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ABSTRACT 

A reference architecture provides an overall framework that may embrace models, methodologies and 

mechanisms which can support the lifecycle of their target domain. The work described in this thesis 

makes a contribution to establishing such a generally applicable reference architecture for supporting 

the lifecycIe of a new generation of integrated machine vision systems. 

Contemporary machine vision systems consist of a complex combination of mechanical engineering, 

the hardware and software of an electronic processor, plus optical, sensory and lighting components. 

"This thesis is concerned with the structure of the software which characterises the system application. 

The machine vision systems which are currently used within manufacturing industry are difficult to 

integrate within the information systems required within modem manufacturing enterprises. They are 

inflexible in all but the execution of a range of similar operations, and their design and implementation 

is often such that they are difficult to update in the face of the required change inherent within modem 

manufacturing. 

The proposed reference architecture provides an overall framework within which a number of support

ing models, design methodologies, and implementation mechanisms can combine to provide support 

for the rapid creation and maintenance of highly structured machine vision applications. These applica

tions comprise modules which can be considered as building blocks of CIM systems. Their integrated 

interoperation can be enabled by the emerging infrastructural tools which will be required to underpin 

the next generation of flexibly integrated manufacturing systems. 

The work described in this thesis concludes that the issues of machine vision applications and the 

issues of integration of these applications within manufacturing systems are entirely separate. This sep

aration is reflected in the structure of the thesis. PART B details vision application issues while PAIIT C 

deals with integration. The criteria for next generation integrated machine vision systems, derived in 

PART A of the thesis, are extensive. In order to address these criteria and propose a complete architec

ture, a "thin slice" is taken through the areas of vision application, and integration at the lifecycle 

stages of design, implementation, runtime and maintenance. 

The thesis describes the reference architecture, demonstrates its use though a proof of concept imple

mentation and evaluates the support offered by the architecture for easing the problems of software 

change. 

ABSTRACT 
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Chapter 1 

INTRODUCTION 

NEXT GENERATION INTEGRATED 
MACHINE VISION SYSTEMS 

1.0 INTRODUCTION 

This thesis presents a reference architecture for supporting the design, implementation and 

maintenance of next generation machine vision systems, where these systems will be flexibly 

integrated within CIM systems. 

The structure of the thesis reflects a fundamental separation between issues pertainiIig to 

machine vision applications, and issues pertaining to the integration of these applications 

within CIM systems. The thesis comprises three principal parts: 

• PART A - A DERIVATION OFTIIE "NEEDS" OF NEXT GENERATION INTEGRATED 

MACHINE VISION SYSTEMS 

Chapters 2. 3 and 4 present the contemporary position within the disciplines pertinent to the 

work. namely: manufacturing industry and the role of machine vision; systems integration; 

and. contemporary practice in machine vision design and implementation. 

• PART B - TIIE DESIGN. IMPLEMENTATION AND MAINTENANCE OF MACHINE 

VISION APPLICATION OBJECTS 

Chapters 5. 6. 7 and 8 details the techniques proposed for structuring machine vision appli

cation software. Their benefit is demonstrated through a proof-of-{;()ncept implementation 

and demonstration of change. 

01apI0r 1 

4 



• PART C - THE FLEXffiLE INTEGRATION OF MACHINE VISION APPLICATION 

OBJEcrS WITHIN MANUFACWRING SYSTEMS 

Chapters 9 and 10 detail the techniques proposed for mapping application objects as 

described in PART B onto an open distributed vision application implemented on an inte

grating infrastructure. Again, the benefits are demonstrated through a proof-of-concept 

implementation and demonstration of change. 

The final chapter (PART D) draws conclusions from PARTS B and C and proposes future 

work. 

This chapter draws conclusions from the literature presented in PART A and states the"needs" 

of integrated machine vision. An overall framework which descrilxisthe elements required to 

structure the design and implementation of a new generation of integrated machine vision sys

temsisintroduced. 

In PARTS B and C, the author identifies and tests the use of models to support design and 

implementation, methodologies for systematised design, and mechanisms for structured 

implementation. These models, methods and mechanisms can be used to support the creation 

and maintenance of next generation 'integrated vision machines which fulfil the requirements 

identified within this chapter. These requirements are briefly summarised as follows: 

• ease with which structured applications software can be built; 

• ease with which structured applications software can be modified; 

• ease with which implementation hardware can be changed; 

• provision of "designed in" flexibility; 

• provision of applications as object modules with defined interfaces and hidden information 

and functional detail; 

• provision of applications that can benefit from available support information; 

• provision of applications that generate information from which other manufacturing appli

cations can benefit; 

NEXT GENERATION INTEGRATED MACIIlNE YlSION SYSTEMS 
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• provision of application-generation tools supported by models and methodologies that ena

ble the requirements above and encourage the generation of structured and flexible applica

tions which support ordered change; 

• provision of integration tools supported by models and methodologies to enable application 

objects to become building blocks of CIM systems. so they can be aggregated within such 

systems. 

It is evident from these requirements that a number of issues need to be studied in order to pro

pose a overall reference architecture for next generation integrated machine vision systems. 

The work described in this thesis covers machine vision application issues. open systems inte

gration issues, and uses novel. model driven and information generating. implementations in 

order to define an architecture which supports all the identified requirements. Since the 

emphasis is on the total system rather than individual components. a "thin slice" is taken . 

through each topic studied. 

It is understood that many of the methods underlying the author's work can be found within 

the design and implementation of contemporary complex software systems. The novel aspect 

of the author's work lies in the combination of contemporary methods applied to a particular 

application domain. Within the vision applications work. for example. these methods include 

object oriented design and implementation. model based design (where the design follows that 

of the physical structure of the entity likely to require change) and model driven implementa

tion. together with the use of an architectural framework, a vision model and modelling meth

odology. The derivation of integration methodologies includes the use of a more global 

architectural framework incorporating the use of an integrating infrastructure. a virtual vision 

machine and complementary application support element. 

2.0 THE REQUIREMENTS FOR INTEGRATED MACHINE 
VISION 

2.1 Introduction 

Chapters 2, 3 and 4 of this thesis study the current state of the integration of machine vision 

systems within manufacturing industry. An important theme throughout these early chapters is 

NEXT GENERATION INTEGRATED MACHINE VISION SYSTEMS 
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the need for future manufacturing systems. and the individual manufacturing applications that 

make up those systems. to be able to cope with required change [Weston 90/91/92. Spackman 

92. Bishop 89]. The need for this flexibility can be attributed to the following three drivers: 

• changes in line with market requirements (market push). meaning that manufacturing 

industry must remain competitive through the generation of new and updated products 

[Bishop 89]; 

• changes made possible through the availability of advanced technology (technology pull). 

where incorporating new technology within the manufacturing process (and in the manu

factured product) can reduce cost and improve the product [Bishop 89J; 

• flexibility within the production process. e.g. multiple products can be manufactured in 

batches from a single facility. 

The benefits derived from current forms of automation and systems integration within a manu

facturing system are identified in chapters 2 and 3. Chapter 3 also identifies contemporary 

implementation problems within conventional. or "hard" integrated systems which cannot 

adapt readily to change [Weston 92. Coutts 92J. The benefits derived from integration can ena

ble a company to gain a competitive edge. However. the creation of hard elM systems can 

become a barrier to maintaining that competitive advantage. Their resistance to change can 

prevent the company from employing new technology. and can constrain the design of new 

products. Hard integrated systems may also lead to inflexible production methods. and sys

tems which cannot change in response to changes in production profiles. 

A number of authors have concluded that the ability to embrace change is of paramount 

importance [Weston 90/91/92. Mertins 92. Spackman 92. Bishop 89]. In the context of appli

cations within information systems. Spackman extends this emphasis on change to illustrate 

how competitive advantage can be gained by using systems that can cope with change. by rap

idly adapting to new market demands [Spackman 92]. The author believes that this potential to 

profit from change is equally applicable within shop-floor manufacturing systems. particularly 

if in the future these systems are more like a set of integrated open applications. 

Chapter 3 describes the current state of CIM implementation. The existing problems are 

described together with the proposed solutions which have evolved. The chapter introduces 

NEXT GENERATION INTEGRATED MACHINE VISION SYSTEMS 
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the notion of "soft" CIM systems, where the elements that make up an integrated system are 

implemented via an integrating infrastructure providing managed integration services [Weston 

92, Coutts 92]. The benefits of this technique include the promotion of standard modular 

building blocks of integrated manufacturing systems. 

Chapter 4 describes the current state of machine vision systems, highlighting the lack of facil

ities to support their systemised creation and maintenance, relative to the requirements of soft 

CIM systems. The need for a prescriptive architecture, or framework, for vision machine 

design and implementation, at least within specific domains, is identified. This architecture 

could lend structure, and provide guidelines for submodule definition, which could help speed 

initial system implementation and cope with required change. Chapter 4 introduces the object 

oriented paradigm and illustrates its potential for the design and implementation of machine 

vision systems. 

The key "need" for integrated machine vision (as identified within PART A of this thesis), is 

that: 

madiine vision systems sfwuU! oe tfesignetf awl ouut as motfufar ouiftfing OfocK! of integratetf 

manufacturing systems, wfiere tlieir tfesign awl mntime arcnitectUTe sliouM em6race tfie 

requirement for ease of dUl7Ige ant! ~ifity 

In order to identify the more specific needs of next generation integrated machine vision sys

tems it is important first to identify the nature of the soft integrated manufacturing cell in 

which such vision processes exist. 

2.2 A Soft Integrated Manufacturing Cell. 

A schematic representation of a future manufacturing cell is shown in Figure I, which depicts 

two distinct views of the cell, a logical application architecture and a physical architecture. 

The logical architecture structures the functionality of the processes within the cell as a set of 

open applications running on an integrating infrastructure. These open application objects will 

pass messages to each other via the integrating infrastructure, thereby making use of the inter

action services and information services offered by the infrastructure. The physical architec

ture will comprise a heterogeneous range of processor-based hardware, the majority of which 
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are capable of running integration infrastructural software as a layer above the level of their 

operating system. Chapter 3 identifies the need for handling processing resources that cannot 

support the integrating infrastructure [Weston 91, Gascoigne 92]. These non-compliant 

resources must be interfaced with the infrastructure through software principally to provide 

protocol conve~ion. This special handling software enables applications running on non-com

pliant resources to appear as open applications to the rest of the manufacturing applications. 

Operator interface facilities for all manufacturing applications within the cell will be through a 

set of windows on one or more workstations. 

FIGURE 1. a conceptual view or a sort integrated manuracturlng ceU 
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Figure 2 shows more detail of a vision process within a soft integrated manufacturing cell. It 

introduces the idea of the machine vision application being decomposed into discrete objects 

which form building blocks for soft CIM systems. This figure shows the open applications 

being mapped onto various processing components of the physical architecture. 

FIGURE 2. A single process within a sort integrated manufacturing cell 
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2.3 Key Requirements For Next Generation Machine Vision Systems 
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The following is a set of key requirements identified by the author as necessary for the evolu

tion of integrated machine vision systems. These requirements are derived from a literature 

survey, experimental work and the discussions with machine vision users and vendors 

reported in chapters 2, 3 and 4. 

• Ease with which structured application software can be built. Chapter 4 concludes the need 

for application software structured to conform to a reference architecture, where that struc

ture takes the form of rules or fundamental truths relating to a particular technology type or 

application domain. Chapter 4 also identifies the need for non-prescriptive methodologies 

based on structured design paradigms. [Thomas 91]. 

NEXT GENERATION INTEGRATED MACHINE VISION SYSTEMS 

10 



• Ease with which structured applications can be modified. Chapters 2, 3 and 4 highlight the 

increasing importance of building systems which can support change [Weston 90/91/92, 

Spackman 92]. Change is an inherent requirement of present and future manufacturing sys

tems and their component elements [Bishop 89]. In this thesis, the term "ease of change" 

will imply an inherent ability to handle process modification in line with unforeseen 

requirements (i.e. the required inspection of additional features of a product which were not 

in the original specification and design of the vision machine inspection system). The 

implication here is the requirement to handle software modification. 

• Provision of flexibility. In this thesis, the term "flexibility" will imply an inherent ability to 

handle variation within a systems target domain (i.e. shop floor vision machines will be 

required to handle the changing requirements of a flexible manufacturing line which may 

be required to cope with multiple options of its manufactured products. In this case the 

required flexibility can be identified during the design phase of the vision system life 

cycle.). 

• Provision of facilities to enable the removal, replacement, addition, modification or recon

figuration of hardware elements within the system, such that advantage can be taken of 

evolving technological advance, while application functionality can be retained. 

• Provision of object modules which provide specific services so that users of these services 

do not need to know the implementation details relating to the module elements of the sys

tems to be built. The structure of primary object modules which stand alone within a soft 

integrated manufacturing system form modular building blocks within that system. 

• The ability to make use of available information to support or enhance the functionality of 

the vision application, typically increasing reliability or flexibility, or even lending a degree 

of intelligence to an application. 

• The ability to contribute information through the provision of open vision services, where 

this information can be of significant benefit to the applications which make up a manufac

turing enterprise [Edwards 93]. 

• Provision of design and implementation tools to enable the consistent generation of appli

cations in line with the requirements above. 
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The criteria above have an underlying requirement for the definition of an architecture which 

potentially provides for rapid implementation of structured systems that supports subsequent 

software modification. They can be considered in two broad classifications. These will be 

referred to as platform criteria and application criteria. 

• Platform criteria - Le. those criteria which when satisfied provide a platform for building 

next-generation vision·applications. This class includes: 

• ease with which structured applications can be built; 

• ease with which structured applications can be modified; 

• provision of facilities to support hardware heterogeneity; 

• provision of automated design and implementation tools •. 

• Application criteria - i.e. those criteria which should be satisfied by vision applications 

which are built using the tools developed to fulfil the platf'orm criteria. This class includes: 

• provision of flexibility; 

• ability to make use of available information to support or enhance the functionality of the 

vision application; 

• ability to provide information as an additional resource which could benefit other manu

facturing applications within an enterprise; 

• ability to create object modules which provide specific services so that the users of these 

services do not need to know the implementation details relating to the module. 

Some overlap may occur between platform criteria and application criteria Le. object modules 

created for a particular application can contribute to platform facilities for rapid build of new 

applications. 

3.0 THE DECOMPOSITION OF VISION APPLICATION 
ISSUES AND INTEGRATION ISSUES 

Figure 3 reflects the fundamentally important decomposition which separates issues associ

ated with the design of application functionality from those issues associated with the imple

mentation of the applications within a elM system. 
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FIGURE 3. An application design and implementation environment 
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FIGURE 4. The model based machine vision slw design and generation environment 
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The tool-set for the design of machine vision systems includes tools to generate a structured, 

machine vision application. A machine vision application provides vision information serv

ices, and can benefit from the support of information contained within the host CIM system. 

The issues associated with the design and implementation of vision machine applications is 

considered further in Section 4.0 of this chapter. 

Figure 3 also shows a range of fragmented software solutions which could be generated using 

the application specific design tools. These represent the application functionality (potentially 

soft elM system building blocks) required to implement discrete processes, introduced in 

Figure I, as application objects. These processes typically could include a vision machine 10 
. . 

handle automated inspection, a cell controller to co-ordinate information througboutthe pro-

duction of a printed circuit board, and a maintenance scheduler. At this ~tage, within the fig

ure, this range of application software solutions are represented as a fragmented Set of discrete 

modules. What is required is that these modules should be implemented so that they co-exist 

as an aggregated solution offering and using information within a soft integrated manufactur

ing system. These requirements are considered further in Section 5.0 • 

4.0 THE DESIGN, IMPLEMENTATION AND MAINTENANCE 
OF MACHINE VISION APPLICATION OBJECTS 

Figure 4 shows an expanded version of the machine vision design tool-set introduced in 

Figure 3. It shows a layered architecture to which the discrete machine vision application soft

ware solution generated by the design and generation enviroment should conform. A number 

of important issues are introduced in this figure. These will be discussed briefly at this point to 

enable on overall understanding of which aspects of the complete system have been investi

gated by the author and which are reported in this thesis. 

The issues addressed within the machine vision application design aspects of this thesis con

centrate on the use of contemporary tools to test the notion of defining a prescriptive architec

ture to provide structure to vision application software and 10 support change. 

The author believes that the functionality associated with digital image processing and feature 

extraction obeys specific rules and can be modelled as such. This prescriptive vision model 

can then be used to structure the design of vision application software, particularly the struc-
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tured interaction with the software which drives the vision hardware. Figure 4 shows this as a 

vision model layer within the vision application object. 

Structure can be both rigorous and non-rigorous: rigorous structure implies that the software 

system complies with a particular specification, typically between boundaries within an archi

tecture; non-rigorous structure implies the software system is loosely based on an architecture 

which lends familiarity to the implementation. 

When features have been extracted from an image, the software is entirely application specific 

and obeys no fundamental or generic rules which can be used to derive a generic reference 

model to aid rigorous structured design. What is proposed at this level,above feature extrac

tion, is a design methodology and a domain specific framework which can helpto provide· 

flexibility and ease of change through non-rigorous structure. This framework would apply in 

the application layer of the vision application object in Figure 4 

Figure 4 identifies four primary elements in the author's proJX>saIs for design and implementa

tion of vision application objects: 

• "Software design and implementation tools": these tools will be based on, or make refer

ence to, the following models; 

• a "vision technology model" embracing both the state and behaviour of vision technology. 

This model should embrace only the fundamental truths of vision technology that will 

allow the generation of rules regarding the relationships within the model. Figure 5 shows 

the stages of the model in isolation, which may help to establish the usefulness of such a 

model. These stages appear in Figure 4 in the knowledge box at the top of the page and in 

the vision model layer in the application object; 

• "information models" describing a formal representation of the objects which are of interest 

to a particular machine vision application: the principle of "information driven applica

tions" [Schildt 87], using information to control applications during runtime, is used within 

this work. This thesis also proposes that the structure of these information models can be 

used to direct the structured design of applications, using non-rigorous structure to support 

the creation of modular solution which could enable some of the potential benefits of 

object-oriented design and implementation to be realised [Cox 87, Booch 91]. 

NEXT GENERATION INTEGRATED MACHINIl VISION SYSTEMS 

16 



• a "layered application architecture". This architecture is used within the structure of the 

vision application software solution. A simple three layered architecture is proposed, com

prising application functionality, vision model and vision hardware resource interface code. 

FIGURE S.the three stages or a model or vision technology I 

Paper model 

c++ class libraries 
describing state and 
behaviour I data and 
methods . 

c++ run time code 

All the aspects of Figure 4 are covered within PART B of this thesis, though the application 

designer using CASE tools is replaced by a person aided only by pen and paper with which to 

implement the proposed structured methodology. 

PART B comprises 4 chapters covering the following: 

• Chapter 5 - the vision model and modelling methodology; 

• Chapter 6 - the use of infonnation models to drive design and runtime systems, and the 

issues of separation within the three layered architecture; 

• Chapter 7 - a proof of concept implementation of a model driven vision application object; 

• Chapter 8 - an evaluation of the author's proposals and a demonstration of their support for 

change. 
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5.0 THE FLEXIBLE INTEGRATION OF MACHINE VISION 
APPLICATION OBJECTS WITHIN MANUFACTURING 
SYSTEMS 

The lower sections of Figure 3 show the tool-set which supports the design, implementation 

and execution of an integrated manufacturing system. This illustrates a scenario in which the 

software components are open applications running on an integrating infrastructure. This tool

set will have its own support models and methodologies which embrace the life-cycle require

ments of a soft integrated manufacturing system. It will include tools to enable the generation 

of applications as consistent building blocks within a soft elM system. The scenario depicted 

within this figure assumes that in the future the open applications software can. be mapped 

onto appropriate processing hardware which is capable of supporting integration infrastruc

tura1 software. 

Figure 6 describes a form of implementation which represents what is currently possible when 

mapping applications software onto an integrated manufacturing system constrained by the 

hardware and software used to implement the components of that system. This is in advance of 

current implementations within industry [Weston 90, Mertins 92, Klittich 90]. The figure 

describes a scenario where an integrating infrastructure is available and running on a restricted 

set of hardware and software, typical of the sophisticated systems required for information 

system networks. 

Figure 6 shows a distributed vision inspection application comprising of the following ele

ments: 

• the vision processing aspects of the inspection system, implemented as a vision application 

object providing vision services running on a specialist remote processor; 

• A vision client application making use of vision services and providing information to drive 

the remote vision application object; 

• a "specialist application", to be known as a ''vision alien device driver", which makes the 

remote vision application object look like an open application on the integration infrastruc

ture. This module is required to handle all issues of compatibility between the vision appli

cation object and the integrating infrastructure. These compatibility issues will always be 

"one off" problems requiring specialist knowledge as described in the figure. 
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Each element of the system comprises a layered architecture which reflects the separation of 

integration issues from application issues. The architecture provides further decomposition to 

support the separation of application interaction issues from application interoperation issues, 

where interoperation is supported through techniques based on virtual machines. 

PART C presents details of a comprehensive implementation of a vision machine implemented 

within a soft integrated manufacturing system enviroment. The system offers a migration path 

from current hard integrated solutions to the future soft integrated manufacturing systems. 

PART C comprises 2 chapters covering the following: 

Chapter 9 - a proposed layered architecture required to separate application issues from inte

. gration issues, and to further separate interaction issues from interOPerability issues; 

Chapter 10 - a proof of concept implem~ntation detailing the mechanisms required within the 
. . 

architecture, together with a demonstration of the support for change offered by the author's 

proposals. 
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FIGURE 6. The design and implementation or a present soft integrated vision system 
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Chapter 2 

TRENDS IN MANUFACTURING AND THE 
ROLE OF MACHINE VISION 

1.0 INTRODUCTION 

The first few sections of this chapter concern the global market and its consequences for suc

cessful manufacturing. The manufacturing practices which have arisen from the demands of 

modem economies are identified. The use of information is key. The chapter continues with an 

outline of the role of machine vision in the electronics manufacturing industry and highlights 

the need for a new generation of flexible integrated machine vision systems. The potential of 

machine vision is identified as a provider of valuable and quantifiable process information. 

1\'10 underlying requirements which should enable industry to cope with contemporary 

demands are highlighted, namely: 

• infrastructural facilities to enable information access and interaction between manufactur

ing applications. These facilities would underpin the design and implementation of next 

generation CIM systems; 

• new methodologies for the design and implementation of next generation manufacturing 

applications, which will use these infrastructuraI facilities within integrated manufacturing 

systems. 

Fundamental requirements within the specification of this new generation of manufacturing 

applications are: . 

• flexibility in terms of shon term reconfiguration within a predictable range of variation; 

• ease of implementation to enable immediate access to the benefits of automated inspection; 

• ease of change to enable the controlled migration from existing technology to embrace 

future technological innovation; 

• ease of integration within eIM systems. 

Cllap<er2 
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2.0 MANUFACTURING IN THE LATE 20TH CENTURY 

In the late 19th century Taylor of the Bethlehem Steel Company in the USA publicised a new 

philosophy for manufacturing management based on the principles of de-skilling the work

force. This involved setting target times for individual operations, and paying bonuses to those 

who achieved them [Murray 93, Lipietz 93]. Ford adopted Taylor's principle of timed tasks, 

and added to it the principle of sychronised flow between operations [Lipietz 93]. The Taylor/ 

Ford combination produced a philosophy for production and organisation within manufactur

ing that became generally known as mass production, and it has dominated manufacturing 

industry for the majority of the 20th century. 

Since the end of the second world war, the economies of developed countries have slowly 

changed. Economies that were demand-led are now dominated by supply [Perrier 92]. From 

1945 to 1975 manufacturing industry in those countries responded to economic growth with 

large-scale production of a single product or a range of similar products, applying the Taylor/ 

Ford principles of mass production. The late 1960's and early 1970's saw the end of this 

"boom" period of what had been thought to be unstopable growth [Wee 87]. Since then, the 

growing sophistication of the global consumer market has meant that manufacturing industry 

has had to respond to the demand for a diverse and frequently changing range of products 

[Williamson 92, Hutton 91]. This change has been documented by many observers, and classi

fied by some, as the move from mass production to mass customisation [Davis 91, Hutton 91]. 

Mass customisation now means small batch sizes and shortened product Iifecycles, while 

intense competition in the global market dictates low unit costs and high quality/reliability. To 

this end, manufacturing industry has been forced to adopt new methods. Japan has led the 

world in the practical application of these new methods, and the country has seen a reduction 

in unit costs as dramatic as that when mass production ousted the individual craftsman [Hutton 

91]. For example Horiuchi Kikai Seisakusho, (a Japanese hydraulic cylinder manufacturer) 

have a product range of 20,000 cylinder types, and offers delivery within four days of receipt 

of order [Bell 92]. Many new techniques are combined to achieve this level of manufacturing 

excellence: some of the most widely known and applied are just-in-time (JIT) [Dear 88], Total 

Quality Management (TQM) [Spenley 91], Design for Manufacture and Test [Katz 91], Statis

tical Process Control (SPC) [Lochner 90]. Advanced Manufacturing Technology (AMT) 
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[Goetsch 90] and Computer Integrated Manufacturing (CIM) [Ranky 86, Waldner 92]. A prac

tical reference covering most of these contemporary practices is "Ten steps to world class 

manufacturing" [SteudeI91]. 

Bishop and Schofield [Bishop 89] identify ten goals for today's successful manufacturer: 

• reduced lead time to satisfy customer orders; 

• reduced time to get new products to market; 

• flexibility to adapt to changes in technology or market; 

• increased quality; 

• reduced costs; 

• increased management control; 

• customer satisfaction; 

• improved customer service; 

• improved use of people; 

• meeting safety, environmental and legislative requirements. 

They stress that "The only constant is change" in the modem economy, implying that the capa

bility to change must be inherent in the implementation of each listed aim. A modem manu

facturing enterprise is characterised by a continuous state of evolution, which embraces new 

technologies and practices to suit the prevailing economic circumstances. The need to accom

modate change is a major consideration when identifying the requirements for the elements 

which will make up the next generation of integrated manufacturing systems. 

Davis and Davidson describe the current economy as the "information economy" in their book 

"2020 Vision" [Davis 91]. They claim that the new economy has been in existence since the 

1950's. However, it was not until the late 1970's and 1980's that there was a general agreement 

that this fundamentally different economy was in place [Davis 91, Hutton 91, Waldner 92]. 

Manufacturing industry responded with quality, productivity and customer service initiatives. 

Mass customisation with rapid response has been an additional requirement in the late 1980's 

and early 1990's. Davis provides many practical examples of these new manufacturing prac

tices [Davis 91]. 

Papers describing the application of these new practices such as nT and TQM conclude the 

need for a coherent business strategy to identify and position appropriate methods [IBM 87, 
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Evans 88, Mansel 88]. The need for integration of the business, physically through the use of 

computers, networks and automation, and logically through the use of information has also 

been identified [Bishop 89, Weston 88]. It is the combination of these issues that comprises 

Computer Integrated Manufacturing (CIM) and which is centred on the use of information 

[Weston 88, Thomson 89]. 

Thomson and Graefe [Thomson 89] describe CIM as a new paradigm for the "integration of 

information" which calls for the control of manufacturing through the use of a single master 

record of all manufacturing information (a theme endorsed by many researchers and commen

tators in the field [Weston 88, Schofield 88]). They stress that solutions to manufacturing prob

lems no longer spring from increasing the efficiency of each process within the manufacturing 

cycle, as these no longer represent the significant production cost. For example, at Apple Inc. 's 

new Macintosh plant direct labour accounts for I % of production cost, while at mM it is 

approximately 4% [Thompson 89]. Manufacturing support now makes the iargestcontribution 
-~ , . 

to production cost, and it is in this area that integration and infonnation can reduce support 

costs appreciably. 

3.0 THE EFFECTS OF THE NEW PRACTICES WITHIN 
MANUFACTURING 

Figure I shows a classical hierarchical structure of a manufacturing enterprise. In the classical 

structure each department is considered to be a miniature enterprise, and channels of informa

tion follow vertical paths between the hierarchical levels. The effect of new manufacturing 

techniques involves change within all layers of the structure changing the shape of the pyra

mid, and will involve a reduction in the number of hierarchical levels. 

A new type of management structure is emerging to accompany the establishment of inte

grated information systems within an enterprise. This structure is based on the decentralisation 

of decision making which breaks down the classical subdivided organisation, shown in 

Figure I [Waldner 92]. In the new structure, communication takes place freely between levels 

and different specialisms. Vertical lines of communication are not enforced when the progress 

of the company is involved. 
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FIGURE 1. The hierarchical structure of a company 
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This decentralisation requires access to appropriate information to support decision making at 

every level within the enterprise, and to all entities, be they man or machine, which can be!1efit 

from information access. 

In order to provide appropriate information throughout an enterprise an infrastructure to sup

port information access is required. 

4.0 THE REQUIREMENT FOR AN INFORMATION 
INFRASTRUCTURE 

Davis highlights the importance of providing an information infrastructure, so that business 

can benefit from the availability of information [Davis 91). He makes an analogy with other 

infrastructural systems such as those which exist within the real estate industry where roads, 

sewage, electricity, gas and telephone need to be established before a community of homes 

and businesses. Today's data communication networks (which offer an enabling tool which 

can form part of such an infrastructure) have already had significant impact on the global 

economy. It follows that in order to implement an integrated manufacturing system based on 

access to relevant information, infrastructural facilities must first be established. 

Within a manufacturing enterprise, another prerequisite for the effective use of information is 

that entities which can derive benefit from information access are designed to take advantage 

of the availability of that information. If these entities are human operators or managers, train

ing is a prerequisite. If they are manufacturing applications, a new set of criteria must deter

mine the specification for their design and implementation. 
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5.0 TWO THEMES WITHIN THE NEXT GENERATION OF 
MANUFACTURING SYSTEMS 

In order for manufacturing applications to make effective use of information a system must 

provide for the availability of information as and where it is required, and manufacturing 

applications must be tailored so that they can take advantage of available information. 

Weston argues these two principles [Weston 88]: 

• "Methods should be studied whereby the activities of currently available heterogeneous 

computer systems can be integrated to provide improved level~ of combined decision mak

ing and control functionality. The integration methods would necessarily involve the inter

connection of information storage devices (some which would support specific 

manufacturing applications) and the evolution of integration standards and tools to achieve 

this interconnection"; 

• ''The need to design a new generation of computer based entities from which manufactur

ing systems can be built. The new entities would not be designed as stand alone applica

tions but would reflect the need for integration and the enhanced levels of decision making 

and control functionality which information availability through integration will enable". 

The work of the Systems Integration (SI) Group at Loughborough University of Technology 

(LUT) has focused largely on the work identified in Weston's first point, and this work, along 

with contemporary world-wide research initiatives, is reported in Chapter 3 of this thesis. His 

second point was the initial stimulus for the author's work: to investigate how next generation 

vision machines can be designed and built so that they can be integrated easily into an infor

mation infrastructure, and can maximise the advantage of information access. As such, these 

next generation vision machines will form building blocks within integrated manufacturing 

systems. 

The following section looks at the contemporary role of machine vision within the electronics 

manufacturing industry, and seeks to identify the future requirements to widen the scope of its 

effective implementation. 
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6.0 THE ROLE OF MACHINE VISION 

Most manufacturing processes, such as machining and component assembly, can be accom

plished using automated machines equipped for high precision tool positioning and proximity 

sensing. However, inspection operations within the manufacturing industry normally depend 

on vision [Moir 89]. Moir claims the following benefits from automating visual inspection: 

• objectivity; 

• 100% inspection; 

• quantifiable feedback data on production efficiency; 

• elimination of human error and fatigue; 

• continuous operation. 

The successful application of automated visual inspection within the electronics manufactur

ing industry has demonstrated many of these benefits [Stroebel 89, Black 88, Oughton 88, 

Voss 89, Bracker 89, PoweIl89]. 

During recent years the electronics manufacturing industry has had to cope with rapid devel

opments in semiconductor technology, while at the same time having to adapt to changes in 

manufacturing philosophy required within the new global economy. During this period, 

machine vision has become an integral part of the automation used to increase the efficiency or 

quality of the printed circuit board (PCB) fabrication and assembly processes which are 

required for the new miniature technology. 

In many cases vision has been the only effective solution. The PCB fabrication process is by 

nature inexact, being very sensitive to changes in environmental conditions [Wright 90]. As

PCB features have decreased in size the inexactness of the process has become more signifi

cant, and it can only be overcome by the use of flexible process machinery which can compen

sate for every PCB being unique. Machine vision which inspects and feeds back visual 

infonnation, provides this flexibility. This is not an attempt to "inspect out" avoidable process 

problems, it is the use of vision to compensate for a process that is inherently inexact. 
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7.0 CURRENT APPLICATION AREAS FOR MACHINE 
VISION IN PCB FABRICATION AND ASSEMBLY 

7.1·. Successful Applications 

There are many uses of machine vision in PCB fabrication and assembly [Edwards 90]. Dur

ing the processes involved in PCB fabrication and assembly, position feedback is used for the 

realignment of PCBs and their phototools. Realignment follows visual inspection of fiducial 

marks to provide information about their exact position. Manufacturers who produce a range 

of contemporary SMT assembly machines incorporating these features include both Fuji 

Machine Mfg. Co. [Fuji 89] and Panasonic Factory Automation Co. [panasonic 92]. 

The fabrication of mulilayer fine line technology PCBs requires that individual layers are 

inspected prior to their incorporation within a PCB. Because of the miniature scale of the PCB 

features, testing for the continuity of each track is no longer sufficient. Quantitative measure

ment offeatures, such as track width, track-to-track space,-track=io:.pad space with additional 

inspection for faults such as pin holes and spurious metal [Bracker 89], is now required to 

ensure high quality and reliability of finished boards. Automated optical inspection (AOI) 

together with operator verification has been successfully employed in this task. Typical equip

ment manufacturers include Optotech, and L10yd Doyle [Optotrec 89, L10yd 89]. The inspec

tion of PCB phototools is also carried out using similar AOI machines. 

7.2 The Basis for Successful Implementation of Machine Vision 

In his paper "Machine vision and its integration with CIM sYstems in the electronics manufacturing 

industry" the author has identified some of the reasons for the success of machine vision in 

PCB fabrication and assembly [Edwards 90]. These include the following: 

• when generating offset information for a placement head, component position detection can 

be achieved by processing the binary image of the device outline. This is commonly 

achieved by back-lighting the device to produce a black object on a white background. This 

means process variations such as device colour, surface finish or position and content of let

tering on the device can be ignored, as can the problems of extracting the relevant object 

from a confusing background. This enables the vision machine to have a consistent and 

fairly simple image to process; 
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• fiducial marks on the PCB are specifically for the use of the vision machine and are there

fore designed for ease of image capture and analysis. Figure 2 shows an example shape that 

has been used as a fiducial mark. and has proved to produce consistent position information 

through automated image capture and processing; 

• in AOI systems success can be attributed to the good definition of object of interest against 

background i.e. the tracks and pads against the PCB laminate or artwork film. Thus the sub

ject lends itself to consistent image capture. Figure 3a shows a photograph of a PCB pad 

and track on laminate. while Figure 3b shows the AOI captured image. 

FIGURE 2. Binary image or a fiducial mark captured using rront illumination 

The success of these applications can then be attributed to: 

• tlie design of the product such that the effect of process variables is minimised; 

• the ability to simplify the vision task. leading to increased operating speeds arid reliable 

operation. 

8.0 PROBLEMS WITH APPLYING MACHINE VISION 
DURING PCB ASSEMBLY. 

The previous section has specified particular niche areas within electronic manufacturing 

where machine vision can be justified. or indeed. is essential. This section relates some experi

ences of industrial users of machine vision applied to the more demanding area of inspection 

during PCB assembly where success has been more difficult to achieve. 
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FIGURE 3. peB inspection using Automated Opticallospection AOI 

8.1 An Experience in the UK 

a. A Photograph of a 
PCB pad and track 

b. An image of the 
pad and track above 
captured using an 
AOI system 

During the late 1980's, ICL (UK) Ltd., which includes a large PCB fabrication and assembly 

operation at Kidsgrove, were looking to machine vision to provide automated inspection in a 

number of areas [ICL 89, Edwards 90]. These included final inspection of SMT PCBs prior to 

electrical test They feared similar problems to those they had experienced on their through

hole technology automated inspection system. From their experience of running the through-
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hole system for several years, ICL estimate a thousand lead PCB will take at least two days of 

hard laborious work to set up. 

Having set up the system, the consistency of the pass/fail classification is often poor. Slight 

changes in production profiles, such as lead clinch angle, lead crop height or height of the flow 

solder wave, can alter the appearance of the expected image, and the simple vision system 

cannot adapt. The system can be made to work, but it requires the regular attention of a techni

cian to adjust it, providing feedback between process variation and inspection criteria. In 

effect, the technician transfers information between programmable machines. 

8.2 An Experience in the USA 

The experiences of a manufacturer in the USA serve to demonstrate what can be achieved 

using machine vision for inspection during PCB assembly. 

NCR, a large computer manufacturer, employed eight inspectorspel' snift for pre~solder 

inspection of SMf placement [NCR 89, Edwards 90). Problems included speed, operator 

fatigue, and inconsistency. In 1987 machine vision inspection equipment was incorporated 

into the SMf assembly process for pre-solder alignment inspection. Then followed a two year 

period of development including modification to the inspection equipment, and extensive tri

als and tuning in order to generate a set of inspection classification algorithms to enable relia

ble inspection. The completed system included a suite of auto program generation software to 

enable CAD data to be used to generate vision machine inspection data for new or modified 

PCBs. The system is also linked to two rework stations where fault data is down loaded and 

faults rectified by the two inspectors who now man each shift. 

The success of the system can be attributed both to its ability to achieve high classification 

reliability and to the degree of flexibility, in terms of program generation and reduced set-up 

times. This flexibility is based on the integration of the system within the software tools and 

programmable machines which make up the design and manufacturing process. 

This application also demonstrates the speed at which technological change takes place. Con

temporary practice since 1990 is to use vision-assisted placement of SMf components, as 

described earlier. Although a reliable and flexible system was generated at NCR over the two 
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year period, by the time it was effective the assembly technology they used was effectively out 

of date. Contemporary assembly machines would have reduced the need for 100% post solder 

inspection. 

Thomas [Thomas 91] stresses the same general point, that "short product life-cycles typical of 

modern manufacturing industry presents a very great problem to any manufacturer who needs 

to exploit automation in general, or computer vision in particular. in order to achieve desired 

production efficiency". This implies the need for: 

• structured methodologies for the rapid implementation of vision machines, and; 

• an architecture for vision machines which could enable structured design. implementation 

and modification in-line with required change. 

9.0 A VIEW OF THE FUTURE DIRECTION OF AUTOMATED 
VISUAL INSPECTION WITHIN PCB FABRICATION AND. 
ASSEMBLY 

Robert Wright of the Gerber Scientific instrument Company identifies three problem areas in 

integrating AOI systems so that they can be supported by information generated during the 

PCB design process [Wright 90]. The first two are the commonly recognised issues of storage 

of large volumes of data and its compression and decompression. The third issue supports one 

of the principals presented in this thesis: that integrated vision machines can generate informa

tion which could be of benefit to other manufacturing processes, and that this information 

should contribute to a dynamic information store describing the PCB product (this notion is 

detailed in chapter 6). Wright states that "the third obstacle to the implementation of a useful 

CAM reference AOI system is the ability of the system to cope with minor shifts in data 

caused by process variables". The PCB manufacturing process generates distortion, through 

innedayer shrinkage, movement and shift, and through film movement caused by minimal 

changes in temperature and humidity. These shifts mean each PCB is different from the exact 

design datum information but do not preclude the correct functioning of the PCB. Wright sug

gests "this movement or change in the panel data must be observed and quantified, and then a 

correction made to the database". 
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Douglas Blakeslee, the Vice President of Applied Vision Systems, also stresses the need for 

integration of vision processes within infonnation systems on the shop floor [Blakeslee 89]. 

He identifies the need to store information generated by AOI systems so that it can be made 

available to the verification process where human operators can verify faults identified by the 

vision machine. They can also classify the cause of these faults and so feed back information 

to control the manufacturing process. Figure 4 shows a photograph of the way AOI can relate 

faults and identify process errors [Cohen 91]. 

The notion of using information generated via automated optical inspection is supported by 

[Zwem 90]. Zwem points out that Aoi measures two of the basic PCB process variables: how 

far track widths are from the centres of their tolerance range, and how far pads are from their 

design positions. In order to make effective use of this information, Zwem advocates 

increased integration of AOI information with other process data and states "the AOI industry 

must let go of its outdated closed architecture mentality". 

FIGURE 4. Result of AOI on a fine line peB 

An AO! system can classify this defect in two ways: as multiple opens when ana- . 
lysed for quality control or as a fibre introduced at the exposure or resist stage 
when examined for process control. 

Figure taken from reference (Cohen 91] 
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Many further examples of the PCB manufacturing industry's desire for the integration of 

vision inspection machines within information systems for both shop floor support and man

agement information can be found in the journals that support the PCB fabrication and assem

bly industry [Doyle 90, Doyle 91, Chen 90, Danon 91, Gilutz 911. 

In their vision of the peB manufacturing shop in the year 2000, Flat and Holden predict "Vis

ual inspection and verification as it is today will be virtually eliminated. Automated Optical 

Inspection will be used extensively, not so much for detecting defects as for quantifying 

parameters. Instead of being clustered at final inspection they will be placed throughout the 

shop and used to feed back quantitative data" [Flat 911. 

10.0 NEXT GENERATION VISION MACHINES 

Although automated visual inspection has been implemented successfully in the electronics 

manufacturing industry, its principal application has been to tasks which it is capable of carry

ing out more accurately, reliably, and efficiently than a employee, or where the task simply 

cannot be done by a human operator [Thomas 911. However, today's climate of short product 

life-cycles, short production runs, fast times to market, multiple and custom products pro

duced in a fast and flexible manner, together with rapidly changing technology, implies a new 

set of criteria for effective automation. Considerations such as configurability, flexibility, 

speed of implementation, ease of update and change of manufacturing process machines are 

. necessary to the successful implementation of the next generation of vision machines, as is 

ease of integration of these machines within manufacturing information systems [Zwem 90, 

Flat 91, Doyle 91, Thomas 911. 

Contemporary automated visual inspection machines are primarily complex pieces of 

mechanical engineering with associated electronic programmable controllers. They are 

designed for a specific purpose as stand-alone processes capable of being bought "off the 

shelf'. They can be installed and put into operation without necessarily being linked to the 

complex communications and information systems commonly used in their host environ

ments. These vision machines :l!e built for a specific purpose or class of applications with con

figuration facilities to enable multiple products of the same type to be processed. As such, the 

main design priorities are software execution speed, reliable vision processing and mechanical 

1RENDS IN MANUFACI1JRING AND TIll! ROLl! OF MACIIINI! VISION 

35 



accuracy. Unfortunately, when viewed as a building block of a manufacturing system, these 

vision machines are generally not flexible and do not offer a migration path which supports 

modification or change, in line with changes in enabling technology or changing product 

requirements. [Azar 88, Zhang 92, Edwards 93] 

This thesis proposes that the next generation of vision machines can benefit from information 

support and can provide process information as a contribution to the dynamic information 

pool which will support the manufacturing cycle. This requirement for information access 

implies a need for easily integrating vision machines into the information infrastructure of an 

integrated manufacturing system. Next generation vision machines need to be designed and 

built using a modular systems approach so that they can combine speed of design and imple

mentation with quality and reliability. They must also provide the flexibility required to sup

port technological change. This implies both a top down approach through systems analysis, 

design and software implementation, and a bottom up approach through knowledge gained 

from practical machine vision implementation. This knowledge could be accessed through a 

model which describes vision technology, and through a library of reusable software code ele

ments based on this vision model. 
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Chapter 3 

MANUFACTURING SYSTEMS 
INTEGRATION 

(and the need for an integrating infrastructure) 

1.0 INTRODUCTION 

This chapter presents two perspectives of Manufacturing Systems Integration: the conven

tional view embodying bottom up implementation by linking "islands of automation" such as 

CAD, CAM and MRP n, and; a contemporary, and as yet conceptual, view involving the top 

down analysis and design of integrated manufacturing systems from an enterprise-wide per

spective. 

The chapter identifies the problems of current approaches to CIM. Potential solutions to these 

problems are identified as: 

• the top-down modelling of an enterprise from its business processes to the functional ele

ments which fulfil the requirements of the business, and; 

• the bottom-up solution to the implementation problems of integrating and executing the 

manufacturing applications which make up the functional elements of an enterprise. 

A review of the work within the S.I. Group at LUT and of the CIM-OSA project within 

ESPRIT details the need for an infrastructure to underpin the integration and execution of next 

generation manufacturing systems. Examples of parallel work within the IT community 

describe the proposed provision of enabling mechanisms for open distributed processing. This 

next generation of integrated manufacturing systems is defined as "soft integrated manufactur

ing" and its benefits are identified. These benefits include the promotion of standard modular 

building blocks of soft integrated manufacturing systems. 

