

these algorithms increases in complexity as the processing time decreases. This rule 

is not limited to multiplication/division. A good example of this is the extra logic 

required in producing a look ahead carry parallel adder. The introduction of error 

checking and repair logic may also degrade the performance of a system, however this 

must be weighed against the time lost in repeating calculations should an unchecked 

error occur. High performance is clearly often obtained at the cost of system 

complexity and size. 

2.5 Conclusions 

The principles of binary arithmetic have been presented. The four basic operations -

addition, subtraction, multiplication and division, have been discussed for both 

parallel and serial operation. It is clear that numerous methods exist for performing 

each of these algorithms. The choice of method for a given application is a trade off 

between performance, resource availability and reliability. 

The design of digital arithmetic systems is clearly a complex issue. The required 

reliability and performance must be determined beforehand. A system that is used to 

perform a few operations before its state is checked will need less error checking and 

repair software/hardware than a deep space probe which has to work unchecked for 

years. Similarly a PC graphics card must be capable of performing calculations many 

times faster than a simple calculator. In each case the requirements must be clearly 

stated and the choice of hardware made accordingly. 

While it would appear from above that floating point notation gives rise to fewer 

irreparable errors than fixed point notation it is considerably more difficult to 

implement, requiring logic to process both the mantissa and the exponent. It has been 

shown that despite the increased range available to floating point numbers they are 

subject to quantisation noise in the mantissa in the same way as fixed point numbers. 

Block floating point representation combines the range of floating point with 

simplicity of fixed point. The accuracy of a block floating point representation lies 

between that of fixed point and that of floating point. The simplicity of fixed point 
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calculations means they often give higher performance than floating point operations, 

however they offer lower precision and reliability. The existence of a number of 

commercially successful fixed point DSP chips (e.g. ADSP21XX, Motorola 5630X) is 

evidence of the fact that, with careful algorithm design, fixed point notation can 

provide sufficient accuracy even for demanding signal processing applications. 
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3. A Data Parallel Application Specific Processor for 
TLM 

3.1 Introduction 

Chapter 1 highlighted the fact that run times for serial computations of TLM are 

becoming excessively large. The development of dedicated processors for the TLM 

method has, in the past, produced an increase in performance with respect to software 

applications. However recent advances in computer technology have increased 

significantly the performance of desktop PCs and workstations and therefore the rates of 

computation that may be achieved by these systems. The feasibility of an application 

specific processor for TLM is dependent upon advances in the technology used to 

implement the processor. The application specific processors of Saleh1 and Gregori, 

respectively built using discrete components and small scale integration, are made 

obsolete by the very large scale integration (VLSI3
) techniques used to create modem 

300+ MHz processors. This chapter documents the development of an application 

specific processor for the TLM method developed using current technologies. The aim of 

this work is twofold. Firstly the performance of the design is compared to software 

running on a personal computer to determine the feasibility of the application specific 

approach to reducing run times in the modem computing environment. The second aim 

is to evaluate suitable implementation strategies for a new TLM processor. 

3.2 Design Methodology 

The development of an application specific processor may be divided in to two key areas4
• 

• Algorithm development - The specific form of the TLM algorithm implemented can 

have significant effects on the performance of the processor. Decisions have to be 

made as to which features the processor will implement e.g. boundaries, stub loading 

and two or three dimensional meshes. 
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• Hardware development - Choice of implementation technology - hardware mapped or 

RISC and specific architectural issues e.g. single node or array, floating point or 

integer data. 

3.2.1 Algorithm Development 

The increased efficiency of a hardware mapped approach arises mainly from a reduction 

in the number of operations which must be performed in the application of a given 

algorithm. The mapping of an algorithm directly to the hardware of a device reduces the 

need for instruction fetching and decoding cycles, instruction stack operations and data 

management (caching, storing of partial results etc.) operations. The form of the 

algorithm to which the hardware is mapped has a bearing on the efficiency of the design. 

The algorithm must therefore be developed with some knowledge of the way 

mathematical constructs are performed in hardware5
• The design of digital arithmetic 

systems was discussed in chapter 2. The hardware required to implement adders, 

multipliers and other typical mathematical functions varies a great deal. As such it may 

be necessary to trade off one form of an algorithm for another requiring more calculations 

but where each calculation is in itself less complex. The choice of data representation 

and word length is also significant. The hardware requirements of a floating point system 

are greater than those of a fixed point system. The requirements of a bit serial fixed point 

system are less than those of a data parallel system. A careful choice of algorithm can 

reduce both the number and complexity of operations performed by the hardware. Many 

calculations produce partial results that must be stored until required. A single flip flop is 

sufficient to store one bit of data. Registers may be formed by linking a number of flip 

flops with a common enable line. However if many results must be stored the 

consumption of resources and the complexity of the logic required to access the correct 

register can increase rapidly. An efficient design must keep the storage of partial results 

to a minimum, utilising results as they are produced. 

The TLM method takes many forms in both two and three dimensions, each of which has 

a unique algorithm. The two dimensional shunt node algorithm makes a good starting 

point in the development of a TLM processor. 

• The shunt node was used as the basis for the processors of both Saleh and Gregory. 

Developing the new processor around the shunt node offers some continuity. This is 

important when comparing performances to test the feasibility of the current design. 
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• The algorithm is relatively simple. However the scatter and connect processes used 

form the basis for all other TLM schemes. The ideas developed with the shunt node 

could therefore be expected to form a solid base for the implementation of more 

complex schemes. 

3.2.2 Hardware Considerations 

The implementation of a new circuit in silicon is a costly process. The design must be 

verified before it is committed to hardware, requiring many hours of skilled design and 

rigorous testing. The design process is usually performed on paper or on a computer, 

rarely involving actual hardware. Once a circuit has been designed and verified there are 

three typical routes to implementation. 

1) Discrete components mounted on a PCB or wire wrap board. This approach, as used 

by Saleh, is relatively low cost for small designs. Wire wrap has the flexibility that 

components may be easily moved or changed. The main disadvantages are that 

discrete components of this nature tend to have high propagation delays and power 

consumption and are also physically large, thus limiting the size of circuit which may 

be created. 

2) Custom IC design, as used by Gregory. A custom built IC offers a high speed, single 

component solution. However the design process is complex, requiring a detailed 

knowledge of gate level design and fabrication techniques, and mistakes are 

impossible to rectify following implementation without rebuilding the entire circuit. 

The equipment required for fabrication is very expensive and production is usually 

limited to specialist companies. This approach is best suited to high volume 

production following a significant prototyping phase. 

3) Field Programmable Gate arrays (FPGAsl An FPGA is a silicon chip composed of a 

large array of logic cells, which may range from single gates to multiple input look up 

tables (LUTs). The function and interconnection of the cells is usually defined by 

loading an appropriate bitstream in to the device, allowing any combination of logic 

functions to be mapped in to the array. Bitstreams, binary files containing 

programming data for the device, are generated from either schematics or textual 

('netlist') descriptions of the circuit to be implemented. FPGAs are low cost and in 

most cases can be reprogrammed any number of times, the new configuration 

overwriting the old one. Libraries of macros, logic configurations designed to 

perform common functions, are available for many FPGAs. Complex circuits are 
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created by linking these macros together. This approach therefore combines the 

flexibility and simplicity of discrete components with the speed and size advantages 

of a custom IC in a low cost, low development time solution. For bulk applications 

FPGAs prove considerably more expensive than custom built ICs, therefore their 

main advantage is in prototyping. Design faults that would require a costly 

remanufacture in an IC require only a reprogramming of the FPGA. 

It would appear that FPGAs offer an ideal design solution for developing a TLM 

processor. The potential exists for transferring the design to a custom IC following 

testing. 

FPGA architectures vary between manufacturers in two ways, the type and granularity of 

the logic cells and the programming method. In much the same way as an efficient 

processor must map the granularity of its architecture to that of the problem, so the FPGA 

must map the granularity of its logic cells to that of the logic to be implemented. 

FPGAs may have a coarse or a fine grain architecture. Fine grain architectures typically 

use a 'sea of gates' construction in which the device consists of a large array of logic 

gates. These are usually NAND or NOR. The programmer has control over the 

interconnections between the gates. Coarse grain architectures are built around an array 

of more complex cells. These may consist of combinational logic. However modem 

FPGAs have been developed around SRAM based look up tables (LUTs). The principle 

behind the LUT is that a single output combinational logic circuit may have its N inputs 

in any one of 2N states. Each state will produce either a '0' or a '1' output. The 

combinational logic is replaced with a 2N bit deep SRAM that uses the logic inputs as its 

N address lines. Each state of the inputs therefore addresses a different location in the 

memory. The memory is then programmed with the required pattern of ls and Os to 

produce the output defined by the logic mapped within the LUT. There are three main 

advantages to this approach. 

• Large logic circuits, with many levels of logic and therefore large propagation delays, 

may be reduced to a single SRAM LUT with a single propagation delay. 

• The logic that is mapped to the SRAM may contain any combination of gate types, 

where as sea of gates arrays usually consist of only one type of gate. 

• The logic functions performed by the FPGA may be changed by simply writing new 

data to the SRAM cells, thus providing unlimited reprogrammability. 
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1 

The shunt node algorithm requires only additions, subtractions (which may be 

implemented using 2s complement addition) and a divide by two, which may be achieved 

by right shifting the data one bit. The main components of the processor are therefore 

adders. While these may be developed from a gate level architecture a coarser granularity 

may reduce propagation delays and therefore provide better performance. 

The programming method is more a matter of convenience. Some technologies allow 

programming with the FPGA in situ whereas others require special equipment. Some 

require less loading time or data storage. The choice of programming method only 

becomes an issue when specific factors in the circuit layout require the use of one 

method. For example an FPGA in an embedded system must program itself from a 

PROM on its circuit board at power up. Prototyping systems require programming from 

a host machine. The nature of the host will define whether the bitstream is presented in a 

serial or a parallel format. 

3.3 Xilinx XC4000 FPGAs 

The Xilinx XC40007 family ofFPGAs is built around an array of configurable logic 

blocks (CLBs). Each CLB consists of two four input and one two input LUTs, denoted F, 

G and H respectively. These may be combined to produce a LUT with up to 9 inputs. 

Each of the four input LUTs has an associated flip flop for intermediate data storage. A 

single full adder/subtractor may be compressed in to two four input LUTs, each with a 

propagation delay of around 5ns. It is therefore possible to build very high speed adders 

and subtractors with the XC4000 CLBs. The Xilinx devices also use dedicated carry bit 

routing for efficient design. The CLB architecture and the availability of larger 

components with high pin counts make the Xilinx XC4000 FPGAs ideal for developing 

the TLM processor. 

The design flow for these devices is shown infigure 3.1. A sequence of software 

packages synthesise a generic, gate level netlist in the EDIF netlist format from a high 

level text description or a schematic. Proprietary, vendor specific software from Xilinx, 

called Ml, translates this netlist in to a physical layout via the MAP and place and route 

(PAR) routines. The combinational logic in the netlist is partitioned by the software, 

where possible, in to groups of 4, 5, 8 or 9 input, single output functions, each of which is 
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Figure 3.1 · Design Flow for a Xilinx FPGA 
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mapped to one or more LUTs within a CLB. These CLBs are then placed within the array 

so as to minimise routing delays and signal skew. A graphical representation of the 

device is provided allowing the layout to be edited manually at the CLB level. This is 

useful for adjusting critical logic or routing where guaranteed performance is required. 

The device is programmed by downloading a bitstream generated by the Ml software. 

The bitstream defines the contents of the LUTs and the individual SRAM bits, which 

control the programmable interconnect routing matrix. The device may be programmed 

in situ over a data bus or at power up from an EPROM mounted on the circuit board. 

Loading the bitstream takes from a few hundred milliseconds to a few seconds for a 

single device depending on its size. 

Back annotation tools can be used to re-write the EDIF netlist to include information on 

the propagation delays within the device. This post layout netlist can be incorporated in 

to a schematic, which may include external components. This allows the interaction of 

the FPGA with, for example, a bus interface to be tested. With the aid of simulation 

software the performance of the final implementation can be predicted with a very high 

degree of accuracy. A medium sized design can be taken from a schematic, through 

verification to an operational FPGA device within a few hours. Any design that fails to 

meet the specified criteria can be overwritten with a new bitstream, allowing development 

costs to be minimised. 

3.4 Numerical Representation in the TLM Processor 

In chapter 2 it was shown that the way in which numbers are represented in a system 

could have a significant impact upon the behaviour of the system. A balance must be 

struck between accuracy, range and processor complexity. The three main numeric 

representations used in digital systems are 

1) Fixed Point- Also referred to as integer data. The accuracy of fixed point arithmetic 

is strongly dependent upon the word length used. Calculations may be subject to 

quantisation noise, truncation errors and overflow. The hardware required to 

implement fixed point arithmetic is simple and exhibits a high throughput. 

2) Floating Point - Represents each number using a mantissa and an exponent. Floating 

point representation is able to express a much larger range of values than a fixed point 
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number of the same length. Accuracy is less dependent upon word length as the 

exponent allows the data to be scaled, preserving significant bits which would have 

been lost in fixed point arithmetic. Floating point hardware is complex as operations 

must be performed on both the mantissa and the exponent. High throughput floating 

point arithmetic units may be realised at a high silicon cost. 

3) Block Floating Point- This method is used for calculations on arrays of fixed point 

data. A single exponent is applied to the whole block. The data can be scaled as in 

floating point. Block floating point is less accurate than floating point as numbers can 

not be scaled individually. It is more resilient to truncation errors and overflow than 

fixed point and exhibits a greater range. The arithmetic is carried out on fixed point 

numbers, therefore the hardware requirements are low. They are greater than for 

fixed point due to the need for shifters but lower than floating point. 

TLM requires the repeated application of a calculation to an array of data. Any 

inaccuracy introduced through the calculation will be exacerbated by its repeated 

application. As a consequence of this the accuracy of the numeric representation within 

the processor must be high. If the processor is to demonstrate an increased throughput 

with respect to a PC the arithmetic logic must be fast. High speed implies a fixed point 

representation. The accuracy of fixed point arithmetic is dependent upon the word length 

used. A longer word length provides a lower mean quantisation noise but produces a 

larger, slower circuit. 
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Figure 3.2a - Comparison of Integer and Floating Point Results, Short Integer Word Length 
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Figure 3-2b • Comparison of Integer and Floating Point Results, Medium Integer Word Length 
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Figure 3-2c • Comparison of Integer and Floating Point Results, Long Integer Word Length 

Figures 3.2(a-c) show the effect of varying the size of the word length in a TLM 

simulation written in C++. These results were obtained by exciting a 100 x 100 node 

mesh at the center node with a continuous sine wave. The blue line shows the result of 

the simulation performed using 32 bit floating point arithmetic. The magenta line shows 

the results of the same simulation using integer arithmetic. Figure 3.2a clearly shows the 

effect of quantisation noise on the integer data. Significant distortion of the output has 
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occurred. Although quantisation noise is present in the floating point data it has a much 

lower mean value. As the word length is increased, so the difference between the floating 

point and integer results decreases. The integer quantisation noise has a fixed mean level 

(see chapter 2). However the signal to noise ratio (SNR) is greatly increased. The SNR 

may be maximised by normalising the integer input such that it occupies all the available 

bits of the input word. As demonstrated infigure 3.2c, there is a negligible difference 

between the fixed and floating point results for a 32 bit word length. 
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Figure3.3- Comparison of Simulation Results Using Various Numeric Formats 

Figure 3.3 shows the application of a block floating point scheme to TLM. The output 

was generated from a low amplitude impulse excitation to the center of a 100 x 100 node 

mesh. It is clear from the diagram, which shows a section of the first 200 iterations, that 

by the time the output node is reached the integer data has decayed to a level where it is 

consumed by noise and no longer accurately represents the desired output of the 

simulation. However the block floating. point and floating point outputs are 

indistinguishable. The output of the block floating point scheme has been re-normalised 

to yield the same exponent for each output point. The exponent was shifted four times 

during a 10000 iteration simulation. This yields a very small computational overhead 

with respect to an integer calculation but provides a significant improvement in the 

accuracy of the results. 
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Each TLM model will have a different set of requirements. In some cases the increased 

accuracy and range of floating point may be deemed a necessity. These however are 

exceptions. It has been shown that given a sufficiently large word length, fixed point 

arithmetic can exhibit an accuracy very close to that of floating point. The use of a block 

floating point scheme extends this accuracy over a range of numbers comparable to 

floating point for a small increase in hardware costs. In the majority of cases the accuracy 

provided by a block floating point scheme is greater than that offered by the model itself. 

Limitations on boundary placement and geometry and similar effects of spatial 

quantisation will sometimes generate a greater inaccuracy in the output of a model than 

the effects of numerical quantisation. 

The effects of quantisation noise may be further limited when necessary at the output of 

the TLM mesh. Excitations in the TLM mesh are band limited to minimise dispersion. 

Typically the maximum frequency of the excitation is one tenth of the sampling rate (thus 

giving 10 nodes per wavelength). However the quantisation noise is white noise; it 

contributes an equal power at all frequencies. The noise bandwidth extends from 0 Hz up 

to the Nyquist frequency. Assuming 10 nodes per wavelength the noise bandwidth is 

therefore 5 times greater than the signal bandwidth. Figure 3.4 shows the effect of 

applying a very simple 5 point, finite impulse response, low pass filter to the integer data 
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Figure 3.4 • Effect of Filtering the Output of a Noisy TLM Mesh 
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output of .figure 3.2a. The effect is to limit the noise bandwidth, greatly improving the 

SNR. The output of the filter, the solid line, shows the recovered sine wave. Filtering 

performed on the output of the TLM mesh may be used to reduce the noise power and 

minimise the effect of quantisation noise. 

The significant reduction in hardware costs offered by integer arithmetic over floating 

point arithmetic makes it an attractive choice. It is also reasonable to expect an integer 

arithmetic unit to demonstrate a higher throughput. The use of a block floating point 

scheme further extends the range of integer data without significantly affecting either of 

the above properties. If integer data is to be used in the TLM processor a suitable word 

length must be chosen. The decision must be based on a trade off between hardware 

requirements, speed and accuracy. The quantisation step, the smallest change in value 

that may be represented by a given numeric representation, may also be an issue. The 

TLM processor must be able to accurately model the smallest changes that may occur in 

the system under consideration. 

32 bit integer data was chosen for the TLM processor for a number of reasons. 

• 32 bit data offers a range of 232 = 4294967296 numbers. The quantisation step as a 

fraction of the full scale value is 2-32 = 2.33e-10. 

• The mean truncation error as a fraction of the full scale value is 1.16e-10. This offers 

a full scale signal to mean quantisation noise ratio (SNR) of 99dB. 

• 32 bits represents a standard bus width for many systems. This is an important 

consideration in the integration of the processor in to a complete system. 

The dynamic range and quantisation step were considered sufficient for most applications 

in TLM. The loss of range with respect to a floating point solution may be compensated 

for by an increased throughput due to the simplified circuit architecture. The range may 

be extended using a block floating point scheme. The job of monitoring the data and 

scaling the array would be best performed by a host system. 

The use of integer data with a fixed dynamic range does not restrict the implementation of 

non-linear models. While the dynamic range of the 32 bit data may not appear to suit the 

non-linear system under consideration it must be remembered that the model is a user 

generated entity. As such its parameters may be adjusted to scale the input data to the 

non-linearity under examination. When using the term integer it is often assumed that the 

bit positions are fixed to represent 2w ... i, 2°. However through careful choice of the 
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model parameters the bit positions may assume an arbitrary range of consecutive powers 

of 2. Models requiring small value inputs do not necessarily suffer a decrease in range or 

accuracy. 

There are certain classes of problem which are less affected by the use of fixed point data. 

Problems involving fully enclosed meshes or meshes with constant sources are less 

affected as the total energy within the mesh is maintained. As such the range of values of 

interest tends to be smaller. Integer arithmetic is less suited to those problems where 

small amplitude effects are important. This class of problems is not excluded from 

making use of the processor. It is however necessary to give a little more consideration to 

selecting a suitable word length. The use of a block floating point scheme extends the 

range of the processor. However this is most useful for tracing decaying waveforms such 

as impulses. The inability to scale individual data words makes the scheme ineffective 

for problems where a large range of must be represented simultaneously. In this case the 

increased range must be provided through an increased word length. Such problems are 

relatively uncommon. 

3.5 Design of the TLM Processor 

The introduction of computer aided engineering (CAB) has allowed designers to lay out 

circuits on a computer and study their operation via simulation without the need to build 

any physical hardware. Performance and operation can therefore be fully tested before 

the design is transferred to hardware. A useful extension to CAE is the hardware 

description language (HDLl The HDL allows a circuit to be described either 

structurally or behaviourally using a high level language similar to many programming 

languages. The behaviour of the circuit thus described can then be verified through 

simulation. The key advantage of this approach is that the initial HDL description is 

technology independent, removing the need to know in the early stages of design which 

technology will be used for the final implementation of the circuit. The HDL may be 

used as a technique for the rapid prototyping of algorithms, following which a circuit is 

built using traditional techniques. A more powerful technique, that of logic synthesis9 

uses computer software to generate a circuit from an HDL description. The synthesis 

package may generate a schematic for entry in to a CAB package for testing and 
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simulation. It may also generate a text based netlist file, detailing all the components in 

the circuit, their properties and their interconnections. 

There are two main design methods used with hardware description languages, 

behavioural modelling and structural modelling. Behavioural modelling may be 

considered as 'black box' modelling. The HDL is used to define the relationship between 

the inputs and outputs of the system with no consideration as to its architecture. It is 

useful if the designer has some idea of the architecture required from the behavioural 

model as completely abstract descriptions will lead to abstract and inefficient circuits. 

Structural modelling defines the system in terms of its component parts and their 

interconnections. Structural models are usually hierarchic. The bottom level must 

contain a behavioural description of each component. For example, an arithmetic unit 

may be modelled as a collection of adders, which are in turn modelled as individual 

NAND gates. The bottom level of the hierarchy will then be a behavioural description of 

a NAND gate. 

3.5.1 VHDL Description of the 20 Shunt Node 

There are several hardware description languages available. These include Verilog, 

Altera's AHDL and ABEL. One of the most popular languages is the Very High Speed 

Integrated Circuit (VHSIC) Hardware Description Language or VHDL 10
• Using VHDL 

to model the circuit and simulate its operation, a number of different forms of the TLM 

algorithm may be tested. Changing the form of an algorithm in a text file is much faster 

than redesigning a circuit. VHDL therefore facilitates rapid prototyping of systems. As 

no predefined structure exists for the TLM processor, and its behaviour is defined by the 

shunt node equation, equation 1.4, behavioural modelling seems the most appropriate 

approach. However, as stated above, the form of the equation affects the development of 

the circuit. The matrix form of equation 1.4 is difficult to represent in an HDL. 

