
 
 
 

This item was submitted to Loughborough University as a PhD thesis by the 
author and is made available in the Institutional Repository 

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence 
conditions. 

 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



- .~. ' 

'--r ---

./ 

Badminton Press 
Bnttania Works, 942 MeltonRoad, Thurmas[on 
Telephone: Leicester (0533) 696799 

Print Finishing- Book binding· LCJO$e Leaf Binding· AnFolden· Printing, Stationery 

019 3162 02 . 

~~II\~\\~I~II\\\II~I~IIII\\~\~\\~\III~ 

.' 





PREDICTION TECHNIQUES APPLIED TO 

DIFFERENTIAL PULSE CODE MODULATION 

SYSTEMS FOR ENCODING SPEECH SIGNALS 

BY 

CUMHUR CENG I Z Eve I J r1. I . E. E. E" 

B. Se. (Birmingham University, England) 

M.Se. (Loughborough Univ. of Technology, England) 

A Dootoral Thesis submitted in partial fulfilment of 
the requirements for the award of Dootor of Philosophy 

of the Loughborough University of Teohnology. 
Maroh, 1982. 

SUPERVISOR: Costas S. Xydeas, D.E., M.Sc., Ph.D., M.I.O.A., 

Department of ·E1ectronic and Electrical Engineering. 

© by Cumhur Cengiz Evci, 1982. 



1DughborotJgh UnlvtJf.!&.," 

.f T a(:h.n~!~.'} L~t~ 

-.;:~~.' <ji:"" 
Cl:.>;:; 

",cc • \~~i{'1../oz. • !o. 



(i) 

SYNOPSIS 

Differential pulse-code modulation (DPCM) is an efficient digitization 

technique for encoding speech signals. The two principal components of 

a DPCM system are the quantizer and the predictor, ~ither or both of 

which can be adaptive. This. thesis describes the investigation of 

various differential pulse-code modulation systems. Initially, fixed, 

i.e. time-invariant, predictors using long-term signal statistics of the 

speech signal are examined. The performance of such a predictor in a 

DPCM system having a fixed quantizer is studied. Then by replacing the 

fixed predictor with one whose coefficients are calculated at fixed time 

intervals, the performance of the encoder, in terms of signal to noise 

ratio (SNR), is improved by 3-5 dB. A further improvement of 2-3 dB in 

SNR is obtained when an adaptive quantizer is used in the DPCM system. 

However, the block adaptive predictor requires the transmission of 

prediction coefficients to the receiving end at the expense of an increase 

in the channel baniMidth. 

In general, gradient prediction techniques update their coefficients 

every sampling instant using preceeding speech samples and thus the 

transmission of side information is avoided. The Stochastic Approximation 

gradient predictor (SAP) technique is analysed and. the adaptation rate of 

its prediction coefficients is shown to be inadequate to fO,How fast 

variations in the statistics of a speech signal., 

In order to obtain faster convergence to the optimum coefficient 

values, a novel technique called the Sequential Gradient Estimation 
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PPediator (SGEP) has been devised and thoroughly investigated. The 

advantage of the SGEP over SAP is illustrated by aomputer simulation and 

it is shown that an improvement of approximately 3 dB in SNR is obtained. 

Also the ability of seEP to work efficiently UJith f(Mer coefficients is 

demonstrated. 

seEP and SAP are subsequently employed in DPCM systems using both 

fixed and adaptive quantizers. Although, SGEP performs approximately 3-4 

dB better than SAP for wide range of transmission bit rates, both provide 

substantial improvement compared with linear DPCM having a leaky 

integrator in the feedback loop. 

The performance of the SGEP and the· SAP algorithms is also examined 

when a forward block adaptive quantizer (AQF) is empl~yed in the DPCM 

system and the advantage of SGEP over SAP is shown to be 2-3 dB. Further­

more, the encoding efficiency of the above DPCM systems is investigated 

in the presence of channel errors. For a UJide range of transmission bit­

error rates, the increased tolerance to noise of seEP comparEd UJith SAP 

is demonstrated. 

Finally, a correlation switched predictor (CSP) having two co­

efficients is described for use in a DPCM-AQF codec. This predictor 

divides the range of the correlation coefficient of the speech signal 

into zones, and as the aorrelation coefficient changes zones the predictor 

coefficients undergo a substantial modification. By this method the 

adaptation rate of the prediator is improved, particularly during 

transitions between unvoiced and voiced sounds. 



(iii) 

ACKNOWLEDGEMENTS 

It gives me great pleasure to express my sincere gratitude to my 

supervisor, Dr. Costas Xydeas, for his guidance and inspiration throughout 

this research. His invaluable knowledge in the field of speech digit-

ization helped to initiate and develop the work presented here. 

I would like to thank my former supervisor, Dr. Raymond Steele of 

Bell Laboratories, U.S.A., for his continuous encouragement and constructive 

criticisms which tremendously influenced the course of this study. 

I am thankful to Professor J.W.R. Griffiths, and Professor I.R. Smith, 

former and current Heads of the Department of Electronic and Electrical 

Engineering, Loughborough University of Technology, for providing research 

facilities. 

I owe special thanks to all my colleagues particularly Dr. H. Gharavi 

of Auckland University, New Zealand, P.J. Patrick and A.F. Erwood of 

Loughborough University of Technology, for the numerous fruitful discussions 

we have had. 

Many thanks to my friends Dr. E.S. Tez, O.M. Abdel Gadir of 

Loughborough University of Technology and Miss N. KU~Ukkoca of the London 

School of Economics, for their moral assistance. 

, 
I am grateful to some members of staff at Ecole Superieure 

d'Ingenieurs, Chambre de Commerce et d'Industrie de Paris, France, where 

I worked as a conseiller d'etude (1980-1981), for their patience during 



(iv) 

the preparation of the manuscript. 

Many thanks are due to Mr. G.P. Gerrard of the Computer Centre, 

Loughborough University of Technology, for his kindly assistance in 

computer programming and Miss J.M. Briers for her forebearance in 

typing this thesis. 

Finally, my deepest gratitude is due to my family'for their 

unconditional love and financial support which has made my study 

possible. The pictures of my niece, MeZis, were a source of joy 

when I was under extreme pressure. 

To her I dedicate this thesis. 



TDM 

FDM 

LSI 

pm 

DPm 

DM 

SNR 

SM 

SGEP 

AQF 

CSP 

SNRSEG 

VUBS 

f l ,f2,··· 

x(t) 

u(t) 

e(t) 

U(w) 

E(w) 

X(w) 

(v) 

GLOSSARY OF ABBREVIATIONS AND SYMBOLS 

Time Division Multipiexing 

Frequency Division Multiplexing 

Large Scale Integration 

Pulse Code Modulation 

General Differential Pulse Code Modulation 

Delta Modulation 

Signal-to-Noise Ratio 

Stochastic Approximation Prediction 

Sequential Gradient Estimation Prediction 

Adaptive Quantization with Forward Stepsize 

Correlation Switched Predictor 

Segmented Signal-to-Noise Ratio 

Voiced/Unvoiced Band Switching 

Formant Frequencies 

Input Speech Waveform 

Impulse Response of the vocal tract 

Excitation Function 

Fourier Transform of u(t) 

Fourier Transform of e(t) 

Spectrum of the speech signal 

Amplitudes of the major formants 

Discrete Fourier Transform 



IDFT 

c(t) 

CCD 

LPC 

H(z) 

G 
e 

oe. 
1 

N 
, 
A 
opt 

«.» 

{x } 
e 

{L.} 

f s 

f 
c 

1 

b 

~(t) 

(vi) 

Inverse DFT 

Ceptrum Function 

Charged Coupled Devices 

Linear Predictive Coding 

Autoregressive Moving Average 

Transfer Function of all-pole model 

Amplitude of the excitation 

kth coefficient of the linear predictor 

Excitation Pulse at ith instant 

Order of Linear Predictor 

Optimum Prediction Coefficient's vector 

Time-average of (.) 

Autocovariance/Autocorrelation matrix 

Autocovariance/Autocorrelation vector 

Input Speech Sequence 

Quantized Amplitude Sequence 

Binary Output Sequence 

Decoded Amplitude Sequence 

Information Capacity, bits/sec. 

Sampling Rate of speech signals 

Signal Bandwidth 

Number of bits/sample 

Recovered Speech 

Number of Quantizer levels 

Fixed Quantizer Stepsize 



Pd(x) 

(72 
q 

v 

(7. 
x 

DR(dB) 

Log-Q 

Opt-Quant 

X. 
1 

y. 
1 

NS 

2 
(7 

e 

Q 

G 

w 

FBA 

APC 

M 
p 

Pl(z) 

P
2

(z) 

ADPCM 

PSADPCM 

(vii) 

Probability Density Function of x 

Mean-square value of the quan. noise 

Overload limit of the quantizer 

Loading Factor 

r.m.S. value of the input 

Dynamic Range in dB 

Logarithmic Quantizer 

Optimum Quantizer 

Characteristic of A-law Compander 

Locally decoded sample at ith instant 

Predicted sample at ith instant 

Total number of sampling intervals 

Mean-square value of input signal to the quantizer 
in DPCM 

First Shift Correlation coefficient 

SNR of the quantizer 

Signal-to-prediction error ratio 

Block-size 

Forward Block Adaptation 

Adaptive Predictive Coding 

Typical pitch period 

Long-term Predictor 

Short-term Predictor 

Adaptive DPCM in general 

Pitch Synchronous ADPCM 

kth prediction coefficient at (i+l)th instant 



AQ 

11. 
1 

11 ,11. 
max IIll.n 

AQJ 

PCQ 

VLC 

NFC 

FR 

SNRP 

DSM 

HlDM 

FCFDM 

SCFDM 

SVDM 

SBC 

TC 

VEV 

TES 

wb. 
1 

DPCM(N,b) 

NB 

(viii) 

Adaptive Quantizer 

Stepsize of AQ at ith sampling instant 

Maximum, minimum stepsize of the quantizer 

"Leakage" constant for adaptive quantization 

Time-invariant stepsize mUltiplier 

Jayant's Adaptive Quantizer 

Pitch Compensating Quantizer 

Variable Length Coding 

Noise Feedback Coder 

Ratio of the sampling frequency, f to twice cut­
s 

Peak SNR 

Delta-Sigma Modulator 

off frequency f 
c 

High Information Delta Modulation 

First Order Constant Factor DM 

Second Order Constant Factor DM 

Song Voice DM 

Minimum Stepsize of the DM 

Continuously Variable Slope DM 

Sub-band Coding 

Transform Coding 

Voice-Excited Vocoder 

Time Encoded Speech 

Window Function, l<i<W 

DPCM having Nth order fixed predictor and b bits 

fixed quantizer 

Total number of speech blocks 



ADPCM(N.b) 

DPCM(N.b)-AQJ/AQF 

ADPCM(N.b)-AQJ/AQF 

FBADPCM(N.b)-AQJ/ 
AQF 

MSB 

LSB 

BER 

FU 

g.h.c.A.B.D.M 

'0 w. 
1 

CKAL(i) 

V. 1 1-

~(x .• N) 
1 

P. (X) 
1 

K 

A. 
1 

s. k 
1. 

~ 

S 

SBAP 

e. 
1.S 

A 
s 

(ix) 

DPCM having Nth order sequential predictor and b 

bits. fixed quantizer 

DPCM having Nth order fixed predictor and AQJ or AQF 

DPCM having Nth order sequential predictor and AQJ 

or AQF 

DPCM having Nth order forward block adaptive 

predictor and AQJ or AQF 

Most Significant Bit 

Least Significant Bit 

Bit Error Rate 

Error function to be minimized 

Adaptation Constants of predictor 

N dimensional column vector of zero mean. while 

noise terms with unknown stationary variance 

Kalman Filter Cain 

Predictor Coefficient Error variance matrix at 

Function of x. and N 
1 

Variable adaptation parameter 

(i-1)th instant 

-a -a -a 
Diagonal matrix whose elements are 1 .2 •••.• N 

Vector controlling SCEP algorithm at ith instant 

Amount by which each coefficient in SCEP is altered 

Fixed vector whose elements are s. k' k=1.2 ••.•• N 
1. 

Sliding Block Autocorrelation Predictor 

Prediction error resulting from SBAP at ith instant 

Optimum Set of Coefficient vector due to SBAP 



'Y. 
1 

r. 
1 

A. 
1 

s. 
1 . 

e. 
1 

ANC 

SNRSEGlM 

FFOP 

FSOP 

DPCM-AQJ-FFOP 

DPCM-AQF-FFOP 

ADPCM-AQF-SAP/SGEP 

R. 
1 

e. 
1 

CL 
q 

w,v 

h 
e 

Z 

oe 

TR. 
J 

(x) 

Difference vector 
. 

The Norm of vector 'Y. 
. 1 

Difference Matrix in SGEP Algorithm 

Column Matrix 

Fixed Diagonal Matrix in SGEP Algorithm 

Coefficient Vector in Cascaded-Predictor Structure 

Adaptive Noise Cancelling 

SNRSEG IMprovement factor in ANC 

Fixed First-Order Predictor 

Fixed Second-Order Predictor 

DPCM codec employing AQJ and FFOP 

DPCM codec employing AQF and FFOP 

DPCM codec employing AQF and SAP/SGEP 

Quantization level number at ith instant 

Output Quantization level 

r.m.s. value of the difference between adjacent 

samples 

Stepsize optimizing coefficient 

Variables 

Probability of getting at least 2 bits correct 

Probability of getting any bit received in error 

Number of Thresholds 

Zone size 

Threshold levels for correlation coefficients 

ADPCM-AQF-CSP(Z+l)-FSOP 

DPCM-AQF-FSOP with (Z+l) point CSP - Z-order CSP 



(xi) 

ADPCM-AQF-CSP(Z+l)-SGEP 

SFP 

SGEP-S-FSOP 

WBS 

BLS 

NPSS 

ADPCM-AQF-SGEP wi th (Z+l)-point CSP - Z-order CSP 

Switched Fixed Predictor 

Switched SGEP and FSOP 

Wideband Signal 

Bandlimited Signal 

Narrowband Processed Speech Signal 



CHAPTER I 

(xii) 

TABLE OF CONTENTS 

DIGITAL SPEECH COMMUNICATION - THESIS OVERVIEW 

1.1 Background 

1.2 Digital Speech Communication 

1.3 Organization of Thesis 

1.4 Summary of the Main Results 

CHAPTER 11 - DIGITAL CODING OF, SPEECH SIGNALS 

2.1 Transmission Bit-Rates in Speech Coding 

2.2 Vocoders 

2.2.1 Channel Vocoders 

2.2.2 

2.2.3 

2.2.4 

2.2.5 

Formant Vocoders 

Pattern Matching Vocoder 

Ceptrum-Homomorphic Vocoder 

LPC Vocoders 

2.2.6 Relative Merits of Vocoders 

2.3 Waveform Encoding of Speech Signals 

2.3.1 Pulse Code Modulation 

2.3.2 

2.3.3 

2.3.4 

Quantizers 

Differential Pulse Code Modulation 

Adaptive Differential Pulse Code Modulation 

2.3.4.A Block Adaptive Predictors 

2.3.4.B Adaptive Predictive Coding 

2.3.4.C pitch Synchronous Techniques 

2.3.4.D Sequential Predictors 

2.3.4.E Adaptive Quantizers 

2.3.5 Quantization Noise Spectrum 

2.3.6 Related DPCM Code cs 

2.3.7 Delta Modulation 

2.3.7.A Linear DM Coder 

2.3.7.B Adaptive DM Coder 

2.4 Other Speech Coding Techniques 

PAGE 

1-14 

1 

3 

7 

12 

15-95 

15 

17 

23 

26 

26 

28 

33 

37 

38 

40 

41 

51 

58 

59 

60 

65 

68 

69 

73 

74 

81 

82 

88 

93 



(xiii) 

PAGE 

CHAPTER III - FIXED AND BLOCK ADAPTIVE PREDICTORS IN DPCM 96-155 

CHAPTER IV 

3.1 Introduction 

3.2 Various Criteria of System Performance 

3.2.1 Long-term Signal-to-Noise Ratio 

3.2.2 Segmented SNR 

3.2.3 SNR Improvement Factors 

3.3 Time-Invariant Predictors when used in DPCM 

96 

99 

99 

99 -100 

Systems 103 

3.3.1 First-Order DPCM 113 

3.3.2 Nth Order DPCM 115 

3.4 Block Adaptive Predictors when used in DPCM 
Systems 118 

3.5 Quantizer Selection 123 -3.6 Simulation Results and Discussion 127 

3.6.1 Input Speech Data 129 

3.6.2 Upper-Limits of SNR Improvement, SNRI 
for DPCM 130 

3.6.3 Performance of Fixed Predictors in 
DPCM(N,b), DPCM(N,b)-AQJ 133 

3.6.4 Performance of Forward Block Adaptive 
Predictors in DPCM Codec Employing AQJ, 
FBADPCM(8,b)-AQJ 144 

3.6.5 An Effect of Channel Errors in the 
Performance of Codec 

3.7 Conclusions 

SEQUENTIAL PREDICTORS 

148 

153 

156-235 

4.1 Introduction 156 

4.2 Sequential Prediction Problem Approach 159 

4.3 Kalman Predictor 165 

4.4 Stochastic Approximation Predictor, SAP 167 

4.5 Sequential Gradient Estimation Predictor, SGEP 170 

4.5.1 Operation of a 4th Order SGEP Predictor 176 



CHAPTER V 

(xiv) 

PAGE 

4.6 Computational Requirements of SAP and SGEP 178 

4.6.1 SAP 

4.6.2 SGEP 

4.7 Simulation Results of Isolated SAP and SGEP 

178 

179 

and Leaky Predictors for Speech Signals 186 

4.8 NOTE ON PUBLICATION 

4.9 Convergence of the SAP and SGEP Algorithm 

4.9.1 Convergence of the SAP Algorithm 

198 

200 

200 

4.9.2 Convergence of the SGEP Algorithm 204 

4.9.3 Experimental Results for Convergence of 
the SAP and SGEP Algorithms 212 

4.10 Further Experimentations Using the SAP and 
SGEP Algorithms 221 

4.10.1 Parallel-Predictor Structures 221 

4.10.2 The SGEP and SAP Algorithms in 
Reducing the Acoustic Noise in Speech 227 

4.11 Discussion and Conclusions 233 

DPCM EMPLOYING SEQUENTIAL PREDICTORS 236-277 

5.1 Introduction 236 

5.2 DPCM 238 

5.2.1 Quantizers 238 

5.2.2 Predictors 243 

5.3 Computer Simulation Results of DPCM-AQJ Speech 
Codecs Employing FFOP or SAP or SGEP 252 

5.4 Computer Simulation Results of DPCM-AQF ·Speech 
Codecs Employing FFOP or SAP or SGEP 266 

5.5 Discussion and Conclusions 275 

5.6 NOTE ON PUBLICATIONS 277 



(xv) 

CHAPTER VI - DPCM-AQF SPEECH CODECS WITH CORRELATION SWITCHED 
PREDICTORS 

6.1 Introduction. 

6.2 Correlation Switched Prediction Scheme 

6.3 The Voiced/Unvoiced Band Switching System 

6.4 Computer Simulation Results and Discussion 
DPCM-AQF Speech Code cs Using Switched 
Predictors 

6.5 Computer Simulation Results and Discussion 
Wideband Quality DPCM-AQF Speech Codecs 

6.6 Conclusions 

6.7 NOTE ON PUBLICATIONS 

CHAPTER VII - RECAPITULATION 

7.1 Introduction 

7.2 DPCM Employing Fixed or Block Adaptive 
Prediction 

7.3 Sequential Prediction Algorithms and Their 
Applications in DPCM . 

7.4 Correlation Switched Predictors Employed 
in DPCM 

7.5 Suggestions for Further Research 

7.5.1 pitch Extraction Algorithm 

7.5.2 Pole-Zero Predictor 

APPENDIX - A 

B 

C 

7.5.3 Higher-order CSP Schemes 

Quantization Based on a Minimum Mean­
Square Error Criterion 

Quantization Noise Power for Gaussian 
and Laplacian p.d.f.'s 

Calculations of the Coefficients for 
the Second Order Fixed Predictors and 
Their Relationship with the First­
Order Predictor 

of 

of 

PAGE 

278-322 

278 

282 

290 

293 

307 

320 

322 

323-336 

323 

325 

327 

329 

330 

330 

335 

336 

337 

340 

344 



(xvi) 

PAGE 

D - Band-Limited Low Pass Digital Filter 347 

E - Cummiskey's Sequential Algorithm 359 

F - Lattice Predictor and PARCOR Coefficients 361 

G - Durbin's Sequential Algorithm 367 

REFERENCES 380-395 



CHAPTER I . 

DIGITAL SPEECH COMMUNICATIONS -

THESIS OVERVIEW 
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1.1 BACKGROUND 

There are various forms of communication that appear to exist 

between animals but, only in human beings has this developed into 

"speeah" which is possibly the most valuable attribute that man possesses. 

Although, manual signals, i.e., movements of the features and the limbs 

play an important role in the process of communication, these are 

considered secondary to speech. Manual signals alone are insufficient 

to illustrate abstract notions hence, only through speech we can convey 

intelligible arguments and information that is not easily reproducible 

by other forms of communication. 

A principle of "speaking aZearZy,,(l) exists in all sorts of speech 

communication. It involves, a) choosing words which convey the message 

without the need for further explanation, b) presenting information in a 

logical order so that the listener may follow what is being said without 

ambiguity and c) making the sound of speech loud enough so that words 

are audible to the listener. 

There is a limit to the volume of sound waves the human vocal 

apparatus can produce and correspondingly, the distance is restricted 

to that over which the acoustic transmission is audible. Even ancient 

man had supplemented acoustic transmission of messages by using fire; 

(2) 
smoke and flags. 

During the man's technological development of communication, he 

learnt about the phenomenon of electric current. This led to the 

invention of the telephone, the first electrical system for the trans-
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mission of speech signals over a long distance. The telephone employs 

electra-acoustical transducers which can convert an acoustic signal to 

an electrical one or vice versa. Thus, the acoustic speech signal, 

after being converted into an electrical form, is transmitted to the 

receiver where it is converted back to its acoustical form. The goal 

to be achieved by such a system is the accurate reproduction of the 

speech signal, at the output of the receiver, ina cost effective way. 

Several modulation techniques have been developed in an effort to 

produce the" efficient' communic·ation system. In general, the 

communication systems are divided into two groups, that is, analogue 

and digital systems~3) Analogue transmission systems require to be 
------- --

linear since any non-linearity causes distortion. A digital system does 

not need to be linear as the signal only consists of a number of discrete 

levels. In addition, the recent evolution of the semi-conductor 

technology from transistors to microprocessors has made digital systems 

much more preferable to analogue ones. Digital communication systems 

are extensively used today by several countries around the world in 

commercial telephony and in military and law enforcement applications. 

Examples of modern digital communication systems include, 

a) Digital transmission of telephone speech signals where 30 different 

speech conversations are simultaneously transmitted using time division 

multiplexing (TDM) and Pulse Code Modulation (PCM) methods, at a trans-

mission rate of 2.048 Mbits/sec, b) Digital transmission of television 

signals where PCM is used for the analogue to digital conversion and 

the transmission bit rate is approximately 120 Mbits/sec~4) 
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1.2 DIGITAL SPEECH COMMUNICATION 

Before presenting organization of this thesis and the summary of 

the main results, it is worthwhile to pause and recap the main factors 

in favour of digital speech systems over analogue ones. They are as 

follows,<5-9) 

1. In digital speech communication, the information is transmitted 

over long distances without degradation of the speech quality. 

This occurs because digital signals can be regenerated, i.e., 

retimed and reshaped along the transmission path. In contrast, 

analogue transmission systems tend to accumulate noise and 

other impairments with distance. 

2. Digital terminals are cheaper than analogue ones, i.e., cheaper 

filters and time-shared digital circuitry. 

3. An easy way of multiplexing and demultiplexing signalS is 

always required by a flexible speech communication system. 

Digital methods allow the TDM process to be applied in a simple 

and economical way to telephone transmission lines~ This is 

in contrast with the frequency division mUltiplexing (FDM) 

method in analogue transmission systems, where complex and 

expensive filters are required. 

4. Various types of signals which are encoded in a digital format 

can be transmitted over the same channel. Therefore, signals 

such as video, computer data and facsimile data can be handled 

together with speech. 

5. Digital signals are well-favoured by today's device technology. 

Until recently, the transistor made digital transmission viable, 
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today Large Scale Integration, LSI, technique makes digital 

switching attractive and results in compact and economic 

equipment. In addition the signal processing techniques, such 

as bit-rate reduction methods and encryption are amenable to 

digital device technology evolution. 

6. Due to item (5), maintenance is simplified. In service 

performances, monitoring is easy, protection switching and off-

line fault isolation are affordable. 

7. Digital speech provides the possibility of voiced communication 

with computers. Specifically, using speech recognition and 

speech synthesis procedures, digitization terminals could enable 
'---'--" 

speech communication between the user .and the computer. 

A11 these factors recommend the digitization of speech and lead to 

the investigation of new digitization methods. An efficient speech 

digitizer is required to possess: (IO) 

a) 

- b) 

c) 

A good speech quality at a low transmission bit rate. 

A simple and therefore economic::a~l~e~n~c~o~d:e~r~a:n:d=-d=e==c=o=d~e~r~d~e~s~i~g~n .. 
./'-"""--' 

Robustness to the transmission errors. 

However, there is at present no way of satisfying the users with 

all of these points, and in general, there must be a compromise between 

the three conflicting requirements. 

The relative importance of these attributes depends on the 

application. In telephony, for example, quality and cost are the major 

factors in the choice of digitizer while in military applications 

intelligible speech quality at low-bit rates is often essential. 
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There are several methods for digitization of speech signals and 

can be categorized into two main groups, namely: waveform digitizers 

and parametric digitizers as shown in iigure 1.1. 

DIGITIZATION OF SPEECH 
SIGNALS 

I 

WAVEFORM DIGITIZERS PARAMETRIC DIGITIZERS 
(VOCODERS) 

FIGURE 1.1: Methods for Speech Digitization 

The concepts used in waveform and parametric digitization are 

very different. The parametric representation of speech signals, known 

. h" ( d) d" (ll) 1" " " as analys1s-synt eS15 voco er co 1ng, exp 01tS certa1n propert1es 

of the speech production mechanism. Such systems extract the perceptually 

important features from the input speech and transmit them to the 

receiver where a speech production model is used to synthesize the speech 
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signal. Consequently, any redundancy not affecting the perception is 

removed. This leads to a dramatic reduction in transmission bit-rate, 

although vocoders are highly complex and expensive systems. 

On the other hand, waveform coding techniques attempt to preserve 

the waveshape of the original signal. In this case, the speech signal 

is sampled and each sample is encoded and transmitted. In contrast to 

vocoders, waveform encoders are simple and inexpensive. 
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1.3 ORGANIZATION OF THESIS 

The remaining chapters in this thesis are summarized as follows: 

Chapter 11 is a brief review of various digital speech coding 

techniques. It is felt necessary to include this chapter in order to: 

a) make the reader familiar both with the terminology and the 

most important techniques in the field of digital speech 

coding. 

b) establish the direction for the investigations presented in 

the following chapters. 

Firstly, the basic principles of·analysis-synthesis techniques 

are discussed briefly. Then, the attention is focus sed on the waveform 

coders where the main goal is to reproduce, at the output of the decoder, 

the original analogue signal waveform as accurately as possible. Pulse 

Code Modulation, PCM, Differential Pulse Code Modulation, DPCM, and 

Delta Modulation, DM, are reviewed in some detail. 

DPCM is the central theme in this thesis and the aim is to design 

a relatively simple but, efficient DPCM speech digitizer. The 

performance of DPCM coders depend upon a) the estimation efficiency of 

the prediction and b) the accuracy of the quantizer used in the system. 

Adaptive quantization, as used in differential types of speech 

digitizers, have been extensively studied and several algorithms have 

been proposed. The importance of the prediction process however, has 

received less attention compared to quantization and it was felt that 

our research efforts should be directed towards the development of novel 
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and efficient speech prediction algorithms. 

Chapter Ill, establishes, in a simple way, the theory of prediction 

and presents the existing estimation algorithms for the design of time­

invariant and block adaptive predictors whose coefficients are calculated 

at fixed time intervals. The behaviour of these predictors, incorporating 

a DPCM having both time-invariant and adaptive quantizers, for trans­

mission bit-rates of 16-40 Kb/s, is observed. Further, the effect of 

the channel errors on signa1-to-noise ratio (SNR) values is examined. 

Chapter IV introduces the concept of sequentia11y-adaptive linear 

predictors for speech signals and examines the performance of the 

Stochastic Approximation Prediction, SAP, algorithm. Then a novel 

sequentia11y adaptive algorithm called the "Sequential Gradient 

Estimation Predictor, SGEP", is proposed. The superiority of SGEP over 

the SAP is illustrated by waveforms and SNR performance curves. Then, 

the mathematical analysis of the convergence of the prediction 

coefficients is examined for SAP and SGEP. The convergence rate of 

SGEP is proved, experimentally, to be faster than that of the SAP 

algorithm. 

Also, adaptive combinations of SGEP-SAP and SGEP-SGEP predictors 

are introduced. Finally, the use of the SGEP algorithm is extended to 

the case where additive acoustic noise in speech signalS can be 

reduced by adaptive-noise cancellation, based on a reference noise 

source. 

Chapter V examines the performance of DPCM systems employing the 
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predictors discussed in Chapter IV and. presents computer simulation 

results. The observation of SNR values reveals that DPCM coders with 

both adaptive prediction and Jayant's adaptive quantization ADPCM-AQJ, 

achieve significant improvement over the same coders having fixed 

predictors, DPCM-AQJ. Further, sequentially adaptive prediction 

schemes are used in DPCM coders, employing an (AQF) adaptive quantizer 

with forward transmission of the step size, ADPCM-AQF. In order to 

reduce the coder complexity only second order predictors are considered. 

The segmented SNR, SNRSEG, is used as a performance measure. In 

addition, the encoding efficiency of the above DPCM coder is investigated 

in the presence of channel errors. For a wide range of transmission 

bit-error rates, i.e., 16-40 Kb/s, the increased tolerance to noise of 

SGEP compared with SAP is demonstrated. 

Chapter VI starts with the concept of switched predictors, having 

two coefficients, and describes their use in a ADPCM-AQF coder. These 

predictors divide the range of the first correlation coefficients, cl' 

of the speech signal into zones, and as the correlation coefficient 

changes zones the predictor coefficients undergo a substantial 

modification. The use of correlation switched predictors, CSP, in 

ADPCM-AQF, improves the performance, particularly when speech is 

transgressing from unvoiced to voiced sounds. Experiments .are carried 

out when the range of correlation coefficient, Cl' is divided into 4 

zones, i.e., a 3rd-order CSP, is examined and then, the same idea is 

extended to an 7 zones, i.e., 7th-order CSP system. Similar techniques 

are used for SGEP, where the initial values of the adaptive prediction 

coefficients are modified, every W samples, according to the value of 
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correlation coefficient, cl' thereby facilitating a faster coefficient 

convergence rate. The switched predictors are then used in ADPCM-AQF 

and the SNRSEG results are presented and compared to DPCM having AQF, 

but either fixed or block adaptive predictor. 

Finally, the proposed DPCM coders are used for the encoding of 

signals, obtained at the output of the voiced/unvoiced band switching, 

VUBS, bandwidth compres~ion system~12) 

In Chapter VII, the main results reported in the preceeding 

sections are discussed. In addition, suggestions for future work are 

given. Specifically, the SGEP algorithm can be used for pitch 

extraction since the value of the prediction coefficient of a first 

order SGEP increases sharply at the onset of each vocal excitation 

pulse. 

Also, the modelling of vocal tract, incorporating pole-zero 

recursive filter, can be achieved by using a modified SGEP algorithm 

to update the filter coefficients, such a pole-zero filter will accurately 

model any possible coupling between the vocal tract and the nasal cavity. 

Furthermore, the algorithm of the second-order switched predictor, 

presented in Chapter VI, can be extended to implement a higher-order 

switched predictor. 

The overall lay-out of the thesis is shown schematically in 

Figure 1.2. 
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1.4 SUMMARY OF THE MAIN RESULTS 

The results obtained in this thesis are summarized as follows: 

In Chapter Ill, initially, fixed, i.e., time-invariant, predictors 

using long-term speech statistics are examined. The performance of such 

a predictor in a DPCM system having a fixed quantizer is studied. When, 

the fixed predictor is replaced with a block adaptive predictor, the SNR 

performance of the encoder, FBADPCM, is improved by 3-5 dB. A further 

improvement of 2-3 dB in SNR, is obtained when an adaptive quantizer is 

used in the DPCM system. 

In Chapter IV, the concept of sequentially adaptive linear prediction 

is introduced. In contrast to block adaptive schemes, these predictors 

update their coefficients sequentially using preceeding samples and thus 

the transmission of prediction coefficients as a side information is 

avoided. The SNR performance of the SAP algorithm is compared with that 

of the proposed SGEP technique. The advantage of the SGEP over SAP is 

illustrated by computer simulation and it is shown that an improvement 

of approximately 3 dB in SNR is obtained. This is attributed to faster 

convergence of the SGEP towards the "optimum' coefficients which are 

obtained from the sliding-block autocorrelation predictor (SBAP). The 

SBAP coefficients are derived using the autocorrelation method computed 

over a length of W samples with the important exception that the analysis 

window is shifted only by one sample every time the coefficients are 

recalculated. 

In Chapter V, SGEP and SAP subsequently employed in DPCM systems 
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using either fixed or adaptive quantizers, ADPCM or ADPCM-AQJ, while 

the input speech signal is band-limited to 3.4 kHz and sampled at 

10 kHz. The system with SGEP performs approxi~tely 3.4 dB better than 

that with SAP for a transmission bit-rates of 16-40 Kb/s, and both 

systems provide substantial improvement compared to encoder having leaky 

integrator. 

Then a DPCM coder having block adaptive quantization, AQF, with 

forward transmission of step size and a two coefficients adaptive 

predictor is examined. For a transmission rate of 40 Kb/s and a block 

size of 256 speech samples, the ADPCM-AQF system using the SGEP algorithm 

has SNRSEG gains of 3 and 9 dB compared to the same encoder, but with 

the SAP and the leaky integrator, respectively. The dynamic range of 

the ADPCM-AQF using SGEP for a SNRSEG of 35 dB is 30 dB. ADPCM-AQF-SGEP 

has weaker dependence on block size than ADPCM-AQF-SAP and has a higher 

SNRSEG over for bit error rates (BER) less than 0.1%. 

Also, the informal 'listening tests of the coders described here, 

at transmission bit rates of 40 Kb/s and 30 Kb/s, reveal·the subjective 

quality of the speech signal produced by DPCM-AQF-SGEP is superior 

compared to that obtained from DPCM-AQF employing SAP, ADPCM-AQF-SAP, 

or a leaky integrator, DPCM-AQF-FFOP. 

Chapter VI is concerned with a novel DPCM-AQF system where the 

predictors, both fixed and SGEP, are switched according to a simple 

statistic of the speech signal to yield an improved performance. The 

speech signal is band-limited to 3.4 kHz and sampled at 8 kHz. The 

SNRSEG for the systems reveal the ADPCM-AQF-SGEP using 3rd-order CSP, 
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Le., ADPCM-AQF-CSP(4)-SGEP, has the highest SNRSEG irrespective of 

the bit rate, but more i.mportant it has the best SNR during unvoiced/ 

voiced transitions. Typical gains are reflected in a 2 to 3.8 dB 

improvement in SNRSEG for ADPCM-AQFwhen CSP associated with SGEP is 

used, ADPCM-AQF-CSP(4)-SGEP, to compare with the second order fixed 

predictor, DPCM-AQF-FSOP. 



CHAPTER 11 

DIGITAL CODING OF SPEECH SIGNALS 
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2.1 TRANSMISSION BIT-RATES IN SPEECH CODING 

A continuum of transmission bit-rates for digitally encoded speech, 

together with four zones of speech quality, is shown in Table 2.1. 

These qualities are designated, broadcast (high fidelity)- commentary, 

1 h 11 •• d h· (13) h te ep one to , commun1cat10ns an synt et1C. Also s own are the two 

broad categories of speech digitizers: vocoders and waveform encoders. 

For bit-rates>. 16 Kb/s, some waveform coders can produce toll-

quality speech, namely a quality associated with analogue speech having 

a bandwidth of 200-3400 Hz, SNR~30 dB and a distortion <2%. For bit 

rates above 64 Kb/s, it is possible to have SNR and harmonic distortion 

characteristics of toll quality speech for wider bandwidth, typically 

0-7 kHz, of input signal. When the bit-rate is below 16 Kb/s, the coders 

provide communication quality speech. The recovered speech is 

intelligible although there is a noticeable reduction in quality 

compared to toll quality speech. Coders, specifically vocoders, at 4.8 

Kb/s and below, produce an output speech which has lost its naturalness. 

The speech has a tendency to sound machine-like, and speaker identification 

may be difficult. This quality of speech is referred to as synthetic 

quality. 

The complexity of speech encoding systems tends to be a function 

of the transmitted bit-rate. Consequently, waveform coders which 

usually operate at higher bit-rates, tend to be less complex and less 

expensive. Vocoders, on the other hand tend to be more complex and 

costly. 
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TYPE OF Kb/s QUALITY COMPLEXITY 
CODING 

I 
I 
I 
I BROADCAST , 
I 

200 LEAST , , , COMMENTARY , , 
64 

32 

TELEPHONE 

WAVEFORM 
TOLL 

CODING 
24 MODERATE 

16 

9.6 

COMMUNICATION GREAT 

8 
.-, 

7.2 

4.8 

VOCODERS SYNTHETIC GREAT 

2.4 

1.0 

TABLE 2.1: Spectrum of Bit-Rates and Qualities for Speech 

Digitizers 
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2.2 VOCODERS 

Digital coding of speech signals using parametric representation 

techniques is referred to as vocoders. In these techniques, parameters 

based on a model. of the vocal mechanism and a simplest representation of 

the auditory system are extracted from the speech signal, digitized, and 

transmitted. Vocoders, except phase vocoders and voice-excited vocoders, 

require excitation parameters; namely voiced/unvoiced decision, and pitch 

information (i.e;, fundamental glottal frequency)~lO) Excitation 

information, together with the vocal tract model parameters are the 

essential ingredients used in synthesising the speech signal. Before 

quantifying the parameters, we pause briefly to consider the physiology 

of the vocal mechanism. 

. d· f hi· h . F· 2 1(2,14) A schemat1c 1agram 0 t e voca tract 1S s own 1n 19ure ., 

where the lungs, trachea. larynx, throat, nose and mouth contribute to 

the production of speech. The vocal tract may be considered as an 

approximation, to be an acoustical tube, between 15-17 cm in length, 

having a uniform cross-sectional area that extends from the lips to the 

vocal c?'ords. However, the motion of the lips,jaw, tongue and velum, 

known as articulators, affect the structure of vocal tract. The nasal 

tract and vocal tract couplings are controlled by the size of the 

opening at the velum. The voiced sounds are associated with the 

vibration of the ,focal c~1ords, and unvoiced sounds result from 

turbulent air flow through a constriction of the vocal tract. Both of 

these sound sources have significant power over a wide range of audio 

frequencies, but the spectrum of the radiated sound results from 
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spectral shaping of these sources by the acoustic resonallt system of the 

vocal tract. The resulting sound, analysed over a time window of a 

few tens of milliseconds, has either a periodic or random structure, 

corresponding to voiced or unvoiced speech, respectively. 

An important concept 'used in the parametric representation of speech 

is the formant which corresponds to frequency values of major spectral 

resonances associated with the peaks in the power spectral density 

function. Telephonic speech, band-limited to 3.4 kHz has typically 

three formant frequencies, f l , f2 and f
3

• However, the location of such 

frequencies depends on the variation of cross-sectional area of the vocal 

tract resulting from the movement of the tongue and the position of jaw 

along the vocal tract. For example, vowel lal, as in "father", is 

produced by opening the lips, moving the tongue etc., resulting in an 

increase of the first formant frequency, f
l

• As another example, the 

vowel lel, as in "eve", is formed by moving the tongue forward and this 

causes a reduction in f
l

. For the same vowel utterance, the formants 

change from speaker to speaker and this has been studied in' detail by 

(15) 
Peterson and Barney. 

. . h . d' h' b l' (16) Approxlmatlng t e,VOlce pro uctlon mec anlsm y a lnear system, 

as shown in Figure 2.2, enables the sound to be represented by the time 

convolution of the excitation function e(t), and the impulse response, 

u (t), of the,vocal tract filter, viz: 

x(t) = u' (t) * e(t) (2.1) 

where * implies convolution. 
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In the frequency domain, this convolution is equivalent to a 

multiplication of the Fourier transforms of u (t) and e(t), such that 

the spectrum of the speech signal can be represented as 

X( w) = U (w) .E(w) 

and whose magnitude is 

Ix(w) I = Iu (w) 1.IE(w) I 

Therefore, in the frequency domain, the term E(w) manifests as the 

fine structure of X(w) while U (w) corresponds to the envelope of 

X(w). When voiced speech occurs E(w) is a fine line structure, and 

(2.2) 

(2.3) 

U (w) has a succession of peaks (typically 3 or 4 for telephone speech) 

whose frequencies are called formants. Unvoiced speech has E(w) that 

is noise-like, as the vocal cords are not excited and e(t) is the 

result of air turbulence in the vocal tract. The spectral envelope 

U (w) has usually one or two formants which often reside above 3.5 kHz, 

e.g., /s/ has a single formant at about 5 kHz. 

Synthesizers in vocoders consequently employ an excitation source 

that is either a periodic pulse generator when voiced speech is present, 

or a random noise generator when unvoiced sounds occur. 

The basic elements of a vocoder are shown in Figure 2.3. The box 

labelled "vocal. tract pa:t'ameters", essentially provides a measure in 

parameter form of the spectral envelope of the short-time speech signal, 

information known to be required by the hearing mechanism. The vocoder 

analyser determines the vocal tract parameters, and the type of 
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excitation. In doing so significant reductions in signal bandwidth 

is achieved. For example, speech band-limited to 3 kHz can be 

represented in parameter form by signal whose bandwidth is of the order 

of 300 Hz. Usually these parameters generated by the VD coder analyser 

are digitized and transmitted. The synthesizer at the receiver decodes 

the digital signal and recreates the speech using either Equations (2.1) 

or (2.2). 

The vocal tract parameters take a variety of forms, e.g. the 

amplitude spectrum of the signal at various frequencies (channel vocoder), 

prediction coefficients that define the spectral envelope, called Linear 

Predictive Coders, LPC, the frequencies of major resonances (formant 

vocoder). Details of speech production mechanism and vocoder designs 

are described by Flanagan, MOye~17) Holmes(l8) and Rabiner at al~11,19) 

Widely used vocoders are the Channel VD coder and the LPC vocoder, while 

the more complex formant VD coder with its greater complexity may be 

preferred in the future when technology makes its realisation at a 

competitive cost. 

2.2.1 Channel Vocoders 

(18,20) In channel vocoders, see Figure 2.4, in order to preserve 

the shape of the short-term amplitude spectrum at specific frequencies, 

the signal spectrum is divided into frequency bands, called channels, 

by using a bank of contiguous variable-gain bandpass-filters. The total 

number of channels are typically of the order of 10-20 with bandwidths 
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of 300 Hz to 150 Hz, respectively. By. the use of rectifiers and low 

pass filters, the output of each channel produces the discrete power 

spectrum of the speech signal for the corresponding frequency band. 

The voiced/unvoiced decisions, V/UV, the pitch (quasi-periodic 

frequency of the vocal cords) if voiced sound is present, are measured 

in the analyser. Their values are mu1tip1exed with the vocal tract 

parameters, and transmitted. The function of the synthesizer at the 

receiver is to produce a perceptually accepted reproduction of the 

original speech signal without attempted waveform replication. Voiced 

sounds are synthesized by using periodic pulse generator as the 

excitation source. Whereas for unvoiced sounds, a random noise 

generator serves as a substitute for the excitation source. Consequently 

in accordance with the vocal tract information produced by the analyser, 

either voiced or unvoiced sounds can be generated at the synthesizer. 

The channel vocoder achieves significant bandwidth reduction since the 

spectral .enve1ope of the short-term spectrum has a lower bandwidth 

than that of the original speech signal. Typical transmission bit rates 

are between 2.4-4.8 Kb/s. However at 2.4 Kb/s, there is a degradation 

in naturalness despite the use of complex equipment. This is because: 

a) Errors in voiced/unvoiced decisions, 

b) the pulse generator being a poor replica of the vocal cord 

excitation, 

c) the choice of bandwidth and filter spacings, 

d) but most important, degradation derives from the inaccuracies 

of the basic model of the vocal tract and the excitation 

processes. Only by deriving more precise models of the speech 

• . l' f d h b d(21) w~ll the synthet~c qua ~ty 0 voco er speec e remove • 
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2.2.2 Formant Vocoders 

Here the vocal tract parameters are the major formants f
l

, f2 and 

f3 and their amplitude FAl , FA2 and FA3 • The analyser attempts to 

locate the formants by dividing the speech spectrum into frequency 

b d (13,16,17,22) F h b an s. or eac spectral and, the average frequency, f, 

and the rectified, low-pass filtered amplitude FA are measured. Signals 

proportional to f and FA are then transmitted into a digital form. 

Figure 2.5 shows a block diagram of formant vocoder. The synthesizer 

of such vocoder is related to human speech production, because its 

resonators specificallY correspond to the major formants of the input 

speech signal. Hence, the synthesizing can be -achieved by using the 

known frequency range and the specification of each formant. All these 

factors result in significant reduction in bit-rate to as low as 1.2 

Kb/s. However, at this low rate, the reproduction of good quality speech 

depends on the accuracy in locating the formants at the analyser. In 

modern formant vocoders, digital computer techniques are used for 

calculating formant fre-quencies and peak values are determined using 

discrete Fourier Transform, DFT, methods. 

2.2.3 Pattern-Matching Vocoder 

. (10 22 23) • 
Th1S vocoder " ach1eves further reductions in bit-rates, 

i.e., typically 0.6-0.8 Kb/s. It operates by comparing the short-time 

speech spectrum with a set of stored spectral patterns where each 

pattern is specified by a binary code. In this way, one of the stored 

r 
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patterns which corresponds closest to the speech spectral is identified, 

and its code is transmitted, together with the pitch and voiced/unvoiced 

information. The received code is used to synthesize the speech signal. 

2.2.4 Ceptrum-Homomorphic Vocoder 

The ceptrum of the speech signal is the basis of another type of 

vocoder, known as the ceptrum-homomorphic vocoder. Before describing 

.. (11 1~22 24) ·such a vocoder, we pause br1ef1y to def1ne the concept of ceptrum.' , 

The term, ceptrum, results from the logarithm of Equation (2.3), 

10gIX(w)1 = 10glu(w)I + 10gIE(w)1 (2.4) 

Equation (2.4) reveals that the excitation function, E(w), and vocal 

tract function, U(w), become additive, hence e(t) and u(t) can be 

separated by a filtering process. The inverse DFT, IDFT, of Equation 

(2.4) is, 

IDFT{loglx(w)I} = IDFT{loglu(w)I} + IDFT{logIE(W)I} (2.5) 

which gives the ceptrum, c(t). Figures 2.6 and 2.7 represent the 

time waveform, amplitude spectrum, log-spectrum and ceptrum for 

voiced and unvoiced sound respectively. For voiced speech, the region 

around the origin, see Figure 2.6(d), is due to the impulse response 

of vocal tract, while the remaining portion of the waveform is due to 

the excitation source. Now, for a periodic excitation, the ceptrum 

of the excitation is also a train of impulses with the same spacing 

as the impulse train. With voiced speech, the quasi-periodic nature 
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of the excitation which consists of puffs of air that are asymmetrical 

in shape, yield a ceptrum that consists of a large spike, as shown in 

Figure 2.6(d). However, for unvoiced sound, the selection of a strong 

and isolated peak in the ceptrum is not feasible, see Figure 2.7(d), 

due to the random nature of the excitation. Thus, ceptrum can be used 

to make the decision as to whether speech is voiced or unvoiced. 

The property of ceptral analysis is exploited in homomorphic 

vocoders, as shown in Figure 2.8. The speech is windowed using a 

Hamming function, typically 40 ms. duration, and then is Fourier-

transformed. A rectangular window is avoided because of the '~peatrar 

reakage" that it produces~25) On the other hand, ceptrum window 

shown in Figure 2.8 is used to remove the excitation information. From 

c(t), the pitch is deduced, and this is encoded along with the vocal 

tract information and both are transmitted. In the synthesizer, the 

DFT of c(t) produces 10gIU(w) I, exponentiation ensues and the inverse 

transformation yields u(t). The excitation generator produces either 

pitch or random noise in accordance with V/UV information respectively. 

Finally, the discrete convolution process convolves u(t) and e(t) to 

produce the synthesized speech. 

Such vocoders require only the computation of the ceptrum which 

is often available in the 'pitch identification process. At 7.8 Kb/s, 

homomorphic vocoder yields good synthetic quality speech, and its 

implementation has recently been eased by the invention of charged-

coupled devices, CCD. 
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2.2.5 Linear Predictive Coding (LPC) Vocoders 

A different method of representing the spectrum of a speech sound 

is by means of the LPC vocoder in which the spectral approximation is 

given by the response of a sampled-data filter. In LPC, the modelling 

of the speech waveform is carried out in the time rather than the 

• (11 13 26) . 
frequency doma1n, " thereby reduc1ng the difficulties of locating 

formants which are inherent in frequency domain techniques. In recent 

years, much literature has appeared in favour of LPC vocoders 

(particularly in the U.S.A., more than the U.K.) due to its speed of 

. d· 1 . 1 . (27) computat10n an S1mp e 1mp ementat10n. Most of the research in LPC 

analysis has been focus sed on all-pole models. However, the presence 

of unvoiced and nasal sounds suits a zero-pole model sometimes known as 

autoregressive moving average model, (ARMA), whose mathematical treatment 

is rather complicated and will not be mentioned here~28) 

·The transfer function, H(z), of the all-pole model, sometimes 

referred to as autoregressive model, is given by, 

H(z) = 

1 -

G 
e 
N L -k 
k=l~z 

(2.6) 

where G is the amplitude of the input excitation. The coefficients, 
e 

~s, specify the all-pole approximation of the short-time speech 

spectrum. Figure 2.9 shows the speech production process. The output 

. . . th 1.. . of the l1near f1lter at 1 samp 1ng 1nstant 1S, 

N 
L a x._k + G oe. 

k=l k 1 e 1 
X. = 

1 
(2.7) 
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where ce. corresponds to the excitation pulses and G is due to the 
1 e 

amplitude variations of the excitation source. The output speech 
N 

sample ~. is L a. x._k , -except at the beginning of a pitch period. 
1 k=l k 1 _ 

Thus generation of speech by this technique requires a knowledge of the 

pitch, V/UV information, ~ coefficients and the gain of filter. All 

these parameters are transmitted in digital form, as shown in Figure 

2.10, to enable the synthesize of the speech signal~29-30) These 

vocoders give good performance for bit-rates of the order of 2.5 to 4 Kb/s. 

