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SYNOPSIS

Differential pulse-code modulation (DPCM) is an efficient digitization
technique for encoding speech signals. The two principal components of
a DPCM system are the quantizer and the predictor, either or both of
which can be adaptive. This thesis describes the investigation of
various differential pulse-code modulation systems. Initially, fixed,
z.e. time—invariant, predictors using long-term signal statistics of the
speech signal are examined. The performance éf such a predictor in a
DPCM system having a fized quantizer is studied. Then by replacing the
fized predictor with one whose coefficients are caleulated at fixed time
intervals, the performance of the encoder, in terms of signal to noise
ratio (SNR), is improved by 3-5 dB. A further improvement of 2-3 dB in
SNR is obtained when an adaptive quantizer is used in the DPCM system.
However, the block adaptive predictor requires the transmission of
prediction coefficients to the receiving end at the expense of an increase

in the chamel bandwidth.

In general,'gradient prediction techniques update their coefficients
every sampling instant using preceeding speech samples and thus the
transmission of side imformation is avoided. The Stochastic Approximation
gradient predictor (SAP) technique is analysed and. the adaptation rate of
its prediction coefficients is shown to be inadequate to follow fast

variations in the statistics of a speech signal. ..

In order to obtain faster convergence to the optimum coefficient

values, a novel technique called the Sequential Gradient Estimation
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Predictor (SGEP) has been devised and thoroughly investigated. The

advantage of the SGEP over SAP is illustrated by computer simulation and
it 18 shown that an improﬁement of approximately 3 dB in SNR is obtained.
Also the ability of SGEP to work efficiently with fewer coefficients is

demonstrated.

SGEP and SAP are subsequently employed in DPCM syetems using both
fized and adaptive quantizers. Although, SGEP performs approximately 3-4
dB better than SAP for wide range of transmission bit rates, both provide
substantial improvement compared with linear DPCM having a leaky

integrator in the feedback loop.

The performance of the SGEP and the SAP algorithms is alsc examined
when a forward block adaptive quantizer (AQF) is employed in the DPCM
system and the advantage of SGEP over SAP is shown to be 2-3 dB. Further-
move, the encoding effieiency of the above DPCM systems is investigated
in the presence of channel errors. For a wide range of transmission bit-
error rates, the increased tolerance to noise of SGEP compared with SAP

18 demonstrated.

Finally, a correlation switched predictor (CSP) having two co-
efficients is described for use in a DPCM-AQF codec. This predictor
divides the range of the correlation coefficient of the speech signal
into zones, and as the correlation coeffieient changes zones the predictor
coefficients wndergo a substantial modification. By thigs method the
adaptatioﬁ rate of the predictor is improved, particularly during‘

transitions between wnvoiced and voiced sounds.
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CHAPTER I

DIGITAL SPEECH COMMUNICATIONS -

THESIS OVERVIEW




1.1 BACKGROUND

There are various forms of communication that appear to exist
between animals but, only in human beings has this developed into
"speech" which is possibly the most valuable attribute that man possesses.
Although, manual signals, i.e., movements of the features and the limbs
play an important role in the process of communication, these are
considered secondary to speech. Manual signals alone are insufficient
to illustrate abstract notions hence, only through speech we can convey
intelligible arguments and information that is not easily reproducible

by other forms of communication.

(1)

A principle of "speaking clearly" exists in all sorts of speech
communication. It involves, a) choosing words which convey the message
without the need for further explanation, b) presenting information in a
logical order so that the listener may follow what is being said without

ambiguity and c¢) making the sound of speech loud enough so that words

are audible to the listener.

There is a limit to the volume of sound waves the human vocal
apparatus can produce and correspondingly, the distance is restricted
to that over which the acoustic transmission is audible. Even ancient
man had supplemented acoustic transmission of messages by using fire,

(2)

smoke and flags.

During the man's technological development of communication, he
learnt about the phenomenon of electric current. This led to the

invention of the telephone, the first electrical system for the trans-



mission of speech signals over a long distance. The telephone employs
electro-acoustical transducers which can convert an acoustic signal to
an electrical one or vice versa. Thus, the acoustic speech signal,
after being converted into an electrical form, is transmitted to the
receiver where it is converted back to its acoustical form. The geal
to be achieved by such a system is the accurate reproduction of the

speech signal, at the output of the receiver, in a cost effective way.

Several modulation techniques have been developed in an effort to
produce the "efficient' communication system. In general, the
communication systems are divided into two groups, that is, analogue

(3)

and digital systems. Analogue transmission systems require to be
R I -

linear since any non-linearity causes distortion. A digital system does

i

nof-ﬁeed to be linear as the signal only consists of a number of discrete
levels. In addition, the recent evolution of the semi-con&uctor
technology from transistors to microprocessors has made digital sfstems
much more preferable to analogue ones. Digital communication systems

are extensively used today by several countries around the world in

commercial telephony and in military and law enforcement applications.

Examples of modern digital communication systems include,
a) Digital transmission of telephone speech signals where 30 different
speech conversations are simultaneously transmitted using time division
multiplexing (TDM) and Pulse Code Modulation (PCM) methods, at a trans-
mission rate of 2.048 Mbits/sec, b) Digital transmission of television
signals where PCM is used for the analogue to digital conversion and

(4)

the transmission bit rate is approximately 120 Mbits/sec.

1]



1.2 DIGITAL SPEECH COMMUNICATION

Before presenting organization of this thesis and the summary of
the main results, it is worthwhile to pause and recap the main factors
in favour of digital speech systems over analogue ones. They are as
follows55-9)

1. 1In digital speech communication, the information is transmitted
over long distances without degradation of the speech quality.
This occurs because digital signals can be regenerated, i.e.,
retimed and reshaped along the transmission path. In contrast,
analogue transmission systems tend to accumulate noise and
other impairments with distance.

2, Digital terminals are cheaper fhan analogue ones, i.e., cheaper
filters and time~shared digital circuitry.

3. An easy way of multiplexing and demultiplexing signals is
always required by a flexible speech communication system.
Digital methods allow fhe TDM process to be applied in a simple
and economical way to telephone transmission lines. This is
in contrast with the frequency division multiplexing (FDM)
method in analogue transmission systems, where complex and
expensive filters are required.

4. Various types of signals which are encoded in a digital format
can be transmitted over the same channel. Therefore, signals
such as video, computer data and facsimile data can be handled
together with speech.

5. Digital signals are well-favoured by today's device technology.

Until recently, the transistor made digital transmission viable,



today Large Scale Integration? LSI, technique makes digital
switching attractive and resulfs in compact and economic
equipment. In addition the signal processing techniques, such
as bit-rate reduction methods and encryption are amenable to
digital device technology evolution,

6. Due to item (5), maintenance is simplified. In service
performances, monitoring is easy, protection switching and off-
line fault isolation are affordable.

7. Digital speech provides the possibility of voiced communication

with computers. Specifically, using speech recognition and

L

speech synthesis procedures, digitization terminals could enable
e

speech communication between the user and the computer.

All these factors recommend the digitization of speech and lead to

the investigation of new digitization methods. An efficient speech

(10)

digitizer is required to possess:

a) A good speech quality at a low transmission bit rate.

- b) A simple and therefore economical encoder and decoder design.
. [ W ™ o N —

c) Robustness to the transmission errors.

However, there is at present no way of satisfying the users with
all of these points, and in general, there must be a compromise between

the three conflicting requirements.

The relative importance of these attributes depends on the
application. 1In telephony, for example, quality and cost are the major
factors in the choice of digitizer while in military applications

intelligiblé speech quality at low-bit rates is often essential.



There are several methods for digitization of speech signals and
can be categorized into two main groups, namely: waveform digitizers

and parametric digitizers as shown in Figure 1.1.

DIGITIZATION OF SPEECH
SIGNALS

|

WAVEFORM DIGITIZERS PARAMETRIC DIGITIZERS

(VOCODERS)

FIGURE 1.1: Methods for Speech Digitization

The concepts used in waveform and parametric digitization are
very different. The parametric representation of speech signals, known
. . . (1) . . .
as analysis—synthesis (vocoder) coding, exploits certaln propertles
of the speech production mechanism. Such systems extract the perceptually

important features from the input speech and transmit them to the

receiver where a speech production model is used to synthesize the speech



signal. Consequently, any redundancy not affecting the perception is
removed. This leads to a dramatic reduction in transmission bit-rate,

although vocoders are highly complex and expensive systems.

On the other hand, waveform coding techniques attempt to preserve
the waveshape of the original signal. In this case, the speech signal
is sampled and each sample is encoded and transmitted. In contrast to

vocoders, waveform encoders are simple and inexpensive.




1.3 ORGANIZATION OF THESIS

The remaining chapters in this thesis are summarized as follows:

Chapter II is a brief review of various digital speech coding
techniques, It is felt necessar& to include this chapter in order to:
a) make the reader familiar both with the terminology'and the
most important techniques in the field of digital speech
coding.
b) establish the direction for the investigations presented in

the following chapters.

Firstly, the basic principles of analysis—synthesis techniques
are discussed briefly. Then, the attention is focussed on the waveform
coders where the main goal is to reproduce, at the output of the decoder,
the original analogue signal waveform as accurately as pos;ible. Pulse
Code Modulation, PCM, Differential Pulse Code Modulation, DPCHM, and

Delta Modulation, DM, are reviewed in some detail.

DPCM is the central theme in this thesis and the aim is to design
a relatively simple but, efficient DPCM speech digitizer. The
performanée of DPCM coders depend upon a) the estimation efficiency of
the prediction and b) the accuracy of the quantizer used in the system.
Adaptive quantization, as used in differential types of speech
digitizers, have been extensivelf studied and several algorithms have
been.proposed. The importance of the prediction process however, has
received less attention compared to quantizatioﬁ and it was felt that

our research efforts should be directed towards the development of novel




and efficient speech prediction algorithms.

Chapter III, establishes, in a simple way, the theory of prediction
and presents the existing estimation algorithms for the design of time-
invariant and block adaptivé predictors whose coefficients are calculated
at fixed time intervals. The behaviour of these predictors, incorporating
a DPCM having both time-invariant and adaptive quantizers, for trans-
mission bit-rates of 16-40 Kb/s, is observed. Further, the effect of

the channel errors on signal-to-noise ratio (SNR) values is examined.

Chapter IV introduces the concept of sequentially adaptive linear
predictors for speech signals and examines the performance of the
Stochastic Approximation Prediction, SAP, algorithm. Then a novel
sequentially adaptive algorithm called the "Sequential Gradient
Estimation Predictor, SGEP", is proposed. The superiority of SGEP over
the SAP is illustrated by waveforms and SNR performance curves. Then,
the mathematical analysis of the convergence of the prediction
coefficients is examined for SAP and SGEP. The convergence rate of
SGEP is proved, experimentally, to be faster than that of the SAP

algorithm.

Also, adapfive combinations of SGEP-SAP and SGEP-SGEP predictors
are introduced. Finally, the use of the SGEP algorithm is extended to
the case where additive acoustic noise in speech signals can be
reduced by adaptive noise cancellation, based on a reference noise

spource.

Chapter V examines the performance of DPCM systems employing the



predictors discussed in Chapter IV and presents computer simulation
results. The observation of SNR values reveals that DPCM coders with
both adaptive prediction and Jayant's adaptive quantization ADPCM~AQJ,
achieve significant improvement over the same coders having fixed
predictors, DPCM~AQJ. Further, sequentially adaptive prediction

schemes are used in DPCM coders, employing an (AQF) adaptive quantizer
with forward transmission of the step size, ADPCM-AQF. In order to
reduce the coder complexity only second order predictors are considered.
The segmented SNR, SNRSEG, is used as a performance measure. In
addition, the encoding efficiency of the above bPCM coder is investigated
in the presence of channel errors. For a wide range of transmission
bit-error rates, i.e., 16-40 Kb/s, the increased tolerance to noise of

SGEP compared with SAP is demonstrated.

Chapter VI starts with the concept of switched predictors, having
two coefficients, and describes their use in a ADPCM-AQF coder. These
predictors divide the range of the first correlation coefficients, Cy»
of the speech signal into zones, and as the correlation coefficient
changes zones the predictor coefficients undergo a substantial
modification. The use of correlation switched predictors, CSP, in
ADPCM-AQF, improves the performance, particularly when speech is
transgressing from unvoiced to voiced sounds. Experiments are carried

out when the range of correlation coefficient, c,, is divided into 4

1
zones, i.e., a 3rd-order CSP, is examined and then, the same idea 1is
extended to an 7 zones, i.e., 7th-order CSP system. Similar techniques

are used for SGEP, where the initial values of the adaptive prediction

coefficients are modified, every W samples, according to the value of
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correlation coefficient, cl, thereby facilitating & faster coefficient
convergence rate. The switched predictors are then used in ADPCM-AQF
and the SNRSEG results are presented and compared to DPCM having AQF,

but either fixed or block adaptive predictor.

Finally, the proposed DPCM coders are used for the encoding of
signals, obtained at the output of the voiced/unvoiced band switching,

VUBS, bandwidth compreséion systemglz)

In Chapter VII, the main results reported in the preceeding
sections are discussed. In addition, suggestions for future work are
given. Specifically, the SGEP algorithm can be used for pitch
extraction since the value of the prediction coefficient of a first
order SGEP increases sharply at the onset of each vocal excitation

pulse.

-

Also, the modelling of vocal tract, incorporating pole-zero
recursive filter, can be achieved by using a modified SGEP algorithm
to update the filter coefficients, such a pole—~zero filter will accurately

model any possible coupling between the vocal tract and the nasal cavity.

Furthermore, the algorithm of the second-order switched predictor,
presented in Chapter VI, can be extended to implement a higher-order

switched predictor.

The overall lay-out of the thesis is shown schematically in

Figure 1.2,
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1.4 SUMMARY OF THE MAIN RESULTS

The results obtained in this thesis are summarized as follows:

In Chapter III, initially, fixed, i.e., time-invariant, predictors
using long-term speech statistics are examined. The performance of such
a predictor in a DPCM system having a fixed quantizer is studied. When,
the fixed predictor is replaced with ; block adaptive predictor, the SNR
performance of fhe encoder, FBADPCM, is improved by 3-5 dB. A further
improvement of 2-3 dB in SNR, is obtained when an adaptive quantizer is

used in the DPCM system.,

In Chapter IV, the concept of sequentially adaptive linear prediction
is introduced. 1In contrast to block adaptive schemes, these predictors
update their coefficients sequentially using preceeding samples and thus
the transmission of prediction coefficients as a side inforﬁation is
avoided. The SNR performance of the SAP algorithm is compared with that
of the proposed SGEP technique. The advantage of the SGEP over SAP is
illustrated by computer éimulation and it is shown that an improvement
of approximately 3 dB in SNR is obtained. This is attributed to faster
convergence of the SGEP towards the "optimud' coefficients which are
obtained from the sliding-block autocorrelation predictor (SBAP). The
SBAP coefficients are derived using the autocorrelation method computed
over a length of W samples with the important exception that the analysis
window is shifted only by one sample every time the coefficients are

recalculated.

In Chapter V, SGEP and SAP subsequently employed in DPCM systems
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using either fixed or adaptive quantizers, ADPCM or ADPCM-AQJ, while

the input speech signal is band-limited to 3.4 kHz and sampled at

10 kHz. The system with SGEP performs approximately 3.4 dB better than
that with SAP for a transmission bit-rates of 16-40 Kb/s, and both
systems provide substantial improvement compared to encoder having leaky

integrator.

Then a DPCM coder having block adaptive quantization, AQF, with
forward transmission of step size and a two coefficients adaptive
predictor is examined. For a transmission rate of 40 Kb/s and a block
size of 256 speech samples, the ADPCM-AQF system using the SGEP algorithm
has SNRSEG gains of 3 and 9 dB coﬁpared to the same encoder, but with
the SAP and the leaky integrator, respectively. The dynamic range of
the ADPCM-AQF using SGEP for a SNRSEG of 35 dB is 30 dB. ADPCM-AQF-SGEP
has weaker dependence on block size than ADPCM-AQF-SAP and has a higher

SNRSEG over for bit error rates (BER) less than 0.17.

Also, the informal listening tests of the coders described here,
at transmission bit rates of 40 Kb/s and 30 Kb/s, reveal -the subjective
quality of the speech signal produced by DPCM-AQF-SGEP is superior
compared to that obtained from DPCM-AQF employing SAP, ADPCM-AQF-SAP,

or a leaky integrator, DPCM-AQF-FFOP.

Chapter VI is concerned with a novel DPCM-AQF system where the
predictors, both fixed and SGEP, are switched according to a simple
statistic of the speech signal to yield an improved performance. The
speech signal is band-limited to 3.4 kHz and sampled at 8 kHz. The

SNRSEG for the systems reveal the ADPCM-AQF-SGEP using 3rd-order CSP,
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i.e., ADPCM-AQF-CSP(4)-5GEP, has the highest SNRSEG irrespective of
the bit rate, but more important it has the best SNR during unvoiced/
voiced transitiomns. Typical gains are reflected in a 2 to 3.8 dB
improvement in SNRSEG for ADPCM-AQF when CSP associated with SGEP is
used, ADPCM-AQF-CSP{4)-SGEP, to compare with the second order fixed

predictor, DPCM-AQF-FSOP.
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2.1 TRANSMISSTON BIT-RATES IN SPEECH CODING

A continuum of transmission bit-rates for digitally encoded speech,
together with four zones of speech quality, is shown in Table 2.1.
These qualities are designated, broadcast (high fidelity)- commentary,
(13)

telephone toll, communications and synthetic. Also shown are the two

broad categories of speech digitizers: vocoders and waveform encoders.

For bit-rates 2 16 Kb/s, some waveform coders can produce toll-
quality speech, namely a quality assoéiated with analogue speech having
a bandwidth of 200-3400 Hz, SNR230 dB and a distortion <2%Z. For bit
rates above 64 Kb/s, it is possible to have SNR and harmonic distortion
characteristics of toll quality speech for wider bandwidth, typically
0-7 kHz, of input signal. Wheﬁ the bit-rate is below 16 Kb/s, the coders
provide communication quality speech. The recovered speech is
intelligible although there is a noticeable reduction in quality
compared to toll quality speech. Coders, specifically vocoders, at 4.8
Kb/s and below, produce an output speech which has lost its naturalness.
The speech has a tendency to sound machine-like, and speake% identification
may be difficult. This quality of speech is referred to as synthetic

quality.

The complexity of speech encoding systems tends to be a function
of the transmitted bit~rate. Consequently, waveform coders which
usually operate at higher bit-rates, tend to be less complex and less
expensive. Vocoders, on the other hand tend to be more complex and

costly.
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TYPE OF
CODING Kb/s QUALITY COMPLEXITY
[}
[ ]
[ ]
. BROADCAST
[}
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[ ]
[ ]
5 COMMENTARY
64
32
TELEPHONE
TOLL
WAVEFORM
CODING 24 MODERATE
16
9.6
COMMUNICATION GREAT
8 L
e
7.2
4.8
VOCODERS SYNTHETIC GREAT
2.4
1.0

TABLE 2.1: Spectrum of Bit-Rates and Qualities for Speech

pigitizers
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2.2 VOCODERS

Digital coding of speech signals using parametric representation
techniques is referred to as vocoders. In these techniques, parameters
based on a model. of the vocal mechanism and a simplest representation of
the auditory system are extracted from the speech signal, digitized, and
transmitted. Vocoders, except phase vocoders and voice—excited vocoders,
require excitation parameters; namely voiced/unvoiced decision, and pitch

10)

information (i.e., fundamental glottal frequency)g Excitation
information, together with the vocal tract model parameters are the
essential ingredients used in synthesising the speech signal. Before

quantifying the parameters, we pause briefly to consider the physiology

of the vocal mechanism.

A schematic diagram of the vocal tract is shown in Figure 2.152’14)

where the lungs, trachea, larynx, throat, nose and mouth contribute to
the production of speech. The vocal tract may be considered as an
approximation, to be an acoustical tube, between 15-17 cm in length,
having a uniform cross-sectional area that extends from the lips to the
vocal ciords. However, the motion of the lips, jaw, tongue and velum,
known as articulators, affect the structure of vocal tract. The nasal
tract and vocal tract couplings are controlled by the size of the
opening at the velum. The voiced sounds are associated with the
vibration of the Vocal chords, and unvoiced sounds result from
turbulent air flow through a constriction of the vocal tract. Both of
these sound sources have significant power over a wide range of audio

frequencies, but the spectrum of the radiated sound results from
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spectral shaping of these sources by the acoustic resonant system of the
vocal tract. The resulting sound, analysed over a time window of a
few tens of milliseconds, has either a periodic or random structure,

corresponding to voiced or unvoiced speech, respectively.

An important concept 'used in the parametric representation of speech
is the formant which corresponds to frequency values of major spectral
resonances associated with the peaks in the power spectral density
function. Telephonic speech, band-limited to 3.4 kHz has typically
1 f2 and f3. However, the location of such

frequencies depends on the variation of cross-sectional area of the vocal

three formant frequencies, f

tract resulting from the movement of the tongue and the position of jaw
along the vocal tract. For example, vowel /a/, as in "father", is
produced by opening the lips, moving the tongue etc., resulting in an

increase of the first formant frequency, f,. As another example, the

1
vowel /e/, as in "eve', is formed by moving the tongue forward and this
causes a reduction in fl. For the same vowel utterance, the formants

change from speaker to speaker and this has been studied in detail by

(15)

Peterson and Barney.

Approximating the voice production mechanism by a linear system£16)

as shown in Figure 2.2, enables the sound to be represented by the time
convolution of the excitation function e(t), and the iwmpulse response,

u {t), of the vocal tract filter, viz:

x(t) = u (t) * e(t) (2.1)

where * implies convolution.
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In the frequency domain, this convolution is equivalent to a
multiplication of the Fourier transforms of u (t) and e(t), such that

the spectrum of the speech signal can be represented as

X(w) = U (w).E(w) (2.2)

and whose magnitude is
IX() | = |u (W ].]|E(w) | (2.3)

Therefore, in the frequency domain, the term E(w) manifests as the
fine structure of X(w) while U (w) corresponds to the envelope of

X(w). When voiced speech occurs E{(w) is a fine line structure, and

U (w) has a succession of peaks (typically 3 or 4 for telephone speech)
whose frequencies are cailed formants. Unvoiced speech has E(w) that
is noise-like, as the vocal cords are not excited and e(t) is the
result of air turbulence in the vocal tract. The spectral envelope

U {(w) has usually one or two formants which often reside above 3.5 kHz,

e.g., /s/ has a single formant at about 5 kHz.

Synthesizers in vocoders consequently employ an excitation source
that is either a periodic pulse generator when voiced speech is present,

or a random noise generator when unvoiced sounds occur.

The basic elements of a vocodef are shown in Figure 2.3. The box
labelled "wocal tract parameters", essentially provides a measure in
parameter form of the spectral envelope of the short-time speech signal,
information known to be required by the hearing mechanism. The vocoder

analyser determines the vocal tract parameters, and the type of
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excitation. In doing so significant reductions in signal bandwidth

is achieved, For example, speech band-limited to 3 kHz can be
represented in parameter form by signal whose bandwidth is of the order
of 300 Hz. Usually these parameters generated by the voco&er analyser
are digitized and transmitted. The synthesizer at the receiver decodes
the digital signal and recreates the speech using either Equations (2.1)

or (2.2).

The vocal tract parameters take a variety of forms, e.g. the
amplitude spectrum of the signal ag various frequencies (channel vocoder),
prediction coefficients that define the spectral envelope, called Linear
Predictive Coders, LPC, the frequencies of major resonances {formant
vocoder). Details of speech production mechanism and vocoder designs
are described by Flanagan, Moyefl7) Holmes(ls) and Rabiner at a1€11,19)
Widely used vocoders are the Channel Vocoder and the LPC vécoder, wﬁile
the more complex formant vocoder with its greater complexity may be

preferred in the future when technology makes its realisation at a

competitive cost.

2.2.1 Channel Vocoders

In channel vocodersfls’zo) see Figure 2.4, in order to‘preserve

the shape of the short-term amplitude spectrum at specific frequencies,
the signal spectrum is divided into frequency bands, called channels,
by using a bank of contiguous variable-gain bandpass-filters. The total

number of channels are typically of the order of 10-20 with bandwidths
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of 300 Hz to 150 Hz, respectively. By the use of rectifiers and low
pass filters, the output of each channel produces the discrete power
spectrum of the speech s{gnal for the corresponding frequency band.

The voiced/unvoiced decisions, V/UV, the pitch (quasi-periodic

frequency of the vocal cords) if voiced sound is present, are measured
in the analyser. Their values are multiplexed with the vocal tract
parameters, and transmitted., The function of the synthesizer at the
receiver is to produce a perceptually accepted reproduction of the
original speech signal without attempted waveform replication. Voiced
sounds are synthesized by using periodic pulse generator as the
excitation source. Whereas for unvoiced sounds, a random noise
generator serves as a substitute for the excitation source. Consequently
in accordance with the vocal tract information produced by the analyser,
either voiced or unvoiced sounds can be generated at the synthesizer.
The channel vocoder achieves significant bandwidth reduction since the
spectral envelope of the short-term spectrum has a lower bandwidth

than that of the original speech signal. Typical transmission bit rates
are between 2.4-4.8 Kb/s. However at 2.4 Kb/s, there is a degradation

in naturalness despite the use of complex equipment. This is because:

a) Errors in voiced/unvoiced decisions,

b) the pulse generator being a poor replica of the vocal cord
excitation,

c¢) the choice of bandwidth and filter spacings,

d) but most important, degradatipn derives from the inaccuracies
of the basic model of the vocal tract and the excitation
processes. Only by deriving more precise models of the speech

will the synthetic quality of vocoder speech be removedSZI)
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2.2.2 Formant Vocoders

Here the vocal tract parameters are the major formants fl’ f2 and

f. and their amplitude FA. , FA, and FA The analyser attempts to

3 17 72 3
locate the formants by dividing the speech spectrum into frequency
bandsS13’16’17’22) For each spectral band, the average frequency, f,

and the rectified, low-pass filtered amplitude FA are measured. Signals
proportional to f and FA are then transmitted into a digital form.
Figure 2.5 shows a block diagram of formant vocoder. The synthesizer

of such vocoder is related to human speech production, because its
resonators specifically correspond to the major formants of the input
speech signal. Hence, the synthesizing can be -achieved by using the
known frequency range and the specification of each formant. All these
factors result in significant reduction in bit-rate to as low as 1.2
Kb/s. However, at this low rate, the reproduction of good éuality speech
depends on the accuracy in locating the formants at the analyser. 1In
modern formant vocoders, digital computer techniques are used for
calculating formant frequencies and peak values are determined using

discrete Fourier Transform, DFT, methods.

2.2.3 Pattern-Matching Vocoder

(10,22,23) achieves further reductions in bit-rates,

This vocoder
i.e., typically 0.6-0.8 Kb/s. It operates by comparing the short-time
speech spectrum with a set of stored spectral patterns where each

pattern is specified by & binary code. In this way, one of the stored
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patterns which corresponds closest to the speech spectral is identified,
and its code is transmitted, together with the pitch and voiced/unvoiced

information. The received code is used to synthesize the speech signal.

2.2.4 Ceptrum~Homomorphic Vocoder

The ceptrum of the speech signal is the basis of another type of
vocoder, known as the ceptrum-homomorphic vocoder. Before describing
such a vocoder, we pause briefly to define the concept of ceptrum$11’1a22’24)

The term, ceptrum, results from the logarithm of Equation (2.3),
loglx(w)l = 1og|U(m)| + loglE(m)| (2.4)

Equation (2.4) reveals that the excitation function, E(w), and vocal
tract function, U{w), become additive, hence e(t) and u(t) can be
separated by a filtering process. The inverse DFT, IDFT, of Equation

(2.4) is,
IDFT{log|X(w) [} = IDFT{log|U(w)}} + IDFT{log|E(w)]|} (2.5)

which gives the ceptrum, c(t). Figures 2.6 and 2.7 represent the

time waveform, amplitude spectrum, log-spectrum and ceptrum for

voiced and unvoiced sound respectively. For voiced speech, the region
around the origin, see Figure 2.6(d), is due to the impulse response
of vocal tract, while the remaining portion of the waveform is due to
the excitation source., Now, for a periodic excitation, the ceptrum

of the excitation is also a train of impulses with the same spacing

as the impulse train. With voiced speech, the quasi-periodic nature

L~
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of the excitation which consists of puffs of air that are asymmetrical
in shape, yield a ceptrum that consists of a large spike, as shown in
Figure 2.6}d). However, for unvoiced sound, the selection of a strong
and isolated peak in the ceptrum is nét feasible, see Figure 2.7(d),

due to the random nature of tﬁe excitation. Thus, ceptrum can be used

to make the decision as to whether speech is voiced or unvoiced.

The property of ceptral analysis is exploited in homomorphic
vocoders, as shown in Figure 2.8. The speech is windowed using a
Hamming function, typically 40 ms. duration, and then is Fourier-
transformed. A rectangular window is avoided because of the "spectral
leakage" that it producesfzs) On the other hand, ceptrum window
shown in Figure 2.8 is used to remove the éxcitation information. From
c(t), the pitch is deduced, and this is encoded along with the wocal
tract information and both are transmitted. In the synthe;izer, the
DFT of c(t) produces 1ong(m)|, exponentiation ensues and the inverse
transformation yields u(t). The excitation generator produces either
pitch or random noise in accordance with V/UV information respectively.

Finally, the discrete convolution process convolves u(t) and e(t) to

produce the synthesized speech.

Such vocoders require only the computation of the ceptrum which
is often available in the ‘pitch identification process. At 7.8 Kb/s,
homomorphic vocoder yieidslgood synthetic quality speech, and its
implementation has recently been eased by the invention of charged-

coupled devices, CCD.
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2.2.5 Linear Predictive Coding (LPC) Vocoders

A different method of representing the spectrum of a speech sound
is by means of the LPC vocoder in which the spectral approximation is
given by the response of a sampled-data filter. In LPC, the modelling
of the speech waveform is carried out in the time rather than the
frequency domain$11'13’26) thereby reducing the difficulties of locating
formants which are inherent in frequency domain techniques. In recent
years, much literature has appeared in favour of LPC vocoders
(particularly in the U.S.A., more than the U.K.) due to its speed of
computation and simple implementationsz7) Most of the research in LPC
analysis has been focussed on all-pole models. However, the presence
of unvoiced and nasal sounds suits a zero-pole model sometimes known as
autoregressive moving average model, (ARMA), whose mathematical treatment

is rather c¢omplicated and will not be mentioned herefzs)

‘The transfer function, H(z), of the-all-pole model, sometimes

referred to as autoregressive model, is given by,

G

H(z) = § (2.6)

' kzlak

where Ge is the amplitude of the input excitation. The coefficients,
aﬂs, specify the all-pole approximation of the short-time speech
spectrum. Figure 2.9 shows the speech production process. The ocutput

. . .th . . .
of the linear filter at i sampling instant is,

-~

N
X = kzlak *-x * Cebeg (2.7
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where ﬁei corresponds to the excitation pulses and G, is due to the
amplitude variations of the excitation source. The ocutput speech
N
sample x, is Z a X, , except at the beginning of a pitch period.
i k=1 i-k
Thus generation of speech by this technique requires a knowledge of the
pitch, V/UV information, a coefficients and the gain of filter. All
these parameters are transmitted in digital form, as shown in Figure
. . (29-30)
2.10, to enable the synthesize of the speech signal. These

vocoders give good performance for bit-rates of the order of 2.5 to 4 Kb/s,

The sampled-data filter coefficients, ak's, are calculated so that
the error between the original sample and the predicted value becomes

minimum, i.e.,

2 N 2
<ei> . = <(xi - kZlakxi_k) > (2.8)

AEAopt
vhere <(.)> means time average of (.). To achieve this, mean-square
error criterion, the autocorrelation and‘autocovariance techniques are
often used, updating the coefficients at a rate commensurate with
significant changes in the vocal tract, i.e., the order of 5-30 ms.

The number of prediction coefficients, N méy be selected according to

the number of formants in the speech signal, usually N is equal to twice
the number of formants, i.e., typically 6 to 8531) The complex-roots

of Equation (2.6) indicate the location of formants and their bandwidths,

In correlation/covariance methods, Equation (2.8) is minimized so thatfzs)

>
t
-

= &Y (2.9)

where ¢ is the autocorrelation/covariance matrix, ¥ is the autocorrelation/
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covariance vector and Ao is the optimum vector set of prediction

pt

coefficients.

A different approach of estimating the vocal tract parameters
involves the computation of PARCOR (PARtial CORrelation) coefficients

which are found to be less sensitive to transmission errors$24’27_28’32)

Further, in Chapter IV, it will be shown that the predictor
coefficients can be modified sequentially, hence modelling of vocal

tract is achieved in an adaptive manner.

2.2.6 Relative Merits of Vocoders

Table 2.2 shows the performance of various vocoders described here,

in terms of speech quality, transmission bit-rate and complexityglo)

VOCODER Kb/s QUALITY COMPLEXITY
CHANNEL 2.4 FAIR HIGH
FORMANT 1.2 GOOD VERY HIGH
Mi??ggﬁgDER 0.8 POOR VERY HIGH
CEPTRUM 7.8 GOOD HIGH
LPC 2.4 FAIR HIGH

TABLE 2.2: Relative Merits of Vocoders
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2.3 WAVEFORM ENCODING OF SPEECH SIGNALS

The methods in this_section are confined to the reproduction of an
actual pressure waveform using discrete-time and amplitude representation
of the speech signal. These techniques avoid the extraction of the
vocal tract and excitation parameters. Waveform coders are general}y
simpler in implementation and therefore less expensive than vocodersSZI)
They also have a more natural sounding quality. An increasing use of
digital systems for transmission purposes requires the speech signal to
be sampled (quantized in time), and quantized in amplitude to a set of
finite values. Due to quantization process, the received signal differs
from the original speech signal, and the difference is called distortion-

. . . 33
quantization n01seg )

A schematic block diagram of digital waveform coder is shown in
Figure 2.11, A speech signal, x(t), is sampled at a rate exceeding
twice its highest frequency component (Nyquist Rate), to produce the
sequence of samples {xi}, i=1,2,...,NS, where NS is the total number of
samples. These samples are.applied to the waveform encoder which
generates a set of quantized amplitudes'{xe} which are encoded for
transmission. Binary coding is usually employed for this purpose,
although higher order coding could be used, as‘{Xe} is unsuitable for
transmission through most practical channels. The binary output
sequence {Li} is relatively robust to :gannel interference and the
bits are relatively easy to regenerate at the receiver. After

regeneration, the binary code words are decoded into the sample

quantized amplitudes,'{xd}. In an error free channel the binary code
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sequences,'{Li}. {Li} and the quantized sequences {Xe}and'{xd} are
identical. The sequence, {ﬁi} at the output of the waveform decoder

is low-pass filtered to &ield the speech signal x(t). It is evident
that even if-{Li}={Li}, x(t) differs from x(t) due to the quantization
process at the transmitter. For a given bit-rate, b, the quantizer has
2b discrete levels. The relationship between the sampling rate fs and

b yields the information capacity, CI,
CI =50 fS bits/sec. (2.10)

Equation (2.10) reveals that the main goal in the design of waveform
coders is to reconstruct the analogue signal as accurately as possible
with 2 minimum number of bits/sample, b, for a given fs. The higher b,
the smaller the noise or vice-versa. Thus, there is a compromise

(11)

between the quality of the recovered speech and the bit-rate. We

now, consider the main types cf waveform coders.

2.3.1 Pulse Code Modulation, PCM

The simplest form of waveform coding, known as PCM was suggested

by Reeves(34) in 1938, It was the first method used for digital

transmission of speech and is used extensively throughout the world in

digital telephony.

The operation& involved in a PCM coder is described in detail by

(5)

Cattermole and is as follows: The band-limited speech dafa, x(t),

sampled at the rate of 32fc, where fc is the highest frequency in the
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speech signal, is quantizer into the nearest 2b levels, where b is the
number of bits in each word assigned to the quantized samples. The
binary words are then transmitted. At the receiver, bit regeneration.
followed by binary decoding occurs, aﬁd the resulting amplitude levels
are low-pass filtered to give the recovered speech signal, x(t). High
fidelity reproduction of speech is achieved by using a large number of
quantization levels, as the quantization accuracy improves when the
levels are closer together. Observe that the only source of noise in
PCM is that generated in the quantizer. The choice of quantization step

size, componding techniquesfS’BS) namely signal compressing followed by

expansion at the receiver, and the adaptive step size quantizers$36’37)
are all various means of reducing the PCM bit-rate for a given recovered

speech quality,

2.3.2 Quantizers

The purpose of the quantizer is to replace each speech sample with
one which is a close approximation of the original sample. The
quantized sample is confined to one set of finite values. A b-bit
binary word is associated with an output guantization level, so that
each sample is transformed into a unique binary word. Output levels
of the quantizers are sometimes called "quantum levels”, or

"quantization Zevels"fBg)

Numerous quantizers are employed in speech coding, and they are

broadly categorized as either time-invariant, FQ, or time-variant
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(adaptive) quantizers, AQ. The former is more common, simple and
sometimes referred to as zero-memory quantizer, i.e., the quantized

output is calculated from the corresponding input sample without the

involvement of previous samples. If the input sample lies in the kth

interval of quantization,
< < SkEN +
xk. X xk 1 s Lk..NQ 1

the output of quantizer is ﬁk;l.For lsksNQ+1, there are N_ quantization

Q

levels, together with N_+1 input thresholds. The transfer function of

Q

typical quantizer is a stair-case characteristic. In practice, -two

versions of this characteristic, known as mid-riser and mid-tread are

commonly used, see Figure 2.12. Mid-riser quantizer has its decision
level at the origin, while the mid-tread has zero output level, Mid-
riser characteristics are preferred due to their symmetrical properties
and efficient use of NQ=2b levels, despite the fact that low level
signals, as in the silence section of speech, can not be expressed

properly due to the existence of non-zero level. Hence, this sort

of quantizer results in oscillations for low level signals., Crochiere

has suggested a kind of switch that exploits both mid-riser and mid-tread

characteristics. The binary codes associated with both types of
quantizer characteristics can be either natural-binary code, NBC, or

folded-binary code, FBCSAI)

The output approximation of the quantizer introduces distortion-—
noise, known as "granular notse”, provided the input speech sample lies
X . If the input sample lies outside the specified
between lsﬁthNQ+1 P amp P

range, the output is said to be overloaded and "opverload noise' occurs.

(40

)
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» INPUT, x

a. Mid-riser

b. Mid-tread

-FIGURE 2.12: Typical Uniform—Q Characteristics
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The total noise introduced is the combination of these types of noise.
A simple statistical model of the quantizer associated with its granular
noise is shown in Figure 2.13. The model is based on the following

(11)

assumptions:

a) the noise is stationary, an assumption that is valid for small

step size, A, and when number of levels, N_ is large.

Q

b) the noise is uncorrelated with the original input (implies no

slope overloading)

c) the probability density function, p.d.f., of the noise is
uniform and given by pd(q)=1/A between *A/2, and pd(q)=0

outside the range, *A/2.

{x,} {ii}
——> QUANTIZER

{Xi}={xi}+{?i}

RANDOM NOISE
SEQUENCE, {?i}

FIGURE 2.13: Quantization Model
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Hence, the mean—-square value of the quantization noise, oq, ig

[

o? =

q (2.11)

ol

Therefore, uniform quantizers are defined by 3 parameters, N., A,

Q’
and overload 1limit, V respectively. An appropriate value of V
for which the quantizer is not overloaded is selected in accordance
with the ratio of V to the input r.m.s., value, L This ratio is

known as "loading factor", d, .

L
four-signal loading which ensures that almost all the quué'samples

A common choice of dL is the so called

will lie inside the range :40x. For Gaussian and Laplacian p.d.f.'s
with zero mean, only 0.01% and 0.357 of speech samples fall outside

this range, ¥40 , respectively. Therefore, A, for uniform quantizer is
X

A= — (2.12)

N

Q

or 8c
A= —SE (2.13)

2

From Equations (2.11) and (2,13),

SNR = k.2°P, k=3/16 (2.14)

or in dB's,

SNR(dB) = 6b-7.3 (2.15)

i.e., SNR(dB) increases linearly with b, Equation (2.15) is accurate
for bg9, above this value overload noise due to values outside the

four-sipgma loading becomes significant,

The quantizer described here has an error with a constant noise

that is independent of the signal amplitude. Higher values of SNR
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can be obtained by exploiting the p.d.f.'s of the signal being
quantized. Quantizers, designed according to their p.d.f.'s of the
input signal are known as optimum quantizers, Opt-Quant, and are well
suited to speech signal characteristiés. Opt-Quant's are basically
non-uniform quantizers and the distribution of the levels is selected
according to the p.d.f. of the signal. Alternatively, Opt-Quant's can
be considered as uniform quantizers having a compressor which compresses
the input samples prior to quantization. Compression is accomplished
by means of a non-linear element, say H(x),.in accordance with the
p-d.f. so that more levels are introduced for low level signals due to
their higher probability of occurrance. The output of the uniform
qﬁantizer is expanded through a function, H_l(x). This process of
compression at the encoder and expansion at the receiver is known as

companding,

For large values of NQ (>128), the mean-square error power of

Opt—Quant is given by$4,42)

2 V2 v d 2
o = L J P, (x) {—‘ﬁ} dx(t) (2.16)
dx(t)

where x(t), ﬁ(t),-?v and Pd(x) are the quantizer input, output,
amplitude range and p.d.f. of its input signal, respectively. Most

of the research has been conducted on the assumption of N. being large.

Q

Panter et a1(43) gives the relationship similar to Equation (2.16) for
N.»
large Q ) , v 13 3
UE = —2'- J [Pd(x)] dx (2.17)
3N 0
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where the p.d.f., Pd(x) is even and valid between *V and zero outside
the interval., Equation (2.,17) is the simplified version of Equation
(2.16) with

dx(t)
dx(t)

v

v
2 J [Pd(:t)]”3
v

B[Pd(x)]1/3 ; B (2.18)

The author also assumes that the gquantization levels are very close
together such that Pd(x) is almost constant over the quantization

intervals, and overload noise is neglected.

For non-uniform, i.e., "Opt—Quant" quantizers, a similar relation

to that depicted in Equation (2.15) holds, namely,
SNR(dB) = 6b-K (2.19)

where K is the function of the normalized p.d.f., Pd(x), (the ratio

of Pd(x) to oi) that makes SNR independent of signal power. K is

found to be 4.3 dB for signals with Gaussian p.d.f., assuming that
overload noise is neglected. Comparison of Equations (2.15) and (2.17),
for signals with Gaussian p.d.f. reveals that 3 dB gain in SNR is

achieved over unifeorm quantizers,

(44)

Another approach in designing Opt-Quant's is due to Max ,
Stroh—Paez(bs) and Paez—Glissonsaﬁ) Max, in his often referenced

paper, used iterative techniques so that the analysis is generalized
and valid for both uniform and non-uniform quantizers (for signals
having stationary p.d.f.'s). No restriction is imposed on NQ' Input

and output levels are calculated such that aoslaxk, k=2,3,...,Nq, and
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2, -
and aoq/axk, k=1,2,...,NQ are zero, see Appendix A. Hence,

X, é% (x + %) (2.20)
Jxk+1 de(x)dx

x = :“k (2.21)
J +1 Pd(x)dx

"

From Equations (2.20) and (2.21), we note that

a) the threshold level, X is half way between two successive
output levels,

b) ik is the conditional mean value of the input x for X XK g

The iterative process starts with an initial guess of )5 and X,

is obtained from Eguation (2.20) and ﬁ7 from Equation (2.21), and so

on for other quantized levels. An apriori knowledge of the p.d.f. is

47)

required. Fleischer( shows that Equations (2,20) and (2.21) are

sufficient for Opt-Quant having a specified p.d.f provided
d2 '
-—-log[Pd(x)] <0, for all x.

dx2

(46)

Paez—-Glisson applied Max's algorithm to the signals having Laplacian

and Gamma p.d.f.'s.

All the Opt-Quant's described so far are matched to the p.d.f.

. . . . 2

of the amplitude levels of the input signal, and by this method, cq
is made small. 1In comparison to uniform quantization, the advantages

of Opt-Quant for speech signals are:
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a) Non-uniform spacing gives a lower quantization noise.
b) During idle channel conditions, the quantization noise
performance of uniform quantizers is inferior to that of

Opt—-Quant as the latter has many levels near the origin.

However both the uniform quantizer and Opt-Quant have a poor

" dynamic range, (the dynamic range, DR of a system‘is generally defined
as the range of input signal levels for which the SNR of the coder
remains within 3 dB of the maximum), and the value of the peak SNR,
obtained at one‘power level of the input signal, decreases rapidly with
the changing levels of the input. In telephony, a large dynamic range
of the input signal levels, typically 40 dB, is required. The quantizer
is arranged over the desired dynamic range to be substantially
independent of the input power level. This can be achieved by using

logarithmic quantizers, Log-Q.