Expanding equation 1.5 for each branch of the node would lead to a series of four 

equations which may lead to the synthesis of four adders all producing the same 

summation of the input values. A more efficient form of the shunt node equation for 

synthesis is 
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s = ~ (vf + v~ + v~ + v~) 
V! = S -Vi 

V2 = S -V~ 

V3 = S -V~ 

V~ = S - V~ 

(3.1) 

The form of equation 3.1 ensures that the circuit synthesised from the VHDL will contain 

only one construct to form the sum, S. Figure 3.5 gives a complete VHDL description of 

the circuit using equation 3.1. 

Logic synthesis is a very specific procedure. The HDL description must clearly specify 

all properties of the circuit to be synthesised. The circuit defined therefore by the set of 

equations presented in figure 3.5 will not include any error checking or correction such as 

rounding. Such constructs, if desired, must be manually added after synthesis or included 

in the HDL file. 

3.5.2 Logic Synthesis 

The synovation synthesis package was used to generate a generic EDIF netlist from the 

VHDL description of figure 3.5. This netlist was then translated in to a schematic for the 

Veribest CAE package, the top level architecture of which is shown injigure 3.6. The 

adders use a ripple carry. The first two bits are summed and the carry is passed on to the 

next section of the adder, while simultaneously the sum is passed to the next adder. This 

produces a pipeline effect, considerably reducing the time to generate the total sum, S. 

Shifting the sum one bit to the right performs the divide by two. Extra logic is required to 

maintain the word length and the sign of the sum. The input data is also routed to the 

inverting inputs of the second set of full adders. These produce the outputs using 2s 

complement addition. The operation of the system is entirely mapped in to hardware. No 

instruction stream is required; the only control signal required is a clock to sample the 

output of the system. 
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USE STD_DAZIX_PRIMITIVES.ALL; 

USE STD_DAZIX_OPERATIONS.ALL; 

USE STD_DAZIX_STANDARD.ALL; 

ENTITY TLM_NODE IS 

PORT (VI1, Vl2, Vl3, Vl4 : IN INTEGER RANGE -35565 TO +35565; 

VR1, VR2, VR3, VR4: OUT INTEGER RANGE -35565 TO +35565; 

CLOCK : IN BIT); 

END TLM_NODE; 

ARCHITECTURE BEHAV _ TLM_NODE OF TLM_NODE IS 

BEGIN 

PROCESS (CLOCK) 

VARIABLES= INTEGER RANGE -35565 TO +35565; 

BEGIN 

IF (CLOCK= '1 ')AND (CLOCK' EVENT) THEN 

S := 0.5*(VI1+V12+VI3+VI4); 

VR1 <= S-VI1; 

VR2 <= S-VI2; 

VR3 <= S-VI3; 

VR4 <= S-Vl4; 

END IF; 

END PROCESS; 

END BEHA V _TLM_NODE; 

Figure 3.5 • VHDL Description of a TLM Node 
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Figure 3.6 - Architecture of the Shunt Node Processor 
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3.5.3 Testing and Simulation 

The synthesised gate level schematic may be simulated within Veribest. Timing data 

used by the simulator is based upon the propagation delays of the individual gates created 

by the synthesis package. The Xilinx place and route process compresses a number of 

gates in to a single CLB, considerably reducing propagation delays. Therefore timing 

data extracted from the schematic may potentially be greater than that of the final 

implementation. Simulation at this stage therefore facilitates only basic functional 

testing. 

The schematic serves a more important purpose in that it may be used to fix parameters 

for the place and route (PAR) software. By setting properties attached to the components 

in the schematic the designer can specify maximum delays allowable for a given path, fix 

the location to which components are placed within the FPGA or mark out groups of 

gates to be partitioned together in a single CLB. Of particular importance is the ability to 

fix the device pins to which particular input/output nets are routed. This simplifies board 

level design. In this case pin location constraints were used to route the clock pin to a 

dedicated clock buffer input. Due to the large number of pins required by the design one 

of the Xilinx IT AG test port pins was also defined as a data input. 

The fully annotated schematic is then translated in to a netlist in either the Xilinx Netlist 

Format (XNF) or the EDIF format. The Xilinx Ml software package is used to 

implement the netlisted design on an FPGA. First, the design is mapped to the target 

device, i.e. the logic is divided up and functions are compressed in to CLBs. The CLBs 

are then placed and routed within the device. This process may be optimised to within 

user defined guidelines. The layout can be tested for failed routings and the delays within 

the chip can be analysed via criteria such as pin to pin timings, clock to output timings 

etc. From this data the Xilinx timing analyser will deduce a maximum clock rate for the 

circuit. The nature of the programmable interconnect structure, which routes nets 

between fixed points means that all path lengths within the device are specified to a high 

degree of accuracy. As the properties of the CLBs are equally well defined the timing 

data generated by the timing analyser is highly accurate. User defined parameters can be 

used to study the effects of varying external conditions such as temperature. 
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The design of figure 3.6 was placed and routed to produce a bitstream for an 

XC4025pg191. No specific criteria were attached to the design and the place and route 

tools were left to determine the most efficient layout based upon default parameters. Post 

layout timing analysis predicts a maximum clock rate of 5.75 MHz. As the circuit 

performs a scattering operation on its inputs on each rising clock edge, a single processor 

is theoretically capable of 5.75 x 106 scattering operations per second. 

Once the Xilinx timing analysis has been performed the original schematic may be back 

annotated. The circuit's simulation netlist is rewritten to include the propagation delays 

calculated by the software. The circuit was simulated, including the actual device 

propagation delays, to ensure that no timing conflicts existed. Figure 3. 7 shows the 

results of the post layout simulation. 
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Figure 3-7 Simulation Results for the TLM Processor 
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3.6 Design Development 

Thus far the design process has developed around a single node, however it is possible to 

connect a number of single node processors to form a structure similar to an SilVID array. 

The output pins of each node in the array are connected directly to the inputs of its near 

neighbours to form a 2D array. The Xilinx XC4025 has sufficient logic resources to 

allow the design of a 3 x 3 node array on a single chip. Such a design was modelled in 

VHDL using a structural description whose bottom level components were the single 

node processor developed above. This design was simulated to test its functionality and 

then synthesised in to an XNF netlist using the procedures outlined infigure 3.1. As 

there are insufficient pins on the Xilinx to route all the outputs only a single branch of 

one node was used for input and output. All other branches at the edge of the model were 

looped back such that they simulated electric (p = 1) walls. Timing analysis of the 

synthesised circuit performed by the M1 software indicates a maximum clock rate of 1.31 

MHz. Therefore each node in the array would perform 1.31 x 106 scattering events per 

second and the 9 node system would be capable of performing 11.7 x 106 scattering 

events per second. 

3. 7 Discussion 

The development of an application specific processor for the two dimensional TLM shunt 

node has been presented. The performance of the processor implemented on a Xilinx 

XC4025 FPGA, ignoring the effects of any external circuitry, has been calculated as 5.75 

x 106 scattering operations per second. This is an order of magnitude greater than 

software applications at the time of writing11
• This represents a significant increase given 

that it results purely from the direct mapping of the TLM algorithm into hardware. When 

a limited degree of parallel processing is introduced, by extending the processor to an 

array of 3 x 3 nodes, the throughput approximately doubles. The figures were calculated 

via simulation and from the Xilinx Ml timing analyser, as the resources were not 

available to produce a working design in hardware. However the nature of the modular 

logic and fixed routing paths on the Xilinx ensure the accuracy of the information 

produced. 
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These figures clearly demonstrate that, despite increases in desktop computer 

performance, the idea of an application specific processor for TLM is still viable. 

However the design developed is far from ideal. 

Although the parallel implementation presented here is of little practical importance it 

demonstrates that the processor may be used as part of a larger array to achieve greater 

throughput. Practical models in TLM often contain many tens of thousands of nodes. 

However, the number of nodes in the processor array is constrained by limitations of the 

technology on which it is implemented. 

• There is a physical upper limit to how many nodes may be placed on a single chip. 

Large chips, with densities of 105
- 106 gates, could contain many more than nine 

nodes. However limitations in packaging technology restrict the number of pins 

available for input/output, thus restricting the size of array which may be implemented 

without using sophisticated interconnection strategies. A single node requires four 32 

bit wide inputs and four 32 bit wide outputs, a total of 256 pins. For an M x N array of 

nodes, 2 x (M+N) x 32 pins are required. The array of nine nodes developed above 

therefore requires 384 pins. This is the minimum number of pins required to give 

access to all points on the edges of the array, any data routed from within the array 

would require further resources. A typical, large FPGA, the XC4025, has 256 pins 

available to the user. This is just enough to implement a single node. Even this is 

only possible through the use of a non-dedicated 110 pin on the Xilinx as a data input. 

Although the logic resource available in FPGAs is increasing rapidly, technological 

limitations mean that packaging size and pin counts are rising at a much slower rate. 

This is a fundamental limit on the technology and one that is not likely to be overcome 

in the near future12
• Complex interconnection strategies may be developed13

• Indeed 

the single node processor may be used as the processing element in a full SIMD array 

like the DECmpp 12000, however these architectures have been shown in chapter 1 to 

have their own disadvantages. Large arrays may be formed by linking several FPGAs 

together, however this incurs further routing delays through input/output buffering and 

increased path lengths and therefore degrades performance. A multiplexed 

input/output is another option however this may limit performance as each calculation 

would require multiple clock cycles. 

• The word length used in the calculation is fixed by the width of the logic. Integer data 

has been used as this considerably simplifies the arithmetic logic required. A 32 bit 

word length was chosen as this provides a wide dynamic range with a high full scale 

signal to noise ratio. 32 bit data buses are standard in most microprocessor systems, 
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thus the use of 32 bit data also eases integration in to such a system. The processor 

can be developed to operate on any word length within pin limitations, however any 

changes must be made at the HDL level and the processor must be resynthesised. 

• When an array of nodes is formed using fixed, hard wired interconnects, as above, 

there is no access to the total incident energy at each node. This is a consequence of 

the simple interconnect strategy. This value is commonly used for visualisation 

purposes. 

3.8 Conclusions 

The development of an application specific processor for TLM has been presented. A 

single two dimensional shunt node processor has been designed using the VHDL 

hardware description language and synthesised for fabrication on a Xilinx XC4000 series 

field programmable gate array. A design incorporating nine of these nodes in to a 3 x 3 

node array has been developed and analysed. 

This work represents the conclusion of milestones 1 and 2 as defined in chapter 1. An 

application specific processor has been demonstrated to provide an order of magnitude 

performance increase over existing software based solutions. A suitable design flow has 

been identified by which future processors may be developed. 

Comparison of Sal eh's processor with the current processor shows that Sal eh achieved a 

speed up of 27 times where as the processor detailed above produces a performance 

increase of an order of magnitude. This reflects both the rapid increase in performance of 

desktop computers and the limitations of the synthesised design. 

While it has been shown that an application specific approach to reducing run times in 

TLM applications is still theoretically viable, the system developed here fails to address 

many of the aims laid out in chapter 1. The processor does not address the issue of 

reducing data bandwidth. Consequently the system offers scalability only at a high 

resource price. A practical system developed around this processor would be both costly 

and large, violating two of the accessibility requirements for the processor. Only a single 

form of the TLM algorithm is implemented. 
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The nine node array provides a speed up of 2.03, thus giving it an efficiency score of 

22%. This compares favourably with the large scale parallel processor implementations 

reviewed in chapter 1. The efficiency calculation assumes that sufficient bandwidth is 

available to supply all inputs within the allowed clock period of 761-ls. This equates to a 

bandwidth of 159 Mbits·1 node -I. 

The design flow identified for implementing designs with the Xilinx FPGA is thus. The 

circuit is specified using VHDL. The VHDL description is synthesised to produce a gate 

level netlist description of the circuit. If necessary this is converted to a schematic to 

allow properties to be added or modified. Functional simulation may be performed at this 

stage to ensure the synthesised design operates as expected. The netlist is then passed to 

the Xilinx place and route tools. These divide the logic in to small (typically ~ 4 input, 1 

output) units, which are then placed within the CLB array on the chip. The Xilinx timing 

analyser inspects the routing between logic blocks and produces accurate timing 

information. This information is added (back annotated) to the functional netlist. The 

design can then be re-simulated to ensure no timing conflicts exist. A bitstream is then 

generated to program the FPGA. 

The predictability of the fixed routing network within the FPGA allows the timing 

analyser to give very accurate results. Post layout simulation can thus be assumed to be a 

very good approximation to the behaviour of the actual device under the conditions 

specified in the simulator. Both supply voltage and temperature effects can be varied to 

simulate the device under a range of conditions. 

The implementation path chosen allows freedom of design. It also permits thorough 

design verification through simulation at all stages in the development process. The 

Xilinx XC4000 series FPGA has been chosen as a target device due to its low cost and 

reprogrammability. The internal architecture of the Xilinx device has a granularity 

closely matched to that of the main components in the shunt node, thus satisfying the first 

of the conditions laid out in chapter 1. Where, as in this case, components are not 

available for physical device testing the Xilinx implementation software provides 

accurate timing data. This data may be incorporated in to a post layout simulation to test 

for timing violations. Processing rates of an order of magnitude greater than current 

software applications have been predicted for a single node. This demonstrates the 

viability of the approach taken in the development of the processor. VHDL offers a 

useful starting point in the development of the TLM algorithm in to a form suitable for 
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hardware implementation. However unless the code is written in a precise way it is hard 

to control the output of the synthesis software. This may potentially lead to a decrease in 

efficiency. 

The development of the TLM processor has allowed a suitable implementation path and 

target technology to be defined. However the development of a complete working system 

capable of sustaining an increase in perfonnance requires a redesign of the processor. 

This must take in to account the limitations highlighted above and in previous chapters. 
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4 - A Bit Serial Scatter Processor 

4.1 Introduction 

The data parallel TLM processor presented in chapter 3 demonstrates the problems 

associated with the very high bandwidth requirements of a TLM processor. 

Limitations on routing resources and the availability of I/0 pins make the processor 

effective only in a large scale parallel array with a complex interconnect strategy. 

From the literature review in chapter 1 this type of structure has been demonstrated to 

be inefficient. This illustrates an important but often overlooked point regarding 

TLM, that while the calculations performed are relatively trivial, the efficient routing 

of data between nodes is a complex problem. 

A physical implementation of the processor developed in chapter 3 consumes a 

significant percentage of the resources available within a large FPGA. As the routing 

resources within the FPGA are consumed, successive routing operations are forced to 

use increasingly less efficient paths. This can increase the propagation delays within 

the device and limit the maximum clock rate. This chapter presents an alternative 

processor design, which uses a bit serial architecture to reduce the bandwidth and 

resource requirements of the processor. The performance of the new design and the 

implications of a bit serial architecture are discussed. 

4.2 Development of a Bit Serial Architecture 

The processor developed in the previous chapter makes inefficient use of the 

resources it consumes. The major components of the processor are 32 bit wide ripple 

carry adders. A graphical representation of the operation operation of a ripple carry 

adder,figure 4.1, reveals the inefficiency of their design. 

The first full adder generates the sum and carry from the least significant bit (LSB) of 

its inputs. The sum bit is output while the carry is used to generate the sum from the 

second full adder. This forms the second bit of the parallel sum. This process 

continues between successive full adders to form the full parallel sum. 

80 



(-------------------- -----------------------------------------,\! 
Inputs 

! ! 
i i 

I F"ll Adde' c:'Y I 
Carry Carry 

Full Adder Full Adder Full Adder 

I 
l 0 Sum 2 3 
' .. ______________________________________________________________ ,, 

Serial Inputs 

Carry 

Full Adder 

3 

Sum 2 
1 
0 

Figure 4.1 - Operation of a Ripple Carry Adder 
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The key elements of the operation of the parallel adder are 

• Data flows in one direction through the full adder chain. Each full adder is 

dependent upon the carry output of its predecessor, thus they form a one 

dimensional pipeline. 

• At any given time, the parallel adder is calculating only one bit of its output sum. 

The principle of circuit folding 1 may be used to determine where the operation of 

multiple processing units may be implemented within a single unit using pipelined or 

time division multiplexed inputs. The application of this principle to the ripple carry 

adder demonstrates that its operation is identical to that of a single bit full adder. The 

chain of adders is folded on to itself. Bit n of the input is delayed by n!:!., where D. is 

the delay of the carry loop. The application of the folding concept to the TLM 

processor gives the architecture of figure 4.2. The order of the summation of the 

inputs has been altered. The adder chain forming the total incident energy has been 

reduced to two stages as opposed to three in the data parallel node. This is because 

each stage contributes to the mean noise at the output. Reducing the number of stages 

therefore reduces the mean noise. The operation of the circuit remains unchanged. 

Data is presented to the adders bit serially, starting with the LSB. The divide by two 

is performed by discarding the first bit of the sum, simulating a right shift. As it takes 

three clock cycles for the sum to be produced the inputs must be delayed in reaching 

the subtractors. Flip-flops are used as delay elements. The bit serial and data parallel 

architectures are mathematically identical. This becomes clear if the width of the 

data parallel adder operands is reduced to 1 bit and the circuits are compared. 

However the bit serial design has several advantages. 

• Each 32 bit wide adder is replaced by a single full adder, leading to a considerable 

reduction in resource requirements. 

• The processor is mapped to the TLM algorithm at a lower level of granularity, thus 

further reducing computational redundancy. Many algorithms exhibit such 

exploitable architectures when considered at a bit leveF. 

• By using bit serial input/output the required bandwidth is significantly reduced. 

The number of device pins required by each processor is reduced from 256 to 11. 

• The word length is no longer dependent upon the width of the adders, thus enabling 

the use of arbitrary word lengths. 

• A single pin is sufficient to output the total energy incident upon the node for 

visualisation purposes. 

• The ripple carry adder design receives all 32 bits of all four inputs simultaneously. 

The rate at which a sum is produced is dependent upon the rate at which data can 

flow between the stages of each adder. The time taken for the output to settle to a 
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steady state, which governs the maximum clock rate, is difficult to determine as 

quasi-steady states may appear. In the bit serial design a clock signal gates through 

each bit of data, thus ensuring predictable performance and eliminating the 

possibility of latching incorrect data. 
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Figure 4.2 • Architecture of the Bit Serial Scatter Processor 

4.3 Implementation 

A bit serial scatter processor has been developed using the design flow defined in 

chapter 3. Again the architecture of the Xilinx FPGA provides a close match to the 

granularity of the TLM processor. A structural VHDL description was developed 

fromfigure 4.2 using a full adder as the basic component. This simplifies the code as 

the full adder is only defined once. The full adder is defined using boolean equations 

for the sum and carry functions to aid the synthesis tool in mapping the functions to 

the LUTs. Code listings are given in the appendix. 

The code has been synthesised, placed and routed on a Xilinx XC4013 FPGA. 

Analysis of the routed design reveals that the implementation makes inefficient use of 

the resources available. This is due to an intermediate stage in the synthesis procedure 

where the VHDL is mapped to a generic gate level description. The structure 
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developed at this stage does not take into account the internal structure of the Xilinx 

device and therefore does not translate well into an optimised Xilinx netlist. Each full 

adder synthesised from the generic netlist description requires 3 CLBs. However it is 

possible to create a full adder in a single CLB, using one four input LUT to generate 

the sum and the other four input LUT to generate the carry. For this reason the 

processor was implemented manually via the EPIC graphical editing interface. This 

initially presents the user with a schematic representation of the interior structure of 

the FPGA device, in this case an XC4013. The user may then select individual CLBs 

and define the contents of the LUTs via graphical means or Boolean equations. The 

interconnections between the CLBs may be manually defined by selecting individual 

programmable interconnect points within the routing matrix to guide a signal between 

source and sink. Although the routing may be performed automatically once source 

and sink pins are defined, better results were achieved using manual routing. The 

final design is composed of just 8 CLBs and 11 110 pins, a considerable reduction in 

resources cj the data parallel design of chapter 3. The sum and carry LUTs are 

defined using the Boolean equations 

Sum. F = (F1EBF2)EBF3 

Carry. G = (G1 *G3)+(G2*G3)+(G1 *G2) 

Where F and G define the outputs of the F and GLUTs, Fl/G1 is input 1, F2/G2 is 

input 2 and F3/G3 is the carry bit formed in the previous clock cycle. For the 

subtractors the carry equations are modified thus. 

Sum. 

Carry. 

F = (F1EBF2-)EBF3 

G = (01 *G3)+(G2-*G3)+(G1 *02-) 

Where -indicates a logical inversion. Fl!G 1 is the sum of the inputs and F2/G2 is the 

delayed input signal. 

The Xilinx timing analyser calculates a maximum clock rate of 100 MHz for the 

manually implemented circuit. As each clock cycle produces one bit of output data 

this gives a calculation rate of 3.03 x 106 scattering events per second for a single 

processor using 32 bit data. This is comparable with the 5.75 x 106 scattering events 

per second achieved by the data parallel design. Note that due to the discard bit 

produced during the divide by two operation, 33 clock cycles are required to produce a 

32 bit output. The slight reduction in the rate of calculations compared to the data 
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parallel design is balanced by the reduction in circuit complexity and required 

bandwidth. 

4.4 Expansion of the Bit Serial Architecture 

The reduced bandwidth and resource requirements of the bit serial design free 

resources within the FPGA to introduce more advanced features to the processor. The 

finite storage capacity of a computer forces the TLM mesh to have a finite size, 

therefore the introduction of boundaries within the mesh is of particular importance. 

Traditionally boundaries within the TLM mesh are treated as part of the connect 

process3
, equation 1.7. However the modification of the data by the reflection 

coefficient of the boundary may be implemented within the scatter process thus 

removing all computational content from the connect process. This ensures that even 

in a coprocessor architecture all computational steps are mapped to hardware for 

maximum efficiency. The scatter equation thus becomes 

,.,v; = P,g[t, ,v~]-, v~} (4.1) 

where Pn is the reflection coefficient of branch n. The connect process for that branch 

then becomes 

(4.2) 

In order to prevent the complication of the current design through the introduction of 

multipliers this discussion is restricted to the implementation of boundaries with 

reflection coefficients of p = 0, + 1, -1. Each node in the array must be aware of the 

location and reflection coefficient of any local boundaries. This may be achieved in 

one of two ways. 

• Special boundary nodes are developed and placed within the array. The location of 

these nodes fixes the location of the boundaries 

• An homogeneous array of nodes is created where all nodes are capable of 

representing all boundary conditions. Each node is informed of its local boundary 

conditions dynamically at run time. 
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Of these, the latter is the preferable option as it allows the arbitrary placement of 

boundaries within the array. This conforms to the aim laid out in chapter 1 stating 

that the processor should not limit the configuration of the TLM mesh. Even a fixed 

array of processors may be reconfigured to provide a wide range of modelling 

environments. Each node must be informed of the boundary conditions at each 

branch at any given time. This may be performed as part of the initialisation of the 

array, giving a static configuration for that simulation. A more interesting solution is 

to pass the boundary data to the node in each iteration, thus allowing boundaries to 

move or dynamically change their properties during the course of the simulation. 