The new generation of "soft integrated machine vision systems" proposed in this thesis make 

use of the integration tools detailed in this chapter_ These new systems can form a modular 
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building block of a soft CIM System, deriving benefit from, and pmviding services to the inte

grated system 

2.0 THE CHANGING SCOPE OF CIM 

The term CIM is generally attributed to [Harrington 79]. He describes CIM as the integration 

of CAD, CAM and MRP 11, a description which was supported a decade later [Schnur 87, 

Cheng 90]. In the early 1980's, the term CIM had been corrupted to mean many things to many 

people. In particular it was interpreted as the logical linking of CAD and CAM [Allderdice 85, 

Bunce 88], a link between two of the "islands of automation" within an enterprise. This theme 

of linking islands of automation was further corrupted as the development of mechanisms to 

provide physical communication links and logical data interaction between groups of proces

sor based functionality took place without the planning required to implement shared informa

tion. This concentration on the communications implementation aspect of CIM can be traced 

to the limitation of a novel concept, with no relevant standards and very little specific enabling 

technology. 

Standardisation initiatives for communications (typically MAPrroP [MAP 88, Hollingurn 

86]) and information interchange (typically IGES [palfremen 90], PDES [pDES 87], EDIF 

[BDIF 90]) have made a significant contribution to enabling CIM solutions while further work 

on such standards will continue to influence progress. However, during the Mid 1980's these 

standards initiatives were often perceived as the total CIM solution: "manufacturing industries 

have fallen on the MAP bandwagon as if solving the communications problems would suffice 

to implement CIM" [Morris 87]. 

During the late 1980's the definition of CIM was developed to encompass the integration of all 

elements of a manufacturing enterprise [B unce 88]. Particular emphasis was placed on plan

ning integration from a business perspective [Bunce 88, Mansel 88, Ralston 87] and the 

importance of information as an enterprise resource [Bustace 87, Weston 88]. A re-definition 

used within the Digital Equipment Corporation (DEC) [Wellhoener 88] is typical of such late 

1980's CIM theories: "CIM is the process of integrating information, automation and organisa

tion, uniting the entire manufacturing enterprise". 
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This wider view of the scope of CIM [Bunce 88, Mansel 88] has recently developed further 

with the release of a reference open system architecture for the building of a computer sup

ported and integrated manufacturing enterprise, namely CIM-OSA (CIM-Open System Archi

tecture [CIM-OSA, Kosanke 91, WiendahI92]. CIM-OSA is the product of ESPRIT Project 

688, the European Computer Integrated Manufacturing Architecture (AMICE) which was 

launched in 1986 and is considered further later in this chapter. 

3.0 CONVENTIONAL CIM IMPLEMENTATIONS 

3.1 Introduction 

The need for integrated manufacturing solutions, and their potential benefit to industry, is now 

accepted. The conceptual scope of CIM systems has developed and will continue to grow, typ

ically to provide increased support for human integration [Yun 92, NATO 92]. However, usa

ble implementations of integration technology have always lagged behind the concepts, and 

despite high levels of investment, there are few successful wide-scale integrated systems 

within manufacturing enterprises [BICS 87, Eustace 87, Weston 92]. Reasons for this can be 

identified by considering the inherent problems and constraints associated with conventional 

system integration techniques. These create systems which fall into the following two catego

ries [Weston 92, Coutts 92]: 

• Off-the-shelf or "Turnkey" systems. 

These systems are particular solutions to well defined situations, and very often support the 

view that CIM comprises a CAD to CAM link. These systems are highly targeted, of nar

row scope and limited flexibility. Integration problems occur when the user wants to incor

porate manufacturing applications from a range of vendors whose products are not 

compatible with the users existing system; 

• Bespoke Integrated Manufacturing Systems. 

These systems are tailored to specific requirements. They encompass both the limited scope 

systems typical of those implemented in the early and mid 1980's built around multi-vendor 

CAD to CAM links, interfacing "islands of automation", and more recent implementations 

based on information integration through common database facilities [Ralston 87]. These 

systems can offer greater benefit than turnkey systems since they incorporate multi-vendor 
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sub-systems, but they have considerable drawbacks. They are expensive, due to the high

level of implementation-specific systems engineering and they have long implementation 

lead-times. The bespoke nature of the software within the implementations can also pro

hibit full achievement of the original required functionality and inhibit required modifica

tion and evolution of the system.[Bessant 88, Zbang 92, Coutts 92]. 

3.2 Key Problems Within elM 

Conventional CIM implementation technology, used in building turnkey and bespoke systems, 

has offered little but general purpose software tools (e.g. programming languages, operating 

systems, analysis and design methodologies) to combat the problems of CIM. Key problems 

within the design and implementation of CIM systems can be classified as follows. 

• Complexity: as the scope of CIM systems has increased, the complexity of the integration 

problem has grown dramatically [Waldner 92]. System components from a spectrum of 

types and source of manufacture require a variety of styles of interaction and information 

exchange. An approximate square law increase in complexity can be expected with the 

increase in number of subsystems to be integrated [Weston 91]. 

• Separation of integration issues: Integration issues are seldom recognised as distinct from 

their associated industrial process issues. CIM Solutions which do not incorporate a clear 

separation between integration and particular process problems are very difficult to modify 

in line with inevitable required change [Weston 91]. 

• Usable tools for top down CIM analysis: Research and experience to date has indicated that 

top-down analysis and design driven by the business requirements of an enterprise is 

required to provide a structured framework for CIM implementation [Kosanke 91, Young 

91, WiendahI92]. However the methodologies required are immature, particularly in rela

tion to dealing with the practical constraints of CIM system implementation [Weston 91]. 

• Standards: Standards to suppon integration implementation are the subject of initiatives 

throughout the world (IGES [Palfremen 90], PDES [PDES 87], STEP [STEP 89]), MAPI 

TOP [MAP 88], EDIF [EDIP 90]). However these standards are still emerging, and are 

insufficiently complementary, detailed or stable to encourage their widespread use [Weston 

91]. 
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3.3 Hard Integration 

Turnkey and Bespoke systems do not overcome these problems, they exist rfespite these prob

lems. They cannot combat complexity, but use one·to-one interfacing for subsystems commu

nication [Munton 91] as a one-step solution to a specific problem, and as such will always be 

of limited scope. All knowledge of integration issues is hard-coded within these systems, and 

can be described as "hard integrated" [Weston 92, Coutts 92]. 

The primary limitation of hard integrated systems is their inability to adapt to required change. 

This requirement to adapt to changing demands is essential if an enterprise is not only to gain 

benefit from a CIM implementation but also maintain this benefit [Spackman 92]. 

4.0 A CONTEMPORARY VIEW OF CIM 

The top down approach to CIM, embodying system analysis and design from a business per

spective, is recognised as the only sensible way to decompose and understand the complexities 

of a manufacturing enterprise [Evans 88, Ralston 87]. The support required for this analysis 

and design phase is the focus of current work throughout the world [CIM-OSA, MDC 91]. 

However, the requirements for creating, executing, managing and maintaining CIM systems, 

are usually approached bottom up [Weston 92, Mertins 92]. 

Whether senior management have instigated top down CIM analysis and design to create an 

integrated manufacturing enterprise, or whether a manufacturing department are trying to 

implement an integrated manufacturing cell, contemporary research has identified the need for 

infrastructural facilities to support integrated manufacturing. Sections 5.0, 6.0 and 7.0 review 

elements of this research and conclude the need for an integrating infrastructure to underpin 

the configuration, execution and maintenance of integrated manufacturing systems. 

5.0 INTEGRATION TOOLS AT LUT 

5.1 Introduction 

The SI Group has produced software tools which provide mechanisms for supporting integra

tion solutions. These tools are in daily use both in research institutes around the world [Gilders 

92] and on the shopfloor at ICL Kidsgrove in Staffordshire [Zhang 92]. 
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The culmination of the SI Group's work to date, is the CIM-BIOSYS integrating infrastruc

ture, and support tools, which are used within this work. Figure 1 shows the evolution of CIM

BIOSYS. The research methodology has been centred on a bottom up approach, where a vari

ety of integrated manufacturing systems have been built, and their characteristics evaluated. 

5.2 An Integrating Infrastructure To Support 3 Classes Of Integration· 
Service 

By the late 1980's the SI group had evolved the notion that manufacturing integration on an 

enterprise wide scale required support for three classes of problem: data communications; 

application interaction; and, distributed information management. Not only was it necessary to 

provide mechanisms to support the resolution of these problems, the support mechanisms 

themselves required an infrastructure such that they could be structured and managed during 

the life cycle of an integrated system. 

This led to the evolution of the CIM-BIOSYS software suite [Weston 92, Gascoigne 92, 

Zhang 92]. This software provides integration services to support the three fundamental inte

gration requirements, namely: 

• services to enable functional interaction between manufacturing applications, based on OSI 

layer 7 application association based interaction [Pimente190]; 

• services to enable information access for manufacturing applications, based on both a sim

ple flat file management system and a comprehensive distributed information management 

system [Clements 92]. The distributed system treats information as objects providing 

access via application view provision facilities based on the 3 schema approach [Clements 

91]; 

• Services to enable data communication, based on standard communication protocols and 

computer networks. 

The services and their configuration and management facilities form an integrating infrastruc

ture which supports the creation, management and maintenance of an integrated system. 

Section 8.0 of this chapter gives a more detailed treatment of the CIM-BIOSYS integrating 

infrastructure. 
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FIGURE 1. The evolution orIntegration Tools within the SI Group AT LUT 
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Figure taken from reference: [Weston 92] 
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6.0 THE CIM-OSA REFERENCE ARCHITECTURE 

6.1 Introduction 

The CIM-OSA research program has run in parallel with the work at LUT, taking a top down 

perspective. The CIM-OSA work concludes a similar need for an integrating infrastructure to 

execute integrated manufacturing applications. 

Kosanke [Kosanke91], describes the goal of CIM-OSA as "The provision of an open reference 

architecture which supports the definition, development and continuous maintenance of a con

sistent architecture and its related operational system for a particular enterprise". The architec

ture is intended to allow the modelling, simulation and real time control of all internal and 

external information needs of a total enterprise. To fulfil these goals CIM -OSA proposes a 

modelling framework and real time control through model execution via an integrating infra

structure [Klittich 90, CIM-OSA]. To establish the role of the CIM-OSA integrating infra

structure and draw compansons with the work at LUT a brief description of CIM-OSA 

modelling and model execution is given next [CIM-OSA, Jorysz 90aJorysz 90b,Klittich 

90,Kosanke 91,Aquiar 92]. 

6.2 The CIM-OSA Modelling Framework 

Figure 2 shows the complete CIM-OSA modelling framework. This framework has three 

dimensions which represent: 

• levels of generality, these being, generic constructs, partial constructs (ie. domain generic), 

and particular constructs of a specific enterprise; 

• stages within a system lifecycle, these being, requirements definition, design specification 

and system implementation; 

• modelling views, these being, the functional view, the information view, the resource view 

and the organisation view. 

This modelling framework is proposed for use in supporting the derivation of a CIM system 

design. The system description model is then released for operation as an executable CIM sys

tem model to control enterprise operations in real time. These two phases are described by 

Kosanke as "enterprise engineering" and "enterprise operation" [Kosanke 91]. Although both 
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of these activities are described as being supported by the integrating infrastructure, as shown 

in Figure 3, it is enterprise operation or model execution that has most in common with the 

work at LUT. 

FIGURE 2 •. An overview or the CIM.OSA architectural rramework 
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Figure taken from reference: CIM-OSA 

6.3 The CIM·OSA Integrating Infrastructure 

CIM-OSA proposes an integrating infrastructure which links models to resources (i.e. people, 

machines, networks, databases) through four sets of services, as follows [Klittich 90,Kosanke 

91]: 

• Information services, to control and provide access to information; 

• front-end services, to connect manufacturing applications; 

• communications services, to manage inter-application communication; 

• Business services, to provide management of model execution and resources. 
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The first three of these services are consistent with the information, interaction and communi

cation services identified and implemented in the CIM-BIOSYS integrating infrastructure 

[Gascoigne 92] (the proposed CIM-OSA front-end services being similar to the interaction 

services implemented in CIM-BIOSYS). The requirement for CIM-OSA's additional business 

services is derived from the original top down perspective taken by the CIM-OSA research 

program. As the function of an enterprise is to achieve business goals, CIM-OSA identifies 

and models a hierarchical set of business processes. It is these business processes that control 

model execution through the business services provided by the integrating infrastructure [Klit-

tich 90]. 

FIGURE 3. CIM-OSA integrated environment showing the Integrating Inrrastructure .. 
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Figure taken from reference: CIM-OSA 

With the addition of business services, the CIM-OSA project has concluded the need for a set 

of managed services similar to those identified, implemented and demonstrated within the SI 
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group research program at LUT. The following section identifies further examples of proposed 

or emerging support facilities for implementing open integrated systems. 

7.0 FURTHER EXAMPLES OF INTEGRATING 
INFRASTRUCTURE 

During the late 1980's, at about the same time that the role of ClM was being re-evaluated and 

its scope broadened, related developments were taking place within the field of Information 

Technology (rn, particularly Open Distributed Processing (ODP) [Brenner 87]. In a response 

to the widespread establishment of reliable network based computing, the establishment of the 

ISOIOSI standard, and the rapid increase in distributed processing, ISO launched its ODP 

standardisation program. 

Brenner's paper "Open Distributed Processing" [Brenner 87] details the requirements for dis

tributed processing that was emerging in the late 1980's. Brenner's paper proposes require

ments parallel to those which have been identified and implemented at LUT. His description of 

"distribution transparency" is typical of these parallels. Part of this description is as follows: 

• Access transparency: concealing the use of communications when accessing remote 

resources (programs, data, devices); 

• Location transparency: enabling the use of a resource, independent of the placement of that 

resource in the distributed system; 

• Migration transparency: enabling the migration or reconfiguration of resources in a distrib

uted system. 

In describing the generic functionality of distributed systems Brenner identifies "supportive 

services". These, he says, are "a necessary infrastructure of common supportive services to 

overcome the obstacles inherent in separation". 

Brenner identifies a number of research initiatives proposing support mechanisms for ODP 

(LOCUS [Popek 81], Eden [Black 85]). The following provides other examples. 

Support for ODP can be broadly divided into two forms: 

• high level language compilers for distributed applications and; 

• the provision of additional operating system services for distributed processing. 

MANUFAC11JRING SYSTEMS INTEGRATION 

47 



It is the second form that is closely related to the work at LUT. but examples of both forms are 

included. 

The Conic environment provides a language based approach for building distributed systems 

[Magee 89]. Conic comprises a set of tools for compilation. configuration. debug and execu

tion within a distributed environment. Of interest are its configuration facilities which provide 

support for incremental change. and its provision of transparent datatype transformation 

between heterogeneous processors. These are inline with facilities provided by LUT tools. 

Hermes is an experimental language for implementing distributed applications. developed at 

the mM T.J.Watson Research Centre [Strom 90]. It offers a language where an application is 

made up of a set of distributed processes with structured facilities for process interaction. 

Nexus is a distributed operating system designed to support object oriented programming in 

distributed systems [Tripathi 89]. It has much in common with earlier distributed operating 

systems such as LOCUS [popek 81] and Eden [Black 85] where the concept of network trans

parency was demonstrated. 

Digital Equipment Corporation (DEC) offer a contemporary solution in their Network Appli

cation Support (NAS) product. an open system for applications integration [DEC 92]. NAS 

comprises a set of high-level services as follows: 

• Application access services providing user interface mechanisms; 

• Communication and control services for inter-application interaction; 

• Information/resource sharing services and; 

• System services providing calls to the underlying operating system functionality. 

The DEC solution recognises the need for a set of consistent services in line with research at 

LUT. but it does not provide an underlying infrastructure for system management and configu

ration. 

As is apparent from the above examples. the IT community recognises the need to provide 

specific mechanisms to suppon ODP. For those working with CIM. the need to integrate dis

tributed manufacturing application within a highly complex information system has driven the 

search for an integrating infrastructure and set of consistent services which will underpin the 
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configuration, execution and maintenance of the system. The following section gives further 

details of such an integrating infrastructure built by the SI Group at LUT, and used in this the

sis. 

8.0 DETAILS OF THE CIM-BIOSYS INTEGRATING 
INFRASTRUCTURE 

Figure 4 provides an overview of the functionality of the CIM-BIOSYS integrating infrastruc

ture. 

FIGURE 4. A fuctional view of CIM.BIOSYS 

MANUFACTURING 
FUNCllONSI 

APPUCATIONS 

CFG~~II 
C 
I 

M 
B 
I 
o 
S 
Y 
S 

FILES 

Figure taken from reference Coutts 92 

ALIEN APPUCATION 
HANDLERS I DEVICE 

DRIVERS 

The figure details the four principal functional elements or managers, as follows: 

• the Service Manager provides a consistent interaction mechanism for the integration serv

ices provided by CIM-BIOSYS to enable application interaction and information access. 

Typical interaction services include "establish link with another application", "pass data to 

an application". A typical information service would "open a file in a logical file store"; 
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• the Driver Manager provides similar facilities to the service manager, in the form of a con

sistent interaction mechanism for device drivers to provide communication between CIM

BIOSYS and remote non compliant devices e.g a robot, an inspection machine, or any 

device whose processor is unable to support CIM-BIOSYS; 

• the Runtime Manager forms part of the infrastructure supporting the integration services. It 

controls the processes external to and registered with CIM-BIOSYS which use its services. 

It monitors error conditions within the infrastructure and provides human interface facilities 

through an Engineer's Interface window. This interface enables full manual control of the 

Runtime Manager if required; 

• the Configuration Manager forms the other part of the underlying infrastructure. The Con

figuration Manager maintains all internal system configuration data and external configura

tion files. It also provides CIM-BIOSYS with the configuration facilities that are the key to 

its functionality [Weston 90]. Human interface facilities are provided through the Adminis

tration Interface, which enables examination and manipulation of configuration data. 

CIM-BIOSYS is an enabling tool which provides facilities for building next generation CIM 

systems. These new systems will overcome some of the problems identified in Section 3.0 , in 

the description of conventional CIM systems. 

The integration methodology implicit in the use of CIM-BIOSYS can be further described by 

considering examples detailing which system components are not specified by CIM-BIOSYS, 

and further identifying and defining what is specified by CIM-BIOSYS [Gascoigne 92]. 

Types of system element not specified are: 

• communications media i.e. RS232 via multi twisted pair cable from cell control processor 

to a remote robot, TCP/IP over an ethemet LAN connecting multiple remote workstations 

[Pimentel 90]; 

• application message protocols e.g. MMS [MMS 90a, MMS 90b], application proprietary 

protocols; 

• application conversations i.e. types and number of messages passed between applications; 

• degree of complexity of the complete systems. 

CIM-BIOSYS does specify the location of the elements within the system which provide the 

functionality required to enable manufacturing applications to interact. It also specifies how 
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groups of functional elements will interact The following definitions of these functional ele

ments are based on the definitions suggested by [Gascoigne 92], Figure 5 presents a pictorial 

representation describing their inter-relationship: 

• CIM-BIOSYS Host Systems - machines/computers/processing platforms which are capable 

of supporting an instance of the CIM-BIOSYS integrating infrastructure. 

• Open CIM-BIOSYS Applications - CIM-BIOSYS compliant applications software written 

to make use of CIM-BIOSYS services for inter-application interaction and information 

access; 

• Alien Applications - Existing non CIM-BIOSYS compliant applications software having 

their own proprietary communicationfinteraction formats. This software will run on a CIM

BIOSYS Host System; 

• Alien Applications Handlers - software mainly comprising protocol conversion to turn an 

Alien Applications communicationfinteraction format into a CIM-BIOSYS compliant 

form. 

• Alien Devices - machines based on processing platforms which are incapable of supporting 

CIM-BIOSYS; 

• Communication Engines - communications hardware and software essentially comprising 

the bottom 3 layers of the OSI 7 layer model [pimentel 90], Le. the network, data-link and 

physical layers; 

• Communications Drivers - communications software essentially comprising the transport 

layer (layer 4) of the OSI 7 layer model [Pimentel 90]. Providing access for CIM-BIOSYS 

to Communication Engine resources to enable the transfer of data packets between CIM

BIOSYS Host Systems. Current implementations are based on inter-process communica

tion (!PC) using UNIX sockets; 

• Alien Device Drivers - Communications drivers which provide what ever functionality is 

required to enable the transfer of CIM-BIOSYS compliant data packets between CIM-BID

SYS host systems (at the OSI transport layer) and Alien Devices. Protocol conversion takes 

place to enable the Alien Device to interpret the CIM-BIOSYS data packet while Alien 

Device messages are converted to CIM:-BIOSYS compliant data packets. 

• Human Interfaces - faCilities to enable human interaction with the integrated system, to pro

vide for operation, maintenance, debug and administration. These facilities usually com

prise window / mouse and keyboard based systems. The contemporary implementations for 

use with CIM-BIOSYS support both Sun View and X WindowslMotif; 
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• CIM-BIOSYS SeIVices - the interaction and information seIVices offered to applications, 

together with the communication routing facilities which support the operation of these 

seIVices; 

• The CIM-BIOSYS Infrastructure - The runtime management, configuration management, 

and any other software elements which support, manage or bind together the CIM-BIOSYS 

seIVices. 

This section has described the functional elements of a particular integrating infrastructure, 

namely CIM-BIOSYS. The following section describes the use of such an infrastructure in 

underpinning systems integration and enabling the creation of a new generation of CIM sys

tems. 

FIGURE S. The elements or a CIM·nIOSYS integrated system 
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9.0 SOFf INTEGRATED MANUFACTURING SYSTEMS 

Section 3.0 of this chapter considered the problems of conventional CIM implementations 

and pointed up the need for systems that can accommodate change. The ability to accommo

date change is required to enable incremental CIM implementation [Ralston 87, Weston 92], 

and to support the requirements for flexibility within a manufacturing system so that the com

petitive benefits of CIM can be sustained by an enterprise [Spackman 92]. 

In order to achieve this required flexibility, it is necessary to identify the knowledge specifi

cally associated with CIM configuration and remove this knowledge from the manufacturing 
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applications which make up the CIM system. i.e. configuration knowledge associated with 

application interaction, information access and communication. 

In next generation ClM systems all knowledge pertaining to integration issues will be held 

within the configuration facilities of the integrating infrastructure, while the manufacturing 

applications require only the knowledge of how to use the integration services offered. 

Required changes pertaining to the integration issues within a ClM system based on an inte

grating infrastructure can be met by changes within the infrastructure. The manufacturing 

applications which make up the CIM system have effectively been decoupled from the inte

gration issues which constrain the ability of the system to handle change. 

International research identified within this chapter contends that CIM systems based on inte

grating infrastructures will form the next generation of more flexible CIM systems. These 

"soft integrated" solutions will be referred to within this thesis as "Soft ClM' systems. 

10.0 THE BENEFITS OF SOFf INTEGRATED 
MANUFACTURING SYSTEMS 

There are four principal advantages in using an integrating infrastructure such as ClM-BIO

SYS to create Soft elM systems, compared to the contemporary hard integrated systems iden

tified in Section 3.0 [Weston 92, Zhang 92]. These advantages are as follows: 

• they inherently deal with complexity; 

• they inherently cope with change; 

• they provide a methodology for dealing with non-compliant "as is" Oegacy) system ele-

ments; 

• the use of an integrating infrastructure such as ClM-BIOSYS promotes standardisation. 

The increased use of integrating infrastructural tools to build ClM systems should encourage 

the specification of standard applications which could become standard modular building ele

ments (building blocks) of soft CIM systems. The work reported within this thesis covers 

work by the author in identifying and demonstrating the requirements for the design and build

ing of machine vision systems which can become building blocks of soft CIM systems. 
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Chapter 4 

CONTEMPORARY PRACTICE IN 
MACHINE VISION DESIGN AND 

IMPLEMENTATION 

1.0 INTRODUCTION 

This chapter reviews contemporary practice in machine vision design and implementation. 

The first few sections of the chapter review the multi-disciplinary nature of computer vision, 

and contrast academic vision research with the highly structured application of machine vision 

in industry. The author's interest is in general purpose vision machines suitable for industrial 

machine vision applications. The hardware and software which make up typical commercial 

systems is described. 

Some of the requirements of next generation machine vision systems are identified. These 

conclusions are drawn from the author's early vision work together with surveyed literature, 

and through the discussion with implementers and users of vision technology within industry. 

2.0 COMPUTER VISION 

"Computer vision is the construction of explicit, meaningful descriptions of physical objects 

from images" where these "descriptions are a prerequisite for recognising, manipulating and 

thinking about objects" [Ballard 82]. Ba1lard also describes computer vision as the "enterprise 

of automating and integrating a wide range of processes and representations used for vision 

perception". Computer vision draws upon a wide variety of disciplines in order to meet the 

demands of the wide scope of the above definitions. The hardware and software within digital 

computing, electronic engineering, robotics, and artificial intelligence all contribute to the 

development of computer vision. Figure 1 illustrates Ballard's view of the scope of computer 

vision and shows the interaction of the imaging devices, information structures and processes 

involved. 
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The three central disciplines of computer vision can be classified as follows [Thomas 91]: 

• Image processing [Ballard 82, Gonzalez 77, Fairhurst 88]: the science of producing an 

improved version of an original image, improvement being determined by the requirements 

of a particular application. Image processing can be further divided into preprocessing, and 

segmentation. The former deals with techniques such as noise reduction and enhancement 

of application specific detail, while the later partitions an image into objects of interest. 

• Pattern Classification [Ballard 82, Fairhurst 88]: the ability to recognise objects within an 

image through the classification of features extracted following image processing. Typical 

features include edges and regions. 

• Scene Analysis [Ballard 82]: the transformation of simple image features into abstract 

descriptions relating to more complex objects in the scene. This discipline embraces the 

very complex problem of relating the three dimensional objects within the real world to the 

two dimensional images available within computer vision. This process is clearly a cogni

tive one [Thomas 91,Brady 92, Ballard 82] and it is here that the disciplines of image 

understanding and artificial intelligence make their contribution to computer vision. 

Thomas suggests that the central issue of computer vision is "the development of a symbolic 

scene description from images taken of that scene, in order that the appropriate interaction 

with the scene may take place" [Thomas 91, Horn 79]. This suggestion is clearly appropriate 

for visually controlled robotic guidance where sensing, perception, cognition and action form 

the elements for closed loop position control [OU 92]. Here all three disciplines within com

puter vision take place: image processing, pattern classification and scene analysis. But, as 

Thomas also states, approximately 90% of all industrial vision systems are used for inspec

tion. In inspection applications, the central issue is the accurate measurement or reliable clas

sification of particular objects in the scene, where the position and nature of these objects can 

often be controlled or predicted [Batchelor 85]. Within these inspection applications, sensing 

and perception are followed by inspection decision criteria. In this field image processing and 

pattern classification are the required computational disciplines. 
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FIGURE 1. Related disciplines within computer vision 
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Figure taken from ref. Ballard 82. 

The application of computer vision by industry has parallels with the application of robotics. 

Currently they are both applied within very structured environments. In the solution to partic

ular problems which benefit from automated vision, simple and robust automated vision func

tions have been used. Benefit is gained through increased quality, continuous production or 

increased flexibility and reduced tooling costs. Chapter 1 of this thesis has identified examples 

of these "engineered solutions" within the electronics manufacturing industry. 

It is because computer vision is a relatively young discipline [Ballard 82, Thomas 91] that its 

application in industry is taking place in parallel with significant advances in research. A par

ticular focus of research is image understanding I scene interpretation aimed at enabling the 
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operation of automated entities within unstructured environments. For example, [8rady 92] 

uses automated vision for the guidance of mobile robots where scene structure is computed 

through the use of stereo matching of corner features and through the use of a structure from 

motion algorithm. Similarly, [Durrant-Whyte 92] uses time of flight sensors, laser triangula

tion and stereo vision for three dimensional scene computation. The Artificial Intelligence 

Vision Research Unit at Sheffield University studies a broad range of initiatives including 

stereo processing for 3D vision [Pollard 91, Thacker 91, Rycol 91, Dean 91], and the use of 

neural network techniques to address some of the issues associated with stereo vision [May-

hew 92]. 

FIGURE 2. Industrial and academic perspectives ror computer vision 

Figure taken from ref. Wright 88. 

Figure 2 [Wright 88] contrasts academic research with the compromises made within the 

industrial application of machine vision. When the products of contemporary research are suf

ficiently robust to be effectively employed in industry they will provide greater flexibility 

which could reduce the tooling costs involved in creating highly structured manufacturing 

environments. However the structured solution to computer vision will remain an economical 

and robust option, particularly in inspection applications. The work of the author reported 

within this thesis aims to identify requirements for the next generation of vision applications 

within structured manufacturing environments. The term "Machine Vision" is often used to 

describe the application of computer vision within industry. It is the contemporary practice 
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within the design and implementation of these industrial machine vision systems which forms 

the main points reported in this chapter. 

3.0 MACHINE VISION ARCHITECTURES 

3.1 Introduction 

Image processing involves the use of a wide range of algorithms for carrying out operations on 

digital patterns [Ballard 82, Gonzalez 77]. The hardware architecture used to implement these 

algorithms can take a variety of forms, and are another example of active research within com

puter vision. At the general purpose end of the spectmm, processing is carried out by software 

running on a conventional serial digital computer. At the application-specific extreme it is pos

sible to constmct an entirely self-contained system composed primarily of dedicated hardware 

[Fairhurst 88]. In between these extremes there are many hardware I software combinations 

designed to implement the specific requirements of an application, essentially balancing flexi

bility and speed. 

At the level of image-to-image transformations involving operations on large two dimensional 

matrices a natural parallelism exists [Nudd 89]. Each pixel or data element within an image 

matrix is typically treated in an identical manner during a transformation operation. Using a 

general purpose serial digital computer to handle this type of computation will always be time 

consuming compared to a machine based on a parallel architecture. 

3.2 Parallel Machines 

The traditional classification of parallel processing architecture has been in terms of the paral

lel nature of both the instmctions and the data. SIMD (single instmction multiple data) 

machines have proved to be a popular format Work at Warwick University exemplifies 

research in this area [Nudd 92]. The CLIP (Cellular Logic for Image Processing) series of sys

tems are an example of commercially available SIMD machines. CLIP is the product of a 

research program at University College London [Duff 86]. 
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3.3 Pipeline And Systolic Machines 

Pipeline and systolic machines are both further examples of the use of a parallel architecture. 

Pipelines consist of a set of computational engines arranged in a serial manner which are all 

processing in parallel. Data is passed from one machine to the next such that the first result 

takes N units of time to be computed (N is the number of engines in the pipeline). All subse

quent results appear after one further unit of time. 

A systolic array is a two dimensional pipeline [Wong 85]. An example of this type of architec

ture has been built at Camegie MeIlon University [Annaratone 86] in the United States. 

3.4 Pyramid Machines 

Because of the multi-disciplinary nature of computer vision, other elements within a complete 

system may not be inherently suited to parallel processing. Feature based pattern classification 

does not use a pixel based format for its data, rather a list based description using tree or graph 

format is more appropriate. The degree of parallelism is less obvious and some researchers 

claim much of the processing is inherently serial [Nudd 89]. It should be noted that others 

working in this active research field claim parallelism is appropriate throughout a system 

archi tecture. 

Pyramid machines are designed to deal with the requirement for different architecture at dif

ferent levels within a vision machine. Both the University of Warwick and the University of 

Massachusetts are building heterogeneous pyramid machines. Pyramid Machines consist of a 

hardware structure comprising a number of processing layers arranged in a hierarchical fash- . 

ion. Each layer has a different architecture appropriate to the type of processing done within 

that layer. 

3.5 General Purpose Machines 

This thesis considers systems based on the architecture common within general purpose vision 

machines suitable for industrial machine vision applications. Fignre 3 shows the simple over

all architecture used within these general purpose systems. The image processing hardware 

within these systems incorporate various architectural implementations based on some form of 

parallel processing. 
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The systems described in Figure 3 comprise vision hardware interfaced to a host processor. 

The physical interface often takes place through the host system Bus. The host system is used 

for program development, program control and vision processing tasks which are suited to 

general purpose serial processing systems. The Imaging board handles two primary functions: 

image acquisition and storage, and graphical display. The image processing functions take 

place within the dedicated image processing hardware. 

A number of manufacturers offer a range of different architecture within their imaging prod

ucts [Matrox, Imaging, LSI 93]. Appendix 1 briefly describes two typical examples. 

FIGURE 3. Basic elements of a general purpose computer vision system 
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Figure 3 identifies the main software component within the vision machine which controls the 

operation of the dedicated vision hardware. It is the nature of this software and the processes 

involved in its programming that are of primary relevance to the work described in this thesis. 

The following section provides an overview of the nature of this software within contempo

rary commercial systems. 
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4.0 CONTEMPORY GENERAL PURPOSE VISION 
SOFTWARE 

4.1 Low-level Function Libraries. 

Low-level function libraries are sets of functions which provide access to the imaging hard

ware. They are often written by the hardware manufacturer and supplied as part of the product. 

Low-level function libraries are used by vision application developers. They are generally 

written in C, Pascal or Fortran and provide the programmer with all he/she needs to incorpo

rate the image processing hardware functions into a complete applications program. The appli

cation program controls the execution of vision algorithms called via the library functions. 

The vision library used in this thesis contains functions to drive the image capture, image 

processing, and the graphics display capability of the hardware [Matrox sw, Town 91]. 

In order to realise effective vision applications using a low level library, the system developer 

requires a number of skills. These include: 

• general purpose programming experience; 

• practical experience of the vision hardware and associated software library; 

• an underlying knowledge of the science of image processing to enable the design of vision 

algorithms. 

4.2 General-Purpose Vision Function Libraries 

General-purpose vision function libraries are sets of predefined functions that represent many 

of the more commonly used image processing operations, such as Sobel edge detection [Fu 

87]. These libraries may also include functions which implement recognised techniques within 

particular application domains such as character recognition. They are also offered by hard

ware independent vendors who offer software which can be ported between particular hard-

ware systems. 

general-purpose functions generally fall into the following classes: 

• display and image acquisition e.g. lookup table control; 

• point to point operations e.g. thresholding; 

• mensuration e.g. histogram generation; 

CONTEMPORARY PRAcnCE IN MACHINE VISION DESIGN AND IMPI.EMENTAll0N 

61 



• neighbourhood operation e.g filtering; 

• frequency operations - Fourier transforms; 

• geometric operations e.g rotation; 

• morphology e.g. erosion; 

• edge detection e.g Sobel. 

Typical examples of general-purpose library functions include: thinning passes on a source 

image, until there is no further change, to provide a skeleton image; and linear filtering to 

enhance the image. 

Considerable skill is still required to realise effective vision applications using library func

tions at this level. In particular general purpose programming skills and a knowledge of the 

science of vision processing is required. The use of a general·purpose library can remove the 

need for knowledge of the vision hardware being used and can ease the required level of 

understanding regarding the implementation of vision algorithms within the library. This 

advantage can lead to faster implementation and a lower level of required expertise than is 

necessary when only low level functions are available. 

Vendors of general-purpose libraries often provide an interactive vision processing work

bench. These systems enable functions to be called by the operator to examine their effect 

within a solution to a vision processing problem. The variables associated with each function 

can normally be adjusted to enable the system developer to understand the requirements for a 

particular piece of image processing. These systems are available for determining appropriate 

solutions to machine vision applications but are more commonly used for off line image anal

ysis work. 

5.0 BUILDING VISION APPLICATIONS: SOME 
EXPERIENCES FROM INDUSTRY 

5.1 Introduction 

The material in this section is derived from interviews between the author and key personnel 

involved with the operation, application or original design of contemporary machine vision 

systems. The following section documents the author's work in implementing vision applica

tions using low level and general-purpose library functions. The material in these two sections 
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help to identify contemporary practice in the design and implementation of machine vision 

applications and the desires of those who use such systems. 

5.2 The Designing of an AOI System For PCB Inspection At L10yd DoyIe 
Limited 

Lloyd Doyle Ltd. design and manufacture a range of Automated Optical Inspection (AOI) 

equipment for fault finding and verification on PCB artwork, phototooling and innerJayers 

[Lloyd 93aJ. The principal product is the Trackscan 3000 AOI machine which is based on a 

PCB inspection technique which is unique within the AOI industry. Known as the "Analytical 

Technique", it uses a method of scanning the PCB and extracting a netlist, describing the 

tracking on the PCB, which is then compared with reference netlist data. Track width and 

spacing, missing and spurious copper can be detected by using thinning and fattening algo

rithms to generate further netlists which are compared with the original. In order to inspect the 

inner layers of a PCB measuring 18*25 inches with sufficient resolution to identify flaws in 

track width's of 0.003 inches, very large quantities of data must be processed. Dr. Doyle (Tech

nical Director) quotes typical values of 800 Million pixels processed to inspect a single layer 

[Lloyd 93b J. In order to achieve this level of image processing in the 2 sq.ft/min typically 

required within the industry a specialist hardware based architecture is used. 

Figure 4 shows a simplified overview of the vision processing hardware architecture which 

scans th~ PCB innerlayer and generates a number of netlists. The system is controlled by a 

host processor running approximately 1.4 Mbytes of Pascal code. The high-level pascal code 

calls assembler routines which provide low-level control of the vision hardware. The gener

ated netlists are compared with each other and with a reference design netlist derived from a 

CAD system. This comparison is done by the controlling host software system (which appears 

as the "CPU compare" block in Figure 4), as is the system configuration and setup which 

includes the establishment of inspection criteria. The vision processing hardware is special 

purpose and is inherently inflexible. As in the majority of contemporary products, change has 

been required at Lloyd Doyle, and these new demands have been incorporated by additional 

hardware elements and modifications to the controlling software. These modification are 

undertaken by highly skilled hardware and software designers who are familiar with the 

Trackscan system. 
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The Trackscan system can be both a user and generator of information. It requires reference 

netlist information, preferably derived from CAD information. The physical netlist for indi

vidual layers required by the system is not a standard CAD output. There is a requirement to 

post process information from the current defacto standards which describe the physical lay

out of each layer of a PCB. Gerber [Martin 90] is a typical example of the defacto standards in 

use. The Trackscan system generates fault information for use at an off-line rework station and 

for process management data analysis. Facilities for integrating the Trackscan system within 

an integrated manufacturing system are more sophisticated than most currently available man

ufacturing machines in that ethemet communication facilities are available. Information 

access is via file transfer only. 

FIGURE 4. Architecture or the L10yd Doyle TracksC3n 3000 system 

Figure taken from reference LIoyd 93a 

The Trackscan system is perfectly capable of operating in a stand alone capacity and many 

systems sold do exactly this. Reference netlist information can be generated by feature recog

nition facilities within the system or by generating reference data from a golden board. Fault 

information can be in the form of VDU display or hard copy. In this form the machine can 

operate in isolation, configured to solve a specific set of inspection problems. The Managing 
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Director maintains that incorporating features for user flexibility can put off potential custom

ers [Lloyd 93b]. "Some customers can interpret flexibility as a requirement for increased lev

els of support and longer setup times", he says. His comment highlights industry's 

requirement for human integration, which is possible through computer based tool support 

together with increased levels of operator training. 

5.3 Contemporary Experience Of A User Of Automated Inspection During 
PCB Assembly: Inspection On The SUN Line At ICL Kidsgrove 

Visual inspection is a key component of the quality assurance procedures which have been put 

in place over the last decade within the PCB fabrication and assembly process at ICL Kids

grove [ICL 93]. Human inspection stations using lenses or enhanced/enlarged display systems 

using colour cameras and high resolution monitors are found at key stages on all the assembly 

lines at Kidsgrove. The successful use of automated visual inspection of innerlayers during 

PCB fabrication has taken place at ICL since the mid 1980's. Chapter 1 of this thesis contains 

details of an automated post solder inspection system which proved to be operationally inef

fective during its use in 1989 [ICL 89]. During 1992 ICL took on the subcontract manufacture 

of two PCB's for SUN Microsystems Inc. On the SUN component assembly line automated 

optical inspection of soldered boards was once again attempted. 

A Control Automation Inc. inspection system was used after the "wash-{)ff" stage which fol

lows wave soldering. The system was to inspect the underside of the PCB's, and was primarily 

used for identifying missing chip capacitors, misaligned devices and the quality of solder fil

lets of SMD devices on the underside of the PCB's. The leads of the through hole devices such 

as Pin Grid Arrays (PGA) and connectors were also inspected for quality of soldered joints. 

Only two PCB types were ever built on the line with each type having perhaps 3 variants. The 

machine was situated within the production line flow but was never linked to the shop-floor 

information system. This was considered unnecessary because of the small number of product 

variants. The inspection programs detailing the position of each required inspection feature on 

the PCB, and the associated inspection criteria was stored locally within the machine. 

In practice the inspection system required permanent manning. The operator made many 

adjustments to the inspection software configuration in order to achieve satisfactory inspection 

performance. One particular problem became apparent during the operation of the machine: 
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the system was sensitive to changes in the material stock being used to populate the PCB. Typ

ically the SUN PCB's contain 230 components of which approximately 30 are multi-sourced 

including all those on the bottom side of the PCB. Components from different suppliers were 

found to be of different shape, size and colour, - characteristics which would alter the perform

ance of the inspection machine. This clearly demonstrates how a management decision, to 

multisource components, can.impact the.reliable operation of processes on the shop floor. 

FIGURE 5. A PeR which is subject to automated visual inspection 
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Another problem turned out to be the speed of operation. Figure 5 shows a photograph of one 

of the PCB's under inspection. The through holes for three one hundred and fifty lead PGA's 

can be seen, together with four seventy way connectors, two ninety six way connectors, plus 

further through hole component sites. The solder fillet on each of these sites required inspec-
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tion. Following careful set up, the inspection machine could effect the peB inspection in 

approximately 3 minutes. The maximum cycle time for the rest of the line was well below this 

figure. 

When the line had reached maturity, i.e. it was well balanced with all its processes under con

trol, the problems at post solder inspection had to be resolved. The solution was to remove the 

automated system and incorporate human inspection within the "touch up" process. 

FIGURE 6. Proposed system for feedstock information system to support automated inspection 

Feedstock barcode readers 

PCB barcode readers A record of Feedstock used on each PCB 
is fed forward to the inspection machine 

Engineers at ICL Kidsgrove contend that reliable automated post solder inspection demands 

the variables that cause inconsistent operation to be controlled or monitored such that varia

tion can be fed forward to the inspection machine. Figure 6 gives an outline of a system pro

posed by an ICL engineer to monitor component feedstock on the line. Barcoding is used to 

identify each type of component, including each supplier variation. Unique barcoding of 

peB's already takes place, but it could be used to generate rea1time information tying a partic

ular peB to exactly which component variants were used in its manufacture. This information 

fed forward to the inspection setup software could be used to configure the ideal inspection 

parameters for a particular peB. 
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The philosophy behind this solution is similar to the successful implementation at NCR in the 

USA [NCR 89] where inspection criteria were related to specific components. CAD data plus 

component specific requirements were used to drive the inspection system configuration. 

The above scenario implies two principal requirements for future automated final inspection 

machines: 

• they must be fully integrated within a production line information system; 

• they require off-line controlling software to effect information management, inspection file 

configuration, program download and invocation. 

Techniques to support these two requirements are demonstrated in the implementation of a 

soft integrated machine vision system reported in Chapters 9 and 10 of this thesis. 

Despite the disappointing conclusion to the two implementations of automated visual inspec

tion during PCB assembly [lCL 89, ICL 93], ICL IGdsgrove recognise the advantages of auto

mating such processes. The intent at ICL is to incorporate the same inspection machine within 

a new line which will assemble a new generation of highly complex PCB's for Compac. It is 

expected that this product will have reduced variation in its build and feed stock which could 

enable effective use of the system. The new line will be high volume, approximately 7.5 to 10 

thousand boards per week, and the product manufactured will be high value, approximately 

500 pounds per PCB. It is this combination of high volume and high value that drives the need 

for effective inspection, together with a commitment to SPC. ICL practise Statistical Process 

Control (SPC) on all their lines and recognise the benefits of automated information genera

tion which could be realised by vision inspection. The present human inspection system relies 

on the continual collection of data on paper from the inspectors that work the production lines. 

6.0 THE AUTHOR'S EARLY WORK IN GENERATING 
VISION APPLICATIONS 

6.1 Introduction 

To gain a practical understanding of the requirements for solving inspection problems through 

the use of digital image processing, I implemented a number of such systems. In conjunction 

with this work, I have supervised twelve projects in the field of machine vision. This section 
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gives a brief overview of my early work in generating algorithms for the automated visual 

inspection of integrated circuits. The methodology and tools employed are typical of those 

available for contemporary use of low-level and general-purpose vision libraries. 

6.2 The Available Tools 

The tools available represented the contemporary "state of the art" in their class. They were 

purchased in 1987 and were of the class of vision system which comprised a PC based imag

ing board and associated software library. 

The hardware available to the author comprised a Matrox MVP-AT imaging board [Matrox 

pc] mounted in an IBM PS/2 computer system (later updated to an Olivetti 386). 