Log-Q's have similar peak SNR as uniform quantizer, but possess
the virtue of a wider dynamic range; In practice, log-Q's are not
truely logarithmic, having a law that is often linear at low signal
levels and logarithmic at high signal levels. Two logarithmic laws are

widely used. The u-law proposed by Smith (3

is used for PCM systems
in Japan and U.S.A. It is defined as,

V log(1+ux/V)
log (1+u) ’

Hu(x) x>0 (2.23)

The compressor has odd-symmetry for negative values of x, Hu(x)=—Hu(-x)
and V is the overload level. A common choice for u for 7-bit speech
coders is either 100 or 255. In terms of dynamic range 7~bit log-PCM

is almost equivalent to 11-bit uniform—Q-PCM.
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(5)

Another type of companding proposed by Cattermole and now
accepted (outside Japan and U.S.A.) as the international standard,

is the A-law. It is described by,

= Ax 1
HA(x) = T+iogh ° for OSKEK
1+logAx 1
T+logh ° for stsl (2.24)

where a typical value of A is 87.6 for a 7-bit speech coder. A=-law

and y-law have similar performances when used in PCM speech coding.

Stroh-Paez(as)

compared the Opt—Quant and log-Q, and concluded
that although Opt—-Quant gives subjectively 3-4 dB improvement in terms
of SNR for a given NQ’ it has greater idle channel noise and poorer

dynamic range, DR,

A different way of obtaining the aforementioned specification in
digital telephony, i.e., 40 dB dynamic range with a SNR of 35-38 dB's
is achieved by employing a quantizer whose step size is both large
enough to cover the maximum signal range, and yet small en&ugh to
contain the quantization error. These demands on the step size
magnitudes can be satisfied by arranging for the quantizer step size
to adjust to the signal level being quantized. Such schemes, known as
adaptive quantization, AQ, do not require a knowledge of the p.d.f. of
the signal being quantized. They are capable of handling the rapid

(48) and Stroh(ag) are

fluctuations of signal amplitudes. AQ's of Noll
designed to match the short-term variance of the signal to be quantized

over a block of length W samples; typically W may be 32 to 512.
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Sometimes these AQ's are referred to as block adaptive quantizers
where the calculation of step size is made using the input data. They
are called adaptive quantizers with forward (explicit) determination

of step size, and abbreviated to AQFSSO)

A different approach using backward adaptation has been studied by

Jayant(33,36,37,51)

who calculates the step size at every sampling
instant from the transmitted data, hence the use of the backward.. These
adaptive schemes will be described in detail in Chapters IIL,V.

However, we will state at this time that, AQ's provide a wide dynamic

range, lower idle channel noise compared to the Opt-Quant's, and can

achieve higher SNR than those of both Opt—Quant's and log-Q's.

2.3.3 Differential Pulse Code Modulation, DPCM

In DPCM, the difference between the input speech sample and a
locally reconstructéd sample is quantized, binary encoded and trans-
mitted. At the receiver, the recovered speech sample is reconstructed
from the quantized difference sample. This technique is effective in
reducing the transmitted bit-rate compared to PCM because it exploits
the correlation of speech signals, particularly, those of voiced
speech. The difference signal being quantized has a lower variance,
cz, than that of the original speech signal variance, oi. As a result,
the range of quantizer to transmit the actual sample is considerably
reduced, and fewer bits are required to code the difference signal for

a giveﬁ quality of reconstructed speech. The variance of the
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quantization error in DPCM is proportional to the variance, qi, of
the quastizer imput, and if 02 can be reduced by, say a factor G, it
is found that the variance of the quantization noise in the decoded
speech signal is also ?educed by G. ﬁence, the SNR increases by G
compared to a PCM system, The DPCM system to be described here is
primarily based on an invention by Cutlerfsz) patented in 1952. DPCM
is also known as "predictive encoding”. The term predictive is used
because the quantizer input signal is formed by taking the différence
between the actual speech sample and a locally reconstructed value
that is formed psing prediction of previously locally decoded speech
samples. 1In 1966, 0'Neal mathematically analysed predictive encoding

of T.V. signals, while Nitadori(SA) and McDonald(ss)

(49)

extended the work
to speech signals. Stroh also examined the performance of DPCM

focusing attention on how the predictor and quantizer interact.

A typical DPCM coder is shown in Figure 2.14, where the symbols
are displayed for the ith sampling instant. The band-limited sequence
of speech samples, whose value, x, at the ith instant is encoded into
a binary word Li and transmitted. At the receiver, the regenerated
binary word, Li is decoded to give the recovered speech sample, ﬁi'
Assuming no transmission errors, the quantized output Ei is fed to the

adders in both the encoder and decoder.

The locally recovered speech is

X. = e

. (2.25)
i i

+ y.
yl

where Y; denotes the predicted value, and the quantized sample is



53

x(t) e;
—e SAMPLER QUANTIZER -
SPEECH
INPUT
i 93
— PREDICTOR
¥i
>
E_Q
o]
[ ] - a
oy x! o]
24E | Binary > L e '
g:" - DECODER g T
U: g
y: 2
1
PREDICTOR
FIGURE 2.14:

A Typical DPCM (Encoder-Decoder) System




54

e, = e. + q. . : {2.26)

where e, q, are the quantizer input and the quantization error
i

samples respectively. As

e; = X T (2.27)
then xi = xi + q; - (2.28)

Therefore, the ith decoded sample is the sum of the speech sample

. . .th . .
and the quantization error sample at the i sampling instant.

G = & - ¢
= X, - X . (2.29)

In Figure 2.14, it can be seen that the predictor operates on the

locally decoded sample, ﬁi and not on input sample. It predicts s

as the linear combination of past N decoded samples, viz.

N
y. = ) X, o (2.30)
1 k=1ak i-k

where N is the order of predictor and ak'é, k=1,2,...,N, are the

predictor coefficients,

The SNR of the received signal x, is defined here as,
<x’.>

SNR = (2.31)

S M

2
< (xi-xi) -3

where oi = <x§> is the mean-squared value of the input speech samples,

given by
0" === ] x (2.32)
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where NS is the total number of sampling intervals over which the

summation is performed. From Equations (2.29) and (2.31)

o2
SNR = -2 (2.33)
)
q
or
0'2 Cl'2
X e
SNR = -5 . — (2.34)
O'E Gq

. 2 . . . .
The ratio of cxloz is the prediction gain and denoted by G, whereas,
-2, 2, .
oe/Uq is the SNR of the gquantizer and denoted by Q. Therefore,

Equation (2.34) becomes

SNR = G.Q (2.35)

In dB's
SNR(dB) = 10 1oglOG + 10 logloQ (2.36)
or SNRDPCM(dB) =‘SNRI(dB) + SNRQ(dB) . (2.37)

SNRI(dB) is the improvement factor in dB over PCM and depends
on the auto-correlation of input speech samples, and the values of
the prediction coefficients. The structure of the predictors and how

the coefficients are computed is presented in Chapters III and IV.

Historically, most research activities have been done on
first-order predictor, also known as leaky integrator. An ideal
integrator has one coefficient, say "af,whose value is unity. The
SNR gain of DPCM coder over PCM coder, G, for an ideal integrator is

1

G = 2(1-c))

(2.38)

where < is the first correlation coefficient of the input speech
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signal. In Equation (2.38), for G>1, c, must be greater than 0.5 for

1
the performance of DPCM to be greater than that of PCM.

For al=1, the system is said to be non-optimal, The optimum

performance is achieved when a,=Css assuming that o§<<oi, and under

this condition,

(2.39)

Once again, as the value of ¢, is always less than 1, DPCM maintains

1
its advantage of G over PCM. The SNR of the DPCM coder having a leaky

integrator in its feedback loop is

= 9
SNRDPCM = 7 - (2.40)
1-c
1
(55) . . . . .
McDonald examined the various first-order predictors in

the DPCM coder and concluded that the optimum prediction coefficient,
a,=c,, is better than ideal predictor, al=1, in that it is more
1 i

tolerant to the channel errors.

However, the relationships described by Equations (2.38)-(2.40)
are theoretically viable assuming that:

2 2
a) o << g0
q X

b) bits/sample, bx2.

A more generalized relationship between SNR, c. and Q is given

1
by O’NeaISSG) namely,
2
- Qe /Q)
SNRDPQ’I = T . (2.41)

1
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Equation (2.41) is independent of the assumption o§<<ci, and applies
for a first-order Markov process input sequence. Q depends on the

number of quantization levels, N_ and p.d.f. of DPCM error sequence {ei}.

Q
A reasonable estimate of Q can be made by assuming that the p.&.f. of
{e;}is identical to the p.d.f. of the original speech sequence x,;3.

(44)

SNRDPCM values computed for Max's optinum and uniform quantizers,
where Gaussian inputs are assumed, and those calculated using Equation
(2.41), are in close agreement with measured SNR values. The input
signal to the quantizer in DPCM is not, however, truely Gaussian, being

the convolution of two p.d.f.'s, namely those relating to {Xi} and {qi}.

For large values of @, Equation (2.41) is reduced to Equation (2.40).

The SNR value, Q for the quantizer may be estimated for Gaussian
and Laplacian p.d.f.'s using Equation (2.17). From Appendix B, QG and

, i.e., the quantizer SNR for Gaussian and Laplacian p.d.f.'s
1. .

respectively are defined as 9
N
= 2
% = 7.73 (2.42)
9 i
2N
= 3.
QL g (2.43)

In deriving these relationships for N_-level, Opt—Quant's it is

Q

assumed that N_ is large.

Q
b
Also, NQ=2 , hence,
SNRQG(dB) = 6b - 4.35 (2.44)
and SNRQL(dB) = 6b - 6.53 (2.45)

where b is the bits/sample.



58

For logarithmic quantizers(57) having u=100 and u=255,
SNR dB) = 6b ~ 8.5 .
NG (2.46)
and SNRQLOg_Q(dB) = 6b - 10.1 (2.47)
respectively.

For small values of N, Q values and SNRQ's are given in

Q

references (44,45,46) for signals having Gaussian and Laplacian p.d.f.'s.

2.3.4 Adaptive Differential Pulse Code Modulation, ADPCM

Fixed predictors designed on the knowledge of iong-term signal
statistics cannot be optimum at all times because of the non-stationary
nature of the speech signal. Since the statistics of speech signals
change with time, the predictor must also adapt to the chang%ng
statistics. If this adaptation is not done, the performance of DPCM,
optimized for one type input statistics, experiences a loss in SNR
when a signal with different statistics is applied. The main factors

responsible for this reduction in SNR of a DPCM system are, viz:

a) the predictor, being no longer optimum,
and .
b) the quantizer being mismatched to a new signal.
In order to achieve a more flexible DPCM system that can perform
satisfactorily for all speakers, a variety of fixed and adaptive
predictors and quantizers can be combined. The predictor can now be

near to optimum in that it can follow variations in the signal with
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considerable accﬁracy. A system that.performs reasonably well for all
speakers, and minimizes the necessity of a priori knowledge of the
signal statistics, is referred to as ADPCM (either of which or both
quantizer and predictor are adaptive); We now briefly describe some

adaptive systems available in the literature.:

2.3.4.A Block Adaptive Predictors(as)

One method of selecting prediction coefficients in accordance with
the short-term variations of the speech signal is to update the
predictor parameters periodically. In this way, the short-term auto-
correlation coefficients in blocks of buffered input speech samples
(with a duration of W/fS sec,) are computed and then from Equation (2.9),

Aont is calculated for the same block. Vector Acmt is utilized for the

encoding of the respective block of W samples. Since, the prediction
coefficients are calculated from the input speech signal, the technique
is referred to as Forward Block Adaptive (FBA) scheme, It follows that
because the coefficients must be encoded and transmitted to the receiver
in addition to the quantized sample éi’ FBA scheme increases channel

capacity. Further study of such schemes is given in Chapter III.

The second technique, known as Backward Adaptation method, cowmputes
the prediction coefficients from previously decoded Speech‘samples and
therefore eliminates the transmission of the prediction coefficients.
The autocorrelation method can be employed on the locally decoded
samples. However, it is not suitable for practical purposes since it

requires the delay of one block.



60

2,3.4.B Adaptive Predictive Coding, APC

DPCM system usually does not attempt to predict the 1ong-te?m
redundancy in the input speech signal, namely pitch, as does a system,
referred to as adaptive predictive coding, APC. APC is a DPCM system
where the predictor is sub-divided into two components. This approach

was used by Atal—Schroeder(Sa)

whose long-term predictor exploits the
fine spectral structure (quasi-periodic nature of voiced sound), while
a short-term predictor is employed to exploit the spectral envelope of
the speech (vocal tract shape). By this technique, the redundancy in
the speech signal is removed in two steps. Figure 2.15 shows Atal-
Schroeder's adaptive ﬁredictor. Long term predictor, Pl(z), eliminates
the redundancy due to similarity of the speech signal resulting from
adjacent larynx pulses. This is achieved by a first-order predictor
that is composed of gain and deiay elements. Transfer function, T.F.
of Pl(z) is
-M

P(2) =8,z P (2.48)
where Mp is typically a pitch period, calculated by a pitch detector.
Constant Ba accounts for the amplitude variations from one pitch
period to another. In the case of unvoiced segments of speech, Ba
is almost zero and Mp is not significant.

The second predictor, Pz(z), operates on the error signal, €
i.e., output of predictor whose T.F. is l-Pl(z). T.F. of the second
predictor is

Pz(z) = ? a é-k

k=1 K

(2.49)

where N is typically 8.
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Therefore, the overall T.F. is given by

P(z) = P,(z) + {1—P1(z) }p,(2) (2.50)

The parameter Mp in Equation (2.48) is selected such that the
correlation of the speech signal with a shift of Mp samples becomes a
. 2 . . . .
maximum or <e ,>=<(x,-B X, )2> 1s minimum. Hence the term <e2.> 18
11 i ai-M 11

minimized with respect to Ba' This results in
B = ———F - (2.51)

where <.> implies averaging over all the samples in a 5 msec. interval.

The value of <e2 > for Equation (2.51) yields

11
2 2 2 .
<eli> = <xi> (l—cl) (2.52)
X M
g = {(2.53)

'{<x?><x? >}i
1 1-Mp

where ¢y is the normalized correlation coefficient.

Thus, having decided on the value of Ba to give the minimum
value of <eii>, the value of Mp is determined by the maximum value
of ey Then Equation (2.49) is employed. The readjustment of the
predictor parameters Ba, Mp and a coefficients, at every 5 msec.,

improve the prediction efficiency as ‘the predictor comsiders both the

excitation and vocal tract information in making its prediction.

When this predictor is used in DPCM, as shown in Figure 2.16, the

error signal resulting from both types of predictor is quantized,
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encoded and transmitted, together with encoded values of M , Ba and a
coefficients. In their simulations, the authors have used speech signal,
sampled at 6.67 kHz and band-limited to 3.1 kHz, Mp is selected by
maximizing ¢4 for 20<Mp<150 and N=8, 'The quantizer is a two-level,
one-bit, quantizer with a variable step-size at every 5 msec. Although,
they did not quantize Mp, Ba and a s but they did suggest that, in
addition to 6.67 Kb/s for the error signal, 3 Kb/s are required for the
predictor parameters, hence speech quality is sustained at a rate of

10 Kb/s. Subjective tests show that the quality of recovered speech

was between the performance of 5 and 6 bit-log-PCM, i.e., SNR of

approximately 24 dB.

The further improvement in SNR can be achieved by:

a. pre-emphasing the speech above 500 Hz prior to encoding and using
the complimentary amount of de-emphasing filter after decoding.
This is introduced since APC quantization noise has a flat
spectrum, while the spectrum of voiced segments of speech tends
to fall down above 500 Hz and gives low SNR at high frequencies.

b. intreducing another gain, delay arrangement in Pl(z), namely(13’59’60)

-M -

P1$z) = Baz P, Bbz P (2.54)
where Ba’Bb are calculated for minimum value of <efi>. This
provides decoded speech which is superior to 6 bit-log-PCM, i.e.,
'approximately SNR of 30 dB's.

c. using three estimates of the pitch, viz:

-M +1 -M -M ~1
P(2)=8Bz P +B8z P+pgz P ) (2.55)
1 a b c
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a7

Moye , reviewing Atal-Schrseder's results points out that if a
system of reliably predicting larynx pulses can be made then Atal-
Schroeder's system may yet prove of value, but SNR figures would
certainly be lower if the prediction ﬁarameters were quantized. 1In
addition, the complexity of calculation of a coefficients using

covariance technique at every 5 msec and the computation of pitch period

offsets the advantages reported here, in terms of implementation.

2.3.4.C Pitch Synchronous Techniques Used in ADPCM, PSADPCM

PSADPCM(60-61)

is considered as middle ground between APC and ADPCM,
in terms of both SNR performance and system complexity. The principle
difference between APC and PSADPCM arises from the employment of multi-
level quantizers in the latter case. The block diagram of PSADPCM is
shown in Figure 2.17. Jayantf6l) in his PSADPCM employs two types of
pitch extraction techniques, namely average magnitude difference

function (AMDF) type of extractor and autocorrelation type of extractor,

In Figure 2.17, Pz(z) is fixed spectrum predictor, while Pl(z) is

. . . ._ .th A
adaptive pitch predictor and their i~ , output values are:

N2
v.. = ) S X, . (2.56)
1i 320 aMp+J 1 Mp ]
D s
Y,. = X, (2.57)
21 kel ak i-k

where Mp is the pitch period. Four sets of combinations of predictors

are employed, namely:
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y; = al X aMp xi—Mp . (2.58)

[

Vi T 3%t 3% Y A3t aMpxi-'M;"'+

B 4355 -3 - (2.59)
P P
c. N1=N2=1
Vi = 2% T A Miow T +1%iew -1 (2.60)
P P P P
d.  N1=N2=0
Vi T Ay Xy (2.61)
PP

where N1 and N2 are the orders of predictors.

(a-d) are employed when the speech signal has periodic behaviour,
otherwise fixed spectrum predictor is used on its own. The switching
between the two stages (periodic and non-periodic cases) are controlled
by certain threshold levels calculated from AMDF technique. The Equation
(2.61) is the simplest approach to PSADPCM and it generates highest SNR
values when the correlations that are ob;erved between X, and X: M is
very strong at 16 Kb/s (2 bits Q). Such a configuration together Eith
adaptive quantizer offers 4 dB advantage in average SNR over conventional
ADPCM employing 3rd order fixed predictor. However, it necessitates

approximately 1 Kb/s transmission-bit rate for transmitting pitch

information.
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(7)

In a thesis by x&deas, the samples in adjacent pitch are
subtracted, after due allowance for differences in pitch duration,
and the difference samples are encoded. By this method a 6 dB
improvement was achieved over DPCM where both the pitch synchronous
encoding arrangement and the conventional DPCM encoder used an ideal
integrator and linear quantizer. The main differences between the

(61) (N

systems advocated by Jayant

and Xydeas are as follows:

a. Xydeas used an ideal integrator.

b. Non-equality of pitch periods are compensated in the latter
case, Jayant, on the other hand did not perform this
compensation and the difference between the pitch samples
occasionally resulted in the quantizer having to handle large

amplitude samples which caused overload noise.

2.3.4.D Sequential Predictors

These types of predictors arrange for the coefficients to be
updated at every sampling instant from previously decoded samples, i.e.,
backward adaptation scheme. The beauty of such algorithms is that they
eliminate both the computation of the matrix inversion and the need to
transmit the coefficients to the receiver. The coefficients are updated
at every instant in such a way that the prediction error is minimized.

The kth coefficient at the (i+1)th instant is found 35560)

Bielk - 3,8 (2.62)
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. . . .th .
where a, 1s the value of the coeffquent at the 1 instant and §

ik
is a function of previous predictor input samples, previous predictor

(62)

error, pitch period and many other factors. Cummiskey used a

technique which minimizes the absoiuté error. Similar technique which
minimizes the mean square error is known as Stochastic Approximation

prediction (SAP). Gibson et'aISGB) using an all-pole model, examined
Kalman predictors for speech prediction and found them to be slightly

better than SAP. In a different study, Gibson(64)

compared the
performance of SAP and Kalman predictors with a fixed predictor. He
reported that at transmission bit-rates smaller than 16 Kb/s, the
sequential predictors are superior, since in many cases fixed predictors
may divergeEGS) i.e., they become unstable. - However, at high bit-rates
(>24 Kb/s), fixed and stochastic predictors behave almost the same,

but the Kalman predictor produces a small improvement in SNR which is

perceptually noticible. The details of these schemes are described in

Chapters IV and V.

2.3.4.E Adaptive Quantizers

Although, the emphasis in this thesis is on predictors which are
designed either using the locally decoded samples, ;i’ {sequential
methods) or the original speech samples, X, {(fixed or block adaptive
échemes), its performance is dependent on the presence of a quantizer
when operating in a DPCM encoder. The quantizer and the predictor

that can be designed to give optimum results in isolation, do not
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necessarily behave optimally when operating in a DPCM encoder. We will
consider the predictor-quantizer interaction in a DPCM encoder, and

extend the discussion of Section 2.3.2 relating to quantizers.

Many algorithms have been devised for adaptive gquantizers, AQ, so
that the two adaptive components of a DPCM encoder may suit the changing
statistics of the speech signal. The algorithm proposed by Stroéag)
calculates the step-size from the block of quantizer imput samples of
length W and designated this method as a forward quantization scheme. If
the quantized samples are used to form the quantizer step-size, the
guantization is known as backward adaptation quantization. N011(48)

produced similar algorithms and- calculated the step size both from the

input data and quantized data using predictors in his DPCM encoder that

were either a first order feedback predictor or a Nth order predictor.
These block methods assume that the signal is stationary over W samples
and take the short-term variations of the input signal into account,
These quantizers are also known as syllabically adaptive quantizers, A

different approach proposed by Jayant(l3’33’36’51)

selects the step size
at every sampling instant (instantaneously adaptive quantizers, AQJ)
using a knowledge of previously quantized values. It is essentially a
backward quantization scheme, and the step-size at ith sampling instant

is given by,

B
s, =429
1 1=

I.M(ILi_l[) (2.63a)
where M(lLi-ll) is the time-invariant step size multiplier and ILi-ll
is the magnitude of the code transmitted in the previous sampling instant,

In practice, Ai is constrained by the quantizer to
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A . <A, g
min i Amax : (2.63b)
resulting in the encoder having a dynamic range, DR, of approximately,

A
DR(dB) = 20 log,, (Al"i‘-) (2.63¢)
min

8(66-68)

The leaky constant, , is introduced so that Equation (2.63a)

(63,64)

becomes robust to channel errors. Gibson et al also used such

quantizer, AQJ, in their ADPCM encoders using adaptive predictors. AQJ

(24)

was also used by Cheng in conjunction with lattice predictors, and
obtained good qua:lity of speech at 1,12 bits/sample, a prediction gain

of 10 dB over PCM, N being 8.

(48) (13)

The quantizers described by Noll, Jayant lack the ability

to cope efficiently with pitch variations in the signal assuming that the
predictor is essentially attempting to remove the vocal tract
information. The quantizer in this situation is often required to handle
a residue signal which may have high amplitudes occur at pitch epochs.

A backward quantizer which adapts its step size in a similar manner ég
AQJ, and also takes into consideration the high amplitude excitation

71
(69,70) and Qureshi-Forne}. )Cohn-

pulses has been studied by CohmrMelsa
Melsa proposed a quantizer which has a set of high quantization levels
that can accommodate the occasional high amplitude error sample. When
the quantizer output corresponds to one of these high levels, the
algoritﬁm behaves as if a pitch pulse has occcurred. The resulting
large step size is then allowed to rapidly decay in order to handle

subsequent small amplitude error samples. Thus, there are two modes of

step size adaptation, one for the small residue sample (syllabic
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adaptation), and the other for coping with the rare large amplitude
excursions. The syllabic adaptation is controlled by the local time
average of the magnitude of decoded signal sequence, fki}. Quantizers
operating in this way are referred to as pitch compensating quantizers,
PCQ, and in general they employ mid-tread quantization characteristics.
Qureshi-Forney have used two-loop Jayant Quantizer in their PCQ, i.e.,
syllabic adaptation is also accbmplished using Jayant's algorithm.

Further Xydeas et a1(72)

studied a different approach which produces a
much faster adaptation and a greater reduction in tﬁe variance of the.
input signal to a fixed quantizer. Here, an adaptive quantizer was
represented by a fixed quantizer having an adaptive structure at its

input together with a non-linear element. Such a quantizer achieves a

3-4 dB SNR gain over AQJ.

In all guantizers, the quantized output level is binary coded by

assigning a code word of length logqu, where N_ is the number of

Q
quantization levels. A simple approach to code word assignment is to
assume that the probability of occurrances of each level is equal and
designate the code words accordingly. However, due to the non-
stationary nature of the samples Being coded, gains in SNR can be
obtained by using variable length coding, VLC. Specifically short code
words are assigned to quantization levels that occur with a high
probability and long code words are given to those levels whose
cccurrance is low. The VLC is often called entropy coding, because,
the average code word length is almost the same as the entropy of the

symbols to be transmitted. VLC can produce average code word lengths

less than logzNQ bits/sample. Alternatively, at a given bit rate, the
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number of quantization levels can be increased, resulting in a higher

SNR. 0'Nea1(73’74)

examined entropy coding in DPCM using optimum
Gaussian, Laplacian and Gamma quantizers and achieved 2.81, 5.60, 10.2

dB's SNR advantage respectively, over a system without VLC's.

VLC also yields significant improvement in PCQ schemes since the
probability of occurrance of the pitch pulses is low. By assigning long
code words to the additional 2 outer levels in a 3 level gquantizer

(constant length code word), Cohn-MeIsa(sg)

reported in their (3/5)

level quantizers only a 10% increase in bits/sample (1.25 to 1.37 bits/
sample), while in (3/5) level quantizers improvement is about 47%,

namely from 1.58 to 2.33 bits/sample. . Makhoul et a1(75) obtained 2.1
bits/sample using VLC on a 19 level quantizer, in contrast to 4.25 bits/
saﬁple when the code words are assigned assuming they could occur with
equal probability. VLC requires a buffer at the transmitter and receiver:
no buffers are required in the case of all code words being the same
length, A buffer smooths the fluctuations between the coder and channel

operating at variable rate and it is transmitted over the channel at a

uniform rate.

2.3.5 Quantization Noise Spectrum

The noise spectrum is a key factor in determining the subjective
quality of the received speech. Consequently, the relationship between
the spectrum of both the input speech and noise signal should be taken

into account in designing a DPCM system. The long-term spectrum of
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voiced speech decreases at -6,-12, dB/octave, while the noise spectrum
tends to be uniform. Therefore, the SNR of the reconstructed signal
falls with increasing frequency. At high frequencies, the low

amplitude of the spectral components ﬁay be dominated by the quantization
noise. To overcome this effect shaping of the noise spectrim to lie
beneath the formant structure of the speech ﬁay be employed. This

(58)

approach was initially reported by Atal-Schroeder as it was discussed
in Section 2.3.4.A and they achieved improved results using fixed both
pre~emphasis and de-emphasis filters. Currently, noise shaping systems,

primarily based on APC, are receiving a lot of attention as will be

presented below.

2.3.6 Reiated DPCM Codecs

All the DPCM systems described so far employ prediction algorithms
that attempt to remove vocal tract information, and in\the more .
élaborate versions, pitch information, The resulting residual signal
is encoded aﬁd transmitted. The receiver using, ideally, identical
predictors, converts the residual signal back into speech. The predictors

of DPCM, ADPCM encoders tend to minimize the mean square value of the

prediction error regardless of the perceptual effects of the noise,

(60,76)

A system called noise feedback coder (NFC) is another type of

differential encoder which attempts tc shape the noise spectrum to
reduce the perceptual effect of the noise. NFC subtracts the quantized

output from its input to give the quantization error. This error is
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then filtered by fiiter F2(z) in Figure 2.18. The filtered noise
signal is then subtracted from the input speech signal. Once, the
filters F1(z) and F3(z) are selected from vocal tract and pitch
information considerations and then tﬁe design of F2(z) ensures the
restoration of the speech at the receiver has noise with a spectral

composition which is located beneath formants.

Another differential encoding system called D*PCM, also known as a
prediction error coder (PEC), is shown in'Figure 2.19, Noll analysed(76)
D*PCM and concludes that it is an intermediate stage between PCM and
DPCM. This is true in the sense that D*PCM is both DPCM having its
quantizer outside the loop and PCM having pre- and post~filters. As in
DPCM, D*PCM has two identical predictors but they have different input
signals. The disadvantage of D*PCM is to produce an error accumulation
effect since the positive feedback at the receiver emphasises .the

quantization noise. The optimum coeffidient for first-order predictor

used in D*PCM is

a, = L [ -/1-¢4 ‘ (2.64)
1 ¢ 1
and SNR gain over PCM is
¢ = — . (2.65)
Vl-c2

Comparison of Equations (2.65) and (2.39) points out the aforementioned
fact that, in terms of G, D*PCM is inferior to DPCM. However, D*PCM

is a system which behaves as a partially whitening filter, whereas DPCM
is a full-whitening filter and both systems have the same sensitivity to

channel errors at high bit-rates.
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NFC can be employed with D*PCM to shape the quantization noise with
F1(z)=1-P(z), F3(z)=1/(1-P(z)). Such a configuration produces good
quality speech since it pre-filters the input speech at high frequencies
and post-filters recovered speech at the receéiver to eliminate the
spectral distortions caused by pre-emphgging. In addition, F2(z)

redistributes the noise in the spectrum, decreasing it at high frequencies,

The general form of a differential coder attempts to remove vocal-
tract and excitation from the speech signal, and applies noise shaping,
as is shown in Figure 2.20. We observe that it is essentially the same

as APC, see Figure 2.16, with the introduction of spectral noise masking.

Atal-Schroeder(78’79)

investigated the noise shaping system under

the following conditions: F1(z)=1-P2(z) where P2(z) = § akz-k, N is
typically 10 (vocal-tract filter) and they remove the z:irt-term predictor,
P2(z) from the feedback loop. Long-term, pitch-predictor, P1(z) having

3 prediction coefficients is defined by Equation (2.55). Quantizer has

3 levels. The predictor and quantizer parameters are updated at every

10 msec, In addition, the authors employ pre-emphasis (1-0.42-1) and

1)-1 and output of F2(z) is peak-limited in order

de—emphasis, (1-0.4z
to eliminate instability problems. In selection of F2(z), 3 configurations

of noise shaping filter are examined, viz:

a) F2(z)=0; this gives the quantization noise spectrum having the
same envelope as the input spectrum, The SNR is 13 dB, but the
recovered speech is noisy.

b) F2(z)=P2(z); this choice provides SNR of 23 dB and recovered

speech is less noisy than in (a). However, the high SNR values
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at the formants are degraded between the formants. Generally,
speaking, choice (a) is good for high-frequencies, while (b) is
for low frequencies.

c) F2(z)=P2(BazF1) where 0<Ba<1. Ba=0 andBaél correspond to choice
(a) and (b) respectively. The suitable value of Ba between
0<Ba<1, increases the bandwidths of zeros of 1-F2(z), hence SNR
is improved in the required band. The output SNR in this case
is 21 dB and the quality of reconstructed speech is comparable

to that of 7 bit-log PCM (SNR ~ 33 dB).

75)

Makhoul and Berouti( have also reported on the combination of
noise shaping and differential coding. Unlike Atal-Schroeder, they
removed the pitch loop, i.e., P1{z)=0 and Fl(z}=1. P2(z) and F2(z) are

given by N
P2(z) = {akz'k , N=8 (2.66)
k=1

P .
F2(z) = Y £'270 ,  l<peN, (2.67)
j=1

The authors investigated both all-pole and all-zero designs for 1+F2(z).

In all-polé design, 14F2(z) is selected so that

1

LR = TGy

(2.68)

where P2(z) parameters are selected from the input speech signal., For
p=l or 2, the output speech contained low—frequency "'rumble" and this
roughness dominated for p>2. In all-zero design, the coefficients of
1+F2(z) are selected such that 1+F2(z) becomes an optimally inverse to
14P2(z). This is simply achieved by calculating the correlation that

exists between the a coefficients,
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n-131 | |
c; = k);o By s3] » LI (2.69)
and a0=1. Therefore for‘p=1,'{1+P2(z)} has the coefficient of (-czlcl)
and for p=2 the coefficients of {1+P262)] are cz(c3-c1)/(cf—c§) and
CZ-CICBI(Ci-Ci) respectively. In experiments, these configurations

reduce both the hissing noise at high frequencies and the rumble

and roughness at low frequencies.

In a final design, employing forward adaptive, entropy-coded
quantizer (19 levels), predictor of N=8 and noise shaping filter of
p=1l or 2, the authors obtained almost no difference between input and
recovered speech during the subjective tests., The speech signél was
sampled at 6.67 kHz, encoder was operating at 16 Kb/s, also quantizer

and predictor parameters were updated every 25 msec.

As a conclusion of these configurations, described here, it is
important to emphasise that the noise shaping techniques do not create
any extra information to be transmitted to the receiver. Hence, the
reduction of the perceptual effect of the noise results in some
complexity in the design of transmitter at a given transmission bit-rate
and improved quality of reconstructed speech specifically at bit-rates

of 16 ¥b/s and below.

2.3.7 Delta Modulation, DM

Delta Modulation is a simple differential quantization technique

that is essentially a one-bit DPCM system, because it preceeded DPCM,
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and is widely used, we will consider its operation in detail.

The input signal of ‘DM is oversampled so that the successive
speech samples become highly correlatéd. Therefore, samples can easily
be predicted from one previous sample, using single-tap predictor, and
a 2-1eve1'quantizer can provide reasonable SNR performancesll)
Consequently DM has a simpler structure than DPCM. In DM, the bit-rate

is equal to sampling rate. Since its invention in 1946579) many papers

(8)

have appeared on the subject. Steele, in his often referenced book,

presents an excellent comprehensive survey of delta modulation.

Like DPCM, DM coder can be either linear, non-adaptive (LDM) or
adaptive (ADM). These classifications are usually associated with the
techniques of calculating stepsize, A. In LDM, A is fixed, while in
ADM, the stepsize follows the variations in the input slope according
to a companding algorithm. We will now describe LDM and ADM in more

detail.

2.3.7.A Linear DM, LDM Coder

Figure 2.21 shows a LDM coder having a 2-level quantizer with a
fixed step size 4, and single-delay predictor having a coefficient of
unity. The feedback loop is composed of a delay D of one sample
period followed by an accumulator. Transfer function of feedback loop

is D/FI—D).

In the encoder, locally estimated speech sample ﬁi-l is subtracted
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from the actual speech sample X, to form the error sample e, which is
subsequently quantized. The polarity of e, is transmitted as a ome-bit

binary word Li' The Equations governing the delta modulation system are:

e; = xi - xi_1 (2.70)
x, = X,_; + Bsgnle,) (2.71)
q; = % - X (2.72)
therefore, e, = X, - xi—l + 94 (2.73a)

The decoder integrates the received binary signal to yield a
signal that is a staircase version of the original speech signal.
The sharp edges of the staircase signal are removed by the .low-pass
filter ¥, to produce a speech signal that is a good replica of the
original speech, provided the bit-rate is ;ufficiently high (232 Kb/s).

In the absence of coder overload, the Equation (2.73a) may be written as

e. ¥ X, - X (2.73b)

'i.e., the error signal is approximately the derivative of the input

signalgso)

Two types of distortion arise in the encoder, and are known as
"granular” and "slope overload" noise. Slope overload occurs if the
staircase waveform ﬁi-l is unable to track the input speech signal.

To avoid slope overloading the following inequality should apply,

dx(t) A 4
dt 7 (2.74)
max

where T is the sampling period and equal to llfs, and dx/dt is the
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derivative of the speech signal. If the input signal is a sinewave,
x(t)=Vm81nmmt,
x(t)lmax =w V. . . (2.75)

For no slope overload,
wV gAf {(2.76)

Granular noise occurs when the encoder is tracking X; and is the result
of inband noise in the tracking error signal. For correct idle channel
conditions when there is no input signal, the binary output signal is

a sequence of alternative logical ones and zeroes. This binary signal

does not generate am output at the output of F Idle channel noise

o
occurs when the .....1010101010.... output pattern is not maintained

due to encoder asymmetry, and a noise signal occurs at the decoder output.

If the output binary sequence, {Li} has a form of the type 10111111
or 001000000, the probability of having slope overload is high, while if
{Li} is say 1100101110010110, granular noise dominates. Slope overload
noise is reduced by increasing stepsize, A, whereas the opposite is true
for granular noise. Step size adjustments according to binary
sequences at the coder output are efficiently utilized in ADM coders.
Perceptually, the overload noise is preferable to granular noise, since

(81)

the latter has a uniform spectrum (see Section 2.3.5). Abate proved
an imperical formula for the optimum step size, Abpt which minimizes the

total noise power, namely,

/ 2
= - 7
A <(x;7x;_;)"> log,FR (2.77)

opt
where FR=fs/2fc (fc is the bandwidth of the speech signal) and Equation

{2.77) 1is valid for FR>>1.
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The exact calculation of SNR in DM has been studied by many authorsfsz‘aﬁ)
R 2 . . .
Some concentrated on granular n01se58 ) while others investigated only
. (83-84) . , : .
slope overload noise. 0'Neal examined both types of noise and
added the variance components due to each distortion for Gaussian
signalsfas) Various formulations of SNR in DM can be summarized as
follows:
(86) . .
a. De Jager showed that the noise power is
. £
o2 =k .5 . 4% (2.78)
q q £
c
The constant K.q is typically 1/3 for good encoding conditions.
Equation (2.78) is applicable for flat noise spectrum in the
message band, and
ci f;hﬂz 2
SNR = — B an (2.79)
q |message q
band
assuming no slope overload occurs.
b. Cummiskey(so) derived that
-1 2f
- QD /28 .50,
message 2(1-c.) y
1
band

. 2 2 . . . .
where Qopt is <ei>/<qi>, cl is the correlation coefficient of

speech.,

In proving Equation (2.80) it was assumed thag €, X, ~X._; and the
resulting noise spectrum of the DM is flat, so that the ratio of total
noise to the noise in the message band is fs/2fc' In a 2-level
quantizer, Qopt values for Gamma, Laplacian, Gaussian and Sinusoidal

p.d.f. of quantizer input sequence are 1.50 (1.77 dB's) 2.0 (3 dB's),
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2.75 (4.3 dB's) and 5.28 (7.2 dB's), respectively.

Equations (2.79) and (2.80) agree, and spgcify the upper bound in
the case of single integrator. As an example, consider a sinewave,

. 2 .2 . . .
V-Vm§1n2Hfmt and oxzvmlz, where Vm is the amplitude and fm is the
frequency of the sinewave. At no slope overload, from Equations (2.76)

and (2.79), the peak SNR, SNRP is written as,

f3
—5_
= 8
SNRP message 0.04 . 2 (2.81)
band c m
. . (87)
From Equation (2.80) it was also proved that
£3
SNRP = 0.054 —= (2.82)
message £ f2
band ¢ m

Observe that SNRP of DM for single integration is

3 .
SNRP = k. f 83
bNR.I:'DM ’{DM £y (2.93)
(kDM is constant),
while in PCM and DPCM, SNR is proportionazl to fs'
(86) . .
De Jager has shown that aDM can produce speech with quality equal

to that of 7 bit log-PCM while operating at sampling rate of 120 kHz.

Another type of LDM is Delta-Sigma Modulator (DSM) in which

(8) in the feedback loop of LDM is relocated in front of

the integrator
the quantizer, and the decoder is just a filter. Thus, the error
sequence is integrated prior to quantization so that slope overload is

independent of signal frequency fm.
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2,.3.7.B Adaptive DM, ADM Coder

LDM has a peak SNR for one input power level when the coder is
operating with a particular 4 and fs. In the case of telephonysaa) this
means that subscribers whose voices produce electriéal signals having
different power levels will be DM encoded with different SNR values.

What is required is an almost constant SNR for all subscribers, i.e.,

a DM capable of operating with a similar SNR over a wide range of signal
amplitudes. This is achieved by means of an adaptation strategy such
that for a given fs’ A is allowed to decrease when the slope of the input
speech is small, and vice versa. As the noise pover <q§> depends on A,
we attempt, in ADM, to arrangerfor <qi> to vary with signal power,
resulting in an SNR that is independent of the signal power. (The same
independence found in ADPCM systems). DM systems employing the
adaptation algorithms are referred to as adaptive DM, or companded DM.
Adaptation can be either syllabic (A changes at a rate which is dependent
on the pitch or envelope information, or on the syllabic variations in
the speech signal) or instantaneous (A changes at every sampling instant),

Many different algorithms have been proposed in the literature.

Winkler's High Information Delta Modulation, (HIDM) coder(sg) uses

3 consecutive pulses at the encoder output in its adaptation algorithm
and is an instantaneous system. Adaptation logic makes a decision
according to the polarity of the three pulses and selects the three
multipliers. HIDM produces a high SNR, and is well-suited to pictorial
signals due to its ability to cope with sudden changes in the input
signal. However, at high traﬂsmission rates {64 Kb/s, HIDM operates

satisfactorily with speech signals.
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Another type of instantaneous companded DM is proposed by
Jayant513’33’36’90’91) and is usually referred to as First Order
Constant Factor Delta Modulation, (FCFDM) coder. The step size 'is
calculated at every sampling instant in accordance with the polarity
of the last two pulses at the encoder output., This is accomplished by
two multipliers which are independentrof the sampling frequency. Jayant
optimized these multipliers (1.5 and 1/1.5) and obtained good telephonf
speech quality at a bit-rate of 60 Kb/s. At 40 Kb/s, degradation in
quality is perceptible, while at 20 Kb/s the speech quality is
significantly reduced, but most of the intelligibility is preserved.

At 60 Kb/s SNR of FCFDM is 10 'dB better than LDM for coding speech
having a 3.3 kHz band-width. Also at low bit-rates, it behaves better

than log-PCM, as SNR is proportional to fg, while PCM increases 6 dB/

ADM

octave increase in cleck rate.

A similar type of technique, referred to as the Second Order
Constant Factor DM (SCFDM) coder investigated by Kyaw and Steelesgz)
Instead of using the last two conmsecutive bits of FCFDM, SCFDM employs
3 recent bits and constitutes 8 possible binary patterns which are
grouped in complementary patterns to give 4 different multipliers. For

Gaussian input signal which is band-limited to 3.1 kHz, at 40 Kb/s,

authors reported a 4.5 dB advantage in SNR over FCFDM.

In a different approach, known as the Song Voice Delta Modulator

(SVDM)EQB) the step sizes at ith sampling instant generated as,

A, = 28 sgn(e._.) , for |A. .|<2a
1 0 i-1 i-1 0 (2.84)

a; = [Ai_lISgn(ei_1)+AOSgn(ei_2) , for IAi_1|>2A0
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where AO is the minimum step size of the system, typically 5-10 mV. The
results show that at 16 Kb/s and 9.6 Kb/s, the word intelligibility is
high and dynamic range is about 40 dB. This ADM, i.e., SVDM is closely

related to the constant factor delta modulator,

In contrast to instantaneously companding, ADM emiploying syllabic
companding changes its step size at a syllabic rate, dependent on
properties of the speech signal (typically time constants of 5-10 msec.,
i.e., these associated with a pitch period are used). Continuously
Variable Slope Delta Modulator {CVSD) finds favouf in speech coding and

(93)

is available on a single chip. The CVSD coder is shown in Figure

2,22, (Notice that without the syllabic compander the CVSD reduces to

an LDM). The DM step size is found from the output bit stream with the
aid of an %~bit shift register (£ is usually either 3 or 4 for £ 30 kHz).
Provided that 3 or 4 consecutive Li's have the same polarity, pulse H
is generated and activates the syllabic filter whose time constant, Ty
is‘typically 5-10 msec. A pulse of height HO (H0<<H) is added to ensure
that the minimum step size is not zero. The output of syllébic filter,
having a coefficient of 8,5 is multiplied with the transmitted bit to
give the step size Ai which is fed to the predictor (accumulator having
a1=0.99, 11~1 msec.*» At 16 Kb/s, suitable values of the time constants
for the syllabic and predictor filters, namely, T

and 6 msecng) to 6 and 25 msec(94}

1,12, range from 1
respectively. This shows that the
second choice is more syllabic rate, while the first one is rather at

pitch rate. The syllabic filter is designed to enable the DM to track

the speech envelope. System functions are,
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b, = a)h. . +(l-a))(H+H)) , for L.=L._ =L. ,

A, = a2A1_1+(1—a2)H , otherwise. (2.85)

Selection of EAPYL and a, has an effect on the robustness

2

of the coder to transmission errors,

Finally, in reference (94), CVSD and FCFDMare compared at 16 and
24 Kb/s. The results reveal that, in no channel error condition the
dynamic range of FCFDM is wider than CVSD, whereas in a noisy channel
FCFDM performance degrades fapidly as the error rate increases, CVSD

is more robust to channel errors.
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2.4 OTHER SPEECH CODING TECHNIQUES

. PCM, DPCM and DM coders are time domain waveform coders. However,
the speech band may be divided into a number of sub-bands, and waveform
encoding processes applied to each band so that the reconstructed speech
is the sum of the decoded values from each band, Such techniques are
known as Frequency Domain Waveform Coders (FDWC)SlB) They provide
flexibility in assigning different bits/sample to each band since the
noise is confined to each band, and appropriate coders can be designed
for the different signal statistics in each band. Consequently, good

quality of speech is obtained at lower bit-rates. Sub-band coding (SBC)

and Transform Coding (TC) are typical examples of FDWC.