The simplest way to pass local boundary data to each branch in each iteration is to 

include it in the incident data word. Four possible states are catered for in each branch 

of each node. These are no boundary, or a boundary with a reflection coefficient of p 
= 0, + 1 or -1. The type of boundary may therefore be specified by adding a two bit 

code to the beginning of each data word. The code is interpreted by the processor 

according to table 4.1. 

CODE BOUNDARY 

00 None 

01 p=+1 

10 e= -1 

11 p=O 

Table 4.1 - Boundary Representation using a 2 bit Code 

An external control signal indicates to the processor which part of the incident data is 

boundary code. This data is then used to set two flags for each branch within the 

processor, the active low zero flag (ZF-) and the inversion flag (IF). The first two 

conditions, no boundary and p = + 1 require no action by the scatter processor as the 

data is unchanged by the boundary. When p = 0, ZF- is asserted and the output from 

the subtractor for that branch is set to zero using a logical AND operation. The case 

of p = -1 makes use of the relationship 

-(A- B)= (B-A) 

The boundary code '10' sets IF which is used to select which input to the subtractor is 

inverted. The inversion is created using an exclusive OR (XOR) operation. Any 

binary value XORed with '1' becomes inverted, whereas any binary value XORed 
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with '0' remains unchanged. One input is XORed with the active high IF, and is thus 

inverted. The other input is XORed with the complement of IF and thus remains 

unchanged. When IF is negated the second input becomes inverted. Using 2s 

complement notation the inverted input is subtracted from the non-inverted input. 

Swapping the inverted input using IF therefore changes the output of the subtractor 

from (A - B) to (B - A). 

4.5 A Boundary Equipped Scatter Processor 

The boundary method defined above has been built in to the scatter processor. As 

with the basic architecture a manual implementation via the EPIC editing facility was 

chosen for efficiency. The additional hardware required to produce a boundary 

equipped scatter processor is shown infigure 4.3. 

~1 
From Subtractor xoA2 

Figure 4.3 - Additional Logic for Boundary Implementation 

The Boolean equations to define the sum and carry logic in the subtractor LUTs 

become 

Sum. 

Carry. 

F = (((F1EBIF)EB(F2EBIF-))EBF3), H = F*ZF-

G = ((GlEBIF)*G3)+((G2EBIF-)*G3)+((GlEBIF)*(G2EBIF-)) 

By XORing one input with IF and the other with the logical inverse of IF, the logical 

state of the flag defines which input is inverted. This determines the output of the 

subtractor. The sum requires 5 inputs and therefore makes use of the H LUT to 
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provide the 5th input. A control signal, generated externally, is used to set the carry 

bits in the adders/subtractors for the first bit of each new word. The B_Set signal, 

generated from control, enables the flip flops which store the boundary data, thus this 

signal is active for the first two bits of each word. A third signal, B_En, also 

generated internally from control delays the activation of the new state of the 

boundary data. This is required as, due to the pipelined nature of the processor, the 

boundary data changes while some stages of the pipeline are still processing the 

previous input word. The boundary state associated with the old data must be 

preserved until this data has cleared the pipeline. This technique also prevents the 

activation of intermediate values formed as the boundary registers are serially loaded. 

As the boundary flags apply only to the subtractors the new data may enter the adder 

stages of the pipeline before the boundary data changes. This eliminates the need for 

wait states between words and ensures the flow of data through the pipeline is 

uninterrupted. 

Timing data from the Xilinx software shows that the introduction of the boundary 

logic reduces the maximum clock rate of the circuit to 80 MHz. Thus a single 

processor with 32 bit input data would perform 2.28 x 106 scattering events per 

second. The reduction in performance c.f the basic bit serial architecture is due in 

part to the increased propagation delays of the circuit from the addition logic used and 

also to the increase in word length caused by the addition of the boundary code. 

4.6 Testing 

The reduced resource requirements of the bit serial scatter processor permit it to be 

fabricated on a Xilinx XC4010 FPGA. This is a smaller component than that required 

for the data parallel design. Alongside the functional simulation testing introduced in 

chapter 3 a physical implementation of the processor has been tested. 

Testing4 has two facets, test generation, obtaining test data to confirm the circuit 

operation, and test verification, proving that the test results confirm the correct 

operation. Exhaustive test vectors must cover all possible combinations of inputs, 

thus for a circuit with N inputs, 2N test vectors are required. Good testing design 

utilises the principle of partitioning, the so called 'divide and conquer' approach. This 

simplifies testing by dividing the circuit in to smaller sub-circuits, each of which may 

be tested individually. Partitioning aids fault location by reducing the number of 

components in the circuit under test (CUT) and preventing the propagation of faults 
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through the circuit. Efficient partitioning also reduces the number of inputs to each 

test partition, thus reducing the number of test vectors required for an exhaustive test. 

4.6.1 Testbench Design 

A controlled method of entering the test vectors and collating the results is required. 

A testbench, a physical or software based ('virtual testbench') device that surrounds 

the CUT, may be used to provide controlled test conditions. A virtual testbench has 

been developed by researchers at Loughborough University around a Xilinx XC4000 

prototyping board using Viewlogic's Labview™ software. The XC4000 board 

contains an XC4010 device with connections for downloading the bitstream from a 

host system and testing configuration via the Xilinx readback facility. Access is 

provided to all I/0 pins, 88 of which are connected via a PC-DI0-96 interface card to 

a PC running the testbench software. 

The testbench is controlled through a simple user interface. Text input boxes are used 

to enter the locations of the configuration and input and output vector files. The 

configuration file tells the testbench which signals are connected to which port of the 

I/0 card while the vector files store the test data to be input to the system and the 

results produced by the test. A critical signal may be selected, that is one that is 

updated after the others. This may be necessary particularly in the case of a driving 

clock signal. 

4.6.2 Testing Strategy 

When partitioning the circuit for testing it is important that 

• Sub-circuits maintain their functional integrity. That is, the circuit is split in to its 

component functions and not simply in to smaller groups of logic. 

• The number of inputs in each partition is minimised in order to limit the number of 

test vectors required. 

The boundary equipped scatter processor divides in to four test partitions 

• Full adder 

• Subtractor 

• Boundary flag logic 

• Delay pipeline 
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The logic blocks can be functionally tested via schematic entry and simulation, 

however the testbench checks that the functionality of the design has been retained 

throughout the partition, place and route procedure. This is particularly important in 

this case as the design was placed and routed manually. It is possible to place and 

route each partition individually for testing, however the bit serial design provides an 

abundance of spare I/0 pins which may be used to generate test points allowing each 

partition of the circuit to be tested in situ. The inputs and outputs of each sub-circuit 

may be routed to spare pins to provide individual control without the need for creating 

separate FPGA bitstreams for each partition. 

By reducing the number of inputs in each partition all possible input states may be 

tested. As the boundary flag and control partitions contain sequential logic the range 

of test vectors must be limited to all valid input sequences, as the number of potential 

bit sequences is infinite. Valid sequences are defined by the length of the sequential 

logic pipeline. In the case of the boundary data only combinations of 2 bits need be 

tested. Test results are included in the appendix. 

Having confirmed the functionality of each partition the circuit as a whole must be 

tested. The test vectors used to test each partition are designed to evaluate the circuit 

under all possible input conditions. However in the case of the whole processor the 

test data is required to confirm the synchronisation between the control signals and the 

flow of data through the processor, therefore real16 bit input data was used and tested 

under all boundary conditions. The word length of the data is largely irrelevant in that 

the arbitrary choice of 16 bits does not affect the validity of the testing. Robust testing 

requires that the test data satisfy certain requirements. 

• All inputs and outputs are tested with both zero and non-zero data. 

• All inputs and outputs are tested with both positive and negative data. 

Figure 4.4(a-d) show a graphical representation of some of the test results. It is clear 

from these results that the circuit behaves as expected under all boundary conditions. 

The testbench does not allow the clock rate to be varied and therefore does not allow 

the maximum clock rate of the CUT to be evaluated. 
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4.7 Discussion 

The bit serial, boundary equipped processor presented in this chapter offers 

considerable advantages over previous data parallel designs. An 86% reduction in pin 

count, with a similar reduction in FPGA resources, has been achieved over the data 

parallel processor. The processing rate for a single node remains of the same order of 

magnitude as that of the parallel processor. 

Mapping the node to a lower level structure within the TLM algorithm has produced a 

more compact processor with less computational redundancy. The bandwidth 

requirements of the processor are more closely matched to those provided by potential 

hosts, reducing the need for a complex interconnect strategy. 

The bit serial design allows a single architecture to process data of arbitrary length 

without the need for reconfiguration. The trade-off between precision, dynamic range 

and throughput becomes a software, as opposed to a hardware issue. The ability to 

view the total energy at each node at the cost of only a single pin makes possible the 

visualisation of impulses propagating within the array. This is coupled with the 

ability to apply simple boundary conditions at arbitrary points within an homogeneous 

array of processors. The implementation of simple boundaries is independent of the 

connect process. This provides greater flexibility in the deployment of the processor. 

The addition of boundary data to each word increases the word length and therefore 

reduces throughput. For the majority of nodes within a model no local boundaries 

exist, therefore the addition of the boundary data provides no new information, 

however it must be included to preserve synchronisation with those nodes for which 

local boundaries are present. The extended word length and extra logic required to 

process the boundary data give rise to a 27% reduction in throughput c.f. a non 

boundary equipped processor. This is also due to the use of the H LUT, which adds 

an extra layer to the logic. The propagation delay, tp. of this layer is encountered in 

each bit calculation and therefore produces a compound delay of W.tp over the whole 

calculation. Despite the increased delay the node is still capable of higher throughput 

than software based implementations 

During the divide by two the data is shifted one bit to the right and the resulting 

fractional part, the least significant bit, is discarded. In the data parallel processor 

architecture of chapter 3 the word length is maintained via an arithmetic shift, each 

bit discarded from the right is replaced by a copy of the sign bit on the left. In the bit 
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serial architecture the word length is not maintained during the division, rather it is 

left up to the connect routine to produce a copy of the sign bit. 

As with the data parallel architecture, no provision is made for preventing data 

overflow. However, the maximum energy input to the mesh during a simulation may 

be calculated and the word length chosen such that this value may be accommodated. 

The total incident energy at any one node can never exceed the total energy within the 

mesh therefore the calculations will not generate overflow. The provision for 

arbitrary word lengths offered by the bit serial architecture makes this a realistic 

solution. Due to the nature of TLM the tendency is for the impulses within the mesh 

to diminish as the calculation progresses. However in closed systems, particularly 

those with constant input sources, the energy at any point within the mesh can rise 

considerably above the peak value of the input, thus the word length must be carefully 

chosen to prevent overflow in these cases without unnecessarily limiting performance. 

As with the data parallel design, inaccuracies due to quantisation noise may be limited 

through the use of a block floating point scheme. This is easier to perform at a system 

level by a host PC than to build in to individual processors. 

It is possible to develop a floating point processor using bit serial inputs to reduce the 

required bandwidth per clock cycle. However the need for examination of the 

exponents and the shifting of data to align decimal points requires, at least in part, a 

data parallel approach. The data must therefore be converted to parallel within the 

processor. It has been shown that even a simple fixed point processor consumes a 

large proportion of the resources within an FPGA. A floating point processor would 

require even more resources per node. By using the bit serial, fixed point node a 

reduction in resources of approximately 80% is achieved. The advantages obtained 

from a reduction in resource requirement therefore force the use of a fixed point 

scheme. 

The bit serial processor achieves several of the goals laid out in chapter 1. The bit 

serial architecture demonstrates an improved match between the granularity of the 

TLM algorithm and that of the processor. In particular the significant reduction in pin 

count per processor reduces the need for a complex interconnect strategy. The 

reduction in logic resource requirements of the bit serial design makes possible the 

creation of larger arrays on a single FPGA. Thus a large array could be produced on a 

small, cheap device. The processor also represents the delivery of milestone 3, a new 

design of shunt node scatter processor. The potential for a more accessible hardware 

accelerator for TLM is apparent. 
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5. A Parallel Architecture for the TLM Processor 

5.1 Introduction 

The bit serial architecture TLM processor detailed in the previous chapter provides many 

significant advantages over previous data parallel designs. These advantages include the 

reduction of circuit size and pin count and the ability to implement simple boundary 

conditions. However, as with previous hardware implementations of TLM, the TLM 

connect procedure has not so far been considered in any detail. The literature review of 

chapter 1 indicates that the connect procedure is often overlooked as a source of 

inefficiency. 

Data transfer has overtaken processing as the main source of latency in modern 

computers'. It is therefore to be expected that an externally attached coprocessor 

architecture as used by Saleh2 would be ineffective in a modem computer. A method of 

connecting multiple processors to form a parallel array is needed to boost performance 

significantly. The pipeline architecture of the bit serial processor makes it difficult to use 

hardwired interconnects. This is because output is generated while the input is still being 

processed. If the processor were placed in a traditional SIMD or systolic array some 

form of buffering would be required to store the results until the neighbouring nodes were 

ready to accept new input data. It is possible to use a FIFO as a delay pipeline, allowing 

the serial transfer of data without additional clock cycles. However it would be difficult 

to ensure the boundary data was added to the beginning of each word. The depth of the 

FIFO would have to be matched to the word length to remove any redundancy. This 

would preclude the use of variable word lengths built into the design of the processor. 

The limitations on mesh size imposed through the use of a hard wired array would also 

still be present. 

In fact, a closer inspection of the data transfer process within the TLM mesh yielded a 

better design of connect hardware in much the same way that a review of the scatter 

process has led to a more efficient scatter processor. 
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5.2 Requirements of the Connect Process 

Each scattering event within a 2D TLM mesh generates four output data words, one for 

each branch of the node. The connect routine, stated in equation 1.6, presents these four 

data words as the inputs to the nodes adjoining the respective branches of the node at 

which the scattering took place. Equation 1.6 holds true in all but the following 

circumstances. 

• When a boundary is present on a branch the connect process is altered for that branch 

thus 

+ The scattered data is returned in the next iteration as an input to the node from 

which it was scattered. 

+ The value of the scattered data may be altered at the boundary due to a non­

unity reflection coefficient. 

• At a partially reflecting boundary a fraction, p, of the data is reflected as though a 

boundary of reflection coefficient p were present. The remaining (1-p) is transmitted 

as though no boundary was present. Both the reflected and transmitted components 

may be attenuated by the boundary by reducing the reflection and transmission 

coefficients by the desired amount. 
\ 

• At the boundary between regions of differing permittivity/permeability where 

internodal reflections may occur. 

The design of the bit serial TLM processor allows these exceptions to be simplified when 

implementing boundaries. The common method of implementing boundaries within 

TLM, stated in equation 1. 7, is to perform any modification of the reflected value due to 

a non-unity reflection coefficient as part of the connect process. However the TLM 

processor developed in chapter 4 performs this modification as part of the scatter process. 

Thus, from above, the connect process becomes a straightforward matter of routing the 

data to the required node. The routing may be simplified by considering only the class of 

reflecting boundaries for which the transmission coefficient is zero. Each scattered data 

impulse is then routed to a single destination. 

While the above represent the requirements for the connect process to satisfy the TLM 

equations, the nature of the scatter processor itself imposes requirements upon the 

connect hardware. The connect process should support the arbitrary variability of some 

model parameters introduced by the bit serial node design, these being 

• Data word length 
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• Boundary positioning 

• Mesh geometry 

Removing the limitation on mesh size imposed by the standard one node per processor 

mapping used in SIMD architectures would allow the processor to be applied to a whole 

range of large mesh problems in fields such as acoustics and electromagnetics. Such 

problems have previously been denied the use of high speed computing solutions. 

5.3 System Design 

Impulses within the TLM mesh travel with a finite velocity, therefore the principle of 

causalitl states that in a finite time impulses generated by a scattering event can only 

influence other events within a finite distance. In TLM the time period of interest is M, 

the iteration time. After this time the influence of the scattering event extends over a 

distance ~1. Thus within a single iteration a scattering event will affect only the nodes 

directly adjacent to the scatterer, see .figure S.la. If scattering occurs concurrently at any 

number of nodes within the same row of the mesh, the influence of the scattering events 

after a time M covers only the row on which the scattering takes place and the two 

adjacent rows, see figure S.lb. 

Conceptually, unsophisticated software solutions for TLM store all the incident mesh data 

in an array and use a separate temporary array to hold the scattered data. The data in the 

incident array is swapped for the data in the temporary array (the swap array) at the end of 

each iteration. If the scatter process is performed at all nodes before the connect process 

is performed then both arrays must be large enough to store data for all nodes in the mesh. 

However if the scatter and connect processes are performed concurrently within a single 

row of the mesh then causality demonstrates that the swap array need only be large 

enough to hold three rows of the model. Beyond this the current scattering event has no 

influence and the scattered data can be written back to the incident array to form the 

incident data for the next iteration. This is a minimal form for the swap array. No 

smaller causal array can prevent data being overwritten. 
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Figure 5.1- Space-Time Diagram for a 2D TLM Scattering Event (a) After a time M a single 
scattering event may affect only adjacent nodes. (b) Scattering from several nodes in the same row will 

affect only three rows of the model. 

Consider a serial TLM implementation in software where scattered data is written to a 

three row swap array. The connect process is performed by writing the scattered data to 

the neighbouring node locations in the swap array, thus removing the need for a separate 

connect routine. At the end of each row of the mesh, data in the last row of the swap 

array is transferred to the incident data array in preparation for the next iteration. Such a 

solution would make efficient use of the available memory and would require a reduced 

number of instructions due to the integrated scatter/connect processes. The serial 

execution of the software would allow the use of an arbitrary mesh geometry. It has 

been demonstrated above that the principle of a three row swap array extends to parallel 



scattering events as long as they all occur in the same row of the model. Therefore this 

solution could be extended to processing partitions of the mesh up to one row long in 

parallel. The partially serial execution of such a system would provide an increase in 

throughput without placing a limit on the mesh size. This fulfils the requirements of the 

connect process defined in section 5.2. Consequently the objectives laid out in chapter 1 

that the processor should not limit the mesh size or configuration are also met. 

Scattered Data is Written 
to the Connect Memory 

Figure 5.2a - Flow of Data Through the Connect Procedure 

The above software based solution may be mapped into hardware. The incident data and 

swap arrays of the software are replaced by semiconductor memories respectively called 

the main store and connect memory. The scatter routine becomes an array of bit serial 

scattering processors and the connect process is mapped to routing logic. This results in 

the architecture offigure 5.2(a-b). 
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Main Store ~-----~ Scatter Processors 

Connect Memory Connect Logic 

Figure 5.2b - Block Diagram of the Complete TLM System Architecture 

5.3.1 Connect Memory Architecture 

Consider an implementation of the above system in which an array of scatter processors is 

used to process a TLM mesh one row at a time. The main store memory holds the 

incident data array. Figure 5.3 shows a memory map of the main store. The memory 

holds four words of data for each scatter processor. It therefore has a width of 4NP bits 

for a system with NP scatter processors. Each address holds a bit slice containing one bit 

from each of the 4NP data words. Reading from consecutive addresses thus produces the 

input data for each processor in a bit serial format. Each group of M bit words requires 

M+2 addresses to hold the boundary code and the data. Consecutive blocks of M+2 

addresses hold data for consecutive groups of NP nodes within the mesh. A simple 

counter may be used to address the main store. This provides the data to the scatter 

processors in the correct order to process the entire mesh. Data scattered from a given 

node will be written to non-adjacent locations in the main store. The purpose of the 
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Figure 5-3 Memory Map of the Main Store Memory 

connect logic is to re-order the scattered data such that it may be written back to the main 

store in the same ordered, bit slice format. This removes the need for a sophisticated 

write addressing scheme, thus minimising the processing costs of implementing the 

connect function. 

The output from the main store is routed to an array of scatter processors. The scattered 

data output from the processors is routed via the connect logic to the connect memory. 
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5.3.2 Connect Logic Architecture 

The purpose of the connect logic is to route data from the scatter processors to the correct 

location in the connect memory, dependent upon the boundary conditions at the scattering 

nodes. Each branch of each node in the array receives scattered data from one of two 

locations. These are the correct branch of an adjacent node (no boundary present) or the 

same branch of the node at which the scattering took place (boundary present). The 

choice of location is dependent upon the boundary data tagged to the front of each data 

word (chapter 4). The value 00 represents no boundary, therefore any non-zero code 

represents the presence of a boundary. A suitable circuit for the connect logic may be 

constructed from the basic components shown infigure 5.6. The boundary data for 
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Figure 5-6 • Basic Connect Logic Components 
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each branch is stored in two flip-flops as it is read from the main store. An OR gate is 

used to generate the boundary flag for that branch if a '1' is present in the boundary data. 

The actual value of any non-zero boundary code is irrelevant to the connect processor as 

all computation is performed by the scatter processor. The boundary flag is used as the 

control input to a multiplexer, the output of which is routed to the connect memory. The 

boundary flag selects whether the memory receives data from the scatter processor or 

from the previous line in the connect memory (the adjacent node). In the case of data 

passed between nodes within the scattering row, row 2, a pair of multiplexers are used to 
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either swap impulses between adjacent nodes or route data back to the scattering node. A 

delay, generated by a short chain of flip-flops, is introduced between the OR gate and the 

multiplexers. This is to compensate for the time required for the incident data associated 

with the boundary data to pass through the scatter processor pipeline. 

5.4 A Complete Application Specific System for TLM 

The scatter processor of chapter 4 and the connect logic and associated memory 

described above may be combined to produce a complete application specific processor 

for TLM using the architecture of figure 5.2b. The incident data array is mapped to a 4NP 

wide dual port memory of sufficient depth to store the boundary data and incident 

impulses for all nodes in the mesh. The nodes within the mesh are numbered starting in 

one corner at 0 and proceeding along the row to Mw-1 for a mesh of width Mw, the node 

below 0 becomes Mw, progressing along the second row to 2Mw-1 and so on. The choice 

of starting corner and row direction is arbitrary. The scatter block contains some number 

of scatter processors, NP, such that NP::;; Mw. The main store memory is organised using 

the bit slice architecture of figure 5.3. Processing follows a cycle of events. 

• Data for the first NP nodes is read bit serially from the incident data memory, the main 

store, on each rising clock edge and received by the scatter processors. The boundary 

code within the data is also received by the connect logic. 

• After 5 clock cycles, during which the scatter processor pipeline fills and outputs the 

boundary data and discard bit, the first bit of scattered data is output from the scatter 

processors and the connect logic applies the new boundary conditions. Valid data is 

subsequently output from the scatter processors in each clock cycle. 

• The connect logic routes the scattered data to the correct locations within the connect 

memory dependent upon the boundary conditions at each node. 

• These steps are repeated for subsequent blocks of NP nodes until the end of the row is 

reached. 

• Data from memory row 3 is written back to the main store where it forms the incident 

data for the next iteration. Data from memory rows 1 and 2 are transferred to memory 

rows 2 and 3 in accordance with figure 5.4b. 