The sampled-data filter coefficients, ~'s, are calculated so that 

the error between the original sample and the predicted value becomes 

minimum, i.e., 

<e~>1 = «x. 
l. A" 1-

A=A opt 

N 2 - L ax·_k ) > 
k=l k 1 

(2.8) 

where «.» means time average of (.). To achieve this, mean-square 

error criterion, the autocorrelation and autocovariance techniques are 

often used, updating the coefficients at a rate commensurate with 

significant changes in the vocal tract, i.e., the order of 5-30 ms. 

The number of prediction coefficients, N may be selected according to 

the number of formants in the speech signal, usually N is equal to twice 

the number of formants, i.e., typically 6 to 8~3l) The complex-roots 

of Equation (2.6) indicate the location of formants and their bandwidths. 

In correlation/covariance methods, Equation (2.8) is minimized so that~26) 

A = ~-l'l' 
opt 

(2.9) 

where ~ is the autocorrelation/covariance matrix, 'I' is the autocorrelation/ 
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. 
covariance vector and A 'is the optimum vector set of prediction 

opt 

coefficients. 

A different approach of estimating the vocal tract parameters 

involves the computation of PARCOR (PARtial CORrelation) coefficients 

• h f d b 1 . . . . (24,27-28,32) Wh1C are oun to e ess sens1t1ve to transm1SS10n errors. 

Further, in Chapter IV, it will be shown that the predictor 

coefficients can be modified sequentially, hence modelling of vocal 

tract is achieved in an adaptive manner. 

2.2.6 Relative Merits of Vocoders 

Table 2.2 shows the performance of various vocoders described here, 

. f h l' . . b' d l' (10) 1n terms 0 speec qua 1ty, transm1SS10n 1t-rate an comp eX1ty. 

VOCODER !Cb/s QUALITY COMPLEXITY 

CHANNEL 2.4 FAIR HIGH 

FORMANT 1.2 GOOD VERY HIGH 

PATTERN 
0.8 POOR VERY HIGH 

MAT.VOCODER 

CEPTRUM 7.8 GOOD HIGH 

LPC 2.4 FAIR HIGH 

TABLE 2.2: Relative Merits of Vocoders 
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~.3 WAVEFORM ENCODING OF SPEECH SIGNALS 

The methods in this section are confined to the reproduction of an 

actual pressure waveform using discrete-time and amplitude representation 

of the speech signal. These techniques avoid the extraction of the 

vocal tract and excitation parameters. Waveform coders are generally 
l 

simpler in implementation and therefore less expensive than vocoders~21) 

They also have a more natural sounding quality. An increasing use of 

digital systems for transmission purposes requires the speech signal to 

be sampled (quanti zed in time), and quantized in amplitude to a Set of 

finite values. Due to quantization process, the received signal differs 

from the original speech signal, and the difference is called distortion-

. . . (3) 
quant1zat10n n01se. 

A schematic block diagram of digital waveform coder is shown in 

Figure 2.11. A speech signal, x(t), is sampled at a rate exceeding 

twice its highest frequency component (Nyquist Rate), to produce the 

sequence of samples {X.}, i=1,2, .•• ,NS, where NS is the total number of 
1 

samples. These samples are applied to the waveform encoder which 

generates a set of quanti zed amplitudes· {X } which are encoded for 
e 

transmission. Binary coding is usually employed for this purpose, 

although higher order coding could be used, as {X } is unsuitable for 
e 

transmission through most practical channels. The binary output 
,/ 

sequence {L.} is relatively robust to channel interference and the 
1 

bits are relatively easy to regenerate at the receiver. After 

regeneration, the binary code words are decoded into the sample 

quanti zed amplitudes,· {X
d

}. In an error free channel the binary code 

, 
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• 
identical. The sequence, {X.} at the output of the waveform decoder 

1 

is low-pass filtered to yield the speech signal x(t). It is evident 

that even if· {L.}={L:}, x(t) differs from i(t) due to the quantization 
1 1 

process at the transmitter. For a given bit-rate, b, the quantizer has 

2b discrete levels. The relationship between the sampling rate f and 
s 

b yields the information capacity, Cl, 

Cl = b f 
s 

bits/sec. (2.10) 

Equation (2.10) reveals that the main goal in the design of waveform 

coders is to reconstruct the analogue signal as accurately as possible 

with a minimum number of bits/sample, b, for a given f • The higher b, 
s 

the smaller the noise or vice-versa. Thus, there is a compromise 

h 1• f h d h d h b' (11) between t e qua 1ty 0 t e recovere speec an t e 1t-rate. We 

now, consider the main types of waveform coders. 

2.3.1 Pulse Code Modulation, PCM 

The simplest form of waveform coding, known as PCM was suggested 

by Reeves(34) in 1938. It was the first method used for digital 

transmission of speech and is used extensively throughout the world in 

digital telephony. 

"" The operationB involved in a PCM coder is described in detail by 

Cattermole(S) and is as follows; The band-limited speech data, x(t), 

sampled at the rate of ~2f , where f is the highest frequency in the 
c c 
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b speech signal, is quantizer into the nearest 2 levels, where b is the 

number of bits in each word assigned to the quantized samples. The 

binary words are then transmitted. At .the receiver, bit regeneration. 

followed by binary decoding occurs, and the resulting amplitude levels 

are low-pass filtered to give the recovered speech signal, ~(t). High 

fidelity reproduction of speech is achieved by using a large number of 

quantization levels, as the quantization accuracy improves when the 

levels are closer together. Observe that the only source of noise in 

PCM is that generated in the quantizer. The choice of quantization step 

. (5 35) 
size, componding techn1ques,' namely signal compressing followed by 

. h . d h d' . . (36,37) expanS10n at t e rece1ver, an tea apt1ve step S1ze quant1zers, 

are all various means of reducing the PCM bit-rate for a given recovered 

speech quali ty. 

2.3.2 Quantizers 

The purpose of the quantizer is to replace each speech· sample with 

one which is a close approximation of the original s·ample. The 

quanti zed sample is confined to one set of finite values. Ab-bit 

binary word is associated with an output quantization level, so that 

ea.ch sample is transformed into a unique binary word. Output levels 

of the quantizers are sometimes called "quantwn ZeveZs", or 

"quantization ZeveZs,,~39) 

Numerous quantizers are employed in speech coding, and they are 

broadly categorized as either time-invariant, FQ, or time-variant 
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(adaptive) quantizers, AQ. The 'former, is more common, simple and 

sometimes referred to as zero-memory quantizer, i.e., the quantized 

output is calculated, from the corresponding input sample without the 

involvement of previous samples. If the input sample lies in the kth 

interval of quantization, 

'It' < x < 'It+l , u;k~N+l 
Q 

the output of quantizer is 'It+,' For l~NQ+l, there are N
Q 

quantization 

levels, together with NQ+l input thresholds. The transfer function of 

typical quantizer is a stair-case characteristic. In practice,two 

versions of this characteristic, known as mid-riser and mid-tread are 

commonly used, see Figure 2.12. Mid-riser quantizer has its decision 

level at the origin, while the mid-tread has zero output level. Mid-

riser characteristics are preferred due to their symmetrical properties 

and efficient use of N
Q

=2
b 

levels, despite the fact that low level 

signals, as in the silence section of speech, can not be expressed 

properly due to the exisrence of non-zero level. Hence, this sort 

of quantizer results in oscillations for low level signals. 
. (40) Croch1ere 

has suggested a kind of switch that exploits both mid-riser and mid-tread 

characteristics. The binary codes associated with both types of 

quantizer characteristics can be either natural-binary code, NBC, or 

• (41) 
folded-b1nary code, FBC. 

The output approximation of the quantizer introduces distortion-

noise, known as "granular noise", provided the input speech sample lies 

between x1~~ +1' If the input sample lies outside the specified 
Q 

range, the output is said to be overloaded and "overload noise" occurs. 
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The total noise introduced is the combination of these types of noise. 

A simple statistical model of the quantizer associated with its granular 

noise is shown in Figure 2.13. The model is based'on the following 

. (11) 
assumpt10ns: 

{x. } 
1 

a) the noise is stationary, an assumption that is valid for small 

step size, ~, and when number of levels, N
Q 

is large. 

b) the noise is uncorre1ated with the original input (implies no 

slope overloading) 

c) the probability density function, p.d.f., of the noise is 

uniform and given by Pd(q)=l/~ between ±~/2, and Pd(q)=O 

outside the range, ±~/2. 

{x. } 
1 

{x. } 
1 

{x. }={x. }+{o.} 
1 1 ,1 

---+I. QUANTIZER 

RANDOM NOISE 
SEQUENCE, {~i} 

FIGURE 2.13: Quantization Model 
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2 Hence, the mean-square value of the quantization noise, a , is 
q 

Therefore, uniform quantizers are defined by 3 parameters, N
Q

, 6 

and overload limit, V respectively. An appropriate value of V 

for which the quantizer is not overloaded is selected in accordance 

with the ratio of V to the input r.m.s. value, o. This ratio is 
x 

(2.11) 

known as "loading faato:t''', d
L

• A common choice of d
L 

is the so called 

four-signal loading which ensures that almost all the ,I"'put, samples 

will lie inside the range +40 
x . For Gaussian and Lap1acian p.d.f. 's 

with zero mean, only 0.01% and 0.35% of speech samples fall outside 

this range, +40 ,respectively. Therefore, 6, for uniform quantizer is 
x 

6 = 
2V 
NQ 

(2.12) 

or 80 
6 = x 

T (2.13) 

From Equations (2.11) and (2.13), 

k=3/16 (2.14) 

or in dB's, 

SNR(dB) = 6b-7.3 (2.15) 

i.e., SNR(dB) increases linearly with b. Equation (2.15) is accurate 

for b~9, above this value overload noise due to values outside the 

four-sigma loading becomes significant. 

The quantizer described here has an error with a constant noise 

that is independent of the signal amplitude. Higher values of SNR 
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can be obtained by exploiting the p.d.f.'s of the signal being 

quantized. Quantizers, designed according to their p.d.f.'s of the 

input signal are known as optimum quantizers, Opt-Quant, and are well 

suited to speech signal characteristics. Opt-Quant's are basically 

non-uniform quantizers and the distribution of the levels is selected 

according to the p.d.f. of the signal. Alternatively, Opt-Quant's can 

be considered as uniform quantizers having a compressor which compresses 

the input samples prior to quantization. Compression is accomplished 

by means of a non-linear element, say H(x), in accordance with the 

p.d.f. so that more levels are introduced for low level signals due to 

their higher probability of occurrance. The output of the uniform 

-1 
quantizer is expanded through a function, H (x). This process of 

compression at the encoder and expansion at the receiver is known as 

ccmpanding. 

For large values of N
Q 

(>128), the mean-square error power of 

Opt-Quant is given by~4,42) 

2 a 
e = 

2 
{d~(t)} dx(t) 
dx(t) 

where x(t), ~(t) .. +.V and Pd(x) are the quantizer input, output, 

amplitude range and p.d.f. of its input signal, respectively. Most 

(2.16) 

of the research has been conducted on the assumption of N
Q 

being large. 

Panter et al(43) gives the relationship similar to Equation (2.16) for 

large N
Q

, 
2 

a 
e 

(2.17) 
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where the p.d.f.. Pd(x) is even and valid between +V and zero outside 

the interval. Equation (2.17) is the simplified version of Equation 

(2.16) with 

d~(t) 
dx(t) B = v 

The author also assumes that the quantization levels are very close 

together such that Pd(x) is almost constant over the quantization 

intervals. and overload noise is neglected. 

(2.18) 

For non-uniform. i.e •• "Opt-Quant" quantizers. a similar relation 

to that depicted in Equation (2.15) holds. namely. 

SNR(dB) = 6b-K 

where K is the function of the normalized p.d.f.. Pd(x). (the ratio 

of Pd(x) to a!) that makes SNR independent of signal power. K is 

found to-be 4.3 dB for signals with Gaussian p.d.f .• assuming that 

(2.19) 

overload noise is neglected. Comparison of Equations (2.15) and (2.17). 

for signals with Gaussian p.d.f. reveals that 3 dB gain in SNR is 

achieved over uniform quantizers. 

h h · d . . , • d (44) Anot er approac 1n eS1gn1ng Opt-Quant s 1S ue to Max • 

(45) . (46) 
Stroh-Paez and Paez-G11sson. Max. in his often referenced 

paper. used iterative techniques so that the analysis is generalized 

and valid for both uniform and non-uniform quantizers (for signals 

having stationary p.d.f.'s). No restriction is imposed on N
Q

• Input 

2 
and output levels are calculated such that aOq/a~. k=2.3 ••.•• N

Q
• and 
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2 • 
and aaq/a~, k=1,2, ••• ,N

Q 
are zero, see Appendix A. Hence, 

1· • 
~ c 2 (~ + ~-l) (2.20) 

J~+l xPd(x)dx 

• ~ 
~c 

J~+l Pd(x)dx 

~ 

(2.21) 

From Equations (2.20) and (2.21), we note that 

a) the threshold level, ~, is half way between two successive 

output levels, 

b) ~ is the conditional mean value of the input x for ~<x<~+l. 

The iterative process starts with an initial guess of xl' and x2 

is obtained from Equation (2.20) and x
2 

from Equation (2.21), and so 

on for other quantized levels. An apriori knowledge of the p.d.f. is 

required. Fleischer(47) shows that Equations (2.20) and (2.21) are 

sufficient for Opt-Quant having a specified p.d.f provided 

d
2 

---2 10g[Pd(x)] < 0 , for all x. 
dx 

Paez-Glisson(46) applied Max's algorithm to the signals having Laplacian 

and Gamma p.d.f.'s. 

All the Opt-Quant's described so far are matched to the p.d.f. 

2 
of the amplitude levels of the input signal, and by this method, a 

q 

is made small. In comparison to uniform quantization, the advantages 

of Opt-Quant for speech signals are: 
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a) .Non-uniform spacing gives a lower quantization noise. 

b) During idle channel conditions, the quantization noise 

performance. of uniform quantizers is inferior to that of 

Opt-Quant as the latter has many levels near the origin. 

However both the uniform quantizer and Opt-Quant have a poor 

dynamic range, (the dynamic range, DR of a system is generally defined 

as the range of input signal levels for which the SNR of the coder 

remains within 3 dB of the maximum), and the value of the peak SNR, 

obtained at one power level of the input signal, decreases rapidly with 
, 

the changing levels of the input. In telephony, a large dynamic range 
J 

of the input signal levels, typically 40 dB, is required. The quantizer 

is arranged over the desired dynamic range to be substantially 

independent of the input power level. This can be achieved by using 

logarithmic quantizers, Log-Q. 

Log-Q's have similar peak SNR as uniform quantizer, but possess 

the virtue of a wider dynamic range. In practice, log-Q's are not 

true1y logarithmic, having a law that is often linear at low signal 

levels and logarithmic at high signal levels. Two logarithmic laws are 

widely used. The'~-law proposed by Smith(35) is used for PCM systems 

in Japan and U.S.A. It is defined as, 

H (x) 
~ 

= 
V log (1 +~x/V) 

log(I+~) 
x>O (2.23) 

The compressor has odd-symmetry for negative values of x, H~(X)=-H~(-X) 

and V is the overload level. A common choice for ~ for 7-bit speech 

coders is either 100 or 255. In terms of dynamic range 7-bit log-PCM 

is almost equivalent to ll-bit uniform-Q-PCM. 
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Another type of companding proposed by Cattermole(5) and now 

accepted (outside Japan and U.S.A.) as the international standard, 

is the A-law. It is described by, 

= ~ 1 
l+logA , for O~x~A 

= 
l+logAx 1 
l+logA ,for ~x~l (2.24) 

where a typical value of A is 87.6 for a 7-bit speech coder. A~law 

and ~-law have similar performances when used in PCM speech coding. 

(45) Stroh-Paez compared the Opt-Quant and log-Q, and concluded 

that although Opt-Quant gives subjectively 3-4 dB improvement in terms 

of SNR for a given N
Q

, it has greater idle channel noise and poorer 

dynamic range, DR. 

A different way of obtaining the aforementioned specification in 

digital telephony, i.e., 40 dB dynamic range with a SNR of 35-38 dB's 

is achieved by employing a quantizer whose step size is both large 

enough to cover the maximum signal range, and yet small enough to 

contain the quantization error. These demands on the step size 

magnitudes can be satisfied by arranging for the quantizer step size 

to adjust to the signal level being quantized. Such schemes, known as 

adaptive quantization, AQ, do not require a knowledge of the p.d.f. of 

the signal being quantized. They are capable of handling the rapid 

fluctuations of signal amplitudes. AQ's of Noll(48) and Stroh(49) are 

designed to match the short-term variance of the signal to be quantized 

over a block of length W samples; typically W may be 32 to 512. 
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Sometimes these AQ's are referred to as block adaptive quantizers 

where the calculation of step size is made using the input data. They 

are called adaptive quantizers with forward (explicit) determination 

of step size, and abbreviated to AQF~50) 

A different approach using backward adaptation has been studied by 

(33 36 37 51) 
Jayant ' " who calculates the step size at every sampling 

instant from the transmitted data, hence the use of the backward. These 

adaptive schemes will be described in detail in Chapters 111,V. 

However, we will state at this time that, AQ's provide a wide dynamic 

range, lower idle channel noise compared to the Opt-Quant's, and can 

achieve higher SNR than those of both Opt-Quant's and log-Q's. 

2.3.3 Differential Pulse Code Modulation, DPCM 

In DPCM, the difference between the input speech sample and a 

locally reconstructed sample is quantized, binary encoded and trans-

mitted. At the receiver, the recovered speech sample is reconstructed 

from the quantized difference sample. This technique is effective in 

reducing the transmitted bit-rate compared to PCM because it exploits 

the correlation of speech signals, particularly, those of voiced 

speech. The difference signal being quantized has a lower variance, 

than that of the original speech signal variance, 0
2 
x 

As a result, 

the range of quantizer to transmit the actual sample is considerably 

reduced, and fewer bits are required to code the difference signal for 

a given quality of reconstructed speech. The variance of the 
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quantization error in DPCM is proportional to the variance, 2 o , of e 

h •. d·f 2 b . t e quant1zer 1nput, an 1 0 can e reduced by, say a factor G, 1t 
e 

is found that the variance of the quantization noise in the decoded 

speech signal is also reduced by G. Hence, the SNR increases by G 

compared to a PCM system. The DPCM system to be described here is 

primarily based on an invention by Cutler~52) patented in 1952. DPCM 

is also known as "predictive encoding". The term predictive is used 

because the quantizer input signal is formed by taking the difference 

between the actual speech sample and a locally reconstructed value 

that is formed using prediction of previously locally decoded speech 

samples. In 1966, O'Neal mathematically analysed predictive encoding 

. hO·l N· d . (54) (55) d d h k of T.V. s1gnals, w 1 e 1ta or1 and McDonald exten e t e wor 

(49) . 
to speech signals. Stroh also exam1ned the performance of DPCM 

focusing attention on how the predictor and quantizer interact. 

A typical DPCM coder is shown in Figure 2.14, where the symbols 

are displayed for the ith sampling instant. The band-limited sequence 

f h h 1 h . th . . 0 d d . o speec samples, w ose va ue, x. at t e 1 1nstant 1S en co e 1nto 
1 

a binary word L. and transmitted. At the receiver, the regenerated 
1 

binary word, L! is decoded to give the recovered speech sample, x .• 
1 1 

Assuming no transmission errors, the quanti zed output e. is fed to the 
1. 

adders in both the encoder and decoder. 

The locally recovered speech is 

x. = e. + y. 
1 1 1 

where y. denotes the predicted value, and the quanti zed sample is 
1 

(2.25) 
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e. + q. 1. 1. 

where e • q. are the quantizer input and the quantization error 
i 1. 

samples respectively. As 

then 

e. 1. 
= x. - y. 1. 1. 

x. = x. + q. • 
1. 1. 1. 

Th f . h . th d d • h ere ore. t e 1. eco ed sample 1.S t e sum of the speech sample 

and the quantization error sample at the ith sampling instant. 

= e. - e. 
1. 1. 

= x. - X. 
1. 1. 

In Figure 2.14. it can be seen that the predictor operates on the 

locally decoded sample. ~. and not on input sample. It predicts y. 
1. 1. 

as the linear combination of past N decoded samples. viz. 

N 
y. = L a. i., 

1. k=l k 1.-k 

where N is the order of predictor and ,\'s. k=1.2 ••.•• N. are the 

predictor coefficients. 

The SNR of the received signal x. is defined here as. 
1. 

SNR = 

2 <X.> 
.1. 
, 2 

«x.-x.) > 
1. 1. 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

2 2 where a = <X.> is the mean-squared value of the input speech samples. 
X 1. 

given by 
1 

=-
NS 

NS 2 
L x. 

. 1 1. 1.= 
(2.32) 
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where NS is the total number of sampling intervals over which the 

summation is performed. From Equations (2.29) and (2.31) 

a 2 

SNR .. x 
a 2 (2.33) 

q 
or 

a 2 a 2 

SNR = 
x e 

"2 2 (2.34) 
a e a q 

Th . 'f 2/2. h d" • e rat10 0 a a 1S t e pre 1ct10n ga1n and denoted by G, whereas, x e 
, 2 2. 
a /a 1S the SNR of the quantizer and denoted by Q. Therefore, 

e q 

Equation (2.34) becomes 

SNR = G.Q 

In dB's 

or SN~PCM(dB) = SNRI(dB) + SNRQ(dB) 

SNRI(dB) is the improvement factor in dB over PCM and depends 

on the auto-correlation of input speech samples, and the values of 

(2.35) 

(2.36) 

(2.37) 

the prediction coefficients. The structure of the predictors and how 

the coefficients are computed is presented in Chapters III and IV. 

Historically, most research activities have been done on 

first-order predictor, also known as leaky integrator. An ideal 

integrator has one coefficient, say "al', whose value is unity. The 

SNR gain of DPCM coder over PCM coder, G, for an ideal integrator is 

(2.38) 

where Cl is the first correlation coefficient of the input speech 
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signal. In Equation (2.38), for G>l, cl must be greater than 0.5 for 

the performance of DPCM to be greater than that of PCM. 

For al=l, the system is said to be non-optimal. The optimum 

2 2 
performance is achieved when alacl , assuming that 0q«ox' and under 

this condition, 

1 
G =--2 

I-cl 
(2.39) 

Once again, as the value of cl is always less than I, DPCM maintains 

its advantage of G over PCM. The SNR of the DPCM coder having a leaky 

integrator in its feedback loop is 

~ 
I-cl 

(2.40) 

McDonald(55) examined the various first-order predictors in 

the DPCM coder and concluded that the optimum prediction coefficient, 

a,=c" is better than ideal predictor, al=l, in that it is more 
" " 

tolerant to the channel errors. 

However, the relationships described by Equations (2.38)-(2.40) 

are theoretically viable assuming that: 

a) 

b) bits/sample, b~2. 

A more generalized relationship between SNR, cl and Q is given 

by 0INeal~56) namely, 

(2.41) 
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2 2 Equation (2.41) is independent of the assumption 0 «0 • and applies 
q x 

for a first-order Markov process input sequence. Q depends on the 

number of quantization levels, N
Q 

and p.d.f. of DPCM error sequence {e
i
}. 

A reasonable estimate of Q can be made by assuming that the p.d.f. of 

{ei}is identical to the p.d.f. of the original speech sequence {Xi}. 

S~PCM values computed for Max's(44) optimum and uniform quantizers, 

where Gaussian inputs are assumed, and those calculated using Equation 

(2.41), are in close agreement with measured SNR values. The input 

signal to the quantizer in DPCM is not, however, truely Gaussian, being 

the convolution of two p.d.f.'s, namely those relating to {Xi} and {qi}. 

For large values of Q, Equation (2.41) is reduced to Equation (2.40). 

The SNR value, Q for the quantizer may be estimated for Gaussian 

and Laplacian p.d.f.'s using Equation (2.17). From Appendix B, Q
G 

and 

QL' i.e., the quantizer SNR for Gaussian and Lap1acian p.d.f.'s 

respectively are defined as 

In deriving these relationships for NQ-level, Opt-Quant's it is 

assumed that N
Q 

is large. 

b 
Also, N

Q
=2 , hence, 

SNRQG(dB) = 6b - 4.35 

and SNRQL(dB) = 6b - 6.53 

where b is the bits/sample. 

(2.42) 

(2.43) 

(2.44) 

(2.45) 
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. (57) 
For logarithmic quant1zers having ~=lOO and ~=255, 

and 

respectively. 

SNRQLog_Q(dB) ~ 6b - 8.5 

SNRQL Q(dB)'~ 6b - 10.1 og-

For small values of N
Q

, Q values and SNRQ's are given in 

(2.46) 

(2.47) 

references (44,45,46) for signals having Gaussian and Laplacian p.d.f.'s. 

2.3.4 Adaptive Differential Pulse Code Modulation, ADPCM 

Fixed predictors designed on the knowledge of long-term signal 

statistics cannot be optimum at all times because of the non-stationary 

nature of the speech signal. Since the statistics of speech signals 

change with time, the predictor must also adapt to the changing 

statistics. If this adaptation is not done, the performance of DPCM, 

optimized for one type input statistics, experiences a loss in SNR 

when a signal with different statistics is applied. The main factors 

responsible for this reduction in SNR of a DPCM system are, viz: 

a) the predictor, being no longer optimum, 

and 
b) the quantizer being mismatched to a new signal. 

In order to achieve a more flexible DPCM system that can perform 

satisfactorily for all speakers, a variety of fixed and adaptive 

predictors and quantizers can be combined. The predictor can now be 

near to optimum in that it can follow variations in the signal with 
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considerable accuracy. A system that. performs reasonably well for all 

speakers, and minimizes the necessity of a priori knowledge of the 

signal statistics, is referred to as ADPCM (either of which or both 

quantizer and predictor are adaptive). We now briefly describe some 

adaptive systems available in the literature.· 

2.3.4.A . (48) 
Block Adaptive Pred1ctors 

One method of selecting prediction coefficients in accordance with 

the short-term variations of the speech signal is to update the 

predictor parameters periodically. In this way, the short-term auto-

correlation coefficients in blocks of buffered input speech samples 

(with a duration of Wlf sec.) are computed and then from Equation (2.9), 
s 

A is calculated for the same block. 
opt 

, 
Vector A t is utilized for the 

op 

encoding of the respective block of W samples. Since, the prediction 

coefficients are calculated from the input speech signal, the technique 

is referred to as Forward Block Adaptive (FBA) scheme. It follows that 

because the coefficients must be encoded and transmitted to the receiver 

in addition to the quanti zed sample e., FBA scheme increases channel 
1 

capacity. Further study of such schemes is given in Chapter Ill. 

The second technique, known as Backward Adaptation method, computes 

the prediction coefficients from previously decoded speech samples and 

therefore eliminates the transmission of the prediction coefficients. 

The autocorrelation method can be employed on the locally decoded 

samples. However, it is not suitable for practical purposes since it 

requires the delay of one block. 
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2.3.4.B Adaptive Predictive Coding, APC 

DPCM system usually does not attempt to predict the long-term 

redundancy in the input speech signal, namely pitch, as does a system, 

referred to as adaptive predictive coding, APC. APC is a DPCM system 

where the predictor is sub-divided into rwo components. This approach 

(58) . was used by Atal-Schroeder whose long-term pred1ctor exploits the 

fine spectral structure (quasi-periodic nature of voiced sound), while 

a short-term predictor is employed to e~loit the spectral envelope of 

the speech (vocal tract shape). By this technique, the redundancy in 

the speech signal is removed in two steps. Figure 2.15 shows Ata 1-

Schroeder's adaptive predictor. Long term predictor, Pl(z), eliminates 

the redundancy due to similarity of the speech signal resulting from 

adjacent larynx pulses. This is .achieved by a first-order predictor 

that is composed of gain and delay elements. Transfer function, T.F. 

of Pl(z) is 
-M 

Pl(Z)=!la z · p (2.48) 

where M is typically a pitch period, calculated by a pitch detector. 
p 

Constant !la accounts for the amplitude variations from one pitch 

period to another. In the case of unvoiced segments of speech, !la 

is almost zero and M is not significant. 
p 

The second predictor, P2(z), operates on the error signal, e li , 

i.e., output of predictor whose T.F. is l-Pl(z). T.F. of the second 

predictor is 

(2.49) 

where N is typically 8. 
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Therefore, the overall T.F. is given by 

The parameter M in Equation (2.48) is selected such that the 
p 

(2.50) 

correlation of the speech signal with a shift of M samples becomes a 
p 

maximum or <e
1
2.>c«x.-e x. M )2> is minimum. 

1 1 a 1-

2 Hence the term <e
li

> is 
p 

minimized with respect to e. This results in 
a 

<x. x. > 
1 1-M 

ea c -"2--..t:P-
<x > 

i-M 
p 

(2.51) 

where <.> implies averaging over all the samples in a 5 msec. interval. 

2 The value of <e .> for Equation (2.51) yields 
11 

2 
<e .> 

11 

c 
1 

= 

<x. x. M > 
1 1-

P 
. {<x7><x7 >}~ 

1. 1-M 
P 

where cl is the normalized correlation coefficient. 

Thus, having decided on the value of e to give the minimum 
a 

2 value of <e
li

>, the value of Mp is determined by the maximum value 

of cl. Then Equation (2.49) is employed. The readjustment of the 

predictor parameters e , M and a coefficients, at every 5 msec., 
a p k 

(2.52) 

(2.53) 

improve the prediction efficiency as ·the predictor considers both the 

excitation and vocal tract information in making its prediction. 

When this predictor is used in DPCM, as shown in Figure 2.16, the 

error signal resulting from both types of predictor is quantized, 
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encoded and transmitted, together with encoded values of M ,~ and a 
p a k 

coefficients. In their simu1ations, the authors have used speech signal, 

sampled at 6.67 kHz and band-limited to 3.1 kHz. M is selected by 
p 

maximizing cl for 20<Mp<150 and N=8. The quantizer is a two-level, 

one-bit, quantizer with a variable step-size at every 5 msec. Although, 

they did not quantize M ,B and a , but they did suggest that, in 
p a k 

addition to 6.67 Kb/s for the error signal, 3 Kb/s are required for the 

predictor parameters, hence speech quality is sustained at a rate of 

10 Kb/s. Subjective tests show that the quality of recovered speech 

was between the performance of 5 and 6 bit-10g-PCM, i.e., SNR of 

approximately 24 dB. 

The further improvement in SNR can be achieved by: 

a. pre-emphasing the speech above 500 Hz prior to encoding and using 

the complimentary amount of de-emphasing filter after decoding. 

This is introduced since APe quantization noise has a flat 

spectrum, while the spectrum of voiced segments of speech tends 

to fall down above 500 Hz and gives low SNR at high frequencies. 

. . d ~n () 1 (13,59,60) b. introducl.ng another gal.n, e1ay arrangement. P
1 

Z , name y 

-M 
~ Z P + 

a 

-2M 
p 

2 
where ~a'~b are calculated for minimum value of <e1i>. This 

(2.54) 

provides decoded speech which is superior to 6 bit-10g-PCM, i.e., 

approximately SNR of 30 dB 1 s. 

c. using three estimates of the pitch, viz: 

-M +1 
P (z) = B z P 

1 a 

-M 
+ ~ z P 

b 
+ ~ z 

c 

-M -1 
P (2.55) 
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M 
(17) 

oye ,reviewing Atal-Schroeder's results points out that if a 

system of reliably predicting larynx pulses can be made then Atal-

Schroeder's system may yet prove of value, but SNR figures would 

certainly be lower if the prediction parameters were quantized. In 

addition, the complexity of calculation of ~ coefficients using 

covariance technique at every 5 msec and the computation of pitch period 

offsets the advantages reported here, in terms of implementation. 

2.3.4.C Pitch Synchronous Techniques Used in ADPCM, PSADPCM 

CM (6G-61) . ·d d ·ddl d b APC d ADPCM PSADP 1S conS1 ere as m1 e groun etween an , 

in terms of both SNR performance and system complexity. The principle 

difference between APC and PSADPCM arises from the employment of multi-

level quantizers in the latter case. The block diagram of PSADPCM is 

shown in Figure 2.17. Jayant~6l) in his PSADPCM employs two types of 

pitch extraction techniques, namely average magnitude difference 

function (AMDF) type of extractor and autocorrelation type of extractor, 

In Figure 2.17, P
2

(z) is fixed spectrum predictor, while Pl(z) is 

d . . h d· d h· . th I a apt1ve P1tc pre 1ctor an t e1r 1 , output va ues are: 

N2 

Yli = L ~ +j 
x. . 

1-M -J 
j=O P P 

(2.56) 

NI 
L 

. 
Y2i = ~ x. k 

k=l 
1-

(2.57) 

where M is the pitch period. Four sets of combinations of'predictors 
p 

are employed, namely: 
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a. k=l, j=O 

'\i (2.58) 
p 

b. Nl=N2=3 

(2.59) 

c. Nl=N2=1 

(2.60) 

d. Nl=N2=0 

y. = a.. x. M 
1 M 1.-

(2.61) 
P P 

where NI and N2 are the orders of predictors. 

(a-d) are employed when the speech signal has periodic behaviour, 

otherwise fixed spectrum predictor is used on its own. The .switching 

between the two stages (periodic and non-periodic cases) are controlled 

by certain threshold levels calculated from AMDF technique. The Equation 

(2.61) is the simplest approach to PSADPCM and it generates highest SNR 

values when the correlations that are observed between x. and x. M is 
1 1-

P 
very strong at 16 Kb/s (2 bits Q). Such a configuration together with 

adaptive quantizer offers 4 dB advantage in average SNR over conventional 

rd 
ADPCM employing 3 order fixed predictor. However, it necessitates 

approximately 1 Kb/s transmission-bit rate for transmitting pitch 

information. 
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In a thesis by Xydeas ~7) the samples in adjacent pitch are 

subtracted, after due allowance for differences in pitch duration, 

and the difference samples are encoded. By this method a 6 dB 

improvement was achieved over DPCM where both the pitch synchronous 

encoding arrangement and the conventional DPCM encoder used an ideal 

integrator and linear quantizer. The main differences between the 

systems advocated by Jayant (61) and Xydeas (7) are as follows: 

a. Xydeas used an ideal integrator. 

b. Non-equality of pitch periods are compensated in the latter 

case. Jayant, on the other hand did not perform this 

compensation and the difference betwe,en the pitch samples 

occasionally resulted in the quantizer having to handle large 

amplitude samples which caused overload noise. 

2.3.4.D Sequential Predictors 

These types of predictors arrange for the coefficients to be 

updated at every sampling instant from previously decoded samples, i.e., 

backward adaptation scheme. The beauty of such algorithms is that they 

eliminate both the computation of the matrix inversion and the need to 

transmit the coefficients to the receiver. The coefficients are updated 

at every instant in such a way that the prediction error is minimized. 

Th k th ff·· h (. l)th . . f d (60) e coe 1C1ent at t e 1+ 1nstant 1S oun as: 

a. 1 k = a. k + ~ 1+ , 1, 
(2.62) 
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where a. k is the value of the coefficient at the ith instant and ~ 
1, 

is a function of previous predictor input samples, previous predictor 

error, pitch period and many other factors. • (62) 
Cumm1skey used a 

technique which minimizes the absolute error. Similar technique which 

minimizes the mean square error is known as Stochastic Approximation 

(63) . 
prediction (SAP). Gibson et aI, uS1ng an all-pole model, examined 

Kalman predictors for speech prediction and found them to be slightly 

better than SAP. . (64) In a different study, G1bson compared the 

performance of SAP and Kalman predictors with a fixed predictor. He 

reported that at transmission bit-rates smaller than 16 Kb/s, the 

sequential predictors are superior, since in many cases fixed predictors 

d
. (65) . 

may 1verge, 1.e., they become unstable •. However, at high bit-rates 

(>24 Kb/s), fixed and stochastic predictors behave almost the same, 

but the Kalman predictor produces a small improvement in SNR which is 

perceptually noticible. Tne details of these schemes are described in 

Chapters IV and V. 

2.3.4.E Adaptive Quantizers 

Although, the emphasis in this thesis is on predictors which are 
. 

designed either using the locally decoded samples, x., (sequential 
1 

methods) or the original speech samples, x. (fixed or block adaptive 
1 

schemes), its performance is dependent on the presence of a quantizer 

when operating in a DPCM encoder. The quantizer and the predictor 

that can be designed to give optimum results in isolation, do not 
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necessarily behave optimally when operating in a DPCM encoder. We will 

consider the predictor-quantizer interaction in a DPCM encoder, and 

extend the discussion of Section 2.3.2 relating to quantizers. 

Many algorithms have been devised for adaptive quantizers, AQ, so 

that the two adaptive components of a DPCM encoder may suit the changing 

statistics of the speech signal. The algorithm proposed by Str04 49) 

calculates the step-size from the block of quantizer input samples of 

length Wand designated this method as a forward quantization scheme. If 

the quantized samples are used to form the quantizer step-size, the 

quantization is known as backward adaptation quantization. Noll(48) 

produced similar algorithms and· calculated the step size both from the 

input data and quantized data using predictors in his DPCM encoder that 

were either a first order feedback predictor or a Nth order predictor. 

These block·methods assume that the signal is stationary over W samples 

and take the short-term variations of the input signal into account. 

These quantizers are also known as syllabically adaptive quantizers. A 

different approach proposed by Jayant(13,33,36,5l) selects the step size 

at every sampling instant (instantaneously adaptive quantizers, AQJ) 

using a knowledge of previously quanti zed values. It is essentially a 

backward quantization scheme, and the step-size at ith sampling instant 

is given by, 

(2.63a) 

where M(ILi_ll) is the time-invariant step size multiplier and ILi_ll 

is the magnitude of the code transmitted in the previous sampling instant. 

In practice, 6. is constrained by the quantizer to 
1 
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6. li 6. li 6 
m1n 1 max (2.63b) 

resulting in the encoder having a dynamic range,.DR, of approximately, 

6 
DR(dB) = 20 max 

10glO (~) (2.63c) 
IDl.n 

The leaky constant, Q (66-68) .. d d h . (2 63 ) ~ , 1S 1ntro uce so t at Equat10n • a 
q . 

becomes robust to channel errors. Gibson et al(63,64) also used such 

quantizer, AQJ, in their ADPCM encoders using adaptive predictors. AQJ 

. 1 d b Ch (24). . . . hI' was a so use y eng 1n conJunct10n W1t att1ce predictors, and 

obtained good qua(,lity of speech at 1.12 bits/sample, a prediction gain 

of 10 dB over PCM, N being 8. 

The quantizers described by Noll~48) Jayant(13) lack the ability 

to cope efficiently with pitch variations in the signal assuming that the 

predictor is essentially attempting to remove the vocal tract 

information. The quantizer in this situation is often required to handle 

a residue signal which may have high amplitudes occur at pitch epochs. 

A backward quantizer which adapts its step size in a similar manner to 

AQJ, arid also takes into consideration the high 

pulses has been studied by Coim-Melsa (69,70) and 

amplitude excitation 

. (71) 
Quresh1-Forney. Cohn-

Melsa proposed a quantizer which has a set of high quantization levels 

that can accommodate the occasional high amplitude error sample. When 

the quantizer output corresponds to one of these high levels, the 

algorithm behaves as if a pitch pulse has occurred. The resulting 

large step size is then allowed to rapidly decay in order to handle 

subsequent small amplitude error samples. Thus, there are two modes of 

step size adaptation, one for the small residue sample (syllabic 
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adaptation), and the other for coping with the rare large amplitude 

excursions. The syllabic adaptation is controlled by the local time 

average of the magnitude of decoded signal sequence, (x.). Quantizers 
1 

operating in this way are referred to a·s pitch compensating quantizers, 

PCQ, and in general they employ mid-tread quantization characteristics. 

Qureshi-Forney have used two-loop Jayant Quantizer in their PCQ, i.e., 

syllabic adaptation is also accomplished using Jayant's algorithm. 

Further Xydeas et al(72) studied a different approach which produces a 

much faster adaptation and a greater reduction in the variance of the 

input signal to a fixed quantizer. Here, an adaptive quantizer was 

represented by a fixed quantizer having an adaptive structure at its 

input together with a non-linear element. Such a quantizer achieves a 

3-4 dB SNR gain over AQJ. 

In all quantizers, the quanti zed output level is binary coded by 

assigning a code word of length 10gzN
Q

, where N
Q 

is the number of 

quantization levels. A simple approach to code word assignment is to 

assume that the probability of occurrances of each level is equal and 

designate the code words accordingly. However, due to the non-

stationary nature of the samples being coded, gains in SNR can be 

obtained by using variable length coding, VLC. Specifically short code 

words are assigned to quantization levels that occur with a high 

probability and long code words are given to those levels whose 

occurrance is low. The VLC is often called entropy coding, because, 

the average code word length is almost the same as the entropy of the 

symbols to be transmitted. VLC can produce average code word lengths 

less than 10gZN
Q 

bits/sample. Alternatively, at a given bit rate, the· 
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number of quantization levels can be increased, resulting in a higher 

SNR O'N 103,.74) . d d" PCM' • . ea exam1ne entropy co 1ng 1n D uS1ng opt1mum 

Gaussian, Lap1acian and Gamma quantizers and achieved 2.81, 5.60, 10.2 

dB's SNR advantage respectively, over "a system without VLC's. 

VLC also yields significant improvement in PCQ schemes since the 

probability of occurrance of the pitch pulses is low. By assigning long 

code words to the additional 2 outer levels in a 3 level quantizer 

(constant length code word), Cohn-Melsa(69) reported in their (3/5) 

level quantizers only a 10% increase in bits/sample (1.25 to 1.37 bits/ 

sample), while in \.3/5) level quantizers improvement is about 47%, 

namely from 1.58 to 2.33 bits/sample. "Makhou1 et a1(75) obtained 2.1 

bits/sample using VLC on a 19 level quantizer, in contrast to 4.25 bits/ 

sample when the code words are assigned assuming they could occur with 

equal probability. VLC requires a buffer at the transmitter and receiver: 

no buffers are required in the case of all code words being the same 

length. A buffer smooths the fluctuations between the coder and channel 

operating at variable rate and it is transmitted over the channel at a 

uniform rate. 

2.3.5 Quantization Noise Spectrum 

The noise spectrum is a key factor in determining the subjective 

quality of the received speech. Consequently, the relationship between 

the spectrum of both the input speech and noise signal should be taken 

into account in designing a DPCM system. The long-term spectrum of 
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voiced speech decreases at -6,-12, dB/octave, while the noise spectrum 

tends to be uniform. Therefore, the SNR of the reconstructed signal 

falls with increasing frequency. At high frequencies, the low 

amplitude of the spectral components may be dominated by the quantization 

noise. To overcome this effect shaping of the noise spectrUm to lie 

beneath the formant structure of the speech may be employed. This 

approach was initially reported by Atal-Schroeder(58) as it was discussed 

in Section 2.3.4.A and they achieved improved results using fixed both 

pre-emphasis and de-emphasis filters. Currently, noise shaping systems, 

primarily based on APC, are receiving a lot of attention as will be 

presented below. 

2.3.6 Related DPCM Codecs 

All the DPCM systems described so far employ prediction algorithms 

that attempt to remove vocal tract information, and in the more 

elaborate versions, pitch information. The resulting residual signal 

is encoded and transmitted. The receiver using, ideally, identical 

predictors, converts the residual signal back into speech. The predictors 

of DPCM, ADPCM encoders tend to minimize the mean square value of the 

prediction error regardless of the perceptual effects of the noise. 

d . f db ()(60, 76) . h f A system calle n01se ee ack coder NFC 1S anot er type 0 

differential encoder which attempts to shape the noise spectrum to 

reduce the perceptual effect of the noise. NFC subtracts the quanti zed 

output from its input to give the quantization error. This error is 
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then filtered by filter F2(z) in Figure 2.18. The filtered noise 

signal is then subtracted from the input speech signal. Once, the 

filters Fl(z) and F3(z) are selected from vocal tract and pitch 

information considerations and then the design of F2(z) ensures the 

restoration of the speech at the receiver has noise with a spectral 

composition which is located beneath formants. 

Another differential encoding system called D*PCM, also known as a 

prediction error coder (PEC), is shown in Figure 2.19. NolI analysed(76) 

D*PCM and concludes that it is an intermediate stage between PCM and 

DPCM. This is true in the sense that D*PCM is both DPCM having its 

quantizer outside the loop and PCM having pre- and post-filters. As in 

DPCM, D*PCM has two identical predictors but they have different input 

signals. The disadvantage of D*PCM is to produce an error accumulation 

effect since the positive feedback at the receiver emphasises .the 

quantization noise. The optimum coefficient for first-order predictor 

used in D*PCM is 

a = 
1 

and SNR gain over PCM is 

G = 
1 

h_c2 
1 

(2.64) 

(2.65) 

Comparison of Equations (2.65) and (2.39) points out the aforementioned 

fact that, in terms of G, D*PCM is inferior to DPCM. However, D*PCM 

is a system which behaves as a partially whitening filter, whereas DPCM 

-is a full-whitening filter and both systems have the same sensitivity to 

channel errors at high bit-rates. 
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NFC can be employed with D*PCM to shape the quantization noise with 

Fl(z)=l-P(z), F3(z)=1/(1-P(z». Such a configuration produces good 

quality speech since it pre-filters the input speech at high frequencies 

and post-filters recovered speech at the receiver to eliminate the 

spectral distortions caused by pre-emphiking. In addition, F2(z) 

redistributes the noise in the spectrum, decreasing it at high frequencies. 

The general form of a differential coder attempts to remove vocal-

tract and excitation from the speech signal, and applies noise shaping, 

as is shown in Figure 2.20. We observe that it is essentially the same 

as APC, see Figure 2.16, with the introduction of spectral noise masking. 

1 S h d (78,79). . d h . Ata - c roe er 1nvest1gate t e n01se shaping system under 
N -k L ~z ,N is 

k=l 
the following conditions: Fl(z)=1-P2(z) where P2(z) = 

typically 10 (vocal-tract filter) and they remove the short-term predictor, 

P2(z) from the feedback loop. Long-term, pitch-predictor, Pl(z) having 

3 prediction coefficients is defined by Equation (2.55). Quantizer has 

3 levels. The predictor and quantizer parameters are updated at every 

10 msec. In addition, the authors employ pre-emphasis (1-0.4z-1) and 

-1 -1 
de-emphasis, (1-0.4z ) and output of F2(z) is peak-limited in order 

to eliminate instability problems. In selection of F2(z), 3 configurations 

of noise shaping filter are examined, viz: 

a) F2(z)=0; this gives the quantization noise spectrum having the 

same envelope as the input spectrum. The SNR is 13 dB, but the 

recovered speech is noisy. 

b) F2(z)=P2(z); this choice provides SNR of 23 dB and recovered 

speech is less noisy than in (a). However, the high SNR values 
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at the formants are degraded between the formants. Generally, 

speaking, choice (a) is good for high-frequencies, while (b) is 

for low frequencies. 

-1 
F2(z)=P2(8 z ) where 0<8 <1. 

a a 8 =0 and 8 =1 correspond to choice a a 

(a) and (b) respectively. The suitable value of 8 between 
a 

0<8 <I, increases the bandwidths of zeros of l-F2(z), hence SNR a 

is improved in the required band. The output SNR in this case 

is 21 dB and the quality of reconstructed speech is comparable 

to that of 7 bit-log PCM (SNR - 33 dB). 

Makhoul and Berouti(75) have also reported on the combination of 

noise shaping and differential coding. Unlike Atal-Schroeder, they 

removed the pitch loop, i.e., Pl(z)=O and FI(z)=l. P2(z) and F2(z) are 

given by 

P2(z) = 

F2(z) = 

N L -k 
k=l~z 
P . 
L f:'z-J 

j=l J 

, N=8 (2.66) 

, l<p<N. (2.67) 

The authors investigated both all-pole and all-zero designs Jor 1+F2(z). 

In all-pole design, 1+F2(z) is selected so that 

I+F2(z) = I (2.68) 
1+P2(z) 

where P2(z) parameters are selected from the input speech signal. For 

p=l or 2, the output speech contained low-frequency "rwnbZe" and this 

roughness dominated for p>2. In all-zero design, the coefficients of 

I+F2(z) are selected such that I+F2(z) becomes an optimally inverse to 

1+P2(z). This is simply achieved by calculating the correlation that 

exists between the ~ coefficients, 
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N-Ijl 
c. = L ~~+IJ'I' l<j<p 

J k=O 
(2.69) 

and aO=l. Therefore for p=l, {1+P2(z)} has the coefficient of (-c
2
/c

l
) 

and for p=2 the coefficients of {1+P2(z)} are c2(c3-cl)/(ci-c;) and 

2 2 2 
c2-clc3/(cl-c2) respectively. In experiments, these configurations 

reduce both the hissing noise at high frequencies and the rumble 

and roughness at low frequencies. 

In a final design, employing forward adaptive, entropy-coded 

quantizer (19 levels), predictor of N=8 and noise shaping filter of 

p=l or 2, the authors obtained almost no difference between input and 

recovered speech during,the subjective tests. The speech signal was 

sampled at 6.67 kHz, encoder was operating at 16 Kb/s, also quantizer 

and predictor parameters were updated every 25 mSec. 

As a conclusion of these configurations, described here, it is 

important to emphasise that the noise shaping teChniques do not create 

any extra information to be transmitted to the receiver. Hence, the 

reduction of the perceptual effect of the noise results in some 

complexity in the design of transmitter at a given transmission bit-rate 

and improved quality of reconstructed speech specifically at bit-rates 

of 16 Kb/s and below. 

2.3.7 Delta Modulation, DM 

Delta Modulation is a simple differential quantization technique 

that is essentially a one-bit DPCM system, because it preceeded DPCM, 
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and is widely used, we will consider its operation in detail. 

The input signal of·DM is oversampled so that the successive 

speech samples become highly correlated. Therefore, samples can easily 

be predicted from one previous sample, using single-tap predictor, and 

a 2-level quantizer can provide reasonable SNR performance~ll) 

Consequently DM has a simpler structure than DPCM. In DM, the bit-rate 

is equal to sampling rate. Since its invention in 1946~79) many papers 

h d h b · S 1 (8) . h' f f d b k ave appeare on t e su Ject. tee e, 1n 1S 0 ten re erence 00, 

presents an excellent comprehensive survey of delta modulation. 

Like DPCM, DM coder can be either linear, non-adaptive (LDM) or 

adaptive (ADM). These classifications are usually associated with the 

techniques of calculating stepsize,~. In LDM, ~ is fixed, while in 

ADM, the stepsize follows the variations in the input slope according 

to a companding algorithm. We will now describe LDM and ADM in more 

detail. 

2.3.7.A Linear DM, LDM Coder 

Figure 2.21 shows a LDM coder having a 2-level quantizer with a 

fixed step size ~, and single-delay predictor having a coefficient of 

unity. The feedback loop is composed of a delay D of one sample 

period followed by an accumulator. Transfer function of feedback loop 

is D/(l-D). 

A 

In the encoder, locally estimated speech sample x. 1 is subtracted 
1-
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from the actual speech sample x. to form the error sample e. which is 
1· 1 

subsequently quantized. The polarity of e. is transmitted as a one-bit 
1 

binary word L.. The Equations governing the delta modulation system are: 
1 

e. = x. x. 1 1 1 1-
(2.70) 

. 
"sgn (e. ) x. = x. 1 + 

1 1- 1 
(2.71) 

• q. = x. - X. 
1 1 1 

(2.72) 

therefore, e. = x. - x. 1 + qi-l 1 1 1-
(2.73a) 

The decoder integrates the received binary signal to yield a 

signal that is a staircase version of the original speech signal. 