SBC(13’66’95_97) divides the speech band into 4-5 sub-bands

according to perceptual criteria such that equal contribution of each
sub-band to the articulation index occurs. Each band is low-pass
translated (LPT) to zero frequency by a modulation process prior to
encoding. The aim of LPT is to reduce the sampling rate, and LP
Translated signal is now filtered with a cut-off frequency, fn’ egual
to the bandwidth of the sub-band. The output of low-pass filters are
sampled at an (fn being different for each band) and encoded, for
example, by APCM having Jayant's one-bit memory quantizer. SBC with
its noise shaping ability has a speech gquality that is higher than 2-
bits ADPCM below 24 Kb/s and also at 9.6 Kb/s, its performance is

almost the same as 19 Kb/s ADM.

Transform Coding (TC) is more complex than SBC (which is itself
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more complex than ADPCM). " Recently adaptive transform coding (ATC)
techniques have been exhaustively investigated513’95’98’99} The speech
signal is block processed. Each blocg is transformed and adaptive bit
allocation and coefficient selection performed. As the discrete Fourier
Transform (DFT) is often used, ATC is similar to SBC having many bands.
In references (95,99) the speech signal which is sampled at 8 kHz and
baﬁd-limited to 2.8 kHz encoded using 4 different types of encoder,
namely, ATC, SBC, ADPCM (AQJ and first-order fixed predictor) and DPCM-
AQF having block adaptive quantizer and Bth—order block adaptivé
predictor whose parameters are updated at every 8-16 msec. The

conclusions at transmigssion bit-rates of 9.6, 16 and 24 Kb/s are as

follows:

If complexity/cost is of no concern then ATC is superior in terms
of subjective guality of recovered speech. If complexity/cost is of
concern, then SBC is an attractive choice, since it has better quality
speech, but slightly more complex than the ADPCM having first-order
predictor. Furthermore its quality is paired with that of Eostlier
DPCM~-AQF coder. ATC is not described in detail, since it is beyond the
scope of this thesis. However, interested readers may consult

references (95-99).

Another system to be mentioned in this section is referred to as
voice-excited vocoder, (VEV). Such a vocoder attempts to gain the
(7,10)
advantages of both waveform coder and the vocoder. In the analyser,

a low frequency region of the speech band, known as baseband, (typically
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300-800 Hz) is encoded and transmitted using waveform coder and the

rest of the speech band is treated as in the case of channel vocoder.

An important feature of the base band signal is that, if there is any
periodicity in the signal, it is inhefently contained in the base band.
Consequently, the difficulties due to voiced/unvoiced decision and pitch
extraction can be avoided. At the receiving end, base band signal is
processed by a non-linear distortion element which flattens and broadens
the signal's power spectrum without disturbing the perio&icity of the
signal if there is any. This flattened signal is used as the excitation
source in the synthesizer. The speech quality resulting from voice-
excited channel vocoder is better than channel vocoder, however it

requires higher transmission bit-rates typically 9.6 Kb/s.

Finally, a much simpler technique of speech coding for intermediate

(100) is recently receiving

bit-rates, known as Time-Encoded Speech (TES)
a lot of attention. This method splits the speech waveform into
intervals between successive zero-crossings and then each segment is
defined by one of a.pattern, and extralinformatioﬁ about the amplitudes
is also transmitted. From the reference (100), it is clear that TES,

while still in its infancy, seems to require less computation than many

other systems described so far aiming for the 4-16 Kb/s.

A}
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3.1 INTRODUCTION

In the previous chapter, speech coders are briefly reviewed and
their performance is compared in termg of SNR values. In this chapter,
DPCM encoders employing either fixed or adaptive quantizers, together

with fixed or block adaptive predictors, will be examined in detail.

The long-term SNR of DPCM is given by

SNR = G.Q (3.1) |

where G is the ratio of the signal power to quantizer input power
and sometimes is referred to as the 'prediction gain’”. Q is the
ratio of the quantizer input power to quantization noise power.

Equation (3.1) may be written, in terms of dB's as

SNR(dB) = SNRI(dB) + SNRQ(d4B) (3.2)
where SNRI(dB) = 1010g10G (3.23)
SNRQ(dB} = IOIOgIOQ. (3.2b)

The SNR improvement term, SNRI of DPCM over PCM, is the result

of the formulation of the difference signal sequence {ei} between the
input speech samples,'{xi}, and their estimates, {Yi}’ at the output
of the predictor. In particular, the high correlation that often
exists between successive speech samples will ensure that the variance
of'{ei} is considerably smaller than the variancg of the input speech
samples, <xi>, where 1 is the ith sampling instant, i.e., 1<i<NS and
<.> is the time average of (.) taken over the total number of samples,

NS. As shown in Figure 2.14, the noise introduced in DPCM encoding is
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equal to the noise produced by the gquantizer, i.e., at ith sampling

instant, x, = X, + q; and e, =e. +4q,. Furthermore, the power of this
. . . 2. . . )

quantization noise, <q;> is proportional to the power of the quantizer's

. . 2 2 2 . .
input signal <ei>, and as <ei> <<xi>, it follows that DPCM will out-—

perform PCM when encoding speech signals.

Obviously, the magnitude of the SNRI term in Equation (3.2) will
depend on the efficiency of the predictor used in the DPCM encoder.
Efficient predictors can be first designed according to the long-term
or chort-term statistics of speech and embedded in a DFCM loop. When a

predictor is operating in the feedback loop of a DPCM encoder, however,

the input speech samples are predicted from previously decoded speech
samples and as a result the input signal to the predictor is contaminated
with quantization noise and its estimation accuracy is affected. This
limitation effect in the performance of the prediction and the resulting
decrease in the SNR of the encoder, is emphasized at low bit-rates where
coarse quantization is used and the predictor-quantizer "mismatching”
becomes significant. This seems to suggest that the optimization of the
predictor should be performed using the statistics of the decoded speech
samples, including information related to the quantization noise. In
the simulation experiments presented in this chapter however, the
transmission bit-rates concerned are relatively high, allowing for the
predictors to be designed using the statistics of the original speech

data.

The predictor, employed in a DPCM coder (encoder-decoder), can be
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i) fixed, i.e., time-invariant, ii) block adaptive or iii) sequentially
adaptive, and various algorithms can be used for the calculation of the

(55)

prediction coefficients. McDonald, in his often referred paper,

studied the case where the predictor is designed with fixed coefficients.

Later, N011(38)

examined block adaptive schemes where the non-stationary
nature of speech is considered. In particular, values of the prediction
coefficients vary with time in a block adaptive mauner and the predictor

can cope with changes in the statistics of speech.
The reason for the inclusion of the present chapter is two-fold:

a. to discuss the relative merits of the fixed and block adaptive
predictors,
b. to prepare the background for the subsequent chapters which

deal with sequentially adaptive prediction schemes.

We start with a description of performance criteria which can be
used for the comparison of different predictors. Then, the design of
fixed and block adaptive predictor is presented. Further,'computer
simulation resulfs of DPCM codecs employing these predictors and fixed
or adaptive quantizers are discussed. Finally, the tolerance of the

resulting codecs in the presence of channel errors is examined.
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3.2 VARIOUS CRITERIA OF SYSTEM PERFORMANCE

3.2.1 Long-Term Signal-to-Noise Ratio, SNR

The calculation of long-term SNR is simple and is extensively used
throughout the thesis in evaluating the performance of various encoders.

It is defined as, 2
>

<X

~2
< (xi xi) >

SNR =

(3.3)

where <(xi-;i)2> is the variance of the error samples, (xi-;i), and
1<i<NS, where NS is the total number of samples. In many cases, SNR

is a reliable performance indicator, especially at high transmission
bit-rates, where it is closely related to the subjective performance

of the codec. However, this is not always true as sometimes higher SNR
values are not necessarily related to improved quality speech. This
inaccuracy arises from the importance of the subjective mcasure of the
quantization noise, rather than its power as it has been discussed in

Section 2.3.5.

3.2.2 Segmented SNR, SNRSEG

A different criterion to measure the performance of waveform

(38,48) .nd it is known as "Segmented SNR".

encoders was proposed by Noll
It is similar to the total SNR measurement of Equation (3.3), but
instead of evaluating one SNR value, the speech data is divided into

successive blocks of W samples and a SNR(dB) value is computed for each
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block. The SNRSEG is then formed as the average of the block SNR(dB)'s

i.e.,
W
I«
SNRSEG(dB) = o= £=1 10 log,, = - ” (3.4)
izl{"i+(m-1)w"‘i+(m-1)w}
th

where NB is the total number of blocks and m corresponds to the m

block.

An important feature usually added to this formula consists of

discarding the SNR computation for segments whose signal power is below

some threshold, typically -40,-50 dB's. This threshold, set to determine
periods of silence, is introduced in order to improve the accuracy of

the performance measure in the presence of idle channel noisegﬁa)

Many research workers are in favour of SNRSEG rather than SNR. This
preference is related to a closer agreement of objective results with

the subjective performance ratings of coded speech.

3.2.3 BSNR Improvement Factors, SNRI, SPR

In DPCM, the gain, G, over PCM is given by

2
<K, >
: ¢ = i (3.5)

2
<(xi-yi(xi)) >

or
SNRI(dB) = 10 1ogloG (3.5a)

where ys is the output of the predictor operating on previous input
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speech samples Xy _19% s and hence ys is a function of {xi}, i.e.,
yi(xi). The parameter G is considered as the amount by which linear
prediction can reduce the input signa} power, Furthermore, as G is
obtained when the predictor input is noise free, it is frequently used
in simplified mathematical analysis of DPCM codecs where the interaction
between quéﬁtization noise and prediction accuracy is assumed to be

negligible.

In the case where ¥; is computed using previous decoded samples,
i.e., Y; (xi), the prediction gain becomes more accurate and is denoted

by G_:

a <x§>
G = = (3.6)
a _ 2
or SPR(dB) = 10 log10 Ga . (3.6a)

SPR is the true SNR improvement factor and the presence of quantization
noise obviously affects its value, which differs from SNRI(dB). SNRI
however, is often preferred in performance comparisons to SPR and can

be interpreted as the upper bound of SNR gain of DPCM over PCM.

Sound spectrographic displays can also be used for performance
evaluation, especially with codecs operating at low bit-rates where the
power of the quantization noise is comsiderable., This is because
spectrograms provide a good indication of both the tracking capacity
of the codec and the relative nature of the noise spectra with respect

te the input spectra,

Finally, the subjective quality of the recovered speech is the most
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important criterion to be considered. ' Our approach, therefore, in the_
presentation of codecs on a comparative basis at bit-rates between 16
and 40 Kb/s, is to compute the long term SNR, SNRSEG, SNRI or SPR and
then to evaluate subjectively the quality of the reproduced speech

signal through a series of informal listening tests,




103

3.3 TIME-INVARIANT PREDICTCRS WHEN USED IN DPCM SYSTEMS

The term, predictor, is referred to a device which estimates the
current speech sample as a linear combination of past samples. The
diagram of such a linear predictor is shown in Figure 3.1 with the

predicted value Y5 formed as

N
i T kzlakxi—k ’ (3.7)

. th .. . . . .
where a 1s the k= prediction coefficient or tap gain and N is the

order of the predictor. Obviously, the impulse response of predictor

is controlled by the values of the predictor coefficient's a s k=1,2,...,N.

The methods of selecting the a coefficients are of interest in this

thesis.
In designing "optiman predictors”, Wiener(lol) developed
Kolmogoroff'é*UZ) earlier studies and calculated the value of the

coefficients so that the mean squared error between the input and the
. 2 2_ . . . .
predicted samples <ei>=<(xi-yi) > is a minimum. This method is often

referred to as the Least-Mean-Square error optimization, ILMS, procedure.

In DPCM systems, ¥; is given by Equation (3.7), with x; replaced
by the decoded sample ﬁi' Hence, the prediction error power is

N

2 2 ~ 2
o, = <e;> = <(xi - 1 akxi—k) >. (3.8)
k=1
Equation (3.8) is expanded as
2 1)’:' I)”:' 2
o7 = <(x] - X, . = q. .)"> (3.9}
e i k=1ak i-k k=1ak i~k

since x, = xi+qi, and q; is the noise sample introduced by the
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. . . th . . .
quantization process at the i sampling instant. Assuming that the
correlation between the 9 samples and also between q; and xg is

negligible, Equation (3.9) is rewritten as
N ' N
2 2 2 2
o7 = <(x, - Z X,  }7> 4 <q.> Z . (3.10)
e i A ik i L %
. . 2 2
For a coder having a high SNR, <q;> can be neglected (<qi>=

U§<<Ui=<x:> and the number of bits, b22) and Equation (3.10) is
approximated by

2 R 2
o, = <(x, - ) a x )% . 3.1
k=1 :
Furthermore, Equation (3.11) may-be expanded as-

2 2 N N N
op = <xp> = 2] aex; x>+ 1oa ] oacx x> (3.12)
k=1 k=1 5 re1

since the square of the sum is expressed as a double sum with two
separate dummy summation indices, k,r. <K 0¥ is the cross—

covariance between xi and xi—k'

The optimum coefficiénts are selected so that the partial derivative

2 . .
of O with respect to a_ becomes zero, i.e.,

302 = =2<x, X,> + 2 § <X, .X. >
%a_ i-r'i L e B R S
=0 - . ' (3.13)
Hence, N
<x;_ %> = Z a, <X, X, > {(3.14)

where k,r=1,2,...,N.
Let <xi_rxi>'be ¢, and <K Ko g be b then Equation (3.14)

is rewritten as:
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N
$ = X ak¢rk (3.15)

~

and from Equation (3.15), the optimum vector, A

opt? of prediction

coefficients a s k=1,2,...,N, is found to be

- -1
Aopt =§ Y (3.16)

where & and ¥ are the correlation/covariance matrix and vector
respectively, see Equaéion (2.9). The elements of matrix ¢ can be
defined in two different ways, resulting into what is known as
"autocorrelation’” or the "autocovariance” solution., In our notation,
regarding the autocorrelation method, the correlation matrix will be

denoted by (.

(11,20,26,28)

In Autocorrelation method, assuming that the error

is minimized over the finite duration, correlation is
N
= r¥ .
c. kElakcrk , lsrgN (3.17)

and by substituting Equation (3.14) in Equation (3.12), the minimum

error power is obtained as

2 N
oe| =6y - ) a (3.18)
min k=1
where
CO = <X._.>
c_= ) XX, (3.19)

. th . . s . .
Cr is known as the r autocorrelation coefficient of signal and it
is an even function of r, i.e.,

Cc = C (3.20)
r -r
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Now, using Equation (3.16), the Equation for the autocorrelation

solution is obtained as
Ca =CO , (3.21)

where Cb is the autocorrelation vector.

The matrix ( is symmetrical and generally referred to as a TOEPLITZ
matrix, i.e., a symmetric matrix where all the diagonal’elements are
equal, When the elements of both the matrix C and the vector (6 are
normalized by CO’ the mean-square signal power, the following

normalized autocorrelation equation is obtained,

4 3 B 4 1 f
1 c1 c2 CN-l al c1
! 1.4 “N-2 22 152
~ . ¢ I
f ~ . I | :
: S ; | = i (3.22)
[ TN ! ! '
| ~ - ' ¥ ]
1 a c
c c C mmm o m - —
. N-1 "N-2 "N-3 J | NJ [ N
C
where c = =*£ (3.23)
r C0

In practice, the signal is defined over a finite interval,
rather than having ~w<i<w, This indicates that the samples of the
signal is multiplied by a window function wbi so that another signal

'

xg is obtained that is zero outside a specified interval 1<i<W, wviz:

x. whb. 1<i<W
1 1

[

0 otherwise

The normalized autocorrelation coefficients are then defined by
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W-r
Tt
C z xixi+r
T i=1
c = — s — , 1r2l, (3-24)
T C0 W 2
I )
. 1
i=1

The shape of the window function w. can be of importance. The simplest
one is the rectangular window where wbi=1 for 1<i<W. Further details

of the windowing are to be discussed later in this section.

In the autocovariance method, speech analysis and synthesis

(31)

problems originally applied by Atal and Hanauer, the elements of the

matrix ¢ and the vector ¥, see Equation (3.16) are calculated so that
2, s s .. . .
the error o, 1is minimized over a finite interval, say 1l<i<W. Therefore,

from Equations (3.12) and (3.14), we get

N .
Jaé =¢_ , 1srs (3.25)
k=1ak kr r
and ) N
SR PV .26
k=1
where L
Opr T lei-kxi—r (3.21)

is the covariance function of the signal samples X o17%0% o0
The matrix formed using ¢kr for 1gk,rgN is known as the covariance

matrix. Equation (3.27) may also be written as

W-k
byr .E X ¥4kt (3.28)
i=-k
or
W-r
b = L ®%aon (3.29)
i=-r
hence S = Synr (3.30)
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The importance of Equations (3.28)-(3.30) is two~fold. Firstly, the
covariance matrix is a symmetric matrix with unequal diagonal elements
and therefore, it is no% a Toeplitz matrix. Secondly, the number of
samples required for the computation of the covariance function is
increased outside the interval 1<i<W, i.e., to N+W, compared to the W

samples used in the autocorrelation method. The covariance equation is

therefore formed as

(4 0 e mmm o W r '] r 1
¢'21 $gp=- - --=-=- 22 20
~o )
: ~\\\ : = | (3.31)
I S~ ' :
L¢N1 __________ ~¢NNJ haNJ \¢N0J

Now, if we are to briefly compare the two methods, we note that
as the time interval over which the optimization procedure is applied
goes to infinity or in practice to the overall duration of a speech
sound, the autocorrelation solution approaches thé solution provided by
the covariance method,'see Figure 3.2. However, in many applications,
the error power is minimized over a short segment of the speech wave-
form, rather than over the total number of samples in an utterance.
Thus, the question arises as to whether to use the autocorrelation or
the autocovariance method for modelling the vocal tract and the

subsequent use of linear predictors in vocoders and DPCM systems.

In the autocorrelation method, the first N samples are predicted
from the speech samples outside the segment of speech. Since these
samples are zero, a large error may occur. The windowing process is

introduced to reduce the error so that it smoothly tapers the signal
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to zero at the window ends. The choice of window depends on the type of
signal to be analysed. If the signal is considered to be statiomary for
a long period of time, then a rectangu}ar window is adequate. However,
speech-like signals can be considered stationary for a duration of only

a few pitch periods and a Hamming or a Hanning window is more appropriate.

The Hamming or Hanning(IOB) functions are defined as follows:

0.54-0.46 cos (%—_’%) OgisW-1

wb., =

i (3.32)

0 otherwise
1 27i . )
5 [1-cos (W—_l)] OgigW-1

wbi = (3.33)
0 otherwise

The process of multiplication of a signal by a window is equivalent
to the convolution of the frequency response of the window with the
speech spectrum. This results in smearing effects in the speech spectrum
and the degree of smearing obviously depends on both the size and the
type of the window. For example, when input speech signals having a
duration of a few tens of milliseconds, are multiplied by a rectangular
window or a Hamming window, the spectrum of Hamming-windowed data shows

a substantial reduction of spectral distortion. -

On the other hand, the autocovariance method does not require the
windowing process and parameters such as the bandwidth of the formants

can be estimated more accurately than with the autocorrelation method.

When the complexity for a given number of prediction coefficients, N
. . . . 3 .
is to be considered, the autocovariance methods requires N operations

{multiplications, divisions) while the autocorrelation technique needs
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2 . ., . . .
N~ operations and it is therefore considerably faster solution. However,
when both methods are to be carefully compared when utilized in practical
applications the above mentioned computational efficiency becomes less

. 20 ..
1mportant$ ) This is because,

a. the time required to compute the matrix of autocorrelation/
covariance coefficients is greater than the time to solve the
matrix relationships given by Equations (3.16), (3.21), (3.31).

b. the time interval, W/fs, required for both methods is not the
same. For the correlation method, this is typically 10~30 msecs,
whereas covariance method can be used with 2-3 msecs of time

intervalsSSB)

Another difference between the two methods érises when the roots of
the predictor polynomial which are the poles of predictor and provide the
properties of vocal tract, are considered. For stability reasons, the
roots must lie inside the unit circle. The covariance method does n;t

(31)

guarantee stability whereas the autocorrelation provides always a

stable solutionSZG)

To summarize all these remarks, we can conclude that a predictor
designed using the autocovariance method models more accurately the
vocal-tract characteristics compared to the case where the autocorrelation
method is employed. The difference between these algorithms, in terms
of both SNR and subjective speech quality, is however negligible, when
used in DPCM. Therefore, due to its stability, the autocorrelation

method was selected to be used in our experiments.
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303.1 First-order DPCMLDPCM(I,b)

The order of a DPCM is defined by the order of the predictor.
Thus, a first-order DPCM employs a predictor having only one delay
element and one prediction coefficient, as illustrated in Figure 3.3,
The importance of the first order DPCM (1,b) lies in its simplicity
and this encoder is often used as a reference in system comparisons,

The SNR gain of DPCM(1l,b) over PCM can be calculated from Equatiom (3.12).

That is
N <x x> N N <x x >
2 2 i~k'i i-k i-r
g = <xT> |1 - 2 z a ——— + Z I a ——— {(3.34)
e 1 k=1 k <xi> k=1ak r=1 T <x§>

For a first order predictor, the above expression is written as

2 2

2
o, a_ (1 - 2a1c + al) . (3.35)

1

. 2 2 s
In order to achieve the 0§<<ox condition, the term between the

brackets must be a minimum, therefore,

1 - 2a.c +32 =—-a——(1-2ac +a2)
171 1 . d4a 171 1
min 1
Q= -2c1+ Zal . (3.36)
and
a; = ¢ . (3.37)
Using Equation (3.35)
c2
2 -6 = 12 . (3.38)
o l-¢
e 1

As c1<1, G is always greater than 1, Equation (3.38) indicates the

superiority of DPCM(1,b) over PCM,
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In the case where an ideal integrator is used in the feedback

loop of the DPCM ceodec, i.e., a1=1, the SNR advantage, G, obtained from

Equation (3.35) is equal to

1

G = T‘CIY (3.39)

and provided that claO.S. a conditicn which is true for most of the

time with speech signals, G>1. Hence, the simplest DPCM(1,b) system

having a1=1 shows a long term SNR gain over PCM.

In practice, DPCM(1,b) with al=c1 is always preferred to DPCM(1,b)

having an ideal integrator in the feedback loop as the former 1is more
robust to channel errors. This is because the leaky constant, s

attempts to reduce any error accumulation effects in the receiver,

3.3.2 N°" Order DPCM, DPCM(N,b)

When an Nth order predictor is used in the feedback loop of a
DPCM encoder, Equation (3.12) may be written in matrix notation as

o2 = 62(1 - 24 + AL ) (3.40)
e X 0

wvhere CO and C are the normalized autocorrelation vector and matrix,
. 2 . .. s c1
respectively. The value of o, 18 a minimum when Aopt= CB (see

Equation 3.21) and Equation (3.40) can be written as

2 2 -~ -
o « g1 -a_LCa ) (3.41)
e min X opt™ opt
then
Ge——1 (3.42)
1-4 L.A
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- -1 . .
and using Aop€C CO the denominator of Equation (3.42) may be written

as (I-Aoptcb)’ then,

1
G = N - (3.43)
1-7 c
k=1“k k
and
SNRI = 10 log, G (3.43a)

An Appendix C presents an interesting result relating to the

second order fixed predictors.

In deriving Equation (3.43), it is assumed that the gquantization
noise is negligible and X, and q, are orthogonal, i.e., <xiqi+t>=0 for

all t.

In references (11,60) the authors however considered the effect of
the quantization noise in the performance of the DPCM(N,b) predictor,
i.e., §i=xi+qi and formulated a more accurate expression for the gain

G_, over PCM;
a

*oq- o (SR,
kzlak k ‘T+SNR

and SPR(dB} is given by Equation (3.6a).

" The value of Ga approaches that of G in Equation (3.43) for high

. . . . . . 2
values of SNR where the quantization noise is negligible (Gq<<°§)'

In all above formulations, the quantizer SNR, Q, is assumed to be
constant (see Equation (3.2))., Many authors searched for more realistic
formulations of SNR under the assumption that the speech input and

. . . . . 56
quantization noise are orthogonal., In his DPCM(1l,b) analysis, O'Neals )



117

considered the variations in Q and developed an improved SNR expression

for K=1, a,=¢y

expression is

» see Equation (2.41), For N-order predictor, this

N .

2
1-():&5()/
SNR = Q . = (3.45)
1- Jac
o k%
i.e,, for a,=¢; Equation (3.45) reduces to Equation (2.41). Later,
Noll(loa) generalized the above expression by taking the normalized

autocorrelation matrix of the noise samples into account, viz:

~T ~
1~-A C&A /q
SNR =Q . opt d opt (3.46)

)
1 - c
k=1ak x

It is easily observed that when Cq=I (for <x.q. . >=0, for all t, the
quantization noise becomes white), SNR, in Equations (3.46) and (3.45)

becomes the same.

In an attempt to define the effect of the quantizer-predictor

(105)

interaction in the encoding performance of DPCM, Gibson showed
that the optimization of the predictor by maximizing the SNRI can
produce a change in long-term SNR that is much greater or less than
the increase in SNRI. Gibson attributed this cause to the change in
the p.d.f, of the signal at the input of the gquantizer and argued that
any change in p.d.f. at the quantizer input can produce a significant

improvement or reduction in the quantization noise power. Therefore,

the SNR of DPCM systems must be calculated in such a way that any

variation in quantization input p.d.f. is taken into account,
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3.4 BLOCK ADAPTIVE PREDICTORS WHEN USED IN DPCM SYSTEMS

As discussed in Section 2.3.4.,A, one method which improves the
encoder SNR performance is to compute the prediction coefficients at
every W/fs seconds, where W is the number of samples to be used by the
autocorrelation/autocovariance analysis. In this way, the prediction
coefficients are_désigned to match the short-term characteristic of the

input signal and the predictor is called "Block Adaptive Predictor", BAP.

There are basically two techniques for updating the predictor's
coefficients, In the first one, known as "Forward Block Adaptive
Prediction", FBAP, the coefficients are computed from the original input
data which is delayed by W/fS seconds, Figure 3.4 shows the block
diagram of a FBADPCM(N,b) encoder, where N is the number of prediction
coefficients, The predictieon coefficients are defined to minimize the

block error power, o;. given by
2 7 N 2
A 'Z (x; - Jax; ) (3.47)
i=1 - k=1

In our experiments, the autocorrelatién method is applied to W input
samples and the resulting a coefficients are employed for the encoding
of these samples. Notice from Equation (3.47) that the input speech
samples are used to calculate the a coefficients and therefore, the
prediction coefficients must be encoded and transmitted (forward
transmission) together with the speech information at the output of

the receiver. Obviously, with the predictor being able to respond to

the short—term changes in the statistics of speech, the performance of

DPCM is improved compared to that where a fixed predictor is employed,
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The transmission of the coefficient values to the receiving end,
however, in addition to the quantized samples {éi}, increases the
channel capacity. It is to say that for the available bit-rate, the
number of bits for sending the error signal éi is reduced since the
coefficient transmigsion occupies some portion of the channel capacity.
This increase in transmission bit-rate can be considered as an equivalent
loss in the SNR performance of the encoder and is given byfas)

b
LOSS IN SNR = 6.025E dB (3.48)

where bc is the number of bits per coefficient per block and W is
the number of samples per block., The loss in SNR, however, resulting
from the transmission of the predictor coefficient to the receiver is

considerably smaller compared to the SNR gains obtained by the use of

the Forward adaptive predictor in the DPCM system,

The second method, known as the "Backward Adaptation"”, BA scheme,
computes the prediction coefficients from the previously decoded speech
samples. Thus the transmission of the prediction coefficiénts as side
information is eliminated, Figure 3.5 shows the schematic block diagram
of BA scheme, The autocorrelation method can be employed on the locally
decoded samples in a similar way to that of FBA and the coefficients

are selected to minimize

N
o, = I - Lax . (3.49)

Although the ii samples are available at both the transmitter and

‘receiver, the employment of the autocorrelation method in a backward
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adaptive prediction scheme is not suitable for practical purposes. This
is because, it requires the delay of one block of decoded speech samples
and therefore the values of the coefficients calculated from {ﬁi} are
used in the encoding of the next incoming block of speech samples,
Recentlyf6o) backward schemes which update their coefficilients in a

sequential manner every sampling instant, gained a lot of attention and

they are referred to as "Sequentially Adaptive Backward Schemes".

The comparison of Figures 3.4 and 3.5 indicates that forward
adaptation has a more complex encoder than backward adaptation scheme

but the latter necessitates a more complex decoder.
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3.5 QUANTIZER SELECTION

The selection of a quantizer to be used in a DPCM encoder is an
important issue, especially at low bit-rates where the effect of the
increased quantization noise on the prediction algorithm is prominent.
In this chapter, we will examine both fixed quantizer, FQ, and Jayant's

Adaptive Quantizer, AQJ, for bit-rates between 16 and 40 Kb/s,

In FQ's, described in detail in Sectiom 2.3.2, the quantization
thresholds are defined in accordance with the p.d.f., of their input
signal, i.e., {ei}. The level allocation and step-size are unchanged
during the encoding process.and consequently the fixed quantizers are
often referred to as time-invariant quantizers. As the bit-rate
decreases (<16 kbits/sec.), the small number of fixed quantization
levels in FQ's is not able to successfully quantize the input signal
and adaptive quantizers (AQ) are used due to their large dynamic range

and their SNR superiority over fixed quantization.

An AQJ, as described in Chapter II is basically a fixed, unitl
range quantizer with its input weighted by a factor that depends on
the quantizer level occupied in the previous sampling instant, This is
equivalent to a scheme where the stepsize of the quantizer is updated
every sampling instant. Representing the magnitude of the sample
transmitted in the previous sampling instant by [Li-

at ith instant is given,byf36)

1|, the stepsize

8, =8,  M(|L,

i) (3.50)

i

where M(,) is a time-invariant multiplier whose value depends on the
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quantizer level occupied in the previous sampling instant, Notice that

the Equation (3.50) is a special form of Equation (2,63a) having Bq=1'

To visualize better the system, the characteristic.of a 3 bit
quantizer is illustrated in Figure 3.6 where 8 code words and 4
multipliers are assigned to the output levels of the quantizer., The
output sample, éi' corresponding to the quantizer input sample, ey
is given by, A

- - i
e. = F

: 7 [L (3.51)

il

with Li being ]Li[=1,3,5,...,2b-1, for an "b" bits quantizer.

In the simulation of the quantizer, the ratio of maximum step-
size A to minimum step-size A ., 1is selected as 128 so that from
max min

Equation (2,63¢), a dynamic range of approximately 42 dB is maintained.

(36

Typical step-size multipliers ) used in DPCM-AQJ encoders

operating at 8 kHz sampled speech signals are tabulated in Table 3.1,

In our computer simulation experiments only uniform quantization

thresholds were considered.

Finally, in an attempt to distinguish various DPCM structures,
different abbreviations are assigned to each coder as shown in Table
3,2 and will be used throughout the thesis. For example, DPCM(3,4)
means 3rd order, fixed predictor and 4 bits fixed quantizer, where

DPCM with no brackets refers to a general DPCM system.
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STEP-SIZE QUANTIZER

MUL?;PLIERS, OUTPUT b=2 b=3 b=4
M(1) Ai/2 0.8 0.8 0.8
M(2) 3, /2 1.6 0.8 0.8
.M(B) 54,/2 | 1.2 0.8
M(4) 78,12 2,0 0.8
M(5) %, /2 1,2
M(6) 11Ai/2 1.6
M(7) 13ai/2 S 2,0
M{8) 156i/2 2.4

TABLE 3.1: Step-size Multipliers

ABBREVIATIONS

DESCRIPTIQN OF DPCM CODER N=Order of Pre., b=bits/sample

Fixed Predictor, Fixgdﬂguantizer DPCM(N,b)
Sequential Predictor, Fixed
Quantizer : ADPCH(N,b)
:ve Predi
Block Adaptive Predictor, FBADPCM(N, b)

Fixed Quantizer

Fixed Predictor, Adaptive

Jayant's Quantizer DPCM(N,b)-AQJ

Sequential Predictor, AQJ ADPCM{N,b)-AQJ

Block Adaptive Predictor, AQJ FBADPCM(N,b)=-AQJ

TABLE 3.2: Abbreviations for Various Codecs
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3.6 SIMULATION RESULTS AND DISCUSSION

In the simulation experiments described in this chapter the long-
term SNR{dB) was selected as the performance criterion., Furthermore,
in determining the long~term SNR, the quantization noise power was
calculated by filtering the difference between the original speech
gamples and their decoded values, so that the quantization noise
components lying outside the input speech band of 0-3.4 kHz were
eliminated. The filter used for this purpose is Bth-order Butterworth
digital low pass filter whose design and a computer program subroutine
is given in Appendix D. The programming language used is the extended
FORTRAN IV (FORTRAN 1900). All the computer facilities, including a
collection of special algorithms for solving numerical problems, such
as matrix inversions, were provided by Loughborough Universify of

Technology Computer Centre.

Figure 3.7 shows. the schematic flow—chart of the procedure
employed in the DPCM computer simulations, For DPCM(N,b) and DPCM(N,b)-
AQJ purposes, we start with the calculation of long term autocorrelation
function of the speech samples according to

gs
X, X,
{=1 L 1T

<. = ¥ (3.52)

Z 2
i
i=1
. th . . . .
where . is the r = autocorrelation coefficient normalized by the

signal power, C0 and c, is obtained by shifting the speech samples by

r samples, Then, c. values are employed in forming the autocorrelation
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matfix C (see Equation (3.22)). The optimum predictor coefficients
are computed in accordance with Equation (3.21). The matrix inversion
process was achieved by using specia; Nottingham Algorithm Group, NAG
Librarysloa) These coefficients are then stored in a scratch tape.
Finally, a subroutine called DPCMENCODER recalls the optimum set of

~

vector, A and uses them to digitize the input speech samples with a

opt
predetermined number of bits per sample. SNR(dB) values for various

power levels of speech are then calculated and when Jayant's quantizer
is used the operating point is selected at a power level which is half-

way through the dynamic range of the encoder. For a fixed quantizer

however only peak SNR values are considered.

The right-hand branch of Figure 3,7 illustrates a similar procedure
for FBADPCM(N,b)-AQJ. This time however,the autocorrelation solution

is applied every W samples and the encoder processes a total of NB

blocks of W speech samples,

3.6.1 Input Speech Data

In order to facilitate performance comparisons, we allowed the
DPCM systems to operate on the same sentence, "An apple a day keeps the
doctor away”, which was spoken by a male. This sentence, low pass
filtered to 3.4 kHz (3 dB), sampled 10,000 times/sec., was provided

on a digital tape by the Joint Speech Research Unit, JSRU,
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3,6,2 Upper~limits of SNR Improvement, SNRI, for DPCM

The long-term autocorrelation coefficients has been measured for
the input speech signal, Figure 3.8, curve (a) shows the first 18 time-
lags of the normalized autocorrelation coefficients, c . In addition,

the corresponding values obtained using McDonal&'s(SS)

average speech
data, sampled at 9.6 kHz, are also indicated in Figure 3.8, curve fb).
As can be seen from Equation (3.43), the knowledge of the autocorrelation
function alone is sufficient for evaluation of the upper bound of the

SNR improvement in non-adaptive DPCM systems, since the optimum vector,

Aopt=(al,az,...,ak) is also computed from cLs r=1,2,...,k.

In Figure 3.9, curve (a) illustrates the SNRI(dB) as a function
of the predictor order N, when the c. values of Figure 3.8, curve (a)
were used, while the second curve (b) is related to the average speech
data, Clearly, the higher correlation between the speech samples of
the sentence "An apple a day keeps the doector away", compared to the
average data, manifests itself as an increase in SNRI(dB) values, for
a given predictor order, N, Also it is noticeable that in both curves
(a,b) of Figure 3.9, most of the gain is achieved when the order of
predictor increases to 2, For higher-order predictors (N>2), the SNRI
values reach a saturation level. In our speech data, the second-order
predictor, N=2, provides 15.2 dB improvement where 9.78 dB of this
amount arises from the first-order predictor., This suggests that most
of the SNR improvement of DPCM over PCM when using fixed predictors,
can be provided by a second-order predictor, It should be emphasized

however, that the SNRI of 15-16 dB's, obtained by optimizing the
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predictor on a particular speech sentence, can not be attained when

the DPCM is handling speech samples of different talkers, This is
attributed to the variations in the values of the autocorrelation
function for different speakers, That is why, in practice, where a
sub-optimum or average predictor is used, designed to cover a wide

range of speakers and speech material, the SNRI values are significamntly

lower.

3.6.3 Performance of Fixed-Predictors in DPCM(N,b), DPCM(N,b)-AQJ

When first and second order pre&ictors designed using the input
speech statistics, were embedded in the feedback loop of a 3 bits per
sample DPCM, DPCM(N,3), the computer simulation SNR of the codecs were
found to be 18.93 and 22.29 dB's respectively. In addition at 4 bits/
saﬁple, the SNR values were calculated to be 23.81 and 28,73 dB's for
N=1 and N=2 respectively. These observations clearly indicate that the
performances of DPCM(1,3) and DPCM(1,4) are inferior to those obtained
from DPCM(2,3) and DPCM(2,4). In terms of SNR éains in dB, the latter
systems out-performs the first-order codecs by 4.36 and 4,96 dB's,
These gains are comparable with those SNRI values of Figure 3.9, i.e.,
here, by changing N from 1 to 2, SNRI improves by 5.4 dB, However, as
we reduce the bit-rate, we also see that the upper-bound improvement
factor, 15.7- dB does not show itself in SNR measurement, In this
case, rather than SNRI given by Equatiom (3.43.a), the SPRa(dB)(ao)

becomes a more accurate representation of the prediction gain, viz,
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1

N
(1 - +
kzlakck

SPRa(dB) = 10 log10 (3.53)

T2
) a, /SNR]
k=1

where SNR is the signal-to-noise ratio of the DPCM codec.

Table 3.3 shows both the theoretical results of SPRa(dB)computed
from Equation (3.53) and the simulation results calculated from the
ratio of <xi>/<ei>. The transmission bit-rate varies between 15.84
Kb/s (3 level fixed quantizer) and 40 Kb/s, while the predictor is of

order 2.

The results in Table 3.3 indicate that as codec SNR increases

for higher bit-rates, the value of SPRa(dB) approaches that of SNRI (dB)’

which is defined in Equation (3,43a).

Table 3.4 presents the SNR performances of various codecs, such
as, PCM, APCM, DPCM(N,b) and DPCM(N,b)-AQJ, operating at 30 and 40 Kb/s.
Notice that the SNR of the fixed quantizer, FQ, at 40 Kb/s, is 15.8 dB,
while from Table 3.3, and at the same bit-rate, SNRQ is only 13.71 dB,
The latter is computed as the power ratio of the input signal of the
quantizer to the quantization noise, when the quantizer is inside the
DPCM loop and thus the 2 dB discrepancy from the different nature of
the input signals to the PCM and DPCM quantizers. That 1s, the input
speech signal to the quantizer of PCM is replaced by the much wider

spectrum prediction error signal of DPCM.
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TRANSMISSION SNR(dB) SPRn(dB) .
BIT-RATE OF DPCM(2,b) & ENRQ (dB)
Kb/s SIMULATION THEORETICAL
15.84 14.97 B.72 8.70 6.25
20 18,12 11.33 10.57 . 6.79
30 22,29 13.24 12.98 9,05
40 28,73 15.02 15.13 | 13.71
TABLE 3.3: Relative Accuracy of Equation (3.53)
TYPE OF 3 bits/sample 4 bits/sample
CODEC _
SNR(dB) | GAIN OVER |GAIN OVER SNR(dB) | GAIN OVER ] GAIN OVER
PCM{DB) APCM(dB) PgM(dB) APCM(dB)
PeM | 10.6 - - 15.8 - -
DPCM(1,b) | 18.93 8.33 - 23.87 8,07 -
DPCM(2,b) | 22.29 11.69 - 28.73 12.93 -
DPCM(1,b) } 27.87 12.27 7.45 28.20 12,40 6.39
-AQJ
DPCM(2,b)| 26.24 | 15.64 9.82 31.05 15,25 9.24
=AQ1

TABLE 3.4: Relative Merits of Various Codecs
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Figures 3,10 and 3.11 show the SNR(dB) variations of DPCM codecs
employing fixed (FQ) and Jayant's adaptive (AQJ) quantizers,
respectively, In Figure 3,10, we observe that when the order of the
predictor in DPCM(N,b) is changed from 2 to 4! the SNR(dB), at 30 and
40 Kb/s is 16,48 and 21.4 dBs, Also we notice that the performance of
the Ath-order DPCM is inferior to both the first and second order DPCM
systems. This is in contrast to what was obtained in the SNRI, curve
(a) of Figure 3.9 which indicates that the SNRI remains almost
unchanged as the order of predictor increases from 2 onwards. If this
SNRI of 15.8 dB is to be achieved by the DPCM(4,4) codec, we would.
expect to obtain a SNR value of about 31,6 dBs, since SNRQ from fable
3.4 is 15.8 éBs. However, if we utilize the SPRa reiationship given
by Equation (3.53), we notice that the effect of the upper-bound
improvement factor, SNRI in SNR values of the codec is significantly
Table 3,5 shows both the theoretical and simulation results

reduced.

of SPR_ at 30, 40 Kb/s when predictor of order is 4,

N=4
DPQH(4.b) | VPPER-BOUND SPR(dB) SPR,(dB) | SPR,(aB) |coDEC
D) 1 oNRT,Equ. (3.43) |Equ.(3.44) |Equ.{3.53) |smmufaron | swr
40 Kb/s 15.80 15.80 8.01 7.22 21.4
30 Kb/s 15.80 14.30 4.58 5.82 16.48

SNR Improvement Factors for DPCM(4,b)
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Comparison of Table 3.3 with Table 3.5 reveals that, at 40-dB/s,SPR
‘ a
simulation of the second order predictor is reduced by about 8 dB when

the predictor is replaced by a fourth-order one.

Similar points arise when Jayant's adaptive quantizer, AQJ is
used instead of the fixed quantizer, see Figure 3,11. Furthermore, at
lower transmission bit rates, an extremeiy surprising situation occurs,

The higher order fixed predictors (N:6) cause divergence.

At this stage our aim is to analyse the reasons why in Figures
3,10 and 3,11,

a. SNRI is not in agreement with the SNR measurements of the
codec when N24,

b. The SNR values of the DPCM(4,4) and DPCM(4,4)-AQJ codecs are
lower than the SNR values obtained from the DPCM(1l,4) and
DPCM(1,4)-AQJ codecs,

.c. At lower data rates DPCM codec emplbying higher order

predictors become unstable,

The aforementioned points can be attributed to many factors.
Firstly, in deriving the SNRI in Equation (3.43) we assume that a)
. . . . 2
the power of the difference signal at the quantizer input, Cys
P . . 2 2 2 2 . .
satisfies the inequality Ue<<dx, hence cq<<cx and b) the quantization
noise and the speech samples are uncorrelated. As a consequence of
condition (a) it is also assumed that the input to the predictor is
free from quantization noise, Several published reports state that

the aforementioned assumptions hold reasonably well with the quantizer
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having many levels (Nd;B). In our simulation results, however, the
SNRI and SPR performance indicators differ substantially for both
DPCM(4,4) and DPCM(4,3), i.e., for 8 and 16 levels quantization of {ei}
see Table 3.5, This seems to suggest that the magnitude of the
quantization error sample q; is comparable to the speech sample x;
and thus the optimum set of coefficients, computed from the input
speech statistics, is not well-matched to the noise contaminated
feedback signal, ﬁi. As a result, the inaccurate prediction of the
input speech signal would give an increase in the power of the
residual signal with a subsequent reduction in SNR, Furthermore, if
the residual signal has a given p.d.f, when coupled with the second-
order fixed predictor, it will experience a different p.d.f, for N=4,
Consequently, instead of arranging the quantization thresholds with
respect to the new p.d.f,, if we still employ the same design for the
quantizer, the quantization error will be significant and it will be
correlated with the input speech, Since the error imposed on each
sample can be as high as #A/2, where A is the step size of the

N
quantizer, it will reflect itself in_ y; = ) ak(xi-k+qi-k)' where ¥;
k=1

is the prediction output. This is to say that the random variation of
9y between FA/2, coupled with optimally selected a prevents the
accurate prediction of the incoming speech signa135107) This effect
of mismatching between the quantizer and the predictor will accumulate
as we go along the encoding process of whole utterance samples,

therefore the SNR of the codec will be degraded. In referring to

question (a) and (b) we can conclude that maximizing the SNRI values
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for N=4 onwards, will not precisely show itself in the SNR measurements

of DPCM if the p.d.f. of the quantizer input signal is disregarded.