• The above cycle is repeated for subsequent rows of the mesh. 

• When the final node is reached processing begins again at node 0, stopping when the 

required number of iterations have been performed. 
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In practice the use of dual port memory or a write through architecture allows the transfer 

of data between the rows of the swap array while the new scattered data is being written. 

The connect process then runs in parallel with the scatter process and consumes no 

further clock cycles. The communications overhead, shown in chapter 1 to be a 

significant parameter in determining the efficiency of a system, is therefore zero in this 

case. 

5.5 Discussion 

The system described by the architecture of .figure 5.2b forms a complete, self-contained 

processor for TLM. Unlike previous TLM processors both scatter and connect have been 

~ mapped to optirnised hardware. The system meets the requirements for the connect 

process defined in section 5.2. To summarise: 

• The two dimensional connect process is correctly performed by the connect logic and 

associated memory. 

• The bit serial organisation of data within the memory and the fact that consecutive 

groups of NP nodes occupy consecutive blocks of memory mean that data within the 

main store is accessed sequentially. This allows the use of arbitrary data lengths by 

removing the dependence of both the address generator and memory width on the data 

length. The timing of the control signals by which the connect logic sets the boundary 

flag are data length dependent. However, as it is logical to use the same data length 

throughout the model, a simple counter with a reset register pre-loaded with the data 

length would suffice. The control logic is then activated at specific counter values. 

• In order for the connect logic to work each boundary must be specified twice. 

Consider the mesh of .figure 5.7, the connect logic requires that the boundary be 

defined on both branch 2 of node (x+l,y) and branch 4 of node (x,y). However the 

reflection coefficients of the two boundaries may be different, allowing the inclusion 

of anisotropic boundaries within the mesh that behave differently depending upon the 

direction of propagation. 
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Figure 5-7· Boundaries Must be Specified From Both Directions However Each Direction May Have 
Independent Properties 

• The connect logic allows the connect process to be applied to a discrete region of the 

mesh without affecting calculations performed on the rest of the mesh. Thus scatter 

and connect may be performed concurrently in this region. By removing the direct 

interconnect schemes of traditional SIMD arrays the mesh size becomes independent 

of the number of scatter processors available. The system therefore has the flexibility 

of a serial implementation with the performance advantages of partial parallel 

processing of the mesh. 

• Each scatter processor acts independently. The architecture of the connect logic is 

therefore scalable to any given number of scatter processors without penalty. There is 

no communication between the scatter processors. Each processor receives its input 

operands from memory and writes its outputs to memory, via the connect logic. 

Because of this the formation of an array of scatter processors does not impose any 

extra communication overhead to the processing time. Each processor in the array 

operates at the same rate as it would were it a single processor system. The efficiency 

of the processor array is therefore theoretically 100%. 

• A block floating point scheme may be implemented by the connect processor. 

Normalised fixed point inputs are used, such that the maximum value on ariy branch of 

a node is 1. The maximum value of the scattered output on any branch, from equation 

1.4, is then 1. Overflow at the outputs of the processor will not occur with this 
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scheme. The discard bit formed by the divide by two may be held in the main store as 

the least significant bit of data. This requires 1 extra bit of storage per word. This bit 

is not read on a normal iteration. However if the system detects that none of the 

branches has significant data in its most significant bit the array may be left shifted and 

the block exponent decremented. The left shift is performed by offsetting the main 

store read address generator by one to include the discard bit. As long as the same 

number of bits are read the word length will be maintained and the redundant most 

significant bit will be dropped to facilitate the left shift. Preserving the discard bit 

prevents normalisation errors, which would otherwise propagate rapidly through the 

data. Thus the word length is maintained without decreasing the signal to noise ratio. 

The logic required to detect the need to shift the array may be built in to the connect 

logic or the scatter processor. A flag is set at the start of each iteration. The processor 

monitors the two most significant bits of each scattered word. These are the most 

significant data bit and the sign bit. If both of these bits are the same then a left shift 

can be performed without changing the sign or corrupting the data. If any word has 

different values for these two bits then the flag is cleared. If the flag is still set at the 

end of the iteration then the whole array can be shifted and the exponent decremented. 

The sensor logic required consists of exclusive OR gates to test each word, OR gates 

to combine the tests and a latch to store the result. Shifting the array and storing the 

exponent is the job of the host system. 

There are however still some limitations imposed by the architecture. 

• The maximum number of scatter processors is limited to Mw, the number of nodes in 

one row of the mesh. This limits the number of nodes that may be executed in 

parallel, and consequently limits ultimate performance. 

• The connect process requires a regular, rectangular mesh. For optimum performance 

the width of the mesh, Mw, should be some integer multiple of NP. 

• The bit serial design produces a very efficient scatter processor capable of millions of 

operations per second. These processors generate new input and output data in each 

clock cycle, therefore relatively expensive, low access time SRAM is required for the 

main store and the connect memory to provide data at the rate required. 

• The array size is limited by the capacity of the main store memory and the word 

length. 
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5.6 A High Access Time Memory Architecture 

In order to process large TLM problems the system requires a large main store to hold the 

array. The low access time memory required for the main store in this architecture is 

expensive. Increasing model sizes lead to rapidly escalating system costs. Replacing the 

main store in the architecture of figure 5.2b with slower SRAM or DRAM memory 

would reduce the costs but would lead to a reduction in throughput due to the lower data 

transfer rates available. The design of section 5.4 uses a bit serial memory organisation. 

An alternative is to use a data parallel memory organisation. Slower SRAM or DRAM 

memories may be used for the main store in this design. Impulse data is fed in to shift 

registers that perform a parallel to serial conversion and are capable of providing the high 

input data rates required by the scatter processors. Similar shift registers perform a serial 

to parallel conversion on the output data before it is written back to the main store. By 

double buffering the shift registers the scatter processors may be supplied while the data 

for the next NP nodes is read from the main store. Only the main store is affected by 

these changes. The rest of the system remains unchanged. 

In reducing the cost of the system the new architecture loses some of the flexibility 

inherent in the original design. 

• By introducing a data parallel organisation to the main store the boundary data 

becomes an integral part of the data. It is no longer possible to skip this part of the 

data when writing back to the main store as it forms part of the current parallel word. 

This problem may be overcome either through the use of a read-modify-write 

architecture or by placing the boundary data in a separate memory. 

• The size of the input and output shift registers and the width of the main store memory 

restrict the data length. The most efficient use of resources occurs when the memory 

width matches the word length. The availability of suitable components then dictates 

that the word length should be some multiple of 4 or 8 bits. 

Several video RAM (VRAM) chips are commercially available which incorporate a wide 

SRAM with a fast parallel in-serial out shift register in a single package. These may be 

suitable for an implementation of a data parallel main store, however the problems 

surrounding the inclusion of boundary data into the serial data stream are exacerbated by 

the lack of access to taps within the shift register. 
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5.7 Conclusions 

Two architectures have been presented for a complete application specific system for 

processing a two dimensional TLM mesh. The first approach utilises high speed, high 

cost components. The latter sacrifices some flexibility in order to reduce the cost of the 

system while maintaining performance levels. This is achieved by using a data parallel 

main store. The key to both systems is a unique mapping of the TLM connect process in 

to hardware. This mapping allows a fixed number of processors to operate on an array 

containing an arbitrarily large number of nodes. Processing sections of the array in 

parallel increases throughput and efficiency. However the design maintains the flexible 

geometry available in serial implementations. By generating an adaptable mapping of the 

array of scatter processors on to the mesh a small number of processors may be used to 

process models of arbitrary size. This is a considerable step forward from the limitations 

of existing large scale parallel computers. However by restricting parallel processing to 

partitions of the mesh throughput is reduced compared to a completely parallel 

architecture. There is a tradeoff between partition size, memory bandwidth and 

throughput. As partition size and therefore throughput increases, so the number of scatter 

processors must increase. The number of processors that may be accommodated within a 

given system is limited mainly by the databus width of the device in which the scatter 

processors are implemented. 

Figure 5.3 shows how the required bandwidth of the main store increases with the 

number of scatter processors, NP. A similar relationship exists between Nand the width 

of the connect memories. There exists an optimum point beyond which the cost of 

developing wider memories outweighs the increase in throughput produced. However 

given the current low cost of SRAM the development of wide, shallow memories is a 

feasible proposal. As most systems which would be used to extract data from the TLM 

processor will operate on a fixed bus width, usually 8, 16 or 32 bits, there may be a need 

for extra logic to match a wide main store to a narrower output channel. 

The system presented above performs both scatter and connect operations in parallel. As 

the connect process adds no overhead to the calculations the throughput of each processor 

in the system is equal to that of a stand alone bit serial node. This was calculated in the 

previous chapter to be 2.28 x 106 scattering events per second per processor, assuming 32 

bit data. The efficiency of the system is therefore close to 100%. There is a slight 

reduction in throughput due to increased resource usage within the FPGA, so that the 
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efficiency never quite reaches 100%. The number of processors implemented 

concurrently determines the achievable speed-up. Speed-up thus becomes a factor 

determined by a specific implementation of the system. It is directly proportional to the 

number of processors implemented in the scatter array. 

The complete system for the 2D shunt node represents the achievement of milestone 4. It 

also represents a completely new class of self-contained, application specific processors 

forTLM. 
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6 A Stub Loaded Shunt Node Scatter Processor 

6.1 Introduction 

The preceding chapters have introduced a new class of application specific TLM 

processor. This processor addresses many of the shortcomings of previous 

implementations of TLM on parallel and application specific platforms which were 

described in chapter 1. However in order to maximise the throughput of the 

processor the TLM algorithm is mapped directly to the hardware. This direct mapping 

restricts the new processor to a single fonn of TLM, the 2D shunt node. 

There are four main types of TLM node. These are the 2D shunt node, the stub loaded 

shunt node, the symmetrical condensed node (SCN) and the symmetrical super 

condensed node (SSCN). The physical relationship between the shunt node and the 

stub loaded shunt node is clear. It was stated in chapter 1 that the SCN is the · 

equivalent of the distributed 3D node, made from a combination of shunt and series 

nodes. Similarly the SSCN must, under certain conditions, be identical to the SCN. 

The hierarchy of the nodes thus traces back to the shunt node. It is reasonable 

therefore to assume that the developments made in the preceding chapters regarding 

the shunt node may be extended to cover each of the other 3 types of node. 

Some redundancy must be introduced to create a general purpose TLM processor. In 

order to minimise the redundancy, optimised fonns must be found for implementing 

each of the node schemes. This has already been done for the shunt node. This 

chapter considers the concept of an optimised processor for the stub loaded shunt 

node. Subsequent chapters will study the implementation of the three dimensional 

nodes, the SCN and the SSCN. The aim of this study is not to build and test such a 

processor but rather to understand the requirements of each processor within the 

context of the existing system. This understanding will allow a general purpose 

design to be implemented more efficiently. The advantages inherent in the use of a bit 

serial architecture for both the scatter and connect logic have been demonstrated. The 

conceptual designs for the new TLM nodes must therefore draw on the shunt node 

design in order to preserve these advantages. 
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Chapter 1 introduced the concept of modelling lossy and inhomogenous media in two 

dimensions by adding stubs to the basic two dimensional shunt node. This chapter 

investigates the development of a new application specific processor based around 

this node configuration. The requirements for mapping the theory in to hardware are 

considered. An application specific processor for the stub loaded shunt node is 

developed from these requirements. 

6.2 Requirements of an Application Specific Processor for the Stub 
Loaded Shunt Node 

Section 3.2 highlighted the key considerations in the development of an application 

specific processor for TLM. These were algorithm development and hardware 

development. This section applies these considerations to the concept of an 

application specific processor based around the stub loaded 2D shunt node. 

6.2.1 Algorithm Development 

Scattering at the stub loaded shunt node may be expressed in the form 

(6.1) 

The stub loaded shunt node requires more complex hardware than the basic shunt 

node due to the extended form of the scattering equation. Significantly the 

multiplication factor of Yz in equation 1.4 is replaced by a factor of 2 I (4 + Yo +go). 

Except in a few specific cases where 2 I (4 + y0 + g0) =e-n, n = { 1,2,3 ... m} this 

multiplication can no longer be performed by a shift operation. Instead a hardware 

multiplier is required. A number of multiplier algorithms were described in chapter 

2. Due to the complexity of the multiply operation c.f an addition the multiplier 

becomes the main hardware component of the node. The optimum form of the 

scattering equation for hardware implementation must therefore minimise the number 

of multiplications performed. 

The scatter equation as given in equation 6.1 requires only two multiplication 

operations, the multiplication of the stub voltage by y0 and the multiplication of the 
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total incident energy term by 2/y. The equation has a form similar to that of equation 

1.5, which has been shown in previous chapters to map efficiently onto hardware. No 

form of equation 6.1 with less than two multiplications exists thus this form 

minimises the number of components required. However, while the number of 

multipliers used is an important consideration, the form of the algorithm used can 

impact upon the design in other ways. 

With the inclusion of multipliers to the stub loaded shunt node processor the potential 

for the creation and propagation of truncation errors increases. This may be reduced 

through careful choice of numerical representation. 

In order to select a suitable representation scheme for data within the processor the 

range of values to be represented must be known. Consider a closed system in which 

the total energy input to the system is less than unity. For simplicity the system is a 

single node with p = 1 boundaries on all four branches and a single stub of normalised 

admittance yo. Consider an initial impulse applied to each of the four main branches 

of the node. 

Vt = Vz = V3 = V4 = Vx 

Vs= 0 

After a single iteration this yields 

2 
Where y = ---

4 + Yo 

V TOT = Vt + V 2 + V 3 + V 4 + Vs = 4 . V X 

VI = V2 = V3 = V~ = (4y - 1) V X 

Vs= 4yVx 

This may be expanded to yield 
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Since 

We find that 

Yo 
c, = 1 +-

4 

0 ~ Vl-4 ~ V X} 8, ~ 2 

-Vx~Vi-4<0 8,>2 

0<Vs<2Vx 

In the following iteration the total energy incident upon the node becomes 

Vmr = 4[( 8 J - 1] V x + ( 
8 

Yo J V x 
4 + Yo 4 + Yo 

= (4 + Yo{ 
8 J V X - 4 V X \4 + Yo 

= 4 Vx 

Thus the total energy within the system is conserved. With the introduction of loss 

stubs the total energy will decrease but under no circumstances may it increase. If we 

impose the condition V mr < 1, the maximum value of the impulse scattered in to any 

given branch is also less than 1 and, from above, the maximum impulse scattered in to 

the stub is Y2. A fixed point data scheme is therefore suitable for storing the total 

energy and the data for each branch of the node, including the stub. The concept of an 

implied fractional point in binary data was introduced in chapter 2. By storing fixed 

length data such that the implied point is at the extreme left a wholly fractional 

number is formed. Impulses within the mesh may be stored in this way by 

normalising initial inputs with respect to a maximum total energy value of 1. 

It is clear from the above that if y0 > 2 intermediate values in the calculation of 

equation 6.1 will be greater than one. These must be stored using a different 

representation, potentially one in which the fractional point lies at some point within 

the number. The range of numbers required will determine the placement of the 

fractional point. From above the maximum value scattered in to the stub is Y2, 

therefore the maximum value generated by the stub multiplier is yo/2. 
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The need for a separate number representation for intermediate values may be 

removed by rewriting equation 6.1 as 

(
2 ~ . 2 Yo ·J k+tV~= -LJkV~+--V~ 
Y m=! Y 

(6.2) . 

The term 2yo/y is 0 when y0 = 0 i.e. no stubs are present, is asymptotic to 2 as Yo 

increases (See .figure 6.1). It was shown above that the maximum value that may be 

scattered in to the stub is Yz, so the maximum product of the right hand side of the 

total energy term in equation 6.2 is 1. This result 

2 r-=;:::==---.,.,-----, 

2 ·yO 
---1--
4 + yO 

-

o~--------~'------~ 
0 500 1000 

0 

Figure 6-1 Plot of Stub Parameter 2y0/y 

is consistent with the principle of conservation of energy which must be obeyed by the 

node. All intermediate values within the calculation may therefore be represented 

using a fixed point notation. The parameter 2yo/y may be stored to any given accuracy 

by increasing the word length, W. No overflow errors are generated in the 

multiplication on the left hand side of the total energy term as the product of two 

numbers less than one will itself always be less than one. The fixed point multiplier 

contributes the same mean value to the noise level as each of the adder stages. This is 

the equivalent of a truncation of the output to a length of W. 

6.2.2 Hardware Development 

The hardware development path described in chapter 3 was followed in the 

development of the stub loaded shunt node processor. Experience gained on the basic 
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shunt node processor demonstrated that in order to maximise the performance of a 

circuit synthesised from VHDL a structural description is preferable to a behavioural 

description. The structural description offers more control over the architecture of the 

synthesised circuit, as it may implicitly state the components to be used in 

performance-critical sections of the design. However if a particular form of multiplier 

is required a schematic based design may prove more efficient. This would allow the 

exact structure of the multiplier to be designed by hand instead of leaving it to the 

synthesis software. 

Given the increased complexity of the stub loaded processor it would be 

counterproductive to place and route the design manually. The Xilinx Alliance 

software allows the user to place and route a circuit automatically and analyse the 

propagation delays of critical paths. These paths may then be edited manually to 

achieve the desired level of performance. 

The advantages introduced through the use of a bit serial architecture for the TLM 

processor have been proven. These include a significant reduction in pin count and 

resource requirements and the ability to perform calculations to arbitrary precision. 

The stub loaded shunt node architecture needs to preserve the bit serial aspect of 

previous designs in order to gain these advantages. However any gains must be 

weighed against the increased processing time of a bit serial multiplier. 

As energy scattered in to a stub is returned directly to the node from which it was 

scatteredRl there is no change in the connect routine. Preserving the use of a bit serial 

architecture therefore also allows the stub loaded scatter processor to interface with 

the connect hardware developed in chapter 5. As there are significant advantages in 

relation to mesh geometry offered by this system, this is an important argument in 

favour of retaining a bit serial architecture. 

6.3 System Design 

A block schematic of an application specific TLM processor for modelling 2D 

inhomogenous media using the stub loaded shunt node is presented in figure 6.2. 

The only noticeable change from the non-stub loaded circuit of .figure 5.2b is the 

addition of the stub memory. Each node has one permittivity stub for which the 

Rl Loss stubs are an exception to this rule. Energy scattered in to a loss stub is absorbed at the stub 
termination and is not returned to the node. 
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values 2yo/y, 2/y and Vs must be stored. Therefore the stub memory is 3NP bits wide 

for a system with NP scatter processors. Using a separate memory for the stub data 

leaves the architecture of the main store unchanged, providing backward compatibility 

with the non-stub loaded system. Data scattered in to the loss stub, if present, is 

absorbed and therefore does not require storage. Scattered stub data is routed directly 

back to the stub memory and does not pass through the connect logic. These features 

allow full backward compatibility with the previous system. The connect logic is 

unchanged by the introduction of stubs, therefore the only processing changes occur in 

the scatter logic. 

Main Store ~ 
Scatter ~ ~ Stub Memory 

Processors 

L(~ 

"(7 

Connect Memory ,/1- Connect Logic "'--

Figure 6.2 - Architecture of a Stub Loaded Shunt Node TLM Processor 

Multiplication in the scatter processors is performed using the fast serial-parallel 

multiplier described in chapter 2. By fixing the length of the stub parameters the FSP 

multiplier architecture remains independent of the data length used. Most genuine bit 

serial multipliers operate on a fixed word length, requiring all data to be sign extended 

to 2W bits long. A fast serial-parallel multiplier is therefore preferred to a genuine bit 

serial multiplier in order to maintain capability to arbitrarily choose the word length 

and to reduce the amount of data storage required. A parallel adder is used for the 

final summation of the bits in the carry chain to prevent the need for sign extension of 

the data. This also reduces processing time. The FSP multiplier is composed of full 

adders and delay elements. It is therefore well suited to the granularity of the Xilinx 

target device. 

The architecture of the stub loaded scatter processor is shown injigure 6.3. The 

processor has seven inputs. These are the four incident branch impulses, the stub 

voltage Vs and the stub parameters 2/y and 2yo/y. A pipeline of full adders provides 
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the summation of the non-stub incident impulses. Two pipeline stages are required to 

obtain the total incident non-stub energy. This total is multiplied by the impedance 

parameter 2/y while the stub voltage is multiplied with the parameter 2yo/y. The latter 

product is then routed via three delay elements to a further full adder which sums the 

two products to produce the product of the total incident energy and 2/y, which may 

be accessed via the TOTAL output signal. This sum is routed to the five single bit 

wide subtractors that generate the reflected impulse values. These are output via the 

five output ports to the connect logic or stub memory as appropriate. For data and 

stub parameter word lengths of Wand W respectively the product will be of length W 

+ W bits. As only the W most significant bits of the product up to the fractional point 

are required the first W bits produced must be discarded. This may be done after the 

VII VI3 _2_ 
y 

2y0 
y 

B A B 

Figure 6.3 • Architecture of the Stub Loaded Shunt Node Scatter Processor 

VIS 

summation of the products, as the increased word length during the summation will 

minimise truncation errors. The processor contains 5 pipelined stages, each 

contributing the same amount to the mean noise level. The shunt node processor had 

three such pipeline stages. The mean noise at the output of the stub loaded shunt node 

processor is therefore approximately 5/3 that of the shunt node processor. 
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6.3.1 Stub Memory 

The stub memory must store the values of the stub parameters 2yofy and 2/y, and the 

stub voltage for all nodes in the mesh. As the stub parameters are independent of the 

scattered data and do not change they can be stored in a separate memory. This 

prevents the need for a sophisticated memory management system to ensure that 

constant parameter data is not overwritten as the scattered data is changed. This 

potential hazard arises from the bit serial data organisation. Each address in a 

combined parameter/data stub memory would hold both variable (stub voltage) and 

read only (parameter) data. The stub memory thus consists of two separate memories, 

an NP bit wide SRAM which holds Vs for each node in the array and a 2NP bit wide 

SRAM which holds the fixed stub parameters 

6.4 Design Issues 

• A maximum size must be set for the multiplier registers that hold the stub 

parameters. The size of these registers defines the precision of the stub data and 

the range of relative permittivity that may be modelled. Table 6.1 gives values for 

some materials frequently encountered in electromagnetics. It is important to note 

that while a non-stub loaded section of the mesh represents a background medium, 

it need not necessarily represent a vacuum. The concept of relative permittivity 

must be discussed with reference to the permittivity of the background medi':lm. 