The available image processing software includes both low-level and general-purpose func

tions. The library is for driving the specific hardware and includes no facilities above the level 

of frame buffer operation i.e. no feature extraction or measurement algorithms are included. 

The Imager-AT library is compiled microsoft C code [Matrox sw]. General purpose software 

development facilities to utilise the library comprised a Microsoft C compiler with its associ

ated development tools. Tools used by the author include the Quick C editor, The Make tool 

for controlled compilation and linking, the C Compiler, object code Linker, and the Codeview 

debugger [Microsoft 87]. 

6.3 The Design And Implementation Of Structured Application Software 

The author's industrial experience has included 12 years in the process and batch manufactur

ing industry, with responsibility at various levels for the design, implementation, and commis

sioning of software based control and data acquisition systems. This experience provided an 

understanding of the requirements for creating structured modular code. General purpose pro

gramming languages such as C support structured programming and can be used to create 

modular code. 

In all the vision application work, the author has used existing applications of automated 

vision within the electronics industry. Existing applications were chosen as the focus of the 

work is to understand the requirements for designing, implementing and integrating such 

CONTEMPORARY PRACTICE IN MACHINE VISION DESIGN AND IMPLEMENTATION 

69 



applications so that they fulfil the requirements of a building block within a soft elM system. 

The implementations use entirely conventional image processing techniques as the author's 

interests are not in the development of novel vision algorithms. 

6.4 le Inspection During Placement Of SMD Devices 

Chapter 2 described a common application of machine vision during the placement of SMD 

components. The components are picked from a feeder in a random orientation using a vac

uum placement head. They are then presented to a vision machine which generates informa

tion about the component offset in x, y and a on the placement head. The vision machine also 

inspects the component to ensure the correct component has been picked up, and that the com

ponent meets a number of quality criteria associated with the component legs. 

Three high-level goals were identified for the system: 

• get x, y position of the component 

• get the orientation of the component 

• get leg features from the component 

The successful achievement of these goals would enable the generation of the information 

required by the associated placement machine. 

The system was based on a number of contemporary software design paradigms as defined in 

the following subsections 

• hierarchical layered structuring; 

• data driving; 

• modular decomposition. 

6.5 The Overall Layered Structure 

The system was based loosely on a previous vision system architecture proposed by Azar and 

Weston [Azar 89]. This comprised a hierarchy of discrete vision layers. The author's decom

position is shown in Figure 7. Particular functions within the architecture are used to bridge 

the layers and generate specific data structures which form the interface between layers. The 
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Chain function, an implementation of Freeman Chaincoding [Freeman 74, Pugh 83] is typical 

of this type of function. Functions within the lower layers typically have a consistent matrix 

based data structure while those functions in the upper layers have data structures governed by 

the requirements of the features they describe. 

FIGURE 7. Hierarchical decomposition orthe author's early vision implementation 
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6.6 Modular Decomposition 

The system makes extensive use of the low-level and general-purpose libraries. The library 

functions are combined to create modules that are useful within the particular application 

domain. Domain specific constraints include: for inspection of IC's only one object will ever 

exist within the scene to be processed. 

Typical modules required to implement the high-level goals included: 

Layer I - greylevel matrix images 

GRAB, is used for capturing grey level images; 

FILTER, applies a 3*3 convolution to sharpen grey level images; 

Layer 1 to 2 intermediate module 

THRESHOLD, is used to convert 8 bit grey level images to binary images; 

Layer 2 binary matrix images 

EXPAND, is used to dilate an object in a binary scene; 

CONTRACT, is used to erode an object in a binary scene; 
EDGE ENHANCE, implements a sobel edge detection using a 3*3 convolution routine on 
binary images; 

Layer 2 to 3 intermediate module 

CHAIN, finds an object within the scene and traces its perimeter using a freeman chain 
code to describe the perimeter shape. 

Layer 3 feature based objects 

PERIMETER, computes the perimeter size from a chain code; 

AREA, computes an object area from its chain code; 

CENTROID, computes an object's centroid from its chaincode; 

CORNERS, computes the number and position of an object's corners from its cbaincode; 

ORIENTATION, computes the orientation of an expected object by comparing its centroid 
and corner positions with reference data for that object; 

VECTORS, computes a vector description of an object from its corner points. 

6.7 Data Driven Operation 

The software modules were constructed to support long and short term flexibility. Short term 

configuration facilities within the modules were passed as a data structure parameter when the 
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function was invoked e.g. source and destination frame buffers, as shown in Figure 7. On 

building a complete system, an additional module is required to load application specific con

figuration data into data structures which controlled longer term configuration requirements 

e.g. type of camera format in the image grabbing function. This architecture enabled a degree 

of long term flexibility within the system. Reconfiguration could be done by controlled modi

fication within a single module of the system. 

7.0 CONCLUSIONS OF THE EXPERIENCES FROM 
INDUSTRY AND THE AUTHOR'S EARLY WORK 

The author's experiences, together with those of Lloyd Doyle and ICL, indicate the following: 

• Software design and implementation is practised by highly skilled engineers with very few 

enabling tools. No structured methodology or relevant architectural standards are available 

to help lend structure to vision software development 

• machine vision systems will increasingly require facilities to enable their integration within 

enterprise wide information systems. This contention is supported by the user perspective 

from ICL. The ICL experiences suggest loaded PCB inspection will never be fully realised 

without full integration and information support for vision machines. 

The problems described in the previous two sections are typical of those recognised during the 

passed decade as inherent within complex software systems. These problems have been 

labelled "the software crisis" [Cox 87, Meyer 87]. The principal problems include: 

• a requirement for software re-use to speed application development; 

• mechanisms to ease modification and change. 

It has been suggested that a structured or systemised approach to vision system realisation 

could contribute to the solution of these problems [Azar 89, Thomas 91]. The following sec

tion discusses the notion of systemising vision system realisation. 
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8.0 MODELS AND METHODOLOGIES TO PROVIDE A 
STRUCTURED APPROACH TO MACHINE VISION DESIGN 
AND IMPLEMENTATION 

8.1 A Systematic Approach To Machine Vision Realisation 

A typical systems approach to complex problems is to decompose the problem and fonn a 

hierarchical or a distributed system composed of interrelated sub-modules [Thomas 91]. Tho

mas suggests that each module should be designed with the system in mind, providing each 

module with a defined communications interface with surrounding modules_ This interface 

should ensure that detail about the overall goals of the system is propagated throughout the 

system. This notion is similar to that of Azar and Weston [Azar 88] and of Messina [Messina 

91]. What is proposed within the work referenced above is the necessity for a generic modular 

structure to provide a consistent framework for vision systems. Thomas advocates a domain 

specific structure with a complete range of subsystem modules sufficient to provide the func

tions essential to solving problems in the domain. Similarly in this thesis, an application spe

cific structure is developed for vision machines in the PCB manufacturing industry. 

FIGURE 8. A generic model for computer "ision (The "Classic" breakdown) 
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Figure taken from reference Thomas 91 

Understandmg 

Figure 8 describes a generic model for computer vision, suggested by Thomas, which is in line 

with a "classic" breakdown of computer vision. This model again identifies the scale and 
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multi-disciplinary nature of the subject, ranging from optics and the design of structured light

ing to artificial intelligence. The three broad disciplines introduced in this chapter underlie the 

model while modular decomposition within each discipline is identified. Subsystem bounda

ries exist, but so too does modular interdependence, where typically image preprocessing is 

dependent on the quality of image acquisition. The levels of current research within the vision 

related disciplines, identified earlier in the chapter, ensure a requirement for change within 

individual components of the model. 

8.2 Handling Complexity 

Over the past 15 years much has been written on the complexity of systems and the need for 

structured methods for their analysis, design and implementation [Yourdon 79]. The complex

ity of computer vision systems has been highlighted in this chapter. The software systems 

which implement complex inspection processes are typical of the "industrial strength soft

ware" discussed by Booch [Booch 91]. The future integration of vision systems as part of a 

manufacturing system will involve even greater complexity. We require mechanisms to cope 

with this complexity. Three fundamental methods exist: decomposition, abstraction and hier

archy [Cook 91, Booch 91, Seidewitz 86]. 

Each of these three methods is essential to the systematic approach to vision system creation 

described in the previous section. Decomposition, the divide and rule principle, is a method 

for subdividing to create a set of related submodules. These submodules have a defined inter

face through which they can relate to other submodules. This is achieved through the use of 

abstraction, the principle of presenting only what is essential at the module interface while 

hiding all implementation detail within the module. 

Seidewittz identifies three useful types of abstraction [Seidewitz 86]: 

• Entity Abstraction - an object representing a useful model of a problem domain entity; 

• Action Abstraction - an object providing a generalised set of operations which all perform 

the same kind of function; 

• VIrtUal Machine Abstraction - an object which groups together operations which are all 

used by some superior level of control or all use some junior level set of operations. 
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The layers of the classic vision model introduced in the previous section can be considered to 

be virtual machine abstractions, while the whole model uses a seniority based hierarchy [Dijk

stra 68] where the virtual machines provide services to the senior layers. 

Two further types of hierarchy can be identified when decomposing complex systems: 

• a "part of' or structural hierarchy [Booch 91, Coad 90] refening to decomposition through 

the different component parts of a system i.e. a car has wheels, an engine, a body shell, etc.; 

• a "kind of' or classification hierarchy [Booch 91, Coad 90] refening to decomposition 

through similar types of a class of entities i.e. the class of vehicle has subtypes car, lorry 

and van. 

The techniques described within this section, which are clearly applicable to the notion of sys

tematic realisation of vision systems, are all key techniques within the object orientated para

digm. 

8.3 Object-Orientation 

Abstraction is the centrepiece of the object oriented paradigm. An abstract data type within an 

object oriented program is a model that encompasses a type and an associated set of opera

tions. These operations, commonly termed methods, are defined for, and characterise the 

behaviour of the data type [Wiener 88]. 

This combination of state, defined by the abstract data type, and behaviour, defined by the set 

of associated methods, form a cross definition. An 06ject is an instance of a class and a particu

lar application can have any number of such objects. An object encapsulates state by contain

ing a particular set of values for the class abstract data type. The only way to modify the state 

of the object is by invocation of its methods. 

The object oriented paradigm provides "kind of' or classification hierarchies through sub

classes. A subclass definition characterises the state and behaviour of a set of objects that 

inherit some of the characteristics of the parent class but also have their own specialised char

acteristics [Wiener 88, Booch 91]. A "part of' or structural hierarchy is implemented through 

the interrelation of a structure of objects [Booch 91]. Figure 9 describes these two orthogonal 

hierarchies. 
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FIGURE 9. The relationship between classes and objects within an Object Oriented system 

Objects 

Figure taken from ref. Booch 91 

The major goals of object oriented software development are as fol1ows [Wiener 88]: 

• to shonen the time and lower the cost of development by using reusable software compo

nents in the form of basic classes, and by employing incremental problem solving through 

the generation of subclasses; 

• to lower the cost of software maintenance through the ability to localise changes to the 

implementation of one or more classes. 

Cox makes the same points but introduces an analogy with hardware design through the 

notion of software IC's [Cox 87]. Within the object oriented paradigm 'En.tapsulation provides 

the mechanism for generating standard general purpose functionality in the form of class 
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libraries, while lnlieritance provides a mechanism for customising to produce application spe

cific subclasses. 

Object-orientation has been proposed as a methodology which can help to solve some of the 

problems of the "software crisis" [Cox 87, Meyer 87, Deming 86). Speed of application devel

opment through re-use, and the ability to accommodate change are two principal arguments 

which are consistent with the requirements of soft integrated machine vision. The requirement 

for structure through an architectural framework is accommodated by the use of hierarchy in 

both classification and structural decomposition. Object-orientation is an appropriate para

digm on which to base the design and implementation of a new generation of soft integrated 

machine vision systems. 

Since the work reported in this thesis was begun in the late 1980's several research groups 

have reported a similar approach. The Philips Forschungs laboratorium in Hamburg have pro

duced a prototype software toolbox allowing image processing algorithms to be implemented 

independent of computer hardware [Carlson 92). The system folJows a strict object oriented 

philosophy and is based on a set of data structures and operations from which specific vision 

applications can be built Cecchini [Cecchini 90) has reported on an architecture for image 

processing based on the extensive use of object oriented concepts applied to both image 

processing and to object representation within a related database. Many more research groups 

have reported on the suitability of the object orientated paradigm for the design and imple

mentation of integrated manufacturing systems [Rajagopalan 92, Prabhaker 92, Worhach92, 

Rogers 92). 
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Chapter 5 

AN OBJECT-ORIENTED MODEL FOR 
DIGITAL IMAGE PROCESSING AND 

FEATURE EXTRACTION 

1.0 INTRODUCTION 

This chapter describes an object-oriented model which embraces both the state and behaviour 

of digital image processing and feature extraction. The model is derived using accepted 

abstractions within computer vision, as defined in both early and contemporary vision litera

ture [Ballard 82, Gonzalez 77, Pugh 83, Batchelor 85, Fu 87, Fairhurst 88, Thomas 91]. The 

abstractions used are those needed to implement inspection applications within electronics 

manufacturing. The model is used to explore the notion of supporting design and implementa

tion of machine vision applications with prescriptive structure, using the object-oriented para

digm to provide support for rapid implementation and ease of change. The model is not 

intended to embrace contemporary research in image processing and feature extraction. The 

model will fonn a layer in the complete reference architecture proposed within this thesis. 

Use of the model during both design and implementation is considered. Diagramming tech

niques to support a design methodology using Booch91 notation for C++ implementation is 

described [Booch 91]. CoadlYourdon [Coad 90] analysis is used to derive static models, while 

the Booch91 design notation together with the C++ implementation study yields a richer 

understanding of the more dynamic relationships between objects in a vision model. 

The model can be used to give "shape" or "structure" to the conventional library of proprietary 

vision functions that are often provided with image processing hardware. 
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2.0 AN OBJECT-ORIENTED VIEW OF VISION PROCESSING 

2.1 Introduction 

The systems analysis methodology employed in this thesis is based on that of CoadIYourdon 

[Coad 90]. In their book [Coad 90], Coad and Yourdon make recommendations on how to 

identify objects in the problem space. A definition of the initial problem space encapsulating 

vision processing used the following relevant potential object sources: 

• structure - both classification (generalisation I specialisation structure) and assembly 

(whole I part structure); 

• other systems - systems which will interact with the problem space; 

• devices - conceptual devices inside and ou tside the system; 

The primary problem space used to identify the objects within the model comprises the 

requirement to capture an image of a real 'live' object, process the image and extract and store 

geometric features which describe the object in the form of an information model representa

tion. 

It is assumed in this study that the lighting and camera liens combination are known and fixed. 

This allows the work to concentrate on the vision processing aspects of the problem. 

2.2 Primary Objects Within A Model Of Vision Processing 

The objects which make up the model are the minimum set required for the thesis work. This 

set of objects was used to build the first proof-of-concept inspection system and tests the 

author's notions of model based structure providing support for rapid implementation and ease 

of change. Additional objects such as descriptor features (typically regions and corners) could 

be added. This addition could make use of the inheritance mechanism where appropriate. The 

author's second implementation (described in this thesis) required the addition of corner 

descriptor features. 

These primary objects are based on sets of points as detailed in Figure 1 and described below: 

• GREY-LEVEL objects are based on a matrix point set, each point typically using 8 bits of 

digital information, which facilitates coding of 256 levels of grey; 
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• BINARY objects are based on a matrix point set, each point using a single bit representing 

either black or white; 

• ARC descriptor objects are based on a chain of points describing the shape of a line con

necting two points; 

• BOUNDARY descriptor objects are based on a chain of connected points describing a line 

which starts and finishes at the same point; 

• NET descriptor objects are based on connected groups of arc feature objects which form 

tree structures. 

FIGURE 1. Vision objects as pointset descriptions 

A) grey-level object matrix point 
set, 8 bits deep 

B) binary object matrix point 
set, 1 bit deep 

C) arc descriptor 
object point set -
chaincode describ
ing arc between 2 
points 

D) boundary 
descriptor object 
pointset - chaincode 
describing a com
plete boundary 

These point sets fall into two distinct categories: 

E) net descriptor 
object pointset - a 
collection of arc 
pointsets. 

• matrix objects - data abstractions which can be described using a matrix of points. Matrix 

objects lie within the discipline of image processing, as defined in chapter 3 [BaUard 82, 

Gonzalez 77, Fairhurst 88]. We assume each pixel is connected to eight neighbourhood pix-

els; 
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• descriptor objects - data abstractions which can be described using a set or sets of related 

points, where these points describe some descriptive feature of a segmented binary matrix 

object. 

These point set objects form the key abstractions of the vision processing domain. The essen

tial functionality of vision processing in this thesis can be defined as the processing algorithms 

used to perform transforms between matrix objects, and t~' extract descriptor objects from seg

mented binary matrix objects. It is these abstractions, their inter-relationships and the transfor

mations which they undergo that form an object-oriented vision model. 

FIGURE 2. Matrix level decomposition using assembly structure 
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The analysis work described in the following section is based on CoadIYoudon [Coad 90] with 

reference to practical experimentation using the implementation technology described in 

chapter 4. Some aspects of the model, typically object behaviour, are described in terms of the 
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particular implementation. The generic model of vision processing is then extracted from the 

particular implementation based study. Details of the CoadIYourdon notation are included in 

Appendix 2. 

2.3 The Matrix Objects - GREY-LEVEL and BINARY 

Both grey level and binary matrix point objects can be broken down using assembly structure 

(as defined in chapter 4) to generate the model in Figure 2. This figure shows a "whole image" 

which is potentially made up of many "window images" (at a minimum it is made up of a sin· 

gle full size window) which in-turn are made up of many pixel objects. All vision operations, 

such as "filter" and "edge detect", are included as descriptions of the behaviour of matrix 

objects, and are implemented as class methods specific to either grey level or binary objects. 

By using classification decomposition, the model in Figure 3 was produced. In this model 

"whole image" is a class of "window image" (having full size window co·ordinates). Grey 

level and binary windows are also classes of window image. 

FIGURE 3. Matrix level decomposition using classification structure 
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The classification decomposition shown in Figure 3 enables a suitably structured class hierar

chy for inheritance to be identified. This class hierarchy can be used when producing an 

object-oriented implementation model for grey level and binary object classes. The imple

mented model in the form of an object class library replaces the unstructured set of library 

subroutines normally offered by the vision hardware vendor. The class library offers a set of 

related vision objects which abide by generic rules of vision processing. 

Figure 3 describes this hierarchy as follows: 

• A base class "window image" encapsulating attributes and methods applicable to all win

dow images. Typical attributes are the name of the frame buffer used to store the image, and 

the window co-ordinates. Typical methods are "grab image", "save image", "restore 

image", and "frame window". /', 

• The "grey level" and "binary" classes which are derived from the window image class have 

no specific attributes but inherit all the attributes of the "window image" class. The impor

tant difference between the "grey level" and the "binary" classes is that they have a com

pletely different set of methods specific to either grey level or binary image processing, 

typically "filter" and "edge enhance" for grey level processing, and in this thesis "erode", 

and "dilate" are implemented for binary processing. (It is understood that algorithms exist 

for greylevel erosion and dilation). "Whole image" is a particular class of "window image" 

which has default conditions for its window coordinates to produce a full screen image, 

typically used when grabbing raw images_ 

• The "binary" class has another useful subclass which describes a particular type of binary 

image termed "segmented binary" objects. This class of object has the same attributes as a 

binary object, but its class has a further set of relationships with descriptor objects. These 

relationships are described within the following section. The "segmented binary" object 

class forms the boundary between matrix and descriptor objects. Its own objects are seg

mented images from which features can be extracted. These images typically comprise 

objects made up of thinned single-pixel-width edges. 

The decomposition so far has related to matrix level digital image processing. It has identified 

a set of generic low level vision objects, and the associated methods which can be used in the 

design and implementation of machine vision applications as library classes to achieve appli-
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cation functionality. The following subsection covers the requirement to extract features from 

the segmented binary objects. Using an early object-oriented analysis technique, we can look 

for the nouns and verbs in the description of the problem to deduce objects and methods 

[Abbot! 83]. At the descriptor level, features are the primary objects, while extraction is the 

chief method (the constructor which is used to generate feature objects). 

Extracted features, in the form of descriptor objects and their associated methods, can no 

longer form independent generic object classes which are useful in their own right. This is 

because the descriptor objects are features extracted for some application specific purpose and 

this purpose has application specific behaviour which must be embraced by the methods of 

that descriptor object We introduce a set of base classes of descriptor objects which can be 

inherited by application-specific descriptor classes. These base classes contain the description 

of the feature plus the required extraction methods but do not contain application specific 

functionality. They are described in the following section. These descriptor classes form the 

interface between the application layer and the vision model layer within the runtime architec

ture. This interface is described in the section on the interIayer relationships in chapter 6. 

FIGURE 4. The relationship between node objects and arc objects in the matrix space 
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The creation and manipulation of objects in a given image processing application enables the 

generation of a suitable matrix representation of objects of interest within a scene so that fea

ture extraction can take place. What is now required are object classes to facilitate the repre

sentation of the objects (within the segmented binary image) that are of interest in such 
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applications. The methods by which these feature objects can be extracted and manipulated 

must also be identified. 

Figure 5 shows the assembly structure of the descriptor objects as parts of a segmented binary 

object. This is a conceptual view, in line with the statement made earlier, that the descriptor 

features are a particular view of the segmented binary object. The attributes of a segmented 

binary object are still those of a set of single bit pixels within a processing window, but 

through successive image processing transfonnations it now has properties which can be 

described by arcs, boundaries and nets. Nets are further decomposed into sets of arcs and 

nodes required to describe a tree structure. Nodes are the points of intersection of arcs within a 

net. Nodes are described by their position in the xy matrix space, and by the occurrence of arc 

end points within their neighbourhood pixels, as detailed in Figure 4. 

Figure 5 also shows the result of applying decomposition based on classification structure. It 

defines the relationship between boundary objects as a particular class of arc objects (i.e. that 

boundary is the class of arc whose start position is the same as its end position). Having a spe

cific boundary class enables an object to be controlled via a particular set of methods and 

attributes which are appropriate only to bounded objects i.e. area, centroid etc. and not to the 

base class of arc. 

This approach to decomposition using classification structure is used at the implementation 

stage to ascertain a suitable class hierarchy. The author's implementation uses arc as a base 

class, and boundary as a sub class of arc, which inherits and in some cases overloads arc meth

ods. 

Section 2.0 has discussed models derived by analysing the image processing domain. Objects, 

and their relationships within the model, are generic and can be used to form re-usable object 

class structures for use during the design and implementation of machine vision applications. 

These objects and their hierarchical relationships could be described as the static aspects of the 

model. The following section considers the issues involved with the use of these classes and 

their objects. Further relationships are developed which describe the more dynamic aspects of 

the model. 
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FIGURE S. Descriptor level decomposition using assembly structure and classification structure 
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3.0 OBJECT RELATIONSHIPS WITHIN THE VISION 
MODEL LAYER 

3.1 The Evolution Of Matrix Objects 

When instantiating a grey-level object. an object viewed by a camera is typically snapped by a 

frame store controller and loaded into a frame buffer memory. The details of such an operation 

are encapsulated within the grey level class constructor. Binary objects are created by a trans

formation of a grey level object. They evolve from grey level objects after which the grey 
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level object is often of no further use. It is this metamorphosis that is not directly embraced by 

the "class - instance", "inheritance hierarchy", "superclass - subclass" and "meta class" con-

structs in classical object-oriented methodologies [Cox 87, Booch 91, Wiener 88]. 

FIGURE 6. The required evolutionary coupling between the grey level and binary classes and objects 
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Figure 6 introduces a notation which aims to show the required evolutionary coupling between 

the grey level and binary classes and objects. The application object will instantiate a grey 

level object, apply vision processing via grey level object methods, and then apply a threshold 

method which will create a binary object via the binary class constructor. This scenario com

plies with object-oriented methods and requires no bending of the mles during implementa

tion, as the threshold method has access to the grey level attributes required to create the 

binary object. Although the binary object is a different type of object to a grey-level object, it 

could nevertheless inherit some attributes, such as window co-ordinates and frame store. 

However it should not inherit the methods specific to the grey-level class. This type of selec

tive evolutionary inheritance would be useful in this domain, but is not supported by the two 

principal object-oriented programming languages, C++ [Stroustrup 87], and Sma1Ita1k [LaR

onde90]. 

3.2 Implementation Issues In The Relationship Between Grey·level And 
Binary Objects .... .. . 

In the C++ implementation, objects of class binary cannot truly be instantiated within a 

method of the grey-level object class, as the name of the binary object must be passed to the 

method to enable the application to make use of the object once it exists. Therefore the binary 

object must be declared and a pointer to it passed to the threshold method which comprises the 

code implementing the threshold algorithm for the grey-level object. The threshold operation 

takes place to initialise the binary object using information private to the grey-level object. 

The binary object now has some initial state while the information hiding principles of object

orientation have been maintained. This implementation is demonstrated in the simple evolu

tionary object code in Figure 7 showing the code used to implement a simple problem of the 

evolution of a butterfly object from a catetpillar object. 

The code defines three classes, "livin!:-things", "catetpillars" and "butterflies". Catetpillars 

and butterflies are subclasses inheriting attributes and methods from livin~things. The section 

of code towards the bottom of the right hand column is the main program. This program dem

onstrates the requirement of the code using the classes to adhere to the evolutionary principle 

of the model, which is embedded within the classes. The butterfly can only be created by first 

creating a catetpillar and then calling the caterpillar method "evolve_a_butterfly _called". 
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FIGURE 7. Code used to implement the evolution or a butterHy object rrom a caterpillar object 

#include <stdio.h> 
#include <stdlih.h> 
#include <stream.hpp> 
#include <string.h> ,,. .................................................. . 
lIapplication to demonstrate the problems c:l. true 
IAmplementation of the evolutional)' object instantiation. 
/lsimilarto that required within I true vision model. 
l/The spec for problem is: 
lIa bunerfly air speed is 100 times the catetpillar ground speed 
lIa bunerflyheart rate is 200 times greater than a caterpillars 
IIonIy 111. cate.p1lar know. iu bean .... and ground '!"<'I ,,. ..•••.•....••........•.•••.........•••.........•.. 
l/prowtypes 
clas.livinLthing.; 
cb" caterpi.llan; 
class butterflie.; 

class IivinLthing' 
{ 
protected: 
int TheJieart_f8te; 
publiC! 
void initialise_livinLthings('mt heartftte}; 
void display,.your.J>eanJll'e(): 
I: 

cl ... buuerfli .. : public livinlJ,..)hing' 
{ 
private: 
int air_speed; 
public: 
void initialisc_butterfly3ra'n_caterpillar 

(ml hean_ .. ..;n. speed); 
void displaYJ'our_heart_J1ltc_lmCair_speedO; 
J: 

class cateq'lillan : public livinLthings 
( 
priv.te: 
in. ground....>peed; 
public: 
calerpillan("mt heart_rate.int speed); 

void dirplay,.youcheanJllte_and...sround_speedO: 
void evolve_._butterflY_called(butterflies ·aJ>U1lerfly): 

-calerpDanO: 
I: 
I,.·················································· 
'VOid livinLthings :: initialiseJjvinLthingsCmt heart_Tlte) 
( 
The_heart_rate = heart_rate; 

I 
vcid IivinB-thing' :: display...Your.J>ean_rale() 
( 
printf("Th. heart rate is %<M",Th._hean_rate); 

I 
11*·················································· 

u················································· 
void bunerllies:: initialisc_butterfty_from_caterpillar 
(in. healt_ .. te,int speed) 
( 
lhis .> initialiseJjvinLthings(hearLrate); 
aicspeed = speed; 
I 
void buUeJIIi .. :: displaY..Y<JUT_hean_rate_and_aiupeedO 
( 
printfrbuuerfly heart rate is %d and air speed is %d\n" 

.Th._heanJllte.aic'!"<'l); 

11*················································ 
caterpillan :: colerpillan(ml beanJllo..in. speed) 
( 
this -> initialiseJjvinLtbings(heart..rate); 
ground_speed = '!"<'I; 
I 
void caterpillara:: displl)' ... Y".lf_heanJllle_and...sround--'J"'<dO 
( 
printf("cate.p1lar hean rate is %d and ground '!"<'I i. %<M" 

.The_beanJllte.groond_apecd); 

vaid c:aterpillan:: evolvc_._butterfty_calIed{butterftics •• ..but
terfly) 
{ 
a_bunerfty->initiali.c __ y_~cate.p1lar 

(Th._hean_nte·200,groun''-'!''<'I·I00): 

caterpillars :: -caterpill.rsO 
( 
printfrthis caterpillar is no more'o"); 
I /1* ............................................... . 
void mainQ 
( 
caterpillars jim_lhe_cat( 40)0); 
Iftnstanciate .nd initialise. caterpillar using the "caterpillars" 
/lconstructor' 

butterflies fred_lIlc_but: 
/ldeclare a butterfly to create memory' space for I butterfly 
II(no coo_ nscd) 

exi'(O); 

I 
/I Me. if Ihis evolution construction is to be used. constructon 
//for classes that are to be evolved cannot be used, nor can they 
/Ibe used in classes which arc to be inherited by I class that is to 
lIevolve. 

We argue that this type of C++ implementation represents the most accurate reflection of the 

natural evolutionary shape of the vision model. This argument is based on our experience 

gained building C++ vision applications of the type described in chapter 7. 
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As introduced earlier, binary objects can be further decomposed with the addition of the seg

mented binary class to describe objects of a suitable matrix representation such that feature 

extraction can take place. Again, these segmented binary objects evolve from binary objects 

and cannot be instantiated (declared and initialised) in any other way. 

This notion of evolutionary objects breaks down when considering the extraction of descriptor 

objects. As stated earlier, the vocabulary of the problem leads to the concept of descriptor 

objects which are instantiated by extracting information from matrix objects of the segmented 

binary type. This extraction process is described in the following subsection. 

3.3 The Extraction Of Descriptor Objects 

Although descriptor objects cannot be instantiated without the prior existence of a segmented 

binary object, they are extracted from, and not generated by, segmented binary objects. This is 

important, since usable descriptor objects must be application-clependent and cannot therefore 

become part of a generic vision model. In a C++ implementation, the extraction relationship 

requires the descriptor object to be a friend of the segmented binary image. This friend rela

tionship allows the descriptor object to access the private data of the segmented binary image, 

such that the descriptor feature can be extracted. The principles and implementation issues of 

this extraction interface are detailed in chapter 6. 

4.0 DIAGRAMING TECHNIQUES FOR DESIGN USING THE 
REFERENCE MODEL OF VISION PROCESSING 

This section deals with the diagramming tools which can be used during the design of a 

machine vision application. Such tools are based on diagramming techniques adopted from the 

BOOCH91 notation [Booch 91]. Primarily, they make use of Class Diagrams and Object Dia

grams. The vision processing model is used to provide a richer set of rules to those proposed 

within Booch's general design methodology. 

Class diagrams describe a base structure of classes and of the relationships between classes, 

while object diagrams describe the use of objects of these classes within an application. A 

problem solution will yield inheritance hierarchies within the class diagrams of application 

dependent classes based on the vision model. The object diagrams will describe a complex 
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combination of both vision model and application specific objects of these classes, typically as 

shown in the inspection application detailed in chapter 7. It is the underlying model whose 

structure is always present within a particular solution which provides a constraining frame

work. 

The Booch diagramming techniques used to describe the model are detailed in Appendix 2. 

4.1 The Class Diagram 

The class diagram describing the vision model and its relationship with the application layer is 

shown in Figure 8. It describes the principal base object classes for use within a vision system 

solution and details the relationships between them. The two principal relationships that. 

Booch defines are "uses" and "inherits from". We propose that two additional relationships, 

derived in the previous section, are necessary to describe the functionality within vision 

processing applications. These are "evolves from" and "extract m;m friend". Typically, appli

cation functionality "uses" binary images, binary images "evolve from" grey-level images, . 

simple arcs "extract from friend" segmented binary images and grey-level images "inherit 

from" window images. As with all classes within the model, the net descriptor class contains 

no application dependent methods. To use the contents of a descriptor level class an applica

tion dependent net descriptor class must be created and must inherit the attributes and methods 

of the net descriptor class. A typical example of this could be a "printed circuit board (PCB) 

net list description class" made up of a list of nodes and arcs which describe the PCB tracking 

network. This class might include methods to enable checking of the lists of arcs and nodes 

extracted from an image against a reference net list to enable the verification of PCBs. One 

stage of a problem solution would require the development of the class diagram within the 

application layer to form a set of application dependent classes. These classes would be suita

ble for producing an interacting set of objects within the object diagram, which would provide 

a solution to the problem. 

The Class diagram provides a graphical description which represents the class structure of the 

vision model at an abstract level. The use of Booch Class templates provides a means of add

ing greater substance to the model. The "evolves" and the "extract from friend" relationships 
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can be added to the template notation. Appendix 2 gives details of the Booch template nota

tion. 

FIGURE 8. Vision processing model using adapted BOOCH91 class diagram notation 
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4.2 The Object Diagram And Timing Diagram 

An object diagram and its associated timing diagram are shown in Figure 9 and Figure lO.In 

these diagrams, a minimal scenario is shown, where one object of each class has been instanti

ated to describe in more detail the dynamic aspects of the model. In an actual application, the 

object diagram would become a complex set of diagrams describing the creation, evolution 

and destruction of many matrix objects, and the creation, extraction, and destruction of many 

application dependent descriptor objects. Within the object diagram, the containing relation

ships of the net descriptor objects are explained by the necessary close coupling of the list of 

nets and the list of nodes. 

The timing diagram shown in Figure 10 describes the sequential nature of the image process

ing and feature extraction operations, and clearly shows the evolutionary creation and destruc

tion of grey and binary objects, while control resides within the application level object. When 

thresholding to create a binary object, the application object passes control to the grey-level 

object. The grey level object then creates the binary object and control is passed back to the 

application object. The application object can now pass messages to the binary object invok

ing the binary image processing required by the application. A similar process takes place 

when creating a segmented binary object Having created a segrnented binary object, control is 

passed back to an application object which can now create an application dependent arc 

object. The arc object will extract features from the segmented binary object, but never return 

control to it. The figure describes 2 further application dependent arc objects being created. 

This type of timing diagram has been included to present another view of the thread of control 

within a single image processing and feature extraction operation. In the author's work it was 

never found necessary to use these timing diagrams to describe application solutions. Booch 

states that all object diagrams do not require associated timing diagrams, but they can be use

ful where time critical functionality is to be described [Booch 91]. For example, although the 

thread of control within an inspection application may well be sequential, timing diagrams can 

be used to document real-time deadlines. 
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FIGURE 9. Vision processing model using adapted BOOCH91 object diagram notation 
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FIGURE 10. Vision processing model using adapted nOOCH91 timing diagram notation 
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Chapter 6 

THE STRUCTURED DESIGN AND 
IMPLEMENTATION OF VISION 

APPLICATION SOFTWARE 

1.0 INTRODUCTION 

The aim of this chapter is to discuss further two issues introduced in chapter 1. These are cen

tral to the techniques proposed in this thesis: 

• the concept of infonnation model driven machine vision applications, and 

• the proposed layered architecture for machine vision applications software. 

Information derived from models of the inspection object of interest are used to improve con

temporary means of engineering machine vision systems, at both design-time and run-time: 

• by providing appropriate structure which formalises vision application software creation, 

and; 

• by characterising properties of the runtime system, to provide the required flexibility so that 

multiple objects (adhering to the same neutral model) can be processed by the system with

out the need for reconfiguration or reprogramming. 

Section 2.0 considers the role of product models in the design of application software. It pro

ceeds to develop the notion of "model driven application design". The benefits in terms of 

software modification or ease of change have been identified. Section 3.0 details the architec

ture proposed for applications software, which combines vision application and vision model 

issues. The architecture also addresses the need for flexibility in vision hardware implementa

tion. The author's architecture is contrasted with an established model based on a hierarchical 

stack. Section 4.0 considers interlayer relationships, based on a specific C++ implementation. 

The proposed interfaces allow layer to layer decomposition within design, and isolation within 

implementation, but do not constrain application design or choice of vision hardware resource. 
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2.0 MODEL DRIVEN APPLICATION DESIGN 

2.1 Introduction 

The application software in a machine vision system provides the mechanisms which imple

ment the application specific functionality of the system. Software can be designed and built to 

meet a spectrum of requirements, ranging from a specialised user requirement to one which 

encapsulates a more general need. It is this software which provides the user with the vision 

services his or her application requires. 

Chapter 5 suggested that application software can be made up of application specific object 

classes. These application specific object classes inherit the generic descriptor classes which 

encapsulate feature representations and their extraction methods. They use the grey-level and 

binary matrix classes to provide the required image processing prior to feature extraction of 

their descriptor objects. 

We describe how information models of the principal objects can be used to direct the design 

process. This is achieved by identifying potential application specific objects and their rela

tionships within existing available information models_ 

2.2 Models And Model Views 

A model is a way of formally describing an entity in terms of its attributes and relationships 

with other entities, usually in the form of function and information [Yourdon 79]_ A single 

entity may require any number of different models to describe it, depending on the require

ments of the system that is to make use of the model [Kosanke 91]. 

A number of contemporary research initiatives have focused on defining the necessary form of 

Product Models (such as PDES/STEP [Owen 87, Palfremen 90)). These models will be avail

able within manufacturing information systems of the future and will describe many aspects of 

a product. to suppon its lifecycle from design through to implementation and suppon in the 

field. Contemporary research proposes that these Product Models should be of a neutral form 

[pDES 87, STEP 89, Oements 91], from which the various forms of information can be 

derived to suppon manufacturing applications throughout the product Iifecycle. 
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Figure 1 shows the concept, used in this thesis, of application dependent views of a neutral 

product model, This concept enables mUltiple application specific views of the model to be 

generated. 

FIGURE 1. Application dependent views or a neutral data store 
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Figure 2 shows how four different model views are required within the design, implementa

tion and execution phases of the lifecycle of a component inspection application. The Product 

Design Model shown in part A of Figure 2 represents a fragment of a complete design descrip

tion of the physical attributes of a component. (The form of the model illustrates the model 

driven concept and is not proposed as a formal model). Parts B, C and D of Figure 2 show 

examples of application specific views of the model. Part B includes information which 

defines the physical, spatial relationships between entities of the model, where this model is 

used during run-time. This is derived from the design model and is passed to the application 

during run time execution to configure it, thus enabling image processing of a specific compo-
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nent (i.e. the blob colour could detennine the required threshold value, whereas the leg size 

and its position will detennine the local processing window coordinates). Part C is the model 

view generated during application design to identify the attributes or methods of the applica

tion specific object classes. It is view C that becomes an application developed object class in 

a Booch Class or Object Diagram. 

FIGURE 2. 4 views of a partial model for component side and leg entities 
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Part D describes the fonn of the "live model". In this work the tenn live model refers to a rep

resentation of an object being inspected by the vision machine. The model is made up of fea

tures extracted during image processing and feature extraction from an image of a real object. 

This model is not a view of the neutral product model. 

In order to complete a comparison inspection function, two more model views are required. A 

model used for comparison would describe more detailed features such as lead pitch, leg 

dimensions etc. [Fuji 88]. One instance of this model would be a view of the design model, 

while the other instance would be a view of the live model. Both views would require separate 

and different view provision software to extract and process the relevant infonnation from the 

different infonnation fonnats of the design and live models, and to populate the application 

specific models for comparison. 

This study concentrates on issues relating to the design and building of integrated model 

driven applications. The models for comparison, associated with the inspection checking oper

ations which are specific to particular application functionality, are not considered. 

2.3 The Use Of Objects In The Application Domain To Provide Structure 
Within The Design Of Application Software 

When designing a software solution using principles of object oriented design, the objects 

identified within a particular application domain will make up the major objects within the 

application software [Coad 90, Booch 91]. A particular machine vision inspection application 

which fonns an integral part of a Soft Integrated Manufacturing System should be supported 

during its design phase by appropriate Product Design Models of the objects to be inspected. 

We propose that the objects and sub-objects, which comprise the supporting Product Design 

Models, also comprise the principal infonnation abstractions in the inspection application 

software design. They can therefore be used to support the design of that software. To illus

trate the principles of adopting a model driven approach to design and implementation of an 

object oriented application, a very simple example is used, the inspection of a "blob" contain

ing "round_holes" as shown in Figure 3. 

The Product Design Model shown in Figure 4 describes the object to be inspected as made up 

of two object types, "blobs" and "round_holes". Both objects have similar attributes apart 
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from those describing the irregular nature of "blobs" and the circular nature of "round_holes", 

plus the important relationship that "blobs" have attributes "round_holes". Figure 4 also 

describes the application software requirements model for Hole Boundaries in an implementa

tion constrained form of a C++ class. This class is an application dependent feature class (as 

introduced in chapter 5) in this case a specialised type of the boundary descriptor base class. 

The class contains all the inherited attributes and methods describing the boundary features. 

What is required at the application level is the addition of a suitable "constructor" which con

tains the required grey-level and binary matrix level vision processing. The constructor will 

generate an instance of its class by instantiating grey-level objects and evolving binary and 

segmented binary objects, and finally extracting its own feature level object, in this case a 

Hole Boundary object 

FIGURE 3. A Blob containing Holes 

Figure 4 illustrates the idea that view provision, enabling the application software require

ments view isdone by the design engineer: he/she uses his/her view of the design model of the 

blob and its attributes, his/her knowledge of the particular vision system implementation, and 

his/her understanding of image processing supported by the available model of vision technol

ogy. Ideally this knowledge and the mechanisms used to encapsulate it will, in the future, be 

implemented as a case tool. 
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FIGURE 4. Design model ror a blob containing boles used to sbape application generation 

Product Design Model 

BLOB 
knowledge of vision 
and implementation 
technology area 

perimeter 

centroid 

colour 

finish 

model of 
vision tech
nology o 

o 
c++ code - application dependent 
hole boundaries class inherited 
from boundary descriptor vision 
model class 

ROUND HOLES 

area 

centroid 

diameter 

colour 

X,Y posn in blob 

o 
o 

Engineer uses 
design model of 
object of interest 
to generate appli
cation object 
class inherited 
from a basic 
descriptor class in 
the vision model 

2.4 Modification Of The System 

I 
.S 

HOLE BOUNDARIES 

inherited attribuleS of 
boundary descriptor 

_._ ..... _--_ .... _ .. 
x,yposn 

window co-ordinates and 
posn 

tJu-eshold value 

constructor to generate hole 
boundary is inherited from 
boundary methods 

>-
driving 
model 

When coupled with the advantages from using object oriented design and object oriented 

implementation languages [Cox 87, Thomas 89, Meyer 87, Hodgson 90], the tight binding of 

models of objects within the application domain and the structure of the application software 

can provide additional benefit These include the improved potential for software re-use and 

standardisation, and improved support for software maintenance and change. 

Figure 5 demonstrates the use of inheritance to simplify software modification, where there is 

a requirement to change the original model of a Blob to incorporate a new feature within the 

model ofa new type of Blob. The new model has a second attribute "square holes". To accom

modate this new Blob class, new software is required which can inherit the original Blob class 

i.e. all the BloblRound_Hole code, to create a new top level application class. This new class 
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contains the additional attribute "Square holes" within its private data structure and public 

methods. The "Square_hole" object class is then designed and built. The application code can 

be modified with the addition of the new type of Blob class and the new Square_hole class 

without having to understand or modify the implementation used within the original Blob/ 

Round Hole code. 

FIGURE 5. The use of inheritance to ease sortware change 
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The objects within the application domain (Le. the objects to be inspected) are those objects 

which have potential for unforeseen change. Therefore, building the structure of the software 

in line with the structure of the objects in the application domain, enables the potential benefits 

of inheritance and code modification to be realised. Hodgson [Hodgson 90] makes the impor

tant point that "software re-use needs commitment". The structure and control of classes must 

be carefully designed to enable the potential for re-use. We propose that this can apply equally 

to realise the potential for "ease of software change", and that the proposed structure based on 

existing models in the application domain will enhance the potential for ease of change. 

An example model decomposition, describing objects in the application domain, is shown in 

Figure 6. This figure shows a fragment of the "EDIF model for PCB" [EDIF 90, EDIF 91] 

where the fragment describes a "bare board" entity. The model, and its relevant parts relating 

to each of the PCB sub entities, identifies an internationally accepted structure. This taxonomy 

could be used to identify the principal objects and their relationships within application soft

ware used to inspect the bare board. The potential for re-use and modification can be enhanced 

by making reference to, and adopting attributes of, this common structure. If an original appli

cation is required only to inspect "physical nets", "fiducial marks" and "mounting places", 

then these objects would make up the assembly structure of the design. A subsequent require

ment might be for the system to inspect "printed components" as their use became increas

ingly commonplace in the company's products. The required change could be incorporated 

either by modification of highly structured code which encapsulated previous knowledge of 

the potential existence of "printed components", Or by the inheritance of the "bare board" 

object class with the addition of the new abstraction "printed components" within the new 

derived object class. 