In Figure 3.11, we also observe that SNR increases almost
uniformly with an increase in the bit-rate for N=1,2,4, but for N=6,8,10,
DPCM codec causes divergence at lower data rates, This arises again
from the mismatching between the two elements of the DPCM codec, namely
the quantizer and the predictor. In other words, the error samples
created by coarse quantization are now more significant than those
at higher bit-rates. The coupling of such errors with the higher
érder optimum predictor (N26) certainly increase the prediction error
and so the noise power in the codec, Furthermore, we thought that the
effect of mismatching can be reduced by using the average rather than
optimum, prediction coefficients computed from McDonald's(55) average
speech data sampled at 9.6 kHz , see Figure 3.8, curve (b). This is
because the location of the poles resulting from the average predictor
polynomial is more tolerant to the noisy input signal. Table 3.6
presents both the optimum and the average prediction coefficients for

N=1,2,4,6,

When we simulate the DPCM-AQJ codec with the average prediction
coefficients we found that, at higher bit-rates the SNR of the codec
for N=1,2, remains almost unchanged, while N=4 produces an SNR which
is close to that of the first order codec. This confirms the afore-
mentioned remark, i.e;, that the average prediction coefficients are
less sensitive to the noisy input, At lower bit-rates, the predictors

of order 6,8 in the codec still improves the previously reported SNR

value.
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N 2y 3, 3, a, a5 2
g 1 | o.9460
; 4 2.550 -2,870 1.810  }o.5700
u e 3.050 -4.590 4.690 |3.580 1.840  |-0.490
M
s |1 | 0.903
E |2 1.6316 | -0.8057
i 4 2.0230 |-1.7505 | 0.8050 }-0.2130
c ls 2.0590 |-1.8860 |[1.1411 l-0.7830 |o.5631 [-0.2442
E

TABLE 3.6: Predictor Coefficients Both for the Sentence

in Section 3.6.1 and for the Average Data
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For example, SNR of DPCM(6,1.58)-AQJ with optimum coefficients was
increased from -1.2 dB by a few dB's although it is still far below an
acceptable threshold of SNR., In other words, system divergence at lower

bit-rates occurs even if we employ the average prediction coefficients.

To obtain a quantitative measure of the predictor mismatch, a
distortion measure, dm was introducedslos) For N=1,2,4,6, we found dm .
values as 0,0043, 0.0775, 0,089 and 0.26 respectively. The values of dIn
suggest that as we increase N from 1 to 6, dm also increases, Especially
at N=6, dmé0.26 is very close to the statistically significant threshold
level of 0,3. This, once again confirms that system divergence with
higher-order predictors takes place. Under these circumstances, without
going into further detail, we can‘possibly conclude that the performance
of higher—order predictors coupled with coarse quantization is limited
unless:

(i) in selecting the prediction coefficients we minimize

N
2 ~ 2
o, = <(x,- }ax )"
e i k=lak i-k
rather than, N
Ui = <(x, = ] akx._k) >,
i L ki

(ii) the memory of the adaptive quantizer is restricted so that

the past poor prediction values are forgotten with time.

In (ii), the quantizer step-size is adjusted in accordance with the
Equation (3.50) having Sq values, In this way excessive quantization
noise may be reduced. Therefore, in referring to question (c),'we can

emphasize that if we insist on employing higher—order fixed predictors
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at lower bit rates, the above two points (i) and (ii) should be taken

into account,

3.6.4 Performance of Forward Block Adaptive Predictors in DPCM Codec
Employing AQJ, FBADPCM(8,b)-AQJ

As described in Section 3.4 the FBA predictor updates its
coefficients every W/fS seconds so that the prediction coefficients are
matched to the short term, rather than to the long term characteristics

of the input speech sigmnal,

When experimenting the FBADPCM codec, we have selected the order
N of the predictor to be 8, The reason for using such a high order
predictor is twofold. First, from our recent experience we know that
the higher order fixed predictors cause divergence at lower bit-rates.
Second, at high bit—rates, SNR performance of codec with higher order

predictors is inferior to that employing lower order predictors.

Figure 3.12 curve (a) presents the results of FBADPCM(8,b)-AQJ
whose coefficients are updated every 2 msec. (W=20) by using Equation
(3.47). For reference purposes results of a DPCM(8,b) codec are also
included, see curve (b). We observe that, fo; a wide range of trans-
mission bit-rates, the FBADPCM codec shows a better SNR performance
when  compared to the DPCM system with the fixed predictor, see curve
(b). Furthermore, at lower bit-rates, a significant improvement in SNR

effectively hinders system divergence., This is because, frequent
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adaptation of the prediction coefficients switches the codec between

unstable configurations and as a result it becomes stable.

When the block length, W varies be;ween 20 and 120 saumples the SNR
of FBADPCM is reduced as shown in Figure 3.13. This is attributed to
the content of the speech segment. For example, a large block of W
samples is likely to include a change in the statistics of the speech
signal and in this case the autocorrelation method will provide an
average, sub—optimum solution. Thus as we decrease W, we effectively

improve the prediction accuracy of the forward block adaptive predictor.

Although FBA predictors, both stabilize the encoder when operating
at relatively low bit-rates, approximately 16 Kb/s and improve its SNR
performance at higher bit-rates, they require additional channel
capacity for the transmission of the prediction coefficients., The
usual procedure is to reduce the bit-rate assigned to encode the
residual signal'{ei}, and thus to accommodate the side information for
a specified transmission bit-rate. In this way, the multiplexing of
the side information together with the reduced bits for the quantizationm,
keeps the total channel bit-rate unchanged. In our experimental results,
presented in Figyres 3,12 and 3,13, however, no such attempt has been
made. Therefore, for a given output bit-rate, the SNR is reduced
compared to the values shown in Figures 3,12 and 3;13. The loss in SNR
given by Equation (3.48) is minimal and depends on the block length, W
and the number of bits ;sed for the encoding of each prediction

coefficient prior to the multiplexing process,
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3.6,5 An Effect of Channel Errors in the Performance of Codec

A digital communication system, like DPCM, is in general, designed
to withstand a certain amount of signal distortion., These signal
impairments, ;re usually, attributed to:-

(i) terminal effects - quantization errors
and (ii) channel effects - random errors and the inaccuracy of

the regenerators in the channel.

It is well known that in (i) the quantization errors can be
reduced by using a large number of quantization levels aﬁd therefore
by increasing the size of the code-words assigned to the quantized
samples, In addition, adaptive quantizers whose step size is designed
to expand or contract, in accordance with the amplitude range of the
input signal to the quantizer can efficiently reduce the amount of
quantization noise for a given number of bits per sample., In (ii),
both the amplitude and the frequency modulation effects of the channel
together with the inaccurate regeneration of the transmitted code-
words deteriorate the ability of the ;eceiver to form the correct code-

words.,

We have already presented the results of adaptive quantizer having
large number of levels and now we examine the case (ii). In order to
simulate a DPCM codec operating with random channel errors, the following
steps have been adopted:

a) In Figure 2,14, the channel input vector Li of dimension '"b"

bits/sample is evaluated from



b)

c)
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. b-1 b-2 0 '
e]._ L1|2 +L202 +."+Lb.2 (3'54)

where Ll’LZ""’Lb are 0 or 1,

For b=4, Equation (3.54) is rewritten as

where L1 is the most significant bit, MSB, and L4 igs the
least significant bit, LSB.
Na, the number of the quantization level occupied by the

quantizer output sample éi’ is divided by the weighting

factor of the MSB, for b=4, it is 23=8. Since Og<N'<16, L

Q 1
is either 1 or 0. If L =1, NE—N&-B. Now Na is divided by
the weighting factor of L, (2 =4), Since OsNa<8 L is
either 1 or 0. If L =1, N85N3~4 This process continues

until the binary value of L, is evaluated. In this way,

4
the maximum negative level of quantizer is assigned with
Li=0000 while Li=1111 corresponds to the maximum positive
level sf the quantizer.

In order to introduce random errors in the channel a random

number generator was employed., For a given Bit-Error—Rate,

BER, a total number of samples, NS, the total number of

'samples deemed to be in error, NSAM, was calculated from

NS.BER.b
NSAM = (3.56)

Then the locations of these NSAM samples were selected

(106)

using a NAG Library subroutine, called GOSDAF, which

generates a sequence of random numbers in the range of 1 to NS,
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Then, for each of the selected NSAM samples the GO5DAF random
generator is employed again to provide a number between 1 and b which
identifies the erroneous bit inside the code-word. The value of this
bit is then reversed from O to 1 or vice versa and in this way the
channel errors are introduced. Finally, using Equation (3.54), the
erronecus code—word is used to produce the received ei sample which is

then further processed by the following decoding process,

Figure 3,14 presents the variation of the SNR versus bit-error
rate, BER %, for the FBADPCM(N,4) system, In this case we assume that
a) the probability for two adjacent samples to be in error is very
small, and b) the predictor coefficients are transmitted in an error
protected form, In Figure 3,14, two points can be clearly observed.
First, without the use of an error protection scheme to combat the
channel errors, the SNR decays rapidly as the BER Z increases, Second,
as the order, N of the predictors used in the system increages the SNR
deteriorates rapidly in the presence of channel errors. This is because
using larger values of N and thus longer feedforward filter structures,
the channel errors affect more decoded speech samples causing extended
accumulation of errors and instabilities in the detection process.
With regard to the first point mentioned above, concerning channel
error protection schemes, the severity of the degradation depends on
Ehe bit which is inverted. Specifically, if the error occurs ia the
MSB, the effect becomeé detrimental, Noll(AI) considered two formats
of error protection, namely the protection of MSB and the protection

of two MSB's. Although such codes improve the SNR performance of the
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codec, they increase both the channel bandwidth and the complexity of
. (109)

the system, A different approach suggested by Steele et al,
known as Difference Detection and Correction, DDC, attempts to locate,
by statistical means, and correct erroneous samples at the receiving
end., The authors claim significant improvement in SNR without an
increase in channel capacity. However, one possible drawback in DDC
is that some correct samples can be judged as errconeous and falsely

(110) examined the effect of channel errors in mobile

corrected., Jayant
radio telephony where the BER is in excess of 10-2 (in most digital
transmission systems, BER is less than 10—5). In his 3-bit codec, he
sends the MSB three times, the second bit twice and LSB once. The
decision on the value of the first bit is achieved by majority count.
If the two received values of the second bit differ, then the value
accepted is that which constrains the output waveform to have the lower
slope, The LSB is accepted as correct, This technique increases the
channel bandwidth and does not guarantee accurate decisions, since

multipath Rayleigh fading type of distortion in the link may invert

all the bits for any sample,
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3.7 CONCLUSIONS

This chapter has examined both fixed and forward block adaptive,
FBA, predictors as applied to DPCM systems for encoding speech signals.
Both predictors were used iﬁ these differential structures with fixed
and Jayant's adaﬁtive quantizers. The SNR curves were considered as

performance indicators in the comparison of the various codec

configurations,

The design of fixed predictors employs the long term statistics
of the speech signal and for this purpose the autocorrelation, rather
than autocovariance, method was employed. The upper bound SNR
improvement factor, SNRI was evaluated both for the tested speech data

(53) average data. Because of the high correlation

and for McDonmald's
between the samples of the input speech signal used in our experiments,

high SNRI values were obtained.

When such predictors with an order, N, between 1 and 10 were used
in DPCM codec, it was observed that for all the bit rates from 15,84
to 40 Kb/s, the systems having only 2 taps provided an improved SNR
over the codecs with N=1 and N>2, An inspection of second order
predictor results shows that SNRI values are reflected in SNR measure-—
ments when the quantization is fine, However, as we reduce the bit-rate
SNRI looses its significance because of the excessive noise produced
by the coarse quantization which appears at the input to the predictor.

Furthermore, when the SNRI is replaced by SPRa, both theoretical and
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Simulation results show that the latter is a more accurate improvement

factor than SNRI,

An increase in the order of the predictor from 2 to 4 at higher
bit-rates, indicated that the SNR performance of the codec employing
fixed or Jayant's Adaptive quantizer is deteriorated, in contrast to
results shown by the SNRI measure. The reason for this was attributed
to the mismatching effect of the ﬁth—order optimum predictor
coefficients to its decoded input samples and the p.d.f. of the input
signal to the DPCM quantizer. This also agrees with Gibson's(los)
results that maximizing the SNRI or SPRa factors does not necessarily
maximize the SNR unless the p.d.f. of the quantizer input signal is
taken into account, Then, replacing the optimum coefficients by the
average coefficients, we notice that previously reported SNR measure-
ments of the éth—crder predictor are improved by a few dB's since
the average coefficients are more tolerant to the decoded signal,
contaminated by quantization noise. At lower bit-rates, higher-order
(N26) fixed predictors cause system divergence confirming another of

Gibson's observationasﬁs)

Finally, in an attempt to improve the performance the DPCM codec,
the fixed predictors were replaced by FBA predictors where the
coefficients are updated periodically. When compared to Bth-order
DPCM at higher bit-rates, the FBADPCMsystem, changing their coefficients,
every 20-12¢ samples shows an SNR improvement of about 5 dB's, Another

substantial advantage, ét lower bit-rates, of the FBADPCM over the DPCM
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with the fixed predictor, is that the FBA predictors being switched
between unstable configurations, prevent the previously reported
system divergence of the fixed systems. On the other hand, the
disadvantages of the FBADPCM system are:

(i) the evaluation of the optimum coefficients per block basis
requires the inversion of the autocorrelation matrix and its
multiplication by the autocorrelation vector which considerably
increases the complexity of the system,

(ii) the required transmission of the prediction coefficients
increases the channel bit-rate. As an éiample the codec with
a an-order predictor which updates its taps every W samples
reqﬁires 8 bits/block overhead information provided that each
prediction coefficient is encoded using a 4 bit code-word,
The transmission of these coefficients to the receiving end
can be viewed as a SNR loss of 1.2 or 0.37dB for block sizes

of 40-128 samples respectively,

Thus, at the end of this chapter we see that the DPCM codecs
having fixed predictors have their limitations in following the rapid
variations in speech statistics while the disadvantage of the DPCM

systems with FBA predictors results from the required overhead.

information.

In the following chapters, we direct our efforts towards the

development of novel and efficient speech prediction algorithms,



CHAPTER IV

SEQUENTIAL PREDICTORS
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4.1 INTRODUCTION

The simulation results of Chapter III demonstrated the inadequate

performance of DPCM system employing a fixed "optimized” predictor,

The main reasons for the limitations in the performance of such a codec

are as follows:

The fixed predictor attempts to model the characteristics of
an "average", fixed vocal tract shape., Obviously, this type
of prediction can be efficient with stationary signals, but
not for speech where tﬁe characteristics of the vocal tract
are varying with time.

Since voiced speech occurs much more frequently than unvoiced,
a fixed predictor designed from the long term statistics of
the speech signal is more accurate in the prediction of voiced
than unvoiced speech, Indeed, for unvoiced signals the SNR
performance of a fixed predictor is reiatively poor,

At low transmission bit-rates, having the decoded speech
samples at the input of the predictor, severely distorted by
excessive quantization noise, the system becomes unstable.
This is due to the mismatch between the statistics of the
decoded speech and the statistics of the input speech used in

the design of the predictor,

"Block Adaptive™ predictors were also examined in the previous

chapter,

Here, the weighting coefficients of the linear predictor

were adjusted according to the short-term statistics of the speech
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signal and the changes in the vocal tract transfer function could be
handled more efficiently when compared to fixed prediction. As a
result, the prediction error signal has now a smaller amplitude range
which produces a smaller quantization noise power. In addition, this
block adaptive predictor eliminates the system divergence at lower
bit-rates. The block adaptation strategy has however, the following
disadvantages: when employed in a feedback mode whére the prediction
coefficients are estimated from the decoded speech samples, their
accuracy is considerably reduced because of the one block delay
introduced in updating the coefficients. Also, in the case where
"block adaptation’ is used in a "feedforward" mode, the transmission

of the coefficients is required as side information.

In recent years alternative "sequentially adaptive"” prediction
techniques which avoid the disadvantages of both the previous methods,
have received considerable attention in the field of speech coding.
The advantage of sequential predictor when compared to the block
adaptive scheme arises from the fact that a DPCM with a sequential
predictor eliminates the necessity for transmitting the values (side

information) of the prediction coefficients.

Thus, our research efforts, described in this chapter were directed
towards the behaviour of the sequentially adaptive estimation methods

whose coefficients are updated in a sample~by-sample basis.

In all sequential algorithms examined here, the canonical form of

Equation (3.7) is adopted, rather than the lattice structure of
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(32)

Itakura-Saito. Initially, the Stochastic Approximation Predictor,

SAP is analysed and the adaptation rate of its prediction coefficients

is shown to be inadequate to follow the fast variations in the statistics
of a speech signal. In order to obtain faster convergence to the
"optimum"” coefficient values, a novel technique called Sequential
Gradient Estimation Prediction, SGEP, is devised and investigated. The
mathematical analysis of its convergence is also presented. Further,
parallel SAP/SGEP eonfigurations and an application of sequentially

adaptive prediction in a noise cancellation scheme, are briefly mentioned.



159

4,2 SEQUENTIAL PREDICTION PROBLEM APPROACH

The technique of designing an optimum predictor im a mean square

error sense was first conceived in 19§2(102) and then improved by
WienerSIOI) The latter work made possible the design of a linear

predictor for estimating stationary signals. For higher order
predictors, Wiener relationship in a matrix form, is given by Equation
. - C—lc C; . . C
(3.21), i.e. Aopt= 0 where Uis the autocorrelation matrix and o
is the autocorrelation vector. This method applies to signals whose
autocorrelation function is known and therefore the prediction can be
optimum when the statistical characteristics of the signal to be
predicted match the apriori information used in the design of the

predictor,

In order to apply, in an optimum way, Wiener's prediction approach
to non-stationary signals, the short term signal statistics must be
considered. That is the input speech signal is assumed to be stationary
within short time intervals and the "ghort term” autocorrelation function

is measured for successive blocks of speech samples,

Now, when the average long term speech statistics are used in
computing the prediction coefficients, we minimize the error functionm,

. 2 v 2
FU = <ei> = <(xi - kglakxi_k) > ' (4.1)

The optimum solutiom, ﬁoﬁt is obtained by equating to zero the

gradient of FU, with respect to'the a ., k=1,2,...,N£111) i
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v(FU) = ¥y<e> = ve% (4.2)
1 ~ -~
A=A
opt

- N

= 2(CAOPC-C0) =0 . (4.3)

The set of optimum coefficients which form Aopt’ zeroces the
value of V(FU) and represents a minimum point of the FU=<ei> function.
This function can be visualized as a parabolic shape function of the
prediction coefficients {ak}, see Equation (4.1). The bottom point
of this parabolic surface is unique and corresponds to the optimum

solution A .
opt

When the short term statistics are known, the error function,

2 . . . :
FU=<ei> is minimized over a short segement of speech and the parabolic
surface with its minirum point, changes according to the short term

autocorrelation functions obtained from the speech signal,

A sequential predictor however, that possesses the incoming

signal while updating its coefficients at every sampling instant ,
eliminates the requirement of apriori knowledge of the input signal
statistics., Thus the sequential adaptive predictors, being able to
adapt the characteristics according to the varying statistics of non-
stationary signals have significant applications in the fields of
speech encoding, noise cancellation, equalization, modelling of
transfer function,etc, The adaptation ﬁf such a predictor is achieved
by an iterative algorithm where the new coefficients are calculated,
every sampling instant, using information related to signal samples

which have been already processed.
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In sequential predictors, there exist two modes of operation,
namely the "learning” mode and the "mormul” mode. The first ome is
observed when the system starts to operate on the signal and before
the algorithm settles down. In this mode of operation large
fluctuations in the values of the coefficient are inevitable, The
"ormal”™ operation which follows the learning mode is observed when
the predictor models and predicts the input signal with a reasonable

accuracy,

All sequential prediction techniques require an initial vector,

»

Ao, of prediction coefficients to be specified and they proceed by
th

generating a sequence of vectors, {Ai k} where i refers to the i
»
sampling instant and k indicates the order of the predictor. The

generalized equation for the adaptation of the kth prediction

- . t . . . .
coefficient at the (i+l) h sampling ianstant is given as:
3 (F)
a. = a. - g e —— (4.5)
+
i+l,k i,k aai,k

where g controls the adaptation speed of the algorithm. The ga(FU)/aai k
’

term, subtracted from a, .,
i,k

with respect to a, Lo k=1,2,...,N, and the values of the prediction

is the gradient of the error function (FU)

coefficients are updated in the direction opposite to the gradient of
the error. That is why, such a predictor is sometimes referred to as

a gradient predictor,

If the error function to be minimized is the mean square error,

i.e4y FU=<e§>,the kth component of the gradient is given by




= = (4.5)

or

[t
I
N

N
v (FU) (x, - klfk"i-k’ (4.6)

" The approximation sign (=) comes in since, to differentiate Equation
2 . 2 . .
(4.5), <ep> has been approximated to the sample error, e, . Substituting

the kth component of Equation (4,6) in (4.4) and having 2g=h, we obtain,

a. = a, + he,x,
i+l,k i,k ii-k °?

or in vector form,

-~ ~

Ai+1 = Ai + h.c».ixi . ‘ (4.8)

where h 18 a constant and controls the rate of adaptation. The
convergence of Equations (4.7) and (4.8) is guaranteed for values of

h between O and 25112)

Comparison of Equations (3,21), (4.6-8) reveals that the
sequential methods seek to optimize the coefficient vector in a
recursive way rather than solving a matrix equation. Figure 4.1
presents the block diagram of a sequential predictor., The predicted

.th ., .
sample at i instant is v; and
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N
Yi = kélakxi_k (4-9)

and the error introduced in predicting X, is

e; = X -, (4,10)
Hence, N
x, = kélakxi_k *es . (4.11)

In a vector form, Equation (4.11) may be expressed as
(4.12)

-~ -~ N
where Ai is the coefficient vector and Xi 15 a wvector whose

elements are the N previous speech samples, i.e.,

b
)
|

[31’32’a3"°"aN]

[x- ’x- ’l..’xl ]TI
1-1""1=-2 1-N

(TH

We are now to discuss three sequential predictors, namely the
Kalman, the Stochastic Approximation P;edictor, SAP and a novel
techniqué called the Sequential Gradient Estimation Predictor, SGEP,
which has been developed during the course of the work described in
this thesis, The performance of SAP and SGEP will be evaluated on the
basis of SNR curves, error waveforms, processing time and rate of
convergence, Then, the efficiency of these two algorithms will be
compared with the performance. of the Kalman algorithm as reported in

the Iiteraturesll3)
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4.3 KALMAN PREDICTOR(6O'63s64,113-115)

The general form of Kalman prediction coefficients is expressed

as -0

= YA, + W, (4.13)
where Y is an constant (NxN) matrix and Gg is an N dimensional columm
vector of white noise terms with zero mean and stationary variance Vw.
The procedure to define and then solve the general Kalman algorithm of
Equation (4.,13) requires considerable processing time, This is perhaps
why the majority of the research workers, working on Kalman predictor§?3’64)
assumed that the effect of ﬁg on A is small, i,e., the coefficients

change slowly from sample to sample and the Y matrix is the identity

matrix I. The resulting algorithm is sometimes referred to as the

Simplified Kalman Algorithm, and the prediction coefficients are
obtained when the hii term of the gradient algorithm, described by

Equation (4,8), is replaced by the vector G_ (i), i.e.,

KAL
Ai+1 = Ai + GKAL(l)ei | (4.14)
where GKAL(I) is the Kalman filter gain vector. GKAL(l) is computed
recursively in accordance with
Vi-1¥i
GKAL(i) = =T — (4.15)
v +X. V. X,
e i'i-1"1
where vi-l is the predictor coefficient error variance (NxN)} matrix

and Ve is an experimentally selected constant, The Vi_1 matrix can

be obtained iteratively from
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Vi %i5iio1

v, o= V., - e (4.16)
vV + X.V, X,
e ii1-1"1

- . T . .
where vector Xi’ as before is {xi-l’xi-Z""’xi-N]' Substitution of

Equation (4,15} in Equation (4.16) yields
v, = V., [T -6, (DX] . (4.17)

The quantity in the denominator of Equations (4,15) and (4.16)
is scalar and hence the necessity of a matrix inversion in obtaining
GKAL(i) and Vi is eliminated, Further, GKAL(i) behaves as an

automatic gain control factor since it adjusts the coefficients so

that they are not being overcorrected when the speech amplitudes are

large or vice versa,

Finally, it should be mentiomed that, in speech coding
applications of the Kalman algorithm a decaying constant Sd ig
introduced in such a way that it makes the algorithm more robust in

the presence of channel errors, i.e.,

i+l aty * Ggar ey (4.18)
and Bd<1.
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4,4 STOCHASTIC APPROXIMATION PREDICTOR, SAP

The SAP algorithm is also based on the Equation (h.?), i.e,,

a + he.x,
1 1

341,k T A,k k=1,2,..0,N

_k'
which is originated from the general gradient adaptation procedure of

. . L2 .
Equation (4.4} with FU=<ei> taken as the error function.

(62)

Cummi skey made an intensive study in this area and also
examined the case where FU is a function of the absolute value of the
error between the input and the predicted values, i.e., FU=<|ei|>.

For more details, see Appendix E.

In the SAP algorithm, h is defined as

A
h = =% C(xi,M) (4.19)

where A,B are constants and C(xi,ﬁ) is a function of the M previous

speech samples, that is

1 ¥
T(x,,M) = = A (4.20)
1 M_k=11k
. (62) \ .
Cummiskey used a zero value for B without realising the

necessity of this bias term B in the denominator of Equation (4,19),
specifically, during the unvoiced or the silence periods of the speech

signal. The complete form of SAP was examined later by Gibson et 31563’64)

The term B+;(xi,M) is a form of an automatic gain control and
tends to equalize the adaptation rate of the algorithm as the input

speech power level varies, As the power level increases B+c(xi,M)
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also increases, therefore h decreases and overcorrections of the ai+1,k
coefficient are avoided, preventing the occurrence of a large prediction
error. For silence or unveoiced segments of speech data c(xi,M)<<B and
Equation (4.19) maintains a finite value. Thus the bias term B
compensates for the low level input signals. Henceforth, h will be

replaced by Pi(x) since it is variable and changes at every sampling

instant, i.e.,

(4.21)

Figure 4.2 presents the block diagram of the SAP algorithm.

(62)

Appendix E deals with Cummiskey's algorithm with FU=<[ei|> and

gives the differences between this algorithm and the SAP.
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4,5 SEQUENTIAL GRADIENT ESTIMATION PREDICTOR, SGEP

In the sequential gradient egstimation predictor to be described
here, the canonical form specified in Equation (4.9) is again used.
The minimization of the mean square prediction error of the correlatiom
or the covariance methods is, however, replaced by a more versatile
criterion which attempts in general, to minimize an error function,
FU. As an example, this function, FU can be made dependent on the
modulus of the prediction error or the square of this error or the

cubic function of this error or the differential of the error, etec,

The SGEP algorithm also updates its coefficient according to the

general gradient formula given by Equation (4.4), but gBFUIBai K is
]

being replaced by Pi(x).Ai k.k—u, and the kth predictor coefficient
’

. t . . . .
at (i+l) h sampling instant is now obtained as

A

= _ 1,k -
ai...l’k ai,k Pi(x)o "—'—ka » k=1,2,...,N, (4.22)
or in a vector form;
l\. - A. - P' A. .
A = A TR (0K (4,23

where K is an (NxN) diagonal matrix, and expressed as

N

(1 0  0--ccee--0
|
o 2¢ !
K = ! Te.l ! ' (4.24)
| IS
0 ----------~+ ~ NG

Pi(x) is again given by Equation (4.21), and is inversely

proportional te the power of the speech signal computed over a
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duration of M samples, The denominator of Pi(x)-behaves as an
automatic gain control which tends to equalize the adaptation rate

of the prediction algorithm according to the variations in the mean
square value, Gi,of the speech sequence computed over the M immediate
past samples, The effect of the value of M on the estimation accuracy

of the predictor will be discussed in Section 4.7.

The term k © with a<l provides a smaller modification to the
higher order prediction coefficients than to the lower coefficients.
This is in agreement with experimental observations which support the
importance, in the performance of the algorithm,of the first few

prediction coefficients.

The most important factor in controlling the performance of SGEP

is Ai K* See Equation (4.22), and is determined for each coefficient,
’

th

=T
The value of Ai used in updating the k= coefficient, at the i

ok

sampling instant, is based on two estimates of the prediction error

criterion, FU, For each coefficient, Ai is given by

K
Ao = U5 o1~ Yok (4.25)

while the twe error functions, FU are formed as follows:

For a particular coefficient ay its value at the (i+1)th

instant, a, is equal to its previous value minus A, . multiplied
i+l,k i,k
by a constant, Consider that the first coefficient a; in the
. . ]

coefficient vector,

N T
Ay = 3y 1034 500003; 4]
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is increased by a positive number 8. 1» calculated from
)
1
8, , = —=— (4.26)
i,k DkB

where D and B are constants, and D>1, B<l, Having the value of
a, , modified by s. ,, a predicted value y, of the input sample

i,l i,1 i,l
x. 1s obtained. a. ., is then decreased by the same amount, s,

i i,1 . i,1
and another predicted output Y; 9 is obtained. In the same way,

]
-+ ~ - - - ; *

when ai’2 in Ai is modified by si’z,the yi’3 and y]._'4 estimates of

xi are obtained.

The process of sequentially modifying the term of Ki by isi K’
L]

k=1,2,...,N, continues resulting in a 2N component predictive

sequence {yk}. The prediction error between the input sample xi and

each of the 2N predicted values in {yk} is then determined,

The error criterion must now be introduced, i.e.,, an appropriate
FU function must be selected and used to form Ai K according to
?

Equation (4.,25)., Two error functions were considered in our SGEP

investigations and they are:

A. The Absolute Error Criterion: when the absolute value of the

prediction error is selected as the error function, i.e.,
FU. = |e, 4,27
¢ = el | (4.27)

a sequence'{FUi k} having 2N components is formed, That is
»

FU; 3 = 1% =y 4l

FU; 5 = 0% = 3;

[
- -
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- - -
- - - .

FO; on-r = 1% 7Y, onl

Fion = 1% =9l (4.28)

B. Mean Square Error Criterion: In this case, the Equation of

the error function, FU takes the form

2

ei’k} (4.25)

(FU; 3=

and therefore the 2N components of {FUi k} are
?

_ _ 2
15'Ui’1 = (xi yi’l)
2
FU; o = 0%y = y; 5)
: '
1 ]
' ' 2
FU; an-1 = O T Y3 one1)
~ . 2

Both error criteria were initially utilized in our experiments,
It was found however, that the SNR performance of the SGEP predictor
was almost unaffected by using FU=lei| or FU=e§ and for simplicity
it was decided to employ the absolute error criterion throughout'the

thesis.

Once the {FUi k} sequence is defined the A, elements required
]

i,k

for the adaptation of the prediction coefficients are formed using

Equation (4.25) and in vector form,
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- -
i,1 - F
“ | i3 T i
. '
\ ]
]
: \
- Z
-~ ]
Ay = P ,-1 — PV (4.31)
]
| '
) I
1 ]
b 1
I )
1 ]
l —-—
¥, 28-1 U, on

i.e.,, each element of the Ki vector is the difference between two
prediction errors obtained by changing each coefficient first in a
positive and them in the negative direction., Now if fUi,Zk-1>FUi,2k’
Y5, 2k is a better prediction than yi,Zk-l’ see Equation (4,28),

Ai,k>0 and consequently ai+1,k should be less than ai,k since, by
subtracting a positive constant si,k from ai,k a better prediction is

achieved. In the same way when FUi,Zk-1<FUi.2k’ ai+1,k 1s increased as

Ai k<0. Thus Ai K gives the correct direction for the modification
] ’

in the values of the prediction coefficients, while the actual amount
by which the coefficients are incremented or decremented is provided

by the term

-a
(FU; 1 ™FU; 507, (0K (4.32)

After this discussion and having in mind that the coefficients
of the proposed linear predictor are Sequentially Updated every
sampling instant with the value of each coefficieﬁt changed in the
correct direction to minimize FU, the reason for naming this scheme

. SGEP is apparent.
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The block diagram of the SGEP algorithm is presented in Figure

Al3.

4,5.1 Operation of a 4th Order SGEP Predictor

In the preceeding section, the SGEP algorithm was introduced.
Before presenting the details of the algorithm's performance and the
reasons why SGEP behaves better than the SAP algorithm, we demonstrate
the operation of a simple 4th-order predictor whose coefficients are

updated using the SGEP procedure.

Suppose that FU=,ei| and the input sample, x. ., is to be

+2
predicted. The SGEP algorithm forms 8 prediction values, Y r¥pseeesYg
and 8 error estimates, FU, since two prediction estimates and two

error functions are obtained from each modified prediction coefficient,

ﬁence,
FU, = |x, ,-a, +5_X.—a. X, ,-a, X. .-a. x, .|
i+1,1 i+l i+1,1 "1"i "i+1,274i-1 "i+%,37i-2 "i+l,47i-3
FU. = [x. -a, -3.Xx,-a, X, ,—a, X, ,—a. X, |
i+l,2 i+l "i+l,1 T171i i+1,27i-1 "i+1,371i-2 "i+l,47i-3
FUG 1,3 = 1R800, 15072000, 2752501301, 3502 %01, 4753
MU 0,6~ ["i+1'ai+1,1"i'ai+1,2"°’2"1—1'a1+1,3"1-2'ai+1,4"i—3|
FU. = |x, .~a. X.-a, X, .-a. +3_X, .=a, x, |
i+1,5 i+l 141,171 i+1,271-1 1+1,3 "37i-2 "i+l,4 i-3
i+1,6 l"i+1‘ai+-1.1"i‘ai+1,2"i-1'ai+1,3'53“i-2'ai+1,4"1-3'
FU = |x. .-a, X.,-a. ., X, .—a. X, ,-a, ¥s, X, .|
1+1,7 i+l "i+1,171 Ti+l,27i-1 Ti+1,37i-2 Ti+l,4 T47i-3
FUis1,8 ° l"i+1'ai+1,1“i”ai+1,2xi-1'ai+1.3"1-2'ai+1,4'34"i-3’

(4.33)
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Once the 8 values of the prediction error function at the (i+2)th

sampling interval are computed, it is straightforward to determine

~
Ai+1' 1.€.,

i+1,1 - T2
i+l,3 - FUi+1,4
i+l
i¢1,5 ~ TVis1,6

i+1,7 - Fis1,8

‘s @ a3 &

Then, knowing Ai Equation (4.23) is applied to yield the

+1?

-~
required Ai+2 coefficient vector which can be used to predict the

xi+2 input sample according to
v =A% (4.34)
i+2 i+271+2 *
where X = [x X, ,X P, ]T
i+2 P R T T R € 'L

The SGEP algor{thm is computationally more complex than SAP.
However in handling speech signals, SGEP performs considerably better
than SAP as it will shortly be demonstrated in terms of error wave—
forms and SNR results when both predictors operate free of quantization

noise.

The advantage, in prediction accuracy, shown by the SGEP algorithm
when compared to SAP, arises as the former actually measures the
gradient of the error function and updates its coefficients in the
opposite direction., SAP, on the other hand, defines the gradient
of the error function as ﬁiei with the assumption of <ei>= ei, see

Equations (4.5)-(4.8) and this seems to deteriorate its performance.
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4.6 COMPUTATIONAL REQUIREMENTS OF SAP,SGEP ALGORITHMS

In this section, the computational requirements of SAP and SGEP
are discussed and compared with those of the Kalman algorithm. In
particular, the number of multiplications and additions required by
each algorithm is determined together with the relative processing
time required by a digital processor to form an estimate of an input

sample when using the above three prediction techniques.

4,6.1 Stochastic Approximation Prediction Algorithm

Suppose that the SAP algorithm is required to update its 3i+1

vector in order to predict LWL Initially, Pi+1(x) must be computed,
The denominator of P;+l(x) in Equation (4.21) is analysed as follows:

Suppose M=N, then 2x§ requires N multiplications and (N-1) additions.

J
The summation, however, is normalized by a factor N and assuming that

the division is computationally equivalent to two multiplications, the
number of multiplications becomes (N+2). Further, as the constant B

is added to 1/N z:;, the number of additions required becomes equal to

]
N. Hence, the computation of the denominator of Pi+1(x) requires (N+2)

multiplications and N additions, To complete the computation of

Pi+1(x), one more 8calar division is required so a total of (N+4)

multiplications and N additions are required to compute Pi+1(x).

For the prediction of L3P0 in the algorithm, Ai+ also requires

2

the definition of e 1 which requires N multiplications and N additions
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since from Equatiom (4.34)
AT ~
ei41 = Bl T Aarkia
where

-~ - T
Xi+1 [xi’xi-l’-o.’xi_N+ﬂ -

The term e, is then multiplied by Pi+1(x) so that a total of (2N+5)

+1

multiplications and 2N additions are required for the computation of

Pi+1(x)'ei+l' Finally, Pi+1(x)'xi is formed and Ai+ is updated in

1
accordance with Equation (4.8) so that the total number of multiplications
is (3N+5) while the number of additions is equal to 2N. The above

procedure is summarized in Table 4.1,

4,6,2 Sequential Gradient Estimation Predictor Algorithm

Let us suppose that the estimate of X, is to be formed using the

i+2
SGEP algorithm. The Pi+1(x) term, see Equation (4,22) is computed as

in SAP algorithm and thus (N+4) multiplications and N additions per

sample are required.

We can now proceed to determine the computational requirements
of Ri+1 x As it has been showm in Section 4.6, for an N order
]
predictor we must compute 2N components of the error function, FU in

order to form the N components of the Ai+ vector, The term 2N arises

1

since for each coefficiéent wvalue, the algorithm introduces a positive

and negative increment, ¥s Note that the values of s are

i+1,k* +1,k
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SAP ALGORITHM FOR

NUMBER OF MULTIPLICATIONS

NUMBER OF ADDITIONS

N ORDER PREDICTOR PER SAMPLE PER SAMPLE
¢ 2
P, A/B+z Exj N+4 N
e = -;T % N N
i+l Ti+l i+l%i4l
Pia(®ee 1 0
Pi+1(x).ei+1.xi N 0
i+2=Ai+1+ ree 0 N
TOTAL IN+5 IN

TABLE 4.1:

Computational Requirements/Sample

for SAP Algorithm
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known and fixed, A simplification in forming the Ai+1 vector comes

1,3’ where j=1,2,...,2N,
»

consists of a fixed and variable term, Let us consider, for example,

from the fact that each component of FUi+

the case where N=4:

Ui, ° I%i40 - Bie1,1 T %ia1,1%0 T 2ie1,2%i-1 T 341,352
" 3541,4%-3] (4.35)
ot FIXED TERM, e. .
Ui, ° A 341,15 " %ie1,2%i-1 T %4a1,3%-2 T %e1,4%i-3
- si+1.1xi[ (4.36)

VARIABLE TERM
for j=1,3,...,(2N-1)

Hence, the 2N compounents of the error function can be defined as,

FU

i+1,1 lesar - si+1,1xi|
FU 32 = leg * 850,15
i :
! :
1 1
FU; b1 o8-1 = 18501 = Sier, N5
FUiv,an = 15a1 * Sian il (4.37)

The computatiocn of e 1 requires N multiplications and N additions
and it is performed only once every sampling instant. To determine

A say, we multiply.si by X and first add this value to e,

i+l

This means that for each element of

irl,l +1,1

and then subtract it from ei+1.

. th - .. . as .
i+l (Ai+1,k is the k  element), we do 3 additions and 1 multiplication

~
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as well as the N additions and N multiplications of e, However, 3

i+’
additions and 1 multiplication are repeated for each element of the

A

vector and therefore the calculation of A.
i+l 1+

1 requires 3N additions

and N multiplications together with N multiplications and N additions

for e’ totalling 2N multiplications and 4N additionms,

.Further, Ai+1 is multiplied by Pi+1(x) and matrix, K as defined
by Equation (4,.24), Consequently, the multiplication of Pi+1(x) with

every term of Ai+ necessitates N more multiplications. Similarly, K

1

also requires extra N multiplications resulting in 2N more multiplications

to form Pi+1(x).K.Ai+ As a result, Pi+l(x).K.Ai+ requires 4N

1° 1

multiplications and 4N additions in addition to (N+4) multiplications

and N additions for the Pi+1(x) term. Thus a total of (N+4+4N)=(5N+4)
multiplications and (N+4N)=5N additions is necessary in order to

finplize the calculation of the term P, _(x).K.A. ..
i+l i+l

-~

To complete the computation of Ai+2’ we need the final N additions

to form

~ -~

142 = Apel T Ppa (KA

and hence the number of additions becomes 6N,

Table 4,2 summarizes the computational fequirements of the SGEP

algorithm,

The comparison between the SAP, SGEP and Kalman(113-116)

algorithms,
in terms of multiplications additions and processing time per sample

based on the ICL 1900 computer, is shown in Table 4.3.
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NUMBER OF NUMBER OF
.SGEP ALGORITHM FOR N ORDER MULTIPLICATIOQONS ADDITIONS
PER SAMPLE PER SAMPLE
o 1v.2 -
P, (R)=A/B4s );xj N+4 N
]
Ai+1,k
- - +
lei 18 il Tt eian e i N+l N+3
A =[A A veuyh ]T N+1.N N+3,.N
i+l Mi41,17 141,27 14N - ,
N AN
M P N 0
Pl (KA N 0
A A P (OKA 0 N
TOTAL SN+4 6N

TABLE 4,2: Computational Requirement/Sample for
SGEP Algorithm
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PREDICTOR TYFPES

Predictio

n Algorithms

FUNCTION GENERAL EIMPLIFIED SAP SCEP
KALMAN KALMAN

. . . 3,2 2
Multiplications 2NT+3N7+3N | INT+4N+1 3N+5 SN+4
per Sample

‘.o 3 ..2 2
Additions per ZNT+3NT+1 2N +2 3N 6N
Sample
Multiplications 1240 161 29 44
per Sample for N=8
Additicns per 1217 144 24 48
Sample for N=8
TOTAL TIME (usec.) 7394 932 164 272
REQUIRED/SAMPLE
TABLE 4.3: Comparisons Between Sequential
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For N=8, SAP produces the lowest values, and SGEP requires considerably
less computational time than the modified Kalman predictorgll3) Table
4,3 is obtained by using the typical computation times of 4 usecs./
multiplication and 2 usecs./addition of an ICL 1900 processor, resulting
in 7394, 932, 164 and 272 usecs, for N=8 order General Kalman, Simplified

Kalman, SAP and SGEP predictors respectively. The corresponding numbers

for the second order predictor are 194, 88, 56 and 80 usecs.
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4,7 SIMULATION RESULTS OF ISOLATED SGEP, SAP AND FIRST ORDER (LEAKY)
PREDICTORS FOR SPEECH SIGNALS

The sequential gradient estimation predictor SGEP was evaluated
using computer simulation. Speech signals band-limited to 3.4 kHz and
sampled at 10 kHz provided the input sequence to the predictor. 1In
order to test the effectiveness of the proposed predictor, SGEP, we
first compared its error sequence, {ei}={xi—yi} against that of the
predictor which updates its coefficients using the stochastic

approximation method.

The order of predictor was initially selected as N=15. N is an
important factor in spectral modelling of speech. As discussed in
Chapter II, Section 2.2.5, in general, the minimum number of coefficients
is twice the number of formants to be consideredSBI) Further from the
references {I11) and (26), in order to represent the vocal tract
adequately, thg memory of the predictor must be equal to at least
twice the time required for sound waves to travel from the glottis to
the lips that is 2x17/34000=1 msec. Consequently, for a fs, sampling
frequency, of 10 kHz, iﬂe., the sampling period is 0,1 msec., the
memory or order of the predictor must be at least 10 for the modelling
of vocal tract, However, if the glottal and lip radiation character-
istiecs are accounted for in the model, the above mentioned N, equal to

fs’ is usually considered as lower limit for N and 4 or 5 more poles

are added to the model.’

In summary, for adequate modelling of voiced speech, the order of
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predictor should be at least equal to the sampling frequency in kHz,.
This choice of N can also be taken as an upper bound for the analysis
of unvoiced speech. In relation to these upper limits of N, Atal and

(31)

Hanauer demonstrated that the mean square prediction error for
either voiced or unvoiced speech remains almost unchanged when N>14 at

f =10 kHz,
s

In our experiments, the other parameters of SGEP were A=24,

3 =102, D=6, a/=16, 8=1/17, see Equations (4.22)-(4.26)

B=7x10
while SAP had a different value of A (=10-4) than SGEP. As noticed
here, too many parameters, in addition to N, play an important role in

the adaptation rate of SGEP,

The fixed vector, §=[sl,32,...,515] whose elements are given by
Equation (4.26), are calculated using the constants D and 8., Figure
4.4 presents the variation of these elements with the optimum values
of D and R, as quoted above, We have found that the exponential-like
decay in Pigure 4.4 produces a better performance in coefficient
adaptation where a large wvariation in the lower coefficients is more

significant than that in the higher order coefficients,

SNR values of SGEP, SAP and first order predictors, obtained from
computer simulation experiments, for two different sets of speech data,

. at fs=10 kHz, are illustrated in Table 4.4.
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TYPE OF PREDICTION SNR 1in dB
ALGORITHM
DATA I DATA II
First Order Predictor 8.95 11.92
{Leaky Integrator al=0.94)
SAP (N=15) 12,67 13,04
SGEP (N=15) 15.99 17.93

TABLE 4.4: Typical SNR Values of SGEP, SAP
and Leaky for Two sets of Data

It can be seen that the prediction error power for SGEP is
typically 3-4 dB lower than that obtained using the stochastic
approximation predictor SAP. Figure 4.5 shows an arbitrary voiced
speech segment, and the prediction error waveforms of a first order
predictor haviné a coefficient of 0.94, a SAP predictor and finally
SGEP. The prediction error of these predictors for another segment
of speech contairing unvoiced and voiced parts, is shown in Figure 4.6,

In both Figures 4.5 and 4.6, SGEP has the smallest prediction error.