The length of the multiplier register, W, therefore sets the range of the permittivity 

relative to the background medium. The register should be large enough so as not 

MATERIAL Er 2yofy 2/y 

Air 1.0006 0.0012 ==Y2 

Polystyrene 2.56 1.218 0.1953 

Water (Sea/Distilled) 70 I 81 1.97 I 1.9744 0.007142 I 0.00617 

Silicon 11.8 1.83 0.04237 

Germanium 16.0 1.875 0.03125 

Table 6.1 • Relative Permittivity and Stub Parameters for Common EM Materials 

to limit the accuracy of the mesh parameters, however as the product requires W + 
W clock cycles to produce the register should not be made longer than necessary, 

thus incurring performance losses. The bit serial nature of the processor permits 

the use of arbitrary word lengths for the stub parameters provided the multiplier 
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register is sufficiently large. Therefore through reconfiguration of the registers any 

stub parameter precision may be accommodated. 

• The performance of the stub loaded processor will be inferior to that of the simple 

shunt node processor due to the increased number of clock cycles required to 

perform the multiply operations. A total of W + W clock cycles are required for 

each multiplication with an extra 4 clock cycles required for the 

addition/subtraction operations. The shunt node processor required only W + 3 

clock cycles to produce an output. 

• In order to simplify memory management and preserve the synchronisation of 

impulses within the mesh all stub parameters should be of the same word length. 

This may result in a loss of accuracy for smaller stub parameters. If the orders of 

magnitude between the largest and smallest values approaches the number of bits 

in the assigned word length then much of the smaller value consists of leading 

zeros. This may be overcome by increasing the word length, but at the cost of 

increased processing time. 

• The inputs to the processor must be delayed so that they appear at the inverting 

inputs to the subtractors at the same time as the first bit of total energy summation. 

In the shunt node processor the inputs must be delayed for three clock cycles. The 

introduction of the multiplier in the stub loaded processor requires a delay of W + 
W clock cycles. If W is large then long delay chains can be required. 

Additionally, the delay introduced will vary depending upon the mesh parameters; 

thus the delay chain must also be variable so as not to limit the range of these 

parameters. One way to introduce a variable delay is to use the Xilinx internal 

RAM capability to create a variable length FIFO. 

• The multiplicand registers for the two multipliers may be double buffered so that 

they are pre-loaded while the current calculation is in progress. As the multiplier 

registers must be loaded bit serially this operation can be a considerable source of 

latency if pre-loading is not used. 

• While the system retains the capability to vary stub parameters for each individual 

node, in practice the mesh parameters are usually constant over large regions. It is 

therefore often unnecessary to pre-load the multiplier registers for each node, rather 

only when local parameters change. However retaining the ability to alter the 

parameters for individual nodes increases the system's flexibility, as the processor 

is able to model gradually varying media. The arbitrary placement of boundaries 

between regions of differing parameters is also allowed. 
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6.5 A Boundary Equipped, Stub Loaded Scatter Processor 

The introduction of simple boundary conditions to the scatter processor was discussed 

in chapter 4. The use of a two bit code tagged to the front of each data word to 

indicate the local boundary conditions is equally applicable to the stub loaded 

processor. The preceding work has shown how simple boundaries, those with 

reflection coefficients of p = 1, -1 or 0, may be implemented through changes made to 

the subtractor stage of the processor pipeline. The operation of the subtractors is 

identical in both the stub loaded and non-stub loaded processor, so an identical system 

may be used. As stated above, the introduction of stubs does not affect the connect 

logic, and the implementation of boundaries within the connect logic is unchanged. 

6.6 Performance Issues 

The stub loaded shunt node scatter processor is applicable to the solution of a wide 

variety of problems in electromagnetics and many problems in acoustics. However in 

introducing the ability to model inhomogenous media the processor suffers a loss of 

performance. The increase in resources consumed by the node will lead to the use of 

less efficient routing within the FPGA, giving rise to a possible reduction in the 

maximum clock rate. For a word length of 32 bits plus a two bit boundary code the 

non-stub loaded processor produced a throughput of 2.3 x 106 scattering events per 

second. Assuming a stub parameter value of length 9 bits m, the stub loaded processor 

would be capable of 1.81 x 106 scattering events per second. This represents a 

reduction in throughput of 21% and assumes the maximum clock rate of the processor 

is not significantly reduced. A general relationship for the throughput is 

1 
t----------r------~ 

- 1.25x10-8 X (w + ws + 3) 

As with the simple shunt node processor, the word length is increased by 3 due to the 

boundary data and the discard bit. This function is compared to the shunt node 

throughput infigure 6.4. 

The connect logic is unchanged from the non-stub loaded system and therefore adds 

no overhead to the operation of the scatter processors. The efficiency of an array of 

stub loaded scatter processors, as for the non-stub loaded processor, will approach 

100%. 

"'An implied inaccuracy in the stub parameter of± 0.001 
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Figure 6-4- Stub Loaded Shunt Node Throughput versus Stub Parameter Word Length. Dotted 
line shows shunt node throughput 

6.7 Conclusions 

An application specific TLM processor has been developed around the 2D stub loaded 

shunt node. The node is fully compatible with the connect logic developed in chapter 

5. Integration of the stub loaded scatter processor in to the TLM system of chapter 5 

requires the addition of an extra memory bank and a reconfiguration of the scatter 

logic. The new system is fully backward compatible with the original. 

As with previous systems the stub loaded shunt node processor retains the use of 

arbitrary arithmetic precision and arbitrary mesh geometry. By utilising the same 

connect logic as the previous system the ability to process any size of rectangular 

mesh using a small, fixed number of processors is also retained. As with the shunt 

node processor, the efficiency of an array of stub loaded scatter processors integrated 

with the connect logic will be close to 100%. 

The increase in flexibility provided by the addition of stubs to the TLM mesh is offset 

by a loss in performance due to the increased complexity of the arithmetic, most 

notably the inclusion of 2 fast serial-parallel multipliers. However this reduction in 

throughput is only of the order of= 20-25% to the shunt node processor operating 

with the same precision. This is due to the increased number of clock cycles required 

for the stub loaded scatter operation and assumes a stub parameter word length of 
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between 10 and 16 bits. The word length used to store the stub parameters has a 

significant effect on the throughput. A balance must be struck between precision and 

performance. 
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7. Three Dimensional TLM Modelling using the 
Symmetrical Condensed Node (SCN) 

7.1 Introduction 

Most practical problems involving propagation phenomena exist in 3 spatial 

dimensions. The extension of TLM to modelling propagation in 3 dimensions has 

been well documented. A review of the theory has been presented in chapter 1. The 

basic building block of a 3D electromagnetic TLM mesh is the symmetrical 

condensed node (SCN)1 ,figure 7.1. An application specific scatter processor for the 

SCN is developed using the basic principles of algorithm development and hardware 

development. The concept of a three row connect logic is extended to operation in 

three dimensions. These two sections are combined to produce a complete system for 

three dimensional TLM modelling and the system's operation is discussed. 

Figure 7.1 The Symmetrical Condensed Node 
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7.2 Development of an Application Specific 3D TLM Processor 

The development of an application specific processor for the 3D TLM method 

requires the development of both an SCN scatter processor and a 3D connect 

processor. While the 2D shunt node processor of chapters 4 and 5 presents some 

useful techniques which may in principle be applied to a 3D processor, significant 

algorithmic differences exist. Principally these lie in the following areas 

• The 3D Connect Process - The 3D TLM method requires data scattered from a 

node to be transmitted to adjacent nodes in 6 directions. Data scattered within one 

plane of the mesh follows a pattern identical to that of 2D TLM. However 3D 

TLM also requires data to be transmitted to nodes in the planes above and below 

the scattering plane. The 2D pattern thus occurs in three planes of the model, 

figure 7.2. 

7/, 

Figure 7.2- Three Dimensional Scattering Comprises of2D Scattering Events in Three Planes 

• 2 Impulses per Link Line - Each of the 6 link lines of the SCN is composed of two 

orthogonally polarised branches. The connect process must therefore transmit two 

words of data in each direction. Boundaries must cope with the possibility of each 

branch having independent boundary conditions. 

• 6 Field Components Available- In 2D TLM energy distribution within the mesh is 

commonly visualised by plotting the total incident voltage or current at each node. 

This value represents a single field component. In the SCN 6 field components 

may be formed from appropriate combinations of the input impulses. Any of these 

components may be required for visualisation and should be provided by the 

processor. 

128 



7.3 The SCN Scatter Processor 

7.3.1 Algorithm Development 

The SCN has a scattering matrix of the form 

VI r 1 1 1 -1 VI 
v2 1 -1 1 v2 
VJ 1 1 1 -1 VJ 
v4 1 1 -1 1 v4 
Vs 1 -1 1 Vs 
v6 1 1 1 1 -1 v6 

-
v1 2 -1 1 1 V? 
Vs 1 -1 1 1 Vs 
v9 1 -1 1 1 v9 
VIO -1 1 1 1 VJO 
Vu -1 1 1 1 Vu 
vl2 1 -1 1 1 V12 

Examination of the scattering matrix reveals explicit solutions of the form 

VI = ~ (v~ + V~ + V~ - Vft) (7.1) 

However there is no simple rule for determining which of the arbitrarily numbered 

incident port voltages combine to produce each output. A suitable scheme may be 

developed based upon the notation of Trenkic2
• In this notation each port is labelled 

by three letters representing respectively the direction of the line, whether the 

direction is positive or negative with respect to the centre of the node and the port 

polarisation. Thus XnY is the Y polarised port in the negative X direction (this 

corresponds to port 3 in the notation of figure 7.1). We can further exploit the 

concept of data pairing within the SCN. A cursory examination of the scattering 

matrix reveals that certain pairs of ports, e.g. 1 and 12, are linked. When ever one of 

the pair appears in any row of the scattering matrix its pair also occurs. In some cases 

one of the pair is negated, however in no cases are both members of the pair negated. 

Using the dummy indices I, J, K = {x,y,z}, it is noted that pairing occurs between 

ports lpJ and InJ. We can utilise these facts to produce two relationships 
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where V1p1 is the incident voltage at port IpJ. 

The reflected port voltages are thus determined by 

(7.2) 

It is noted that the expanded forms of equation 7.2 correspond to the mathematically 

optirnised SCN equations developed by Trenkic3
• The 6 field components modelled 

by the node may be obtained from 

VI =VJI+VKI 

If = V'JK - V'KJ 

where the electric and magnetic fields are proportional to the voltage and current 

respectively in the required direction. When calculating the current, 1 and K are 

chosen such that JpK progresses around I in a right handed sense. 

7.3.2 Hardware Development 

(7.3) 

By expanding equation 7.2 we obtain explicit solutions for each port of the SCN. 

These are of a similar form to the solutions of the shunt nocif?. The principle 

operations performed are addition, subtraction and a division by two. Indeed each 

port of the SCN may be implemented using a shunt node processor given the correct 

input values and the selective use of a single output. This may be expected given that 

the SCN must be the physical equivalent of the distributed and asynchronous nodes 

described in chapter 1. These nodes are formed from networks of shunt and series 

nodes. 
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Figure 7.3- Architecture of the SCN Scatter Processor 

However the sequence of equations shown in equation 7.2 suggest a much more 

effidient structure. The architecture offtgure 7.3 implements the SCN algorithm in 

this form. The adders are developed using a bit serial architecture as used by the 

shunt node processors developed previously. These components were shown in 

chapter 4 to map efficiently to the hardware of the Xilinx FPGA. The processor 

retains the properties inherent in the bit serial architecture and discussed at length in 

previous chapters. These include the use of arbitrary precision and a significant 

reduction in hardware costs per processor. Each of the 12 parameters Vu and V'u is 

formed in a single pipeline stage using 12 bit serial full adders/subtractors. The 

output values may thus be formed using a second pipeline stage to produce the correct 

combinations of these parameters. Again only 12 bit serial full adders are required. 

Each scattered data sum is divided by two by discarding the first bit of the output. 

This architecture provides a considerable reduction in resource requirement compared 

to a processor developed from a combination of shunt nodes. This is evident from the 

reduction in the number of adders used by the processor, 24 as opposed to 84 required 

for the shunt node configuration. Further reductions arise from the order in which 

operations are performed. In the SCN processor all subtractions are performed in the 

first stage of the pipeline, therefore there is no need for extra logic to produce delayed 

copies of the input streams. Writing the algorithm in this way also reduced the 

number of stages of logic in the pipeline. Each stage contributes to the total noise at 

the output. This architecture therefore minimises the total noise. 

As the SCN processor uses identical components to those of the shunt node processor 

it is also well matched to the granularity of the Xilinx FPGA. A single node requires 
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24 CLBs and 25 pins including a clock input to control the flow of data through the 

pipeline. 

7.3.3 Implementation of Boundaries in the SCN 

Boundaries within a 3D SCN mesh are placed a distance fll/2 from nodes to preserve 

the synchronisation of data within the mesh. Boundaries with reflection coefficient p 

are traditionally implemented by modifying the connection equations in the following 

manner. 

k+t V~ (x, y, z) = Pk V~ (x, y, z) 

It was demonstrated in the development of the shunt node processor that the 

computational elements of the above may be moved to the scatter processor, thus 

reducing the connect process to the routing of data. This eliminates any 

computational latency from the connect process and allows the processor array to 

operate at maximum throughput. However in that case the boundary calculation is 

performed by modifying the subtract stage in the pipeline. The architecture of the 

SCN does not provide a single stage at which this modification may take place, 

therefore a new technique is required. The use of integer data restricts the boundary 

conditions which may be readily implemented to those of reflection coefficients p = 0, 

1, -1. A two bit code is added to the front of each data word to specify the presence 

and type of any local boundaries. The code specified in table 4.1 may be used. This 

code is interpreted to set two flags, the zero flag (ZF) and the inversion flag(IF). The 

nature of these two flags was defined in chapter 4. The output at each port is ANDed 

with the active low ZF and is hence forced to zero when ZF is asserted. The inversion 

flag must produce the 2s complement of the data output from the second stage of the 

pipeline. This may be generated by inverting all bits in the output and adding the 

result to OOOlH. This technique would obviously require an extra stage in the pipeline 

as an extra adder must be inserted in to the output stream. This stage would 

effectively subtract the output from zero. A simpler method of generating the 2s 

complement is presented infigure 7.4. The effect of converting a 
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Figure 7.4- 2s Complement Logic 
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number to its 2s complement is that all bits up to and including the first '1' remain 

unchanged while all subsequent bits are inverted e.g. 

1310 

0110(1) 

810 

0(1000) 

-1310 

1001(1) 

-8w 

1(1000) 

The circuit operates on a similar principle to that of the subtractor modifier used in the 

shunt node. That is when a bit is XORed with '0' its value is unchanged where as 

XORing with '1' inverts the bit. The circuit uses a transparent latch, the output of 

which is fed back via a flip flop to form the gate signal. At the start of each data word 

the reset signal sets the gate to open. Any preceding zeros pass through and, as the 

gate signal is active low, do not change the gate conditions. The first '1' in the data 

word is passed through and is clocked on the next rising clock edge, latching the gate 

shut to prevent the data from changing again until the reset signal is applied. The 

output of the flip flop is ANDed with IF and XORed with the output data. Thus if IF 

is negated the output of the AND gate is '0' regardless of the state of the latch and the 

output data is unchanged. If IF is asserted the output of the AND gate becomes ' 1' on 

the clock cycle after the first '1' is presented, thus all data after the first '1' is inverted. 

The advantage of this circuit is that it may be compressed in to two LUTs, i.e. a single 

CLB, with one LUT providing the complete latch, AND gate and XOR gate and the 

second LUT and associated flip flop producing the gate signal. The increase in 

propagation delay of the circuit is therefore only - 5ns. A small transient signal 

change may occur in the output following the first active clock edge after the first '1' 
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is output. This is due to the propagation delay in the AND gate LUT. Careful 

selection of the time at which the output is sampled prevents this transient from being 

propagated as data. 

As the boundary flags are set for each port individually it is possible to specify 

different boundary conditions for each of the 2 cross-polarised ports within a single 

branch of the node. This may be useful for modelling anisotropic or polarising 

materials. Indeed it is possible to specify a boundary upon one polarisation while 

transmitting data of the opposite polarisation unchanged. 

The six field parameters modelled at the node may be produced by combining two of 

the 12 parameters from the first pipeline stage, equation 7.3. Generating each field 

parameter requires a single CLB. Six output pins are required for the field parameter 

data, however a single pin may be used with a mutliplexer to select a single parameter 

for output. This method reduces the pin count and the routing resource requirement of 

the node. In many practical cases only a single parameter is considered, therefore the 

latter scheme offers an acceptable compromise between flexibility and cost reduction. 

7.4 The 3D Connect Processor 

With the implementation of boundary calculations in the scatter processor the design 

of the connect processor becomes that of a 3D data router. In an SCN mesh data is 

scattered in 6 directions. As with 2D TLM, impulses on the mesh travel a distance !ll 

in an iteration period M. Thus scattered impulses become incident upon neighbouring 

nodes in the next iteration. Consider data scattered from a row of SCNs within a 

single plane of a 3D model. Data is scattered to neighbouring nodes in that plane in a 

pattern identical to the 2D connect process. However two impulses are transferred 

between nodes in each direction. Along with this 2D-type scattering within the plane, 

impulses are scattered to neighbouring nodes perpendicular to the plane. Scattered 

data may be routed to a connect memory as in figure 5.2a. If scattering progresses 

along each plane of the model one row at a time as in the 2D processor, data scattered 

within the plane may be transferred the 3 row connect memory developed in section 

5.3. This must be modified to allow for the scattering of 8 impulses within the plane 

as opposed to 4. Each impulse must be routed individually based upon its own local 

boundary conditions. Impulses scattered perpendicular to the plane must be stored 

until they are written back to the main store. This requires extra storage for 2 planes 
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in the model. A complete TLM processor architecture incorporating a 3D connect 

architecture is shown infigure 7.5. 

Previous Plane 

Current Plane 

Next Plane 

Main Store 

Connect Memory ~r-----1 

Figure 7.5 ·Block Schematic of the SCN Processor 

Scatter 
Processors 

Connect Logic 

Data is passed from the main store to an array of SCN scatter processors. The 

scattered output data is routed via the control logic to one of three locations within the 

plane memory. 

• The 2D-Type Connect Memory- This memory consists of three blocks of SRAM, 

each sufficient to hold 8 data words for each node in one row of one plane of the 

mesh. 

• The Next Plane Memory - This memory consists of a single SRAM sufficient to 

hold two data words for each node in one plane of the mesh. 

• The Current Plane Memory- This memory consists of a single block of SRAM 

sufficient to hold all data (12 data words) for all nodes in a single plane of the 

mesh. 

The operation of the plane memories is analogous to the operation of the three rows in 

the 2D connect memory. As data is passed between the rows each location is filled 

such that when the data is written back the main store all locations hold pertinent data 

for the next iteration. Data scattered within the plane of the scatter processors is 

routed to locations within the 2D-type connect memory. The next plane and current 
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plane memories hold respectively data scattered in to the next plane to be scattered 

and the current plane in which scattering is taking place. Data output from row three 

of the 2D-type connect memory can not be written back to the main store as the 

scattering window, the causal region in which scattering events may affect 

neighbouring nodes (section 5.3), becomes a sphere of radius 111 in 3D. Nodes in the 

current plane will therefore still fall within the scattering window of nodes in the next 

plane. The scattered data is instead written to the current plane memory. Data 

previously held in this memory is written back to the main store along with any 

impulses passed back to the previous scatter plane. The boundary data of the two 

ports linking to the previous scatter plane must be held until the data is written back to 

the main store as it is required to multiplex the data direct from the scatter processors 

and data from the current plane. Data scattered to the next plane is held in the next 

plane memory and must also be stored until the scattering window has passed that 

plane for the current iteration. Data currently held in this memory is passed to the 

current plane memory as scattering progresses on to the next plane in the mesh. 

This is illustrated infigure 7.6, which shows how the scattered data is accumulated 

for each node as the scattering event moves through the array. 

The 3D connect logic minimises the amount of memory required by the processor by 

only storing the data that falls within the causal region of the scattering event. As 

with the 2D connect logic it eliminates the traditional! node per processor mapping. 

This allows a small array of scatter processors to operate on a cuboid mesh of arbitrary 

size. Data scattered within the current plane is processed in a manner similar to the 

2D connect logic. The maximum number of scatter processors is therefore limited to 

the number of nodes in one row of the mesh. This ensures that the connect logic does 

not overwrite incident data for the current iteration. 

The connect logic and main store use a bit slice architecture as introduced for the 

shunt node processor in chapter 5. It was shown in chapter 5 that such an 

architecture may be easily adapted to implement a block floating point scheme. The 

amount of storage required is increased by one bit per word to hold the discard bit. 

This is necessary to prevent normalisation errors when the array of data is shifted. 

The use of a block floating point scheme is particularly important in 3D TLM where 

larger arrays often require considerably more iterations to yield a solution than 2D 

models. The block floating point scheme effectively increases the word length to 

allow the storage of extra significant bits as the array is shifted. This reduces the 

noise added in each computation, hence the total noise added during a large number of 

iterations is reduced. 
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Figure 7.6 - Routing of Scattered Data Within the 3D Connect Memory 

7.5 Conclusions 

In this chapter the extension of the TLM processor to three dimensions using the 

symmetrical condensed node has been reviewed. A compact notation for scattering at 

the node has been developed. An application specific scatter processor has been 

developed to implement the SCN. By maintaining the bit serial architecture and 

encoded boundary representation developed in chapter 4 for the 2D shunt node the 
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system is able to use arbitrary word lengths and arbitrary boundary placement. The 

2D connect processor has been adapted to operate in three dimensions. This allows a 

small number of scatter processors to operate on a cuboid mesh of arbitrary size up to 

that permitted by the available memory of the system. 

The scatter logic for the SCN processor is very similar to that of the 2D shunt node, 

hence throughput for a single node may be expected to be of a similar rate. Each word 

of length Whits requires W + 3 clock cycles to produce an output. The SCN processor 

requires only two pipelined stages compared to three in the shunt node. The latency 

of the processor, i.e. the time between the first bit entering the pipeline and the first bit 

being output, is therefore reduced. Each pipeline stage contributes to the overall noise 

at the output, so the SCN processor can be expected to have a lower total noise than 

the shunt node processor. 

As with the 2D processors developed in chapters 4 and 5, no computational latency is 

introduced by the connect logic. The efficiency of an array of SCN scatter processors 

will therefore be close to 100%. Each scatter processor will operate at the rate of a 

stand alone processor. The connect logic uses the bit slice memory architecture 

introduced in chapter 5. This allows a block floating point scheme to be implemented 

in the 3D main store in the same way as for the shunt node. The block floating point 

scheme, coupled with the use of arbitrary word lengths, permits the trade off between 

precision, range and throughput. 

The extra 10 requirements of the SCN processor limit the number of processors that 

may be formed on a single FPGA. This limits the size of the parallel processing 

partition and thus limits the achievable speed up. However the use of a bit serial 

architecture minimises the 10 requirements of each processor. 
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8 An Application Specific Processor for Modelling 
Inhomogeneous Three Dimensional Media 

8.1 Introduction 

As with the shunt node in two dimensions, the SCN, introduced in chapter 7, is 

capable only of modelling homogeneous media. This chapter presents an application 

specific processor for the modelling of inhomogeneous media in three dimensions 

using the stub loaded SCN. This node configuration is shown to be inefficient when 

implemented in hardware. An application specific processor to implement the SSCN 

scattering algorithm for isotropic, non-graded media is developed. 