The sharp edges of the staircase signal are removed by the .low-pass 

filter F
O

' to produce a speech signal that is a good replica of the 

original speech, provided the bit-rate is sufficiently high (~32 Kb/s). 

In the absence of coder overload, the Equation (2.73a) may be written as 

e. " x. - x. 1 
1. 1. 1-

(2.73b) 

i.e., the error signal is approximately the derivative of the input 

• 1 (80) s1gna • 

Two types of distortion arise in the encoder, and are known as 

"granular" and "slope overload" noise. Slope overload occurs if the 

staircase waveform x. 1 is unable to track the input speech signal. 
1-

To avoid slope overloading the following inequality should apply, 

dx(t) I :: dt max " T 

where T is the sampling period and equal to l/f , and dx/dt is the s 

(2.74 ) 
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derivative of the speech signal. If the input signal is a sinewave, 

x(t)=V sinw t, 
m m 

i(t) I C III V 
max m m 

For no slope overload, 

III V ~ Af 
m m s 

(2.75) 

(2.76) 

Granular noise occurs when the encoder is tracking x., and is the result 
1. 

of inband noise in the tracking error signal. For correct idle channel 

conditions when there is no input signal, the binary output signal is 

a sequence of alternative logical ones and zeroes. This binary signal 

does not generate an output at the output of FO. Idle channel noise 

occurs when the ••••• 1010101010 •••. output pattern is not maintained 

due to encoder asymmetry, and a noise signal occurs at the decoder output. 

If the output binary sequence, {L.} has a form of the type 10111111 
1. 

or 001000000, the probability of having slope overload is high, while if 

{L.} is say 1100101110010110, granular noise dominates. Slope overload 
1. 

noise is reduced by increasing stepsize, A, whereas the opposite is true 

for granular noise. Step size adjustments according to binary 

sequences at the coder output are efficiently utilized in ADM coders. 

Perceptually, the overload noise is preferable to granular noise, since 

the latter has a uniform spectrum (see Section 2.3.5). Abate(81) proved 

an imperica1 formula for the optimum step size, A t which minimizes the op 

total noise power, namely, 

A = ,l.r(-x-. --x-.-
l

""') 2"'"""> 10g
2

FR 
opt 1. 1.-

(2.77) 

where FR=f /2f (f is the bandwidth of the speech signal) and Equation 
s c c 

(2.77) is valid for FR»l. 
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The exact calculation of SNR in DM has been studied by many authors~82-84) 

S d 1 · (82) h'l h . . d 1 ome concentrate on granu ar n01se, w 1 e ot ers 1nvest1gate on y 

slope overload noise~83-84) O'Neal examined both types of noise and 

added the variance components due to each distortion for Gaussian 

signals~85) Various formulations of SNR in DM can be summarized as 

follows: 

a. 
(86) 

De Jager showed that the noise power is 
f-' 

s 2 
f-i . 11 

c 
(2.78) 

The constant K is typically 1/3 for good encoding conditions. 
q 

Equation (2.78) is applicable for flat noise spectrum in the 

b. 

message band, and 

SNR = 
0

2 
x 

0
2 

-) -2 
f .11 

c 

q message 

= "'K""-. "'f-'"" 
q s 

band 

assuming no slope overload occurs. 

C • k·· (80) d . d that umm1S ey er1ve 

SNRI message 
band 

= 
(Q -1)£ /2f 

opt s c 
2(1-c

l
) 

(2.79 ) 

(2.80 ) 

2 2 
where Q t is <e.>/<q.>, cl is the correlation coefficient of op 1 1 

speech. 

In proving Equation (2.80) it was assumed that ei=xi-xi _l and the 

resulting noise spectrum of the DM is flat, so that the ratio of total 

noise to the noise in the message band is f /2f. In a 2-level s c 

quantizer, Q values for Gamma, Laplacian, Gaussian and Sinusoidal 
opt 

p.d.f. of quantizer input sequence are 1.50 (1.77 dB's) 2.0 (3 dB's), 

\ 
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2.75 (4.3 dB's) and 5.28 (7.2 dB's), respectively. 

Equations (2.79) and (2.80) agree, and specify the upper bound in 

the case of single integrator. As an example, consider a sinewave, 

2 2 
V=V sin2nf t and a ~V /2, where V is the amplitude and f is the 

m m x m m m 

frequency of the sinewave. At no slope overload, from Equations (2.76) 

and (2.79), the peak SNR, SNRP is written as, 
f3 

SNRPi message 
band 

s 
= 0.04 f .f2 

c m 

From Equation (2.80) it was also proved that(87) 

SNRPi message 
band 

f3 
= 0.054 ----,s'-;,­

f .f
2 

c m 

Observe that SNRP of DM for single integration is 

(~M is constant), 

while in PCM and DPCM, SNR is proportional to f • 
s 

(2. 81 ) 

(2. 82 ) 

(2. 83 ) 

(86) 
De Jager has shown that aDM can produce speech with quality equal 

to that of 7 bit 10g-PCM while operating at sampling rate of 120 kHz. 

Another type of LDM is Delta-Sigma Modulator (DSM) in which 

the integrator(8) in the feedback loop of LDM is relocated in front of 

the quantizer, and the decoder is just a filter. Thus, the error 

sequence is integrated prior to quantization so that slope overload is 

independent of signal frequency f • 
m 
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2.3.7.B Adaptive DM, ADM Coder 

LDM has a peak SNR for one input power level when the coder is 

operating with a particular ~ and f. In the case of telephony~88) this 
s 

means that subscribers whose voices produce electrical signals having 

different power levels will be DM encoded with different SNR values. 

What is required is an almost constant SNR for all subscribers, i.e., 

a DM capable of operating with a similar SNR over a wide range of signal 

amplitudes. This is achieved by means of an adaptation strategy such 

that for a given f , ~ is allowed to decrease when the slope of the input 
s 

speech is small, and vice versa. As the-noise power <q~> depends on ~, 
1 

we attempt, in ADM, to arrange for <q~> to vary with signal power, 
1 

resulting in an SNR that is independent of the signal power. (The same 

independence found in ADPCM systems). DM systems employing the 

adaptation algorithms are referred to as adaptive OM, or companded DM. 

Adaptation can be either syllabic (~ changes at a rate which is dependent 

on the pitch or envelope information, or on the syllabic variations in 

the speech signal) or instantaneous (~ changes at every sampling instant). 

Many different algorithms have been proposed in the literature. 

Winkler's High Information Delta Modulation, (HIDM) coder(89) uses 

3 consecutive pulses at the encoder output in its adaptation algorithm 

and is an instantaneous system. Adaptation logic makes a decision 

according to the polarity of the three pulses and selects the three 

multipliers. HIDM produces a high SNR, and is well-suited to pictorial 

signalS due to its ability to cope with sudden changes in the input 

signal. However, at high transmission rates (64 Kb/s, HIDM operates 

satisfactorily with speech signals. 
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Another type of instantaneous companded DM is proposed by 

(13 33 36 90 91) . 
Jayant, ' , " and 18 usually referred to as First Order 

Constant Factor Delta Modulation, (FCFDM) coder. The step size 'is 

calculated at every sampling instant in accordance with the polarity 

of the last two pulses at the encoder output. This is accomplished by 

two multipliers which are independent of the sampling frequency. Jayant 

optimized these multipliers (1.5 and 1/1.5) and obtained good telephony 

speech quality at a bit-rate of 60 Kb/s. At 40 Kb/s, degradation in 

quality is perceptible, while at 20 Kb/s the speech quality is 

significantly reduced, but most of the intelligibility is preserved. 

At 60 Kb/s SNR of FCFDM is 10 'dB better than LDM for coding speech 

having a 3.3 kHz band-width. Also at low bit-rates, it behaves better 

3 than log-PCM, as SNRADM is proportional to f~, while PCM increases 6 dB/ 

octave increase in clock rate. 

A similar type of technique, referred to as the Second Order 

(92) Constant Factor DM (SCFDM) coder investigated by Kyaw and Steele. 

Instead of using the last two consecutive bits of FCFDM, SCFDM employs 

3 recent bits and constitutes 8 possible binary patterns which are 

grouped in complementary patterns to give 4 different multipliers. For 

Gaussian input signal which is band-limited to 3.1 kHz, at 40 Kb/s, 

authors reported a 4.5 dB advantage in SNR over FCFDM. 

In a different approach, known as the Song Voice Delta Modulator 

(SVDM)~93) the step sizes at ith sampling instant generated as, 

hi = 2hO sgn(ei _l ) , for Ihi _l l<2hO (2.84) 

hi = Ihi_llsgn(ei_l)+hosgn(ei_2) , for Ihi _l l>2hO 
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where 6
0 

is the minimum step size of the system, typically 5-10 mY. The 

results show that at 16 Kb/s and 9.6 Kb/s, the word intelligibility is 

high and dynamic range is about 40 dB. This ADM, i.e., SVDM is closely 

related to the constant factor delta modulator. 

In contrast to instantaneously companding, ADM employing syllabic 

companding changes its step size at a syllabic rate, dependent on 

properties of the speech signal (typically time constants of 5-10 msec., 

i.e., these associated with a pitch period are used). Continuously 

Variable Slope Delta Modulator (CVSDY finds favour in speech coding and 

is available on a single chip·~93) The CVSD coder is shown in Figure 

2.22. (Notice that without the syllabic compander the CVSD reduces to 

an LDM). The DM step size is found from the output bit stream with the 

aid of an 1-bit shift register (1 is usually either 3 or 4 for fs 30 kHz). 

Provided that 3 or 4 consecutive Li'S have the same polarity~ pulse H 

is generated and activates the syllabic filter whose time constant, T
2

, 

is typically 5-10 msec. A pulse of height HO (HO«H) is added to ensure 

that the minimum step size is not zero. The output of syllabic filter, 

having a coefficient of a
2

, is multiplied with the transmitted bit to 

give the step size 6. which is fed to the predictor (accumulator having 
l. 

a
l
=0.99, Tl-l msec.~ At 16 Kb/s, suitable values of the time constants 

for the syllabic and predictor filters, namely, T
l

,T
2

, range from 1 

and 
(93) (94). 6 msec, to 6 and 25 msec respectl.vely. This shows that the 

second choice is more syllabic rate, while the first one is rather at 

pitch rate. The syllabic filter is designed to enable the DM to track 

the speech envelope. System functions are, 
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6. = a26. 1+(1-a2)(H+Ho) , for L.=L. l=L. 2 
1 1- 1 1- 1-

Selection of Tl ,T2,a
l 

and a
2 

has an effect on the robustness 

of the coder to transmission errors. 

(2.85) 

Finally, in reference (94), CVSD and FCFDMare compared at 16 and 

24 Kb/s. The results reveal that, in no channel error condition the 

dynamic range of FCFDM is wider than CVSD, whereas in a noisy channel 

FCFDM performance degrades rapidly as the error rate increases. CVSD 

is more robust to channel errors. 
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2.4 OTHER SPEECH CODING TECHNIQUES 

. PCM, DPCM and DM coders are time domain waveform coders. However, 

the speech band may be divided into a·number of sub-bands, and waveform 

encoding processes applied to each band so that the reconstructed speech 

is the sum of the decoded values from each band. Such techniques are 

known as Frequency Domain Waveform Coders (FDWC)~13) They provide 

flexibility in assigning different bits/sample to each band since the 

noise is confined to each band, and appropriate coders can be designed 

for the different signal statistics in each band. Consequently, good 

quality of speech is obtained at lower bit-rates. Sub-band coding (SBC) 

and Transform Coding (TC) are typical examples of FDWC. 

SBC(13,66,95-97) divides the speech band into 4-5 sub-bands 

according to perceptual criteria such that equal contribution of each 

sub-band to the articulation index occurs. Each band is low-pass 

translated (LPT) to zero frequency by a modulation process prior to 

encoding. The aim of LPT is to reduce the sampling rate, and LP 

Translated signal is now filtered with a cut-off frequency, f , equal 
n 

to the bandwidth of the sub-band. The output of low-pass filters are 

sampled at 2f (f being different for each band) and encoded, for 
n n 

example, by APCM having Jayant's one-bit memory quantizer. SBC with 

its noise shaping ability has a speech quality that is higher than 2-

bits ADPCM below 24 Kb/s and also at 9.6 Kb/s, its performance is 

almost the same as 19 Kb/s ADM. 

Transform Coding (TC) is more complex than SBC (which is itself 
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more complex than ADPCM) •. Recently adaptive transform coding (ATC) 

h . h b xh . l' . d(13,95,98,99) tec n1ques ave een e aust1ve y 1nvest1gate • The speech 

signal is block processed. Each block is transformed and adaptive bit 

allocation and coefficient selection performed. As the discrete Fourier 

Transform (DFT) is often used, ATC is similar to SBC having many bands. 

In references (95,99) the,speech signal which is sampled at 8 kHz and 

band-limited to 2.8 kHz encoded using 4 different types of encoder, 

namely, ATC, SBC, ADPCM (AQJ and first-order fixed predictor) and DPCM­

AQF having block adaptive quantizer and 8
th

-order block adaptive 

predictor whose parameters are updated at every 8-16 msec. The 

conclusions at transmission bit-rates of 9.6, 16 and 24 Kb/s are as 

follows: 

If complexity/cost is of no concern then ATC is superior in terms 

of subjective quality of recovered speech,. If complexity/cost is of 

concern, then SBC is an attractive choice, since it has better quality 

speech, but slightly more complex than the ADPCM having first-order 

predictor. Furthermore its quality is paired with that of costlier 

DPCM-AQF coder. ATC is not described in detail, since it is beyond the 

scope of this thesis. However, interested readers may consult 

references (95-99). 

Another system to be mentioned in this section is referred to as 

voice-excited vocoder, (VEV). Such a vocoder attempts to gain the 

advantages of both waveform coder and the vocoder~7,lO) In the analyser, 

a low frequency region of the speech band, known as baseband, (typically 
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300-800 Hz) is encoded and transmitted using waveform coder and the 

rest of the speech band is treated as in the case of channel vocoder. 

An important feature of the base band signal is that, if there is any 

periodicity in the signal, it is inherently contained in the base band. 

Consequently, the difficulties due to voiced/unvoiced decision and pitch 

extraction can be avoided. At the receiving end, base band signal is 

processed by a non-linear distortion element which flattens and broadens 

the signal's power spectrum without disturbing the periodicity of the 

signal if there is any. This flattened signal is used as the excitation 

source in the synthesizer. The speech quality resulting from voice-

excited channel vocoder is better than channel vocoder, however it 

requires higher transmission bit-rates typically 9.6 Kb/s. 

Finally, a much simpler technique of speech coding for intermediate 

bit-rates, known as Time-Encoded Speech (TES)(l00) is recently receiving 

a lot of attention. This method splits the speech waveform into 

intervals between successive zero-crossings and then each segment is 

defined by one of a pattern, and extra information about the amplitudes 

is also transmitted. From the reference (100), it is clear that TES, 

while still in its infancy, seems to require less computation than many 

other systems described so far aiming for the 4-16 Kb/s. 



CHAPTER I I I 

FIXED AND BLOCK ADAPTIVE 

PREDICTORS IN DPCM 
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3.1' INTRODUCTION 

In the previous chapter, speech coders are briefly reviewed and 

their performance is compared in terms of SNR values. In this chapter, 

DPCM encoders employing either fixed or adaptive quantizers, together 

with fixed or block adaptive predictors, will be examined in detail. 

The long-term SNR of DPCM is given by 

SNR = G.Q (3.1) 

where G is the ratio of the signal power to quantizer input power 

and sometimes is referred to as the "prediction gain". Q is the 

ratio of the quantizer input power to quantization noise power. 

Equation (3.1) may be written, in terms of dB's as 

SNR(dB) = SNRI(dB) + SNRQ(dB) (3.2) 

where SNRI(dB) = lOloglOG (3.2a) 

SNRQ(dB) = lOloglOQ. (3.2b) 

The SNR improvement term, SNRI of DPCM over PCM, is the result 

of the formulation of the difference signal sequence {e.} between the 
1 

input speech samples, {X.}, and their estimates, {Y.}, at the output 
1 1 

of ~he predictor. In particular, the high correlation that often 

exists between successive speech samples will ensure that the variance 

of' {e.} is considerably smaller than the variance of the input speech 
1 

1 2 h .. h . th 1" . 1 . <NS d samp es, <x.>, were 1 1S t e 1 samp 1ng 1nstant, 1.e., <1 an 
1 

<.> is the time average of (.) taken over the. total number of samples, 

NS. As shown in Figure 2.14, the noise introduced in DPCM encoding is 
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1 h · d d b h .. . th 1· equa to t e n01se pro uce y t e quant1zer, 1.e., at 1 samp 1ng 
A 

instant, x. = x. + qi and e. = e. + q .• Furthermore, the power of this 1 1 1 1 1 

quantization noise, 
2 

is proportioI)al the power of the quantizer's <q.> to 1 

input signal 
2 

and 
2 2 

it follows that DPCM will <e.>, as <e.> < <x. >, out-1 1 1 

perform PCM when encoding speech signals. 

Obviously, the magnitude of the SNRI term in Equation (3.2) will 

depend on the efficiency of the predictor used in the DPCM encoder. 

Efficient predictors can be first designed according to the long-term 

or short-term statistics of speech and embedded in a DPCM loop. When a 

predictor is operating in the feedback loop of a DPCM encoder, however, 

the input speech samples are predicted from previously decoded speech 

samples and as a result the input signal to the predictor is contaminated 

with quantization noise and its estimation accuracy is affected. This 

limitation effect in the performance of the prediction and the resulting 

decrease in the SNR of the encoder, is emphasized at low bit-rates where 

coarse quantization is used and the predictor-quantizer 'mismatching" 

becomes significant. This seems to suggest that the optimization of the 

predictor should be performed using the statistics of the decoded speech 

samples, including information related to the quantization noise. In 

the simulation experiments presented in this chapter however, the 

transmission bit-rates concerned are relatively high, allowing for the 

predictors to be designed using the statistics of the original speech 

data. 

The predictor, employed in a DPCM coder (encoder-decoder), can be 
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i) fixed, i.e., time-invariant, ii) block adaptive or iii) sequentially 

adaptive, and various algorithms can be used for the calculation of the 

prediction coefficients. MCDonald~55) in his often referred paper, 

studied the case where the predictor is designed with fixed coefficients. 

Later, Noll(38) examined block adaptive schemes where the non-stationary 

nature of speech is considered. In particular, values of the prediction 

coefficients vary with time in a block adaptive manner and the predictor 

can cope with changes in the statistics of speech. 

The reason for the inclusion of the present chapter is two-fold: 

a. to discuss the relative merits of the fixed and block adaptive 

predictors, 

b. to prepare the background for the subsequent chapters which 

deal with sequentially adaptive prediction schemes. 

We start with a description of performance criteria which can be 

used for the comparison of different predictors. Then, the design of 

fixed and block adaptive predictor is presented. Further, computer 

simulation results of DPCM codecs employing these predictors and fixed 

or adaptive quantizers are discussed. Finally, the tolerance of the 

resulting codecs in the presence of channel errors is examined. 
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3.2 VARIOUS CRITERIA OF SYSTEM PERFORMANCE 

3.2.1 Long-Term Signal-to-Noise Ratio, SNR 

The calculation of long-term SNR is simple and is extensively used 

throughout the thesis in evaluating the performance of various encoders. 

It is defined as, 

SNR c 

2 
<X.> 

1 
• 2 

«x.-x.) > 
1 1 

• 2 • 
where «x.-x.) > is the variance of the error samples, (x.-x.), and 

1. 1. 1. 1. 

(3.3) 

l<i<NS, where NS is the total number of samples. In many cases, SNR 

is a reliable performance indicator, especially at high transmission 

bit-rates, where it is closely related to the subjective performance 

of the codec. However, this is not always true as sometimes higher SNR 

values are not necessarily related to improved quality speech. This 

inaccuracy arises from the importance of the subjective measure of the 

quantization noise, rather than its power as it has been discussed in 

Section 2.3.5. 

3.2.2 Segmented SNR, SNRSEG 

A different criterion to measure the performance of waveform 

encoders was proposed by NolI (38,48) and it is known as "Segmented SNR". 

It is similar to the total SNR measurement of Equation (3.3), but 

instead of evaluating one SNR value, the speech data is divided into 

successive blocks of W samples and a SNR(dB) value is computed for each 
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block. The SNRSEG is then formed as the average of the block SNR(dB)'s 

i. e. , 

NB SNRSEG(dB) 1 =-
NB 
L 
m=l 

2 
xi+(m-l)W 

th where NB is the total number of blocks and m corresponds to the m 

block. 

An important feature usually added to this formula consists of 

(3.4) 

discarding the SNR computation for segments whose signal power is below 

some threshold, typically -40,-50 dB's. This threshold, set to determine 

periods of silence, is introduced in order to improve the accuracy of 

the performance measure in the presence of idle channel noise~68) 

Many research workers are in favour of SNRSEG rather than SNR. This 

preference is related to a closer agreement of objective results with 

the subjective performance ratings of coded speech. 

3.2.3 SNR Improvement Factors, SNRI, SPR 

or 

In DPCM, the gain, G, over PCM is given by 

G = 
2 

<x.> 
1 

2 
«x.-y.(x.» > 

1 1 1 

SNRI(dB) = 10 loglOG 

where y. is the output of the predictor operating on previous input 
1 

(3.5) 

(3.5a) 
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speech samples x. l'x. 2 ••••• and hence y. is a function of {x.}. i.e •• 
1- 1- 1 1 

y.(x.). The parameter G is considered as the amount by which linear 
1 1 

prediction can reduce the input signal power. Furthermore. as G is 

obtained when the predictor input is noise free. it is frequently used 

in simplified mathematical analysis of DPCM codecs where the interaction 

'. . between quant1zat10n noise and prediction accuracy is assumed to be 

negligible. 

In the case where y. is computed using previous decoded samples. 
1 

i.e •• y. (~.). the prediction gain becomes more accurate and is denoted 
1 1 

by G : 
a 

or 

G = 
a 

2 
<x.> 

1 
• 2 

«x.-y.(x.» > 
1 1 1 

SPR(dB) = 10 10glO Ga 

(3.6) 

(3.6a) 

SPR is the true SNR improvement factor and the presence of quantization 

noise obviously affects its value. which differs from SNRI(dB). SNRI 

however. is often preferred in performance comparisons to SPR and can 

be interpreted as the upper bound of SNR gain of DPCM over PCM. 

Sound spectrographic displays can also be used for performance 

evaluation. especially with codecs operating at low bit-rates where the 

power of the quantization noise is considerable. This is because 

spectrograms provide a good indication of both the tracking capacity 

of the codec and the relative nature of the noise spectra with respect 

to the input spectra. 

Finally. the subjective quality of the recovered speech is the most 
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important criterion to be considered •. Our approach, therefore, in the 

presentation of codecs on a comparative basis at bit-rates between 16 

and 40 Kb/s, is to compute the long term SNR, SNRSEG, SNRI or SPR and 

then to evaluate subjectively the quality of the reproduced speech 

signal through a series of informal listening tests. 
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3.3 TIME-INVARIANT PREDICTORS WHEN USED IN DPCM SYSTEMS 

The term, predictor, is referred to a device which estimates the 

current speech sample as a linear combination of past samples. The 

diagram of such a linear predictor is shown in Figure 3.1 with the 

predicted value y. formed as 
1. 

N 

\ 

y. = 
1. La.X·_k , 

k=l k 1. 
(3.7) 

where "k is the kth prediction coefficient or tap gain and N is the 

order of the predictor. Obviously, the impulse response of predictor 

is controlled by the values of the predictor coefficient's '\, k=l,2, ••• ,N. 

The methods of selecting the '\ coefficients are of interest in this 

thesis. 

. (101) 
In designing "optimwn predictors", W1.ener developed 

(,n2) 
Kolmogoroff' ~LU earlier studies and calculated the value of the 

coefficients so that the mean squared error between the input and the 

predicted samples <e:>=«x.-y.)2> is a minimum. This method is often 
1. 1. 1 

referred to as the Least-Mean-Square error optimization, LMS, procedure. 

In DPCM systems, y. is given by Equation (3.7), with x. replaced 
1 1 

by the decoded sample x.. Hence, the prediction error power is 
1 

2 2 a = <e.> :; 
e 1 

«x. 
1 

N • 2 
- L a. x. -k) > 

k=l k 1 

Equation (3.8) is expanded as 

< (x7' -
1 

N 

L '\X·_k k=l 1 

N 2 
L a. q·-k) > 

k=l k 1 

since x. = x.+q., and q. is the noise sample introduced by the 
111 1 

(3.8) 

(3.9) 
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. . h . th .. . quant1zat10n process at t e 1 samp11ng 1nstant. Assum1ng that the 

correlation between the q. samples and also between q. and x. is 
1 1 1 

negligible. Equation (3.9) is rewritten as 

2 N 2 2 N 
0 " «x. L ~x·_k) > + <q.> L 2 

e 1 k=l 1 1 k=l~ 
2 2 

For a coder having a high SNR. <q.> can be neglected «q.>= 
1 1 

2 2 2 
o «0 =<x.> and the number of bits. b~2) and Equation (3.10) is 

q x 1 

approximated by 

2 o ,,< (x. 
e 1 

N 2 
- L a. x.-k) > 

k=l k 1 

Furthermore. Equation (3.11) may be expanded as· 

2 2 a = <x.> 
e 1 

N N 
2 L ~<x·_k·x.>+ L ~ 
k=l 1 1 k=l 

N 
I;' a <x. k .x. > 
L r 1- l-r 

r=l 

since the square of the sum is expressed as a double sum with two 

separate dummy summation indices, k,r. <x. k'x.> is the cross-" 
1- 1 

covariance between x. and x. k. 
1 1-

(3.10) 

(3.11) 

(3.12) 

The optimum coefficients are selected so that the partial derivative 

of 0 2 with respect to a becomes zero. i.e .• 
e r 

Hence. 

= -2<x. x.> + 2 
l.-r 1. 

= 0 

N 

N 

L 
k=l 

<x. x.> = 
1-r 1. 

I;' a. <x. kX. > 
l. k 1- 1.-r 

k=l 

where k.r=1.2 ••••• N. 

a. <x. kX. > 
k 1- l.-r 

Let <x. x.> be ~ and <x. kX. > be <Prk • then Equation (3.14) l.-r 1. o/r 1.- 1-r 

is rewritten as: 

(3.13) 

(3.14) 
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N 

I ~~rk 
k=l 

and from Equation (3.15). the optimum vector. A of prediction opt' 

coefficients ~. k=1.2 ••••• N. is found to be 

A = 41-1'1' 
opt 

where ~ and'!' are the correlation/covariance matrix and vector 

respectively. see Equation (2.9). The elements of matrix 41 can be 

defined in two different ways. resulting into what is known as 

(3.15) 

(3.16) 

"autoaoY'Y'el.ation" or the "autocovaY'ianae" solution. In our notation. 

regarding the auto correlation method. the correlation matrix will be 

denoted by C. 

In Autocorrelation(11.20.26.28) method .. assuming that the error 

is minimized over the finite duration. correlation is 

N 
C = I a C 

r k=l k rk 

and by substituting Equation (3.14) in Equation (3.12). the minimum 

error power is obtained as 

where 

a~1 . 
Illl. n 

= C o 

2 
= <x.> 

1 

N 
- I aC 

k=l l< k 

C = I x.x. 
r 1 1. +r n=-oo 

th 
C is known as the r autocorrelation coefficient of signal and it 

r 

is an even function of r, i.e., 

C = C 
r -r 

(3.17) 

(3.18) 

(3.19) 

(3.20) 



107 

Now, using Equation (3.16), the Equation for the autocorrelation 

solution is obtained as 

(3.21) 

where ~ is the autocorrelation vector. 

The matrix C is symmetrical and generally referred to as a TOEPLITZ 

matrix, i.e., a symmetric matrix where all the diagonal elements are 

equal. When the elements of both the matrix C and the vector Co are 

normalized by CO' the mean-square signal power, the following 

normalized autocorrelation equation is obtained, 

1 cl c
2 

c
N

_
l 

a
l cl 

cl 1 cl c
N

_
2 a

2 
c

2 , 
I " I 

I 

" " " 
" (3.22) , 

" I I " 

!C'N-l 
" , 

J tiN PN 
" C

N
_

2 
c 3------::.1 N-

C 
where r (3.23) c = 

r Co 

In practice, the signal is defined over a finite interval, 

rather than having -»<i<~. This indicates that the samples of the 

signal is multiplied by a window function wb. so that another signal 
1. 

x! is obtained that is zero outside a specified interval l<i<W, viz: 
1. 

{

x. wb. 
x! = 1 1 

1. 0 

l<i<w 

otherwise 

The normalized auto correlation coefficients are then defined by 
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= = 

W-r 
L x!x! 

i=l 1 1+r 
W 
L (x!) 2 

i=l .1 

, r~l. (3.24) 

The shape of the window function w. can be of importance. The simplest 
.1 

one is the rectangular window where wh.=l for l<i<W. Further details 
1 

of the windowing are to be discussed later in this section. 

In the autocovariance method, speech analysis and synthesis 

(31) problems originally applied by Ata1 and Hanauer, the elements of the 

matrix ~ and the vector ~, see Equation (3.16) are calculated so that 

2 the error cr is minimized over a finite interval, say l<i<W. Therefore, 
e 

from Equations (3.12) and (3.14), we get 

and 
2 

o I . e m1n 
= 

where 

is the covariance function of the signal samples x. l'x.,x. 1' ••• ' 
1+ 1. 1.-

The matrix formed using $kr for l~k,r~N is known as the covariance 

matrix. Equation (3.27) may also be written as 

or 

$rk 

hence $rk 

= 

= 

W-k 
I;' x.x. k .L 1. 1+ -r 

1=-k 

W-r 
L x.x. k 

i=-r 1 ].+r-

= $1tkr 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 
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The importance of Equations (3.28)-(3.30) is two~fold. Firstly, the 

covariance matrix is a symmetric matrix with unequal diagonal elements 

and therefore, it is not a Toeplitz ma.trix. Secondly, the number of 

samples required for the computation of the covariance function is 

increased outside the interval l<i<W, i.e., to N+W, compared to the W 

samples used in the autocorre1ation method. The covariance equation is 

therefore fonned as 

4>11 4> 12 - - - - - - - - - 4> IN a
l 4>10 

4> 21 4> 22 - - - - - - - 4>2N a 2 4>20 
I , , I 
I , I = (3.31) , I , , I 

4>Nl - - - - -- - - - '.:-, 4>NN aN 4>NO 

Now, if we are to briefly compare the two methods, we note that 

as the time interval over which the optimization proced,ure is applied 

goes to infinity or in practice to the ove"rall duration of a speech 

sound, the autocorre1ation solution approaches the solution provided by 

the covariance method, see Figure 3.2. However, in many applications, 

the error power is minimized over a short segment of the speech wave-

form, rather than over the total number of samples in an utterance. 

Thus, the question arises as to whether to use the autocorre1ation or 

the autocovariance method for modelling the vocal tract and the 

subsequent use of linear predictors in vocoders and DPCM systems. 

In the autocorrelation method, the first N samples are predicted 

from the speech samples outside the segment of speech. Since these 

samples are zero, a large error may occur. The windowing process is 

introduced to reduce the error so that it smoothly tapers the signal 
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FIGURE 3.2: Samples Used in the Calculation of: 
(a) Autocorrelation, 
(b) Covariance Techniques, 

where NS is the total number of samples 
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to zero at the window ends. The choice of window depends on the type of 

signal to be analysed. If the signal is considered to be stationary for 

a long period of time, then a rectangular window is adequate. However, 

speech-like signals can be considered stationary for a duration of only 

a few pitch periods and a Hamming or a Hanning window is more appropriate. 

Th H • H· (103) f· d f· f 1 e amm1ng or ann1ng unct10ns are e 1ned as 0 lows: 

{ :.54-0.46 
21Ti 

O~i~W-l cos (W-l) 
wb. = 

1 
otherwise 

(3.32) 

1: 
[ 21Ti ] O~i~W-l I-cos (W-l) 

wb. = 
1 otherwise 

(3.33) 

The process of multiplication of a signal by a window is equivalent 

to the convolution of the frequency response of the window with the 

speech spectrum. This results in smearing effects in the speech spectrum 

and the degree of smearing obviously depends on both the size and the 

type of the window. For example, when input speech signals having a 

duration of a few tens of milliseconds, are multiplied by a rectangular 

window or a Hamming window, the spectrum of Hamming-windowed data shows 

a substantial reduction of spectral distortion. 

On the other hand, the autocovariance method does not require the 

windowing process and parameters such as the bandwidth of the formants 

can be estimated more accurately than with the autocorrelation method. 

When the complexity for a given number of prediction coefficients, N 

is to be considered, the autocovariance methods requires N
3 ~perations 

(multiplications, divisions) while the autocorrelation technique needs 
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N
2 

operations and it is therefore considerably faster solution. However, 

when both methods are to be carefully compared when utilized in practical 

applications the above mentioned computational efficiency becomes less 

. (20) Th· . b 1mportant. 1S 1S ecause, 

a. the time required to compute the matrix of autocorrelationl 

covariance coefficients is greater than the time to solve the 

matrix relationships given by Equations (3.16), (3.21), (3.31). 

b. the time interval, Wlf , required for both methods is not the s 

same. For the correlation method, this is typically 10-30 msecs, 

whereas covariance method can be used with 2-3 msecs of time 

. (58) 
1ntervals. 

Another difference between the two methods arises when the roots of 

the predictor polynomial which are the poles of predictor and provide the 

properties of vocal tract, are considered. For stability reasons, the 

roots must lie inside the unit circle. The covariance method does not 

b ·1· (31) h hI· . d 1 guarantee sta 1 1ty w ereas t e autocorre at10n prov1 es a ways a 

. (26) 
stable solut10n. 

To summarize all these remarks, we can conclude that a predictor 

designed using the autocovariance method models more accurately the 

vocal-tract characteristics compared to the case where the autocorrelation 

method is employed. The difference between these algorithms, in terms 

of both SNR and subjective speech quality, is however negligible, when 

used in DPCM. Therefore, due to its stability, the autocorrelation 

method was selected to be used in our experiments. 
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3.3.1 First-Order DPCM, DPCM(l,b) 

The order of a DPCM is defined by the order of the predictor. 

Thus, a first-order DPCM employs a predictor having only one delay 

element and one prediction coefficient, as illustrated in Figure 3.3. 

The importance of the first order DPCM (l,b) lies in its simplicity 

and this encoder is often used as a reference in system comparisons. 

The SNR gain of DPCM(l,b) over PCM can be calculated from Equation (3.12). 

That is 

2 2 o = <X.> 
e 1. 

<x. kX.> 
1.- 1. 

2 
<x.> 

1. 

N 

+ I ~ 
k=l 

N 

I a 
r=l r 

<x. x. >] 1.-~ 1.-r 

<x.> 
1. 

For a first order predictor, .the above expression is written as 

In order to achieve the 0
2
«0

2 condition, the term between the 
e x 

brackets must be a minimum, therefore, 

and 

Using Equation (3.35) 

2 all 
min 

G 

o = -2c + 2a 
1 1 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

As cl<l, G is always greater than 1. Equation (3.38) indicates the 

superiority of DPCM(l,b) over PCM. 
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In the case where an ideal integrator is used in the feedback 

loop of the DPCM codec, i.e., a
1
=l, the SNR advantage, G, obtained from 

Equation (3.35) is equal to 

G = (3.39) 

and provided that c
1
>,0.5, a condition which is true for most of the 

time with speech signals, G>l. Hence, the simplest DPCM(l,b) system 

having a
1

=1 shows a long term SNR gain over PCM. 

In practice, DPCM(l,b) with a
1
=c

1 
is always preferred to DPCM(l,b) 

having an ideal integrator in the feedback loop as the former is more 

robust to channel errors. This is because the leaky constant, Cl' 

attempts to reduce any error accumulation effects in the receiver. 

3.3.2 Nth Order DPCM, DPCM(N,b) 

th When an N order predictor is used in the feedback loop of a 

DPCM encoder, Equation (3.12) may be 'Nritten in matrix notation as 

(3.40) 

where Co and C are the normalized autocorre1ation vector and matrix, 

respectively. 2 . . . A ""l~ The value of 0 1S a m1n1mum when A =~ 
e opt 

(see 

Equation 3.21) and Equation (3.40) can be written as 

2 
o I " e . m1n 

(3.41) 

then 

1 
G " ---=---=-~-

1-1. t·C•A t op op 

(3.42) 
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• C-1C and using A = 0 the opt denominator of Equation (3.42) may be written 

as (l-AoptCO)' then, 

1 
G" (3.43) 

and 
(3.43a) 

An Appendix C presents an interesting result relating to the 

second order fixed predictors. 

In deriving Equation (3.43), it is assumed that the quantization 

noise is negligible and x. and q. are orthogonal, i.e., <x.q. >=0 for 
1 1 1 1 +t 

all t. 

In references (11,60) the authors however considered the effect of 

the quantization noise in the performance of the DPCM(N,b) predictor, 

i.e., x.=x.+q. and formulated a more accurate expression for the gain 
1. 1 1 

G , over PCM; 
a 

G = 
a 

1 
N 

1 - I c ( SNR ) 
k=l ~ k l+SNR 

and SPR(dB) is given by Equation (3.6a) • 

(3.44) 

. The value of G approaches that of G in Equation (3.43) for high 
a 

2 2 
values of SNR where the quantization noise is negligible (0 «0 ). 

q x 

In all above formulations, the quantizer SNR, Q, is assumed to be 

constant (see Equation (3.2». Many authors searched for more realistic 

formulations of SNR under the assumption that the speech input and 

quantization noise are orthogonal. In his DPCM(l,b) analysis, 0'Neal~56) 
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considered the variations in Q and developed an improved SNR expression 

for N=l, al=cl , see Equation (2.41). For N-order predictor, this 

expression is 
N 

1 - ( I ~)/Q 
SNR = Q k=l (3.45) N 

1 - I ~Ck 
k=l 

i.e., for al=c
l 

Equation (3.45) reduces to Equation (2.41). Later, 

Noll(104) generalized the above expression by taking the normalized 

autocorrelation matrix of the noise samples into account, viz: 

SNR = Q • 
1 - ;,T . C A IQ 

opt 9 opt 
N 

1 - I ~Ck 
k=l 

(3.46) 

It is easily observed that when C =1 (for <x.q. >=0, for all t, the 
q 1. 1.+t 

quantization noise becomes white), SNR, in Equations (3.46) and (3.45) 

becomes the same. 

In an attempt to define the effect of the quantizer-predictor 

. (105) interaction in the encoding performance of DPCM, G1.bson . showed 

that the optimization of the predictor by maximizing the SNRI can 

produce a change in long-term SNR that is much greater or less than 

the increase in SNRI. Gibson attributed this cause to the change in 

the p.d.f. of the signal at the input of the quantizer and argued that 

any change in p.d.f. at the quantizer input can produce a significant 

improvement or reduction in the quantization noise power. Therefore, 

the SNR of DPCM systems must be calculated in such a way that any 

variation in quantization input p.d.f. is taken into account. 
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3.4 BLOCK ADAPTIVE PREDICTORS WHEN USED IN DPCM SYSTEMS 

As discussed in Section 2.3.4.A, one method which improves the 

encoder SNR performance is to compute the prediction coefficients at 

every W/f seconds, where W is the number of samples to be used by the 
s 

autocorrelation/autocovariance analysis. In this way, the prediction 

coefficients are. designed to match the short-term characteristic of the 

input signal and the predictor is called "BZock Adaptive Predictor". BAP. 

There are basically two techniques for updating the predictor's 

coefficients. In the first one, known as "FonuaI'd Bl-ock Adaptive 

Prediction". FBAP, the coefficients are computed from the original input 

data which is delayed by W/f seconds. Figure 3.4 shows the block 
s 

diagram of a FBADPCM(N,b) encoder, where N is the number of prediction 

coefficients. The prediction coefficients are defined to minimize the 

(3.47) 

In our experiments, the autocorrelation method is applied to W input 

samples and the resulting ~ coefficients are employed for the encoding 

of these samples. Notice from Equation (3.47) that the input speech 

samples are used to calculate the ~ coefficients and therefore, the 

prediction coefficients must be encoded and transmitted (forward 

transmission) together with the speech information at the output of 

the receiver. Obviously, with the predictor being able to respond to 

the short-term changes in the statistics of speech, the performance of 

DPCM is improved compared to that where a fixed predictor is employed. 
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The transmission of the coefficient values to the receiving end, 

however, in addition to the quantized samples {~.}, increases the 
1 . 

channel capacity. It is to say that for the available bit-rate, the 

number of bits for sending the error signal e. is reduced since the 
1 

coefficient transmission occupies some portion of the channel capacity. 

This increase in transmission bit-rate can he considered as an equivalent 

loss in the SNR performance of the encoder and is given by~48) 

LOSS IN SNR 
b 

c 
= 6.02 W dB 

where b is the number of bits per coefficient per block and W is 
c 

(3.48) 

the number of samples per block. The loss in SNR, however, resulting 

from the transmission of the predictor coefficient to the receiver is 

considerably smaller compared to the SNR gains obtained by the use of 

the Forward adaptive predictor in the DPCM system. 

The second method, known as the "Bac'khJard Adaptation". BA scheme, 

computes the prediction coefficients from the previously decoded speech 

samples. Thus the transmission of. the prediction coefficients as side 

information is eliminated. Figure 3.5 shows the schematic block diagram 

of BA scheme. The autocorrelation method can be employed on the locally 

decoded samples in a similar way to that of FBA and the coefficients 

are selected to minimize 

W 
= L (i. 

i=l 1 

N • 2 
- L akx·_k) 

k=l 1 

Although the x. samples are available at both the transmitter and 
1 

(3.49) 

'receiver, the employment of the autocorrelation method in a backward 



121 

. 
x. +~ e. e. 

1 1 , QUANTIZER 1 , BINARY 
ENCODER -. 

Yi 

, 
BACKWARD .. + , ADAPTATION 

LOGIC 

. 
x. 

PREDICTOR 1 

"- ~ 

FIGURE 3.5: Generalised Backward Adaptation Encoder 

·BIN ARY 
TPUT OU 



122 

adaptive prediction scheme is not suitable for practical purposes. This 

is because, it requires the delay of one block of decoded speech samples 

and therefore the values of the coefficients calculated from {i.} are 
1 

used in the encoding of the next incoming block of speech samples. 

Recently~60) backward schemes which update their coefficients in a 

sequential manner every sampling instant, gained a lot of attention and 

they are referred to as "SequentiaUy Adaptive BaakLia:t"d Sahemes". 

The comparison of Figures 3.4 and 3.5 indicates that forward 

adaptation has a more complex encoder than backward adaptation scheme 

but the latter necessitates a more complex decoder. 
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3.5 QUANTIZER SELECTION 

The selection of a quantizer to be used 1n a DPCM encoder is an 

important issue, especially at low bit-rates where the effect of the 

increased quantization noise on the prediction algorithm is prominent. 

In this chapter, we will examine both fixed quantizer, FQ, and Jayant's 

Adaptive Quantizer, AQJ,' for bit-rates between 16 and 40 Kb/s. 

In FQ's, described in detail in Section 2.3.2, the quantization 

thresholds are defined in accordance with the p.d.f. of their input 

signal, i.e., {e.}. The level allocation and step-size are unchanged 
1 

during the encoding process and consequently the fixed quantizers are 

often referred to as time-invariant quantizers. As the bit-rate 

decreases «16 kbits/sec.), the small number of fixed quantization 

levels in FQ's is not able to successfully quantize the input signal 

and adaptive quantizers (AQ) are used due to their large dynamic range 

and their SNR superiority over fixed quantization. 

An AQJ, as described in Chapter 11 is basically a fixed, unit 

range quantizer with its input weighted by a factor that depends on 

the quantizer level occupied in the previous sampling instant. This is 

equivalent to a scheme where the stepsize of the quantizer is updated 

every sampling instant. Representing the magnitude of the sample 

transmitted in the previous sampling instant by IL. 1 1 • the stepsize 
1-

at ith instant is given by~36) 

~. = ~. 1M(IL. 11) 1 1- 1-
(3.50) 

where M(.) is a time-invariant multiplier whose value depends on the 
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quantizer level occupied in the previous sampling instant. Notice that 

the Equation (3.50) is a special form of Equation (2.63a) having a =1. 
q 

To visualize better the system. the characteristic of a 3 bit 

quantizer is illustrated in Figure 3.6 where 8 code words and 4 

multipliers are assigned to the output levels of the quantizer. The 

A 

output sample. e .• corresponding to the quantizer input sample. e .• 
L L 

is given by. ",. 
A _ L 

e i = + 2" IL·I L 

b 
with L. being IL.I=1.3.5 ..... 2 -1. for an "b" bits quantizer. 

L L 

In the simulation of the quantizer. the ratio of maximum step-

size "'max to minimum step-size",. is selected as 128 so that from mLn 

Equation (2.63c). a dynamic range of approximately 42 dB is maintained. 

T;~ical step-size multipliers(36) used in DPCM-AQJ encoders 

operating at 8 kHz sampled speech signals are tabulated in Table 3.1. 

In our computer simulation experiments only uniform quantization 

thresholds were considered. 

Finally. in an attempt to distinguish various DPCM structures. 

different abbreviations are assigned to each coder as shown in Table 

3.2 and will be used throughout the thesis. For example. DPCM(3.4) 

rd means 3 order. fixed predictor and 4 bits fixed quantizer. where 

DPCK with no brackets refers to a general DPCK system. 

• 
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STEP-SIZE QUANTIZER 
MULTIPLIERS , OUTPUT b=2 b=3 b=4 

'" 
M(l) t.. /2 O.S O.S O.S 

1. 

M(2) 3t.. /2 1.6 O.S O.S 
1. 

M(3) St. ./2 1.2 O.S 
1. 

M(4) 7t. ./2 
1. 

2.0 O.S 

M(S) 9t.. /2 
1. 

1.2 

M(6) lU./2 
1. 

1.6 

M (7) 13t.. /2 2.0 
1. 

M(S) 1St.. /2 2.4 
1. 

TABLE 3.1: Step-size Multipliers 

DESCRIPTION OF DPCM CODER 
ABBREVIATIONS 

N=Order of Pre., b=bits/sample 

Fixed Predictor, F·i~~d. Quantizer DPCM(N ,b) 
_0: -, . 

Sequential Predictor, Fixed ADPCM(N ,b) 
Quantizer 

Block Adaptive Predictor, FBADPCM(N, b) 
Fixed Quantizer 

Fixed Predictor, Adaptive DPCM(N,b)-AQJ 
Jayant's Quantizer 

Sequential Predictor, AQJ ADPCM(N, b) -AQJ 

Block Adaptive Predictor, AQJ FBADPCM(N, b) -AQJ 

TABLE 3.2: Abbreviations for Various Codecs 
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3.6 SIMULATION RESULTS AND DISCUSSION 

In the simulation experiments described in this chapter the long-

term SNR(dB) was selected as the performance criterion. Furthermore, 

in determining the long-term SNR, the quantization noise power was 

calculated by filtering the difference between the original speech 

samples and their decoded values, so that the quantization noise 

components lying outside the input speech band of 0-3.4 kHz were 

eliminated. The filter used for this purpose is 8
th

-order Butterworth 

digital low pass filter whose design and a computer program subroutine 

is given in Appendix D. The programming language used is the extended 

FORTRAN IV (FORTRAN 1900). All the computer facilities, including a 

collection of special algorithms for solving numerical problems, such 

as matrix inversions, were provided by Loughborough University of 

Technology Computer Centre. 

Fi'gure 3.7 shows. the schematic flow-chart of the procedure 

employed in the DPCM computer simulations. For DPCM(N,b) and DPCM(N,b)-

AQJ purposes, we start with the calculation of long term autocorrelation 

function of the speech samples according to 

NS 
L x.x . 
. 1 ~ ~+r 
~= 

c = 
r NS 2 

L x. 
i=l ~ 

th where c is· the r autocorrelation coefficient normalized by the 
r 

(3.52) 

signal power, Co and c
r 

is obtained by shifting the speech samples by 

r samples. Then, c values· are employed in forming the autocorrelation 
r 
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matrix C (see Equation (3.22». The optimum predictor coefficients 

are computed in accordance with Equation (3.21). The matrix inversion 

process was achieved by using special Nottingham Algorithm Group, NAG 

Library~106) These coefficients are then stored in a scratch tape. 

Finally, a subroutine called DPCMENCODER recalls the optimum set of 
. 

vector, A t and uses them to digitize the input speech samples with a op 

predetermined number of bits per sample. SNR(dB) values for various 

power levels of speech are then calculated and when Jayant's quantizer 

is used the operating point is selected at a power level which is half-

way through the dynamic range of the encoder. For a fixed quantizer 

however only peak SNR values are considered. 

The right-hand branch of Figure 3.7 illustrates a similar procedure 

for FBADPCM(N,b)-AQJ. This time however,the autocorrelation solution 

is applied ever; W samples and the encoder processes a total of NB 

blocks of W speech samples. 

3.6.1 Input Speech Data 

In order to facilitate performance comparisons, we allowed the 

DPCM'systems to operate on the same sentence, "An appLe a day keeps the 

doctor away". which was spoken by a male. This sentence, low pass 

filtered to 3.4 kHz (3 dB), sampled 10,000 times/sec., was provided 

on a digital tape by the Joint Speech Research Unit, JSRU. 



130 

3.6.2 Upper-limits of SNR Improvement, SNRI, for DPCM 

The long-term auto correlation coefficients has been measured for 

the input speech signal. Figure 3.8, curve (a) shows the first 18 time-

lags of the normalized autocorrelation coefficients, c. In addition, 
r 

the corresponding values obtained using MCDonald's(55) average speech 

data, sampled at 9.6 kHz, are also indicated in Figure 3.8, curve (b). 

As can be seen from Equation (3.43), the knowledge of the autocorrelation 

function alone is sufficient for evaluation of the upper bound of the 

SNR improvement in non-adaptive DPCM systems, since the optimum vector, 

AoPt=(al,a2""'~) is also computed from cr ' r=l,2, ••• ,k. 