Figures 4.7 and 4.8 show the variation of SNR as a function of
-input speech power for SAP and SGEP, The performance of both prediction
algorithms depends on the value of M, i.e, the number of samples'used

to estimate the power of the input signal, see Equation (4.21) with N=M,
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(i)

e e

(i)

N WO VNP RYURY TSV IV TS T

(iii)

e L LY oV LY

{iv)

FIGURE 4.5: Prediction Error Waveforms for DATA I
(i) Input, (ii) Leaky (a1=0.9!¢),
(iii) SsAP, (iv) SGEP, N=15
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(i)

(ii)

(1D

- a~ At - WMM—W—M

(iv)

FIGURE 4.6: Prediction Error Waveforms for DATA II
(i) Inmput, (ii) Leaky (al=0.94),
(iii) sapP, (iv) SGEP, N=15
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For M?Mp=100, the power of the speech signal is measured over a
duration commensurate with a typical pitch period, Mp, and this results
in SAP having a restricted dynamic range as shown in Figure 4.7. This
value of M is satisfactory for SGEP which has a significant SNR
improvement compared to SAP., When the value of M is reduced and made
equal to N, the order of the predictor, and the constant A remains at
10-4, the SNR for SAP is reduced by 2 dB, but the dynamic range is
improved, see Figure 4.8. When the value of A is again optimized to
10-3, SAP increases its peak SNR to approximately that value obtained
when M=Hp=100' ?he effect of reducing M from 100 to 15 in SGEP is to

cause some deterioration in the SNR curves,

When the power of the speech signal, computed over M samples, is
emall compared to the value of B used in Equation (4.21) for both SAP
and SGEF, the denominator of Pi(x) is approximately equal to B and the
predictions are less accurate, This situation is worse for SAP
algorithms as shown in Figure 4.8, see curve (b) in REGION 1. However
as we increase the power of the speech signal, we notice that SNR of
SAP experiences a TRANSITION REGION and then remains unchanged for the

high power of the speech signal, see REGION 2. The cause of this

behaviour can be explained as follows:

If the Pi(x) term of SAP is constant, then the algorithm,
Ai+1=Ai+Pi(x)eixi becomes signal dependent. In other words, reasonable
prediction results are obtained only over a restricted range of input

power levels, In order to improve the scheme and make it independent
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of the speech signal, first Pi(x) term is expressed as an inverse

i-1
function of the input power, i,e,, Pi(x)=All- E x%. The resulting
j=1i-1-N
SNR values turn out to be almost constant having a value of REGION 3,

12,67 dB, over the wide range of speech power.

When, however, unvoiced speech or silence intervals occur, the
il T Pi(x) approaches infinity since <x§> goes to zero, That
is the reason why the constant B in the denominator is introduced,
Thus B maintains a finite value for Pi(x) during the lower power levels
of speech signal, and prevents the occurrence of large prediction

erTors.

The low SNR value in REGION 1 is therefore due to the effect of
the constant B. That is, at low power levels, Pi(x).ei.f{i remains

almost at zero, hence Ai+ approaches Ai and SAP behaves as a leaky

1
integrator provided that the initial vector is in the form of

o T
Ao=[al.0’o’...,0] L]

For the power levels of the TRANSITIONREGION,Pi(x).ei.ﬁi is
varying considerably as the predictor is trying to adapt to the
characteristics of the input signal, As soon as curve (b) approaches
REGION 2, an observation of the values of Pi(x).ei.ii reveals that
while <Pi(x)> is reduced, and both <e.> and <ii> are increased, hence
<Pi(x).ei.ii> is nearly constant, Consequently, the adaptation rate

of the SAP algorithm remains constant, at high power levels of speech.

Figures 4.9 (a,b) and 4.10(a,b) illustrate a segment of the error

waveform, {ei}={xi-yi} and the corresponding power spectral when SAP
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and SGEP are used, respectively. These are obtained at the peak SNR
values of Pigure 4.8(a,b) and N=15. These figures while demonstrating
the ability of SGEP to pro#idé an error signal whose power is 3-4 dB's
1éss than that of SAP, they also show the advantage of SGEP in removing
redundancy, i.e., in decorrelating the error signal and producing a

flatter power spectrum.

The variation of SNR as a function of predictor order, N, is shown
in Figure 4.11 (M=N). The SNR for SAP, is always lower than that of
SGEP and falls off rapidly at lower values of N. Even with N=2, SGEP
can be operated satisfactorily. Note that the gain in SGEP's SNR when
N varies from 2 to 15 is only 0.40 dB. Thus the ability of SGEP to

operate with N=2 reduces significantly its complexity and processing time.

.4.8 NOTE ON PUBLICATION(116)

A paper entitled "Sequential Gradient Estimation Predictor for

Speech Signals', in co—authorship with Dr. R. Steele and Dr. C.S. Xydeas,

has been published in the IEEE, International Conference Proceedings on
Acoustic, Speech and Signal processing, ICASSP 79, pp.723-726,

Washington D.C., April 1979.
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4.9 CONVERGENCE OF THE "SAP'" and 'SGEP" ALGORITHMS

In this section the sequentially updated SAP and SGEP predictors
are compared with a modified autocorrelation predictor (MAP). MAP is
defined by considering a sliding-block autocorrelation predictor (SBAP)
whose coefficients are re—calculated from a block of W samples every
sampling instant using the autocorrelation method. The term sliding-
block is introduced, because the block moves forward one sample every
sampling period, i.e., there is one new speech sample in the block
every time the coefficients are recalculated. Although this (SBAP)
algorithm can not be used in a pfactical system because of the amount
of side~information that must be transmitted, it does achieve more
accurate predictions than those of SAP or SGEP, and here it is used as
a bench-mark. First, the mathematical analysis of the convergence of
SAP and SCEP ig presented and then., experimental results of the variation
of the prediction coefficients with time for the SBAP algorithm, SAP and

SGEP are provided.

4.9.1 Convergence of the SAP Algorithm

N

At the ith sampling instant, SBAP has a set of coefficients, AS,

and a prediction error, e o while SAP, see Equation (4.8) with
]

represented by

~ ~ ~

A, "= A, + Pe.X

i+l i i1’ ' (4.38)

Comparing Equation (4.38) with that of (4.8), it is noted that P is
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the convergence parameter, Pi(x), which will be assumed constant over a
small number of sampling intervals. The hat (~) above the symbol means

the symbol is a vector, viz:

ST

A= [al,az,aB,...,aN]‘ (4.39)

&7 =[x, .,x % ] (4.40)
i i-1"%i-27" 0%y .

where the raised T implies transpose of the vector.

The predicted output of Equation (4.9) can be written in vector

form as:
AT -
y; = A/ Xi . (4.41)

the product of a (1xN) and (Nxl) matrix, and the prediction error is

& T X T ¥y
For SBAP
e =...-ATK,
i,s i s 1
and
e. -e. =-@G-A)T%, . (4.42)
i,s i s i’ i

Now, let ?i be as a difference vector,

v, =& - & (4.43)

and write Equation (4.38) as

i+l s i s il
or Yiel T Vi PR (4.44)

Implicit in Equation (4.44) is the assumption that AS is unchanged,

and a more accurate representation than Ai.
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From Equations (4.42) and (4.43)

and substituting e into Equation (4.44) yields

~ ATA2 -~

-~
Yisl i,s’1

The norm of Y41 is the square root of its product, viz:

- 2
g 17 = < Tia® (4.46)

From Equation (4.45)

- 2 . ~ aT22 ATs 2, ~Ta (2
[Fgan 17 = Tl PR T ey LYKt Bty
2 ~Ta 22 -
teg s T i%e K - (4.47)

Now, P<<1, and for a sufficiently small prediction error

(ei , s"'o) ’

A AT A

- 2 - 2 T22
||Yi+1l| = lIYiII = ZP<YiYiXi> (4.48)
~ ATAZ A\T"h 2 Py ., . .
and as 2P<yiyixi>=2P<(YiXi) >, i.e., always a positive quantity,
- 2 2
g 117 < Tlvg 117 R

Consequently the SAP algorithm changes its prediction coefficients Ai

o~
to ensure the convergence towards A,

The above analysis is based on the minimization of mean square

error, see Equation (4.8). In a similar way, convergence of Cummiskey's(sz)

algorithm employing the minimization of absolute error criterion, (see

Appendix E), can be proved, viz:
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-~ -~

Ai+1 - As = Ai. - As * PaXngu(ei) (4.50)

Pa’ instead of P, is used to distinguish the absolute error criterion

from the m.s.e. one. Hence,

-~

Yiep = Y3 * P X senle)) . (4.51)

~

As and Y; are the set of coefficients of SBAP and the difference

.tn o, .
vector at the 1 h instant respectively. Then,

ATA
ei ei,s —Yixi (4-52)

and substitution of Equation (4.52) in Equation (4.51) yields

~

~ ~ ATA
Yiep = Yy * P X sen(e; ooviX) . (4.53)

The norm of Equation (4.53) is

v,

2 - 2 ~Ta ATaA
1f1|] = [y l17 + 22 <v;R;senle; = %)>

2 22 2
+ Pa<xi{sgn(ei)} > . (4.54)

Again, convergeuce depends on the value of Pa and for a sufficiently

small Pa (Pa<<1)’ Equation (4.54) may be written

AN A

~ 2 ~ 2 ~T2 T
g 17 = Ty [T+ 22 v X sente; -viX)> . (4.55)

~T2 . . .
For e, <vy.X,, the coefficients of SAP are not near optimum, Equation
1,8 Yi%ie e p » &g

{4.55) becomes,

N TTY .T WT
[ 117 = 13015 + 28 7.8, sgn(—v; X)) . (4.56)

Since, zlsgn(z) = |z| (4.57)

Equation (4.56) is rewritten as,
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~ 2 ~ 112 ~Ta
Hvg o 1= Ty 1 -2 v R (4.58)
Finally, it is obvious that 2P3|§Eﬁi] is always positive, hence
- 2 A~ 02
vy 17 < 1y 117 (4.59)

Consequently, Cummiskey's algorithm, obeying the minimization of
absolute error criterion, also changes its prediction coefficients
Ai to ensure the convergence towards As. Also the convergence is

slowed to stop when
ATA

Yixil -+ |ei,s| (4.60)
i.e., for Equation (4.60), Equation (4.55) becomes
~ 2 N 2
RAUER LA 4.61)

4.9.2 Convergence of the SGEP Algorithm

The SGEP updates its coefficients according to Equation (4.22),
As before, Pi(x) is assumed to be a constant over a small number of

sampling intervals and the optimizing term k % is ignored. Hence,

H
>
H]

= A. - PA. (4.62)

where Ai is the vector representation of Equation (4.25), §i is the
difference vector as defined before, see Equation (4.43), and a

difference matrix Fi as
I‘i = Aj_ - Ai’s (4-63)

where column matrices Ai’ Ai s and Pi have N identical elements of
]

Ai’Ai,s and Y; respectively.
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From Section 4.5, at every sampling instant all the coefficients

are up-dated. To do this, each coefficient is increased by Sp k=1,2,..
see Equation (4.26), while the other coefficients are unchanged. Thus
we are dealing with N vectors, A{ K’ k=1,2,...,N, from which N
1
predictions are made and N errors ei K’ k=,2,...,N are obtained. The
»
procedure is repeated by subtracting sk, k=1,2,3,...,N, from each
coefficient in turn, and obtain a second set of errors eg K’ k=1,2,...
]
Hence,
e _ - _ -
31" % ]
2 338y 3
i i
it =1 1 At = |2 AT = !
Ai,l I . A1,2 ? s Ai,N : (4.64)
!
! ) #N-1
| '
+
4y Py NN
and
7% %) %y
. 2 . 4,789 . 3,
" = " = " =
AT 44,27 |a, AN (4.65)
| | :
I ]
I ' x-1
{ b -
Ay %y 2N °N.
The error vectors are
P M [ 1 N
%i,1 %,
T (1]
ei_)2 )
1
é{ = , i = (4.66)

- G e -

m-
)

o
-
lz

-
=

r
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The elements of the vectors are

~ T ~
v - - ¥ =
ef =% ALK, k=1,2,..,N (4.67)
e" . =x, - AT R, , kel,2 N (4.68)
ik TN, Rt RRRE L .

Now, the two matrices are formed, viz:

. T ~ T 7
A} ] Ain
- T AT
1n
Ai 2 Aj 2
) | n I
Al = : , Ai = ) (4.69)
| ]
(]
4 I
AT T
] 1
AN AN

and express Equation (4.66) in the form

-~ fa
e! =x, -A.X, _ (4.70)
1 1 L1
A LLEN"S
and e = X, -h.X, (4.71)
i i i1
where - =
x x,
i i-1
?1 : Xi-2
~ l
= [ . = . :
Xi ! , and Xl : (4.72)
]
1
. i
]
X J -xi-NJ
Consider now the error vector e; o associated with SBAP,
1
e. =x, -A, %, (4.73)
i,s i i,s'1 _
and -
e,
i,s
e,
. i,s
a. = ' (4.74)
i,s '
]
]
e,
L 1,5
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Proceeding to find the error vectors, from Equations (4.70) and (4.73)

A

e} -e, = -(Il1 - A X, . (4.75)

, i,8" 71
Now,
Al = A + S, (4.76)

1 1 1

where matrix Si is given by

:
rsi,l 0 On o — = - = 0
S O 8,2 O oo 0
i = I ) (4-77)
]
1 ;
| ]
[ 0= == mmm == mm -8

and matrix Si is the same as matrix,s since it is a fixed, given matrix.

Substituting Equation (4.76), in Equation (4.755 and with the aid

of Equation (4.63),

—(1‘i+S].L)§ci + éi . - (4.78)

Similarly,

A~ n ~ ~
o - (A _ +
of = ~(A, Ai,S)Xi € .8

and because

A" - Aisi (4.79)

n - £ v "
e' (Fi i)Xi + ei,s . (4.80)

In order to demonstrate the inate ability of SGEP to converge
faster than SAP, we first choose the same error, i.e., mean square

error criterion as used in the simulation of SAP. From Equation (4.62),

Ai+1 - AS = Ai - As - PAi (4.81)

or . — PA, (4.82)
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2 2 q
1 11)
where i1 ei’1
2
' - al
A ¢i,2, %i,2
A, = §
1 ]
]
i
elz l__ e"2
-1,N i,N
Each element in the vector Yi+1’
2 2
= - r - an
Yier,1 = Vi1 T Plepy Te )
2 2
= - 1 - "
Yie1,2 = Yi,2 T Plef 5 T e )
] 1 |
[} | |
1 L .
t 1
: : 2 2
= — ¥ - 11
Yier,n - Yin T Blef y T &N

(4.83)

(4.84)

The elements of Ki are found with the aid of Equations (4.78) and (4.80),

viz:

~T ~
.= —(y, + 8 . toe,
el,K (Yl k)xl el,S
and eV . = -(;? -§)X, +e.
i,k i k1 1,8

where k=1,2,...,N and § =[0,0,...,0,sk;0,...,0]-

Thus having found
2 2
- [} - .n
P(ei,k ei,k)

k=1,2,3,...,N

Yiet,k - Yi,k

and from Equations (4.85) and (4.86),

2 2
' - a" = ' + a" ' - e
ei,k ei,k (el,k el,k)(el,k el,k
A aT.a 2 PO
= ASk Yi(xi) l:,SkXiei’s

and because the e o is small in comparison with other errors

)

(4.85)

(4.86)

(4.87)

(4.88)
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2 a2 L a ST 2
ei kT &k T 45X
k=1,2,3,...,N

Equation (4.87) can therefore be written in vector form as

~

~ A ~ 2
Yiep Yy T ARSY;RPT

+ + —

{Nx1) (Nx1) (Nx1)

Taking the norm of Equation (4.90)
- 2 ~ 112 ATar .o .2 2 ~ 2 a4
llYi+1|| = ||Yi|| - 8P<YiSYi(Xi) > + 16P <{(SYi) (Xi) }>
and for P sufficiently small,
~ 2 - 2 ~Tar ,a 2
v 17 = Ty 7 - 8Py Sy, XD
ATar 2 2, .
as 8P<YiSYi(Xi) > 18 always positive,
~ 2 ~ 2
350,112 < 113,11

and hence the algorithm SGEP converges.

(4.89)

(4.90)

(4.91)

(4.92)

(4.93)

In a similar way convergence of SGEP minimizing absolute error

can be proved, viz:

Equation (4.82) still holds but the vector Ai is given by

Ie:i'.,ll - |e}:,1

A Ie;_’zl ‘— |§'—;~:,2l
A. = | t '
1 i . :
] ] )
I S

_Iei,ml - IE':':,NI_

Each element in the vector Y. . is

i+l

(4.94)
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Yoo, T Vg0 T Blef ] - e D)
= - 1 - "
Tis1,2 T V1,2 P(Iei.zl Iei,zl)
] . §
! | .
I i
! | |
' . :
l "
Yien = Yi,n - BUef yl - lef D (4.95)

A

The elements of Ai again are found with the aid of Equations (4.85) and

(4.86), viz.

Yiet,k = Yik T B{[- 38, + e; sl -l -G8, + e; sl
k=1,2,3,...,N. (4.96)
or simply,
Yiel,k = Vik P{|w-v| - [wtv|} : (4.97)
where we -7k +e,
i'i i,s
v = Skxi'

Alse from algebra,

-2wsgn(v), |v!>]w]
vl = Jweo] =
-2vsgn(w), |w[>|v]. (4.98)

Hence, Equation (4.97) is examined for the two cases as follows:

. s & g aTe
CASE I: i.e., [skxi|>pyixi+ei’sl

with the aid of Equation (4.98), the elements given by Equation (4.95)

can be expressed as, ( e'i,s—’o)

ATA
Yis1,1 = Yq,1 - 2Pvi%gesen(s;x; )
ATa
Yiel,2 % Yi,2 T 2BY;%;-ssn(xx, )
: .

AT
ZPYiXi.sgn(skxi_k)

) (4.99)

14

‘TA
- ZPini .sgn( Sy®i N



211

In vector form,

-~ ~ AT;\ ~

Tie1 %03 2Pyixi.sgn(SXi) (4.100)
+ + -~ — 4

{Nx1) (Nx1) (Nx1)

since the elements of matrix O are always positive, sgn(SXi) is

calculated only by the sign of Xi and hence,

-~ -~

ATA -~
Yig %Y 2PYiXi.sgn(Xi) (4.101)

For a sufficiently small P (P<<l), the norm of Equation (4.101),

together with the aid of Equation (4.57) yields,

~ 2 -~ ~ 2 2 A
v 12 = Ty l12 - e 30 (4.102)

where

)1

a
X, = [sgn(xi_l),sgn(xi_z),...,sgn(xi_N

In Equation (4.102)} as 4?(75)(xixi) is always positive, i.e., sgn(xi_l).
X =]xi_1], and

i-1
~ 2 » 2
g 117 < Hvil1® (4.103)

Therefore, the algorithm satisfying the first condition, see Equation

(4.98), converges.

A A

CASE II: I-fo.+e

i i,s]>|s

il

For this case, as e, S+0. the elements given by Equation (4.95) are
]

expressed as,

ATA
Yisl,1 = Yi,1 7 2Pes ¥ 8enlyviX,)

ATa
] 2 2P. szxi_zsgn(yixi)

Ti+1,2
i

- -

ATa
2P.skxi_ksgn(yixi)

aTA )
2P.s xi_ngn(YiXi) s k=1,2,3,...,N, (4.104)

|
| .
S
Tisl,k ~ Yi,k
1)
' :
' ,
Yi, N~ N
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and in vector form,

-~

~ -~ ‘TA
Y =y, ZPSXisgn(YiXi) (4.105)

i+l
The norm of Equation (4.105) for a sufficiently small P (P<<l) yields
g 12 = 17 = ae{ 7%, snGTR) (4106
Yin Yi LB YiFgsem iy +106)
and from Equation (4.57)

N
. 2 I A2
117 = 105117 - e T o 1K1} (4107

In Equation (4.107) as |Y§Xi| and s. are positive

k

~ 2 ~ 2
| Fgag 112 < 113 11 ' (4.108)

and hence, the algorithm converges when satisfying the second

condition, see Equation (4.98).

4.9.3 Experimental Results for Convergence of the SAP and SGEP Algorithms

In order to support the computer simulation SNR results which
indicate that SGEP converges faster than SAP towards an optimum solution,
the sequentially formed prediction coefficients of the two algorithms are
compared with those of the SBAP algorithm since the.values of its
coefficients are regarded as close to ideal. A block of 128 samples was
employed to compute the SBAP coefficients and this block was shifted

sequentially sample-by-sample to scan the input speech.

Consider the case when each predictor has only one coefficient a.

Figure 4.12(a) displays a segment of speech, while (b) shows how the
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SBAP coefficient adapts to the variations in the speech, particularly the
large amplitude changes in the speech during the sampling intervals 200

te 600, 600 to 1100, 1100 to 2200. Although the SAP algorithm updates
every sampling instant, the Figure 4.12(c) shows that, except for the
initial period, it converges to the average value of the SBAP coefficient,
i.e., 0.94, making only small variations about this value. This is not
the case for SGEP, which is a truly instantaneously adaptive algor;thm

as seen in Figure 4.12(d), where its coefficient variations correspond

more closely to SBAP and the statistical variations of the speech signal.

Figure 4.13 contains variations of the SBAP, SAP and SGEP predictor
coefficients where each has two coefficients, and the predictions are
made on the same speech signal of Figure 4.12(a). The variation of the

first coefficient a, with the number of samples (or with time) for SBAP,

SAP and SGEP is shown in Figure 4.13(a),(b) and (e¢) respectively. As

expected, the structure of the a, function varies for the different

segments of the input speech, i.e., in Figure 4.13(a), there are rapid

variations in a, as the SBAP adapts to the changes in the speech signal.

SAP with its poor rate of adaptation produces a maximum a, of 1.15, see

1

Figure 4.13(b), after processing the entire speech segment, a value

significantly below the average value of a1=1.60 for SBAP. Like SAP,

the coefficient 2, for SGEP has an initial value of unity, but unlike
the former it does not decrease significantly before its upward climb.

After 400 samples, a, for SGEP in Figure 4.13(c) is close to the a

1 1

values for SBAP, although with smaller variations, and near the end of

the segment it reaches an average level close to a, of SBAP., Similarly,

the variations of the second coefficient a, are shown in Figure 4.13(d)},
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(e) and (f) for SBAP, SAP and SGEP, respectively. Once more it can be
observed that the convergence of SGEP is superior to SAP. Note that the
second coefficients in SBAP, SAP and SGEP have negative values as a,

values were positive, i.e., the average values of a, being larger than

1

unity are compensated by the second coefficients.

The variation of coefficient values with time for high order
predictors were also examined and found consistent in the ability of
SGEP to converge faster and more accurately thapn SAP. As an example,
the variations of the first two coefficients of a fourth-order predictor
employing SBAP, SAP and SGEP algorithms are presented in Figures 4.l4(a)-

(f) for ascending order, N.
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4,10 FURTHER EXPERIMENTATIONS USING THE SAP, SGEP ALGORITHMS

In previous sections, the adaptive linear predictors, namely SAP
and SGEP were examined in detail, and their performances were compared
on the basis of SNR values and convergence behaviour. Both adaptive
algorithms compute their coafficients iteratively, in an attempt to
approach the optimum solution. As such, the matrix inversion required

per sample basis, see SBAP, using Widrow's algorithm is eliminatedflll)

The sequentially adaptive prgdictors can be capitalized fully in
the field of speech communication. Our main intention here is to apply
these algorithms in DPCM encoded speech, as it will be investigated in
the next chapter. However, in the present chapter, we make a digression
to give briefly the outcomes of further experimentations employing such
predictors, First we consider various parallel SAP/SGEP and SGEP/SGEP,
configurations in an attempt to improve previously reported results in
terms of SNR and dynamic range, DR. Then, we describe briefly the

performance of SAP and SGEP in association with adaptive noise canceller.

4.10.1 Parallel-Predictor Structures

Figure 4.8 shows that although SGEP has faéter adaptation rate, its
dynamic range, DR, is smaller com%ared to the dynamic range of the SAP
algorithm, A predictor paving both thé fast convergence properties of
the SGEP algorithm and the wide.DR of SAP will be therefore desirable;

Such a predictor has been designed and it is shown in Figure 4.,15. It
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consists of the SAP and SGEP predictors both operating on the same speech
sample, followed by a second modified SGEP having only two coefficients.
Thus, the prediction outputs obtained from SAP and SGEP are again
weighted by the second SGEP (SGEPZ), whose parameters are independent

from the first SGEP (SGEPI).
The proposed system of Figure 4.15 can be described as follows:

Suppose yi and yz are the prediction outputs, obtained at the ith
sampling instant, from the SAP and SGEP predictors respectively. Now,
the coefficients of the second SGEP, at the same sampling instant, are

8. and @, 59 and they are given by,

i,1l i,
®i,1 7 %5-1,1 T Aimn 1t (4.109)
85,2 = %-1,2 7 M1 2% (4.110)
ni—l,l and Ai-1,2 are formed as
hiq1 = Ie{51,1| - le{—l,zl
My, " |e£_1’3[ - |ei_1’4| (4.111)
where
el 1 = %X l@ i a*edvig * 0 i)
i 1,2 = %17 1@ 1y 1750V * 0y ¥ !}
eio1,3 7 Xgm1 Oy ¥ty *s)i )
(4.112)

! = - it syl
ei-1,6 = ®i-1" 04-1-¥i1*® 978505
and yi_l and y;_l are the prediction outputs at the (i-l)th sampling

instant.
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Once the SGEP2 coefficients are computed at the ith instant, the

final output is calculated as the linear combination of the yi and y''

i

samples, i.e.,

= L L1}

s Bi’l-yi + Bi,zyi (4.113)

where s is the prediction value of X, . The parameter %1 is

determined according to
Al .
b1 Y (4.114)
B + L ) i-j 7i-j
U T

where A1 and B1 are constants,

Computer simulation experiments of this predictor were carried out

with the parameters of SAP and SGEP, remaining unchanged (see Section

1

4.7) and with the constants of the SGEP, algorithm properly optimized.

2

These are 60;[1,0]T, A,=8.0, B =100 and NN=30. The graphs of SNR as a

1
function of input power levels for SGEP,SAP and the proposed combined
structure are shown in Figure 4.16, We observe that the peak SNR of

this "Parallel prediction"” scheme is slightly reduced compared to the

peak SNR of the SGEP algorithm, but at the same time, its dynamiec range

has been significantly improved.

Another system configuration considered in our experiments is
shown in Figure 4.17. This is a ladder structure in which the error
sequence generated by a single SGEP is aimed a. to be reduced in terms

of its power and b. to be further randomized.

For simplicity, simulation was carried out using only one second
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order, SGEPZ, predictor which operates on the output of SGEPl, and its
error sample delayed by one sampling period. The mathematical description
of Figure 4.17 is the same as in Equations (4.109) to (4.113) with

" b 1
¥i-1 being replaced by e _1° Hence,

= L] '
Y]-_ ei,lyi + ei,Zei-l (4-115)
and
A2
Ly = - §N . (4.116)
B, + o= L (¥I_)
2 NN j=1 i-j

where Az and 32 are constants.

The performance of this predictor together with optimally selected

parameters, i.e., 60=[1,0], N=15, NN=30, A_=10 and Bz=100, are shown

2
in Figure 4.18. Although there are no sufficient results to support the
performance of the ladder structure, Figure 4.18(b) seems to suggest that

the amplitude range of the second error signal is reduced and also that

contains higher frequencies.

A better judgement of parallel configurations may be attained when
they are associated with DPCM predictors and speech modelling processes.

However, no further research was pursued towards this direction.

4.10.2 The SGEP and SAP Algprithms in Reducing the Acoustic Noilse in

Sgeech
(117)

In recent years, Adaptive Noise Cancelling, ANC, has received

a lot of attention in various aspects of signal processing. Fundamentally,



8(a):

SAMPLE NUMBER x102
fmek, . - | 1







229

it is based on a convenient technique for estimating the additive noise
waveform, present in a signal. An adaptive predictor can be employed
for this purpose s¢ that it inherently incorporates a self-adjusting

capability, see Figure 4.19.

We now, briefly present the performance results of SAP and SGEP
in ANC, in terms of SNRSEG and subjective tests, obtained at this
departmentflls) The block diagram of ANC system used in the computer
simulation experiments is shown in Figure 4.19. A random noise
generator with a uniform p.d.f. was used to produce the reference noise

signal, {XQi}. {XQi} was also low pass filtered to provide the {XQFi}

sequence, used to corrupt the speech samples {Xi}.

For these experiments SGEP and SAP were modified to efficiently
model the transfer function between the source and the reference inputs.
Thus the adaptation of the prediction coefficients was performed

according to:

SAP: Gk "%kt P, (x).X0, .XN. (4.117)
_ _ 1
SGEP: ai+1,k = ai,k Ai,k°Pi(x)' (N+1-k)° (4.118)
where A
P.(x) = 1 (4.119)
2
N ) (XN)
jei-N-1 )
and
5\ = _"—1_'?' (4.120)
D{N+1-k)

k =1,2,...,N,

a,B,D are constants (see Section 4.7).
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Notice that, the constant B in the denominator of Equation (4.119)
is eliminated. The reasons why are simply that there exists no undue
oscillations here, unlike the speech during silence and the noise-

waveform does not have any periodicity, respectively.

The SNRSEG improvement factor, SNRSEGIM was employed as performance

criterion and is defined as,

SNRSEGIM(dB) = SNRSEG(dB) - SNRSEG(dB)
output input
, B xf xf
= 3= ) 10 log, () = 10 log, (—=5)_
=1 e. XQF, |
1 1
or , B XQF].Z_
= 55 } 1o log, o (—57) _ (4.121)
m=1 e;

where NB is the total number of blocks and m corresponds to the mth

block of samples.

The input data used in the experiments was speech of duration
5 sec., sampled at 4.8 kHz, and low pass filtered to 2.2 kHz. The
results of using a 16th order, N=16, filter can be described briefly as
(118)

follows:

a. At high level of interference, SNRSEG(dB)=-7 dB's, SNRSEGIM
input

tends to grow fast. During the initial cycles of adaptation,
the system with SAP yields an advantage of at least 1 dB over
that using SGEP. The "A" values in Equation (4.119) for SAP
and SGEP were £0;2 and 40, ;espectively. SGEP constants,
a,B,D were 0.5, 0.3 and 10 respectively. Measurements taken
after about 4 sec. of adaptation show that the SAP had lost

2-7 dB to the SGEP.
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[

b. For lower levels of noise, SNRSEG(dB)=24 dB's, the system
input
employing SGEP consistently gives better SNRSEGIM than the one
with SAP. About 5 dB's of advantage is gained after 1 sec.

of adaptation time and about 6 dB's at the end of 4 sec.

Subjective tests show, however, the system using SGEP produces a
lower quality speech than that using SAP. Thus, although SGEP offers a
faster adaptation response than SAP, when a steady state condition has
reached in the modelling of the transfer function between the source
and the reference inputs, SAP is able to oscillate with a smaller 'step
stze' about the "optimum'" model compared to SGEP which distorts the

speech signal during the attempt to remove the noise.
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4.11 DISCUSSION AND CONCLUSIONS

In this chapter various prediction techniques as applied to speech
signals have been treated. The emphasis was directed to sequential
. . . . . . . (lo1)
prediction algorithms, that is to methods of solving the Wiener equation
in an iterative way. In particular, the SAP and SGEP techniques were
examined in detail and SNR curves, error waveforms, rate of convergence,

and computational time requirements, were considered for the performance

evaluation of these systems,

In the proposed SGEP algorithm, each prediction coefficient is in
turn increased and decreased in value, at every sampling instant, by a
prescribed amount, while the other coefficients are kept constant.
Predicitions are then made and the algorithm enables the coefficients

to be modified by a certain amount, towards the correct direction. The

- 1111’\\
SGEP method extends Sakrison's'

sequential predictor, used for
handling statistically stationary signals, so that non-stationary speech

signals can be processed.

When compared to SAP, SGEP has an improved performance with a
prediction error power of typically 3 dB's lower than that obtained

from SAP, as can be seen in Figures 4.5 to 4.11.

The SNR improvement of SGEP over SAP is attributed to the faster
convergence ability of the SGEP coefficients towards their optimum
value. The mathematical treatment of the convergence of both SAP and
SGEP is also provided for minimizing‘two error criteria, namely, the

mean—-square error and absolute error functions. Section 4.9 shows that
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both algorithms converge to the optimum set of coefficients, Aopt (in

this section, it is assumed that A _=A ) where A is defined from one
opt s opt

sample sliding block autocorrelation method. Figures 4.12 and 4.14

illustrating the variations, with time, of the prediction coefficients

of SAP, SGEP and the optimum block scheme, clearly support that SGEP

converges faster than SAP towards the optimum solution.

In terms of the number of computations,the General Kalman and
Simplified Kalman require (2N3+3N2+3N) and (2N2+4N+1) multiplications per
sample while the numbers of additions/subtractions per sample are
(2N3+3N2+1) and (2N2+2), respectively, where N is the number of weights
in the predictor. However, SAP and SGEP require (3N+5), (5N+4)
multiplications per sample, and 3N, 6N additions per sample respectively.
As far as the processing time per sample based on the ICL 1900 computer
is concerned, for N=8, SAP produces the lowest values, and SGEP requires
considerably less computational time than the modified-Simplified Kalman

predictor, see Table 4.3.

Further, the comparison of the sequential techniques with a fixed
coefficient predictor shows that the latter having one coefficient

(leaky integrator, a.=0.,94) is inferior. This becomes evident when the

1
SNR of a leaky integrator is found to be of the order of 8.8 dB,see

Figures 4.7(c) and 4.8(d). When the number of prediction coefficients
of a fixed predictor increases to four, the SNR shows variations with
different speech sentences, used as an input signal. The maximum SNR

obtained for a 4th-order fixed predictor having McDonald's average

coefficients(ss) is of the order of 12 dB's, see Chapter III, Figure 3.9(b).
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The same figure also indicates that the use of a higher order predictor
gives no advantage in terms of SNR. Hence, comparison of both Figure
3.9(b) and Figure 4.l1 reveals that the adaptive scheme employing SGEP

out-performs the fixed predictor using average coefficients.

In Section 4.10 a few applications of adaptive prediction techniques
have been mentioned. Specifically, the problem of the cancellation of

noise from speech ‘has been addressed.

In the following chapter, we direct our research efforts towards
the development of DPCM speech digftizer employing sequential predictors,

namely SAP and SGEP.



CHAPTER V

DPCM EMPLOYING SEQUENTIAL PREDICTORS
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5.1 INTRODUCTION

Adaptive DPCM is more efficient method of encoding commercial quality
speech than log-PCMSS) However, it is unlikely to dislodge the entrenched
position of log-PCM in the commercial telephone network because of the
high capital investment, unless trunk channel capacity becomes scarce.
There may be a role for ADPCM to play in the local network, and more

particularly in mobile radio, where its robustness to transmission errors

is a valuable asset.

DPCM codecs having adaptive quantizers, but non—-adaptive predictors,
DPCM-AQJ or DPCM-AQF, have a-superior performance to non—adaptive DPCM
systemsgaa) It is presumed that by using both adaptive quantizer and
adaptive predictor, a large improvement in SNR would inevitably ensue.

As this is generally not so, due to the predictors operating on sequences
corrupted by quantization noise, our efforts were directed towards the
investigation of adaptive predictors that are capable of achieving
substantial gains in codec performance when operating with one of two

types of well-known adaptive quantizers, namely AQJ and AQFS48’58’64’70’E€1’122)

This chapter is therefore to examine the performance of ADPCM codecs
employing the sequentially adaptive predictors presented in the previous
chapter. We commence with a resume of the main elements of the ADPCM

codecs used in our computer simulation experiments.

In Section 5.3, the performance of DPCM having ome of the following

three predictors, i.e., Fixed First Order, FFOP, SAP, SGEP, together with
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Jayant's Adaptive Quantizer, AQJ, is pfesented for transmission bit rates
of 1640 Kb/sec. These codecs are abbreviated as DPCM-AQJ-FFOP, ADPCM-

AQJ-SAP and ADPCM—-AQJ-SGEP, respectively.

Jayant's quantizer is then replaced by one with forward step size
transmigssion and computer simulation results of DPCM-AQF employing FFOP,
SAP or SGEP are presented with and without additive noise in the transmission
path. Similarly, these codecs are abbreviated as DPCM-AQF-FFOP, ADPCM-AQF-SAP

and ADPCM-AQF-SGEP.

Comparison of these techniques are based on SNR(dB) and SNRSEG(dB)
measurements, waveforms of the reconstructed signal as well as informal

listening tests.
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5.2 DECM

DPCM has been described extensively in previous chapters and we will

therefore confine ourselves to mentioning only its salient features.

Given that‘the predictors operate on the locally decoded sequence {i;},
let us exacerbate the prediction difficulties by reducing the number of
quantization levels in order to reduce the transmitted bit—rate. Having
fewer levels leads us to consider the design of the quantizer more carefully,
As the power in the error signal rises when voiced speech is present,
compared to unvoiced speech; the quantizer must be capable of extending and
contracting the position of its levels in order to achieve a nearly constant
SNR. Consequently, we will discuss, in the next sections, the quantization

and prediction schemes used in our DPCM studies.

5.2.1 Quantizers

(51,64,120-122) has been used

Jayant's Adaptive Quantizer,‘AQJ
exﬁensively in DPCM systems. This quantizer produces at each sampling
instant an output quantization level, éi and a quantization level number Ri
where the sub-script i refers to the ith sampling instant. Ri has two

components, sign and magnitude. The magnitude component of Ri increases

progressively from the centre of the quantizer. This level number Ri having

R k=1,2,...,2°71

values © 7(2k-1)
i 2

(5.1)

is represented by a b-bit word and transmitted. Ri is also operated on

locally. Using one sample delay and a look-up table, a multiplier number
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is formed. This multiplier at the (i—l)th instant is M(lRi-ll)’ and is

. . . . . .th ,
used to calculate the uniform adaptive quantization step size of i instant:

6, =m(R,_ DA, . (5.2)
The output quantization level é; is therefore
e, = AiRi . (5.3)
... R, is

In this way, AQJ accepts the error sample e and forms Ri and i s

transmitted as a binary code and also facilitates the formulation of the
multiplier constant and hence the next step size, éi is generated both
locally and at the receiver. The step size in AQJ, given by Equation (5.25
expands and contracts the quantizer range like an accordian in an attempt

to confine the components in the input error sequence {ei} to within the

range of the quantizer.

Although AQJ, described in Equation (5.2), performs well for ideal
channels, it is extremely susceptible to transmission errors. Goodman et a1(6n
proposed a robust to noise, AQJ algorithm where a "leakage' constant Bq,

OSqul, is introduced so that

Pq
b, =M([R, D4 ;_

1 (5.4)
The scheme presented by Equation (5.4) has been studied in depth by
Mitra(123) and Einarsson5124)
In practice, 8 is constrained to
A . <A, £A (5.5)

min i max

resulting in the DPCM encoder of having a dynamic range of approximately,
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A
DR(dB) = 20 1og10{ Am“x } (5.6)

min
Figure 5.1 shows the block diagram of DPCM-AQJ codec used in our

computer simulation experiments.

Another adaptive quantizer, frequently empfoyed in DPCM is that with
forward step-size transmission, AQF. The word forward is used to imply
that the step size, A, of this uniform adaptive quantizer is evaluated
every W input speech samples and is transmitted every W/fS secs. as side
information. As a consequence, the received speech is delayed by W sampling
periods. Jayant(llo) used DPCM-AQF for digital transmission of speech
through noisy channels, such as those encountered in mobile radio. The
main reason in using AQF rather than.sequentially updated AQJ-quantizer is
its robust performance in the presence of channel errors provided that A

is protected and correctly received. Also, the AQF quantizer can be easily

implemented. Figure 5.2 shows the block diagram of the DPCM-AQF codec.

To define A, the rms value o  of the difference between adjacent

d
samples in a block of W samples is calculated as

W
_ 1 _ 2 i
4 -//(% iEz(xi xi—l) . (5.7)

A is then formed at the output of the QS quantizer as

8 = Qo)) (5.8)

where Q{(.}} means the quantization of (.), see Figure 5.2. %y is a
step size optimizing coefficient whose value depends on the p.d.f. of the
error signal, the number of quantization levels and the channel bit error

rate, (BER).
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The DPCM quantizer QE (see Figure 5.2) accepts the sample (xi-yi) to be
quantized, and the step size A, and produces a level number Ri and a
quantization level éi’ where the i sub—script means the ith sampling

instant in a particular block of samples, i.e.,

e, = ARi . i=1,2,...,W (5.9)

R, = :ﬂ‘-g-l-)- . k=1,2,...,2°71 (5.10)

where b is the number of bits in the DPCM-AQF code word. The locally

decoded output sample, £i is formed by adding ys and éi'

However, it is Ri’ and not e; that is binary encoded and multiplexed

with the binary representation of A. At the receiver, the binary signals

are de-multiplexed to yield Ri and A. The é;i and £ri samples are then

produced as shown in Figure 5.2(b). Notice that e ; and Vi in the

absence of transmission errors, are ei=é_i and y.=y_.. Also, A may be
'y i L4

assumed to be received with negligible error if sufficient channel

protection coding is employed.

5.2.2 Predictors

The Fixed First Order Prediction, FFOP, was used in our DPCM
experiments as a performance hench-mark. The value of its fixed coefficient,

a,, is the long term first shift autocorrelation coefficient of the speech

1
signal, typically 0.91-0.94 and 0.85 for 10 kHz and 8 kHz sampling

respectively.

Now we are to briefly summarize the SAP and SGEP sequential predictors

since, when used in DPCM encoders, they take a slightly different form, than
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that presented in Chapter IV. Also for simplicity, the number of

coefficients in adaptive prediction will be limited to two.

The second-order SAP predictor updates its coefficients, at the ith

sampling instant, according to the following expressions:

a; 3 =g, YR e X (5.11)
4 2 73,2 * B (e % 5 (5.12)
or in a vector form
Ay = Ay R (e 0X (5.13)
where i = [ﬁ % ]T
i-1 i-2°%i-3
and
A
P (0 = ) . (5.14)
1 ~2
B + F'I- Z X.
j=i-M-1

Notice that Equations (5.11)-(5.13) are of the same form with Equations

(4.7-4.8) of Chapter IV, except that the x,_ samples have been

i-1

and the quantized sample, ei_1=Q(xi_1-

and ei_1

replaced by the decoded sample §1-1

yi_l), respectively. A and B are system pafameters and their values will

be quoted in the results section.

The Pi_l(x),given by Equation (5.14) with M=N, is used in DPCM-AQJ
systems while for DPCM-AQF applications, the value of Pi-l(x)=P’ is
inversely proportional to the mean square value of the differences

between adjacent speech éamplgs, T4 calculated over the block of W samples,

see Fquation (5.7). That is,
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P = —-—31————-—5 i (5.15)
B + (A/aq)

A and B are known at the receiver while the step size A is transmitted.
As A changes for each block so does P. Consequently, P remains constant
for W samples and because of its dependency on the channel protected A

the codec's performance in the presence of channel errors is enhanced.

The second-order SGEP algorithmsll6) at ith sampling instant, forms
four predictions yi—l,l’yi—l,Z’yi-l,S and Vi 1,4 which are generated from

~ “ - . - -
Xs_y and xi_3. These intermediary predictions are

Yi-1,1 * (31-1,1+31)§1-z * 31-1,2§1-3 (5.16)
Yi-1,2 (31-1,1'31)£i-2 * ai-l,z%i_3 (5.17)
Yi-1,3 ~ ai—1,1;1-2 (3 2%8)% 5 (5.18)
Yio1,4 = f-1,1%-2 * Qi1 27%)% O 5awn
where s1 and 52 are system parameters, and 52<sl, see Equation (4.26).
Notice that ) has been added and subtracted from ai-l,l to give yi—l,l

and y. while a smaller change of *s_ has been made to a, to give
i-1,2 i-1,2

2
Yi-1,3 34 ¥ 4

We now form the moduli of these prediction errors

-~

FU; ) 5 = Ixi-l—yi-l,jl s 3=1,2,...,4 (5.20)
and then compute

Aier,n = FY5o1,1 T B0 (5.21)

Aic1,2 = FUim1,3 " P 5.22)
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As FU,

i-1,1 and FUi—l,Z are the moduli of the prediction error when

is 1increased and decreased by s, respectively, it follows that if

i-1,1

A > .
i-1,1 0 then 31-1,1

1

should be decreased and vice versa. Similar remarks

apply for Ai—l,z and 3-1,2°

Consequently, the two coefficients specified by k=1,2, are updated

according to P (x)

i-1

= a, (5.23)

Gk T 34-1.%x M1k

K®
where Pi—l(x) is given by Equation (5.14) with M=N. The term ka, where a
is just less than unity, results in a smaller modification to a, than a;

and this improves the prediction accuracy of the algorithm.