8.2 Development of a 3D TLM Processor for Generalised Media 

Two different approaches to modelling inhomogeneous media in three dimensions 

were presented in chapter 1. The first is the stub loaded SCN. As with the shunt 

node stubs may be added to the SCN to increase the capacitance or inductance at the 

node. Separate stubs are required for each dimension. Loss stubs may also be added. 

A total of 9 stubs may therefore be added to each node. The second approach uses a 

new node called the symmetrical super condensed node (SSCN). The SSCN varies 

the parameters of the region modelled by the node by varying the impedances of the 

link lines forming each branch. 

8.2.1 Algorithm Development 

8.2.2 Stub Loaded SCN 

Stubs may be added to the SCN to model increased permittivity and permeability in 

the same way they are added to the shunt node. However due to the increased number 

of stubs the parameters y and y0 are replaced by a series of 10 parameters. These are 

denoted by the lower case letters a-j. The stub loaded SCN has a densely packed 18 x 

18 scattering matrix 1• 10 parameters are stored for each homogeneous region of the 

mesh. It is possible to generate twelve secondary values from the incident data as 

done previously for the SCN 
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V ii = Vipj+ Vinj 

V'ii = Vipj- Vinj 

As with the SCN inspection of the scattering matrix reveals patterns that may be used 

to develop compact equations for the scattering at each port. These take the form 

A 

V~j = 8 V ii + b V kj - d V'ji + g Voi + i V sk 

V[nj = a V ii + b V kj + d V'ji + g V oi - i V sk (8.1) 

The subscripts oi and sk denote the voltages of the i and k polarised open and short 

circuited stubs respectively. The operators g and a are defined as 

A 1 
8V = - [ (a + c )V + (a - c )V'] 

2 
1 

a~ = -[(a + c)V - (a - c)V'] 
2 

Reflected capacitive and inductive stub voltages may be calculated from 

v~i = e vi + h v~i 

v~i = t Ii + j v~i (8.2) 

Loss stub voltages may be similarly determined. Vi and Ii were defined in equation 

7.4. 

8.2.3 Symmetrical Super Condensed Node 

The SSCN2 offers many degrees of freedom. By restricting the node to lossless, 

uniformly graded meshes the design may be simplified considerably. However both 

restricted and generalised cases will be considered. 

It was shown in chapter 1 that the SSCN may be solved using a series of equations of 

the form 

V[nj = V j + I j Zii - Vlpj 

V~j = V j - h Zii - Vlnj 
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In order to simplify the SSCN scattering equations (equation 8.3) two new parameters 

are introduced3
• 

(8.4) 

Following the data pairing notation introduced previously for the secondary values 

generated from the incident data at a node, the definitions for the voltages and currents 

in equation 8.1 may be written as 

Vi = C'ii V ii + (1 - C'ii) V kj 

= C'ij (vij- vkj) + vkj 

L'ii (v•ii - V'ii) 
zij 

The general scattering equations may thus be written 

v~j = C'ij (vij - V kj) - L'ij (v·ij - V'ji) + V kj - v:nj 

Vinj = C'ij (v ij - vkj) + L'ij (v·ij - v·ji) + vkj - v:pj 

It is noted that the current term Ik may take one of two values dependent upon the 

ordering of the indices i andj. It is further noted that for isotropic media 

L'ii = C'j; = (1 - C'ii) 

(8.5) 

In this case only three parameters are required to define the node, C' xy. C' yz and C' zx· 

This reduces both storage requirements and the number of multiplication operations 

required. If the node is further restricted to modelling isotropic, uniformly graded 

media equation 8.4 yields 

C' - C' = C' = C' xy - yz zx 

Thus as L' = (1 - C') only one parameter must be stored to define the whole node. 
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Trenkic further notes that the number of multiplications performed may be reduced 

using the relationships 

Iiij) = - lkji) 

L'ji = (1 - L'ij) 

where I~n denotes the positive or negative k directed loop current. These may be 

substituted in to the scattering equations to yield 

As the bracketed term has already been produced during the earlier stages of the 

calculation this substitution reduces the number of multiplications by three at the cost 

of only three extra additions. However the form of equation 8.5 is preferred for 

hardware implementation as it produces an equal delay in each branch of the 

processor. 

8.2.4 Comparison of the stub loaded SCN and the SSCN 

The series of equations derived for the stub loaded SCN offer a significant advantage 

over large matrix multiplication for hardware development. However they still 

require many pipelined levels of arithmetic including many multiplication operations. 

As demonstrated previously these are complex operations in digital arithmetic and can 

incur high processing time and resource costs. The large number of levels of 

arithmetic required will give rise to a large noise value at the output. 

It has been shown3 that the SSCN offers a considerable reduction in software 

processing requirements over the stub loaded SCN. The preceding sections show that 

this conclusion also holds true for hardware implementation. The SSCN requires 

fewer levels of arithmetic and considerably fewer multiplications that the stub loaded 

SCN. As such it is reasonable to expect an SSCN based processor to be more 

compact than a stub loaded SCN based processor. It would also be expected to yield a 

higher throughput due to the reduced number of multiply operations. The reduction in 

logic levels also yields a lower additive noise at the output. 
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8.2.5 Hardware Development 

From section 8.2.4 it is clear that the SSCN offers significant advantages over the stub 

loaded SCN. It is therefore the preferred scheme for the development of a 3D TLM 

processor for non-uniform media. Unlike the extensions to the TLM method detailed 

in previous chapters, the SSCN is not developed from the basic shunt node 

configuration, nor does it present equations of a similar form to the shunt node. 

However there are certain similarities between the SSCN and previous systems. 

• Intermediate values are formed from combinations of the incident impulses at each 

port. 

• Combinations of these values are used to produce the output values for each port 

via some intermediate stages. 

• All ports in the node may be described by equations of the same form. 

• The basic operations performed are addition, subtraction and multiplication. 

These similarities are sufficient to suggest that a bit serial, pipelined structure similar 

to that used in previous processors would be suitable for an SSCN processor. The 

connect operation in the SSCN is identical to that of the SCN with the exception that 

internodal reflections may occur between regions of differing material parameters (i.e. 

between regions of varying link line impedance). If the calculation stages required for 

the internodal reflection are treated separately to the actual transfer of data then the 

three dimensional connect processor developed in the previous chapter for the SCN 

may be utilised here for the SSCN. This requires that the scatter processor accept 12 

bit serial inputs and produce 12 bit serial outputs to provide compatibility with the 

existing system. 

All forms of the scatter equations presented above use the 12 intermediate values 

developed in section 7.4.1. These may be formed using 12 full adders/subtractors. A 

further 9 adders/subtractors are required to produce the multiplicands in the voltage 

and current terms of equation 8.5. Trenkic has shown that the 3 voltage and 6 current 

terms may be produced using only 6 multiplications, however in the development of a 

hardware based solution for the SSCN the form of equation 8.5, which requires 9 

multiplications, is preferable. Using this form the number of computational steps 

required to produce each product is equal, hence synchronisation is preserved. In the 

reduced scheme, three of the current terms require an extra subtraction stage thus 

synchronisation is lost. It has been shown in previous chapters that a fast serial 

parallel multiplier with one operand of length M and the other presented in a bit serial 

format requires an M bit wide parallel adder, and an M bit wide accumulator register. 

It is true that the resources required to produce the necessary delays in the reduced 
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scheme are less than those required for a further three multipliers. However the 

introduction of the extra multipliers opens up the system to the implementation of 

anisotropic media where the reduced scheme simplifications are not valid. 

As with previous processor designs the granularity of the SSCN processor is well 

suited to implementation using a Xilinx FPGA. The use of 9 multipliers leads to high 

resource requirements for the SSCN processor. However this requirement is 

mitigated through the use of a bit serial architecture. 

8.3 Design of an Application Specific System for the SSCN 

A block diagram of a single SSCN processing element is shown infigure 8.1. 

Vxpy Vxny Vypz Vynz 

VRxpy VRxny VRynz 

Figure 8.1 - Block Schematic of an SSCN Scatter Processor 

This basic processor is suitable for isotropic, uniformly graded media. The bit serial, 

pipelined architecture is composed of several distinct computational stages. Stage one 

produces the twelve intermediate values Vij and V' ij· These are combined to form the 

nine multiplicands for the voltage and current terms in stage two. The multiplicands 

are passed bit serially to the nine multipliers as they are produced. The double 

buffered multiplier registers are pre-loaded to reduce latency. In order to reduce 
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storage requirements only the value of C' is stored. The value of L' is found using the 

relationship 

L' = (1 - C') = -C'+l 

The 2s complement of C' is formed using the circuit developed in section 7.4.3. One 

is then added to the result bit serially using a half adder with an initial carry input 

forced high. This computation occurs during the pre-loading stage. The multipliers 

produce the three voltage and six current terms which are summed in stage four to 

produce the six combinations required by the next stage of the calculation. A second 

operation in stage four produces the sum and difference terms which complete 

equation 8.5. These are formed from delayed copies of the inputs and the necessary 

secondary values formed in stage one. Finally stage five combines the two sets of 

outputs from stage four to produce the scattered data at each port. This architecture 

may be expanded to incorporate anisotropic media by allowing each multiplier 

register to be loaded individually, thus allowing the material properties to be varied in 

each dimension independently. Extension of the processor to generally graded media 

would require the addition of three further multipliers and subsequent adjustment to 

the logic of stages four and five. This would allow the properties of all link lines to be 

varied independently, giving rise to a very powerful modelling tool. 

8.4 Discussion 

As with the stub loaded shunt node a considered choice of numeric representation is 

required in order to prevent the introduction of errors, particularly during the 

multiplication operations. As the principle of energy conservation is upheld by the 

SSCN a fixed point notation may be used to store the incident and scattered data as 

wholly fractional values. A second format may be required to hold the multiplicands 

and any intermediate values formed during the calculations. Careful choice of values 

for the parameters L and C will prevent the need for an intermediate notation. 

The significant increase in resources required for the SSCN processor in comparison 

with the previously developed TLM processors leads to a decrease in the number of 

processors that may be implemented on a single FPGA. It would be expected that the 

throughput of an SSCN based system would be less than that of the other systems. 

This is due mainly to the increased consumption of resources within the FPGA. 
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It is clear from above that by using bit serial 10 the SSCN processor may be used in 

conjunction with the 3D scatter logic defined in the previous chapter. An additional 

link line data memory would be required, analogous to the stub memory of the stub 

loaded shunt node system, to hold the link line parameters. This gives rise to the 

architecture of .figure 8.2. The processor retains the other benefits of a bit serial 

architecture, e.g. the use of arbitrary word lengths and arbitrary mesh size. 

Link Line 
~ Scatter ]/1_ 

Previous Main Store Parameter 
Plane 

-v Processors ~ Memory 

.;'~ 

V 
Current 
Plane Connect V1- Connect 

Memory N Logic 

Next Plane V 
Figure 8.2 - Block Schematic of a Complete SSCN Processor 

The introduction of boundaries within the SSCN mesh may be achieved in a manner 

similar to that used for the SCN. A two bit code is added to the front of each incident 

data word. This code is used to set the zero and inversion flags which act on the 

output of the node to set the correct values for the next iteration. As with the SCN 

additional logic is required to produce an inversion of the output when p = -1. 

8.5 Conclusions 

The path between input and output of the SSCN processor includes three full adders 

and one multiplier. This is the same as for the stub loaded shunt node. Throughput in 

the SSCN processor has the same dependency upon parameter word length as the stub 

loaded shunt node. The plot will therefore follow the same trend as figure 6.4. 

However due to the increased resource requirements it is reasonable to expect that the 

clock rate would be slightly reduced. This is because the routing within the FPGA 

becomes congested, forcing the use of less efficient paths. Actual throughput would 

therefore be slightly lower than for the stub loaded shunt node. 
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As with previous systems, the efficiency of an array of SSCN processors will be close 

to 100%. The SSCN processor forms a highly adaptable platform for the study of 

three dimensional problems in electromagnetic. The processor preserves the full 

functionality of the SSCN, allowing the modelling of anisotropic, irregularly graded 

meshes. The combination of the SSCN scatter processor and the 3D connect logic 

developed in chapter 7 provides a very powerful modelling tool for TLM. 
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9. A Reconfigurable, General Purpose TLM Processor 

9.1 Introduction 

Chapter 4 of this thesis documented the development of an application specific processor 

for the two dimensional shunt node. Chapters 6, 7 and 8 subsequently demonstrated the 

development of scatter processors for three other TLM nodes. These were the stub 

loaded shunt node, the symmetrical condensed node (SCN) and the symmetrical super 

condensed node (SSCN). The four scatter processors are based around a common set of 

features. These are: 

• Each processor maps a particular form of the TLM scattering equation to hardware in 

a manner ensuring that there are no redundant elements. 

• The granularity of the proposed implementation technology, the Xilinx XC4000 

FPGA, is closely matched to the low level mathematical constructs within the TLM 

equations. 

• The processors all use bit serial arithmetic. There are a number of advantages 

resulting from the use of a bit serial architecture. They are: 

• Reduced data bandwidth compared to a data parallel processor. 

• Reduced resources required for each processor compared to a data parallel 

architecture. 

• The word length is independent of the width of the internal logic, thus arbitrary 

word lengths may be used. This allows the trade off between arithmetic precision 

and throughput to be evaluated on a per simulation basis. 

The TLM connect process has also been mapped to hardware. Connect logic for 2D TLM 

(chapter 5) and 3D TLM (chapter 7) has been described. The connect processors also 

exhibit a set of common features. These are: 

• A small number of scatter processors are mapped on to a TLM mesh of arbitrary size. 

• The bit serial memory organisation supports the use of arbitrary word lengths. 

• The architecture is infinitely scalable for word length, number of scatter processors 

and mesh size. 

• Memory requirements are minimised for a given scheme. 

• The connect process adds zero overhead to the computation in the scatter processors. 
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• Each scatter processor works independently. The throughput of each processor is 

independent of the size of the scatter array. The efficiency of the array is therefore 

close to 100%. 

Each scatter processor implements only one form of TLM. The distinct, individual 

processor designs do not achieve the aim of removing limitations on the type of node they 

can implement. In order to produce a combined scatter processor some redundancy must 

be introduced. This redundancy must be minimised without affecting the performance of 

the individual scatter processor implementations. A system capable of implementing the 

four TLM schemes, preserving the capabilities inherent in each of the existing application 

specific architectures, would be a very powerful modelling tool. This chapter shows how 

such a system may be developed. The concept and implications of a general purpose 

TLM processor are documented and its implementation is discussed. 

9.2 Architecture of the General Purpose Processor 

A general purpose TLM processor may be realised through one of two techniques, 

reprogrammability and reconfigurability. 

Reprogrammable systems were studied in the literature review of chapter 1. These 

systems use an instruction stream to control the operations performed on a data stream by 

the processor. The processor used must be capable of performing a range of tasks. 

Certain instructions will utilise only certain parts of the processor. The processor must 

therefore contain some redundant components. The minimum amount of logic the 

processor can contain is that required to perform the most complex task. Throughput is 

reduced through the need for instruction fetch and decode cycles. The main advantage of 

such systems is the ease with which their operation may be changed. To implement a 

new function the user simply loads a new set of instructions. The level of redundancy 

required is balanced against the complexity of the instruction set and the range of 

operations which may be performed. RISC (Reduced Instruction Set Computer) 

processors use this principle to produce fast, small processors with a limited range of 

operations, often tailored to a specific task. 

Application specific processors represent the logical extreme of the RISC principle. By 

. restricting the processor to a single operation the need for an instruction stream is 

removed. The processors developed in chapters 4, 6, 7 and 8 increase throughput by 

mapping a single nodal scheme in to hardware. The logic is minimised to perform only 
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the required scatter operation. Each processor maintains an inherent generality in terms 

of the use of arbitrary mesh geometries and word lengths. Some basic level of 

programmability is required to support this flexibility. This takes the form of instructions 

for loading configuration registers and memory access operations. The logic required to 

implement this can be kept separate from the scatter and connect logic to prevent it from 

impacting upon their operation. The general purpose system must incorporate all four 

types of scatter processor without affecting their individual performance. This is 

achieved by implementing each processor in its current form using the reconfigurable 

properties of the FPGA. 

Consider figure 9.1. This is the architecture for the SSCN processor developed in 

chapter 8. Consider also the architectures of figure 9.2(a-c). These are the architectures 

for the shunt node, the stub loaded shunt node and the SCN processors respectively. A 

comparison of these with figure 9.1 indicates that each of these three architectures exists 

as a subset of the SSCN architecture. 

Previous 
Plane 

Current 
Plane 

Next Plane V 

Scatter VL-Main Store ~ 
v Processors ~ 

.,( 

"(7 

Connect 
~ 

Connect 
Memory Logic 

Figure 9.1 - SSCN System Architecture 

9.2.1 Implementation of the Reconfigurable TLM Processor 

Link Line 
Parameter 
Memory 

It has been shown that the Xilinx XC4000 family of gate arrays has an internal 

architecture well matched to the components required to perform TLM calculations. The 

reconfigurable nature of the FPGA has been used up to this point to allow the 

development of the shunt node processor. Reconfiguration of the gate array may be 

utilised to implement a TLM general purpose processor (TLM-GPP). Fromfigures 9.1 

and 9.2 it is clear that the scatter and connect components are common to all four TLM 
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schemes. However the contents of these components vary in each case. By 

implementing the scatter and connect processors using FPGAs the configuration of each 

may be changed as required. Thus both scatter and connect may be implemented using 

the optimised logic developed for each scheme. Changing the function of the system 

becomes a case of loading a new set of bitstreams. This is analogous to loading a new 

program in to a reprogrammable system and maintains the same inherent simplicity. The 

system still creates some redundancy. This occurs in the memory requirements, 

particularly the stub/link line memory. This redundancy does not impact upon the 

operation of the scatter and connect logic. 

Main Store r--______,~ Scatter Processors 

Connect Memory Connect Logic 

Figure 9.2a • System Architecture for the Shunt Node 

153 



-- ---------

Main Store ~ Scatter ~ ~ Stub Memory 
V Processors -v 

~~ 

"(7 

Connect Memory ~ Connect Logic N 

Figure 9.2b System Architecture for the Stub Loaded Shunt Node 
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Figure 9.2c System Architecture for the SCN 

Scatter 
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Connect Logic 

Each system configuration requires a different combination of control signal timings and 

configuration options. These may be provided by programmable micro-controller. 

Another option is to use a control FPGA to provide a reconfigurable control structure. 

The advantage of this over a micro-controller is that an FPGA contains additional logic 

resources which may be used for subsidiary functions such as main store read and write 
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address generation. An FPGA may also be configured to perform multiple control tasks 

in parallel, an option open to few micro-controllers. The control logic may also store the 

exponent of a block floating point scheme. This permits the shifting of the main store to 

improve numeric precision without the intervention of the host, thus reducing data 

transfer latency. 

9.3 Discussion 

The reconfigurable TLM-GPP system may perform multiple TLM schemes without the 

introduction of redundant components or instructions. This is a major advantage over 

reprogrammable, software based systems. The optimised, hardware mapped scatter 

processor for a given TLM scheme is implemented unchanged in the TLM-GPP. The 

considerable flexibility of the new system is gained with no loss of performance. The use 

of a single architecture for all four schemes removes the need for separate software 

routines. The processor must be initialised with the data length, the mesh dimensions and 

the location and type of any boundaries. The timing and control of the processor is then 

governed by a control FPGA. The correct control bitstream is downloaded for the 

required node scheme. The operation of each of the four TLM schemes therefore appears 

identical to the user. Some form of front-end software is required to generate the initial 

data for the main store. Through careful development of this software the configuration 

and operation of the TLM-GPP could become totally transparent to the user. 

The bit serial architecture common to all four processors permits the use of arbitrary 

precision arithmetic, independent of the choice of fixed point or integer data. The unique 

connect hardware developed in chapter 5 for two dimensions and chapter 7 for three 

dimensions allows a small, fixed number of scatter processors to operate on a rectangular 

or cuboid mesh of arbitrary"' size. The connect logic allows the implementation of a 

block floating point scheme. Numeric representation, word length and arithmetic 

accuracy can be balanced to achieve the desired performance for a given problem. 

The use of FPGAs for the scatter and connect logic provides sufficient resources for 

expansion of the system. This includes the implementation of new TLM schemes as they 

arise. Each new scheme can be developed using the procedures followed above and 

implemented by loading the appropriate bitstreams in to the scatter, connect and control 

"' With the condition that the mesh size in one dimension must be an integer multiple of the number of 
scatter processors available. 
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FPGAs. In this way the system is 'future-proof', providing its own minimum effort 

upgrade path. 

The memory requirements of the processor are increased by the extension to three 

dimensional meshes. The use of a reconfigurable control processor allows extension of 

the address bus for the main store to effectively allow the use of an arbitrarily large 

memory. The decoding of the upper address bits to form the memory chip selects is 

incorporated in to the control device. The bit serial organisation of data within the main 

store simplifies data addressing. 

The stub/link line memory constitutes a redundant component in those schemes that do 

not require its use. However it is possible to route the address and data lines from these 

memories to multiple sources, e.g. both the scatter and connect FPGAs, thus when the 

memory is not required the pins it consumes may be used as general purpose IO. 

In developing a hardware implementation of the TLM-GPP certain compromises must be 

reached. 

• The width of the main store will determine the number of scatter processors that may 

be operated concurrently. The bus widths will in turn be limited by the number of pins 

available on the FPGAs and the internal resources required for a given number of 

nodes. Performance must be balanced against resource availability and cost. 

• Future expansion of the system will be limited by the configuration of the circuit board 

on which the FPGAs are placed. While it is possible to reconfigure the computational 

elements of the design the routing is fixed. Careful choices must be made as to the 

inclusion of spare IO for future expansion, both how much to provide and where to 

route between. The provision of spare IO will also reduce the number of pins 

available for the implementation of existing schemes and will impact upon the 

performance of the device by limiting the number of scatter processors which may be 

operated concurrently. Configurable routing using crosspoint switches would increase 

the flexibility of the board. 

• The host interface must be chosen to allow for possible future changes to both the 

TLM-GPP and the systems to which it will communicate. Thorough research is 

required to find an interface which provides the required data transfer rates, is widely 

accessible and will not become obsolete within the predicted lifetime of the TLM­

GPP. In recent years many data transfer standards in computing have appeared and not 

been accepted by the community in general, in particular many high performance 

standards are not widely used as they offer too great an overhead and are beyond the 
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account future developments in TLM. Through a careful design of front end software the 

configuration and operation of the processor become totally transparent to the user, thus 

making an SSCN mesh as simple to implement as a simple shunt node mesh. 