3.0 A LAYERED ARCHITECTURE FOR STRUCTURING 
VISION MACHINE APPLICATION SOFTWARE 

3.1 Introduction 

This section describes a layered architecture to be used within an application. It embraces both 

the vision model and application specific code. The architecture also recognises the need to 

provide an interface between the vision hardware resource used in a particular system imple-
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mentation and the software which implements an instance of the vision model. The design 

principles that govern the nature of the architecture are discussed, as are the potential benefits 

in terms of software re-use and ability to handle hardware heterogeneity. 

FIGURE 6. Part of the EDlF model for peB using IDEF-IX, describing a Bare Board. 
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3.2 Vision Application Decomposition· Hierarchy Or Heterarchy ? 

After many years of research, computer vision is still considered by many experts to be an 

unreliable technology [OU 92] (Le. minor changes within the conditions within the viewed 

scene can cause unpredictable system performance). In a1l the vision applications built by the 

author (as described in chapter 4,7 and 8) the unpredictable performance of computer vision 

has been a central problem. The capture and processing of consistent matrix images which wi1l 

generate a predictable set of descriptive features of the object of interest within the application 

is a primary requirement for the vision system application designer. As computer vision sys

tems do not possess the intelligence which backs up the human eye (despite advances in artifi

cial intelligence [Thomas 91, Mayhew 92]), vision applications must include precautionary 

processing capabilities to ensure that most common kinds of contingencies can be met. e.g 

extra objects in the scene caused by spurious noise, uncontro1lable changes in lighting condi

tions, changes in the colour or surface finish of the object to be inspected. 

FIGURE 7. A Hierarchical Model of Machine VISion • 
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Figure 7 shows a conventional model of image processing [Thomas 91] which describes 

increased levels of data abstraction, from a complex grey-level image of objects and back

ground to a simple set of features representing an object of interest (which can be classified in 
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some way and used for scene analysis). The literal implementation of this model as a stack of 

discrete processes represents an ideal situation. A given application, requiring a description of 

some object within a scene, would interface with object features and be protected from the 

details of lower level matrix image processing considerations. 

Because of the unpredictable performance of computer vision, implemented applications 

rarely fit this interpretation of the conventional model (Le. as a stack of discrete processes), 

though the categories provide a useful reference, particularly in regard to loosely grouping the 

classes of image processing, pattern classification and scene analysis. 

To ensure robustness, the designer requires the application objects to have complete flexibility 

in their control over the matrix level objects. Thus application objects are required to view all . 
the data abstractions in a vision model, replacing the notion of a hierarchical processing stack 

with that of a heterarchy of matrix object classes which can be instantiated and manipulated by 

the application layer objects. We recognise the heterarchical features described above, and 

provide realistic mechanisms for system flexibility and support of change. 

3.3 A View Of Vision Processing Using A Complex Layered Architecture 

Messina and Tricomi [Messina 91] propose a layered stack of discrete processes to mirror 

those successfully exploited in the ISO OSI model [ISO 78, Mackinnon 90, Pimentel 90]. 

They argue that a model with standard inter layer interfaces, as detailed in Figure 8, would 

allow operators and algorithms making up a layer, to be replaced in the vision system in such a 

way as to leave adjacent levels unchanged. The layers identify groups of homogeneous func

tions which aim to allow independent processing within layers and minimise the interaction 

between layers. Typically, the pre-processing level will receive a request for an image with 

characteristics that can be pre-determined by the next upper level. For example, when the seg

mentation layer requests pre-processing services, this request triggers multiple operations 

within the pre-processing layer. 

In the author's experience, vision applications require unconstrained access to all functionality 

within each layer. We believe that a generic model describing specific interlayer relationships 

of the complexity identified by Messina is unlikely to prove useful in supporting practical 

machine vision implementations. 
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FIGURE 8. Messina's proposed model ror tbe robotic vision process 
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The author proposes another view of vision processing in the shape of a simple three layered 

architecture which recognises the needs of applications which are required to extract features, 

by providing unconstrained but structured access to matrix level vision processing. Mauix 

level processing and feature extraction are structured within a layer which comprises an 

implementation of the vision model proposed in chapter 5, while the vision hardware, which 

often represents the "user to vendor boundary", is encapsulated within a vision hardware 

resource layer. 
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FIGURE 9. Two orthogonal views of machine vision processing 
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Figure 9 demonstrates how the author's three-layered architectural view can co-exist with the 

conventional vision architecture. Both architectural views can be of value during vision appli

cation analysis and design, while the three-layered architecture can provide additional support 

during the implementation and maintenance phases of the machine vision system lifecycle. 

3.4 The Proposed View Of Machine Vision Using A Three Layered 
Architecture 

The layered architecture proposed here comprises a central model describing vision process

ing, an application layer comprising the functional requirements of a particular application, 

and a layer comprising the software required to interface the vision model software to particu

lar vision hardware. The software to hardware interface usually takes the form of a set of soft

ware functions contained within a software library supplied by the vendor of the vision 
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hardware. The vision model lends structure to the vision library functions used in a specific 

application. The application comprises a structured set of application specific objects, using 

services offered by the vision model and supplying application specific services to the vision 

machine user. 

Together with Figure 10, the following provides a more detailed description of each layer of 

the proposed architecture. 

3.4.1 The Vision Application Layer 

This implements the functionality of the application without concern for how the lower 

level objects and their methods are implemented. It comprises a hierarchy of interrelated 

application objects. The objects which border the Vision Model layer utilize the services 

offered by the vision model layer by instantiating vision objects and controlling them via 

object methods. The top level object within the application layer offers vision services to 

the vision machine user. 

3.4.2 The Vision Model Layer 

This implements a particular instance of the generic model of machine vision, from image 

capture to feature extraction. It comprises software which conforms to the generic vision 

model and contains no application specific functionality. A particular implementation of the 

model is constrained by the language in which it is implemented, and the specification of 

the vision hardware resource. It offers services to the application layer where application 

objects instantiate and manipulate vision objects in a manner prescribed by the model. It 

implements vision processing functionality through an interface to vision primitives. These 

primitives are in the form of library functions which operate in the hardware resource inter

face layer, and are dependent on the vision hardware technology. 

3.4.3 The Vision Resource Layer 

This implements a device-dependent interface between the vision model and a particular 

type of enabling vision hardware resource. It appears to the model layer as a heterarchy of 

independent functions, (although it is likely that there will be hierarchical decomposition 

within the resource layer, as required by the vision hardware vendor). This layer normally 
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takes the fonn of a library of function calls controlling vision processing and frame storage 

hardware and is constrained by the specific nature of this hardware. This layer could also 

include the use of dedicated vision functions implemented in hardware. 

FIGURE 10. Relationships within the layered architecture for Vision application software. 
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Figure 11 shows relationships between these layers which demonstrate the flexibility offered 

by the architecture. The vision model can provide services to multiple applications within a 

single system at a particular point in time, or at different times within the system life cycle. 

The layer relating to a particular vision resource can be removed and replaced should this be 

required during the system life cycle. The application analysis and design process can take 

place without reference to the vision hardware (though detailed design at a low level within 

the application layer, i.e. application specific feature extraction, is likely to be influenced by 

the implementation technology). The implementation technology does not impose constraint 

should the user wish to take advantage of improvements in vision technology. Problems of 

heterogeneity, where applications are required to run on a range of vision hardware, can also 

be eased by use of the proposed architecture. 

4.0 IMPLEMENTATION MECHANISMS DEFINING THE 
RELATIONSIDPS BETWEEN LAYERS 

4.1 Vision Model Layer To Application Layer 

In order for the vision model to be generic, it is important that no application-dependent func

tionality is present within the model layer. It is this principle, along with the decision that 

descriptor features are extracted from matrix representations, that forms the vision application 

layer to vision model layer boundary. Descriptor level feature classes are provided to be used 

within an inheritance relationship with application-dependent feature descriptors classes. The 

. application-dependent feature descriptors then add the application-specific methods which 

allow them to perform their required application-specific function. 

In order for this relationship to be supported by a C++ implementation, the segmented binary 

object class must have a friend relationship with the feature descriptor class, or at least with 

the extraction method of that class. With friend status, the application can now look into the 

segmented binary image object and extract features without having any access to vision model 

implementation issues. It is this concept of the application looking into the model, and never 

the reverse, which allows the model to remain isolated from all application issues. This con

cept parallels that of Cox [Cox 87] in his description of work on operator interfaces. 
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4.2 C++ Implementation Examples, Demonstrating The Vision Model To 
Application Layer Relationship 

This section describes the C++ implementation of the relationships discussed above. giving 

simple examples using application objects from the vision application domain of "component 

inspection". 

FIGURE 12. code fragment showing .bpp file for tbe class SIMPLE_ARC 

lIindudc "visl192.hpp" 
lIdefine UTINY unsigned char ,,. ................................••..•••••••••••••.•...................... 
11 name: simplc_arc_descriptor 
11 is .: base object class 
11 objective: c:ont.airu: chaincode into to desn"be arc between two points 
11 friend 10 : binary jrnage 
11 wrinen by : John Edw.ro. 90-
11 mod. : 1E 92 ,,. ...•.........•.......................•...•.............•.....•.•..•..•... 
class simple_arc_descripton [ 
protected: 

01 

int proc_ltopgo; 11 STOP OR GO 
UilNY ochainbuf: IIptrlO buffer holding chainende valuea 
int no_ellems; 11 initial no of elements for chain 
int xstart; 11 x coordinate of are start pesn 
int ystart; 11 y OClOrdinate of arc start poso 
int chaincount; 11 number of points in the arc point set 
int xfinish: 1/ x ooordinate of arc finish pom 
int yfinish: 11 y c:oonIina!e of an: finish po •• 
long an::Jength; "length of arc 

Ihe fonowing attnbutes are passed from the segmmted binary image 
frem which the arc is extracted. They are window atnbulCs which are not strictly utributeJ 
of an uc but are required iD the arc extraction process. The initialise function is made I friend m 
the segmented binary imagc class in ordcrto access its private: data and set up thesc valucL 
This fonos the link between the vision model and application specific feature object classCL 
from which the arc is to be generated. They are copied and nOl just accessed by each method using 
pointers because it is nelscuary to derive mbclasse. from arc which a11lo needthil into eg boundary, 
otherwise they would an have to become friends of binary image which is best avoided. ,. 

int intagebuf: IIFBOORFBI 
int workbuf: 11 FB2 OR FB3 
int 
int 
int 

10rigin; 

yorigin; 
width; 

int height; 

l/top left hand comer x ax>roinalC 

l/top left band corner y c:oonIinate 
l/width clistmoe in x· 512 
Ifncir»t clistmoe in y • 480 

public: 
void initialise_from_segmentecCbinary _imageJriend(segmented_binary _imagcs ·1_scgmentc<Cbinary jmage); 
vinual int find_S1art{): 
intgd_UcO: 
int check_S1art{): 
intexlract_l_rimplc_U'CJrom(segmente(CbinaryJrnagu ·a_legTnented_binal}'_imagc); 
int geUength_ol-your_arcQ; 
int vdu_display(cbar ·U'C_name); 
int pvc_to_disc(c:har ·file_name.int idenUlO); 
int get_from_disc(char ·filcJlame); 
int muo_monitor(mt newx,int newy); 

11 -simple_",,_descriptorsO { delete[ch.incoontl chambuf: 1 
I: 
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Consideration is first given to the requirements of the base descriptor objects within the vision 

model which are to be used. within inheritance relationships. to form application layer objects. 

As stated above. these classes are required to extract features from segmented binary objects. 

To achieve this they require access to information which will be private to the segmented 

binary object. It is for this reason that the extraction method of a descriptor class must be made 

a friend of the segmented binary class. 

FIGURE 13. code rragment sbowing part or the .epp file ormetbod EXTRACT_A_SIMPLE_ARC 

Ninclude .... rc92.hpp .. ,,. ...•••.............••.••..........•••.......•••................••.••.. 
" Method name : c:xtract_I_,imp1C_'rc(} 
/I Objective: save image. find • start. extract the arc 
11 cheddf the stan pom was good, if nOl use 
11 end point as a new start point and try again 
11 perameten : I_simplc_arc_descriptor - name of the arc 

11···················································· ....••••••••.•..... 
int simplc_arc_descripton::extract_l_rimplc_&!C_from(segmentc(CbinaryJrnagea: ·'_segmenlcd_binatyjnage) 
( . 

int chccl<ok; 
int Ioopout=O; 

a_oegmented_bin..,.jmage'>l'ro,.,,!jmageQ; 

if (thi.·>find_".nO=FALSE) retum(FALSE); 
do 

I 
if (thi •• >gecarcO=FALSE) retum(FALSE); 

checkolc = (this·>check_mnO); 
if (loopoul++ >5) 
I 

) 

prinlf("can\ find good .<art"); 
....... (FALSE); 

if (cltccl<oIc = FALSE) a_,egmented_binaryJmage-,..,tore_im.geQ; 
) 

while (clteckolc = FALSE); 
," ... m(!'RUE); 

Figure 12. shows the header declaring the protected data and the public methods of the "SIM

PLE_ARC" descriptor class. Comments in the code explain the necessity to gain access to the 

private information of a segmented binary object. The information required is that specifying 

where the matrix level information resides. i.e. in which image buffer and what window 

parameters the segmented binary image exists. Accessing this information is done through the 

method "INITIALISE_FROM_SEGMENTED _BINARY _IMAGE_FRIEND". The use of 

this method can be seen by examining the code in Figure 13 which shows the implementation 

code required to extract a simple arc. This method "EXTRAcr.A_SIMPLE.ARC" is an 

aggregation of methods within its own "SIMPLE_ARC" class and uses the "this->" operation 
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to invoke methods of its own class. It can be seen from the figure that it initialises the "SIM

pLE_ARc .. object, thus gaining access to the whereabouts of the matrix infonnation. It then 

finds the startpoint of the arc and extracts it. 

Thus implementation entirely reflects the required principle of extraction of descriptor fea

tures from matrix objects while providing the highest degree of separation between the two 

classes of image processing objects. 

Figure 14 shows the header code describing an application level object class. The class decla

ration (immediately after the commented heading) shows that this class is inherited from the 

descriptor level class "BOUNDARY_DESCRIP1DRS". In this simple example the class has 

only two methods - a constructor (having the same name as the class name) and an application 

dependent method (which outputs the class data to the screen). All methods of the inherited 

base class "BOUNDARY _DESCRIPTORS" are available to the inheriting application level 

class. The use of these inherited methods can be seen by examining the code listed in 

Figure 15. 

FIGURE 14. Code fragment showing the header for An application layer class 
UNCLASunED_cO~NENT_BOUNDARY 

'include "bound92.hpp"" includes sarc92.hpp .> visl192.hpp 

fi····················································· •..............••• , 
1/ APDES92.CPI' 00 PROGRAM HEADER IN ZORTIlCH c++ 
1/ 
1/ CONTAINS HEADER CODE FOR TIlE RlLLOWING 
1/ APPUCATION LEVEL DERIVED FEATIJRE CLASSES 
1/ 
1/ COMPONENTJlOUNDARY derived from BOUNDARY 
1/ note the c:onsUUClUrt. eontain the grey and 
1/ binary level vision processing required prior to 
" the extraction of arcs or bouruJll)'1 

'I' 
1/ WRITTI!NBYJOHNEDWARDSDATEApril921 
I~···················································· ...•..•..••....•.. 
class uncIauifie<Ccomponenl_boondary. : public boundary _descriptors [ 

private: 
1/ .Itn""" inherited from boundary _descriplon clas, 
1/ typically area, perimeter. centroid. chainoode ... BOUNll92.HPP 

in! identJlo; "object identification number 
public: 

" class methods 
" conlrUClor 

unclalSified_compooent_boundarys(g~y jrnlges *. -Irey _image.int ident,int threshold); 
void display"'yoorJeature_dataO; 

); 
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FIGURE IS. code fragment showing part of the .cpp file for the constructor method 
"UNCLASSIFIED_COMPONENT _BOUNDARIES" 

Ninclude "apdes92.hpp" 

" ....................................................................... , 
1/ APDES.Cl'P ()() PROGRAM IN ZORTECH C ... 
1/ CONTAINS IMPLEMENTATION CODE R>R TIlE FOUDWING 
1/ APPUCATION LEVEL DERIVED FEA11JRE CLASSES 
1/ 
1/ COMPONENCBOUNDARY derived Iran BOUNDARY 
11 nen the c:oostructures cootain the erey and 
11 binary level vision processing required prior 10 
" the extraction of arcs or boundary. 
1/ 
1/ WRITIEN BY JOIIN EDWARDS DATE APRD. 92 ,,. ..................................................................... . 
unclassified _componenCboundaryl :: unclalsified _coo4,onenl_boundarys(grey jmages •• ....Irey _image.int ident.int thre5hold) 
( 
int crrotJdum = 1; 
ident_no = ident: 

if (aJreyjmage->spatiaCfilterl-yourjrnage() = FALSE) errorJelum = -1; 

binaryjrnagel I_binaryjrnage; 
if ( • ...,greyjmage->threshold...J'OUrjrn.gc_to_cv<ivc_._binary_imagc_called 

(h_bina'Y_image.O.O.dueshold.2SS.2SS)=FALSE) errorJOtum = -I; 

if (aJJUwy_image.erodc"'youf_image(2.BUCK)=FALSE) error_return = -1; 
if (a_binarr_im.ge.dilate"yw,_image(2.BLACK)=FALSE) error_rerum = -I; 

segmente,(U:inary jrnagea: a_leLhinJmage; 
if (a_binary_image.usc_I_bounda'Y_to_evolYe_I_segmente(Cbinary_obje<t_called 

(h_.eg...bm_image.W!llTE)=FALSE) error_""um = -1; 

if (a_seg...bin_image.clea'..YOUT_bordeUo_tbi._alIour_and_,ize{BLACK,Sl=FALSE) error_rerum = -I; 
if (a_seg...birLimageirame...)'OUT_border_with_lhis_colou,_and_,ize{BLACK.sF=FALSE) ."'''_return = -1; 
if (a_IeLbin_image.protecl_imageQ==FALSE) error_return = ·1; 

if (1his->dUect1y..get..YouCe<ntroid_a.<UlisplayO=FALSE) erTOoetum = -I; 
if (1his->g .. ..YW,-I"'rim ... r()=FALSE) error_-.n = -I; 

retum(error_relUm); 
) 

In the code fragment shown in this figure, the ~pplication object, having been passed a grey_

image object, applies particular grey-level image processes to it It tells the grey_image object 

to evolve a binary_image object It then applies particular image processes to the binary_im

age, which it then requests to evolve a segmented_binary _image. The constructor can now 

extract its required boundary using the methods inherited from the boundary descriptor object 

class through the "this->" operation. The extraction is followed by the use of more inherited 

methods, to compute centroid, area and perimeter features from the extracted boundary. 
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The simple applications described above show how the application builder has control over 

all abstractions in the vision processing domain but is protected from the complexities of 

the vision processing implementation. The application builder is provided with a set of base 

classes, or a class library, which reflect the information, function and object relationship 

abstractions of the vision model. 

4.3 Vision Model Layer To Vision Resource layer. 

Instantiation of the vision model layer is constrained in two ways: 

• by its programming language implementation, and 

• by the form of vision processing hardware, as this hardware defines the form of the soft

ware which interfaces the vision model to the vision hardware. 

The vision resource used within this study comprises image storage hardware in a host proces

sor, with dedicated software (in the form of a library of functions) executed on the host proces-

sor. 

The boundary between the vision model layer and the vision resource layer exists in the meth

ods of the vision model object classes, as they call the vision resource layer functions. The 

methods therefore depend on the vision resource technology. 

The object oriented implementation of the vision model, using C++ object classes, provides a 

practical, "clean" interface between the definition of a class and its functional implementation. 

A C++ Class is defined by declaring its data abstraction and set of methods in a Class header 

file, while the method implementation, comprising the C++ code exists in a separate but 

related file. This separation supports hardware resource heterogeneity through re-implement

ing the vision model methods for particular vision hardware resources as required. Where 

appropriate (in sitnilar types of vision implementation technology) most of the code would be 

re-used. A functional specification of each method must be identified, and compliant methods 

must be developed for new vision hardware resources. The application layer only interfaces to 

the vision model class library headers, which remain unchanged for all implementations. 

Therefore the application layer can remain unaffected by any change in vision resource tech

nology. Figure 16 shows a representation of this decomposition, where the object methods 
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within the model form convenient detachable code elements which are replaced when replac

ing the vision hardware resource. 

FIGURE 16. Vision model layer to implementation layer interface 
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Chapter 7 

THE DESIGN AND BUILDING OF AN 
INFORMATION DRIVEN APPLICATION 

OBJECT FOR AUTOMATED VISUAL 
INSPECTION 

1.0 INTRODUCTION 

This chapter demonstrates the application of the models, methodologies and mechanisms pro

posed in this thesis for the design and implementation of a discrete vision application object. 

The object will comprise one part of a distributed vision inspection solution within a Soft CIM 

Cell. The techniques demonstrated in this chapter can be summarised as follows: 

• the use of information models to drive applications at run time; 

• the use of information models to guide application design; 

• the use of a three- layered architecture within the vision application object system imple

mentation; 

• the use of a generic model of matrix level vision processing and feature extraction; 

• the use of the object oriented paradigm within design and implementation. 

2.0 THE REQUIREMENTS FOR THE APPLICATION 
OBJECT 

2.1 Top Level Decomposition Of A Vision Application 

The top level objects describing the overall requirements of the application are shown in 

Figure 1. The application is designed to populate a product model. It uses design information 

to support the generation of live information from surface mount components. The design 

information and generated live information is stored in a formal model format. The model 
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used is the industry standard EDIF model for peB [EDIF 90,91]. Details of the model and its 

use within the application are sketched in this chapter. 

The objects identified in Figure I comprise: 

• the "design model" and "live model" objects, which exist as information objects within the 

user's enterprise information system. Information services are available from the integrat

ing infrastructure; 

• the "operator interface" object, which will be implemented on a workstation terminal 

together with other computer processes required within the production cell. Interaction with 

the operator interface will be via interaction services available from the integrating infra-

structure; 

• the "live component" object, which will comprise hardware and software to provide a dig

ital representation of the live component. The interface to this will be particular to the 

equipment manufacturer. The proprietary vision hardware and software handling is pro

vided through specific implementation of the vision model object methods and vision hard

ware resource layer, within the 3 layered architecture proposed in chapter 6; 

• the "live component model information generation" object comprises the main component 

of the model driven application described within this chapter; 

• the "inspection analysis" object has a subset of the interaction requirements of the live com

ponent model information generation object. It is not discussed further in this thesis. 

This chapter details the design and implementation of the "live component information gener

ation" object which has the following primary requirements: 

• to capture an image of a component, extract a description of the component and convert it 

to the EDIF compliant model form; 

• to take advantage of the provision of a library of component design descriptions, available 

in EDIF model form. 

In order to take advantage of design information whose availability is supported by services 

from the integrating infrastructure the application object is based on information driven princi

ples [Schildt 87,Weston 92]. 
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FIGURE 1. Top level object modules within the application domain 
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The technique used in the vision application described in this chapter adds greater flexibility 

by being able to cope with inspection in unpredictable circumstances. It takes advantage of the 

fact that a restricted set of attributes can be used to describe the objects which are to be 

inspected. This enables the classification of components which arrive for inspection in an 

unpredictable order. The system requires only the location of prospective data stores in which 

to look for information, and takes advantage of the ease of access to the host information sys

tem by services offered through the integrating infrastructure. 

3.0 THE EDIF MODEL FOR peB 

3.1 Introduction 

The proposed industry standard model for describing PCB's is the "EDIF model for PCB" 

[EDIF 90,91]. EDIF was originally created for the interchange of electronic design data in 
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VLSI design systems. Since that time, its use has been extended to enable interchange 

between a greater range of different systems (e.g. CAE/CAD, manufacture, test), where infor

mation transfer requires some electronic mechanism, typically, a disc or a communications 

network. The EDIF PCB Technical Sub-Committee is addressing aspects of the EDIF standard 

associated with the design, manufacture, assembly and test ofPCB's. The EDIF technical Sub

Committee has a brief to create a conceptual model of a PCB which conveys the information 

required within the life-cycle of a PCB as defined below: 

schematic entry CAE - specification of PCB functionality in schematic form; 

component selection - component selection based on technology; 

simulation - computer based verification of the specification; 

pre-allocation - preliminary allocation of functions into components; 

layout - component placement, routing, gate and pin swapping 

layout analysis - computer based simulation and verification of the layout; 

post processing - plotting, artwork generation; 

manufacturing - production of the bare board; 

assembly - mounting of components onto the bare board; 

test - several types of test applied to the bare board and to the finished board. 

The version ofthe model used in this thesis is EDIF Version 2 2 0, which is based on model

ling work that concentrates on design layout Machine vision applies during PCB manufac

ture, assembly and test Critical information required during these processes may well be 

absent from the version 2 20 model. Recommendations for modification to the model to 

embrace the needs of automated inspection of components are proposed in this chapter, and 

used in the demonstration application. 

The conceptual model is described using a slightly modified version of the IDEF-IX diagram

ming tool.(A description of the modifications is included in reference EDIF 90). A textual 

description of an information model ofEDIF Version 2 2 0 [EDIF 91] using the EXPRESS 

information modelling language was used in the thesis. 

Within the model, the designer of the vision inspection application is looking for two things: 

• the information appropriate to drive the application at run-time; 

• principal objects and domain (EDIF) generic structure within the model that can be used to 

provide non-rigorous structure to the application software design. 
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3.2 EDIF Model Driven Component Inspection 

Within the EOIF model, electronics components such as small outline integrated circuits 

(SOIC's), small outline transistors (SOT'S), or chip capacitors which will be mounted on 

PCB's during the assembly operation, are described within the Part Library Section. Infonna

tion in a particular Part Library Section would be popUlated from electronic component manu

facturer's data sheets. The entity relationship diagram describing packages shown in Figure 2 

is taken from the EOIF model IDEF-IX documentation [EOIF 90]. The entities shown with 

dotted outlines belong to a different model section and are shown in the figure to indicate their 

interaction with entities in the Parts Library section. The vision application is concerned with 

the inspection of the physical packaging of the component or part. It is therefore necessary to 

navigate to the "Package" entity which is described within the Package Library Section. A 

more detailed representation of the Package is shown in the EXPRESS infonnation model in 

Figure 3. In this figure, the taxonomy covers a complete decomposition of the Package entity, 

from Package down to the primitive geometric representation of a set of related points describ

ing the physical shape of the component package. 

FIGURE 2. The EDlF entity relationship diagram describing PACKAGES 
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FIGURE 3. The EXPRESS information model of the EDIF representation of PACKAGES 
ENTITY package; 

~as-Plns : SET (0 : #) OF pin: 
Id; INTERNAL ID_STAMP; 
acronym: OPTIONAL INTERNAL JEDEC_ACRONYM; 
package_class: INTERNAL PACKAGE_CLASS; 
body_volume; INTERNAL THREE_D_SPEC: 
occupIed_space: INTERNAL THREE_D_SPEC: 
true_shape: OPTIONAL INTERNAL SET (1 ; #) OF THREE_D_SPEC; 

WHERE 
only_occursjn_relalion_to : 

valid_users (PACKAGE, 
('PACKAGED_PART,IS_PACKAGED_BY', 
'MOUNTABLE_PACKAGE.USES]ACKAGE1); 

can_exist_alone : 
can_exisCalone (PACKAGE, TRUE); 

END_ENTllY; 

ENTllY pin 
SUPERlYPE OF 

(ONEOF (non_electrical,.pin. elec1rical,.pin) AND 
ONEOF (circular,.pin, rec1angular,.pin)): 

name: INTERNAL IDENTIFIER: 
poin1,.position: INTERNAL PACKAGE_POINT: 
pin_length: INTERNAL REAL: 
pin...,group : INTERNAL PIN_GROUP _NAME: 

DERIVE 
referencing...package : 

package := back_rei (PIN, 'PACKAGE.HAS]INS'): 
WHERE 

only_occursjn_relation_to : 
valid_users (PIN, 

[,PACKAGE,HAS_PINS', 
'fvO.JNTABLEJ'JO'CElECTR::AL_PI-WSES_NON_ElECTR::AL_PN, 
'PACKAGED_ELECTRICAL_PART_TERMINAL.CONNECTS_TO_PIN', 
'MOUNTABLE_ELECTRICAL_PIN.USES_ELECTRICAL_PIN1); 

can_nOl_exist_alone : 
·can_exisCalone (PIN, FALSE); 

ENTllY THREE ° SPEC: 
figure: INTERNAL POLYGON; 
height: INTERNAL Z DISTANCE: 

WHERE -
Ihe_heighljs,.POsitive : 

heighl > 0; 
END_ENTITY: 

ENTllY POlYGON; 
line_segments: INTERNAL LIST (3 : NI OF LINE SEGMENT' 

WHERE - , 

theJine_segmenIS_do_not_cross : BOOLEAN ;a 10 be wrinen' 
END_ENTllY: - - ' 

ENTllY LINE_SEGMENT; 
stM,.POint : INTERNAL POINT: 
end,.POint : INTERNAL POINT; 

END_ENTllY: 

ENTllY POINT; 
x: INTERNAL X_DISTANCE; 
y: INTERNAL V_DISTANCE; 

END_ENTllY; 
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- -- - ------------------

Enhancements to the EDIF model are proposed to enable the model to support automated 

vision inspection of package pins. This requires the Pin entity to have attributes describing the 

physical shape of the pin. The information contained in the new model representation can be 

used to aid the extraction of live package pin features. Figure 4 shows details of the proposed 

new Pin entity. The attribute "Pin Length" shown in Figure 2 has been replaced by the 

attributes "occupied space" and "true shape" which enable the pin to be modelled in three 

dimensions. 

To populate such a model with live information, the application has to extract appropriate fea

tures from the live image of a component. These features can be used to determine the primi

tive points describing the physical shape of the package. To ease the processing required to 

achieve this feature extraction, and to increase its reliability, knowledge of the structure of the 

package held within the Package Library section of the EDIF model is used to drive the appli

cation. The design position of each geometric point of interest, relative to the design centroid 

of the package is computed. This point is used as the centre of a processing window, generated 

relative to the centroid of the live package. The window is used to enable a restricted search 

for the live feature. 

FIGURE 4. Proposed new EDIF PIN Entity to support automated inspection or package pins 

ENTITY pin 

SUPERTYPE OF 

(ONEOF (non_electrical pin, electrical pin) AND ONEOF (circular pin, rectangular pin»; 

name: INTERNAL IDENTIFIER; 

pin,.group: INfERNAL PIN_GROUP _NAME; 

point"'position : INfERNAL PACKAGE]OINT; 

occupied space: INfERNAL THREE_D _SPEC; 

true_shape: OPTIONAL INfERNAL SET[I:#] OFTHREE_D_SPEC; 

DERIVE 

as original v2 2 0 

WHERE 

as original V2 2 0 
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3.3 The EDIF Model Within The Application Design 

A utomated visual techniques are appropriate for the inspection of the physical attributes of a 

PCB. Therefore the sections of the conceptual model for PCB that are of interest are those that 

describe physical entities. 

FIGURE S. A common layered decomposition within the physical entities of the EDIF model 

COMPLEX PHYSICAL OBJECTS 

assembled boards, bare boards 

PRIMARY PHYSICAL OBJECTS 

Component Objects -

packaged components, pins 

Layout Objects -

printed components, physical nets, footprints, mounting place, 
tooling place, test points, probe points, fiducial marks, heel 
print, toe print 

PRIMITIVE OBJECTS 

Component Primitive -

3D specs - occupied space, true shape, body volume 

Layout Primitive-

text, trace, pad, hole 

GEOMETRY OBJECTS 

path, shape, polygon, circle, rectangle, line segment, 
curve segment, point 

Examination of the sections of the conceptual model for PCB, which describe physical entities 

yields a taxonomy similar to that describing Packaged Parts as detailed in Figure 3. Appendix 

3 gives further examples of this taxonomy within objects which would be useful in the inspec

tion of bare PCB's. Appendix 3 details Layout entities, typically Test-Point and Mounting

Place, which comprise a set of Layout Primitive entities such as Pad and Hole. Primitive Lay-
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out entities further decompose into geometry entities. The common taxonomy within the phys

ical entities of the EDIF model for PCB can be described using a layered architecture as 

detailed in Figure 5. Within the two layers describing primary and primitive physical objects, 

the layers can be further decomposed into component objects used to describe electronic com

ponents, and layout objects used to describe the bare PCB. Layout and component primitive 

objects are described using a set of "Geometry" entities. 

This architecture is used within the demonstration system to structure the principal objects and 

their relationships when considering an information view of the problem domain. 

4.0 THE DESIGN OF THE MODEL DRIVEN APPLICATION 
OBJECT 

4.1 The Operation Of The Vision Machine 

The scope of the application described in Figure 1 shows the principal abstractions and their 

interaction. A description of the operation of the system follows. 

The operator will request inspection to begin. The system will then: 

• extract a description of the unknown component in terms of a set of elementary features. 

Within the restricted domain of the application, the area and perimeter features will enable 

classification of the component type. The centroid is used as position information to enable 

detailed feature extraction to take place on a component placed anywhere in the field of 

view of the vision sensor, 

• search the available information system for a component which matches this elementary 

feature description (the component descriptions are held in EDIF format); 

• extract the knowledge (from the information model of the matched component) required to 

drive the process of extraction of detailed information from the component pins, and; 

• use this knowledge to extract a detailed description, or live model, from the component 

under inspection, and store the live description of the component in EDIF form as a contri

bution to the dynamic aspect of a product model. 

For the first version of the application, live information is required for the Component Package 

Pins only. 
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FIGURE 6. The "live" component generation object module and its surrounding environment 
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FIGURE 7. decomposition within the application layer 
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4.2 The Application Decomposition 

Figure 6 shows the object module diagram of the principal abstractions that are of interest to 

the designer responsible for the design and generation of the sub-system which will generate 

the live model information_ The central object "the live component model information genera

tor" is decomposed into two main components as described in Figure 7, these are the manage

ment component and the problem domain component. This decomposition is similar to that 

described by Coad [Coad 91] which identifies an emerging multi layer, multi component 

model common within object oriented software solutions. Reference to the Coad model and its 

parallels to this work is made in Appendix 4. 

4.2.1 The Problem Domain Component 

This component contains the application objects within a class hierarchy whose structure can 

be derived from the EDIF information model. The methods of these object classes are derived 

from the functional requirements of the application. In the demonstration application, the prin

cipal requirement of each object representing a physical entity is to generate a live description 

of itself. In addition, the other primary application-specific functional requirement is to pro

vide some local component classification facilities. Figure 8 shows the Class diagram describ

ing the decomposition of the EDIF-derived information abstractions. The object classes fall 

within the EDIF derived application layers of Primary Object, Primitive Object and Geometry 

Object. 

Geometry Objects are derived from features extracted from the matrix images. In accordance 

with the rules governing the use of the vision model, Geometry Objects are derived classes, 

inheriting from descriptor level feature classes within the vision model. 
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FIGURE 8. Decomposition within the problem domain component· the Class diagram 
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This set of application-specific feature objects within the Geometry level forms a simple set of 

services which is offered to the bulk of the application functionality. In this application these 

comprise: 

• "pack_ocspace_polygons" - primitive features representing the package occupied space; 

• "top_left_pin_points" - a corner feature which can be used to represent a top left hand cor

ner (typically of a pin or body of a component); 

FIGURE 9. A typical object diagram 
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Figure 9 shows a typical Object Diagram which describes the instantiation and use of the 

vision model objects by the application objects. This is in line with the methods describing the 

decomposition of vision model and application issues proposed in chapters 5 and 6. The heter-
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archical nature of the vision model allows the application objects the necessary access to the 

services for vision processing. provided by the grey and binary object classes. The "'Top Left 

Pin Point" object (an instance of the derived class. "Top Left Pin Corners") uses the friend 

"Seg Bin Subwindow" object to gain access to the corner feature it requires. 

4.2.2 The Management Component 

The object classes identified within the management component. and shown in Figure 7. are 

application-specific and are derived by general analysis and design. The "Task Management" 

and "Hardware Management" objects are derived from the requirement for general control of 

the application and to initialise the vision hardware. The "EDIF information management" 

object provides a set of information management services to the problem domain component 

objects. as a form of information ''Local View Provider". The concept of local views was 

introduced in chapter 6. In the vision application, what is required is a bidirectional view pro

vision facility: as illustrated in Figure 10 and described as follows: 

• specific elements of information from a neutral static EDIF model are converted to the form 

that is required to drive the vision application; 

• live features derived from an image of a real electronic component are converted to neutral 

EDIF model form to populate a dynamic instance of the information model. 

FIGURE 10. The EDIF information management object - a form of bi-direction infonnation view 
provider 
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4.3 The Design Result 

The services provided by the vision inspection application object and its support requirements 

are shown in Figure 11. The complete integrated vision system will access global infonnation 

to enable component classification and could make use of the service request for elementary 

features. Functionality to enable local classification has been included to enable testing of the 

vision application object, and as a logical facility to improve speed, if the application already 

has knowledge of a particular component. In this case, local classification will first take place. 

If this fails the elementary features will be passed to the calling object. The calling object will 

be implemented as an open application running on an integrating infrastructure. As such it will 

be able to take advantage of the structured access to global infonnation which can be used to 

implement a global component classification function. 

FIGURE 11. The interrace with the Inspection application object 
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Figure 12 shows the breakdown of software modules used to implement the application 

object. This figure provides a further view which demonstrates the layered separation is car

ried through into implementation. The application during execution is described in Appendix 

5. 
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FIGURE 12. Object sub·modules in the vision application object module 
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Chapter 8 

A DEMONSTRATION AND EVALUATION 
OF THE MECHANISMS FOR HANDLING 

CHANGE WITHIN THE VISION 
APPLICATION OBJECT 

1.0 INTRODUCTION 

"The only Constant is change" [Bishop 89]. 

One of the principal themes of this thesis is the necessity for manufacturing systems to adapt 

to change. An ability to change constantly is necessary to ensure that manufacturing enter

prises remain competitive in a global economy. The creation of a new generation of manufac

turing applications which have the ability to facilitate change could contribute to the 

. adaptability of the next generation of manufacturing systems. 

The reference architecture described in this thesis includes mechanisms which will help next 

generation machine vision systems to adapt to change. These mechanisms are based on the 

following principles. 

• The provision of structure through: 

• the use of a layered decomposition (within the vision application object) incorporating 

interfaces based on virtual machine abstractions [Seidewitz 86]; 

• a domain specific decomposition within the vision application software based on the 

EDIF model for PCB; 

• a generic vision model embodying basic ideas of digital image processing and feature 

extraction. 

• The use of diagramming techniques to support a design methodology based on Booch91 

and the proposed vision model [Booch 91]. These techniques can support structured design 

and provide documentation that is an essential element in supporting change [Gillies 92]. 
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• The use of structured software, where object orientated implementation (using C++) pro-

vides properties such as inheritance and polymorphism which can help support software 

change [Cox 87, Wiener 88]. 

This chapter discusses the problems of quantifying the degree of support provided by these 

proposals. The lack of established metrics to quantify the degree of improvement is identified, 

but a number of software qualities which support change are identified. 

Three variables which affect the time taken to implement change are deduced from a discus

sion of contemporary work on software metrics: 

• the degree of complexity of the required change; 

• the degree of engineering resource employed in making the change; 

• the degree of availability of support tools to enable change. 

The chapter describes how two degrees of change were used to provide some feel for the rela

tive improvement of the object-based system over earlier structured software. "Improvement" 

was measured qualitatively from the structure of the software and the reduced time to imple

mentchange 

Evaluation of the proposals would be incomplete without considering cost. No quantitative 

investigation has been undertaken to establish the potential cost implications of using the pro

posed architecture. However, studies support the cost-effective use of a structured approach to 

manufacturing application design and implementation [Peck 87, Camp 76]. These are pre

sented in Appendix 6. 

2.0 HANDLING SOFTWARE CHANGE 

During design and implementation, the incorporation of additional external services or inter

nal functionality can usually be added to the original specification of a software system. 

Although some compromise to the ideal structure of the system may be necessary, change can 

usuaIly be accommodated at this stage. FoIlowing the implementation of the complete system 

and its early use, which may expose missing elements in the original specification, further 

change may be necessary. This is usuaIly considered an acceptable part of commissioning or 
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fine tuning of the system. It is also generally considered to be the most costly part of software 

development [McCall 77]. 

In the long term, change may be required in line with the key elements introduced in chapter I, 

i.e. in response to a technology pus!: or a market pull [Bishop 89]. Long term change in 

response to unforeseen requirements, cannot by definition be aided by built in functional capa

bilities designed to enable flexibility. This change relies on replacement or modification of 

hardware or software elements within the original system, and is supponed only by the struc

tural mechanisms used within the original design. 

It is understood that the vision objects in this thesis are primitive, whereas it is the complexity 

of real systems which makes change a major problem for software systems. However we pro

pose that this chapter and the final chapter of Section C demonstrate the advantages of the 

methods and mechanisms proposed. This chapter attempts to quantify the degree of suppon 

offered. 

The previous chapters of this thesis rested on the assumption that the provision of the mecha

nisms proposed by the author can support the set of requirements identified in chapter 1. As an 

example it has been suggested that the additional structure, provided through compliance with 

the architecture, could support software maintenance (a common hypotheses [Oillies 92]). The 

following section discusses the problems of measuring the degree of support offered by such 

mechanisms. 

3.0 SOFTWARE METRICS 

3.1 Introduction 

The term software metrics has come to refer to any activity within software engineering asso

ciated with quantification. Measures have been suggested for cost, productivity, complexity 

and software quality [Watts 87, Fenton 91, Gillies 92]. However, software metrics are still 

very much a fringe activity within mainstream software engineering [Fenton 91]. 

"Engineers from any other discipline are fully aware of the crucial role of measurement, and 

would be forgiven for assuming that it would form a central role in software engineering", 
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[Fenton 91] but Fenton states that within software engineering "nothing could be further from 

the truth". 

3.2 Software Quality 

Work on software metrics is based primarily around methods for measuring software quality. 

McCall proposed a model for software quality as early as 1977 [McCall 77]. This model is still 

the basis for recent work on measuring quality [Watts 87, Gillies 92]. The model comprises 

three areas, described by McCa1l as follows: 

• Product Operation: requires that the software system can be leamt easily, operated effi

ciently and that the results are those required by the user. 

• Product Revision: is concerned with error correction and adaptation of the system. This is 

important because it is generally considered to be the most costly part of software develop

ment 

• Product Transition: may not be so important in all applications. However, the move towards 

distributed processing and the rapid rate of change in hardware is likely to increase its 

importance. 

It is McCall's third area that is of interest in this thesis. Product Transition was predicted by 

McCa1l in 1977 as being of potential significance due to the move towards distributed process

ing and the rapid rate of change in hardware [McCall 77]. Product transition embraces some of 

the qualities identified in chapter 1 as necessary for next generation vision machines i.e. the 

ability of a software system to adapt to change within an open distributed processing environ-

men!. 

3.3 Measuring Software Quality 

Figure 1 tabulates characteristics of the quality areas defined by McCalI. This table is used by 

Watts (together with a similar model postulated by Boehm in 1978 [Boehm 78]) as a concep

tual framework for measuring software quality. This figure identifies the following character

istics for Product Transition: 

• portability - the effort required to transfer a program from one environment to another; 

• reusability - the ease of reusing software in a different context; 

• interoperability - the effort required to couple the system to another system. 
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FIGURE 1. A Quality Model based on McCall77 
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Figure taken from reference Watts 87 

In his assessment of the work of McCall, Boehm and Watts, Gillies produces a table of availa

ble metrics against quality criteria [Gillies 92] (see Figure 2). Although a single metric is cited 

for portability, their are no current metrics for adaptability (an additional quality criteria iden

tified by Gilb [Gilb 87]), interoperability and reusability. 

Watts reports a number of approaches to measuring quality criteria. In principle these are more 

akin to the measurement techniques use in the social sciences rather than the physical sci

ences. Typically, a simple or weighted scoring system might be used to generate a score for 

each criteria, from which an overall mean score will define the total quality of the system. 
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Watts reports the use of a scoring system based on a polarity profile as shown in Figure 3 

[Watts 87]. 

FIGURE 2. Metrics available for each quality criteria 

Figure taken from 
reference Oillies 92 
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FIGURE 3. polarity profile for software complexity 

Figure taken from 
reference Watts 87 

extremely complex -3 

complex -2 

slightly complex -1 

neither complex nor simple 0 

slightly simple 1 

simple 2 

extremely simple 3 

The polarity profile shown in Figure 3 is used to measure software complexity. As with all the 

quality criteria a combination of attributes contribute to complexity. This creates the problem 

of defining reliable metrics e.g. lines of code, size constraint, speed constraint, number of sub

routines. McCabe's Complexity Measure, otherwise known as the Cyclomatic Number, is the 

commonly cited metric in this area [McCabe 76]. It is based on the number of independent 

paths through the code. 
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Gilb's work on measuring software quality was developed in parallel with that of McCall, 

Boehm, and Watts [Gilb 87). Gilb proposed a more flexible approach to software quality 

measurement through the use of a template rather than a rigid model. 