In a ADPCM-AQF coder, Pi_l(x) is replaced by P as defined by

Equation (5.15). Having determined a, 1 and a,

t .
i, i,2° he decoded output X,

can be found by using

X. = a., X, . +a, .X. .+ e, (5.24)

The schematic diagram representing both the second order SAP and SGEP

adaptive predictors is shown in Figure 5.3.

Further to this brief explanation of the second-order SGEP scheme,
we are to demonstrate the differences between SGEP and SAP that minimizes

the absolute error, FU=<|eil>, (see Appendix E).

Using ﬁquation (5.21),

A s [xi-l'ai-l,1xi-2'ai-1,2xi-3's1xi—2|

~ ~ ~ ~

R R IR L P w Ly .25
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and since

-1 T X¥i-17%4-1,1%1-27%41, 2543 (5.26)
Equation (5.25) is rewritten as
Mg = 1oyl -legyvsx ol - 62D
Similarly,
A, = le, ,-s.x, .|-|e. . |- .
i-1,2 = 18i-1780% sl m Moy % (5.28)
. [THRT) A ot " i . l :
Letting "w" be ;1 and "v" be S %, _, Or Szxi-3’ equation (5.27) is
rewritten as
LPIRIPR Lad il (5.29)
. . .. . (125)
Equation (5.29) can be analysed with the aid of Figure 5.4.
A llvll .
\ ’
Y 7’
. F 4
. REGION II L’
s ’
~ ’
A Y F 4
A Y rd
Y I'4
“ 4
\‘ ’I
\\\ ,"
——— REGION IIT g REGION I ~——3» "y"
I, \\
4 LY
7’ ~
I’ \\
,’ \\
r'd b Y
7’ A Y
l’ \\
,° REGION 1V N
’ .~
/s N

FIGURE 5.4: Analysis of Ai-l,k
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That .is,
In REGION I: I?—v|-|w+vi = =2v {5.30)
In REGION II: |w-v|-|wtv| = -2w (5.31)
In REGION III: |w=-v|-{w+v| = 2v (5.32)
In REGION IV: |wv|-|wsv| = 2w (5.33)
Hence, in REGIONS I and III, |w|>'v|and
bo=v|-lusv| = -2v sgn(w) (5.34)
Similarly, in REGIONS II and IV, |v|>|w| and
|w—v|~|w+v| = -2w sgn(v). (5.35)
Thus Equation (5.27) yields
m2s)%;_psenle; ), if fe; ) [>[s)x; |
Ay . e (5.36)
m2e;_158n(S Xy o)y E [y pl>Mepl
while Equation (5.28) gives
~2sp%;_gsen(e; ), if leg[>lsyx, il
A. = (5.37)
1_1 2 -~ ~ . ~ ~
' m2eg_senlsyx; )y if [syx; gl>le; ]

Finally, substitution of Equations (5.

36) and (5.37) in Equation

(5.23), provides the adaptation equations of SGEP. When [éi_l[>lslﬁi_2|

and Iéi-ll>'92§i— SGEP is defined by

)l

a

3,27 31,2t PP (s,

i,2

i,1 " %-1,1 ¢ B 08

-X;_,-sgnle; ;) (5.
- - n
.2 .xi_3sgn(ei_1). (5.

Appendix E however, shows the SAP equations that minimize the

38)

39)
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absolute error, FU=<|ei|>=|ei], to be

S

3,1 7 31,1 T P Epe

sgn(e, ,) (5.40)

i-1

a, , = a + h.x. _.sgn(e,

i,2 ° %i-1,2 i-3 i-1)" (5.41)

Thus the basic design of the adaptation process of SGEP has no

significant departure from that of Cummiskey's(Bz) sequential algorithm
with FU=Iei|, if |e ! ]s x | and le 1[>|52xl 3|
However, when the ]slﬁi‘2|>|e | or |s x |>Ie | inequalities

are satisfied, SGEP assumes a very different form. That is,

a; 1= + 2Pi_1(x).ei_lsgn(slxi_2) (5.42)
a; =2 )t (x) 2 ¢ _l.sgn(szxi_B) ) (5.43)

Equations (5.42) and (5.43) indicate the degression from the gradient

algorithm that minimizes FU=|ei|.

The frequency of occurrance of Equations (5.38)-(5.39) or Equations
(5.42-5.43) in ADPCM-AQF-SGEP coder for the same speech data used in

Chapter IV is presented in Table 5.1.

PERCENTAGE OF OCCURRANCE | PERCENTAGE OF OCCURRANCE

COEFFICIENTS OF INEQUALITIES Ié |> OF INEQUALITIES ]ei_1|<
s, x _,| OR >|s X, 3| s, x [ OR <|s X 3[
2 33% 67%
3 5 38% 627

TABLE 5,1: Frequency of occurrance of SGEP adaptation
equations in ADPCM-AQF-SGEP encoder, b=4,
W=256, input level=~5 dB
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As is seen in this table,during the adaptation of a4 2
]

and 62% of the time, diversions from the gradient algorithm with FU=|ei[

and a. 677
i

are attained, respectively,
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5.3 COMPUTER SIMULATION RESULTS OF DPCM-AQJ SPEECH CODECS EMPLOYING FFOP,

SAP OR SGEP

We will now present the results of our DPCM-AQJ study in terms of
long-term SNR, SNRSEG(dB) and waveform plots. The input speech signal
used in the simulation experiments was the sentence "An apple a day keeps

the doctor away", bandlimited to 3.4 kHz and sampled at 10 kHz,

Figure 5.5 shows the SNR(dB} plot of a 4 bits per sample DPCM-AQJ-
FFOP coder, for different power values of the input speech signal. The
ratio of the maximum to the minimum quantization step size, see Equation
(5.5), was fixed to 128 while the value of the quantization "leakage'
constant, Bq, was set to unity, see Equation (5.4). The value of the

fixed prediction coefficient, a., used in these experiments was 0.946.

1

Table 5.2 shows the SNR(dB) and SNRSEG(dB) values produced by this
codec, at the centre of its dynamic range, when different Bq constants
are employed to improve the performance of the system in the presence of
transmission errors. Table 5.2 indicates that the best signal-to-noise
ratio performance of the DPCM~AQJ-FFOP codec is obtained when Bq=31/32.
Also, the SNRSEG(dB) for Bq=1 is less than that for Sq=31/32 by 1.4 dB,
at &OIKb/s. These results differ from what has been reported by others(67’123)
whereby Bq=1 is producing thé maximum SNR. The difference however, may
be attributed to that the step size multipliers, Mi’ employed in our

experiments have been formulated from speech sampled at 8 kHz whereas

our DPCM-AQJ-FFOP codecs are processing speech at the rate of 10 k samples
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B SNRSEG (dB) SNR(dB)

d W=128
1/2 19.57 21.84
7/8 28.44 28.63
15/16 33.31 29.04
31/32 33.48 29.19
63/64 33.25 27.96
127/128 33.14 27.45
1.0 32.86 26.70

TABLE 5.2: Variation of SNRSEG(dB)-SNR(dB) with Bq
at 40 Kb/s and at input power of -4.26 dB
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per sec. The variation of SNR(dB) with respect to the input power level

for Bq=31/32 is plotted in Figure 5.6,

Next, the SAP and SGEP prediction schemes were employed with DPCM-
AQJ. The locally decoded signal applied to these predictors is of course,
contaminated with quantization noise. Thus the predictor parameters
differ from those used ﬁreviously, see Section 4.7, and they are selected
to peak the SNR at the centre of the coders dynamic range. The optimum
prediction parameters for SGEP and SAP operating in the 40 Kb/s DPCM-AQJ
codec were A=10.0, B=20.0, M=N, D=6.0, a/B8=4.0, B=1/5 and A=0.05, B=40.0,
respectively. No attempt was made to optimize again these parameters for
different conditions, such as transmission data rate and the order of
predictor. It was observed from the computer simulations that for low
values of input power (<-30 dB), the SNR(dB) is increasing for all coders,
at approximately 6 dB/octave as AQJ operated frequently with its minimum
step-size, and rarely in its adaptive mode. As the input power increased,
the prediction gains of SAP and SGEP over FFQOP manifested as differences
in coder SNR(dB). SNR(dB) gains of 6 -and 3.5 dB's were achieved by the
coder using SGEP when compared to DPCM-AQJ employing FFOP and SAP,
respectively over a dynamic range, DR, of 30 dB. When the input level
was sufficiently large for slope overload noise to frequently occur, the
predictors operated on distorted speech signals, and the SNR rapidly

deteriorated.

Figure 5.7 shows the SNR(dB) variation of 4 bits ADPCM as a function

of prediction order, N. The gain in SNR(dB) by using SGEP instead of SAP
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is approximately 1 dB smaller than the prediction gain shown in Figure
5.8 where the predictors operated on quantization free speech samples.
When the ADPCM bit-rate was reduced to about 16 Kb/s (3-level AQJ,
fs.10323 = 16 Kb/s) the curves had similar shape with those in Figure 5.7,

except that the SNR gain of SGEP over SAP was reduced to only 1 dB.

The improvement in SNR, achieved by increasing the bit-rate for the
ADPCM~AQJ coder employiung SGEP or SAP with N=2, at an input power level
of =10 dB, is shown in Figure 5.9. The SNR gain due to employing SGEP
instead of-SAP in DPCM-AQJ, is of the order of 2 to 3.5 dB's, as the
number of bits per code word, '"b", is increased from 2 to 4. This
improved performance can also be observed from the time waveforms of
Figures 5.10-5.11. The comparison of curves (iii) and (iv) of Figure 5.10
with those of Figure 5.11 reveals that ADPCM employing SGEP in its feed-
back loop produces the smaller prediction error, and therefore the

smaller gquantization noise.

Further, the prediction order was increased from 2 to 6 and the
SNR(dB) performance of the ADPCM-AQJ employing both adaptive prediction
schemes was measured for different transmission bit-rates. The results
are shown in Table 5.3. It is seen that as the predictor order increases
ADPCM-AQJ-SGEP offers always a better SNR than ADPCM-AQJ-SAP. Moreover,
when the order of SGEP predictor increases from 2 to 4, the SNR(dB) of
the ADPCM-AQJ-SGEP encoder changes by 0.9 dB, at 40 Kb/s, and 1.4 dB's
as N varies from 2 to 6. Consequently, although the adaptation process
of SGEP tends to be complex, its SNR performance at high bit rates is
not considerably degraded by using it in its simplest form, namely with two

coefficients.
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ORDER TYPE SNR(dB)
OF OF
PREDICTOR | PREDICTOR 16 Kb/s 20 Kb/s 30 Kb/s 40 Kb/s
N=1 FFOP 11.24 15.24 22.00 28.75
SAP 13.04 16 .48 2464 31.11
N=2
SGEP 14.85 19.02 27 .69 34.72
SAP 14.74 17.81 27.00 33.70
N=4
SGEP 15.94 20.61 28.25 35.63
SAP 15.40 18.75 27.12 34.34
N=6
SGEP 16.65 21.60 29.36 36.10

TABLE 5.3: Variation of prediction order, N with
bit-rates for ADPCM-AQJ-SAP/SGEP
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Finally, the stability of the sequentially adaptive prediction
algorithms used in our simulation experiments was checked by observing
the roots of their characteristic equation, I(z). I(z) for the second-

order predictor at the ith sampling instant is defined as(126)

2 .
Ii(z) = z" - ai,lz - ai,Z (5.44)

If the roots of Ii(z) are located inside the unit circle in the z-plane,
the system is "stable”. In sequential algorithms, because a new set of
coefficients is computed at every sampling instant, Ii(z) is also computed
in a sequential manner. It should be emphasized that at some sampiing
instants, a system can be unstable. However, as long as the duration of
unstability is not long enough — if the codec employing one of the
sequential prediction schemes recovers itself fast from unstable region -
there is no major problem, For lower-order predictors (N=2), Schur-

Cohn 127

stability criterion can be used to determine whether the system
is stable or not. In Schur-Cohn criterion, the necessary and sufficient

conditions for the roots of Ii(z)=0 lying inside the unit circle are

related to the following inequalities:

|Ii(0)[ = fai 2| <1 (5.45)
Ii(l) = 1 = a; 1-ai 9 > 0 (5.46)
Ii(-l) = 1+ a; "a; , > 0 {(5.47)

The Equations (5.45)-(5.47) define the stable region for a; | and a; 5.

2 ?
Figure 5.12, PATH 1 presents a simple flow-chart in order to check
stability and correct it. The simulation run conducted for the ADPCM-AQJ-

SGEP encoder having second-order predictor at 40 Kb/s shows that unstable
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coefficients were generated by the SGEP algorithms about 9% of the time.
For higher—order predictof, the above criterion may only be applied when
the predictor is decomposed into cascaded stages each having the second-
order predictors. A different method for checking the stability is to

compute the PARCOR coefficients, b. ,'s, and can be applied to any order

1,k
predictors. As described in Appendix F, the set of prediction coefficients,

a, k's, are initially transformed into PARCOR domainszs) The observation
of bi k's indicates the system stability, i.e, if |bi k|>1 the system is
» r

unstable. Then by suitable manipulation, bi k's are adjusted to be £1
»

and transformed back to a, k's.
>
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5.4 COMPUTER SIMULATION RESULTS OF DPCM—-AQF SPEECH CODECS EMPLOYING FFOP,

SAP OR SGEP

In Section 5.3, we have shown that by exchanging the FFOP with
adaptive predictors, an improved DPCM-AQJ performance is obtained, and
that SGEP out-performs SAP for transmitted bit-rates ranging from 16 to

40 Kb/s.

This section examines the case of DPCM-AQF systems with second-order
sequentially adaptive predictors. Once again, the encoding performance
of DPCM-AQF was evaluated by computer simulations. The input speech
signal was the same with that used in the DPCM-AQJ experiments, i.e., the
sentence, "An apple a day keeps the doctor away”, bandlimited to 3.4 kHz

and sampled at 10 kHz/sec.

Tn generating the step-size, A, a_ was set to 0.33 in accordance

(110)

with the findings of reference and the quantizer, QS5, used for step-
size transmission, had 256 levels while the ratio of its maximum to its
minimum step-size was 128. The decision levels of the quantizer QE were

*1,+2,..., and output levels are defined by Equation (5.1), and they are

scaled by A.

- The ‘predictors used in the DPCM-AQF experiments are those discussed
in Section 5.2.2, For fhe SAP predictor, the A and B parameters of
Equation (5.15) were 0.05 and 2.0 while for the second-order SGEP
predictor, the values of A and B were 6.0 and 100.0, respectively. These

values of A and B yield the maximum peak SNRSEG values measured over the
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and s, in the second-order SGEP

1 2
algorithm, computed from Equation (4.26) with B=1/5, were 0.167 and 0.145

entire utterance. The constants s

respectively. The wvalue of o in Equation (5.23) was 0.8. Also, the
initial value of a, was the first shift normalized correlation coefficient,
of the speech signal, c

=0.94, while the initial value of a, was set to

1 2

Zero,

The SNRSEG(dB) was used as an objective criterion to assess the
performance of the various codecs, see Equation (3.4). The variation of
SNRSEG(dB) as a function of input power for the channel error-free DPCM-
AQF system using either FFOP or SAP or SGEP is shown in Figure 5.13 for
40 Kb/s transmission bit-rate (b=4), and for W=256, aq=0.33, and N=2,

The peak SNRSEG(dB) of ADPCM-AQF-SGEP is seen to be 3 dB's greater than
the‘peak SNRSEG(dB) values of ADPCM-AQF-SAP. We found that total SNR{dB)
as defined in Equation (3.3), produced lower wvalues than those of .

segmented SNR measurements, but the SNR{dB) gain of ADPCM-AQF-SGEP over

the other systems was maintained, see Table 5.4.

DPCM-AQF We25 6 W=128 ngca(afit)zJOF
CODEC SNRSEG(dB) [SNR(dB) [SNRSEG(dB) [SNR(dB) | CODEC
FFOP 28.75 25.44 31.09 25.91 26.70
SAP 34.51 29.41 35.05 31.75 33,40
SGEP 37.83 34,2 38.54 34,94 36.10

TABLE 5.4: SNRSEG(dB)-SNR{dB) values of various codecs

when input power level = -5 dB, b=4, N=2
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The effect in varying the quantization block size, W, is shown in
Figure 5.14 for an input level of -5 dB, i.e., SNRSEG(dB) values were
selected at the centre of the codec's dynamic range. The SGEP predictor
enables DPCM-AQF to maintain a nearly constani SNRSEG as W is varied from
32 to 512. It is observed that the loss in SNRSEG for larger values of W,
is greater in DPCM-AQF-FFOP. This demonstrates the efficiency of the
adaptive predictors, within the DPCM-AQF, encoder, in coping with the
reduced quantization accuracy of QE. The variation of the SNR(dB) for
every W=128 samples is shown in Figure 5.15, and the superiority of the
ADPCM-AQF-SGEP ovetr the ADPCM-AQF-SAP and DPCM-AQF-FFOP is once again

observed.

The effects of transmission errors in DPCM~AQF codecs were also
examined. Here the 8-bit codewords (256 levels for QS) used for the
transmission of the step size A, were assumed to be protected from trans-
mission errors while the bit stream at the Oufput of the QE quantizer,
see Figure 5.2, was subjected to ;andom errors. These errors were induced
according to the method described in Section 3.6.5, i.e., the number of
samples deemed to be in error depends on the bit error rate (BER), total
number of samples, and number of bits, see Equation (3.56). The
performance of the DPCM-AQF system (W=256) using a fixed first order
predictor (FFOP) is almost independent of transmission errors for |
BER<0Q.0Q1% as can be seen in Figure 5.16; and 1s only limited by
quantization noise. For BER>0.4%, the noise resulting from transmission

. . . . 0
errors swamps the quantization noise and the slope of the curve is 457,
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i.e., the noise in the recovered speech is proportional to BER. With
adaptive predictors, the average SNR starts to decrease for lower BER
than encountered with the FFOP. This is because there is an error
propagation effect in the second-order adaptive predictors, and although
the performance of SGEP is better than SAP, the slope of the former is
the greater for BER>0.4Z. The use of only two predictor coefficients in
the adaptive predictors and the channel protected & prevents the SNRSEG
plumetting faster. The SNRSEG with SGEP and SAP is greater than that

with FFOP for BER<0.08% and 0.037 respectively.

As A is represented by an 8-bit codeword and there are Wb (1024
bits for W=256, b=4), bits of DPCM data in each block, reliable protection
of A can be provided for only a small expansion in the bit rate. For
example, if A is transmitted three times with every block of W-DPCM words,
then the step size A used for decoding at the receiver can be formed
from the three received values of the step size. Specifically, the
receiver would examine the most significant bit, MSB, of each of the
three received A's, and then would select the bit that occurs on two or
more occasions. It does this for the next MS5B's and solon until the
least significant bit, LSB's whence E is available. The probability of

. . . . .o ~ . (12
getting at least two bits correct in each bit position of A 15( 8

2 3,8
h, = [30-8)"R, + (1-H)7] (5.44)
where Hb is the probability of any bit being received in error (statistical

independence between bits being in error is assumed).

For a BER of 1%, Hb=0'01 and he=0.9976, see Equation (5.44). Thus
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the probability of A#A is he=(1-he), and egqual to 2.38X10”3. If there

are 256 4-bit DPCM words for every A transmitted, on the average one
erroneous value of a is expected every 256*4/2.38*10_3=430 Kb of trans-
mitted DPCM data. Note that such a protection of A results in a 1.6%
expansion of the bit rate. This simple example is included to demonstrate
that protection of A is not a difficult problem, and of course more
elaboraée channel coding techniques are available to decrease the
probability of A being received in error for only a modest increase in
transmission bit rateglzg) Thus the curves in Figure 5.16 should be

reviewed as representative rather than an upper bound for the particular

speech signal encoded here.

Finally, informal listening tests of DPCM-AQF {W=256) with different
predictors ﬁere carried out. For this purpose, the power level, at the
input of the encoder was set to -5 dB, i.e., at the centre of the codec's
dynamic range. At 40 Kb/s, DPCM-AQF employing SGEP, SAP or FFQOP
predictors yield an SNRSEG(dB) of 38.54, 35.05 and 31.09 dB's respectively.
We noticed in ouf experiments that respective SNR gains between the
various codecs could not be perceived. At the reduced transmission bit-
rate of 30 Kb/s however, the subjective gain of the codec employing SGEP
became significant over ADPCM-AQF-SAP. Also the quality of ADPCM-AQF-FFOP

decoded speech was noticeably degraded.
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5.5 DISCUSSION AND CONCLUSIONS

In this chapter DPCM-AQJ and DPCM-AQF speech codecs employing
adaptive predictors have been treated. The bulk of the chapter was
devoted to sequentially adaptive SGEP and SAP predictors, and the
performance of DPCM codec employing these predictors, for transmission

bit-rates of 16-40 Kb/s.

In Section 5.3, adaptive SGEP prediction algorithm in DPCM has been
investigated in detail. It was observed that the faster convergence rate
of SGEP over SAP, also manifests as a greater prediction gain. Consequently,
this gain is reflected in a 2 to 3.5 dB's improvement in SNR as the number

of bits per codeword is increased from 2 to 4.

We also demonstrated that the reduction in SNR of DPCM when SGEP
is replaced by TFFOP is 3.7 to 5.7 dB's as the transmission bit-rates
increases from 16 to 40 Kb/s respectively, i.e., ignoring channel
impairments, conventional DPCM-AQJ-FFOP codec is a poor performer
compared with its adaptive predictor counterparts, although it does have

the virtue of simplicity.

In Section 5.4, we have considered DPCM-AQF codec with adaptive
predictors. This is because, DPCM-AQF codec has the advantage over
DPCM-AQJ of being easier to implement, albeit a delay of W/fs seconds, in
calculating the step—size, A. Also, the complexity of the codec was

further reduced by restricting the order of the adaptive predictors to two.

The experiments showed that by using the adaptive predictors, the
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SNRSEG(dB) performance of the DPCM-AQF can be significantly improved over
FFOP. For transmission bit-rate of 40 Kb/s, and a block size of W=256
speech samples, the ADPCM-AQF-SGEP codec has SNRSEG gains of 3 and 9 dB's
compared to the ADPCM-AQF-SAP and DPCM-AQF-FFOP codecs respectively.
However, it must be pointed out that, by arranging for the fixed predictor
to have two coefficients, the SNRSEG({dB) increases by some 5.5 dB's,

(64) that at bit rates >16 Kb/s the SAP

confirming Gibson's observation
predictor offers no advantage over fixed predictors having the same number

of coefficients (FSOP).

| Further, for an error-free cﬂannel, SNRSEG's of ADPCM—-AQF-SGEP,
ADPCM-AQF-SAP and DPCM-AQF-FFOP codecs decrease with increasing block
length, W, due to reduced adaptation rate of the step size. The losses iﬁ
SNRSEG(dB) for SGEP and SAP are however, 2.8 and 4.6 dB's respectively,
as W is increased from 32 to 512. 1In the case of DPCM-AQF-FFOP, SNRSEG(dB)
drops almost by 10 dB as W varies from 32 to 512, The DPCM-AQF codec
employing SGEP therefore, has a weaker dependence on the block sizé, W,
than those of employing SAP or FFQOP predictors. When transmission errors
are introduced, the codec employing SGEP has higher SNRSEG than that

achieved with FFOP for BER<0.08%Z.

Finally, informal listening tests showed that, at 30 Kb/s, (step-

size optimizing coefficient, uq=0.50) SNRSEG(dB) gains of ADPCM-AQF-SGEP

codec over ADPCM-AQF-SAP and DPCM-AQF-FFOP codecs could be perceived.
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5.6 NOTE ON PUBLICATIONS

A paper entitled, "DPCM-AQF Using Second Order Adaptive Predictors

for Speech Signals" (130 in co-authorship with Dr. C.S. Xydeas and

Dr. R. Steele has been published in IEEE Transactions on Acoustic,
Speech and Signal Proc., Vol. ASSP-29, No.3, pp.337-341, June, 1981.

This paper is an abridged version of Sections 5.2, 5.4 and 5.5.

A paper entitled, "Sequential Adaptive Predictors for ADPCM

Speech Encoders', in co-authorship with the same authors has been

accepted for publication in IEEE Transactions on Communications.

This paper is a version of Sections 4.6, 4.8, 5.2 and 5.3.
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6.1 INTRODUCTION

During recent years, DPCM speech digigizefs with Feedforward

Adaptive Quantization (AQF) have received considerable attentiong6o’128’130)
Fixed or adaptive linear predictors have been used with DPCM-AQF and
reported results clearlyindicate the SNR advantage which can be obtained
by using adaptive instead of fixed prediction. This SNR gain is of the
order of 2 to 4 dB and may result in a considerable improvement in the

quality and intelligibility of the decoded speech signal, particularly

at low transmission bit rates.

Adaptive predictors can be Forward adaptive or Backward Sequential
adaptive. quward Block adaptive (FBA) predictors as discussed in
Chapter III calculate the values of their prediction coefficients from
the input speech samples every 10 to 20 msec. by minimizing the mean
squared prediction error within this interval. The prediction coefficients
are encoded and forward transmitted to the receiver in order for the
decoder to operate with the same set of coefficients. Also, to ensure
a stable decoding process, the prediction coefficients are usually

transformed into reflection coefficients prior to transmissiom.

Backward Sequential Adaptive predictors update their coefficients
at every sampling instant from previously decoded speech samples. In
this case the prediction coefficients are determined at the receiver of
DPCM-AQF codec using only the received samples from the output of the
AQF quantizer. Since no other information is transmitted, the saving

in bit rate and the possible synchronization difficulties which might be
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encountered by combining the FBA prediction coefficients at regular
intervals with the samples at the output of the quantizer encouraged
the use of Backward Sequential Adaptive predictors. Their performance,
when employed in the feedback loop of DPCM-AQF codec have been examined

in Chapter V.

The price however to be paid is threefold. First, the look ahead
procedure of the Forward adaptive prediction is not allowed in the
sequential computation of the coefficients and therefore the estimation
accuracy of the sequential predictors is reduced. Second, in the
presence of transmission errors the performance of the predictor at the
receiver can be seriously affected. Thus,for stability reasons, the
sequential adaptation strategy is slightly modified and-this can result
in some degradation in the performance of the predictor. Third, the
complexity of the receiver is considerably higher in the case of backward
prediction since the decoder forms the prediction coefficients following
the same procedure as the encoder, Gibsongljl) in a theoretical study

of ADPCM systems indicated that no clear cut preference can be made

between systems with Forward or Backward Sequential Adapéive prediction.

In this chapter, we study a new simplified (FBA) algorithm called
the "Correlation Switched Prediction (CSP), CSP divides the range of

the first shift normalized correlation coefficient, c., of the speech

1

signal into zones and as the value of ¢, changes when computed over

1

successive blocks of W speech samples, the predictor coefficients undergo

a substantial modification. In general, when the range of ¢y {=1.0<c <1.0)

1
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is divided into (Z+l1) zones, the predictor is referred to as (Z+1)-point
CSP or Z-order CSP. The CSP technique has shown a considerable
performance advantage when compared to fixed or sequential adaptive
prediction, particularly when speech is transgressing from unvoiced to

voiced sounds.

The first part of this chapter presents the CSP algorithm and a
comparative study of DPCM-AQF systems employing one of the following
prediction techniques:

a. Fixed First—Order Prediction, DPCM~AQF-FFOP,

b. Fixed Second-Order Prediction, DPCM-AQF-FSOP,

¢. Sequentially Adaptive SGEP scheme, ADPCM-AQF-SGEP,

d. 4-point/3rd-order CSP associated with FSOP, ADPCM-AQF-CSF(4)-FSOFP,

e. 4-point/3rd-order CSP associated with SGEP, ADPCM-AQF-CSP(4)-SGEP,

£. 8-point/7th-order CSP associated with FSOP, ADPCM-AQF-CSP(8)-FSOF,

g. 8-point/7th—order CSP associated with SGEP, ADPCM-AQF-CSP(8)-SGEP,

h. Forward Block Adaptive Prediction, FBADPCM-AQF.

In all these codecs, both SNRSEG(dB) and SNR(dB) are used as
performance criteria, while the prediction order N is equal to two. Our
studies were confined only to DPCM-AQF systems since (i) AQF quantization
is more robust to transmission errors compared to the AQJ algorithm and
also former scheme 15 considerably easier to implement, (ii) the
discrepancies between the SNR values of DPCM-AQF and DPCM-AQJ systems
using sequential adaptiQe predictors‘are quite small. IP addition, only
the SGEP prediction algorithm was employed in our DPCM—-AQF system due to

its superior performance over SAP,
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Computer simulation results for the range of 16 to 32 Kb/s,with
input speech signals, sampled at 8 kHz and bandlimited to 3.4 kHz
indicated that:

. i)} SNRSEG(dB) gains of 1.7 and 3.2 were obtained for DPCM—AQF
using a hybrid scheme formed by &4-point CSP and SGEP predictor,
when compared to DPCM-AQF with a fixed second order predictor.

ii) SNRSEG(dB) performance of the codec when using FBA instead of
Backward Sequentially Adaptive Prediction was improved. The
introduction of the relatively simple CSP produced SNRSEG(dB)
values comparable to those obtained from FBADPCM-AQF. A more
complex prediction scheme which combines CSP and SGEP was shown

to provide the best overall SNRSEG(dB) performance.

The computational complexity of the adaptive prediction algorithms
was also considered in terms of multiplications and additions required

to form the prediction coefficients within a fixed time interval.

The second part of the chapter examines the proposed DPCM-AQF codecs
when used to digitize signals obtained from the Voiced/Unvoiced Band
switching VUBS, systemglz) The VUBS preprocessor operates on 0.3 to
6.0 kHz wideband speech, and compresses the input signal into a 3.4 kHz
bandwidth. The compressed signal can be sampled at 8 kHz and then
digitized for transmission. At the receiver, following the decoding of
the binary signal, the VUBS postprocessor is able.to reproduce speech
whose bandwidth is within the 0.3 to 6.0 kHz range. By employing

DPCM-AQF together with the CSP prediéﬁion schemes, te digitize the output

of the VUBS preprocessor, it was found that the reproduced speech signal

is preferable to 0.3-3.4 kHz telephonic speech, digitized by the same

codecs and for transmission bit rates of 16 to 32 ¥b/sec.



282

6.2 CORRELATION SWITCHED PREDICTION SCHEME

Correlation switched predictors alter significantly the values of
the prediction coefficients according to the first shift normalized
correlation coefficient ¢y of the input speech samples where

W-1
i=lx. Xi+1
e =L (6.1)

Z 2

X5
i=1

The {xi} sequence is therefore divided into blocks of W samples

and for each block the value of c

is computed. ¢, is then compared

1 1
with a set of thresholds, TRj’ j=1,2,...,2 which divide the (~1.0,1,0)

range of c, into {Z+l1) zones. A specific zone is thus selected

1

according to the value of ¢, and unique set of prediction coefficients

1
[ax,ag,...,aﬁ] assigned to that zone is then used in the linear predictor,
thereby ensuring a high prediction gain for the W input samples being

encoded.

In contrast to Forward Block Adaptive prediction, there is no need
to transmit the prediction coefficients as these are stored in a look-
up table at the receiver. All that is required is to transmit the
value of the threshold j and this can be accomplished with a word having
logz(Z+1) bits. For typical values of Z this word consists of only 2
or 3 bits and therefore the increase in the bit rate is minimal. In
this ﬁay the receiver accepts logz(z+1) bits every W sampling instants
and selects the proper set of prediction coefficients to be used in the

decoding procedure.
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Obviously the question arises of how to define the sets of the
prediction coefficients which form the entries of the look-up table,

This procedure can be described as follows:

Initially the (-1.0,1.0) range is divided into (2/8c¢) sub-zones

using [(2/8c)-1] thresholds TR, where Sc is the sub-zone size and

(2/8c)>>Z+1, cy is then measured for every block of W input speech

samples and the [al,az,...,aN] prediction coefficients are also determined
using the autocorrelation method. After processing a large number of
blocks, new coefficients [ai,aé,...,a&] are formed and they are assigned

to each of the (2/6c) sub-zones, In particular, the prediction co-

2

.,aN] coefficients obtained from all the blocks of speech

. = [} 1 -
efficients [alz,a 2,...,aN£] of the Lth sub-zone are the average values

of the [a1’32’°'

samples which satisfy the TR£_1<c1<TR£ inequality, TR£=TR£_1+5C. Thus

if the number of blocks satisfying the above inequality is M1, then,
T

%,z T Ml

a5 k=1,2,...,N. (6.2)
r=1 !

In this way a Master table consisting of (2/6¢c) sets of prediction
coefficients is formed and can be subsequently used to obtain the

look-up table of an (Z+l)-point CSP algorithm,

Let us assume for the moment that the values of the Z threshclds
TR, are known. Then the prediction coefficients [ax,a;,...,ag]
assigned to each of the (Z+1) zones of the required (Z+1) point look-up
table are obtained by averaging all the sets of coefficients of the

Master table corresponding to those sub-zones contained within each of

the wuch larger zones of the (Z+1)-point table. The prediction
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coefficients corresponding to the pth zone of the (Z+1)-point table are

therefore defined as
k
w o L '
ak,p kp E ak,(m+r) (6.3)

where k=1,2,...,N,
m=k1+k2+. . .+kn+. . '+kp.'-|
k =én/éc,
n

6n= the size of the nth zone of the Master table.

Equation (6.3) clearly shows the dependence of the {aﬁ’p}
coefficients on the value -of the thresholds. Furthermore for switched
predictor to be efficient, the sets of the {aﬁ,r}, r=1,2,...,Z+1 and
k=1,2,...,N coefficients should approximate those sets of the Master
table formed with large values of M1, see Equation (6.2)., The thresholds
TRi are therefore selected to minimize the effect of the averaging

},

process of Equation (6.3) when applied to those coefficients {a;’k
r=1,2,...,(2/6¢c) and k=1,2,...,N of the Master table which are formed
with large values of M1. That is, in selecting TRy, an attempt is made
to reduce the distortion in the values of the prediction coefficients

corresponding to blocks of speech samples whose average statistics show

a high probability of occurrance.

In our experiments, Table 6.1 is the Master table and gives the

average prediction coefficients a! and a; determined using 157 blocks

1 2
of W=256 input speech samples obtained at the rate of 8000 samples per
second. The value of ¢ is 0.1 and the [-1.0+1.0] range is divided into

2/8¢=20 zones. The same table also provides the percentage of the blocks
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whoge <, value satisfied each of the 20 inequalities.

Having defined Table 6.1, according to the long term speech
statistics, we can use it to obtain the required (Z+l)-zone look-up
table of an (Z+l)-point or Z-order CSP scheme. As an example for a

4-point CSP algorithm, it was decided to have TR,=0.7, TR,=0.4 and

1 2

TR3=0.O, while the a;,ag coefficients were determined by averaging the
coefficients of the zones between 1.0 to 0.7, 0.7 to 0.4, 0.4 to 0.0

and 0.0 to -1.0, see Table 6.1. As previously stated, this allocation
of prediction coefficients to each of the resulting 4 zones is clearly
geared to minimize the distortion in the values of the coefficients for

speech blocks whose average statistics show a high probability of

occurrance. Table 6.2 and 6.3 present the thresholds and the prediction

coefficients [a1

,a;], of an 4-point and 8-point second-order CSP scheme,

respectively.

In its present form the proposed CSP-FSOP algorithm behaves, within
a block of W speech samples as a second order fixed predictor. CSP-FSOP
is able however to modify every W samples, its prediction .coefficients by

selecting one out of (Z+1) sets of (a{,ag) prediction coefficients.

Switched prediction can be also combined with backward sequential
prediction, for example the SGEP algorithm. In CSP-SGEP, the average
prediction coefficients of each of the (Z+1) zones are used as the
initial values of the SEEP prediction coefficients, for a block of W
samples, thereby facilitating a faster coefficient convergence rate.

However, if the value of ¢, does not change zones between the rth and

1



ZONES OF

AVERAGE 2ND ORDER PREDICTOR COEF,

PROBABILITY OF
OCCURRANCE OF

¢ ~1.0%c,£1.0 \ . IN 157 TRIALS
4 2

1 o.§<c151.o 1.6505 759 26
2 0.8<c 0.9 1.424 677 28%
3 0.7<c 0.8 1.060 410 127
4 0.6<c 0.7 0.840 .280 5%
5 0.5<c, 0.6 0.653 141 5.7%
6 0.4<c,£0.5 0.589 .337 6.3%
7 0.3<c150.4 0.420 .194 5.7%
8 0.2<c,£0.3 0.310 .170 2.5%
9 0.1<c150.2 0 0

10 0.0<c,0.1 0 0

11 -0.1<c,£0.0 -0.041 .256 1.2%
12 ~0.2¢<c, 50.1 -0.170 .336 1.27
13 -0.3<c,£-0.2 -0.221 0.115 2.52
14 —0.4<c15—0.3 0 0

15 -0.5<c =04 -0.694 547 1.9%
16 -0.6<c 5-0.5 -1.084 .873 1.27
17 ~0.7<c 5-0.6 -0.976 617 0.67
18 -0.8<c 0.7 -1.232 .541 0.6%
19 ~0.9<c,5-0.8 0 0

20 ~1.0<c15-0.9 0 0

TABLE 6.1:

The Master

Table and the Organisation of the 4-point and 8-point look-up tables

98¢
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THRESHOLD CORRELATION ZONE COEFFICIENT COEFFICIENT
TRj di dé
0.7 0.7 to 1.0 1.524 -0.718
0.4 0.4 to 0,7 0.950 -0.345
0.0 0.0 to 0.4 0.493 -0.210
-1.0 to 0.0 -0.631 -0.363
TABLE 6.2: Look-Up Table for 4-Point CéP or 3rd ’
Order CSP
THRESHOLD CORRELATION ZONE COEFFICIENT COEFFICIENT
TRj el'l ay
0.9 0.9 to 1.0 1.605 -0.760
0.8 0;8 to 0.9 1.424 -0.680
0.7 0.7 to 0.8 1.060 -0.410
0.4 0.4 to 0.7 0.750 ‘-0.210
0.3 0.3 to 0.4 0.590 -0.334
0.0 0.0 to 0.4 0.365 -0.182
-0.4 -0.4 to 0.0 -0.144 0.012
-1.0 to -0.4 -0.996 =0.645
TABLE 6.3: Look-Up Table for 7th-Order or 8-Point

CSP
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(r+1)th blocks of input samples, the initial values of the coefficients
[az,ag,...,aﬁ] for the (r+l)th block are the last values of [aI,aE,...,a&]
defined by the SGEP algorithm after the processing of the rth block of
samples. That is, the prediction coefficients stored in the (Z+1)-point
look-up table {(see Table 6.2 or 6.3), are only introduced as the initial
values of the SGEP algorithm when a zone change occurs. An ADPCM-AQF

employing a (Z+1)-zones CSP-SGEP will be referred to as ADPCM~AQF-CSP(Z+1)-

SGEP.

It should be emphasised that in the SGEP algorithm we slightly
medify the predictor convergence term, Pi’ previously defined by Equation

(5.14) to

p= — A& ' (6.4)

2
A
( /aq) +B

where the step size A and the scaling factor aq are specified in Section
5.2 of the previous chapter. Consequently, P remains constant for W
samples and because of its dependency on the channel protected A the
codec's performance in the presence of channel errors is enhanced. It
is important to note that Equation (6.4) also reduces the number of
multiplications and additions (see Table 4.2), by N, i.e. now the
computation of N prediction coefficients using SGEP algorithm requires

(4N+4) multiplications and 5N additions per sampling instant.

A general block diagram of an encoder employing Z-order or (Z+1)-

point CSP schemes is presented in Figure 6.1.
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6.3 THE VOICED/UNVOICED BANDSWITCHING SYSTEM, VUBS

The VUBS system developed by Patrick et alflz) has been used in

conjunction with DPCM-AQF-CSP(4)-FSOP and ADPCM~AQF-CSP(4)-SGEP to
produce a wideband (0.3-6.0 kHz) speech digitizer operating at bit
rates equal to or less than 32 Kb/s. Consequently, prior to the
computer simulation results of the VUBS plus the DPCM-AQF system, it
will be appropriate to briefly discuss the VBUS pre/post processor and

the motives leading to its design.

The VUBS system offers a conceptually simple method for the
transmission of relatively wideband speech, 0.3-6.0 kHz, over the
telephonic bandwidth 0.3 to 3.4 kHz and appears to show an improvement
in intelligibility and quality of the reconstructed speech. In
telephone bandwidth channels, certain unvoiced sounds such as /s/ or
/£/ are usually perceived incorrectly because a large amount of their.
energy 1s concentrated above the upper cut-off frequency of the normal
telephone channel. Therefore, by transmitting the frequency components
of unvoiced speech which are perceptually most sign@ficant and still
occupying a 3 kHz bandwidth, speech close in quality to the original

6 kHz speech can be perceived.

Figure 6.2(a) presents the block diagram of VUBS preprocessor
where the 6.0 kHz input speech signal follows two paths: The first
path, PATH1, limits the pandwidth of speech to within the 0.3 to 3.4 kHz
frequency range while in the second path, PATH2, only the 3.0 kHz to

6.0 kHz frequency range is selected and subseguently shifted down to
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the 0.3 to 3.4 kHz band. The decision concerning whether PATH1 or
PATH2 is to be transmitted is made by a voicéd/unvoiced switchgl32)

This leads to the transmission of the signal in PATHL of voiced speech
is present while the signal formulated in PATH2 is transmitted when the

input speech is unvoiced. The V/UV decision is also transmitted to the

receiver as a side information.

Figure 6.2(b) shows the block diagram of VUBS postprocessor. When
the V/VU switchindicates voiced speech to the receiver,the received
signal is directed to the output via SWITCH2, if however, unvoiced speech
is deemed to be present by the V/UV switch, then the received signal is
shifted up in frequency from 0.3-3.4 kHz bandwidth to 3.0-6.0 kHz range

before being sent to the output.

It should be stressed that VUBS system recreates a signal that
occupies the 6 kHz band, although never all of it at any instant.
Informal listening experiences on a small sample of input speech
material seemed to confirm that the VUBS speech is preferable to

telephone band limited speech.
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6.4 COMPUTER SIMULATION RESULTS AND DISCUSSION OF DPCM-AQF SPEECH
CODECS USING SWITCHED PREDICTORS

The study of the proposed correlation switched prediction when
applied to DPCM-AQF and its comparison with the DPCM-AQF-FSOP and SGEP
systems was performed by computer simulations. The evaluation of the
DPCM-AQF cédec performance was ascertained by a) waveform plots and
b) SNRSEG(dB) and SNR(dB) measurements selected at the centre of the

codec's dynamic range.

Speech data, band limited to 0.3-3.4 kHz and sampled at 8 kHz was
used as the input signal to the codecs. This signal referred to as the
Band Limited Signal, BLS, was then encoded at 2,3 and 4 bits/sample.

The following test words formed the input speech signal: "sister, father
S.K. Harvey, shift, thick, fist, talk, spent and vote'". These utterances
have numerous unvoiced/voiced transitions and this, coupled with the
lower sampling rate, 8 kHz rather than 10 kHz as in previous chapters,
exacerbates the difficulties of the predictors. We deliberagely
introduced these difficulties to determine the effectiveness of switched

prediction during the voiced/unvoiced transitions of the input speech, BLS,

The DPCM-AQF parameters used in our simulation were aq=0.33, 0.50
and 1.0, for b=4,3,2 bits, respectively, while the block size, W was
set to 256, The SGEP parameters were A=5.0, B=100.0, D=10.0, B=1/5,

=0.86, a,=0.00, For the

1 2
FSOP tbe coefficients were fixed to al=1.580 and a2=-0.778.

a/B=4 and initial SGEP coefficients were a

The waveform plot for the word "sister” is displayed in Figure 6.3,

together with the first correlation coefficients, c,, for each block of

1!
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256 samples. Curves (a) and (b) in Figures 6.4, 6.5 and 6.6 show the
varidtion of block SNR for a DPCM-AQF-FSOP and a ADPCM-AQF-SGEP codec
as a function of block number for the word "sister’” and b=2,3,4 bits,

respectively,

The FSOP was designed using the long-term statistics of speech
signals, and because voiced speech is much more prevalent than unvoiced
speech, the DPCM-AQF-FSOP has a relatively poor performance for unvoiced
speech. This is evident from curve (a) in Figures 6.4 to 6.6. For
voiced sounds, the DPCM-AQF-FSOP is inferior to ADPCM-AQF-SGEP because
the latter has a greater prediction accuracy, being able to cope more
successfully with the local variations in the speech statistics. This
can be seen by comparing curves (a) and (b) in Figures 6.4, 6.5 and 6.6.
However, a careful inspection reveals that the DPCM—AQF—FSOP out-performs
ADPCM-AQF-SGEP in blocks number 3,10 and 11. This is due to the speech
experiencing a transition from unvoiced to voiced speech (on-set of /t/)
demanding that SGEP converges rapidly to new coefficient values. The
convergence rate required is so fast that it would produce instability
when encoding other segments of speech., The FSOP, on the other hand
handles the situation better as the signal is changing to a form it is

more capable of handling, namely voiced speech.