The TLM-GPP represents a new concept in parallel architectures for TLM due to its 

unique mapping of the TLM connect process in to hardware. This overcomes much of 

the data transfer latency inherent in other parallel systems due to a mismatch between the 

requirements of TLM and the provisions of the architecture. As a result of this mapping 

the connect routine adds zero overhead to the computation. This is a considerable 

improvement over existing parallel implementations where data transfer is the overriding 

source of latency within the system. The efficiency of an array of scatter processors for 

any of the four node TLM schemes considered approaches 100%. The literature review 

of chapter 1 revealed that most existing large scale parallel computer implementations of 

TLM exhibited an efficiency of less than 1%. The scalability of the connect logic 

removes any restrictions upon the size of the TLM mesh. Processing time is a linear 

function of mesh size and the number of scatter processors. The throughput of individual 

scatter processors is a function of word length and, where applicable, stub data word 

length. The overall performance of the system is therefore highly predictable once these 

parameters are known. 

The hardware required by the system is minimal. A typical implementation is composed 

of 3 FPGAs (scatter, connect and control logic), memory and an interface. Again this 

represents a significant improvement over existing parallel implementations of TLM 

where resource requirements range from large scale supercomputers to networks of 

workstations. 
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1 0 Realisation of the TLM Processor as a PCI Card 

10.1 Introduction 

The development of the TLM processor has concentrated on the elementary design of 

the TLM processor, focusing on the mapping to hardware of the scatter and connect 

routines, i.e. the TLM algorithm itself. The feasibility of producing a general-purpose 

processor for TLM, the TLM-GPP, has been demonstrated. Many of the issues raised 

in chapter 1 regarding processor design and efficiency have been addressed by the 

TLM-GPP. Issues of accessibility have not been addressed up to this point. Little 

consideration has been given to the interface between the TLM processor and the user. 

Such an interface is necessary to allow the input of model geometry, mesh parameters 

and excitation and the visualisation of output data. The input and output data is 

provided in a bit serial format, each byte containing a bit slice from each branch of 

two nodes. Most host systems store data in a more conventional, word parallel 

format. At the very least some processing by a host system is required to provide 

inputs in the correct format to allow the processor to interface to visualisation 

software or other analysis tools. 

1 0.2 The Host System 

The role of the host system is to act as both a controller and a processing platform. 

The host itself must not violate any of the aims of the TLM processor, it must 

therefore be cheap, simple to use and conform to a common standard for portability. 

The host system has two main functions. The first of these is initialisation. This 

involves programming the FPGAs, defining the mesh and setting the initial state of 

the main store memory. The FPGAs may be programmed in serial or parallel from the 

host. The second function is to post process the output data from the mesh. The 

interface must therefore be bi-directional. Post processing functions will include 

reformatting data and possibly filtering or Fourier transformation. The host must be 

capable of performing these functions. The host may also be responsible for 

controlling the main store as a block floating point array and for injecting impulses in 

to the mesh at run time. 
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A number of host configurations are available. 

• Stand alone device 

• Networked device 

• Expansion card 

A genuine stand alone system would require all the necessary hardware for pre- and 

post processing of the input and output data. Some method of visualisation of the 

output of the models is also required. To include all of this within the TLM-GPP 

would make the processor very costly, thus limiting acceptability on the grounds of 

price. It is unlikely that code developed for such a device would be portable to other 

formats. A second machine acting as a code compiler would be necessary. 

By attaching the TLM processor array to a network a host PC or Unix workstation 

could be used to provide external processing and visualisation. This option would 

allow multiple users access to a single device. This would minimise cost and increase 

accessibility. Networks such as Ethemet are supported by a wide range of standard 

platforms. However the high bandwidth requirements of the TLM processor places 

restrictions upon the choice of network. Many packet switched networks, e.g. 

Ethemet, do no provide a guaranteed quality of service (QoS) and can not therefore 

guarantee the correct or timely delivery of packets of data. To ensure no data was lost 

would require that considerable control overhead be built in to the TLM processor. 

The processor would have to be stalled should a data packet be delayed or lost. This 

would reduce the throughtput of the system. Guaranteed delivery of data under heavy 

traffic loads, e.g. when the whole mesh is output for visualisation, would require a 

high speed, dedicated network segment. Networks that do offer a fixed QoS, e.g. 

ATM, do so at a price. System complexity and component costs tend to be high. 

These networks often require non-standard interface cards further increasing cost and 

reducing accessibility. 

In fact the TLM processor is small enough to be realised as an expansion card for a 

host system. The increase in processing power and affordability of the personal 

computer (PC) in recent years makes it the most widely available platform to host the 

processor. The main advantage of the PC is that systems developed by many 

manufacturers share a common architecture and therefore offer a common interface. 

This standardisation was introduced to simplify the design of both hardware and 

software for PCs by removing the need to produce separate host adapters for each 

manufacturer or system. The use of a common interface also simplifies the design of 

software for the system. Widely available routines and compilers may be used, 
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allowing designers to develop software for the system without requiring an intimate 

knowledge of its operation. This maximises code portability. Software written to 

access the processor from one platform will also successfully access the processor 

when run from a different platform. 
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Figure 10.1 - Three Bus Architecture of a Generic PC 

The PC has a bus driven architecture, figure 1 0.1. Adapters and plug-in cards such as 

graphics and sound cards are connected to the CPU via the expansion buses. There 

are two standard expansion buses, the older Industry Standard Architecture (ISA) bus 

and the more rec~ntly developed Peripheral Component Interconnect (PCI) bus 1• 

Other data transfer protocols may be used to connect an expansion card to a PC, e.g. 

SCSI or USB. While these may offer higher data transfer rates than either the PCI or 

ISA expansion buses they are not a standard part of most PC architectures and require 

an intervening protocol adapter to connect to the PC. The PCI and ISA buses both 

offer relatively simple interfaces to the PC minimising costs and reducing the scope 

for design failure. Although the operation of the two systems is similar in principle 

the protocols used are very different. The high data bandwidth required by the TLM 

processor is best provided by the PCI bus as it offers a wider data bus and a higher 

clock rate than the ISA bus. 

The development of the TLM-GPP as an add in card for a personal computer would 

appear to offer the best solution in terms of accessibility. It is a relatively low cost 

solution offering portability between a number of host platforms. The PC has more 

than adequate computing power to perform the necessary post processing and 
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visualisation tasks. The PCI bus would appear to be the most appropriate of the 

internal PC buses for hosting the TLM-GPP. It offers a wider bandwidth than the ISA 

bus and represents an emerging standard, thus ensuring survivability. The 

development of a TLM-GPP architecture for use as a PCI card is detailed below. 

1 0.2.1 The PCI Bus 

The PCI local bus was designed to provide a low latency transfer path between high 

bandwidth peripheral functions and a host processor. The processor is connected to 

the bus via a PC! bridge, through which it may directly access PCI devices mapped 

anywhere within the processor's memory or I/0 address space. The PCI Special 

Interest Group (PCISIGRJ) has been set up by members of the microcomputer industry 

to control the evolution of the open standard that defines the bus. Devices connected 

to the PCI bus may take one of two forms, Master or Target (slave). A bus master 

may take control of the bus and communicate with or control other bus devices where 

as a target may never read data from or write data to other bus devices, it may only be 

read from or written to by those devices. 

One advantage of the PCI bus is its low pin count,.figure 10.2. This is achieved by 

multiplexing the 32 bit address and data lines on the same pins, AD[31:00]. In total 

only 47 pins are required by a PCI target device and 49 by a master device. The clock 

signal, CLK, runs at 33 MHz, although a compatible 66 MHz specification is under 

development. A similar expansion to 64 address and data lines is also under 

development. The current specification offers a data transfer rate of up to 132 

Megabytes per second using burst mode transfers. 

Any device connected to the PCI bus must adhere to its protocols. To simplify the 

design of peripheral systems there are a number of PCI interface chips that provide a 

standardised interface between a local system bus and the PCI bus. Such chips are 

readily available as interface cards that plug directly in to a free PCI slot on the 

motherboard of the host PC. The boards generally offer a PCI bridge, a limited 

amount of on board memory space and either stripboard (or similar) or connectors for 

a daughter board on which the user's circuit may be developed. These cards form 

useful prototyping tools as they allow the user to concentrate design effort upon the 

target system as opposed to the interface. PLX Technologies Ltd has developed one 

such family of chips and development boards2
. The PCI9050,.figure 10.3, is a target 

only device. 

fb PCI Special Interest Group, P.O.Box 14070, Portland, OR 97214 
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Figure 10.2- Pin Requirements of the PCI Bus 

10.3 A PCI Compliant TLM Processor 

The TLM-GPP processor developed in chapter 9 requires some modification to make 

it compliant with the PCI protocols; a revised architecture is presented in figure 1 0.4. 

For clarity the processor is shown in a basic shunt node configuration. Removing the 

stub and 3D connect memories simplifies the architecture without losing the structure 

of the system. A PCI9050 interface device provides a bridge between the processor 

and the PCI bus. The local bus of the PCI9050 development card becomes the main 

data path of a bus driven architecture for the TLM processor. The main components 

of the system are the scatter and connect logic and the control and arbitration blocks. 

Each component occupies a dedicated FPGA. Each 2D scatter processor requires four 

bit serial data inputs therefore the 32 bit wide local bus is capable of supporting an 

array of 8 scatter processors i.e. NP = 8. For 3D processors, 12 inputs are required. 

The use of the 32 bit local bus would permit only 2 processors to operate in parallel. 

The local bus must therefore be made wider, with the lower 32 bits selected to form 

the local data bus from the PCI9050. The width of the local bus is dependent upon the 

width of the main store. A reasonable limit of 128 bits may be set, allowing the 

parallel operation of 10 3D nodes or 32 2D nodes. Wider buses may be developed at 

a cost. The physical development of fast synchronous buses becomes more difficult 
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FigU.re 10.3 • Interface Between the PCI Bus and Local Bus Provided by the PCI9050 

as the bus width increases. This is due to the difficulty equalising path lengths and 

minimising crosstalk effects3
• 

The main store is mapped on to a block of SRAM on the board. This is configured to 

appear as part of the PCI address space of the host, allowing direct access to the main 

store over the PCI bus using standard memory read and write operations. The PCI 

memory space is divided in to three sections. The first contains the configuration 

registers on the connect logic. These are used to set the data word length and store the 

mesh parameters. The second section is mapped to the main store memory. The final 

section maps to a small block of SRAM, which may form part of the main store 

SRAM, used to store the total incident energy at each node. This final section is 

called the visualisation memory as it holds the data used to visualise the propagation 

within the mesh. 
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Figure 10.4 - PCI Compliance Requires a Bus Driven Architecture for the TLM Processor 

1 0.3.1 Scatter Logic 

The scatter logic is composed of an array of bit serial scatter processors. The number 

of processors in the array is dependent upon the type of processor. Incident data is 

input to the scatter processors via the local bus and the scattered data output is routed 

to the connect logic on a dedicated bus to minimise latency. Total incident energy 

data is output to the local bus from where it written to the visualisation memory. Only 

two control lines are required, a clock input to control the flow of data through the 

processor and a flag to indicate the start of each new data word. 

1 0.3.2 Connect Logic 

The connect logic block comprises the logic necessary to route the scattered data to 

the correct locations within the connect memory. It also co-ordinates the flow of data 

between the rows of the connect memory and between row 3 and the main store. 

Boundary data is read from the local bus when the B_Set signal is active. Data is 

received from the scatter processor on each rising edge of the scatter clock and is 

routed out to the connect memory via three bi-directional buses. Row 3 of the connect 

memory may be accessed via the local bus. This allows data transfer between the 

connect logic and the main store. One bit of data is transferred on each rising edge of 
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the control clock. Data passed to the right of the scatter window is stored internally in 

a memory generated using the Xilinx internal RAM capability4
. The memory may be 

made sufficiently deep to accommodate any given word length. A simple counter 

suffices as an address generator due to the sequential data storage highlighted in 

section 5.5. The CE signal indicates the start of a new scattered data word. This 

signal both acts as a reset for the internal memory address generator and gates through 

the relevant boundary flags for the new scattered data. 

1 0.3.3 Control Logic 

The control logic is responsible for the generation of the control and timing signals 

required by the scatter and connect logic. It also generates the address and control 

signals for the main store, the connect memory and the visualisation memory. The 

sequential organisation of data within the memories permits the use of counters as 

address generators. The counters are returned to zero when they reach a value pre­

loaded in to their corresponding control register during initialisation. Each counter 

has its own register, this is necessary to provide independence between the number of 

nodes in the array and the aspect ratio of the array. The active low signal FORCE­

acts as an enable signal for the TLM processor. When FORCE- is negated the 

processor enters configuration mode allowing reading from and writing to the memory 

mapped configuration registers by the host via the PCI bus. 

The amount of data transmitted between the host and the main store may be reduced 

significantly by using the control logic to provide driving waveforms to the mesh. 

This is best suited to problems requiring the input of a few repeated or short duration 

driving signals. The discrete samples for each signal are stored in ROM based look 

up tables on the control logic FPGA. At the end of each cycle the control logic 

accesses the main store and adds the stored sample value to the source node. This 

requires extra, redundant logic in the control processor but is significantly faster than 

implementing the source on the host system. 

1 0.3.4 Bus Arbitration Logic 

The arbitration logic provides all the signals necessary for communication between 

the TLM processor and the PCI9050 interface. When the processor enters 

configuration mode the arbitration block takes control of the address and control 
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signals for the on board memory. This allows direct, random access to the memories 

from the host instead of via the on board control logic. 

10.4 Output Data Post Processing 

The TLM processor stores the total incident energy data at each node for each 

iteration. By mapping the total incident energy memory to the PCI9050 local address 

space, random access is provided to individual nodes within the array. This allows for 

the arbitrary placement of output points within the array. Data within the total 

incident energy memory is organised bit serially. Each output byte placed on 

LAD[7:0] contains one bit from each of the NP nodes in a given scattering partition. 

W read operations are therefore required to obtain the data from a single output point 

for a word length of W. These may be performed as a continuous burst transfer via the 

PCI9050 read FIFO to minimise performance loss. Careful pre-processing of the 

array can ensure that local output points exist where possible in the same or adjacent 

scattering partitions to maximise the use of burst mode transfers and sequential 

addressing. 

Some post-processing of the output data is required to perform a serial to parallel 

conversion and strip away data from any unwanted nodes. The latter stage is 

necessary as each read from the total incident energy memory retrieves one bit of data 

from each of NP adjacent nodes. If the word length used is not a multiple of 8 then 

null data must be added to the end of the word to prevent the parallel data lying across 

byte boundaries. The post processing software may also convert the output data in to 

a format suitable for a given visualisation programme or prepare data for a Fourier 

transform for visualisation of results in the frequency domain. Filtering may also be 

required to reduce the noise present in the output signal. Most modern PCs are 

capable of performing these functions in real time. It may be preferable to store the 

output data on disk for processing at a later time. 

As the TLM processor requires no external input during the calculation phase the PCI 

interface is free to transfer output data to the host. Post processing of the output 

results from one iteration may therefore take place while the next iteration is in 

progress. This further helps to reduce the latency introduced through post processing. 

Other tasks requiring the PCI bus may also be performed by the host during this down 

time. 
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It is worth noting that the amount of post processing required by the relatively slow 

access time memory architecture of section 5.6 is considerably reduced due to the 

parallel organisation of words within the main store. Only a single write instruction is 

required per output word. This is at the cost of flexibility in defining model 

parameters. 

10.5 Predicted Performance 

The performance of the above system is dependent upon the clock rate of the local 

bus. As the local bus is required for more than one transfer of data within each 

computational cycle, multiple clock cycles are required to produce each bit of data. In 

order to synchronise the transfer of data between the host and the TLM processor the 

PCI 33MHz clock is used as a source for the system clock. It is possible to run the 

TLM processor at a higher clock rate. However synchronisation with the 33MHz 

clock must be maintained at the PCI bridge. The use of the 66MHz extended PCI 

protocol would double the throughput of the system. The scatter processors would 

still be operating below their predicted maximum clock rate. Using the extended PCI 

protocol the processor would be capable of approximately 30 million scattering events 

per second. This is based on boundary equipped shunt nodes using 32 bit data and 

assumes a local bus width of 64 bits, i.e. NP = 16. Visualisation data is therefore 

created at a rate of 114MBs-1
• Naturally the throughput for other data lengths or node 

configurations would differ as discussed in the relevant chapters of this thesis. 

As demonstrated in the literature review, latency in data transfer is the governing 

factor in system performance5
• Limited transfer rates on the board due to the 

restrictions on clock rate are further exacerbated by bottlenecks imposed in reading 

total incident energy data from the board. While the PCI protocol states that data 

transfer rates of 132MBs-1 are possible using burst mode these transfer rates are rarely 

sustainable for any significant period. In a modern PC the PCI bus supports the sound 

card, network adapter and a number of other expansion cards. Each card competes for 

use of the bus. Naturally adapters such as the graphics card occupy a considerable 

portion of the operating time of the bus, thus wait states must be introduced in the 

transfer of data from the PCI card. As the PCI9050 is a slave device it can not request 

ownership of the bus and write data to the host system. Rather it must wait until the 

host initiates a data transfer. The hardware is thus limited by the operating rate of the 

underlying software and the requirements of the other add in cards. 
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10.6 Conclusions 

A PCI compliant TLM processor has been presented. This encompasses the ideas 

developed in the preceding chapters within a practical, working system. The TLM 

mesh is divided in to partitions and all nodes in each partition are processed in 

parallel. The unique mapping of the TLM connect routine in to hardware developed 

in chapters 5 & 7 remove the limitation on mesh size imposed by traditional 

architectures. The large scale parallel computers introduced in chapter 1 are replaced 

by a single plug in card for a personal computer. The processor achieves many of the 

aims for this research presented in chapter 1. 

• All redundant hardware has been removed from each processor configuration. 

• The bit serial architecture and the use of partitioning reduce the required bandwidth 

to manageable proportions. 

• Through reconfiguration any of the four main TLM schemes may be implemented. 

• The use of arbitrary word lengths is permitted, allowing dynamic range, accuracy 

and processing rate to be balanced as required. 

• The hardware mapping of the connect process removes limitations on mesh size. 

• Boundaries may be distributed arbitrarily within the mesh, allowing the 

implementation of arbitrary mesh geometry. 

Although the processor offers a significant step forward from previous application 

specific TLM processors it has limitations, notably 

• Boundaries are limited to one of three basic types. This is largely a consequence of 

the use of fixed point data. The use of multipliers to provide a wide range of 

boundary reflection coefficients must be undertaken only after a careful study of 

the effect on errors within the mesh. 

• Pre-/post-processing of the mesh data is required before it can be used. 

• The mesh parameters are limited by the available memory. Memory forms a 

significant part of the overall cost of the system. The width of the main store 

determines the maximum number of scatter processors which may operate 

concurrently. The total size of the main store limits the overall size of the mesh. 

Suitable provision must be made when routing between memory and the connect 

logic to allow for extra address bits, paging signals or the implementation of other, 

more sophisticated techniques to access an extended main store. 
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• The width of the data buses on the board limit the number of scatter processors that 

may be supported. A single FPGA may contain many more processors than 

allowed by the bus width. The number of scatter processors defines the size of 

each parallel partition of the mesh, therefore limiting the number of processors 

limits the performance of the system. Careful floorplanning of the board is 

required to maximise the available bus width without limiting the achievable clock 

rate. 

It is clear that the development of the system as a PCI slave device places constraints 

upon performance. Future generations of the processor may be developed around 

other data transfer protocols. However, the concept of developing the processor as a 

PC expansion card offers the advantages of standardisation and accessibility. While 

the use of the PCI card does not allow the full potential of the design to be realised it 

has been clearly demonstrated that an application specific TLM processor is a viable 

idea and may be realised using relatively inexpensive, accessible components. This is 

a major advantage over the custom ICs and large scale parallel computers of previous 

TLM systems. More work is necessary to establish a system architecture and host 

interface which allow larger partitions and sustained data transfer before the full 

potential of the processor will be realised. 
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Conclusions 

In chapter 1 of this thesis a number of aims were defined for the new class of TLM 

processor. An implementation path with distinct milestones was also defined. It was 

determined that the success of this work would be determined by three factors. The 

first of these was the successful implementation of all the aims, achieved through 

reaching each of the milestones in the implementation plan. The other factors for 

success were creating a processor with a high efficiency percentage and producing a 

significant increase in processing throughput over existing TLM implementations. 

It has been demonstrated in the preceding chapters that each of the milestones laid out 

in the implementation plan has been successfully achieved. This in itself indicates 

that a working, general purpose TLM processor has been developed. It remains to 

summarise how the development of the processor addresses each of the original aims. 

"The granularity of the TLM algorithm must be successfully mapped to hardware. 

This means both removing redundant elements from the computational hardware and 

providing sufficient bandwidth for the connect process." 

It was shown in chapter 3 that what appears to be a minimised form of the shunt node 

scatter equation in a high level representation is actually very inefficient when mapped 

to hardware. The granularity of the scatter equations was reduced in two ways. 

Firstly the principle of circuit folding was introduced in chapter 4 to show how a data 

parallel structure can be efficiently mapped to a bit serial, pipelined structure. This 

produced a significant reduction in circuit complexity and in bandwidth requirement 

per clock cycle. Secondly the concept of data pairing was used to highlight repeated 

structures within the SCN scatter equations. These lower level structures allow the 

scatter equations to be re-written in a form more acceptable to hardware 

implementation. 

"The chosen architecture should not limit the processor to a single form of the TLM 

algorithm or a single mesh configuration." 

The mesh configuration is varied by the introduction of boundaries and regions of 

differing material parameters. Both of these may be altered on a node by node basis. 

The creation of a scatter processor capable of performing a range of simple boundaries 

generates an homogeneous mesh which may model any arbitrary geometry. By 
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passing the boundary data to the scatter processors with the input data the geometry 

may be altered on the fly on a per iteration basis. In the case of the stub loaded shunt 

node and the SSCN, the material parameters may be altered at each node individually 

and on a per iteration basis. Mesh configuration therefore has many degrees of 

freedom. 

It has been shown that through reconfigurable computing the TLM-GPP architecture 

can be used to process a mesh using any one of the four main TLM schemes. This 

flexibility is provided without the introduction of redundant computational elements 

and without attenuating the performance of the individual types of processor. 

"The chosen architecture should be scalable to allow any mesh size to be 

implemented." 

The mapping of the connect process in to hardware allows a fixed number of scatter 

processors to process a rectangular/cuboid mesh of arbitrary size. The processing 

time increases linearly with the number of nodes in the mesh. Each scatter processor 

in the array operates independently and has no communication with the other scatter 

processors. The size of the scatter processor array may thus be varied without 

affecting the throughput of the individual processors. As the connect process is 

simply a data router and adds no overhead to the computation time the whole 

processor array is scalable to any given number of scatter processors. This allows 

throughput to be balanced against resource availability. The only limitation on mesh 

size is the depth of the main store memory. By using SIMMs, the TLM-GPP allows 

the size of the main store to be adjusted to meet individual requirements. 