FIGURE 4. the GILB quality template 

Qualities Resources 

Workability People 

Availability Time 

Adaptability Money 

Usability Tools 

J ----- -- -- -.-~- ---j 

l~_~:~g~!I!:~ ___ ! 
1'---- - -----------j 

l_<?~~~~~~~<:~ __ ! 

Figure taken from reference Gillies 92 

3.4 A Template For Measuring Software Quality 

The key feature of Gilb's 'quality template' is that it is designed to be tailored to local require

ments [Gillies 92]. The underlying philosophy is that quality depends on a set of resources that 

vary from one application to another. It is the responsibility of the software engineer to iden

tify the quality criteria that are important to a particular application. Quality is then built into 

the application in terms of the critical resources. 

Gilb proposes four quality attributes and four resources as shown in Figure 4 
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FIGURE 5. Gilb's quality measures 

Attribute Sub-attribute General Measure Specific E..ample 

Process capacity Units per time Transactions per sec 

Workability Responsiveness Action per time Response time !sees 

Storage capacity Units stored Bytes per record 

General Probability available Time available + 
Total time 

Availability 
Reliability Mean time to failure Total time .;-

Number of failures 

Maintainability Mean time to repair Time to ftx 90% of 
test bugs 

Integrity Wholeness Degree of software 
intact 

Improvability Time for minor change Time to add test set 

Adaptability 
Extendability Time to add a function Time to add 10% 

logic 

Portability Effort for transfer Pencentage of effort 
for potting . 

General Degree of productivity Time to reach basic 
level of ability 

Entry level Qualification I,,'el Readability 

Usability 
Learning req'mt Time to learn Length of training 

required 

Handling Net productivit)' Tasks per hour 

LikabiIity Extent of positive Percentage surveyed 
attitude 

Figure taken from reference Gillies 92 

In this case, adaptability is appropriate to this thesis. It may be considered in the following 

terms [Gillies 92, Gilb 87]: 

• improvability - the time taken to make minor changes to the system; 

• extendability - the ease of adding new functionality to a system; 

• portability - the ease of moving a system from one environment to another. 

The resource attributes in Figure 4 note that quality in any field cannot sensibly take place 

regardless of resource constraints such as cost [Eliotl 93]. Figure 5 shows Gilb's measures for 

the attributes and subattributes defining software qUality. Here Gilb uses the time taken to 
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make changes to software to measure the quality attributes of improvability and extendability. 

It is these two attributes that are of particular interest. 

3.5 Conclusions 

The work of McCall, Boehm and Watts has identified the lack of a metric for quantifying the 

degree of support for change a software system may possess. The work has illustrated the use 

of measurement systems for software that rely on generating a relative figure of merit. This is 

due to the lack of any simple, absolute and unambiguous scale typical of those to be found 

throughout the physical sciences [Gillies 92]. 

The first IEEE - issued standard on software metrics was approved in 1992, Software-Quality 

metrics methodology 1061 [Shneidewind 93]. The philosophy behind 1061 is that an organisa

tion can use whichever metrics are most appropriate for its applications so long as the method

ology is followed and the metrics are validated. The standard implies there is no specific 

measure of software quality which can be applied across the board, and supports Gilb's con

tention that a flexible approach is required. It should be noted that both the standard and the 

work of Gilb are contentious due to their inability to tackle the problem of generating a meas

ure which can be used for comparing the quality of different software systems [Shneidewind 

93, Gillies 92]. 

The object-orientation community is no better at providing software metrics. The recent books 

by both GilIies and Fenton [Gillies 92, Fenton 91] which provide detail of contemporary soft

ware metrics make no mention of object orientation. Bilow, in his guest editorial for the Jour

nal of Object Oriented Programming, states that "object oriented software demands its own 

metrics, it is essential that the object oriented software community cultivate software measure

ment techniques" [Bilow 93]. 

In conclusion it is easy to see why Fenton contends that software metrics are such an immature 

discipline within software engineering. This situation makes it very difficult to quantify the 

benefits of the architecture for soft integrated machine vision and the implementation 

described within this thesis. The following is a proposal for relative measurement which draws 

from the work of both Gilb and Watts. 
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3.6 A Proposed Measure For The Support Of Change. 

Gilb's quality attribute of adaptability included subattributes of improvability and extendabil

ity. Gilb suggests these could be measured through the time taken to effect a minor change and 

to effect a more complex change to provide additional functionality. This implies there is a 

variable describing the "degree of complexity of a required change". We believe the resources 

of people, money and time are not independent, and to a first approximation can be considered 

collectively as a second variable. This variable shall be known as the "degree of engineering 

resource available". This is based on the assumption that if they are financially justified, both 

people and time can be bought. However, it is understood that, under certain circumstances, 

time cannot be reduced linearly by increased engineering resource. Gilb's final resource 

attribute is tools. Here the author's architecture, models, methodology and mechanisms which 

can contribute to the extendability of a system can be considered to be "tools". The "degree of 

available support provided by tools" forms a third variable. 

FIGURE 6. A proposed rramework ror quantification 

Three variables affecting software change 

Degree of complexity of change 
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Figure 6 combines these variables in a cube whose axis are made up of the three variables. It 

can be seen in Figure 6 that the combination of low resource, few structured tools and a com

plex change requirement has the potential to create long timescales for completing a software 

change. Figure 6 provides a graphical representation of how the availability of support tools 

could contribute to reducing the time taken to make software change. By examining and mod

ifying pieces of code a relative measure of the usefulness of some of the author's proposals 

can be made. 

The code used is as follows: 

• code generated by the author and described in the implementation in chapter's 7 and 8, this 

code adheres to the author's architecture; 

• the author's early code to implement vision processing and feature extraction, as described 

in chapter 4, which obeys basic rules for structured coding and uses a layered architecture; 

A measure for each piece of code is based on criteria identified for McCall's quality attribute 

of Product Transition and Gilb's quality attribute of Adaptability, plus additional criteria sug

gested by the author, namely: 

• Modularity; 

• Self descriptiveness; 

• descriptive support 

• machine independence; 

• time taken to make a change. 

A simple measure of complexity is also added to compensate for the complexity of the vision 

application object being much greater than that of the early experimental work. This measure 

is based on the number of bytes of executable code used in each case. This simple approxima

tion is used to provide a relative feel for the complexity of each system. 

Two examples of change are used, a simple change, and a more complex change to provide 

additional functionality. The two examples of change made to the vision application object are 

described in detail to demonstrate the mechanisms proposed by the author which support 
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change. Following these descriptions results obtained in regard to both types of change are 

presented and conclusions are drawn. 

The following section describes a simple modification made to the vision application object. 

Within this section, the requirements for making a similar change to code produced during the 

author's earlier work is also briefly presented. 

4.0 A SIMPLE MODIFICATION TO A VISION APPLICATION 
OBJECT 

This example illustrates change to the required functionality of the vision application object. 

This could be due to a change in the component gripping technology needed to present com

ponents to the vision system camera. This change means that the component can no longer be 

illuminated from the rear, removing the advantage of a silhouette type raw image. Additional 

vision processing is required to ensure generation of a consistent binary image from the more 

complex raw grey level image captured from the front illuminated component. 

Figure 7 A shows a schematic representation of the modular structure of a vision application 

object, which adheres to the author's architecture. Part B of the figure shows the conventional 

hierarchical modular approach used in the first implementation. 

Part A of the figure shows the elements of the object-based architecture which are affected by 

the change. These elements can be immediately identified on the interface between the vision 

model implementation and the application layer. The vision model implementation may 

change but is simply another instance of the existing class library which implements the vision 

model. 

Part B of Figure 7 identifies the problems which can occur when changing conventional soft

ware systems. A modification made to an existing function to satisfy a requirement for change 

can cause a "knock on" effect in other sections of code which require the same function in its 

original fonn 
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FIGURE 7. The modular structure of the vision processing applications 
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FIGURE 8. Decomposition within the problem domain component· the Class diagram 
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The following observations can be made about the nature of the required change to the vision 

application object: 

• no modification is required above the level of application specific feature extraction; 

• no modification is required to the generic vision model (generic but constrained by the 

Matrox (H/W) and C++ (SIW»; 

• no additional features are required to be extracted. 

The structure of the application object is such that all matrix level processing is contained 

within the application-specific object methods of the geometry level features (see Figure 7 and 

Figure 8). In theory, the modification can be achieved by providing the additional required 

vision processing within the geometry level object methods, such that their external behaviour 

remains the same, while their internal functionality has changed to cope with the new require

ments. In practice the change is less straightforward. 

A modification of this type illustrates what can and what cannot be achieved when making 

changes to image processing software. Figure 8 repeats the class diagram which shows an 

overview of the structure of both the vision model layer and the application layer software 

design. Assuming that the additional required vision processing algorithms exist as object 

class methods of grey and binary objects, no change should be required in the vision model 

layer. (If this is not the case, and the engineer implementing the change does not want to mod

ify existing code, the existing grey and binary classes can be inherited and the additional algo

rithms can be implemented as methods of the new classes). If the vision model 

implementation is based on a comprehensive range of image processing algorithms all modifi

cation will take place within the applications layer. 

The design of the vision model to applications layer interface and the C++ implementation 

detailed in chapter 7 is such that no application specific code exists within the model layer. All 

interaction between the two layers is through the application layer "looking into" the model 

layer and never the reverse. It is this concept that allows change to take place within the appli

cation while the vision model remains isolated and protected fmm the "knock on" effects asso

ciated with software modification. 
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The required modification to the application object is to compensate for a change in the cap

tured image. This necessitates modification within the Geometry level (see Figure 8) so that 

the "Occupied Space Polygon" object instantiates a grey image and evolves a binary image. 

But its "use" of these objects is modified by invoking a different set of object methods which 

evolve a Segmented Binary Image which is as similar as possible to the original Segmented 

Binary Image. If this is achieved, the Boundaries Object can extract features similar to the 

original, and the rest of the code can remain unchanged. 

The structured approach implemented through the use of the architecture, and through the use 

of the Booch-based diagramming techniques (to document both the design and the implemen

tation), enables the engineer to modify the code in a structured way. A typiCal process is illus

trated as follows: 

• capture examples of the new raw image and use off-line image processing analysis to 

design the set of vision algorithms required to generate a consistent segmented image. The 

author uses Foster Findley PC-Image [Foster 9Gb]; 

• isolate the Occupied Space Polygon Class. This requires good documentation of the imple

mentation modules Le. the C++ code files and headers; 

• write a simple test application to exercise the original Occupied Space Polygon Class. Cre

ate the associated Make files to structure compilation and linking; 

• implement the required modifications through making additional calls to the vision model 

object methods within the Occupied Space Polygon constructor and its object methods; 

• build and test the new Occupied Space Polygon Class using the test application; 

• rebuild the complete application. 

In this example, the engineer is using the hierarchy within the application which has defined 

interfaces, and so long as that interface is maintained, the functionality in each layer is imma

terial. However, maintaining these interfaces is often difficult in image processing. In the case 

of the Occupied Space Polygon, it was possible through the use of a more complex threshold

ing routine and the use of morphological operations on the binary image. These operations 

generated a segmented binary image whose extracted boundary and associated features were 

A DEMONSTRATION AND EVALUATION OF TIlE MECHANISMS FOR HANDUNG CHANGE WITHIN TIlE VISION 
APPUCA110N OBJECT 

152 



similar to that of the original. Appendix 5 shows photographs of the captured grey image and 

various stages of the matrix level processing during generation of the segmented binary image. 

It proved impossible to generate an image from which meaningful descriptions of the Pin Cor

ners could be extracted. The constraints imposed by the limited level of difference between 

important detail and confusing background within the captured grey image has implications 

which cannot be contained within the Matrix level of the Vision Model. 

The early function-based code used as a basis for comparison in this exercise was described 

briefly in chapter 3. It is not ideal as a bench mark insofar as it is also structured, and adheres 

to a strict architecture devised during the early phase of the work. However, the comparison is 

interesting as it illustrates the benefits and draw backs of conventional C and object oriented 

C++ implementation. 

Figure 7B describes the structure of the code in general terms. Although it is based on the 

architecture described in chapter 3, the set of vision processing subroutines which call low

level library routines are application specific. If they are called by two separate functions at a 

higher level in the architecture a modification to the low level function (required by one of the 

high level functions) will cause "knock on" effects which could require the addition of new 

subroutines and modification further up the hierarchy. 

5.0 A MODIFICATION TO PROVIDE ADDITIONAL 
FUNCTIONALITY TO THE VISION APPLICATION OBJECT 

5.1 Introduction 

A further change within a vision application object could be needed following the addition of 

a new open application within the soft integrated manufacturing cell or system. Such a change 

may require a new vision service. An example of such a change implemented by the author 

was to provide a vision service for a new client application. The application required the 

vision object to inspect the component manufacturer's identification code, which is typically a 

text string stamped on the top surface of each component (Le. TI926X). The new application 

required a representation of the text based on a set of Arc features. 
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FIGURE 9. New decomposition within the problem domain component- the Class diagram 
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5.2 The Addition Of A New Vision Service Within The Vision Application 
Object 

Two areas can be identified as requiring modification: 

• a new set of features is required which describe the identification stamp. Image processing 

and feature extraction takes place through the generation of a new hierarchy of application 

objects within the application layer of the vision object; 

• a new top level object is required which offers the new service but retains all original serv-

ices; 

• no modification is required within the vision model in the vision application object; 

The overall design of the new service is based on the design principles proposed in this thesis. 

The EDIF Model for PCB [EDIF 90] is used to give a guide and naming convention to the 

objects identified within the application. The application architecture is that derived from the 

EDIF Model. The functionality of the service is based on the principle of extracting elemen

tary features of a component and classifying the component under inspection (as used in the 

original application described in chapter 5). Knowledge of the classified component can then 

be used to generate a processing window which will ease the vision processing and feature 

extraction processes required. 

The structured approach which adheres to the reference architecture. and uses the Booch

based diagramming techniques to document the original design and the implementation, ena

bles the engineer to modify the code in a controlled way. Reference to Figure 8 shows the top 

level class of Primary_physical_package which "uses" Package_occupied_space. It is this 

branch of the class hierarchy that generates the primitive features for component classification. 

The existing application must retain its original functionality, while the additional service is 

added. The following points identify the steps required in order to apply the change: 

• examples of the new raw image are used with off-line image processing analysis tools to 

design the set of vision algorithms required to generate a consistent segmented image from 

which the new features can be extracted. 
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• the Primary_Physical_Package class in the Primary Object Level is "inherited" by the 

New_Primary_Physical_package class (see Figure 8 and Figure 9). This new class is tested 

to prove it performs all its original functionality through invocation of the class methods it 

inherits. In particular the new class can "use" Package_Occupied_Space to generate primi

tive features for component classification . 

• the New_Primary_Physical_Package Class can now have its own class methods added 

which will generate of the new Arc features which describe the manufacturers identification 

code. The Object Oriented implementation through the use of C++ enables this additional 

functionality to be added without having to modify any of the existing applications layer 

Code. Figure 9 shows the new Booch Class diagram. The Primary_PhysicaLPackage_Pins 

class and its hierarchy from Figure 8 have been left out to provide a clearer diagram. 

5.3 Application Layer Design Based On The EDIF Model 

Information entities which describe a Package are contained in the EDIF (EXPRESS) Infor

mation Model [EDIF 91] shown in Figure 10. The Package entity has attributes ID, which is 

an entity of type ID _STAMP. This is composed of a number of attributes typically describing 

the name and number which a component is given in the design of a PCB. No Package 

attribute describes the component manufacturer's ID which appears as a physical mark on the 

component. (As stated in chapter 7, the EDIF model has not yet addressed requirements for 

manufacture, having concentrated on design only). We propose an additional Package attribute 

Physical_Mark which would be an entity of type String, but could also be enlarged to handle 

non-text physical markings on components. It could then use the entities within the EDIF 

model which are used to described physical attributes of a PCB i.e. Line_Segment, Rectangle, 

Point etc. 

PhysicaLmark would reside within the Primitive Object Layer of the EDIF-based layered 

decomposition and would use application specific features derived from the ARC features of 

the Vision Model. These appear as Strin~Arcs in Figure 9. Appendix 5 shows images of the 

vision processing involved in the new vision service. 

Modification to the system which uses the object based structure has used the inheritance 

mechanism within C++ to get access to existing functionality which can be used by the new 
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service. It would be very difficult to implement a major modification, such as the addition of a 

new service, to software which was modelled on the early function based structure. It is more 

likely that the new vision service would be provided through the generation of an entirely new 

piece of software to ensure the original code remains fully functional. The new modules of 

code may use some of the image processing functions shown in Figure 7B as a means of 

accessing the low level vision library. However, there are no mechanisms within the C imple

mentation for inheriting large sections of useful code from the original implementation. 

FIGURE 10. The EXPRESS information model of the EDIF representation of PACKAGES 

11 

ENTITY package; 
has_pins: SET [0 : #] OF pin; 
id: INTERNAL ID STAMP; 
acronym: OPTIONAL INTERNAL JEDEC_ACRONYM; 
package_class: INTERNAL PACKAGE_CLASS; 
body-volume: INTERNAL THREE_D_SPEC; 
occupied_space: INTERNAL THREE_D_SPEC; 
true_shape: OPTIONAL INTERNAL SET [1 : #J OF THREE_D_SPEC; 

WHERE 
only-occursJn_relation_to : 

valid users (PACKAGE, 
- ('PACKAGED_PART.IS]ACKAGED_BY', 

'MOUNTABLE_PACKAGE.USES_PACKAGE']): 

can exist alone: 
can3Xlscalone (PACKAGE, TRUE): 

END_ENTITY: 

6.0 RESULTS AND CONCLUSIONS 

The table shown in Figure 11 lists the approximate time taken to make the changes described 

in this chapter.The table also shows the criteria for adaptable software identified in section 3.6. 

By examining the object based and function based code it is possible to identify the features of 

the software which could contribute to providing qualities which support these criteria. These 

qualities have been listed in the table in Figure 11. 
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FIGURE 11. comparison or the object based slw and early runction based slw 

OBJECf BASED STRUCTURE FUNCfION BASED STRUCTIJRE 

MODULARITY 
c++ object class library based 00 vision model 

application objects based in dcmain specific model 

three layered archiIecture within the vision object 

vision application object 

data driven subroutines at all levels within the system 

laycw:J ardUtecturc within interoperation and inter. 
action across the integrating infrastructure 

high level applicatioo objects in a distributed visim 
machine 

SELF DESCRIPTIVENESS 
c++ implementation promotes self descriptivencu 
through object method calls i.e. grey jm.gc_l evolve 
binary image 2 

use of appropriate subroutine names and addition lex
woo comments 

usc of naming convention derived from objecU in the 
application domain i.e. the EDIF model 

DESCRllr.OVESUPPORT 
use of Booch based diagraming techniques no fonnal documentation 

MACHINE INDEPENDENCE 
use of Zortech C++ which adheres to ANSI standard use of Microsoft C VS.t. does not adhere 10 ANSI 

but was the defacto standard C compilet. 

COMPLEXITY 
total number of bytes of the executable code used to total number of bytes of the executable code used to 
implement vision processing and feature extraction implement vision processing and feature extracticn 

21.6 K bytes 11.0 K bytes 

APPROXIMATE TIME TAKEN TO MAKE A CHANGE(HRS) 

A simple change 3 3 

A major change to image processing 10 15 

6.1 Supporting Change 

The first 4 measures (based on the Watts approach) show the object based system to have 

many more attributes which support the criteria of adaptability. No specific figure can be put 

on how much more support for adaptability is offered by the proposals, but significant 

improvement is clear. 
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When applying Gilb's measure of time taken to effect a simple change, the systems can be 

modified equally easily. This dichotomy between measured adaptability and time taken to 

effect a simple change can be partially attributed to the greater complexity of the object based 

system, but has more to do with the use of C++. With a simple change, the advantages of an 

object oriented implementation i.e. inheritance of large sections of code, may not be appropri

ate. A well-structured C program can have a clarity which makes it easy to understand relative 

to a C++ implementation. Although more coding is required to implement the change to the C 

program the time taken was approximately the same. 

When making a major change, adding new functionality to the vision application object, the 

time taken to modify the object based code was significantly less than the function based code. 

Although the object based code was more complex, major parts of the original code were 

required for the new function i.e. the code required to generate the basic features of the I.C. 

under inspection. The inheritance mechanism of the object oriented implementation allowed 

the use of this code without the problems which can be caused by modifying original code. 

The additional documentation provided by the Booch-based Class and Object diagrams pro

vided knowledge of the overall structure of the system. The domain specific EDIF based archi

tecture provided a structure for the new image processing design. In contrast the modification 

to the function based system was done through a new code module developed from scratch. 

On the down side, C++ is difficult to master. AlI software written on the Sun workstations is 

implemented in C. Even after a number of years using both systems, C can feel a more com

fortable programming language. It is important to point out however that this may in part be 

attributed to the lack of sophisticated C++ debug support tools available to the SI Group. 

Any architectural framework, methodology or implementation mechanism needs to be under

stood by the design and implementation engineer who will make use of it. The time penalty 

involved with this learning exercise also represents a cost which must be considered. This cost 

aspect is discussed in Appendix 6. 

In general, structured techniques for the design and implementation of general purpose soft

ware systems are of increasing importance as systems become more complex. This implies 
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that complex machine vision systems could derive greater benefit from the architecture than 

that demonstrated in this chapter. 

6.2 Fulfilling The Needs Of Next Generation Machine Vision Systems 

Chapter 1 classified the criteria for next generation machine vision systems as either applica

tion criteria or platform criteria. The proof of concept implementation described in PART B 

demonstrates that the application criteria can be fulfilled using the author's reference architec

ture. The following subsections summarise how the reference architecture (or tools), used to 

build the implementation, help to fulfil the platform criteria.. 

6.2.1 Easing The Design And Build Of Machine Vision Applications 

The use of a systematic approach to the design and build of machine vision applications is 

demonstrated, based on the following mechanisms: 

• the availability of a generic vision model, describing image processing and feature extrac

tion, implemented as a C++ class library (see chapter 5 and 7); 

• the use of a domain specific information model (EDIF) to guide application design through 

• identification of layered structure, and 

• identification of relevant objects (see chapter 6 and 7); 

• the provision of structure, within a vision application object, by a three layered architecture. 

This decomposes vision application issues, generic properties of image processing and fea

ture extraction, and issues pertaining to the image processing resource used in the system 

implementation. (see chapter 6 and 7); 

6.2.2 Easing The Modification Of Machine Vision Applications 

The improved support for machine vision software change derives from: 

• increased modularity as structural mechanisms ease design (see previous subsection); 

• increased self descriptiveness by using C++. (see chapters 5,6, 7 and 8) 

• provision of descriptive support using the Booch-based design methodology to provide 

graphical documentation (see chapters 5, 7 and 8); 

• use of the inheritance mechanism within the object orientated paradigm; 
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• the use of virtual machine interfaces at layer to layer boundaries within the architecture (see 

chapter 6, and 8); 

6.2.3 The Use Of A Heterogeneous Range Of Vision Resources 

As well as identifying how vision processing hardware heterogeneity can be supported by the 

three layered architecture, the work exposes the limits of the approach used, and proposes 

requirements for true heterogeneity. The following points summarise these conclusions: 

• conceptually, object methods can be removed from the application software and be 

replaced by object methods that call upon different vision hardware (see Chapter 6); 

• . the constraint within the mechanism above is the requirement that the software interface to 

the hardware must be compatible with the software used to implement the vision model and 

application layer (see Chapter 6); 

• greater heterogeneity of vision hardware might be achieved with an agreed international 

standard that specifies a consistent fonn for the software which provides an interface to 

vendor specific vision hardware. (Such standardisation would provide increased scope for 

the kind of portable image processing algorithms library (!PAL) suggested by Carter etal. 

[Carter].) 

6.3 The Usefulness Of Object Orientation (00) 

The following points summarise the usefulness of object orientation for the design, implemen

tation and maintenance of machine vision systems as described in PART B. 

• General: The general 00 concept of associating data abstractions with a set of appropriate 

methods, which control the manipulation of their contents, has been shown to map well 

onto image processing and feature extraction. Grey level and binary images and their asso

ciated processing algorithms are established classifications within vision technology. 

Extracted features which could make appropriate Base Object Classes are also common 

across the industry e.g. edges, corners, regions and texture primitives etc. 

• Friend relationships: Because of the necessity to "extract" features from the data which is 

private to a segmented binary object, the strict philosophy of 00 must be broken through 

the use of the "friend relationship" available in C++. 
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• Evolution: The evolutionary relationship between matrix level object classes required 

complex implementation code due to the lack of support for such a relationship within the 

00 paradigm. A construct based on selective evolutionary inheritance would be useful in 

this domain. 

• Inheritance: The use of inheritance enabled existing code to remain undisturbed while 

additional services which make use of this code are added. The usefulness of inheritance is 

dependent on the careful selection of objects within the original application. The author's 

proposals for identifying objects in the application domain support the design of appropri

ate object classes which have a potential for change. 

• Sequential and concurrent processes: Examples demonstrating the benefits of object ori

ented systems usually use concurrent processes, where a set of related objects react in 

response to some external stimuli. This scenario is suited to the concept of private data 

abstractions controlled via methods that are invoked through messages passed between 

objects. Machine vision systems are essentially made up of a set of sequential operations 

where information is transformed from some complex abstraction to some simple abstrac

tion. This can cause additional complexity in the implemented code. 

• Implementation: It has been shown that the complexity referred to in the previous point 

can lead to simple systems, or systems requiring simple changes, deriving limited benefit 

from an 00 implementation. For example, with a simple change the advantages of the 

inheritance oflarge sections of code, may not be appropriate. 
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Chapter 9 

A PROPOSED ARCHITECTURE FOR SOFT 
INTEGRATED MACHINE VISION 

1.0 INTRODUCTION 

The vision Application Object described in PART B embodies many features which fulfil the 

requirements of a new generation of soft integrated machine vision systems. The external 

behaviour of this object provides vision services. In order that this object can form part of a 

useful open integrated manufacturing system, where it can offer vision services to open client 

applications, the requirements for its implementation within an integrated manufacturing sys

tem must be established. 

This chapter proposes a framework for structuring the software required to link client applica

tions with the services provided by the vision application object. This model, together with 

proposed implementation mechanisms, provide an integration methodology which makes a 

further contribution to the objective of the thesis, namely providing support for systematised 

implementation and change, within an open distributed system. 

The framework is based on elements which address the following issues: 

• the architecture of soft CIM building blocks which can be plugged into and removed from 

an infrastructure which underpins a elM system. This involves the separation of the fol

lowing three issues: 

• manufacturing application functionality; 

• application interoperation functionality; 

• application interaction functionality; 

• the provision of interaction mechanisms which involve the use of services provided by an 

integrating infrastructure, and the buffering of alien devices such that they become compli

ant with the integrating infrastructure; 
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• the structuring of interoperation mechanisms which involve the creation of a virtual vision 

server and corresponding support for client applications, through a set of vision service func

tions. The virtual vision server then requires a mapping onto the real vision application object. 

Proposals are made through identifying requirements for a soft integrated vision machine, imple

mented on the CIM-B10SYS integrating infrastructure. The architectural elements of soft eIM 
building block are defined. 

2.0 BUILDING BLOCKS OF SOFf INTEGRATED 
MANUFACTURING SYSTEMS 

2.1 Current Thinking Within The OSI Community 

The essential purpose of OSI is to support distributed processing [MacKinnon 90, Pimentel 90] Le 

the inter-working of two or more application objects. Application layer 7 of the OS1 model is the 

layer at which OS1 services are made available to inter-working application objects. Figure 1 

[MacKinnon 90] depicts the relationship between applications and the OSI environment (OSIE). 

MacKinnon explains how "Application Processes" (which refer to open manufacturing applica

tions or Building Blocks of integrated systems within this thesis) can be viewed as operating in two 

environments. One is the local system environment, which performs the application object func

tionality, the other is the OSI environment which is "the union of all communications functionality 

related to the distributed application" [MacKinnon 90]. MacKinnon stresses that within a real Open 

System there is no explicit boundary between the two environments, and the separation is concep

tual. Mackinnon also identifies the pan of the application process within the application layer that 

deals with communication. He terms it the "application entity", as detailed in Figure 1. Within this 

thesis a MacKinnon "application entity" could be described more specifically as an "application 

object interoperation entity" that will embrace both the issues of application interaction and of 

application object interoperation. The remaining pan.of the MacKinnon application process which 

embraces the discrete application functionality is termed the "Application layer User", equivalent 

to the Application Objects described within this thesis. 
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FIGURE I. Local System and Open System Interconnection environments 
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This description of Open Systems Integration is analogous to Hard Integration, where issues 

of application interaction and discrete application functionality, though conceptually separate, 

are implemented as a single entity. 

Inter-working of application objects is supported within OSI layer 7 by the specification of a 

coherent set of communications functions termed "application service elements" (ASE's). ISO 

is currently developing a number of ASEs, which typically include file transfer, virtual termi

nal,job transfer, distributed databases and document transfer [Pimentel90, MacKinnon 90]. In 

general, an application layer protocol comprises a combination of these ASE's. Figure 2 pro

vides a representation of an Application Process (AP) made up of an Application Layer User 

(ALU) which makes use of services offered by a layered set of ASE's. 

Within the domain of Open Integrated Systems, an integrating infrastructure such as CIM

BIOSYS is positioned at a level similar to that of an ASE. The CIM-BIOSYS platform of 

services is directly equivalent to an ASE while its configuration and management facilities are 

analogous to the proposals for mechanisms to support Open Distributed Processing [Brenner 

87, MacKinnon 90]. Continuing the relative positioning of CIM-BIOSYS within the OSI 

model, the CIM-BIOSYS communications drivers are loosely based on the OSI model layers 
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1 to 6. CIM-BIOSYS is a tool for integration, in its role as an ASE within OSI Layer 7 it offers 

managed integration services to applications. It can be used in combination with other ASE's 

or to embrace existing ASE's. Most importantly, the additional configuration and management 

facilities which make up CIM-BIOSYS and underpin its integration services enable Open Sys

tems interaction to be implemented in a soft integrated manner. 

FIGURE 2. View of the application service provider 
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We propose that further mechanisms are required to carry the "soft" integration philosophy 

through to support application interoperation. These mechanisms should support the separa

tion of application issues and interoperation issues which are considered to be conceptually 

separate [MacKinnon 90] but are currently implemented with no explicit boundary. The author 

recognises the need for an application service element (ASE) to support the interoperation of 

vision processing resources / services and client manufacturing applications within an open 

distributed system. Figure 3 shows CIM-BIOSYS services, the author's Vision ASE, and other 

ASE's within the context of OSI. 
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FIGURE 3. CIM·BIOSYS with respect to OSI and layer 7 application Stnices 
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2.2 A Soft Integrated Manufacturing System Based On An Integrating 
Infrastructure 

Figure 4 repeats Figure 6 in chapter 1, which describes a form of implementation when map

ping application software on to a soft elM system. The CIM system is constrained by the 

hardware and software used to implement the components of that system. The lower part of 

the figure describes a scenario where the CIM-BIOSYS integrating infrastructure is available 

and running on a set of hardware and software. An inspection system made up of distributed 

components, aggregated within the soft CIM system includes an application object. This 

object provides vision processing services, implemented on a specialist remote processor. This 

processor is incapable of supporting the integrating infrastructure. 
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FIGURE 4. The design and implementation or a present sort integrated vision system 
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The upper part of the figure shows two application objects. The left hand object represents an 

open application typically comprising operator interface and information management func

tions. This object requires general purpose processing resource and can thus be mapped onto a 

CIM-BIOSYS compliant host system during CIM systems design and implementation. The 

right hand object in the figure represents the vision processing application whose design and 

implementation was described in PART B. This object requires the resources provided by the 

specialist remote vision processor which is a CIM-BIOSYS alien device. 

In order to generate a soft integrated manufacturing system where both application objects 

appear as discrete open applications (or soft CIM building blocks) within an integrated whole. 

two specific issues must be addressed: 

• the remote vision processor or CIM-BIOSYS alien device must be buffered in some way 

such that it appears to the CIM-BIOSYS software as a compliant device (Le. provision of a 

CIM-BIOSYS alien device driver); 

• the application objects must adhere to some predetermined messaging protocol such that 

they understand each other's messaging dialogue. If they are to be implemented as applica

tions providing open interoperation they must be supported by specialist mechanisms (as 

proposed within this chapter) and/or adhere to some recognised messaging standard. 

2.3 A Soft Integrated Vision Machine Implemented On CIM·BIOSYS 

Figure 5 shows a mapping of the system object modules introduced in PART B onto the CIM

BIOSYS integrating infrastructure shown in Figure 4. This figure illustrates how the complete 

logical solution for the model driven inspection application can be implemented on CIM-BID

SYS. The "operator interface and information management" object is implemented as a CIM

BIOSYS compliant open manufacturing application. The "live component information gener

ation" object is implemented as a vision application object on a CIM-BIOSYS alien device. It 

is the mechanisms required within the relationship between these two objects which are the 

primary issues reported within this chapter. 

Figure 6 identifies the principal elements relating to the interworking of a CIM-BIOSYS com

pliant manufacturing application and the vision application object on the alien device. The fig

ure positions the two specific areas of interest introduced in the previous section - those issues 
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pertaining to CIM-BIOSYS compliancy (i.e. object interaction), and those which are con

cerned with application interoperation. This figure also identifies the author's proposals for the 

necessary elements for an application to be considered a Soft CIM Building Block. 

FIGURE S. Mapping of the logical requirements onto the physical implementation 
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These elements comprise the following: 

• manufacturing application functionality; 

• application interoperation functionality; 

• application interaction functionality; 

FIGURE 6. principal elements within the interaction or a manuracturing application and the vision 
application object, identifying elements that make up a son elM building block 
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3.0 PROPOSALS FOR SUPPORT OF APPLICATION 
INTERACTION 

Structured and managed application interaction can be supported through compliance with the 

services of an Integrating Infrastructure. CIM-BIOSYS interaction compliancy requires that 

two or more interacting applications communicate by invoking and responding to CIM-BIO

SYS application services (see Figure 6). 

The version of CIM -BIOSYS available to the author provides two sets of services: 

• application interaction services providing a mechanism for the transfer of data packets 

between compliant applications; 

• information services, providing access to information stored in logical file format (recent 

system enhancements have provided much improved information service provision based 

on configurable information objects mapped to a heterogeneous range of databases via 

information view provision facilities [Clements 91,92]). 

Simple application interaction only requires the following four services: 

• Establish Link: forms an association between two applications; 

• Terminate Link: releases the association between two applications; 

• Request Status: is used by an application to interrogate another application about its status 

in terms of associations with other applications. and; 

• Send Data: which is used to send a data packet to another application. 

To provide CIM-BIOSYS compliancy. enabling application interaction, applications should be 

able to invoke the four interaction services and handle incoming CIM-BIOSYS data packets. 

Figure 6 shows the requirement for a "CIM-BIOSYS Service Handling" module in a CIM

BIOSYS compliant manufacturing application. Figure 6 also shows the additional require

ment of an Alien Device Driver to provide CIM-BIOSYS compliancy for the Remote Vision 

Service Provider which contains the Vision Application Object. 
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4.0 PROPOSALS FOR SUPPORT OF APPLICATION 
INTEROPERATION 

The Manufacturing Message Specification (MMS) [MMS 90a. MMS 90b] defines the mean

ing and structure of a set of messages which can be used to control, monitor and pass informa

tion between programmable devices, but does not define the way data is transmitted or the 

nature of the network technology. It provides an independent layer which can provide an inter

nationally agreed standard interface to enable discrete application objects implemented on 

programmable manufacturing devices to interoperate. 

A key concept in MMS is the ability, by use of MMS services, to create VIrtual Manufacturing 

Devices (VMD). A VMD exists within a server application and constitutes that part of the 

application that makes available a set of communications resources and provides a consistent 

range of services to client applications. The use of a VMD as a virtual interface for interopera

tion enables a range of different variants of a class of manufacturing device to interoperate 

with client applications, such that all variants of the device now appear to be uniform. The 

VMD is another mechanism which supports application interoperation, by using an abstract 

representation of specific functionality provided by a real manufacturing machine [Pimentel 

90]. This virtual to real relationship is shown in Figure 7, as is the Client I Serverrelationship. 

Figure 8 describes a similar set of relationships for a soft integrated vision machine running on 

the CIM-BIOSYS integrating infrastructure. This figure positions the CIM-BIOSYS integrat

ing infrastructure (illustrating its platform of services) and the CIM-BIOSYS service user 

within both the client application and the alien device driver. The vision service user, or vision 

ASE, within the client device is shown, as is the vision server, or virtual vision machine, 

within the alien device. The virtual vision machine maps open services onto the real vision 

application object. 
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FIGURE 7. MMS Virtual Manufacturing Device within the client server model 
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5.0 AN ARCHITECTURE FOR SOFT INTEGRATED 
MACHINE VISION SYSTEMS 

Figure 9 combines elements of Figure 6 and Figure 8 to provide a layer by layer decomposi

tion which make up the elements of the author's proposed architecture for a soft integrated 

vision machine. The decomposition between application object interaction issues and interop

eration issues is clearly indicated, as are three discrete processes i.e. The Vision Client Appli

cation, the Vision Alien Device Driver and the Remote Vision Service Provider. 

The following chapter details the mechanisms required to implement the elements of the 

author's proposals, and demonstrates their support for change. 

FIGURE 9. Elements within tbe Soft Integrated Vision System 
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Chapter 10 

IMPLEMENTATION MECHANISMS 
WITHIN THE INTEGRATION 

ARCHITECTURE, AND A 
DEMONSTRATION AND EVALUATION 

OF THE SUPPORT FOR HANDLING 
CHANGE 

1.0 INTRODUCTION 

This chapter describes the implementation mechanisms used to build a proof of concept soft 

integrated machine vision system based on the proposals detailed in the previous chapter. The 

first two sections comprise the following: 

• a description of the elements used in the author's implementation, to provide application 

interaction via the CIM-BIOSYS integrating infrastructure; 

• a description of the mechanisms used to implement application interoperation. This inter

operation enables the discrete application objects described in PART B of this thesis to 

work together to form a soft integrated vision machine. 

The implementation described in this chapter is in line with intermediate or next generation 

open systems. Specialist facilities to enable interaction between open applications and the 

vision application object are needed because specialist vision hardware is needed which can

not run CIM-BIOSYS software. The generation of a vision alien device driver for CIM-BIO

SYS is thus necessitated. The significance of this implementation is not only in the 

mechanisms described for interaction and interoperation but also because it offers a migration 

path from current vision machine solutions, i.e. discrete devices, to future fully open distrib

uted vision applications. These fully open vision machines would be based on resources that 

can support a common integrating infrastructure. 
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The architecture for integration described within PART C includes mechanisms which will 

support the requirement of next generation integrated machine vision systems to adapt to 

change. These mechanisms are based on the following principles. 

• The provision of structure through: 

• the use of an overall architectura1 framework [Weston 92. Merlins 92. Kosanke 91]; 

• the use of a layered decomposition (within the complete soft integrated vision 

machine) incorporating interfaces based on virtual machine abstractions [Seidewitz 86]; 

• The use of structured software where additional unforeseen requirements can be imple

mented within existing C code templates [Kemigan 88]; 

• An implementation based on the use of an integrating infrastructure where the infrastruc

ture has underlying management facilities which can support change. 

2.0 THE OPEN INTERACTION OF APPLICATION OBJECTS 
WITHIN A SOFT INTEGRATED VISION MACHINE 

2.1 Introduction 

Within open systems integration. the requirements for inter-application interaction can be met 

by the provision of a minimum range of services. These services should enable the generation 

of an association between two applications. the ability to request association status. and the 

ability to send data between associated applications. The Alien Device Driver must provide 

the functionality which enables the Remote Vision Service Provider to appear to Vision Client 

Applications as another open application. i.e. the Remote Vision Service Provider must com

ply with the above requirements for open interaction. and will thus offer vision services on the 

CIM-BIOSYS integrating infrastructure. To describe the functional requirements of the Vision 

Alien Device Driver. it is first necessary to detail the interaction aspects of the two processes 

which need to communicate - the Remote Vision Service Provider and the Open Vision Client 

Application. The following sub-section covers the interaction aspects of the Remote Vision 

Service Provider based on a client-server model using UNIX Sockets. while sub-section 2.3 

describes the interaction aspects of open applications on CIM-BIOSYS. 
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2.2 The Remote Vision Service Provider, And Its Interaction With The 
Alien Device Driver. 

2.2.1 Introduction 

As its name suggests, the Remote Vision Service Provider is a server which contains the com

munication interaction mechanisms so that clients can make use of the vision services offered 

by the vision application object. The socket based client/server IPC mechanisms [Sun 90a] 

exist within the "alien device server" and the "alien device client" identified within the remote 

vision server and the alien device driver shown in Figure 8, on page 193. 

2.2.2 The Alien Device Client/Server Software Implementation Mechanisms. 

The alien device server software within the remote system creates a server socket and "listens" 

for input of a "data packet" on the socket. The format of the data packet used is shown in 

Figure 1. The device server decodes the message header, and applies presentation layer serv

ices (OSI layer 6 [Pimentel 90], to convert the byte order of multi-byte variables) and checks 

the message received length. It returns an error message to the client if message errors are 

detected, or passes on the data buffer and message identification to the virtual vision machine. 

F1GURE 1. Form of the Vision Client I Server data packet 

message header 

.... 
Message Message Message text Message sender Data 
Identification length description name (user 

• H" ............ ;] 
Buffer 
tenninated) _ ......... _ .. 

8 bytes 8 bytes 32 bytes 8 bytes 768 bytes 

The software to implement this functionality is written in Microsoft C. The particular C com

piler, and the constraint of using C rather than C++, derives from the need to use proprietary 

PC-NFS software. This was required to provide the UNIX socket extensions to DOS on the 

PC machine. 

The alien device client software resides within the alien device driver which runs on any gen

eral purpose Sun workstation on the network. When the alien device driver is invoked, its ini

tialisation routine creates an IPC socket. It then builds and sends an "initialisation" data packet 

IMPLEMENTATION MECHANISMS WTI1lIN TIlB INTEGRATION ARCllITECfURB. AND A DEMONSlRATION AND 
EVALUATION OF TIlE SUPPORT FOR HANDLING CHANGB 

179 



containing a request for the status of the remote vision service provider. On receipt of a posi

tive response from the server the alien device driver remains established to form its link 

between the vision server and open client applications on the CIM-BIOSYS infrastructure. 

2.3 The Open Client Vision Application, And Its Interaction With The 
Vision Alien Device Driver Via CIM·BIOSYS. 

2.3.1 Introduction 

Both the Open Vision Client Application and the Vision Alien Device Driver require a general 

purpose processing resource and run on Sun workstations interacting via the CIM-BIOSYS 

integrating infrastructure. This section details the requirements for CIM-BIOSYS compliancy, 

i.e the use of CIM-BIOSYS services by open applications and their ability to field incoming 

CJM-BIOSYS messages. 

FIGURE 2. Relationship between CIM-BIOSYS and user applications 

Internal Functionality 

CJM-BIOSYS Packet Interface 

IPCChannel 

Figure taken from figure 3 reference Coutts 92 

2.3.2 CJM·BIOSYS Interface Requirements 

CIM-BIOSYS has been constructed to present a "clean" interface to applications, this imposes 

the minimum constraint on the architecture of the application i.e. a simple and consistent inter

face where no specific programming language is required by the user application. The service 

interface is implemented using an interprocess communications (lPC) channel currently based 

on connectionless sockets [Sun 9Oa]. The !PC transfers formatted data packets between the 

CIM-BIOSYS integrating infrastructure and open applications [Coutts 92] as shown in 

Figure 2. The contents of a data packet determine the nature of the message and how it should 

be treated. The ability to construct, send, receive and respond to CIM-BIOSYS data packets is 
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the only requirement imposed by CIM-BIOSYS on open applications. How this functionality 

is implemented is irrelevant to CIM-BIOSYS. 

The approach described above provides maximum flexibility in the design and implementa

tion of applications. However, more prescriptive facilities are available to support common 

application types [COUtlS 92]. In the author's implementation a set of run-time 'C library func

tions was used which typically handle lPC, packet decode/encodelbuffering, and the support 

of Graphical User Interface development. The use of these libraries, is documented in the 

"Guide to writing CIM-BIOSYS System Applications" [Gilders 91]. , 

Figure 3 shows the two areas of functionality required for CIM-BIOSYS compliant interac

tion: 

• the use of CIM-BIOSYS interaction services i.e. calling functions for Establish, Terminate, 

Status and Send Data as described earlier, and; 

• the provision of functionality to respond to incoming CIM-BIOSYS messages. 