To improve the performance of the DPCM—AQf-FSOP system,we devised
a switched-fixed predictor, SFP, with different sets o% fixed prediction
coefficients used for wvoiced (a1=1.580, 32=—0.773) and unvoiced (al=0.494,
a2=-0.3080) sounds. This scheme has resulted in a prediction gain during

the encoding of unvoiced speech. It should be noted however, that a
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voiced/unvoiced decision is required to determine which set of prediction
coefficients is to be employed for the encoding of a particular speech
segment. Also voiced/unvoiced information has to be multiplexed with

the digitized speech and transmitted so that the decoder operates with

the correct prediction design.

In order to further improve this switched-fixed prediction, SFP
scheme, specially during voiced speech, a SGEP-S~FSOP predictor was
developed whereby the SGEP algorithm was used to process voiced speech
and FSOP was employed for the prediction of unvoiced sounds. In this
way, the short-term statistical variation of voiced speech was treated
by the sequentially adaptive algorithm ensuring a larger prediction
gain compared to the SFP scheme. The values of the FSQP coefficients
were determined from the long-term autocorrelation function of unvoiced

speech (al=0.4944, a.=—0.3080). The 1nitial values of the SGEP

2
prediction coefficient used to encode a voiced speech segment were the

last values, assumed by SGEP when processing the previous voiced speech

segment.

Computer simulation results of the DPCM-AQF-FSP and ADPCM-AQF-SGEP-
S-FSOP systems showed an advantage over DPCM-AQF using SGEP or FSOP
predictors, but the new schemes required a voiced/unvoiced switch whose

output is multiplexed at irregular intervals, with the digitized speech.

It was therefore decided to develop an alternmative switched
prediction scheme, namely the Correlation Switched Predictor, CSP of
Section 6.2, which could operate on a regular block basis and could also

offer more than two sets of fixed coefficients to be used for the encoding
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of input speech segments. The variations of block SNR(dB) as a function
of block number for a ADPCM-AQF-CSP(4)-FS50P codec is shown in Figures
6.4 to 6,6, curve (¢), for 2,3 and 4 bits respectively. Generally the
ADPCM-AQF-CSP(4)-FSOP system has a superior performance compared to

the ADPCM-AQF-SGEP and particularly at 16 Kb/s, see curves (b)-(c) in

Figure 6.4,

When extending the idea of switched prediction to SGEP, the
resulting CSP(4)-SGEP algorithm again used the entries of Table 6.2 but
now as the initial values of the prediction coefficients. It is also
th

recalled that if "c," do not change correlation zone between the r
1

and (r+1)th blocks, the initial values of the coefficients 2, and a,

for the (r+1)th block are the last values of a, and a, formed in the
rth block. ADPCM-AQF-CSP(4)-SGEP gave the best overall performance when

compared to previous systems, as shown by Figures 6.4 to 6.6 and b=2,3,

and 4 bits, respectively.

The 4-point CSP schemes were then replaced by 8-point CSP
prediction algorithm. In this case, Z=7, and the number of bits to be
transmitted to the receiver is increased to log2(2+1)=3 bits. The
corresponding set of prediction coefficients for each correlatioﬁ zone
is given in Table 6.3. It was found however that contrary to the
increase in the amount of information provided to the predictor, the
gains in SNRSEG(dB) or SNR(dB) values for ADPCM-AQF~CSP(8)-FSQP and
ADPCM-AQF-CSP(8)-SGEP compared to DPCM-AQF with CSP(4)-FSOP or CSP(4)-
SGEP predictors were negligible. This can be attributed to the mis-

judgement in grouping the coefficients of the 8-point CSP scheme.
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Furthermore, for comparison purposes we have also conducted DPCM-
AQF experiments with Forward Block Adaptive prediction schemes and their
prediction coefficients, for every block of 256 speech samples, were

defined using Durbin's sequential algorithm, see Appendix G.

The SNRSEG(dB) and total SNR(dB) wvalues for all the codecs discussed
in this chapter are displayed in Table 6.4. These results are the
average values obtained from two input utterances, namely: (sister,
father, 5.K. Harvey) and (shift, thick and fist). Figure 6.7 (a), (b)
and (¢) presents the SNRSEG(dB) values of eight DPCM-AQF coders when {ei}
is quantized to an accuracy of 2,3 and 4 bits per sample. In general,
DPCM-AQF-FSOP provides an average gain of 2 dB over the coder using
fixed first-order prediction (FFOP). When adaptive prediction is used
in the form of SGEP, this SNRSEG gain increases to 3 dB. A further gain
of about 1 dB is obtained by using 4-point correlation switched
prediction, CSP(4),while the hybrid CPS(4)-SGEP predictor provides an
additional 1 dB improvement. Thus DPCM-AQF with CSP(4)-SGEP offers
SNRSEG(dB) values of about 2 4B more than those of DPCM-AQF-SGEP.

Finally DPCM-AQF with forward block adaptive prediction (FBA) provided
only a marginal SNRSEG(dB) improvement over the DPCM-AQF-CSP(4)-SGEP

system.

In Figure 6.7, although the number of bits per sample used to
quantize the error sequence {ei} is kept constant for all codecs, the
actual transmission bit rates vary slightly from one system to another.

This is because different encoders require different amounts of extra



BITS PER SAMPLE

THE TYPE OF
PREDICTOR IN 2 3 4
DPCM-AQF CODEC
SNRSEG(dB) SNR(dB) | SNRSEG(dB) SNR(dB) SNRSEG(dB)| SNR(dE)
FFOP 9.35 10.00 12.56 13.43 18.60 20.93
FSOP 11.30 15.89 15.29 20.41 19.97 25.14
SGEP 12.18 15,96 16.70 21.08 21.36 25.78
CSP(4)-FSOP 12.79 15,60 17.28 20.80 22.10 26,12
CSP(4)-SGEP 12.98 16.52 17.96 21.41 23.16 26.75
CSP(B)-FsSop 12.80 16.33 17.46 21.24 22.19 25.94
CSP(B)-SGEP 12.96 16.54 17.71 21.30 22.85 26.80
FBA 13.03 16.61 17.90 21.39 23.38 26.37
TABLE 6.4: SNRSEG(dB) and SNR(dB) for DPCM~AQF with 8 different prediction schemes

20¢
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information to be multiplexed with the information at the output of the
DPCM quantizer. In particular, DPCM-AQF coders with CSP or FBA
predictors require an extra 63 or 500 bits respectively, when compared to
coders with fixed or backward adaptive prediction. An 8-bits
quantization for the FBA coefficients is assumed. This bit rate increase
however, can be translated into an equivalent signal-to-noise ratio loss
which can then be subtracted from the values shown in Figure 6.7. For

example, using Noll's expression(as)

L0SS5 IN SNR = 6.02 dB (6.5)

b
£
W
where bc bits is the number of bits to be allocated per coefficient,
the LOSS IN SNR for the system with the larger increase in the bit

rate i.e., DPCM-AQF-FBA, is found to be 0.376 dB. Thus with such
minimal SNR losses, the relative SNRSEG(dB) performance of the DPCM-AQF

1

encoders will hardly change from that

pae

ndicated in Figure 6,7. Perhaps
the only visible SNR reduction occurs in the case of DPCM-AQF-FBA and
this is obviously to the advantage of DPCM-AQF-CSP(4)-SGEP which now

shows a marginal gain over the coder with FBA prediction.

Next, we consider the computational requirements of the adaptive
predictors used in our experiments, Table 6.5 shows the number of
multiplications required by the FBA, CSP(4), CSP(4)-SGEP and SGEP
algorithms in order to determine the N prediction coefficients for a
block of W samples, Notice that CSP(4) is the algorithm with the
smaller number of multiplications and that SGEP demands within W samples,
a larger number of operations than the FBA predictor. On the other

hand, if we are to consider the storage required by these adaptive
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algorithms, then SGEP shows a considerable advantage over the block
adaptive FBA, CSP(4) or the hybrid CSP(4)-SGEP scheme. 1In our
particular case however, where the predictor is used in DPCM-AQF, a
storage of W samples is already provided by the AQF quantizer; Thus
there 1is little difference in storage requirements between the coders in

Figure 6.7.

TYPE OF NUMBER OF MULTIPLICATIONS NUMBER OF ADDITIONS
PREDICTION PER BLOCK, W _ PER BLOCK, W
2 2
FBA IN“+(7+2W)N+2W] /2 [N™+(2W-3)N+2W~2]/2
SGEP (4N+4)W ' 5NW
CSP(4) 2W+1 2W-3
CSP(4)-SGEP (4N+6)W+1 (5N+2)W-3

TABLE 6.5: Computational requirement per block
of W samples for Nth order adaptive
predictor

Finally, as will be noticed in the SNRSEG(dB) or total SNR(dB) values
in Table 6.4 are lower than those presented in Chapter V. This is due
to the profound differences between the speech signals employed in
Chapters V and VI, and to a lesser extent because of the differences in_
the sampiing rate. It will be reminded that the sentence used with
ADPCM-AQJ/AQF was almost entirely voiéed, whereas the utterances used in

evaluating the DPCM~AQF systems of this chapter were composed of
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relatively long periods of unvoiced speech. From Figure 6.6(d), b=4 and
with a bit-rate of 32 Kb/s, we observe that when voiced speech occurs

the SNR is almost 30 dB. However, the average SNR, i.e., SNRSEG(d4B)

is low due to the unvoiced sections and the unvoiced/voiced transitions.
ADPCM-AQJ-SGEP with N=2 and b=4, i.e., at 40 Kb/s, has a SNR of 35-37 dB,
see Figure 5.7, When the same codec was used to digitize the 8 kHz speech
signal, the SNRSEG(dB) was found to be 22.10 dB while ADPCM-AQF-SGEP
resulted in the SNRSEG{(dB) of 21.36 dB, see Table 6.4. A small difference
of 0.74 dB is attributed to the use of backward rather than forward
quantization in the latter case. As a summary, the results of Figure 5.7
and Table 6.4 are consistent, although they are very different,.high—
lighting the dangers of judging the performance of a system in terms of
absolute values of SNRSEG(dB) or SNR(dB). What matters is their relative
values and this is how the results of Figure 5.7 and Table 6.4 should be

appraised.
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6.5 COMPUTER SIMULATION RESULTS AND DISCUSSION OF WIDEBAND QUALITY
DPCM~-AQF SPEECH CODECS

Investigations in the performance of the proposed correlation
switched prediction in DPCM-AQF codecs, when connected in tandem with
the VUBS system, were carried out by computer simulation. As in the
previous section, the comparison of the performance was ascertained by
the waveforms and SNRSEG(dB) values selected at the centre of the codec's

dynamic range.

The original Wide Band Speech Signal, WBS, whose frequency band is
limited to 6.0 kHz was sampled at 16 kHz while the 0.3-3.4 kHz Narrowband
Processed Speech Signal, NPSS at the output of VUBS preprocessor was
sampled at the rate of 8 kHz. NPS5S was then encoded with 2,3 and 4 bits/
sample while, for comparison purposes, WBS was encoded with 1 and 2
bits/sample. The SNRSEG(dB) results and the waﬁeform plots presentad
in this section were obtained from the encoding of the utterance "gister,
father”, through differential codecs or the VUBS system followed by

differential encoding.

Figure 6.8(a) shows the /IS/ segment of the 6.0 kHz WBS waveform
taken from the word "sister”. When the bandwidth is limited to that
of a telephone channel (0.3-3.4 kHz), the /IS/ waveform is shown in
Figure 6.8(b). These two figures suggest that the unvoiced sound /s/
is significantly distorted by the bandwidth limitation whereas the
voiced sound /1/ is almost unaffected. Figure 6.8(c) shows the same

speech segment at the output of the VUBS preprocessor, having also a
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amplified) '
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bandwidth of 3.4 kHz. Figure 6.9 presents the waveform plot of the word

"sister"”, sampled at 16 kHz and bandlimited to 0.3-6.0 kHz, WBS.

Our consideration was given to the differential encoding of the
compressed signal for bit rates between 16 and 32 Kb/s. The DPCM-AQF
parameters were aq=0.33, 0.50 and 1.0 for b=4,3,2 bits, respectively and
W=256. The SGEP parameters were A=5.0, B=100.0, D=10.0, B=1/5, a/B=4
and the initial SGEP coefficients were a1=0.86 and a2=0.0. Notice that,
these parameters are the same as those used in Section 6.4. The
prediction coefficients of the fixed second order predictor were a1=1.520

and az=-0.763 and they were defined from the long term autocorrelation

function of the compressed signal.

The waveform plot of the word, "gister”, resulted at the output of
the preprocessor and subsampled at 8 kHz, is displayed in Figure 6.10,
together with the first correlation coefficieant ey of each block of 256
samples. Curves (a) and (b) in Figures 6.11, 6.12 and 6.13 show SNR
variation of DPCM-AQF-FSOP and ADPCM-AQF-SGEP codecs as a function of
the block number for the preprocessed segment "sigter', for b=2,3, and
4 bits. Note that the statistical characteristics of the "wwoiced”
sounds at the output of the VUBS preprocessor are different from those

of either the original wideband speech or the 0.3-3.4 kHz input speech

signal, see Figures 6.10, 6.9, 6.3 respectively.

Figures 6,11, 6.12, 6.13 indicate the poor performance of DPCM-AQF-
FSOP during unvoiced sounds. This is attributed to the fact that voiced

speech constitutes up to 80%Z of the speech signal, and the "average"”
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coefficients of the second-order fixed predictor are matched to voiced
rather than to unvoiced speech. Notice that DPCM-AQF-FSOP provides

lower "unvoiced” SNR values when operating on the preprocessed signal
(Figures 6.11 to 6.13) than when digitizing the band limited input speech
signal (Figures 6.4 to 6.,6). When FSOP is replaced by SGEP, the overall
SNR performance of the DPCM-AQF codec is improved for all the bit rates.
DPCM-AQF-FSOP is producing however, slightly better peak SNR values for
voiced speech, see Figures 6.11 to 6.12. This is because the same SGEP
parameters were used as in Section 6.4 and thuQ the adaptation rate of
SGEP was not optimized with respect to the signal at the output of the
VUBS preprocessor. Also, as observed in Section 6.4, SGEP looses its
advantage over FSOP during the intervals of unvoiced to voiced
transitions, see blocks 4 and 12 in Figure 6,10, (There is a deléy of
one block between Figures 6.3 and 6.10. This is due to VUBS preprocessor

of Section 6.3).

In order to improve the performance of the DPCM-AQF codecs, we
employed the "Correlation Switched Prediction' method with FSOP and
SGEP. As the statistical properties of VUBS preprocessed signal are
different than those of the 0.3 to 3.4 kHz band limited input speech
signal, new CSP look—up tables were determined using the same procedure
described in Section 6.2. Table 6.6 illustrates the thresholds and the

values of the a'", a) prediction coefficients to be used in a 4-point

1’ %2
CSP, designed to operate on the preprocessed VUBS signal. The
variation of SNR(dB) as a function of block number, resulting from

DPCM-AQF employing a CSP(4)-FSOP predictor, is shown in Figures 6.11
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to 6.13 curve (c) for b=2,3 and 4 bits, respectively. The ADPCM-AQF-
CSP(4)-FSOP codec has, in general, an imﬁroved performance during
unvoiced to voiced transitions and unvoiced intervals, when compared to
both the ADPCM-AQF-SGEP and DPCM-AQF-FSOP codecs. The CSP(4)-SGEP
algorithm was then used to predict the incoming VUBS processed samples
and Table 6.6 was also employed to determine the initial values of the
SGEP prediction coefficients at the beginning of a block of 256 samples.

If, however, the correlation coefficient, ¢, does not change zone in two

1
adjacent blocks of samples, the initial values of the prediction
coefficients for the 256 samples to be encoded are the last coefficient
values, obtained during the encoding of the previous block of samples.
This provides a faster convergence rate than that of the SGEP algorithm.
A careful inspection of curves (d) in Figures 6.11 to 6.13 shows that

DPCM-AQF-CSP(4)~-SGEP codec produces the best overall performance when

compared to all the other codecs.

Table 6.7 presents the SNRSEG(dB) values of DPCM-AQF codecs,
employing different prediction schemes, when encoding band limited, BLS
or preprocessed, NPSS, signals. For comparison purposes, wideband speech
signal, WBS was also encoded with 1 or 2 bits/sample, i.e., only fewer
bits per sample are available compared to digitization of the BLS or

NPSS signals sampled at 8 kHz.

When FSOP scheme was employed in DPCM-AQF codec for encoding of
WBS signal at 32 Kb/s, the SNRSEG(dB) was found to be 14.21 dB. The
predictor coefficients were calculated from the long-term statistics

of the WBS signal.



AMPLITUDE

600 o

T Y
0.25 | 0.16

/s/

] 1
0.14 | 0.91 0.91

T T T Y 1 T T T
0.19 |0.0002 |0.065 |‘0.10 |—0.27 I 0.80 I

/il /sl /el Jel Ix/

-1200

-
llln1|:||J||1||||||lll:l|lnl|
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
BLOCK NUMBER
FIGURE 6,10: Waveform for the Utterance "sister” after VUBS Preprocessor, Sampled at 8 kHz (NPSS)

wie



SNR(dB) PER BLOCK

30

20

10

LR

(a) =————e—m FSOP (¢} ===== CSP(4)-FSOP

(b) wereereeess SGEP (d) =r=t='=" CSP(4)-SGEP

FIGURE 6.11:

T T T T T '
4 5 6 7 8 9 10 11 12 13

Variation of SNR(dB) per Black for VUBS Compressed Utterance "sister" when
. Encoded by 2 bits/sample DPCM-AQF Encoder

14

15
BLOCK NUMBER

16

~TCc



SNR(dB) PER BLOCK

I
' 7 | I v 1 T 1 T 1T T ] T 1 ] T T 1 Y | T | -
. (a) FSOP (¢) ====== CSP(4)-FSOP -
(b) T TIII IR SGEP (d) P TY TR CSP(A)-SGEP ,‘... b
i ‘\ -"h
A N/ Y o
iINN. f? > \\ 7 ]
l. N\ \'\ "l X\ '.'\ ;
7ARNGE b3 4 ANy -
N\ ; 5 N /
] DY ) s Py
vy
+ ' LN '\ (1] " "' -»
] !I . ,.l . %0 £ h
!/ K {7 A
L] N 1 f . N e
.l’ (R 14 - vV
- . 4 W o G -
“'s."sd 1 RETLL AR " \\ s 1 J v
RS T S SANY 7
- - -"“," "ﬂ‘ '.'-\\\...' I : —
T e L ARSI g, N ;
. » --‘---'-'...-\ -, F) [ M
- TR s, X : ; - v
~<'\‘-.?°‘-‘ ) : b
Nt »” ’ .
- e, . ' d : -
— et ¢ ,I :
~ :
0 -
— L -
a wd
- Vg -
"
0 W W N NN W N A (Y YU NN T N T YT TN N SN SN SN W DA RN N B B N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Variation of SNR(dB) per Block for VUBS Compressed Utterance 'sister” when BLOCK ER
Encoded by 3 bits/sample DPCM-AQF Encoder

FIGURE 6.12:



SNR (dB) PER BLOCK

30

20

10

) "'_ 1| ]_ ) I :.-.1._._!‘ [ I 'l_ d I L) l L) I' T l_l " ’n\.l.‘.l l 1 I' L

! X jr 4
3 - ‘1;‘.‘ ." .‘.h e, -". -]
/ N /2 X =
. [y H: & _—
N " .
H i\ b= if': N4
s \ If : v -
ogor 3 ir:
!I‘L ﬁ\ 4
s al !
» i s W ! ]
\‘;'\? ,nJ%f Zﬁ\_‘ ' -
T N P i 2 N . J
“\‘::..-JM" ... \1~-“-'-'-- ’-._.‘\ .
R ST ey, i
\----_- -\. / : ™
e - "N : .
\“..-.\' ! .
“ﬁ-'- -.-J, o
L] -'"-...J :
: -
I. .: p_—
(a) FSOP % (c) -====== CSP(4)-FSOP -
(b) ewsesereeses SGEP (d) === -- CSP(4)-SGEP -—

' I U DU DR (N T R U T U BT T TR BT T R U

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

BLOCK NUMBER
FIGURE 6.13: Variation of SNR(dB) per Block for VUBS Compressed Utterance "sister" when

Encoded by 4 bits/sample DPCM-AQF Encoder

rads



318

. THRESHOQLD CORRELATION ZONE COEFFICIENT COEFFICIENT
J TR. alf a.II
J 1 2
1 0.7 0.7 to 1.0 1.520 -0.763
2 0.2 0.2 to 0.7 0.510 -0.380
3 0.0 0.0 to 0.2 0.060 -0.750
-1.0 to 0.0 -0.322 -0.490
TABLE 6.6: Look~Up Table for 3rd-Order or 4-Point
CSP Based on VUBS Preprocessed Qutput
TYPE OF .
PREDICTION BITS PER SAMPLE TYPE OF
IN DPCM-AQF 2 3 4 INPUT SIGNAL
11.41 | 15.26 {19.92 BANDLIMITED
FSOP
10.47 | 14.94 |19.58 VUBS COMPRESSED
11.93 | 16.96 |21.84 BANDLIMITED
SGEP
11.90 16.62 21.17 VUBS COMPRESSED
13.22 } 17.67 | 22.24 BANDLIMITED
CSP (4)~FSOP i
12.21 17.01 21.83 VUBS COMPRESSED
13.45 -] 18,20 |23.67 BANDLIMITED
CSP(4)-SGEP
12.86 18.04 22.81 VUBS COMPRESSED
TABLE 6,.7: SNRSEG(dB) of DPCM-AQF with Second Order
Predictors for the Utterances "sister, father”
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Notice that the SNRSEG(dB) values of all DPCM-AQF codecs, operating
on the preprocessed signal, are marginaliy lower than the SNRSEG(dB)
obtained when the input signal is speech bandlimited to 3.4 kHz. However,
according to informal listening experiences, the VUBS system combined
with'any of the examined digitizers, seems to produce recovered speech
of better quality and improved intelligibility when compared to the
corresponding DPCM~AQF encoding of bandlimited speech signals. The
reason is that although the codec SNRSEG(dB) performance for the BLS
signal looks superior to the SNRSEG(dB) obtained for the VUBS pre-
processed signals, the perceptually significant high frequencies of
unvoiced sounds are missing from the recovered bandlimited speech.
Additionally, degradation of 5 dB's in SNRSEG values, resulting from
DPCM-AQF-FSOP when encoding process of WBS is attributed to a higher
frequency components that exist in WBS signal and these components
(133)

cause slope overload to occur more frequently in differential

encoders compared to encoding of 0.3-3.4 kHz.



320

6.6 CONCLUSIONS

In this chapter the performances of DPCM~-AQF codecs have been
examined. The emphasis in the presentation was devoted to a novel
prediction technique called the "Correlation Switched Prediction", CSP.
The input speech signal contained numerous unvoiced/voiced transitions,
unlike the input sentence used in the previous chapters. This coupled
with the lower sampling rate of 8 kHz, exacerbates the difficulties of
the predictors. These difficulties were intentionally introduced in
order to determine the effectiveness of switched predictors in enhancing

the performance of a codec,

"Correlation Switched Predictors" significantly modify the values
of the predictién coeffiéient according to a simple statistical property
of the speech signal, namely the first correlation coefficient, ok
Employing a 4-point CSP scheme associated with FSOP, and then SGEP, the
performance of DPCM-AQF codec was examined for each block of samples.
It was observed that CSP(4)-SGEP, in a DPCM-AQF codec, handles unvoiced

to voiced transitions efficiently, and it also improves the SNR values

for voiced speech.

Computer simulation results for the range of 16 to 32 Kb/s, also
indicated an improved SNRSEG(dB) performance when using FBA instead of
Backward Sequentially adaptive prediction., " The introduction, in DPCM-
AQF, of the relatively gimple CSP scheme produced SNRSEG(dB) values
comparable to those obtained from FBADPCM~AQF. A more complex prediction
scheme which combines CSP and Backward Sequentially Adaptive Prediction,

CSP(4)—-SGEP, was shown to provide the best overall SNRSEG(dB)} performance.



321

Gibson(lzl)

has demonstrated that SNR gain of approximately 2 dB
can be obtained by using a pitch compensating quantizer instead of
Jayant's quantizer in DPCM codec. It has been shown here that a similar

SNR improvement can be achieved when the codec employs efficient switched

prediction technique together with FSOP or SGEP.

The. second part of this chapter presents computer simulation results
of DPCM-AQF codecs, in tandem with the VUBS system. The VUBS system(lz)
bandpass filters the voiced speech to 0.3 or 3.4 kHz, and also compresses
the unvoiced speech, occupying the frequency band of 0.3 to 6.0 kHz, into
the 0.3 to 3.4 kHz band. Consideration was given to the digital encoding
of the VUBS compressed signals for bit-rates between 16 and 32 Kb/s.

The DPCM-AQF codecs used in our computer simulation studies employed the
FSOP, SGEP, CSP(&);FSOP or CSP(4)-SGEP prediction algorithms. The
performance evaluation of the various codecs was based on waveforms,
SNRSEG(dB) values, and informal listening tests. It was found that the
SNRSEG{dB} of the ADPCM-AQF-CSP(4)-SGEP encoder operating on the VUBS
compressed signals, is slightly reduced, compared to the SNRSEG(dB) of
the same encoder digitizing 0.3 to 3.4 kHz band-limited speech signals.

However, an improved quality speech is obtained from the VUBS/DPCM-AQF

system due to the better reproduction of unvoiced sounds.
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6.7 NOTE ON PUBLICATIONS

A paper entitled "Sequential Adaptive Predictors for ADPCM Speech

Encoders",(134) in co-authorship with Dr. C.S5. Xydeas and Dr. R. Steele

has been published in National Telecommunications Conference Proceedings,
NTC81, New Orleans, U.S5.A., pp. E8.1.1-5, November 1981.
This ‘paper is a version of the 4-point CSP schemes described in Sections

6.2 and 6.4.

A paper entitled "A Comparative Study of DPCM-AQF Speech Codecs
(135)

for Bit-Rates of 16 to 32 Kb/s", in co-authorship with Dr. C.S. Xydeas

kd< appearalin the IEEE Int. Conf. Proceedings on ASSP, ICASSP82, Paris,
France, Session S14, May 1982,

This paper is an abridged version of Sections 6.1, 6.2 and 6.4.



CHAPTER VII

RECAPITULATION




323

7.1 INTRODUCTION

In this thesis a number of novel diéitization systems, for speech
signals, have been proposed and iﬁvestigated. These digitizers were
designed to achieve:

a) the best possible quality of recovered speech at a given trans—

mission bit rate,

b) a modest implementation complexity and therefore low cost,

c) a characteristic of robustness to the transmission errors,

Our investigations were focussed on waveform encoding techniques

operating with a bit rate of 16 to 40 kb/s.

Differential Pulse Code Modulation (DPCM) is the central theme of
the thesis. The performance of DPCM coders depends on: a) the estimation
efficiency of the predictor, and b) the performance of the quantizer used
in the system. Adaptive quantization, as used in differential digitizers,
has been studied in depth and several algorithms have been proposed. The
prediction problem however, has received less attention and therefore our
regsearch efforts were directed towards the development of improved speech

1

prediction algorithms.

Initially the existing fixed (time-invariant) and Forward Block
Adaptive, FBA prediction methods were considered and used in DPCM.
Taking SNR(dB) as the measure of encoding performance, the relative

merits of these two prediction schemes have been pointed out.

Sequential prediction algorithms were also considered, in the form

of the Stochastiec Approximation Predictor, SAP. Because of limitations
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in the performance of SAP, a novel algorithm called the Sequential

Gradient Estimation Predictor, SGEP was developed and compared with SAP.

Next, the performance of DPCM codecs employing both adaptive
quantizer and sequential predictors was evaluated for transmission bit
rates of 16-40 Kb/s. Finally, searching for prediction methods that
would improve the encoding performance of the previous DPCM system during
the Voiced/Unvoiced transitions in the speech waveform, the concept of
the "Correlation Switched Prediction" was developed. These predictors
switch their coefficients according to a simple statistical measure of

the speech, i.e., first shift correlation coefficient.

All the adaptive prediction schemes and the performance results of
the speech codecs examined are summarized in the subsequent sections.
Suggestions for further research are also made in a number of topics

which may be of value in the area of speech coding.
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7.2 DPCM EMPLOYING FIXED OR BLOCK ADAPTIVE PREDICTION

Chapter III deals with fixed and FBA prediction when applied in
DPCM codecs. The design of fixed predictors is accomplished using the
autocorrelation method. An upper bound improvement factor, SNRI is
determined for the speech signals used in our experiments. It is shown
that the high correlation which exists between the speech samples
manifested itself in high SNRI values. The best overall performance in
DPCM-AQJ operating at bit rates of 16-40 Kb/s with fixed prediction was
achieved when the order of fixed predictor was N=2, At 16 Kb/s, the
codecs employing higher-order predictors experienced instability. This
is attributed to the mismatching effect of the higher-order prediction

coefficients to the decoded samples.

The performance of DPCM encoders was further improved by using
Forward Block Adaptive predicticn, FBA,where the prediction coefficients
are updated periodically. Operating at high transmission bit rates
(>30 Kb/s), FBA scheme showed a peak SNR advantage of 5 dB's over that
of fixed prediction algorithm (N=8), but the transmission of

the prediction coefficients was required as side information.

Looking back to the section dealing with DPCM employing fixed or
FBA prediction schemes, we can itemize the limitations and disadvantages
of these systems as follows:
a) The fixed (time-invariant) predictor attempts to model the
characteristic; of a time varying vocal tract function.
b) Since the voiced speech is more prevalent than unvoiced speech,

a fixed predictor designed from the average statistics of the



c)

d)
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speech signal gives relatively poor SNR performance during the
prediction of unvoiced speech.

At low transmission bit rates (g16 Kb/s), higher-order
predictors required to operate on severely distorted decoded
speech samples, cause system divergence.

FBA predictors when used in a DPCM codec, require extra
information, namely the values of the prediction coefficients,
to be multiplexed with the output of the DPCM quantizer. For
example, an 8-bits quantization of the FBA prediction
coefficients (N=2) will increase thg transmission bit rate by

500 bits.
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7.3 SEQUENTIAL PREDICTION ALGORITHMS AND THEIR APPLICATIONS IN DPCM

In Cﬁapter IV, our efforts were dirécted towards the development
éf efficient speech prediction algorithms which overcome the limitations
inherent in both fixed and block adaptive schemes. The performance of
the sequentially adaptive Stochastic Approximation linear predictor, SAP
was first examined and its adaptation rate was shown to be inadequate to
follow fast variations in the statistics of speech. In an attempt to
obtain faster convergence towards the optimum prediction coefficients, a
novel technique called the Sequential Gradient Estimation Predictor, SGEP
has been devised and studied in depth. The supericrity of the SGEP over
SAP was ascertained by the error waveforms which indicate that the
prediction error signals for SGEP are typically 3 dB lower than those
obtained using the SAP algorithm. A mathematical analysis of SGEP and
SAP schemes, supported by waveform plots, also indicate that the rate of
convergence of SGEP is considerably faster than that of SAP. 1In addition,
it was shown that the ability of SGEP to work efficiently with fewer
coefficients, typically N=2, off-sets the increased complexity of the

algorithm.

DPCM systems were then simulated on the computer and the codec with
a leaky integrator in its feedback loop was used as a performance
bench-mark due to its virtue of simplicity compared with its adaptive
predictor counterparts, It was found that as quantization accuracy
increases from 2 to 4 bits per sample, DPCM codecs using Jayant's
adaptive quantizer and the SGEP prediction algorithm, ADPCM-AQJ-SGEP,

show an overall SNR advantage of approximately 2 to 3.5 dB's over che
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SNR of ADPCM-AQJ-SAP. Thus, the better prediction accuracy of SGEP over
SAP 1s enhancing the perfofmance of the codec. When the DPCM-AQJ codec
used a fixed first-order predictor, DPCM-AQJ-FFOP, its SNR compared to

that of ADPCM-AQJ-SGEP was considerably reduced,

Next, another quantization strategy namely adaptive quantization
with forward transmission of step size, AQF, was adopted and applied to
differential encoding systems, DPCM-AQF. The reason our investigations
were focussed on DPCM-AQF encoded speech was that such an encoder is
inherently more robust to the transmission errors. Second-order
predictors have been used in our DPCM-AQF experiments. It was found
that, at 40 Kb/s, ADPCM-AQF-SGEP shows an overall SNRSEG(dB) advantage
of approximately 3 and 9 dB's over the SNRSEG(dB) values.of the ADPCM-
AQF-SAP and DPCM-AQF-FFOP systems, respectively. When transmission
errors were introduced ADPCM-AQF-SGEP has a higher SNRSEG(dB) than that

achieved with DPCM-AQF-FFOP for BER<0.08%.
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7.4 CORRELATION SWITCHED PREDICTORS EMPLOYED IN DPCM

Among the codecs employing FFOP, FSOP or SGEP prediction
algorithms, a deterioration in the performance was observed when the
speech signal transgressed from unvoiced to voiced segments. In order
to overcome this, in Chapter VI we searched for alternative prediction
algorithms. As a consequence a new correlation switched prediction, CSP
scheme was proposed. A switched prediction algorithm divides the range
of the first correlation coefficient of the speech signal, s into zones
and as the wvalue of ¢ varies, when computed over successive blocks of W

speech samples, the predictor coefficients are altered significantly

(switched). When the range of ¢, is divided into (Z+1) zones, the

1
predictor was referred to as (Z+1)-point or Z-order CSP, CSP(Z+l). 3rd-
and 7th order {(Z=3 or 7) switched predictors, associated with second-
order FSOP and SGEP algorithms, were used in DPCM-AQF. When the
computational requirements of CSP schemes was considered, it was observ;d

that CSP is the algorithm with the smaller number of multiplications

compared with either SGEP or FBA schemes.

Computer simulation studies for the range of 16 to 32 Kb/s
indicated the performance superiority of codecs with feeaforward block
adaptive prediction, FBADPCM-AQF, when compared to DPCM-AQF with fixed
or SGEP adaptive prediction. When correlation switched prediction was
used, however, the SNRSEG(dB) performance of the differential coders
(DPCM-AQF) was found to.be cowparable to that of FBADPCM-AQF. Finally,
the more complex hybrid prediction scheme, CSP-SGEP when used in the

same codec, resulted in best overall SNRSEG(dB) performance.
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7.5 SUGGESTIONS FOR FURTHER RESEARCH

The topics for further research can include the following:

7.5.1 Pitch Extraction Algorithm

It is well-known that pitch extraction is an essential component in
a variety of speech processing systems. Besides providing valuable
insights into the nature of the excitation source for speech production,
the pitch information is required in almost all speech analysis-
synthesis (vocoder) systems. Because of its importance, a wide range of

. . . (136)
algorithms for pitch extraction have already been proposed, from
which two broad categories follow, namely, time-domain pitch extraction

techniques, i.e., data reduction method, and frequency-domain techniques,

i.e., ceptrum method, see Section 2.2.4,

In this respect plots showing the variation of the prediction

coefficient, a,, of a first order SGEP algorithm indicate that the value

1

of the coefficients increases sharply at the onset of each vocal
excitation pulse. As a consequence, the first-order SGEP algorithm can
be also used for a pitch extraction. In order to locate the peak pulses
in the speech signal, see Figure 7.1(a), we initially computed the

sequence of a coefficients,-{ail}, see Figure 7.1(b) and then smoocthed

1

it by averaging the a, values over the blocks of 25 and 200 speech

1
samples and these sequeéces were denoted by {ZS(XJ)i} and {ZOO(XJ)i}
respectively, {(see Figure 7.1(c) and (d}). These sequences were

manipulated as follows:

{an;:t = {a;1={,00 (X, } (7.1)

(@D} = @D D3 . (7.2)
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FIGURE 7.1: Waveforms for pitch extraction algorithm using SGEP

a. Segment of input speech signal
b. Variation of {a, .} with the number of samples

i,l
c. Smoothed version of {ai 1} over the block of 25
samples ?
d. Swmoothed version of {a.'l} over the block of 200
samples 1

e. Sequence of {(XJ){}
Sequence of {(XJ);}
g. Sequence of {(XP)i}



335

Then the sequences represented by Equations (7.1)~(7.2) were half-
rectified and multiplied to yield a sequence, {(XP)i}' These are shown

in Figure 7.1 curves (e),(f),(g) respectively,

Comparison of the input sequence, {Xi}, see Figure 7.1(a), with
that of {(XP)i} indicates that the latter appears to have considerable

potential to extract the pitch,

Further investigations should examine the performance of the
proposed pitch extraction technique and compare with the existing

. (136) . . .
algorithms in terms of their accuracy and speed of execution on

the computer.

7.5.2 Pole-Zero Predictor

It should be recalled that most of the research in LPC analysis has
been focussed on all-pole models. However, the presence of unvoiced
and nasal sounds suits a pole-zero model, sometimes known as auto-
regressive moving average (ARMA), whose mathematical treatment is rather
complicated. We feel that the modelling of vocal tract, incorporating
pole-zero recursive filter, can be achieved by using a modified SGEP
algorithm to update the filter coefficients,such a pole-zero filter will
perhaps.accurately model any possible coupling between the vocal tra;t

and the nasal cavity.
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7.5.3 ﬂighgr—Order.CSP Schemes

The algorithm of the second-order switched predictor described in
Chapter VI can be extended to implement a higher-order switched
predictor. Further investigations‘should examine the effect of the
second correlation coefficient of the speech signal, cz, as well as cl,
on the evaluation of the look-up tables. We feel that an effect of c2,

in constructing the look-up tables, will also improve the performance of

the previously reported codecs employing CSP scheme.
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APPENDIX A

QUANTIZATION BASED ON A MINIMUM

MEAN-SQUARE ERROR CRITERION

The aim of this Appendix is to determine the optimum quantizer
step points and levels., The input to the quantizer is assumed to be
a sequence of zero mean, unit variance random variable and the mean
square quantization error is minimized with respect to the quantizer
step points and levels. If the variance of the input signal to the
quantizer is ci (in PCM and cz in DPCM case) instead of one, the
quantizer parameters now is obtained by multiplying those of the unit

variance quantizer by a factor of Oy (or g, in DPCM).

Let Pd(x) be the probability density function of the input signal

to the quantizer and N_ denotes the total number of quantization levels.

Q
Qutput decision levels are represented by x1’£2""’§N . It is

Q
temporarily assumed that the input to the quantizer x is a continuous

variable. Let X s Xys e Xy 4 be the quantizer input decision levels

such that, {(see Figure A.l),

X £ Xg XN 41 (A.1)-
Q
where x1<x2 ...<xN < xN +
Q Q
and '_xl = xNQ'l-l = o
. 2 . {62)
The error power of the quantizer, cq, can be defined as
N
Q
2 _ +1 . 2
ot = ] r“ (x-x) P (x) dx. (A.2)

1 k=1 xk
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The necessary conditions for minimum mean—-square quantization unoise

. . . 2 -
can be obtained by differentiating Uq with respect to the xﬂs and xﬂs
and setting the derivatives equal to zero:

3ag 3

.

——rk (=%, )7, (0)d
3 3 17 Pt
x T

s kAl )
+ 5;; f (x-x) Pd(X)dx : (A.3)
Therefore, x
acj . .
"a_x; = (’ﬁc_xk-l) Pd(xk)—(xk-:ﬁ‘) Pd(xk) =0 (A.4)
where k=2,3,...,NQ
Thus ~ A
? +
x = fE:li__fE - (A.5)
Also, 2 xk
g +H
—:ﬂ =2 J (x-xk)Pd(x)dx =0 (A.6)
3%, "
therefore xk
+1
J (x—xk)Pd(x)dx =0 (A7)

"

Equation (A.5) imposes the first condition for minimum mean-square
error that X should lie half way between ﬁk and ﬁk-l' Equation (A.7)
shows ;k to be the centroid of the area of Pd(x) between xk and xk+1.
It is assumed that the probability function gfx) is unchanged by the
use of a quantizer. Equations (A.5) and (A.7) describe the overall
relationships of the optimum quantizer.

One method of solving these equations is to apply a search

procedure, For example, for a given number of levels, N_,-with respect

Q

to x,=-= and arbitrary selection of Xys the most negative quantizer

1

output X, can be obtained. If ;N is the centroid of the area of Pd(x)

Q
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~

between Xy and o, Xq is chosen correctly. If the QN does not
Q

FIGURE A.l: Non-uniform quantization
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APPENDIX B

QUANTIZATION NOISE POWER FOR GAUSSIAN

AND LAPLACTAN P.D.F's

Zero-mean, p.d. function for "Gaussian" signal is given by

2
__3_5
Pd(e) = 1 e 298 (B.1)
2nae

where e is the quantizer input, i.e., prediction error in DPCM and ©
e

is the r.m.s. value of the error. From Equation (2.17),Panter—Dite(43)
has shown that the minimum mean square quantizing error is given by
3
v .
2 - 2 [ s ad 0.2
1 NS L0 7 B ‘
Q
Vo3
Let J Pd {e) dey be I and hence
0 .
i = 0 | (B.3)
1 IN
Q 2
_e
v
1 - I —Lt/3 6o 4 (B.4)
0 V2o €
e
or 2
_e
Vv 2
_ <—i"‘)1/3J c 6% 4o . (B.5)
V2wo 0
e
Let €  be t and then de=dtv3c . Consequently, the limits of Equation
/o °
e
(B.5) become, _
e=v —‘ez/eci t=v1/§ce—t2/z a 5.6
J £ de = f £ /Eoe. )
e= t=0 '
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From Equations (B.5) and (B.6),

I= (——3-—)1/3 3o VIr { erf (——) - 0.5} (B.7)
/Eﬁbe e /3 a,

Assuming that V/ce>>1 (where *V is the overload limit of the quantizer):

erf(vlfibe) > 1 (3.8)

From Equations (B.7) and (B.8),

V3a V21
1= (—3 ———%——— (B.9)
V2o
e
Hence, (B.9) in (B.3)
3
2 330
oq = =2 . e . 2"555 (8.10)
3N Y2%0
Q e
2 @/3 2
g 2'““5 a
a2 e
or Q
2 2.73 2
cq = N2 9, (B.11)
Q
2,2 . .
As QG=de/o , i.e., SNR of the quantizer
2
N
Q . _Q = 2P
G = 7.73 and NQ 2 | (B.12)
b is the bits/sample and then
SNRQ(dB) = 10 log, Q. = 6b - 4.35 dB. ' (B.13)

This is the same as Equation (2.44)

In proving Equation (B.13), it is assumed that N_ is large, Pd(e)

Q
is even function for p.d.f. of the input to the quantizer and Pd(e) ig
zero outside the interval (#V), which represents the range of the

quantizer input.
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p.d.f. of Laplacian signal having symmetrical property and zero-

mean is given by /2

Pd(e) = € (B.14)

V2g
e

In a similar fashion to that obtained for Gaussian signals,

V2
v v ox—]e]|
! =J Pcllla(e)de = (1—)1/3J e¥% e
0 V20 0
e
For V/oe>>1, it is proved that
V2
v -BUeIeI 30e
J £ de = — (B.15)
0 V2
Therefore, 3
27c
o> = 2 - —= (B.16)
1 > V2o 2/2
Q e
2 902
gl = = (B.17)
q 2
ZNQ
or :
2
2N
. _Q = 2P
QL =3 . NQ 2 (B.18)
where b is the bits/sample.and then,
SNRQ(dB) = 10 logIOQL = 6b - 6.53 (B.1%)
The same assumptions in the previous case still hold for obtaining
Equation (B.19).
Fufthermore, from reference (60), we know that a DPCM system
SNR(dB) is upper bounded by
SNR(dB) s 6b + SNRI (8.20)

where b=CI/;"-~‘fS is the number of bits/sample.
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Equation (B.20) is obtained under the assumptions of a Gaussian
input, the predictor input is uncontaminated, i.e., the quantization
noise in the feedback loop has been neglected and the prediction co-

efficients are known exactly (hence SNRI is involved in Equation (B.20)).

Comparing Equation (B.13) with Equation (B.20) reveals that DPCM
is only 4.35 dB below the bound for Gaussian prediction error and
Gaussian input sequence., In the case of Laplacian signals, DPCM is
6.53 dB below the bound, see Equations (B.19) and (B.20). However, it
is possible to approach the bound by employing Entropy Coding (EC).
For example, for Gaussian signals, 4.35 dB may be reduced to 2.35 dB

by using ECSGO)



344

APPENDIX C

CALCULATION OF THE PREDICTION COEFFICIENTS FOR THE

SECOND ORDER FIXED PREDICTORS AND THEIR

RELATIONSHIP WITH THE FIRST ORDER PREDICTORS

Consider the model of Figure C.1l, let us assume for simplicity,

that only the two previous samples are available, i.e. x,

i-1°%

i-2°

(al ’az)
———»IFIXED PREDICTOR —JY

N=2

FIGURE C.1: Simple model for prediction

Then, the prediction error at ith instant is formed as

e, = X,<

LT T X-1720% -0 (c.1)

where a, and a, are the fixed coefficients.