In Figure 3.9, curve (a) illustrates the SNRI(dB) as a function 

of the predictor order N, when the c values of Figure 3.8, curve (a) 
r 

were used, while the second curve (b) is related to the average speech 

data. Clearly, the higher correlation between the speech samples of 

the sentence "An appl.e a day keeps the doctor away". compared to the 

average data, manifests itself as an increase in SNRI(dB) values, for 

a given predictor order, N. Also it is noticeable that in both curves 

(a,b) of Figure .3.9, most of the gain is achieved when the order of 

predictor increases to 2. For higher-order predictors (N)2), the SNRI 

values reach a saturation level. In our speech data, the second-order 

predictor, N=2, provides 15.2 dB improvement where 9.78 dB of this 

amount arises from the first-order predictor. This suggests that most 

of the SNR improvement· of DPCM over PCM when using fixed predictors, 

can be provided by a second-order predictor. It should be emphasized 

however, that the SNRI. of 15-16 dB's, obtained by optimizing the 
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predictor on a particular speech sentence, can not be attained when 

the DPCM is handling speech samples of different talkers. This is 

attributed to the variations in the values of the autocorrelation 

function for different speakers. That is why, in practice, where a 

sub-optimum or average predictor is used, designed to cover a wide 

range of speakers and speech material, the SNRl values are significantly 

lower. 

l. 6. 3 Performance of Fixed-Predictors in DPCM(N ,b), DPCM(N, b)-AQJ 

When first and second order predictors designed using the input 

speech statistics, were embedded in the feedback loop of a 3 bits per 

sample DPCM, DPCM(N,3), the computer simulation SNR of the codecs were 

found to be 18.93 and 22.29 dB's respectively. In addition at 4 bits/ 

sample, the SNR values were calculated to be 23.81 and 28.73 dB's for 

N=l and N=2 respectively. These observations clearly indicate that the 

performances of DPCM(l,3) and DPCM(l,4) are inferior to those obtained 

from DPCM(2,3) and DPCM(2,4). In terms of SNR gains in dB, the latter 

systems out-performs the first-'order codecs by 4.36 and 4.96 dB's. 

These gains are comparable with those SNRl values of Figure 3.9, i.e., 

here, by changing N from 1 to 2, SNRl improves by 5.4 dB. However, as 

we reduce the bit-rate, we also see that the upper-bound improvement 

factor, 15.2',: dB does not show itself in SNR measurement. In this 

case, rather than SNRl given by Equation (3.43.a), the SPEQ(dB)(60) 

becomes a more accurate representation of the prediction gain, viz. 



SPR (dB) 
a 

= 
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10 loglO N 

[1 - L 'Vk 
k=l 

1 

where SNR is the signal-to-noise ratio of the DPCM codec. 

(3.53) 

Table 3.3 shows both the theoretical results of SPR (dB) computed . a 

from Equation (3.53) and the simulation results calculated from the 

. f 2 / 2 rat10 0 <x.> <e.>. 
1 1 

The transmission bit-rate varies between 15.84 

Kb/s (3 level fixed quantizer) and 40 Kb/s, while the predictor is of 

order 2. 

The results in Table 3.3 indicate that as codec SNR increases 

for higher bit-rates, the value of SPR (dB) approaches that of SNRI(dB)' 
a 

which is defined in Equation (3.43a). 

Table 3.4 presents the SNR performances of various codecs, such 

as, PCM, APCM, DPCM(N,b) and DPCM(N,b)-AQJ, operating at 30 and 40 Kb/s. 

Notice that theSNR of the fixed quantizer, FQ, at 40 Kb/s, is 15.8 dB, 

while from Table 3.3, and at the same bit-rate, SNRQ is only 13.71 dB. 

The latter is computed as the power ratio of the input signal of the 

quantizer to the quantization noise, when the quantizer is inside the 

DPCM loop and thus the 2 dB discrepancy from the different nature of 

the input signals to the PCM and DPCM quantizers. That is, the input 

speech signal to the quantizer of PCM is replaced by the much wider 

spectrum prediction error signal of DPCM. 
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TRANSMISSION SNR(dB) SPR (dB) NRQ(dB) 
BIT-RATE OF DPCM(2,b) 
Kb/s ~IMULATION 1lEORETICAL 

15.84 14.97 8.72 8.70 6.25 

20 18.12 11.33 10.57 6.79 

30 22.29 13.24 12.98 9.05 

40 28.73 15.02 15.13 13.71 

TABLE 3.3: Relative Accuracy of Equation (3.53) 

TYPE OF 3 bits/sample 4 bits/sample 
CODEC 

~NR(dB) GAIN OVER GAIN OVER SNR(dB) GAIN OVER GAIN OVER 
PCM(DB) APCM(dB) PCM(dB) APCM(dB) 

PCM 10.6 - - 15.8 - -
DPCM(l,b) 18.93 8.33 - 23.87 8.07 -

. 
DPCM(2,b) 22.29 11.69 - 28.73 12.93 -

APCM 15.42 4.82 - 21.81 6.01 -

DPCM(l,b) 27.87 12.27 7.45 28.20 12.40 6.39 
-AQJ 

DPCM(2,b) 26.24 15.64 9.82 31.05 15.25 9.24 
_AnT 

TABLE 3.4: Relative Merits of Various Codecs 
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Figures 3.10 and 3.11 show the SNR(dB) variations of DPCM codecs 

employing fixed (FQ) and Jayant's adaptive (AQJ) quantizers, 

respectively. In Figure 3.10, we observe that when the order of the 

predictor in DPCM(N,b) is changed from 2 to 4, the SNR(dB), at 30 and 

40 Kb/s is 16.48 and 21.4 dBs. Also we notice that the performance of 

the 4
th

-order DPCM is inferior to both the first and second order DPCM 

systems. This is in contrast to what was obtained in the SNRI, curve 

(a) of Figure 3.9 which indicates that the SNRI remains almost 

unchanged as the order of predictor increases from 2 onwards. If this 

SNRI of 15.8 dB is to be achieved by the DPCM(4,4) codec, we would· 

expect to obtain a SNR value of about 31.6 dBs, since SNRQ from Table 

3.4 is 15.8 dBs. However, if we utilize the SPR relationship given 
a 

by Equation (3.53), we notice that the effect of the upper-bound 

improvement factor, SNRI in SNR values of the codec is significantly 

reduced. Table 3.5 shows both the theoretical and simulation results 

of SPR at 30, 40 Kb/s when predictor of order is 4. 
a 

N=4 

DPCM(4,b) 
UPPER-BOUND SPR(dB) SPR (dB) 
SNRI,Equ.(3.43) Equ.(3.44) Equ.t3.53) 

40 Kb/s 15.80 15.80 8.01 

30 Kb/s 15.80 14.30 4.58 

S~~~;N 
7.22 

5.82 

TABLE 3.5: SNR Improvement Factors for DPCM(4,b) 

CODEC 
~R 

21.4 

16.48 
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Comparison of Table 3.3 with Table 3.5 reveals that, at 40 dB/s,SPR 
. a 

simulation of the second order predictor is reduced by about 8 dB when 

the predictor is replaced by a fourth-order one. 

Similar points arise when Jayant's adaptive quantizer, AQJ is 

used instead of the fixed quantizer, see Figure 3.11. Furthermore, at 

lower transmission bit rates, an extremely surprising situation occurs. 

The higher order fixed predictors (N~6) cause divergence. 

At this stage our aim is to analyse the reasons why in Figures 

3.10 and 3.11, 

a. SNRI is not in agreement with the SNR measurements of the 

codec when N?;4, 

b. The SNR values of the DPCM(4,4) and DPCM(4,4)-AQJ codecs are 

lower than the SNR values obtained from the DPCM(l,4) and 

DPCM(l,4)-AQJ codecs, 

c. At lower data rates DPCM codec employing higher order 

predictors become unstable. 

The aforementioned points can be attributed to many factors. 

Firstly, in deriving the SNRI in Equation (3.43) we assume that a) 

2 the power of the difference signal at the quantizer input, a , 
e 

. f· . 1· 2 2 h 2 2 d) h .. sat1s 1es the 1nequa 1ty a «a, ence a «a an b t e quant1zat1on 
e x q x 

noise and the speech samples are uncorrelated. As a consequence of 

condition (a) it is also assumed that the input to the predictor is 

free from quantization noise. Several published reports state that 

the aforementioned assumptions hold reasonably well with the quantizer 
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having many levels (NQ~8). In our simulation results, however, the 

SNRl and SPR performance indicators differ substantially for both 

DPCM(4,4) and DPCM(4,3), i.e., for 8 and 16 levels quantization of {e.} 
1 

see Table 3.5. This seems to suggest that the magnitude of the 

quantization error sample q. is comparable to the speech sample x. 
1 1 

and thus the optimum set of coefficients, computed from the input 

speech statistics, is not well-matched to the noise contaminated 

feedback signal, x .• As a result, the inaccurate prediction of the 
1 

input speech signal would give an increase in the power of the 

residual signal with a subsequent reduction in SNR. Furthermore, if 

the residual signal has a given p.d.f. when coupled with the second-

order fixed predictor, it will experience a different p.d.f. for N=4. 

Consequently, instead of arranging the quantization thresholds with 

respect to the new p.d.f., if we still employ the same design for the 

quantizer, the quantization error will be significant and it will be 

correlated with the input speech. Since the error imposed on each 

sample can be as high as +a/2, where 

quantizer, it will reflect itself in, 

a is the step size of the 
N 

y. = I ~(x. k+q· k)' where y. 
1 k=l 1- 1- 1 

is the prediction output. This is to say that the random variation of 

qi-k between +a/2, coupled with optimally selected ~ prevents the 

d·· f h·· h· I (107) . ff accurate pre 1ct10n 0 t e 1ncom1ng speec s1gna s. Th1s e ect 

of mismatching between the quantizer and the predictor will accumulate 

as we go along the encoding process of whole utterance samples, 

therefore the SNR of the codec will be degraded. In referring to 

question (a) and (b) we can conclude that maximizing the SNRI values 
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for N=4 onwards, will not precisely show itself in the SNR measurements 

of DPCM if the p.d.f. of the quantizer input signal is disregarded. 

In Figure 3.11, we also observe that SNR increases almost 

uniformly with an increase in the bit-rate for N=l,2,4, but for N=6,8,lO, 

DPCM codec causes divergence at lower data rates. This arises again 

from the mismatching between the two elements of the DPCM codec, namely 

the quantizer and the predictor. In other words, the error samples 

created by coarse quantization are now more significant than those 

at higher bit-rates. The coupling of such errors with the higher 

order optimum predictor (N~6) certainly increase the prediction error 

and so the noise power in the codec. Furthermore, we thought that the 

effect of mismatching can be reduced by using the average rather than 

optimum, prediction coefficients computed from McDonald's(55) average 

speech data sampled at 9.6 kHz, see Figure 3.8, curve (b). This is 

because the location of the poles resulting from the average predictor 

polynomial is more tolerant to the noisy input signal. Table 3.6 

presents both the optimum and the average prediction coefficients for 

N=I,2,4,6. 

When we simulate the DPCM-AQJ codec with the average prediction 

coefficients we found that, at higher bit-rates the SNR of the codec 

for N=I,2, remains almost unchanged, while N=4 produces an SNR which 

is close to that of the first order codec. This confirms the afore-

mentioned remark, i.e., that the average prediction coefficients are 

less sensitive to the noisy input. At lower bit-rates, the predictors 

of order 6,8 in the codec still improves the previously reported SNR 

value. 
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a
1 

a
2 

a
3 a4 

a
5 

a
6 

0.9460 . 
1. 7460 -0.8461 

2.550 -2.870 1.810 -0.5700 

3.050 -4.590 4.690 -3.580 1.840 -0.490 

0.9035 

1.6316 -0.8057 

2.0230 -1.7505 0.8050 -0.2130 

2.0590 -1.8860 1.1411 -0.7830 0.5631 -0.2442 

TABLE 3.6: Predictor coefficients Both for the Sentence 

in Section 3.6.1 and for the Average Data 



143 

For example, SNR of DPCM(6,1.58)-AQJ with optimum coefficients was 

increased from -1.2 dB by a few dB's although it is still far below an 

acceptable threshold of SNR. In other words, system divergence at lower 

bit-rates occurs even if we employ the average prediction coefficients. 

To obtain a quantitative measure of the predictor mismatch, a 

distortion measure, d was introduced~108) For N=1,2,4,6, we found d 
m m 

values as 0.0043, 0.0775, 0.089 and 0.26 respectively. The values of d 
m 

suggest that as we increase N from 1 to 6, d also increases. Especially 
m 

at N=6, d =0.26 is very close to the statistically significant threshold 
m 

level of 0.3. This, once again confirms that system divergence with 

higher-order predictors takes place. Under these circumstances, without 

going into further detail, we can possibly conclude that the performance 

of higher-order predictors coupled with coarse quantization is limited 

unless: 

(i) in selecting the prediction coefficients we minimize 

rather than, 

2 
(J 

e 
= «x, 

1 

«x, 
1 

N 2 
- L 'ii'-k) > 

k=l 1 

N 2 
- L akx'_k)' > , 

k=l 1 

(ii) the memory of the adaptive quantizer is restricted so that 

the past poor prediction values are forgotten with time. 

In (ii), the quantizer step-size is adjusted in accordance with the 

Equation (3.50) having e~ values. In this way excessive quantization 

noise may be reduced. Therefore, in referring to question (c), we can 

emphasize that if we insist on employing higher-order fixed predictors 
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at lower bit rates, the above two points (i) and (ii) should be taken 

into account. 

3.6.4 Performance of Forward Block Adaptive Predictors in DPCM Codec 

Employing AQJ, FBADPCM(S,b)-AQJ 

As described in Section 3.4 the FBA predictor updates its 

coefficients every W/f seconds so that the prediction coefficients are 
s 

matched to the short term, rather than to the long term characteristics 

of the input speech signal. 

When experimenting the FBADPCM codec, we have selected the order 

N of the predictor to be S. The reason for using such a high order 

predictor is twofold. First, from our recent experience we know that 

the higher order fixed predictors cause divergence at lower bit-rates. 

Second, at high bit-rates, SNR performance of codec with higher order 

predictors is inferior to that employing lower order predictors. 

Figure 3.12 curve (a) presents the results of FBADPCM(S,b)-AQJ 

whose coefficients are updated every 2 msec. (W=20) by using Equation 

(3.47). For reference purposes results of a DPCM(S,b) codec are also 

included, see curve (b). We observe that, for a wide range of trans-

mission bit-rates, the FBADPCM codec shows a better SNR performance 

when· compared to the DPCM system with the fixed predictor, see curve 

(b). Furthermore, at lower bit-rates, a significant improvement in SNR 

effectively hinders system divergence. This is because, frequent 
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FIGURE 3.12: Variation of SNR with Transmission Bit-Rates 

a. FBADPCM(8,b)-AQJ, h. DPCM(8,b)-AQJ 
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adaptation of the prediction coefficients switches' the codec between 

unstable configurations and as a result it becomes stable. 

When the block length. W varies between 20 and 120 samples the SNR 

of FBADPCM is reduced as shown in Figure 3.13. This is attributed to 

the content of the speech segment. For example. a large block of W 

samples is likely to include a change in the statistics'of the speech 

signal and in this case the autocorrelation method will provide an 

average. sub-optimum solution. Thus as we decrease W. we effectively 

improve the prediction accuracy of the forward block adaptive predictor. 

Although FBA predictors. both stabilize the encoder when operating 

at relatively low bit-rates. approximately 16 Kb/s and improve its SNR 

performance at higher bit-rates. they require additional channel 

capacity for the transmission of the prediction coefficients. The 

usual procedure is to reduce the bit-rate assigned to encode the 

residual signal' {e.}. and thus to accommodate the side information for 
1 

a specified transmission bit-rate. In this way. the mUltiplexing of 

the side information together with the reduced bits for the quantization. 

keeps the total channel bit-rate unchanged. In our experimental results. 

presented in Figures 3.12 and 3.13. however. no such attempt has been 

made. Therefore. for a given output bit-rate. the SNR is reduced 

compared to the values shown in Figures 3.12 and 3.13. The loss in SNR 

given by Equation (3.48) is minimal and depends on the block length. W 

and the number of bits used for the encoding of each prediction 

coefficient prior to the multiplexing process. 
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3.6.5 An Effect of Channel Errors in the Performance of Codec 

A digital communication system, like DPCM, is in general, designed 

to withstand a certain amount of signal distortion. These signal 

impairments, are usually, attributed to:-

(i) terminal effects - quantization errors 

and (ii) channel effects - random errors and the inaccuracy of 

the regenerators in the channel. 

It is well known that in (i) the quantization errors can be 

reduced by using a large number of quantization levels and therefore 

by increasing the size of the code-words assigned to the quantized 

samples. In addition, adaptive quantizers whose step size is designed 

to expand or contract, in accordance with the amplitude range of the 

input signal to the q'uantizer can efficiently reduce the amount of 

quantization noise for a given number of bits per sample. In (ii), 

both the amplitude and the frequency modulation effects of the channel 

together with the inaccurate regeneration of the transmitted code-

words deteriorate the ability of the receiver to form the correct code-

words. 

We have already presented the results of adaptive quantizer having 

large number of levels and now we examine the case (ii). In order to 

simulate a DPCM codec operating with random channel errors, the following 

steps have been adopted,: 

a) In Figure 2.14, the channel input vector L. of dimension "b" 
L 

bits/sample is evaluated from 
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For b=4, Equation (3.54) is rewritten as 

where Ll is the most significant bit, MSB, and L4 is the 

least significant bit, LSB • 

• NQ, the number of the quantization level occupied by the 

quantizer output sample e., is divided by the weighting 
1 

(3.54) 

(3.55) 

factor of the MSB, for b=4, it is 2
3
=8. Since 0~NQ~16, Ll 

is either 1 or O. If L =1 N"=N'-8 1 ' Q Q • 

the weighting factor of L2 (22=4). 

Now NQ is divided by 

Since 0~NQ~8, L2 is 

either 1 or O. If L =1 N"!:N"-4 This process continues 2 ' Q Q • 

until the binary value of L4 is evaluated. In this way, 

the maximum negative level of quantizer is assigned with 

L.=OOOO while L.=llll corresponds to the maximum positive 
1 1 

level of the quantizer. 

c) In order to introduce random errors in the channel a random 

number generator was employed. For a given Bit-Error-Rate, 

BER, a total number of samples, NS, the total number of 

samples deemed to be in error, NSAM, was calculated from 

NSAM = NS.BER.b 
100 

Then the locations of these NSAM samples were selected 

using a NAG Library subroutine, called GOSDAF~106) which 

(3.56) 

generates a sequence of random numbers in the range of 1 to NS. 
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Then, for each of the selected NSAM samples the G05DAF random 

generator is employed again to provide a number between 1 and b which 

identifies the erroneous bit inside the code-word. The value of this 

bit is then reversed from 0 to 1 or vice versa and in this way the 

channel errors are introduced. Finally, using Equation (3.54), the 

erroneous code-word is used to produce the received e~ sample which is 
1 

then further processed by the following decoding process. 

Figure 3.14 presents the variation of the SNR versus bit-error 

rate, BER %, for the FBADPCM(N,4) system. In this case we assume that 

a) the probability for two adjacent samples to be in error is very 

small, and b) the predictor coefficients are transmitted in an error 

protected form. In Figure 3.14, two points can be clearly observed. 

First, without the use of an error protection scheme to combat the 

channel errors, the SNR decays rapidly as the BER % increases. Second, 

as the order, N of the predictors used in the system increases the SNR 

deteriorates rapidly in the presence of channel errors. This is because 

using larger values of N and thus longer feed forward filter structures, 

the channel errors affect more decoded speech samples causing extended 

accumulation of errors and instabilities in the detection process. 

With regard to the first point mentioned above, concerning channel 

error protection schemes, the severity of the degradation depends on 

the bit which is inverted. Specifically, if the error occurs in the 

MSB, the effect becomes detrimental. Noll(4l) considered two formats 

of error protection, namely the protection of MSB and the protection 

of two MSB's. Although such codes improve the SNR performance of the 



30 ~------------__ ~. 

20 

10 

1.0 

FIGURE 3.14: Variation of SNR with BER % in FBADPCM(N,4) Codec, W=128 
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codec, they increase both the channel bandwidth and the complexity of 

(l09) the system. A different approach suggested by Steele et a1, 

known as Difference Detection and Correction, DDC, attempts to locate, 

by statistical means, and correct erroneous samples at the receiving 

end. The authors claim significant improvement in SNR without an 

increase in channel capacity. However, one possible drawback in DDC 

is that some correct samples can be judged as erroneous and falsely 

corrected. Jayant(llO) examined the effect of channel errors in mobile 

radio telephony where the BER is in excess of 10-2 (in most digital 

-5 transmission systems, BER is less than 10 ). In his 3-bit codec, he 

sends the MSB three times, the second bit twice and LSB once. The 

decision on the value of the first bit is achieved by majority count. 

If the two received values of the second bit differ,. then the value 

accepted is that which constrains the output waveform to have the lower 

slope. The LSB is accepted as correct. This technique increases the 

channel bandwidth and does not guarantee accurate decisions, since 

multipath Rayleigh fading type of distortion in the link may invert 

all the bits for any sample. 
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3.7 CONCLUSIONS 

This chapter has examined both fixed and forward block adaptive, 

FBA, predictors as applied to DPCM systems for encoding speech signals. 

Both predictors were used in these differential structures with fixed 

and Jayant's adaptive quantizers. The SNR curves were considered as 

performance indicators in the comparison of the various codec 

configurations. 

The design of fixed predictors employs the long term statistics 

of the speech signal and for this purpose the autocorrelation, rather 

than autocovariance, method was employed. The upper bound SNR 

improvement factor, SNRI was evaluated both for the tested speech data 

and for MCDona1d's(55) average data. Because of the high correlation 

between the samples of the input speech signal used in our experiments, 

high SNRI values were obtained. 

When such predictors with an order, N, between 1 and 10 were used 

in DPCM codec, it was observed that for all the bit rates from 15.84 

to 40 Kb/s, the systems having only 2 taps provided an improved SNR 

over the codecs with N=l and N>2. An inspection of second order 

predictor results shows that SNRI values are reflected in SNR measure-

ments when the quantization is fine. However, as we reduce the bit-rate 

SNRI looses its significance because of the excessive noise produced 

by the coarse quantization which appears at the input to the predictor. 

Furthermore, when the SNRI is replaced by SPR , both theoretical and 
a 
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simulation results show that the latter is a more accurate improvement 

factor than SNRI. 

An increase in the order of the predictor from 2 to 4 at higher 

bit-rates, indicated that the SNR performance of the codec employing 

fixed or Jayant's Adaptive quantizer is deteriorated, in contrast to 

results shown by the SNRI measure. The reason for this was attributed 

to the mismatching effect of the 4th
-order optimum predictor 

coefficients to its decoded input samples and the p.d.f. of the input 

. 1 h DP . Th' 1 . h G'b ,(105) s1gna to t e CM quant1zer. 1S a so agrees W1t 1 son s 

results that maximizing the SNRI or SPR factors does not necessarily 
a 

maximize the SNR unless the p.d.f. of the quantizer input signal is 

taken into account. Then, replacing the optimum coefficients by the 

average coefficients, we notice that previously reported SNR measure­

ments of the 4th
-order predictor are improved by a few dB's since 

the average coefficients are more tolerant to the decoded signal, 

contaminated by quantization noise. At lower bit-rates, higher-order 

(N~6) fixed predictors cause system divergence confirming another of 

Gibson's observations~65) 

Finally, in an attempt to improve the performance the DPCM codec, 

the fixed predictors were replaced by FBA predictors where the 

coefficients are updated periodically. th 
When compared to 8 -order 

DPCM at higher bit-rates, the FBADPCMsystem, changing their coefficients, 

every 20-120 samples shows an SNR improvement of about 5 dB's. Another 

substantial advantage, at lower bit-rates, of the FBADPCM over the DPCM 
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with the fixed predictor, is that the FBA predictors being switched 

between unstable configurations, prevent the previously reported 

system divergence of the fixed systems. On the other hand, the 

disadvantages of the FBADPCM system are: 

(i) the evaluation of the optimum coefficients per block basis 

requires the inversion of the autocorrelation matrix and its 

multiplication by the autocorrelation vector which considerably 

increases the complexity of the system. 

(ii) the required transmission of the prediction coefficients 
. 

increases the channel bit-rate. As an example the codec with 

2nd d' h' h d . 1 a -order pre ~ctor w ~c up ates ~ts taps every W samp es 

requires 8 bits/block overhead information provided that each 

prediction coefficient is encoded using a 4 bit code-word. 

The transmission of these coefficients to the receiving end 

can be viewed as a SNR loss of 1.2 orO.37dB for block sizes 

of 40-128 samples respectively. 

Thus, at the end of this chapter we see that the DPCM codecs 

having fixed predictors have their limitations in following the rapid 

variations in speech statistics while the disadvantage of the DPCM 

systems with FBA predictors results from the required overhead. 

information. 

In the following chapters, we direct our efforts towards the 

development of novel and efficient speech prediction algorithms. 



CHAPTER IV 

SEQUENTIAL PREDICTORS 
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4.1 INTRODUCTION 

The simulation results of Chapter III demonstrated the inadequate 

performance of DPCM system employing a fixed "optimized" predictor. 

The main reasons for the limitations in the performance of such a codec 

are as follows: 

a. The fixed predictor attempts to model the characteristics of 

an "a»erage", fixed vocal tract shape. Obviously, this type 

of prediction can be efficient with stationary signals, but 

not for speech where the characteristics of the vocal tract 

are varying with time. 

b. Since voiced speech occurs much more frequently than unvoiced, 

a fixed predictor designed from the long term statistics of 

the speech signal is more accurate in the prediction of voiced 

than unvoiced speech. Indeed, for unvoiced signals the SNR 

performance of a fixed predictor is relatively poor. 

c. At low transmission bit-rates, having the decoded speech 

samples at the input of the predictor, severely distorted by 

excessive quantization noise, the system becomes unstable. 

This is due to the mismatch between the statistics of the 

decoded speech and the statistics of the input speech used in 

the design of the predictor. 

"Bl-oak Adaptive" predictors were also examined in the previous 

chapter. Here, the weighting coefficients of the linear predictor 

were adjusted according to the short-term statistics of the speech 
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signal and the changes in the vocal tract transfer function could be 

handled more efficiently when compared to fixed prediction. As a 

result,the prediction error signal has now a smaller amplitude range 

which produces a smaller quantization noise power. In addition, this 

block adaptive predictor eliminates the system divergence at lower 

bit-rates. The block adaptation strategy has however, the following 

disadvantages: when employed in a feedback mode where the prediction 

coefficients are estimated from the decoded speech samples, their 

accuracy is considerably reduced because of the one block delay 

introduced in updating the coefficients. Also, in the case where 

"bloak adaptation" is used in a "feedfol'WCU'd" mode, the transmission 

of the coefficients is required as side information. 

In recent years alternative "sequentially adaptive" prediction 

techniques which avoid the disadvantages of both the previous methods, 

have received considerable attention in the field of speech coding. 

The advantage of sequential predictor when compared to the block 

adaptive scheme arises from the fact that a DPCM with a sequential 

predictor eliminates the necessity for transmitting the vaiues (side 

information) of the prediction coefficients. 

Thus, our research efforts, described in this chapter were directed 

towards the behaviour of th~ sequentially adaptive estimation methods 

whose coefficients are updated in a sample-by-sample basis. 

In all sequential algorithms examined here, the canonical form of 

Equation (3.7) is adopted, rather than the lattice structure of 
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Itakura-Saito~32) Initially, the Stochastic Approximation Predictor, 

SAP is analysed and the adaptation rate of its prediction coefficients 

is shown to be inadequate to follow the fast variations in the statistics 

of a speech signal. In order to obtain faster convergence to the 

"optimum" coefficient values, a novel technique called Sequential 

Gradient Estimation Prediction, SGEP, is devised and investigated. The 

mathematical analysis of its convergence is also presented. Further, 

parallel SAP/SGEP configurations and an application of sequentially 

adaptive prediction in a noise cancellation scheme, are briefly mentioned. 
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4.2 SEQUENTIAL PREDICTION PROBLEM APPROACH 

The technique of designing an optimum predictor in a mean square 

error sense was first conceived in 19~2(102) and then improved by 

W
. (101) 
l.ener. The latter york made possible the design of a linear 

predictor for estimating stationary signals. For higher order 

predictors. Wiener relationship in a matrix form. is given by Equation 

(3.21). i.e. A = ("lC
o

' where C is the autocorrelation matrix and Co opt 

is the autocorrelation vector. This method applies to signals whose 

autocorrelation function is known and therefore the prediction can be 

optimum when the statistical characteristics of the signal to be 

predicted match the apriori information used in the design of the 

predictor. 

In order to apply. in an optimum way. Wiener's prediction approach 

to non-stationary signals. the short term signal statistics must be 

considered. That is the input speech signal is assumed to be stationary 

within short time intervals and the "s/zort term" autocorrelat ion function 

is measured for successive blocks of speech samples. 

Now. when the average long term speech statistics are used in 

computing the prediction coefficients. we minimize the error function. 

FU. 

FU 
2 

= <e.> = 
1. 

«x. -
1. 

N 2 
}; a. x._

k
) >. 

k=l K ~ 

The optimum SOlution. A· is obtained by equating to zero the opt 

gradient of FU. with respect to the ~. k=1.2 ••••• N~111) i.e •• 

(4.1) 
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2 
" ve., 

1 A=A 
opt 

. 
The set of optimum coefficients which form Aopt ' zeroes the 

(4.2) 

(4.3) 

2 value of V(FU) and represents a minimum point of the FU=ce.> function. 
1 

This function can be visualized as a parabolic shape function of the 

prediction coefficients {~}, see Equation (4.1). The bottom point 

of this parabolic surface is unique and corresponds to the optimum 

• 
solution A • opt 

When the short term statistics are known, the error function, 

2 
FU=<e.> is minimized over a short seg~ment of speech and the parabolic 

1 

surface with its minimum point, changes according to the short term 

autocorre1ation functions obtained from the speech signal. 

A sequential predictor however, that possesses the incoming 

signal while updating its coefficients at every sampling instant, 

eliminates the requirement of apriori knowledge of the input signal 

statistics. Thus the sequential adaptive predictors, being able to 

adapt the characteristics according to the varying statistics of non-

stationary signals have significant applications in the fields of 

speech encoding, noise cancellation, equalization, modelling of 

transfer function,etc. The adaptation of such a predictor is achieved 

by an iterative algoritlnn where the new coefficients. are calculated, 

every sampling instant, using information related to signal samples 

which have been already processed. 
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In sequential predictors. there exist two modes of operation. 

namely the "learning" mode and the "normal" mode. The first one is 

observed when the system starts to operate on the signal and before 

the algorithm settles down. In this mode of operation large 

fluctuations in the values of the coefficient are inevitable. The 

"normal" operation which follows the learning mode is observed when 

the predictor models and predicts the input signal with a reasonable 

accuracy_ 

All sequential prediction techniques require an initial vector • 

• 
AO' of prediction coefficients to be specified and they proceed by 

. f {.} h . f h' th generatLng a sequence 0 vectors. A. k were L re ers to t e L 
L. 

sampling instant and k indicates the order of the predictor. The 

I . d . f h d . f h kth d" genera Lze equatLon or tea aptatLon 0 t e pre LctLon 

coefficient at the (i+l)th sampling instant is given as: 

a (FU) 
= a. - g 

L.k aa. k 
L. 

(4.!.) 

where g controls the adaptation speed of the algorithm. The ga(FU)/aa. k 
L. 

term. subtracted from a. k' is the gradient of the error function (FU) 
L. 

with respect to a. k' k=I.2 ••••• N. and the values of the prediction 
L. 

coefficients are updated in the direction opposite to the gradient of 

the error. That is why. such a predictor is sometimes referred to as 

a gradient predictor. 

i.e., 

If the error function to be minimized is the mean square error. 

2 th 
FU=<e.>, the k component of the gradient is given by 

L 



or 

a (FU) 

aa. k 
1, 

= 

v (FU) 

a< (x. -
1 

" -2 

162 

N 2 
L a x ·_k ) > 

k=l I< 1 

a a. k 
1, 

+ 
x. 

1 

(4.5) 

(4.6) 

The approximation sign (,,) comes in since, to differentiate Equation 

(4.5), <e~> has been approximated to the sample error, e~. Substituting 
1 1 

th 
the k component of Equation (4.6) in (4.4) and having 2g=h, we obtain, 

or in vector form, . . 
= A. + he.X. , 
111 

where h is a constant and controls the rate of adaptation. The 

(4.7) 

(4.8) 

convergence of Equations (4.7) and (4.8) is guaranteed for values of 

h between 0 and 2~112) 

Comparison of Equations (3.21), (4.6-8) reveals that the 

sequential methods seek to optimize the coefficient vector in a 

recursive way rather than solving a matrix equation. Figure 4.1 

presents the block diagram of a sequential predictor. The predicted 

1 . th • . d samp e at 1 1nstant 18 y. an 
1 
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N 

r a. x·_k k=l K 1. 

and the error introduced in predicting x. is 
1. 

Hence, 

e. 
1. 

x. 
1. 

= 

= 

x. - y. 
1. 1. 

N r a. x. -k + e. • 
k=l K 1. 1. 

In a vector form, Equation (4.11) may be expressed as 

-where A. 
1. 

elements 

x. = 'AT-.x. + e. 
1. 1. 1. 1. 

-is the coefficient vector and x. is a vector 

are the N previous 

x. = 
1. 

1. 

speech samples, i.e., 

T 
[ x. l'x. 2"" ,x. Nl • 1-,1- 1-

(4.9) 

(4.10) 

(4.11) 

(4.12) 

whose 

We are now to discuss three sequential predictors, namely the 

Kalman, the Stochastic Approximation Predictor, SAP and a novel 

technique called the Sequential Gradient Estimation Predictor, SGEP, 

which has. been developed during the course of the work described in 

this thesis. The performance of SAP and SGEP will be evaluated on the 

basis of SNR curves, error waveforms, processing time and rate of 

convergence. Then, the efficiency of these two algorithms will be 

compared with the performance. of the Kalman algorithm as reported in 

the literature~113) 
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4.3 KALMAN PREDICTOR(60.63.64.113-115) 

The general form of Ka1man prediction coefficients is expressed 

as . 
A. 1 1.+ 

• ·0 
= YA. + w. 

1. 1. 
(4.13) 

'0 
where Y is an constant (NxN) matrix and W. is an N dimensional column 

1. 

vector of white noise terms with zero mean and stationary variance V • 
w 

The procedure to define and then solve the general Ka1man algorithm of 

Equation (4.13) requires considerable processing time. This is perhaps 

why the majority of the research workers. working on Kalman predictor~~3.64) 
'0 • 

assumed that the effect of W. on A is small. i.e •• the coefficients 
1. 

change slowly from sample to sample and the Y matrix is the identity 

matrix I. The resulting algorithm is sometimes referred to as the 

Simplified Ka1man Algorithm, and the prediction coefficients are 

obtained when the hX. term of the gradient algorithm. described by 
1. 

Equation (4.8). is replaced by the vector GKAL(i). i.e •• 

A. 1 = A. + GKAL(i)e. (4.14) 
1+ 1 1. 

where GKAL(i) is the Ka1man filter gain vector. GKAL(i) is computed' 

recursive1y in accordance with 

= 
V e 

• 
V. 1X' 1.- 1. 
'T • 

+ X.V. 1X' 
1. 1- 1. 

(4.15) 

where V. 1 is the predictor coefficient error variance (NxN) matrix 
1.-

and V is an experimentally selected constant. The V. 1 matrix can 
e 1.-

be obtained iteratively from 
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A AT 
V. lX.X.V. 1 
1- 1. 1. 1.-

AT A 
V + X.V. lX. e 1. ~- 1. 

(4.16 ) 

T 
where vector X1 .• as before is [x. l'x. 2 ••••• x. N1• Substitution of 

1- 1- 1-

Equation (4.15) in Equation (4.16) yields 

v. = V. 1[1 - GKAL(i)X.l 
1. 1.- 1. 

(4.17) 

The quantity in the denominator of Equations (4.15) and (4.16) 

is scalar and hence the necessity of a matrix inversion in obtaining 

~(i) and Vi is eliminated. Further. GKAL(i) behaves as an 

automatic gain control factor since it adjusts the coefficients so 

that they are not being overcorrected when the speech amplitudes are 

large or vice versa. 

Finally, it should be mentioned that, in speech coding 

applications of the Kalman algorithm a decaying constant Sd ~s 

introduced in such a way that it makes the algorithm more robust in 

the presence of channel errors, i.e., 

(4.18) 
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4.4 STOCHASTIC APPROXIMATION PREDICTOR, SAP 

The SAP algorithm is also based on the Equation (4.7)" i.e., 

a. 1 k = a. k + he.x. k ' k=l,2, ••• ,N 
1+ , 1, 1 1-

which is originated from the general gradient adaptation procedure of 
. 2 

Equation (4.41 with FU=<e.> taken as the error function. 
1. 

Cummiskey(62) made an intensive study in this area and also 

examined the case where FU is a function of the absolute value of the 

error between the input and the predicted values, i.e., FU=<le.I>. 
1. 

For more details, see Appendix E. 

In the SAP algorithm, h is defined as 

h = 
A 

B + l;(x. ,M) 
1. 

(4.19) 

where A,B are constants and c: (x. ,M) is a function of the r·t previous 
1. 

speech samples, that is 

1 M 2 
l;(x. ,M) = -M L x·_k 

1. k=l 1. 

cummiskey(62) used a zero value for B without realising the 

(4.20) 

necessity of this bias term B in the denominator of Equation (4.19), 

specifically, during the unvoiced or the silence periods of the speech 

signal. The complete form of SAP was examined later by Gibson et al~63,64) 

The term B+l;(x.,M) is a form of an automatic gain control and 
1. . 

tends to equalize the adaptation rate of the algorithm as the input 

speech power level varies. As the power level increases B+l;(x.,M) 
1. 
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also increases, therefore h decreases and overcorrections of the ai+l,k 

coefficient are avoided, preventing the occurrence of a large prediction 

error. For silence or unvoiced segments of speech data ~(x.,M)«B and 
1. 

Equation (4.19) maintains a finite value. Thus the bias term B 

compensates for the low level input signals. Henceforth, h will be 

replaced by P.(x) since it is variable and changes at every sampling 
1. 

instant, i.e., 

P. (x) = 
1. 

B + 

A 
i-I 

! L x~ 
M .• 1 J J=1.-M-

Figure 4.2 presents the block diagram of the SAP algorithm. 

d · E d 1 • he· k ,(62) 1 . h . h FU I I d Appen 1.X ea s W1.t umm1.S ey s a gor1.t m Wl.t =< e. > an 1. 

gives the differences between this algorithm and the SAP. 

(4.21 ) 



.............. --------------------------------

x. I 1- x. 2 1- x. 3 1- x. N 1- X. 
~ 

D D D --------- D 1 

X. 
1 

e. 
1 -

a. I ~ a. 2 a. 3 -------------- ai'N~ I' 1, 1, 1, 

y. 
1 

ai+l,l ai +I ,2 ai +I ,3 

I 
I I I 
I I I 
I A D I D I E R ' . 
I I I 
I , • 

-+ .f. 
, 

ai+I,N I' 
I' 

ADAPTATION LOGIC·OF SAP, viz: e. . 
+ P. (x)X.e. 

1 

Ai+l = A. 
1 111 

FIGURE 4.2: Operation of SAP Algorithm 
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4.5 SEQUENTIAL GRADIENT ESTIMATION PREDICTOR, SGEP 

In the sequential gradient estimation predictor to be described 

here, the canonical form specified in Equation (4.9) is again used. 

The minimization of the mean square prediction error of the correlation 

or the covariance methods is, however, replaced by a more versatile 

criterion which attempts in general, to minimize an error function, 

FU. As an example, this function, FU can be made dependent on the 

modulus of the prediction error or the square of this error or the 

cubic function of this error or the differential of the error, etc. 

The SGEP algorithm also updates its coefficient according to the 

general gradient formula given by Equation (4.4), but gaFU/aa. k is 
1, 

d h kth d· ff· . an t e pre 1ctor coe 1C1ent being rep laced by P. (x) .h. k' k -U , 
1 1, 

at (i+l)th sampling instant is now obtained as 

a. 1 k = a. k 1.+ , 1., 

or in a vector form, 

P. (x). 
1 

, k=1,2, ••• ,N, 

where K is an (NxN) diagonal matrix, and expressed as 

1 0 0_ - --_ ... -- 0 

0 2-a 

K = I , ... , ... , ... , , 
0 - - - - - - - -- - -' N 

P.(x) is again given by Equation (4.21), and is inversely 
1 

proportional to the power of the speech signal computed over a 

(4.22) 

(4.23) 

(4.24) 
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duration of M samples. The denominator of P.(x) .behaves as an 
1 

automatic gain control which tends to equalize the adaptation rate 

of the prediction algorithm according to the variations in the mean 

2 
square value, a ,of the speech sequence computed over the M immediate x 

past samples. The effect of the value of M on the estimation accuracy 

of the predictor will be discussed in Section 4.7. 

The term k-a 
with a<l provides a smaller modification to the 

higher order prediction coefficients than to the lower coefficients. 

This is in agreement with experimental observations which support the 

importance, in the performance of the algorithm,of the first few 

prediction coefficients. 

The most important factor in controlling the performance of SGEP 

is A. k' see Equation (4.22), and is determined for each coefficient. 
1, 

~~ th 
The value of ". k used in updating the k~u coefficient, at the i --

1, 

sampling instant, is based on two estimates of the prediction error 

criterion, FU. For each coefficient, A. k is given by 
1, 

while the two error functions, FU are formed as follows: 

(4.25) 

For a particular coefficient ~ its value at the (i+l)th 

instant, ai+l,k is equal to its previous value minus "i,k multiplied 

by a constant. Consider that the first coefficient a. I in the 
1, 

coefficient vector, 

:A. 
1 

T 
= [a. l,a. 2' ... ,a. N1 

1, 1, 1., 
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is increased by a positive number s. l' calculated from 
1. 

s. k = 
1. 

1 

Dka 

where 0 and a are constants. and 0>1. a<l. Having the value of 

(4.26) 

a. 1 modified by s. l' a predicted value y. 1 of the input sample 
1, 1, 1, 

x. is obtained. a. 1 is then.decreased by the same amount. s. 1 
1. 1, 1, 

and another predicted output y. 2 is obtained. In the same way. 
1. 

when a. 2 in A. is modified by is. 2' the y. 3 and y. 4 estimates of 
1., 1. 1, 1, 1, 

x. are obtained. 
1 

The process of sequentia11y modifying the term of A. by is. k' 
1 1. 

k=1.2 ••••• N. continues resulting in a 2N component predictive 

The prediction error between the input sample x. and 
1 

each of the 2N predicted values in {Yk} is then determined. 

The error criterion must now be introduced, i. e., an appropriate 

FU function must be selected and used to form A. k according to 
1. 

Equation (4.25). Two error functions were considered in our SGEP 

investigations and they are: 

A. The Absolute Error Criterion: when the absolute value of the 

prediction error is selected as the error function. i.e •• 

FU. = le.1 (4.27) 
1 1 

a sequence· {FU. k} having 2N components is formed. That is 
1. 

FU. 1 = Ix. - y. 11 
1, 1. 1, 

FU. 2 = Ix. - y. 21 
1. t 1. 1., 
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= Ix. - y. 2NI 1 1, 
(4.28) 

B. Mean Square Error Criterion: In this case, the Equation of 

the error function, FU takes the form 

{FU. k} 
2 

= {e. k} 
1, 1, 

(4.25) 

and therefore the 2N components of {FU. k} are 
1, 

(x. 2 
FU. 1 = y. 1) 

1, 1 1, 

(x. 2 
FU. 2 = - y. 2) 

1, 1 1, 

I 
I 2 

FUi ,2N-l = (x. Yi 2N-l) 1 , 

(x. 2 
FUi ,2N = Yi ,2N) 1 

(4.30) 

Both error criteria were initially utilized in our experiments. 

It was found however, that the SNR performance of the SGEP predictor 

was almost unaffected by using FU=le.1 or FU=e7 and for simplicity 
1 1 

it was decided to employ the absolute error criterion throughout the 

thesis. 

Once the {FU. k} sequence is defined the A. k elements required 
L, ~, 

for the adaptation of the prediction coefficients are formed using 

Equation (4.25) and in vector form, 



= 

174 

FU. 1 
1, 

FU. 3 
1, 

I 

I 

FUi ,2k-l 

A 

FU. 2 
1, 

FU. 4 
I 1, 

(4.31) 

i.e., each element of the A. vector is the difference between two 
1 

prediction errors obtained by changing each coefficient first in a 

positive and then in the negative direction. Now if FUi ,2k-l>FUi ,2k' 

Yi,2k is a better prediction than Yi ,2k-l' see Equation (4.28), 

A. k>O and consequently a. 1 k should be less than B. k since, by 
1., 1+ , 1, 

subtracting a positive constant s. k from a. k a better prediction is 
1. , 1. , 

achieved. In the same way when FUi ,2k-l<FUi ,2k' ai+l,k is increased as 

A. k<O. Thus A. k gives the correct direction for the modification 
1., 1., 

in the values of the prediction coefficients, while the actual amount 

by which the coefficients are incremented or decremented is provided 

by the term 

(4.32) 

After this discussion and having in mind that the coefficients 

of the proposed linear predictor are Sequentially Updated every 

sampling instant with the value of each coefficient changed in the 

correct direction to minimize FU, the reason for naming this scheme 

SGEP is apparent. 
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~ ".2 .• ai +2,k-l ~i+2,2 ai +2,l 
------

FORM AN 
ERROR 
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FIGURE 4.3: Operation of SGEP Algorithm at (i+2)th Instant 
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The block diagram of the SGEP algorithm is presented in Figure 

4.3. 

4.5.1 Operation of a 4th Order SGEP Predictor 

In the preceeding section. the SGEP algorithm was introduced. 

Before presenting the details of the algorithm's performance and the 

reasons why SGEP behaves better than the SAP algorithm. we demonstrate 

the operation of a simple 4th_order predictor whose coefficients are 

updated using the SGEP procedure. 

Suppose that FU=le.1 and the input sample. x. 2' is to be 
1 1+ 

predicted. The SGEP algorithm forms 8 prediction values. y1. y2 ••••• y8 

and 8 error estimates. FU. since two prediction estimates and two 

error functions are obtained from each modified prediction coefficient. 

Hence. 

FU. 1 1 = Ix. 1-a . 1 l+s l x .-a . 1 2x . 1-a • 1 3x . 2-a . 1 4x . 3' 1+ , 1+ 1.+, 1. 1+. 1- 1+. 1- 1+, 1.-

FU. 1 2 = Ix. 1-a . 1 l-s l x .-a . 1 2x . 1-a . 1 3x . Z-a. 1 4x . 31 1+ , 1+ 1+. 1. 1+, 1- 1+, 1- 1.+, 1-

FU. 1 3 = Ix. 1-a . 1 1x .-a . 1 Z+s2x . 1-a . 1 3x . 2-a . 1 4x . 31 1+ , 1+ 1+, 1. 1+ t 1.- l."t, 1- 1+, 1-

FU1·+1•4 = Ix. 1-a • 1 1x .-a • 1 2-sZx . 1-a • 1 3x . Z-a. 1 4x . 3 1 1+ 1+ t 1. 1+, 1- 1+, 1- 1+, 1-

FU. 1 5 = Ix. 1-a . 1 1x.-a . 1 Zx. l-a. 1 3+s3x . 2-a . 1 4x . 31 1+ 11 1+ 1+. 1. .1+, 1- 1+. 1- 1+, 1-

FU1+1•7 = Ix. 1-a • 1 1x .-a . "1 Zx. 1-a . 1 3x . 2-a . 1 4+s4x . 31 1+ 1+, 1. 1+, 1- 1+, 1- 1+, 1-

FU. 18= Ix. l-a·"l 1x .-a . 12x . 1-a . 1 3x . 2-a • 1 4-s 4x. 3 1 1+ , 1+ 1+ J 1. 1+, 1- 1+, 1- 1+, 1-

(4.33) 
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Once the 8 values of the prediction error function at the (i+2)th 

sampling interval are computed, it is straightforward to determine 

A. I' i.e .• 1+ 

. 
A. 1 1+ 

= 

FUi+l,l FUi +l ,2 

FUi +l ,3 FUi +l ,4 

FUi +l ,5 -FU 
i+l,6 

FUi +l,7 FU. 1 8 1+ , 

Then, knowing A. I' Equation (4.23) is applied to yield the 
1+ 

required A. 2 coefficient vector which can be used to predict the 
1+ 

x. 2 input sample according to 1+ 

where X. 2 1+ 
T = [x. l'x. ,x. 1'· .. ,x. N+21 1+ ~ 1- 1-

(4.34) 

The SGEP algorithm is computationally more complex than SAP. 

However in handling speech signals, SGEP performs considerably better 

than SAP as it will shortly be demonstrated in terms of error wave-

forms and SNR results when both predictors operate free of quantization 

noise. 

The advantage, in prediction accuracy, shown by· the SGEP algorithm 

when compared to SAP, arises as the former actually measures the 

gradient of the error function and updates its coefficients in the 

opposite direction. SAP, on the other hand, defines the gradient 

·22 
of the error function as X.e. with the assumption of <e.>= e., see 

1 1 1 1 

Equations (4.5)-(4.8) and this seems to deteriorate its performance. 
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4.6 COMPUTATIONAL REQUIREMENTS OF SAP,SGEP ALGORITHMS 

In,this section, the computational requirements of SAP and SGEP 

are discussed and compared with those of the Kalman algorithm. In 

particular, the number of multiplications and additions required by 

each algorithm is determined together with the relative processing 

time required by a digital processor to form an estimate of an input 

sample when using the above three prediction techniques. 

4.6.1 Stochastic Approximation Prediction Algorithm 

A 

Suppose that the SAP algorithm is required to update its Ai+l 

vector in order to predict x. 2. Initially, p, l(x) must be computed. 
1+ 1+ 

The denominator of P. l(x) in Equation (4.21) is analysed as follows: 
1+ 

Suppose M=N, then ~x~ requires N multiplications and (N-l) additions. 
~ J . 
J 

The summation, however, is normalized by a factor N and assuming that 

the division is computationally equivalent to two multiplications, the 

number of multiplications becomes (N+2). Further, as the constant B 

is added to l/N LX~' the number of additions required becomes equal to 
j J 

N. Hence, the computation of the denominator of p, l(x) requires (N+2) 
1+ 

multiplications and N additions. To complete the computation of 

p, l(x). one more scalar division is required so a total of (N+4) 
1+ 

multiplications and N additions are required to compute p, l(X). 
1+ 

• 
For the prediction of x. 2 in the algorithm, A. 2 also requires 

1+ 1+ 

the definition of e. 1 which requires N multiplications and N additions 1+ . 
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since from Equation (4.34) 

-T -
e i +l = xi+l - Ai+1Xi+l 

where 

X. 1 = [x. ,x. 1' ••• ,x. N _,T 
1+ 1. 1- 1.- +lI 

The term e. 1 is then multiplied by P. l(x) so that a total of (2N+5) 
1+ 1.+ 

multiplications and 2N additions are required for the computation of 

P. l(x).e. 1. Finally, p. l(x).i. is formed and A. 1 is updated in 
1.+ 1.+ 1.+ 1. 1.+ 

accordance with Equation (4 •. 8) so that the total number of multiplications 

is (3N+5) while the number of additions is equal to 2N. The above 

procedure is summarized in Table 4.1. 

4.6.2 Sequential Gradient Estimation Predictor Algorithm 

Let us suppose that the estimate of x. 2 is to be formed using the 
1+ 

SGEP algorithm. The P. l(x) term, see Equation (4.22) is computed as 
1+ 

in SAP algorithm and thus (N+4) multiplications and N additions per 

sample are required. 