The Alien Vision Device Driver and the Open Vision Client Application interact by calling 

CIM-BIOSYS services and fielding CIM-BIOSYS messages. Both processes include an ini

tialisation stage in which particular functions are registered with CIM-BIOSYS to handle the 

standard application interaction services. 

Having described the interaction requirements of the Alien Device Driver at both its interface 

to CIM-BIOSYS and its interface to the Remote Vision Server, it is now appropriate to 

describe the overall structure of the Driver. 
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To send a message to another application 
simply use: 

app_userSbs_send(&cbUtxLdata) 

with cbs_req..data structure set to: 

cbsJelLdata.sargl- sender's name 

cbs -'elL data.sarg2 - destination 

cbsJeIL data.permit - permit details 

cbsJelLdata.dataytr - message 

cbs JelL data.data _Ien - length of 

message. 

Similarly for Establish, Terminate and Sta
tus requests. 

Figure taken from reference [Gilders 91] 

Links to other applications 
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In order for a process to receive messages, 
user functions should be initialised for par
ticular incoming messages. This is done in 
the 'app_user_initJunC..Jltr' function. 
Incoming messages are then handled by the 
event handling system, which triggers these 
relevant functions. The messages are 
returned to the application in the same man
ner as they are sent, i.e. as a CIM-BIOSYS 
structure. A pointer is assigned to the incom
ing message - user_cmd_data..Jltr. 

The type of incoming message can be found 
by looking at: 

user_CDld_dataJltr->CJIld_code. 

The message data can be read by looking at: 

user_cmd_data..ptr->data..ptr. 
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2.4 The Alien Vision Device Driver 

2.4.1 The Principal Event Driven Modules 

The Alien Vision Device Driver has three principal functions which respond to external 

events, as shown in Figure 4. 

FIGURE 4. Operation within the VISion Alien Device Driver 

TocJient 
application 
viaClM
BIOSYS 

ClM-BIOSYS 

I r~~~~~~e.g. p Link, 
Send Data 

These can be considered as three discrete modules as follows: 

To vision 
alien 
device 

Response 
from vision 
alien device 
on driver 
socket 

• the interface to the remote vision service provider through the vision service user, which 

responds to the reply messages sent from the remote system (this module is equivalent to 

the alien device client service user layer in Figure 8); 

• the interface to the CIM-BIOSYS integrating infrastructure through the CIM-BIOSYS 

service user, which responds to request messages sent via CIM-BIOSYS from open appli

cations requesting services from the remote vision service provider (this module is equiva

lent to the CIM-BIOSYS service user layer in Figure 8); 
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• the Alien Device Driver operator interface which provides manual control and monitoring 

of the driver for debug purposes, and responds to requests via a mouse driven window 

interface on a Sun workstation. 

Protocol conversion addresses the requirement to convert from CIM-BIOSYS compliant mes

sage packet format to the packet format used by the remote vision server, and vice versa. This 

functionality is driven by, and is essentially part of, the two service user modules identified 

above and shown in Figure 4. 

The event driven operation of the three modules which implement this functionality is control

led by the "Notifier". The Notifier is a Sun tool [Sun 9Ob] which provides a mechanism for 

distributing events to a number of functions within a process. A function, and an object on 

which an event may occur (socket, keyboard, mouse etc.) are registered with the Notifier. 

When an event occurs on a registered object, the appropriate registered function is called. 

Figure 4 shows the three event driven modules and their relationship with their external envi

ronment The following sub-sections give details of the three modules. 

2.4.2 The Vision Service Handler 

This module performs much the same function as that detailed within section 4.2 describing 

the operation of the alien device server. The function of the module is to field data packets 

from the alien device server, apply error checking procedures, and to process the message. The 

principal process is to construct a CIM-BIOSYS data packet using the complete vision server 

data packet as data, and send it to the associated open client application via CIM-BIOSYS . 

. 2.4.3 The CIM-BIOSYS Service Handler 

This module is made up of a number of functions which are registered with CIM-BIOSYS and 

are called in response to incoming CIM-BIOSYS messages. The principal functionality is as 

follows: 

• output message information to the driver operator interface, strips the vision client applica

tion message out of the CIM-BIOSYS data packet, and then send the vision client message 

to the remote vision server; 
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• terminate the association between the client application and the driver and then terminate 

the driver; 

• return the status of the remote vision server; 

• display the response messages from CIM:-BIOSYS. 

The establish link functionality is dealt with in the initialisation facilities detailed in Sub-Sec

tion 2.2.2. 

2.4.4 The Operator Interface 

The Alien Vision Device Driver operator interface is implemented as a window based Graphi

cal User Interface (GUI) comprising two windows. Bit map representations of these windows 

taken from a VDU are shown in Figure 5. The "Main Interface" is a general purpose window 

which displays CIM:-BIOSYS interaction with the driver. It provides facilities for opening and 

closing the window, terminating the driver, or invoking the second window. Information per

taining to the establish link process is displayed in the upper half of the window. "Sender = 
vision" refers to the CIM:-BIOSYS logical name for the Vision Qient Application, while "Tar

get = vis_insp" refers to the logical name for the Vision Alien Device Driver. The bottom half 

of the display provides information pertaining to the CIM:-BIOSYS response. 

The "Engineers Window" displays details of the messages passed to and from the remote 

vision server and a vision client application, it also enables manual operation of the driver. 

("Olive" is the logical name for the PC Alien Device). 

Figure 4 shows arrows from the two service handler modules to the operator interface. These 

represent the passing of message information for display in the windows. The figure also 

shows arrows from the operator interface module to both the Client Application via CJM-BIO

SYS, and to the remote vision server. These arrows represent the manual operation of the 

driver where test and debug messages can be sent to the client application or the remote vision 

server. These facilities are invaluable for proving the correct operation of all the mechanisms 

involved in the transfer of messages over CIM-BIOSYS or over the remote link to the alien 

PC system. 
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FIGURE S. GID's for the Vision Alien Device Driver 

) [Close) ( Hide 
>-( ~En;;;';g~) [Manual) Auto. 
Establish link received @ 16:19:56. 
Sender • vision (13) Target • vis_insp (61) 

Seq no • ---------
Data 

D len • 0 

Sending CHBSYS Response @ 16:19:56. 
Seq no •• 1 
Result •• 1 
State. • 0 
Str 1. 

Reason. 
Status. 
Str 2. 

• 0 
• 0 
• vision 

sun" s ;~ VIS 'IO Driver En ineer Interface~"';'; 

[ Quit) [Close I I Hide ) (Manual) Auto. tick 
(Send App J( Send Line) Data :. 
[Die Olive)[Send Data) [Image Process] [live model] 
(send text) 
Application link name • vision 
Packet Sent to Olive at 16:19:56. 
Cmd • INIT 
Status • OK 
Data • 

Packet Received From Olive at 16:19:56. 
Cmd • INIT 
Data • olive up and running 

3.0 THE INTEROPERATION OF THE VISION SERVER AND 
THE VISION CLIENT. 

3.1 The Vision Server 

3.1.1 A Virtual Vision Machine (VVM) 

The VVM is that portion of the remote Vision Server that maps the services provided by the 

Vision Application Object on to the interaction mechanisms described in the previous section. 
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The nature of the VVM is then governed by the services provided by the Vision Application 

Object, and the interaction requirements of the remote device on which it is implemented. 

A vision machine can provide services which usually involve the processing of raw images, 

and can range from the provision of a set of application specific features of an object of inter

est, through classification decision information, to information relating to the understanding of 

the scene being viewed. The Vision Application Object described in chapter 7 extracts appli

cation specific features i.e. corner points of component package pins. The full specification of 

the Vision Application Object given in chapter 7 requires the following interoperation with a 

Client Application: 

• Program Invocation; 

• Information Upload, and; 

• Information Download 

The use of an EDIF file format for the upload of information provides an industry standard 

which has the potential to make a VIrtUal Vision Machine more generally applicable within the 

application domain addressed by this thesis. However, other implementations by the author 

extract more "vision generic" features, typically describing the package pins of a component 

in terms of an Arc Feature made up of a 'C structure describing a Freeman chaincode [Pugh 

83]. An International Standard specifying the form of vision features would provide support 

for a consistent form for the information to be uploaded from the remote vision server. 

The form of downloaded information to drive vision machines is an application specific prob

lem. The EDIF model provides an advantageous standard form for use in the application 

domain addressed by this thesis. Typically, an application specific view of design information 

describing the object under inspection will be required, and the form of this view will be spe

cific to the requirements of the vision application object. Within the implementation described 

the specific view takes place within the application object, with the Client application having 

provided an information fragment or intermediate level view from the global information 

available on the Integration platform. Figure 6 describes this approach to information view 

provision. 
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FIGURE 6. two stage view provision 
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inspection process 

Distributed 
infonnation 
available via 
theCIM
BIOSYS 
infonnation 
services 

Other applications wrinen by the author (not based on the EDIF model) have been of a more 

general nature. Typically the co-ordinates for window processing have been derived within the 

"infonnation management" object running on the integrating infrastructure and have been 

down loaded to support vision processing. Standards defining the fonn of infonnation required 

to support generic vision processes (e.g. window processing. thresholding) could provide sup

port for the development of a generic fonn of download object for Virtual Vision Machines. 

3.1.2 Implementation Mechanisms Within The Virtual Vision Machine 

The Virtual Vision Machine (VVM) operates on the decomposed data packet which is passed 

to it by the Alien Device Server (see Figure 8). This infonnation comprises the package 

header and data buffer (see Figure 1). The header contains the "msgjdent" field which con

trols how the VVM deals with the message. There are three important classes of message to 

implement the interoperation requirements identified. These interoperation objects are as fol

lows. 
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3.1.2.1 The DATA Interoperation Object 

DATA maps the message data within the data packet sent from the client into a data store 

(based on a 'C' structure) where the vision application object can access it for detailed feature 

extraction. The DATA object uses a variable name which is declared as a particular data struc

ture type. In order to reconfigure the DATA object to operate on another data type the variable 

name is simply re-declared as the new data structure type. The only constraint on the nature of 

the data structure is the maximum length of the data string in the Vision Data Packet 

3.1.2.2 The PROC Interoperation Object 

PROC invokes the program named within the data packet. The VVM uses the "Spawn" facil

ity within Microsoft C and DOS to handle program invocation. This allows the running of a 

separate "child" task and the return to the "Parent" VVM task on completion of the "child". 

This facility allows any program within the application object to be invoked and forms a clean 

separation between the VVM and the real Vision Application Object This separation provides 

both flexibility in implementation and facilitates ease of change. 

The flexibility offered is demonstrated within the author's implementation. Here the applica

tion object comprising the Object Oriented vision processing software is written in Zortech 

C++, while the vision server and VVM are written in Microsoft C, since this is a more gener

ally available compiler as used by the PC-NFS communications software. The use of the 

spawn facility provides a solution that allows the real application object to be implemented in 

any programming language. 

The facilities for ease of change are implicit within the implementation. The PROC message 

type contains the file name, and path to, the executable program to be spawned. The executa

ble program has only to be present within the alien device. New programs can be added within 

the vision application object without the requirement for modification within the VVM. 

3.1.2.3 The LIVE Interoperation Object 

LIVE sends the live model information or application features generated by the vision applica

tion object to the Client Application. Facilities for reconfiguration are as in the DATA object, 

since the nature of the data handled by LIVE is determined by the 'C data structure used. A 
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panicular implementation which needed to send a large amount of data describing component 

legs as Arc Descriptors uses a series of messages (one for each leg), foUowed by a data struc

ture describing the component leg count. Thus the requirements of a panicular application can 

be fulfiUed, overcoming the constraint of the message data packet size 

3.1.2.4 Additional Interoperation Facilities 

Extra facilities within the VYM are provided to support status requests, test/debug messages 

and a mechanism for releasing the server back to OOS (when running as a server the single 

tasking DOS machine is locked on to the server socket, listening for messages on the net

work). 

3.2 The Vision Client or Vision Application Service Element (ASE) 

Figure 8 shows the Vision Client Application has a layer dealing with the use of vision serv

ices. It is this area of functionality which engages in dialogue with the VYM. It must compose 

messages in accordance with the requirements of the VVM and be capable of interpreting and 

dealing with the form of reply received from the VVM. It receives data structures containing 

incoming replies from the function register~ with CIM-BIOSYS to handle "send data" com

mands from the Vision Alien Device Driver (as described iI}.,section 4.3.1). It must also pass 
,'" 

constructed messages to its CIM-BIOSYS service user layer which then encapsulates them 

within a CIM-BIOSYS data packet and sends them to the Vision Alien Device Driver. 

This work recognises the need for a vision service user layer or vision ASE which can support 

the use of the VYM by open manufacturing applications. The author's work has implemented 

vision ASE functionality using a set of 'C functions which manufacturing application builders 

could use to create vision client applications written in 'C. 

3.3 A Soft Integrated Manufacturing System Building Block For Machine 
Vision Inspection 

AU sections of the Remote Vision Service Provider and its Vision Alien Device Driver have 

now been introduced and described. The combination of these two components form a soft 

CIM building block as identified in the previous chapter. The building block can be "plugged 

into" a CIM-BIOSYS integrating infrastructure and used by any CIM-BIOSYS application. 
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The user or client application requires only the knowledge of the interopemtion facilities 

offered, and packet structure expected by the VVM, as encapsulated within the vision ASE. 

Appendix 7 describes a particular Vision Client Application which could complete the imple

mentation of a Soft Integrated Vision Machine. 

4.0 A MODIFICATION TO PROVIDE AN ADDITIONAL 
VISION SERVICE 

4.1 Introduction 

The change to a vision application object described in Chapter 8 provided an addition service 

to inspect the component manufacturer's identification code on an IC. A modification to pro

vide a new vision service has two distinct parts. Modification is required to the vision process

ing related issues, and also to the integration related issues to make the new service available 

to client applications. The following subsection describes the modifications required to the 

integration elements within the complete Soft Integrated Machine Vision System. This work is 

measured relative to the author's early experiments in integrating distributed applications 

without the use of an integrating infrastructure. 

4.2 Identifying The Elements Which Require Modification 

Figure 7 shows the elements which make up a conventional integrated solution. The client 

server model is used to structure communication between a remote server application and any 

number of client applications. This arrangement is typical of the systems built by the author 

while developing the Soft Integrated Machine Vision System. This early work will be used to 

help quantify the benefits of the soft integrated system based on the CIM-BIOSYS integrating 

infmstructure. 

Figure 8 (a repeat of Figure 9 in chapter 9) shows the elements of the Soft Integrated Machine 

Vision System. This figure helps to identify the extent of the required modification detailed in 

the following points: 

• new facilities within the Vision Server, or Virtual Vision Machine in the Remote Vision 

Service Provider, will be required; 
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---- ---- - ----------------------------

• new facilities within the Vision Service User, or Vision ASE in the Vision Client Applica

tion will be required, such that new open applications software can interoperate with the 

vision server. 

• no modification is required within the Alien Device Server of the Remote Vision Service 

Provider; 

• no modification is required within the Alien Vision Device Driver; 

• no modification is required within the CIM-BIOSYS service user of the Vision Client 

Application 

The points above illustrate how all the modification is required within those elements of the 

system which implement the interoperation and application functions. No modification is 

required to the facilities provided to handle application interaction. This highlights the impor

tance of the decomposition between interaction and interoperation. 

The facilities within the distributed system which support application interaction comprise 

routines for building message headers, data packets and complete message packets. They also 

include routines for sending and receiving data packets using CIM-BIOSYS. Figure 8 identi

fies these facilities as the Alien Vision Device Driver, the Alien Device Server within the 

Remote Vision Service Provider, and the CIM-BIOSYS Service User within the Vision Client 

Application. The Alien Vision Device Driver will treat any new messages in the same way that 

it deals with existing messages i.e. it transforms the message packet from Alien Vision Device 

form to CIM-BIOSYS compliant form, having no regard for the contents of the message 

packet. 

The new service requires the types of generic interoperation facilities identified as necessary 

for distributed machine vision. In this case modification within the VVM in the Remote Vision 

Provider, and the vision ASE within the Vision Client Application can be minimal. 

The following sections describe the modifications identified in the points above and demon

strate how the VVMlASE combination implemented via the CIM-BIOSYS integrating infra

structure can support the modification process. The following two sections describe 

interoperation from ASE to VVM and from VVM to ASE respectively. 
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FIGURE 7. Elements within a conventional distributed system 
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4.3 Modification Of The Interoperation Requirements From The Vision 
. ASE To The Virtual Vision Machine 

The new facilities within the VVM will present a consistent interoperation interface, which 

includes the new service, to open applications running on the integrating infrastructure. 

The main framework of the VYM code is a SWITCH structure [Kernigan 88] which provides 

alternative processing dependent on the message identification within the message header. 

Further structuring of the VVM code is incorporated within each CASE statement of the 

SWITCH structure. This extra structure provides further flexibility and support for change. 

Figure 9 shows a code fragment from the VYM which handles the LIVE message (a service to 

provide live model information to a request from a Vision Client Application). Within the 

LIVE - CASE statement a further SWITCH structure provides alternative processing depend

ent on options required within the interoperation of client applications and the VVM. In the 

author's modified implementation the flexibility provided by the option was implemented 

through the use of an additional C structure passed within the message Data buffer. Ideally a 

new message packet structure could provide specific facilities for flexibility within interopera

tion. Figure 10 provides a representation of the further decomposition within the facilities for 

interoperation, while Figure 11 proposes a new message packet structure which could provide 

improved support for the notion of decomposition between interaction and interoperation 

issues. 

The structure within the Vision ASE comprises a function which is invoked by the client 

application together with a parameter which specifies the vision service required. The struc

ture within the function is again a SWITCH statement which provides alternative processing 

dependent on the service required. 

In order to handle the requirements of the new service all that is required is modification 

within the functions called by the CASE statements within the SWITCH structure, as these 

determine the structure and contents of the message data buffer. 
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FIGURE 9. Code fragment showing a CASE structure within the Virtual Vision Machine 

case LIVE: 

/*get SwilCh info from msg datastructure"' 

memcpy(&live_msg,(data.Jl8Ckin+sizeof(msgin_hdr», sizeof(live_msg»; 

/*swap bytes sun 10 olive"' 

Iive_msg.swilCh_name:ntohl(live_msg.swilCh_name); 

/*respond 10 requirements of DATA msg"' 

swilCh «(mt)live_msg.swilCh_name) 

( 

case LEG_ARCS: 

/*send live model message received "f 
/*special reply has 10 send complete model *' 
/*handled in file soicio.c"' 

if (send_live_comp_model(sockin) < 0) 

( 

printf("error sending LIVE reply\n"); 

close (sockin); 

exit(l); 

) 

break; 

case EDIF _LEG_CORNERS: 

if (send_live_edif\e&.-model(sockin) < 0) 

( 

printf("error sending LIVE reply\n"); 

close (sockin); 

e,ut(1); 

) 

break; 

case STRING_ARCS: 

if (send_strin&.-arc_model(sockin) < 0) 

( 

printf{"error sending LIVE - STRING_ARCS reply\n"); 

close (sockin); 

e,ut(1); 

break; 

) 

break; 
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FIGURE 10. Structure within the facilities for interoperation 
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4.4 Modification of the Interoperation requirements From The Virtual 
Vision Machine To The Vision ASE 

The new facilities within the vision ASE will enable open applications to interoperate with the 

VVM and use the new service. 

Vision services are always requested by the client and provided by the server. A specific serv

ice request decoded by the VVM will map onto a specific function which will complete the 

service. It is this function which controls the response when passing information back to the 

client. 

In modifying the VVM to accommodate the information upload requirements of the new serv

ice an entirely new function is developed. The code fragment in Figure 9 shows the new func

tion call (send_strin~arc_model) within the modified LIVE CASE statement. 

The Vision ASE uses a function which is registered with CIM-BIOSYS. The function is 

invoked when an incoming message anives from CIM-BIOSYS for the client application. A 

parameter, passed with the function, is a pointer to the message packet constructed and sent by 

the VVM. Again, the main structure within the function comprises a SWITCH statement 

which provides alternative processing dependent on the Message Identification in the message 

header. This structure enables modification to handle the new service to be contained in a spe

cific CASE statement of the SWITCH structure. 

5.0 MODIFICATION WITHIN A CONVENTIONAL 
DISTRIBUTED SYSTEM 

Figure 7 shows the elements of a conventional distributed system. In a system such as this it 

would be typical for all application functionality associated with communications issues to be 

contained within a single module. This module would typically be structured as a set of func

tions implementing the interaction and interoperation requirements of the system, as suggested 

by MacKinnon [Mackinnon 90]. The software to implement application interaction mecha

nisms within a distributed system are notoriously time consuming to develop and test. 

A modification to implement a new client application which makes use of a new service pro

vided by the server would require the implementation of the interaction mechanisms within 
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the new client application. This requires knowledge of the interaction mechanisms used within 

the server software. It is this re-implementation of interaction facilities that is overcome by the 

use of the Alien Vision Device Driver within the framework of the CIM-BIOSYS integrating 

infrastructure. 

The interoperation functions within the client and server of a conventional system would typi

cally be implemented through SWITCH structures as is the case with the VVM and Vision 

ASE of the soft integrated system. However, the identification of the generic functions within 

the VVM/ASE, together with the knowledge that the VVM!ASE is where new services are 

added are further elements of support that are missing in a conventional implementation. 

6.0 RESULTS AND CONCLUSIONS 

The changes made within the elements of the integration architecture in oIder to provide the 

new service to open applications on the integrating infrastructure took approximately 6 hours. 

The change made to the conventional IPC communications software took approximately 20 

hours (primarily for re-implementing socket based IPC from scratch, in the new Client appli

cation). 

6.1 Fulfilling The Needs Of Next Generation Machine Vision Systems 

Change to the software which implements the integration aspects of the complete machine 

vision system clearly highlights the advantages of implementing distributed processing using 

an integrating infrastructure. In particular, it shows the advantage of implementing the appli

cation interaction mechanisms once only for any number of open client applications. The prin

cipal tool used within the integration study was the CIM-BIOSYS integrating infrastructure. 

An evaluation of the usefulness of this tool is presented in the following section. 

The separation between interaction issues and issues of interoperation provides a modular 

decomposition where modification can be isolated within the mechanisms for interoperation. 

In the author's implementation these mechanisms comprise the VVM!ASE combination. Fur

ther structure within the VVM/ ASE provides a modular template such that additional func

tionality can be easily added to provide new vision services. 
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The components described in PART C, which make up an integration methodology for vision 

machines, also provide support for design of new integrated systems. The overall architecture 

provides a reference framework, and the interaction facilities are domain generic and can be 

re-used. The VVM presents a consistent interoperation interface to new open client applica

tions, while the ASE provides a set of ready built functions for inclusion within open applica

tions to ease the use of the VVM services. 

Heterogeneity is supported through the concept of virtual machines. Service specific software 

maps the VVM onto a particular Vision Application Object. Modification of this software ena

bles a completely different Application Object, implemented using different vision hardware, 

a different implementation of the vision model, and a different application decomposition to 

replace an existing Vision Application Object. 

6.2 The Usefulness Of The CIM-BIOSYS Integrating Infrastructure 

The following points summarise the usefulness of the ClM-BIOSYS integrating infrastmcture 

in underpinning the design, implementation and maintenance of the integration issues pertain

ing to distributed machine vision systems. 

• Soft Integrated Building Blocks of Manufacturing Systems: ClM-BIOSYS provides an 

underlying framework which stmctures the creation of manufacturing applications (or 

application objects) so that they become building blocks of flexibly integrated manufactur

ing systems. These building blocks can be "plugged into" the ClM-BIOSYS infrastmcture 

through "registration" with the CIM-BIOSYS configuration information. (An example of a 

ClM-BIOSYS Open Manufacturing Application could comprise an executable C program, 

but any executable program capable of handling UNIX inter process communication (!PC) 

is supported. It is this C program that is given a logical name and registered with ClM-BIO

SYS) • 

• Reconfiguration: Thereconfiguration management mechanisms within CIM-BIOSYS pro

vide distributed vision applications, and other manufacturing building blocks which inter

operate with them, with a means of supporting long term flexibility and change. 

Reconfiguration takes place through modification of the CIM-BIOSYS configuration 
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tables. This allows the association between logical applications and physical resources 

which make up the system to be modified without repercussion on the functionality of the 

distributed system. 

• Open vision services: An Alien Vision Device Driver and its associated Remote Vision 

Service Provider provides a set of open vision services. These are application specific serv

ices offered at a level above that of the CIM-BIOSYS interaction services. Any open appli

cation registered with the infrastructure can access any of the vision services offered. 

• Heterogeneity: The CIM-BIOSYS integration structure enables the inclusion of the Alien 

Vision Device Driver. Alien device drivers can enable flexible integration of legacy build

ing blocks and map device specific communication technology onto the CIM-BIOSYS 

interaction services. This provides a consistent interaction interface through which open 

applications can interoperate. 

• Information access: The soft integrated machine vision system described in PART C has 

demonstrated how the integrating infrastructure enables access to global information. This 

access promotes both the generation of information driven vision applications (which 

implies increased flexibility), and the generation of vision applications which make local 

information available for global use. 

• Overheads: The use of CIM-BIOSYS implies an overhead in execution speed, size of the 

implemented system and time required to learn how to use the tool. Evaluation work which 

addresses the first two points (in relation to distributed manufacturing control systems) has 

been completed by the SI Group at LUT [MCS 93). The runtime performance testing shows 

the overhead associated with the integrating infrastructure represents a small fraction of the 

overhead due to execution of the application systems themselves. Industrial trials of tools to 

support the design and build of CIM-BIOSYS compliant applications are imminent [MDC 

93). 
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Chapter 11 

CONCLUSIONS AND RECOMENDATIONS 
FOR FUTURE WORK 

1.0 THE MAIN RESEARCH FINDINGS 

The author's goal has been to define an overall architectural framework, supported by models, 

design methodologies and implementation mechanisms, which can significantly advance prac

tice when flexibly integrating next generation machine vision systems within manufacturing 

environments. The work involved has covered a number of areas of study. In particular the 

author has: 

• evaluated the contemporary role of machine vision systems within the electronics manufac

turing industry, concluding that there is a need for both infrastructural facilities to support 

manufacturing systems integration, and a new generation of machine vision systems that 

can benefit from, and contribute to, an integrated manufacturing environment (chapter 2); 

• reviewed past and present approaches to elM system design and implementation, identify

ing the general acceptance, within the research community, of the need to build configura

ble soft integrated manufacturing systems through the use of an integrating infrastructure 

(chapter 3). 

• reviewed contemporary machine vision implementation technology and its application in 

industry, concluding that there is a requirement to support vision application software 

design and implementation more systematically (chapter 4); 

• assessed and published findings concerning opportunities for creating a new generation of 

integrated machine vision systems. (Appendix 8) 

The thesis contributes to available knowledge concerning software design and implementation 

of machine vision systems, through the creation of a novel distributed machine vision inspec

tion system based on the following proposals: 

• that a layered architecture is required to structure processes contained within a vision appli

cation object. During implementation, mechanisms are required which support a clean 

interface between vision generic and vision application specific code; 
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• that an object oriented model, and associated design methodology, should be adopted, 

which covers image processing and feature extraction. This brings the benefits of object 

orientation and model driven design; 

• that a design methodology is required to ease the identification of objects in the application 

domain; 

• that a domain-specific architecture for structuring vision application software, should be 

adopted providing non rigorous structure which could lead to consistent design of applica

tion software; 

• that a mapping is required between a more global CIM layered architecture and that of the 

machine vision layered architecture to support distributed machine vision systems imple

mented on an integrating infrastructure; 

• that interaction issues and interoperation issues of objects within a distributed machine 

vision system be decomposed to form a VIrtUal Vision Machine and associated Application 

Support Element This enhances the creation and maintenance of open distributed machine 

vision applications; 

• that an alien device driver for handling the prevailing situation is required. This enables the 

open integration of vision applications running on processors which do not conform with 

the integrating infrastructure. 

The thesis is based on, and has extended, the use of a number of recognised software engineer

ing tools. The principal tools used are the object orientated paradigm, for structuring the vision 

application issues, and the use of an integrating infrastructure to underpin the design and 

implementation of the integration issues. The usefulness of these tools is evaluated in conclu

sions made in Chapters 8 and 10. 

One of the original hypotheses of this work was that manufacturing applications such as 

machine vision should be designed to reflect the need for integration and the benefit that can 

be gained from available information. This work supports the conclusions that integration 

issues and issues of application functionality are entirely separate. 

Study of PART B leads to the conclusion that manufacturing applications should be designed 

to be information driven and information providing, in the form of application objects. These 

applications should be built using a platform of techniques which offer support for rapid 

implementation, flexibility and change. 
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Study of PART C leads to the conclusion that integration methodologies in the domain studied 

are concerned with issues of application interaction. They are concerned less with the nature 

of the application i.e. assembly, inspection, test, but more with the nature of the hardware and 

software used to implement the application, i.e. PC, Robot, PLC, UNIX, C++ etc. 

Issues of application interoperation form a new layer of functionality required for open distrib

uted systems. Issues of interoperation are both integration and application related. Methods to 

support these issues have recently become a focus of global research. 

2.0 FUTURE WORK 

2.1 Application Interoperation 

The interoperation of heterogeneous computer based processes within an integrated system 

has been identified as a major goal for the IT community. In the manufacturing domain the 

proposed solution to the interoperation problem has been through compliance with messaging 

standards such as MMS [MMS 9Oa, MMS 90b J. The work described in this thesis has identi

fied the necessity to provide separation for interoperation issues from both the application 

issues, which drive interoperation, and the interaction issues which provide the media for 

interoperation. This separation, together with the increased demand for interoperating applica

tions, implies a need for support facilities. 

This thesis has demonstrated some simple mechanisms based on S/W templates which could 

support structured design, implementation and maintenance of interoperation. Future work 

could develop infrastructural software (an interoperating infrastructure) which would provide 

a framework and toolset to underpin message creation and interpretation. Such a system could 

provided the type of flexibility offered by integrating infrastructural systems in the domain of 

application interaction. 

An interoperating infrastructure could contain knowledge of the interrelationships between 

applications and provide design, implementation, runtime management and reconfiguration 

facilities to support the lifecycle of the integrated system. Such an infrastructure could be used 

to implement existing standards such as MMS, but would support the creation of messaging 

systems appropriate to particular applications, and the use of existing de facto standards. 
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An interoperation infrastructure would offer similar advantages to those of the CIM-BlOSYS 

integrating infrastructure demonstrated in this thesis. Typically each application would send 

and receive messages from the interoperation infrastructure, not the related application. Also 

the framework would provide for the structured incorporation of "alien" messaging systems. 

The interoperation infrastructure would sit above the integration infrastructure making use of 

its integration services. 

2.2 Linking Interactive Design To Documentation And Code Generation 

Chapter 8 identified the benefits of using interactive image analysis systems to define an 

appropriate set of vision algorithms for solving a particular vision problem. The Booch based 

design methodology proposed in chapter 6 is of limited use for image processing design due to 

the requirement to experiment which is enabled through an interactive system. However, the 

use of the diagramming techniques proposed by the author have provided improved descrip

tive support which aids software modification. It follows that the linking of interactive image 

processing systems to the type of CASE tool technology that could produce Gass and Object 

diagrams for documentation, together with executable code, represents a potentially useful 

field of study. 

2.3 CASE Tools 

Chapter 1 describes a scenario where open distributed systems can be designed and built by a 

group of co-operating software engineers who are situated in physically remote locations. This 

scenario could only be realised with the availability of fully automated CASE tool support for 

methods such as those described in this thesis. All the tools described within this work have 

been implemented by hand. Automated support for the Booch 91 methodology with the inclu

sion of the relationships devised by the author is an initial requirement. Further work is 

required to establish how to automate design and modification of machine vision systems 

based on the author's other structured mechanisms. 

2.4 Domain Specific Models 

The study and use of the ''EDIF model for PCB" led to the identification of a four layered 

decomposition which was used to add consistent structure within the vision application soft

ware. The success of this technique, which contributed to the improved support for software 

modification detailed in chapter 8, implies that new areas of research concentrating on other 
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application domains could enhance the breadth of the architecture. This work could contribute 

to the derivation of a range of domain specific models for use within the applications layer. 

2.5 Software Metrics 

Chapter 8 has exposed the problems of measuring the degree of benefit offered by new propos

als for supporting software engineering. Improved quantification of the author's proposals 

could be made through the use of controlled experiments with a group of software engineers 

who have a varying degree of expertise. Experiments based on the three variables identified by 

the author in Chapter 8 could provide a population of the frame work for quantification pro

posed by the author. This would provide a better feel for the usefulness of the proposals and 

the usefulness of structured support for machine vision software in general. 

3.0 EXPLOITATION 

Zwem's vision of the exploitation of automated inspection throughout a PCB fabrication shop 

[Zwem 90] can be extended to embrace automated inspection throughout an enterprise. 

Machine vision inspection could range from, the inspection of wafers within the semiconduc

tor fabrication process [Jain 89] to the inspection of outgoing completed PCB's [ICL 93]. 

Information generated by these systems for local use is an increasingly valuable global enter

prise resource. The author's proposed architecture for soft integrated machine vision can sup

port these future systems, where multiple remote vision systems may share resources within a 

distributed vision application. Exploitation of this architecture is dependant upon a number of 

outstanding issues, including: 

• manufacturing industry's recognition of the need to exploit available information; 

• widespread acceptance of the need to build soft integrated systems based on an integrating 

infrastructure; 

• the common availability of integration tools (an infrastructure and its support tools) which 

support the use of a wide range of processing hardware and software; 

• the common availability and accepted use of CASE technology. 
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TERMINOLOGY 

Acronyms and tenns used in this thesis are defined as follows: 

TERMINALOGY USED IN OBJECT ORIENTATION 

base class - a class with general characteristics designed to be a parent class to several sub

classes; 

class - a definition describing an abstract data type and its behaviour which in turn defines the 
interface to all the operations that can be perfonned on or with the underlying type; 

constructor - a method invoked during the creation of an object, which populates its data type 

to some initial state; 

friend - selected methods or an entire class can be declared to be a friend of another class. 
This relationship will allow them access to the private data of the friend class; 

message - a call from one object to invoke a method of another object; 

methods - the operations defining the behaviour of a class; 

object - a particular instance of a class. which encapsulates state. An object has a populated 
class data type; 

overload - method overloading is defined as polymorphism, (this is the ability to define the 
same method name for parent classes and subclasses, where the functionality of these methods 
is different); 

subclass - a class that characterises the behaviour of a set of objects which inherit characteris
tics of the parent class but acquire specialised characteristics particular to the subclass; 

GENERAL TERMINOLOGY 

application interaction - the passing of data packets (or messages) between two applications; 

application interoperation - Meaningful dialogue between two or IIlOre applications, (ena
bling the creation of an integrated aggregation of inter-working applications which combine to 
produce some greater functionality); 

browsing facilities - facilities to enable particular elements of text to be found within the 
complex file structures which are inevitable when developing complex software systems; 

CAD - acronym for Computer Aided Design. the use of computers for the creation and modi
fication of engineering designs; 

CAM - acronym for Computer Aided Manufacture. the use of computers for the management 
or control of manufacturing facilities; 
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CASE - Computer-Aided Software Engineering (tools) - used to speed up and formalise the 
process of system analysis and software design. Such systems use a variety of representations 
such as data-flow diagrams, entity-relationship diagrams and, in some cases, generate program 
code; 

client I server model - A model for communication transport mechanisms where a server 
entity is permanently established on a network. Client entities fonn associations with the 
server when they require the services on offer; 

data packet - A data entity made up of a number of fields which is passed from one applica
tion to another during application interaction; 

design or library sources - will refer to information sources within an enterprise information 
system, typically a library of component part descriptions, or PCB designs; 

elementary features - will comprise the perimeter, area and centroid of an unclassified com
ponent being inspected by the demonstration system; 

ESPRIT - acronym for the European Strategic Program for Research and Development in 
Information Technology; 

flexibility - The ability of a manufacturing application to handle short term reconfiguration 
within a predictable range of variation; 

global information - will mean information within the enterprise information system which 
resides within information stores (databases or files) which can be aecessed by open applica
tions via the integrating infrastructure; 

golden board - the name given to a printed circuit board which is known to be in specification 
and can thus be used as a reference; 

hybrid PCB - A PCB which includes both SMT and through hole technology components; 

integration - The aggregation of resources and applications into a synergistic whole; 

integration toolset - A set of complimentary software application programmes to assist in or 
enable some aspect of the development or management of ClM systems; 

IPC - interprocess communication; 

islands of automation - stand alone element of automation within a manufacturing enterprise, 
typically covering a single NC machine, a group of machines within a work cell, a CAD sys
tem; 

live model: will refer to a description, in model form, of a particular live PCB; 

live PCB - will refer to a particular printed circuit board which is under fabrication within the 
manufacturing system; 

make facilities - facilities which support the controlled compilation and linking of programs, 
essential for all but the simplest program development; 

manufacturing application - some combination of processing hardware, software, interface 
components, machine and human mechanisms which make up a manufacturing process or 
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function, typical examples include robots, human inspection stations, cell controllers, and 
process planning systems; 

MAP - acronym for Manufacturing Automation Protocol, specification for communication 
within the manufacturing environment, based on the International Standards Organisation 
(ISO) 7 layer Open Systems Interconnection (OSI) reference architecture, initiated by General 
Motors; 

mechanisms - will refer to software implementation mechanisms; 

methodologies - Fonnal methods of software analysis and design; 

model - Within this thesis the tenn "model" is primarily used to describe some system of enti
ties using a formal modelling methodology which usually comprises a set of diagramming 
tools, such as the "EDIF model for PeB" [BDIF 90]. The term can also be used to describe a 
less formal description such as a simple software template to ease code generation; 

MRP 11 - acronym for material requirements planning, planning the resources of a manufac
turing company, using simulation for optimization; 

ODP - Open Distributed Processing; 

OSI - Open Systems Interconnection; 

open systems - Systems comprising a set of interacting open applications which communicate 
using mechanisms that adhere to relevant international agreed standards. These standards 
being non-proprietary and vendor independent. Applications can be removed, replaced or 
added to the system in a managed way. Usable infonnation can be exchanged between appli
cations; 

onsertion - assembly of surface mount components on PCB's; 

PC - personal computer; . 

peB assembly - All processes involved in the mounting of electronic components on peB's 
to realise populated and finished PeB's. This includes solderpaste and/or glue application 
component onsertion and/or insertion and soldering, together with inspection operations 
throughout; 

peB fabrication - All processes involved in the manufacture of multilayer printed circuit 
boards (PCBs). This will include the generation and use of phototools, the chemical process
ing in the creation of separate peB layers, the bonding of the finished board, the drilling of the 
layers and finished boaro and inspection and test throughout the process; 

phototools - The artwork transparencies describing the track and pad features of a layer within 
a PeB. These are used within the PeB fabrication process; 

pixel - An element of a matrix which makes up a pictorial representation of a scene. Used to 
describe a single point within a graphical display or a single point within an image captured in 
a frame store; 
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product realisation - This term is used to imply a broader coverage than just shop floor man
ufacture. For example product design and introduction, finance and accounting, logistics, and 
manufacturing planning and control are also included in the definition; 

reference architecture - An overall framework that may embrace models, methodologies and 
mechanisms which can support the lifecycle of their target domain; 

SMT - Surface mount technology. PCB manufacturing technology where electronic compo
nents are connected to PCBs using solder to attach them to PCB component pads on the sur
face of the PCB; 

stereo vision - binocular imaging through the use of two cameras to generate different images 
of the same scene. Points in the two scenes are matched and depth information is computed to 
construct a 3D representation of the scene; 

TCP-IP- This is an 'internet' protocol which can run over the top of a number of different 
types oflocal area network (e.g. Ethernet and SNA) making their distinctive characteristics 
transparent to the user; 

TOP - acronym for Technical Office Protocol, specification for communication within the 
office environment, based on the IS0/0SI reference architecture; 

touch up - a PCB assembly process which follows final inspection (or is incorporated within 
it). The process involves minor hand finishing of the board, typically to make good poorly sol
dered joints; 

through hole plating - is the process of etching tin to the inner wall of holes in PCB's, so 
forming a conducting link between layers within a multi layer PCB; 

through hole technology - Conventional PCB manufacturing technology where electronic 
components have leads which pass through holes in the PCB before solder is used to make 
electrical connection between component lead and PCB pad; 

wash off - a PCB assembly process which usually follows flow solder and precedes final 
inspection prior to test The process washes off any contamination from the PCB. 
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Appendix 1 

CONTEMPORY GENERAL PURPOSE 
VISION HARDWARE 

1.0 THE PHILIPS SINGLE BOARD IMAGE PROCESSOR 

Figure 1 shows the logical breakdown of this single board system [Philips]. The architecture is 

typical of many single board solutions and is based around the image memory or frame store. 

Analog to digital conversion of the video input source is followed by input lookup tables for 

transformations on incoming signals prior to storage. Output lookup tables precede the digital 

to analog conversion to generate the graphics output signal. The correlator provides high 

speed binary operations and real time correlation between reference images and the incoming 

captured image. On board intelligence is provided through the a 32 bit general purpose proces

sor with graphics processing capabilities. Communication with the host system is effected via 

the VME bus. 

2.0 IMAGING TECHNOLOGY SERIES 150 

The overall architecture of this system is shown in Figure 2 [Imaging). The system comprises 

a range of 6 boards which use the VME bus for communication to their host system plus a 

range of video buses for inter-board communication of vision data, including a video pipeline 

data bus. Facilities provided are as follows: 

• analog/digital interface for conversion of signals to video monitors and from video sensors 

(ADI-150); 

• frame buffering. (up to 4 frame buffer cards can be used for image storage) (FB-150); 

• real time image processing through the use of a high performance pipe line processor for 

arithmetic. logical and bit-plane oriented image processing (ALU-150); 

• real time convolution. 4*4 convolution on a 512*512 frame in 1/30 sec (RI'C-150); 

• histogram generation and feature extraction (HF-150); 
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• programmable image processing acceleration for frequency domain filtering, geometric 

transformation and correlation (IPA-ISO). 

2.1 Further General Purpose Architecture 

Other common architecture at this level include systems based on the use of parallel digital 

signal processors [LSI] and array processors [Analogic]. The common use of video buses 

within the various system architecture at this level has led to calls for a standard in this area 

[Singer 93]. 

FIGURE 1. Architecture or the Philips single board image processor 
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FIGURE 2. Architecture of the Imaging Technology Series ISO system 
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Appendix 2 

OBJECT - ORIENTED DIAGRAMING 
NOTATION 

Appendix 2 

Coad Yourdon Notation 
Summarizing the "Identifying Objects" step: 

Notation 
Object 

1===~~- Object name 

Strategy 

Object = an abstraction of data and exclusive processing on that 
data. reflecting the capabilities of a system to keep Information 
about or Interact with something In the real world. 

Organization eler!< 

2 3 4 

Owner Vehicle 

...... 
ntle Registration 

An OOA Example: Object Layer 
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Summarizing the "Identifying Structure" step: 

Notation 

Classifi 
Slruct 

!Cation 
ure 

Strategy 

I 
1 

1 ~A 

r~ 

--

Asse mbly 
clura Stru 

-
Structure = representation of complexity in a problem space. 

Classification Structure represents class-member organization.: 
reflecting generalization-specialization. Assembly Structure: 
represents aggregation. reflecting whole and component 
parts. __ 

Organization Cler1< 

I .. A 

I" .... 

2 3 4 

Owner Leoal Event Vehicle 

1 l-..... 
I I 

. ntle Rl'Oistration 

I I I I 
Passenger Truck Motorcycle Trailer 

J. 

Standard Trailer Travel Trailer 

An OOA Example: Structure Layer 
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Summarizing the "Defining Attributes" step: 

Notation 

gl'"'''' ." 
" 

Strategy 

I 

Attribute 
override 

1 
I 

;. 

Instance 
Connections 

-----01- 0: 1 

---~II+I 1: 1 

----;~O:M 

----!(;K I:M 

Attribute = a data element used to describe an Instance of an : 
Object or Classification Structure. 

Attribute Layer: 

Oraanizalion Clerk 

Name 
" A 

UserName 
Manager 

" Authorizalion 
Address BeginDate 
Telephone EndDate 

1 

2 3 ( ! 4 

Owner Legal Event Vehicle 
I LegalName 

~ 
DateTIme 

Address 'I ff Number 
Telephone Year 

J.. 
Make 

;.,..,..,. Model 

I 1 BodyStyle 

ntle Reoistration Gross 

Number DateTImeSta~ 
Passengers 
Diesel 

OwnershipEvidenc DateTImeEnd Color 
SurrenderedTItle Plate Cost 
Fee Sticker Mileaoe Fpp 

I I I 1 
Passenger Truck Motorcycle Trailer 

empGross x Gross x Diesel 
x Passengers 

J.. 
Standard Travel Trailer 
Trailer BodyNumber 

Length 
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Summarizing the "Defining Services' step: 

Notation 

Service -+-1 ~'.oooooooo.." 
Message Connection 

Strategy 

Service = the processing to be performed upon receipt of a: 
message. 