From Equation (C.1),
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2 2 22 2 2
T LT R A L L
-2a1xixi_1—2azxixi_2 (C.2)
Also, we know that,
<x2> = <x? > = <x2 > = C
i i-1 i-2 0
<xixi_1> = <xi_1.xi_2> = C1
<xixi-2> = C2 (C.3)

where CO,C1 and C2 are the values of autocorrelation function of the

signal at displacements of 0,1 and 2 sampling periods respectively.
Thus, Equation (C.2), in mean-square error sense may be written as
<e?> = (1+a2+a2)C + 2a_(a_-1)C,-2a.C (C.4)
i 1 °2°70 1'2 1 77272

where <(.)> is the time average of (.). Since C0 is the signal power

and cr=cr/CO is the normalized rth correlation coefficient, Equation

(C.4) can be expressed as,

2
<e' >
i _ -1 _ 2 2 _ _
Co = SNR = = (1+a1+a2)+2a1(a2 1)c1 2a2c2 (C.5)
For -1
3(SNR_ ) o o -
| . 231+2(a2 l)cl -0 (C.6)
1 min
-1
3(SNR ) - - :
—_EE;__— . 232+231c1 2c2 + 0 (C.7)
min
and from Equations (C.6) and (C.7),
2
_ o (lmey) 2 .8
1 1z 277 2 '
1 “1

Using these optimum values of a, and a SNR L in Equation (C.5)

1 2?

becomes,
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(C.9)

For the right most term to be zerc, Equation (C.9) is reduced to that
proved in Equation (3.38). Then
2 2
(c1 cz)
2
l-cl

and c, =cC (C.10)
Equation (C.10) in Equation {(C.8) results in
a, = ¢, ; a,=0 (C.11)

Notice that, performance of the second order predictor is equal to the

first order predictor if c2=c§.
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APPENDIX D

BAND-LIMITED LOW PASS DIGITAL FILTER

The pre= and post-encoding band-limiting operation was pérformed

using Recursive Butterworth low pass digital filtersgl37)

The gain characteristic of the Nth order Butterworth filter is
given by the expression,

H(z) = 1 (D.1)

1 + tanwfT 2Ny 4
tannch

where fc and T are the cut-off frequency and the sampling period

respectively. The higher the value of N the better is the approximation
of the filter's gain characteristic to an ideal low-pass characteristic.
The co-ordinates of the N poles which lie in the unit circle are given

by the following equations:

l—tanznch
Y T TTa ®.2)
Ztan(wch)sina
Va = ) (D.3)
where
2m+1
—(‘;N—)" , m:=0,1,...,(2N-1)
for N even
= %; , for N odd
d = 1-2tan(wch)cosu + tanzwféT
Hence, z =W + jvm (D.4)

As an example, consider the following design specificatioms:
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Sampling frequency, fS = 10 kHz

3.4 kHz

Cut-off frequency, fc-

]

Gain at zero frequency = 0 dB

Gain between 3.8 kHz and 4 kHz g ~22 dB

The order of filter can be found using Equation (D.1), i.e.,

-22 dB = 10 log, X

X = 1/162
then, 2N
ta ﬂ:g.s
162 - 1 = t—a‘ﬂTl(‘—- (D-S)
R T?
161 = (1.3885218)%N
log. 161
IN = *%10 = 15.48
Tos. . 1.3885718 .
10
N=7.7~8 (D.6)

Using Equations (D.2) and (D.3) for N=8, i.e., m=0 to 15, we obtain
the following 16 poles as shown in Table D.1 (all the zeros occur at
z==1).

The poles are in complex conjugate pairs. They are:

2z

N
|

=]

15
14
13
T %2
T
- Z

10

z

N
|

e

z

N N N
~ W N
|

|

-2z

N

- Z

N

The locations of the poles in z-plane are shown in Figure D.l.
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m a(in rad) d v v

0] 0.19635 0.74065 -3.117176 0.958263
1 0.58905 1.28386 ~1.798277 1.574284
2 0.98175 2.28759 -1.009243 1.322299
3 1.37444 3.59897 -0.641499 0.991416
4 1.76714 5.01847 -0.460047 0.710989
5 2.15984 6.32989 -0.364735 0.477871
6 2.55254 7.33361 -0.314815 0.275602
7 2.9452&‘ 7.87682 -0.293105 0.090104
8 3.33794 7.87682 -0.293105 -0.090104
9 3.73064 7.33361 ~0,314815 -0.275602
10 4.12334 6.32989 -0.364735 -0.477871
11 4.51604 5.01847 -0.460047 -0.710989
12 4.,90874 3.59897 -0.641499 -0.991416
13 5.30143 2.28759 ~1.009243 -1.322299
14 5.69414 1.28386 -1.798277 -1.574284
15 6.08684 0.74065 -3.117176 -0.958263

TABLE D.1: Co-ordinates of poles




350

unit ecircle

20°%15

are excluded
X 24

FIGURE D.1: Location of poles and zeroes on z-plane
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From the above, the following conjugate pairs have |zm|>1,

26,7 %15
217 %14
Z2 7 %13
37 %13

Since Izm|>1, they lie outside the unit circle and for stability reasons

we exclude them in the design procedure. Now if we let,

= —J *
25 T 25 7 %10 T %R
= = *
Zg T I T E T I
= = *
Z; =% 7% =%

then, we have 4 pairs of poles within unit circle with the following

co-ordinates:

z, = ~0.460047 £ jO.710989
zy = -0.364735 + j0.477871
z, = —0.314815 £ j0.275602
z, = ~0.293105 £ j0.090104

Each pair of poles can form second order recursive filter whose

transfer functiom is given by

-1.2
_ (1+z )
HI(Z) ) (l1-z z-l)(l-z*z‘l) ®.7)
A A
- 1+IZz-]'+z_2 (D.8)
1-(z +z*)z*1+z z*z—2 .
A A A A
Substituting zA+zX = ~0.920094
ZA'ZK = 0.717148

in Equation (D.8) we obtain,
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1+22-1+z_2

140.9200942 1+0.7171482 2

Hl(z) = (D.9)

and its implementation is shown in Figure D.2.
Proceeding in the same way for the remaining three pairs of poles

we get,

_1 -
Hy(2) = 12z z — (D.10)
1+0.729470z ~+0.361392z
_1 -
Hy(2) = 1+22 = — (D.11)
1+0.629631z +0.175065z
-1 -2
H,(2) = 2z 2 —~ (D.12)
1+0.586210z ~+0,094029z
The overall transfer function of the 8th order filter is
H(z) = Hl(z).Hz(Z)-H3(Z).H4(Z) (b.13)

Therefore, the complete block diagram of the filter results from the
substitution of Equations (D.9)-(D.l12) in Equation (D.13) and it is
shown in Figure D.3. The gain factor, A0, 0.065314 arises from the

unity gain at zero frequency, i.e., w=0 and hence z=1. Consequently

H, (z) 1+2+1
1 1+0.920094+0.717148
4
7.6372 (D.14)
Similarly, from Equations (D.10)-(D.12),
Ho(1) = = (D.15)
2 2.0900 °?* *
&4
Hy( = T5575 (D.16)
4
and Hl;(l) = T..6_86§' » (D.17)

In order to obtain unity gain at zero frequency, we want
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/.'1 —>
A
2.0 1.0
DELAY —4 DELAY _A
+ <

FIGURE D.2: The 2nd-order recursive filter

<+

OUTPUT

0.72



A0=0.065
2.0 Y ¥y AHOLL 2.0 1.0
+
. é D D
0.92 0.73 0.36
) &) < ¥
YYY1
(+) < <
v 2.0 HOL3 wyy2 ¥ HOL2
YYY3 .
OUTPUT - | A
0.58
\)

FIGURE D.3: Block diagram of 8th-order Butterworth digital filter

R5e
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AO{HI(I).Hz(l) .HB(,l).Ha(l)} =1 (D.18)

and then A0{256/16.72} = 1

AD = 0, 065314
where AQ is the gain factor for unity gain at zero frequency.

The subroutine of a filter is shown in LIST 1 (sampling frequency,
fS=10 kHz and cut-off frequency, fc=3.4 kHz) where X00 is an input
sample, YYY3 is output sample and A is real coefficient array. LIST 2

presents also the subroutine of a filter,but for fs=8 kHz and fc=3.4 kHz.

List 3 presents a more general programme for filter design where

cc

Cut-off frequency in kHz,

ccc

]

Sampling frequency in kHz,

and the remaining. parameters are explained in the subroutinmes.
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LIST 1

COMPUTER SIMULATION OF 8TH~ORDER BUTTERWORTH DIGITAL FILTER, fs=10 kHz

f =3.4 kHz
L

SUBROUTINE FILTER (XXO,YYY3,A)

DIMENSION A(8)

X00=X00*%0.065314
HOL=X00—(0.920094*A(1)+0.717148*A(2))
YYY=HOL+2.0*%A(1)+1.0%A(2)

A(2)Y=A(1)

A(1)=HOL
HOL1=YYY-{0.729470*%A(3)+0.361392*%A(4))
YYY1=HOL1+2,0*%A(3)+1.0%A(4)

A{4)=A(3)

A(3)=HOL1
HOLZ2=YYY1-(0.629631*A(5)+0.175065*A(6))
YYY2=HOL2+2,0%A(5)+1.0%A(6)

A(B)=A(5)

A(5)=HOL2
HOL3=YYY3-(0.586210*A(7)+0.094028*%A(8))
YYY3=HOL3+2.0*%A(7)+1.0*A(8)

A(8)=A(7)

A(7)=HOL3

RETURN

END

LIST 2

COMPUTER SIMULATION OF 8TH-ORDER BUTTERWORTH DIGITAL FILTER, fs=8 kHz

£f =3.4 kHz
L

SUBROUTINE FILTER (X00,YYY3,A)

DIMENSION A(8)

X00=X00*0.,294497
HOL=X00—-(1.63702*A(1)+0.837274%A(2))
YYY=HOL+2.0*A(1)+1,0%A(2)

A(2)=A(1)

A(l)=HOL
HOL1=YYY-(1.42308*A(3)+0.597149%A(4))
YYY1+HOL1+42.0%A(3)+1.0*A(4)

A(4)=A(3)

A(3)=HOL1 )
HOL2=YYY1-(1.29368*A(5)+0.451927*A(6))
YYY2=HOL2+2.0*A(5)+1.0%A(6)

A(6)=A(5)

A(5)=HOL2
HOL3=YYY2-(1.23300%A(7)+0.383827*A(8))
YYY3=HOL3+2.0*A(7)+1.0*A(8)

A(8)=A(7)

A(7)=HOL3

RETURN

- END
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LIST 3
DRTE 27 . 81 . 1982 TIME @8:57

DIMENSION R1(43, R2(4). F1(4), B2(4)
COMFPLEX RLPHA(28), BETA(RA)
WRITEC1. 28)

FORMATC” F. C.. SAMPL. RATE <)
RERDC(L., %)CC. CCC

CC = CUTQFF FREBUENCY

CCC = SAMPLING RRTE

FC=CC/C00 i

CALL BUTTER(®, FC. RLPHR. BETA?

CRLL LOEFF(4,HLPHR,BETH,Bi;ﬁg'Si £2. Ra)
WRITE(L, 182R4, A2, B1, B2
FORMAT(4F12. 8)

HRITE(1, 15)R8@

FORMAT(5X. EB. 3

CALL EXIT

END

$INSERT BUTTER

Y AN AN ARy Ry Ry I e Rl el o R o e’

SUBRQUTINE EHTTER(NJFC;HLPHRJBETR}

THIS SUBRQUTINE COMPUTES THE POLES AND ZEROQES OF R -
BUTTERNORTH LOWPRSS DIGITAL FILTER.

INFUTS RRE: N = ORDER OF FILTER
FC = CUTOFF FREQUENCY RS R FRACTION OF
THE CLOCK FREQUENLCY
QUTFUTS RRE: RALPHA = COMPLEX RRRRY CONTRINING THE
TRANSFER FUNCTION ZEROES IH
ITS FIRST N LOCATIONS

BETR = COMPLEX RRRRY CONTRINING THE
TREANSFER FUNCTION POLES IN ITS
FIRST N LOCATIONS

COMPLEX RLPHA(28). RETR(ZQ)
WC=Z3 1415826584+ FC

TANZ2=2. B+SINCHC) /CASCHT)
TANSQR=8. 25%TANZ**2
IF(N. EQ. 1)50T0 2
IN=MQD(N, 2)

- N1=N+IN
N2=(3*N+INY/2-1

b0 1 H=N1.N2

A= 141592654%FLOAT (2+M+L1-INI/FLORT (24N}
ANUM=1. @-TANZ2*COS(R)+TANSE

U=(1. 8-TANSRQ)/ANUH

V=TANZ*«SINCR)/ANUH

I=(N2-H)x2+1

J1=I+IN

J2=I+]N+1
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CCONT. D

BETARCJL1)=CHPLXCU. ¥2
BETR{J2)=CHFLX U, =V)
IFCINGSZ, 3,2 .
BETR(1)=CHPLX(( (1. B-TANSR /(1. B+TANZ+TANSRI ), B 82
PO 4 I=s1. N
RLPHR({I)=(-1 @&.8. &)
Ni=N+1 .

b0 § I=N1, =26
RLPHA(T ) =(a. 8. 8 &)
BETR(I)=(a. a. 8 )
RETURN

END

SUBRQUTINE COEFF(N, ALPHR. BETRA. A1, A2, BL. B, RA)

THIS SUEBRQUTINE COMPUTES THE COEFFICIENTS IN A SERIAL
FORM RERLISRTION OF R DIGITRL FILTER.

INFUTS RRE: N = NUMEBER OF SECTIONS IN FILTER
ALFHR = ARRAY HAOLLDING FILTER ZERQES
EETH = RRRRY HOLDING FILTER FOLES

QUTPUTS RRE: R1.RS, B1,BZ: RRRAYS HOLDING SECTION
' COEFFICIENTS
Ré.: GRIN COEFFICIENT FOR UNITY GRIN
AT ZERQ FREQUENLY

COMPLEX RLPHR(I8). BETR(Z4)

DIMENSTON RLC130, RE(LS), B1CL5). BE(LS)
Ra=1. @

pa 1 I=1.N

I1=2%[-1

[2=2%]

R1I(CTI=RERL(-ALPHR{IL2=RLFHR(IZ2})
RZC(I)=RERL (HLPHRCI1)*ALPHACIZ) )
B1(I)=RERL(-BETRC(I1)-BETACIZ))
B2CI)=REAL(BETRC{TLI*BETRCIZ)) ,
RO=Ra+ (1. B+RICII+B2(II)/(1. B+BLCTI+R2CT))
IFCRRSCRA), LT. (1. BE~6)2RB=1. &

Ha=1 a//a

RETURN

END

- END -
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APPENDIX E

CUMMISKEY'S SEQUENTIAL ALGORITHM(Gz)

The generalized equation for the adaptation of the kth prediction
coefficient of a sequential prediction at the (i+l)th sampling instant

is given as:

s =a  -g dEW)
i+l,k i,k * 3a.
» s l,k

(E.1)

If the error function to be minimized is the absolute error, i.e.,
FU=|<ei>| and since

FU = f<ei>| = <e, sgn(ei)> (E.2)

then the kth component of the gradient is given by

N
8<(xi - Z akxi_b)sgn(e{)>
- k=l = _ E.3)

9a; 9a;

or

4

-(xi_k)sgn(ei) (E.4)

The approximation sign (=) comes in since, to differentiate Equation
(E.3), [<ei>| has been approximated to the absoluﬁe value of the sample
error, Iei[. Equation (E.4) gives the derivative of the absolute error
with respect to kth coefficient. The substitution of Equation (E.4)

in Equation (E.l), together with g=h yields

e,k - %,k TR X sEn(ey) (E.5)

In terms of vectoral quantity, the total gradient vector, -(FU) is

written as R
‘g(FU) = - X, sgn(ei) (E.6)
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and therefore the general form of sequential prediction becomes

) Ai+1,k = Ai + hxi sgn(ei) (E.7)
where X, = [x. ,,x veasX ]T
i i-1’71i=2""" " T-N

and
k=1,2,...,N

b is constant and controls the rate of adaptation.

As it was discussed in Chapter IV, see Section 4.4, h is expressed

as
A

B + c(xi,M) (E.8)

where A,B are constants and C(xi,M) is a function of the M previous

speech samples, that is
M
2(x;,M) = ] |
k=1

xi_kl (E.9)

When SAP algorithm, minimizing <e§> is employed in DPCM and
compared with that of Cummiskey's sequential algorithm defined by
Equations (E.1)-(E.9), the following conclusions can be drawn:

a. Absolute error criterion reduces hardware complexity, and
computationally, for N-order predictor, it requires (2N+3)
multiplications and 3N additions per sample. |

b. In terms of SNR, SAP with <e§> slightly out-performs Cummiskey's
relationship.

c. In the presence of transmission errors Equation (E.7) is less
affected than the SAP algorithm, since the former one uses
the polarity of e, rather than the actual amplitude of e, as

in the SAP algorithm °0
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APPENDIX F

LATTICE PREDICTOR AND PARCOR COEFFICIENTS

This type of predictor, rather than employing usual transversal
filter structure, has a different form. Its coefficients are computed

(32)

sequentially. TItakura-Saito studied in detail and the structure
of this sort has been used in vocoder type systems. The beauty of
lattice predictors is that rather than calculating the predictor co-
efficients, PARtial CORrelation — PARCOR - or reflection coefficients

are computed. These coefficients are less sensitive for the transmission

purposes. Such a predictor in ADPCM loop is shown in Figure F.l.

In Figure F.1, the redundancies of the speech signal are removed
stage by stage-cascaded form. The coefficient bi K’ where k=1,2,...,N,
b

at kth stage,at ith sampling instant,is optimized to minimize the error

term ei,k+1 and in this way, the final output to the quantizer, ei,N+1
is minimum. The error sample, e, w1 2t ith sampling instant is given
3
by, N
etaw1 "% T 0 eF K . @ED

and consequently the final output Vi N1 Y4 of a lattice predictor is
»

Ny |
Vi =V el T Z b, . F (F.2)

where Fi 's (information that is available to the receiver), are shown

.k

in Figure F.l1. The energy in the intermediate prediction error, éi k+1®
’

at the output of each filter stage is to be minimized individually. Hence,



.............. P QUANTIZER

>

ei,N+1

i,2

i,N

FIGURE F.1l: Lattice predictor structure in a differential encoder

9t



363

=e. . -b,  F, =1,2,... :
il T8,k T PiLk Fire Kool (F.3)
Given the initial states of F, . 's, new values are found by the

1,k

following relationships:

b,  F (F.4)

JkPi k% Lk X

and Fi,l = D(ei,l)’ where D = Delay.

F = D(Fi (F.5)

i,k+1 ) # DF,

This method eliminates the inversion of matrix and the coefficients
approach to the optimum values faster than those of autocorrelation
methods. Further PARCOR technique has greater numerical accuracy in

computation and stability checking criterion (|bi |<1) is easy.
r

k

However, there are large numbers of computations involved. This is
because, N multiplications for each output sample of direct methods,
now are replaced by 2N multiplications. The stability test mentiomed
above is widely used by employing the relationships between the direct

method coefficients a; k's and PARCOR coefficients, bi k's as studied
? ]

in reference (26). For this reason, initially 2, 3 coefficients of
4

predictor are converted into the coefficients of inverse filter, a,
»

IS’

(input speech samples, applied to the inverse predictor, directly
produces prediction error samples). For N-order predictor, at ith
sampling instant, ;k's are computed as follows:

a1 = 1.0

-~

a =" g where 2gkgN+1, (F.6)

Then recursion formula from reference (26), see page 95, can be employed,

i.e.,
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1gjsk-1 (F.7)

where k goes from N to N-1, down to 1. It is necessary and sufficient

that parameters,bis at ith instant,must satisfy the condition,

-1 g bk g 1. (F.8)

Thus if any of the bk viqlate Equation (F.8), then it is known that
there are roots outside the unit circle, i.e., predictor is unstable,.
At this stage we can attempt to correct the stability in the following
manner: After each bk is calculated, its absolute value is compared
to 1. If Ibklsl.o, the algorithm proceeds to calculate the next co-
efficients. If Ibk|>1, coefficients are restricted to sgn(0.98,bk),
then we can use inverse recursion formula in order to obtain predictor

(26)

coefficients, i.e.,

- -

8k T3 k-1 T Prk-j k-1 (F.9)

where lgjgk-1 and (F.9) is being solved for k=1,2,...,N and with the
final value of aﬁs being defined by Equation (F.6). All the procedure

described here is defined by the following subroutines (LIST 4).
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LIST 4

DRTE 27 . a1 . 1882 TINE 89 96

MRIN PRAGRAM

N=QRDER OF THE FREDICTOR

AR(JY=RRRAY FOR INYERSE FREDICTOR COEFFICIENTS

AGJ)= AREAY FOR FREDICTOR COEFFICIENTS

RCCII=RRRRAY FOR FRARCOR COEFFICIENTS

BRCII=ARRAY FOR FREDICTOR COEFFICIENTS RFTER
STREILITY CORRECTION FROCESS

AR(1)=1. 8O-
DO 1 J=2. N+i
AR(IY==-A{I-1)

CONTINUE

CALL REFLECCAR. RC. N}
CALL REFLECTCRC. ARR. N2
po 2 J=1,N
ARCTY==ARR(J+1)
CONTINUE

CALL EXIT

END

SUBRQUTINE REFLEC CGNVERfS ARCJT 7S INTO RC(CJI’S
INVERSE FREDICTQR COEFFICIENTS INTO PRRCOR COEF

SUBRQUTINE REFLECCAR. RC, N2
CIMENSION BR(18), RC(18), Bx(za)
N=2

MP1=N+1

RLPHR=1. 8

b0 38 Jée=1, N

MR=N+1-J6&

MRF1=HR+1

D=1 @8-AR(MFPRII*ARCHPRL}
RLPHA=BLFPHA/D

b0 18 K=1.HR

IH=HR+2-K

BX(KY=AR{HH 2

oo 2@ K=1., MR
RR(KI=(RR{KI=-RR(CHRFLI*BR(K)II/D
RC(MRI=AR(HFR1L)

CONTINUE '

D0 48 IK=1, N ‘
IFC(RABS(RCCIKDY). GE. 1. B8) RC(IK)=SIGN(8. 9888, RCCIK))
RETURN :
ENG
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CCE  CCONT. )

SUBROUTINE REFLECT CONVERTS RCCJ)’S INTQ RRRCJI-S
FRRCOR COEFFICIENTS INTQ CORRECTED INVERSE FILTER COEF.

GO0 000

SUBRQUTINE REFLECT(RC, RRR. N)
DIMENSION RCC(18), ARR(LA)Y, BR(Z6)
RRR(1)=1. aa
RRRCZ2I=RC(1)
DO I8 MINC=2. N
bd 1a JZ2a=1, MINC
JE=MINC~JT28+]
18 BR(JZI=ARR(JR)
pa za IP=2,HINC
za ARRCIPY=ARRRCIPI+RC(MINC#ER(IP~1)
BRR{MINC+1)=RC(HINC)
38 CONTINUE
RETURN
ENE

- END -
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APPENDIX G

DURBIN'S SEQUENTIAL ALGORITHM

For the autocorrelation method, the matrix equation for obtaining
the predictor coefficients (see Equation (3.17)) is of the form,

N

c_= ) C. , lgksN
k=l ak rk

where Cr is the rth autocorrelation function.

The most efficient method for solving Toeplitz autocorrelation

(11,28)

matrix equations is Durbin's recursive procedure which can be

stated as follows: )
E.=C (G.1)

0 0
k;l
= I - 1/ 3y
b = 1G it 35 (k1) k=317 E1 (6.2
where 1lgkgN
a k= bk {G.3)
33,k 7 3, k=1 kP k3D, k1) (6.4)
where lgjgk-1
2
E = (l-bk)Ek_1 . (G.5)

Once Equations (G.1)-(G.5) are solved recursively for k=1,2,...,N

and the final solution is given as

a, = a, 1gjgN ' G.6
J J’N » J ( )
where aj N is the jth predictor coeéfficient for a predictor of order

»

N.
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In order to illustrate the above procedure, consider an example

of obtaining the predictor coefficients for a predictor of order 3.

The original matrix equation is defined as,

0 1 2 1
€ o € a4
C, 21 o 4,

Using Equations (G.1)-(G.6) we obtain:

STEP 1: E.=C

o~ %
(i) b, = C,/E, = € /C,
i) a1 =k c2_c2
. 2 0 1
(iii) E, = (l-bl)E0 = <
0
STEP 2: (i) b, = [02-31,1C1]/E1
- Czco"ci
ES
(i)  a,,=b,
)27 2,17%%1 1
€161
¢=C]
(i) E, = (1-bIE, .

STEP 3: (1) b3 = [03-31,202-32,201]/E2
(ii) 513’3 = b3
a = 2a -b.a
1,3 - %1,27°3%2,2
3, 3= 28 ;P33 5

... . 2
{iii) E, = (l_bB)E2°

(G.7)
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Hence, the 3rd-order predictor coefficients are defined as

[al lazla3]

[3) 3:25 3283 3] -

The number of multiplications/additions required per block size of

W, for obtaining N prediction coefficients are also considered.

Assuming

that the division is computationally equivalent to two multiplications,

the whole process can be summarized as shown in Table G.l.

FUNCTION MULTIPLICATIONS ADDITIONS
W
c o= ¥ x W W-1
0 . i
i=1
c, W-1 W-2
C, W-2 w-3
Cy W-N W-(N+1)
TOTAL 1 § (N+1) (2W-N) § (N+1) [2W- (N+2) ]

From the above
example for N=3:
STEP 1: (1)

(ii)

(iii)

STEP 2: (i)
(ii)

(iii)

STEP 3: (i)
(ii)

(iii)

W sHcMuEWIWOo N

RN O O

STEP N: (i)
(ii)

(iii)

TOTAL 2

N2+4N

TOTAL 1 + TOTAL 2

&[N2+(7+2W)N+2W]

§ N2+ (2u-3) N+ 20-2]

TABLE G.l:

Computational requirement per block of W samples for

calculation of N prediction coefficients from Durbin's

algorithm
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THESIS1 DRTE 45 . @3 . 1982 TIME 1€:65

OO0 000600

Lo R ]

GO OHOOOO0O0N0 M0

PROGRAMS FOR
DFCH-AGF-FFOF
DFCM-ACF-FSGF
FBALFCHM-ROF
ADPCH-ARF -CSFC4)-FEOF

INMFLICIT INTEGER+4(I-N), REAL*ECA-H, 0-2)
DIMENSION X{25€). CC8), CL(CE), ACEY, B(2@), SCGL1¢180, RI(E)D
DINMENSION SNRiC2@é). DESC2860), KK(18), LT (2aa)

B VALUES CORRESFOND TQ FONER LEVELS OF INFUT SFEECH SIGNAL

Bcir=2a8 8
B(2y=250 @

IM VALUES CORRESFOND TGO DIFFERENT ENCOLERS IM=1 IS FOR FIXED
SECOND ORDER FREDICTOR, IM=2 1S FOR FORWREL ELOCK RDRFPTIVE

FREGICTOR WHILE IM=2 IS FOR SHITCHED PREDICTOR

SYSTEM PARAMETERS ARE RS FOLLOHS:

REL=RUANTIZER COFTIMIZING COEFFICIENT

ARL IS 1. 8.8 50,0 33 FOR 2.2. 4 BITS/SAMFLE QUANTIZRTION
RA2=MAXIMUMN QUANTIZER INFUT RANGE CONSTANT

ROZ2 IS 1. 8.2. 8 AND 7. 6 FOR 2. X ANL 4 BITSSSANFLE QUANTIZRTION
L1 AND L2 CORRESPOND TO POWER LEVEL

NB IS THE TOTAL NUHEER OF BLOCKS EACH HAVING 256 SANFLES

LK1, LK2 RRE THE VRLUES OF IM, YARIES EETHEEN 1 AND X

IM=FOR FSQF, IM=2 FQF FBR , IN=% FOF SHITCHEL FIXED. CSP(42-FSOF

RERDCL. %)RQL. AR2. L1, L2, NB. LKL, LKZ
DO 2¢ IM=L¥K1.LK2

oa 25 K=141.,L2

DD 1 J':i.ﬁ 8

A{J) =8 a8

CR=a ag

ERE=8. g1

X0=3 aos

OO 21 INC=1.,NE
RERDCS, #) (X (J), J=4,25¢€)
Ci=g. @

ERR1=0Q @

KR=1

KRR=25¢

CALL CORRECX, KR, KRE.C,CT, INC)
CRALL DURBINCC. R1)
RUTO=CTCINCGY

KRR=KRR+Z2
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THESIST (CONT. )

YM=G @ .
Lo 2 1Kk=1,255
IFCIE-4)2, 2. 2
2 RRI=X(IK)-0. 864+X(Tk-1)
RR=RR1/E(K?
YM=YM+RRRR
3 CONTINUE
YM=YH-25€. @
YI=[SQRT{YM)
Z12=R01+¥H
CALL TRANS{Z12.ST. KK
2a=85T
- 21=R02+ET
TFCIM=-2)4.1%.
q Aic1)=4 515
AiC2r=-p. 782
GO TO 1=
5 IFCRUTO. GT. 8. 7@88) GO TO &
GeG 707
& AR1{1)=1 52%
A1C2)=-8. 728
GO TO 12
v IFCRUTO. LE. 8. 788, AND. RUTO. GT. 6. 486y GO TO &
Go TO0 9
.8 A1¢1 =8 S50
RIC2Y=-@A 2458
GO TQ 12
9 IFCRUTO. LE & 488, AND. RUTO. 6T. &, a8@) GG TO 1o
6O TO 11
18  Rid1)=86 4938
R1(2)==-8a 214
GO TO 4R
11 - IFCARUTO. LE 8. ada) GO TO 12
GO TO 12
12 R1¢1)=-04 6311
R1C¢2)=-8. €22
iz oo 28 J=kR, KRR
P=X{J)
Y=y R(K)
N22=2
NC=N22-1

n

FOR FFOP THE FOLLOWING CONDITIONS RRE REFPLACEDL EY
IFCINC-1214, 14,14 AND TFC(J-NZ2)15,15. 15

IF(I-N22)15,15. 17 .

Yy¥=¢-8 S84+X0

CALL QCYY, ¥1, 24,22, INDIC)?
X0=8 8e4+X0+v4

Bk OO00

15 K-8



THESISL C(CONT. )

16

e
¥

18

19
2a

X0a=y=-50

372

CALL FILT(X00, ¥3. A

C1=C1+¥sy
ERFA=ERR1+Y
CE=CE+Y+Y
ERB=ERE+YS*

S+y'5

¥3

DO 16 I1=1.NC
SGL(N22+1-11)=56G1

5G1{1>)=X0
G0 TO Zé
EST=a. aa
Lo 18 I11=4.

n-n..

1(N22-11)

EST= E.T+qGi(Ii)*Hi(Ii)

yy'=y-EST

CALL @<y, v1.

NO=EST+¥1
xoQ=y-X

I1, 22 INDTIL)

CALL FILT(X0Q. ¥S, A)

CI=C1+¥»Y
ERRI=ERR1+Y
CE=CR+Y*Y
ERE=ERE+YS*

S+¥'S

¥s

0O 19 Ii=1.NC

SEIINZZ+1-T1)=5G1 (N2Z

S6171,=X0
CONTINUE
FP1=C1/ERFR1
P3=C1-25¢. 8

f'. ]
t-..
[
A

SNRLCINCY=4d. g+DLOGLIBIPL)
DRECINC)=18. @+DLOGL1G(PX)

CONTINUE
SNRE=8. @i -
LEST=Q ad

L0 22 JK=1.NE

SNRE=SNRE+SNRLCTED
DB“I‘D?E!+DEHth)

CONTINUE

BNN=FLORT(NE)
SNRESEG=SNRE-BNN
LESI=DESI/ENN
SNET=18. G*DLOuiB(CE “ERE}

EN=NE+ 258
FL1a=CE-EN

DELT=18. E#DLGGIO F18)

HRITECL, 2RISNREED,

FORMATCIH .

’HNDHEU- L F12. 4, 8%, SNRT=", F12 4}

 SNRT

HRITEC1»24)HE I, DRET

FORMART(1H .
REHIND §
CONTINUE

‘DBST

='.F12. 4, 5K. "DEST=", F12. 4)

LIV
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THESIS1 (CONT. )

26

Lo Kl o]

Lo T o TR PN

0

1@

28

CONTINUE
CRLL EXIT
ENE

THIS SUEBROUTINE CALCULATES RUTGCORRELATION COEFFICIENTS

SUERGUTINE CORRECK. KR. KRR, C,» CT, INC)
IMPLICIT INTEGER*4(I-N), REAL#E(R-H, 0=-2)
DIMENSTION MC286)., C(5), OTC2a8)., CLCs)
pa 2 J=4.2

C1=8a. ag

a1 K=ER, KRR

AL=NCEYx XK+ T=1)

Ci=C1+A1

CONTINUE

CdTr=C1

Cer)=0¢I) A 256 @

KRR=KRE-1

CONTINUE

E=C(1)

Lo = J=1.3

CLoJy=0CT) AR

CONTINUE

LTCINCY=CD(Z)

C0CZ) IS THE FIRST SHIFT ARUTQCORRELATION COEFFICIENT

RETURN
END

THIS SUSRQUTINE EMFLOYS DUFEIN'S SEQUENTIARL RLGORITHM FOR
COMFUTING N TH. ORDER PRECICTOR COEFFICIENTS FER 256 SAMPLES

SUEBRQUTINE DUREINCC. R1?

THMPLICIT INTEGER*4{I-N), REALAECH-H. O0-2)
DIHENSION R1(5), ALPHACS, 32, ECE), RICEDY, (3
N=2

EC1=0C1)

RICL)=C(2)/CC1>

RLPHACL, 15=RI1)

EC2¥={1 6- RI(i**H!(i‘ivE(4)

DO ¢ I=2, N

RICI)=f &a

ItH=1-1

Lo 1¢ J=1.1IMM

RICI)=AICI)+ALFHACT, T=1)%0(T1-J+1}
RICIX=C(CCI+1)-RICID)AECT)

RLFHRCTI, I)=RI¢I)

Lo 26 J=1, IMM

CRLFHACT, 1)=ALFHACT. I-1)~AICI)*ALFRACT=J, I-1)
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THESIS1 (CONT. )

ECI+1d=(1. @a-RICI)*RICIIIFECT)
38 CONTINUE

DG 48 J=1. N
40 RICTI=ALFPHACJS. N

RETURN

THIS SUEROUTINE ENCODES QUANTIZER STEF SIZE AT & EBITS

o R o Rl

SUBROUTINE TRANSCZ12. ST, KK)
IMFLICIT INTEGER*4{I=-N), RERL*E(A~H, O-2)
DIMENSION KK(18)

DEL=8. BOIEFSTZ

Lg 2 I=1, 256

Fl=1I

IF(Z12-CDEL*FI)1, 2,2

GO TO =2 ’

CONTINUE

Z22=DEL*{FI-a 5>

N=222-DEL

KK{1)=N"128
TF{KK(1)Y NE. 8) N=N-128
KKC2)=N"64

IFCKK(Z2). NE. 8) N=N-&4
KK{Z)=N"22

IFCKK(Z). NE. @) N=N-Z22
Ki(4)=N/1€E

IFCKEC4). NE. 8) N=N-16&
KK(SY=N~"8

JFCKKCS). NE. @) N=N-8
KK{EY=NA"S

IFCKKCEY NE. 8> N=N-4
KK(ZY=N-2

TF{KK(T) NE 8) N=N-2
KK(8)=N

Y2=128%KK (1) 4E4%KEC2)+220KK (2 +1ExKK (4 ) +8+KK(S)+4+KE (E)
1+2%KK(7 )Y +KK(E)

ST=(¥Y2+8. S)«DEL

RETURN

Lag )

THIS SUERQUTINE JUST QUANTIZES THE INFUT ERFOR SAMFLE

SUEBRQUTINE QC(X1,X,24,22. INDIC)
IMPLICIT INTEGER*4(I-N), REAL*E(A-H, 0-2)
INDIC=08
¥=21
Wi=¥Y+22
==Kt

2=2272. 8

Ly R R R o
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THESIS1 (CONT. )

IF(X1-¥31.9.9

1 IF¢X1+v24@, 48, 2
2 IFCX1>2,11. 6
2 IF(X1-W-22)12, 12, 4
4 TF(X1-U-22-8. GROG1312,12. 5§
5 W=h+22
Go TO 2
6 IFCX1-H1+22)7, 13,12
7 IFCXI-HI+Z5+0, RRAAL)8, 132, 13
8 Wi=H1-22
Go TO 6
3 INDIC=1

GO TO 13
1a INDIC=4
60 T0 12

11 X=72
G T 14
12 N=W+Z2
6O TO 14

iz X=h1-ZZ2

14 CONTINUE
RETURN
ENL

THIS SUEROUTINE FILTERS THE QUTFUT ERROR SRMFLE RND IT IS
DESIGNED FOR &8HZ SRMFLING FREGUENCY AND 3. 4KHZ CUT-OFF

My ryeey

SUBRQUTINE FILTCVYYY. YOUTZ. BF)
IMFLICIT INTEGER+4(I-N), REAL+8&CH-H, O=22)
DIMENSION RF(&)
PYYY=UEYYeG, 2940

- HOLL=YYYY=(1. 637RI+RFCL1)+8. EXP2THAFC2))
YOUT=HOLL+2 Q+/F(1Y+AF(2)
REC(ZI=AF{L)
AFCLY=HOLL
HOLLI=Y0OUT=(1. 423208 ¢/F (3)+0. SOFLEVAFCE))
YOUTI=HOLL1+2 @+AF(I)+ARF (1)
RFC4Y=AF(3)
RF(I)=HOLLY
HOLLZ2=Y0UT1-¢1 283ET+AF(5)+0. 45193 %RF(6))
YOUTZ2=HOLLZ2+2. B+AF(S)+RF(E)
ARF{&)Y=RF(5) )
AF(S)=HAOLL 2
HOLLR=YQUT2=-(1. 23200%RF(7)+8 ILIBI-AF(8))
YOUTS=HOLLI+2. B*AF(7IY+RF(B) -
RF(BI=RF(T)
RFCFI=HOLLE
RETURN
END

- END -
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THESIS2  DRTE 15 . 83 . 1982 TIME 1€:1¢&

SGEF OR CSP(4)-SGEF WITH DPCM-ROF

Ly ie iy Rale]

INFPLICIT INTEGER#4(I=-N}, REAL*S{A-H. 0-2)

DIMENEION X{258&), thi;tﬁ(q),ﬂ(b‘.P(’ﬁ) S61¢18), R1(S)
DINENSTON SKNRI(ZE8)Y, ﬁE“ 280, KKE(Lay, LT 2aa)
DIMENEION YERFELCS)Y, CNC

Las R aw't

B VALUES CORRESFONL TO FOHER LEVELS OF IRFUT SFEECH

[y’

B(1)=200. 8
B(2)=250. @

ORDER SGEF WHILE IM=2 FQF SHITCHED SGEF

AR1=1 8. & S8, 8. 22 FUF 2, _.4 EITS QUARNTIZ
AR2=1. 8. % 8.7. 8 FOF 4 BITS PUHHTI7EF
NE=TOTRL NUHEEP GF qFEEC‘H ELOCKS

LK1 AND LKEZ CORRESPOND TQ TYPE OF SYSTEMCIM)
FEE. F7. F22. R7 RRE SGEF ADAFTATION CONSTANTS

COOOn OGN0

REARDCL. #XAR1, RO2, L1. L2, NE, LK1, LEEZ, EEE

DO 36 Im=LEL1. LEZ

Lo 22 kF=L1.L2

ITHEK=00

P?=S.ﬁ

PEGEF=

P:J—Pf‘i B

PRE=FP7F-F7

Kr=1@. @8

Lo 1 J=4, 8
1 RETI=8. ae

N22=2

CB=a. as

ERE=8 aa

XO=B.BB&

DO 2 N=1.N22

lN{N!'i ag, (P.1xN##<i aa- Frr))
2 CONTINUE

Ri1{1Y=a 547

Ri{2Y=0. 8aa

DO 25 INC=1, NE

RERDCS, #)(X(J). J—la &

Ci=0 @

ERR1=8. 8

KR=1

KRR=28¢8

IM VALUES CORRESFOND TO DIFFERENT ENCODERS IM=1 IS FOR N22
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THESIS2 (CONT. )

~

o

11

>
[

1z

14

1€

17
18

CALL CORRE(X, KR, KRR, C, CT, INC)
RUTQ=CTCINCG)

KRR=KRER+2

Y-8 @

Lo 4 Ik=1, 25¢
IFCIk=-1)>4, 4,2
RRI=X{IK)-a. 804**(IF—1)
RR=REL/B(K)

YM=YM+RER*RR

CONTINUE

YM=y¥M 256 8
YM=DSGRTCYM)

S12=R01 *Y

CALL TRANS(Z42. ST, KE)

Z2=ST

SN=ET/R04
SNN=SN#SN
FLOD=SNN+EEER
FPLO=FPSGEFAFLOD
c1=RP2+ET
IFCIM-1)16, 16, 8
IFCRUTO-8. Faa)8. 8. €
ITH=1
IFS{ITH-ITHKD 7, 16. 7
RI1{13=1 323

R1(2y==8 728

G0 TO 1€

IFCRUTO-8. 480)14. 11, 2
ITH=2
IFCITH-ITHK) 1R, 1€, 18
Ri{1)=4 $5a

R1C2r=-8 3456

G0 To 1¢

IFCAUTO-8. 8pe114.14.12
ITH=2
TFCITH-ITHK)1Z, 16;1-
R1<{1)=a 4928
A1(2)=-0. 218

GO TO 16

ITH=4
IFCITH-ITHK )15, 16,15
RI(1)=-0 6311
A1¢1)=-8 22

D0 24 J=KR. KRR

Y=x{.T)

Y=V B{KD

NZ22=2
IF(INL-!)!?;i?:?B
IFCI=-N22-1)18,18. 26
YY=vY-a geder0

o
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THESIS2 (CONT. )

4]
I P

26

CRLL Q%Y. ¥1.21, 22, INDIC)
XO=@a 864+X0+¥1

XQO=¢-X0

CALL FILT(X00, ¥5, A)
C1=C1+¥»¥

ERRI=ERRI+¥E»VS

CR=CE+¥»Y

ERB=ERE+YT*YS

DO 19 I1=1.N22
SGION22+2-T1=5G1 (N22+4~11)
CONTINLIE

SG1(1)=X0

Ga TO 24
E=SG1(12-RICIX+SG1(Z)-RLIC2I*SG1(2)
DO 21 K2=1.N22
EI=CN{K2Y¥SG1(K2+1)

E1=E-EI

E2=E+E] -
YERRLI(K2)=LABRSCEL)-[RESCEZ)
BU ':‘r.' FT-i.l N..a
AD=(KT)*#(FES)
A1{KT)=R1CKTI-(R7-18, B)*{i 8 R0 #VERRICKTIHCPDD )
CONTINUE

EST= 51(1)*¢u1(1)+ﬁi(:?*¢u1( B
YY=Yy-EST

CREL QCYY, ¥1,21, 22, INCIC)
XO0=EST+v¥1

Xo0=¢-x0

CRLL FILT(X00. ¢S, R)
C1=C1+4'+»y

ERRI=ERR1+Y¥YE»Y5S

CB=CE+¥»Y

ERE=ERB+Y5+¥5

DO 22 I1=1, N22
SGL{N2242-T1)=SG1(N22+1-11)
CONTINUE

SG1(1)=xa

CONTINUE

P1=C1-ERR1

- P3=C1/256. 8

SNRICINCY=16. 8+LLOGLIACFL)
DESCINC)=18 a+DLOGLIB{FZ)
ITHK=ITH

CONTINUE

SNRE=0. o

DESI=4 g

DO 268 Jk=1, NE
SNEE=SNRE+SNRLCJK)
PESI=DRSI+DRS(JIK)
CONTINUE
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THESIS2 (CONT. )

BN=FLORT(NE?

SNRSEG=SNRE/EN

ORSI=DESI/BN

- SNRT=18. 8»[LLOG18(CE/ERE)

BNN=NE+256 '

FP18=CE/BNN

DEST=10. 0+DLOGL1B(PL8)

WRITE(1, 2P)SNESEG.: SNRT <
ar FORMARTCLH , “SNRSEG=", F12. 4. 8%, *SNRT=", F12. 4)
WRITE(L, 2830EST, DEET
FORMAT(1IH , “DRST =7, F12. 4, 35%, "LEST=",F12. 4)
RERIND &
CONTINLUE
CONTINUE
CALL EXIT
ENL

[ (8
L]

tag P
o0

THE SUEBRQUTINES RRE THE SAME RS BEFORE
(SEE PROGRAM THESISL)

LRl iy

- END -
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