We can now proceed to determine the computational requirements 

of A. 1 k. As it has been shown in Section 4.6, for an N order 
1+ , 

predictor we must compute 2N components of the error function, FU in 

order to form the N components of the A
i
+l vector. The term 2N arises 

since for each coefficient value, the algorithm introduces a positive 

and negative increment, is. 1 k. Note that the values of s. 1 k are 
1.+, 1+, 
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SAP ALGORITHM FOR NUMBER OF MULTIPLICATIONS NUMBER OF ADDITIONS 
N ORDER PREDICTOR PER SAMPLE PER SAMPLE 

1 L 2 N+4 P. l(x)=A/B+i x. N 
1+ ; J 

AT A 
ei+l=xi+I-Ai+lXi+l N N 

P. 1 (x) • e. 1 I 0 
1+. 1+ 

A 
P. l(x),e. I'X. N 0 

1+ 1+ 1 

A A 
Ai +2=Ai +l + ... 0 N 

TOTAL 3N+5 3N 

TABLE 4.1: Computational Requirements/Sample 

for SAP Algorithm 
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• 
known and fixed. A simplification in forming the A. 1 vector comes 1+ 

from the fact that each component of FU. 1 .• where j=1.2 ••••• 2N. 
1+ .J 

consists of a fixed and variable term. Let us consider. for example. 

the case where N=4: 

FU. 1 1 = Ix. 1 - a. 1 1 + s. 1 lX. - a. 1 2x . 1 - a. 1 3x . 2 L+ • L+ 1.+ • 1+, 1. 1+, 1- 1+, 1.-

or 
FIXED TERM.e. 1 1+ 

- s. 1 lx.1 1.+, 1. , 

VARIABLE TERM 
for j=1.3 ••••• (2N-1) 

Hence, the 2N components of the error function can be defined as. 

FU. 1 1 = le. 1 - s. 1 IX. I 1+ • 1+ 1+, 1 

FU. 1 2 = le. 1 + s. 1 lx.1 1+ • 1+ 1+. 1 

I 

FU ' i+l,2N-1 

I 
I 
I 

= I e i +1 -

= le. 1 + s. 1 Nx·1 1+ 1.+, 1. 

(4.35) 

(4.36) 

(4.37) 

The computation of e i +1 requires N multiplications and N additions 

and it is performed only once every sampling instant. To determine 

Ai +1•1 say. we multipl y .s i +l ,l by xi and first add this value to e i +1 

and then subtract it from e. 1. 
1+ 

This means that for each element of 

Ai+1 (A i +1•k is the kth e1e~nt), we do 3 additions and 1 multiplication 
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as well as the N additions and N multiplications of e. l' However, 3 
1+ 

additions and 1 multiplication are repeated for each element of the 
. 
A. 1 vector and therefore the calculation of A. 1 requires 3N additions 

1+ 1+ 

and N multiplications together with N multiplications and N additions 

for e. I' totalling 2N multiplications and 4N additions. 
1+ 

. 
Further, Ai+l is multiplied by Pi+l(x) and matrix, K as defined 

by Equation (4.24). 

• 

Consequently, the multiplication of P. l(x) with ,+ 
everY term of A. 1 necessitates N more multiplications. Similarly, K 

1+ 

also requires extra N multiplications resulting in 2N more multiplications 

to form P. l(x).K.K. l' As a result, p. l(x).K.K. 1 requires 4N 
1+ 1+ 1+ 1+ 

multiplications and 4N additions in addition to (N+4) multiplications 

and N additions for the P. l(x) term. Thus a total of (N+4+4N)=(SN+4) 
1+ 

multiplications and (N+4N)=SN additions is necessarY in order to 

finalize the calculation of the term P. l(x).K.A .• ' 
1+ 1+~ 

To complete the computation of A. 2' we need the final N additions 
1+ 

to form 
• 
Ai+2 = Ai +l - Pi+l(x).K.A i +l 

and hence the number of additions becomes 6N. 

Table 4.2 summarizes the computational requirements of the SGEP 

algorithm. 

The comparison. between the SAP, SGEP and Kalman(113-1l6) algorithms, 

in terms of multiplications addition~ and processing time per sample 

based on the ICL 1900 computer, is shown in Table 4.3. 

r 
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NUMBER OF NUMBER OF 
.SGEP ALGORITHM FOR N ORDER fruLTIPLICATIONS ADDITIONS 

PER SAMPLE PER SAMPLE 

1 I 2 P. l(x)=A/B+N x. 
~+ i J 

N+4 N 

Ai +1 •k 
. . . 

le. 1-9 • 1 kx.I-le. 1+9 • 1 k x . 1 1+ 1+. 1. 1+ 1+, 1 
N+l N+3 

• T N+l;N A. l=[A. 1 1.A·+1 2····.A. 1 N1 N+3.N 
1+ 1.+, 1., 1+ J ---.,........ ---.,........ 

OM t.M 

· 
A. l·P, l( ) 1+ 1+ X 

N 0 

• 
P. l(x).K.A. 1 

1+ 1+ 
N 0 

• . • 
A. 2=A. I-P , 1 (x)KA. 1 

1+ 1+ 1+ 1+ 
0 N 

TOTAL SN+4 6N 

TABLE 4.2: Computational Requirement/Sample for 

SGEP Algorithm 
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PREDICfOR TYPES 

FUNCfION GENERAL IMPLIFIED 
KALMAN KALMAN 

SAP 

Multiplications 2N3+3N2+3N 2N2+4N+1 3N+S 
per Sample 

Additions per 2N3+3N2+1 2N2+2 3N 
Sample 

Multiplications 1240 161 29 
per Sample for N=8 

Additions per 1217 . 144 24 
Sample for N=8 

TOTAL TIME (~sec.) 7394 932 164 
REQUIRED/SAMPLE 

TABLE 4.3: Comparisons Between Sequential 

Prediction Algorithms 

SGEP 

SN+4 

6N 

44 

48 

272 



l~ 

For N=8, SAP produces the lowest values, and SGEP requires considerably 

. (113) less computational time than the modified Kalman pred~ctor. Table 

4.3 is obtained by using the typical computation times of 4 ~secs./ 

multiplication and 2 ~secs./addition of an ICL 1900 processor, resulting 

in 7394, 932, 164 and 272 ~secs. for N=8 order General Kalman, Simplified 

Kalman, SAP and SGEP predictors respectively. The corresponding numbers 

for the second order predictor are 194, 88, 56 and 80 ~secs. 
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4.7 SIMULATION RESULTS OF ISOLATED SGEP, SAP AND FIRST ORDER (LEAKY) 

PREDICTORS FOR SPEECH SIGNALS 

The sequential gradient estimation predictor SGEP was evaluated 

using computer simulation. Speech signals band-limited to 3.4 kHz and 

sampled at 10 kHz provided the input sequence to the predictor. In 

order to test the effectiveness of the proposed predictor, SGEP, we 

first compared its error sequence, {e.}={x.-y.} against that of the 
111 

predictor which updates its coefficients using the stochastic 

approximation method. 

The order of predictor was initially selected as N=15. N is an 

important factor in spectral modelling of speech. As discussed in 

Chapter 11, Section 2.2.5, in general, the minimum number of coefficients 

is twice the number of formants to be considered~31) Further from the 

references (11) and (26), in order to represent the vocal tract 

adequately, the memory of the predictor must be equal to at least 

twice the time required for sound waves to travel from the glottis to 

the lips that is 2x17/34000=1 msec. Consequently, for a f , sampling 
s 

frequency, of 10 kHz, Le·., the sampling period is 0.1 msec., the 

memory or order of the predictor must be at least 10 for the modelling 

of vocal tract. However, if the glottal and lip radiation character-

is tics are accounted for in the model, the above mentioned N, equal to 

f , is usually considered as lower limit for N and 4 or 5 more poles 
s 

are added to the model.· 

In summary, for adequate modelling of voiced speech, the order of 
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predictor should be at least equal to the sampling frequency in kHz. 

This choice of N can also be taken as an upper bound for the analysis 

of unvoiced speech. In relation to these upper limits of N. Atal and 

Hanauer(3l) demonstrated that the mean square prediction error for 

either voiced or unvoiced speech remains almost unchanged when N~14 at 

f =10 kHz. 
s 

In our experiments. the other parameters of SGEP were A=24. 

-3 2 
B=7xlO • M=lO • D=6. a/e=16. e=1/17. see Equations (4.22)-(4.26) 

while SAP had a different value of A (=10-4) than SGEP. As noticed 

here. too many parameters. in addition to N. play an important role in 

the adaptation rate of SGEP • 

. 
The fixed vector. S=[sl.s2 ••••• sl5] whose elements are given by 

Equation (4.26). are calculated using the constants D and e. Figure 

4.4 presents the variation of these elements with the optimum values 

of D and e. as quoted above. We have found that the exponential-like 

decay in Figure 4.4 produces a better performance in coefficient 

adaptation where a large variation in the lower coefficients is more 

significant than that in the higher order coefficients. 

SNR values of SGEP. SAP and first order predictors. obtained from 

computer simulation experiments. for two different sets of speech data. 

at f =10 kHz. are illustrated in Table 4.4. s 
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TYPE OF PREDICTION SNR in dB 

ALGORITHM 
DATA I DATA II 

First Order Predictor 8.9S 11.92 
(Leaky Integrator a

l
=0.94) 

SAP (N=lS) 12.67 13.04 

SGEP (N=lS) lS.99 17.93 

TABLE 4.4: Typical SNR Values of SGEP, SAP 

and Leaky for Two sets of Data 

It can be seen that the prediction error power for SGEP is 

typically 3-4 dB lower than that obtained using the stochastic 

approximation predictor SAP. Figure 4.S shows an arbitrary voiced 

speech segment, and the prediction error waveforms of a first order 

predictor having a coefficient of 0.94, a SAP predictor and finally 

SGEP. The prediction error of these predictors for another segment 

of speech containing unvoiced and voiced parts, is shown in Figure 4.6. 

In both Figures 4.S and 4.6, SGEP has the smallest prediction error. 

Figures 4.7 and 4.8 show the variation of SNR as a function of 

.input speech power for SAP and SGEP. The performance of both prediction 

algorithms· depends on the value of M, i.e. the number of samples used 

to estimate the power of the input signal, see Equation (4.21) with N=M. 
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( i ) 

(ii) 

(iii) 

(iv) 

FIGURE 4.5: Prediction Error Waveforms for DATA I 

(i) Input, (ii) Leaky (a1=0.94), 

(iii) SAP, (iv) SGEP, N=15 
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(j) 

(lil 

(lil) 

( Iv) 

FIGURE 4.6: Prediction Error Waveforms for DATA II 

(i) Input, (ii) Leaky (a
1

=O.94), 

(iii) SAP, (iv) SGEP, N=1S 



~ 

o:l 
'1::1 
~ 

~ 
'" ..: 
0 
Eo< 
u 
H 

'" fil 
p.. 

192 

• SGEP, A=24 

• SAP, A=10-4 

o LEAKY, a
1
=O.94 

16 

15 

14 

13 

12 

11 

10 

a 

9 c 
o o 

8L-____ ~ ____ ~ ______ L_ ____ J_ ____ ~ ____ ~L_ __ ~ 

-40 -20 o 20 40 60 

FIGURE 4.7: SNR vs. Input Power, M=M =100 
p 

80 
INPUT POWER(dB) 



193 

• SGEP, A=24 o SAP, A=10-4 

• SAP, 

16 

15 

14 

~ 

'" -e 
~ 

~ 
13 en 

..: 
0 
Eo< 
U 
H 
Q 

~ 12 
~ 

11 

10 I 
I 
I 
I 
I 
I 

d I 
D I • D 0 • 9 .' • i 

TRANSITION I 
I REGION 2 REGION I 
I 
I 

I 
REGION 1 I 

I 
I , 

8 
-40 -20 0 20 40 60 80 100 

INPUT POWER(dB) 

FIGURE 4.8: SNR vs. Input Power, M=N=15 



194 

For M=M =100, the power of the speech signal is measured over a 
p 

duration commensurate with a typical pitch period, M , and this results 
p 

in SAP having a restricted dynamic range as shown in Figure 4.7. This 

value of M is satisfactory for SGEP which has a significant SNR 

improvement compared to SAP. When the value of M is reduced and made 

equal to N, the order of the predictor, and the constant A remains at 

10-4 , the SNR for SAP is reduced by 2 dB, but the dynamic range is 

improved, see Figure 4.8. When the value of A is again optimized to 

10-3, SAP increases its peak SNR to approximately that value obtained 

when M=M =100. The effect of reducing M from 100 to 15 in SGEP is to 
p 

cause some deterioration in the SNR curves. 

When the power of the speech signal, computed over M samples, is 

small compared to the value of B used in Equation (4.21) for both SAP 

and SGEP, the denominator of P.{x) is approximately equal to B and the 
1 

predictions are less accurate. This situation is worse for SAP 

algorithms as shown in Figure 4.8, see curve (b) in REGION 1. However 

as we increase the power of the speech signal, we notice that SNR of 

SAP experiences a TRANSITION REGION and then remains unchanged for the 

high power of the speech signal, see REGION 2. The cause of this 

behaviour can be explained as follows: 

If the P.(x) term of SAP is constant, then the algorithm, 
1 

., A 

A. l=A.+P.(x)e.X. becomes signal dependent. In other words, reasonable 
1+ 1 1 1 1 

prediction results are obtained only over a restricted range of input 

power levels. In order to improve the scheme and make it independent 
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of the speech signal, first P.(x) term is expressed as an inverse 
1 • 
. 1 1-1 2 

function of the input power, 1.e., P.(x)=A/N L x .• The resulting 
1 j=i-l-N J 

SNR values turn out to be almost constant having a value of REGION 3, 

12.67 dB, over the wide range of speech power. 

When, however, unvoiced speech or silence intervals occur, the 

2 . P. (x) approaches infinity since <x.> goes to zero. That 
1 J 

is the reason why the constant B in the denominator is introduced. 

Thus B maintains a finite value for P.(x) during the lower power levels 
1 

of speech signal, and prevents the occurrence of large prediction 

errors. 

The low SNR value in REGION 1 is therefore due to the effect of 

the constant B. That is, at low power levels, P.(x).e .• x. remains 
. 1 1 1 . . 

almost at zero, hence A. 1 approaches A. and SAP behaves as a leaky 
. 1+ 1 . 

integrator provided that the initial vector is in the form of 

For the power levels of the TRANSITION REGION,P. (x) .e .• X. is 
. 1 1 1 

varying considerably as the predictor is trying to adapt to the 

characteristics of the input signal. As soon as curve (b) approaches 

REGION 2, an observation of the values of P.(x).e .• X. reveals that 
111 

while <P.(x» is reduced, and both <e.> and <X.> are increased, hence 
1 1 1 . 

<P.(x).e .• X.> is nearly constant. Consequently, the adaptation rate 1 1 1 

of the SAP algorithm remains constant, at high power levels of speech. 

Figures 4.9 (a,b) and 4.10(a,b) illustrate a segment of the error 

waveform, {e.}={x.-y.} and the corresponding power spectral when SAP 
1 1 1 
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and SGEP are used, respectively. These are obtained at the peak SNR 

values of Figure 4.8(a,b) and N=15. These figures while demonstrating 

the ability of SGEP to provide an error signal whose power is 3-4 dB's 

less than that of SAP, they also show the advantage of SGEP in removing 

redundancy, i.e., in decorrelating the error signal and producing a 

flatter power spectrum. 

The variation of SNR as a function of predictor order, N, is shown 

in Figure 4.11 (M=N). The SNR for SAP, is always lower than that of 

SGEP and falls off rapidly at lower values of N. Even with N=2, SGEP 

can be operated satisfactorily. Note that the gain in SGEP's SNR when 

N varies from 2 to 15 is only 0.40 dB. Thus the ability of SGEP to 

operate with N=2 reduces significantly its complexity and processing time. 

4.8 NOTE ON PUBLICATION(116) 

A paper entitled "SequentiaZ Gradient Estimation Predictor [or 

Speech SignaZs", in co-authorship with Dr. R. Steele and Dr. C.S. Xydeas, 

has been published in the IEEE, International Conference Proceedings on 

Acoustic, Speech and Signal processing, ICASSP 79, pp.723-726, 

Washington D.C., April 1979. 
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4.9 CONVERGENCE OF THE "SAP" and "SGEP" ALGORITHMS 

In this section the sequentially updated SAP and SGEP predictors 

are compared with a modified autocorrelation predictor (MAP). MAP is 

defined by considering a sliding-block autocorrelation predictor (SBAP) 

whose coefficients are re-calculated from a block of W samples every 

sampling instant using the autocorrelation method. The term sliding-

block is introduced, because the block moves forward one sample every 

sampling period, i.e., there is one new speech sample in the block 

every time the coefficients are recalculated. Although this (SBAP) 

algorithm can not be used in a practical system because of the amount 

of side-information that must be transmitted, it does achieve more 

accurate predictions than those of SAP or SGEP, and here it is used as 

a bench-mark. First, the mathematical analysis of the convergence of 

SAP and SGEP is presented and then, experimental results of the variation 

of the prediction coefficients with time for the SBAP algorithm, SAP and 

SGEP are provided. 

4.9.1 Convergence of the SAP Algorithm 

At the ith sampling instant, SBAP has a set of coefficients, A , 
s 

and a prediction error, e. ,while SAP, see Equation (4.8) with 
1,S 

represented by . 
A. 1·= A. + Pe.X. 

1+ 1 1 1 
(4.38) 

Comparing Equation (4.38) with that of (4.8), it is noted that P is 
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the convergence parameter, P.(x), which will be assumed constant over a 
1. 

small number of sampling intervals. The hat (.) above the symbol means 

the symbol is a vector, viz: 

(4.39 ) 

·T 
X. = [x. l'x. 2'''·'x. N1 1 1- 1- 1-

(4.40) 

where the raised T implies transpose of the vector. 

The predicted output of Equation (4.9) can be written in vector 

form as: 
·T • 

y. = A. X. 
1. 1. 1. 

(4.41) 

the product of a (lXN) and (Nxl) matrix, and the prediction error is 

e. 
1. 

= x. - y .. 
1. 1. 

For SBAP 

!l;;i,s 
'T • 

= x. - A X. t 
1. S 1. 

and 
........ T ... 

e. - e. =·-(A -A.) X. 
1,8 1 S 1. 1. 

Now, let y. be as a difference vector, 
1. . . 

y. = A. - A 
1. 1. S 

and write Equation (4.38) as 

. . 
or Y1.'+l = y. + PX.e. 

. 1. 1. 1. 

(4.42) 

(4.43) 

(4.44) 

Implicit in Equation (4.44) is the assumption that A is unchanged, 
s 

and a more accurate representation than A .• 
1. 
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From Equations (4.42) and (4.43) 

'T ' 
e. = e. - y. X. 

1. 1.,S 1. 1. 

and substituting e. into Equation (4.44) yields 
L 

'T'2 ' 
YL'+l = y. - P[y.X. - e. X.]. 

1. 1. 1. 1,8 1. . 

The norm of Y
i
+l is the square root of its product, viz: 

From Equation (4.45) 

2 
+ e. 

L,S 

"T.... "'2 - 2y.X.e. }X.> 
1. 1. 1,8 1. 

Now, P«l, and for a sufficiently small prediction error 

(e. -+0), 
L,S 

, ,T,2 ,T, 2 . 
and as 2P<y.y.X.>=2P«y.X.) >, L.e., always a positive quantity, 

1.1.1 11. 

(4.45) 

(4.46 ) 

(4.47) 

(4.48) 

(4.49) 

Consequently the SAP algorithm changes its prediction coefficients A. 
L 

to ensure· the convergence towards As' 

The above analysis is based on the minimization of mean square 

error, see Equation (4.8)". In a similar way, convergence of Cunnniskey's (62) 

algorithm employing the minimization of absolute error criterion, (see 

Appendix E), can be proved, viz: 



203 

A1'+1 - A = A. - A + P X.sgn(e.) 
S 1. S a 1. 1. 

(4.50) 

P , instead of P, is used to distinguish the absolute error criterion 
a 

from the m.s.e. one. Hence, 

Y1'+1 = y. + P X.sgn(e.) 
1 a 1. 1. 

AS and Yi are the set of coefficients of SBAP and the difference 

h .th. . 1 vector at t e 1 1nstant respect1ve y. 

ATA 
e. = e. ,.X. 

l. 1,8 1. 1. 

Then, 

and substitution of Equation (4.52) in Equation (4.51) yields 

A ... T ... 
Y1'+1 = Y1' + P X.sgn(e. -y.X.) a 1. 1,5 1. 1. 

The norm of Equation (4.53) is 

IIY1'+1112 = IIY1.112 + 2P <y~X.sgn(e. -y~X.» 
a 1. 1. 1,8 1. 1. 

2 A2 2 
+ P <X.{sgn(e.)} > 

a 1 1 

(4.51) 

(4.52) 

(4.53) 

(4.54) 

Again, convergence depends on the value of P and for a sufficiently 
a 

small P (P «I), Equation (4.54) may be written 
a a 

A 2 A 2 ... T.... ""T'" 
Ily· 111 "lly·11 + 2P <y.X.sgn(e. -y.X.» 

1.+ 1. a 1. 1. 1,9 1. 1. 
(4.55) 

ATA 
For e. <y.X., the coefficients of SAP are not near optimum, Equation 

1.,8 1. 1. 

(4.55) becomes, 

II
A 112 AT" ATA 

=: y. + 2P y .. A.sgn(-y.X.) 
1 a 1 1 1 1 (4.56) 

Since, z.sgn(z) = Izl (4.57) 

Equation (4.56) is rewritten as, 
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lATA I Finally, it is obvious that 2P y.X. a 1 1. 
is always positive, hence 

Consequently, Cummiskey's algorithm, obeying the minimization of 

absolute error criterion, also changes its prediction coefficients 

(4.58) 

(4.59) 

A. to ensure the convergence towards A • 
1 s 

Also the convergence is 

slowed to stop when 

lATA I y.X .... le. I 
1. 1. 1.,8 

(4.60) 

i.e., for Equation (4.60), Equation (4.55) becomes 

(4.61) 

4.9.2 Convergence of the SGEP Algorithm 

The SGEP updates its coefficients according to Equation (4.22). 

As before, P.(x) is assumed to be a constant over a small number of 
1 

sampling intervals and the optimizing term k-a is ignored. Hence, 

where A. is the vector representation of Equation (4.25), y. is the 
1 1 

difference vector as defined before, see Equation (4.43), and a 

difference matrix r. as 
1. 

where column matrices ~, ~,s 
A.,A. and y. respectively. 

1. 1,8 1. 

and r. have N identical elements of 
1 

(4.63) 
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From Section 4.5. at every sampling instant all the coefficients 

are up-dated. To do this. each coefficient is increased by sk' k=l.2 ••••• N. 

see Equation (4.26). while the other coefficients are unchanged. Thus 

we are dealing with N vectors. A~ k' k=l.2 ••••• N. from which N 
1.. 

predictions are made and N errors e~ k' k=l.2 ••••• N are obtained. The 
1.. 

procedure is repeated by subtracting sk' k=l.2.3 ••••• N. from each 

coefficient in turn, and obtain a second set of errors " k=l.2 ••.•• N. e. k' 1.. 

Hence, 

al+s l 
a

l 
a

l 

a2 
a

2
+s

2 a2 
. . a3 A! 1 = • A~ 2 = A~ N = , (4.64) 

1.. 1.. 1.. , 
I 

a
N
_

l 
I I 

~ :'N ~+sN 

and 

ral-sl la 
I ral 

. a2 
a2- s

2 . a2 
A" = I A" = • A" = (4.65) 
i.l i.2 a

3 i.N 

I 
I 

~-l 
t 

~ ~ :'N-sN 

The error vectors are 

, e" e. I 
1.. i.l 

e~ 2 
1.. 

e" 
i.2 

1 I 
" = . I '" = (4.66) e. e. 

1. 1. 

,I 
e" e. N 

1.. i.N 
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The elements of the vectors are 

, .... , T .... 
e. k = x. - A. kX. , k=l,2, ••• ,N 
1, 1. 1, 1. 

11 
e. k 1, 

= x. 
1 

AA,.,T XA. k 1 2 N 
k ' :=, , ••• , • 

1, 1 

Now, the two matrices are formed, viz: 

A,T 
i,l 

A"T 
i,l 

A,T 
i,2 

A"T 
i,2 

.~r = 
, 

A': I 
, = 

1 1 

, 
I 

A,T 
i,N 

A"T 
i,N 

and express Equation (4.66) in the form 

and 

where 

x. = 
1 

;~ 
1 

;'.' 
1 

x. 
1 

x. 
1 

x. 
1 

= 

= 

x. A 'A - .x. 
1 1 1 

v If A 

.... i - ... x. 
1 1 

A 

, and x. = 
1 

, 
x. N 1-

Consider now the error vector e. associated with SBAP, 
1,S 

and 

e. 
1,9 

= 

e. 
l.,~ 

e. 
1,S 

e. 
1,S 
I 

, 
e. 
1,5 

= x. -A. x. 
1. 1,8 1. 

(4.67) 

(4.68) 

(4.69) 

(4.70) 

(4.71) 

(4.72) 

(4.73) 

(4.74) 
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Proceeding to find the error vectors, from Equations (4.70) and (4.73) 

• 
e! 

1 
- e. 

1,S 

• 
= -(fl.. - fl.. )x. 

1. 1,5 1. 

Now, 

A: = fl.. + S. 
111 

where matrix S. is given by 
1 

S. = 
1 

s. 1 1, 

o 

I 

I 

0- -

o 

s. 2 1, 

0 ____ --0 

0------0 

s. N 1, 

(4.75 ) 

(4.76 ) 

(4.77) 

and matrix S. is the same as matrix.S since it is a fixed, given matrix. 
1 

Substituting Equation (4.76). in Equation (4.75) and with the aid 

of Equation (4.63), 

Similarly, 

and because 

~! = -(r.+S.)x. + ~. 
1. 1. 1. 1. 1,9 

~,.' = -(A:'-A. )x. 
1. 1. 1.,8 1. 

An = A ...s 
i i i 

+ e. 
1,S 

~,.' = -(r.-S.)x. + e. 
1. 1. 1. 1. 1,8 

In order to demonstrate the inate ability of SGEP to converge 

faster than SAP, we first choose the same error, i.e., mean square 

(4.78) 

(4.79 ) 

(4.80) 

error criterion as used in the simulation of SAP. From Equation (4.62), 

= A: - A - Ph. 
1 s 1 

or 

(4.81) 

(4.82) 



where 

A. :: 
L 

Each element in the 

Yi+l,l 

Yi +1,2 
I 

I 
Y i+l,N 
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,2 
e. 1 L, 

2 - en 
i,l 

,2 112 
e. 2 - e. 2 

1; , 1, 

,2 ,,2 
e - e • N • N 1, 1, 

vector Yi+l' 

2 = y. 1 - P{e! L, L,l 
,,2 ) - e. 1 L, 

2 ,,2 ) = y. 2 - P{e! - e. 2 L, L,2 L, 

, 
I 
I 

p{e!2
N 

,,2 ) = y. N - e. N • L, L, L, 

(4.83) 

(4.84) 

The elements of A. are found with the aid of Equations (4.78) and (4.80), 
L 

viz: 
e! 

-T 
Sk)Xi 

= -(Y. + + e. 
1,k "L L,S 

and 
-T 

\)Xi 
e" :: -(y. - + e. 
i,k L L,S 

where k=1,2, ••• ,N and Sk =[0,0, ••• ,0,sk;0, ••• ,0]. 

Thus having found 

( ,2 ,,2) 
Yi+1,k = Yi,k - P ei,k - ei,k 

k=1,2,3, ••• ,N 

and from Equations (4.85) and (4.86), 

e!2
k 

- e,.'2k = (e! k + e'.' k) (e! k - e'.' ) 
1, 1., . 1, 1, 1, l.,k 

.... ....T A 2 A ... = 4S
k 

y.(X.) - 4S
k
X.e. 

1. 1. 1. 1,8 

and because the e. is small in comparison with other errors 
L,S 

(4.85) 

(4.86) 

(4.87) 

(4.88) 
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,,2 .... AT'" 2 
e. k " 4 SkY . (X. ) 

1, 1 1. 

k=l, 2,3, •.• ,N 

Equation (4.87) can therefore be written in vector form as 

• • 2 
Yi +l = Yi - 4P$yi (Xi ) 

+ + 
(Nxl) (Nxl) (Nxl) 

Taking the norm of Equation (4.90) 

and for P sufficiently small, 

.TS· • 2 as 8P<y. y.(X.) > is always positive, 
1. 1. 1. 

and hence the algorithm SGEP converges. 

(4.89) 

(4.90) 

(4.91) 

(4.92) 

(4.93) 

In a similar way convergence of SGEP minimizing absolute error 

can be proved, viz: . 
Equation (4.82) still holds but the vector A. is given by 

1. 

le! 11 - I e~' I 1., 1.,1 

le! 21 - le'.' I 1., . 1.,2 
A. = 1 1 

1. I. I 

I 
!.. le! NI le'.' I 1., 1.,N 

Each element in the vector Yi+l is 

(4.94) 
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= Y. 1 - P (I e! I - I e',' I) Y1'+l ,l 1 1 1 1 1 , , , 

= Y. 2 - P( le! I - le'.' I) Y1'+l ,2 1 1 2 2 , , 1., 

I 
I 

Yi+l,N 

I 

I 

Y. N - P(le! NI - le~ NI). 
1, 1, 1., 

(4.95) 

The elements of A. again are found with the aid of Equations (4.85) and 
1 

(4.86), viz. 

Y
1
'+l ,k = y. k - P{I-(Y:+Sk)X' + e. I -I -(y:-Sk)X' + e. I} 

1, 1. 1. 1.,5 1. 1. 1,8 

k=l,2,3, ••• ,N. 

or simply, 

where 

Yi+l,k = Yi,k - p{lw-vl - Iw+vl} 

-T-w = -y.X. + e. 
1. 1. 1.,8 

v = SkX" _ 1 

Also from algebra, 

__ { -2wsgn(v) , 
lw-vi - Iw+vl 

-2vsgn(w), 

Hence, Equation (4.97) is examined for the two cases as follows: 

I- - I I -T- I CASE I: i.e., SkX, > rY .X. +e. 
1. 1. 1. 1,8 

(4.96) 

(4.97) 

(4.98) 

with the aid of Equation (4.98), the elements given by Equation (4.95) 

can be expressed as, (e L,S --> Q) 
-T-

Yi +l ,l = y. 1 - 2Py.X .• s gn(slx . 1) 
1, 1. 1. 1-

-T-
Yi +l ,2 = y. 2 - 2Py.X .• sgn(x2x. 2) 

1, 1. 1. I 1.-
I , 
I I I 

I I 
I I .... T .... I , . 

= - 2Py.X .• sgn(skx . k) Yi+l,k y. k 
1, 1. 1. 1-

I 

, I 
I I I 
I I ... T .... I 

(4.99) Yi+l,N = y. N - 2Py.X .• sgn(sNx . N) 
1, 1. 1. 1,-
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In vector form, 

AT" ... 
Yi +1 " y. - 2Py .X .• sgn(SX.) 

L L L L 

.j. .j. 

(Nxl) (Nx1) (Nxl) 

since the elements of matrix S are always positive, sgn(SX.) is 
L -calculated only by the sign of X. and hence, 

L 

... ....TA A 

Y
L
'+l "y. - 2Py.X .• sgn(X.) 

1. 1. 1. 1. 

For a sufficiently small P (P«l), the norm of Equation (4.101), 

together with the aid of Equation (4.57) yields, 

- 2 - 2 0 -T 
"lIy

L
.1I - 4P(y.) (X.X.) 

L L L 

where 
~ 

X. = [sgn(x. 1) ,sgn(x. 2)'··· ,sgn(x. N) J. 
1. 1- 1- 1-

(4.100) 

(4.101) 

(4.102) 

""2 :: AT 
In Equation (4.102) as 4P(y.)(X.X.) is always positive, i.e., sgn(x. 1)' 

1. 1. 1. 1-

(4.103) 

Therefore, the algorithm satisfying the first condition, see Equation 

(4.98), converges. 

CASE II: 
"'T'" ...... I-y·x.+e. 1>lskx.l. 

1. 1. 1,S 1. 

For this case, as e. ~,the e1emen~given by Equation (4.95) are 
L,S 

expressed as, 

I 

Yi+l,k 
I 

I , 

, 
I 

" y. k -L, 

-T-2P.s
l
x. lsgn(y.X.) 
1- 1. l. 

-T-
2P.s 2x. 2sgn (y.X.) ,1.- 1. 1. 

I .... T ... 
2P.skx. ksgn(y.X.) 

1.- 1. 1. 

(4.104) 
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and in vector form, 

'" ""TA 
Y1.'+l ~ y. - 2P5X.sgn(y.X.) 

1 1 1 1. 
(4.105) 

The norm of Equation (4.105) for a sufficiently small P (P«l) yields 

... 2 2 "'T"" AT"" 
{ 

N } //Y'+l// = //y.// - 4P L s.. y.x.sgn(y.x.) 
1. 1. k=l I< 1. 1. 1. 1. 

and from Equation (4.57) 

{ 
N ATA} 

4P L sk /y .X. / 
k=l 1. 1. 

AT" In Equation (4.107) as /Y.X. / and sk are positive 1. 1. 

and hence, the algorithm converges when satisfying the second 

condition, see Equation (4.98). 

(4.106) 

(4.107) 

(4.108) 

4:9.3 Experimental Results for Convergence of the SAP and SGEP Algorithms 

In order to support the computer simulation SNR results which 

indicate that SGEP converges faster than SAP towards an optimum solution, 

the sequentially formed prediction coefficients of the two algorithms are 

compared with those of the SBAP algorithm since the values of its 

coefficients are regarded as close to ideal. A block of 128 samples was 

employed to compute the SBAP coefficients and this block was shifted 

sequentially sample-by-sample to scan the input speech. 

Consider the case when each predictor has only one coefficient al' 

Figure 4.l2(a) displays a segment of speech, while (b) shows how the 
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SBAP coefficient adapts to the variations in the speech, particularly the 

large amplitude changes in the speech during the sampling intervals 200 

to 600, 600 to 1100, 1100 to 2200. Although the SAP algorithm updates 

every sampling instant, the Figure 4.l2(c) shows that, except for the 

initial period, it converges to the average value of the SBAP coefficient, 

i.e., 0.94, making only small variations about this value. This is not 

the case for SGEP, which is a truly instantaneously adaptive algorithm 

as seen in Figure 4.l2(d), where its coefficient variations correspond 

more closely to SBAP and the statistical variations of the speech signal. 

Figure 4.13 contains variations of the SBAP, SAP and SGEP predictor 

coefficients where each has two coefficients, and the predictions are 

made on the same speech signal of Figure 4.l2(a). The variation of the 

first coefficient a
l 

with the number of samples (or with time) for SBAP, 

SAP and SGEP is shown in Figure 4~13(a),(b) and (c) respectively. As 

expected, the structure of the a
l 

function varies for the different 

segments of the input speech, i.e., in Figure 4.l3(a), there are rapid 

variations in a
l 

as the SBAP adapts to the changes in the speech signal. 

SAP with its poor rate of adaptation produces a maximum al of 1.15, see 

Figure 4.l3(b), after processing the entire speech segment, a value 

significantly below the average value of a
l
=1.60 for SBAP. Like SAP, 

the coefficient a
l 

for SGEP has an initial value of unity, but unlike 

the former it does not decrease significantly before its upward climb. 

After 400 samples, a
l 

for SGEP in Figure 4.l3(c) is close to the a
l 

values for SBAP, although with smaller variations, and near the end of 

the segment it reaches an average level close to a
l 

of SBAP. Similarly, 

the variations of the second coefficient a2 are shown in Figure 4.l3(d), 
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(e) and (f) for SBAP, SAP and SGEP, respectively. Once more it can be 

observed that the convergence of SGEP is superior to SAP. Note that the 

second coefficients in SBAP, SAP and SGEP have negative values as a
l 

values were positive, i.e., the average values of a
l 

being larger than 

unity are compensated by the second coefficients. 

The variation of coefficient values with time for high order 

predictors were also examined and found consistent in the ability of 

SGEP to converge faster and more accurately than SAP. As an example, 

the variations of the first two coefficients of a fourth-order predictor 

employing SBAP, SAP and SGEP algorithms are presented in Figures 4.14(a)­

(f) for ascending order, N. 
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4.10 FURTHER EXPERlMENTATIONS USING THE SAP, SGEP ALGORITHMS 

In previous sections, the adaptive linear predictors, namely SAP 

and SGEP were examined in detail, and their performances were compared 

on the basis of SNR values and convergence behaviour. Both adaptive 

algorithms compute their coefficients iteratively, in an attempt to 

approach the optimum solution. As such, the matrix inversion required 

per sample basis, see SBAP, using Widrow's algorithm is eliminated~lll) 

The sequentially adaptive predictors can be capitalized fully in 

the field of speech communication. Our main intention here is to apply 

these algorithms in DPCM encoded speech, as it will be investigated in 

the next chapter. However, in the present chapter, we make a digression 

to give briefly the outcomes of further experimentations employing such 

predictors. First we consider various parallel SAP/SGEP and SGEP/SGEP, 

configurations in an attempt to improve previously reported results in 

terms of SNR and dynamic range, DR. Then, we describe briefly the 

performance of SAP and SGEP in association with adaptive noise canceller. 

4.10.1 Parallel-Predictor Structures 

Figure 4.8 shows that although SGEP has faster adaptation rate, its 

dynamic range, DR, is smaller compared to the dynamic range of the SAP 

algorithm. A predictor having both the fast convergence properties of 

the SGEP algorithm and the wide DR of SAP will be therefore desirable. 

Such a predictor has been designed and it is shown in Figure 4.15. It 



222 

consists of the SAP and SGEP predictors both operating on the same speech 

sample, followed by a second modified SGEP having only two coefficients. 

Thus, the prediction outputs obtained from SAP and SGEP are again 

weighted by the second SGEP (SGEP2), whose parameters are independent 

from the first SGEP (SGEP
l
). 

The proposed system of Figure 4.15 can be described as follows: 

S 'd" h d·· b . d h· th uppose y. an y. are t e pre 1ct10n outputs, 0 ta1ne at t e 1 
1 1 

sampling instant, from the SAP and SGEP predictors respectively. Now, 

the coefficients of the second SGEP, at the same sampling instant, are 

s. 1 and S. 2' and they are given by, 
1, 1, 

Ai-l,l and Ai - l ,2 are formed as 

where 
, 

e i - l 1 , 
, 

e i - 1 ,2 

Ai-l,l = lei~l,ll - lei-l,21 

Ai - l ,2 = lei-l,3 1 - lei-l,41 

= x. 1:"{(S. 1 l+sl)Y! 1 + s. 1 2Y'.' I} 1- 1- , L- 1-, 1-

= x. l-{(S. 1 I-sl)Y! 1 + S. 1 2Y'.' I} 1- 1- , 1.- 1-, 1.-

e ' = i-l,3 x. 1- {e. l·Y! 1+(S. 1 2+s2)Y~ I} 1- 1- 1- L-, 1.-

e1!_1 4 = x. 1- {S. l·Y! 1+(S. 1 ·2-s2)y~' I} , 1.- .1- 1- 1.-, 1-

(4.109) 

(4.110) 

(4.111) 

(4.112) 

d ' d " h d·· (. 1) th 1· an Yi-l an Yi - l are t e pre 1ct10n outputs at the 1- samp 1ng 

instant. 



x. 
L 

223 

SAP 

SGEP
l 

y! 
L 

SGEP
2 

yt.' 
L 

e. 1 L, 

FIGURE 4.15: Parallel-Predictor· (SAP /SGEP) Structure 

y. 
L 



-----------

224 

Once the SGEP
2 

coefficients are computed at the ith instant, the 

final output is calculated as the linear combination of the y! and y'.' 
1 1 

samples, Le., 

y. = e y' + e. y'.' (4.113) 
1 i,l· i 1,2 1 

where y. is the prediction value of x.. The parameter t. 1 is 
1 1 1-

determined according to 

1 
B +-1 NN 

where Al and Bl are constants. 

NN f-! o+y'.' 0}2 L 1-] 1-J 

01 2 J= . 

(4.114) 

Computer simulation experiments of this predictor were carried out 

with the parameters of SAP and SGEP
l 

remaining unchanged (see Section 

4.7) and with the constants of the SGEP
2 

algorithm properly optimized. 

• T 
These are eo=[l,O] , Al =8.0, B1=100 and NN=30. The graphs of SNR as a 

function of input power levels for SGEP,SAP and the proposed combined 

structure are shown in Figure 4.16. We observe that the peak SNR of 

this "PCll'al.l.eL prediction" scheme is slightly reduced compared to the 

peak SNR of the ·SGEP algorithm, but at the same time, its dynamic range 

has been significantly improved. 

Another system configuration considered in our experiments is 

shown in Figure 4.17. This is a ladder structure in which the error 

sequence generated by a single SGEP is aimed a. to be reduced in terms 

of its power and b. to be further randomized. 

For simplicity, simulation was carried out using only one second 
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order, SGEP2' predictor which operates on the output of SGEP
1

, and its 

error sample delayed by one sampling period. The mathematical description 

of Figure 4.17 is the same as in Equations (4.109) to (4.113) with 

yi-l being replaced by ef-l • Hence, 

and 

y. = 9. lY! + 9. 2e ! 1 
1 1, 1 1, 1-

t. 1 = 1.- 1 NN 2 
NN L (y! ") 

j=l 1.-J 

where A2 and B2 are constants. 

(4.115) 

(4.116) 

The performance of this predictor together with optimally selected 

parameters, i.e., 60=[1,01, N=15, NN=30, A2=10 and B2=100, are shown 

in Figure 4.1B. Although there are no sufficient"results to support the 

performance of the ladder structure, Figure 4.1B(b) seems to suggest that 

the amplitude range of the second error signal is reduced and also that 

contains higher frequencies. 

A better judgement of parallel configurations may be attained when 

they are associated with DPCM predictors and speech modelling processes. 

However, no further research was pursued towards this direction. 

4.10.2 The SGEP and SAP Algorithms in Reducing the Acoustic Noise in 

Speech 

.. 11" AN (117) . d In recent years, Adapt1.ve N01.se Cance long, C, has rece1.ve 

a lot of attention in various aspects of signal processing. Fundamentally, 
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it is based on a convenient technique for estimating the additive noise 

waveform, present in a signal. An adaptive predictor can be employed 

for this purpose so that it inherently incorporates a self-adjusting 

capability, see Figure 4.19. 

We now, briefly present the performance results of SAP and SGEP 

in ANC, in terms of SNRSEG and subjective tests, obtained at this 

(118) 
department. The block diagram of ANC system used in the computer 

simulation experiments is shown in Figure 4.19. A random noise 

generator with a uniform p.d.f. was used to produce the reference noise 

signal, {XQ.}. {XQ.} was also low pass filtered to provide the {XQF.} 
1 1 1 

sequence, used to corrupt the speech samples {X.}. 
1 

For these experiments SGEP and SAP were modified to efficiently 

model the transfer function between the source and the reference inputs. 

Thus the adaptation of the prediction coefficients yas performed 

according to: 

SAP: ai+l,k = a. k + P.(x).XO .• XN. k (4.117) 
1, 1. 1 1-

SGEP: a. k - A. k·P,(x). 
1 (4.118) ai+l,k = 

1, 1, 1. (N+l-k)a 

where A P. (x) = i-I (4.119) 
1. 1 (XN)~ 

N L 
j=i-N-l J 

and 
1 (4.120) sk = 

D(N+l-k)a 

k = 1,2, .... ,N, 

a,a,D are constants (see Section 4.7). 
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Notiee that, the eonstant B in the denominator of Equation (4.119) 

is eliminated. The reasons why a're simply that there exists no undue 

osei1lations here, unlike the speeeh during silenee and the noise-

waveform does not have any periodieity, respeetively. 

The SNRSEG improvement faetor, SNRSEGIM was employed as performanee 

eriterion and is defined as, 

or 

SNRSEGIM(dB) = SNRSEG(dB) - SNRSEG(dB) 

output input 

1 NB 
= NB L 

m=l: ~O 
X~ 

10gl0 ( ~)m 
X~ J - 10 10gl0(~) 

XQF. m 
~ 

1 NB 
= NB L 

m=l 

e. 
~ 

XQF~ 
10 10glO(--f)m 

e i 

(4.121) 

th where NB is the total number of bloeks and m eorresponds to the m 

bloek of samples. 

The input data used in the experiments was speeeh of duration 

5 see., sampled at 4.8 kHz, and low pass filtered to 2.2 kHz. The 

results of using a 16
th 

order, N=16, filter ean be deseribed briefly as 

fo 110ws : (118 ) 

a. At high level of interferenee, SNRSEG(dB)=-7 dB's, SNRSEGIM 
input 

tends to grow fast. During the initial eyeles of adaptation, 

the system with SAP yields an advantage of at least 1 dB over 

that using SGEP. The "A" values in Equation (4.119) for SAP 

"'2 and SGEP were 10 and 40, respeetively. SGEP eonstants, 

a,S,D were 0.5, 0.3 and 10 respeetively. Measurements taken 

after about 4 see. of adaptation show that the SAP had lost 

2-7 dB to the SGEP. 



232 

b. For lower levels of noise, SNRSEG(dB)=24 dB's, the system 
input 

employing SGEP consistently gives better SNRSEGIM than the one 

with SAP. About 5 dB's of advantage is gained after 1 sec. 

of adaptation time and about 6 dB's at the end of 4 sec. 

Subjective tests show, however, the system using SGEP produces a 

lower quality speech than that using SAP. Thus, although SGEP offers a 

faster adaptation response than SAP, when a steady state condition has 

reached in the modelling of the transfer function between the source 

and the reference inputs, SAP is able to oscillate with a smaller 'step 

size' about the "optimum" model compared to SGEP which distorts the 

speech signal during the attempt to remove the noise. 
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4.11 DISCUSSION AND CONCLUSIONS 

. In this chapter various prediction techniques as applied to speech 

signals have been treated. The emphasis was directed to sequential 

d·· 1 • h h' h d f l' h W' . (101) pre 1ct10n a gor1t ms, t at 1S to met 0 s 0 so v1ng t e 1ener equat10n 

in an iterative way. In particular, the SAP and SGEP techniques were 

examined in detail and SNR curves, error waveforms, rate of convergence, 

and computational time requirements, were considered for the performance 

evaluation of these systems. 

In the proposed SGEP algorithm, each prediction coefficient is in 

turn increased and decreased in value, at every sampling instant, by a 

prescribed amount, while the other coefficients are kept constant. 

Predicitions are then made and the algorithm enables the coefficients 

to be modified by a certain amount, towards the correct direction. The 
. '11 n, 

SGEP method extends Sakrison's\ ') sequential predictor, used for 

handling statistically stationary signals, so that non-stationary speech 

signals can be processed. 

When compared to SAP, SGEP has an improved performance with a 

prediction error power of typically 3 dB's lower than that obtained 

from SAP, as can be seen in Figures 4.5 to 4.11. 

The SNR improvement of SGEP over SAP is attributed to the faster 

convergence ability of the SGEP coefficients towards their optimum 

value. The mathematical treatment of the convergence of both SAP and 

SGEP is also provided for minimizing two error criteria, namely, the 

mean-square error and absolute error functions. Section 4.9 shows that 
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. 
both algorithms converge to the optimum set of coefficients, A (in 

opt 

this section, it is assumed that A =A) where A is defined from 
opt s opt one 

sample sliding block autocorre1ation method. Figures 4.12 and 4.14 

illustrating the variations, with time, of the prediction coefficients 

of SAP, SGEP and the optimum block scheme, clearly support that SGEP 

converges faster than SAP towards the optimum solution. 

In terms of the number of computations,the General Ka1man and 

Simplified Ka1man require (2N
3

+3N
2

+3N) and (2N
2
+4N+1) multiplications 

sample while the numbers of additions/subtractions per sample are 

per 

3 2 2 (2N +3N +1) and (2N +2), respectively, where N is the number of weights 

in the predictor. However, SAP and SGEP require (3N+5), (5N+4) 

mUltiplications per sample, and 3N, 6N additions per sample respectively. 

As far as the processing time per sample based on the ICL 1900 computer 

is concerned, for N=8, SAP produces the lowest values, and SGEP requires 

considerably less computational time than the modified-Simplified Kalman 

predictor, see Table 4.3. 

Further, the comparison of the sequential techniques with a fixed 

coefficient predictor shows that the latter having one coefficient 

(leaky integrator, a
1

=o.94) is inferior. This becomes evident when the 

SNR of a leaky integrator is found to be of the order of 8.8 dB.see 

Figures 4.7(c) and 4.8(d). When the number of prediction coefficients 

of a fixed predictor increases to four, the SNR shows variations with 

different speech sentences, used as an input signal. The maximum SNR 

obtained for a 4th-order fixed predictor having McDona1d's average 

coefficients(55) is of the order of 12 dB's, see Chapter Ill, Figure 3.9(b). 
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The same figure also indicates that the use of a higher order predictor 

gives no advantage in terms of SNR. Hence, comparison of both Figure 

3.9(b) and Figure 4.11 reveals that the adaptive scheme employing SGEP 

out-performs the fixed predictor using average coefficients. 

In Section 4.10 a few applications of adaptive prediction techniques 

have been mentioned. Specifically, the problem of the cancellation of 

noise from speech has been addressed. 

In the following chapter, we direct our research efforts towards 

the development of DPCM speech digitizer employing sequential predictors, 

namely SAP and SGEP. 



CHAPTER V 

DPCM EMPLOYING SEQUENTIAL PREDICTORS 
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5.1 INTRODUCTION 

Adaptive DPCM is more efficient method of encoding commercial quality 

speech than 10g-PCM~5) However, it is unlikely to dislodge the entrenched 

position of log-PCM in the commercial telephone network because of the 

high capital investment, unless trunk channel capacity becomes scarce. 

There may be a role for ADPCM to play in the local network, and more 

particularly in mobile radio, where its robustness to transmission errors 

is a valuable asset. 

DPCM codecs having adaptive quantizers, but non-adaptive predictors, 

DPCM-AQJ or DPCM-AQF, have a superior performance to non-adaptive DPCM 

(48) 
systems. It is presumed that by using both adaptive quantizer and 

adaptive predictor, a large improvement in SNR would inevitably ensue. 

As this is generally not so, due to the predictors operating on sequences 

corrupted by quantization noise, our efforts were directed towards the 

investigation of adaptive predictors that are capable of achieving 

substantial gains in codec performance when operating with one of two 

types of well-known adaptive quantizers, namely AQJ and AQF(48,58,64,70,120, 
. 121,122) 

This chapter is therefore to examine the performance of ADPCM codecs 

employing the sequentially adaptive predictors presented in the previous 

chapter. We commence with a resume of the main elements of the ADPCM 

codecs used in our computer simulation experiments. 

In Section 5.3, the performance of DPCM having one of the following 

three predictors, i.e., Fixed First Order, FFOP, SAP, SGEP, together with 
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Jayant's Adaptive Quantizer, AQJ, is presented for transmission bit rates 

of 16-40 Kb/sec. These codecs are abbreviated as DPCM-AQJ-FFOP, ADPCM­

AQJ-SAP and ADPCM-AQJ-SGEP, respectively. 