Service Layer: 

Organization Clerk 

1.1.-<1..0 .. ~ 

f-4 ..... ~ 

1 
-Z; 

2 3 J- 14 : 
LeQal Event 

I 
Owner I Vehicle 

I 
> .... 1 , 

~ I ~ 

,l I 
L 

I I 
TItle Registration 

Calculate Fee 
AcceptFee CalculateFee 

AcceptFee 
CheckRenewal 

I , 
I 

Passenger Truck Motorcycle Trailer 

), 
. 

Standard Traile Travel Trailer 
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Booch 91 notation 

The Models of Object-Oriented Design 
Supporting multiple. interrelated views 

Dynamic semantics 

Logical view 

Physical view 

Class structure 

Object structure 

Module architecture 

Process architecture 

The Process of Object-Oriented Design 
Supporting the incremental and iterative process of round.frip gestor. de5ign 

• Identify the classes and objects at a given level of abstraction 

• Identify the semantics of these classes and objects 

• Identify the relationships among these classes and objects 

• Implement these classes and objects 
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Class Diagram 
fJh .. s!rctes the cfcss structure. inc:LJ(f.:'":g the specificction ef indiv:dual classes cnd t"'e,'r relationships. 

Class ~ 
,- ... " ... ~ name , , ,- , ~ 

, name ' 
'- ' , - ...... -,,: .. ,,-, 
cardinalily 0 /1 / n 

concurrency sequential J blocking I aelNe 
persistence static I dynamic 

Cardinality 
o zero 
1 one 

zero or more 
+ one or more 
? zero or one 
n n 

Class relationship 

OX label X 
uses (for interface) 

exported from class category 
private to class category 
imported from class category, 

Class category visibility 

label 

Class category 

global..--_ 

Class template 
Name: 
Documentation: 

identifier 
texl 

name 

x 

Visibility: 
Cardinality: 

experled / private / imporled 
0/1/ n 

Hierarchy: 
Superclasses: list of class names 
Metaclass: cfass name 

Generic parameters: list of parameters 
Interface I Implementation 
(Public/Protected/Private): 

Uses: list of class names 
Fields: fist of field declarations 
Operations: list of operation declarations 

Finite state machine: state transition diagram 
Concurrency: sequential f blocking f active 
Space complexity: text 

X • label x 
uses (for implementation) 

Persistence: persistent I transitory 

label 
- - - - - - - - ~ instantiates (compatible type) 

label 
;-------~ instantiates (new type) 

label 
inherits (compatible type) 

label 
inherits /new type) 

label 
metadass 

label ••••••••• undefined 

Class utility 

Operation template 
Name: identifier 
Documentation: text 
Calegory: texl 
Qualification: text 
Formal Parameters: list of parameter decfarations 
Result: class name 
Preconditions: POL I object diagram 
Action: POL I object diagram 
Postconditions: PDL I object diagram 
Exceptions: list of exception declarations 
Concurrency: sequential I guarded I 

Time complexity: 
Space complexity: 

concurrent I multiple 
texl 
text 

,- ... ,-~ " ;J Class utility 

0
~ name· te:~::te identifier 

I . Documentation: text 
\ Visibility: exported I private I imported 

Generic parameters: list of parameters 
Imerface I Implementation: 

I name! exported from class category Uses: list of class names 
name private to class category Fields: list of field declarations 
name imported from class category Operations: list of operation declarations 
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Object Diagram 
IlIustrotes the object structure, including the speCification of ind."vid:.Jol cbfects o.'1d their relationships. 

~---------. Object template 

sequential I blockir.g f act:ve 
persistent f statiC I dynamic 

Name: identifier 
Documentation: text 
Class: class name 
PerSistence: persistent I 

static I dynamic 

---=::::--.. Synchronization symbol 

/Oi.::,:'::::P _____ -.;.... simple 

inside the system 
-----;,"', "... synchronous 

outside the system _____ ~;.J balking 

Visibility symbol 

m same lexical scope _____ J,Q~~... timeout 

~ same lexical scope (shared) 
_____ -'hh asynchronous 

III parameter Message template 

lE! paramefer (shared) Operation: operation name 
Documentation: text 

IJ field Frequency: aperiodic; periodic 

[El field (s.;ared) 
Synchronization: sifT'lp!e ! synchronous I balking! timeout I asynchronous 

State Transition Diaaram 
Pori of a class diagram. illustrates the state machine of a class 

State State transition 

events~ 
actions State transition template 

start state stop state Events: list of identifiers 
Documentation: text 
Action PDL I object diagram o 0 

Timing Diagram 
Port of on object diagram, ilfustrates the order of events among 0 set of ob/ects 

object 

object 

Object 

object 

oDerot1.912 __________________ _ 

o er tl9Q. ________ _ 

oration 
! 0 erotion 
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Module Diagram . 
Ilfust;a1es the ~hysicOI packcging of closses cnd objects into modules 

Main 
Subsystem program 

Subprogram 
specification 

LJEJ 
I name! exported from subsystem 
name [private to subsystem] 
~ imported from subsystem 

Module visibility 
label 

Package 
specification 

Generic 
subprogr~m 

name r---
r---J 

I 

Generic 
package 

name ,..----
,"--) I 
-T,..---

L - r_1 

,.. -"--
.. -.. -' ---_ .. 

Module template --~ 
Name: identifier 
Documentation: text 
Declarations: list of declarations 

Task 
specification --i£j--name 

Process Diagram 
Illustrates the c·'ocation of processes to processors 

Processor Connection 

~~la~be~I ______ _ 

Connection template 
Name: identifier 
Documentation: text 
Characteristics: text 

preemptive I nonpreemptive I 
cyclic; executive J manual 

Device 

name 

Subprogram 
body 

Package 
body 

Device template Processor template 
Name: . identifier / Process template 
Oocume~at~on: text Name: identifier 
CharaC'!enst!cs: t~xt Documentation: text 
Processes: /1st of processes Pr"ority·· t 
Scheduling: preemptive I nonpreemptive J I. In eger 

cyciic / executive / manual 
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Appendix 3 

EXTRACTS FROM THE EDIF 
CONCEPTUAL MODEL 

Entities Relevant To The Inspection Of Bare 
PCB's 
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-------------------------------------------------------------------------------------
EXPRESS Inlormatlon Model 

ENTITY layout 
SUPERTYPE OF 

DESIGN SEcr:CN 

(ONEOF (bare_board, testJloint. toolingJllace, mountingJllace, 
sub_layout, tlaUootprint, toeprint, heeJprint)): 

has_layoutJlrimitives : SET 10 : #J OF layoutJlrimitive: 
WHERE 

only_occurs_i"_reration_to : 
valid_users (LAYOUT, 

('BARE_BOARD,HAS_ TEST_POINTS', 
'BARE_BOARD,HAS_TOOLlNG_PLACES', 
'BARE_BOARD,HAS_MOUNTING_PLACES', 
'ASSEMBLED_BOARD,IS_BASED_ON', 
'BARE_BOARD,HAS_SUB_LAYOUTS', 
'SUB_LAYOUT,HAS_SUB_LAYOUTS', 
'BARE_BOARD,HASfOOTPRINTS', 
'SUB_LAYOUT. HAS_FOOTPRINTS', 
'STRUCTUREDfOOTPRINT,HAS_TOEPRINTS', 

:~b~Up'bWERNE.f.R~~~~~Ri~~,HAS_HEELPRINT', 
'ELECTRICAL_COMPONENT _TERMINAL,CONNECTS TO TOEPRINT' 
'COMPONENT_GROUP,BELONGS_T01); - -

can_oot_exist_alone : 
can_exist3lone (LAYOUT, FALSE): 

depends_upon_one_of : 
used_bLone_of (LAYOUT, 

('BARE_BOARD,HAS_ TEST_POINTS', 
'BARE_BOARD,HAS_ TOOLING_PLACES', 
'BARE_BOARD,HAS_MOUNTING_PLACES', 
'ASSEMBLED_BOARD,IS_BASED_ON', 
'BARE_BOARD,HAS_SUB_LAYOUTS', 
'SUB_LAYOUT,HAS_SUB_LAYOUTS', 
'BARE_BOARD.HASfOOTPAINTS', 
'SUB_LAYOUT,HAS]OOTPAINTS', 
'STAUCTUAED_FOOTPAINT,HAS_ TOEPAINTS', 
'STAUCTUREDfOOTPAINT,HAS HEELPAINT1): 

END_ENTITY: -

ENTITY test_point 
SUBTYPE OF (layout): 

DERIVE 
the bare board: bare board := 

back_ret (TEST_pOiNT, 
'BARE_BOARD,HAS_TEST _POINTS'): 

WHERE 
only_occurs_in_relatio"_to : 

valid_users (TEST_POINT, 
('BARE_BOARD,HAS_ TEST_POINTS']): 

can_"ot_exist_afone : 
can_exist_alone (TEST_POINT, FALSE): 

depends_upon_one : 
used_by _one (TEST_POINT, 

'BARE_BOARD,HAS_TEST_POINTS'); 

ENTITY layout_primitive 
SUPERTYPE OF (ONEOF (shape, layout_text, trace, pad, "'d81ac .... ;,ole)): 

DERIVE 
the_bare_board : bare_board :. 

find_bare_board (LAYOUT_PRIMITIVE, 
('LAYOUT.HAS_LAYOUT_PRIMITIVES']): 

WHERE 
only_occursj"_relation_to : 

valid_usens (LAYOUT_PRIMITIVE, 
('LA YOUT,HAS_LAYOUT _PRIMITIVES', 
'PHYSICAL_NET,HAS_SHAPES', 
'PHYSICAL_NET,HAS_ASSOCIATED_ TEXT', 
'PHYSICAL_NET,HAS_TRACES', 
'PHYSICAL_NET.HAS_PADS', 
'PHYSICAL_NET,HAS_EQUIPOTENTIAL_PADSTACKS', 
'PHYSICAL_NET,HAS_PLATED_THROUGH_HOLES', 
'PROBE]OINT,REFERS_ TO_LAYOUT _PRIMITIVE', 
'FIDUCIAL_MARK.REFERS_TO_LAYOUT_PRIMITIVES', 
'GEOMETRIC_LAYOUT_TEXT,USES_SHAPES', 
'GEOMETRIC_LAYOUT _ TEXT,USES_ TRACES', 
'PADSTACK.HAS PADS' 
'PADSTACK,HAS-HOLES', 
'JUMPER]ADSTACK.REFERS_TO', 
'ELECm::::AL_COMf'OIIENT_TERMNALCONNECTS_TO.J'N_PLACE',]): 

can_"oCexisCalone : 
can_exist_alone (LAYOUT]RIMITIVE, FALSE): 

depends_upon_one : 
used_by_one (LAYOUT_PRIMITIVE, 

'LAYOUT,HAS_LAYOUT_PRIMITIVES'); 
END_ENTITY; 



EXPRESS In/ormation Model DESIGN SECTION 

ENTITY pad 
SUBTYPE OF (Iayout...onmitive); 

has_geometry: SET [t : #) OF geometry; 
WHERE 

(' 

') 

onry_occurS_i"_reratio"_to : 
valid users (PAD, 

[·PHYSICAL_NET.HAS]ADS', 
'PADSTACK.HAS_PADS·, 
'LAYOUT. HAS LAYOUT PRIMITIVES', 
'PROBE POINT,REFERS-TO LAYOUT PRIMITIVE', 
'FIDUCIAL_MARKREFERS_TO_LAYOUT_PRIMITIVES')); 

can not exist alone : 
can_exist_alone (PAD, FALSE); 

depends_upo"_one_of : 
used_bLone_of (PAD, 

[,PADSTACK.HAS_PADS', 
'LA YOUT.HAS_LAYOUT ]RIMITIVES')): 

The geometry must use phYSical layers which the pad can go on 

rl : 
is_empty ((9 <' has-l/eometry I 
NOT g.used...ohysicaUayers <_ 

the_bare _board .is Jm pie mented_in. has_physicaIJayers}): 
END_ENTITY: 

ENTITY hole 
SUBTYPE OF (Iayout...orimitlve) 
SUPERTYPE OF (ONEOF (plated_through_hole, unplated_hole)): 

spans: SET [1 : #) OF physicaUayer: 
has_geometry: SET [1 : #) OF geometry: 

WHERE 
only_occurs_in_relation_to : 

valid_users (HOLE, 
[,PADSTACK.HAS_HOLES', 
'LA YOUT.HAS_LAYOUT _PRIMITIVES', 
'PROBE POINT.REFERS TO LAYOUT PRIMITIVE', 
'FIDUCIAL_MARKREFER-SjO_LAYOUT_PRIMITIVES', 
'PHYSICAL_NET.HAS_PLATED_THRCUGH_HOLES')): 

can not exist alone : 
can_exisCalone (HOLE, FALSE): 

EXPRESS Infc(~atlon McclJJ ___________ .....::C,;;;E,;:5.:,;;:G.:,;;N.;.,;;5;;,E;;:;C,;.,.;,:;.C;..:.'1 

ENTITY shape 
SUBTYPE OF (Iayout...onmltlve); 

has_geometry: SET [t : #) OF geometry; 
WHERE 

(' 

') 

only_ocCurS_in_relation_to : 
valid_users (SHAPE, 

['LAYOUT. HAS_LA YOUT _PRIMITIVES', 
'PHYSICAL NET. HAS SHAPES', 
'GEOMETRiC_LAYOUT _ TEXT.USES_SHAPES', 
'PR08E_POINT.REFERS_ T:> _LAYOUT_PRIMITIVE', 
'FIDUCIAL_MARKREFERS_ TO_LAYOUT _PRIMITIVES')); 

can_noCexisCalone : 
can_exist_alone (SHAPE, FAL:)E); 

depends_upon_one : 
used_by _one (SHAPE, 'LA YOllT.HAS_LA YOUT _PRIMITIVES'); 

The geometry must use physical I.yers which the shape can go on 

rl : 
is_empty ((g <' has_geometry I 
NOT g.used...ohyslcaUayers'<' 

the_bare _board.isJm pie mented_in.has ...ohyslcal_la yers}); 
END_ENTITY; 

ENTITY trace 
SUBTYPE OF (Iayout...orimitive); 

has-l/eometry : SET [1 : #) OF geometry; 
trace width: INTERNAL DISTANCE; 
,end_iYpe : INTERNAL END_TYPE; 
corneUype : INTERNAL CORNER_TYPE; 
status: FIXED INDICATOR; 

DERIVE -

true_status: F'XED_'ND'CATOR := status_to':'be_wrltten; 
WHERE . 

only_occurSJ"_relatio"_to : 
valid_users (TRACE, 

[,PHYSICAL_NET. HAS_ TRACES', 
'GEOMETRIC_LAYOUT _ TEXT. USES_ TRACES', 
'LAYOUT. HAS LAYOUT PRIMITIVES', 
'PROBE_POINT.REFERS~TO_LAYOUT_PRIMITIVE', 
'FIDUCIAL_MARK.REFERS_ TO_LAYOUT ]RIMITIVES')); 

can not exist alone: 
Can_eXist_alone (TRACE, FALSE); 



Appendix 4 

AN EMERGENT MULTI-COMPONENT / 
MULTI-LAYER MODEL BASED ON 

OBJECT-ORIENTATION. 

The structure of software within the application layer of the architecture proposed within this 

thesis cannot be truly generic in nature, due to various demands of the many different fonns of 

machine vision application that are possible. However, domain specific structure, (or partial 

models [CIM-OSAD can be used to promote a standard framework within the application 

layer software. 

A general structure derived from the "EDlF model for PCB" [EDlF 90,91], was identified by 

the author in which four layers were used to structure the problem domain component as 

shown in Figure 5 of chapter 7. The principal objects within the application were also derived 

from the EDlF model as was the naming convention used within the application (these being 

direcdy related to object names within the EDIF model). This notion of using application 

domain models to identify principal objects, and thereby generally influence design decisions 

within the application, was derived from the consistent occurrence of structure in each appli

cation implemented by the author. All applications built by the author have adopted a structure 

which reflects the physical structure of the object to be inspected. It is this phenomena which 

fonns the basis of object oriented analysis. Existing models (such as EDIF) that have been 

derived, tested, proved, accepted by, and are used within industry are a sensible place to search 

for objects which can contribute to the data abstractions used within an application. The use of 

such technique can lend industry wide familiarity to the fonn of applications. 

Decomposition within the application layer supported the notion of the 4 component model 

described by Coad in his paper "new advances in object oriented analysis" [Coad 91]. These 

components being: 

• problem domain component; 

• operator interface component; 
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• task management component; 

• information management component 

Figure 7 in Chapter 7 shows the object decomposition within the vision application object. 

The "problem domain component" and the "management component" are clearly shown. 

Operator interface facilities exist within the client application, a clear demonstration of the 

decomposition in line with Coad's proposals. 

Coad suggests the model is multi-layer as well as multi component, identifying the following 

layers: 

• subject layer; 

• class and object layer; 

• structure layer; 

• attribute layer; 

• service layer. 

The top four layers are analogous to the author's application decomposition, while the services 

provided by the Vision Model are analogous to Coad's bottom Service layer. The authors pro

posed decomposition within the applications layer supports the multi-component I multi-layer 

model seen by Coad as emerging within applications based on the object-orientation. 

AN EMERGENTMULTI-COMPONENT /MULTI-LAYER MODEL BASED ON OBJECT-ORIENTATION_ 
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Appendix 5 

THE APPLICATIONS DURING 
EXECUTION 

1.0 INSPECTION OF THE PINS OF AN S08 

Figure 1 shows photographs of an 8 leg small outline integrated circuit (S08) under inspec

tion. Figure 1 a shows the back illuminated image which fOllns the raw image snapped into the 

vision system frame buffer. Figure 1 b shows the grey level processed and thresholded binary 

image, while Figure 1 c shows the segmented binary image following noise removal via ero

sion and dilation, followed by edge detection and thinning, to produce a single pixel boundary. 

Figure 1 c also show the centroid identification which takes place (together with the computa

tion of area and perimeter) during the extraction of the component boundary. 

If a classification match is found, the EDIF model Package entity of the particular matched 

component is loaded from disc. Window co-ordinates for each pin are computed and used to 

control local vision processing of each pin of the component. The view of the EDIF model 

information required to drive the functionality implementing the extraction of detailed pin 

information is achieved by the instantiation and use of information management objects. 

Figure 2 a shows the result of window processing around pin 1 of the component, following 

the generation of a single pixel width arc describing the pin. Further sub-windows are com

puted from the EDIF model package entity to identify regions of prospective corner points. 

Figure 2 b shows the processing windows, while Figure 2 c shows the identified corners. 

Figure 2 d shows the component following complete extraction of the pin corner points. 
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FIGURE 1. Images of the application extracting elementary features 

a: raw image of back illuminated component b:image thresholded to binary 

c: segmented binary image following noise removal 
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FIGURE 2. Images of the application extracting '~ive" features from the package pins 

a: window processing around pin 1 b: corner point processing windows 

c: identified pin corners d: extraction of all pin corners 
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2.0 THE MODIFIED APPLICATION 

Figure 3 shows images of the image processing used to generate elementary features from a 

front lit SOS. The figure shows the final image which produces useful area and perimeter 

information but cannot be used to extract accurate descriptions of the component Pins. 

Figure 4 shows images of the processing required to extract descriptions of the component 

identification. Again window processing based on information extracted from the EDIF prod

uct model of the component is used. 

FIGURE 3. Images or the modified application extracting elementary reatures 

' .. ",-.". 

a: raw image of front illuminated component b: binary level thresholded image 

c: segmented binary image following image processing 
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FIGURE 4. Images of a new application extracting StrinLArcs features 

a: raw image of front illuminated component b: binary level thresholded image 

c: segmented binary image following image processing 
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Appendix 6 

COST IMPLICATIONS 

In his paper on modular application software for robots, Peck [Peck 87] has evaluated the 

effect of a modular approach on each phase of the software development cycle. Figure 1 gives 

details of his findings (assuming no re-use of existing software), illustrating the additional 

time requirements during design, and the reduced time during code generation and implemen

tation. Time during implementation and debug can often tie up valuable resource particularly 

during production line commissioning and system optimization. Camp [Camp 76] states that a 

modular approach can reduce implementation costs by between twenty five and fifty per cent 

It could be argued that the structured approach proposed within this thesis could reasonably be 

expected to lead to similar savings. 

FIGURE 1. Effects or using a modular approach ror application sol'tware creation 

Project Time (in %) . 
60 

~~ ....................................................................... _ .......................................... . 

40 1- ......................................................... . 

30 1-..................................................... . 

20 

10 1-................ . 

o 
DESIGN CODE REO. SPEC. 

Phases of Development 

• 
Efficient, Non- _ Modular, Structured 
Modular Method ... Approach 

Figure taken from reference [Peck 87] 
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FIGURE 2. The cost of creating and maintaining application software 

COST 
Acquisition 

Operation 

TIME 

Figure taken from reference [Spaclcman 92] 

The early chapters of this thesis identified the need to cope with change in order to retain a 

competitive edge gained through the exploitation of contemporary manufacturing practises. 

Figure 2 shows the trend of cost against time used by Spackman in his paper on open systems 

integration [Spackman 92]. Spaclcman states that the modification of next generation open sys

tems will constitute the major cost during a system Iifecycle. The proposals made in this thesis 

to support ease of change within next generation machine vision systems could help to reduce 

these costs. 
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Appendix 7 

A VISION CLIENT APPLICATION IN A 
SOFT INTEGRATED VISION MACHINE. 

This appendix details a particular vision client application used in the authors implementation 

of a Soft Integrated Machine Vision System described in PART B and C of this thesis. The 

functionality provided within this Vision Client Application is designed to fulfil the minimum 

specification to exercise the Remote Vision Server. The Vision Client Application comprises 

two principal areas of functionality: 

• operator interface, and; 

• information management. 

Figure 1 and Figure 2 show bit map captured images of the operator interface windows taken 

from a Sun workstation VDU during operation of the Vision Client Application. The main 

interface shown in Figure 1 has standard communications monitoring facilities similar to that 

described for the Vision Alien Device Driver Main Interface. The Top half of the Main Inter

face has facilities for selecting from a menu of programs for remote invocation (vaple.exe or 

slow.exe), and offers a field for user entry of any executable program file name which is avail

able within the vision application object. 

Control buttons are available on the Main Interface for manual operation of the facilities 

described within this chapter, typically the establishment of an association with the Vision 

Alien Device Driver, or the sending of data to the Remote Vision Service Provider. 

The Admin. Interface shown in Figure 2 provides application specific facilities and is unique 

to the particular application. It provides control and display of Information management facil

ities within the application. A display of Live Model Information provided by the Remote 

Vision Service Provider is available, with facilities for saving, loading and viewing informa

tion pertaining to small outline res (SOlC). 
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FIGURE 1. GUI's for the Vision Client Application 

App File: 
CMll Msg driver pack received. 

Packet received at 16:31:16. 
Tx Cmnd 4 Seqn 2 Perm : -13422 
lnt args 0, 0, 0 
Str args I'sun_slll "vis_1nspu, "visionll

( 

Tx data 
• • 

Rx Cmnd CM\) 4 Seqn : 3 stat 1 
lnt args -19006, 3, 0 
Str args "vision", "vis_insp" , Ill. 

Rx data live model data -

FIGURE 2. GUI for Vision Client Application. Admin. Interface 

App : .. File : Host 
Data 
Msg : file closed OK 

SOIC (small outline IC) :- LIYE ){()OEL DATA 
Legs :8 area :30683 cent x :288 cent y :235 
legl count :89 start " :221 y :145 
leg2 count :90 start " :220 y :195 
leg3 count :89 start " :222 y :245 
leg4 count :91 start x :223 y :295 
legS count :93 start " :357 y :295 
leg6 count :90 start x :356 y :245 
leg7 count :89 start x :356 y :195 
lege count :92 start " :354 y :145 
1eg9 count start x y 

10&10 count start x y 
1eg11 count start " y 
le&12 count start " y 

le813 count start " y 
le&14 count start x y 
leg15 count start " y 
leg16 count start x y 
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Machine 
support: 

vIsion integration and information 
methods,models and tools 

J. EDWARDS. P. eLEMENTS and S. MURGATROYD 

Abstract. In recent years, machine vision systems have been 
introduced into the dectronics manufacturing industry for 
control and inspection applications. For some applications. 
great benefit has been derived, but serious Jimitations affecting 
flexibility and the system liCe cycle have been exposed. This 
paper proposes a model for building integratable vision 
machines capable of deriving benefit from support information. 
providing facilities to ease change and improve ftexibilily. A 
proof of concept implementation is discussed using infonnation 
storage based on both the relational and the object-oriented 
moods. The paper presupposes the -need for an integration 
infrastructure such as that specified by CIM"'()SA or as 
implemented at Loughborough University of Technology by 
the Systems Integration Group as the CIM~BIOSYS (Com
puter Integrated Manufacturing Building Integrated Open 
Systems) integration infrastructure. 

1. Introduction 

During recent years, vision machines have become an 
integral part of automated process machines within the 
electronics manufacturing industry. These processes are 
being used to increase efficiency and quality levels in the 
fabrication and assembly of fine-pitch technology 
printed-circuit boards (PCBs) employing surface mount 
technology (SMT). Typically they are used as inspection 
tools during phototool, inner-layer and bare-board fabri
cation. During PCB assembly they are used in estab
lishing board and component alignment. They are also 
employed for solder paste and glue-dispensing inspection 
prior to component placement and at stages of pre- and 
post-solder inspection. 

Automation win only be introduced into the electronics 

Aad},MJ': J. Edwards, P. CI!'m!'nts and S. Murgattoyd. Syst!'ms 
Int('gration Group, Depanmf!nl of Manufacturing Engin('ering. 
Loughborough Univ!'rsilY of Tf!chnology. Loughborough. uicf!st('r· 
shire. LEll 3TU, UK. 

manufacturing industry when it is capable of carrying 
out a task more accurately, reliably and efficiently than 
an employee or when the task simply cannot be done 
manually. However, in today's climate of short product 
life cycles, short production runs, fast times to market, 
multiple and custom products produced in a fast and flex
ible manner, considerations such as the configurability, 
Oexibility, ease of update and change in a manufacturing 
process machine are additional issues which are key to 
the successful implementation of automation. 

Sakakibara and Matsumoto (1991) in describing their 
car-electronics product plant (Nippondenso Co., Ltd.) 
cite the current number of products at 4000, the number 
of new products as 1000 per year with design changes at 
5000 per year. This type of environment makes it very 
difficult to justify any technology that cannot adapt to 
change and cannot be easily integrated within an infor· 
mation system. It is infonnation support which is 
necessary to enable fast product change over and to 
minimize machine downtime, while reducing the chance 
of faulty configuration and improving yield. It is these 
goals then that machine vision process machinery must 
strive for 

(a) flexibility, that is the ability to handle multiple 
predictably change, for example to inspect a range 
of products, 

(b) ease of change, that is to support modification in 
Hne with unforeseen change, and 

(e) ease of integration, that is to be a building element 
within a computer integrated manufacturing 
(CIM) system. 

This paper describes work at Loughborough Univer
sity of Technology (LUT) aimed at developing the 
required mechanisms to enable the above requirements 
to be met. It is these goals of flexibility, ease of change 
and ease of integration which detennine the design and 
implementation of the system described. 

095H92X/93 110-00 © 1993 Taylor &: Francis Ltd . 
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2. Current practice in machine vision systems 
design 

l\·bchine VISion inspection machines are primarily 
complex pieces of mechanical engineering with associ
ated electronic programmable controllers. They are 
designed with their immediate functionality in mind as 
standalone processes capably of being bought 'off the 
shelf. They can be installed and put into operation 
without necessarily being linked to complex communi
cations and infonnation systems used in their host 
environment. They are built to achieve a specific applica
tion \\;th configuration facilities to enable multiple pro
ducts of the same type to be processed. As such, the main 
design priorities are software execution speed, reliable 
vision-processing algorithms and mechanical accuracy. 
Unfortunately when viewed a. a building block of a 
manufacturing system these vision machines are gener
ally not of a flexible nature and as such do not permit a 
comfortable migration path to enable modification as 
requirements change, for example with changes in 
enabling technology, or changing product requirements. 
Much of their inflexibility stems from a lack of consider
ation given to the way that such systems may be inte
grated. Typically, integration provision might comprise 
a 15·way D-type connector, an RS232 port and a section 
in a manual specifying the rough requirements to enable 
communication. 

Hence we have the all too familiar sight of the 12-
month-old piece of expensive vision machine technology 
sitting on the shop floor gathering dust, only to be used 
in the manufacture of the occasional batch of old 
product. 

This paper proppses a vision machine design strategy 
which can enable the required features of flexibility, ease 
of change and ease of integration and could prevent the 
continued generation of inflexible systems. The reduced 
development and system support costs and the potential 
increase in the system life cycle of the equipment could 
also reduce the risk associated with choosing a machine 
vision option. 

3. A structured approach to integration 
implementation 

The Systems Integration (SI) group at LUT has for 
some years recognized the requirement for a single con
sistent interface for applications requiring integration 
level flexibility. This flexibility could be provided through 
the control and management of interprocess interaction 
and information sharing, ensuring provision for con
trolled change. To address this requirement an inte
gration infrastructure and platform of sen.'ices was 
derived through practical experience of solving contem
porary integration problems. This infrastructure is cur-
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DRI\IERS 

Fl1NCl1ON n-.1'ORMATlON 
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Figure 1. A functional -new of CIM-BIOSYS. 
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rently known as CIM-BIOSYS (Weston et al. 1989, 
1990, 1991). 

This notion has been supported by the requirements 
specified within the CIM-OSA reference architecture 
(CIM·OSA 89). CIM·BIOSYS consists of a number of 
functional blocks as shown in Figure 1. 

The manufacturing functions and applications shown 
in Figure 1 are in this context viewed as being those pro
cesses which perform some part of a distributed and yet 
integrated manufacturing operation. Typical examples 
include a cell controller or a scheduling application. The 
device drivers hide or cater for the diversity of both fune· 
tionality and implementation of system resources. 
Typical examples of system resources include shop floor 
machines, proprietary databases and human operators. 

The need for an integration infrastructure, such as 
CIM-BIOSYS, is now widely accepted by the manufac
turing systems integration research community. By 
enabling the creation of (open' software, the use of an 
integration infrastructure can promote the more syste
matic generation and change of flexibly integrated 
systems. This provides a means of dealing with the 
high levcls of complexity found in most manufacturing 
organizations (Weston d al. 1989, 1990, 1991). 

4. A proposed model for fully integrated machine 
vision 

When using an integration infrastructure, such as 
ClM-BIOSYS, to integrate practical manufacturing 
systems, three types of modular building block of ClM 
systems can be identified, as shown in Figure 2. The fol
lowing summarizes the main features of each module 
type, while a more detailed treatment of a proposed 
breakdown of each module type is presented within the 
section covering the proof of concept implementation. 

4.1. Type J modults: point process functionality moduus 

In this work the term lpoint process' is used to describe 
a single manufacturing process, in this case a machine 
vision inspection system. 
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Figure 2. A representation of an integrated vision m.achine. 

Type 1 machine vision inspection modules embrace 
the hardware providing the point process functionality, 
specifically the image capture card and associated pro
cessing hardware, plus the software providing the 
application and hardware bound functionality_ This 
includes functionality that is required to interface to 
hardware components, primarily the driver software for 
the vision chips on the image·grabbing hardware, or soft· 
ware that is required to operate within speed constraints, 
such as control software or vision processing software. 

This module forms a point process object which pro· 
vides a level of services above that provided by the inte· 
gration services within CIM-BIOSYS_ These point 
process services could embrace such functionality as 
'inspect PCB', 'accept PCB AB123 inspection criteria' 
and 'return features of a component of this model type' 
as might be used during the normal operation of the pro~ 
cess, or 'return self·diagnostic check information' a 
service typically available to more general applications 
running on the integration platfonn. 

4_2_ Type 2 modules: platform compliant integration modules 

This module should be completely invisible to the open 
applications (or type 3 modules) whicb make use of the 
application services provided by the type 1 point process 
object module. It mainly comprises protocol conversion 
facilities_ permitting ClM-BIOSYS compliant appli
cations to communicate with the remote point process, 
fielding messages from CIM-BIOSYS, converting them 
sucb that they can be interpreted by the type 1 process 
module and vice versa. 

Additional faciHtics are incorporated in type 2 modules 
for integration debugging as this key functionality linking 
the application software functionality to the remote point 
process object is essentially the 'communications driver' 
of old, a software domain fraught with problems. Engin· 
eering access is provided through a display system 
typically enabling interaction both up to type 3 modules 
and down to type 1 modules to be isolated and proved_ 

4.3_ Type 3 modnltS: opm applications 

Arguably this type of module could be used to imple
ment all functionality associated with a point process 
application that can be lifted out of the traditional remote 
standalone application_ Through acbieving sucb a separ
ation the application's functional software can be moved 
into an environment which today offers very 
sophisticated tools for software generation and debug
ging_ Here great benefit can be derived from a marriage 
of advanced manufacturing technology and the rapid 
developments emerging in the field of computer science 
(i.e, in tenns of hardware, software and information 
technology)_ This, together with an implementation 
approach based on the use of an integration infrastruc· 
ture, can provide an environment where the key require~ 
ments of ease of integration, 8exibility and ease of change 
of a manufacturing process. can flourish. 

Type 3 modules will typically embrace sucb functional 
capabilities as infonnation management, operator inter· 
face, off· line analysis and non-time-critical application 
functionality. 

Type 3 modules can be created so that they comprise 
a fully compliant integration platform point process (or 
open application) and as sucb can be complemented by 
further modules of the same status as indicated in Figure 
2, which make use of the services provided through the 
other modules of the model_ Complementary appli
cations could typically include maintenance scheduling 
or process monitoring, the sort of task which in the past 
has been considered to be non·essential but is now a very 
real necessity when tuning a manufacturing facility to 
today's high-efficiency requirements. 

Open application. have access to the platform of ser
vices within the integration infrastructure. It is this situ
ation that allows the building of an information support 
system for the application from various information 
sources avaiJable through the infrastructure. 

This paper describes the use of infonnation retrieval 
via both relational technology and the object modeL A 
proof of concept implementation is described which 
inspects alien components, extracts their features and 
searches various information sources for component 
objects with matching feature attributes in order to 
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classify the component. Following successful classifica
tion a view of the specific component model information 
is used to derive more detaiJed features for use during 
inspection. This task of information management and 
manipulation is termed information view provision 
(IVP). It is implemented in the form of complementary 
open application software which runs on CIM-BIOSYS, 
making use of available infonnation services and 
resources. IVP is covered in more detail in Section 8 of 
this paper. 

5. A proof of concept imp1ementation; an 
integrated application enabling the automated 
vision inspection of surface mount components 

Figure 3 shows an overview of the 'proof of concept' 
system, which was constructed to illustrate how 
enhanced operational perfonnance can be realized when 
inspecting PCBs and components placed on or through 
them. Figure 3 illustrates the use of three module types 
to implement both the vision inspection application and 
the supporting IVP application. In the case of the IVP 
application, use was also made of application level infor· 
mat ion services provided by both an ING RES database 
and a GENERIS knowledge base. 

Figure 3. Ovenojew of elements making up the proot-or· 
concept system. 

5.1. Th, point pro"" functionality mDduu: an information 
driven, object-oriented m"sion inspection system 

Figure -4 shows the basic architecture of the type 1 
module, which embodies the notion of a separation of 

. 
.l! Control and supervision 

l~--~----~~-r-----.--~ 
j 
t 

Mode! Driveo 
<em""",,' 
inspxtion 
applicatioa 

VlSion Model 

""""" C .. 

Figure 4. Elements within the point process functiona1ity 
modu1e : H/W hardware; LAN, local area network. 

implementation-constrained technology issues from 
application level issues. This separation allows a replace· 
ment, development or upgrading of the technology 
without the necessity to replace the application code 
which may represent a major user investment, that is the 
application requirement such as 'inspect PCB' still 
remains the sarne, while the achievement of the goal may 
be improved by the use of improved imp1ementation 
technology. The simple twopleveI decomposition of 
visionptechnologypconstrained issues and application 
issues is in fact subject to greater decomposition and the 
point at which the technology ceases to influence the 
application may vary. 

5.1.1. A low·/evel vision·processing model. To determine the 
required functional decomposition of a vision machine as 
a manufacturing process the vision operation was first 
modelled. The philosophy of trying to move all applica
tion c;onsiderations up a hierarchical stack to increase the 
scope of the derived subobjects was applied. 

The analysis methodology used was that of Coad and 
Yourdon (1990) based on the principals of classification 
structure (or GENeralization- SPECialization structure) 
and assembly structure (or whole-part structure). The 
resulting essential model of grey-level and binary image 
pre·processing including facilities for segmentation corn· 
bined the simple assembly of a single whole image and 
multiple window images with multiple classifications of 
derived or transposed images (i.e. edge enhanced, 
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'hinned, e'c.). During 'he design phase 'he model sug
gested by Booch (1991) was derived, which embraces his 
notion of object evolution. Also from the design model an 
implementation-constrained model was developed for the 
hardware available, in this case a Matrox PC-AT vision 
board and associated driving software. The model was 
implemented in Zortech C++ to retain the object
oriented shape of the model and to enable and test the 
claimed benefits of object-oriented code (e.g. code re-use, 
and code redevelopment through encapsu1ation and 
inheritance). Figure 5 shows the different stages of the 
vision technology model. 

By the same process, feature extraction was modeIJed 
by the creation of point-set objects, arcs, boundaries and 
networks, with associated features, for example, length, 
perimeter, area, and number of nodes and arcs. The fea
tures extracted and the methods created to generate them 
were designed around three parallel applications, 
including SMT component inspection (as described in 
the following section), bare PCB inspection and 
character inspection for integrated-circuit identification. 
A number of appJication domains were studied to 
identify generic requirements. This led to the definition 

Conceptual ,!essential 
model of machine vision 
image p-ocessing technol
ogy 

Specific instance of a particu
lar version or the model. 
required Cor a spc:cffic applica
Oon 

Papcrmodel 

c++ class libraries 
describing SUIte and 
behavicl' I data stnJC· 
lUre and methods 

c++ l\Dl time code 

Figure 5. Three·stage vision technology model. 

e-eo----

Figure 6. Vision-processing mood using the adapted Booch 
(1991) class diagram notation. 

of class hierarchies of a generic nature; again they 
contain no constraining application specific-code. 

Figure 6 shows the model and its relationship with 
applications. The notation used to describe the model is 
that of Booch (1991) class diagrams, with the addition of 
an 'evolution' and an 'extracts from friend' relationship, 
required to describe fully the nature of the technology_ 

Further details of the low level vision model, which are 
not appropriate in the context of this paper, are available 
from the authors_ 

5.1.2. 'FM inspection application: inJonnation-dn'ven 
component inspection 

As shown in Figures 4 and 6, the implemented applica
tion code sits above an implementation of the vision 
model, instantiating the required vision objects (which 
typically will be representations of either complete 
images or window subsections of them, as whoJe-image 
and window-image objects) and firing messages at them 
to achieve vision processing transformations to enable 
segmentation. Application-specific classes, used to 
describe Jive objects within a scene, inherit state and 
behaviour from arc, boundary and net classes as appro
priate while adding the requ ired methods to control the 

' .. ,,-, ----'---;--~-
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beha\'iour of their specific objects, for example a 'compo
nent leg' class inherits from a 'simple arc' dass, a 'peB 
net' class inherits from a 'net' class. Arc, boundary and 
net-based objects are then instantiated to describe the 
state and behaviour of the required live features. 

The application is designed using the same analysis 
principles as described earlier using a model of a generic 
surface mount component and is implemented in Zortech 
C++. Very briefly the application seeks to derive 
benefit from the fact that the complete point process (the 
complete vision machine) is integrated within a system, 
thereby offering services such that the provision of infor
mation is eased. The application extracts basic features 
from whatever component is placed at whatever position 
in its field of view. It then classifies the component as 
being one within a pre·defined class, for example S08, 
SOl6 or SOT. The system can rely on a restricted local 
set of component descriptions loaded prior to inspection, 
restricting the system to information local to the appJica
tion (as typically eould be down·loaded to a component 
placement machine with incorporated component inspec
tion facilities). Alternatively it could search via the inte· 
gration platfonn information services for a remote 
component description to match the live features 
extracted from the component under inspection. The 
system then returns to the original image with specific 
information as to the position of the pertinent features of 
the classified component derived from a view of the com
ponent model (future implementations could include 
additional infonnation as to the best way to process those 
features). With this infonnation a mo:-e accurate descrip
tion of features can be generated while retaining 
flexibility. The information is derived from a product 
model instantiated within a data base within the inte
gration infrastructure, such that any component that 
can be described using the model is capable of being 
inspected (providing inherent 8exibility). 

5.1.3. lntnaction usues. Interaction is required between 
the PC·based vision machine comprising the type 1 point 
process and the platform compJiant integration module 
which resides on a Sun network. The hardware chosen to 
implement this link was an ethemet communications 
board mounted in the PC and linked into the Sun net
work. PC-NFS, a software package providing extensions 
to DOS·based C, was used to pennit the use of Unix
socket·based communications. As shown in Figure 4-, this 
system provided the implementation constraints for the 
type 1 module interaction model. The model comprises 
the message·building and stripping functions. 

The messaging application in Figure 4- comprised the 
handling dialogue of the messages providing the services 
of the type 1 module these typieally include the following 
STATUS request, START vision process, REQUEST 

component features (live model) and accept component 
design models (of components to be inspected). 

In the proof-of-concept application, control and super
vision (see Figure 4) comprised the initialization and 
setup functions, most of the control being done through 
service requests from the supervising type 3 module 
running on the integration infrastructure. 

5.2. The type 2 pf4tJorm complianl inugration module 

The essential functional requirement of this module is 
one of protocol conversion and, as such, the require
ments of this module could be common to any manufac
turing point process. Figure 7 gives details of the 
elements within the module. 

The application section of this module contains all the 
functionality specific to eonverting the CIM·BlOSYS 
compliant messages and the data contained within them 
to a fonn required by the system on which the type 1 
process is running, in this case an Olivetti 386 running 
DOS. 

Experience has shown that extra functionality must be 
made available within type 2 modules to enable the 
overall architecture embracing the three types of 
module to be partitioned and tested in isolation, type 2 
to type 1 to prove and monitor communications from the 
Sun network to the remote machine and from type 2 to 
type 3 to prove successful communication across 
ClM·BlOSYS. 

~ ""'''- -_ ... .................. _ ........... 
i~ --' q li P - QM·BIOSYS 
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Figure 7. Elements within the platform compliant integration 
moduJe (driver): H/W, hardwarei !.AN, local area network. 

5.3. Type 3 opm application TMduks 

In the proof·of·concept system the type 3 application 
modules provide overall supervisory control, high-level 

.... --. -~~-r---:." "":;n:--" ':7;'-C-;· ...... '''~ .. ----~·-r-:--7'-'-·---~--·'"V~-· -~'--..... ----.- . __ ........ _-- _.-. --~ .. -.. -.-----:-~_::':'.: .. . 
. ) . .' . .... . ._ :-'4.~!~ •. · ....... . 



Afa(hint l,ision integratioll and informatioT1 support 329 

application issues, support information management and 
display of li\'e component features. Being CIM·BIOSYS 
compliant, this module can be viewed as an open 
application sending and receiving messages to and from 
the platform of integration services. A support IVP 
application also runs as an open application on the plat· 
fonn (this being described in detail in the next section). 
These two type 3 application modules send and receive 
messages to and from each other ~md to and from the 
type 2 platfonn-compliant integration module (see 
Figure 3 detailing the elements making up the system). 
As previously mentioned, other type 3 open applications 
may also access the functionality of the type 1 point 
process module by addressing its type 2 platfonn 
compJiant integration module. 

Future enabling technology could pennit much of the 
application functionality to be achieved as type 3 
modules. In the proof·of·concept system, this is assumed; 
so the live features are passed up to this level for use in 
some inspection function, thus leaving the corn· 
ponent-model-driven type 1 module free from inspection 
application detail. 

This completes the overview of the proof-of-concept 
vision inspection system. The following describes the 
infonnation support mechanisms implemented through 
the CIM-BIOSYS integration infrastructure. 

6. Information support via application services 

This section describes the fonn of IVP applications 
and the required database drivers which provide the 
application level services via the CIM-BIOSYS 
integration infrastructure. 

As mentioned previously, the type 3 vision inspection 
application provided information management and, as 
such, initiates the search for component objects. An 
information request is sent to the view provision applica· 
tion specifying the component features, in this case the 
area and perimeter. The vision application expects to 
receive a reply from the view provider either saying such 
a component does not exist or confinning its existence 
and providing information derived from the component 
model such that the vision application can extract 
detailed features from the inspection scene. In this 
application, components are stored in both the relational 
and the object model fonn implemented using an 
INGRES database and a GENERIS knowledge base. 
The schema used for both systems is based on the model 
given in the report of the Electronic Data Interchange 
Format (EDlF) Printed-Circuit Board Technical Sub
committee (1990). as described in the following section. 