"The processor must be accessible. That is its use should not be prohibited through 

• Portability 

• Cost 

• Programming requirements" 

By implementing the processor as a PCI card it becomes available to the mass market 

of personal computer users. This is a significant advance over the large scale parallel 

computers used in previous applications, where access is generally limited to the 

research sector. The PCI card is small, light and physically portable. It is also 

portable in the sense that it may be transferred between computers. The PCI bus is a 

widely used standard, thus the potential hosts for the card are not limited to a 

particular manufacturer or class of processor. 
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The main components of the system are the PCI bridge chip, four Xilinx XC4000 

FPGAs and the SIMMs used for the main store. At current prices the board could be 

produced for considerably less than £1000, even for small volume production. This is 

well within the range of most potential users, both in industry and research. Using off 

the shelf components as opposed to a full custom IC development reduces the cost of 

the system. 

The operation of the processor is governed almost entirely by the control FPGA. The 

host system is required to transfer data to and from the processor and to post process 

result data. For each of the four classes of TLM node implemented the operation is 

the same. The host transfers information about the size, shape and material 

parameters of the mesh to the TLM-GPP. The processor passes scattered data back to 

the host which has to realign the bit serial data on to a byte organised data bus for 

visualisation. A simple interface could be developed to handle all of these features 

and communicate between the host and the TLM-GPP. As reconfiguration is 

controlled by downloading an appropriate bitstream there would be no requirement for 

any programming by the user. The same, simple interface could be used to access all 

four types of node. 

The development of the system has highlighted the importance of the connect process 

to the efficiency ofTLM. The TLM-GPP implements the connect routine as a series 

of multiplexers. These add no communications overhead to the scatter processing 

time. Because of this each scatter processor in the system may be treated as an 

independent unit. Each scatter processor operates at its stand alone processing rate. 

The speed up gained by adding an extra processor is approximately linear with a 1:1 

relationship between speed up and number of processors. The efficiency of the 

system is therefore very close to 100%. The efficiency is slightly reduced by the slight 

reduction in clock rate inherent when extra resources are consumed within the FPGA. 

Through careful floorplanning this may be minimised and the efficiency score 

maintained close to 100%. Given that many large scale parallel computer 

implementations of TLM demonstrated an efficiency score of less than 1% the new 

processor represents a significant breakthrough. This is primarily due to the reduction 

in bandwidth requirements and the unique mapping of the scatter processor array onto 

the mesh. 
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The throughput available to a basic 32 bit PCI implementation of the TLM-GPP has 

been estimated at 30 x 106 node iterations per second using a shunt node 

configuration. This demonstrates a significant throughput increase over software 

based implementations of TLM at the time of writing. The use of larger FPGAs, 

allowing large scatter processor arrays, or a faster scatter processor clock would 

produce a further increase in throughput. 

The development of the scatter processors has focused on applications in 

electromagnetics. This is the dominant area for TLM applications. The 2D scatter 

processors may be applied to problems in acoustics or other fields. The 3D processors 

are specific to electromagnetics. Scalar 3D TLM, in which only one link line is 

required in each direction, has not been studied. The reconfigurable nature of the 

TLM-GPP allows schemes such as the scalar 3D method to be implemented as 

suitable scatter and connect processors are developed. The main field of application 

for the TLM-GPP in its current form remains the modelling of electromagnetic 

phenomena. The motor industry and the electronics industry remain potential 

applications of the system. The low cost of the TLM-GPP makes it viable as a 

research tool or a teaching aid. 

One of the initial reasons for developing the TLM-GPP was to overcome the lengthy 

run times associated with processing many iterations of large models. The TLM-GPP 

provides the required increase in throughput. The use of integer data and the 

proliferation of truncation errors and quantisation noise may be expected to make the 

processor unsuitable for models requiring many iterations. However it was shown in 

chapter 3 that given a sufficient word length, integer arithmetic results are 

indistinguishable from those achieved using floating point arithmetic. In certain cases 

where the word length decreases rapidly, e.g. a mesh excited by a single impulse, a 

block floating point scheme has been demonstrated in software to provide an accuracy 

comparable to that of floating point over models in excess of one million node 

iterations. The TLM-GPP is able to implement a block floating point scheme with 

very little computational overhead. The use of arbitrary word lengths allows the 

numeric precision to be balanced against throughput. 

From the above it is clear that the TLM-GPP has attained all the goals laid out at the 

start of the project. The system represents a considerable step forward from existing 

attempts to accelerate the processing rate of TLM. The power of a large scale parallel 
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computer has been harnessed within a small, low cost platform. The system is 

reconfigurable with many degrees of freedom in defining the mesh for 

implementation. While its main applications lie in the field of electromagnetics, the 

reconfigurable nature of the TLM-GPP provides an upgrade path for the introduction 

of many other TLM schemes. The TLM-GPP demonstrates the significant potential 

of an application specific processor for TLM and provides a platform from which 

further research may be developed. 
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Recommendations for Further Study 

This thesis has presented the reader with an introduction to the transmission line 

matrix method for the modelling of electromagnetic wave propagation. A review of 

techniques for the development of digital arithmetic systems has been presented. The 

literature review of chapter 1 provides evidence of the need for a more efficient 

accelerator for TLM. In chapter 3 the efficiency of application specific computing for 

this purpose was demonstrated. This work forms the basis for the application specific 

processor designs presented in chapters 4-9. The product of this thesis is an 

application specific, general purpose TLM processor design. The processor is able to 

individually implement the four main electromagnetic TLM schemes. These are the 

shunt node and stub loaded shunt node in two dimensional modelling and the SCN 

and SSCN for three dimensional problems. In chapter 9 it was shown how a single 

processor architecture, the TLM-GPP, may be used to implement each of the above 

schemes without the introduction of any redundant computational logic elements. An 

example implementation of the processor as a PCI card for use with a personal 

computer has been described. This example demonstrates the requirements of the 

interface to the processor. 

The use of a bit serial architecture and a unique mapping of the TLM connect process 

in to hardware produce a system which is capable of operating on a rectangular or 

cuboid mesh of arbitrary row length and aspect ratio using a small, fixed number of 

scatter processors. The numerical precision of the calculations is arbitrary and may be 

selected to fit the requirements of each individual application. Implementing the 

system as a PCI card provides accessibility, which is significantly absent from 

traditional high performance computing applications of TLM. These advantages 

coupled with the high performance of the system fully justify its development. 

Although the TLM-GPP presents a significant step forward in application specific 

computing for numerical modelling there are a number of features which must be 

addressed before the system becomes a truly powerful modelling tool. 

Point 1 focuses on the obvious need to build a physical system that may be used to test 

the TLM-GPP principle. A physical platform would allow the individual node 

designs to be better evaluated and fully optimised. 



Future development of the TLM-GPP may be focussed on two key areas. The high 

degree of scalability inherent in the architecture of the system is constrained by the 

physical interface to the host computer. Unless a more suitable interface can be found 

which maintains the accessibility benefits offered by PCI, other methods of improving 

the scalability of the system must be found. These issues are addressed in points 2 

and3. 

The second area to be addressed is improving boundary and mesh representation. 

These areas are addressed in points 4 and 5. These points relate to improving both the 

quality and efficiency of the models produced by the processor. 

1 Realisation of a Physical Device 

One of the most obvious requirements of any further work is to realise the concepts 

presented within this thesis as a complete physical system. Using such a system the 

performance of the processors could be accurately tested against the predictions made 

in the relevant chapters above. A detailed study of the effect of word length on the 

accuracy of the processor could also be undertaken. While this is possible through 

simulation, the large numbers of calculations required to obtain statistically 

meaningful data are much better performed in hardware. 

A physical processor would also provide an ideal platform for prototyping. This 

would allow the testing of host interfaces, such that alternatives to the PCI bus might 

be evaluated. Options worthy of study include the Advanced Graphics Port (AGP) and 

the use of a dedicated Gigabit Ethemet link. It would also allow the rapid testing of 

new node designs. Possible candidates include diffusion modelling or the 

development of a floating point processor. 

2 Overcoming Memory Limitations 

At present the design of the system allows the modelling of meshes containing an 

arbitrarily large number of nodes. However in practice the number of nodes in the 

mesh is limited by the word length required and the memory available on the PCI 

card. A one Mbyte deep main store is sufficient to hold only 8192 nodes using 32 bit 

data. This represents a mesh of only 90 x 90 nodes. In order to reduce bandwidth, the 

memory used for the main store must be located on the board with the scatter and 
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connect processors. One option is to provide a number of free SIMM sockets. The 

user is then free to customise the system according to requirements and budget by 

adding or removing memory cards. The control logic must be adaptable to allow 

sufficient addressing for deeper memories. For very large meshes the main store must 

be partially stored on the host system and data transferred between the host and the 

main store as required. Due to the very high bandwidth this would require such a 

system would suffer from a significant loss of performance. An improved interface to 

the host would alleviate this problem. The creation of a memory expansion card is 

another interesting way of extending the applicability of the processor to much larger 

meshes. 

3 Increasing the Level of Parallelisation 

The throughput of the system is enhanced in two ways with respect to software 

implementations of TLM. Firstly the use of application specific, optimised hardware 

reduces the time required to perform each scattering event and secondly multiple 

processors are operated concurrently. The throughput of the system is directly 

proportional to the number of scatter processors operating concurrently. By 

increasing this number the throughput is raised. The width of the local bus defines 

how many scatter processors may operate. The bus width is constrained by physical 

problems e.g. crosstalk. There are several ways of increasing the effective bus width. 

Firstly the mesh may be partitioned between several boards which are operated 

concurrently. Data is transferred only during the connect process. As only a single bit 

serial connection exists in each direction from a scattering node only a two bit wide 

connection is required between the two boards. The PCI bus protocol allows for 

proprietary signals between boards. Extra signals would be required for preserving 

synchronism between the two boards. By generating all control signals on a single 

board this condition is met. More than two boards may be connected in a daisy chain 

however the PCI bus will only support a maximum of 4 add in boards in a typical 

application. Some of these slots may be taken up by graphics cards, sound cards or 

other peripheral controllers. 

The second expansion method is to work on multiple iterations of the mesh in parallel 

on a single board. When data is written back to the main store from the third row of 

the connect memory it is no longer influenced by scattering in the current iteration. 

Instead of writing this data back to the main store it may be passed to a second array 

of scatter processors that operate on it as the incident data in a second iteration. Any 



number of iterations may be processed concurrently; each array of scatter processors 

requires its own connect memory. Each subsequent iteration lags three rows behind 

the previous one. The number of iterations must be such that data from the last 

iteration is written back to the main store behind the current scattering event in the 

first iteration i.e. it is not possible to operate on the whole mesh concurrently in this 

way. 

4 Improving Boundary Representation 

The TLM processor uses a two bit code tagged to the front of each data word to 

specify the location and type of any local boundaries within the mesh. Due to the use 

of integer data in the basic shunt node the boundaries which may be represented were 

chosen as those with reflection coefficients of r = 0, 1 and -1. These boundaries are 

sufficient for representing simple electric and magnetic walls. However in many 

practical models, particularly in acoustics, boundaries must represent partially 

absorptive media and have non-integer reflection coefficients. The processing of such 

boundary conditions would require the introduction of a multiplier in to the output 

stream of each branch of the scatter processor. The two bit code would no longer be 

sufficient to specify the boundary conditions at each branch. Extra storage would be 

required to hold the reflection coefficient at each branch as this could no longer be 

specified as part of the data. However if the number of reflection coefficients within 

the mesh is limited it may be possible to store all values on the scatter processor and 

specify using a longer code which boundary condition is required at each branch. The 

length of the boundary code is added to the length of the data when calculating 

processing time therefore the number of boundaries which could be represented using 

this system must be kept small to avoid unnecessarily reducing throughput. 

It was stated in chapter 2 that there are a number of problems associated with 

performing multiplication using integer data of a fixed word length. In particular 

overflow can lead to significant errors. The fixed point scheme used in the stub 

loaded shunt node and the SSCN may be equally used for the shunt node and the 

SCN. Assuming the incident data is normalised to ensure that the total energy within 

the mesh is less than 1 the use of fixed point data would ensure that overflow does not 

occur. This assumes that only passive boundaries, i.e. those with IPI ~ 1, are 

required. 



5 Arbitrary Mesh Geometries 

At present the system is limited to processing rectangular or cuboid meshes. In order 

to model a non-rectangular geometry the problem must first be mapped to a 

rectangular mesh and nodes outside of the problem area processed. This is naturally 

inefficient. Consider the narrow cross of .figure 1. 

Figure 1 • TLM Mesh Representation of a Narrow Cross 

In order to model this geometry a square mesh must be processed. A very high 

percentage of the nodes in the mesh are outside the problem area but must be 

processed with null data to preserve the flow of data through the system. This is due 

to the way in which the mesh is mapped to the system. The connect processor maps 

to the mesh starting in one corner and traverses each row in turn. It is assumed that 

each node has a neighbour in all four directions. This is clear if no boundaries are 

specified at the edges of the model, when the connect processor gives rise to a toroidal 

mapping of the mesh. In the case of a non-rectangular mesh this is not necessarily the 

case. The main store may hold data for any mesh geometry, however it is assumed 

that adjacent nodes in each row occupy adjacent memory locations. Only the connect 

logic requires any knowledge of the physical geometry of the mesh in order to produce 

the correct data routing. The smallest geometric feature that may be isolated by the 

mesh is one row deep and NP nodes wide for a system of NP scatter processors. By 

defining where active nodes exist in the mesh the system may be adapted to operate 

on arbitrary geometries. This may be performed by setting up a bit map image of the 

mesh, with one bit representing each 1 x NP node block. A '1' would represent a 

block with active nodes where as a '0' would represent an empty cell that may be 



passed over. Figure 2 shows the bit map representation of the cross geometry of 

figure 1. 

ooo•ooo ooo•ooo ooo•ooo ooo•ooo ooo•ooo ooo•ooo ooo•ooo ooo•ooo ooo•ooo ••••••• ••••••• ••••••• ooo•ooo ooo•ooo ooo•ooo ooo•ooo ooo•ooo ooo•ooo ooo•ooo ooo•ooo ooo•ooo 
Figure 2 • Bitmap for the Narrow Cross Geometry with N" = 3 

The three connect memories must be sufficiently large to store all data for the longest 

row in the model. Each time the scatter processors are moved the bits corresponding 

to the current location and the nodes directly in front of it in the bit map image are 

read. If either is a '1' processing continues as normal, otherwise the address 

generators are incremented by the word length and processing continues with the next 

partition. The nodes in front of the scatterers must be checked as these correspond to 

row 3 of the connect memory. If these nodes are active then they contain data that 

must be written back to the main store. 

In TLM many nodes are initially set with zero data. In a large mesh it may be many 

iterations before data from the initial impulses reaches these nodes. However in every 

iteration they are processed with null inputs. This is obviously inefficient. By 

assigning the mesh bit map values dynamically at run time it is possible to reduce this 

inefficiency. Initially only those nodes with t=O inputs are set to '1 '. Each time data 

is scattered in to a new partition its bit map location is also set to '1'. In this way the 

mesh is dynamically defined at run time such that only those partitions containing real 

data are active. 



6 Conclusions 

In conclusion the processors developed in this thesis demonstrate the performance of a 

large-scale parallel computer in a small, accessible unit. While the above 

recommendations highlight some of the limitations of the current design the concepts 

it has introduced lay the foundation for the realisation of a very powerful, generalised 

class of TLM processor. 

The specific issues of low efficiency and poor scalability identified from the literature 

as affecting previous parallel implementations of TLM have been overcome through a 

direct mapping of the connect process in to hardware. An efficiency of close to 100% 

ensures speed up is predictable and the scatter array is scalable without penalty. 

Scalability in the areas of word length, mesh size and the number of scatter processors 

ensure that performance can be balanced against throughput requirements to suit 

individual situations. 
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- Derivations of Maxwell's Wave Equation and the 
Telegraphers' Equation 

- VHDL Listings 

- Shunt Node Processor Partitioning Test Results 

- Schematics for the Shunt Node System 



Derivation of Maxwell's Wave Equation 

Maxwell's equations state 

oHx oHz oEy 
------=&--

O.x & a 

OEy o Hz 
--=p--

Oz a 

These may be combined to yield Maxwell's wave equation by taking the second 

derivative of the E field in the x and z directions and combining thus 

The last equality is found by comparison with the first ofMaxwell's equations. 

Rearranging the above we arrive at the wave equation. 



Derivation of the Telegraphers' Equation 

Consider the transmission line circuit of figure I. 

~I 

Figure 1- Equivalent circuit of a length oftransmission line 

The voltage change across transmission line is the sum of individual voltages across 

the resistor and the inductor. 

av a 
-=1R+L­
t3x a 

The current flowing through the circuit is given by 

Which may be written as 

Substituting this in to our equation for the voltage across the circuit yields 

Which may be rearranged to yield the Telegraphers' equation 



LIBRARY IEEE; 
USE IEEE.std_logic_ll64.all; 

ENTITY bit_node IS 

PORT (VII, VI2, VI3, VI4, CLOCK, CSl, CS2, CS3, CE :IN std_logic; 
VRl, VR2, VR3, VR4, TOTAL :OUT std_logic); 

END bit_node; 

ARCHITECTURE behav_bit_node OF bit_node IS 

COMPONENT a_block 
PORT (A, B, CIN, CS, CLOCK : IN std_logic; 

COUT, SUM :OUT std_logic); 
END COMPONENT; 

COMPONENT b_block 
PORT (A, B, CIN, CS, CLOCK, FLAG, ZERO_FLAG: IN std_logic; 

COUT, SUM : OUT std_logic); 
END COMPONENT; 

COMPONENT delay 
PORT (I, CLOCK: IN std_logic; 

0 : OUT std_logic); 
END COMPONENT; 

COMPONENT store 
PORT (I, CLOCK, CE: IN std_logic; 

01, 02 :OUT std_logic); 
END COMPONENT; 

SIGNAL Cl, C2, C3, C4, CS, C6, C7, Sl, S2, S3, Fl, F2, F3, F4, 
ZFl, ZF2, ZF3, ZF4, Dl, D2, D3, D4: std_logic; 

BEGIN 

Ul: a_block 

PORT MAP (VIl, VI2, Cl, CSl, CLOCK, Cl, Sl); 

U2: a_block 

PORT MAP (VI3, Vl4, C2, CSI, CLOCK, C2, S2); 

U3: a_block 

PORT MAP (Sl, S2, C3, CS2, CLOCK, C3, S3); 

U4: b_block 

PORT MAP (Dl, S3, C4, CS3, CLOCK, Fl, ZFl, C4, VRl); 

US: b_block 

PORT MAP (02, S3, CS, CS3, CLOCK, F2, ZF2, CS, VR2); 



U6: b_block 

PORT MAP (D3, S3, C6, CS3, CLOCK, F3, ZF3, C6, VR3); 

U7: b_block 

PORT MAP (D4, S3, C7, CS3, CLOCK, F4, ZF4, C7, VR4); 

US: delay 

PORT MAP (Vll, CLOCK, Dl); 

U9: delay 

PORT MAP (VI2, CLOCK, D2); 

UlO: delay 

PORT MAP (VB, CLOCK, D3); 

Ull: delay 

PORT MAP (VI4, CLOCK, D4); 

U12 :store 

PORT MAP (Vll, CLOCK, CE, Fl, ZFl); 

U13 :store 

PORT MAP (VI2, CLOCK, CE, F2, ZF2); 

U14: store 

PORT MAP (VB, CLOCK, CE, F3, ZF3); 

U15: store 

PORT MAP (VI4, CLOCK, CE, F4, ZF4); 

TOTAL<= S3; 

END behav _bit_node; 



LIBRARY IEEE; 
USE IEEE.std_logic_ll64.all; 

ENTITY a_ block IS 

PORT (A, B, CIN, CS, CLOCK: IN std_logic; 
COUT, SUM : OUT std_logic); 

END a_block; 

ARCHITECTURE behav _a_ block OF a_ block IS 

BEGIN 

PROCESS(CLOCK) 

BEGIN 

IF (CLOCK= '1') AND (CLOCK'EVENT) THEN 

SUM <=(A XOR B) XOR CIN; 
COUT <= ((A AND B) OR (A AND CIN) OR (B AND CIN)) AND CS; 

END IF; 

END PROCESS; 

END behav_a_block; 



LIBRARY IEEE; 
USE IEEE.std_Iogic_ll64.all; 

ENTITY b_block IS 

PORT (A, B, CIN, CS, CLOCK, FLAG, ZERO_FLAG: IN std_logic; 
COUT, SUM : OUT std_logic); 

END b_block; 

ARCHITECTURE behav_b_block OF b_block IS 

BEGIN 

PROCESS(CLOCK) 

BEGIN 

IF (CLOCK= '1') AND (CLOCK'EVENT) THEN 

SUM <= (((A XOR NOT(FLAG)) XOR (B XOR FLAG)) XOR CIN) AND NOT(ZERO_FLAG); 
COUT <= (((A XOR NOT(FLAG)) AND (B XOR FLAG)) OR ((A XOR NOT(FLAG)) AND CIN) 
OR ((B XOR FLAG) AND CIN)) OR NOT(CS); 

END IF; 

END PROCESS; 

END behav_b_block; 



LIBRARY IEEE; 
USE IEEE.std_logic_ll64.all; 

ENTITY delay IS 

PORT (I, CLOCK : IN std_logic; 
0 : OUT std_logic); 

END delay; 

ARCHITECTURE behav_delay OF delay IS 

BEGIN 

PROCESS(CLOCK) 

VARIABLE A, B, C, X : std_logic; 

BEGIN 

IF (CLOCK = '0') AND (CLOCK'EVENT) THEN 

A :=I; 
B:=A; 
C:=B; 
O<=C; 

END IF; 

END PROCESS; 

END behav_delay; 



LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 

ENTITY store IS 

PORT (I, CLOCK, CE: IN std_logic; 
01, 02 :OUT std_logic); 

END store; 

ARCHITECTURE behav _store OF store IS 

BEGIN 

PROCESS(CLOCK, CE) 

VARIABLE A, B : std_logic; 

BEGIN 

IF (CLOCK= '1') AND (CLOCK'EVENT) THEN 

IF (CE = '0') THEN 

B := '0'; 
A :='0'; 

END IF; 

END IF; 

IF (CE = '1') AND (CE'EVENT) THEN 

01 <= '1'; 
02<= '0'; 

END IF; 

END PROCESS; 

END behav_store; 



Figure 1- Full Adder Test Waveforms 

Figure 2- Subtractor Test Waveforms showing the effect of the boundary flags 

Figure 3- Delay Chain Test Waveforms 

Figure 4- Boundary Flag Generate/Store Logic Test Waveforms 
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