Jayant's quantizer is then replaced by one with forward step size 

transmission and computer simulation results of DPCM-AQF employing FFOP, 

SAP or SGEP are presented with and without additive noise in the transmission 

path. Similarly, these codecs are abbreviated as DPCM-AQF-FFOP, ADPCM-AQF-SAP 

and ADPCM-AQF-SGEP. 

Comparison of these techniques are based on SNR(dB) and SNRSEG(dB) 

measurements, waveforms of the reconstructed signal as well as informal 

listening tests. 
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5.2 DPCM 

DPCM has been described extensively in previous chapters and we will 

therefore confine ourselves to mentioning only its salient features. 

Given that the predictors operate on the locally decoded sequence {X.}, 
1. 

let us exacerbate the prediction difficulties by reducing the number of 

quantization levels in order to reduce the transmitted bit-rate. Having 

fewer levels leads us to consider the design of the quantizer more carefully. 

As the power in the error signal rises when voiced speech is present, 

compared to unvoiced speech, the quantizer must be capable of extending and 

contracting the position of its levels in order to achieve a nearly constant 

SNR. Consequently, we will discuss, in the next sections, the quantization 

and prediction schemes used in our DPCM studies. 

5.2.1 Quantizers 

. .. (51 64 120-122) 
Jayant's Adapt1.ve Quant1.zer, AQJ ' , has been used 

extensively in DPCM systems. This quantizer produces at each sampling 

instant an output quantization level, e. 
1. 

and a quantization level number R. 1. 

where the sub-script i refers to the ith sampling instant. R. has two 
1. 

components, sign and magnitude. The magnitude component of R. increases 
1. 

progressively from the centre of the quantizer. This level number R. having 
1. 

values b-l k=1,2, ... ,2 (5.1) 

is represented by a b-bit word and transmitted. R. is also operated on 
1. 

locally. Using one sample delay and a look-up table, a multiplier number 
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is formed. This multiplier at the (i_l)th instant is M(IRi_ll), and is 

used to calculate the uniform adaptive quantization step size of ith instant: 

The output quantization level e. is therefore 
l. 

(5.2) 

e. = 1l.R. • (5.3) l. l. l. 

In this way, AQJ accepts the error sample e. and forms R. and e .• R. is 
1 1. 1. 1. 

transmitted as a binary code and also facilitates the formulation of the 

multiplier constant and hence the next step size. e. is generated both l. 

locally and at the receiver. The step size in AQJ, given by Equation (5.2) 

expands and contracts the quantizer range like an accordian in an attempt 

to confine the components in the input error sequence {e.} to within the 
l. 

range of the quantizer. 

Although AQJ, described in Equation (5.2), performs well for ideal 

channels, it is extremely susceptible to transmission errors. Goodman et al (6n 

proposed a robus t to noise, AQJ algori thm where a "Zeakage" cons tant a , 
q 

o~a ~l, is introduced so 
q 

The scheme presented by Equation (5.4) has been studied in depth by 

M· (123) d· (124) l.tra an El.narsson. 

In practice, lli is constrained to 

ll. < ll. 5 d 
IIl1.n'" 1.'" max 

(5.4) 

(5.5) 

resulting in the DPCM encoder of having a dynamic range of approximately, 
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DR(dB) = 20 10glO{ ~~x } 
m1.n 

(5.6) 

Figure 5.1 shows the block diagram of DPCM-AQJ codec used in our 

computer simulation experiments. 

Another adaptive quantizer, frequently employed in DPCM is that with 

forward step-size transmission, AQF. The word forWard is used to imply 

that the step size, ~, of this uniform adaptive quantizer is evaluated 

every W input speech samples and is transmitted every W/f secs. as side 
s 

information. As a consequence, the received speech is delayed by W sampling 

periods. 
(110) Jayant used DPCM-AQF for digital transmission of speech 

through noisy channels, such as those encountered in mobile radio. The 

main reason in using AQF rather than sequentially updated AQJ-quantizer is 

its robust performance in the presence of channel errors provided that ~ 

is protected and correctly received. Also, the AQF Quantizer can be easily 

implemented. Figure 5.2 shows the block diagram of the DPCM-AQF codec. 

To define ~, the rms value ad of the difference between adjacent 

samples in a block of W samples is calculated as 

=/~ W 2 
L (x.-x. 1) 

i=2 1. 1.-

~ is then "formed at the output of the QS quantizer as 

where Q{(.)} means the quantization of (.), see Figure 5.2. a is a 
q 

(5.7) 

(5.8) 

step size optimizing coefficient whose value depends on the p.d.f. of the 

error signal, the number of quantization levels and the channel bit error 

rate, (BER). 
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The DPCM quantizer QE (see Figure 5.2) accepts the sample (x.-y.) to be 
1. 1. 

quantized, and the step size ~, and produces a level number R. and a 
1. 

. . 1 1 A h h' b' h . th 1 . quant1.zat1.on eve e., were t e 1. su -scr1.pt means ,t e 1. samp 1.ng 
1. 

instant in a particular block of samples, i.e., 

e. = ~R. , 
1. L 

R. 
L 

= +..:Gl<c.,-",1"-) 
2 

i=1,2, ... ,W 

b-1 k=1,2, ••• ,2 

where b is the number of bits in the DPCM-AQF code word. The locally 

decoded output sample, ~. is formed by adding y. and ~ .• 
1. 1. 1. 

(5.9) 

(5.10) 

However, it is R., and not e. that is binary encoded and mu1tiplexed 
L L 

with the binary representation of ~. 

are de-mu1tip1exed to yield R'. and ~. 
1. 

produced as shown in Figure 5.2(b). 

At the receiver, the binary signals 
A 

The e . and x . samples are then 
r1 rl. 

A 

Notice that e . and y ., in the 
rl. rl. 

absence of transmission errors, are e.=e . and y.=y .• Also, ~ may be 
1. r1 1. r1 

assumed to be received with negligible error if sufficient channel 

protection coding is employed. 

5.2.2 Predictors 

The Fixed First Order Prediction, FFOP, was used in our DPCM 

experiments as a performance bench-mark. The value of its fixed coefficient, 

aI' is the long term first shift autocorre1ation coefficient of the speech 

signal, typically 0.91-0.94 and 0.85 for 10 kHz and 8 kHz sampling 

respectively. 

Now we are to briefly summarize the SAP and SGEP sequential predictors 

since, when used in DPCM encoders, they take a slightly different form, than 



244 

that presented in Chapter IV. Also for simplicity, the number of 

coefficients in adaptive prediction will be limited to two. 

The second-order SAP predictor updates its coefficients, at the ith 

sampling instant, according to the following expressions: 

ai,l = ai-l,l + Pi-l(x)~i-lXi-2 

a. 2 = a'_l 2 + P. l(x)~. IX. 3 
1., 1., 1.- 1.- 1.-

or in a vector form 

where 

and 

- -
A. - A. 1 + P. l(x)e. IX' 1 1. 1- 1- 1- 1-

- - T 
- [x. 2'x. 31 X. 1 1.-

P. l(x) = 
1.-

1.- 1.-

B + 

A 
i-I .!. I; -2 

M 
L x. 
.. 1 J J-1.-M-

(5.11) 

(5.12) 

(5.13) 

(5.14) 

Notice that Equations (5.11)-(5.13) are of the same form with Equations 

(4.7-4.8) of Chapter IV, except that the,x
i
_

l 
and e

i
_l samples have been 

replaced by the decoded sample X. 1 and the quanti zed sample, ~. l-Q(x. 1-
1.- 1- 1.-

y. I)' respectively. A and B are system parameters and their values will 
1.-

be quoted in the results section. 

The P. l(x),given by Equation (5.14) with M-N, is used in DPCM-AQJ 
1.-

systems while for DPCM-AQF applications, the value of P. l(x)-P, is 
1.-

inversely proportional to the mean square value of the differences 

between adjacent speech samples, Od' calculated over the block of W samples, 

see Equation (5.7). That is, 
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A 

B + (l!./a )2 • 
q 

(5.15) 

A and B are known at the receiver while the step size l!. is transmitted. 

As l!. changes for each block so does P. Consequently, P remains constant 

for W samples and because of its dependency on the channel protected l!. 

the codec's performance in the presence of channel errors is enhanced. 

. (116) 
The second-order SGEP algor1thm, at ith sampling instant, forms 

four predictions Yi-l,l'Yi-l,2'Yi-l,3 and Yi-l,4 which are generated from 

x. 2 and x. 3. These intermediary predictions are 
1- 1-

(5.16) 

(5.17) 

(5.18) 

(5.19) 

where SI and s2 are system parameters, and s2<sl' see Equation (4.26). 

Notice that SI has been added and subtracted from ai-l,l to give Yi-l,l 

and Yi - l ,2 while a smaller change of ±s2 has been made to ai - l ,2 to give 

Yi-l,3 and Yi - I ,4· 

We now form the moduli of these prediction errors 

and then compute 

FU. I . = I~. l-Y. 1 ·1 , j=I,2, .•. ,4 
1- ,J 1- 1.-,J 

Ai-l,l = FUi_l,l - FUi - l ,2 

Ai - l ,2 = FU i _l ,3 - FU i - l ,4 

(5.20) 

(5.21) 

(5.22) 
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As FUi_I,1 and FUi _I ,2 are the moduli of the prediction error when 

ai-l,l is increased and decreased by sI respectively, it follows that if 

Ai_l,l>O then ai-l,l should be decreased and vice versa. Similar remarks 

apply for Ai - l ,2 and a i - I ,2' 

Consequently, the two coefficients specified by k=l,2, are updated 

according to 

(5.23) 

(l 
The term k , where (l where P. l(x) is given by Equation (5.14) with M=N. 

1-

is just less than unity, results in a smaller modification to a
2 

than a
l 

and this improves the prediction accuracy of the algorithm. 

In a ADPCM-AQF coder, Pi-l(x) is replaced by P as defined by 

Equation (5.15). Having determined a. 1 and a. 2' the decoded output x. 
1., 1., 1. 

can be found by using 

x. = a. IX. 1 + a. 2x . 2 + e. 
1. 1., 1.- 1, 1.- 1. 

(5.24) 

The schematic diagram representing both the second order SAP and SGEP 

adaptive predictors is shown in Figure 5.3. 

Further to this brief explanation of the second-order SGEP scheme, 

we are to demonstrate the differences between SGEP and SAP that minimizes 

the absolute error, FU=<le. I>, (see Appendix E). 
1 

-
Using Equation (5.21), 

Ai-l,l = l~i-l-ai-l,l~i-2-ai-I,2~i-3-SI~i-21 

(5.25) 
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e1·_l = x. l-a. 1 lX. 2-a . 1 2x . 3 L- 1-, 1- L-, 1-

Equation (5.25) is rewritten as 

Similarly, 

Letting "w" be e. 1 and "v" be s x or S2X1._3' equation (5.27) is 
1- 1 i-2 

rewritten as 

Ai-l,l = Iw-vl-Iw+vl 

Equation (5.29) can be analysed with the aid of Figure 5.4~125) 

, , , , , , , , , , , , , 
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REGION II 

, , , , 
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, , , 

, , , , , 

, , 
, , 
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, , , , , , , , , , , 

FIGURE 5.4: Analysis of Ai-l,k 

-.....;>~ "w" 

(5.26) 

(5.27) 

(5.28) 

(5.29) 
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That .is, 

In REGION I: I w-v 1-1 w+v I = -2v 

In REGION Il: lw-v 1-1 w+v I = -lw 

In REGION Ill: I w-v 1-1 w+v I = 2v 

In REGION IV: Iw-vl-Iw+vl =lw 

Hence, in REGIONS I and Ill, Iwl>lvland 

Iw-vl-Iw+vl = -2v sgn(w) 

Similarly, in REGIONS 11 and IV, Ivl>lwl and 

Iw-vl-Iw+vl = -lw sgn(v). 

Thus Equation (5.27) yields 

= I -2:l;i_2Sgn(~i_l)' 
-2e. lsgn(slx. 2)' 1- 1-

A. • • 
l.-J.,.L 

while Equation (5.28) gives 

Ai - l ,2 

= I -2s2~i_3sgn(~i_l)' if l~i-ll>ls2~i-31 

. -2;i_lsgn(sii_3), if Isii-31>I~i-ll. 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

Finally, substitution of Equations (5.36) and (5.37) in Equation 

(5.23), provides the adaptation equations of SGEP. When l~i-ll>lslxi-21 

and l;i-ll>ls2~i-3I, SGEP is defined by 

(5.38) 

(5.39 ) 

Appendix E however,· shows the SAP equations that minimize the 
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absolute error, Fu=<le.I>~le.l, to be 
1 1 

a. 2 = a·_1 2 + h.i. 3·sgn(~. 1). (5.41) 
1, 1., 1- 1-

Thus the basic design of the adaptation process of SGEP has no 

significant departure from that of Cummiskey's(62) sequential algorithm 

with FU=le. I, if I~· 11>ls1i. 21 and I~. 11>ls2i. 31. 
1. 1.- 1.- 1- 1-

However, when the Is1i. 21>1~. 11 or Is 2i. 31>1~. 11 inequalities 
1- 1- 1- 1-

are satisfied, SGEP assumes a very different form. That is, 

ai,l = ai-l,l + 2Pi_1(x)·~i_lsgn(slii_2) 
-a " .... 

a. 2 = a·_1 2 + 2P. 1(x).2 .e. 1· sgn (s2x . 3) 
1, 1., 1- 1.- 1-

(5.42) 

(5.43) 

Equations (5.42) and (5.43) indicate the degression from the gradient 

algorithm that minimizes FU=le. I • 
1 

The frequency of occurrance of Equations (5.38)-(5.39) or Equations 

(5.42-5.43) in ADPCM-AQF-SGEP coder for the same speech data used in 

Chapter IV is presented in Table 5.1. 

PERCENTAGE OF OCCURRANCE PERCENTAGE OF OCCURRANCE 
COEFFICIENTS OF INEQUALITIES l~i-11> OF INEQUALITIES l~i-11< 

Is1xi_21 OR >ls 2xi _3 1 Is
1
x

i
_

2
1 OR <ls

2
x

i
_

3
1 

ai 1 33% 67% 

a. 2 38% 62% 
1, 

TABLE 5.1: Frequency of occurrance of SGEP adaptation 
equations in ADPCM-AQF-SGEP encoder, b=4, 
W=256 , input 1eve1=-5 dB 
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As is seen in this table,during the adaptation of a. 1 and a. 2' 67% 
~, 1, 

and 62% of the time, diversions from the gradient algorithm with FU=le. I 
1. 

are attained, respectively. 
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5.3 COMPUTER SIMULATION RESULTS OF DPCM-AQJ SPEECH CODECS EMPLOYING FFOP, 

SAP OR SGEP 

We will now present the results of our DPCM-AQJ study in terms of 

long-term SNR, SNRSEG(dB) and waveform plots. The input speech signal 

used in the simulation experiments was the sentence I~n apple a day keeps 

the doctor away", bandlimited to 3.4 kHz and sampled at 10 kHz. 

Figure 5.5 shows the SNR(dB) plot of a 4 bits per sample DPCM-AQJ-

FFOP coder, for different power values of the input speech signal. The 

ratio of the maximum to the minimum quantization step size, see Equation 

(5.5), was fixed to 128 while the value of the quantization "leakage" 

constant, B , was set to unity, see Equation (5.4). The value of the 
q 

fixed prediction coefficient, a l , used in these experiments was 0.946. 

Table 5.2 shows the SNR(dB) and SNRSEG(dB) values produced by this 

codec, at the centre of its dynamic range, when different B constants 
q 

are employed to improve the performance of the system in the presence of 

transmission errors. Table 5.2 indicates that the best signa1-to-noise 

ratio performance of the DPCM-AQJ-FFOP codec is obtained when B =31/32. 
q 

Also, the SNRSEG(dB) for B =1 is less than that 
q 

at 40 Kb/s. These results differ from what has 

for 8 =31/32 by 1.4 dB, 
q 

(67123) been reported by others ' 

whereby B =1 is producing the maximum SNR. The difference however, may 
q 

be attributed to that the step size multipliers, M., employed in our 
1 

experiments have been formulated from speech sampled at 8 kHz whereas 

our DPCM-AQJ-FFOP code cs are processing speech at the rate of 10 k samples 
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Sq SNRSEG(dB) SNR(dB) 
1-1=128 

1/2 19.57 21.84 

7/8 28.44 28.63 

15/16 33.31 29.04 

31/32 33.48 29.19 

63/64 33.25 27.96 

127/128 33.14 27.45 

1.0 32.86 26.70 

TABLE 5.2: variation of SNRSEG(dB)-SNR(dB) with S 
q 

at 40 Kb/s and at input power of -4.26 dB 
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per sec. The variation of SNR(dB) with respect to the input power level 

for 11 =31/32 is plotted in Figure 5.6. 
q 

Next, the SAP and SGEP prediction schemes were employed with OPCM-

AQJ. The locally decoded signal applied to these predictors'is of course, 

contaminated with quantization noise. Thus the predictor parameters 

differ from those used previously, see Section 4.7, and they are selected 

to peak the SNR at the centre of the coders dynamic range. The optimum 

prediction parameters for SGEP and SAP operating in the 40 Kb/s OPCM-AQJ 

codec were A=lO.O, B=20.0, M=N, 0=6.0, a/II=4.0, 11=1/5 and A=0.05, B=40.0, 

respectively. No attempt was made to optimize again these parameters for 

different conditions, such as transmission data rate and the order of 

predictor. It was observed from the computer simulations that for low 

values of input power «-30 dB), the SNR(dB) is increasing for all coders, 

at approximately 6 dBioctave as AQJ operated frequently with its minimum 

step-size, and rarely in its adaptive mode. As the input power increased, 

the prediction gains of SAP and SGEP over FFOP manifested as differences 

in coder SNR(dB). SNR(dB) gains of 6 and 3.5 dB's were achieved by the 

coder using SGEP when compared to OPCM-AQJ employing FFOP and SAP, 

respectively over a dynamic range, OR, of 30 dB. When the input level 

was sufficiently large for slope overload noise to frequently occur, the 

predictors operated on distorted speech signals, and the SNR rapidly 

deteriorated. 

Figure 5.7 shows the SNR(dB) variation of 4 bits ADPCM as a function 

of prediction order, N. The gain in SNR(dB) by using SGEP instead of SAP 
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is approximately 1 dB smaller than the prediction gain shown in Figure 

5.8 where the predictors operated on quantization free speech samples. 

When the ADPCM bit-rate was reduced to about 16 Kb/s (3-level AQJ, 

f
s

.log
2

3 ~ 16 Kb/s) the curves had similar shape with those in Figure 5.7, 

except that the SNR gain of SGEP over SAP was reduced to only 1 dB. 

The improvement in SNR, achieved ·by increasing the bit-rate for the 

ADPCM-AQJ coder employing SGEP or SAP with N=2, at an input power level 

of -10 dB, is shown in Figure 5.9. The SNR gain due to employing SGEP 

instead of SAP in DPCM-AQJ, is of the order of 2 to 3.5 dB's, as the 

number of bits per code word, '~", is increased from 2 to 4. This 

improved performance can also be observed from the time waveforms of 

Figures 5.10-5.11. The comparison of curves (iii) and (iv) of Figure 5.10 

with those of Figure 5.11 reveals that ADPCM employing SGEP in its feed-

back loop produces the smaller prediction ,error, and therefore the 

smaller quantization noise. 

Further, the prediction order was increased from 2 to 6 and the 

SNR(dB) performance of the ADPCM-AQJ employing both adaptive prediction 

schemes was measured for· different transmission bit-rates. The results 

are shown in Table 5.3. It is seen that as the predictor order increases 

ADPCM-AQJ-SGEP offers always a better SNR than ADPCM-AQJ-SAP. Moreover, 

when the order of· SGEP predictor increases from 2 to 4, the SNR(dB) of 

the ADPCM-AQJ-SGEP encoder changes by 0.9 dB, at 40 Kb/s, and 1.4 dB's 

as N varies from 2 to 6. Consequently, although the adaptation process 

of SGEP tends to be complex, its SNR performance at high bit rates is 

not considerably degraded by using it in its simplest form, namely with two 

coefficients. 
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ORDER TYPE SNR(dB) 
OF OF 

PREDICTOR PREDICTOR 16 '£hIs 20 '£hIs 30 Kb/s 

N=l FFOP 11.24 15.24 22.00 

SAP 13.04 16.48 24.64 
N=2 

SGEP 14.85 19.02 27.69 

SAP 14.74 17.81 27.00 
N=4 

SGEP 15.94 20.61 28.25 

SAP 15.40 18.75 27.12 
N=6 

SGEP 16.65 21.60 29.36 

TABLE 5.3: Variation of prediction order, N with 

bit-rates for ADPCM-AQJ-SAP/SGEP 

40 '£hIs 

28.75 

31.11 

34.72 

33.70 

35.63 

34.34 

36.10 
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Finally, the stability of the sequentially adaptive prediction 

algorithms used in our simulation experiments was checked by observing 

the roots of their characteristic equation, I(z). I(z) for the second­

order predictor at the ith sampling instant is defined as(126) 

1. (z) 
1. 

= z 2 
a. lZ - a. 2 

1., 1., 
(5.44) 

If the roots of I.(z) are located inside the unit circle in the z-plane, 
1. 

the system is "stable". In sequential algorithms, because a new set of 

coefficients is computed at every sampling instant, I.(z) is also computed 
1. 

in a sequential manner. It should be emphasized that at some sampling 

instants, a system can be unstable. However, as long as the duration of 

unstability is not long enough - if the codec employing one of the 

sequential prediction schemes recovers itself fast from unstable region -

there is no major problem. For lower-order predictors (N=2) , Schur­

Cohn(127) stability criterion can be used to determine whether the system 

is stable or not. In Schur-Cohn criterion, the necessary and sufficient 

conditions for the roots of I. (z)=O lying inside the unit circle are 
1. 

related to the following inequalities: 

11.(0)1 = la. 21 < 1 
1. 1. , 

1. (1) = 1 
1. 

a. l-a. 2 > 0 
1., 1, 

1.(-1) = 1 + a. l-a. 2> 0 
1. 1., 1, 

(5.45) 

(5.46) 

(5.47) 

The Equations (5.45)-(5.47) define the stable region for a. 1· and a. 2. 
1 , 1. , 

Figure 5.12, PATH 1 presents a simple flow-chart in order to check 

stability and correct it. The simulation run conducted for the ADPCM-AQJ-

SGEP encoder having second-order predictor at 40 Kb/s shows that unstable 



for k=1,2, ••• ,N 

PATH 2 

264 

ith sampling 
instant 

COMPUTE 
a. k 
1, , 

for k=l, 2, only 
'" 
'''------.,-~--.., 

PATH 1 

SCHUR-COHN 
CRITERION 

11, 

STABLE 

NO , 

~OMPUTE P ARCOF 
IIIIIII~--+----+-----I COEFFI. b. k 

1, 

• ENCODE 
L..-----..;..f -SPEECH SAMPLE 

I 

FIGURE 5.12: A schematic flow-chart for stability criteria 



------ - ---- --- --------

265 

coefficients were generated by the SGEP algorithms about 9% of the time. 

For higher-order predictor, the above criterion may only be applied when 

the predictor is decomposed into cascaded stages each having the second-

order predictors. A different method for checking the stability is to 

compute the PARCOR coefficients, b. k's, and can be applied to any order 
1, 

predictors. As described in Appendix F. the set of prediction coefficients, 

a. k's, are initially transformed into PARCOR domain~26) The observation 
1, 

of b. k's indicates the system stability, i.e. if lb. kl>l the system is 
L, 1, 

unstable. Then by suitable manipulation, b. k's are adjusted to be ~l 
1, 

and transformed back to a. k's. 
1, 
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5.4 COMPUTER SIMULATION RESULTS OF DPCM-AQF SPEECH CODECS EMPLOYING FFOP. 

SAP OR SGEP 

In Section 5.3. we have shown that by exchanging the FFOP with 

adaptive predictors. an improved DPCM-AQJ performance is obtained. and 

that SGEP out-performs SAP for transmitted bit-rates ranging from 16 to 

40 Kb/s. 

This section examines the case of DPCM-AQF systems with second-order 

sequentia11y adaptive predictors. Once again. the encoding performance 

of DPCM-AQF was evaluated by computer simu1ations. The input speech 

signal was the same with that used in the DPCM-AQJ experiments. i.e •• the 

sentence. "An app~e a day keeps the doctor away", bandlimited to 3.4 kHz 

and sampled at 10 kHz/sec. 

In generating the step-size~ ~, Q
q 

was set to 0.33 in accordance 

with h f · d· f f (110) d t e 1n 1ngs 0 re erence an the quantizer. QS. used for step-

size transmission. had 256 levels while the ratio of its maximum to its 

minimum step-size was 128. The decision levels of the quantizer QE were 

±1.±2 ••••• and output levels are defined by Equation (5.1). and they are 

scaled by 11. 

The predictors used in the DPCM-AQF experiments are those discussed 

in Section 5.2.2. For the SAP predictor. the A and B parameters of 

Equation (5.15) were 0.05 and 2.0 while for the second-order SGEP 

predictor. the values of A and B were 6.0 and 100.0. respectively. These 

values of A and B yield the maximum peak SNRSEG values measured over the 
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entire utterance. The constants sl and s2 in the second-order SGEP 

algorithm, computed from Equation (4.26) with 6=1/5, were 0.167 and 0.145 

respectively. The value of a in Equation (5.23) was 0.8. Also, the 

initial value of al was the first shift normalized correlation coefficient, 

of the speech signal, c l =0.94, while the initial value of a2 was set to 

zero. 

The SNRSEG(dB) was used as an objective criterion to assess the 

performance of the various codecs, see Equation (3.4). The variation of 

SNRSEG(dB) as a function of input power for the channel error-free DPCM-

AQF system using either FFOP or SAP or SGEP is shown in Figure 5.13 for 

40 Kb/s transmission 'bit-rate (b=4), and for W=256, a =0.33, and N=2. 
q 

The peak SNRSEG(dB) of ADPCM-AQF-SGEP is seen to be 3 dB's greater than 

the peak SNRSEG(dB) values of ADPCM-AQF-SAP. We found that total SNR(dB) 

as defined in Equation (3.3), produced lower values than those of, 

segmented SNR measurements, but the SNR(dB) gain of ADPCM-AQF-SGEP over 

the other systems was maintained, see Table 5.4. 

W=256 W=128 ~NR(dB) OF 
DPCM-AQF PCM-AQJ 

CODEC SNRSEG(dB) SNR(dB) ~NRSEG(dB) ~NR(dB) CODEC 

FFOP 28.75 25.44 31.09 25.91 26.70 

SAP 34.51 29.41 35.05 31. 75 33.40 

SGEP 37.83 34.2 38.54 34.94 36.10 

TABLE 5.4: SNRSEG(dB)-SNR(dB) values of various codecs 

when input power level = -5 dB, b=4, N=2 
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The effect in varying the quantization block size, W, is shown in 

Figure 5.14 for an input level of -5 dB, i.e., SNRSEG(dB) values were 

selected at the centre of the codec's dynamic range. The SGEP predictor 

enables DPCM-AQF to maintain a nearly constant SNRSEG as W is varied from 

32 to 512. It is observed that the loss in SNRSEG for larger values of W, 

is greater in DPCM-AQF-FFOP. This demonstrates the efficiency of the 

adaptive predictors, within the DPCM-AQF, encoder, in coping with the 

reduced quantization accuracy of QE. The variation of the SNR(dB) for 

every W=i28 samples is shown in Figure 5.15, and the superiority of the 

ADPCM-AQF-SGEP over the ADPCM-AQF-SAP and DPCM-AQF-FFOP is once again 

observed. 

The effects of transmission errors in DPCM-AQF codecs were also 

examined. Here the 8-bit codewords (256 levels for QS) used for the 

transmission of the step size 6, were assumed to be protected from trans­

mission errors while the bit stream at the output of the QE quantizer, 

see Figure 5.2, was subjected to random errors. These errors were induced 

according to the method described in Section 3.6.5, i.e., the number of 

samples deemed to be in error depends on the bit error rate (BER), total 

number of samples, and number of bits, see Equation (3.56). The 

performance of the DPCM-AQF system (W=256) using a fixed first order 

predictor (FFOP) is almost independent of transmission errors for 

BER<O.Ol% as can be seen in Figure 5.16, and is only limited by 

quantization noise. For "BER>O.4%, the noise resulting from transmission 

errors swamps the quantization noise and the slope of the curve is 45
0

, 



40f=====-_______ _ 

3b 

20 
• SGEP 

o SAP 

A FFOP 

10 32 64 l28 256 512 
IU.QCK S LZE , W 

FIGURE 5.14: Variation of DPCM-AQF SNRSEG(dB) with block size, W:input power level = -5 dB, 
b=4, N=2, BER=O.O 

N 

" o 



60 

SGEP (i) 

SAP (H) 

i 
FFOP (Hi) 

, 

15 

0. INPUT POWER LEVEL 

( 
-15.~ ______ ~ ______ -. ______ -. ________ .-______ ~ ______ ~ ______ ~ ______ ~ 

\3 10 20 30 10 50 60 70 80 
FIGURE 5.15: Variation of SNR(dB)/b1ock, ~=128, b=4, N=2, BER=O.O 

BLOCK NUMBER 



272 

i.e., the noise in the recovered speech is proportional to BER. With 

adaptive predictors, the average SNR starts to decrease for lower BER 

than encountered with the FFOP. This is because there is an error 

propagation effect in the second-order adaptive predictors, and although 

the performance of SGEP is better than SAP, the slope of the former is 

the greater for BER>0.4%. The use of only two predictor coefficients in 

the adaptive predictors and the channel protected ~ prevents the SNRSEG 

plumetting faster. The SNRSEG with SGEP and SAP is greater than that 

with FFOP for BER<0.08% and 0.03% respectively. 

As ~ is represented by an 8-bit codeword and there are Wb (1024 

bits for W=256, b=4), bits of DPCM data in each block, reliable protection 

of ~ can be provided for only a small expansion in the bit rate. For 

example, if 6 is transmitted three times with every block of W-DPCM words, 

then the step size 6 used for decoding at the receiver can be formed 

from the three received values of the step size. Specifically, the 

receiver would examine the most significant bit, MSB, of each of the 

three received 6's, and then would select the bit that occurs on two or 

more occasions. It does this for the next MSB's and so on until the 

least significant bit, LSB's whence 6 is available. The probability of 

. 1 b· . h b· .. f:· (128) gett1ng at east two 1tS correct 1n eac 1t pos1t10n 0 u 1S 

(5.44) 

where Hb is the probability of any bit being received in error (statistical 

independence between bits being in error is assumed). 

For a BER of 1%, Hb=O.Ol and he=0.9976, see Equation (5.44). Thus 
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the probability of ~~~ is h =(l-h) and equal to 2.38X10-3 . If there 
e e ' 

are 256 4-bit DPCM words for every 6 transmitted, on the average one 

-3 erroneous value of ~ is expected every 256 X4!2.38X10 =430 Kb of trans-

mitted DPCM data. Note that such a protection of 6 results in a 1.6% 

expansion of the bit rate. This simple example is included to demonstrate 

that protection of ~ is not a difficult problem, and of course more 

elaborate channel coding techniques are available to decrease the 

probability of ~ being received in error for only a modest increase in 

transmission bit rate~129) Thus the" curves in Figure 5.16 should be 

reviewed as representative rather than an upper bound for the particular 

speech signal encoded here. 

Finally, informal listening tests of DPCM-AQF (W=256) with different 

predictors were carried out. For this purpose, the power level, at the 

input of the encoder was set to -5" dB, i.e., at the centre of the codec's 

dynamic range. At 40 Kb/s, DPCM-AQF employing SGEP, SAP or FFOP 

predictors yield an SNRSEG(dB) of 38.54, 35.05 and 31.09 dB's respectively. 

We noticed in our experiments that respective SNR gains between the 

various codecs could not be perceived. At the reduced transmission bit-

rate of 30 Kb/s however, the subjective gain of the codec employing SGEP 

became significant over ADPCM-AQF-SAP. Also the quality of ADPCM-AQF-FFOP 

decoded speech was noticeably degraded. 
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5.5 DISCUSSION AND CONCLUSIONS 

In this chapter DPCM-AQJ and DPCM-AQF speech codecs employing 

adaptive predictors have been treated. The bulk of the chapter was 

devoted to sequentially adaptive SGEP and SAP predictors, and the 

performance of DPCM codec employing these predictors, for transmission 

bit-rates of 16-40 Kb/s. 

In Section 5.3, adaptive SGEP prediction algorithm in DPCM has been 

investigated in detail. It was observed that the faster convergence rate 

of SGEP over SAP, also manifests as a greater prediction gain. Consequently, 

this gain is reflected in a 2 to 3.5 dB's improvement in SNR as the number 

of bits per codeword is increased from 2 to 4. 

We also demonstrated that the reduction in SNR of DPCM when SGEP 

is replaced by FFOP is 3.7 to 5.7 dB's as the transmission bit-rates 

increases from 16 to 40 Kb/s respectively, i.e., ignoring channel 

impairments, conventional DPCM-AQJ-FFOP codec is a poor performer 

compared with its adaptive predictor counterparts, although it does have 

the virtue of simplicity. 

In Section 5.4, we have considered DPCM-AQF codec with adaptive 

predictors. This is because, DPCM-AQF codec has ·the advantage over 

DPCM-AQJ of being easier to implement, albeit a delay of W/f seconds, in 
s 

calculating the step-size, 6. Also, the complexity of the codec was 

further reduced by restricting the order of the adaptive predictors to two. 

The experiments showed that by using the adaptive predictors, the 
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SNRSEG(dB) performance of the DPCM-AQF can be significantly improved over 

FFOP. For transmission bit-rate of 40 Kb/s, and a block size of W=256 

speech samples, the ADPCM-AQF-SGEP codec has SNRSEG gains of 3 and 9 dB's 

compared to the ADPCM-AQF-SAP and DPCM-AQF-FFOP codecs respectively. 

However, it must be pointed out that, by arranging for the fixed predictor 

to have two coefficients, the SNRSEG(dB) increases by some 5.5 dB's, 

confirming Gibson's observation(64) that at bit rates >16 Kb/s the SAP 

predictor offers no advantage over fixed predictors having the same number 

of coefficients (FSOP). 

Further, for an error-free channel, SNRSEG's of ADPCM-AQF-SGEP, 

ADPCM-AQF-SAP and DPCM-AQF-FFOP codecs decrease with increasing block 

length, W, due to reduced adaptation rate of the step size. The losses in 

SNRSEG(dB) for SGEP and SAP are however, 2.8 and 4.6 dB's respectively, 

as W is increased from 32 to 512. In the case of DPCM-AQF-FFOP, SNRSEG(dB) 

drops almost by 10 dB as W varies from 32 to 512. The DPCM-AQF codec 

employing SGEP therefore, has a weaker dependence on the block size, W, 

than those of employing SAP or FFOP predictors. When transmission errors 

are introduced, the codec employing SGEP has higher SNRSEG than that 

achieved with FFOP for BER<0.08%. 

Finally, informal listening tests showed that, at 30 Kb/s, (step-

size optimizing coefficient, a =0.50) SNRSEG(dB) gains of ADPCM-AQF-SGEP 
q 

codec over ADPCM-AQF-SAP and DPCM-AQF-FFOP codecs could be perceived. 
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5.6 NOTE ON PUBLICATIONS 

A paper entitled, "DPCM-AQF Using Seaond Order Adaptive Prediators 

for Speeah Signals" (130) in co-authorship with Dr. C.S. Xydeas and 

Dr. R. Stee1e has been published in IEEE Transactions on Acoustic, 

Speech and Signal Proc., Vol. ASSP-29, No.3, pp.337-341, June, 1981. 

This paper is an abridged version of Sections 5.2, 5.4 and 5.5. 

A paper entitled, "Sequential Adaptive Prediators for ADPCM 

Speeah Enaoders", in co-authorship with the same authors has been 

accepted for publication in IEEE Transactions on Communications. 

This paper is a version of Sections 4.6, 4.8, 5.2 and 5.3. 
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6.1 INTRODUCTION 

During recent years, DPCM speech digitizers with Feedforward 

Adaptive Quantization (AQF) have received considerable attention~60,128,130) 

Fixed or adaptive linear predictors have been used with DPCM-AQF and 

reported results clearly indicate the SNR advantage which can be obtained 

by using adaptive instead of fixed prediction. This SNR gain is of the 

order of 2 to 4 dB and may result in a considerable improvement in the 

quality and intelligibility of the decoded speech signal, particularly 

at low transmission bit rates. 

Adaptive predictors can be Forward adaptive or Backward Sequential 

adaptive. Forward Block adaptive (FBA) predictors as discussed in 

Chapter III calculate the values of their prediction coefficients from 

the input speech samples every 10 to 20 msec. by minimizing the mean 

squared prediction error within this interval. The prediction coefficients 

are encoded and forward transmitted to the receiver in order for the 

decoder to operate with the same set of coefficients. Also, to ensure 

a stable decoding process, the prediction coefficients are usually 

transformed into reflection coefficients prior to transmission. 

Backward Sequential Adaptive predictors update their coefficients 

at every sampling instant from previously decoded speech samples. In 

this case the prediction coefficients are determined at the receiver of 

DPCM-AQF codec using only the received samples from the output of the 

AQF quantizer. Since no other information is transmitted, the saving 

in bit rate and the possible synchronization difficulties which might be 
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encountered by combining the FBA prediction coefficients at regular 

intervals with the samples at the output of the quantizer encouraged 

the use of Backward Sequential Adaptive predictors. Their performance, 

when employed in the feedback loop of DPCM-AQF codec have been examined 

in Chapter V. 

The price however to be paid is threefold. First, the look ahead 

procedure of the Forward adaptive prediction is not allowed in the 

sequential computation of the coefficients and therefore the estimation 

accuracy of the sequential predictors is reduced. Second, in the 

presence of transmission errors the performance of the predictor at the 

receiver can be seriously affected. Thus,for stability reasons, the 

sequential adaptation strategy is slightly modified and this can result 

in some degradation in the performance of the predictor. Third, the 

complexity of the receiver is considerably higher in the case of backward 

prediction since the decoder forms the prediction coefficients following 

h d h d G·b (131). h . 1 d t e same proce ure as t e enco er. 1 son, 1n a t eoret1ca stu y 

of ADPCM systems indicated that no clear cut preference can be made 

between systems with Forward or Backward Sequential Adaptive prediction. 

In this chapter, we study a new simplified (FBA) algorithm called 

the "ColTeZation &>itched Prediction" (CSP). CSP divides the range of 

the first shift normalized correlation coefficient, Cl' of the speech 

signal into zones and as the value of Cl changes when computed over 

successive blocks of W speech samples, the predictor coefficients undergo 

a substantial modification. In general, when the range of Cl (-l.O<cl<l.O) 
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is divided into (Z+l) zones, the predictor is referred to as (Z+l)-point 

CSP or Z-order CSP. The CSP technique has shown a considerable 

performance advantage when compared to fixed or sequential adaptive 

prediction, particularly when speech is transgressing from unvoiced to 

voiced sounds. 

The first part of this chapter presents the CSP algorithm and a 

comparative study of DPCM-AQF systems employing one of the following 

prediction techniques: 

a. Fixed First-Order Prediction, DPCM-AQF-FFOP, 

b. Fixed Second-Drder Prediction, DPCM-AQF-FSOP, 

c. Sequentially Adaptive SGEP scheme, ADPCM-AQF-SGEP", 

d. 4-point/3rd-order CSP associated with FSOP, ADPCM-AQF-CSP(4)-FSOP, 

e. 4-point/3rd-order CSP associated with SGEP, ADPCM-AQF-CSP(4)-SGEP, 

f. 8~point/7th-order CSP associated with FSOP, ADPCM-AQF-CSP(8)-FSOP, 

g. 8-point/7th-order CSP associated with SGEP, ADPCM-AQF-CSP(8)-SGEP, 

h. Forward Block Adaptive Prediction, FBADPCM-AQF. 

In all these codecs, both SNRSEG(dB) and SNR(dB) are used as 

performance criteria, while the prediction order N is equal to two. Our 

studies were confined only to DPCM-AQF systems since (i) AQF quantization 

is more robust to transmission errors compared to the AQJ algorithm and 

also former scheme is considerably easier to implement, (ii) the 

discrepancies between the SNR values of DPCM-AQF and DPCM-AQJ systems 

using sequential adaptive predictors are quite small. In addition, only , 

the SGEP prediction algorithm was employed in our DPCM-AQF system due to 

its superior performance over SAP. 
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Computer simulation results for the range of 16 to 32 Kb/s,with 

input speech signals, sampled at 8 kHz and band1imited to 3.4 kHz 

indicated that: 

i) SNRSEG(dB) gains of 1.7 and 3.2 were obtained for DPCM-AQF 

using a hybrid scheme formed by 4-point CSP and SGEP predictor, 

when compared to DPCM-AQF with a fixed second order predictor. 

ii) SNRSEG(dB) performance of the codec when using FBA instead of 

Backward Sequentia11y Adaptive Prediction was improved. The 

introduction of the relatively simple CSP produced SNRSEG(dB) 

values comparable to those obtained from FBADPCM-AQF. A more 

complex prediction scheme which combines CSP and SGEP was shown 

to provide the best overall SNRSEG(dB) performance. 

The computational complexity of the adaptive prediction algorithms 

was also considered in terms of multiplications and additions required 

to form the prediction coefficients within a fixed time interval. 

The second part of the chapter examines the proposed DPCM-AQF codecs 

when used to digitize signals obtained from the Voiced/Unvoiced Band 

. h· BS (12) Th BS 0 3 SW1tC 1ng VU , system. e VU preprocessor operates on • to 

6.0 kHz wideband speech, and compresses the input signal into a 3.4 kHz 

bandwidth. The compressed signal can be sampled at 8 kHz and then 

digitized for transmission. At the receiver, following the decoding of 

the binary signal, the VUBS postprocessor is able to reproduce speech 

whose bandwidth is within the 0.3 to 6.0 kHz range. By employing 

DPCM-AQF together with the CSP prediction schemes, to digitize the output 

of the VUBS preprocessor, it was found that the reproduced speech signal 

is preferable to 0.3-3.4 kHz telephonic speech, digitized by the same 

code cs and for transmission bit rates of 16 to 32 Kb/sec. 
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6.2 CORRELATION SWITCHED PREDICTION SCHEME 

Correlation switched predictors alter significantly the values of 

the prediction coefficients according to the first shift normalized 

correlation coefficient cl of the input speech samples where 

W-l 
L x. x. 1 . 1 1 1+ 1= 

cl = -=,W,.::----

L X~ 
1 i=l 

(6.1) 

The {x.} sequence is therefore divided into blocks of W samples 
1 

and for each block the value of cl is computed. cl is then compared 

with a set of thresholds. TR .• j=1.2 ••••• Z which divide the (-1.0.1.0) 
J 

range of cl into (Z+l) zones. A specific zone is thus selected 

according to the value of cl and unique set of prediction coefficients 

[ "" "J . d t th t . h d' h l' d' al.a2 ••••• ~ ass1gne 0 a zone 1S t en use 1n t e 1near pre 1ctor. 

thereby ensuring a high prediction gain for the W input samples being 

encoded. 

In contrast to Forward Block Adaptive prediction. there is no need 

to transmit the prediction coefficients as these are stored in a look-

up table at the receiver. All that is required is to transmit the 

value of the threshold j and this can be accompli~hed with a word having 

10g2(Z+1) bits. For typical values of Z this word consists of only 2 

or 3 bits and therefore the increase in the bit rate is minimal. In 

this way the receiver accepts 10g2(Z+1) bits every W sampling instants 

and selects the proper set of prediction coefficients to be used in the 

decoding procedure. 
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Obviously the question arises of how to define the sets of the 

prediction·coefficients which form the entries of the look-up table. 

This procedure can be described as follows: 

Initially the (-1.0.1.0) range is divided into (2/oc) sub-zones 

using [(2/oc)-l] thresholds TR
t 

where oc is the sub-zone size and 

(2/oc»>Z+1. cl is then measured for every block of W input speech 

samples and the [a
l
.a2 ••..• aN] prediction coefficients are also determined 

using the autocorrelation method. After processing a large number of 

blocks. new coefficients [ai.ai ••••• aN] are formed and they are assigned 

to each of the (2/oc) sub-zones. In particular. the prediction co-

efficients [ait.ait ••••• aNt] of the tth sub-zone are the average values 

of the [a
l
.a

2 
••••• aN] coefficients obtained from all the blocks of speech 

samples which satisfy the TRt_l<Cl<TRt inequality. TRt=TRt_l+oc. Thus 

if the number of blocks satisfying the above inequality is MI. then. 

a.' = 
!t.t 

I Ml 
MI L 

r=l 
~ r • k=I.2 ••••• N. 

• 
In this way a Master table consisting of (2/oc) sets of prediction 

coefficients is formed and can be subsequently used to obtain the 

look-up table of an (Z+l)-point CSP algorithm. 

(6.2) 

Let us assume for the moment that the values of the Z thresholds 

TR k Th th d • t· ff·· ["" "] tare nown. en e pre 1C 10n coe 1C1ents al.a2 ••••• ~ 

assigned to each of the (Z+l) zones of the required (Z+l) point look-up 

table are obtained by averaging all the sets of coefficients of the 

Master table corresponding to those sub-zones contained within each of 

the much larger zones of the (Z+l)-point table. The prediction 
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coefficients corresponding to the pth zone of the (Z+l)-point table are 

therefore defined as 

a:t 
== K.P 

where k=1.2 ••••• N. 

m=k +k + ••• +k + ••• +k • 
1 2 n p_1 

k =on/oc. 
n 

1 
k 

p 

k 

{ 
r=l ~.(m+r) 

o = the size of the nth zone of the Master table. 
n 

(6.3) 

Equation (6.3) clearly shows the dependence of the {a' } 
K.P 

coefficients on the value 'of the thresholds. Furthermore for switched 

predictor to be efficient. the sets of the {a' }. r=1.2 ••.•• Z+l and K.r 

k=1.2 ••••• N coefficients should approximate those sets of the Master 

table formed with large values of Ml. see Equation (6.2). The thresholds 

TR. are therefore selected to minimize the effect of the averaging 
J 

process of Equation (6.3) when applied to those coefficients {a' k}' 
r. 

r=1.2 ••••• (2/oc) and k=l.2 ••••• N of the Master table which are formed 

with large values of Ml. That is. in selecting TR£.an attempt is made 

to reduce the distortion in the values of the prediction coefficients 

corresponding to blocks of speech samples whose average statistics show 

a high probability of occurrance. 

In our experiments. Table 6.1 is the Master table and gives the 

average prediction coefficients ai and a' 
2 determined using 157 blocks 

of W=256 input speech s"amples obtained at the rate of 8000 samples per 

second. The value of oc is 0.1 and the [-1.0+1.01 range is divided into 

2/oc=20 zones. The same table also provides the percentage of the blocks 
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whose cl value satisfied each of the 20 inequalities. 

Having defined Table 6.1, according to the long term speech 

statistics, we can use it to obtain the required (Z+l)-zone look-up 

table of an (Z+l)-point or Z-order CSP scheme. As an example for a 

4-point CSP algorithm, it was decided to have TR
l
=0.7, TR

2
=0.4 and 

TR
3
=0.O, while the ai,a2 coefficients were determined by averaging the 

coefficients of the zones between 1.0 to 0.7, 0.7 to 0.4, 0.4 to 0.0 

and 0.0 to -1.0, see Table 6.1. As previously stated, this allocation 

of prediction coefficients to each of the resulting 4 zones is clearly 

geared to minimize the distortion in the values of the coefficients for 

speech blocks whose average statistics show a high probability of 

occurrance. Table 6.2 and 6.3 present the thresholds and the prediction 

coefficients [ai,a2l, of an 4-point and 8-point second-order CSP scheme, 

respectively. 

In its present form the proposed CSP~FSOP algorithm behaves, within 

a block of W speech samples as a second order fixed predictor. CSP-FSOP 

is able however to modify every W samples, its prediction.coefficients by 

selecting one out of (Z+l) sets of (ai,a2) prediction coefficients. 

Switched prediction can be also combined with backward sequential 

prediction, for example the SGEP algorithm. In CSP-SGEP, the average 

prediction coefficients of each of the (Z+l) zoneS are used as the 

initial values of the SGEP prediction coefficients, for a block of W 

samples, thereby facilitating a faster coefficient convergence rate. 

However, if the value of cl does not change zones between the rth and 



ZONES OF 
AVERAGE 2ND ORDER PREDICTOR COEF. PROBABILITY OF 4-POINT 8-POINT 

-1. 0<c
1 
~1. 0 OCCURRANCE OF CSP CSP 

Cl a' a' Cl IN 157 TRIALS 
1 2 

1 O. 9<"1 ~1.0 1.6505 -0.759 26% 1 
1 

2 0.8<c1 ~O. 9 1.424 -0.677 28% 2 
3 0.7<cl~0.8 1.060 -0.410 12% 3 
4 0.6<c1~0.7 0.840 -0.280 5% 2 4 
5 0.5<c1~0.6 0.653 -0.141 5.7% 

6 0.4<c1~0.5 0.589 -0.337 6.3% 5 
7 0.3<c1~0.4 0.420 -0.194 5.7% 

8 0.2<cl~0.3 0.310 -0.170 2.5% 3 6 
9 0.1<cl~0.2 0 0 0 

10 O.O<cl~O.l 0 0 0 

11 -O.l<cl~O.O -0.041 +0.256 1.2% 

12 -0. 2<c1 ~-o.l 
-0.170 -0.336 1.2% 7 

13 -0.3<cl~-0.2 -0.221 0.115 2.5% 

14 -0.4<c1~-0.3 0 0 0 

15 -0.5<c1~-0.4 -0.694 -0.547 1.9% 4 
16 -0.6<cl~-0.5 -1.084 -0.873 1.2% 

17 -0.7<cl~-0.6 -0.976 -0.617 0.6% 8 
18 -0.8<cl~-0.7 -1. 232 -0.541 0.6% 

19 -0.9<c1~-0.8 0 0 0 

20 -1.0<ct~-0.9 0 0 0 

TABLE 6.1: The Master Table and the Orgalllsat1on of the 4-po1nt and 8-po1nt look-up tables 

N 

'" '" 
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THRESHOLD CORRELATION ZONE COEFFICIENT 
TR. " 

J 
a

1 

0.7 0.7 to 1.0 1.524 

0.4 0.4 to 0.7 0.950 

0.0 0.0 to 0.4 0.493 

-1.0 to 0.0 -0.631 

TABLE 6.2: Look-Up Table for 4-Point CSP or 3rd 

Order CSP 

THRESHOLD CORRELATION ZONE COEFFICIENT 
TR. a' 

J 1 

0.9 0.9 to 1.0 1.605 

0.8 0.8 to 0.9 1.424 

0.7 0.7 to 0.8 1.060 

0.4 0.4 to 0.7 0.750 

0.3 0.3 to 0.4 0.590 

0.0 0.0 to 0.4 0.365 

-0.4 -0.4 to 0.0 -0.144 

-1.0 to -0.4 -0.996 

COEFFICIENT 
d' 

2 

-0.718 

-0.345 

-0.210 

-0.363 

COEFFICIENT 
a" 

2 

-0.760 

-0.680 

-0.410 

-0.210 

-0.334 

-0.182 

0.012. 