6.1. The Etutronic Data Inttrchallg( Format printed-circuit 
board model 

The information requirements of the inspection 
process are \'ery specific. as are the requirements of the 
many other processes within electronics manufacture. In 
order to support these processes with the required manu· 
facturing information, each process requires a different 
'view' of a global data store which holds a description of 
the as-designed product. In PCB manufacture this design 
is typically produced using a Computer-aided design 
package. A wide range of such packages exist and each 
produces (or holds internally) a description of the 
designed PCB in its own proprietary format. Not only 
are the formats different but their information content 
differs also. For example, one format may hold infor
mation describing the shape of a component leg whereas 
another may not. An internationally accepted PCB rep
resentation would ease the problems of the design to 
manufacture interface and obviate the need for multiple 
interfaces to cater for proprietary fonnats. 

The EDIF community has been addressing this 
problem over the past 2 years by producing POB exten
sions to the accepted EDIF interchange standard for 
very-large-scale integration designs (EDIF version 
2'0'0). The first step in producing these extensions was 
to model conceptually the PCB in a modified version of 
IDEF-IX (Bravoco and Yadar 1985, Electronic Data 
Interchange Fonnat Printed-Circuit Board Technical 
Subcommittee 1990). This was deemed necessary to 
resolve fully the complexity of the entities (together with 
their attributes and relationships) which constitute a 
peB. This model was then used as a reference to facili
tate the production of new EDIF syntax for PCB rep
resentation. In addition to the graphical IDEF -IX 
model, a corresponding model was produced in the infor
mation modelling language EXPRESS, which is the 
modelling language adopted by the STEP (Standard for 
Exchange of Product data) initiative (International Stan
dards Organization 1990, 1992). 

Although EXPRESS was not designed to be a data
base definition language, it provides a suitable computer· 
readable information model which can be used (in whole 
or in part) to structure databases. Within the SI Group. 
the EDIF EXPRESS information model has been used to 
produce both relational and knowledge base schema to 
provide data stores for the OIM-BIOSYS platform. The 
vision inspection application demands and receives the 
information necessary to perform its inspection from 
these data stores via the CIM-BIOSYS platfonn on 
request from the view provision applications as described 
in Sections 8 and 9 below_ The vision inspection applica
tion asks for information regarding the perimeter and 
area of a particular surface mount device. The relevant 
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is implcfllC'ftlcd by 
r---~ r---~ 

Design 

has pacbged components 
h.u mounuble pins 

Figure 8. Part of 'he EDlF model for PCB, in IDEF-IX 
notation. 

part of the PCB model which corresponds to component 
shape and size is that containing package information. 
This part of the model with its inherent hierarchy is 
shown in IDEF-IX and EXPRESS fonn in Figures 8 
and 9 respectively. 

6.2. The rtlational view provision application 

A detailed description of the principle of CIM
BIOSYS (SI Group 1991) would identify a requirement 
to separate knowledge of integration issues, which is nor~ 
many embedded within an application, from the func
tionality of the application and to store the integration 
knowledge within CIM-BIOSYS system tables. In order 
to accomplish this within the information provision ser· 
vices a concept known IVP has evolved and has been 
implemented within the CIM-BIOSYS platform. The 
basic philosophy behind this has been to hide the par
ticular knowledge about a data store, typically which 
database, which machine the database is on, and the 
various tables and attributes contained within a data
base, thus allowing the application to reference every 
data item or set of data items as a system·defmed object 
name. The IVP then maps these system data into the rel· 
evant database calls and executes these statements on the 
host database, finally passing the information requested 
by the application back to the application in some pre
detennined fonnat. 

In order to create a relational view pro"ider (RVP) a 
three-Schema methodology (first suggested by the 
American National Standards Institute Standards Plan· 
ning and Requirements Committee (A:-ISI-SPARC) 
Database Management Systems Study Group 
(Tsichritzis et al. 1978) was adopted. This consists of 
three views: the external view, the conceptual view and 
the internal view (Figure 10). 

EKfITY design; 
is_implemented_by: assembled_board; 
identification: J».'TERNAL ID_STAMP; 
E."'D_ENTITY ; 

E.'ITITY auembledJ)oard ; 
is_bued_oo : bare_board ; 
identification: IN'ffiRNAL ID_STAMP ; 
hu..,padclg.,Crompooents: SET (0:') OFpadcage'Ux:mponent; 
E.'ID_ENlTfY : 

ENlTIY padcage'Ccompon"'t 
SUBTYPE OF (romponent) 
SUPERTYPE OF (OI-IEOF 
(package<CelearicaUxxnponen~ padcaged_non_e1ectricaCcomponent»: 

useI..mountablc..,pIclacc : mountablc_packaCc • . 
componenUype : INTERNAL PACKAGED_COMPONEN-C TYPE: 
END_ENlTfY : 

ENTITY mountablc~ckacc ; 
has_mOWllAble..pins: SET (0:'1 OF mounlAble..pin : 
mountingjleigh.: INTERNAL REAL: 
lad_fonn : INTERNAL S1lUNG : 
packagc_class : INTERNAL S1lUNG : 
body_volume: OPTIONAL INlCRNAL Ih=_d_.pec: 
<>=pied_space: OPTIONAL INlCRNAL 1h ... _d_'P"': 
wc_sh.pe : OPTIONAL INlCRNAL SET (1 :') OF Ihree_d_,pec : 
ses...packagc : (lIchge; 
END_ENlTfY : 

ENTI1Y package i 
h .. ..pin. : SET (0:') OF pin : 
leodJonn : INTERNAL S1lUNG : 
package_class: INTERNAL S1lUNG : 
body _vohm .. : INTERNAL Ih .... _d_spec: 
""",pied_space: IN'ffiRNAL Ihte,,-d_1p<C : 
t"IO_'hape : OPTIONAL IKfERNALSET (I :') OF Ihree_d_.pec: 
END_EN1TIY : 

E.\'1TfY mounublc..pin : 
po<ition : OPTIONAL INTERNAL point: 
side: INTERNAL Jin-lide; 
END_ENlTfY : 

ENTIlY thRe_d_spec; 
figure : INlCRNAL polygoo : 
height: INTERNAL REAL: 
END_ENlTfY: 

ENlTIY polygon 
SUBTYPE OF (closed..J:eometty): 
edge_list: INTERNAL UST (3: *1 OF line_segmen. : 
END_ENlTfY : 

ENTITY linc_segment ; 
stan...poinl : INTERNAL point: 
end...poin. : INTERNAL point : 
END_ENlTlY : 

ENlTIY point: 
x: ll>'TERNAL REAL: 
y: INTERNAL REAL: 
E,,(D_ENlTfY : 

figure 9. Express listing for mountable package entities . 

"-.-.-. -"._--_.-_.:-. -_ .. --_._------. -_ .. .. '-------.~ .. ~. ,-"_ ... 
. .. -"_J-I:<:;"'~ .• - , .•. 
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u"" o 
v;cw 

Figure 10. Three·schema methodology for database manage
ment. 

Each of these views will be described in more detail in 
the following sections. 

6.2.1. '["M ext<ma/ view. The basic premise behind this 
view is the fact that the user of the system, whether it be 
an application or a human, does not need to have any 
knowledge about the actual database structure; they 
request data by referencing object names. 

In order to accomplish this within CIM-BIOSYS, the 
system administrator or the system designer is given the 
ability to set up object names which are mapped onto 
attributes within the particular databases, for example 
AREA which is an object name that is mapped onto the 
attributes area of package within a particular table. The 
important facts to note are the lack of knowledge needed 
about the physical database, and the immunity that this 
gives the application to change of the physical database; 
all that needs to be changed are the mappings-hence 
change time is drastical1y shortened and henee system 
response time to change is enhanced. 

6.2.2. TIu conceptual view. This is an abstract definition 
of the database and represents the data and the relation-

create view v1 (line_segment_id,vl_x,vl_y) 

ships between the data \'\'ithout considering the physical 
resources available or the system that it is to be stored on. 

The EXPRESS language is used as the conceptual 
definition language for the RVP; this is mainly because 
EXPRESS is computer readable and lends itself well to 
the definition of entities their attributes and their 
relationships with one another. The SI group have pro· 
duced an EXPRESS to SQL (ISO 87) compiler which 
takes as input the EXPRESS model and produces 
amongst other items a set of SQL statements which 
describe the table structure for the implementation of the 
EXPRESS model. The EXPRESS model is then used by 
the RVP as the basis for producing the relevant SQL 
queries that will be needed to access the relevant data as 
specified by the requested data object. 

6.2.3. '["M in_a/ viw. This is the lowest level and deals 
with the physical representation of the data and its 
organization. 

Within the CIM-BJOSYS platform, a number of 
relational databases are able to be aecessed using 
platform-compliant drivers implementing similar func
tional requirements to the level 2 platform-compliant 
integration module within the vision model. Typical 
databases. include INGRES and ORACLE. The struc
tured methodology used in creating these drivers is such 
that the creation of drivers for other relational databases 
can be achieved with ease, while the RVP can be used for 
any relational database because the SQL statements pro
duced are completely non·proprietary using a small 
subset of the SQL statements as laid down by the Inter
national Standards Organization (1987), this subset 
being those statements that are regularly implemented in 
a consistent manner. 

The SQL statements produced by the RVP are similar 
to the following set of SQL statements which is a request 
for the occupied space of a package (these are included 
for comparison with the requests made on the knowledge 
base): 

as select line_segment.line_segmenCid,point.poincx,point.point_y 
from line_segment,line_segmencstart-point,point 
where line_segment.line_segmenCid = line_segment_start-point.line_segment_id and 
line_segmencstartJloint.poinCid = point. point_id 

create view v2 (line_segment_id,v2_x,v2_y) 
as select line_segment.line_segment_id,point.poincx,point.poincy 
from line_segment,line_segment_end-point,point 
where line_segment,line_segmenCid = line_segment_endJloint.line_segment_id and 
line_segment_endJloint.point_id = point.poinCid 

create view v3 Uine_segment_id,vl_x,vl_y,v2_x,v2_y) 
as select vl.line_segment_id,vl.vLx,vl.vLy,v2.v2_x,v2.v2_y 
from v1,v2 
where v1.line_segment_id = v2.line_segmenCid 
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create v4 Ipolygon_id,vl_x,vl_y,v2_x,v2_y) 
as select polygon.polygon_id, v3. v I_x, v3. vl_y, v3. v2_x, v3. v2_y 
from polygon.polygon_edge_list,v3 
where polygon. polygon_id = polygon_edge_list.polygon_id and 
polygon_edge_list.line_segment_id = v3.line_segment_id 

6.3. Tht knowltdg,·bas,d vi,w provision application 

In order to investigate the mechanisms required and 
the facilities offered by different data storage methods, 
the SI Group has been using the object model in the form 
of the GENERIS knowledge base (Instrumatic Da ' 
Systems 1990). A knowledge base implementation or 
EDIF EXPRESS model for PCB has been created anc 
used through an operator interface to serve the vision 
inspection application with the required information 
necessary to complete its task. The following section 
details the requirements for the 'knowledge~based view 
provider (KBVP)' based on the present semi-automatic 
implementation for GENERIS information retrieval. 
Details of the mapping from the EXPRESS PCB mode! 
to the GENERIS schema have been published previously 
(Murgatroyd et al. 1991). 

6.3.1. Info171U1lion retn'eval. The VIStOn application 
requests information regarding packages (components) 
with specific area and perimeter values. In response to 
this request, the view provider makes the necessary 
knowledge base queries to determine whether a corTe
sponding package is present in the data store. If a corre
sponding package "exists, the view provider makes further 
queries to extract the positions of the package pins so that 
the vision inspection application can continue its task. 
Reference \0 the EXPRESS listing in Figure 9 shows that 
a mountable package entity has an 'occupied space' 
attribute which consists of a coHection of joined edges. 
The view provider must extract the x and y positions of 
these edges in order to calculate the area and perimeter 
of each package. The GENERIS query to list all the 
mountable packages in the database is as follows: 

DISPLAY mountableJlackage of design 

This query retrieves all the mountable packages for one 
particular PCB design. On the assumption that one of 
these mountable. packages is called S08, the subsequent 
queries to extract the x and y coordinates of this package 
are as follows: 

These queries are issued from a GENERIS command file 
and their values manipulated to determine the area and 
perimeter of the package. If these values correspond to 
those sent by the inspection application, further queries 
can be made to extract the positions of the pins within the 
package. It is these pin positions which form the basis of 
the infonnation required to support the vision 
application: 

FETCH X of point of mountable_ pin of S08 
FETCH Y of point of mountableJlin of 508 

It should be noted what the queries are constructed from 
the corresponding entity and attribute relationship 
names in the EXPRESS listing in Figure 9. The entity 
names used in these queries are 'point' , 'moun
tableJackage' and 'rnountable-pin (,space' was set up 
as an alias for 'three_d_spec' within the GENERIS 
environment). Attribute relationship names used in the 
queries are 'x', 'y', 'start-point', 'end-JlOint' and 'occu
pied_space'. These attribute relationship names are 
necessary when an ambiguity arises in a query using the 
entity names, for example the query 

FETCH X of space of 508 

would give rise to ambiguities since x could refer to the 
'start_point' or 'end_point' (both of entity type point) 
and shape could refer to 'body_volume', 'true_shape' or 
'occupied_shape' (all of entity type 'shape', alias 
'three_d_spec'). 

The view provision application is then greatly 
simplified as the knowledge associated with the EDIF 
model resides within the knowledge base, removing the 
necessity for a conceptual schema and internal schema 
section within the KBVP. It must be stressed, however, 
that the generic nature of the RVP provides the concep
tual and internal schema requirements for most 
relational databases accessed via SQL. Thus in both 
cases the application aspects of the view provider make 
use of information retrieved at the external schema level 
and provides the application-specific functions required 
to manage the information search and to manipulate the 

FETCH X of startJloint point of occupied_space space of 508 
FETCH X of end_point point of occupied_space space of S08 
FETCH y of start_point point of occupied_space space of 508 
FETCH y of endJloint point of occupied_space space of S08 
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retrieved information, providing the view required by the 
vision application. 

7. Conclusions 

Before benefit can be gained from information-driven 
processes based on models similar to that proposed in this 
paper it is essential that the concepts of flexible inte
gration be embraced. together with the provision of a 
suitable integration infrastructure. elM system installa
tion of any significant scope must not be attempted 
without an integration infrastructure and platform of ser
vices in the same way as software applications running 
on a computer would not be used without an operating 
system. The following headings address the requirements 
for future processes as proposed in the introduction. 

7.1. Increased east of integration 

The use of an integration infrastructure such as elM
BIOSYS provides integration level services for applica
tion interaction and information provision; this paper 
has proposed an application decomposition made poss
ible by the use of such an infrastructure. The proposed 
decomposition provides application level services from its 
type I point process functionality module which are used 
by higher-level applications running on the platform. 
The intermediate type 2 driver provides the single point 
of access to the point process functionality. Multiple 
applications on the platform can access the type I func
tionality, making use of application level services; typical 
applications include management information, mainten
ance infonnation and process optimization. The inte
gration of these applications with the type I functionality 
is done through the use of messaging to the platform and 
the appropriate entry of data in the platform configura
tion tables, easing the complexity problems associated 
with application integration. This same philosophy 
applies to the interaction integration between the main 
application and the view provision application and the 
view provision application and the data stores. 

The use of CASE (computer aided software engin
eering) tools to encapsulate methodologies for systems 
analysis, design, implementation and reverse engin
eering aid the systems developer for both primary 
implementation oC software and rework. The develop
ment of CASE tools in the area of integration and plat
form application building is a current theme within the 
SI Group at LUT; this work will improve facilities for the 
use of such. integration infrastructures and encourage 
vendor provision of compliant applications. 

i.2. IncT(aud last of changt 

At an integration level. ease of change is embraced by 
the configurable nature of CI:-'I·BIOSYS. Integration 
issues such as where data stores reside and on what 
machine the high-level applications are running are con
trolled via the platform configuration tables. These tables 
can be changed at system administrator level through the 
use of graphical user interface and platfonn support 
tools. 

At the vision machine functionality level the decompo
sition of domain-specific technology issues and applica
tion issues yields the separation of the vision model and 
its constrained implementation from the appJication 
code. A required change in the implementation tech
nology can be eased by the replacement of the implemen
tation constrained model while the application code is 
retained_ The use of object-oriented techniques were 
useful in impletmenting this decomposition, with the 
application classes inheriting the domain-generic 
extracted feature classes. CASE tools based on the 
domain-generic model of vision (at present under investi
gation at LUT) will increase the ease with which change 
can be enabled. 

The benefits of object orientation were also evident in 
enabling the production of code which retains the shape 
of the conceptual model of a technology. Also of great 
importance is the ability to modify the application in line 
with any change to the product model. If an application 
is based on extracting features from a component object. 
and a new attribute is required for a component model 
during its life cycle, the object-oriented features of 
inheritance and encapsulation permit a new model to 
inherit all the old attributes· (or feature extraction 
methods) and to add the new requirements without any 
knowledge of the detail of the original application. 

7.3. Increased foxibility 

The use of information models to drive the application 
ensure the flexible nature of the information provision 
application in that they can respond to new components 
within a database Or knowledge base so long as the com
ponents adhere to the model (in this case EDIF). A 
similar situation applies to the Jevel 1 point process func
tionality module, in that it will respond to any compo
nent so long as it complies with the model on which the 
application is based. 

In general, great flexibility is achieved through the 
availability and use of platform services and applications 
providing higher-level services running on the platform, 
which can typically be used to structure applications in 
the manner of that described. For example component 
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classification is done via a . vie ..... provider' which searches 
the platform via thc information services for a component 
object with the captured features. 

7.4. Summary 

It is the features of increased flexibility, ease of change 
and ease of integration embodied ·in the structure of the 
proposed model that will enable the generation of future 
vision machines that can adapt to changing requirements 
and (as hinted at in the implementation and information 
view provision described) lead to intelligent reconfigura· 
tion or information self-supporting applications. 

7.5. Future developments 

As a final point it is important to note that the pro
posed three· module system represents an architecture 
which enables the integration of systems during a 
migration period from present to future implementations 
of CIM-BIOSYS. At present, the CIM-BIOSYS inte
gration platform is available to offer integration services 
to systems running under BSD 4·2 UNIX on Sun work
stations, in the future the platform will be available on a 
number of processing systems (current work will enable 
its use in the near future on any system running UNIX 
System VII). Given the availability ofCIM-BIOSYS on 
the processing system running the type 1 point process 
functionality module, parts of the type I module and the 
type 2 platform compliant integration module would 
become redundant and the type I and type 2 modules 
would be combined 'to enable the point process functiona
lity module to become a CIM-BIOSYS compliant open 
application running directly on the integration 
infrastructure. 
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Machine vision and its 
integration with elM systems 
in the electronics 
manufacturing industry 
by John Edwards 
Loughborough University of Technology 

During recent years the electronics manufacturing industry has had 
to cope with very rapid developments in semiconductor 
technology, while also having to adapt to the changes in 
manufacturing philosophy which are being applied to most industry 
sectors. During this period machine vision has become an integral 
part of the automation being used to increase the efficiency or 
quality of the printed circuit board (PCB) fabrication and assembly 
processes which are required for this new miniature technology. 
This article outlines developments within the electronics 
manufacturing industry, examines the role of machine vision and 
the requirements for inspection during PCB assembly. The 
experiences of three major manufacturers are presented. The article 
concludes the need for the structured integration of vision 
machines within manufacturing systems to increase both flexibility 
and reliability. 

Developments affecting the 
electronics industry 

In most sectors of industry, market forces 
have dictated the need for changes in 
manufacturing philosophy. 'Just-In-Time' 
manufacturing methods have been 
adopted by many manufacturers, and even 

mOre widespread has been the need for 
significant increases in product quality so 
that companies can remain competitive. 
Computer-integrated manufacturing (ClM) 
although being embraced by many 
forward-thinking companies, has proved 
to be a more elusive goal. Program 
downloading from host to target systems 

data processing, interpretation 
data acquisition and conversion and decision making 

/r-----'4'----'--" .I ' ,4 

Fig. 1 The ba5ic elements of a vision machine 

frome 
st",. 

processing 
platform 

, 

and management information systems 
gathering local data for central planning 
and monitoring functions are common 
enough, but the optimised utilisation of 
information generated and used by the 
many and varied computer systems and 
programmable machines in use through
out today's manufacturing industry is still 
a long way off. 

The electronics manufacturing industry 
has been subject to change on a number 
of fronts. Both market pull and technology 
push have dramatically influenced such 
developments. 

Market pull 

The market demand for product variety 
and the problems of reduced product 
lifetime can lead to manufacturing 
problems, such as increased downtime 
due to product changeover and increased 
work in progress, unless modern 
technology can be correctly applied to 
alleviate such problems. Furthermore, 
time-to-market has become critical and 
must be reduced for a company with high 
levels of functionality and quality in its 
new products to gain an early foothold in 
the market place. 

Technology push 

Developments in semiconductor 
technology are providing increased 
functionality p.u. area at the PCB level, 
offering opportunities for increased 
performance and miniaturisation. This is 
very attractive to the electronic product 
designer, but is causing many pea 
assembly and test problems. Surface 
mount technology (SMT) has been 
established; fine pitch technology (FPl) 
and chip on board (COB) are already 
being used. This has led to much tighter 
assembly and inspection tolerances being 
required. It is within this environment that 
machine vision, applied to pes manu
facturing equipmen~ is beginning to play 
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Fig. 2. Examples of two classes of integration: closely coupled and loosely coupled 

a very important role, offering methods of 
flexibly automating inspedion and 
assembly processes. 

The increasing cost and risk associated 
with the complex automated processes 
now required to assemble this miniature 
technology are causing the strudure of the 
electronics manufacturing industry to 
change. Often small entrepreneurial 
design companies are no longer 
considering manufacture, but instead 
favour contracting out their work to large 
subcontract operations who specialise in 
SMT assembly. This technology push is 
also providing the enabling technology to 
help solve some of the manufacturing 
problems (including the introdudion of 
CIM), providing high-speed data
processing facilities. These technology 
advances are particularly important to the 
successful use of machine vision. 

elM concepts and potential benefits 

The increasing use of computer tools to 
assist in the design of produds, 
organisation of manufacturing functions 
and automation of shopfloor processes has 
led to a realisation that information is a 
valuable resource. ClM concepts are 
evolving to more effectively utilise 
information (1), and hence improve 
produdivity and efficiency levels. 

Potentially enormous benefit can be 
gained from CIM; put simply, the reuse of 
information. Information is entered into 
computer systems and programmable 
machines in numerous different locations, 
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used for one purpose and stored or 
deleted. Valuable design office infor
mation laboriously entered through 
keyboard and mouse is held on design 
office CAD systems storage media. Equally 
valuable process information is acquired 
continuously by shopfloor machine 
sensors and often used only for local 
control and monitoring. A camera can 
operate as such a sensor, functioning to 
collect raw data relating to an image or 
scene for subsequent analysis by the 
processing sections of a vision machine. 

The essential elements of a 
vision machine 

Vision machines should be classed as one 
type of sensor. Generally, they comprise 
(Fig. 1) 

• lighting equipment to control the 
illumination of the scene to be viewed; 
• a sensor, usually a camera; either 
Vidicon line scan solid-state or more often 
a two-cJimensional solid-state camera, 
consisting of a scanned array of light
sensitive silicon, with processing 
hardware to convert the scanned output to 
an analogue video signal format; 
• a frame store consisting of a memory 
array, which will input the analogue video 
signal and convert it to digital format to 
capture a multi grey level description of 
the viewed scene; 
• a data-processing platform to perform 
computations on the stored information, 
extracting meaningful information from 
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interpreting this 

Recent technology advances have allowed 
the component elements of vision 
machines to become more sophisticated. 
For example, simple frame stores, storing 
raw images in digital form, have evolved 
to vision engines, typically incorporating 
dedicated viSion-processing hardware, 
multiple frame capture with colour 
capability and array multiprocessing. 
Increased sophistication of available 
elements has contributed to vision 
becoming a more usable tool within 
manufacturing. In particular, much 
improved image-processing facilities can 
lead to reduced cycle times and an ability 
to extract meaningful information from 
more complex scenes. 

Two classes of integration 

When automating eledronic produd 
manufacturing processes, vision machines 
are already a viable tool in application 
areas of both monitoring and control. In 
control applications where the vision 
machine must interface with some form of 
aduator system (typically a robot 
placement arrangement or an onsertion 
machine), computer integration can be 
used with significant benefit. Essentially 
there are two cases for integration (Fig. 2): 

• local integration; where closely 
coupled programmable machines must 
communicate information between each 
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other, and the primary consideration is 
speed, e.g. the vision system and the 
actuator system; 
• factory integration; where more 
loosely coupled programmable machines 
and computer systems are involved in the 
utilisation or generation of centrally 
created or utilised information. 

At present, and in many cases justifiably 
due to speed considerations, the 
vision/actuator processing software is not 
structured such that integration to other 
manufacturing entities is easily achieved. 
Although less obvious, it is invariably the 
case that machine vision inspection also 
requires the vision machine to be closely 
coupled to other programmable entities, 
such as position actuators or lighting 
control. Inspection systems designed by 
different manufacturers form these 
interfaces in ways specific to their product 
or peculiar to a particular application. 

Current application areas for vision 
machines in PCB manufacture and 
assembly 

There are many current uses of vision 
machines in PCB manufacture and 
assembly. The following examples serve 
to illustrate this usage in the broad 
classifications: 

• closely coupled feedback of 
information; 
• loosely coupled feedback of 
information. 

In both cases the information is used to 
improve manufacturers' efficiency and/or 
quality: the former to effect control of 
plant on a short time scale, and the second 
on a longer time scale, which in 
contemporary manufacturing systems 
always involves manual collection and 
interpretation of information. 

Uses of vision with closely coupled 
feedback of information 

o Position feedback is used for the 
realignment of the work piece, following 
vision inspection of fiducial marks to 
provide information as to their exact 
position. Fiducial mark measurements are 
typically used in artwork alignment, 
drilling machine PCB alignment, 
onsertionlinsertion machine PCS and 
component alignment, and robot pick
and-place component alignment. This 
feedback information can also be used in 
controlling solder paste screen printing 
machines during SMT PCB assembly, 
where fiducial marks on both the screen 
and the PCBs are viewed and compared so 
adjustments can be made to ensure the 
correct position of paste on component 
sites. 
o Clue-<iispensing control can be 
enhanced by using vision to inspect a set 
of demo glue drops prior to each PCB. 
operation. The visual information is 
analysed and any necessary adjustments 
are made to the dispensing parameters. 
Fiducial correction is also incorporated on 
glue-<iispensing machines. The . CLlI is 

a glue-dispensing machine which incor
porates these features. 

The use of vision with loosely 
coupled feedback of information 

o Inspection during the manufacture of 
PCBs is achieved using vision machines to 
provide automated optical inspection 
(ADI) of artwork, innerlayers and finished 
boards. 
o Inspection of loaded PCBs, both pre· 
and postsolder can be achieved using 
vision. Conventional though-hole tech
nology boards use vision machines to 
identify leads through holes. The 
problems with inspection during SMT 
assembly are more complex, but 
commercial systems exist for the detec
tion of component presence/absence, 
orientation and alignment. 
o Vision machines are in use on drilling 
machines for assisting the generation of 
drilling information from PCB artwork, 
and checking and realignment of drilling 
information generated from CAD. 
o Vision machines are available on 
rework stations to provide image enhance
ment to assist the operator. Final 
inspection stations monitoring solder joint 
integrity are also featuring image 
enhancement for operator assistance. 
o X-ray vision machines are used in a 
number of areas: typically multilayer 
board inspection to check layer-to-Iayer 
misalignment and to assist il') optimising 
the drilling of multi layer boards; 

to check for 

a 0 

fig. 3 Binary images of a SOT and b sOle captured using bac1dighting on a vision system at Loughborough University. 
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defective bond wires and postsolder PCS 
inspection; checking solder integrity (or 
voids and bridging, particularly under 
j·leaded quad packs where access to 
visible light vision machines is difficult 
[21. In X·ray vision machines the grey 
level image describes levels of material 
thickness and density derived from the 
X.ray intensity measurements. 

Sy looking in a little more detail at one of 
the successful implementations of vision 
machines within PCB assembly, some of 
the reasons for the success can be 
identified. 

Realignment for component 
placement 

A common application of vision machines 
is for alignment correction in order to 
accurately place SMT components. For 
FPT devices with a lead pitch of between, 
say, 0.38mm and O.63Smm the leads 
become too fragile to use mechanical 
centring with a pneumatic placement 
head. It is therefore necessal)' to use a 
vision machine to inspect the position of 
each device on the placement head aher it 
has been picked up. Typically correction 
in X, Y is achieved by adjusting the PCS 
position, and theta correction is achieved 
by rotating the placement head. This 
system is usually implemented using a 
binary image capture technique 
thresholded to produce a silhouette of 
each device (Fig. 3). This captured image 
can be processed by the vision machine to 
verify corred lead count and pitch, and 
identify problems such as damaged 
components or incorred component type 
(e.g. 14 pin SOIC). In practice, the benefits 
of using vacuum pickup and individual 
component inspection, with its additional 
checks and no mechanical centering, has 
meant it is being used for placing most 
types of small SMT packages, i.e. a level of 
programmable automation can be 
effeded. 

Alignment correction using fiducial 
mark position measurement (typically as 
used by Fuji Machine Mfg. Co., Zevatech, 
Dynapert and many other assembly 
equipment manufacturers> and automated 
optical inspedion during PCS fabrication 
(typical manufacturers include Optrotech, 
AOI Systems, Uoyd Doyle) are further 
examples of the successful application of 
machine vISion in the electronics 
manufacturing industry. 

The succes.s of machine vision in these 
applications can be attributed to an ability 
to assume basic axioms concerning the 
manufacturers' processes. For example: 

• when generating offset information for 
a placement head, component position 
detection can be achieved by processing 
the binary image of the device outline. 

Computer-Aided Engineering Journal 

fig. 4 Binary image of a fiducial mark 
captured using reflective lighting on a vision 
system at Loughborough University 

This is commonly achieved by back· 
lighting the device to produce a black 
object on a white background, thus 
producing a silhouette image to capture 
(Fig. 1). This means inconsistencies (or 
process variations), such as variations in 
device colour, surface finish or position 
and content of lettering on the device, can 
be ignored, as can the problems of 
extracting the relevant object from a 
confusing background. This enables the 
vision machine to have a consistent and 
fairly simple image to analyse. The· 
required information for comparison with 
the analysed image are the characteristics 
of t~e ideal silhouette image of the 
component; typically size, lead count and 
lead pitch. These characteristics are 
known and stored in a library of all 
required components, making the training 
of the vision machine for new PCBs or at 
changeover a fairly simple task 
• in fiducial mark correction the marks 
on the PCS are there only for the use of the 
vision system and are therefore designed 
specifically for easy detection and analysis 
(Fig. 4). The manufacturing process is 
adapted to ensure that fiducial marks are 
exactly as required by the vision machine 
and are not subject to process variation. 
• in AOI systems, success can be 
attributed to the measurement task lending 
itself to consistent image capture and good 
definition of the object of interest against 
the background (Fig. 5), i.e. the tracks and 
pads against the PCS laminate or artwork 
film. 

The success of these applications of vision 
can then be attributed to the ability to 
achieve the following: 

o the design of the product to enable 
the effect of process variables to be 
minimised; 
o the ability to simplify the vision task, 
leading to increases in operating speeds 
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and more reliable operation through 
avoiding inconsistencies due to process 
variations; 
o simplify the method of vision 
machine teaching, leading to a system that 
is both flexible and consistent, which may 
not require long installation times and/or 
product changeover times. 

Having successfully implemented auto
mated vision machines in some areas, the 
industry is looking for successful solutions 
to the very difficult problems of inspedion 
during the assembly of SMT PCSs; 
typically solder paste inspection, checking 
position and paste volumes, presolder 
inspection for component presence/ 
absence, orientation and alignment, and 
postsolder inspection for solder integrity. 
The desire for automated inspection in 
these areas is illustrated by the following 
points: 

• a requirement for improved yield; e.g. 
a large computer manufacturer is installing 
a vision machine to inspect the underside 
of its small system mother boards to check 
the presence of chip capacitors prior to 
flow solder. 
• a requirement to provide statistical 
process control information, typically to 
ensure the solder pas.te printing process is 
optimised. Another large computer 
manufacturer is as yet unable to find 
suitable equipment. 
• a requirement for guaranteed 10ng
term reliability where solder joint integrity 
inspection is a must, e.g. space, defence, 
nuclear, aerospace and computer 
industries. 

Vision machine requirements for 
inspection during assembly of 
peBs 

The following typical VISIon machine 
requirements can be applied to most 
inspection applications. Through con
sidering these requirements, generalised 
observations can be determined. 

o Illumination - vision machines 
cannot easily adapt to variable lighting 
conditions, but as well as providing a 
consistent lighting situation, the method of 
illuminating can be such that the pertinent 
features of the scene being viewed are 
enhanced. This can minimise subsequent 
image processing and increase the system 
speed, e.g. backlighting of components 
for component alignment/inspection 
immediately provides the required 
component outline. However, no such 
simple solution exists for general 
inspection to improve PCS assembly 
processes. 
o Resolution - when using a VISIon 
machine to produce alignment informa
tion in order to improve the placement 
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accuracy (e.g. of an FPT component with 
a lead width of 0.2mm on a pitch of 
O.5mm), ideally the vision machine is 
required to have a spacial resolution of 
approximately an order better than the 
lead pitch [3 J (circa O.OSmm in this case). 
A vision machine inspecting satisfactory 
alignment prior to soldering must also 
provide similar resolution. 
o 3-D range information in 
application areas such as artwork 
inspection the information required is of a 
two-dimensional nature so conventional 
2-D image analysis techniques can be 
employed. However, other applications, 
typically solder paste inspection prior to 
component placement, require depth 
information [41, necessitating 3-D vision 
machines. 

• 

o Speed - throughput is clearly a major 
consideration when choosing pes 
assembly methods. Having invested 
millions of pounds in high-speed 
automated assembly lines, it is essential 
not to limit their potential by incorporating 
slow inspection stages or to slow down an 
onsertion machine while its vision 
machine struggles to locate a fiducial 
mark. It is equally important not to engage 
in the high-speed production of scrap. 
Historically, vision machines have been 
slow, principally due to the large amounts 
of data required to be processed_ The 
necessity of applying vision to time critical 
operations has led to techniques being 
developed to get over the problem. In 
addition, enabling technology has 
provided ever faster processing platforms 

: 

Fig.S Images of peR tracks and pads of a the original peR and b a binary image captured using 
Trackscan 3000 equipment identifying the track width violation. 
Counesy of Lloyd Doyl. Ltd. 

and specialist vision hardware; typically 
array processors for fast implementation of 
neighbourhood processing algorithms, 
and dedicated hardware for even faster 
implementation of commonly used image
processing algorithms (e.g. edge trace, 
edge match) [5 J. However, imple
mentation in hardware can mean a 
consequent loss of flexibility. 

Speed is very important if 100% 
automated inspection is required where it 
is necessary to inspect as fast as the 
controlled machine (or indeed operator) 
can assemble. However, complex 
operations such as 3-D inspection of 
solder jOints are time-consuming. It is also 
important to stress that this type of 
inspection information is of great value to 
feed back to control previous process 
variables or as part of a statistical process 
control scheme [6 J, but does not 
necessarily take place on 100% of the 
product (i.e. with current enabling 
technology, achievable speeds are such 
that machine vision inspection during pes 
assembly can only be used in controlling 
loosely coupled processes). 

Illumination, resolution, speed and 3-D 
are typical requirements which suppliers 
have addressed and, in some cases, 
successfully implemented. The more 
general requirements, of a highly auto
mated industry trying to increase quality 
and effiCiency, which must be applied to 
vision machines are flexibility and 
consistency or classification reliability. 
The experiences of three users of machine 
vision for pes assembly inspection 
illustrate this. 

Typical experiences of industry 

Experiences in the UK 

A large computer manufacturer with 
production plant in the UK is looking to 
machine vision to provide automated 
inspection in a number or areas, including 
final inspection of SMT boards prior to 
electrical test. They fear similar problems 
to those experienced on their through
hole technology, final peB automated, 
visual inspection equipment. 

This equipment comprises a four
camera vision machine viewing the 
underside of finished peBs, illuminated 
using banks of LEDs. Basically the system 
is looking for a high intensity of reflected 
light from the clinched lead to confirm all 
leads are through holes. The teaching 
procedure is to define windows at each 
lead site and then, by using a good board, 
set up the pass/fail criteria. The view from 
each camera must be inspected and a 
priority system set up according to the 
usefulness of each view in classifying pass 
or fail. Judging from past experience, 
having run the system for several years, a 
thousand lead peB will take at least two 
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Fig, 6 . A possible hierarchical model for vision system integration. 

days of hard laborious work to set up. of the problems in setting up the system to 
Having set up the system, the allow (or changing process variables; 

consistency of the pass/fail classification is typically, optical properties of the same 
often poor. Slight changes in production components varied, optical properties of 
profiles, such as lead clinch angle, lead solder paste, pad and PCB composition 
crop height or height of the flow solder meant setting up times of two to three days 
wave, can alter the appearance of the followed by regular adjustment. 
expected image in each window, and the Experience gained during the operation 
vision system cannot adapt. The system of the vision equipment allowed the users 
works but requires the regular attention of to modify their assembly process, resulting 
a technician to adjust the vision machine, in Improved quality, such that the limited 
providing the feedback between process benefits to be gained from presolder 
variations and inspection criteria. The inspection within -a mature production 
technician transfers information between process meant that it was no longer viable, 
programmable machines. in its present form, for their production 

Experiences in the USA 

Some companies in the United States have 
experience of the use of vision machines 
for inspection during SMT PCB assembly. 
The fears of the UK manufacturer were 
borne out by a large consumer electronics 
manufacturer in the US who, in recent 
years, has applied a vision machine for 
presolder inspection, primarily checking 
for presence/absence and correct 
alignment. 

On a line producing TV tuner circuits, 
incorporating over 600 components with 
an assembly cycle time of 20 seconds, the 
company spent over two years tuning the 
vision system in an attempt to achieve 
100'10 inspection with an acceptable fault 
classification reliability. 

The inspection system used a single 
moving camera with a strobed fluorescent 
ring light arrangement, producing a 2S6 
grey level 2·D image, supported by 
powerful processing equipment to achieve 
image analysis and pass/fail classification 
at high speed. The company were unable 
to achieve satisfactory classification 
reliability, primarily due to the complexity 

scenario. 
The company now sees the role of 

vision inspection as a low-speed offline 
operation providing process control 
information to ensure the assembly 
process remains tuned for high quality 
production. 

The experiences of another manu
facturer, using a similar vision machine, 
demonstrates what can be achieved in the 
field of automated inspection during PCB 
assembly. Genuine benefit can be derived 
from the inspection process and the 
development resource is available to tailor 
the inspection system to the specific 
requirements of a particular manufac
turing process and to incorporate the 
inspection system within a flexible 
manufacturing environment. 

The company in question is a large US
based computer company with an entirely 
different production scenario to the 
previous company, a production rate of 
1 000 boards per day and a mix of 150 
board types with 30% SMT, 20'10 mixed 
and 50'10 through·hole technology. Two 
years ago they employed eight inspectors 
per shift for presolder inspection of placed 
components from their three SMT lines, 

Computer-Aided Engineering Journal February 1990 

local 
model 

checking for 75'10 leg on pad component 
alignment. Problems included speed, 
operator fatigue!inconsistency and a 
tendency to adj ust for leg on paste rather 
than pad. 

In 1987 vision inspection equipment 
was incorporated in the 5MT assembly 
process for presolder alignment inspec· 
tion. Then followed a two-year period of 
development, involving modification of 
the strobed ring light illumination and 
camera optics, and extensive trials and 
tuning in order to generate a satisfactory 
set of inspection classification algorithms 
so that the equipment should operate 
reliably. This work was carried out by an 
engineer with previous vision system 
experience and a close working relation· 
ship with the software development staff at 
the vision equipment manufacturers. 

The vision system inspects the position 
of component legs against expected 
position data (much as the human 
inspectors had done). The algorithms used 
to process the vision information and 
acceptance criteria for pass/fail decision 
making are based on the requirements of 
individual device types. At present six 
types have evolved: 

• SOIC style components with gull wing 
leads on 1.27mm pitch to two sides of the 
component; 
• PLCC style components with j leads 
on 1.27mm pitch to four sides of the 
component; 
• two-terminal chip style components 
(e.g. chip capacitors); 
• 50lC style components in white, with 
gull wing leads as above; 
• j-Ieaded components with 1.27mm 
pitch leads to two sides of the component; 
• SOIC style cO'11ponents as above with 
0.635mm lead pitch. 
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A suite of auto program generation 
software has been written by the computer 
manufacturer's software staff, to enable 
CAD data to be used along with the library 
of six algorithms in order to genera.te the 
vision machine software required to 
inspect a new or modified PCB. The 
programmers responsible were advan~ 

taged by their experience of UNIX and the 
vision machine's use of REGUlUS (real
time UNIX). A level of flexibility has been 
introduced specific to this equipment, 
providing offline vision system software 
generation without the use of 'golden 
boards' or matching techniques. 

Two years ago 30% of components 
required adjustment prior to reflow solder. 
The inspection equipment is now used 
during production line set up to adjust 
offsets on the three onsertion machines, 
and a reduction to 10% component 
adjustment has been achieved. Reliability 
of fault classification has been improved to 
98% genuine faults. 

100% inspection of SMT PCBs takes 
place. Boards are queued in batches from 
each onsertion machine, requiring the 
inspection equipment to be repro
grammed up to ten times per day. 
Following inspection, PCBs are routed to 
two rework stations which are data-linked 
to the inspection system, fault data is 
down loaded and misplaced components 
are identjfied~ using light pointing, for 
realignment by the two inspectors now 
required to man the line. The success of 
the system can be attributed to both its 
ability to achieve high classification 
reliability and the degree of flexibility 
provided by the integration of the system 
within the sohware tools and 
programmable machines comprising the 
design and manufacturing process. The 
ability to offline program/teach the vision 
machine, minimising set up times during 
product changeover, is of great 
importance within this type of production 
scenario. 

Machine vision integration 

In the previous example the computer 
manufacturer was able to make use of 
dedicated in house vision and software 
expertise. Ideally vision machines, like 
any other manufacturing tool, should be 
easy to install, modify and support. This 
implies a need for standard and consistent 
approaches, but the problems are 
considerable: 

• a significant variety of potential 
application areas exist; 
• there is a wide choice of processing 
algorithms, illumination techniques, 
sensors etc., and their implementation is 
very vendor specific (Le. choice of 
hardware - processors and specialist 
electronics - and software - data 
structures, languages and operating 
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systems); 
• standardisation implies an overhead, 
which could increase processing times 
and costs. 

Vision machines must also cope with 
product variation. The trend towards dis
crete batch manufacture implies a need to 

o reduce set uplchangeover times; 
o monitor the process to improve the 
planning and scheduling of manufacture. 

Both ideally require data-driven auto
mation, implying a high degree of 
integration, i.e. reuse of design infor
mation (e.g. process or product models), 
in minimising teaching cycles. 

These implications suggest a require
ment for flexibility within machine vision. 
It is a paradox that vision machines being 
software-based are inherently very 
flexible, yet their current use in manu
facturing equates closer to hard auto
mation, each application being relatively 
inflexible and dedicated to a limited range 
of uses. 

When considering the interfacing of a 
generic vIsion machine, as briefly 
described above, there is the potential for 
providing a range of levels of information 
from the raw grey level pixel array to 
analysed image data (Fig. 6). The machine 
could also accept information from other 
manufacturing entities at the same set of 
levels. This set of levels could be used as 
the basis of a structured hierarchy for 
vision information within the vision 
machine and other manufacturing entities 
to enable structured integration of vision 
within manufacturing systems in a flexible 
and consistent manner [71. 

Conclusions 

In today's increasing climate of product 
variety and subcontract manufacture the 
necessity for flexibility and reliability, 
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leading to short changeover times and 
consequent reduced plant downtime, is 
paramount. 

Turnkey vision systems are established 
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programmable manufacturing entities, 
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be integrated with other manufacturing 
entities throughout the manufacturing 
plant (i.e. the design office). 
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machines into ClM systems could provide 
an environment in which Some of the 
problems of flexibility and reliability may 
be solved. Benefit may be gained by 
teaching vision machines using offline 
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design and modelling information created 
on CAD systems. A theoretical model of a 
particular inspection feature could be 
modified, depending on process variables. 
The necessity to modify inspection criteria 
dependent on process changes will only 
be possible when access to both design 
and process information is available to the 
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machines. The reuse of this information 
will only become possible when it is 
controlled under standardised 
architectures. 
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