-0.645 

TABLE 6.3: Look-Up Table for 7th-Order or 8-Point 

CSP 
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(r+l)th blocks of input samples. the initial values of the coefficients 

[ " tt "l al,a2'···'~ for the (r+l)th block are the last values of [al.a2 •.••• a~l 

defined by the SGEP algorithm after the processing of the rth block of 

samples. That is. the prediction coefficients stored in the (Z+l)-point 

look-up table (see Table 6.2 or 6.3). are only introduced as the initial 

values of the SGEP algorithm when a zone change occurs. An ADPCM-AQF 

employing a (Z+l)-zones CSP-SGEP will be referred to as ADPCM-AQF-CSP(Z+l)-

SGEP. 

It should be emphasised that in the SGEP algorithm we slightly 

modify the predictor convergence term. P .• previously defined by Equation 
1. 

(5.14) to 

P = 
A 

(f1/a )2+B 
q 

(6.4) 

where the step size 6 and the scaling factor a are specified in Section 
q 

5.2 of the previous chapter. Consequently. P remains constant for W 

samples and because of its dependency on the channel protected 6 the 

codec's performance in the presence of channel errors is enhanced. It 

is important to note that Equation (6.4) also reduces the number of 

mUltiplications and additions (see Table 4.2). by N. i.e. now the 

computation of N prediction coefficients using SGEP algorithm requires 

(4N+4) multiplications and 5N additions per sampling instant. 

A general block diagram of an encoder employing Z-order or (Z+l)-

point CSP schemes is presented in Figure 6.1. 
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6.3 THE VOICED/UNVOICED BANDSWITCHING SYSTEM, VUBS 

The VUBS system developed by Patrick et al~12) has been used in 

conjunction with DPCM-AQF-CSP(4)-FSOP and ADPCM-AQF-CSP(4)-SGEP to 

produce a wideband (0.3-6.0 kHz) speech digitizer operating at bit 

rates equal to or less than 32 Kb/s. Consequently, prior to the 

computer simulation results of the VUBS plus the DPCM-AQF system, it 

will be appropriate to briefly discuss the VBUS prelpost processor and 

the motives leading to its design. 

The VUBS system offers a conceptually simple method for the 

transmission of relatively wideband speech, 0.3-6.0 kHz, over the 

telephonic bandwidth 0.3 to 3.4 kHz and appears to show an improvement 

in intelligibility and quality of the reconstructed speech. In 

telephone bandwidth channels, certain unvoiced sounds such as Isl or 

If I are usually perceived incorrectly because a large amount of their 

energy is concentrated above the upper cut-off frequency of the normal 

telephone channel. Therefore, by transmitting the .frequency components 

of unvoiced speech which are perceptually most significant and still 

occupying a 3 kHz bandwidth, speech close in quality to the original 

6 kHz speech can be perceived. 

Figure 6.2(a) presents the block diagram of VUBS preprocessor 

where the 6.0 kHz input speech signal follows two paths: The first 

path, PATH I , limits the bandwidth of speech to within the 0.3 to 3.4 kHz 

frequency range while in the second path, PATH 2 , only the 3.0 kHz to 

6.0 kHz frequency range is selected and subsequently shifted down to 
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the 0.3 to 3.4 kHz band. The decision concerning whether PATHl or 

PATH2 . b . d· db·' d/ • d . h(132) ~s to e transm~tte ~s ma e y a vo~ce unvo~ce sw~tc • 

This leads to the transmission of the signal in PATHl of voiced speech 

is present while the signal formulated in PATH2 is transmitted when the 

input speech is unvoiced. The V/UV decision is also transmitted to the 

receiver as a side information. 

Figure 6.2(b) shows the block diagram of VUBS postprocessor. When 

the V/VU switch indicates voiced speech to the receiver,the received 

signal is directed to the output via SWITCH2, if however, unvoiced speech 

is deemed to be present by the V/UV switch, then the received signal is 

shifted up in frequency from 0.3-3.4 kHz bandwidth to 3.0-6.0 kHz range 

before being sent to the output. 

It should be stressed that VUBS system recreates a signal that 

occupies the 6 kRz band, although never all of it at any instant. 

Informal listening experiences on a small sample of input speech 

material seemed to confirm that the VUBS speech is preferable to 

telephone band limited speech. 
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6.4 COMPUTER SIMULATION RESULTS AND DISCUSSION OF DPCM-AQF SPEECH 

CODECS USING SWITCHED PREDICTORS 

The study of the proposed correlation switched prediction when 

applied to DPCM-AQF and its comparison with the DPCM-AQF-FSOP and SGEP 

systems was p,erformed by computer simulations. The evaluation of the 

DPCM-AQF codec performance was ascertained by a) waveform plots and 

b) SNRSEG(dB) and SNR(dB) measurements selected at the centre ~f the 

codec's dynamic range. 

Speech data, band limited to 0.3-3.4 kHz and sampled at 8 kHz was 

used as the input signal to the codecs. This signal referred to as the 

Band Limited Signal, BLS, was then encoded at 2,3 and 4 bits/sample. 

The following tes t words formed the input speech signal: "sister, father 

S.K. Harvey, shift, thick, fist, talk, spent and vote". These utterances 

have numerous unvoiced/voiced transitions and this, coupled with the 

lower sampling rate, 8 kHz rather than 10 kHz as in previous chapters, 

exacerbates the difficulties of the predictors. We deliberately 

introduced these difficulties to determine the effectiveness of switched 

prediction during the voiced/unvoiced transitions of the input speech, BLS. 

The DPCM-AQF parameters used in our simulation were a =0.33, 0.50 
q 

and 1.0, for b=4,3,2 bits, respectively, while the block size" W was 

set to 256. The SGEP parameters were A=5.0, B=lOO.O, D=lO.O, a=1/5, 

a/a=4 and initial SGEP coefficients were a
l
=0.86, a

2
=0.OO. For the 

FSOP the coefficients were fixed to a l =l.580 and a
2
=-0.778. 

The waveform plot for the word "sister" is displayed in Figure 6.3, 

together with the first correlation coefficients, cl' for each block of 
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256 samples. Curves (a) and (b) in Figures 6.4, 6.5 and 6.6 show the 

variation of block SNR for a DPCM-AQF-FSOP and a ADPCM-AQF-SGEP codec 

as a function of block number for the word "sister" and b=2,3,4 bits, 

respectively. 

The FSOP was designed using the long-term statistics of speech 

signals, and because voiced speech is much more prevalent than unvoiced 

speech, the DPCM-AQF-FSOP has a relatively poor performance for unvoiced 

speech. This is evident from curve (a) in Figures 6.4 to 6.6. For 

voiced sounds, the DPCM-AQF-FSOP is inferior to ADPCM-AQF-SGEP because 

the latter has a greater prediction accuracy, being able to cope more 

successfully with the local variations in the speech statistics. This 

can be seen by comparing curves (a) and (b) in Figures 6.4, 6.5 and 6.6. 

However, a careful inspection reveals that the DPCM-AQF-FSOP out-performs 

ADPCM-AQF-SGEP in blocks number 3,10 and 11. This is due to the speech 

experiencing a transition from unvoiced to voiced speech (on-set of It/) 

demanding that SGEP converges rapidly to new coefficient values. The 

convergence rate required is so fast that it would produce instability 

when encoding other segments of speech. The FSOP, on the other hand 

handles the situation better as the signal is changing to a form it is 

more capable of handling, namely voiced speech. 

To improve the performance of the DPCM-AQF-FSOP system,we devised 

a switched-fixed predictor, SFP, with different sets of fixed prediction 

coefficients used for voiced (al =1.580, a 2=-0.773) and unvoiced (a
1
=0.494, 

a
2
=-0.3080) sounds. This scheme has resulted in a prediction gain during 

the encoding of unvoiced speech. It should be noted however, that a 
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voiced/unvoiced decision is required to determine which set of prediction 

coefficients is to be employed for the encoding of a particular speech 

segment. Also voiced/unvoiced information has to be multiplexed with 

the digitized speech and transmitted so that the decoder operates with 

the correct prediction design. 

In order to further improve this switched-fixed prediction, SFP 

scheme, specially during voiced speech, a SGEP-S-FSOP predictor was 

developed whereby the SGEP algorithm was used to process voiced speech 

and FSOP was employed for the prediction of unvoiced sounds. In this 

way, the short-term statistical variation of voiced speech was treated 

by the sequentially adaptive algorithm ensuring a larger prediction 

gain compared to the SFP scheme. The values of the FSOP coefficients 

were determined from the long-term autocorrelation function of unvoiced 

speech (a
l

=O.4944, a
2
=-o.3080). The initial values of the SGEP 

prediction coefficient used to encode a voiced speech segment were the 

last values, assumed by SGEP when processing the previous voiced speech 

segment. 

Computer simulation results of the DPCM-AQF-FSP and ADPCM-AQF-SGEP­

S-FSOP systems showed an advantage over DPCM-AQF using SGEP or FSOP 

predictors, but the new schemes required a voiced/unvoiced s~itch whose 

output is multiplexed at irregular intervals, with the digitized speech. 

It was therefore decided to develop an alternative switched 

prediction scheme, namely the Correlation Switched Predictor, CSP of 

Section 6.2, which could operate on a regular block basis and could also 

offer more than two sets of fixed coefficients to be used for the encoding 
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of input speech segments. The variations of block SNR(dB) as a function 

of block number for a ADPCM-AQF-CSP(4)-FSOP codec is shown in Figures 

6.4 to 6.6, curve (c), for 2,3 and 4 bits respectively. Generally the 

ADPCM-AQF-CSP(4)-FSOP system has a superior performance compared to 

the ADPCM-AQF-SGEP and particularly at 16 Kb/s, see curves (b)-(c) in 

Figure 6.4. 

When extending the idea of switched prediction to SGEP, the 

resulting CSP(4)-SGEP algorithm again used the entries of Table 6.2 but 

now as the initial values of the prediction coefficients. It is also 

recalled that if "cl" do not change correlation zone between the rth 

and (r+l)th blocks, the initial values of the coefficients a
l 

and a
2 

th 
for the (r+l) block are the last values of a

l 
and a 2 formed in the 

rth block. ADPCM-AQF-CSP(4)-SGEP gave the best overall performance when 

compared to previous systems, as shown by Figures 6.4 to 6.6 and b=2,3, 

and 4 bits, respectively. 

The 4-point CSP schemes were then replaced by 8-point CSP 

prediction algorithm. In this case, Z=7, and the number of bits to be 

transmitted to the receiver is increased to 10g2(Z+1)=3 bits. The 

corresponding set of prediction coefficients for each correlation zone 

is given in Table 6.3. It was found however that contrary to the 

increase in the amount of information provided to the predictor, the 

gains in SNRSEG(dB) or SNR(dB) values for ADPCM-AQF-CSP(8)-FSQP and 

ADPCM-AQF-CSP(8)-SGEP compared to DPCM-AQF with CSP(4)-FSOP or CSP(4)-

SGEP predictors were negligible. This can be attributed to the mis-

judgement in grouping the coefficients of the 8-point CSP scheme. 
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Furthermore, for comparison purposes we have also conducted DPCM-

AQF experiments with Forward Block Adaptive prediction schemes and their 

prediction coefficients, for every block of 256 speech samples, were 

defined using Durbin's sequential algorithm, see Appendix G. 

The SNRSEG(dB) and total SNR(dB) values for all the codecs discussed 

in this chapter are displayed in Table 6.4. These results are the 

average values obtained from two input utterances, namely: (sister, 

father, S.K. Harvey) and (shift, thick and fist). Figure 6.7 (a), (b) 

and (c) presents the SNRSEG(dB) values of eight DPCM-AQF coders when {e.} 
~ 

is quantized to an accuracy of 2,3 and 4 bits per sample. In general, 

DPCM-AQF-FSOP provides an average gain of 2 dB over the coder using 

fixed first-order prediction (FFOP). When adaptive prediction is used 

in the form of SGEP, this SNRSEG gain increases to 3 dB. A further gain 

of about 1 dB is obtained by using 4-point correlation switched 

prediction, CSP(4),while the hybrid CPS(4)-SGEP predictor provides an 

additional 1 dB improvement. Thus DPCM-AQF with CSP(4)-SGEP offers 

SNRSEG(dB) values of about 2 dB more than those of DPCM-AQF-SGEP. 

Finally DPCM-AQF with forward block adaptive prediction (FBA) provided 

only a marginal SNRSEG(dB) improvement over the DPCM-AQF-CSP(4)-SGEP 

system. 

In Figure 6.7, although the number of bits per sample used to 

quantize the error sequence {e.} is kept constant for all codecs, the 
~ 

actual transmission bit rates vary slightly from one system to another. 

This is because different encoders require different amounts of extra 



THE TYPE OF 
BITS PER SAMPLE 

PREDICTOR IN 2 3 4 
DPCM-AQF CODEC 

SNRSEG(dB) SNR(dB) SNRSEG(dB) SNR(dB) SNRSEG(dB) SNR(dB) 

FFOP 9.35 10.00 12.56 13.43 18.60 20.93 

FSOP 
11.30 15.89 15.29 20.41 19.97 25.14 

SGEP 12.18 15.96 16.70 21.08 21.36 25.78 

CSP(4)-FSOP 12.79 15.60 17.28 20.80 22.10 26.12 

CSP(4)-SGEP 12.98 16.52 17.96 21.41 23.16 26.75 

CSP(8)-FSOP 12.80 16.33 17 .46 21.24 22.19 25.94 

CSP(8)-SGEP 12.96 16.54 17.71 21.30 22.85 26.80 

FBA 13.03 16.61 17.90 21.39 23.38 26.37 

TABLE 6.4: SNRSEG(dB) and SNR(dB) for DPCM-AQF with 8 different prediction schemes 
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information to be multiplexed with the information at the output of the 

DPCM quantizer. In particular, DPCM-AQF coders with CSP or FBA. 

predictors require an extra 63 or 500. bits respectively, when compared to 

coders with fixed or backward adaptive prediction. An 8-bits 

quantization for the FBA coefficients is assumed. This bit rate increase 

however, can be translated into an equivalent signal-to-noise ratio loss 

which can then be subtracted from the values shown in Figure 6.7. For 

example, using NolI's expression(48) 

b 
c 
W LOSS IN SNR = 6.02 dB (6.5) 

where b bits is the number of bits to be allocated per coefficient, 
c 

the LOSS IN SNR for the system with the larger increase in the bit 

rate i.e., DPCM-AQF-FBA, is found to be 0.376 dB. Thus with such 

minimal SNR losses, the relative SNRSEG(dB) performance of the DPCM-AQF 

encoders will hardly change from that indicated in Figure 6.7~ Perhaps 

the only visible SNR reduction occurs in the case of DPCM-AQF-FBA and 

this is obviously to the advantage of DPCM-AQF-CSP(4)-SGEP which now 

shows a marginal gain over the coder with FBA prediction. 

Next, we consider the computational requirements of the adaptive 

predictors used in our experiments. Table 6.5 shows the number of 

multiplications required by the FBA, CSP(4), CSP(4)-SGEP and SGEP 

algorithms in order to determine the N prediction coefficients for a 

block of W samples. Notice that CSP(4) is the algorithm with the 

smaller number of multiplications and that SGEP demands within W samples, 

a larger number of operations than the FBA predictor. On the other 

hand, if we are to consider the storage required by these adaptive 
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algorithms, then SGEP shows a considerable advantage over the block 

adaptive FBA, CSP(4) or the hybrid CSP(4)-SGEP scheme. In our 

particular case however, where the predictor is used in DPCM-AQF, a 

storage of W samples is already provided by the AQF quantizer. Thus 

there is little difference in storage requirements between the coders in 

Figure 6.7. 

TYPE OF NUMBER OF MULTIPLICATIONS NUMBER OF ADDITIONS 
PREDICTION PER BLOCK, W PER BLOCK, W 

FBA [N2+(7+2W)N+2W]/2 [N2+(2W-3)N+2W-2]/2 

SGEP (4N+4)W 5W 

CSP(4) 2W+l 2W-3 

CSP(4)-SGEP (4N+6)W+l (5N+2)W-3 

TABLE 6.5: Computational requirement per block 
of W samples for Nth order adaptive 
predictor 

Finally, as will be noticed in the SNRSEG(dB) or total SNR(dB) values 

in Table 6.4 are lower than those presented in Chapter V. This is due 

to the profound differences between the speech signals employed in 

Chapters V and VI, and to a lesser extent because of the differences in 

the sampling rate. It will be reminded that the sentence used with 

ADPCM-AQJ/AQF was almost entirely voiced, whereas the utterances used in 

evaluating the DPCM-AQF systems of this chapter were composed of 
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relatively long periods of unvoiced speech. From Figure 6.6(d), b=4 and 

with a bit-rate of 32 Kb/s, we observe that when voiced speech occurs 

the SNR is almost 30· dB. However, the average SNR, i.e., SNRSEG(dB) 

is low due to the unvoiced sections and the unvoiced/voiced transitions. 

ADPCM-AQJ-SGEP with N=2 and b=4, i.e., at 40 Kb/s, has a SNR of 35-37 dB, 

see Figure 5.7. When the same codec was used to digitize the 8 kHz speech 

signal, the SNRSEG(dB) was found to be 22.10 dB while ADPCM-AQF-SGEP 

resulted in the SNRSEG(dB) of 21.36 dB, see Table 6.4. A small difference 

of 0.74 dB is attributed to the use of backward rather than forward 

quantization in the latter case. As a summary, the results of Figure 5.7 

and Table 6.4 are consistent, although they are very different, high­

lighting the dangers of judging the performance of a system in terms of 

absolute values of SNRSEG(dB) or SNR(dB). What matters is their relative 

values and this is how the results of Figure 5.7 and Table 6.4 should be 

appraised. 
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6.5 COMPUTER SIMULATION RESULTS AND DISCUSSION OF WIDEBAND QUALITY 

DPCM-AQF SPEECH CODECS 

Investigations in the performance of the proposed correlation 

switched prediction in DPCM-AQF codecs, when connected in tandem with 

the VUBS system, were carried out by computer simulation. As in the 

previous section, the comparison of the performance was ascertained by 

the waveforms and SNRSEG(dB) values selected at the centre of the codec's 

dynamic range. 

The original Wide Band Speech Signal, WBS, whose frequency band is 

limited t06.0kHz was sampled at 16 kHz while the 0.3-3.4 kHz Narrowband 

Processed Speech· Signal,NPSS at the output of VUBS preprocessor was 

sampled at the rate of 8 kHz. NPSS was then encoded with 2,3 and 4 bits/ 

sample while, for comparison purposes, WBS was encoded with 1 and 2 

bitsisample. Tne SNlRSEG(dB) results and the waveform plots presented 

in this section were obtained from the encoding of the utterance "sister, 

father", through differential code cs or the VUBS sys tern followed by 

differential encoding. 

Figure 6.8(a) shows the /IS/ segment of the 6.0 kHz WBS waveform 

taken from the word "sister". When the bandwidth is limited to that 

of a telephone channel (0 .. 3-3.4 kHz) , the /IS/ waveform is shown in 

Figure 6.8(b). These two figures suggest that the unvoiced sound /s/ 

is significantly distorted by the bandwidth limitation whereas the 

voiced sound /1/ is almost unaffected. Figure 6.8(c) shows the same 

speech segment at the output of the VUBS preprocessor, having also a 
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FIGURE 6.8: Time Waveforms for /IS/ in sister 

a. Original Wideband Speech Signal (WBS), 
0.3 to 6.0 kHz, 

b. Bandlimited Speech Signal (BLS), 
0.3 to 3.4 kHz, 

c. VUBS Compressed Signal (NPSS), 
0.3 to 3.4 kHz, (unvoiced segment is 
amplified) 

BLOCK NO. 
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bandwidth of 3.4 kHz. Figure 6.9 presents the waveform plot of the word 

"sister", sampled at 16 kHz and bandlimi ted to 0.3-6.0 kHz, WBS. 

Our consideration was given to the differential encoding of the 

compressed signal for bit rates between 16 and 32 Kb/s. The DPCM-AQF 

parameters were a =0.33, 0.50 and 1.0 for b=4,3,2 bits, respectively and 
q 

W=Z56. The SGEP parameters were A=5.0, B=lOO.O, D=lO.O, S=1/5, a/S=4 

and the initial SGEP coefficients were a
l
=0.86 and aZ=O.O. Notice that, 

these parameters are the same as those used in Section 6.4. The 

prediction coefficients of the fixed second order predictor were a
l
=1.5Z0 

and a Z=-0.763 and they were defined from the long term autocorrelation 

function of the c·ompressed signal. 

The waveform plot of the word, "sister", resulted at the output of 

the preprocessor and subsampled at 8 kHz, is displayed in Figure 6.10, 

together with the first correlation coefficient cl of each block of 256 

samples. Curves (a) and (b) in Figures 6.11, 6.1Z and 6.13 show SNR 

variation of DPCM-AQF-FSOP and ADPCM-AQF-SGEP codecs as a function of 

the block number for the preprocessed segment "sister", for b=Z,3, and 

4 bits. Note that the statistical characteristics of the "unvoiaed" 

sounds at the output of the VUBS preprocessor are different from those 

of either the original wideband speech or the 0.3-3.4 kHz input speech 

signal, see Figures 6.10, 6.9, 6.3 respectively. 

Figures 6.11, 6.12,.6.13 indicate the poor performance of DPCM-AQF-

FSOP during unvoiced sounds. This is attributed to the fact that voiced 

speech constitutes up to 80% of the speech signal, and the "average" 
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coefficients of the second-order fixed predictor are matched to voiced 

rather than to unvoiced speech. Notice that DPCM-AQF-FSOP provides 

lower "unvoiaed" SNR values when operating on the preprocessed signal 

(Figures 6.11 to 6.13) than when digitizing the band limited input speech 

signal (Figures 6.4 to 6.6). When FSOP is replaced by SGEP, the overall 

SNR performance of the DPCM-AQF codec is improved for all the bit rates. 

DPCM-AQF-FSOP is producing however, slightly better peak SNR values for 

voiced speech, see Figures 6.11 to 6.12. This is bec'a),se the same SGEP 

parameters were used as in Section 6.4 and thus the adaptation rate of 

SGEP was not optimized with respect to the signal at the output of the 

VUBS preprocessor. Also, as observed in Section 6.4, SGEP looses its 

advantage over FSOP during the intervals of unvoiced to voiced 

transitions, see blocks 4 and 12 in Figure 6.10. (There is a delay of 

one block between Figures 6.3 and 6.10. This is due to VUBS preprocessor 

of Section 6.3). 

In order to improve the performance of the DPCM-AQF codecs, we 

employed the "CorreLation SWitahed Prediation" method with FSOP and 

SGEP. As the statistical properties of VUBS preprocessed signal are 

different than those of the 0.3 to 3.4 kHz band limited input speech 

signal, new esp look-up tables were determined using the same procedure 

described in Section 6.2. Table 6.6 illustrates the thresholds and the 

values of the ai" az' prediction coefficients to be used in a 4-point 

esp, designed to operate on the preprocessed VUBS signal. The 

variation of SNR(dB) as a function of block number, resulting from 

DPCM-AQF employing a eSP(4)-FSOP predictor, is shown in Figures 6.11 
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to 6.13 curve (c) for b=2,3 and 4 bits, respectively. The ADPCM-AQF­

CSP(4)-FSOP codec has, in general, an improved performance during 

unvoiced to voiced transitions and unvoiced intervals, when compared to 

both the ADPCM-AQF-SGEP and DPCM-AQF-FSOP codecs. The CSP(4)-SGEP 

algorithm was then used to predict the incoming VUBS processed samples 

and Table 6.6 was also employed to determine the initial values of the 

SGEP prediction coefficients at the beginning of a block of 256 samples. 

If, however, the correlation coefficient, Cl does not change zone in two 

adjacent blocks of samples, the initial values of the prediction 

coefficients for the 256 samples to be encoded are the last coefficient 

values, obtained during the encoding of the previous block of samples. 

This provides a faster convergence rate than that of the SGEP algorithm. 

A careful inspection of curves (d) in Figures 6.11 to 6.13 shows that 

DPCM-AQF-CSP(4)-SGEP codec produces the best overall performance when 

compared to all the other codecs. 

Table 6.7 presents the SNRSEG(dB) values of DPCM-AQF codecs, 

employing different prediction schemes, when encoding band limited, BLS 

or preprocessed, NPSS, signals. For comparison purposes, wideband speech 

signal, WBS was also encoded with 1 or 2 bits/sample, i.e., only fewer 

bits per sample are available compared to digitization of the BLS or 

NPSS signals sampled at 8 kHz. 

When FSOP scheme was employed in DPCM-AQF codec for encoding of 

WBS signal at 32 Kb/s, the SNRSEG(dB) was found to be 14.21 dB. The 

predictor coefficients were calculated from the long-term statistics 

of the WBS signal. 
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j THRESHOLD CORRELATION ZONE COEFFICIENT 
TR. a" 

J 1 

1 0.7 0.7 to 1.0 1.520 

2 0.2 0.2 to 0.7 0.510 

3 0.0 0.0 to 0.2 0.060 

-1.0 to 0.0 -0.322 

TABLE 6.6: Look-Up Table for 3rd-Order or 4-Point 

CSP Based on VUBS Preprocessed Output 

TYPE OF BITS PER SAMPLE PREDICTION TYPE OF 
IN DPCM-AQF L .j 4 INPUT SIGNAL 

11.41 15.26 19.92 BANDLIMITED 
FSOP 

10.47 14.94 19.58 VUBS COMPRESSED 

11.93 16.96 21.84 BANDLIMITED 
SGEP 

11.90 16.62 21.17 VUBS COMPRESSED 

13.22 17.67 22.24 BANDLIMITED 
CSP(4)-FSOP 

12.21 17.01 21.83 VUBS COMPRESSED 

13.45 18 .• 20 23.67 BANDLIMITED 
CSP(4)-SGEP 

12.80 18.04 22.81 VUBS COMPRESSED 

COEFFICIENT 
a" 

2 

-0.763 

-0.380 

-0.750 

-0.490 

TABLE 6.7: SNRSEG(dB) of DPCM-AQF with Second Order 
Predictors for the Utterances "sister, father" 
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Notice that the SNRSEG(dB) values of all DPCM-AQF codecs, operating 

on the preprocessed signal, are marginally lower than the SNRSEG(dB) 

obtained when the input signal is speech bandlimited to 3.4 kHz. However, 

according to informal listening experiences, the VUBS system combined 

with any of the examined digitizers, seems to produce recovered speech 

of better quality and improved intelligibility when compared to the 

corresponding DPCM-AQF encoding of bandlimited speech signals. The 

reason is that although the codec SNRSEG(dB) performance for the BLS 

signal looks superior to the SNRSEG(dB) obtained for the VUBS pre-

processed signals, the perceptually significant high frequencies of 

unvoiced sounds are missing from the recovered bandlimited speech. 

Additionally, degradation of 5 dB's in SNRSEG values, resulting from 

DPCM-AQF-FSOP when encoding process of WBS is attributed to a higher 

frequency components that exist in WBS signal and these components 

1 1 d f 1 (133). d" -f ." 1 cause s ope over oa to occur more requent y 1n 1t erenC1a 

encoders compared to encoding of 0.3-3.4 kHz. 
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6.6 CONCLUSIONS 

In this chapter the performances of DPCM-AQF codecs have been 

examined. The emphasis in the presentation was devoted to a novel 

prediction technique called the "CoITeZation &litahed Prediation", CSP. 

The input speech signal contained numerous unvoiced/voiced transitions, 

unlike the input sentence used in the previous chapters. This coupled 

with the lower sampling rate of 8 kHz, exacerbates the difficulties of 

the predictors. These difficulties were intentionally introduced in 

order to determine the effectiveness of switched predictors in enhancing 

the performance of a codec. 

"Correlation &litahed Prediators" significantly modify the values 

of the prediction coefficient according to a simple statistical property 

of the speech signal, namely the first correlation coefficient, cl' 

Employing a 4-point CSP scheme associated with FSOP, and then SGEP, the 

performance of DPCM-AQF codec was examined for each block of samples. 

It was observed that CSP(4)-SGEP, in a DPCM-AQF codec, handles unvoiced 

to voiced transitions efficiently, and it also improves the SNR values 

for voiced speech. 

Computer simulation results for the range of 16. to 32 Kb/s, also 

indicated. an improved SNRSEG(dB) performance when using FBA instead of 

Backward Sequentially adaptive prediction •. The introduction, in DPCM­

AQF, of the relatively simple CSP scheme produced SNRSEG(dB) values 

comparable to those obtained from FBADPCM-AQF. A more complex prediction 

scheme which combines CSP and Backward Sequentially Adaptive Prediction, 

CSP(4)-SGEP, was shown to provide the best overall SNRSEG(dB) performance. 
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Gibson(121) has demonstrated that SNR gain of approximately 2 dB 

can be obtained by using a pitch compensating quantizer instead of 

Jayant's quantizer in DPCM codec. It has been shown here that a similar 

SNR improvement can be achieved when the codec employs efficient switched 

prediction technique together with FSOP or SGEP. 

The. second part of this chapter presents computer simulation results 

of DPCM-AQF codecs, in tandem with the VUBS system. 
(12) 

The VUBS system 

bandpass filters the voiced speech to 0.3 or 3.4 kHz, and also compresses 

the unvoiced speech, occupying the frequency band of 0.3 to 6.0 kHz, into 

the 0.3 to 3.4 kHz band. Consideration was given to the digital encoding 

of the VUBS compressed signals for bit-rates between 16 and 32 Kb/s. 

The DPCM-AQF code cs used in our computer simulation studies employed the 

FSOP, SGEP, CSP(4)-FSOP or CSP(4)-SGEP prediction algorithms. The 

performance evaluation of the various codecs was based on waveforms, 

SNRSEG(dB) values, and informal listening tests. It was found that the 

SNRSEG(dB) of the ADPCM-AQF-CSP(4)-SGEP encoder operating on the VUBS 

compressed signals, is slightly reduced, compared to the SNRSEG(dB) of 

the same encoder digitizing 0.3 to 3.4 kHz band-limited speech signals. 

However, an improved quality speech is obtained from the VUBS/DPCM-AQF 

system due to the better reproduction of unvoiced sounds. 
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6.7 NOTE ON PUBLICATIONS 

A paper entitled "Sequential Adaptive Predictors for ADPCM Speech 

(134) . Encoders", 1.n co-authorship with Dr. C.S. Xydeas and Dr. R. Stee1e 

has been published in National Telecommunications Conference Proceedings, 

NTC81, New Orleans, U.S.A., pp. E8.1.1-5, November 1981. 

This·paper is a version of the 4-point CSP schemes described in Sections 

6.2 and 6.4. 

A paper entitled '~ Comparative Study of DPCM-AQF Speech Codecs 

for Bit-Rates of 16 to 32 Kbls", (135) in co-authorship with Dr. C.S. Xydeas 

has appear~in the IEEE Int. Conf. Proceedings on ASSP, lCASSP82, Paris, 

France, Session 514, May 1982. 

This paper is an abridged version of Sections 6.1, 6.2 and 6.4. 



CHAPTER VII 

RECAPITULATION 



323 

7.1 INTRODUCTION 

In this thesis a number of novel digitization systems, for speech 

signals, have been proposed and investigated. These digitizers were 

designed to achieve: 

a) the best possible quality of recovered speech at a given trans­

mission bit rate, 

b) a modest implementation complexity and therefore low cost, 

c) a characteristic of robustness to the transmission errors. 

Our investigations were focus sed on waveform encoding techniques 

operating with a bit rate of 16 to 40 kb/s. 

Differential Pulse Code Modulation (DPCM) is the central theme of 

the thesis. The performance of DPCM coders depends on: a) the estimation 

efficiency of the predictor, and b) the performance of the quantizer used 

in the system. Adaptive quantization, as used in differential digitizers, 

has been studied in depth and several algorithms have been proposed. The 

prediction problem however, has received less attention and therefore our 

research efforts were directed towards the development of improved speech 

prediction algorithms. 

Initially the existing fixed (time-invariant) and Forward Block 

Adaptive, FBA prediction methods were considered and used in DPCM. 

Taking SNR(dB) as the measure of encoding performance, the relative 

merits of these two prediction schemes have been pointed out. 

Sequential prediction algorithms were also considered, in the form 

of the Stochastic Approximation Predictor, SAP. Because of limitations 
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in the performance of SAP, a novel algorithm called the Sequential 

Gradient Estimation Predictor, SGEP was developed and compared with SAP. 

Next, the performance of DPCM codecs employing both adaptive 

quantizer and sequential predictors was evaluated for transmission bit 

rates of 16-40 Kb/s. Finally, searching for prediction methods that 

would improve the encoding performance of the previous DPCM system during 

the Voiced/Unvoiced transitions in the speech waveform, the concept of 

the "CoITeZation switched Prediction" was developed. These predictors 

switch their coefficients according to a simple statistical measure of 

the speech, i.e., first shift correlation coefficient. 

All the adaptive prediction schemes and the performance results of 

the speech codecs examined are summarized in the subsequent sections. 

Suggestions for further research are also made in a number of topics 

which may be of value in the area of speech coding. 
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7.2 DPCM EMPLOYING FIXED OR BLOCK ADAPTIVE PREDICTION 

Chapter III deals with fixed and FBA prediction when applied in 

DPCM codecs. The design of fixed predictors is accomplished using the 

autocorrelation method. An upper bound improvement factor, SNRI is 

determined for the speech signals used in our experiments. It is shown 

that the high correlation which exists between the speech samples 

manifested itself in high SNRI values. The best overall performance in 

DPCM-AQJ operating at bit rates of 16-40 Kb/s with fixed prediction was 

achieved when the order of fixed predictor wasN=2. At 16 Kb/s, the 

codecs employing higher-order predictors experienced instability. This 

is attributed to the mismatching effect of the higher-order prediction 

coefficients to the decoded samples. 

The performance of DPCM encoders was further improved by using 

Forward Block Adaptive prediction, FBA,t-1here the prediction coefficients 

are updated periodically. Operating at high transmission bit rates 

(> 30 Kb/s), FBA scheme showed a peak SNR advantage of 5 dB's over that , 

of fixed prediction algori thm (N=!l), but the transmission of 

the prediction coefficients was required as side information. 

Looking back to the section dealing with DPCM employing fixed or 

FBA prediction schemes, we can itemize the limitations and disadvantages 

of these systems as follows: 

a) The fixed (time-invariant) predictor attempts to model the 

characteristics of a time varying vocal tract function. 

b) Since the voiced speech is more prevalent than unvoiced speech, 

a fixed predictor designed from the average statistics of the 
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speech signal gives relatively poor SNR performance during the 

prediction of unvoiced speech. 

c) At low transmission bit rates (~16 Kb/s) , higher-order 

predictors required to operate on severely distorted decoded 

speech samples, cause system divergence. 

d) FBA predictors when used in a DPCM codec, require extra 

information, namely the values of the prediction coefficients, 

to be mUltiplexed with the output of the DPCM quantizer. For 

example, an 8-bits quantization of the FBA prediction 

coefficients (N=2) will increase the transmission bit rate by 

500 bits. 

• 
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7.3 SEQUENTIAL PREDICTION ALGORITHMS AND THEIR APPLICATIONS IN DPCM 

In Chapter IV, our efforts were directed towards the development 

of efficient speech prediction algorithms which overcome the limitations 

inherent in both fixed and block adaptive schemes. The performance of 

the sequentially adaptive Stochastic Approximation linear predictor, SAP 

was first examined and its adaptation rate was shown to be inadequate to 

follow fast variations in the statistics of speech. In an attempt to 

obtain faster convergence towards the optimum prediction coefficients, a 

novel technique called the Sequential Gradient Estimation Predictor, SGEP 

has been devised and studied in depth. The superiority of the SGEP over 

SAP was ascertained by the error waveforms which indicate that the 

prediction error signa~ for SGEP are typically 3 dB lower than those 

obtained using the SAP algorithm. A mathematical analysis of SGEP and 

SAP schemes, supported by waveform plots, also indicate that the rate of 

convergence of SGEP is considerably faster than that of SAP. In addition, 

it was shown that the ability of SGEP to work efficiently with fewer 

coefficients, typically N=2, off-sets the increased complexity of the 

algorithm. 

DPCM systems were then simulated on the computer and the codec with 

a leaky integrator in its feedback loop was used as a performance 

bench-mark due to its virtue of simplicity compared with its adaptive 

predictor counterparts. It was found that as quantization accuracy 

increases from 2 to 4 bits per sample, DPCM code cs using Jayant's 

adaptive quantizer and the SGEP prediction algorithm, ADPCM-AQJ-SGEP, 

show an overall SNR advantage of approximately 2 to 3.5 dB's over the 
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SNR of ADPCM-AQJ-SAP. Thus, the better prediction accuracy of SGEP over 

SAP is enhancing the performance of the codec. When the DPCM-AQJ codec 

used a fixed first-order predictor, DPCM-AQJ-FFOP, its SNR compared to 

that of ADPCM-AQJ-SGEP was considerably reduced. 

Next, another quantization strategy namely adaptive quantization 

with forward transmission of step size, AQF, was adopted and applied to 

differential encoding systems, DPCM-AQF. The reason our investigations 

were focus sed on DPCM-AQF encoded speech was that such an encoder is 

inherently more robust to the transmission errors. Second-order 

predictors have been used in our DPCM-AQF experiments. It was found 

that, at 40 Kb/s, ADPCM-AQF-SGEP shows an overall SNRSEG(dB) advantage 

of approximately 3 and 9 dB's over the SNRSEG(dB) values.of the ADPCM­

AQF-SAP and DPCM-AQF-FFOP systems, respectively. When transmission 

errors were introduced ADPCM-AQF-SGEP has a higher SNRSEG(dB) than that 

achieved with DPCM-AQF-FFOP for BER<0.08%. 
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7.4 CORRELATION SWITCHED PREDICTORS EMPLOYED IN DPCM 

Among the codecs employing FFOP, FSOP or SGEP prediction 

algorithms, a deterioration in the performance was observed when the 

speech signal transgressed from unvoiced to voiced segments. In order 

to overcome this, in Chapter VI we searched for alternative prediction 

algorithms. As a consequence a new correlation switched prediction, CSP 

scheme was proposed. A switched prediction algorithm divides the range 

of the first correlation coefficient of the speech signal, cl' into zones 

and as the value of cl varies, when computed over successive blocks of W 

speech samples, the predictor coefficients are altered significantly 

(switched). When the range of cl is divided into (Z+l) zones, the 

predictor was referred to as (Z+l)-point or Z-order CSP, CSP(Z+l). 3rd­

and 7th order (Z=3 or 7) switched predictors, associated with second­

order FSOP and SGEP algorithms, were used in DPCM-AQF. When the 

computational requirements of CSP schemes was considered, it was observed 

that CSP is the algorithm with the smaller number of multiplications 

compared with either SGEP or FBA schemes. 

Computer simulation studies for the range of 16 to 32 Kb/s 

indicated the performance superiority of code cs with feedforward block 

adaptive prediction, FBADPCM-AQF, when compared to DPCM-AQF with fixed 

or SGEP adaptive prediction. When correlation switched prediction was 

used, however, the SNRSEG(dB) performance of the differential coders 

(DPCM-AQF) was found to.be comparable to that of FBADPCM-AQF. Finally, 

the more complex hybrid prediction scheme, CSP-SGEP when used in the 

same codec, resulted in best overall SNRSEG(dB) performance. 
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7.5 SUGGESTIONS FOR FURTHER RESEARCH 

The topics for further research can include the following: 

7.5.1 Pitch Extraction Algorithm 

It is well-known that pitch extraction is an essential component in 

a variety of speech processing systems. Besides providing valuable 

insights into the nature of the excitation source for speech production, 

the pitch information is required in almost all speech analysis­

synthesis (vocoder) systems. Because of its importance, a wide range of 

algorithms for pitch extraction have already been proposed~136) from 

which two broad categories follow, namely, time-domain pitch extraction 

techniques, i.e., data reduction method, and frequency-domain techniques, 

i.e., ceptrum method, see Section 2.2.4. 

In this respect plots showing the variation of the prediction 

coefficient, aI' of a first order SGEP ~lgorithm indicate that the value 

of the coefficients increases sharply at the onset of each vocal 

excitation pulse. As a consequence, the first-order SGEP algorithm can 

be also used for a pitch extraction. In order to locate the peak pulses 

in the speech signal, see Figure 7.l(a), we initially computed the 

sequence of a
l 

coefficients," {ail}' see Figure 7.l(b) and then smoothed 

it by averaging the a
l 

values over the blocks of 25 and 200 speech 

samples and these sequences were denoted by {25(XJ)i} and {200(XJ)i} 

respectively, (see Figure 7.l(c) and (d». These sequences were 

manipulated as follows: 

{(XJ)i} = {ai }-{200(XJ)i} 

{(XJ)i} = {25(XJ)i}~{200(XJ)i} 

(7.1) 

(7.2) 
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FIGURE 7.1: Waveforms for pitch extraction algorithm using SGEP 

a. Segment of input speech signal 
b. Variation of {a. 1} with the number of samples 

1., 

c. Smoothed version of {a. 1} over the block of 25 
samples 1., 

d. Smoothed version of {a. 1} over the block of 200 
samples 1., 

e. Sequence of {(XJ)!} 
1. 

f. Sequence of {(XJ)~' } 
1. 

g. Sequence of {(XP).} 
1. 
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Then the sequences represented by Equations (7.1)-(7.2) were half-

rectified and multiplied to yield a sequence, {(XP).}. These are shown 
1 

in Figure 7.1 curves (e),(f),(g) respectively. 

Comparison of the input sequence, {X.}, see Figure 7.l(a), with 
1 

that of {(XP).} indicates that the latter appears to have considerable. 
1 

potential to extract the pitch. 

Further investigations should examine the performance of the 

proposed pitch extraction technique and compare with the existing 

algorithms(136) in terms of their accuracy and speed of execution on 

the computer. 

7.5.2 Pole-Zero Predictor 

It shouid be recalled that most of the research in LPC analysis has 

been focus sed on all-pole models. However, the presence of unvoiced 

and nasal sounds suits a pole-zero model, sometimes known as auto-

regressive moving average (ARMA), whose mathematical treatment is rather 

complicated. We feel that the modelling of vocal tract, incorporating 

pole-zero recursive filter, can be· achieved by using a modified SGEP 

algorithm to update the filter coefficients,such a pole-zero filter will 

perhaps accurately model any possible coupling between the vocal tract 

and the nasal cavity. 
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7.5.3 Higher-Order. CSP Schemes 

The algorithm of the second-order switched predictor described in 

Chapter VI can be extended to implement a higher-order switched 

predictor. Further investigations should examine the effect of the 

second correlation coefficient of the speech signal, cZ' as well as cl' 

on the evaluation of the look-up tables. We feel that an effect of cZ' 

in constructing the look-up tables, will also improve the performance of 

the previously reported codecs employing CSP scheme. 
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APPENDIX A 

QUANTIZATION BASED ON A MINIMUM 

MEAN-SQUARE ERROR CRITERION 

The aim of this Appendix is to determine the optimum quantizer 

step points and levels. The input to the quantizer is assumed to be 

a sequence of zero mean. unit variance random variable and the mean 

square quantization error is minimized with respect to the quantizer 

step points and levels. If the variance of the input signal to the 

quantizer is 0
2 (in PCM and 0

2 
in DPCM case) instead of one. the 

x e 

quantizer parameters now is obtained by multiplying those of the unit 

variance quantizer by a factor of 0 (or 0 in DPCM). 
x e 

Let Pd(x) be the probability density function of the input signal 

to the quantizer and N
Q 

denotes the total number of quantization levels. 

Output decision levels are represented by x1.x2 ••••• ~. It is 
Q 

temporarily assumed that the input to the quantizer x is a continuous 

variable. Let x1.x2 ••••• ~ +1 be the quantizer input decision levels 
Q 

such that. (see Figure A.1). 

where x1<x2 "'<~Q < ~Q+1 

and '-Xl = ~ +1 = 00 

Q 

Th f h • 2- be def;ned as (62) e error power 0 t e quant1zer. 0 • can • 
N q 

2 Q fKk+1 • 2 
o = L J~ (x-~) Pd(x)dx. 

q k=l ~ 

(A.1) 

(A.2) 
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The necessary conditions for minimum mean-square quantization noise 

can be obtained by differentiating cr~ with respect to the ~s and iks 

and setting the derivatives equal to zero: 

(A.3) 

Therefore, 

(A.4) 

where k=2,3, ••. ,N
Q 

Thus, 
~-l +~ 

~ = 2 (A. S) 

Also., 

(A .6) 

therefore 

(A.7) 

Equation "(A.S) imposes the first condition for minimum mean-square 

error that ~ should lie half way between ~ and ~-l' Equation (A.7) 
. 

shows ~ to be the centroid of the area of Pd(x) between ~ and ~+l' 

It is assumed that the probability function Pd(x) is unchanged by the 

use of a quantizer. Equations (A.S) and (A.7) describe the overall 

relationships of the optimum quantizer. 

One method of solving these equations is to apply a search 

procedure. For example, for a given number of levels, NQ,.with respect 

to xI=-» and arbitrary selection of x2' the most negative quantizer 

output xl can be obtained. If ~Q is the centroid of the area of Pd(x) 
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between ~Q and =, ~Q is chosen correctly. If the ~Q does not 

satisfy the Equation (A.4), then xl must be reselected. 

x 

~Q 
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I 
I 

I I 
I I 
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xz P- I I 
I I I i 

: : : x - "k "k+1 ~Q I I I 
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I 
I 
I 
I 
I 
I 

FIGURE A.I: Non-uniform quantization 
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APPENDIX B 

QUANTIZATION NOISE POWER FOR GAUSSIAN 

AND LAPLACIAN P.D.F's 

Zero-mean, p.d. function for 

1 

/2ii<1 
e 

"Gaussian" signal is given by 
2 

e 
- 2<12 

E: e (B.l) 

where e is the quantizer input, i.e., prediction error in DPCM and <1 
e 

is the r.m.s. value of the error. From Equation (2.l7).panter-nite(43) 

has shown that the minimum mean square quantizing error is given by 

2 

= 3N2 
Q 

Let {( p!/3(e) de} be I and hence 

or 

e Let -- be t 
/3<1 

e 
(B .5) become, 

2 2 
1

3 
<1 = 

3N
2 q 
Q 

( 1 )1/3 I = ( 
,12;<1 

e 

1 )1/3 = ( 
,12;<1 

e 

and then de=dt/3<1 
e 

. 2 2 
-e /6<1 

E: e de = 

(B.2) 

(B.3) 

2 
e 

--2 
6<1e de (B.4) 

E: 

2 
e 

I: 
--2 

E: 
6<1e de (B.5) 

Consequently, the limits of Equation 

2 

f
t =V//3<1e -t /2 dt 

E: /3 <1 e 
t=O . 

(B.6) 
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From Equations (B.5) and (B.6), 

I = ( 1 
&a 

e 

rzif{ erf (---,V,--) - o. 5} 
l3a 

e 

(B.7) 

Assuming that V/a »1 (where ±V is the overload limit of the quantizer): 
e 

erf (V / l3a ) -+- 1 e 

From Equations (B.7) and (B. 8) , 

1 )1/3 
l3a rzif 

I ( e 
" 

&a 2 
e 

Hence, (B .9) in (B.3) 

2 2 313a3 
211rzif e aq " --

3N
2 &a 8 
Q e 

2 11/3 2 a " -- a q 2N~ e. 
or 4 

2 2 
As QG=a /a , i.e., SNR of the quantizer 

e q 

N
2 

QG ,,_Q- and 
2.73 

b is the bits/sample and then 

SNRQ(dB) " 10 loglOQG = 6b - 4.35 dB. 

This is the same as Equation (2.44) 

(B.8) 

(B.9) 

(B .10) 

(B .11) 

(B .12) 

(B .13) 

In proving Equation (B.13), it is assumed that N
Q 

is large, Pd(e) 

is even function for p.d.f. of the input to the quantizer and Pd(e) is 

zero outside the interval (±V), which represents the range of the 

quantizer input. 
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p.d.f. of Laplacian signal having symmetrical property and zero-

mean is given by 

1 

Iza 
e 

12 --Iel a 
e 

In a similar fashion to that obtained for Gaussian signals, 

I = IV pl / 3(e)de 
o d 

V 12 I I 
= (_1 ___ )1/3J. g3ae ede 

Iza 0 
e 

For V/a »1, it is proved that 
e 

V _12 lel 
3a 

fa 
3ae 

de e 
g = --

12 
Therefore, 

27a 3 
2 2 1 

a =-2 
__ e_ 

q 3N
Q 

120 2/2 e 

2 902 
e a 

= 2N2 q 

or Q 

2N2 
2b QL 

= =:9. , N
Q 

= 
9 

where b is the bits/sample,and then, 

SNRQ(dB) = 10 loglOQL = 6b - 6.53 

The same assumptions in the previous case still hold for obtaining 

Equation (B.19). 

Furthermore, from reference (60),we know that a DPCM system 

SNR(dB) is upper bounded by 

SNR(dB) ~ 6b + SNRI 

where b=CI/:'f is the number of bits/sample. 
s 

(B.14) 

(B .15) 

(B.16) 

(B .17) 

(B .18) 

(B.19) 

(B.20) 
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Equation (B.20) is obtained under the assumptions of a Gaussian 

input, the predictor input is uncontaminated, i.e., the quantization 

noise in the feedback loop has been neglected and the prediction co-

efficients are known exactly (hence SNRI is involved in Equation (B.20». 

Comparing Equation (B.13) with Equation (B.20) reveals that DPCM 

is only 4.35 dB below the bound for Gaussian prediction error and 

Gaussian input sequence. In the case of Lap1acian signals, DPCM is 

6.53 dB below the bound, see Equations (B.19) and (B.20). However, it 

is possible to approach the bound by employing Entropy Coding (EC). 

For example, for Gaussian signals, 4.35 dB may be reduced to 2.35 dB 

b . C(60) Y uS1ng E • 
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APPENDIX C 

CALCULATION OF THE PREDICTION COEFFICIENTS FOR THE 

SECOND ORDER FIXED PREDICTORS AND THEIR 

RELATIONSHIP WITH THE FIRST ORDER PREDICTORS 

Consider the model of Figure C.l, let us assume for· simplicity, 

that only the two previous samples are available, i.e. x. l'x. 2' 
1. - 1-

X. 
1 

)-----+e. 
1 

(a ,a ) 

'---""""FIXED PREDICTOR 
N=2 

FIGURE C.l: Simple model for prediction 

Then, the prediction error at ith instant is formed as 

e. = x.-alx. l-a2x. 2 
1. 1. 1- 1.-

where a
l 

and a
2 

are the'fixed coefficients. 

From Equation (C.l), 

(C .1) 
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2 222 22 
e. = x.+alx. 1+a2x. 2+2al a 2x. IX. 2 

1. 1. 1- 1- 1- 1-

-2al x. x. 1"-2a
2
x. x. 2 

1. 1.- 1. 1-

Also, we know that, 

2 
<x.> 

1 
= 

<x. x. 1> 
1 1-

2 
<x. 1> 1-

= 

<x.x. 2> = C
2 1 1-

= 
2 

<x. 2> 1-
= C o 

= C 
1 

(C.2) 

(C.3) 

where CO,Cl and C2 are the values of autocorrelation function of the 

signal at displacements of 0,1 and 2 sampling periods respectively. 

Thus, Equation (C.2), in mean-square error sense may be written as 

2 
<e.> = 

1 
(C.4) 

where «.» is the time average of (.). Since Co is the signal power 

and c =C IC
O 

is the normalized rth correlation coefficient, Equation 
r r 

(C.4) can be expressed as, 

2 
<e.> 

1 

Co 
For 

a (SNR-l ) 
aal 

a (SNR-l ) 
aa2 

I
min 

= 

Lin = 

and from Equations (c.6) and (C.7), 

(C.5) 

2a
l
+2(a

2
-l)c

l 
-+0 (C.6) 

2a
2
+2a

l
c

l
-2c

2 
-+ 0 (C.7) 

(C.8) 

-1 
Using these optimum values of a l and a 2 , SNR in Equation (C.5) 

becomes, 
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2 
= l-c 

1 (C.9) 

For the right most term to be zero, Equation (C.9) is reduced to that 

proved in Equation (3.38). Then 

and 

2 2 
(c

l
-c

2
) 

2 
l-cl 

= 0 

2 
= c 

1 

Equation (C.10) in Equation (C.8) results in 

a = 0 
2 

(C .10) 

(C .11) 

Notice that, performance of the second order predictor is equal to the 

2 
first order predictor if c

2
=cl • 
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APPENDIX- D 

BAND-LIMITED LOW PASS DIGITAL FILTER 

The pre- and post-encoding band-limiting operation was performed 

using Recursive Butterworth low pass digital filters~137) 

The gain characteristic of the Nth order Butterworth filter is 

given by the expression. 

H(z) = 
1 

{
I Jtan1TfT 12N}! 

Ltan1Tf iJ 
c 

where f and T are the cut-off frequency and the sampling period 
c 

(0.1) 

respectively. The higher the value of N the better is the approximation 

of the filter's gain characteristic to an ideal low-pass characteristic. 

The co-ordinates of the N poles which lie in the unit circle are given 

by the following equations: 

2 
I-tan 1Tf T 

= c w 
m d 

(0.2) 

2tan(1Tf T)sina 
c v = m d 

(D.3) 

= 
(2m+l)1T 

• m=O.1 ••••• (2N-l) 2N 

where 

for N even 
m1T for N odd = N 

d 1-2tan(1Tf T)cosa 2 
= + tan 1Tf· T 

c c 

Hence, z = w + jv 
m m . m (0.4) 

As an example. consider the following design specifications: 
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Sampling frequency, f = 10 kHz s 

Cut-off frequency, f = 3.4 kHz c 

Gain at zero frequency = o dB 

Gain between 3.8 kHz and 4 kHz ~ -22 dB 

The order of filter can be found using Equation (0.1), i.e., 

then, 

-22 dB = 10 10g10X 

X = 1/162 

162 - 1 = t tanTl~~.8l2N 
t 

Tlx3.4 
an 10 

161 = (1.3885218)2N 

10g
10

161 
2N = -=----;=-:-=-==-=-= = 15. 48 10g

10 
1. 3885218 

N = 7.74 - 8 

(0.5) 

(0.6) 

Using Equations (0.2) and (0.3) for N=8, i.e., m=O to IS, we obtain 

the following 16 poles as shown in Table 0.1 (all the zeros occur at 

z=-l). 

The poles are in complex conjugate pairs. They are: 

z -0 z15 

zl z14 

z2 - z13 
z -3 z12 

z4 - zn 

z5 - z10 

z6 - z9 

z7 - z8 

The locations of the poles in z-p1ane are shown in Figure 0.1. 



349 

m a(in rad) d w v 

0 0.19635 0.74065 -3.117176 0.958263 

1 0.58905 1. 28386 -1.798277 1.574284 

2 0.98175 2.28759 -1.009243 1. 322299 

3 1.37444 3.59897 -0.641499 0.991416 

4 1. 76714 5.01847 -0.460047 0.710989 

5 2.15984 6.32989 -0.364735 0.477871 

6 2.55254 7.33361 -0.314815 0.275602 

7 2.94524 7.87682 -0.293105 0.090104 

8 3.33794 7.87682 -0.293105 -0.090104 

9 3.73064 7.33361 -0.314815 -0.275602 

10 4.12334 6.32989 -0.364735 -0.477871 

11 4.51604 5.01847 -0.460047 -0.710989 

12 4.90874 3.59897 -0.641499 -0.991416 

13 5.30143 2.28759 -1.009243 -1. 322299 

14 5.69414 1.28386 -1.798277 -1.574284 

15 6.08684 0.74065 -3.117176 -0.958263 

TABLE 0.1: Co-ordinates of poles 
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FIGURE 0.1: Location of poles and zeroes on z-plane 
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From the above, the following conjugate pairs have Iz 1>1, 
m 

z -0 z15 
z -
1 z14 

Z -2 z13 
Z -

3 z12 

Since Iz 1>1, they lie outside the unit circle and for stability reasons 
m 

we exclude them in the design procedure. Now if we let, 

Z4 = zA ... zn = z* A 

z5 = zB ... zlO = z* B 

z6 = Zc ... z9 = z* 
C 

z7 = zD ... z8 = z* 
0 

then, we have 4 pairs of poles within unit circle with the following 

co-ordinates: 

zA = -0.460047 ± jO.710989 

zB = -0.364735 ± jO.477871 

Zc = -0.314815 ± jO.275602 

zD = -0.293105 ± jO.090l04 

Each pair of poles can form second order recursive filter whose 

transfer function is given by 

Substituting 

(l-z Z-l)(l_z*z-l) 
A A 

1+2z-l +z-2 
= 

l-(z +z*)z-l+z z*z-2 
A A A A 

z +z* = -0.920094 A-A_ 

= ZA· z: 

in Equation (0.8) we obtain, 

0.717148 

(0.7) 

(0.8) 
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-1 -2 1+2z +z 
-1 -2 

1+0.920094z +0.71.7148z 

and its implementation is shown in Figure D.2. 

(D.9) 

Proceeding in the same way for the remaining three pairs of poles 

we get, -1 -2 1+2z +z 

1+0.729470z 1+0.361392z 2 

-1 -2 1+2z +z 

1+0.629631z-I +0.175065z- 2 

-1 -2 1+2z +z 
-1 -2 

1+O.586210z +0.094029z 

The overall transfer function of the 8th order filter is 

(D .10) 

(D .11) 

(D .12) 

(D .13) 

Therefore, the complete block diagram of the filter results from the 

substitution of E~uations (D.9)-(D.12) in Equation (D.13) and it is 

shown in Figure D.3. The gain factor, AO, 0.065314 arises from the 

unity gain at zero frequency, i.e., w=O and hence z=l. Consequently 

1+2+1 
= 1+0.920094+0.717148 

4 
= 2.6372 

Similarly, from Equations (D.lO)-(0.12), 

H2(1) 4 
= 2.0900 

H
3

(l) 4 
= 1.8046 

and H
4

(1) 4 
= 1.6802 

In order to obtain unity gain at zero frequency, we want 

(0.14 ) 

(D .15) 

(0.16) 

(0.17) 
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OUTPUT 

2.0 1.0 

+ 
DELAY [NPUT --.....c DELAY 

0.92 0.72 

FIGURE D.2: The 2nd-order recursive filter 



AO=O.065 

HOL 2.0 1.0 YYY HOLl 2.0 1.0 

+ 
D D D D 

0.92 0.72 0.73 0.36 

INPUT 
XOO 

YYYl 

1.0 2.0 HOL3 YYY2 1.0 2.0 HOL2 

YYY3 + 
OUTPUT + 

D D D D 

0.09 0.58 0.17 0.63 

FIGURE D.3: Block diagram of 8th· order Butterworth digital filter 
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(D .18) 

and then AO{256/l6.72} = 1 

AO = O. 065314 

where AO is the gain factor for unity gain at zero frequency. 

The subroutine of a filter is shown in LIST 1 (sampling frequency, . 

f =10 kHz and cut-off frequency, f =3.4 kHz) where XOO is an input 
s c 

sample, YYY3 is output sample and A is real coefficient array. LIST 2 

presents also the subroutine of a filter. but for f =8 kHz and f =3.4 kHz. 
s c 

List 3 presents a more general programme for filter design where 

cc = Cut-off frequency in kHz, 

CCC = Sampling frequency in kHz, 

and the remaining. parameters are explained in the subroutines. 
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LIST 1 

COMPUTER SIMULATION OF 8TH-ORDER BUTTERWORTH DIGITAL FILTER, f =10 kHz 
s 

SUBROUTINE FILTER (XXO,YYY3,A) 

DIMENSION A(8) 
XOO=XOO*0.065314 
HOL=XOo-(0.920094*A(I)+O.717148*A(2» 
YYY=HOL+2.0*A(I)+1.0*A(2) 
A(2)=A(l) 
A(I)=HOL 
HOLl=YYY-(0.729470*A(3)+O.361392*A(4» 
YYYl=HOLl+2.0*A(3)+1.0*A(4) 
A(4)=A(3) 
A(3)=HOLl 
HOL2=YYYl-(0.629631*A(5)+O.175065*A(6» 
YYY2=HOL2+2.0*A(5)+1.0*A(6) 
A(6)=A(5) 
A(5)=HOL2 
HOL3=YYY3-(0.S86210*A(7)+0.094028*A(8» 
YYY3=HOL3+2.0*A(7)+1.0*A(8) 
A(8)=A(7) 
A(7)=HOL3 
RETURN 
END 

LIST 2 

f =3.4 kHz 
c 

COMPUTER SIMULATION OF 8TH-ORDER BUTTERWORTH DIGITAL FILTER, f =8 kHz 
s 

SUBROUTINE FILTER (XOO,YYY3,A) 

DIMENSION A(8) 
XOO=XOO*O.294497 
HOL=XOo-(I.63702*A(I)+O.837274*A(2» 
YYY=HOL+2.0*A(I)+1.0*A(2) 
A(2)=A(I) 
A(I)=HOL 
HOLl=YYY-(1.42308*A(3)+O.S97149*A(4» 
YYYl+HOLl+2.0*A(3)+1.0*A(4) 
A(4)=A(3) 
A(3)=HOLl 
HOL2=YYYl-(1.29368*A(S)+O.4S1927*A(6» 
YYY2=HOL2+2.0*A(S)+1.O*A(6) 
A(6)=A(S) 
A(5)=HOL2 
HOL3=YYY2-(1.23300*A(7)+O.383827*A(8» 
YYY3=HOL3+2.0*A(7)+1.O*A(8) 
A(8)=A(7) 
A(7)=HOL3 
RETURN 

. END 

f =3.4 kHz 
c 
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LIST 3 

DATE 27. 81. 1982 T 1I1E t18: 57 

DII1ENSION AH4'>, R2(4), B1.(4), B2(4.> 
COMPLEX RLPHR(8), BETR<"Jtl.) 
WRITE(1. .• 28,\ 

2tl FOR/'1RTf'" F. C.. SRI'IPL. RRTE ,. > 
READd .. *iCC .. CCC 

C CC = CUTOFF FREQUENC." 
C ecc = SRMPLING RRTE 

FC=CC/CCC . 
CALL BUTTER(8, FC .. RLPHA .. BETR'> 
CALL COEFFf 4, RLPHR, BETR, Rt, A2 .• Bl., B2 .. A8) 
WRITE(1 .. 1tl.>R1. .. R2 .. B1., B2 

HI FORr1RT(4F12. 8.> 
I.JRITH1,15)R8 

15 FORI1RT<"5X .. E8. J'> 
CRLL EXIT 
END 

$INSERT BUTTER 
SUBROUTINE BUTTER(N, FC, RLPHR, BETM 

C 

- 1. -

C THIS SUBROUTINE COMPUTES THE POLES RND ZEROES OF R 
C BUTTERWORTH LOWPASS HGITRL FIL TER. 
C 
C INPUTS RRE: N = ORDER OF FlL TER 
C Fe ;;: CLlTOFF FREQUENCP R5 R FRACTION OF' 
C THE CLOCK FREQUENn' 
C OUTPUTS ARE: RLPHR = COMPLEX RR~'R'" CONTRINING THE 
e TRRNSFER FUNCTION ZEROES IN 
C ITS FIRST N LOCRTIONS 
C 
e 
c 
e 
e 

BETR = COMPLEX RRF.:R'r' CONTRINING THE 
TRRNSFER FUNCTION POLES IN ITS 
FIRST N LOCRTIONS 

COf'/PLEX RLPHRO£U .. BETR<J8) 
WC=]. 141.592654*FC 
TRN2=2. 8*SINOJC>/COS(WC) 
TANSQ=8. 25*TRN2**2 
IF(N. EQ. 1.>GOTO 2 
IN=/'10D<"N,2) 

. N1=N+IN 
. N2~(J*N+IN)/2-1 . 

DO 1. /'1=N1. .• N2 
R=3 . . 1. 41592654*FLORT(2*'1+ 1. - I N)/FL OR T(2*N.> 
RNUM=1. 8- TANb'COS(R)+ TRNSfJ 
U=(1. 8- TRNSIV/RNUfl 
~'= TRN2*SI N(R)lRNUM 
I=(N2-M>*2+1 
,r1=I+IN 
J2=I+IN+1 
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1 

(CONT. ) 

BETA(,T1)=CI'IPLXW .. ~') 

BETA(J2)=CI1PLX(u, -~') 
IF( IfOJ, J,2 
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- 2 -

BETR(1)=CI1PLX{(" (1. O-TRNSQ)/<"1. tl+-TRN2+-TRNSQ.» , O. tU 
DO 4 1=1, N 

::; 

e 

ALPHRfI )=(-1. tl .. O. tl) 
N1=N+-1 . 
DO S I=N1.,JO 
RLPHR([)=fll tl, o. t"I) 
BETR<"I>=(B. 8 .. 8. tU 
RETURN 
END 

SUBROUTINE COEFFfN, ALPHA .. BETA, A1., A2 .. B1 .. B2, RM 

C THIS SUBROUTINE conpUTES THE COEFFICIENTS IN A SERIRL 
e FORN REALISRTION OF R DIGITAL FILTER. 
C 
C INPUTS RRE: N = NUf1BER OF SECTIONS IN FIL TER 
C ALPHR = RRRR~' HOLDING FILTER ZEROES 
C BETR = RRRM' HOLDING FIL rER POLES 
C 
C t1UTPLlTS fiRE: Ri .. R2J B1. .. B2: RRRR~'5 HOLDING SEerION 
C COEFFiCIENTS 
C RB: GRIN COEFFICIENT FOR LINIn' GRIN 
e RT ZERO FREiWENn' 
c 

COMPLEX RLPHR(Jtl) .. BETR<"JM 
DIf'lENSll1N R1. <"(5) .. A2(1.5), 81 (1.5).· 82(1.5.) 
Al1=1. 11 
DO 1. 1=1, N 
11=2*1-1 
I2=b'I 
R1(I)=RERL(-RLPHR(I1)-ALPHR(I2» 
A2( I )=RERL (RLPHR< 11 )*ALPHR( 12» 
B1 (I ) =RERU-8ETA ( 11)-BETtUI2.1> 
B2( I.>=RERL (BETR( 11 )*BETRi" 12» 

1. Al1=RO*(1.. 8+-A1(1)+-R2(I»/(1. 8+-B1.(I)+-B2(1» 
IF(ABS(AB). LT. <1. 8E-6»Atl=1. 8 
AO=1. cVRO 
RETURN 
END 

- END -
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APPENDIX E 

CUMMISKEY'S SEQUENTIAL ALGORITHM(62) 

The generalized equation for the adaptation of the kth prediction 

coefficient of a sequential prediction at the (i+l)th sampling instant 

is given as: 

a = a _ g a (FU) 
i+l,k i,k • aa. k 

1., 

(E .1) 

If the error function to be minimized is the absolute error, i.e., 

Fu=l<e.>1 and since 
1. 

FU = l<e.>1 = <e. sgn(e.» 
1. 1. 1. 

then the kth component of the gradient is given by 

N 

or 

a (FU) 
aa. k 

1., 

= 

a«x. -
1. 

L a,x._~)sgn(e;» 
k=l K 1. •• -

aa. k 
1., 

~ -(x. k)sgn(e.) 
1.- 1. 

(E.2) 

(E.3) 

(E .4) 

The approximation sign (=) comes in since, to differentiate Equation 

(E. 3), 

error, 

l<e.>1 has been approximated to the absolute value of the sample 
1. 

le. I· Equation (E.4) gives the derivative of the absolute error 
1. 

with respect to kth coefficient. The substitution of Equation (E.4) 

in Equation (E.l), together with g=h yields 

a. 1 k = a. k + h x. k sgn(e.) (E.5) 
1.+ , 1., 1.- 1. 

In terms of vectoral quantity, the total gradient vector, -(FU) is 

written as , 
. 'l(FU) = - x. sgn(e.) 

1. 1. 
(E .6) 
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and therefore the general form of sequential prediction becomes 
. . 
A. = A. + hX. sgn(e.) 1+l,k 1 1 1 (E.7) 

where T 
= [x. l'x. 2'···'x. N1 1.- 1- 1.-

and 
k=1,2, ••• ,N 

h is constant and controls the rate of adaptation. 

as 

As it was discussed in Chapter IV, see Section 4.4, h is expressed 

h = 
A 

B + ~(x. ,M) 
1 

(E.8) 

where A,B are constants and ~(x.,M) is a function of the M previous 
1 

speech samples, that is 

r; (x. ,M) = 
1 

M 

L Ix. kl 
k=l 1-

2 When SAP algorithm, minimizing <e.> is employed in DPCM and 
1 

compared with that of Cummiskey's sequential algorithm defined by 

Equations (E.l)-(E.9), the following conclusions can be drawn: 

a. Absolute error criterion reduces hardware complexity, and 

(E.9) 

computationally, for N-order predictor, it requires (2N+3) 

b. 

multiplications and 3N additions per sample. 

2 In terms of SNR, SAP with <e.> slightly out-performs Cummiskey's 
1 

relationship. 

c. In the presence of transmission errors Equation (E.7) is less 

affected than the SAP algorithm, since the former one uses 

the polarity of e. rather than the actual amplitude of e. as 
1 1 

. h S 1 . hm(60) 1n t e AP a gor1t • 
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APPENDIX F 

LATTICE PREDICTOR AND PARCOR COEFFICIENTS 

This type of predictor, rather than employing usual transversal 

filter structure, has a different form. Its coefficients are computed 

. 11 I ak' S· (32) d· d· d . d h sequent1a y. t ura- a1to stu 1e 1n eta11 an t e structure 

of this sort has been used in vocoder type systems. The beauty of 

lattice predictors is that rather than calculating the predictor co-

efficients. PARtial CORrelation - PARCOR - or reflection coefficients 

are computed. These coefficients are less sensitive for the transmission 

purposes. Such a predictor in ADPCM loop is shown in Figure F.l. 

In Figure F.l, the redundancies of the speech signal are removed 

stage by stage-cascaded form. The coefficient b. k' where k=1,2, ••.• N, 
1., 

at kth stage,at ith sampling instant, is optimized to minimize the error 

term e. k 1 and in this way, the final output to the quantizer, e. N 1 
1.,+ 1,+ 

is minimum. 

by, 

The error sample. e. 1 at ith sampling instant is given 
1,N+ 

N 

e. N+l = x. - I b. k,F. k 
1., 1. k=l 1., 1., 

(F.l) 

and consequently the final output Yi,N+l=Yi of a lattice predictor is 

N 
A, 

Y1.· = y; N+l = Lb. kF• k .... , k=l 1, 1, 
(F.2) 

where F. k's (information that is available to the receiver), are shown 
1, ' 

in Figure F.l. The energy in the intermediate prediction error, e'. k l' 1., + 

at the output of each filter stage is to be minimized individually. Hence, 



x.=e. 1 
1 1, 

D 

b. 1 
1, 

x.=e. 1 
1 1, 

D 

e. 2 
1, 

F. 2 
1, 

b. 2 
1, 

b. 2 
1, 

Q---J 

e. 2 
1, 

~--------------------~ 

D 

tE---------

F. N 
1, 

b. N 1, 

b. N 
1, 

0-...1 

e. N 
1, 

FIGURE F.l: Lattice predictor structure in a differential encoder 
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. 
ei,k+l =.ei,k - bi,k Fi,k' k=1,2, ••• ,N 

Given the initial states of F. k's, new values are found by the 
1, 

following relationships: 

and 

A A A A 

F. k 1 = D(F. k-b . ke . k) ~ OF. k 
~, + 1, 1, 1, 1, . 

F. 1 = 
1, 

D(~. 1)' where 0 = Delay. 
1, 

(F.3) 

(F .4) 

(F.5) 

This method eliminates the inversion of matrix and the coefficients 

approach to the optimum values faster than those of auto correlation 

methods. Further PARCOR technique has greater numerical accuracy in 

computation and stability checking criterion (lb. kl<l) is easy. 
1, 

However, there are large numbers of computations involved. This 1S 

because, N multiplications for each output sample of direct methods, 

now are replaced by 2N multiplications. The stability test mentioned 

above is widely used by employing the relationships between the direct 

method coefficients a. k's and PARCOR coefficients, b. k's as studied 
1, 1, 

in reference (26). For this reason, initially a. k coefficients of 
1, 

predictor are converted into the coefficients of inverse filter, ~. k's, 
1, 

(input speech samples, applied to the inverse predictor, directly 

produces prediction error samples). For N-order predictor, at ith 

sampling instant, ~'s ar~ computed as follows: 

a
l 

= 1.0 

~ = -~-l' where 2~k~N+l. (F.6) 

Then recursion formula from reference (26), see page 95, can be employed, 

i. e., 
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b = a. 
k K,k 

(F.7) 

where k goes from N to N-l, down to 1. It is necessary and sufficient 

that parameters,bks at ith instant,must satisfy the condition, 

(F .8) 

Thus if any of the bk violate Equation (F.8), then it is known that 

there are roots outside the unit circle, i.e., predictor is unstable •. 

At this stage we can attempt to correct the stability in the following 

manner: After each bk is calculated, its absolute value is compared 

to 1. If ibki~l.O, the algorithm proceeds to calculate the next co­

efficients. If ibki>l, coefficients are restricted to sgn(O.98,b
k
), 

then we can use inverse recursion formula in order to obtain predictor 

ff .• (26). 
coe 1C1ents, 1.e., 

a. = b 
K,k k 

(F.9) 

where l~j~k-l and (F.9) is being solved for k=1,2 •.•• ,N and with the 

final value of ~s being defined by Equation (F.6). All the procedure 

described here is defined by the following subroutines (LIST 4). 
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LIST 4 

CCE DATE 27. 81 . 1982 . T If1E 89.' t16 

C 
C 
C NRIN PROGRAN 
C N=ORDER OF THE PREDICTOR 

- 1 -

C ARU'>=RRRR~' FOR IN~'ERSE PREDICTOR COEFFICIENTS 
C AU)= RRRA~' FOR PREOICTOR COEFFICIENTS 
C RCU)=ARRR~' FOR PARCOR COEFFICIENTS 
C AAU)=ARRR~' FOR PREDICTOR COEFFICIENTS AFTER 
C STA8ILI n' CORRECTION PROCESS 
C 
C . c. 

RRd)=1.80· 
CoL? 1 .r=2 .. N+:1. 
AR<I)=-Rf.r-1 .> 

1 CONTINUE 
CRLL REFLECfRR .. RC, N.> 
CALL REFLECTfRC, RRR, N) 
DO 2 .r=1,N 
AA <I) =-ARR f ,T + 1) 

2 CONTINUE 

C 
C 

CRLL EXIT 
END 

C SUBROUTINE REFLEC CONI"ERTS RRay S INTO RCU)' S 
C INVERSE PREDICTOR COEFFICIENTS INTO PARCO/i' COEF. 
C 
c 

SUBROUTINE REFLECfAR, RC, N) 
OINENSION RN18), RC(18), BX(2M 
N=2 
I1P1=N+1 
ALPHR=1. 8 
DO 38 .r6=1,N 
I'IR=N+1-,T6 
I1RP1=I'IR+1 
D=l. 8-RR(NPRl HRR(JIIPRV 
ALPHR=RLPHRlD 
DO HI K=1, I1R 
1111=I'IR+2-K 

18 BXCK'>=RRfI'lH) 
DO 28 K=1,I'IR 

28 RR(K )=(RROO -RR01RP1 >*B}(fl\".> .)/D 
RC(NR)=RRCI'IPR1) 

38 CONTINUE 
DO 41:1 IK=L N 

48 IFCRBSCRCCIIO). GE. 1. 8) RCfIK)=SIGNftl. 9SSS, RCCIIO) 
RErUm 
END 
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c 
c 
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- 2 -

C SUBROUTINE REFLECT CONVERrs Rca.)'S INTO fiRR<.TYS 
C PRRCOR COEFFICIENrs INro CORRECTED INVERSE FILrER COEF. 
C 
C 

SU8ROUTINE REFLECHRC, fiRR, N.) 
OIf'lENSION RCU.8), fiRRCHI.), 8fU28) 
RRR("1)=l. t18 
fiRN2)=RC(1) 
00 38 f'lINC=2,N 
DO Hl ,T28=1 .. 1'1I NC 
,T8=f'I I NC-,T28+1, 

18 8R<.T28'> =RRR (J8.> 
DO 2tl IP=2,1'IINC 

28 RRRCIP)=RRRCIP)+RCCf'lINC)*8R("IP-1) 
ARRCf'lINC+l)=RCCf'lINC) 

38 CONTINUE 
RETURN 
END 

- END 
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APPENDIX G 

DURBIN I S SEQUENTIAL ALGORITHM 

For the autocorrelation method, the matrix equation for obtaining 

the predictor coefficients (see Equation (3.17» is of the form, 

c = 
r 

where C is the rth autocorrelation function. 
r 

The most efficient method for solving Toeplitz autocorrelation 

. •. b· I • d (11,28) . matr1x equat10ns 1S Dur 1n s recurS1ve proce ure wh1ch can be 

stated as follows: 

where l:ik~N 

~,k 

where l=;j=;k-l 

= b 
k 

(G. 1) 

(G.2) 

(G.3) 

(G.4) 

(G.5) 

Once Equations (G.l)-(G.5) are solved recursively for k=1,2, ••• ,N 

and the final solution is given as 

a. = 8. N ' l~j~N 
J J, 

(G.6) 

where a. N is the jth predictor coefficient for a predictor of order 
J, 

N. 



368 

In order to illustrate the above procedure, consider an example 

of obtaining the predictor coefficients for a predictor of order 3. 

The original matrix equation is defined as, 

Co Cl Cz a
l Cl 

Cl Co Cl a Z = Cz (G.7) 

Cz Cl Co a 3 C3J 

Using Equations (G.l)-(G.6) we obtain: 

STEP 1: E = 
0 Co 

(i) b
l = Cl/EO = C/Co 

(H) 

(Hi) 

al,l = b 
CZ_CZ 1 

Z o 1 E = (l-bl)EO 
= 

1 Co 

STEP Z: (i) bZ = [CZ-al,lCll/El 

Z 
CZCo -Cl 

= . 2 2 
CO-Cl 

(H) aZ,Z = bZ 

al,Z = al,l-bZal,l 

COCI-CIC Z = 
CZ_CZ 
o 1 

(Hi) 
Z 

E = (l-bZ)El Z 

STEP 3: (i) 

(H) a 3,3 = b 
3 

a l ,3 = a l 2-b3aZ Z , , 

aZ,3 = aZ Z-b 3a l Z , , 

(Hi) E = 
3 

. Z 
(l-b 3)EZ• 
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Hence, the 3rd-order predictor coefficients are defined as 

= 

The number of multiplications/additions required per block size of 

W, for obtaining N prediction coefficients are also considered. Assuming 

that the division is computationally equivalent to two multiplications, 

the whole process can be summarized as shown in Table G.l. 

FUNCTION MULTIPLICATIONS ADDITIONS 

C = ~i W W-l 
0 i=l 1 

Cl W-l W-2 

C2 W-2 W-3 

CN W-N W-(N+l) 

TOTAL 1 ! (N+ 1) (2W-Nj i(N+l) [2W-(N+2)] 

From the above 
example for N=3: 
STEP 1: (i) 2 0 

(H) 0 0 
(iii) 3 1 

STEP 2: (i) 3 1 
(H) 1 1 
(Hi) 3 1 

STEP 3: (i) 4 2 
(H) 2 2 
(iii) 3 1 

STEP N: (i) N+l N-l 
(H) N-l N-l 
(Hi) 3 1 

TOTAL 2 N
2

+4N N
2 

TOTAL 1 + TOTAL 2 ![N
2
+(7+2W)N+2W] ![N

2
+(2W-3)N+2W-2] 

TABLE G.l: Computational requirement per block of W samples for 
calculation of N prediction coefficients from Durbin's 
algorithm 
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THES I S1 DRTE.15. 8]. .19S2 T 1/'IE 16: 85 

c 
c 
C PROGRAnS FOR 
C DF'C/'I-RaF-FFOF' 
C DPCI'1-AGF-F50P 
C FBADPcn-AOF 
C RDPCn-AGF-CSP(4)-FSOP 
c 
C 

II1PLICIT INTEGEF..'*4(J-N.),REAU8(A-H, o-z> 

- .1 -

DUTENSION X("Z56}., C(5), [[,(5), MS.), B( 2t1), 56!. (if!.>:, Ri (5.) 
DII'IENSION 5NRH2ftti)., DBS<"28ft), kK(1.8,1, CT<2tiL'1) 

C 
C 8 VRLUES CORF:ESPOND TO POWER LHELS OF INF'UT SF'EECH SIGNRL 
C 

c 

B(1.)=2tl[1. 8 
B(2 )=250. 8 

C In ~'RLUES CORRESPONC' TO DIFFERENT ENCODERS Ut=!. IS FOR FIXEfo 
C SECOND ORDER PREDICTOR, 11'1=2 15 FOR FOF.."l-IAF:D BLOCK RC,APTH'E 
C PREDICTOR WHILE In:1- IS FOR SWITCHED PREDICTOR 
C 
C 5~'5TEn PRRAnETER5 ARE AS FOLLOfI5: 
C RQJ,.=fJUFtNTIZER OF'TII'11Z!NG COEFFICIENT 
C R{{1 IS 1.8.,8.5('1, e. J3 FOR 2.,],4 BIT5/SA.'1PLE GUANTIlATION 
C AQ2=NAXIt1UN aUANTI lEF.' INPUT RRNGE CONSTANT 
C Rf12 IS 1.8,3. €I ANC' 7. fr FOR 2.,] ANC' 4 BITS/SR.'1F'LE aLlANTIlRTION 
C L.1 AND L2 CORRESPONC' TO POWER Ln'EL 
C NB IS THE TOTAL NUH8ER OF BLOCt:S EACH HR~'ING 2:'t~ SANF'LES 
C LK1, LKZ ARE THE ~'ALUES OF 1/'1, ~'AF.'IES 8ETf/EEN 1. ANC' ] 
C If'1=FOR Fsop,In=2 FOR FBR ,HI=] FOR SflITCHEC' FIXED., CSP(4)-FSOP 
C 

REAM1., .)/1(,11., Aa2., U .. L2, NB, U;L LK2 
DO 26 U/=U.L LK2 
C'O 25 K=L1., L2 
DO 1 J=.1,8 

1 R(J)=8. 88 
C8=8. EtEt 
ER8=t1. t1t1 
XO=l~. Ettlti 
CIO 21. INC=1, NB 
REAM5, ot:)(X(J), .T=l., 256.) 
C1=8.8 
ERR1.=ll. 8 
KP,=l 
I<RF.'=25£ 
CALL CORRE(X, KR, KRR, C, CT, INC> 
CALL DUF:BIN<C,. R!> 
RUTO=CT( INO 
KRR=KRF.'+J 



THE5151 (CONT.) 

YI1=ti . El . 
DO 3 11:."=1,256 
1FdK-1)J, J; 2 

2 RR1=X( 110-8. 864*XnK-J.) 
RR=RR1/E:iK> 
~'/'I=~'/'I+RR*RR 

3 CONTINUE 
Y,.,=W>f/256. tl 
W1=C'SaF.:T( Y"'.> 
Z12=AC'1. *~'N 
CALL TRANSfZ12 .. ST.. KK) 
22=5T 

. Z1.=A02~-ST 
IF (J1'1-2'> 4 .. 13 .. 5 

4 R1.<1.>=1 515 
AH2)=-O. 752 
GO TO 13 
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5 1F<"AUTO. BT. El. 7L18fl) GO TO 6 
GO TO 7 

6 R1(1.>=1. 52]: 
A1(2)=-8.728 
GO TO 13 

7 1F(F/UTO. LE. 8. 7£113. ANt,. AUTO. GT. ti. 488'> GO TO 8 
GO TO 9 

.8 A1.(1)=tl. 95tl 
A1.(2)=-fl. 3458 
GO TO H 

- 2 -

9 1F(AUTO. LE. El. 4 tie. ANC'. AUTO. GT. B. 80fl.> GO TO 1£1 
GO TO 1.1. 

18 A1(1)=8.4938 
A1.(2)=-f/. 2111 
GO TO 13 

.1.1.. IF(F/UTO. LE. 8. fiL1l1) GO TO 12 
GO TO 13 

12 A1(1.)=-8: 6311. 
A1(2)=-f/. J622 

13 DO 2f1 J=K"R, KRR 
Y=.!i( ,r) 
Y=~'/B(K.) 

N22=2 
NC=N22-1 

c 
C FOR FFOP THE FOLLOWING CONNTION5 ARE REPLACEC' 8~' 
C IF<"1NC-1>14, 14, 14 AND 1F(J-N22H5, 15, 15 
C 

1F(INC-J.)14, 14 .. 17 
14 IF <.r-N22>J. 5, 15, 17. 
15 ~'Y=~'-8. 864*,1(0 

CALL O(W, Y1, Z1, Z2, INMC) 
XO=8. 864·*XO+Y1 



THE5151 (CONT.) 

><OO='r'-XO 
CALL FIL T(;':OO, ~'5 .. fI.) 
C.1 =C.1 H'*~' 
ERF.:1 =ERR1 4o'r'5""~'5 
CB=CB4o~'*\' 
ER8=ERB4o\'5*~'5 
DO 16 11=1.. .• NC 
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561 (N22401-1.1)=S61 (N22-] 1) 
.16 56i (.1)=XO 

GO TO 20 
1..? EST=tl. tl£r 

00 18 11=1 .. N22 
.18 EST=EST4oS61< 11 ).A:1.< Ii.> 

~'~'=~'-E5T 
CALL OO'~', 'r'1 .. :::.1, 22 .. INDIC) 
XO=E5T 4o'r'1 
XOO=~'-XO 
CALL FILT(XOD, ~'5, fI.) 
C1 =C1 + 'r'*~' 
ERR1=EI':F,'1 4o~'5*~'5 
C8=CBH'H' 
ERB=ERB4o\'5*'r'5 
[iD .19 11=1.· NC 
561 (N22+1 -1!)=5G1.. (N22-11.> 

19 561<1..)=,1(0 
2€1 CONTINUE 

P1=C1/EI':R1 
P3=C1/256. l.I 
SNR1f1NC}=1..t1.8*C'LOG1..tl(P1.> 
DBS CINC> =1.. 8. 8*OLDG1B(P3:.> 

21 CONTINUE 
SNRE=fJ. 80 . 
DB51 =L'l. 8tl 
DO 22 .rt.:=1.. .. NS 
5NRE=5.'o1RE4oSNR1..<'JK'.I 
['SS 1=['851 +OB5 (.71<:> 

22 CONTINUE 
8NN=FLOAT<N8.> 
SNRSEG=5NRE./BNN 
C'SS 1 =OB51 /BI-I.'oI 
5NF,·T=18. 8"C·LOG:J.t1<' CB/ERE:.> 
BN=NB,'256 
P1..€I=CB/BN 
OSST=;! 8. 8*DLOG1..t:h'F'1tl) 
I.JRITE(1, 23.>5NRSE6 .• 5NF.:T 

_ .. --' 

23 FOltNATf1H ." / SNRSEG=I°,J F1..2. 4.J 5.\' .. / SNRT=",J F12. 4) 
UR HE (1" 24> DBS J, D8ST 

24 FORnRT<1..H .• 'DB51 =' .. F12.4,5X .• 'DE:ST=',F1..2.4) 
REIUND 5 . 

25 CONTINUE 



THESIS1 (CONT.) 

26 CONTINUE 

C 

CALL EXIT 
ENC-
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- 4 -

C THIS SUBROUTINE CALCULATES AUTOCOF-'F:£LATION COEFFICIENTS 
C 

SUBF.·OUTINE CORRE(X .. t:F: .. {(RF.:, C, CL INC.) 
IMPLICIT INTEGER,""4( I-N), REFtL"'e(A-H, o-z.) 
DIMENSION X(256) .. C(5), CT(288), CM5.\ 
DO 2 ,T=i.. J 
Cl =13. fl8 
f.O 1 K=I~'R, F:.RI\· 
Ai = ..... ( /() "'X(;; +,T-j'> 
Ci =Ci +Al 

i CONTINUE 
C(,T)=Cl 
CU)=C(J)/256. 0 
KF.:R=KRF:- j 

2 CONTINUE 
8=((i.> 
PO ] J=j,] 

CP( ,T)=C (,T.>/8 
J CONTINUE 

CTdNC)=CD<Z) 
c 
C CN2) IS THE FIRST SHIFT FtUTOCCtF.:F.:ELATION COEFFICIENT 
C 

C 

RETURN 
ENP 

. C THIS SUBPOUTINE £'If'LtWS DUFBurs 5EOUENTlAL ALGORITHN FOR 
C CONPUTING NTH. Of·f.-ER PF.:£VICTOF.: COEFFICIENTS PER 256 SAflPLE5 
C 

SU8ROUTINE DUF.:81N(C .. Ai.> 
INf'LICIT INTEGEf'~'4d-N,), I\·EAL"'B(A-H .. 0-2> 
DINENSION AH5), ALPHA(5, 5.>, fee), AI (e), U5) 
N=2 
£('1..>=C(1) 
AI (1 )=C( 2 )/C(1'> 
ALPHA(1., ii=A1('1.) 
£(2)=(1. 8-RI<'V"BHV.»I£(1) 
DO ]ti 1=2, N 
A I<' [) =ti. 80 
IM1'I=I-i 
DO HI J=1.. I f1N 

10 RI(n=AHI>+ALF'HR(J,1-l>*C(I-J+V 
RI( I )=(C( 1+i.>-RI< I »/£( I) 
RLPHFI(,[, J) =RI<' I> 
C'O 28 J=l, um 

20 RLPHFI(J, V=ftLPHA(J.. I-i)-ftI<I>"'ftLF'HAi'I-J, 1-1.\ 
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- s -

THESIS1 (CONT.) 

E<'1+1)=<1. 8ft-RI <'1 )*RI n »"'E( I) 
38 CONTINUE 

DO 48 J=1 .. N. 
4tl R1U)=RLPHR<'J,N) 

RETURN 
C 
C 
C THIS SUBROUTINE ENCODES QURNTI ZER STEP SIZE RT 8 BITS 
C 

SU8ROUTINE TRRNS(z12, ST, K!;) 
INFLICIT INTEGER*4i' I-N), F:EftU"E:(ft-H, D-Z) 
D It1ENS ION I<'r: (18.> 
DEL =0. 6(,1]87513 
DO 2 1=1..256 
FI=I 
IF(Z12-(DEL*FI»1,2,2 

1 GO TO 3 
2 CONTINUE 
3 Z22=DEU<'FI-8. 5'> 

N=Z22/DEL 
KK('1)=N/128 

C 
C 

IF(AK(1). NE. 0) N=II-128 
KI(2.>=N/64 
IF(KK<'2'>. NE. /3.> N=N-64 
KI(3'>=N/J2 
IF <' 1<'1\' (7.). NE. 8) N=N-32 
KK(4)=N/16 
IF(KK(4.>. NE. t1) N=N-16 
KK(5)=N.···S 
IF(KK(S). NE. (I) N=N-8 
I<'k' (' 15.) =N/4 
IF(KK(6). NE. (I.> N=N-4 
1<'/<.·(1')=N ..... 2 
IF(I<K(n. NE. D'> N=N-2 
KK(S,l=N 
~'2=12e*KK( 1) +/:74#X<'2 )+32"KKcn +16*KK( 4) + 8*KK ( 5) + 4*I(K ( 6) 

1 +2 .. I<.K( 7>+I<'K( 8'> 
5T=(~·2+D. S)"'DEL 
RE TUF:N 

C THIS SUBROUTINE .rUST QURNTIZES THE INPUT Ef:F.:OR SRnPLE 
C 

SUBROUTINE Q(X1,,Ii, Z1, Z2 .. INNC) 
InPLI CIT INTEGER",4 (I-N), REftL*8< R-H, 0-2) 
INDIC=EI 
'r'=Z1 
/'/1='r'+Z2 
/./=-/./1 
23=22/2. 8 
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THESIS1 (CONT.) 

IFO(1-n1 .• 9 .. 9 
1 IF(X1H')1.8, 1tl .. 2 
2 IF(X1.)], 1.1., 6 
3 IF(Y,1-W-Z2>1.2 .• 12,4 
4 IF(Xl-W-Z2-8. ffOtl&1>1.2, 12 .. S 
S /01=101+22 

GO TO ] 
6 IF(Xl-1J1+Z2.) 7 .. iJ, 13 
1 IF(Y,1-I·JJ..+Z2+l~. 8t1l~01.)S, H, 13 
8 W1=I.J1-Z2 

GO TO 6 
9 INMC=J.. 

GO TO J..]: 
J..O I NDI C=J.. 

GO TO 12 
1J..X=ZJ 

GO TO 14 
12 . X=Il/+Zl 

GO TO 14 
13 x=m-Z]. 
14 CONTI HUE 

RETURN 
ENP 

,~ ,. 

- 6 -

C THIS SUBROUTINE FIL TERS THE OUTF'UT EF.:P.OP. SAf>1F'L£ AN£! IT IS 
C D£5IG~IED FOR erz SAf>1F'LING FF.:EOUENO' RN!> J. 4KHZ CUT-OFF 
C 

SU8ROUTINE FIL T(~'~'P~' .. ~'OUTJ.. AF.> 
INPLICIT INTEGER*4( I-N), RERL*8<"R-H, O-Z> 
DINENSION AF<"8.) 
~,~,~,~,=~,~,~,~"I'ti. 294ti 
HOLL=~'~'~'~'-d. 6]?l~2>tRF(1.)+8. S]:721>1'AF(2'» 
YOUT=HOLL +2. l'h-RFd HRF( 2) 
AF(2)=AFU) 
AFU)=HOLL 
HOLL1=~'OUT-U.. 42Jf1S.:AFG)+tl. 59716*FtF(4.» 
~'OUTj=HDLLJ..+2. ft*AFG)+AF(4) 
RF(4)=AFG) 
AFG.)=HDLL:J. 
HOLL2=~'OUT1-(1. 293e:7*RF(S)+8. 4S!9].·FtF(6n 
YOUT2=HOLL2+2. &*AF (5) +RF( 6.> 
AF(6J=RF(S> 
AF (5.> =HOLL 2 
HOLLJ=~'OLlT2-(J... 23380*AF(7)+8. ]8]8].RF(8n 
YOUTJ=HOLL3+2. l~.AF(7)+AF(8> 
AF(S)=AF<7.> 
AF(n=HOLLJ 
RETUF:N 
EN!> 

- ENP -
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C 
C 
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TII1E 16: 16 

C SGEP OR C5F'<4'>-SGEF' WITH DPCI1-AOF 
C 
c 

INPL ICIT I NTEG£R*4 ( I -N), REAL *S( A-H .. O-Z) 

- 1 -

DINEN5ION ;;(2S6'> .. C(S.I, CMS'>, MM .. 8(2(0 .. SGHiti.> .. AHS'> 
DINEIJSION SNF:l (26t'l.~, [,eS(2f1fl) .. KK<1fO .. CH2BB.> 
DINEN5IOfi ~'BRF1 (5), Uh5) 

C 
C El \.'ALUES COF:F:ESPON[, TO POiJER LEI"EL5 OF INPUT S'PEECH 
c 

c 
8 (j.> =200. ti 

. 8(2'>=2S(I. tl 

C I/'I \.'ALUES COF:RESPONf.' TO [JJ FFEF.:ENT ENCODEF.:S HI=l IS FOR N22 
C ORDER SGEP J.lHILE m=2 FOF: SNITCHED SGEP 
C 
C M1 =1. £I .. 8. St., 8. JJ FOP 2 .. J: .. 4 BITS QL/ANT! ZER 
C M2=1. 0 .. J. 0 .. 7. 8 FOF: 2 .• J .. 4 8ITS aUANTI ZEF: 
C N8=TOTAL NUNBER OF SPEECH BLOCKS 
C LK1 ANO LK2 COF'F:E5PONO TO H'PE OF S~'STEm 111'> 
C 8B8 .. Pr, ree .. "'7 RF:E SGEP A[,RF'TATI ON C'ONSTRNTS 
c 

RERDd .. ")R01, R02, Lt .. L2, NB, Lt::1 .. LK2, 888 
DO 30 IN=LU .. Lt::2 
00 29 K=Lt .. L2 
I TH/<.:=ti 
P7=5. l'I 
P5GEP=S. ti 
P7?=P7-1. 8 
P88:F'77/P7 
R7=i l'I. l'I 
DO :1. J=:1.. 8 

1. R(J)=t1. t:1t:; 
N22=2 
CB=tl. t:1ti 
ERB=t:1. tifl 
XO=l'I. f'ttiti 
DO 2 N=1 .. N22 
CNUO=:!. l:;ti/(R7*(N~'*<'1. tilI/P7».> 

2 CONTINUE 
R1(1.,)=(,. 947 
RH2}=tl. tifltl 
£I025INC=:1.,NB 
RERMS .. *i(X(J.>. J=l .. 256) 
C1=f1. t1 
ERRi=l'l. 8 
I<'R=i 
~:RR=256 
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THE5I52 (CONT. > 

CALL CORF:E<X, KR, I<RR .. C, CT, INO 
RUTO=CH INO 
I<'RR=I<RR+ 3 
W'1=8.8 
CoL1 4 IK=1, 256 
IF( IK-1.) 4, 4, 3 

3 RR1=X<IK>-€l. 864*.1<:( IK-1.> 
RR=RF:1.I'8<'K) 
~'/'1=W1+F.·F:·~RR 

4 CONTINUE 

5 
6 

7 

8 
9 

.18 

.1.1 

.12 

W'I=W//256. tl 
~'/'1=r'Sc!RT<' ~'/'1) 
Z12=fW1. ... Wi 
CALL TRAN5<'Z1.2 .. Sf, KK.) 
Z2=5T 
5N:~:T/At?1. 
SNN=5N~-SN 
PWP=5NN+888 
PDP=P5GEP/PClC<C< 
Z1=A02*ST 
IF( m-vu, 16 .. 5 
IF(AUTO-8. 700'>8 .. 8 .. 6 
ITH=1 
IF([TH-ITHK.> 7 .. 16 .. 7 
A1. (1.)=1.. 523 
Ai (2)=-tl 72(1 
GO TO 1.6 
IF(AUTO-8. 4tlt1> 1.1.., 1.1 .. 9 
ITH=2 
IF( ITH- ITHKH8 .. 1.£, HI 
A1.<i>=t1. 95tl 
A1 <'2)=-8. 3450 
GO TO 16 
IF(AUTO-€l. 8tlfl.)1.4, 14 .. 12 
ITH=] 
IF(ITH-ITHK)H .. 1.6,H 
A1.<i>=8. 4938 
AH2>=-ff. 218 
GO TO .16 
ITH=4 
IF( ITH-ITHI0.15, 1.6,.15 

.15 Al(.1)=-8.6311 
A.1<'.1)=-8. 3622 

.16 DO 24 J=KR, /('RR 
Y=X("l> 
Y=Y /8 (10 
N22=2 
IF( INC-V.17, 17, 28 

.17 IF<.T-N22-.1>.18, 1.8 .. 28 

.18 ~'Y=~'-8. 864".';0 

- 2 -

• 
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- ? --' 

THESI52 (CONT.) 

28 

21 

22 

23 

25 

26 

CRLL QO'~', ~'1 .. Z1, Z2 .. INNC) 
XO=fl. 864*'XOH'1 
XOO=~'-.".·O 
CRLL FIL T(XDO, ~'5, R) 
C1=C1H'*Y 
ERR1=ERR1+~'5*~'5 
C8=CE:+~'*Y 
ERB=ERBH'5*~'5 
DO 19 11=1 .. N22 
561 fN22+2- 11.>=561 (N22+i -11) 
CONTINUE 
S61<'1.>=XO 
60 TO 24 
E=SG1 (1)-Ri (1}·.,.S61 (2)-A1 (2.)~S61 G'> 
DO 21 K2=1 .. N22 
EI=CNfK2 >~-S61 (K2+1) 
E1=E-EI 
E2=E+EI 
'r'BRR'1 (K2 >=f..AB5(E1)-C<ABS(E2.> 
DO 22 kT=!' N22 
RO=(KT>**(P8S.> 
Ri (KD=R1<I<T)-(R7/18. 8) *(1. t'}/Rc.>.'~'E:ARi(KTh·(PDD> 
CONTINUE 
E5T=Ai (1)*S61 (1)+R1 (2.>*561 (2) 
'r''r'='t'-EST 
CALL on'Y, 't'1, Zj, Z2 .. INVIC> 
XO=EST+'r'1 
XOO='r'-xo 
CRLL FIL TO{OO .. 115, R) 
C1 =Ci + 'r'*'r' 
ERR1 =ERR1 + ~'5*1I5 
CB=C8+'r'H' 
ERB=ERBH'S*'r'5 
DO 2?- 11=1, N22 
S61 (N22+2-11 .>=S61 (N22+1-I1> 
CONTINUE 
S61 (1.>= .... ·0 
CONTINUE 
P 1 =C1 /E{;:R1 
P3=C1/256. £I 
5NRH INO =1 ft. ft*C'L061t"l(F'1) 
D85( INO =1 f1. thDL061t1(PJ) 
ITHK=ITH 
CONTINUE 
SNRE=t1. lItl 
DB5I=L't. fltl 
DO 26 ,1/('=1., NB 
SNRE=SNR-E+SNR1 (,1K) 
DB5I=f'B5I+DBS(JIO 
CONTINUE 



379 

- <4 -

THES1S2 (CONT.) 

BN=FLORT(NB) 
SNRSEG=SNRE/BN 
DBSI=OBS1/BN 
SNRT=i 8. 8*DL OG18 (CB/ERE:.> 
BNN=NB~:256 
Pi8=CB/BNN 
DBST=ili. 8*PLOGt8fPi8> 
Wf;:ITE(i, 27>SNPSEG .. SNRT 

21 FORnRT(iH , 'SNRSEG=", Fi2. 4 .. 51<, 'SNRT=', F12. 4) 
WRITE(i, 28)[0851, peST 

28 FORf1RT<tH ,'OB51 =", Fi2. 4 .. 51<, '{Jf:5T=', F12. 4) 
RE/UNO 5 

29 CONTINUE 
38 CONTINUE 

C 

CRLL EXIT 
ENC· 

C THE SUE:f;:OUTINES RF."E THE SAnE AS BEFORE 
C (SEE Pf;:OGRRN TH£SIS1.> 
C 

- ENP 

. , 
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